WorldWideScience

Sample records for cells express oct4

  1. Dynamic methylation and expression of Oct4 in early neural stem cells.

    Science.gov (United States)

    Lee, Shih-Han; Jeyapalan, Jennie N; Appleby, Vanessa; Mohamed Noor, Dzul Azri; Sottile, Virginie; Scotting, Paul J

    2010-09-01

    Neural stem cells are a multipotent population of tissue-specific stem cells with a broad but limited differentiation potential. However, recent studies have shown that over-expression of the pluripotency gene, Oct4, alone is sufficient to initiate a process by which these can form 'induced pluripotent stem cells' (iPS cells) with the same broad potential as embryonic stem cells. This led us to examine the expression of Oct4 in endogenous neural stem cells, as data regarding its expression in neural stem cells in vivo are contradictory and incomplete. In this study we have therefore analysed the expression of Oct4 and other genes associated with pluripotency throughout development of the mouse CNS and in neural stem cells grown in vitro. We find that Oct4 is still expressed in the CNS by E8.5, but that this expression declines rapidly until it is undetectable by E15.5. This decline is coincident with the gradual methylation of the Oct4 promoter and proximal enhancer. Immunostaining suggests that the Oct4 protein is predominantly cytoplasmic in location. We also found that neural stem cells from all ages expressed the pluripotency associated genes, Sox2, c-Myc, Klf4 and Nanog. These data provide an explanation for the varying behaviour of cells from the early neuroepithelium at different stages of development. The expression of these genes also provides an indication of why Oct4 alone is sufficient to induce iPS formation in neural stem cells at later stages.

  2. BAY11 enhances OCT4 synthetic mRNA expression in adult human skin cells.

    Science.gov (United States)

    Awe, Jason P; Crespo, Agustin Vega; Li, You; Kiledjian, Megerditch; Byrne, James A

    2013-02-06

    The OCT4 transcription factor is involved in many cellular processes, including development, reprogramming, maintaining pluripotency and differentiation. Synthetic OCT4 mRNA was recently used (in conjunction with other reprogramming factors) to generate human induced pluripotent stem cells. Here, we discovered that BAY 11-7082 (BAY11), at least partially through an NF-κB-inhibition based mechanism, could significantly increase the expression of OCT4 following transfection of synthetic mRNA (synRNA) into adult human skin cells. We tested various chemical and molecular small molecules on their ability to suppress the innate immune response seen upon synthetic mRNA transfection. Three molecules - B18R, BX795, and BAY11 - were used in immunocytochemical and proliferation-based assays. We also utilized global transcriptional meta-analysis coupled with quantitative PCR to identify relative gene expression downstream of OCT4. We found that human skin cells cultured in the presence of BAY11 resulted in reproducible increased expression of OCT4 that did not inhibit normal cell proliferation. The increased levels of OCT4 resulted in significantly increased expression of genes downstream of OCT4, including the previously identified SPP1, DUSP4 and GADD45G, suggesting the expressed OCT4 was functional. We also discovered a novel OCT4 putative downstream target gene SLC16A9 which demonstrated significantly increased expression following elevation of OCT4 levels. For the first time we have shown that small molecule-based stabilization of synthetic mRNA expression can be achieved with use of BAY11. This small molecule-based inhibition of innate immune responses and subsequent robust expression of transfected synthetic mRNAs may have multiple applications for future cell-based research and therapeutics.

  3. Nocodazole treatment decreases expression of pluripotency markers Nanog and Oct4 in human embryonic stem cells

    DEFF Research Database (Denmark)

    Kallas, Ade; Pook, Martin; Maimets, Martti

    2011-01-01

    in the expression of transcription markers Nanog and Oct4 as well as SSEA-3 and SSEA-4 in human embryonic cells after their treatment with nocodazole. Multivariate permeabilised-cell flow cytometry was applied for characterising the expression of Nanog and Oct4 during different cell cycle phases. Among untreated h......ESC we detected Nanog-expressing cells, which also expressed Oct4, SSEA-3 and SSEA-4. We also found another population expressing SSEA-4, but without Nanog, Oct4 and SSEA-3 expression. Nocodazole treatment resulted in a decrease of cell population positive for all four markers Nanog, Oct4, SSEA-3, SSEA-4....... Nocodazole-mediated cell-cycle arrest was accompanied by higher rate of apoptosis and upregulation of p53. Twenty-four hours after the release from nocodazole block, the cell cycle of hESC normalised, but no increase in the expression of transcription markers Nanog and Oct4 was detected. In addition...

  4. Oct3/4 directly regulates expression of E2F3a in mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Kanai, Dai; Ueda, Atsushi; Akagi, Tadayuki; Yokota, Takashi; Koide, Hiroshi

    2015-01-01

    Embryonic stem (ES) cells, derived from the inner cell mass of blastocysts, have a characteristic cell cycle with truncated G1 and G2 phases. Recent findings that suppression of Oct3/4 expression results in a reduced proliferation rate of ES cells suggest the involvement of Oct3/4 in the regulation of ES cell growth, although the underlying molecular mechanism remains unclear. In the present study, we identified E2F3a as a direct target gene of Oct3/4 in ES cells. Oct3/4 directly bound to the promoter region of the E2F3a gene and positively regulated expression of E2F3a in mouse ES cells. Suppression of E2F3a activity by E2F6 overexpression led to the reduced proliferation in ES cells, which was relieved by co-expression of E2F3a. Furthermore, cell growth retardation caused by loss of Oct3/4 was rescued by E2F3a expression. These results suggest that Oct3/4 upregulates E2F3a expression to promote ES cell growth. - Highlights: • Oct3/4 positively regulates E2F3a expression in ES cells. • Oct3/4 binds to the promoter region of the E2F3a gene. • Overexpression of E2F6, an inhibitor of E2F3a, reduces ES cell growth. • E2F3a recovers growth retardation of ES cells caused by Oct3/4 reduction

  5. Oct3/4 directly regulates expression of E2F3a in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, Dai; Ueda, Atsushi; Akagi, Tadayuki; Yokota, Takashi; Koide, Hiroshi, E-mail: hkoide@med.kanazawa-u.ac.jp

    2015-04-10

    Embryonic stem (ES) cells, derived from the inner cell mass of blastocysts, have a characteristic cell cycle with truncated G1 and G2 phases. Recent findings that suppression of Oct3/4 expression results in a reduced proliferation rate of ES cells suggest the involvement of Oct3/4 in the regulation of ES cell growth, although the underlying molecular mechanism remains unclear. In the present study, we identified E2F3a as a direct target gene of Oct3/4 in ES cells. Oct3/4 directly bound to the promoter region of the E2F3a gene and positively regulated expression of E2F3a in mouse ES cells. Suppression of E2F3a activity by E2F6 overexpression led to the reduced proliferation in ES cells, which was relieved by co-expression of E2F3a. Furthermore, cell growth retardation caused by loss of Oct3/4 was rescued by E2F3a expression. These results suggest that Oct3/4 upregulates E2F3a expression to promote ES cell growth. - Highlights: • Oct3/4 positively regulates E2F3a expression in ES cells. • Oct3/4 binds to the promoter region of the E2F3a gene. • Overexpression of E2F6, an inhibitor of E2F3a, reduces ES cell growth. • E2F3a recovers growth retardation of ES cells caused by Oct3/4 reduction.

  6. Concurrent Expression of Oct4 and Nanog Maintains Mesenchymal Stem-Like Property of Human Dental Pulp Cells

    Directory of Open Access Journals (Sweden)

    Chuan-En Huang

    2014-10-01

    Full Text Available Human dental pulp stem cells (DPSCs, unique mesenchymal stem cells (MSCs type, exhibit the characteristics of self-renewal and multi-lineage differentiation capacity. Oct4 and Nanog are pluripotent genes. The aim of this study was to determine the physiological functions of Oct4 and Nanog expression in DPSCs. Herein, we determined the critical role of an Oct4/Nanog axis modulating MSCs properties of DPSCs by lentiviral-mediated co-overexpression or co-knockdown of Oct4/Nanog in DPSCs. MSCs properties including osteogenic/chondrogenic/adipogenic induction differentiation was assayed for expression of osteogenic/chondrogenic/adipogenic markers by quantitative real-time RT-PCR analysis. Initially, we observed that the expression profile of Oct4 and Nanog in dental pulp cells, which exerted properties of MSCs, was significantly up-regulated compared to that of STRO-1−CD146− dental pulp cells. Down-regulation of Oct4 and Nanog co-expression significantly reduced the cell proliferation, osteogenic differentiation capability, STRO-1, CD146, and Alkaline phosphatase (ALP activity of DPSCs. In contrast, co-overexpression of Oct4 and Nanog enhanced the expression level of STRO-1 and CD146, proliferation rate and osteogenic/chondrogenic/adipogenic induction differentiation capability, and expression of osteogenic/chondrogenic/adipogenic induction differentiation markers. Our results suggest that Oct4-Nanog signaling is a regulatory switch to maintain properties in DPSCs.

  7. Concurrent expression of Oct4 and Nanog maintains mesenchymal stem-like property of human dental pulp cells.

    Science.gov (United States)

    Huang, Chuan-En; Hu, Fang-Wei; Yu, Chuan-Hang; Tsai, Lo-Lin; Lee, Tzu-Hsin; Chou, Ming-Yung; Yu, Cheng-Chia

    2014-10-15

    Human dental pulp stem cells (DPSCs), unique mesenchymal stem cells (MSCs) type, exhibit the characteristics of self-renewal and multi-lineage differentiation capacity. Oct4 and Nanog are pluripotent genes. The aim of this study was to determine the physiological functions of Oct4 and Nanog expression in DPSCs. Herein, we determined the critical role of an Oct4/Nanog axis modulating MSCs properties of DPSCs by lentiviral-mediated co-overexpression or co-knockdown of Oct4/Nanog in DPSCs. MSCs properties including osteogenic/chondrogenic/adipogenic induction differentiation was assayed for expression of osteogenic/chondrogenic/adipogenic markers by quantitative real-time RT-PCR analysis. Initially, we observed that the expression profile of Oct4 and Nanog in dental pulp cells, which exerted properties of MSCs, was significantly up-regulated compared to that of STRO-1-CD146- dental pulp cells. Down-regulation of Oct4 and Nanog co-expression significantly reduced the cell proliferation, osteogenic differentiation capability, STRO-1, CD146, and Alkaline phosphatase (ALP) activity of DPSCs. In contrast, co-overexpression of Oct4 and Nanog enhanced the expression level of STRO-1 and CD146, proliferation rate and osteogenic/chondrogenic/adipogenic induction differentiation capability, and expression of osteogenic/chondrogenic/adipogenic induction differentiation markers. Our results suggest that Oct4-Nanog signaling is a regulatory switch to maintain properties in DPSCs.

  8. Distinctive expression pattern of OCT4 variants in different types of breast cancer.

    Science.gov (United States)

    Soheili, Saamaaneh; Asadi, Malek Hossein; Farsinejad, Alireza

    2017-01-01

    OCT4 is a key regulator of self-renewal and pluripotency in embryonic stem cells which can potentially encode three spliced variants designated OCT4A, OCT4B and OCT4B1. Based on cancer stem cell concept, it is suggested that the stemness factors misexpressed in cancer cells and potentially is involved in tumorigenesis. Accordingly, in this study, we investigated the potential expression of OCT4 variants in breast cancer tissues. A total of 94 tumoral and peritumoral breast specimens were evaluated with respect to the expression of OCT4 variants using quantitative RT-PCR and immunohistochemical (IHC) analysis. We detected the expression of OCT4 variants in breast tumor tissues with no or very low levels of expression in peritumoral samples of the same patients. While OCT4B was highly expressed in lobular type of breast cancer, OCT4A and OCTB1 variants are highly expressed in low grade (I and II) ductal tumors. Furthermore, the results of this study revealed a considerable association between the expression level of OCT4 variants and the expression of ER, PR, Her2 and P53 factors. All data demonstrated a distinctive expression pattern of OCT4 spliced variants in different types of breast cancer and provide further evidence for the involvement of embryonic genes in carcinogenesis.

  9. Stem cell-specific expression of Dax1 is conferred by STAT3 and Oct3/4 in embryonic stem cells

    International Nuclear Information System (INIS)

    Sun Chuanhai; Nakatake, Yuhki; Ura, Hiroki; Akagi, Tadayuki; Niwa, Hitoshi; Koide, Hiroshi; Yokota, Takashi

    2008-01-01

    Embryonic stem (ES) cells are pluripotent cells derived from inner cell mass of blastocysts. An orphan nuclear receptor, Dax1, is specifically expressed in undifferentiated ES cells and plays an important role in their self-renewal. The regulatory mechanism of Dax1 expression in ES cells, however, remains unknown. In this study, we found that STAT3 and Oct3/4, essential transcription factors for ES cell self-renewal, are involved in the regulation of Dax1 expression. Suppression of either STAT3 or Oct3/4 resulted in down-regulation of Dax1. Reporter assay identified putative binding sites for these factors in the promoter/enhancer region of the Dax1 gene. Chromatin immunoprecipitation analysis suggested the in vivo association of STAT3 and Oct3/4 with the putative sites. Furthermore, gel shift assay indicated that these transcription factors directly bind to their putative binding sites. These results suggest that STAT3 and Oct3/4 control the expression of Dax1 to maintain the self-renewal of ES cells

  10. Scalable topographies to support proliferation and Oct4 expression by human induced pluripotent stem cells.

    Science.gov (United States)

    Reimer, Andreas; Vasilevich, Aliaksei; Hulshof, Frits; Viswanathan, Priyalakshmi; van Blitterswijk, Clemens A; de Boer, Jan; Watt, Fiona M

    2016-01-13

    It is well established that topographical features modulate cell behaviour, including cell morphology, proliferation and differentiation. To define the effects of topography on human induced pluripotent stem cells (iPSC), we plated cells on a topographical library containing over 1000 different features in medium lacking animal products (xeno-free). Using high content imaging, we determined the effect of each topography on cell proliferation and expression of the pluripotency marker Oct4 24 h after seeding. Features that maintained Oct4 expression also supported proliferation and cell-cell adhesion at 24 h, and by 4 days colonies of Oct4-positive, Sox2-positive cells had formed. Computational analysis revealed that small feature size was the most important determinant of pluripotency, followed by high wave number and high feature density. Using this information we correctly predicted whether any given topography within our library would support the pluripotent state at 24 h. This approach not only facilitates the design of substrates for optimal human iPSC expansion, but also, potentially, identification of topographies with other desirable characteristics, such as promoting differentiation.

  11. OCT4 increases BIRC5 and CCND1 expression and promotes cancer progression in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Cao, Lu; Wu, Mengchao; Zhang, Ying; Su, Changqing; Li, Chunguang; Shen, Shuwen; Yan, Yan; Ji, Weidan; Wang, Jinghan; Qian, Haihua; Jiang, Xiaoqing; Li, Zhigang

    2013-01-01

    OCT4 and BIRC5 are preferentially expressed in human cancer cells and mediate cancer cell survival and tumor maintenance. However, the molecular mechanism that regulates OCT4 and BIRC5 expression is not well characterized. By manipulating OCT4 and BIRC5 expression in hepatocellular carcinoma (HCC) cell lines, the regulatory mechanism of OCT4 on BIRC5 and CCND1 were investigated. Increasing or decreasing OCT4 expression could enhance or suppress BIRC5 expression, respectively, by regulating the activity of BIRC5 promoter. Because there is no binding site for OCT4 within BIRC5 promoter, the effect of OCT4 on BIRC5 promoter is indirect. An octamer motif for OCT4 in the CCND1 promoter has directly and partly participated in the regulation of CCND1 promoter activity, suggesting that OCT4 also could upregulated the expression of CCND1. Co-suppression of OCT4 and BIRC5 induced cancer cell apoptosis and cell cycle arrest, thereby efficiently inhibiting the proliferative activity of cancer cells and suppressing the growth of HCC xenogrfts in nude mice. OCT4 can upregulate BIRC5 and CCND1 expression by increasing their promoter activity. These factors collusively promotes HCC cell proliferation, and co-suppression of OCT4 and BIRC5 is potentially beneficial for HCC treatment

  12. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC matrix cells

    Directory of Open Access Journals (Sweden)

    Schultz Bruce

    2006-02-01

    Full Text Available Abstract Background Three transcription factors that are expressed at high levels in embryonic stem cells (ESCs are Nanog, Oct-4 and Sox-2. These transcription factors regulate the expression of other genes during development and are found at high levels in the pluripotent cells of the inner cell mass. The downregulation of these three transcription factors correlates with the loss of pluripotency and self-renewal, and the beginning of subsequent differentiation steps. The roles of Nanog, Oct-4 and Sox-2 have not been fully elucidated. They are important in embryonic development and maintenance of pluripotency in ESCs. We studied the expression of these transcription factors in porcine umbilical cord (PUC matrix cells. Methods Cells were isolated from Wharton's jelly of porcine umbilical cords (PUC and histochemically assayed for the presence of alkaline phosphatase and the presence of Nanog, Oct-4 and Sox-2 mRNA and protein. PCR amplicons were sequenced and compared with known sequences. The synthesis of Oct-4 and Nanog protein was analyzed using immunocytochemistry. FACS analysis was utilized to evaluate Hoechst 33342 dye-stained cells. Results PUC isolates were maintained in culture and formed colonies that express alkaline phosphatase. FACS analysis revealed a side population of Hoechst dye-excluding cells, the Hoechst exclusion was verapamil sensitive. Quantitative and non-quantitative RT-PCR reactions revealed expression of Nanog, Oct-4 and Sox-2 in day 15 embryonic discs, PUC cell isolates and porcine fibroblasts. Immunocytochemical analysis detected Nanog immunoreactivity in PUC cell nuclei, and faint labeling in fibroblasts. Oct-4 immunoreactivity was detected in the nuclei of some PUC cells, but not in fibroblasts. Conclusion Cells isolated from PUC express three transcription factors found in pluripotent stem cell markers both at the mRNA and protein level. The presence of these transcription factors, along with the other

  13. A novel SALL4/OCT4 transcriptional feedback network for pluripotency of embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jianchang Yang

    Full Text Available BACKGROUND: SALL4 is a member of the SALL gene family that encodes a group of putative developmental transcription factors. Murine Sall4 plays a critical role in maintaining embryonic stem cell (ES cell pluripotency and self-renewal. We have shown that Sall4 activates Oct4 and is a master regulator in murine ES cells. Other SALL gene members, especially Sall1 and Sall3 are expressed in both murine and human ES cells, and deletions of these two genes in mice lead to perinatal death due to developmental defects. To date, little is known about the molecular mechanisms controlling the regulation of expressions of SALL4 or other SALL gene family members. METHODOLOGY/PRINCIPAL FINDINGS: This report describes a novel SALL4/OCT4 regulator feedback loop in ES cells in balancing the proper expression dosage of SALL4 and OCT4 for the maintenance of ESC stem cell properties. While we have observed that a positive feedback relationship is present between SALL4 and OCT4, the strong self-repression of SALL4 seems to be the "break" for this loop. In addition, we have shown that SALL4 can repress the promoters of other SALL family members, such as SALL1 and SALL3, which competes with the activation of these two genes by OCT4. CONCLUSIONS/SIGNIFICANCE: Our findings, when taken together, indicate that SALL4 is a master regulator that controls its own expression and the expression of OCT4. SALL4 and OCT4 work antagonistically to balance the expressions of other SALL gene family members. This novel SALL4/OCT4 transcription regulation feedback loop should provide more insight into the mechanism of governing the "stemness" of ES cells.

  14. OCT4 expression in outgrowth colonies derived from porcine inner cell masses and epiblasts

    DEFF Research Database (Denmark)

    Rasmussen, M A; Wolf, X A; Schauser, K

    2011-01-01

    on the relationship between OCT4 expression and embryonic stem cell (ESC)-like morphology. A total of 104 zona pellucida-enclosed and 101 hatched blastocysts were subjected to four different methods of ICM and epiblast isolation, respectively: Manual isolation, immunosurgery, immunosurgery with manual cleaning......, or whole blastocyst culture. OCs were established on mouse embryonic fibroblast (MEF) cells and categorized according to morphology and OCT4 staining. Although all isolation methods resulted in ESC-like OCs, immunosurgery with manual cleaning yielded significantly higher rates of ICM/epiblast attachment...

  15. Conserved and divergent patterns of expression of DAZL, VASA and OCT4 in the germ cells of the human fetal ovary and testis

    Directory of Open Access Journals (Sweden)

    Coutts Shona

    2007-12-01

    Full Text Available Abstract Background Germ cells arise from a small group of cells that express markers of pluripotency including OCT4. In humans formation of gonadal compartments (cords in testis, nests in ovary takes place during the 1st trimester (6–8 weeks gestation. In the 2nd trimester germ cells can enter meiotic prophase in females whereas in males this does not occur until puberty. We have used qRTPCR, Westerns and immunohistochemical profiling to determine which of the germ cell subtypes in the human fetal gonads express OCT4, DAZL and VASA, as these have been shown to play an essential role in germ cell maturation in mice. Results OCT4 mRNA and protein were detected in extracts from both 1st and 2nd trimester ovaries and testes. In ovarian extracts a marked increase in expression of VASA and DAZL mRNA and protein occurred in the 2nd trimester. In testicular extracts VASA mRNA and protein were low/undetectable in 1st trimester and increased in the 2nd trimester whereas the total amount of DAZL did not seem to change. During the 1st trimester, germ cells were OCT4 positive but did not express VASA. These results are in contrast to the situation in mice where expression of Vasa is initiated in Oct4 positive primordial germ cells as they enter the gonadal ridge. In the 2nd trimester germ cells with intense cytoplasmic staining for VASA were present in both sexes; these cells were OCT4 negative. DAZL expression overlapped with both OCT4 and VASA and changed from the nuclear to the cytoplasmic compartment as cells became OCT4-negative. In males, OCT4-positive and VASA-positive subpopulations of germ cells coexisted within the same seminiferous cords but in the ovary there was a distinct spatial distribution of cells with OCT4 expressed by smaller, peripherally located, germ cells whereas DAZL and VASA were immunolocalised to larger (more mature centrally located cells. Conclusion OCT4, DAZL and VASA are expressed by human fetal germ cells but their

  16. OCT-4 expression in follicular and luteal phase endometrium: a pilot study

    Directory of Open Access Journals (Sweden)

    Huber Johannes C

    2010-04-01

    Full Text Available Abstract Background The stem cell marker Octamer-4 (OCT-4 is expressed in human endometrium. Menstrual cycle-dependency of OCT-4 expression has not been investigated to date. Methods In a prospective, single center cohort study of 98 women undergoing hysteroscopy during the follicular (n = 49 and the luteal (n = 40 phases of the menstrual cycle, we obtained endometrial samples. Specimens were investigated for OCT-4 expression on the mRNA and protein levels using reverse transcriptase polymerase chain reaction (RT-PCR and immunohistochemistry. Expression of OCT-4 was correlated to menstrual cycle phase. Results Of 89 women sampled, 49 were in the follicular phase and 40 were in the luteal phase. OCT-4 mRNA was detected in all samples. Increased OCT-4 mRNA levels in the follicular and luteal phases was found in 35/49 (71% and 27/40 (68% of women, respectively (p = 0.9. Increased expression of OCT-4 protein was identified in 56/89 (63% samples. Increased expression of OCT-4 protein in the follicular and luteal phases was found in 33/49 (67% and 23/40 (58% of women, respectively (p = 0.5. Conclusions On the mRNA and protein levels, OCT-4 is not differentially expressed during the menstrual cycle. Endometrial OCT-4 is not involved in or modulated by hormone-induced cyclical changes of the endometrium.

  17. SOX2 and OCT4 mRNA-expressing cells, detected by molecular beacons, localize to the center of neurospheres during differentiation.

    Directory of Open Access Journals (Sweden)

    Mirolyuba Ilieva

    Full Text Available Neurospheres are used as in vitro assay to measure the properties of neural stem cells. To investigate the molecular and phenotypic heterogeneity of neurospheres, molecular beacons (MBs targeted against the stem cell markers OCT4 and SOX2 were designed, and synthesized with a 2'-O-methyl RNA backbone. OCT4 and SOX2 MBs were transfected into human embryonic mesencephalon derived cells, which spontaneously form neurospheres when grown on poly-L-ornitine/fibronectin matrix and medium complemented with bFGF. OCT4 and SOX2 gene expression were tracked in individual cell using the MBs. Quantitative image analysis every day for seven days showed that the OCT4 and SOX2 mRNA-expressing cells clustered in the centre of the neurospheres cultured in differentiation medium. By contrast, cells at the periphery of the differentiating spheres developed neurite outgrowths and expressed the tyrosine hydroxylase protein, indicating terminal differentiation. Neurospheres cultured in growth medium contained OCT4 and SOX2-positive cells distributed throughout the entire sphere, and no differentiating neurones. Gene expression of SOX2 and OCT4 mRNA detected by MBs correlated well with gene and protein expression measured by qRT-PCR and immunostaining, respectively. These experimental data support the theoretical model that stem cells cluster in the centre of neurospheres, and demonstrate the use of MBs for the spatial localization of specific gene-expressing cells within heterogeneous cell populations.

  18. Human Ocular Epithelial Cells Endogenously Expressing SOX2 and OCT4 Yield High Efficiency of Pluripotency Reprogramming.

    Directory of Open Access Journals (Sweden)

    Ming-Wai Poon

    Full Text Available A variety of pluripotency reprogramming frequencies from different somatic cells has been observed, indicating cell origin is a critical contributor for efficiency of pluripotency reprogramming. Identifying the cell sources for efficient induced pluripotent stem cells (iPSCs generation, and defining its advantages or disadvantages on reprogramming, is therefore important. Human ocular tissue-derived conjunctival epithelial cells (OECs exhibited endogenous expression of reprogramming factors OCT4A (the specific OCT 4 isoform on pluripotency reprogramming and SOX2. We therefore determined whether OECs could be used for high efficiency of iPSCs generation. We compared the endogenous expression levels of four pluripotency factors and the pluripotency reprograming efficiency of human OECs with that of ocular stromal cells (OSCs. Real-time PCR, microarray analysis, Western blotting and immunostaining assays were employed to compare OECiPSCs with OSCiPSCs on molecular bases of reprogramming efficiency and preferred lineage-differentiation potential. Using the traditional KMOS (KLF4, C-MYC, OCT4 and SOX2 reprogramming protocol, we confirmed that OECs, endogenously expressing reprogramming factors OCT4A and SOX2, yield very high efficiency of iPSCs generation (~1.5%. Furthermore, higher efficiency of retinal pigmented epithelial differentiation (RPE cells was observed in OECiPSCs compared to OSCiPSCs or skin fibroblast iMR90iPSCs. The findings in this study suggest that conjunctival-derived epithelial (OECs cells can be easier converted to iPSCs than conjunctival-derived stromal cells (OSCs. This cell type may also have advantages in retinal pigmented epithelial differentiation.

  19. Human Ocular Epithelial Cells Endogenously Expressing SOX2 and OCT4 Yield High Efficiency of Pluripotency Reprogramming.

    Science.gov (United States)

    Poon, Ming-Wai; He, Jia; Fang, Xiaowei; Zhang, Zhao; Wang, Weixin; Wang, Junwen; Qiu, Fangfang; Tse, Hung-Fat; Li, Wei; Liu, Zuguo; Lian, Qizhou

    2015-01-01

    A variety of pluripotency reprogramming frequencies from different somatic cells has been observed, indicating cell origin is a critical contributor for efficiency of pluripotency reprogramming. Identifying the cell sources for efficient induced pluripotent stem cells (iPSCs) generation, and defining its advantages or disadvantages on reprogramming, is therefore important. Human ocular tissue-derived conjunctival epithelial cells (OECs) exhibited endogenous expression of reprogramming factors OCT4A (the specific OCT 4 isoform on pluripotency reprogramming) and SOX2. We therefore determined whether OECs could be used for high efficiency of iPSCs generation. We compared the endogenous expression levels of four pluripotency factors and the pluripotency reprograming efficiency of human OECs with that of ocular stromal cells (OSCs). Real-time PCR, microarray analysis, Western blotting and immunostaining assays were employed to compare OECiPSCs with OSCiPSCs on molecular bases of reprogramming efficiency and preferred lineage-differentiation potential. Using the traditional KMOS (KLF4, C-MYC, OCT4 and SOX2) reprogramming protocol, we confirmed that OECs, endogenously expressing reprogramming factors OCT4A and SOX2, yield very high efficiency of iPSCs generation (~1.5%). Furthermore, higher efficiency of retinal pigmented epithelial differentiation (RPE cells) was observed in OECiPSCs compared to OSCiPSCs or skin fibroblast iMR90iPSCs. The findings in this study suggest that conjunctival-derived epithelial (OECs) cells can be easier converted to iPSCs than conjunctival-derived stromal cells (OSCs). This cell type may also have advantages in retinal pigmented epithelial differentiation.

  20. Force via integrins but not E-cadherin decreases Oct3/4 expression in embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Uda, Yuhei [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01, Aramaki-aoba, Aoba-ward, Sendai City (Japan); Poh, Yeh-Chuin; Chowdhury, Farhan; Wu, Douglas C. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Tanaka, Tetsuya S. [Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Sato, Masaaki [Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01, Aramaki-aoba, Aoba-ward, Sendai City (Japan); Wang, Ning, E-mail: nwangrw@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Force via integrins or cadherins induces similar cell stiffening responses. Black-Right-Pointing-Pointer Force via integrins but not cadherins induces cell spreading. Black-Right-Pointing-Pointer Force via integrins but not cadherins induces differentiation of embryonic stem cells. -- Abstract: Increasing evidence suggests that mechanical factors play a critical role in fate decisions of stem cells. Recently we have demonstrated that a local force applied via Arg-Gly-Asp (RGD) peptides coated magnetic beads to mouse embryonic stem (ES) cells increases cell spreading and cell stiffness and decreases Oct3/4 (Pou5f1) gene expression. However, it is not clear whether the effects of the applied stress on these functions of ES cells can be extended to natural extracellular matrix proteins or cell-cell adhesion molecules. Here we show that a local cyclic shear force applied via fibronectin or laminin to integrin receptors increased cell spreading and stiffness, downregulated Oct3/4 gene expression, and decreased cell proliferation rate. In contrast, the same cyclic force applied via cell-cell adhesion molecule E-cadherin (Cdh1) had no effects on cell spreading, Oct3/4 gene expression, and the self-renewal of mouse ES cells, but induced significant cell stiffening. Our findings demonstrate that biological responses of ES cells to force applied via integrins are different from those to force via E-cadherin, suggesting that mechanical forces might play different roles in different force transduction pathways to shape early embryogenesis.

  1. Craniopharyngiomas express embryonic stem cell markers (SOX2, OCT4, KLF4, and SOX9) as pituitary stem cells but do not coexpress RET/GFRA3 receptors.

    Science.gov (United States)

    Garcia-Lavandeira, Montserrat; Saez, Carmen; Diaz-Rodriguez, Esther; Perez-Romero, Sihara; Senra, Ana; Dieguez, Carlos; Japon, Miguel A; Alvarez, Clara V

    2012-01-01

    Adult stem cells maintain some markers expressed by embryonic stem cells and express other specific markers depending on the organ where they reside. Recently, stem/progenitor cells in the rodent and human pituitary have been characterized as expressing GFRA2/RET, PROP1, and stem cell markers such as SOX2 and OCT4 (GPS cells). Our objective was to detect other specific markers of the pituitary stem cells and to investigate whether craniopharyngiomas (CRF), a tumor potentially derived from Rathke's pouch remnants, express similar markers as normal pituitary stem cells. We conducted mRNA and Western blot studies in pituitary extracts, and immunohistochemistry and immunofluorescence on sections from normal rat and human pituitaries and 20 CRF (18 adamantinomatous and two papillary). Normal pituitary GPS stem cells localized in the marginal zone (MZ) express three key embryonic stem cell markers, SOX2, OCT4, and KLF4, in addition to SOX9 and PROP1 and β-catenin overexpression. They express the RET receptor and its GFRA2 coreceptor but also express the coreceptor GFRA3 that could be detected in the MZ of paraffin pituitary sections. CRF maintain the expression of SOX2, OCT4, KLF4, SOX9, and β-catenin. However, RET and GFRA3 expression was altered in CRF. In 25% (five of 20), both RET and GFRA3 were detected but not colocalized in the same cells. The other 75% (15 of 20) lose the expression of RET, GFRA3, or both proteins simultaneously. Human pituitary adult stem/progenitor cells (GPS) located in the MZ are characterized by expression of embryonic stem cell markers SOX2, OCT4, and KLF4 plus the specific pituitary embryonic factor PROP1 and the RET system. Redundancy in RET coreceptor expression (GFRA2 and GFRA3) suggest an important systematic function in their physiological behavior. CRF share the stem cell markers suggesting a common origin with GPS. However, the lack of expression of the RET/GFRA system could be related to the cell mislocation and deregulated

  2. Oct4 targets regulatory nodes to modulate stem cell function.

    Directory of Open Access Journals (Sweden)

    Pearl A Campbell

    2007-06-01

    Full Text Available Stem cells are characterized by two defining features, the ability to self-renew and to differentiate into highly specialized cell types. The POU homeodomain transcription factor Oct4 (Pou5f1 is an essential mediator of the embryonic stem cell state and has been implicated in lineage specific differentiation, adult stem cell identity, and cancer. Recent description of the regulatory networks which maintain 'ES' have highlighted a dual role for Oct4 in the transcriptional activation of genes required to maintain self-renewal and pluripotency while concomitantly repressing genes which facilitate lineage specific differentiation. However, the molecular mechanism by which Oct4 mediates differential activation or repression at these loci to either maintain stem cell identity or facilitate the emergence of alternate transcriptional programs required for the realization of lineage remains to be elucidated. To further investigate Oct4 function, we employed gene expression profiling together with a robust statistical analysis to identify genes highly correlated to Oct4. Gene Ontology analysis to categorize overrepresented genes has led to the identification of themes which may prove essential to stem cell identity, including chromatin structure, nuclear architecture, cell cycle control, DNA repair, and apoptosis. Our experiments have identified previously unappreciated roles for Oct4 for firstly, regulating chromatin structure in a state consistent with self-renewal and pluripotency, and secondly, facilitating the expression of genes that keeps the cell poised to respond to cues that lead to differentiation. Together, these data define the mechanism by which Oct4 orchestrates cellular regulatory pathways to enforce the stem cell state and provides important insight into stem cell function and cancer.

  3. Analysis of nuclear reprogramming in cloned miniature pig embryos by expression of Oct-4 and Oct-4 related genes

    International Nuclear Information System (INIS)

    Lee, Eugine; Lee, So Hyun; Kim, Sue

    2006-01-01

    Xenotransplantation is a rapidly expanding field of research and cloned miniature pigs have been considered as a model animal for it. However, the efficiency of somatic cell nuclear transfer (SCNT) is extremely low, with most clones resulting in early lethality and several kinds of aberrant development. A possible explanation for the developmental failure of SCNT embryos is insufficient reprogramming of the somatic cell nucleus by the oocyte. In order to test this, we analyzed the reprogramming capacity of differentiated fibroblast cell nuclei and embryonic germ cell nuclei with Oct-4 and Oct-4 related genes (Ndp5211, Dppa2, Dppa3, and Dppa5), which are important for embryonic development, Hand1 and GATA-4, which are important for placental development, as molecular markers using RT-PCR. The Oct-4 expression level was significantly lower (P < 0.05) in cloned hatched blastocysts derived from fibroblasts and many of fibroblast-derived clones failed to reactivate at least one of the tested genes, while most of the germ cell clones and control embryos correctly expressed these genes. In conclusion, our results suggest that the reprogramming of fibroblast-derived cloned embryos is highly aberrant and this improper reprogramming could be one reason of the early lethality and post-implantation anomalies of somatic cell-derived clones

  4. Dental pulp stem cells differentiation reveals new insights in Oct4A dynamics.

    Directory of Open Access Journals (Sweden)

    Federico Ferro

    Full Text Available Although the role played by the core transcription factor network, which includes c-Myc, Klf4, Nanog, and Oct4, in the maintenance of embryonic stem cell (ES pluripotency and in the reprogramming of adult cells is well established, its persistence and function in adult stem cells are still debated. To verify its persistence and clarify the role played by these molecules in adult stem cell function, we investigated the expression pattern of embryonic and adult stem cell markers in undifferentiated and fully differentiated dental pulp stem cells (DPSC. A particular attention was devoted to the expression pattern and intracellular localization of the stemness-associated isoform A of Oct4 (Oct4A. Our data demonstrate that: Oct4, Nanog, Klf4 and c-Myc are expressed in adult stem cells and, with the exception of c-Myc, they are significantly down-regulated following differentiation. Cell differentiation was also associated with a significant reduction in the fraction of DPSC expressing the stem cell markers CD10, CD29 and CD117. Moreover, a nuclear to cytoplasm shuttling of Oct4A was identified in differentiated cells, which was associated with Oct4A phosphorylation. The present study would highlight the importance of the post-translational modifications in DPSC stemness maintenance, by which stem cells balance self-renewal versus differentiation. Understanding and controlling these mechanisms may be of great importance for stemness maintenance and stem cells clinical use, as well as for cancer research.

  5. Targeting Tumor Oct4 to Deplete Prostate Tumor and Metastasis Initiating Cells

    Science.gov (United States)

    2017-12-01

    is associated with androgen receptor (AR). We detected Oct4 protein expression in prostate cancer cells as well as in tumor tissue specimens...unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Identification of genes driving prostate carcinogenesis will lead to new cancer treatment. The human...a pseudogene of embryonic Oct4 (POU5F1). A recent study found that tumor Oct4 found in prostate cancer cells is due to the gene expression of POU5F1B

  6. Association of differential β-catenin expression with Oct-4 and Nanog in oral squamous cell carcinoma and their correlation with clinicopathological factors and prognosis.

    Science.gov (United States)

    Ravindran, Gokulan; Sawant, Sharada S; Hague, Angela; Kingsley, Karl; Devaraj, Halagowder

    2015-07-01

    The re-expression of pluripotent markers (Oct-4 and Nanog) and the reactivation of stem cell-related pathways in oral carcinoma have been well researched. However, the relationship between the stem cell signaling molecule β-catenin and pluripotent markers Oct-4 and Nanog in oral cancer is yet to be studied in detail. Therefore, we have investigated the correlation among Oct-4, Nanog, and β-catenin in oral squamous cell carcinoma, which, in turn, could provide valuable insight into its prognostic significance. The immunohistochemical analysis was performed for 60 cases of oral cancer to study the expression pattern of Oct-4, Nanog, and β-catenin. Whereas immunofluorescence analysis was used to investigate the co-localization of β-catenin with Oct-4 and Nanog in oral carcinoma tissues and H314 cell line. Finally, co-immunoprecipitation analysis was used to study the possible interaction between β-catenin and Oct-4 in oral carcinoma cells. β-catenin, Oct-4, and Nanog showed significant correlation with lymph node metastasis, stage, grade, and prognosis in oral squamous cell carcinoma. Interestingly, a significant positive correlation was found among the expression of Oct-4, Nanog, and β-catenin. Moreover, the interaction between β-catenin and Oct-4 was observed in oral cancer. The positive correlation among Oct-4, Nanog, and β-catenin suggests their coordinated role in maintaining proliferation in oral carcinoma cells. The interaction between β-catenin and Oct-4 may be a crucial event in oral carcinogenesis. On the other hand, β-catenin, Oct-4, and Nanog could be used as independent prognostic markers of oral squamous cell carcinoma. © 2014 Wiley Periodicals, Inc.

  7. Expression of Oct-4 is significantly associated with the development and prognosis of colorectal cancer

    Science.gov (United States)

    ZHOU, HUAN; HU, YU; WANG, WEIPENG; MAO, YONG; ZHU, JINGJIE; ZHOU, BIN; SUN, JING; ZHANG, XUEGUANG

    2015-01-01

    Octamer-binding transcription factor 4 (Oct-4), is an essential transcription factor, which is required for pluripotency and self-renewal in embryonic stem cells and germ cells. It is also involved in maintaining cancer stem-like properties in certain types of tumor, and is an important biomarker for cancer stem cells. The present study investigated whether Oct-4 expression was associated with colorectal cancer (CRC). In order to achieve this, primary CRC tissues, matched non-tumor tissues and benign polyp tissues, representing different stages of carcinogenesis, were obtained, and Oct-4 expression was analyzed using reverse transcription-quantitative polymerase chain reaction, flow cytometry analysis and immunohistochemistry. Furthermore, the medical records of patients with CRC were reviewed, and clinicopathological analysis was performed in order to assess the association between Oct-4 expression and certain clinicopathological parameters. It was shown that the transcription and translation of Oct-4 increased in a stepwise manner, from non-tumor to benign polyp tissues, and from benign polyps to CRC tissues. Oct-4 expression in CRC was significantly correlated with histological grade (P=0.007), lymph node metastasis (P=0.027), distant metastasis (P=0.017) and TNM stage (P=0.041). Kaplan-Meier survival curve analysis demonstrated that Oct-4+ cases had a shorter median survival time (37.0 months) compared with Oct-4− cases (76.0 months; P=0.001). These results indicated that aberrant expression of Oct-4 may be involved in the development of CRC. Thus, Oct-4 may be a biomarker for the prediction, diagnosis or assessment of prognosis in CRC, in addition to a potential target for the treatment of this disease. PMID:26622555

  8. The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal

    Energy Technology Data Exchange (ETDEWEB)

    Organista-Nava, Jorge; Gómez-Gómez, Yazmín [Programa de Doctorado en Ciencias Biomédicas, Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, México (Mexico); Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México (Mexico); Ocadiz-Delgado, Rodolfo; García-Villa, Enrique [Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México (Mexico); Bonilla-Delgado, José [Unidad de Investigación, Hospital Juárez de México, Ciudad de México 07760, México (Mexico); Lagunas-Martínez, Alfredo [División de Biología Molecular de Patógenos, CISEI, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México (Mexico); and others

    2016-12-15

    Oct3/4 is a transcription factor involved in maintenance of the pluripotency and self-renewal of stem cells. The E7 oncoprotein and 17β-estradiol (E{sub 2}) are key factors in cervical carcinogenesis. In the present study, we aimed to investigate the effect of the HPV16 E7 oncoprotein and E{sub 2} on the expression pattern of Oct3/4, Sox2, Nanog and Fgf4. We also determined whether the E7 oncoprotein is associated with cell self-renewal. The results showed that Oct3/4, Sox2, Nanog and Fgf4 were upregulated by the E7 oncoprotein in vivo and in vitro and implicate E{sub 2} in the upregulation of these factors in vivo. We also demonstrated that E7 is involved in cell self-renewal, suggesting that the HPV16 E7 oncoprotein upregulates Oct3/4, Sox2, Nanog and Fgf4 expression to maintain the self-renewal capacity of cancer stem cells. -- Graphical abstract: The HPV16 E7 oncoprotein and 17β-estradiol are involved in the upregulation of Oct3/4, Sox2, Nanog and Fgf4 expression to maintain the self-renewal ability of cancer stem cells in cervical cancer. - Highlights: •The HPV16 E7 oncoprotein enhances cellular proliferation and dedifferentiation. •The E7 oncoprotein induces stemness-related genes expression in vivo and in vitro. •The 17β-estradiol induces stemness-related genes expression in vivo. •The HPV16 E7 oncoprotein is involved in the cell self-renewal of cancer cells.

  9. The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal

    International Nuclear Information System (INIS)

    Organista-Nava, Jorge; Gómez-Gómez, Yazmín; Ocadiz-Delgado, Rodolfo; García-Villa, Enrique; Bonilla-Delgado, José; Lagunas-Martínez, Alfredo

    2016-01-01

    Oct3/4 is a transcription factor involved in maintenance of the pluripotency and self-renewal of stem cells. The E7 oncoprotein and 17β-estradiol (E 2 ) are key factors in cervical carcinogenesis. In the present study, we aimed to investigate the effect of the HPV16 E7 oncoprotein and E 2 on the expression pattern of Oct3/4, Sox2, Nanog and Fgf4. We also determined whether the E7 oncoprotein is associated with cell self-renewal. The results showed that Oct3/4, Sox2, Nanog and Fgf4 were upregulated by the E7 oncoprotein in vivo and in vitro and implicate E 2 in the upregulation of these factors in vivo. We also demonstrated that E7 is involved in cell self-renewal, suggesting that the HPV16 E7 oncoprotein upregulates Oct3/4, Sox2, Nanog and Fgf4 expression to maintain the self-renewal capacity of cancer stem cells. -- Graphical abstract: The HPV16 E7 oncoprotein and 17β-estradiol are involved in the upregulation of Oct3/4, Sox2, Nanog and Fgf4 expression to maintain the self-renewal ability of cancer stem cells in cervical cancer. - Highlights: •The HPV16 E7 oncoprotein enhances cellular proliferation and dedifferentiation. •The E7 oncoprotein induces stemness-related genes expression in vivo and in vitro. •The 17β-estradiol induces stemness-related genes expression in vivo. •The HPV16 E7 oncoprotein is involved in the cell self-renewal of cancer cells.

  10. Overexpression of Oct4 suppresses the metastatic potential of breast cancer cells via Rnd1 downregulation.

    Science.gov (United States)

    Shen, Long; Qin, Kunhua; Wang, Dekun; Zhang, Yan; Bai, Nan; Yang, Shengyong; Luo, Yunping; Xiang, Rong; Tan, Xiaoyue

    2014-11-01

    Although Oct4 is known as a critical transcription factor involved in maintaining "stemness", its role in tumor metastasis is still controversial. Herein, we overexpressed and silenced Oct4 expression in two breast cancer cell lines, MDA-MB-231 and 4T1, separately. Our data showed that ectopic overexpression of Oct4 suppressed cell migration and invasion in vitro and the formation of metastatic lung nodules in vivo. Conversely, Oct4 downregulation increased the metastatic potential of breast cancer cells both in vitro and in vivo. Furthermore, we identified Rnd1 as the downstream target of Oct4 by ribonucleic acid sequencing (RNA-seq) analysis, which was significantly downregulated upon Oct4 overexpression. Chromatin immunoprecipitation assays revealed the binding of Oct4 to the promoter region of Rnd1 by ectopic overexpression of Oct4. Dual luciferase assays indicated that Oct4 overexpression suppressed transcriptional activity of the Rnd1 promoter. Moreover, overexpression of Rnd1 partially rescued the inhibitory effects of Oct4 on the migration and invasion of breast cancer cells. Overexpression of Rnd1 counteracted the influence of Oct4 on the formation of cell adhesion and lamellipodia, which implied a potential underlying mechanism involving Rnd1. In addition, we also found that overexpression of Oct4 led to an elevation of E-cadherin expression, even in 4T1 cells that possess a relatively high basal level of E-cadherin. Rnd1 overexpression impaired the promoting effects of Oct4 on E-cadherin expression in MDA-MB-231 cells. These results suggest that Oct4 affects the metastatic potential of breast cancer cells through Rnd1-mediated effects that influence cell motility and E-cadherin expression. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Nitrative DNA damage and Oct3/4 expression in urinary bladder cancer with Schistosomahaematobium infection

    International Nuclear Information System (INIS)

    Ma, Ning; Thanan, Raynoo; Kobayashi, Hatasu; Hammam, Olfat; Wishahi, Mohamed; Leithy, Tarek El; Hiraku, Yusuke; Amro, EL-Karef; Oikawa, Shinji; Ohnishi, Shiho; Murata, Mariko; Kawanishi, Shosuke

    2011-01-01

    Highlights: → Oct3/4-positive cells increase in Schistosoma haematobium (SH)-associated bladder cancer. → iNOS-dependent DNA lesion, 8-nitroguanine, was formed in Oct3/4-positive cells. → 8-Nitroguanine formed in stem-like cells plays a role in SH-induced carcinogenesis. → Mutant stem cells may participate in inflammation-related carcinogenesis. -- Abstract: To investigate whether mutant stem cells participate in inflammation-related carcinogenesis, we performed immunohistochemical analysis to examine nitrative and oxidative DNA lesions (8-nitroguanine and 8-oxodG) and a stem cell marker Oct3/4 in bladder tissues obtained from cystitis and bladder cancer patients infected with Schistosomahaematobium (S. haematobium). We also detected the expression of nuclear factor-κB (NF-κB) and inducible nitric oxide synthase (iNOS), which lead to 8-nitroguanine formation. The staining intensity of 8-nitroguanine and 8-oxodG was significantly higher in bladder cancer and cystitis tissues than in normal tissues. iNOS expression was colocalized with NF-κB in 8-nitroguanine-positive tumor cells from bladder cancer patients. Oct3/4 expression was significantly increased in cells from S. haematobium-associated bladder cancer tissues in comparison to normal bladder and cancer tissues without infection. Oct3/4 was also expressed in epithelial cells of cystitis patients. Moreover, 8-nitroguanine was formed in Oct3/4-positive stem cells in S. haematobium-associated cystitis and cancer tissues. In conclusion, inflammation by S.haematobium infection may increase the number of mutant stem cells, in which iNOS-dependent DNA damage occurs via NF-κB activation, leading to tumor development.

  12. Comparison of Oct4, Sox2 and Nanog Expression in Pancreatic Cancer Cell Lines and Human Pancreatic Tumor

    Directory of Open Access Journals (Sweden)

    Vahideh Assadollahi

    2015-12-01

    Full Text Available Background: Genes are involved in the control of stem cell self-renewal as a new class of molecular markers of cancer. Objectives: In this study, the expression of Oct4, Nanog and Sox2 in cell lines MIA Paca-2, PA-TU-8902 and AsPC-1 and pancreatic cancer tissue were examined. Materials and Methods: In this experimental study, cell lines, MIA Paca-2, PA-TU-8902 and AsPC-1, were cultured in DMEM (Dulbecco’s Modified Eagles Medium and RPMI-1640 (Roswell Park Memorial Institute containing FBS 10% (fetal bovine serum in a 37°C incubator containing Co2 5% and humidity 90%. Samples of tumor and non-cancer pancreatic tumor were purchased Iran tumor bank. Extraction of RNA and synthesis of cDNA was performed. Expression levels of Oct4, Nanog and Sox2 were determined using Real-time PCR. The protein expression levels of target genes in the cell lines were studied by flow cytometry and immunocytochemistry. Results: The expression rate of Oct4, Nanog and Sox2 is more in the cancer cell lines than those in the control (normal tissue samples. The protein expression levels of target genes in the cell lines were confirmed by flow cytometry and immunocytochemistry. Conclusions: The genes are involved in stem cell self-renewal as a new class of molecular markers of cancer that detected in the pancreatic cell lines. Maybe, these genes play important role in the uncontrolled proliferation of cancer cells.

  13. Expression of the pluripotency transcription factor OCT4 in the normal and aberrant mammary gland

    Directory of Open Access Journals (Sweden)

    Foteini eHassiotou

    2013-04-01

    Full Text Available Breast cancers with lactating features, some of which are associated with pregnancy and lactation, are often poorly differentiated, lack estrogen receptor, progesterone receptor and HER2 expression and have high mortality. Very little is known about the molecular mechanisms that drive uncontrolled cell proliferation in these tumors and confer lactating features. We have recently reported expression of OCT4 and associated embryonic stem cell (ESC self-renewal genes in the normal lactating breast and breastmilk stem cells (hBSCs. This prompted us to examine OCT4 expression in breast cancers with lactating features and compare it with that observed during normal lactation, using rare specimens of human lactating breast. In accordance with previous literature, the normal resting breast (from non-pregnant, non-lactating women showed minimal OCT4 nuclear expression (0.9%. However, this increased in the normal lactating breast (11.4%, with further increase in lactating adenomas, lactating carcinomas and pregnancy-associated breast cancer (30.7-48.3%. OCT4 was expressed in the epithelium and at lower levels in the stroma, and was co-localized with NANOG. Comparison of normal non-tumorigenic hBSCs with OCT4-overexpressing tumorigenic breast cell lines (OTBCs demonstrated upregulation of OCT4, SOX2 and NANOG in both systems, but OTBCs expressed OCT4 at significantly higher levels than SOX2 and NANOG. Similar to hBSCs, OTBCs displayed multi-lineage differentiation potential, including the ability to differentiate into functional lactocytes synthesizing milk proteins both in vitro and in vivo. Based on these findings, we propose a hypothesis of normal and malignant transformation in the breast, which centers on OCT4 and its associated gene network. Although minimal expression of these embryonic genes can be seen in the breast in its resting state throughout life, a controlled program of upregulation of this gene network may be a potential regulator of the

  14. Are Mesenchymal Cells Indeed Pluripotent Stem Cells or Just Stromal Cells? OCT-4 and VSELs Biology Has Led to Better Understanding

    Directory of Open Access Journals (Sweden)

    Deepa Bhartiya

    2013-01-01

    Full Text Available Stem cells have excited researchers because of their potential to regenerate. However, which stem cells will be the best candidate for regenerative medicine remains an enigma. Compared to pluripotent stem cells with associated risks of immune rejection and teratoma formation, adult stem cells especially the mesenchymal stem cells (MSCs are hyped to be a suitable alternate since they also exhibit pluripotent properties. This review shows that there is a subpopulation of pluripotent very small embryonic-like stem cells (VSELs among MSCs culture. The two populations differ from each other in expression pattern of OCT-4. VSELs exhibit nuclear OCT-4A, whereas the MSCs have cytoplasmic OCT-4B, similar to our earlier findings in testis and ovary. Pluripotent VSELs with nuclear OCT-4A exist in various adult body organs, and the immediate progenitors express cytoplasmic OCT-4B which is eventually lost as the cell differentiates further. To conclude it is essential to discriminate between nuclear and cytoplasmic OCT-4 expression and also to acknowledge the presence of VSELs.

  15. The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal.

    Science.gov (United States)

    Organista-Nava, Jorge; Gómez-Gómez, Yazmín; Ocadiz-Delgado, Rodolfo; García-Villa, Enrique; Bonilla-Delgado, José; Lagunas-Martínez, Alfredo; Tapia, Jesús Santa-Olalla; Lambert, Paul F; García-Carrancá, Alejandro; Gariglio, Patricio

    2016-12-01

    Oct3/4 is a transcription factor involved in maintenance of the pluripotency and self-renewal of stem cells. The E7 oncoprotein and 17β-estradiol (E 2 ) are key factors in cervical carcinogenesis. In the present study, we aimed to investigate the effect of the HPV16 E7 oncoprotein and E 2 on the expression pattern of Oct3/4, Sox2, Nanog and Fgf4. We also determined whether the E7 oncoprotein is associated with cell self-renewal. The results showed that Oct3/4, Sox2, Nanog and Fgf4 were upregulated by the E7 oncoprotein in vivo and in vitro and implicate E 2 in the upregulation of these factors in vivo. We also demonstrated that E7 is involved in cell self-renewal, suggesting that the HPV16 E7 oncoprotein upregulates Oct3/4, Sox2, Nanog and Fgf4 expression to maintain the self-renewal capacity of cancer stem cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Oct-4 expression maintained stem cell properties in prostate cancer ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research ... The purpose of the present study is to isolate cancerous stem-like cells from normal healthy volunteers and ... The treatment with Oct-4 blocking antibody can specifically block the capability of ...

  17. Hierarchical Oct4 Binding in Concert with Primed Epigenetic Rearrangements during Somatic Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2016-02-01

    Full Text Available The core pluripotency factor Oct4 plays key roles in somatic cell reprogramming through transcriptional control. Here, we profile Oct4 occupancy, epigenetic changes, and gene expression in reprogramming. We find that Oct4 binds in a hierarchical manner to target sites with primed epigenetic modifications. Oct4 binding is temporally continuous and seldom switches between bound and unbound. Oct4 occupancy in most of promoters is maintained throughout the entire reprogramming process. In contrast, somatic cell-specific enhancers are silenced in the early and intermediate stages, whereas stem cell-specific enhancers are activated in the late stage in parallel with cell fate transition. Both epigenetic remodeling and Oct4 binding contribute to the hyperdynamic enhancer signature transitions. The hierarchical Oct4 bindings are associated with distinct functional themes at different stages. Collectively, our results provide a comprehensive molecular roadmap of Oct4 binding in concert with epigenetic rearrangements and rich resources for future reprogramming studies.

  18. Oct-4 expression maintained stem cell properties in prostate cancer ...

    African Journals Online (AJOL)

    Erah

    Keywords: Prostate cancer, Cancer stem-like cells, Oct-4, CD133, Multi-drug resistance1 (MDR1). Received: 7 ... mechanisms in maintaining the self-renewal and drug resistant ... (platelet-derived growth factor α receptor). This suggests that ...

  19. Systems Analyses Reveal Shared and Diverse Attributes of Oct4 Regulation in Pluripotent Cells

    DEFF Research Database (Denmark)

    Ding, Li; Paszkowski-Rogacz, Maciej; Winzi, Maria

    2015-01-01

    We combine a genome-scale RNAi screen in mouse epiblast stem cells (EpiSCs) with genetic interaction, protein localization, and "protein-level dependency" studies-a systematic technique that uncovers post-transcriptional regulation-to delineate the network of factors that control the expression...... of Oct4, a key regulator of pluripotency. Our data signify that there are similarities, but also fundamental differences in Oct4 regulation in EpiSCs versus embryonic stem cells (ESCs). Through multiparametric data analyses, we predict that Tox4 is associating with the Paf1C complex, which maintains cell...... identity in both cell types, and validate that this protein-protein interaction exists in ESCs and EpiSCs. We also identify numerous knockdowns that increase Oct4 expression in EpiSCs, indicating that, in stark contrast to ESCs, Oct4 is under active repressive control in EpiSCs. These studies provide...

  20. OCT4B1 Regulates the Cellular Stress Response of Human Dental Pulp Cells with Inflammation

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2017-01-01

    Full Text Available Introduction. Infection and apoptosis are combined triggers for inflammation in dental tissues. Octamer-binding transcription factor 4-B1 (OCT4B1, a novel spliced variant of OCT4 family, could respond to the cellular stress and possess antiapoptotic property. However, its specific role in dental pulpitis remains unknown. Methods. To investigate the effect of OCT4B1 on inflammation of dental pulp cells (DPCs, its expression in inflamed dental pulp tissues and DPCs was examined by in situ hybridization, real-time PCR, and FISH assay. OCT4B1 overexpressed DPCs model was established, confirmed by western blot and immunofluorescence staining, and then stimulated with Lipopolysaccharide (LPS. Apoptotic rate was determined by Hoechst/PI staining and FACS. Cell survival rate was calculated by CCK8 assay. Results. In situ hybridization, real-time PCR, and FISH assay revealed that OCT4B1 was extensively expressed in inflamed dental pulp tissues and DPCs with LPS stimulation. Western blot and immunofluorescence staining showed the expression of OCT4B1 and OCT4B increased after OCT4B1 transfection. Hoechst/PI staining and FACS demonstrated that less red/blue fluorescence was detected and apoptotic percentage decreased (3.45% after transfection. CCK8 demonstrated that the survival rate of pCDH-OCT4B1-flag cells increased. Conclusions. OCT4B1 plays an essential role in inflammation and apoptosis of DPCs. OCT4B might operate synergistically with OCT4B1 to reduce apoptosis.

  1. Expression of OCT4A: The First Step to the Next Stage of Urothelial Bladder Cancer Progression

    Directory of Open Access Journals (Sweden)

    Wojciech Jóźwicki

    2014-09-01

    Full Text Available OCT4 (octamer-binding transcription factor is a transcription factor responsible for maintaining the pluripotent properties of embryonic stem cells. In this paper, we present the results of studies to investigate the role of the OCT4 splicing variant in urothelial bladder cancer and the relationship between the OCT4 phenotype and the morphological parameters of tumor malignancy. Ninety patients who received a cystectomy for bladder cancer were enrolled. The expression of OCT4 protein was analyzed by immunohistochemistry. The ratio of OCT4-positive cells was the lowest in pT1 (pathological assessment (p—tumor extent confined to mucosa (T1 tumors and the highest in pTis (non-papillary tumor extent confined to urothelium and pT2 (tumor extent including muscularis propria tumors. Information about the percentage of OCT4A-positive tumor cells could facilitate choosing the treatment mode in borderline pTis–pT1 (crossing the border of the basement membrane; the first stage of progression and pT1–pT2 (crossing the border of the muscularis propria; the second stage of progression cases: a higher percentage of OCT4A-positive cells should support more radical therapy. A significantly higher percentage of cases with moderate OCT4 intensity was found in metastasizing (the third stage of progression cases with >2 positive lymph nodes. The percentage of OCT4-positive cells was significantly higher for cancers with a high grade, higher non-classic differentiation number and greater aggressiveness of invasion. The differentiation, maturation and aggressiveness of tumor invasion appear to depend on the expression of the OCT4 phenotype in cancer cells, similar to the successive stages of malignancy progression in urothelial cancer.

  2. Nuclear delivery of recombinant OCT4 by chitosan nanoparticles for transgene-free generation of protein-induced pluripotent stem cells.

    Science.gov (United States)

    Tammam, Salma; Malak, Peter; Correa, Daphne; Rothfuss, Oliver; Azzazy, Hassan M E; Lamprecht, Alf; Schulze-Osthoff, Klaus

    2016-06-21

    Protein-based reprogramming of somatic cells is a non-genetic approach for the generation of induced pluripotent stem cells (iPSCs), whereby reprogramming factors, such as OCT4, SOX2, KLF4 and c-MYC, are delivered as functional proteins. The technique is considered safer than transgenic methods, but, unfortunately, most protein-based protocols provide very low reprogramming efficiencies. In this study, we developed exemplarily a nanoparticle (NP)-based delivery system for the reprogramming factor OCT4. To this end, we expressed human OCT4 in Sf9 insect cells using a baculoviral expression system. Recombinant OCT4 showed nuclear localization in Sf9 cells indicating proper protein folding. In comparison to soluble OCT4 protein, encapsulation of OCT4 in nuclear-targeted chitosan NPs strongly stabilized its DNA-binding activity even under cell culture conditions. OCT4-loaded NPs enabled cell treatment with high micromolar concentrations of OCT4 and successfully delivered active OCT4 into human fibroblasts. Chitosan NPs therefore provide a promising tool for the generation of transgene-free iPSCs.

  3. Single-cell duplex RT-LATE-PCR reveals Oct4 and Xist RNA gradients in 8-cell embryos

    Directory of Open Access Journals (Sweden)

    Hartung Odelya

    2007-12-01

    Full Text Available Abstract Background The formation of two distinctive cell lineages in preimplantation mouse embryos is characterized by differential gene expression. The cells of the inner cell mass are pluripotent and express high levels of Oct4 mRNA, which is down-regulated in the surrounding trophectoderm. In contrast, the trophectoderm of female embryos contains Xist mRNA, which is absent from cells of the inner mass. Prior to blastocyst formation, all blastomeres of female embryos still express both of these RNAs. We, thus, postulated that simultaneous quantification of Oct4 and Xist transcripts in individual blastomeres at the 8-cell stage could be informative as to their subsequent fate. Testing this hypothesis, however, presented numerous technical challenges. We overcame these difficulties by combining PurAmp, a single-tube method for RNA preparation and quantification, with LATE-PCR, an advanced form of asymmetric PCR. Results We constructed a duplex RT-LATE-PCR assay for real-time measurement of Oct4 and Xist templates and confirmed its specificity and quantitative accuracy with different methods. We then undertook analysis of sets of blastomeres isolated from embryos at the 8-cell stage. At this stage, all cells in the embryo are still pluripotent and morphologically equivalent. Our results demonstrate, however, that both Oct4 and Xist RNA levels vary in individual blastomeres comprising the same embryo, with some cells having particularly elevated levels of either transcript. Analysis of multiple embryos also shows that Xist and Oct4 expression levels are not correlated at the 8-cell stage, although transcription of both genes is up-regulated at this time in development. In addition, comparison of data from males and females allowed us to determine that the efficiency of the Oct4/Xist assay is unaffected by sex-related differences in gene expression. Conclusion This paper describes the first example of multiplex RT-LATE-PCR and its utility, when

  4. Differential expression of ID4 and its association with TP53 mutation, SOX2, SOX4 and OCT-4 expression levels.

    Directory of Open Access Journals (Sweden)

    Thais Fernanda de Almeida Galatro

    Full Text Available Inhibitor of DNA Binding 4 (ID4 is a member of the helix-loop-helix ID family of transcription factors, mostly present in the central nervous system during embryonic development, that has been associated with TP53 mutation and activation of SOX2. Along with other transcription factors, ID4 has been implicated in the tumorigenic process of astrocytomas, contributing to cell dedifferentiation, proliferation and chemoresistance. In this study, we aimed to characterize the ID4 expression pattern in human diffusely infiltrative astrocytomas of World Health Organization (WHO grades II to IV of malignancy (AGII-AGIV; to correlate its expression level to that of SOX2, SOX4, OCT-4 and NANOG, along with TP53 mutational status; and to correlate the results with the clinical end-point of overall survival among glioblastoma patients. Quantitative real time PCR (qRT-PCR was performed in 130 samples of astrocytomas for relative expression, showing up-regulation of all transcription factors in tumor cases. Positive correlation was found when comparing ID4 relative expression of infiltrative astrocytomas with SOX2 (r = 0.50; p<0.005, SOX4 (r = 0.43; p<0.005 and OCT-4 (r = 0.39; p<0.05. The results from TP53 coding exon analysis allowed comparisons between wild-type and mutated status only in AGII cases, demonstrating significantly higher levels of ID4, SOX2 and SOX4 in mutated cases (p<0.05. This pattern was maintained in secondary GBM and further confirmed by immunohistochemistry, suggesting a role for ID4, SOX2 and SOX4 in early astrocytoma tumorigenesis. Combined hyperexpression of ID4, SOX4 and OCT-4 conferred a much lower (6 months median survival than did hypoexpression (18 months. Because both ID4 alone and a complex of SOX4 and OCT-4 activate SOX2 transcription, it is possible that multiple activation of SOX2 impair the prognosis of GBM patients. These observational results of associated expression of ID4 with SOX4 and OCT-4 may be used as a

  5. Transdifferentiation of Human Hair Follicle Mesenchymal Stem Cells into Red Blood Cells by OCT4

    Directory of Open Access Journals (Sweden)

    Zhijing Liu

    2015-01-01

    Full Text Available Shortage of red blood cells (RBCs, erythrocytes can have potentially life-threatening consequences for rare or unusual blood type patients with massive blood loss resulting from various conditions. Erythrocytes have been derived from human pluripotent stem cells (PSCs, but the risk of potential tumorigenicity cannot be ignored, and a majority of these cells produced from PSCs express embryonic ε- and fetal γ-globins with little or no adult β-globin and remain nucleated. Here we report a method to generate erythrocytes from human hair follicle mesenchymal stem cells (hHFMSCs by enforcing OCT4 gene expression and cytokine stimulation. Cells generated from hHFMSCs expressed mainly the adult β-globin chain with minimum level of the fetal γ-globin chain. Furthermore, these cells also underwent multiple maturation events and formed enucleated erythrocytes with a biconcave disc shape. Gene expression analyses showed that OCT4 regulated the expression of genes associated with both pluripotency and erythroid development during hHFMSC transdifferentiation toward erythroid cells. These findings show that mature erythrocytes can be generated from adult somatic cells, which may serve as an alternative source of RBCs for potential autologous transfusion.

  6. Expression and Role of Oct3/4 in Injury-Repair Process of Rat Alveolar Epithelium after 5-Fu Treatment

    Directory of Open Access Journals (Sweden)

    Wen-ya Li

    2017-01-01

    Full Text Available Objective. We aimed to investigate how the embryonic stem cell-related gene Oct3/4 changes during the injury-repair process of distal pulmonary epithelium induced by 5-fluorouracil (5-Fu. Methods. We have developed the lung injury model induced by 5-Fu and observed the dynamic changes of Oct3/4 by indirect immunofluorescence, Western blot, and quantitative real-time PCR. Immunofluorescence double staining was used to compare the positions of Oct3/4(+ cells and other reported alveolar epithelial stem cells. Results. Oct3/4(+ cells were not found in normal rat lung epithelial cells. However, after treatment with 5-Fu, Oct3/4(+ cells appeared at 12 h, reached the peak at 24 h, then decreased at 48 h, and eventually disappeared at 72 h. Oct3/4 was localized in the nucleus. We found that the sites of Clara cell secretory protein and surfactant protein-C dual positive cells were apparently different from Oct3/4(+ cells. Conclusions. Our results revealed that, in rat alveolar epithelium, expression of Oct3/4 could be induced after treatment with 5-Fu, then decreased gradually, and was silenced following the alveolar epithelial differentiation. We hold that Oct3/4(+ cells are lung stem cells, which can provide new evidence for identification and isolation of lung epithelial stem cells.

  7. Down-regulation of HSP40 gene family following OCT4B1 suppression in human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mirzaei

    2016-02-01

    Full Text Available Objective(s: The OCT4B1, as one of OCT4 variants, is expressed in cancer cell lines and tissues more than other variants and plays an important role in apoptosis and stress (heat shock protein pathways. The present study was designed to determine the effects of OCT4B1 silencing on expressional profile of HSP40 gene family expression in three different human tumor cell lines. Materials and Methods: The OCT4B1 expression was suppressed by specific siRNA transfection in AGS (gastric adenocarcinoma, 5637 (bladder tumor and U-87MG (brain tumor cell lines employing Lipofectamine reagent. Real-time PCR array technique was employed for RNA qualification. The fold changes were calculated using RT2 Profiler PCR array data analysis software version 3.5. Results: Our results indicated that fifteen genes (from 36 studied genes were down-regulated and two genes (DNAJC11 and DNAJC5B were up-regulated in all three studied tumor cell lines by approximately more than two folds. The result of other studied genes (19 genes showed different expressional pattern (up or down-expression based on tumor cell lines. Conclusion: According to the findings of the present study, we may suggest that there is a direct correlation between OCT4B1 expression in tumor cell lines (and tissues and HSP40 family gene expressions to escape from apoptosis and cancer expansion.

  8. Immunohistochemical analysis of the role and relationship between Notch-1 and Oct-4 expression in urinary bladder carcinoma.

    Science.gov (United States)

    Abdou, Asmaa Gaber; El-Wahed, Moshira Mohammed Abd; Kandil, Mona Abd-Elhalim; Samaka, Rehab Monir; Elkady, Noha

    2013-10-01

    Most tumors contain a minor population of cancer stem cells that are responsible for tumor heterogeneity, resistance to therapy and recurrence. Oct-4 is a transcription factor responsible for self-renewal of stem cells, whereas the Notch family of receptors and ligands may play a pivotal role in the regulation of stem cell maintenance and differentiation. This study aimed at an evaluation of Oct-4 and Notch-1 expression in both carcinoma and stromal cells of 83 cases of primary bladder carcinoma and to study the relationship between them. Notch-1 was expressed in carcinoma and stromal cells of all malignant cases, where expression in both cell types was correlated with parameters indicating differentiation, such as low grade (p bladder carcinoma, such as poor differentiation (p = 0.001), high proliferation (p bladder carcinoma, where they may cooperate in the progression of bladder carcinoma by acquiring aggressive features, such as a liability for recurrence and dissemination. Notch-1 is also expressed in both carcinoma cells and stromal cells of bladder carcinoma. Although they could share in enhancing differentiation, stromal expression of Notch-1 may have a bad impact, possibly through up-regulation of the active nuclear form of Oct-4 in carcinoma cells. © 2013 APMIS Published by Blackwell Publishing Ltd.

  9. Study on the relationship of abnormal transcription factors OCT4, HBP1 and Snail expression with progression of osteosarcoma

    Directory of Open Access Journals (Sweden)

    Li Li

    2016-09-01

    Full Text Available Objective: To study the relationship of abnormal transcription factors OCT4, HBP1 and Snail expression with progression of osteosarcoma. Methods: Surgical removed osteosarcoma tissue specimens were selected as pathology group, surgically removed osteoid osteoma specimens were selected as control group, and the expression levels of gene transcription factors OCT4, HBP1 and Snail, proliferation genes, epithelial-mesenchymal transition marker molecules in tissue specimens were determined. Results: Oct4 and Snail protein levels of pathology group were significantly higher than those of control group and HBP1 protein level was significantly lower than that of control group; C-myc and cyclinD1 protein levels of pathology group were significantly higher than those of control group, positively correlated with OCT4 and negatively correlated with HBP1; p16 and p53 protein levels were significantly lower than those of control group, negatively correlated with OCT4 and positively correlated with HBP1; N-cadherin and Vimentin protein levels of pathology group were significantly higher than those of control group and positively correlated with Snail while E-cadherin and Occludin protein levels were significantly lower than those of control group and negatively correlated with Snail. Conclusion: Oct4 and Snail are highly expressed and HBP1 is lowly expressed in osteosarcoma tissue, Oct4 and Snail can participate in the regulation of cell proliferation, and HBP1 can participate in the regulation of epithelial-mesenchymal transition of cells.

  10. Enhanced human somatic cell reprogramming efficiency by fusion of the MYC transactivation domain and OCT4

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2017-12-01

    Full Text Available The development of human induced pluripotent stem cells (iPSCs holds great promise for regenerative medicine. However the iPSC induction efficiency is still very low and with lengthy reprogramming process. We utilized the highly potent transactivation domain (TAD of MYC protein to engineer the human OCT4 fusion proteins. Applying the MYC-TAD-OCT4 fusion proteins in mouse iPSC generation leads to shorter reprogramming dynamics, with earlier activation of pluripotent markers in reprogrammed cells than wild type OCT4 (wt-OCT4. Dramatic enhancement of iPSC colony induction efficiency and shortened reprogramming dynamics were observed when these MYC-TAD-OCT4 fusion proteins were used to reprogram primary human cells. The OCT4 fusion proteins induced human iPSCs are pluripotent. We further show that the MYC Box I (MBI is dispensable while both MBII and the linking region between MBI/II are essential for the enhanced reprogramming activity of MYC-TAD-OCT4 fusion protein. Consistent with an enhanced transcription activity, the engineered OCT4 significantly stimulated the expression of genes specifically targeted by OCT4-alone, OCT4/SOX2, and OCT4/SOX2/KLF4 during human iPSC induction, compared with the wt-OCT4. The MYC-TAD-OCT4 fusion proteins we generated will be valuable tools for studying the reprogramming mechanisms and for efficient iPSC generation for humans as well as for other species.

  11. YAP1 Regulates OCT4 Activity and SOX2 Expression to Facilitate Self-Renewal and Vascular Mimicry of Stem-Like Cells.

    Science.gov (United States)

    Bora-Singhal, Namrata; Nguyen, Jonathan; Schaal, Courtney; Perumal, Deepak; Singh, Sandeep; Coppola, Domenico; Chellappan, Srikumar

    2015-06-01

    Non-small cell lung cancer (NSCLC) is highly correlated with smoking and has very low survival rates. Multiple studies have shown that stem-like cells contribute to the genesis and progression of NSCLC. Our results show that the transcriptional coactivator yes-associated protein 1 (YAP1), which is the oncogenic component of the Hippo signaling pathway, is elevated in the stem-like cells from NSCLC and contributes to their self-renewal and ability to form angiogenic tubules. Inhibition of YAP1 by a small molecule or depletion of YAP1 by siRNAs suppressed self-renewal and vascular mimicry of stem-like cells. These effects of YAP1 were mediated through the embryonic stem cell transcription factor, Sox2. YAP1 could transcriptionally induce Sox2 through a physical interaction with Oct4; Sox2 induction occurred independent of TEAD2 transcription factor, which is the predominant mediator of YAP1 functions. The binding of Oct4 to YAP1 could be detected in cell lines as well as tumor tissues; the interaction was elevated in NSCLC samples compared to normal tissue as seen by proximity ligation assays. YAP1 bound to Oct4 through the WW domain, and a peptide corresponding to this region could disrupt the interaction. Delivery of the WW domain peptide to stem-like cells disrupted the interaction and abrogated Sox2 expression, self-renewal, and vascular mimicry. Depleting YAP1 reduced the expression of multiple epithelial-mesenchymal transition genes and prevented the growth and metastasis of tumor xenografts in mice; overexpression of Sox2 in YAP1 null cells rescued these functions. These results demonstrate a novel regulation of stem-like functions by YAP1, through the modulation of Sox2 expression. © 2015 AlphaMed Press.

  12. Enhanced expression of the stemness-related factors OCT4, SOX15 and TWIST1 in ectopic endometrium of endometriosis patients

    Directory of Open Access Journals (Sweden)

    Katharina Proestling

    2016-11-01

    Full Text Available Abstract Background Current evidence suggests that endometrial-derived stem cells, spilled in the peritoneal cavity via retrograde menstruation, are key players in the establishment of endometriotic lesions. The aim of this study was to determine the presence and distribution of the stemness-related factors OCT4, SOX15, TWIST1 and DCAMLK1 in women with and without endometriosis. Methods Immunohistochemical analysis was used to determine stromal and epithelial expression of OCT4, SOX15, TWIST1 and DCAMLK1 in endometriosis patient (EP endometrium (n = 69 and endometriotic tissue (n = 90 and in control endometrium (n = 50. Quantitative Real-Time PCR of OCT4, SOX15 TWIST1 and DCAMLK1 was performed in paired samples of EP endometrium and endometriotic tissue. Co-immunofluorescence staining was performed for OCT4 and SOX15. For statistical analyses we used unpaired t-test, Fisher combination test and Spearman test. For paired analyses, paired t-test and McNemar test were used. Results We detected a significant correlation between the expression of the established stem cell marker OCT4 and the stemness-related markers SOX15 (p < 0.001 and TWIST1 (p = 0.002 but not DCAMLK1. We showed a colocalization of SOX15 and OCT4 in epithelial and stromal cells of endometriotic tissue by coimmunofluorescence. A concordant expression of OCT4 and SOX15 in the same sample was observed in epithelial cells of the endometriotic tissue (71.7%. The expression of stemness-related factors was not associated with proliferative or secretory phase of the menstrual cycle in endometriosis patients but was found to be differentially expressed during the menstrual cycle in the control group. Increased expression of epithelial OCT4, SOX15 and TWIST1 was detected in endometriotic tissue compared to EP endometrium in paired (p = 0.021, p < 0.001 and p < 0.001 and unpaired analysis (p = 0.040, p < 0.001 and p = 0.001. Conclusion Our findings

  13. OCT4A contributes to the stemness and multi-potency of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs)

    International Nuclear Information System (INIS)

    Seo, Kwang-Won; Lee, Sae-Rom; Bhandari, Dilli Ram; Roh, Kyoung-Hwan; Park, Sang-Bum; So, Ah-Young; Jung, Ji-Won; Seo, Min-Soo; Kang, Soo-Kyung; Lee, Yong-Soon; Kang, Kyung-Sun

    2009-01-01

    The OCT4A gene, a POU homeodomain transcription factor, has been shown to be expressed in embryonic stem cells (ESC) as well as hUCB-MSCs. In this study, the roles played by OCT4A in hUCB-MSCs were determined by stably inhibiting OCT4A with lenti-viral vector-based small hairpin RNA (shRNA). A decreased rate of cell proliferation was observed in OCT4-inhibited hUCB-MSCs. Down-regulation of CCNA2 expression in OCT4-inhibited hUCB-MSCs was confirmed by RT-PCR and real-time RT-PCR analysis in three genetically independent hUCB-MSC clones. Adipogenic differentiation was also suppressed in OCT4-inhibited hUCB-MSCs. The up-regulation of DTX1 and down-regulation of HDAC1, 2, and 4 expressions may be related to this differentiation deformity. The expression of other transcription factors, including SOX2, REX1 and c-MYC, was also affected by OCT4 inhibition in hUCB-MSCs. In conclusion, these finding suggest that OCT4A performs functionally conserved roles in hUCB-MSCs, making its expression biologically important for ex vivo culture of hUCB-MSCs.

  14. OCT4A contributes to the stemness and multi-potency of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs)

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kwang-Won; Lee, Sae-Rom; Bhandari, Dilli Ram; Roh, Kyoung-Hwan; Park, Sang-Bum; So, Ah-Young; Jung, Ji-Won; Seo, Min-Soo [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of); Kang, Soo-Kyung [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Biotechnology, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of); Lee, Yong-Soon [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of); Kang, Kyung-Sun, E-mail: kangpub@snu.ac.kr [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of)

    2009-06-19

    The OCT4A gene, a POU homeodomain transcription factor, has been shown to be expressed in embryonic stem cells (ESC) as well as hUCB-MSCs. In this study, the roles played by OCT4A in hUCB-MSCs were determined by stably inhibiting OCT4A with lenti-viral vector-based small hairpin RNA (shRNA). A decreased rate of cell proliferation was observed in OCT4-inhibited hUCB-MSCs. Down-regulation of CCNA2 expression in OCT4-inhibited hUCB-MSCs was confirmed by RT-PCR and real-time RT-PCR analysis in three genetically independent hUCB-MSC clones. Adipogenic differentiation was also suppressed in OCT4-inhibited hUCB-MSCs. The up-regulation of DTX1 and down-regulation of HDAC1, 2, and 4 expressions may be related to this differentiation deformity. The expression of other transcription factors, including SOX2, REX1 and c-MYC, was also affected by OCT4 inhibition in hUCB-MSCs. In conclusion, these finding suggest that OCT4A performs functionally conserved roles in hUCB-MSCs, making its expression biologically important for ex vivo culture of hUCB-MSCs.

  15. The value of positive Oct3/4 and D2-40 immunohistochemical expression in prediction of germ cell neoplasia in prepubertal boys with cryptorchidism

    DEFF Research Database (Denmark)

    Clasen-Linde, Erik; Kvist, Kolja; Cortes, Dina

    2016-01-01

    , where most orchiopexies are performed. The aim of the study was to evaluate the ability of Oct3/4 and D2-40 immunohistochemical markers to detect ITGCN in boys older than 2 years with cryptorchidism. MATERIALS AND METHODS: Histological sections from 309 testicular biopsies from 234 boys aged 1 month...... to 14 years, 6 months operated on for cryptorchidism were incubated with primary antibodies including anti-placental-like alkaline phosphatase, anti-Oct3/4, anti-C-kit and anti-D2-40 receptor. RESULTS: One 3-year, 8-month-old boy with 45X/46XY disorder of sexual development had ITGCN and all positive...... markers. Besides this case, none of the 192 testes except one from boys older than 2 years had any Oct3/4- or D2-40-positive germ cells identified. The germ cells of the right testis from a 3-year, 7-month-old boy had weak Oct3/4 expression but were D2-40 negative. The prevalences of Oct3/4- and D2...

  16. XPC Promotes Pluripotency of Human Dental Pulp Cells through Regulation of Oct-4/Sox2/c-Myc

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2016-01-01

    Full Text Available Introduction. Xeroderma pigmentosum group C (XPC, essential component of multisubunit stem cell coactivator complex (SCC, functions as the critical factor modulating pluripotency and genome integrity through interaction with Oct-4/Sox2. However, its specific role in regulating pluripotency and multilineage differentiation of human dental pulp cells (DPCs remains unknown. Methods. To elucidate the functional role XPC played in pluripotency and multilineage differentiation of DPCs, expressions of XPC in DPCs with long-term culture were examined by real-time PCR and western blot. DPCs were transfected with lentiviral-mediated human XPC gene; then transfection rate was investigated by real-time PCR and western blot. Cell cycle, apoptosis, proliferation, senescence, multilineage differentiation, and expression of Oct-4/Sox2/c-Myc in transfected DPCs were examined. Results. XPC, Oct-4, Sox2, and c-Myc were downregulated at P7 compared with P3 in DPCs with long-term culture. XPC genes were upregulated in DPCs at P2 after transfection and maintained high expression level at P3 and P7. Cell proliferation, PI value, and telomerase activity were enhanced, whereas apoptosis was suppressed in transfected DPCs. Oct-4/Sox2/c-Myc were significantly upregulated, and multilineage differentiation in DPCs with XPC overexpression was enhanced after transfection. Conclusions. XPC plays an essential role in the modulation of pluripotency and multilineage differentiation of DPCs through regulation of Oct-4/Sox2/c-Myc.

  17. XPC Promotes Pluripotency of Human Dental Pulp Cells through Regulation of Oct-4/Sox2/c-Myc.

    Science.gov (United States)

    Liu, Lu; Peng, Zhengjun; Xu, Zhezhen; Wei, Xi

    2016-01-01

    Introduction. Xeroderma pigmentosum group C (XPC), essential component of multisubunit stem cell coactivator complex (SCC), functions as the critical factor modulating pluripotency and genome integrity through interaction with Oct-4/Sox2. However, its specific role in regulating pluripotency and multilineage differentiation of human dental pulp cells (DPCs) remains unknown. Methods. To elucidate the functional role XPC played in pluripotency and multilineage differentiation of DPCs, expressions of XPC in DPCs with long-term culture were examined by real-time PCR and western blot. DPCs were transfected with lentiviral-mediated human XPC gene; then transfection rate was investigated by real-time PCR and western blot. Cell cycle, apoptosis, proliferation, senescence, multilineage differentiation, and expression of Oct-4/Sox2/c-Myc in transfected DPCs were examined. Results. XPC, Oct-4, Sox2, and c-Myc were downregulated at P7 compared with P3 in DPCs with long-term culture. XPC genes were upregulated in DPCs at P2 after transfection and maintained high expression level at P3 and P7. Cell proliferation, PI value, and telomerase activity were enhanced, whereas apoptosis was suppressed in transfected DPCs. Oct-4/Sox2/c-Myc were significantly upregulated, and multilineage differentiation in DPCs with XPC overexpression was enhanced after transfection. Conclusions. XPC plays an essential role in the modulation of pluripotency and multilineage differentiation of DPCs through regulation of Oct-4/Sox2/c-Myc.

  18. OCT4 and SOX2 are reliable markers in detecting stem cells in odontogenic lesions

    Directory of Open Access Journals (Sweden)

    Abhishek Banerjee

    2016-01-01

    Full Text Available Context (Background: Stem cells are a unique subpopulation of cells in the human body with a capacity to initiate differentiation into various cell lines. Tumor stem cells (TSCs are a unique subpopulation of cells that possess the ability to initiate a neoplasm and sustain self-renewal. Epithelial stem cell (ESC markers such as octamer-binding transcription factor 4 (OCT4 and sex-determining region Y (SRY-box 2 (SOX2 are capable of identifying these stem cells expressed during the early stages of tooth development. Aims: To detect the expression of the stem cell markers OCT4 and SOX2 in the normal odontogenic tissues and the odontogenic cysts and tumors. Materials and Methods: Paraffin sections of follicular tissue, radicular cyst, dentigerous cyst, odontogenic keratocyst, ameloblastoma, adenomatoid odontogenic tumor, and ameloblastic carcinoma were obtained from the archives. The sections were subjected to immunohistochemical assay by the use of mouse monoclonal antibodies to OCT4 and SOX2. Statistical Analysis: The results were evaluated by descriptive analysis. Results: The results show the presence of stem cells in the normal and lesional tissues with these stem cell identifying markers. SOX2 was found to be more consistent and reliable in the detection of stem cells. Conclusion: The stem cell expressions are maintained in the tumor transformation of tissue and probably suggest that there is no phenotypic change of stem cells in progression from normal embryonic state to its tumor component. The quantification and localization reveals interesting trends that indicate the probable role of the cells in the pathogenesis of the lesions.

  19. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    International Nuclear Information System (INIS)

    Guseva, Daria; Rizvanov, Albert A.; Salafutdinov, Ilnur I.; Kudryashova, Nezhdana V.; Palotás, András; Islamov, Rustem R.

    2014-01-01

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis

  20. Over-expression of Oct4 and Sox2 transcription factors enhances differentiation of human umbilical cord blood cells in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, Daria [Kazan State Medical University, Kazan, Republic of Tatarstan (Russian Federation); Hannover Medical School, Hannover (Germany); Rizvanov, Albert A.; Salafutdinov, Ilnur I.; Kudryashova, Nezhdana V. [Kazan Federal University, Kazan, Republic of Tatarstan (Russian Federation); Palotás, András, E-mail: palotas@asklepios-med.eu [Kazan Federal University, Kazan, Republic of Tatarstan (Russian Federation); Asklepios-Med (Private Medical Practice and Research Center), Szeged (Hungary); Islamov, Rustem R., E-mail: islamru@yahoo.com [Kazan State Medical University, Kazan, Republic of Tatarstan (Russian Federation)

    2014-09-05

    Highlights: • Gene and cell-based therapies comprise innovative aspects of regenerative medicine. • Genetically modified hUCB-MCs enhanced differentiation of cells in a mouse model of ALS. • Stem cells successfully transformed into micro-glial and endothelial lines in spinal cords. • Over-expressing oct4 and sox2 also induced production of neural marker PGP9.5. • Formation of new nerve cells, secreting trophic factors and neo-vascularisation could improve symptoms in ALS. - Abstract: Gene and cell-based therapies comprise innovative aspects of regenerative medicine. Even though stem cells represent a highly potential therapeutic strategy, their wide-spread exploitation is marred by ethical concerns, potential for malignant transformation and a plethora of other technical issues, largely restricting their use to experimental studies. Utilizing genetically modified human umbilical cord blood mono-nuclear cells (hUCB-MCs), this communication reports enhanced differentiation of transplants in a mouse model of amyotrophic lateral sclerosis (ALS). Over-expressing Oct4 and Sox2 induced production of neural marker PGP9.5, as well as transformation of hUCB-MCs into micro-glial and endothelial lines in ALS spinal cords. In addition to producing new nerve cells, providing degenerated areas with trophic factors and neo-vascularisation might prevent and even reverse progressive loss of moto-neurons and skeletal muscle paralysis.

  1. Coalition of Oct4A and β1 integrins in facilitating metastasis in ovarian cancer

    International Nuclear Information System (INIS)

    Samardzija, Chantel; Luwor, Rodney B.; Quinn, Michael A.; Kannourakis, George; Findlay, Jock K.; Ahmed, Nuzhat

    2016-01-01

    Ovarian cancer is a metastatic disease and one of the leading causes of gynaecology malignancy-related deaths in women. Cancer stem cells (CSCs) are key contributors of cancer metastasis and relapse. Integrins are a family of cell surface receptors which allow interactions between cells and their surrounding microenvironment and play a fundamental role in promoting metastasis. This study investigates the molecular mechanism which associates CSCs and integrins in ovarian cancer metastasis. The expression of Oct4A in high-grade serous ovarian tumors and normal ovaries was determined by immunofluorescence analysis. The functional role of Oct4A was evaluated by generating stable knockdown (KD) of Oct4A clones in an established ovarian cancer cell line HEY using shRNA-mediated silencing. The expression of integrins in cell lines was evaluated by flow cytometry. Spheroid forming ability, adhesion and the activities of matrix metalloproteinases 9/2 (MMP-9/2) was measured by in vitro functional assays and gelatin zymography. These observations were further validated in in vivo mouse models using Balb/c nu/nu mice. We report significantly elevated expression of Oct4A in high-grade serous ovarian tumors compared to normal ovarian tissues. The expression of Oct4A in ovarian cancer cell lines correlated with their CSC-related sphere forming abilities. The suppression of Oct4A in HEY cells resulted in a significant diminution of integrin β1 expression and associated α5 and α2 subunits compared to vector control cells. This was associated with a reduced adhesive ability on collagen and fibronectin and decreased secretion of pro-MMP2 in Oct4A KD cells compared to vector control cells. In vivo, Oct4A knock down (KD) cells produced tumors which were significantly smaller in size and weight compared to tumors derived from vector control cells. Immunohistochemical analyses of Oct4A KD tumor xenografts demonstrated a significant loss of cytokeratin 7 (CK7), Glut-1 as well as CD34

  2. Curcumin Effect on the Expressional Profile of OCT4, Nanog and Nucleostemin Genes in AGS (Adenocarcinoma Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Fahmideh Bagrezaei

    2016-07-01

    Full Text Available Background Curcumin is the natural yellow pigment in turmeric isolated from the rhizome of the plant Curcuma longa. Curcumin inhibits formation and invasive cancer cells and destroys cancer cells resistant to chemotherapeutic drugs. Objectives The purpose of this study was the survey of effects of different concentrations of alcoholic curcumin on the octamer-binding transcription factor 4 (OCT4 Nanog and Nucleostemin genes in the AGS (human gastric adenocarcinoma cell line. Materials and Methods In this experimental study the AGS cell line was cultured in RPMI-1640, supplemented with penicillin/streptomycin (100 U/mL and 100 mg/mL, respectively and 10% fetal bovine serum, at 37°C in a humidified atmosphere of 5% CO2. In 60 - 70% cell confluence, the cells were treated with curcumin concentration (20, 40, 100 μL and incubated for 24, 48 and 72 hours. Finally, total RNA were extracted and cDNA were synthesized and the expression of mentioned genes was detected. The data were analyzed by excel software. Results Expression rate of OCT4A, OCT4B, Nanog and Nucleostemin (GLN3 at concentrations less than 20 μg/mL were reduced but OCT4B1 expression showed increased by hours respectively. Conclusions The results showed that curcumin inhibited cell division; also, this study could be the basis for more extensive studies on the anti-cancer effect of the combined plants.

  3. The effect of steroid hormones on the mRNA expression of oct4 and sox2 in uterine tissue of the ovariectomized mice model of menopause

    Directory of Open Access Journals (Sweden)

    Marzieh Davoudi

    2016-07-01

    Full Text Available Background: The uterus is a dynamic tissue responding to hormonal changes during reproductive cycles. As such, uterine stem cells have been studied in recent years. Transcription factors oct4 and sox2 are critical for effective maintenance of pluripotent cell identity. Objective: The present research evaluated the mRNA expression of oct4 and sox2 in the uterine tissues of ovariectomized mice treated with steroid hormones. Materials and Methods: In this experimental study, adult virgin female mice were ovariectomized and treated with estradiol 17β (E2, progesterone (P4, and a combination of E2 and P4 (E2 & P4 for 5 days. Uterine tissues were removed, and immunofluorescent (IF staining and quantitative real-time PCR of oct4 and sox2 markers were performed. Results: IF showed oct4 and sox2 expression in the uterine endometrium and myometrium among all groups. The mRNA expression of oct4 (p=0.022 and sox2 (p=0.042 in the E2-treated group significantly were decreased compared to that in the control group. By contrast, the mRNA expression of oct4 and sox2 in the P4 (p=0.641 and 0.489 respectively and E2 & P4-treated groups (p=0.267 and 0.264 respectively did not show significant differences compared to the control group. Conclusion: The results indicate ovarian steroid hormones change the expression of oct4 and sox2 in the mice uterine tissues, which suggest the involvement of steroid hormonal regulation in uterine stem cells.

  4. Establishment of a rabbit Oct4 promoter-based EGFP reporter system.

    Directory of Open Access Journals (Sweden)

    Longquan Quan

    Full Text Available Rabbits are commonly used as laboratory animal models to investigate human diseases and phylogenetic development. However, pluripotent stem cells that contribute to germline transmission have yet to be established in rabbits. The transcription factor Oct4, also known as Pou5f1, is considered essential for the maintenance of the pluripotency of stem cells. Hence, pluripotent cells can be identified by monitoring Oct4 expression using a well-established Oct4 promoter-based reporter system. This study developed a rabbit Oct4 promoter-based enhanced green fluorescent protein (EGFP reporter system by transfecting pROP2-EGFP into rabbit fetal fibroblasts (RFFs. The transgenic RFFs were used as donor cells for somatic cell nuclear transfer (SCNT. The EGFP expression was detected in the blastocysts and genital ridges of SCNT fetuses. Fibroblasts and neural stem cells (NSCs were derived from the SCNT fetuses. EGFP was also reactivated in blastocysts after the second SCNT, and induced pluripotent stem cells (iPSCs were obtained after reprogramming using Yamanaka's factors. The results above indicated that a rabbit reporter system used to monitor the differentiating status of cells was successfully developed.

  5. Expression and prognostic value of Oct-4 in astrocytic brain tumors

    DEFF Research Database (Denmark)

    Krogh Petersen, Jeanette; Jensen, Per; Sørensen, M. D.

    2016-01-01

    .045). There was no association between survival and Oct-4 positive cell fraction, neither when combining all tumor grades nor in analysis of individual grades. Oct-4 intensity was not associated with grade, but taking IDH1 status into account we found a tendency for high Oct-4 intensity to be associated with poor prognosis...... was associated with tumor malignancy, but seemed to be without independent prognostic influence in glioblastomas. Identification of a potential prognostic value in anaplastic astrocytomas requires additional studies using larger patient cohorts. © 2016 Krogh Petersen et al. This is an open access article...

  6. VIH from the mud crab is specifically expressed in the eyestalk and potentially regulated by transactivator of Sox9/Oct4/Oct1.

    Science.gov (United States)

    Liu, Chunyun; Jia, Xiwei; Zou, Zhihua; Wang, Xiaowei; Wang, Yilei; Zhang, Ziping

    2018-01-01

    Vitellogenesis-inhibiting hormone (VIH) is known to regulate ovarian maturation by suppressing the synthesis of vitellogenin (Vtg) in crustaceans, which belongs to a member of crustacean hyperglycemic hormone (CHH) family synthesized and secreted from the X-organ/sinus gland complex of eyestalks. In this study, the cDNA, genomic DNA (gDNA) and the 5'-upstream regulatory (promoter region) sequences of VIH gene were obtained by conventional PCR, genome walker and tail-PCR techniques according to our transcriptomic database of Scylla paramamosain. The full-length cDNA of SpVIH is 634bp including 105bp 5'UTR, 151bp 3'UTR and 378bp ORF that encodes a peptide of 125 amino acids. The full length gDNA of SpVIH is 790bp containing two exons and one intron. The 5'-flanking promoter regions of SpVIH we isolated are 3070bp from the translation initiation (ATG) and 2398bp from the predicted transcription initiation (A), which consists of putative core promoter region and multiple potential transcription factor binding sites. SpVIH was only expressed in eyestalk. The expression level of SpVIH in eyestalk of female crab decreased gradually along with the development of ovary. As there is not cell line of crabs available, we chose the mature transfection system HEK293FT cell lines to explore the mechanism of transcription regulation of SpVIH in crabs. Sequential deletion assays using luciferase reporter gene in HEK293FT cells revealed that the possible promoter activity regions (including positive and negative transcription factors binding sites simultaneously) presented between pSpVIH-4 and pSpVIH-6. In order to further identify the crucial transcription factors binding site in this region, the site-directed mutagenesis of Sox9/Oct4/Oct1 binding site of pSpVIH-4 was created. The results demonstrated that the transcriptional activity of pSpVIH-4△ decreased significantly (p<0.05). Thus, it is reasonable to deduce that the Sox9/Oct4/Oct1 may be the essential positive transcription

  7. MiR-145 regulates epithelial to mesenchymal transition of breast cancer cells by targeting Oct4.

    Directory of Open Access Journals (Sweden)

    Jiajia Hu

    Full Text Available MiR-145 could regulate tumor growth, apoptosis, migration, and invasion. In our present study, we investigated its role in epithelial-mesenchymal transition (EMT. Expression of miR-145 was decreased in breast tumor tissues at T3&4 stages in comparison with those at T1&2. Over-expression of miR-145 mimics enhanced protein levels of E-cadherin and dampened those of α-SMA and Fibronectin, indicative of its inhibitory role in EMT occurrence. Mechanistic studies showed that miR-145 mimics inhibited Oct4 expression and miR-145 inhibitor enhanced it. Over-expression of Oct4 reversed miR-145-regulated expression of EMT markers, suggesting that Oct4 mediated the inhibitory effects of miR-145. MiR-145 could inhibite the expression of Snail, ZEB1, and ZEB2, while over-expression of Oct4 rescued the effects. Furthermore, Oct-4 induced over-expression of transcription factor Snail, ZEB1 and ZEB2 was mediated by β-catenin. Expression of Slug and Twist were not altered by miR-145/Oct4. Taken together, our results have revealed a novel role of miR-145 on EMT. It inhibits EMT by blocking the expression of Oct4, and downstream transcriptional factors, Snail, ZEB1 and ZEB2.

  8. Transcription factor Oct1 is a somatic and cancer stem cell determinant.

    Directory of Open Access Journals (Sweden)

    Jessica Maddox

    Full Text Available Defining master transcription factors governing somatic and cancer stem cell identity is an important goal. Here we show that the Oct4 paralog Oct1, a transcription factor implicated in stress responses, metabolic control, and poised transcription states, regulates normal and pathologic stem cell function. Oct1(HI cells in the colon and small intestine co-express known stem cell markers. In primary malignant tissue, high Oct1 protein but not mRNA levels strongly correlate with the frequency of CD24(LOCD44(HI cancer-initiating cells. Reducing Oct1 expression via RNAi reduces the proportion of ALDH(HI and dye efflux(HI cells, and increasing Oct1 increases the proportion of ALDH(HI cells. Normal ALDH(HI cells harbor elevated Oct1 protein but not mRNA levels. Functionally, we show that Oct1 promotes tumor engraftment frequency and promotes hematopoietic stem cell engraftment potential in competitive and serial transplants. In addition to previously described Oct1 transcriptional targets, we identify four Oct1 targets associated with the stem cell phenotype. Cumulatively, the data indicate that Oct1 regulates normal and cancer stem cell function.

  9. Role of OCT-1 and partner proteins in T cell differentiation.

    Science.gov (United States)

    Hwang, Soo Seok; Kim, Lark Kyun; Lee, Gap Ryol; Flavell, Richard A

    2016-06-01

    The understanding of CD4 T cell differentiation gives important insights into the control of immune responses against various pathogens and in autoimmune diseases. Naïve CD4 T cells become effector T cells in response to antigen stimulation in combination with various environmental cytokine stimuli. Several transcription factors and cis-regulatory regions have been identified to regulate epigenetic processes on chromatin, to allow the production of proper effector cytokines during CD4 T cell differentiation. OCT-1 (Pou2f1) is well known as a widely expressed transcription factor in most tissues and cells. Although the importance of OCT-1 has been emphasized during development and differentiation, its detailed molecular underpinning and precise role are poorly understood. Recently, a series of studies have reported that OCT-1 plays a critical role in CD4 T cells through regulating gene expression during differentiation and mediating long-range chromosomal interactions. In this review, we will describe the role of OCT-1 in CD4 T cell differentiation and discuss how this factor orchestrates the fate and function of CD4 effector T cells. Copyright © 2016. Published by Elsevier B.V.

  10. A unique Oct4 interface is crucial for reprogramming to pluripotency

    NARCIS (Netherlands)

    Esch, Daniel; Vahokoski, Juha; Groves, Matthew R; Pogenberg, Vivian; Cojocaru, Vlad; Vom Bruch, Hermann; Han, Dong; Drexler, Hannes C A; Araúzo-Bravo, Marcos J; Ng, Calista K L; Jauch, Ralf; Wilmanns, Matthias; Schöler, Hans R

    Terminally differentiated cells can be reprogrammed to pluripotency by the forced expression of Oct4, Sox2, Klf4 and c-Myc. However, it remains unknown how this leads to the multitude of epigenetic changes observed during the reprogramming process. Interestingly, Oct4 is the only factor that cannot

  11. Soluble expression of recomb inant cMyc, Klf4, Oct4, and Sox2 proteins in bacteria and transduction into living cells

    Directory of Open Access Journals (Sweden)

    Guo-Dan Liu

    2017-04-01

    Full Text Available AIM: To develop a new method to produce recombinant reprogramming proteins, cMyc, Klf4, Oct4, and Sox2, in soluble format with low cost for the generation of induced pluripotent stem cells (iPSCs. METHODS: A short polypeptide sequence derived from the HIV trans-activator of transcription protein (TAT and the nucleus localization signal (NLS polypeptide were fused to the N terminus of the reprogramming proteins and they were constructed into pCold-SUMO vector which can extremely improve the solubility of recombinant proteins. Then these vector plasmids were transformed into E. coli BL21 (DE3 Chaperone competent cells for amplification. The solubility of these recombinant proteins was determined by SDS-PAGE and Coomassie brilliant blue staining. The recombinant proteins were purified by Ni-NTA resin and identified by Western blot. The transduction of these proteins into HEK 293T cells were evaluated by immunofluorescence staining. RESULTS: These four reprogramming proteins could be produced in soluble format in pCold-SUMO expression vector system with the assistance of chaperone proteins in bacteria. The proteins were purified successfully with a purity of over 70% with a relative high transduction rate into 293 cells. CONCLUSION: The results in the present study indicate the four important reprogramming proteins, cMyc, Klf4, Oct4, and Sox2, can be produced in soluble format in bacteria with low cost. Our new method thus might be expected to greatly contribute to the future study of iPSCs.

  12. IGF-1R Promotes Symmetric Self-Renewal and Migration of Alkaline Phosphatase+ Germ Stem Cells through HIF-2α-OCT4/CXCR4 Loop under Hypoxia

    Directory of Open Access Journals (Sweden)

    Yung-Che Kuo

    2018-02-01

    Full Text Available Summary: Hypoxia cooperates with endocrine signaling to maintain the symmetric self-renewal proliferation and migration of embryonic germline stem cells (GSCs. However, the lack of an appropriate in vitro cell model has dramatically hindered the understanding of the mechanism underlying this cooperation. Here, using a serum-free system, we demonstrated that hypoxia significantly induced the GSC mesenchymal transition, increased the expression levels of the pluripotent transcription factor OCT4 and migration-associated proteins (SDF-1, CXCR4, IGF-1, and IGF-1R, and activated the cellular expression and translocalization of the CXCR4-downstream proteins ARP3/pFAK. The underlying mechanism involved significant IGF-1/IGF-1R activation of OCT4/CXCR4 expression through HIF-2α regulation. Picropodophyllin-induced inhibition of IGF-1R phosphorylation significantly suppressed hypoxia-induced SDF-1/CXCR4 expression and cell migration. Furthermore, transactivation between IGF-1R and CXCR4 was involved. In summary, we demonstrated that niche hypoxia synergistically cooperates with its associated IGF-1R signaling to regulate the symmetric division (self-renewal proliferation and cell migration of alkaline phosphatase-positive GSCs through HIF-2α-OCT4/CXCR4 during embryogenesis. : In this article, Huang and colleagues demonstrate that niche hypoxia promotes symmetric self-renewal proliferation and migration of PGC-like CD49f+AP+GSCs through IGF-IR regulation. Using a serum-free culture system, the crosstalk between IGF-1R and CXCR4 signaling was discovered. This work demonstrated that embryonic hypoxia synergistically cooperated with IGF-1R signaling to regulate the symmetric self-renewal and migration of PGC-like GSCs through a HIF-2α–OCT4/CXCR4 loop. Keywords: hypoxia, niche, germline stem cells, self-renewal, migration, IGF-1R, HIF-2α, OCT4, SDF-1, CXCR4

  13. Oct1 and OCA-B are selectively required for CD4 memory T cell function.

    Science.gov (United States)

    Shakya, Arvind; Goren, Alon; Shalek, Alex; German, Cody N; Snook, Jeremy; Kuchroo, Vijay K; Yosef, Nir; Chan, Raymond C; Regev, Aviv; Williams, Matthew A; Tantin, Dean

    2015-11-16

    Epigenetic changes are crucial for the generation of immunological memory. Failure to generate or maintain these changes will result in poor memory responses. Similarly, augmenting or stabilizing the correct epigenetic states offers a potential method of enhancing memory. Yet the transcription factors that regulate these processes are poorly defined. We find that the transcription factor Oct1 and its cofactor OCA-B are selectively required for the in vivo generation of CD4(+) memory T cells. More importantly, the memory cells that are formed do not respond properly to antigen reencounter. In vitro, both proteins are required to maintain a poised state at the Il2 target locus in resting but previously stimulated CD4(+) T cells. OCA-B is also required for the robust reexpression of multiple other genes including Ifng. ChIPseq identifies ∼50 differentially expressed direct Oct1 and OCA-B targets. We identify an underlying mechanism involving OCA-B recruitment of the histone lysine demethylase Jmjd1a to targets such as Il2, Ifng, and Zbtb32. The findings pinpoint Oct1 and OCA-B as central mediators of CD4(+) T cell memory. © 2015 Shakya et al.

  14. Differentially expressed genes: OCT-4, SOX2, STAT3, CDH1 and CDH2, in cultured mesenchymal stem cells challenged with serum of women with endometriosis

    Directory of Open Access Journals (Sweden)

    Ehab Salama

    2018-06-01

    Full Text Available Endometriosis is a common chronic gynecological disorder defined as the presence of ectopic functional endometrial tissues, outside uterine cavity, primarily on the pelvic peritoneum and the ovaries. Several studies revealed a correlation between aberrant stem-cell activity in the endometrium and endometriosis. Yet the molecular and cellular behaviors of mesnchymal stem cells in development of endometriosis are hampered by lack of invitro experiments. Our aim was to explore morphological and molecular changes associated with mesenchymal stem cells (MSCs exposition to serum derived from women with severe endometriosis. Two cell cultures of MSCs isolated from endometrial tissues of two endometriosis-free women. Each cell culture was treated individually with the serum of women with endometriosis (experimental group/n = 7, and serum of women without endometriosis (control group/ n = 4 for 14 days. Quantitative Real-Time PCR was performed later to reveal expression of OCT-4, CDH1 and CDH2, STAT3 and SOX2 genes. Morphologically, cells showed no significant changes. However from molecular point of view, we found increased expression in OCT-4, CDH1 and CDH2. For STAT3 and SOX2 we did not find a significant difference. This study shows that endometriosis serum induced molecular changes in human endometrial MSCs (EnMSCs that might be related to altered cell behavior which may be a step in differentiation that may be completed invivo by other factors to complete the process of transition. Further researches are needed for optimization to reach differentiation. Keywords: Endometriosis, Mesnchymal stem cells, OCT-4, SOX2, STAT3, E-cadherin, N-cadherin

  15. IGF-1R Promotes Symmetric Self-Renewal and Migration of Alkaline Phosphatase+ Germ Stem Cells through HIF-2α-OCT4/CXCR4 Loop under Hypoxia.

    Science.gov (United States)

    Kuo, Yung-Che; Au, Heng-Kien; Hsu, Jue-Liang; Wang, Hsiao-Feng; Lee, Chiung-Ju; Peng, Syue-Wei; Lai, Ssu-Chuan; Wu, Yu-Chih; Ho, Hong-Nerng; Huang, Yen-Hua

    2018-02-13

    Hypoxia cooperates with endocrine signaling to maintain the symmetric self-renewal proliferation and migration of embryonic germline stem cells (GSCs). However, the lack of an appropriate in vitro cell model has dramatically hindered the understanding of the mechanism underlying this cooperation. Here, using a serum-free system, we demonstrated that hypoxia significantly induced the GSC mesenchymal transition, increased the expression levels of the pluripotent transcription factor OCT4 and migration-associated proteins (SDF-1, CXCR4, IGF-1, and IGF-1R), and activated the cellular expression and translocalization of the CXCR4-downstream proteins ARP3/pFAK. The underlying mechanism involved significant IGF-1/IGF-1R activation of OCT4/CXCR4 expression through HIF-2α regulation. Picropodophyllin-induced inhibition of IGF-1R phosphorylation significantly suppressed hypoxia-induced SDF-1/CXCR4 expression and cell migration. Furthermore, transactivation between IGF-1R and CXCR4 was involved. In summary, we demonstrated that niche hypoxia synergistically cooperates with its associated IGF-1R signaling to regulate the symmetric division (self-renewal proliferation) and cell migration of alkaline phosphatase-positive GSCs through HIF-2α-OCT4/CXCR4 during embryogenesis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. A nontranscriptional role for Oct4 in the regulation of mitotic entry

    Science.gov (United States)

    Zhao, Rui; Deibler, Richard W.; Lerou, Paul H.; Ballabeni, Andrea; Heffner, Garrett C.; Cahan, Patrick; Unternaehrer, Juli J.; Kirschner, Marc W.; Daley, George Q.

    2014-01-01

    Rapid progression through the cell cycle and a very short G1 phase are defining characteristics of embryonic stem cells. This distinct cell cycle is driven by a positive feedback loop involving Rb inactivation and reduced oscillations of cyclins and cyclin-dependent kinase (Cdk) activity. In this setting, we inquired how ES cells avoid the potentially deleterious consequences of premature mitotic entry. We found that the pluripotency transcription factor Oct4 (octamer-binding transcription factor 4) plays an unappreciated role in the ES cell cycle by forming a complex with cyclin–Cdk1 and inhibiting Cdk1 activation. Ectopic expression of Oct4 or a mutant lacking transcriptional activity recapitulated delayed mitotic entry in HeLa cells. Reduction of Oct4 levels in ES cells accelerated G2 progression, which led to increased chromosomal missegregation and apoptosis. Our data demonstrate an unexpected nontranscriptional function of Oct4 in the regulation of mitotic entry. PMID:25324523

  17. Murine bone marrow Lin⁻Sca⁻1⁺CD45⁻ very small embryonic-like (VSEL cells are heterogeneous population lacking Oct-4A expression.

    Directory of Open Access Journals (Sweden)

    Krzysztof Szade

    Full Text Available Murine very small embryonic-like (VSEL cells, defined by the Lin(-Sca-1(+CD45(- phenotype and small size, were described as pluripotent cells and proposed to be the most primitive hematopoietic precursors in adult bone marrow. Although their isolation and potential application rely entirely on flow cytometry, the immunophenotype of VSELs has not been extensively characterized. Our aim was to analyze the possible heterogeneity of Lin(-Sca(+CD45(- population and investigate the extent to which VSELs characteristics may overlap with that of hematopoietic stem cells (HSCs or endothelial progenitor cells (EPCs. The study evidenced that murine Lin(-Sca-1(+CD45(- population was heterogeneous in terms of c-Kit and KDR expression. Accordingly, the c-Kit(+KDR(-, c-Kit(-KDR(+, and c-Kit(-KDR(- subpopulations could be distinguished, while c-Kit(+KDR(+ events were very rare. The c-Kit(+KDR(- subset contained almost solely small cells, meeting the size criterion of VSELs, in contrast to relatively bigger c-Kit(-KDR(+ cells. The c-Kit(-KDR(-FSC(low subset was highly enriched in Annexin V-positive, apoptotic cells, hence omitted from further analysis. Importantly, using qRT-PCR, we evidenced lack of Oct-4A and Oct-4B mRNA expression either in whole adult murine bone marrow or in the sorted of Lin(-Sca-1(+CD45(-FSC(low population, even by single-cell qRT-PCR. We also found that the Lin(-Sca-1(+CD45(-c-Kit(+ subset did not exhibit hematopoietic potential in a single cell-derived colony in vitro assay, although it comprised the Sca-1(+c-Kit(+Lin(- (SKL CD34(-CD45(-CD105(+ cells, expressing particular HSC markers. Co-culture of Lin(-Sca-1(+CD45(-FSC(low with OP9 cells did not induce hematopoietic potential. Further investigation revealed that SKL CD45(-CD105(+ subset consisted of early apoptotic cells with fragmented chromatin, and could be contaminated with nuclei expelled from erythroblasts. Concluding, murine bone marrow Lin(-Sca-1(+CD45(-FSC(low cells are

  18. Hyaluronan-CD44v3 Interaction with Oct4-Sox2-Nanog Promotes miR-302 Expression Leading to Self-renewal, Clonal Formation, and Cisplatin Resistance in Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma*

    Science.gov (United States)

    Bourguignon, Lilly Y. W.; Wong, Gabriel; Earle, Christine; Chen, Liqun

    2012-01-01

    Human head and neck squamous cell carcinoma (HNSCC) is a highly malignant cancer associated with major morbidity and mortality. In this study, we determined that human HNSCC-derived HSC-3 cells contain a subpopulation of cancer stem cells (CSCs) characterized by high levels of CD44v3 and aldehyde dehydrogenase-1 (ALDH1) expression. These tumor cells also express several stem cell markers (the transcription factors Oct4, Sox2, and Nanog) and display the hallmark CSC properties of self-renewal/clonal formation and the ability to generate heterogeneous cell populations. Importantly, hyaluronan (HA) stimulates the CD44v3 (an HA receptor) interaction with Oct4-Sox2-Nanog leading to both a complex formation and the nuclear translocation of three CSC transcription factors. Further analysis reveals that microRNA-302 (miR-302) is controlled by an upstream promoter containing Oct4-Sox2-Nanog-binding sites, whereas chromatin immunoprecipitation (ChIP) assays demonstrate that stimulation of miR-302 expression by HA-CD44 is Oct4-Sox2-Nanog-dependent in HNSCC-specific CSCs. This process results in suppression of several epigenetic regulators (AOF1/AOF2 and DNMT1) and the up-regulation of several survival proteins (cIAP-1, cIAP-2, and XIAP) leading to self-renewal, clonal formation, and cisplatin resistance. These CSCs were transfected with a specific anti-miR-302 inhibitor to silence miR-302 expression and block its target functions. Our results demonstrate that the anti-miR-302 inhibitor not only enhances the expression of AOF1/AOF2 and DNMT1 but also abrogates the production of cIAP-1, cIAP-2, and XIAP and HA-CD44v3-mediated cancer stem cell functions. Taken together, these findings strongly support the contention that the HA-induced CD44v3 interaction with Oct4-Sox2-Nanog signaling plays a pivotal role in miR-302 production leading to AOF1/AOF2/DNMT1 down-regulation and survival of protein activation. All of these events are critically important for the acquisition of cancer

  19. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma.

    Science.gov (United States)

    Bourguignon, Lilly Y W; Wong, Gabriel; Earle, Christine; Chen, Liqun

    2012-09-21

    Human head and neck squamous cell carcinoma (HNSCC) is a highly malignant cancer associated with major morbidity and mortality. In this study, we determined that human HNSCC-derived HSC-3 cells contain a subpopulation of cancer stem cells (CSCs) characterized by high levels of CD44v3 and aldehyde dehydrogenase-1 (ALDH1) expression. These tumor cells also express several stem cell markers (the transcription factors Oct4, Sox2, and Nanog) and display the hallmark CSC properties of self-renewal/clonal formation and the ability to generate heterogeneous cell populations. Importantly, hyaluronan (HA) stimulates the CD44v3 (an HA receptor) interaction with Oct4-Sox2-Nanog leading to both a complex formation and the nuclear translocation of three CSC transcription factors. Further analysis reveals that microRNA-302 (miR-302) is controlled by an upstream promoter containing Oct4-Sox2-Nanog-binding sites, whereas chromatin immunoprecipitation (ChIP) assays demonstrate that stimulation of miR-302 expression by HA-CD44 is Oct4-Sox2-Nanog-dependent in HNSCC-specific CSCs. This process results in suppression of several epigenetic regulators (AOF1/AOF2 and DNMT1) and the up-regulation of several survival proteins (cIAP-1, cIAP-2, and XIAP) leading to self-renewal, clonal formation, and cisplatin resistance. These CSCs were transfected with a specific anti-miR-302 inhibitor to silence miR-302 expression and block its target functions. Our results demonstrate that the anti-miR-302 inhibitor not only enhances the expression of AOF1/AOF2 and DNMT1 but also abrogates the production of cIAP-1, cIAP-2, and XIAP and HA-CD44v3-mediated cancer stem cell functions. Taken together, these findings strongly support the contention that the HA-induced CD44v3 interaction with Oct4-Sox2-Nanog signaling plays a pivotal role in miR-302 production leading to AOF1/AOF2/DNMT1 down-regulation and survival of protein activation. All of these events are critically important for the acquisition of cancer

  20. Manganese Superoxide Dismutase Gene Expression Is Induced by Nanog and Oct4, Essential Pluripotent Stem Cells’ Transcription Factors

    Science.gov (United States)

    Solari, Claudia; Vázquez Echegaray, Camila; Cosentino, María Soledad; Petrone, María Victoria; Waisman, Ariel; Luzzani, Carlos; Francia, Marcos; Villodre, Emilly; Lenz, Guido; Miriuka, Santiago; Barañao, Lino; Guberman, Alejandra

    2015-01-01

    Pluripotent stem cells possess complex systems that protect them from oxidative stress and ensure genomic stability, vital for their role in development. Even though it has been reported that antioxidant activity diminishes along stem cell differentiation, little is known about the transcriptional regulation of the involved genes. The reported modulation of some of these genes led us to hypothesize that some of them could be regulated by the transcription factors critical for self-renewal and pluripotency in embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). In this work, we studied the expression profile of multiple genes involved in antioxidant defense systems in both ESCs and iPSCs. We found that Manganese superoxide dismutase gene (Mn-Sod/Sod2) was repressed during diverse differentiation protocols showing an expression pattern similar to Nanog gene. Moreover, Sod2 promoter activity was induced by Oct4 and Nanog when we performed a transactivation assay using two different reporter constructions. Finally, we studied Sod2 gene regulation by modulating the expression of Oct4 and Nanog in ESCs by shRNAs and found that downregulation of any of them reduced Sod2 expression. Our results indicate that pluripotency transcription factors positively modulate Sod2 gene transcription. PMID:26642061

  1. Human organic cation transporter 2 (hOCT2): Inhibitor studies using S2-hOCT2 cells

    International Nuclear Information System (INIS)

    Chiba, Shoetsu; Ikawa, Toru; Takeshita, Hiroshi; Kanno, Sanae; Nagai, Tomonori; Takada, Meri; Mukai, Toshiji; Wempe, Michael F.

    2013-01-01

    Highly expressed in kidney and located on the basolateral membrane, human organic cation transporter 2 (hOCT2) can transport various compounds (i.e. drugs and toxins) into the proximal tubular cell. Using cultured proximal tubule cells stably expressing hOCT2 (i.e. S2-hOCT2 cells), we sought to probe different compound classes (e.g. analgesics, anti-depressants, anti-psychotics, disinfectant, herbicides, insecticides, local anesthetic, muscarinic acetylcholine receptor antagonist, sedatives, steroid hormone, stimulants and toxins) for their ability to inhibit 14 C-TEA uptake, a prototypical OCT2 substrate. Aconitine, amitriptyline, atropine, chlorpyrifos, diazepam, fenitrothion, haloperidol, lidocaine, malathion, mianserin, nicotine and triazolam significantly inhibited 14 C-TEA uptake; IC 50 values were 59.2, 2.4, 2.0, 20.7, 32.3, 13.2, 32.5, 104.6, 71.1, 17.7, 52.8 and 65.5 μM, respectively. In addition, aconitine, amitriptyline, atropine, chlorpyrifos, fenitrothion, haloperidol, lidocaine, and nicotine displayed competitive inhibition with K i values of 145.6, 2.5, 2.4, 24.8, 16.9, 51.6, 86.8 and 57.7 μM, respectively. These in vitro data support the notion that compounds pertaining to a wide variety of different drug classes have the potential to decrease renal clearance of drugs transported via hOCT2. Consequently, these data warrant additional studies to probe hOCT2 and its role to influence drug pharmacokinetics

  2. OCT4: A penetrant pluripotency inducer.

    Science.gov (United States)

    Wang, Xuecong; Jauch, Ralf

    2014-01-01

    Native OCT4 protein has the intrinsic ability of crossing cellular membranes to enter cells. This finding could revive efforts to induce pluripotency with proteins replacing nucleic acid-based approaches, and raises the intriguing question as to whether OCT4 can act non-cell-autonomously.

  3. OCT4: A penetrant pluripotency inducer

    OpenAIRE

    Wang, Xuecong; Jauch, Ralf

    2014-01-01

    Native OCT4 protein has the intrinsic ability of crossing cellular membranes to enter cells. This finding could revive efforts to induce pluripotency with proteins replacing nucleic acid-based approaches, and raises the intriguing question as to whether OCT4 can act non-cell-autonomously.

  4. Genome editing reveals a role for OCT4 in human embryogenesis.

    Science.gov (United States)

    Fogarty, Norah M E; McCarthy, Afshan; Snijders, Kirsten E; Powell, Benjamin E; Kubikova, Nada; Blakeley, Paul; Lea, Rebecca; Elder, Kay; Wamaitha, Sissy E; Kim, Daesik; Maciulyte, Valdone; Kleinjung, Jens; Kim, Jin-Soo; Wells, Dagan; Vallier, Ludovic; Bertero, Alessandro; Turner, James M A; Niakan, Kathy K

    2017-10-05

    Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR-Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR-Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.

  5. [LincRNA-ROR functions as a ceRNA to regulate Oct4, Sox2, and Nanog expression by sponging miR-145 and its effect on biologic characteristics of colonic cancer stem cells].

    Science.gov (United States)

    Yan, Z Y; Sun, X C

    2018-04-08

    Objective: To investigate the impact of lincRNA-ROR, a ceRNA by binding miR-145 on the expression of the downstream genes Oct4, Sox2 and Nanog, and related biological characteristics of colon cancer stem cells, and to elucidate the clinical significance of this molecular regulatory network. Methods: Fifty-two cases of colorectal cancer tissue and adjacent tissue were collected at Nanyang City Central Hospital and Nanyang Second Hospital, Henan Province, from 2014 to 2016. Real-time quantitative polymerase chain reaction (qPCR) was used to detect the expression of lincRNA-ROR and miR-145 in colorectal cancer tissue and isolated colon cancer cells. The correlation between the expression of lincRNA-ROR, miR-145 and the clinicopathologic features of colon cancer was performed. CD44(-)CD133(-) and CD44(+) CD133(+) cells were isolated from SW1116 by using flow cytometry. The expression of CD44, CD133, Oct4, Sox2, Nanog, lincRNA-ROR and miR-145 in cells were detected by qPCR. The relationship between lincRNA-ROR, miR-145, Oct4, Sox2 and Nanog was analyzed by bioinformatics, dual luciferase reporter assay, qPCR and Western blot. The effects of silencing lincRNA-ROR on the proliferation and chemosensitivity of colon cancer stem cells were detected by MTT, colony formation. Results: LincRNA-ROR was frequently up-regulated and inversely correlated with miR-145 down-regulation in the colon cancer specimens( P cells were successfully isolated from SW1116 by flow cytometry. The levels of CD44, CD133, Oct4, Sox2, Nanog, lincRNA-ROR in CD44(+) CD133(+) cells were significantly increased, while miR-145 was decreased compared with CD44(-)CD133(-)cells( P cells were significantly reduced upon cell adherence, while miR-145 was significantly increased( P cancer stem cells proliferation and increased the sensitivity to chemotherapy. Conclusions: Linc-ROR functions as a key ceRNA to prevent core TFs, e. g., Oct4, Sox2, Nanog, from miR-145-mediated suppression in colon cancer stem cells

  6. OCT4: A penetrant pluripotency inducer

    Directory of Open Access Journals (Sweden)

    Xuecong Wang

    2014-01-01

    Full Text Available Native OCT4 protein has the intrinsic ability of crossing cellular membranes to enter cells. This finding could revive efforts to induce pluripotency with proteins replacing nucleic acid-based approaches, and raises the intriguing question as to whether OCT4 can act non-cell-autonomously.

  7. Alkaline phosphatase and OCT-3/4 as useful markers for predicting susceptibility of human deciduous teeth-derived dental pulp cells to reprogramming factor-induced iPS cells.

    Science.gov (United States)

    Inada, Emi; Saitoh, Issei; Kubota, Naoko; Soda, Miki; Matsueda, Kazunari; Murakami, Tomoya; Sawami, Tadashi; Kagoshima, Akiko; Yamasaki, Youichi; Sato, Masahiro

    2017-11-01

    The aim of the present study was to prove that primary cells enriched with stem cells are more easily reprogrammed to generate induced pluripotent stem (iPS) cells than those with scarce numbers of stem cells. We surveyed the alkaline phosphatase (ALP) activity in five primarily-isolated human deciduous teeth-derived dental pulp cells (HDDPC) with cytochemical staining to examine the possible presence of stem cells. Next, the expression of stemness-specific factors, such as OCT(Octumer-binding transcription factor)3/4, NANOG, SOX2(SRY (sex determining region Y)-box 2), CD90, muscle segment homeodomain homeobox (MSX) 1, and MSX2, was assessed with a reverse transcription polymerase chain reaction method. Finally, these isolated HDDPC were transfected with plasmids carrying genes coding Yamanaka factors to determine whether these cells could be reprogrammed to generate iPS cells. Of the five primarily-isolated HDDPC, two (HDDPC-1 and -5) exhibited higher degrees of ALP activity. OCT-3/4 expression was also prominent in those two lines. Furthermore, these two lines proliferated faster than the other three lines. The transfection of HDDPC with Yamanaka factors resulted in the generation of iPS cells from HDDPC-1 and -5. The number of cells with the stemness property of HDDPC differs among individuals, which suggests that HDDPC showing an increased expression of both ALP and OCT-3/4 can be more easily reprogrammed to generate iPS cells after the forced expression of reprogramming factors. © 2016 John Wiley & Sons Australia, Ltd.

  8. Assessment of the Potential of CDK2 Inhibitor NU6140 to Influence the Expression of Pluripotency Markers NANOG, OCT4, and SOX2 in 2102Ep and H9 Cells

    Directory of Open Access Journals (Sweden)

    Ade Kallas

    2014-01-01

    Full Text Available As cyclin-dependent kinases (CDKs regulate cell cycle progression and RNA transcription, CDKs are attractive targets for creating cancer cell treatments. In this study we investigated the effects of the small molecular agent NU6140 (inhibits CDK2 and cyclin A interaction on human embryonic stem (hES cells and embryonal carcinoma-derived (hEC cells via the expression of transcription factors responsible for pluripotency. A multiparameter flow cytometric method was used to follow changes in the expression of NANOG, OCT4, and SOX2 together in single cells. Both hES and hEC cells responded to NU6140 treatment by induced apoptosis and a decreased expression of NANOG, OCT4, and SOX2 in surviving cells. A higher sensitivity to NU6140 application in hES than hEC cells was detected. NU6140 treatment arrested hES and hEC cells in the G2 phase and inhibited entry into the M phase as evidenced by no significant increase in histone 3 phosphorylation. When embryoid bodies (EBs formed from NU6104 treated hES cells were compared to EBs from untreated hES cells differences in ectodermal, endodermal, and mesodermal lineages were found. The results of this study highlight the importance of CDK2 activity in maintaining pluripotency of hES and hEC cells and in differentiation of hES cells.

  9. Regulation of normal B-cell differentiation and malignant B-cell survival by OCT2.

    Science.gov (United States)

    Hodson, Daniel J; Shaffer, Arthur L; Xiao, Wenming; Wright, George W; Schmitz, Roland; Phelan, James D; Yang, Yandan; Webster, Daniel E; Rui, Lixin; Kohlhammer, Holger; Nakagawa, Masao; Waldmann, Thomas A; Staudt, Louis M

    2016-04-05

    The requirement for the B-cell transcription factor OCT2 (octamer-binding protein 2, encoded by Pou2f2) in germinal center B cells has proved controversial. Here, we report that germinal center B cells are formed normally after depletion of OCT2 in a conditional knockout mouse, but their proliferation is reduced and in vivo differentiation to antibody-secreting plasma cells is blocked. This finding led us to examine the role of OCT2 in germinal center-derived lymphomas. shRNA knockdown showed that almost all diffuse large B-cell lymphoma (DLBCL) cell lines are addicted to the expression of OCT2 and its coactivator OCA-B. Genome-wide chromatin immunoprecipitation (ChIP) analysis and gene-expression profiling revealed the broad transcriptional program regulated by OCT2 that includes the expression of STAT3, IL-10, ELL2, XBP1, MYC, TERT, and ADA. Importantly, genetic alteration of OCT2 is not a requirement for cellular addiction in DLBCL. However, we detected amplifications of the POU2F2 locus in DLBCL tumor biopsies and a recurrent mutation of threonine 223 in the DNA-binding domain of OCT2. This neomorphic mutation subtly alters the DNA-binding preference of OCT2, leading to the transactivation of noncanonical target genes including HIF1a and FCRL3 Finally, by introducing mutations designed to disrupt the OCT2-OCA-B interface, we reveal a requirement for this protein-protein interface that ultimately might be exploited therapeutically. Our findings, combined with the predominantly B-cell-restricted expression of OCT2 and the absence of a systemic phenotype in our knockout mice, suggest that an OCT2-targeted therapeutic strategy would be efficacious in both major subtypes of DLBCL while avoiding systemic toxicity.

  10. Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells.

    Science.gov (United States)

    Cheng, Jie; Li, Wenxin; Kang, Bo; Zhou, Yanwen; Song, Jiasheng; Dan, Songsong; Yang, Ying; Zhang, Xiaoqian; Li, Jingchao; Yin, Shengyong; Cao, Hongcui; Yao, Hangping; Zhu, Chenggang; Yi, Wen; Zhao, Qingwei; Xu, Xiaowei; Zheng, Min; Zheng, Shusen; Li, Lanjuan; Shen, Binghui; Wang, Ying-Jie

    2015-06-10

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to environmental toxicants, is increasingly recognized as a key player in embryogenesis and tumorigenesis. Here we show that a variety of tryptophan derivatives that act as endogenous AhR ligands can affect the transcription level of the master pluripotency factor Oct4. Among them, ITE enhances the binding of the AhR to the promoter of Oct4 and suppresses its transcription. Reduction of endogenous ITE levels in cancer cells by tryptophan deprivation or hypoxia leads to Oct4 elevation, which can be reverted by administration with synthetic ITE. Consequently, synthetic ITE induces the differentiation of stem-like cancer cells and reduces their tumorigenic potential in both subcutaneous and orthotopic xenograft tumour models. Thus, our results reveal a role of tryptophan derivatives and the AhR signalling pathway in regulating cancer cell stemness and open a new therapeutic avenue to target stem-like cancer cells.

  11. Chemotherapy-Induced Depletion of OCT4-Positive Cancer Stem Cells in a Mouse Model of Malignant Testicular Cancer.

    Science.gov (United States)

    Pierpont, Timothy M; Lyndaker, Amy M; Anderson, Claire M; Jin, Qiming; Moore, Elizabeth S; Roden, Jamie L; Braxton, Alicia; Bagepalli, Lina; Kataria, Nandita; Hu, Hilary Zhaoxu; Garness, Jason; Cook, Matthew S; Capel, Blanche; Schlafer, Donald H; Southard, Teresa; Weiss, Robert S

    2017-11-14

    Testicular germ cell tumors (TGCTs) are among the most responsive solid cancers to conventional chemotherapy. To elucidate the underlying mechanisms, we developed a mouse TGCT model featuring germ cell-specific Kras activation and Pten inactivation. The resulting mice developed malignant, metastatic TGCTs composed of teratoma and embryonal carcinoma, the latter of which exhibited stem cell characteristics, including expression of the pluripotency factor OCT4. Consistent with epidemiological data linking human testicular cancer risk to in utero exposures, embryonic germ cells were susceptible to malignant transformation, whereas adult germ cells underwent apoptosis in response to the same oncogenic events. Treatment of tumor-bearing mice with genotoxic chemotherapy not only prolonged survival and reduced tumor size but also selectively eliminated the OCT4-positive cancer stem cells. We conclude that the chemosensitivity of TGCTs derives from the sensitivity of their cancer stem cells to DNA-damaging chemotherapy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Oct2 and Obf1 as facilitators of B:T cell collaboration during a humoral immune response

    Directory of Open Access Journals (Sweden)

    Lynn M Corcoran

    2014-03-01

    Full Text Available The Oct2 protein, encoded by the Pou2f2 gene, was originally predicted to act as a DNA binding transcriptional activator of immunoglobulin (Ig in B lineage cells. This prediction flowed from the earlier observation that an 8 bp sequence, the octamer motif, was a highly conserved component of most Ig gene promoters and enhancers, and evidence from over-expression and reporter assays confirmed Oct2-mediated, octamer-dependent gene expression. Complexity was added to the story when Oct1, an independently encoded protein, ubiquitously expressed from the Pou2f 1 gene, was characterised and found to bind to the octamer motif with almost identical specificity, and later, when the co-activator Obf1 (OCA-B, Bob.1, encoded by the Pou2af1 gene, was cloned. Obf1 joins Oct2 (and Oct1 on the DNA of a subset of octamer motifs to enhance their transactivation strength. While these proteins variously carried the mantle of determinants of Ig gene expression in B cells for many years, such a role has not been borne out for them by characterisation of mice lacking functional copies of the genes, either as single or as compound mutants. Instead, we and others have shown that Oct2 and Obf1 are required for B cells to mature fully in vivo, for B cells to respond to the T cell cytokines IL5 and IL4, and for B cells to produce IL6 normally during a T cell dependent immune response. We show here that Oct2 affects Syk gene expression, thus influencing B cell receptor signalling, and that Oct2 loss blocks Slamf1 expression in vivo as a result of incomplete B cell maturation. Upon IL4 signalling, Stat6 up-regulates Obf1, indirectly via Xbp1, to enable plasma cell differentiation. Thus, Oct2 and Obf1 enable B cells to respond normally to antigen receptor signals, to express surface receptors that mediate physical interaction with T cells, or to produce and respond to cytokines that are critical drivers of B cell and T cell differentiation during a humoral immune response.

  13. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors.

    Science.gov (United States)

    Hu, Jiabiao; Lei, Yong; Wong, Wing-Ki; Liu, Senquan; Lee, Kai-Chuen; He, Xiangjun; You, Wenxing; Zhou, Rui; Guo, Jun-Tao; Chen, Xiongfong; Peng, Xianlu; Sun, Hao; Huang, He; Zhao, Hui; Feng, Bo

    2014-04-01

    The newly developed transcription activator-like effector protein (TALE) and clustered regularly interspaced short palindromic repeats/Cas9 transcription factors (TF) offered a powerful and precise approach for modulating gene expression. In this article, we systematically investigated the potential of these new tools in activating the stringently silenced pluripotency gene Oct4 (Pou5f1) in mouse and human somatic cells. First, with a number of TALEs and sgRNAs targeting various regions in the mouse and human Oct4 promoters, we found that the most efficient TALE-VP64s bound around -120 to -80 bp, while highly effective sgRNAs targeted from -147 to -89-bp upstream of the transcription start sites to induce high activity of luciferase reporters. In addition, we observed significant transcriptional synergy when multiple TFs were applied simultaneously. Although individual TFs exhibited marginal activity to up-regulate endogenous gene expression, optimized combinations of TALE-VP64s could enhance endogenous Oct4 transcription up to 30-fold in mouse NIH3T3 cells and 20-fold in human HEK293T cells. More importantly, the enhancement of OCT4 transcription ultimately generated OCT4 proteins. Furthermore, examination of different epigenetic modifiers showed that histone acetyltransferase p300 could enhance both TALE-VP64 and sgRNA/dCas9-VP64 induced transcription of endogenous OCT4. Taken together, our study suggested that engineered TALE-TF and dCas9-TF are useful tools for modulating gene expression in mammalian cells.

  14. Structural basis for the SOX-dependent genomic redistribution of OCT4 in stem cell differentiation.

    Science.gov (United States)

    Merino, Felipe; Ng, Calista Keow Leng; Veerapandian, Veeramohan; Schöler, Hans Robert; Jauch, Ralf; Cojocaru, Vlad

    2014-09-02

    In pluripotent cells, OCT4 associates with SOX2 to maintain pluripotency or with SOX17 to induce primitive endoderm commitment. The OCT4-SOX2 and OCT4-SOX17 combinations bind mutually exclusive to two distinct composite DNA elements, known as the "canonical" and "compressed" motifs, respectively. The structural basis for the OCT4-SOX17 cooperativity is unknown. Whereas SOX17 has been engineered to replace SOX2 in the pluripotency circuitry, all generated SOX2 mutants have failed to act like SOX17. From molecular simulations, we revealed the OCT4-SOX17 interaction interface and elucidated the SOX-dependent motif preference of OCT4. Moreover, we designed a SOX2 mutant that we predicted and confirmed experimentally to bind cooperatively with OCT4 to the compressed motif. Ultimately, we found a strong correlation between the experimental and calculated relative cooperative-binding free energies of 12 OCT4-SOX-DNA complexes. Therefore, we validated the OCT4-SOX interfaces and demonstrated that in silico design of DNA-binding cooperativity is suitable for altering transcriptional circuitries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Post-translational regulation of Oct4 transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Jonathan P Saxe

    Full Text Available Oct4 is a key component of the molecular circuitry which regulates embryonic stem cell proliferation and differentiation. It is essential for maintenance of undifferentiated, pluripotent cell populations, and accomplishes these tasks by binding DNA in multiple heterodimer and homodimer configurations. Very little is known about how formation of these complexes is regulated, or the mechanisms through which Oct4 proteins respond to complex extracellular stimuli which regulate pluripotency. Here, we provide evidence for a phosphorylation-based mechanism which regulates specific Oct4 homodimer conformations. Point mutations of a putative phosphorylation site can specifically abrogate transcriptional activity of a specific homodimer assembly, with little effect on other configurations. Moreover, we performed bioinformatic predictions to identify a subset of Oct4 target genes which may be regulated by this specific assembly, and show that altering Oct4 protein levels affects transcription of Oct4 target genes which are regulated by this assembly but not others. Finally, we identified several signaling pathways which may mediate this phosphorylation and act in combination to regulate Oct4 transcriptional activity and protein stability. These results provide a mechanism for rapid and reversible alteration of Oct4 transactivation potential in response to extracellular signals.

  16. TALEN/CRISPR-mediated eGFP knock-in add-on at the OCT4 locus does not impact differentiation of human embryonic stem cells towards endoderm.

    Directory of Open Access Journals (Sweden)

    Nicole A J Krentz

    Full Text Available Human embryonic stem cells (hESCs have great promise as a source of unlimited transplantable cells for regenerative medicine. However, current progress on producing the desired cell type for disease treatment has been limited due to an insufficient understanding of the developmental processes that govern their differentiation, as well as a paucity of tools to systematically study differentiation in the lab. In order to overcome these limitations, cell-type reporter hESC lines will be required. Here we outline two strategies using Transcription Activator Like Effector Nucleases (TALENs and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-CRISPR-Associated protein (Cas to create OCT4-eGFP knock-in add-on hESC lines. Thirty-one and forty-seven percent of clones were correctly modified using the TALEN and CRISPR-Cas9 systems, respectively. Further analysis of three correctly targeted clones demonstrated that the insertion of eGFP in-frame with OCT4 neither significantly impacted expression from the wild type allele nor did the fusion protein have a dramatically different biological stability. Importantly, the OCT4-eGFP fusion was easily detected using microscopy, flow cytometry and western blotting. The OCT4 reporter lines remained equally competent at producing CXCR4+ definitive endoderm that expressed a panel of endodermal genes. Moreover, the genomic modification did not impact the formation of NKX6.1+/SOX9+ pancreatic progenitor cells following directed differentiation. In conclusion, these findings demonstrate for the first time that CRISPR-Cas9 can be used to modify OCT4 and highlight the feasibility of creating cell-type specific reporter hESC lines utilizing genome-editing tools that facilitate homologous recombination.

  17. OCT4 and downstream factors are expressed in human somatic urogenital epithelia and in culture of epididymal spheres

    DEFF Research Database (Denmark)

    Audouze, Karine Marie Laure; Brunak, Søren; Kristensen, DM

    2010-01-01

    and microdissected tissues, in situ hybridisation, immunohistochemistry, and Western blotting to show that OCT4 and SOX2 together with downstream targets, UTF1 and REX1, are expressed in the human male urogenital tract. We further supported these results by analysis of DNA methylation of a region in the OCT4...

  18. Estrogen-related receptor beta interacts with Oct4 to positively regulate Nanog gene expression

    NARCIS (Netherlands)

    D.L.C. van den Berg (Debbie); W. Zhang (Wensheng); A. Yates (Adam); M.P. Engelen (Erik); K. Takacs (Katalin); K. Bezstarosti (Karel); J.A.A. Demmers (Jeroen); I. Chambers (Ian); R.A. Poor (Raymond)

    2008-01-01

    textabstractEmbryonic stem (ES) cell self-renewal is regulated by transcription factors, including Oct4, Sox2, and Nanog. A number of additional transcriptional regulators of ES cell self-renewal have recently been identified, including the orphan nuclear receptor estrogen-related receptor beta

  19. An Oct4-Centered Protein Interaction Network in Embryonic Stem Cells

    NARCIS (Netherlands)

    D.L.C. van den Berg (Debbie); T. Snoek (Tim); N.P. Mullin (Nick); A. Yates (Adam); K. Bezstarosti (Karel); J.A.A. Demmers (Jeroen); I. Chambers (Ian); R.A. Poot (Raymond)

    2010-01-01

    textabstractTranscription factors, such as Oct4, are critical for establishing and maintaining pluripotent cell identity. Whereas the genomic locations of several pluripotency transcription factors have been reported, the spectrum of their interaction partners is underexplored. Here, we use an

  20. SOX2 and OCT4 mRNA-Expressing Cells, Detected by Molecular Beacons, Localize to the Center of Neurospheres during Differentiation

    DEFF Research Database (Denmark)

    Ilieva, Mirolyuba; Dufva, Martin

    2013-01-01

    Neurospheres are used as in vitro assay to measure the properties of neural stem cells. To investigate the molecular and phenotypic heterogeneity of neurospheres, molecular beacons (MBs) targeted against the stem cell markers OCT4 and SOX2 were designed, and synthesized with a 2'-O-methyl RNA...

  1. Chemotherapy-Induced Depletion of OCT4-Positive Cancer Stem Cells in a Mouse Model of Malignant Testicular Cancer

    Directory of Open Access Journals (Sweden)

    Timothy M. Pierpont

    2017-11-01

    Full Text Available Summary: Testicular germ cell tumors (TGCTs are among the most responsive solid cancers to conventional chemotherapy. To elucidate the underlying mechanisms, we developed a mouse TGCT model featuring germ cell-specific Kras activation and Pten inactivation. The resulting mice developed malignant, metastatic TGCTs composed of teratoma and embryonal carcinoma, the latter of which exhibited stem cell characteristics, including expression of the pluripotency factor OCT4. Consistent with epidemiological data linking human testicular cancer risk to in utero exposures, embryonic germ cells were susceptible to malignant transformation, whereas adult germ cells underwent apoptosis in response to the same oncogenic events. Treatment of tumor-bearing mice with genotoxic chemotherapy not only prolonged survival and reduced tumor size but also selectively eliminated the OCT4-positive cancer stem cells. We conclude that the chemosensitivity of TGCTs derives from the sensitivity of their cancer stem cells to DNA-damaging chemotherapy. : Using a mouse testicular germ cell tumor model, Pierpont et al. establish that male germ cells are susceptible to malignant transformation during a restricted window of embryonic development. The cancer stem cells of the resulting testicular cancers demonstrate genotoxin hypersensitivity, rendering these malignancies highly responsive to conventional chemotherapy. Keywords: testicular germ cell tumor, TGCT, cancer stem cells, CSCs, chemotherapy, embryonal carcinoma, EC, DNA damage response, DDR

  2. Of Mice and Snakes: A Tail of Oct4.

    Science.gov (United States)

    Shylo, Natalia A; Weatherbee, Scott D

    2016-08-08

    The vertebrate axial skeleton comprises regions of specialized vertebrae, which vary in length between lineages. Aires et al. (2016) uncover a key role for Oct4 in determining trunk length in mice. Additionally, a heterochronic shift in Oct4 expression may underlie the extreme elongation of the trunk in snakes. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Clinicopathological and prognostic significance of OCT4 in patients with hepatocellular carcinoma: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Liang CJ

    2017-12-01

    Full Text Available Chaojie Liang,* Yingchen Xu,* Hua Ge, Guangming Li, Jixiang Wu Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China *These authors contributed equally to this work Background and aims: Octamer-binding transcription factor 4 (OCT4 has been implicated in the development of hepatocellular carcinoma (HCC, although the findings are controversial. We conducted a meta-analysis to assess the correlation between OCT4 and the clinicopathological characteristics and the prognostic value in HCC.Methods: An electronic search for relevant articles was conducted in PubMed, Cochrane Library, Web of Science, EMBASE database, Chinese CNKI, and Chinese WanFang database. Correlations between OCT4 expression and clinicopathological features and survival outcomes were analyzed. Pooled odds ratios and hazard ratios with 95% CIs were calculated using STATA 14.2 software.Results: A total of 10 trials with 985 patients were included. Positive OCT4 expression was correlated with tumor size, tumor numbers, differentiation, and TNM stage. OCT4 expression was not correlated with gender, age, hepatitis B surface antigen, alfa-fetoprotein, liver cirrhosis, vascular invasion, or tumor encapsulation. OCT4 expression was associated with poor 3- and 5-year overall survival, and disease-free survival rate.Conclusion: OCT4 expression was associated with tumor size, tumor numbers, differentiation, and TNM stage in HCC. OCT4 may be a useful prognostic biomarker for HCC. Keywords: octamer-binding transcription factor 4, hepatocellular carcinoma, prognosis, meta-analysis

  4. Oct4 is required ~E7.5 for proliferation in the primitive streak.

    Directory of Open Access Journals (Sweden)

    Brian DeVeale

    2013-11-01

    Full Text Available Oct4 is a widely recognized pluripotency factor as it maintains Embryonic Stem (ES cells in a pluripotent state, and, in vivo, prevents the inner cell mass (ICM in murine embryos from differentiating into trophectoderm. However, its function in somatic tissue after this developmental stage is not well characterized. Using a tamoxifen-inducible Cre recombinase and floxed alleles of Oct4, we investigated the effect of depleting Oct4 in mouse embryos between the pre-streak and headfold stages, ~E6.0-E8.0, when Oct4 is found in dynamic patterns throughout the embryonic compartment of the mouse egg cylinder. We found that depletion of Oct4 ~E7.5 resulted in a severe phenotype, comprised of craniorachischisis, random heart tube orientation, failed turning, defective somitogenesis and posterior truncation. Unlike in ES cells, depletion of the pluripotency factors Sox2 and Oct4 after E7.0 does not phenocopy, suggesting that ~E7.5 Oct4 is required within a network that is altered relative to the pluripotency network. Oct4 is not required in extraembryonic tissue for these processes, but is required to maintain cell viability in the embryo and normal proliferation within the primitive streak. Impaired expansion of the primitive streak occurs coincident with Oct4 depletion ∼E7.5 and precedes deficient convergent extension which contributes to several aspects of the phenotype.

  5. Oct4 Methylation-Mediated Silencing As an Epigenetic Barrier Preventing Müller Glia Dedifferentiation in a Murine Model of Retinal Injury.

    Science.gov (United States)

    Reyes-Aguirre, Luis I; Lamas, Monica

    2016-01-01

    Müller glia (MG) is the most abundant glial type in the vertebrate retina. Among its many functions, it is capable of responding to injury by dedifferentiating, proliferating, and differentiating into every cell types lost to damage. This regenerative ability is notoriously absent in mammals. We have previously reported that cultured mammalian MG undergoes a partial dedifferentiation, but fails to fully acquire a progenitor phenotype and differentiate into neurons. This might be explained by a mnemonic mechanism comprised by epigenetic traits, such as DNA methylation. To achieve a better understanding of this epigenetic memory, we studied the expression of pluripotency-associated genes, such as Oct4, Nanog , and Lin28 , which have been reported as necessary for regeneration in fish, at early times after NMDA-induced retinal injury in a mouse experimental model. We found that although Oct4 is expressed rapidly after damage (4 hpi), it is silenced at 24 hpi. This correlates with a significant decrease in the DNA methyltransferase Dnmt3b expression, which returns to basal levels at 24 hpi. By MS-PCR, we observed a decrease in Oct4 methylation levels at 4 and 12 hpi, before returning to a fully methylated state at 24 hpi. To demonstrate that these changes are restricted to MG, we separated these cells using a GLAST antibody coupled with magnetic beads. Finally, intravitreous administration of the DNA-methyltransferase inhibitor SGI-1027 induced Oct4 expression at 24 hpi in MG. Our results suggest that mammalian MG injury-induced dedifferentiation could be restricted by DNA methylation, which rapidly silences Oct4 expression, preventing multipotency acquisition.

  6. In vitro culture of bovine embryos in murine ES cell conditioned media negatively affects expression of pluripotency-related markers OCT4, SOX2 and SSEA1.

    Science.gov (United States)

    Oliveira, C S; de Souza, M M; Saraiva, N Z; Tetzner, T A D; Lima, M R; Lopes, F L; Garcia, J M

    2012-06-01

    Despite extensive efforts, establishment of bovine embryonic stem (ES) cell lines has not been successful. We hypothesized that culture conditions for in vitro-produced (IVP) embryos, the most used source of inner cell mass (ICM) to obtain ES cells, might affect their undifferentiated state. Therefore, the aim of this work was to improve pluripotency of IVP blastocysts to produce suitable ICM for further culturing. We tested KSR and foetal calf serum (FCS) supplements in SOF medium and ES cell conditioned medium (CM) on IVC (groups: KSR, KSR CM, FCS and FCS CM). Cleavage and blastocyst rates were similar between all groups. Also, embryonic quality, assessed by apoptosis rates (TUNEL assay), total cell number and ICM percentage did not differ between experimental groups. However, expression of pluripotency-related markers was affected. We detected down-regulation of OCT3/4, SOX2 and SSEA1 in ICM of FCS CM blastocysts (p < 0.05). SOX2 gene expression revealed lower levels (p < 0.05) on KSR CM blastocysts and a remarkable variation in SOX2 mRNA levels on FCS-supplemented blastocysts. In conclusion, pluripotency-related markers tend to decrease after supplementation with ES cell CM, suggesting different mechanisms regulating mouse and bovine pluripotency. KSR supplementation did not differ from FCS, but FCS replacement by KSR may produce blastocysts with stable SOX2 gene expression levels. © 2011 Blackwell Verlag GmbH.

  7. Dissecting the role of distinct OCT4-SOX2 heterodimer configurations in pluripotency

    Science.gov (United States)

    Tapia, Natalia; MacCarthy, Caitlin; Esch, Daniel; Gabriele Marthaler, Adele; Tiemann, Ulf; Araúzo-Bravo, Marcos J.; Jauch, Ralf; Cojocaru, Vlad; Schöler, Hans R.

    2015-01-01

    The transcription factors OCT4 and SOX2 are required for generating induced pluripotent stem cells (iPSCs) and for maintaining embryonic stem cells (ESCs). OCT4 and SOX2 associate and bind to DNA in different configurations depending on the arrangement of their individual DNA binding elements. Here we have investigated the role of the different OCT4-SOX2-DNA assemblies in regulating and inducing pluripotency. To this end, we have generated SOX2 mutants that interfere with specific OCT4-SOX2 heterodimer configurations and assessed their ability to generate iPSCs and to rescue ESC self-renewal. Our results demonstrate that the OCT4-SOX2 configuration that dimerizes on a Hoxb1-like composite, a canonical element with juxtaposed individual binding sites, plays a more critical role in the induction and maintenance of pluripotency than any other OCT4-SOX2 configuration. Overall, the results of this study provide new insight into the protein interactions required to establish a de novo pluripotent network and to maintain a true pluripotent cell fate. PMID:26314899

  8. Quiescent Oct4+ Neural Stem Cells (NSCs) Repopulate Ablated Glial Fibrillary Acidic Protein+ NSCs in the Adult Mouse Brain.

    Science.gov (United States)

    Reeve, Rachel L; Yammine, Samantha Z; Morshead, Cindi M; van der Kooy, Derek

    2017-09-01

    Adult primitive neural stem cells (pNSCs) are a rare population of glial fibrillary acidic protein (GFAP) - Oct4 + cells in the mouse forebrain subependymal zone bordering the lateral ventricles that give rise to clonal neurospheres in leukemia inhibitory factor in vitro. pNSC neurospheres can be passaged to self-renew or give rise to GFAP + NSCs that form neurospheres in epidermal growth factor and fibroblast growth factor 2, which we collectively refer to as definitive NSCs (dNSCs). Label retention experiments using doxycycline-inducible histone-2B (H2B)-green fluorescent protein (GFP) mice and several chase periods of up to 1 year quantified the adult pNSC cell cycle time as 3-5 months. We hypothesized that while pNSCs are not very proliferative at baseline, they may exist as a reserve pool of NSCs in case of injury. To test this function of pNSCs, we obtained conditional Oct4 knockout mice, Oct4 fl/fl ;Sox1 Cre (Oct4 CKO ), which do not yield adult pNSC-derived neurospheres. When we ablated the progeny of pNSCs, namely all GFAP + dNSCs, in these Oct4 CKO mice, we found that dNSCs did not recover as they do in wild-type mice, suggesting that pNSCs are necessary for dNSC repopulation. Returning to the H2B-GFP mice, we observed that the cytosine β-d-arabinofuranoside ablation of proliferating cells including dNSCs-induced quiescent pNSCs to proliferate and significantly dilute their H2B-GFP label. In conclusion, we demonstrate that pNSCs are the most quiescent stem cells in the adult brain reported to date and that their lineage position upstream of GFAP + dNSCs allows them to repopulate a depleted neural lineage. Stem Cells 2017;35:2071-2082. © 2017 AlphaMed Press.

  9. O-GlcNAc transferase regulates transcriptional activity of human Oct4.

    Science.gov (United States)

    Constable, Sandii; Lim, Jae-Min; Vaidyanathan, Krithika; Wells, Lance

    2017-10-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a single sugar modification found on many different classes of nuclear and cytoplasmic proteins. Addition of this modification, by the enzyme O-linked N-acetylglucosamine transferase (OGT), is dynamic and inducible. One major class of proteins modified by O-GlcNAc is transcription factors. O-GlcNAc regulates transcription factor properties through a variety of different mechanisms including localization, stability and transcriptional activation. Maintenance of embryonic stem (ES) cell pluripotency requires tight regulation of several key transcription factors, many of which are modified by O-GlcNAc. Octamer-binding protein 4 (Oct4) is one of the key transcription factors required for pluripotency of ES cells and more recently, the generation of induced pluripotent stem (iPS) cells. The action of Oct4 is modulated by the addition of several post-translational modifications, including O-GlcNAc. Previous studies in mice found a single site of O-GlcNAc addition responsible for transcriptional regulation. This study was designed to determine if this mechanism is conserved in humans. We mapped 10 novel sites of O-GlcNAc attachment on human Oct4, and confirmed a role for OGT in transcriptional activation of Oct4 at a site distinct from that found in mouse that allows distinction between different Oct4 target promoters. Additionally, we uncovered a potential new role for OGT that does not include its catalytic function. These results confirm that human Oct4 activity is being regulated by OGT by a mechanism that is distinct from mouse Oct4. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene.

    Directory of Open Access Journals (Sweden)

    Dario Nicetto

    Full Text Available Post-translational modifications (PTMs of histones exert fundamental roles in regulating gene expression. During development, groups of PTMs are constrained by unknown mechanisms into combinatorial patterns, which facilitate transitions from uncommitted embryonic cells into differentiated somatic cell lineages. Repressive histone modifications such as H3K9me3 or H3K27me3 have been investigated in detail, but the role of H4K20me3 in development is currently unknown. Here we show that Xenopus laevis Suv4-20h1 and h2 histone methyltransferases (HMTases are essential for induction and differentiation of the neuroectoderm. Morpholino-mediated knockdown of the two HMTases leads to a selective and specific downregulation of genes controlling neural induction, thereby effectively blocking differentiation of the neuroectoderm. Global transcriptome analysis supports the notion that these effects arise from the transcriptional deregulation of specific genes rather than widespread, pleiotropic effects. Interestingly, morphant embryos fail to repress the Oct4-related Xenopus gene Oct-25. We validate Oct-25 as a direct target of xSu4-20h enzyme mediated gene repression, showing by chromatin immunoprecipitaton that it is decorated with the H4K20me3 mark downstream of the promoter in normal, but not in double-morphant, embryos. Since knockdown of Oct-25 protein significantly rescues the neural differentiation defect in xSuv4-20h double-morphant embryos, we conclude that the epistatic relationship between Suv4-20h enzymes and Oct-25 controls the transit from pluripotent to differentiation-competent neural cells. Consistent with these results in Xenopus, murine Suv4-20h1/h2 double-knockout embryonic stem (DKO ES cells exhibit increased Oct4 protein levels before and during EB formation, and reveal a compromised and biased capacity for in vitro differentiation, when compared to normal ES cells. Together, these results suggest a regulatory mechanism, conserved

  11. Heat shock instructs hESCs to exit from the self-renewal program through negative regulation of OCT4 by SAPK/JNK and HSF1 pathway.

    Science.gov (United States)

    Byun, Kyunghee; Kim, Taek-Kyun; Oh, Jeehyun; Bayarsaikhan, Enkhjargal; Kim, Daesik; Lee, Min Young; Pack, Chan-Gi; Hwang, Daehee; Lee, Bonghee

    2013-11-01

    Environmental factors affect self-renewal of stem cells by modulating the components of self-renewal networks. Heat shock, an environmental factor, induces heat shock factors (HSFs), which up-regulate stress response-related genes. However, the link of heat shock to self-renewal of stem cells has not been elucidated yet. Here, we present the direct link of heat shock to a core stem cell regulator, OCT4, in the self-renewal network through SAPK/JNK and HSF1 pathway. We first showed that heat shock initiated differentiation of human embryonic stem cells (hESCs). Gene expression analysis revealed that heat shock increased the expression of many genes involved in cellular processes related to differentiation of stem cells. We then examined the effects of HSFs induced by heat shock on core self-renewal factors. Among HSFs, heat shock induced mainly HSF1 in hESCs. The HSF1 repressed the expression of OCT4, leading to the differentiation of hESCs and the above differentiation-related gene expression change. We further examined the effects of the upstream MAP (mitogen-activated protein) kinases of HSF1 on the repression of OCT4 expression by HSF1. Among the MAP kinases, SAPK/JNK controlled predominantly the repression of the OCT4 expression by HSF1. The direct link of heat shock to the core self-renewal regulator through SAPK/JNK and HSF1 provides a fundamental basis for understanding the effect of heat and other stresses involving activation of HSF1 on the self-renewal program and further controlling differentiation of hESCs in a broad spectrum of stem cell applications using these stresses. © 2013.

  12. CD133(+)/CD44(+)/Oct4(+)/Nestin(+) stem-like cells isolated from Panc-1 cell line may contribute to multi-resistance and metastasis of pancreatic cancer.

    Science.gov (United States)

    Wang, Dongqing; Zhu, Haitao; Zhu, Ying; Liu, Yanfang; Shen, Huiling; Yin, Ruigen; Zhang, Zhijian; Su, Zhaoliang

    2013-05-01

    Pancreatic cancer is an aggressive malignant disease. Owing to the lack of early symptoms, accompanied by extensive metastasis and high resistance to chemotherapy, pancreatic adenocarcinoma becomes the fourth leading cause of cancer-related deaths. In this study, we identified a subpopulation of cells isolated from the Panc-1 cell line and named pancreatic cancer stem-like cells. These Panc-1 stem-like cells expressed high levels of CD133/CD44/Oct4/Nestin. Compared to Panc-1 cells, Panc-1 stem-like cells were resistant to gemcitabine and expressed high levels of MDR1; furthermore, Panc-1 stem-like cells have high anti-apoptotic, but weak proliferative potential. These results indicated that Panc-1 stem-like cells, as a novel group, may be a potential major cause of pancreatic cancer multidrug resistance and extensive metastasis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  13. A conserved Oct4/POUV-dependent network links adhesion and migration to progenitor maintenance

    DEFF Research Database (Denmark)

    Livigni, Alessandra; Peradziryi, Hanna; Sharov, Alexei A

    2013-01-01

    BACKGROUND: The class V POU domain transcription factor Oct4 (Pou5f1) is a pivotal regulator of embryonic stem cell (ESC) self-renewal and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. Oct4 is also an important evolutionarily conserved regulator of progenitor cell differ...

  14. Vitamin D3 analog maxacalcitol (OCT) induces hCAP-18/LL-37 production in human oral epithelial cells.

    Science.gov (United States)

    Tada, Hiroyuki; Shimizu, Takamitsu; Nagaoka, Isao; Takada, Haruhiko

    2016-01-01

    Maxacalcitol (22-oxacalcitriol: OCT) is a synthetic vitamin D3 analog with a limited calcemic effect. In this study, we investigated whether OCT increases the production of LL-37/CAP-18, a human cathelicidin antimicrobial peptide, in human gingival/oral epithelial cells. A human gingival epithelial cell line (Ca9-22) and human oral epithelial cell lines (HSC-2, HSC-3, and HSC-4) exhibited the enhanced expression of LL-37 mRNA upon stimulation with OCT as well as active metabolites of vitamins D3 and D2. Among the human epithelial cell lines, Ca9-22 exhibited the strongest response to these vitamin D-related compounds. OCT induced the higher production of CAP-18 (ng/mL order) until 6 days time-dependently in Ca9-22 cells in culture. The periodontal pathogen Porphyromonas gingivalis was killed by treatment with the LL-37 peptide. These findings suggest that OCT induces the production of hCAP-18/LL-37 in a manner similar to that induced by the active metabolite of vitamin D3.

  15. [Expression of embryonic markers in pterygium derived mesenchymal cells].

    Science.gov (United States)

    Pascual, G; Montes, M A; Pérez-Rico, C; Pérez-Kohler, B; Bellón, J M; Buján, J

    2010-12-01

    Destruction of the limbal epithelium barrier is the most important mechanism of pterygium formation (conjunctiva proliferation, encroaching onto the cornea). It is thought to arise from activated and proliferating limbal epithelial stem cells. The objective of this study is to evaluate the presence of undifferentiated mesenchymal cells (stem cells) in cultured cells extracted from human pterygium. Cells from 6 human pterygium were isolated by explantation and placed in cultures with amniomax medium. Once the monolayer was reached the cells were seeded onto 24 well microplates. The cells were studied in the second sub-culture. The immunohistochemical expression of different embryonic stem cell markers, OCT3/4 and CD9, was analysed. The differentiated phenotypes were characterised with the monoclonal antibodies anti-CD31, α-actin and vimentin. All the cell populations obtained from pterygium showed vimentin expression. Less than 1% of the cells were positive for CD31 and α-actin markers. The majority of the cell population was positive for OCT3/4 and CD9. The cell population obtained from pterygium expressed mesenchymal cell phenotype and embryonic markers, such us OCT3/4 and CD9. This undifferentiated population could be involved in the large recurrence rate of this type of tissue after surgery. Copyright © 2010 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  16. Recruitment of Oct4 protein to UV-damaged chromatin in embryonic stem cells

    Czech Academy of Sciences Publication Activity Database

    Bártová, Eva; Šustáčková, Gabriela; Stixová, Lenka; Kozubek, Stanislav; Legartová, Soňa; Foltánková, Veronika

    2011-01-01

    Roč. 6, č. 12 (2011), e27281 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LC535; GA MŠk(CZ) LC06027; GA MŠk(CZ) ME 919; GA ČR(CZ) GAP302/10/1022; GA MŠk(CZ) LD11020 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : embryonic stem cells * epigenetics * Oct4 Subject RIV: BO - Biophysics Impact factor: 4.092, year: 2011

  17. Mass spectrometry for identification of proteins that specifically bind to a distal enhancer of the Oct4 gene

    Science.gov (United States)

    Bakhmet, E. I.; Nazarov, I. B.; Artamonova, T. O.; Khodorkovsky, M. A.; Tomilin, A. N.

    2017-11-01

    Transcription factor Oct4 is a marker of pluripotent stem cells and has a significant role in their self-renewal. Oct4 gene is controlled by three cis-regulatory elements - proximal promoter, proximal enhancer and distal enhancer. All of these elements are targets for binding of regulatory proteins. Distal enhancer is in our research focus because of its activity in early stages of embryonic development. There are two main sequences called site 2A and site 2B that are presented in distal enhancer. For this moment proteins which bind to a site 2A (CCCCTCCCCCC) remain unknown. Using combination of in vitro method electrophoretic mobility shift assay (EMSA) and mass spectromery we identified several candidates that can regulate Oct4 gene expression through site 2A.

  18. The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development.

    Science.gov (United States)

    Jaegle, Martine; Ghazvini, Mehrnaz; Mandemakers, Wim; Piirsoo, Marko; Driegen, Siska; Levavasseur, Francoise; Raghoenath, Smiriti; Grosveld, Frank; Meijer, Dies

    2003-06-01

    The genetic hierarchy that controls myelination of peripheral nerves by Schwann cells includes the POU domain Oct-6/Scip/Tst-1and the zinc-finger Krox-20/Egr2 transcription factors. These pivotal transcription factors act to control the onset of myelination during development and tissue regeneration in adults following damage. In this report we demonstrate the involvement of a third transcription factor, the POU domain factor Brn-2. We show that Schwann cells express Brn-2 in a developmental profile similar to that of Oct-6 and that Brn-2 gene activation does not depend on Oct-6. Overexpression of Brn-2 in Oct-6-deficient Schwann cells, under control of the Oct-6 Schwann cell enhancer (SCE), results in partial rescue of the developmental delay phenotype, whereas compound disruption of both Brn-2 and Oct-6 results in a much more severe phenotype. Together these data strongly indicate that Brn-2 function largely overlaps with that of Oct-6 in driving the transition from promyelinating to myelinating Schwann cells.

  19. The reprogramming factor nuclear receptor subfamily 5, group A, member 2 cannot replace octamer-binding transcription factor 4 function in the self-renewal of embryonic stem cells.

    Science.gov (United States)

    Choi, Kyeng-Won; Oh, Hye-Rim; Lee, Jaeyoung; Lim, Bobae; Han, Yong-Mahn; Oh, Junseo; Kim, Jungho

    2014-02-01

    Although octamer-binding transcription factor 4 (Oct-4) is one of the most intensively studied factors in mammalian development, no cellular genes capable of replacing Oct-4 function in embryonic stem (ES) cells have been found. Recent data show that nuclear receptor subfamily 5, group A, member 2 (Nr5a2) is able to replace Oct-4 function in the reprogramming process; however, it is unclear whether Nr5a2 can replace Oct-4 function in ES cells. In this study, the ability of Nr5a2 to maintain self-renewal and pluripotency in ES cells was investigated. Nr5a2 localized to the nucleus in ES cells, similarly to Oct-4. However, expression of Nr5a2 failed to rescue the stem cell phenotype or to maintain the self-renewal ability of ES cells. Furthermore, as compared with Oct-4-expressing ES cells, Nr5a2-expressing ES cells showed a reduced number of cells in S-phase, did not expand normally, and did not remain in an undifferentiated state. Ectopic expression of Nr5a2 in ES cells was not able to activate transcription of ES cell-specific genes, and gene expression profiling demonstrated differences between Nr5a2-expressing and Oct-4-expressing ES cells. In addition, Nr5a2-expressing ES cells were not able to form teratomas in nude mice. Taken together, these results strongly suggest that the gene regulation properties of Nr5a2 and Oct-4 and their abilities to confer self-renewal and pluripotency of ES cells differ. The present study provides strong evidence that Nr5a2 cannot replace Oct-4 function in ES cells. © 2013 FEBS.

  20. YKL-40 is differentially expressed in human embryonic stem cells and in cell progeny of the three germ layers.

    Science.gov (United States)

    Brøchner, Christian B; Johansen, Julia S; Larsen, Lars A; Bak, Mads; Mikkelsen, Hanne B; Byskov, Anne Grete; Andersen, Claus Yding; Møllgård, Kjeld

    2012-03-01

    The secreted glycoprotein YKL-40 participates in cell differentiation, inflammation, and cancer progression. High YKL-40 expression is reported during early human development, but its functions are unknown. Six human embryonic stem cell (hESC) lines were cultured in an atmosphere of low or high oxygen tension, in culture medium with or without basic fibroblast growth factor, and on feeder layers comprising mouse embryonic fibroblasts or human foreskin fibroblasts to evaluate whether hESCs and their progeny produced YKL-40 and to characterize YKL-40 expression during differentiation. Secreted YKL-40 protein and YKL-40 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative RT-PCR. Serial-sectioned colonies were stained for YKL-40 protein and for pluripotent hESC (OCT4, NANOG) and germ layer (HNF-3β, PDX1, CD34, p63, nestin, PAX6) markers. Double-labeling showed YKL-40 expression in OCT4-positive hESCs, PAX6-positive neuroectodermal cells, and HNF-3β-positive endodermal cells. The differentiating progeny showed strong YKL-40 expression. Abrupt transition between YKL-40 and OCT4-positive hESCs and YKL-40-positive ecto- and neuroectodermal lineages was observed within the same epithelial-like layer. YKL-40-positive cells within deeper layers lacked contact with OCT4-positive cells. YKL-40 may be important in initial cell differentiation from hESCs toward ectoderm and neuroectoderm, with retained epithelial morphology, whereas later differentiation into endoderm and mesoderm involves a transition into the deeper layers of the colony.

  1. CD86 and beta2-adrenergic receptor signaling pathways, respectively, increase Oct-2 and OCA-B Expression and binding to the 3'-IgH enhancer in B cells.

    Science.gov (United States)

    Podojil, Joseph R; Kin, Nicholas W; Sanders, Virginia M

    2004-05-28

    Stimulation of CD86 (formerly known as B7-2) and/or the beta2-adrenergic receptor on a CD40 ligand/interleukin-4-activated B cell increased the rate of mature IgG1 transcription. To identify the mechanism responsible for this effect, we determined whether CD86 and/or beta2-adrenergic receptor stimulation regulated transcription factor expression and binding to the 3'-IgH enhancer in vitro and in vivo. We showed that CD86 stimulation increased the nuclear localization of NF-kappaB1 (p50) and phosphorylated RelA (p65) and increased Oct-2 expression and binding to the 3'-IgH enhancer, in a protein kinase C-dependent manner. These effects were lost when CD86-deficient or NF-kappaB1-deficient B cells were used. CD86 stimulation also increased the level of IkappaB-alpha phosphorylation but in a protein kinase C-independent manner. Beta2-adrenergic receptor stimulation increased CREB phosphorylation, OCA-B expression, and OCA-B binding to the 3'-IgH enhancer in a protein kinase A-dependent manner, an effect lost when beta2-adrenergic receptor-deficient B cells were used. Also, the beta2-adrenergic receptor-induced increase in the level of mature IgG1 transcript was lost when OCA-B-deficient B cells were used. These data are the first to show that CD86 stimulation up-regulates the expression of the transcription factor Oct-2 in a protein kinase C- and NF-kappaB1-dependent manner, and that beta2-adrenergic receptor stimulation up-regulates the expression of the coactivator OCA-B in a protein kinase A-dependent manner to cooperate with Oct-2 binding to the 3'-IgH enhancer.

  2. Expression of embryonic stem cell markers in keloid-associated lymphoid tissue.

    Science.gov (United States)

    Grant, Chelsea; Chudakova, Daria A; Itinteang, Tinte; Chibnall, Alice M; Brasch, Helen D; Davis, Paul F; Tan, Swee T

    2016-07-01

    To identify, characterise and localise the population of primitive cells in keloid scars (KS). 5-µm-thick formalin-fixed paraffin-embedded sections of KS samples from 10 patients underwent immunohistochemical (IHC) staining for the embryonic stem cell (ESC) markers OCT4, SOX2, pSTAT3 and NANOG, and keloid-associated lymphoid tissue (KALT) markers CD4 and CD20. NanoString gene expression analysis and in situ hybridisation (ISH) were used to determine the abundance and localisation of the mRNA for these ESC markers. IHC staining revealed the expression of the ESC markers OCT4, SOX2, pSTAT3 and NANOG by a population of cells within KS tissue. These are localised to the endothelium of the microvessels within the KALTs. NanoString gene expression analysis confirmed the abundance of the transcriptional expression of the same ESC markers. ISH localised the expression of the ESC transcripts to the primitive endothelium in KS tissue. This report demonstrates the expression of ESC markers OCT4, SOX2, pSTAT3 and NANOG by the endothelium of the microvessels within the KALTs. These findings show a unique niche of primitive cells within KS, expressing ESC markers, revealing a potential therapeutic target in the treatment of KS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  3. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    International Nuclear Information System (INIS)

    Mizoshiri, N.; Kishida, T.; Yamamoto, K.; Shirai, T.; Terauchi, R.; Tsuchida, S.; Mori, Y.; Ejima, A.; Sato, Y.; Arai, Y.; Fujiwara, H.; Yamamoto, T.; Kanamura, N.; Mazda, O.; Kubo, T.

    2015-01-01

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.

  4. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Mizoshiri, N. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kishida, T. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, K. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Shirai, T.; Terauchi, R.; Tsuchida, S. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mori, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Ejima, A. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Sato, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Arai, Y.; Fujiwara, H. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, T.; Kanamura, N. [Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, O., E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kubo, T. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2015-11-27

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.

  5. Protein arginine methyltransferase 7-mediated microRNA-221 repression maintains Oct4, Nanog, and Sox2 levels in mouse embryonic stem cells.

    Science.gov (United States)

    Chen, Tsai-Yu; Lee, Sung-Hun; Dhar, Shilpa S; Lee, Min Gyu

    2018-03-16

    The stemness maintenance of embryonic stem cells (ESCs) requires pluripotency transcription factors, including Oct4, Nanog, and Sox2. We have previously reported that protein arginine methyltransferase 7 (PRMT7), an epigenetic modifier, is an essential pluripotency factor that maintains the stemness of mouse ESCs, at least in part, by down-regulating the expression of the anti-stemness microRNA (miRNA) miR-24-2. To gain greater insight into the molecular basis underlying PRMT7-mediated maintenance of mouse ESC stemness, we searched for new PRMT7-down-regulated anti-stemness miRNAs. Here, we show that miR-221 gene-encoded miR-221-3p and miR-221-5p are anti-stemness miRNAs whose expression levels in mouse ESCs are directly repressed by PRMT7. Notably, both miR-221-3p and miR-221-5p targeted the 3' untranslated regions of mRNA transcripts of the major pluripotency factors Oct4, Nanog, and Sox2 to antagonize mouse ESC stemness. Moreover, miR-221-5p silenced also the expression of its own transcriptional repressor PRMT7. Transfection of miR-221-3p and miR-221-5p mimics induced spontaneous differentiation of mouse ESCs. CRISPR-mediated deletion of the miR-221 gene, as well as specific antisense inhibitors of miR-221-3p and miR-221-5p, inhibited the spontaneous differentiation of PRMT7-depleted mouse ESCs. Taken together, these findings reveal that the PRMT7-mediated repression of miR-221-3p and miR-221-5p expression plays a critical role in maintaining mouse ESC stemness. Our results also establish miR-221-3p and miR-221-5p as anti-stemness miRNAs that target Oct4 , Nanog , and Sox2 mRNAs in mouse ESCs. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Overexpression of octamer transcription factors 1 or 2 alone has no effect on HIV-1 transcription in primary human CD4 T cells

    International Nuclear Information System (INIS)

    Zhang Mingce; Genin, Anna; Cron, Randy Q.

    2004-01-01

    We explored the binding of octamer (Oct) transcription factors to the HIV-1 long terminal repeat (LTR) by gel shift assays and showed none of the previously identified four potential Oct binding sites bound Oct-1 or Oct-2. Overexpression of Oct-1 or Oct-2 had no effect on HIV-1 LTR activity in transiently transfected primary human CD4 T cells. Next, primary human CD4 T cells were co-transfected with a green fluorescent protein (GFP)-expression vector and an Oct-1 or Oct-2 expression plasmid. The transfected cells were stimulated for 2 days and then infected with the NL4-3 strain of HIV-1. After 3 days of infection, there were no differences in HIV-1 p24 supernatant levels. Apoptosis of infected or bystander cells overexpressing Oct-1 or Oct-2 compared to control was also unaffected. Our studies demonstrate that Oct-1 and Oct-2 fail to bind to the HIV-1 LTR and have no effect on HIV-1 transcription in primary human CD4 T cells

  7. Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumours

    DEFF Research Database (Denmark)

    Hoei-Hansen, C E; Almstrup, K; Nielsen, J E

    2005-01-01

    AIMS: NANOG is a key regulator of embryonic stem cell (ESC) self-renewal and pluripotency. Our recent genome-wide gene expression profiling study of the precursor of testicular germ cell tumours, carcinoma in situ testis (CIS), showed close similarity between ESC and CIS, including high NANOG...... earlier than for OCT-4. We detected no expression at the protein level in normal testis. CONCLUSIONS: NANOG is a new marker for testicular CIS and germ cell tumours and the high level of NANOG along with OCT-4 are determinants of the stem cell-like pluripotency of the preinvasive CIS cell. Timing of NANOG...... expression. In the present study we analysed the protein expression of NANOG during normal development of human testis and in a large series of neoplastic/dysgenetic specimens. METHODS AND RESULTS: We detected abundant expression of NANOG in CIS and in CIS-derived testicular tumours with marked differences...

  8. Role of defective Oct-2 and OCA-B expression in immunoglobulin production and Kaposi's sarcoma-associated herpesvirus lytic reactivation in primary effusion lymphoma.

    Science.gov (United States)

    Di Bartolo, Daniel L; Hyjek, Elizabeth; Keller, Shannon; Guasparri, Ilaria; Deng, Hongyu; Sun, Ren; Chadburn, Amy; Knowles, Daniel M; Cesarman, Ethel

    2009-05-01

    Primary effusion lymphoma (PEL) is a distinct type of B-cell non-Hodgkin lymphoma characterized by the presence of Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8). Despite having a genotype and gene expression signature of highly differentiated B cells, PEL does not usually express surface or cytoplasmic immunoglobulin (Ig). We show the lack of Oct-2 and OCA-B transcription factors to be responsible, at least in part, for this defect in Ig production. Like Ig genes, ORF50, the key regulator of the switch from latency to lytic reactivation, contains an octamer motif within its promoter. We therefore examined the impact of Oct-2 and OCA-B on ORF50 activation. The binding of Oct-1 to the ORF50 promoter has been shown to significantly enhance ORF50 transactivation. We found that Oct-2, on the other hand, inhibited ORF50 expression and consequently lytic reactivation by competing with Oct-1 for the octamer motif in the ORF50 promoter. Our data suggest that Oct-2 downregulation in infected cells would be favorable to KSHV in allowing for efficient viral reactivation.

  9. OCT2, SSX and SAGE1 reveal the phenotypic heterogeneity of spermatocytic seminoma reflecting distinct subpopulations of spermatogonia

    DEFF Research Database (Denmark)

    Lim, Jasmine; Goriely, Anne; Turner, Gareth Dh

    2011-01-01

    in the normal adult testis. We analysed the expression pattern of OCT2, SSX2-4, and SAGE1 in 36 SS cases and four intratubular SS (ISS) as well as a series of normal testis samples throughout development. We describe for the first time two different types of SS characterized by OCT2 or SSX2-4 immunoexpression......, whilst SAGE1 was exclusively present in a subset of post-pubertal germ cells, most likely B spermatogonia. The presence of OCT2 and SSX2-4 in distinct subsets of germ cells implies that these markers represent germ cells at different maturation stages. Analysis of SAGE1 and SSX2-4 in ISS showed spatial...... differences suggesting ongoing maturation of germ cells during progression of SS tumourigenesis. We conclude that the expression pattern of OCT2, SSX2-4, and SAGE1 supports the origin of SS from spermatogonia and provides new evidence for heterogeneity of this tumour, potentially linked either to the cellular...

  10. Positive Oct -3/4 and D2-40 Immunohistochemical Expression in Germ Cells and Suspected Histology Pattern of Intratubular Germ Cell Neoplasia in Boys with Cryptorchidism Vanish after the Age of 2 Years

    DEFF Research Database (Denmark)

    Thorup, Jorgen; Clasen-Linde, Erik; Cortes, Dina

    2017-01-01

    of repeat biopsy with anti-stem cell factor (SCF) receptor.  Results  The prevalence of Oct-3/4 and D2-40-positive staining of germ cells in testicular biopsies were in age groups less than 6 months, 100% and 50%; 6-12 months, 60% and 17%; and 1-2 years, 12% and 4%. A 1 year, 1-month-old boy with Prader-Willi...... syndrome treated with growth hormone had ITGCN in both cryptorchid testes. In another three bilateral nonsyndromic cases, 8 months, 8 months and 1-year-old, a histological pattern in accordance with ITGCN was found. These three boys had a repeat biopsy from both testes performed at the age of 3 years, 4......, but no increased risk of malignancy.  Materials and Methods  Histology sections from 373 testicular biopsies from 289 boys aged 1 month to 2 years operated for cryptorchidism were incubated with primary antibodies including anti-placental-like-alkaline phosphatase, antiOct-3/4, anti-C-kit, anti-D2-40, and in case...

  11. 4-D OCT in Developmental Cardiology

    Science.gov (United States)

    Jenkins, Michael W.; Rollins, Andrew M.

    Although strong evidence exists to suggest that altered cardiac function can lead to CHDs, few studies have investigated the influential role of cardiac function and biophysical forces on the development of the cardiovascular system due to a lack of proper in vivo imaging tools. 4-D imaging is needed to decipher the complex spatial and temporal patterns of biomechanical forces acting upon the heart. Numerous solutions over the past several years have demonstrated 4-D OCT imaging of the developing cardiovascular system. This chapter will focus on these solutions and explain their context in the evolution of 4-D OCT imaging. The first sections describe the relevant techniques (prospective gating, direct 4-D imaging, retrospective gating), while later sections focus on 4-D Doppler imaging and measurements of force implementing 4-D OCT Doppler. Finally, the techniques are summarized, and some possible future directions are discussed.

  12. Correlation of HIF-2α, ABCG2 and OCT-4 with chemotherapy resistance in human gastric cancer

    Directory of Open Access Journals (Sweden)

    Hong-mei ZHANG

    2015-11-01

    Full Text Available Objective To investigate the correlation of HIF-2α, ABCG2 and OCT-4 with chemotherapy resistant gastric cancer in humans. Methods Fifty-two patients who were confirmed to have advanced gastric cancer with the aid of electronic endoscopy and pathology in the Department of Gastroenterology, Affiliated Hospital of Weifang Medical College, were enrolled in the study. According to the effect of FOL-FOX4 chemotherapy that these patients had experienced, they were divided into three groups: CR+PR (complete remission+partial remission group, SD (stable disease group and PD (progressive disease group. The expression levels of HIF-2α, ABCG2, and OCT-4 mRNA and protein were assessed in different groups by using RT-PCR and immunocytochemistry. Results Two patients achieved CR , 19 achieved PR , 25 showed SD, and 6 showed PD. In other words, CR+PR were seen in 21 patients (40.4%, SD in 25(48.1%, PD in 6(11.5%. In CR+PR group, the expression levels of HIF-2α, ABCG2 and OCT4 mRNA and protein were low, but the above mentioned expressions were significantly increased in SD group and PD group. The expression levels of HIF-2α, ABCG2 and Oct-4 mRNA and protein were highest in the PD group, lower in the SD group, and lowest in the CR + PR groups (all P<0.05. Conclusions The expression of the markers HIF-2α, ABCG2 and OCT4 in human tumor tissues is related to the effect of chemotherapy for gastric cancer. A high expression of tumor markers is perhaps the main reason for low efficacy of chemotherapy due to drug resistance. DOI: 10.11855/j.issn.0577-7402.2015.10.09

  13. OCT2 and MATE1 Provide Bi-directional Agmatine Transport

    Science.gov (United States)

    Winter, Tate N.; Elmquist, William F.; Fairbanks, Carolyn A.

    2015-01-01

    Agmatine is a biogenic amine (l-arginine metabolite) of potential relevance to several central nervous system (CNS) conditions. The identities of transporters underlying agmatine and polyamine disposition in mammalian systems are not well defined. The SLC-family organic cation transporters (OCT) OCT1 and OCT2 and multidrug and toxin extrusion transporter-1 (MATE1) are transport systems that may be of importance for the cellular disposition of agmatine and putrescine. We investigated the transport of [3H]-agmatine and [3H]-putrescine in human embryonic kidney (HEK293) cells stably-transfected with hOCT1-, hOCT2-, and hMATE1. Agmatine transport by hOCT1 and hOCT2 was concentration-dependent, whereas only hOCT2 demonstrated pH-dependent transport. hOCT2 exhibited a greater affinity for agmatine (Km = 1.84 ± 0.38 mM) than did hOCT1 (Km = 18.73 ± 4.86 mM). Putrescine accumulation was pH- and concentration-dependent in hOCT2-HEK cells (Km = 11.29 ± 4.26 mM) but not hOCT1-HEK cells. Agmatine accumulation, in contrast to putrescine, was significantly enhanced by hMATE1 over-expression, and was saturable (Km = 240 ± 31 μM; Vmax = 192 ± 10 pmol/min/mg protein). Intracellular agmatine was also trans-stimulated (effluxed) from hMATE1-HEK cells in the presence of an inward proton-gradient. The hMATE1-mediated transport of agmatine was inhibited by polyamines, the prototypical substrates MPP+ and paraquat, as well as guanidine and arcaine, but not l-arginine. These results suggest that agmatine disposition may be influenced by hOCT2 and hMATE1, two transporters critical in the renal elimination of xenobiotic compounds. PMID:21128598

  14. Constitutive expression of pluripotency-associated genes in mesodermal progenitor cells (MPCs.

    Directory of Open Access Journals (Sweden)

    Simone Pacini

    Full Text Available BACKGROUND: We recently characterized a progenitor of mesodermal lineage (MPCs from the human bone marrow of adults or umbilical cord blood. These cells are progenitors able to differentiate toward mesenchymal, endothelial and cardiomyogenic lineages. Here we present an extensive molecular characterization of MPCs, from bone marrow samples, including 39 genes involved in stem cell machinery, differentiation and cell cycle regulation. METHODOLOGY/PRINCIPAL FINDINGS: MPCs are cytofluorimetrically characterized and quantitative RT-PCR was performed to evaluate the gene expression profile, comparing it with MSCs and hESCs lines. Immunofluorescence and dot-blot analysis confirm qRT-PCR data. MPCs exhibit an increased expression of OCT4, NANOG, SALL4, FBX15, SPP1 and to a lesser extent c-MYC and KLF4, but lack LIN28 and SOX2. MPCs highly express SOX15. CONCLUSIONS/SIGNIFICANCE: MPCs express many pluripotency-associated genes and show a peculiar Oct-4 molecular circuit. Understanding this unique molecular mechanism could lead to identifying MPCs as feasible, long telomeres, target cells for reprogramming with no up-regulation of the p53 pathway. Furthermore MPCs are easily and inexpensively harvested from human bone marrow.

  15. Epigenetic regulation of gene expression in porcine epiblast, hypoblast, trophectoderm and epiblast-derived neural progenitor cells

    DEFF Research Database (Denmark)

    Gao, Yu; Jammes, Helen; Rasmussen, Mikkel Aabech

    2011-01-01

    in this process. In this study, we investigated the relationship between DNA methylation and expression of pluripotency-associated genes (OCT4, NANOG and SOX2), a trophectoderm (TE)-specific gene (ELF5), and genes associated with neural differentiation (SOX2 and VIMENTIN) in porcine Day 10 (E10) epiblast......, hypoblast, and TE as well as in epiblast-derived neural progenitor cells (NPCs). We found that OCT4, NANOG, and SOX2 were highly expressed in the epiblast and hypoblast, while VIMENTIN was only highly expressed in the epiblast. Moreover, low expression of OCT4, NANOG, SOX2 and VIMENTIN was noted in the TE....... Most CpG sites of OCT4, NANOG, SOX2 and VIMENTIN displayed low methylation levels in the epiblast and hypoblast and, strikingly, also in the TE. Hence, the expression patterns of these genes were not directly related to levels of DNA methylation in the TE in contrast to the situation in the mouse...

  16. HIF-2α mediates a marked increase in migration and stemness characteristics in a subset of glioma cells under hypoxia by activating an Oct-4/Sox-2-Mena (INV) axis.

    Science.gov (United States)

    Bhagat, Mohita; Palanichamy, Jayanth Kumar; Ramalingam, Pradeep; Mudassir, Madeeha; Irshad, Khushboo; Chosdol, Kunzang; Sarkar, Chitra; Seth, Pankaj; Goswami, Sumanta; Sinha, Subrata; Chattopadhyay, Parthaprasad

    2016-05-01

    Hypoxia is a salient feature of most solid tumors and plays a central role in tumor progression owing to its multiple contributions to therapeutic resistance, metastasis, angiogenesis and stemness properties. Reports exist in literature about hypoxia increasing stemness characteristics and invasiveness potential of malignant cells. In order to delineate molecular crosstalk among factors driving glioma progression, we used knockdown and overexpression strategies. We have demonstrated that U87MG and A172 glioma cells inherently have a subset of cells with high migratory potential due to migration-inducing Mena transcripts. These cells also have elevated stemness markers (Sox-2 and Oct-4). There was a significant increase of number in this subset of migratory cells on exposure to hypoxia with corresponding elevation (over 1000 fold) in migration-inducing Mena transcripts. We were able to demonstrate that a HIF-2α-Sox-2/Oct-4-Mena (INV) axis that is strongly activated in hypoxia and markedly increases the migratory potential of the cells. Such cells also formed tumor spheres with greater efficiency. We have correlated our in-vitro results with human glioblastoma samples and found that hypoxia, invasiveness and stemness markers correlated well in native tumor samples. This study identifies a novel signaling mechanism mediated by HIF-2α in regulating invasiveness and stemness characteristics, suggesting that under hypoxic conditions, some tumor cells acquire more migratory potential by increased Pan Mena and Mena INV expression as a consequence of this HIF-2α mediated increase in Oct-4 and Sox-2. These properties would help the cells to form a new nidus after local invasion or metastasis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties

    Science.gov (United States)

    Leung, Elaine Lai-Han; Fiscus, Ronald R.; Tung, James W.; Tin, Vicky Pui-Chi; Cheng, Lik Cheung; Sihoe, Alan Dart-Loon; Fink, Louis M.; Ma, Yupo; Wong, Maria Pik

    2010-01-01

    Background The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential. Methodology/Principal Finding The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44− cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44− cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44− cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas. Conclusion/Significance Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify

  18. Markers of stem cells in human ovarian granulosa cells: is there a clinical significance in ART?

    Directory of Open Access Journals (Sweden)

    Varras Michail

    2012-11-01

    Full Text Available Abstract Background The purpose of the study was to determine the incidence of gene expression of Oct-4 and DAZL, which are typical markers for stem cells, in human granulosa cells during ovarian stimulation in women with normal FSH levels undergoing IVF or ICSI and to discover any clinical significance of such expression in ART. Methods Twenty one women underwent ovulation induction for IVF or ICSI and ET with standard GnRH analogue-recombinant FSH protocol. Infertility causes were male and tubal factor. Cumulus–mature oocyte complexes were denuded separately and granulosa cells were analyzed for each patient separately using quantitative reverse-transcription–polymerase chain reaction analysis for Oct-4 and DAZL gene expression with G6PD gene as internal standard. Results G6PD and Oct-4 mRNA was detected in the granulosa cells in 47.6% (10/21. The median of Oct-4 mRNA/G6PD mRNA was 1.75 with intra-quarteral range from 0.10 to 98.21. The OCT-4 mRNA expression was statistically significantly correlated with the number of oocytes retrieved; when the Oct-4 mRNA expression was higher, then more than six oocytes were retrieved (p=0.037, Wilcoxon rank-sum. No detection of DAZL mRNA was found in granulosa cells. There was no additional statistically significant correlation between the levels of Oct-4 expression and FSH basal levels or estradiol peak levels or dosage of FSH for ovulation induction. No association was found between the presence or absence of Oct-4 mRNA expression in granulosa cells and ovarian response to gonadotropin stimulation. Also, no influence on pregnancy was observed between the presence or absence of Oct-4 mRNA expression in granulosa cells or to its expression levels accordingly. Conclusions Expression of OCT-4 mRNA, which is a typical stem cell marker and absence of expression of DAZL mRNA, which is a typical germ cell marker, suggest that a subpopulation of luteinized granulosa cells in healthy ovarian follicles (47

  19. Nuclear orphan receptor TLX induces Oct-3/4 for the survival and maintenance of adult hippocampal progenitors upon hypoxia.

    Science.gov (United States)

    Chavali, Pavithra Lakshminarasimhan; Saini, Ravi Kanth Rao; Matsumoto, Yoshiki; Ågren, Hans; Funa, Keiko

    2011-03-18

    Hypoxia promotes neural stem cell proliferation, the mechanism of which is poorly understood. Here, we have identified the nuclear orphan receptor TLX as a mediator for proliferation and pluripotency of neural progenitors upon hypoxia. We found an enhanced early protein expression of TLX under hypoxia potentiating sustained proliferation of neural progenitors. Moreover, TLX induction upon hypoxia in differentiating conditions leads to proliferation and a stem cell-like phenotype, along with coexpression of neural stem cell markers. Following hypoxia, TLX is recruited to the Oct-3/4 proximal promoter, augmenting the gene transcription and promoting progenitor proliferation and pluripotency. Knockdown of Oct-3/4 significantly reduced TLX-mediated proliferation, highlighting their interdependence in regulating the progenitor pool. Additionally, TLX synergizes with basic FGF to sustain cell viability upon hypoxia, since the knockdown of TLX along with the withdrawal of growth factor results in cell death. This can be attributed to the activation of Akt signaling pathway by TLX, the depletion of which results in reduced proliferation of progenitor cells. Cumulatively, the data presented here demonstrate a new role for TLX in neural stem cell proliferation and pluripotency upon hypoxia.

  20. Nuclear Orphan Receptor TLX Induces Oct-3/4 for the Survival and Maintenance of Adult Hippocampal Progenitors upon Hypoxia*

    Science.gov (United States)

    Chavali, Pavithra Lakshminarasimhan; Saini, Ravi Kanth Rao; Matsumoto, Yoshiki; Ågren, Hans; Funa, Keiko

    2011-01-01

    Hypoxia promotes neural stem cell proliferation, the mechanism of which is poorly understood. Here, we have identified the nuclear orphan receptor TLX as a mediator for proliferation and pluripotency of neural progenitors upon hypoxia. We found an enhanced early protein expression of TLX under hypoxia potentiating sustained proliferation of neural progenitors. Moreover, TLX induction upon hypoxia in differentiating conditions leads to proliferation and a stem cell-like phenotype, along with coexpression of neural stem cell markers. Following hypoxia, TLX is recruited to the Oct-3/4 proximal promoter, augmenting the gene transcription and promoting progenitor proliferation and pluripotency. Knockdown of Oct-3/4 significantly reduced TLX-mediated proliferation, highlighting their interdependence in regulating the progenitor pool. Additionally, TLX synergizes with basic FGF to sustain cell viability upon hypoxia, since the knockdown of TLX along with the withdrawal of growth factor results in cell death. This can be attributed to the activation of Akt signaling pathway by TLX, the depletion of which results in reduced proliferation of progenitor cells. Cumulatively, the data presented here demonstrate a new role for TLX in neural stem cell proliferation and pluripotency upon hypoxia. PMID:21135096

  1. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts.

    Science.gov (United States)

    Mizoshiri, N; Kishida, T; Yamamoto, K; Shirai, T; Terauchi, R; Tsuchida, S; Mori, Y; Ejima, A; Sato, Y; Arai, Y; Fujiwara, H; Yamamoto, T; Kanamura, N; Mazda, O; Kubo, T

    2015-11-27

    Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Tracking neuronal marker expression inside living differentiating cells using molecular beacons

    DEFF Research Database (Denmark)

    Ilieva, Mirolyuba; Della Vedova, Paolo; Hansen, Ole

    2013-01-01

    and tyrosine hydroxylase mRNAs were expressed 2 and 3 days post induction of differentiation, respectively. Oct 4 was not detected with MB in these cells and signal was not increased over time suggesting that MB are generally stable inside the cells. The gene expression changes measured using MBs were...... confirmed using qRT-PCR. These results suggest that MBs are simple to use sensors inside living cell, and particularly useful for studying dynamic gene expression in heterogeneous cell populations....

  3. Transcription factor organic cation transporter 1 (OCT-1 affects the expression of porcine Klotho (KL gene

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-07-01

    Full Text Available Klotho (KL, originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (−418 bp to −3 bp as the porcine KL core promoter. MARC0022311SNP (A or G in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1, which was confirmed using electrophoretic mobility shift assays (EMSA and chromatin immune-precipitation (ChIP. Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1.

  4. Characterization of Cancer Stem Cells in Moderately Differentiated Buccal Mucosal Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Helen H Yu

    2016-08-01

    Full Text Available Aim To identify and characterize cancer stem cells (CSC in moderately differentiated buccal mucosa squamous cell carcinoma (MDBMSCC. Methods 4μm-thick formalin-fixed paraffin-embedded MDBMSCC samples from six patients underwent 3,3-diaminobenzidine (DAB immunohistochemical (IHC staining for the embryonic stem cell (ESC markers NANOG, OCT4, SALL4, SOX2 and pSTAT3; cancer stem cell marker CD44; squamous cell carcinoma (SCC marker EMA; and endothelial marker CD34. The transcriptional activities of the genes encoding NANOG, OCT4, SOX2, SALL4, STAT3 and CD44 were studied using NanoString gene expression analysis and colorimetric in situ hybridization (CISH for NANOG, OCT4, SOX2, SALL4 and STAT3. Results DAB and immunofluorescent (IF IHC staining demonstrated the presence of (1 an EMA+/CD44+/SOX2+/SALL4+/OCT4+/pSTAT3+/NANOG+ CSC subpopulation within the tumor nests; (2 an EMA-/CD44-/CD34-/SOX2+/OCT4+/pSTAT3+/NANOG+ subpopulation within the stroma between the tumor nests; and (3 an EMA-/CD44-/CD34+/SOX2+/ SALL4+/OCT4+/pSTAT3+/NANOG+ subpopulation on the endothelium of the microvessels within the stroma. The expression of CD44, SOX2, SALL4, OCT4, pSTAT3 and NANOG was confirmed by the presence of mRNA transcripts, using NanoString analysis and NANOG, OCT4, SOX2, SALL4 and STAT3 by CISH staining. Conclusion This study demonstrated a novel finding of three separate CSC subpopulations within MDBMSCC: (1 within the tumor nests expressing EMA, CD44, SOX2, SALL4, OCT4, pSTAT3 and NANOG; (2 within the stroma expressing SOX2, SALL4, OCT4, pSTAT3 and NANOG; and (3 on the endothelium of the microvessels within the stroma expressing CD34, SOX2, SALL4, OCT4, pSTAT3 and NANOG.

  5. Conversion of Sox17 into a pluripotency reprogramming factor by reengineering its association with Oct4 on DNA.

    Science.gov (United States)

    Jauch, Ralf; Aksoy, Irene; Hutchins, Andrew Paul; Ng, Calista Keow Leng; Tian, Xian Feng; Chen, Jiaxuan; Palasingam, Paaventhan; Robson, Paul; Stanton, Lawrence W; Kolatkar, Prasanna R

    2011-06-01

    Very few proteins are capable to induce pluripotent stem (iPS) cells and their biochemical uniqueness remains unexplained. For example, Sox2 cooperates with other transcription factors to generate iPS cells, but Sox17, despite binding to similar DNA sequences, cannot. Here, we show that Sox2 and Sox17 exhibit inverse heterodimerization preferences with Oct4 on the canonical versus a newly identified compressed sox/oct motif. We can swap the cooperativity profiles of Sox2 and Sox17 by exchanging single amino acids at the Oct4 interaction interface resulting in Sox2KE and Sox17EK proteins. The reengineered Sox17EK now promotes reprogramming of somatic cells to iPS, whereas Sox2KE has lost this potential. Consistently, when Sox2KE is overexpressed in embryonic stem cells it forces endoderm differentiation similar to wild-type Sox17. Together, we demonstrate that strategic point mutations that facilitate Sox/Oct4 dimer formation on variant DNA motifs lead to a dramatic swap of the bioactivities of Sox2 and Sox17. Copyright © 2011 AlphaMed Press.

  6. Rat visceral yolk sac cells: viability and expression of cell markers during maternal diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Aires, M.B. [Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Santos, J.R.A. [Departamento de Enfermagem, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Souza, K.S.; Farias, P.S. [Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Santos, A.C.V. [Departamento de Enfermagem, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Fioretto, E.T. [Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, SE (Brazil); Maria, D.A. [Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP (Brazil)

    2015-07-10

    The function of the visceral yolk sac (VYS) is critical for embryo organogenesis until final fetal development in rats, and can be affected by conditions such as diabetes. In view of the importance of diabetes during pregnancy for maternal and neonatal health, the objective of this study was to assess fetal weight, VYS cell markers, and viability in female Wistar rats (200-250 g) with induced diabetes (alloxan, 37 mg/kg) on the 8th gestational day (gd 8). At gd 15, rats from control (n=5) and diabetic (n=5) groups were anesthetized and laparotomized to remove the uterine horns for weighing of fetuses and collecting the VYS. Flow cytometry was used for characterizing VYS cells, and for determining mitochondrial activity, cell proliferation, DNA ploidy, cell cycle phases, and caspase-3 activity. Fetal weight was reduced in the diabetic group. Expression of the cell markers CD34, VEGFR1, CD115, CD117, CD14, CCR2, CD90, CD44, STRO-1, OCT3/4, and Nanog was detected in VYS cells in both groups. In the diabetic group, significantly decreased expression of CD34 (P<0.05), CCR2 (P<0.001), and OCT3/4 (P<0.01), and significantly increased expression of CD90 (P<0.05), CD117 (P<0.01), and CD14 (P<0.05) were observed. VYS cells with inactive mitochondria, activated caspase-3, and low proliferation were present in the rats with diabetes. Severe hyperglycemia caused by maternal diabetes had negative effects on pregnancy, VYS cell viability, and the expression of cell markers.

  7. Rat visceral yolk sac cells: viability and expression of cell markers during maternal diabetes

    International Nuclear Information System (INIS)

    Aires, M.B.; Santos, J.R.A.; Souza, K.S.; Farias, P.S.; Santos, A.C.V.; Fioretto, E.T.; Maria, D.A.

    2015-01-01

    The function of the visceral yolk sac (VYS) is critical for embryo organogenesis until final fetal development in rats, and can be affected by conditions such as diabetes. In view of the importance of diabetes during pregnancy for maternal and neonatal health, the objective of this study was to assess fetal weight, VYS cell markers, and viability in female Wistar rats (200-250 g) with induced diabetes (alloxan, 37 mg/kg) on the 8th gestational day (gd 8). At gd 15, rats from control (n=5) and diabetic (n=5) groups were anesthetized and laparotomized to remove the uterine horns for weighing of fetuses and collecting the VYS. Flow cytometry was used for characterizing VYS cells, and for determining mitochondrial activity, cell proliferation, DNA ploidy, cell cycle phases, and caspase-3 activity. Fetal weight was reduced in the diabetic group. Expression of the cell markers CD34, VEGFR1, CD115, CD117, CD14, CCR2, CD90, CD44, STRO-1, OCT3/4, and Nanog was detected in VYS cells in both groups. In the diabetic group, significantly decreased expression of CD34 (P<0.05), CCR2 (P<0.001), and OCT3/4 (P<0.01), and significantly increased expression of CD90 (P<0.05), CD117 (P<0.01), and CD14 (P<0.05) were observed. VYS cells with inactive mitochondria, activated caspase-3, and low proliferation were present in the rats with diabetes. Severe hyperglycemia caused by maternal diabetes had negative effects on pregnancy, VYS cell viability, and the expression of cell markers

  8. Transcriptional regulation of the HMGA1 gene by octamer-binding proteins Oct-1 and Oct-2.

    Directory of Open Access Journals (Sweden)

    Eusebio Chiefari

    Full Text Available The High-Mobility Group AT-Hook 1 (HMGA1 protein is an architectural transcription factor that binds to AT-rich sequences in the promoter region of DNA and functions as a specific cofactor for gene activation. Previously, we demonstrated that HMGA1 is a key regulator of the insulin receptor (INSR gene and an important downstream target of the INSR signaling cascade. Moreover, from a pathogenic point of view, overexpression of HMGA1 has been associated with human cancer, whereas functional variants of the HMGA1 gene have been recently linked to type 2 diabetes mellitus and metabolic syndrome. However, despite of this biological and pathological relevance, the mechanisms that control HMGA1 gene expression remain unknown. In this study, to define the molecular mechanism(s that regulate HMGA1 gene expression, the HMGA1 gene promoter was investigated by transient transfection of different cell lines, either before or after DNA and siRNA cotransfections. An octamer motif was identified as an important element of transcriptional regulation of this gene, the interaction of which with the octamer transcription factors Oct-1 and Oct-2 is crucial in modulating HMGA1 gene and protein expression. Additionally, we demonstrate that HMGA1 binds its own promoter and contributes to its transactivation by Oct-2 (but not Oct-1, supporting its role in an auto-regulatory circuit. Overall, our results provide insight into the transcriptional regulation of the HMGA1 gene, revealing a differential control exerted by both Oct-1 and Oct-2. Furthermore, they consistently support the hypothesis that a putative defect in Oct-1 and/or Oct-2, by affecting HMGA1 expression, may cause INSR dysfunction, leading to defects of the INSR signaling pathway.

  9. Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM).

    Science.gov (United States)

    Xiong, Kai; Zhou, Yan; Hyttel, Poul; Bolund, Lars; Freude, Kristine Karla; Luo, Yonglun

    2016-11-01

    Human fibroblasts were engineered to express the CRISPR-based synergistic activation mediator (SAM) complex: dCas9-VP64 and MS2-P65-HSF1. Two induced pluripotent stem cells (iPSCs) clones expressing SAM were established by transducing these fibroblasts with lentivirus expressing OCT4, SOX2, KLF4 and C-MYC. We have validated that the reprogramming cassette is silenced in the SAM iPSC clones. Expression of pluripotency genes (OCT4, SOX2, LIN28A, NANOG, GDF3, SSEA4, and TRA-1-60), differentiation potential to all three germ layers, and normal karyotypes are validated. These SAM-iPSCs provide a novel, useful tool to investigate genetic regulation of stem cell proliferation and differentiation through CRISPR-mediated activation of endogenous genes. Copyright © 2016 Michael Boutros, German Cancer Research Center, Heidelberg, Germany. Published by Elsevier B.V. All rights reserved.

  10. Regional differences in expression of specific markers for human embryonic stem cells

    DEFF Research Database (Denmark)

    Laursen, Steen B; Møllgård, Kjeld; Olesen, Christian

    2007-01-01

    Characterization of human embryonic stem cell (hESC) lines derived from the inner cell masses of blastocysts generally includes expression analysis of markers such as OCT4, NANOG, SSEA3, SSEA4, TRA-1-60 and TRA-1-81. Expression is usually detected by immunocytochemical staining of entire colonies...... of hESC, using one colony for each individual marker. Four newly established hESC lines showed the expected expression pattern and were capable of differentiating into the three germ layers in vitro. Neighbouring sections of entire colonies grown for 4, 11, 21 and 28 days respectively were stained...

  11. Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM)

    DEFF Research Database (Denmark)

    Xiong, Kai; Zhou, Yan; Hyttel, Poul

    2016-01-01

    Human fibroblasts were engineered to express the CRISPR-based synergistic activation mediator (SAM) complex: dCas9-VP64 and MS2-P65-HSF1. Two induced pluripotent stem cells (iPSCs) clones expressing SAM were established by transducing these fibroblasts with lentivirus expressing OCT4, SOX2, KLF4...... a novel, useful tool to investigate genetic regulation of stem cell proliferation and differentiation through CRISPR-mediated activation of endogenous genes....

  12. CD133-expressing thyroid cancer cells are undifferentiated, radioresistant and survive radioiodide therapy

    International Nuclear Information System (INIS)

    Ke, Chien-Chih; Liu, Ren-Shyan; Yang, An-Hang; Liu, Ching-Sheng; Chi, Chin-Wen; Tseng, Ling-Ming; Tsai, Yi-Fan; Ho, Jennifer H.; Lee, Chen-Hsen; Lee, Oscar K.

    2013-01-01

    131 I therapy is regularly used following surgery as a part of thyroid cancer management. Despite an overall relatively good prognosis, recurrent or metastatic thyroid cancer is not rare. CD133-expressing cells have been shown to mark thyroid cancer stem cells that possess the characteristics of stem cells and have the ability to initiate tumours. However, no studies have addressed the influence of CD133-expressing cells on radioiodide therapy of the thyroid cancer. The aim of this study was to investigate whether CD133 + cells contribute to the radioresistance of thyroid cancer and thus potentiate future recurrence and metastasis. Thyroid cancer cell lines were analysed for CD133 expression, radiosensitivity and gene expression. The anaplastic thyroid cancer cell line ARO showed a higher percentage of CD133 + cells and higher radioresistance. After γ-irradiation of the cells, the CD133 + population was enriched due to the higher apoptotic rate of CD133 - cells. In vivo 131 I treatment of ARO tumour resulted in an elevated expression of CD133, Oct4, Nanog, Lin28 and Glut1 genes. After isolation, CD133 + cells exhibited higher radioresistance and higher expression of Oct4, Nanog, Sox2, Lin28 and Glut1 in the cell line or primarily cultured papillary thyroid cancer cells, and lower expression of various thyroid-specific genes, namely NIS, Tg, TPO, TSHR, TTF1 and Pax8. This study demonstrates the existence of CD133-expressing thyroid cancer cells which show a higher radioresistance and are in an undifferentiated status. These cells possess a greater potential to survive radiotherapy and may contribute to the recurrence of thyroid cancer. A future therapeutic approach for radioresistant thyroid cancer may focus on the selective eradication of CD133 + cells. (orig.)

  13. Changing POU dimerization preferences converts Oct6 into a pluripotency inducer.

    Science.gov (United States)

    Jerabek, Stepan; Ng, Calista Kl; Wu, Guangming; Arauzo-Bravo, Marcos J; Kim, Kee-Pyo; Esch, Daniel; Malik, Vikas; Chen, Yanpu; Velychko, Sergiy; MacCarthy, Caitlin M; Yang, Xiaoxiao; Cojocaru, Vlad; Schöler, Hans R; Jauch, Ralf

    2017-02-01

    The transcription factor Oct4 is a core component of molecular cocktails inducing pluripotent stem cells (iPSCs), while other members of the POU family cannot replace Oct4 with comparable efficiency. Rather, group III POU factors such as Oct6 induce neural lineages. Here, we sought to identify molecular features determining the differential DNA-binding and reprogramming activity of Oct4 and Oct6. In enhancers of pluripotency genes, Oct4 cooperates with Sox2 on heterodimeric SoxOct elements. By re-analyzing ChIP-Seq data and performing dimerization assays, we found that Oct6 homodimerizes on palindromic OctOct more cooperatively and more stably than Oct4. Using structural and biochemical analyses, we identified a single amino acid directing binding to the respective DNA elements. A change in this amino acid decreases the ability of Oct4 to generate iPSCs, while the reverse mutation in Oct6 does not augment its reprogramming activity. Yet, with two additional amino acid exchanges, Oct6 acquires the ability to generate iPSCs and maintain pluripotency. Together, we demonstrate that cell type-specific POU factor function is determined by select residues that affect DNA-dependent dimerization. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Confinement and clearance of OCT4 in the porcine embryo at stereomicroscopically defined stages around gastrulation

    DEFF Research Database (Denmark)

    Vejlsted, Morten; Offenberg, Hanne Kjær; Thorup, Flemming

    2006-01-01

    was selectively observed in the epiblast. A prominent crescent-shaped thickening at the posterior region of the embryonic disk marked the first polarization within this structure reflecting incipient cell ingression. Following differentiation of the epiblast, clearance of OCT4 from the three germ layers......In the areas of developmental biology and embryonic stem cell research, reliable molecular markers of pluripotency and early lineage commitment are sparse in large animal species. In this study, we present morphological and immunohistochemical findings on the porcine embryo in the period around...... gastrulation, days 8-17 postinsemination, introducing a steromicroscopical staging system in this species. In embryos at the expanding hatched blastocyst stage, OCT4 is confined to the inner cell mass. Following detachment of the hypoblast, and formation of the embryonic disk, this marker of pluripotency...

  15. Expression of Pluripotency Markers in Nonpluripotent Human Neural Stem and Progenitor Cells

    DEFF Research Database (Denmark)

    Vincent, P.; Benedikz, Eirikur; Uhlén, Per

    2017-01-01

    Nonpluripotent neural progenitor cells (NPCs) derived from the human fetal central nervous system were found to express a number of messenger RNA (mRNA) species associated with pluripotency, such as NANOG, REX1, and OCT4. The expression was restricted to small subpopulations of NPCs. In contrast...... to pluripotent stem cells, there was no coexpression of the pluripotency-associated genes studied. Although the expression of these genes rapidly declined during the in vitro differentiation of NPCs, we found no evidence that the discrete expression was associated with the markers of multipotent neural stem...... cells (CD133+/CD24lo), the capacity of sphere formation, or high cell proliferation rates. The rate of cell death among NPCs expressing pluripotency-associated genes was also similar to that of other NPCs. Live cell imaging showed that NANOG- and REX1-expressing NPCs continuously changed morphology...

  16. Relevance of the OCT1 transporter to the antineoplastic effect of biguanides

    International Nuclear Information System (INIS)

    Segal, Eric D.; Yasmeen, Amber; Beauchamp, Marie-Claude; Rosenblatt, Joshua; Pollak, Michael; Gotlieb, Walter H.

    2011-01-01

    Highlights: ► siRNA knockdown of OCT1 reduced sensitivity of EOC cells to metformin, but not to another biguanide, phenformin. ► Suppression of OCT1 also affects the activation of AMP kinase in response to metformin, but not to phenformin. ► Direct actions of metformin may be limited by low OCT1 expression in EOC tumors. ► Phenformin could be used as an alternative biguanide. -- Abstract: Epidemiologic and laboratory data suggesting that metformin has antineoplastic activity have led to ongoing clinical trials. However, pharmacokinetic issues that may influence metformin activity have not been studied in detail. The organic cation transporter 1 (OCT1) is known to play an important role in cellular uptake of metformin in the liver. We show that siRNA knockdown of OCT1 reduced sensitivity of epithelial ovarian cancer cells to metformin, but interestingly not to another biguanide, phenformin, with respect to both activation of AMP kinase and inhibition of proliferation. We observed that there is heterogeneity between primary human tumors with respect to OCT1 expression. These results suggest that there may be settings where drug uptake limits direct action of metformin on neoplastic cells, raising the possibility that metformin may not be the optimal biguanide for clinical investigation.

  17. In vitro germ cell differentiation from cynomolgus monkey embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kaori Yamauchi

    Full Text Available BACKGROUND: Mouse embryonic stem (ES cells can differentiate into female and male germ cells in vitro. Primate ES cells can also differentiate into immature germ cells in vitro. However, little is known about the differentiation markers and culture conditions for in vitro germ cell differentiation from ES cells in primates. Monkey ES cells are thus considered to be a useful model to study primate gametogenesis in vitro. Therefore, in order to obtain further information on germ cell differentiation from primate ES cells, this study examined the ability of cynomolgus monkey ES cells to differentiate into germ cells in vitro. METHODS AND FINDINGS: To explore the differentiation markers for detecting germ cells differentiated from ES cells, the expression of various germ cell marker genes was examined in tissues and ES cells of the cynomolgus monkey (Macaca fascicularis. VASA is a valuable gene for the detection of germ cells differentiated from ES cells. An increase of VASA expression was observed when differentiation was induced in ES cells via embryoid body (EB formation. In addition, the expression of other germ cell markers, such as NANOS and PIWIL1 genes, was also up-regulated as the EB differentiation progressed. Immunocytochemistry identified the cells expressing stage-specific embryonic antigen (SSEA 1, OCT-4, and VASA proteins in the EBs. These cells were detected in the peripheral region of the EBs as specific cell populations, such as SSEA1-positive, OCT-4-positive cells, OCT-4-positive, VASA-positive cells, and OCT-4-negative, VASA-positive cells. Thereafter, the effect of mouse gonadal cell-conditioned medium and growth factors on germ cell differentiation from monkey ES cells was examined, and this revealed that the addition of BMP4 to differentiating ES cells increased the expression of SCP1, a meiotic marker gene. CONCLUSION: VASA is a valuable gene for the detection of germ cells differentiated from ES cells in monkeys, and the

  18. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression...... of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response...

  19. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    International Nuclear Information System (INIS)

    Teng, Ying; Wang, Xiuwen; Wang, Yawei; Ma, Daoxin

    2010-01-01

    Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  20. Breaking down pluripotency in the porcine embryo reveals both a premature and reticent stem cell state in the inner cell mass and unique expression profiles of the naive and primed stem cell states.

    Science.gov (United States)

    Hall, Vanessa Jane; Hyttel, Poul

    2014-09-01

    To date, it has been difficult to establish bona fide porcine embryonic stem cells (pESC) and stable induced pluripotent stem cells. Reasons for this remain unclear, but they may depend on inappropriate culture conditions. This study reports the most insights to date on genes expressed in the pluripotent cells of the porcine embryo, namely the inner cell mass (ICM), the trophectoderm-covered epiblast (EPI), and the embryonic disc epiblast (ED). Specifically, we reveal that the early porcine ICM represents a premature state of pluripotency due to lack of translation of key pluripotent proteins, and the late ICM enters a transient, reticent pluripotent state which lacks expression of most genes associated with pluripotency. We describe a unique expression profile of the porcine EPI, reflecting the naive stem cell state, including expression of OCT4, NANOG, CRIPTO, and SSEA-1; weak expression of NrOB1 and REX1; but very limited expression of genes in classical pathways involved in regulating pluripotency. The porcine ED, reflecting the primed stem cell state, can be characterized by the expression of OCT4, NANOG, SOX2, KLF4, cMYC, REX1, CRIPTO, and KLF2. Further cell culture experiments using inhibitors against FGF, JAK/STAT, BMP, WNT, and NODAL pathways on cell cultures derived from day 5 and 10 embryos reveal the importance of FGF, JAK/STAT, and BMP signaling in maintaining cell proliferation of pESCs in vitro. Together, this article provides new insights into the regulation of pluripotency, revealing unique stem cell states in the different porcine stem cell populations derived from the early developing embryo.

  1. Relevance of the OCT1 transporter to the antineoplastic effect of biguanides

    Energy Technology Data Exchange (ETDEWEB)

    Segal, Eric D.; Yasmeen, Amber; Beauchamp, Marie-Claude; Rosenblatt, Joshua [Division of Gynecologic Oncology, Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, Quebec (Canada); Pollak, Michael [Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, Quebec (Canada); Department of Oncology, McGill University, Montreal, Quebec (Canada); Gotlieb, Walter H., E-mail: walter.gotlieb@mcgill.ca [Division of Gynecologic Oncology, Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, Quebec (Canada); Department of Oncology, McGill University, Montreal, Quebec (Canada)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer siRNA knockdown of OCT1 reduced sensitivity of EOC cells to metformin, but not to another biguanide, phenformin. Black-Right-Pointing-Pointer Suppression of OCT1 also affects the activation of AMP kinase in response to metformin, but not to phenformin. Black-Right-Pointing-Pointer Direct actions of metformin may be limited by low OCT1 expression in EOC tumors. Black-Right-Pointing-Pointer Phenformin could be used as an alternative biguanide. -- Abstract: Epidemiologic and laboratory data suggesting that metformin has antineoplastic activity have led to ongoing clinical trials. However, pharmacokinetic issues that may influence metformin activity have not been studied in detail. The organic cation transporter 1 (OCT1) is known to play an important role in cellular uptake of metformin in the liver. We show that siRNA knockdown of OCT1 reduced sensitivity of epithelial ovarian cancer cells to metformin, but interestingly not to another biguanide, phenformin, with respect to both activation of AMP kinase and inhibition of proliferation. We observed that there is heterogeneity between primary human tumors with respect to OCT1 expression. These results suggest that there may be settings where drug uptake limits direct action of metformin on neoplastic cells, raising the possibility that metformin may not be the optimal biguanide for clinical investigation.

  2. Inflammation increases cells expressing ZSCAN4 and progenitor cell markers in the adult pancreas

    Science.gov (United States)

    Azuma, Sakiko; Yokoyama, Yukihiro; Yamamoto, Akiko; Kyokane, Kazuhiro; Niida, Shumpei; Ishiguro, Hiroshi; Ko, Minoru S. H.

    2013-01-01

    We have recently identified the zinc finger and SCAN domain containing 4 (Zscan4), which is transiently expressed and regulates telomere elongation and genome stability in mouse embryonic stem (ES) cells. The aim of this study was to examine the expression of ZSCAN4 in the adult pancreas and elucidate the role of ZSCAN4 in tissue inflammation and subsequent regeneration. The expression of ZSCAN4 and other progenitor or differentiated cell markers in the human pancreas was immunohistochemically examined. Pancreas sections of alcoholic or autoimmune pancreatitis patients before and under maintenance corticosteroid treatment were used in this study. In the adult human pancreas a small number of ZSCAN4-positive (ZSCAN4+) cells are present among cells located in the islets of Langerhans, acini, ducts, and oval-shaped cells. These cells not only express differentiated cell markers for each compartment of the pancreas but also express other tissue stem/progenitor cell markers. Furthermore, the number of ZSCAN4+ cells dramatically increased in patients with chronic pancreatitis, especially in the pancreatic tissues of autoimmune pancreatitis actively regenerating under corticosteroid treatment. Interestingly, a number of ZSCAN4+ cells in the pancreas of autoimmune pancreatitis returned to the basal level after 1 yr of maintenance corticosteroid treatment. In conclusion, coexpression of progenitor cell markers and differentiated cell markers with ZSCAN4 in each compartment of the pancreas may indicate the presence of facultative progenitors for both exocrine and endocrine cells in the adult pancreas. PMID:23599043

  3. Deciphering the Sox-Oct partner code by quantitative cooperativity measurements.

    Science.gov (United States)

    Ng, Calista K L; Li, Noel X; Chee, Sheena; Prabhakar, Shyam; Kolatkar, Prasanna R; Jauch, Ralf

    2012-06-01

    Several Sox-Oct transcription factor (TF) combinations have been shown to cooperate on diverse enhancers to determine cell fates. Here, we developed a method to quantify biochemically the Sox-Oct cooperation and assessed the pairing of the high-mobility group (HMG) domains of 11 Sox TFs with Oct4 on a series of composite DNA elements. This way, we clustered Sox proteins according to their dimerization preferences illustrating that Sox HMG domains evolved different propensities to cooperate with Oct4. Sox2, Sox14, Sox21 and Sox15 strongly cooperate on the canonical element but compete with Oct4 on a recently discovered compressed element. Sry also cooperates on the canonical element but binds additively to the compressed element. In contrast, Sox17 and Sox4 cooperate more strongly on the compressed than on the canonical element. Sox5 and Sox18 show some cooperation on both elements, whereas Sox8 and Sox9 compete on both elements. Testing rationally mutated Sox proteins combined with structural modeling highlights critical amino acids for differential Sox-Oct4 partnerships and demonstrates that the cooperativity correlates with the efficiency in producing induced pluripotent stem cells. Our results suggest selective Sox-Oct partnerships in genome regulation and provide a toolset to study protein cooperation on DNA.

  4. Octamer-binding protein 4 affects the cell biology and phenotypic transition of lung cancer cells involving β-catenin/E-cadherin complex degradation.

    Science.gov (United States)

    Chen, Zhong-Shu; Ling, Dong-Jin; Zhang, Yang-De; Feng, Jian-Xiong; Zhang, Xue-Yu; Shi, Tian-Sheng

    2015-03-01

    Clinical studies have reported evidence for the involvement of octamer‑binding protein 4 (Oct4) in the tumorigenicity and progression of lung cancer; however, the role of Oct4 in lung cancer cell biology in vitro and its mechanism of action remain to be elucidated. Mortality among lung cancer patients is more frequently due to metastasis rather than their primary tumors. Epithelial‑mesenchymal transition (EMT) is a prominent biological event for the induction of epithelial cancer metastasis. The aim of the present study was to investigate whether Oct4 had the capacity to induce lung cancer cell metastasis via the promoting the EMT in vitro. Moreover, the effect of Oct4 on the β‑catenin/E‑cadherin complex, associated with EMT, was examined using immunofluorescence and immunoprecipitation assays as well as western blot analysis. The results demonstrated that Oct4 enhanced cell invasion and adhesion accompanied by the downregulation of epithelial marker cytokeratin, and upregulation of the mesenchymal markers vimentin and N‑cadherin. Furthermore, Oct4 induced EMT of lung cancer cells by promoting β‑catenin/E‑cadherin complex degradation and regulating nuclear localization of β‑catenin. In conclusion, the present study indicated that Oct4 affected the cell biology of lung cancer cells in vitro through promoting lung cancer cell metastasis via EMT; in addition, the results suggested that the association and degradation of the β‑catenin/E‑cadherin complex was regulated by Oct4 during the process of EMT.

  5. OCT in Dermatology

    Science.gov (United States)

    Holmes, John; Welzel, Julia

    OCT is increasingly interesting for non-invasive skin imaging in Dermatology. Due to its resolution and imaging depth, OCT is already routinely established for diagnosis of nonmelanoma skin cancer, whereas for pigmented lesions, the resolution is still not high enough. OCT has also a high value for monitoring of treatment effects, for example to control healing after non-surgical topical treatment of basal cell carcinomas. In summary, there are several indications for applications of OCT to image skin diseases, and its importance will grow in the future due to further technical developments like speckle variance OCT.

  6. HIV-1 induces DCIR expression in CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Alexandra A Lambert

    2010-11-01

    Full Text Available The C-type lectin receptor DCIR, which has been shown very recently to act as an attachment factor for HIV-1 in dendritic cells, is expressed predominantly on antigen-presenting cells. However, this concept was recently challenged by the discovery that DCIR can also be detected in CD4(+ T cells found in the synovial tissue from rheumatoid arthritis (RA patients. Given that RA and HIV-1 infections share common features such as a chronic inflammatory condition and polyclonal immune hyperactivation status, we hypothesized that HIV-1 could promote DCIR expression in CD4(+ T cells. We report here that HIV-1 drives DCIR expression in human primary CD4(+ T cells isolated from patients (from both aviremic/treated and viremic/treatment naive persons and cells acutely infected in vitro (seen in both virus-infected and uninfected cells. Soluble factors produced by virus-infected cells are responsible for the noticed DCIR up-regulation on uninfected cells. Infection studies with Vpr- or Nef-deleted viruses revealed that these two viral genes are not contributing to the mechanism of DCIR induction that is seen following acute infection of CD4(+ T cells with HIV-1. Moreover, we report that DCIR is linked to caspase-dependent (induced by a mitochondria-mediated generation of free radicals and -independent intrinsic apoptotic pathways (involving the death effector AIF. Finally, we demonstrate that the higher surface expression of DCIR in CD4(+ T cells is accompanied by an enhancement of virus attachment/entry, replication and transfer. This study shows for the first time that HIV-1 induces DCIR membrane expression in CD4(+ T cells, a process that might promote virus dissemination throughout the infected organism.

  7. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Kues, Wilfried A.; Herrmann, Doris; Barg-Kues, Brigitte

    2013-01-01

    the nonviral Sleeping Beauty transposon system to deliver the reprogramming factors Oct4, Sox2, Klf4, and cMyc. Successful reprogramming to a pluripotent state was indicated by changes in cell morphology and reactivation of the Oct4-EGFP reporter. The transposon-reprogrammed induced pluripotent stem (i......PS) cells showed long-term proliferation in vitro over >40 passages, expressed transcription factors typical of embryonic stem cells, including OCT4, NANOG, SOX2, REX1, ESRRB, DPPA5, and UTF1 and surface markers of pluripotency, including SSEA-1 and TRA-1-60. In vitro differentiation resulted in derivatives......The domestic pig is an important large animal model for preclinical testing of novel cell therapies. Recently, we produced pluripotency reporter pigs in which the Oct4 promoter drives expression of the enhanced green fluorescent protein (EGFP). Here, we reprogrammed Oct4-EGFP fibroblasts employing...

  8. Meis1 regulates Foxn4 expression during retinal progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Mohammed M. Islam

    2013-09-01

    The transcription factor forkhead box N4 (Foxn4 is a key regulator in a variety of biological processes during development. In particular, Foxn4 plays an essential role in the genesis of horizontal and amacrine neurons from neural progenitors in the vertebrate retina. Although the functions of Foxn4 have been well established, the transcriptional regulation of Foxn4 expression during progenitor cell differentiation remains unclear. Here, we report that an evolutionarily conserved 129 bp noncoding DNA fragment (Foxn4CR4.2 or CR4.2, located ∼26 kb upstream of Foxn4 transcription start site, functions as a cis-element for Foxn4 regulation. CR4.2 directs gene expression in Foxn4-positive cells, primarily in progenitors, differentiating horizontal and amacrine cells. We further determined that the gene regulatory activity of CR4.2 is modulated by Meis1 binding motif, which is bound and activated by Meis1 transcription factor. Deletion of the Meis1 binding motif or knockdown of Meis1 expression abolishes the gene regulatory activity of CR4.2. In addition, knockdown of Meis1 expression diminishes the endogenous Foxn4 expression and affects cell lineage development. Together, we demonstrate that CR4.2 and its interacting Meis1 transcription factor play important roles in regulating Foxn4 expression during early retinogenesis. These findings provide new insights into molecular mechanisms that govern gene regulation in retinal progenitors and specific cell lineage development.

  9. Expression of Pluripotency Markers in Nonpluripotent Human Neural Stem and Progenitor Cells.

    Science.gov (United States)

    Vincent, Per Henrik; Benedikz, Eirikur; Uhlén, Per; Hovatta, Outi; Sundström, Erik

    2017-06-15

    Nonpluripotent neural progenitor cells (NPCs) derived from the human fetal central nervous system were found to express a number of messenger RNA (mRNA) species associated with pluripotency, such as NANOG, REX1, and OCT4. The expression was restricted to small subpopulations of NPCs. In contrast to pluripotent stem cells, there was no coexpression of the pluripotency-associated genes studied. Although the expression of these genes rapidly declined during the in vitro differentiation of NPCs, we found no evidence that the discrete expression was associated with the markers of multipotent neural stem cells (CD133 + /CD24 lo ), the capacity of sphere formation, or high cell proliferation rates. The rate of cell death among NPCs expressing pluripotency-associated genes was also similar to that of other NPCs. Live cell imaging showed that NANOG- and REX1-expressing NPCs continuously changed morphology, as did the nonexpressing cells. Depletion experiments showed that after the complete removal of the subpopulations of NANOG- and REX1-expressing NPCs, the expression of these genes appeared in other NPCs within a few days. The percentage of NANOG- and REX1-expressing cells returned to that observed before depletion. Our results are best explained by a model in which there is stochastic transient expression of pluripotency-associated genes in proliferating NPCs.

  10. The orphan nuclear receptor GCNF recruits DNA methyltransferase for Oct-3/4 silencing

    International Nuclear Information System (INIS)

    Sato, Noriko; Kondo, Mitsumasa; Arai, Ken-ichi

    2006-01-01

    Somatic DNA methylation patterns are determined in part by the de novo methylation that occurs after early embryonic demethylation. Oct-3/4, a pluripotency gene, is unmethylated in the blastocyst, but undergoes de novo methylation and silencing during gastrulation. Here we show that the transcriptional repressor GCNF recruits DNA methyltransferase to the Oct-3/4 promoter and facilitates its methylation. Although acetylation of histone H3 at lysine 9 (K9) and/or 14 (K14) and methylation of H3 at lysine 4 (K4) decrease during this period, as do Oct-3/4 transcript levels, H3K9 and H3K27 methylation levels remain constant, indicating that DNA methylation does not require repressive histone modifications. We found that GCNF interacts directly with Dnmt3 molecule(s) and verified that this interaction induces the methylation of the Oct-3/4 promoter. Our finding suggests a model in which differentiation-induced GCNF recruits de novo DNA methyltransferase and facilitates the silencing of a pluripotency gene

  11. Establishment of rat embryonic stem-like cells from the morula using a combination of feeder layers.

    Science.gov (United States)

    Sano, Chiaki; Matsumoto, Asako; Sato, Eimei; Fukui, Emiko; Yoshizawa, Midori; Matsumoto, Hiromichi

    2009-08-01

    Embryonic stem (ES) cells are characterized by pluripotency, in particular the ability to form a germline on injection into blastocysts. Despite numerous attempts, ES cell lines derived from rat embryos have not yet been established. The reason for this is unclear, although certain intrinsic biological differences among species and/or strains have been reported. Herein, using Wistar-Imamichi rats, specific characteristics of preimplantation embryos are described. At the blastocyst stage, Oct4 (also called Pou5f1) was expressed in both the inner cell mass (ICM) and the trophectoderm (TE), whereas expression of Cdx2 was localized to the TE. In contrast, at an earlier stage, expression of Oct4 was detected in all the nuclei in the morula. These stages were examined using a combination of feeder layers (rat embryonic fibroblast [REF] for primary outgrowth and SIM mouse embryo-derived thioguanine- and ouabain-resistant [STO] cells for passaging) to establish rat ES-like cell lines. The rat ES-like cell lines obtained from the morula maintained expression of Oct4 over long-term culture, whereas cell lines derived from blastocysts lost pluripotency during early passage. The morula-derived ES-like cell lines showed Oct4 expression in a long-term culture, even after cryogenic preservation, thawing and EGFP transfection. These results indicate that rat ES-like cell lines with long-term Oct4 expression can be established from the morula of Wistar-Imamichi rats using a combination of feeder layers.

  12. Lipopolysaccharide inhibits the self-renewal of spermatogonial stem cells in vitro via downregulation of GDNF expression in Sertoli cells.

    Science.gov (United States)

    Zhang, Xiaoli; Shi, Kun; Li, Yi; Zhang, Haiyu; Hao, Jing

    2014-06-01

    Lipopolysaccharide (LPS) can reduce sperm count and sperm quality. The molecular mechanisms underlying this process are not fully understood. In this report, we investigated the effects of LPS-treated Sertoli cells on self-renewal and differentiation of spermatogoinial stem cells (SSCs). Sertoli cell cultures were established and incubated with LPS (10μg/ml) for 1, 2 or 3 days, respectively. The culture media were collected and used as conditioned media (CM) to culture SSCs. The expression of glial cell-derived neurotrophic factor (GDNF), stem cell factor (SCF) and bone morphogenetic protein 4 (BMP4) in Sertoli cells treated with LPS was analyzed by RT-PCR and Western blotting. The results showed that the expression of SSC differentiation markers, c-kit and Sohlh2, was increased, while the expression of SSC self-renewal markers, plzf, oct4, and PCNA, was repressed when cultured in CM from LPS-treated Sertoli cells. GDNF levels in Sertoli cells and CM reduced dramatically after LPS treatments, while SCF and BMP4 levels did not show any significant changes. Moreover, correlated with the GDNF levels in CM, GDNF target genes, Bcl6b and Etv5, were reduced markedly in SSCs. Our results suggest that LPS inhibits the expression of GDNF in Sertoli cells, and might prevent the SSC self-renewal via down-regulation of GDNF target genes. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Regulatory CD4 T cells inhibit HIV-1 expression of other CD4 T cell subsets via interactions with cell surface regulatory proteins.

    Science.gov (United States)

    Zhang, Mingce; Robinson, Tanya O; Duverger, Alexandra; Kutsch, Olaf; Heath, Sonya L; Cron, Randy Q

    2018-03-01

    During chronic HIV-1 infection, regulatory CD4 T cells (Tregs) frequently represent the largest subpopulation of CD4 T cell subsets, implying relative resistant to HIV-1. When HIV-1 infection of CD4 T cells was explored in vitro and ex vivo from patient samples, Tregs possessed lower levels of HIV-1 DNA and RNA in comparison with conventional effector and memory CD4 T cells. Moreover, Tregs suppressed HIV-1 expression in other CD4 T cells in an in vitro co-culture system. This suppression was mediated in part via multiple inhibitory surface proteins expressed on Tregs. Antibody blockade of CTLA-4, PD-1, and GARP on Tregs resulted in increased HIV-1 DNA integration and mRNA expression in neighboring CD4 T cells. Moreover, antibody blockade of Tregs inhibitory proteins resulted in increased HIV-1 LTR transcription in co-cultured CD4 T cells. Thus, Tregs inhibit HIV-1 infection of other CD4 T cell subsets via interactions with inhibitory cell surface proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Single-Cell Analyses of ESCs Reveal Alternative Pluripotent Cell States and Molecular Mechanisms that Control Self-Renewal

    Directory of Open Access Journals (Sweden)

    Dmitri Papatsenko

    2015-08-01

    Full Text Available Analyses of gene expression in single mouse embryonic stem cells (mESCs cultured in serum and LIF revealed the presence of two distinct cell subpopulations with individual gene expression signatures. Comparisons with published data revealed that cells in the first subpopulation are phenotypically similar to cells isolated from the inner cell mass (ICM. In contrast, cells in the second subpopulation appear to be more mature. Pluripotency Gene Regulatory Network (PGRN reconstruction based on single-cell data and published data suggested antagonistic roles for Oct4 and Nanog in the maintenance of pluripotency states. Integrated analyses of published genomic binding (ChIP data strongly supported this observation. Certain target genes alternatively regulated by OCT4 and NANOG, such as Sall4 and Zscan10, feed back into the top hierarchical regulator Oct4. Analyses of such incoherent feedforward loops with feedback (iFFL-FB suggest a dynamic model for the maintenance of mESC pluripotency and self-renewal.

  15. Conditional RNA interference achieved by Oct-1 POU/rtTA fusion protein activator and a modified TRE-mouse U6 promoter

    International Nuclear Information System (INIS)

    Fei Zhaoliang; Chen Zheng; Wang Zhugang; Fei Jian

    2007-01-01

    RNA interference (RNAi) is a powerful technique and is widely used to down-regulate expression of specific genes in cultured cells and in vivo. In this paper, we report our development of a new tetracycline-inducible RNAi expression using a modified TRE-mouse U6 promoter in which the distal sequence element (DSE) was replaced by the tetracycline-responsive element (TRE). The modified TRE-mouse U6 promoter can be activated by a Tet-on version tetracycline-regulated artificial activator rTetOct which was constructed by fusing the rtTA DNA binding domain with the Oct-1 POU activation domain. This rTetOct/TRE-U6 system was successfully applied to conditionally and reversibly down-regulate the expression of endogenous p53 gene in MCF7 cells, and the expression of β-defensin gene (mBin1b) either transiently expressed in COS7 cells or stably expressed in CHO cells

  16. Neural stem cells achieve and maintain pluripotency without feeder cells.

    Directory of Open Access Journals (Sweden)

    Hyun Woo Choi

    Full Text Available BACKGROUND: Differentiated cells can be reprogrammed into pluripotency by transduction of four defined transcription factors. Induced pluripotent stem cells (iPS cells are expected to be useful for regenerative medicine as well as basic research. Recently, the report showed that mouse embryonic fibroblasts (MEF cells are not essential for reprogramming. However, in using fibroblasts as donor cells for reprogramming, individual fibroblasts that had failed to reprogram could function as feeder cells. METHODOLOGY/PRINCIPAL FINDING: Here, we show that adult mouse neural stem cells (NSCs, which are not functional feeder cells, can be reprogrammed into iPS cells using defined four factors (Oct4, Sox2, Klf4, and c-Myc under feeder-free conditions. The iPS cells, generated from NSCs expressing the Oct4-GFP reporter gene, could proliferate for more than two months (passage 20. Generated and maintained without feeder cells, these iPS cells expressed pluripotency markers (Oct4 and Nanog, the promoter regions of Oct4 and Nanog were hypomethylated, could differentiated into to all three germ layers in vitro, and formed a germline chimera. These data indicate that NSCs can achieve and maintain pluripotency under feeder-free conditions. CONCLUSION/SIGNIFICANCE: This study suggested that factors secreted by feeder cells are not essential in the initial/early stages of reprogramming and for pluripotency maintenance. This technology might be useful for a human system, as a feeder-free reprogramming system may help generate iPS cells of a clinical grade for tissue or organ regeneration.

  17. Human amniotic fluid stem cells (hAFSCs expressing p21 and cyclin D1 genes retain excellent viability after freezing with (dimethyl sulfoxide DMSO

    Directory of Open Access Journals (Sweden)

    Shiva Gholizadeh-Ghaleh Aziz

    2018-04-01

    Full Text Available Human amniotic fluid stem cells (hAFSCs have features intermediate between embryonic and adult SCs, can differentiate into lineages of all three germ layers, and do not develop into tumors in vivo. Moreover, hAFSCs can be easily obtained in routine procedures and there is no ethical or legal limitations regarding their use for clinical and experimental applications. The aim of this study was to assess the effect of slow freezing/thawing and two different concentrations of DMSO (10% DMSO + 90% fetal bovine serum [FBS] and 5% DMSO + 95% FBS on the survival of hAFSCs. hAFSCs were obtained from 5 pregnant women during amniocentesis at 16–22 weeks of gestation. The expression of pluripotency markers (Octamer-binding transcription factor 4 [Oct4] and NANOG by reverse transcription polymerase chain reaction and cell surface markers (cluster of differentiation [CD31], CD44, CD45, and CD90 by flow cytometry was analyzed before and after the slow-freezing. Cell viability was assessed by trypan blue exclusion or MTT assay. Quantitative mRNA expression of Oct4, NANOG, cyclin D1 and p21 was determined by real-time PCR before and after the slow-freezing. Pluripotency of hAFSCs was confirmed by NANOG and POU5F1 (Oct4 gene expression before and after slow-freezing. All hAFSC cultures were positive for CD44 and CD90. A higher viability of hAFSCs was observed after freezing with 90% FBS + 10% DMSO. There was increased expression of NANOG and decreased expression of POU5F1 gene after freezing, compared to control cells (before freezing. DMSO and the process of freezing did not significantly change the expression of p21 and cyclin D1 genes in hAFSCs. Overall, our results indicate the applicability of slow-freezing and DMSO in cryopreservation of SCs.

  18. Ovarian Surface Epithelium in Patients with Severe Ovarian Infertility: A Potential Source of Cells Expressing Markers of Pluripotent/Multipotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Irma Virant-Klun

    2011-01-01

    Full Text Available The aim of this study was to confirm the presence of stem cells in the ovarian surface epithelium of patients with premature ovarian failure and no mature follicles and oocytes. In these patients, small round cells of unknown origin expressing SOX-2 marker of pluripotency were observed among the epithelial cells just after the ovarian surface epithelium scraping. These cells were an integral part of the ovarian surface epithelium. When the scraped cells were cultured in a medium with added follicular fluid to provide some ovarian niche, primitive oocyte-like cells and typical round-shaped cell clusters positively stained on alkaline phosphatase, and markers of pluripotency, such as SOX-2 and SSEA-4, were developed. These markers were expressed early and also later in the culture. Single oocyte-like cells expressed genes OCT4A, SOX-2, NANOG, NANOS, STELLA, CD9, LIN28, KLF4, GDF3, and MYC, characteristic for pluripotent stem cells. The results of this study confirmed the presence of putative stem cells in the ovarian surface epithelium of these patients and provided some basis to create a stem cell line in the future.

  19. Validation of endogenous normalizing genes for expression analyses in adult human testis and germ cell neoplasms

    DEFF Research Database (Denmark)

    Svingen, T; Jørgensen, Anne; Rajpert-De Meyts, E

    2014-01-01

    to define suitable normalizing genes for specific cells and tissues. Here, we report on the performance of a panel of nine commonly employed normalizing genes in adult human testis and testicular pathologies. Our analyses revealed significant variability in transcript abundance for commonly used normalizers......, highlighting the importance of selecting appropriate normalizing genes as comparative measurements can yield variable results when different normalizing genes are employed. Based on our results, we recommend using RPS20, RPS29 or SRSF4 when analysing relative gene expression levels in human testis...... and associated testicular pathologies. OCT4 and SALL4 can be used with caution as second-tier normalizers when determining changes in gene expression in germ cells and germ cell tumour components, but the relative transcript abundance appears variable between different germ cell tumour types. We further...

  20. Defining the expression of marker genes in equine mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Deborah J Guest

    2008-11-01

    Full Text Available Deborah J Guest1, Jennifer C Ousey1, Matthew RW Smith21Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU; 2Reynolds House Referrals, Greenwood Ellis and Partners, 166 High Street, Newmarket, Suffolk, CB8 9WS, UKAbstract: Mesenchymal stromal (MS cells have been derived from multiple sources in the horse including bone marrow, adipose tissue and umbilical cord blood. To date these cells have been investigated for their differentiation potential and are currently being used to treat damage to horse musculoskeletal tissues. However, no work has been done in horse MS cells to examine the expression profile of proteins and cell surface antigens that are expressed in human MS cells. The identification of such profiles in the horse will allow the comparison of putative MS cells isolated from different laboratories and different tissues. At present it is difficult to ascertain whether equivalent cells are being used in different reports. Here, we report on the expression of a range of markers used to define human MS cells. Using immunocytochemistry we show that horse MS cells homogenously express collagens, alkaline phosphatase activity, CD44, CD90 and CD29. In contrast, CD14, CD79α and the embryonic stem cell markers Oct-4, SSEA (stage specific embryonic antigen -1, -3, -4, TRA (tumor rejection antigen -1–60 and -1–81 are not expressed. The MS cells also express MHC class I antigens but do not express class II antigens, although they are inducible by treatment with interferon gamma (IFN-γ.Keywords: mesenchymal stem cells, equine, gene expression

  1. Reprogramming of Mouse Calvarial Osteoblasts into Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yinxiang Wang

    2018-01-01

    Full Text Available Previous studies have demonstrated the ability of reprogramming endochondral bone into induced pluripotent stem (iPS cells, but whether similar phenomenon occurs in intramembranous bone remains to be determined. Here we adopted fluorescence-activated cell sorting-based strategy to isolate homogenous population of intramembranous calvarial osteoblasts from newborn transgenic mice carrying both Osx1-GFP::Cre and Oct4-EGFP transgenes. Following retroviral transduction of Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc, enriched population of osteoblasts underwent silencing of Osx1-GFP::Cre expression at early stage of reprogramming followed by late activation of Oct4-EGFP expression in the resulting iPS cells. These osteoblast-derived iPS cells exhibited gene expression profiles akin to embryonic stem cells and were pluripotent as demonstrated by their ability to form teratomas comprising tissues from all germ layers and also contribute to tail tissue in chimera embryos. These data demonstrate that iPS cells can be generated from intramembranous osteoblasts.

  2. Creatine Enhances Transdifferentiation of Bone Marrow Stromal Cell-Derived Neural Stem Cell Into GABAergic Neuron-Like Cells Characterized With Differential Gene Expression.

    Science.gov (United States)

    Darabi, Shahram; Tiraihi, Taki; Delshad, AliReza; Sadeghizadeh, Majid; Taheri, Taher; Hassoun, Hayder K

    2017-04-01

    Creatine was reported to induce bone marrow stromal cells (BMSC) into GABAergic neuron-like cells (GNLC). In a previous study, creatine was used as a single inducer for BMSC into GNLC with low yield. In this study, BMSC-derived neurospheres (NS) have been used in generating GABAergic phenotype. The BMSC were isolated from adult rats and used in generating neurospheres and used for producing neural stem cells (NSC). A combination of all-trans-retinoic acid (RA), the ciliary neurotrophic factor (CNTF), and creatine was used in order to improve the yield of GNLC. We also used other protocols for the transdifferentiation including RA alone; RA and creatine; RA and CNTF; and RA, CNTF, and creatine. The BMSC, NSC, and GNLC were characterized by specific markers. The activity of the GNLC was evaluated using FM1-43. The isolated BMSC expressed Oct4, fibronectin, and CD44. The NS were immunoreactive to nestin and SOX2, the NSC were immunoreactive to nestin, NF68 and NF160, while the GNLC were immunoreactive to GAD1/2, VGAT, GABA, and synaptophysin. Oct4 and c-MYC, pluripotency genes, were expressed in the BMSC, while SOX2 and c-MYC were expressed in the NSC. The activity of GNLC indicates that the synaptic vesicles were released upon stimulation. The conclusion is that the combination of RA, CNTF, and creatine induced differentiation of neurosphere-derived NSC into GNLC within 1 week. This protocol gives higher yield than the other protocols used in this study. The mechanism of induction was clearly associated with several differential pluripotent genes.

  3. Construction of a Dual-Fluorescence Reporter System to Monitor the Dynamic Progression of Pluripotent Cell Differentiation.

    Science.gov (United States)

    Sun, Wu-Sheng; Chun, Ju-Lan; Do, Jeong-Tae; Kim, Dong-Hwan; Ahn, Jin-Seop; Kim, Min-Kyu; Hwang, In-Sul; Kwon, Dae-Jin; Hwang, Seong-Soo; Lee, Jeong-Woong

    2016-01-01

    Oct4 is a crucial germ line-specific transcription factor expressed in different pluripotent cells and downregulated in the process of differentiation. There are two conserved enhancers, called the distal enhancer (DE) and proximal enhancer (PE), in the 5' upstream regulatory sequences (URSs) of the mouse Oct4 gene, which were demonstrated to control Oct4 expression independently in embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs). We analyzed the URSs of the pig Oct4 and identified two similar enhancers that were highly consistent with the mouse DE and PE. A dual-fluorescence reporter was later constructed by combining a DE-free- Oct4 -promoter-driven EGFP reporter cassette with a PE-free- Oct4 -promoter-driven mCherry reporter cassette. Then, it was tested in a mouse ESC-like cell line (F9) and a mouse EpiSC-like cell line (P19) before it is formally used for pig. As a result, a higher red fluorescence was observed in F9 cells, while green fluorescence was primarily detected in P19 cells. This fluorescence expression pattern in the two cell lines was consistent with that in the early naïve pluripotent state and late primed pluripotent state during differentiation of mouse ESCs. Hence, this reporter system will be a convenient tool for screening out ESC-like naïve pluripotent stem cells from other metastable state cells in a heterogenous population.

  4. Construction of a Dual-Fluorescence Reporter System to Monitor the Dynamic Progression of Pluripotent Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Wu-Sheng Sun

    2016-01-01

    Full Text Available Oct4 is a crucial germ line-specific transcription factor expressed in different pluripotent cells and downregulated in the process of differentiation. There are two conserved enhancers, called the distal enhancer (DE and proximal enhancer (PE, in the 5′ upstream regulatory sequences (URSs of the mouse Oct4 gene, which were demonstrated to control Oct4 expression independently in embryonic stem cells (ESCs and epiblast stem cells (EpiSCs. We analyzed the URSs of the pig Oct4 and identified two similar enhancers that were highly consistent with the mouse DE and PE. A dual-fluorescence reporter was later constructed by combining a DE-free-Oct4-promoter-driven EGFP reporter cassette with a PE-free-Oct4-promoter-driven mCherry reporter cassette. Then, it was tested in a mouse ESC-like cell line (F9 and a mouse EpiSC-like cell line (P19 before it is formally used for pig. As a result, a higher red fluorescence was observed in F9 cells, while green fluorescence was primarily detected in P19 cells. This fluorescence expression pattern in the two cell lines was consistent with that in the early naïve pluripotent state and late primed pluripotent state during differentiation of mouse ESCs. Hence, this reporter system will be a convenient tool for screening out ESC-like naïve pluripotent stem cells from other metastable state cells in a heterogenous population.

  5. Simultaneous detection of mRNA and protein stem cell markers in live cells

    Directory of Open Access Journals (Sweden)

    Bao Gang

    2009-04-01

    Full Text Available Abstract Background Biological studies and medical application of stem cells often require the isolation of stem cells from a mixed cell population, including the detection of cancer stem cells in tumor tissue, and isolation of induced pluripotent stem cells after eliciting the expression of specific genes in adult cells. Here we report the detection of Oct-4 mRNA and SSEA-1 protein in live carcinoma stem cells using respectively molecular beacon and dye-labeled antibody, aiming to establish a new method for stem cells detection and isolation. Results Quantification of Oct-4 mRNA and protein in P19 mouse carcinoma stem cells using respectively RT-PCR and immunocytochemistry confirmed that their levels drastically decreased after differentiation. To visualize Oct-4 mRNA in live stem cells, molecular beacons were designed, synthesized and validated, and the detection specificity was confirmed using control studies. We found that the fluorescence signal from Oct-4-targeting molecular beacons provides a clear discrimination between undifferentiated and retinoic acid-induced differentiated cells. Using deconvolution fluorescence microscopy, Oct-4 mRNAs were found to reside on one side of the cytosol. We demonstrated that, using a combination of Oct-4 mRNA-targeting molecular beacon with SSEA-1 antibody in flow cytometric analysis, undifferentiated stem cells can be clearly distinguished from differentiated cells. We revealed that Oct-4 targeting molecular beacons do not seem to affect stem cell biology. Conclusion Molecular beacons have the potential to provide a powerful tool for highly specific detection and isolation of stem cells, including cancer stem cells and induced pluripotent stem (iPS cells without disturbing cell physiology. It is advantageous to perform simultaneous detection of intracellular (mRNA and cell-surface (protein stem cell markers in flow cytometric analysis, which may lead to high detection sensitivity and efficiency.

  6. Drug Transporter Expression and Activity in Human Hepatoma HuH-7 Cells

    Directory of Open Access Journals (Sweden)

    Elodie Jouan

    2016-12-01

    Full Text Available Human hepatoma cells may represent a valuable alternative to the use of human hepatocytes for studying hepatic drug transporters, which is now a regulatory issue during drug development. In the present work, we have characterized hepatic drug transporter expression, activity and regulation in human hepatoma HuH-7 cells, in order to determine the potential relevance of these cells for drug transport assays. HuH-7 cells displayed notable multidrug resistance-associated protein (MRP activity, presumed to reflect expression of various hepatic MRPs, including MRP2. By contrast, they failed to display functional activities of the uptake transporters sodium taurocholate co-transporting polypeptide (NTCP, organic anion-transporting polypeptides (OATPs and organic cation transporter 1 (OCT1, and of the canalicular transporters P-glycoprotein and breast cancer resistance protein (BCRP. Concomitantly, mRNA expressions of various sinusoidal and canalicular hepatic drug transporters were not detected (NTCP, OATP1B1, organic anion transporter 2 (OAT2, OCT1 and bile salt export pump or were found to be lower (OATP1B3, OATP2B1, multidrug and toxin extrusion protein 1, BCRP and MRP3 in hepatoma HuH-7 cells than those found in human hepatocytes, whereas other transporters such as OAT7, MRP4 and MRP5 were up-regulated. HuH-7 cells additionally exhibited farnesoid X receptor (FXR- and nuclear factor erythroid 2-related factor 2 (Nrf2-related up-regulation of some transporters. Such data indicate that HuH-7 cells, although expressing rather poorly some main hepatic drug transporters, may be useful for investigating interactions of drugs with MRPs, notably MRP2, and for studying FXR- or Nrf2-mediated gene regulation.

  7. Inhibitory Effect of Crizotinib on Creatinine Uptake by Renal Secretory Transporter OCT2.

    Science.gov (United States)

    Arakawa, Hiroshi; Omote, Saki; Tamai, Ikumi

    2017-09-01

    Crizotinib, a tyrosine kinase inhibitor, exhibits some cases of an increase in serum creatinine levels. Creatinine is excreted by not only glomerular filtration but also active secretion by organic cation transporters such as organic cation transporter 2 (OCT2). In the present study, we evaluated in vitro inhibitory effect of crizotinib on OCT2 by directly measuring creatinine uptake by OCT2. Coincubation of crizotinib reduced uptake of [ 14 C]creatinine by cultured HEK293 cells expressing OCT2 (HEK293/OCT2) in a concentration-dependent manner with IC 50 values of 1.58 ± 0.24 μM. Preincubation or both preincubation and coincubation (preincubation/coincubation) with crizotinib showed stronger inhibitory effect on [ 14 C]creatinine uptake compared with that in coincubation alone with IC 50 values of 0.499 ± 0.076 and 0.347 ± 0.040 μM, respectively. These IC 50 values of crizotinib on [ 3 H]N-methyl-4-phenylpyridinium acetate uptake by OCT2 were 10-20 times higher than those of [ 14 C]creatinine uptake. Furthermore, preincubation of crizotinib inhibited creatinine uptake by OCT2 in an apparently competitive manner. In conclusion, crizotinib at a clinically relevant concentration has the potential to inhibit creatinine transport by OCT2, suggesting an increase of serum creatinine levels in clinical use. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Deficient Fas expression by CD4+ CCR5+ T cells in multiple sclerosis

    DEFF Research Database (Denmark)

    Julià, Eva; Montalban, Xavier; Al-Zayat, Hammad

    2006-01-01

    OBJECTIVE: To evaluate whether T cells expressing CCR5 and CXCR3 from multiple sclerosis (MS) patients are more resistant to apoptosis. METHODS: Expression of CD69, TNF-R1, Fas, FasL, bcl-2, and bax was investigated in 41 MS patients and 12 healthy controls by flow cytometry in CD4+ and CD8+ T...... cells expressing CCR5 and CXCR3. RESULTS: In MS patients, the percentage of CD69 was increased and Fas expression decreased in CD4+ CCR5+ T cells. INTERPRETATION: The lower Fas expression in activated CD4+ CCR5+ T cells might contribute to disease pathogenesis by prolonging cell survival and favoring...

  9. The octopamine receptor Octβ2R regulates ovulation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Junghwa Lim

    Full Text Available Oviposition is induced upon mating in most insects. Ovulation is a primary step in oviposition, representing an important target to control insect pests and vectors, but limited information is available on the underlying mechanism. Here we report that the beta adrenergic-like octopamine receptor Octβ2R serves as a key signaling molecule for ovulation and recruits protein kinase A and Ca(2+/calmodulin-sensitive kinase II as downstream effectors for this activity. We found that the octβ2r homozygous mutant females are sterile. They displayed normal courtship, copulation, sperm storage and post-mating rejection behavior but were unable to lay eggs. We have previously shown that octopamine neurons in the abdominal ganglion innervate the oviduct epithelium. Consistently, restored expression of Octβ2R in oviduct epithelial cells was sufficient to reinstate ovulation and full fecundity in the octβ2r mutant females, demonstrating that the oviduct epithelium is a major site of Octβ2R's function in oviposition. We also found that overexpression of the protein kinase A catalytic subunit or Ca(2+/calmodulin-sensitive protein kinase II led to partial rescue of octβ2r's sterility. This suggests that Octβ2R activates cAMP as well as additional effectors including Ca(2+/calmodulin-sensitive protein kinase II for oviposition. All three known beta adrenergic-like octopamine receptors stimulate cAMP production in vitro. Octβ1R, when ectopically expressed in the octβ2r's oviduct epithelium, fully reinstated ovulation and fecundity. Ectopically expressed Octβ3R, on the other hand, partly restored ovulation and fecundity while OAMB-K3 and OAMB-AS that increase Ca(2+ levels yielded partial rescue of ovulation but not fecundity deficit. These observations suggest that Octβ2R have distinct signaling capacities in vivo and activate multiple signaling pathways to induce egg laying. The findings reported here narrow the knowledge gap and offer insight into novel

  10. The Expression of Markers for Intratubular Germ Cell Neoplasia in Normal Infantile Testes

    Directory of Open Access Journals (Sweden)

    Kolja Kvist

    2018-06-01

    Full Text Available BackgroundPositive immunohistochemical expression of testicular cancer markers is often reported beyond 12 months of age in cryptorchid testes, which is assumed to indicate delayed maturation of the fetal germ cells, or neoplastic changes. These findings allowed for questions as to the extent of positive reaction in normal testes. The aim of the study was to clarify the expression of these markers in a normal material up to 2 years.MethodsTesticular material from 69 boys aged 1–690 days, who died of causes with no association of testicular pathology. Histology sections were incubated with primary antibodies including anti-placental-like alkaline phosphatase (PLAP, anti-C-Kit, anti-D2–40, and anti-Oct3/4. The mean germ cell number per tubular transverse section (G/T was calculated based on the G/T of both testes of every boy.ResultsThe mean G/T declined through the 690 days. PLAP appeared stably expressed throughout the ages studied. The likelihood of a positive reaction for C-Kit waned with increasing age within the study period. Positive staining for D2–40 and Oct3/4 was demonstrated up to 6 and 9 months respectively.ConclusionUp to 1 or 2 years of age, normal infantile testes contain germ cells positive for the immunohistochemical markers commonly utilized to aid in the detection of testicular cancer. This finding supports the concept of germ cells undergoing a continuous maturational process in a heterogeneous fashion, and that this process is not complete by 2 years of age.

  11. Altered expression of the urokinase receptor homologue, C4.4A, in invasive areas of human esophageal squamous cell carcinoma

    DEFF Research Database (Denmark)

    Hansen, L.V.; Laerum, O.D.; Illemann, M.

    2008-01-01

    . In the present study, we have therefore analyzed the expression of C4.4A in 14 esophageal squamous cell carcinomas (ESCC). Normal squamous esophageal epithelium shows a strong cell surface associated C4.4A expression in the suprabasal layers, whereas basal cells are negative. Upon transition to dysplasia...... and carcinoma in situ the expression of C4.4A is abruptly and coordinately weakened. Double immunofluorescence staining of normal and dysplastic tissue showed that C4.4A colocalizes with the epithelial cell surface marker E-cadherin in the suprabasal cells and has a complementary expression pattern compared...... to the proliferation marker Ki-67. A prominent, but frequently intracellular, C4.4A expression reappeared in tumor cells located at the invasive front and local lymph node metastases. Because C4.4A was reported previously to be a putative laminin-5 (LN5) ligand, and both proteins are expressed by invasive tumor cells...

  12. CD4 expression on EL4 cells as an epiphenomenon of retroviral transduction and selection.

    Science.gov (United States)

    Logan, Grant J; Spinoulas, Afroditi; Alexander, Stephen I; Smythe, Jason A; Alexander, Ian E

    2004-04-01

    The EL4 murine tumour cell line, isolated from a chemically induced lymphoma over 50 years ago, has been extensively exploited in immunological research. The conclusions drawn from many of these studies have been based on the presumption that EL4 cells maintain a stable phenotype during experimental manipulation. To the contrary, we have observed 100-fold greater expression of cell surface CD4 (CD4(high)) on a subpopulation of EL4 cells following retroviral transduction and G418 selection when compared with unmodified populations. Although the mechanism responsible for this effect remains to be elucidated, the unexpected expression of CD4, a molecule that functions as both a coreceptor with the T-cell receptor and ligand for the pro-inflammatory cytokine IL-16, has the potential to influence experimental outcomes. Upregulation of CD4 should be excluded when EL4 cells are utilized in experiments requiring a consistent immuno-phenotype.

  13. Human forniceal region is the stem cell-rich zone of the conjunctival epithelium.

    Science.gov (United States)

    Harun, Mohd Hairul Nizam; Sepian, Siti Norzalehawati; Chua, Kien-Hui; Ropilah, Abd Rahman; Abd Ghafar, Norzana; Che-Hamzah, Jemaima; Bt Hj Idrus, Ruszymah; Annuar, Faridah Hanom

    2013-03-01

    The anterior surface of the eye is covered by several physically contiguous but histologically distinguishable epithelia overlying the cornea, limbus, bulbar conjunctiva, fornix conjunctiva, and palpebral conjunctiva. The self-renewing nature of the conjunctival epithelia makes their long-term survival ultimately dependent on small populations of stem cells. Hence, the objective of this study was to investigate the expression of the stem cell genes Sox2, OCT4, NANOG, Rex1, NES, and ABCG2 in cultured human conjunctival epithelium from different conjunctival zones, namely, the bulbar, palpebral and fornix zones. Three samples were taken from patients with primary pterygium and cataract (age range 56-66 years) who presented to our eye clinic at the UKM Medical Centre. The eye was examined with slit lamp to ensure there was no underlying ocular surface diseases and glaucoma. Conjunctival tissue was taken from patients who underwent a standard cataract or pterygium operation as a primary procedure. Tissues were digested, cultured, and propagated until an adequate number of cells was obtained. Total RNA was extracted and subjected to expression analysis of conjunctival epithelium genes (KRT4, KRT13, KRT19) and stem cell genes (Sox2, OCT4, NANOG, Rex1, NES, ABCG2) by reverse transcriptase-PCR and 2% agarose gel electrophoresis. The expression of Sox2, OCT4, and NANOG genes were detected in the fornical cells, while bulbar cells only expressed Sox2 and palpebral cells only expressed OCT4. Based on these results, the human forniceal region expresses a higher number of stem cell genes than the palpebral and bulbar conjunctiva.

  14. Expression of death receptor 4 induces caspase-independent cell death in MMS-treated yeast.

    Science.gov (United States)

    Kang, Mi-Sun; Lee, Sung-Keun; Park, Chang-Shin; Kang, Ju-Hee; Bae, Sung-Ho; Yu, Sung-Lim

    2008-11-14

    DR4, a tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, is a key element in the extrinsic pathway of TRAIL/TRAIL receptor-related apoptosis that exerts a preferential toxic effect against tumor cells. However, TRAIL and DR4 are expressed in various normal cells, and recent studies indicate that DR4 has a number of non-apoptotic functions. In this study, we evaluated the effects of human DR4 expression in yeast to determine the function of DR4 in normal cells. The expression of DR4 in yeast caused G1 arrest, which resulted in transient growth inhibition. Moreover, treatment of DR4-expressing yeast with a DNA damaging agent, MMS, elicited drastic, and sustained cell growth inhibition accompanied with massive apoptotic cell death. Further analysis revealed that cell death in the presence of DNA damage and DR4 expression was not dependent on the yeast caspase, YCA1. Taken together, these results indicate that DR4 triggers caspase-independent programmed cell death during the response of normal cells to DNA damage.

  15. Enteroendocrine cells are specifically marked by cell surface expression of claudin-4 in mouse small intestine.

    Directory of Open Access Journals (Sweden)

    Takahiro Nagatake

    Full Text Available Enteroendocrine cells are solitary epithelial cells scattered throughout the gastrointestinal tract and produce various types of hormones, constituting one of the largest endocrine systems in the body. The study of these rare epithelial cells has been hampered by the difficulty in isolating them because of the lack of specific cell surface markers. Here, we report that enteroendocrine cells selectively express a tight junction membrane protein, claudin-4 (Cld4, and are efficiently isolated with the use of an antibody specific for the Cld4 extracellular domain and flow cytometry. Sorted Cld4+ epithelial cells in the small intestine exclusively expressed a chromogranin A gene (Chga and other enteroendocrine cell-related genes (Ffar1, Ffar4, Gpr119, and the population was divided into two subpopulations based on the activity of binding to Ulex europaeus agglutinin-1 (UEA-1. A Cld4+UEA-1- cell population almost exclusively expressed glucose-dependent insulinotropic polypeptide gene (Gip, thus representing K cells, whereas a Cld4+UEA-1+ cell population expressed other gut hormone genes, including glucagon-like peptide 1 (Gcg, pancreatic polypeptide-like peptide with N-terminal tyrosine amide (Pyy, cholecystokinin (Cck, secretin (Sct, and tryptophan hydroxylase 1 (Tph1. In addition, we found that orally administered luminal antigens were taken up by the solitary Cld4+ cells in the small intestinal villi, raising the possibility that enteroendocrine cells might also play a role in initiation of mucosal immunity. Our results provide a useful tool for the cellular and functional characterization of enteroendocrine cells.

  16. Chorionic villi derived mesenchymal like stem cells and expression of embryonic stem cells markers during long-term culturing.

    Science.gov (United States)

    Katsiani, E; Garas, A; Skentou, C; Tsezou, A; Messini, C I; Dafopoulos, K; Daponte, A; Messinis, I E

    2016-09-01

    Mesenchymal stem cells (MSCs) can be obtained from a variety of human tissues. MSCs derived from placental chorionic villi of the first trimester are likely to resemble, biologically, embryonic stem cells (ESC), due to the earlier development stage of placenta. In the present study long-term cultures of MSC-like cells were assessed in order to evaluate MSCs multipotent characteristics and molecular features during the period of culture. CV-cells obtained from 10 samples of chorionic villus displayed typical fibroblastoid morphology, undergone 20 passages during a period of 120 days, maintaining a stable karyotype throughout long term expansion. The cells were positive, for CD90, CD73, CD105, CD29, CD44, HLA ABC antigens and negative for CD14, CD34, AC133, and HLA DR antigens as resulted from the flow cytometry analysis. CV-cells were differentiated in adipocytes, osteoblasts, chondrocytes and neuronal cells under specific culture conditions. The expression of the ESC-gene markers POU5F1 (Oct-4) and NANOG was observed at earliest stages (4-12 passages) and not at the late stages (14-20 passages) by RT-PCR analysis. ZFP42 and SOX2 expression were not detected. Moreover, CV-cells were found to express GATA4 but not NES (Nestin). Chorionic villi-derived cells possess multipotent properties, display high proliferation rate and self-renew capacity, share common surface antigens with adult MSCs and express certain embryonics stem cells gene markers. These characteristics highlight chorionic villi as an attractive source of MSCs for the needs of regenerative medicine.

  17. Organic cation transporter 1 (OCT1 is involved in pentamidine transport at the human and mouse blood-brain barrier (BBB.

    Directory of Open Access Journals (Sweden)

    Gayathri N Sekhar

    Full Text Available Pentamidine is an effective trypanocidal drug used against stage 1 Human African Trypanosomiasis (HAT. At the blood-brain barrier (BBB, it accumulates inside the endothelial cells but has limited entry into the brain. This study examined transporters involved in pentamidine transport at the human and mouse BBB using hCMEC/D3 and bEnd.3 cell lines, respectively. Results revealed that both cell lines expressed the organic cation transporters (OCT1, OCT2 and OCT3, however, P-gp was only expressed in hCMEC/D3 cells. Polarised expression of OCT1 was also observed. Functional assays found that ATP depletion significantly increased [3H]pentamidine accumulation in hCMEC/D3 cells (***p<0.001 but not in bEnd.3 cells. Incubation with unlabelled pentamidine significantly decreased accumulation in hCMEC/D3 and bEnd.3 cells after 120 minutes (***p<0.001. Treating both cell lines with haloperidol and amantadine also decreased [3H]pentamidine accumulation significantly (***p<0.001 and **p<0.01 respectively. However, prazosin treatment decreased [3H]pentamidine accumulation only in hCMEC/D3 cells (*p<0.05, and not bEnd.3 cells. Furthermore, the presence of OCTN, MATE, PMAT, ENT or CNT inhibitors/substrates had no significant effect on the accumulation of [3H]pentamidine in both cell lines. From the data, we conclude that pentamidine interacts with multiple transporters, is taken into brain endothelial cells by OCT1 transporter and is extruded into the blood by ATP-dependent mechanisms. These interactions along with the predominant presence of OCT1 in the luminal membrane of the BBB contribute to the limited entry of pentamidine into the brain. This information is of key importance to the development of pentamidine based combination therapies which could be used to treat CNS stage HAT by improving CNS delivery, efficacy against trypanosomes and safety profile of pentamidine.

  18. The death-inducer obliterator 1 (Dido1) gene regulates embryonic stem cell self-renewal.

    Science.gov (United States)

    Liu, Yinyin; Kim, Hyeung; Liang, Jiancong; Lu, Weisi; Ouyang, Bin; Liu, Dan; Songyang, Zhou

    2014-02-21

    The regulatory network of factors that center on master transcription factors such as Oct4, Nanog, and Sox2 help maintain embryonic stem (ES) cells and ensure their pluripotency. The target genes of these master transcription factors define the ES cell transcriptional landscape. In this study, we report our findings that Dido1, a target of canonical transcription factors such as Oct4, Sox2, and Nanog, plays an important role in regulating ES cell maintenance. We found that depletion of Dido1 in mouse ES cells led to differentiation, and ectopic expression of Dido1 inhibited differentiation induced by leukemia inhibitory factor withdrawal. We further demonstrated that whereas Nanog and Oct4 could occupy the Dido1 locus and promote its transcription, Dido1 could also target to the loci of pluripotency factors such as Nanog and Oct4 and positively regulate their expression. Through this feedback and feedforward loop, Dido1 is able to regulate self-renewal of mouse ES cells.

  19. Single-cell RNA sequencing reveals metallothionein heterogeneity during hESC differentiation to definitive endoderm

    Directory of Open Access Journals (Sweden)

    Junjie Lu

    2018-04-01

    Full Text Available Differentiation of human pluripotent stem cells towards definitive endoderm (DE is the critical first step for generating cells comprising organs such as the gut, liver, pancreas and lung. This in-vitro differentiation process generates a heterogeneous population with a proportion of cells failing to differentiate properly and maintaining expression of pluripotency factors such as Oct4. RNA sequencing of single cells collected at four time points during a 4-day DE differentiation identified high expression of metallothionein genes in the residual Oct4-positive cells that failed to differentiate to DE. Using X-ray fluorescence microscopy and multi-isotope mass spectrometry, we discovered that high intracellular zinc level corresponds with persistent Oct4 expression and failure to differentiate. This study improves our understanding of the cellular heterogeneity during in-vitro directed differentiation and provides a valuable resource to improve DE differentiation efficiency. Keywords: hPSC, Differentiation, Definitive endoderm, Heterogeneity, Single cell, RNA sequencing

  20. Screening retinal transplants with Fourier-domain OCT

    Science.gov (United States)

    Rao, Bin

    2009-02-01

    Transplant technologies have been studied for the recovery of vision loss from retinitis pigmentosa (RP) and age-related macular degeneration (AMD). In several rodent retinal degeneration models and in patients, retinal progenitor cells transplanted as layers to the subretinal space have been shown to restore or preserve vision. The methods for evaluation of transplants are expensive considering the large amount of animals. Alternatively, time-domain Stratus OCT was previously shown to be able to image the morphological structure of transplants to some extent, but could not clearly identify laminated transplants. The efficacy of screening retinal transplants with Fourier-domain OCT was studied on 37 S334ter line 3 rats with retinal degeneration 6-67 days after transplant surgery. The transplants were morphologically categorized as no transplant, detachment, rosettes, small laminated area and larger laminated area with both Fourier-domain OCT and histology. The efficacy of Fourier-domain OCT in screening retinal transplants was evaluated by comparing the categorization results with OCT and histology. Additionally, 4 rats were randomly selected for multiple OCT examinations (1, 5, 9, 14 and 21days post surgery) in order to determine the earliest image time of OCT examination since the transplanted tissue may need some time to show its tendency of growing. Finally, we demonstrated the efficacy of Fourier-domain OCT in screening retinal transplants in early stages and determined the earliest imaging time for OCT. Fourier-domain OCT makes itself valuable in saving resource spent on animals with unsuccessful transplants.

  1. Functional characterization of the HNF4α isoform (HNF4α8) expressed in pancreatic β-cells

    International Nuclear Information System (INIS)

    Ihara, Arisa; Yamagata, Kazuya; Nammo, Takao; Miura, Atsuko; Yuan, Ming; Tanaka, Toshiya; Sladek, Frances M.; Matsuzawa, Yuji; Miyagawa, Jun-ichiro; Shimomura, Iichiro

    2005-01-01

    Mutations in the hepatocyte nuclear factor (HNF) 4α gene cause a form of maturity-onset diabetes of the young (MODY1), which is a monogenic form of type 2 diabetes characterized by impaired insulin secretion by pancreatic β-cells. HNF4α is a transcription factor expressed in the liver, kidney, intestine, and pancreatic islet. Multiple splice variants of the HNF4α gene have been identified and an isoform of HNF4α8, an N-terminal splice variant, is expressed in pancreatic β-cells. However, expression levels of HNF4α protein in pancreatic β-cells and the transcriptional activity of HNF4α8 are not yet understood. In the present study, we investigated the expression of HNF4α in β-cells and examined its functional properties. Western blotting and immunohistochemical analysis revealed that the expression of HNF4α protein in pancreatic islets and INS-1 cells was much lower than in the liver. A reporter gene assay showed that the transactivation potential of HNF4α8 was significantly weaker than that of HNF4α2, which is a major isoform in the liver, suggesting that the total level of HNF4α activity is very weak in pancreatic β-cells. We also showed that the N-terminal A/B region of HNF4α8 possessed no activation function and C-terminal F region negatively regulated the transcriptional activity of HNF4α8. The information presented here would be helpful for the better understanding of MODY1/HNF4α diabetes

  2. Amniotic Fluid Cells Show Higher Pluripotency-Related Gene Expression Than Allantoic Fluid Cells.

    Science.gov (United States)

    Kehl, Debora; Generali, Melanie; Görtz, Sabrina; Geering, Diego; Slamecka, Jaroslav; Hoerstrup, Simon P; Bleul, Ulrich; Weber, Benedikt

    2017-10-01

    Amniotic fluid represents an abundant source of multipotent stem cells, referred as broadly multipotent given their differentiation potential and expression of pluripotency-related genes. However, the origin of this broadly multipotent cellular fraction is not fully understood. Several sources have been proposed so far, including embryonic and extraembryonic tissues. In this regard, the ovine developmental model uniquely allows for direct comparison of fetal fluid-derived cells from two separate fetal fluid cavities, the allantois and the amnion, over the entire duration of gestation. As allantoic fluid mainly collects fetal urine, cells originating from the efferent urinary tract can directly be compared with cells deriving from the extraembryonic amniotic tissues and the fetus. This study shows isolation of cells from the amniotic [ovine amniotic fluid cells (oAFCs)] and allantoic fluid [ovine allantoic fluid cells (oALCs)] in a strictly paired fashion with oAFCs and oALCs derived from the same fetus. Both cell types showed cellular phenotypes comparable to standard mesenchymal stem cells (MSCs), with trilineage differentiation potential, and expression of common ovine MSC markers. However, the expression of MSC markers per single cell was higher in oAFCs as measured by flow cytometry. oAFCs exhibited higher proliferative capacities and showed significantly higher expression of pluripotency-related genes OCT4, STAT3, NANOG, and REX1 by quantitative real-time polymerase chain reaction compared with paired oALCs. No significant decrease of pluripotency-related gene expression was noted over gestation, implying that cells with high differentiation potential may be isolated at the end of pregnancy. In conclusion, this study suggests that cells with highest stem cell characteristics may originate from the fetus itself or the amniotic fetal adnexa rather than from the efferent urinary tract or the allantoic fetal adnexa.

  3. Transient exposure to proteins SOX2, Oct-4, and NANOG immortalizes exhausted tumor-infiltrating CTLs

    Energy Technology Data Exchange (ETDEWEB)

    Bhadurihauck, Anjuli; Li, Lei [Department of Animal and Avian Sciences, University of Maryland, College Park, 20742, MD (United States); Li, Qianqian; Wang, Jianjun [Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, 48201 (United States); Xiao, Zhengguo, E-mail: xiao0028@umd.edu [Department of Animal and Avian Sciences, University of Maryland, College Park, 20742, MD (United States)

    2016-05-13

    Adoptive cell transfer therapy (ACT) is one of the most promising immunotherapies against cancer, using tumor-infiltrating lymphocytes (TILs) expanded in vitro. Tumor-infiltrating cytotoxic T lymphocytes (TICTLs) play a prominent role in cancer control. TILs terminally differentiate in response to immunosuppressive environments within tumors, and thus are slow to expand and challenging to maintain both in vitro and in patients. To reverse this exhaustion, we utilize a nuclear protein delivery system that exposes TICTLs to the SOX2, Oct-4, and NANOG (SON) proteins. Unlike activated naïve CTLs (effector CTLs), TICTLs respond favorably to SON treatment, exhibiting steady proliferation and extended survivability independent of cytokine and antigen stimulation. Though TICTLs treated with SON (STICTLs) still express T cell receptors as well as other critical downstream components, they are unresponsive to antigen challenge, suggesting that SON treatment regresses TICTLs into a state similar to that of an early double negative T cell. Our findings indicate the TICTL response to SON proteins is unique when compared to effector CTLs, suggesting TICTLs may be sensitive to regulation by other lineage-specific transcription factors and opening a promising new avenue into cancer immunotherapy. To our knowledge, this is the first report on lineage reprogramming of TILs using protein stem cell transcription factors delivered directly to the nucleus. -- Highlights: •TICTLs are sensitive to reprogramming by proteins of stem cell transcription factors, but effector CTLs were not. •TICTLs are regressed back to an early double negative T cell stage. •TCR signaling is deregulated by these transcription factors.

  4. Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Christensen, Josef; Gao, Yu

    2009-01-01

      The signaling mechanisms regulating pluripotency in porcine embryonic stem cells and embryos are unknown. In this study, we characterize cell signaling in the in-vivo porcine inner cell mass and later-stage epiblast. We evaluate expression of OCT4, NANOG, SOX2, genes within the JAK/STAT pathway...... pluripotency in human embryonic stem cells is detectable in the porcine epiblast, but not in the inner cell mass. Copyright (c) 2009 Wiley-Liss, Inc.......  The signaling mechanisms regulating pluripotency in porcine embryonic stem cells and embryos are unknown. In this study, we characterize cell signaling in the in-vivo porcine inner cell mass and later-stage epiblast. We evaluate expression of OCT4, NANOG, SOX2, genes within the JAK/STAT pathway...... (LIF, LIFR, GP130), FGF pathway (bFGF, FGFR1, FGFR2), BMP pathway (BMP4), and downstream-activated genes (STAT3, c-Myc, c-Fos, and SMAD4). We discovered two different expression profiles exist in the developing porcine embryo. The D6 porcine blastocyst (inner cell mass stage) is devoid...

  5. ID4 promotes AR expression and blocks tumorigenicity of PC3 prostate cancer cells

    International Nuclear Information System (INIS)

    Komaragiri, Shravan Kumar; Bostanthirige, Dhanushka H.; Morton, Derrick J.; Patel, Divya; Joshi, Jugal; Upadhyay, Sunil; Chaudhary, Jaideep

    2016-01-01

    Deregulation of tumor suppressor genes is associated with tumorigenesis and the development of cancer. In prostate cancer, ID4 is epigenetically silenced and acts as a tumor suppressor. In normal prostate epithelial cells, ID4 collaborates with androgen receptor (AR) and p53 to exert its tumor suppressor activity. Previous studies have shown that ID4 promotes tumor suppressive function of AR whereas loss of ID4 results in tumor promoter activity of AR. Previous study from our lab showed that ectopic ID4 expression in DU145 attenuates proliferation and promotes AR expression suggesting that ID4 dependent AR activity is tumor suppressive. In this study, we examined the effect of ectopic expression of ID4 on highly malignant prostate cancer cell, PC3. Here we show that stable overexpression of ID4 in PC3 cells leads to increased apoptosis and decreased cell proliferation and migration. In addition, in vivo studies showed a decrease in tumor size and volume of ID4 overexpressing PC3 cells, in nude mice. At the molecular level, these changes were associated with increased androgen receptor (AR), p21, and AR dependent FKBP51 expression. At the mechanistic level, ID4 may regulate the expression or function of AR through specific but yet unknown AR co-regulators that may determine the final outcome of AR function. - Highlights: • ID4 expression induces AR expression in PC3 cells, which generally lack AR. • ID4 expression increased apoptosis and decreased cell proliferation and invasion. • Overexpression of ID4 reduces tumor growth of subcutaneous xenografts in vivo. • ID4 induces p21 and FKBP51 expression- co-factors of AR tumor suppressor activity.

  6. ID4 promotes AR expression and blocks tumorigenicity of PC3 prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Komaragiri, Shravan Kumar; Bostanthirige, Dhanushka H.; Morton, Derrick J.; Patel, Divya; Joshi, Jugal; Upadhyay, Sunil; Chaudhary, Jaideep, E-mail: jchaudhary@cau.edu

    2016-09-09

    Deregulation of tumor suppressor genes is associated with tumorigenesis and the development of cancer. In prostate cancer, ID4 is epigenetically silenced and acts as a tumor suppressor. In normal prostate epithelial cells, ID4 collaborates with androgen receptor (AR) and p53 to exert its tumor suppressor activity. Previous studies have shown that ID4 promotes tumor suppressive function of AR whereas loss of ID4 results in tumor promoter activity of AR. Previous study from our lab showed that ectopic ID4 expression in DU145 attenuates proliferation and promotes AR expression suggesting that ID4 dependent AR activity is tumor suppressive. In this study, we examined the effect of ectopic expression of ID4 on highly malignant prostate cancer cell, PC3. Here we show that stable overexpression of ID4 in PC3 cells leads to increased apoptosis and decreased cell proliferation and migration. In addition, in vivo studies showed a decrease in tumor size and volume of ID4 overexpressing PC3 cells, in nude mice. At the molecular level, these changes were associated with increased androgen receptor (AR), p21, and AR dependent FKBP51 expression. At the mechanistic level, ID4 may regulate the expression or function of AR through specific but yet unknown AR co-regulators that may determine the final outcome of AR function. - Highlights: • ID4 expression induces AR expression in PC3 cells, which generally lack AR. • ID4 expression increased apoptosis and decreased cell proliferation and invasion. • Overexpression of ID4 reduces tumor growth of subcutaneous xenografts in vivo. • ID4 induces p21 and FKBP51 expression- co-factors of AR tumor suppressor activity.

  7. Expression of C4.4A in precursor lesions of pulmonary adenocarcinoma and squamous cell carcinoma

    DEFF Research Database (Denmark)

    Jacobsen, Benedikte; Santoni-Rugiu, Eric; Illemann, Martin

    2012-01-01

    in precursor lesions of lung squamous cell carcinoma and adenocarcinoma was investigated by stainings with a specific anti-C4.4A antibody. In the transformation from normal bronchial epithelium to squamous cell carcinoma, C4.4A was weakly expressed in basal cell hyperplasia but dramatically increased...... in squamous metaplasia. This was confined to the cell membrane and sustained in dysplasia, carcinoma in situ, and the invasive carcinoma. The induction of C4.4A already at the stage of hyperplasia could indicate that it is a marker of very early squamous differentiation, which aligns well with our earlier...... finding that C4.4A expression levels do not provide prognostic information on the survival of squamous cell carcinoma patients. In the progression from normal alveolar epithelium to peripheral adenocarcinoma, we observed an unexpected, distinct cytoplasmic staining for C4.4A in a fraction of atypical...

  8. Characterization of NCAM expression and function in BT4C and BT4Cn glioma cells

    DEFF Research Database (Denmark)

    Andersson, A M; Moran, N; Gaardsvoll, H

    1991-01-01

    The neural cell adhesion molecule, NCAM, plays an important role in cell-cell adhesion. Therefore, we have studied NCAM expression in the glioma cell lines BT4C and BT4Cn. We demonstrate that the 2 cell lines differ in their metastatic ability; while BT4C cells have a very low capacity for produc...

  9. Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.

    Science.gov (United States)

    Zawadzki, Robert J; Zhang, Pengfei; Zam, Azhar; Miller, Eric B; Goswami, Mayank; Wang, Xinlei; Jonnal, Ravi S; Lee, Sang-Hyuck; Kim, Dae Yu; Flannery, John G; Werner, John S; Burns, Marie E; Pugh, Edward N

    2015-06-01

    Adaptive optics scanning laser ophthalmoscopy (AO-SLO) has recently been used to achieve exquisite subcellular resolution imaging of the mouse retina. Wavefront sensing-based AO typically restricts the field of view to a few degrees of visual angle. As a consequence the relationship between AO-SLO data and larger scale retinal structures and cellular patterns can be difficult to assess. The retinal vasculature affords a large-scale 3D map on which cells and structures can be located during in vivo imaging. Phase-variance OCT (pv-OCT) can efficiently image the vasculature with near-infrared light in a label-free manner, allowing 3D vascular reconstruction with high precision. We combined widefield pv-OCT and SLO imaging with AO-SLO reflection and fluorescence imaging to localize two types of fluorescent cells within the retinal layers: GFP-expressing microglia, the resident macrophages of the retina, and GFP-expressing cone photoreceptor cells. We describe in detail a reflective afocal AO-SLO retinal imaging system designed for high resolution retinal imaging in mice. The optical performance of this instrument is compared to other state-of-the-art AO-based mouse retinal imaging systems. The spatial and temporal resolution of the new AO instrumentation was characterized with angiography of retinal capillaries, including blood-flow velocity analysis. Depth-resolved AO-SLO fluorescent images of microglia and cone photoreceptors are visualized in parallel with 469 nm and 663 nm reflectance images of the microvasculature and other structures. Additional applications of the new instrumentation are discussed.

  10. The human complement inhibitor Sushi Domain-Containing Protein 4 (SUSD4) expression in tumor cells and infiltrating T cells is associated with better prognosis of breast cancer patients

    International Nuclear Information System (INIS)

    Englund, Emelie; Reitsma, Bart; King, Ben C.; Escudero-Esparza, Astrid; Owen, Sioned; Orimo, Akira; Okroj, Marcin; Anagnostaki, Lola; Jiang, Wen G.; Jirström, Karin; Blom, Anna M.

    2015-01-01

    The human Sushi Domain-Containing Protein 4 (SUSD4) was recently shown to function as a novel inhibitor of the complement system, but its role in tumor progression is unknown. Using immunohistochemistry and quantitative PCR, we investigated SUSD4 expression in breast cancer tissue samples from two cohorts. The effect of SUSD4 expression on cell migration and invasion was studied in vitro using two human breast cancer cell lines overexpressing SUSD4. Tissue stainings revealed that both tumor cells and tumor-infiltrating cells expressed SUSD4. The highest SUSD4 expression was detected in differentiated tumors with decreased rate of metastasis, and SUSD4 expression was associated with improved survival of the patients. Moreover, forced SUSD4 expression in human breast cancer cells attenuated their migratory and invasive traits in culture. SUSD4 expression also inhibited colony formation of human breast cancer cells cultured on carcinoma-associated fibroblasts. Furthermore, large numbers of SUSD4-expressing T cells in the tumor stroma associated with better overall survival of the breast cancer patients. Our findings indicate that SUSD4 expression in both breast cancer cells and T cells infiltrating the tumor-associated stroma is useful to predict better prognosis of breast cancer patients

  11. The human complement inhibitor Sushi Domain-Containing Protein 4 (SUSD4) expression in tumor cells and infiltrating T cells is associated with better prognosis of breast cancer patients.

    Science.gov (United States)

    Englund, Emelie; Reitsma, Bart; King, Ben C; Escudero-Esparza, Astrid; Owen, Sioned; Orimo, Akira; Okroj, Marcin; Anagnostaki, Lola; Jiang, Wen G; Jirström, Karin; Blom, Anna M

    2015-10-19

    The human Sushi Domain-Containing Protein 4 (SUSD4) was recently shown to function as a novel inhibitor of the complement system, but its role in tumor progression is unknown. Using immunohistochemistry and quantitative PCR, we investigated SUSD4 expression in breast cancer tissue samples from two cohorts. The effect of SUSD4 expression on cell migration and invasion was studied in vitro using two human breast cancer cell lines overexpressing SUSD4. Tissue stainings revealed that both tumor cells and tumor-infiltrating cells expressed SUSD4. The highest SUSD4 expression was detected in differentiated tumors with decreased rate of metastasis, and SUSD4 expression was associated with improved survival of the patients. Moreover, forced SUSD4 expression in human breast cancer cells attenuated their migratory and invasive traits in culture. SUSD4 expression also inhibited colony formation of human breast cancer cells cultured on carcinoma-associated fibroblasts. Furthermore, large numbers of SUSD4-expressing T cells in the tumor stroma associated with better overall survival of the breast cancer patients. Our findings indicate that SUSD4 expression in both breast cancer cells and T cells infiltrating the tumor-associated stroma is useful to predict better prognosis of breast cancer patients.

  12. Expression of programmed cell death protein 4 (PDCD4) and miR-21 in urothelial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Nicolas, E-mail: simplissimus@gmx.de [Department of Urology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Goeke, Friederike, E-mail: Friederike.goeke@ukb.uni-bonn.de [Department of Pathology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Splittstoesser, Vera, E-mail: Veri.sp@web.de [Department of Urology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Lankat-Buttgereit, Brigitte, E-mail: Lankatbu@staff.uni-marburg.de [Department of Internal Medicine, Philipps-University of Marburg, Baldingerstrasse, 35043 Marburg (Germany); Mueller, Stefan C., E-mail: Stefan.mueller@ukb.uni-bonn.de [Department of Urology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany); Ellinger, Joerg, E-mail: Joerg.ellinger@ukb.uni-bonn.de [Department of Urology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn (Germany)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer The tumor suppressor gene PDCD4 is down-regulated in many tumorous entities. Black-Right-Pointing-Pointer We investigate the impact of PDCD4 and its regulating factor miR-21 in urothelial carcinoma. Black-Right-Pointing-Pointer We confirm PDCD4 as a tumor suppressor gene and it could be a diagnostic marker for this tumor. -- Abstract: Background: We investigated the role of the programmed cell death 4 (PDCD4) tumor suppressor gene in specimens of transitional cell carcinoma and of healthy individuals. Methods: PDCD4 immunohistochemical expression was investigated in 294 cases in histologically proven transitional cell carcinoma in different tumorous stages (28 controls, 122 non-muscle invasive urothelial carcinoma, stages Tis-T1, 119 invasive transitional cell carcinoma stages T2-T4 and 25 metastases). MiR-21 expression, an important PDCD4 regulator, was assessed with real-time PCR analysis and showed inverse correlation to tissue PDCD4 expression. Results: Nuclear and cytoplasmatic PDCD4 immunostaining decreased significantly with histopathological progression of the tumor (p < 0001). Controls showed strong nuclear and cytoplasmatic immunohistochemical staining. MiR-21 up regulation in tissue corresponded to PDCD4 suppression. Conclusions: These data support a decisive role for PDCD4 down regulation in transitional cell carcinoma and confirm miR-21 as a negative regulator for PDCD4. Additionally, PDCD4 immunohistochemical staining turns out to be a possible diagnostic marker for transitional cell carcinoma.

  13. Expression of programmed cell death protein 4 (PDCD4) and miR-21 in urothelial carcinoma

    International Nuclear Information System (INIS)

    Fischer, Nicolas; Göke, Friederike; Splittstößer, Vera; Lankat-Buttgereit, Brigitte; Müller, Stefan C.; Ellinger, Jörg

    2012-01-01

    Highlights: ► The tumor suppressor gene PDCD4 is down-regulated in many tumorous entities. ► We investigate the impact of PDCD4 and its regulating factor miR-21 in urothelial carcinoma. ► We confirm PDCD4 as a tumor suppressor gene and it could be a diagnostic marker for this tumor. -- Abstract: Background: We investigated the role of the programmed cell death 4 (PDCD4) tumor suppressor gene in specimens of transitional cell carcinoma and of healthy individuals. Methods: PDCD4 immunohistochemical expression was investigated in 294 cases in histologically proven transitional cell carcinoma in different tumorous stages (28 controls, 122 non-muscle invasive urothelial carcinoma, stages Tis-T1, 119 invasive transitional cell carcinoma stages T2–T4 and 25 metastases). MiR-21 expression, an important PDCD4 regulator, was assessed with real-time PCR analysis and showed inverse correlation to tissue PDCD4 expression. Results: Nuclear and cytoplasmatic PDCD4 immunostaining decreased significantly with histopathological progression of the tumor (p < 0001). Controls showed strong nuclear and cytoplasmatic immunohistochemical staining. MiR-21 up regulation in tissue corresponded to PDCD4 suppression. Conclusions: These data support a decisive role for PDCD4 down regulation in transitional cell carcinoma and confirm miR-21 as a negative regulator for PDCD4. Additionally, PDCD4 immunohistochemical staining turns out to be a possible diagnostic marker for transitional cell carcinoma.

  14. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells

    DEFF Research Database (Denmark)

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe

    2009-01-01

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell......-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However......, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell...

  15. Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach.

    Directory of Open Access Journals (Sweden)

    Jordan R Plews

    2010-12-01

    Full Text Available Several methods have been used to induce somatic cells to re-enter the pluripotent state. Viral transduction of reprogramming genes yields higher efficiency but involves random insertions of viral sequences into the human genome. Although induced pluripotent stem (iPS cells can be obtained with the removable PiggyBac transposon system or an episomal system, both approaches still use DNA constructs so that resulting cell lines need to be thoroughly analyzed to confirm they are free of harmful genetic modification. Thus a method to change cell fate without using DNA will be very useful in regenerative medicine.In this study, we synthesized mRNAs encoding OCT4, SOX2, cMYC, KLF4 and SV40 large T (LT and electroporated them into human fibroblast cells. Upon transfection, fibroblasts expressed these factors at levels comparable to, or higher than those in human embryonic stem (ES cells. Ectopically expressed OCT4 localized to the cell nucleus within 4 hours after mRNA introduction. Transfecting fibroblasts with a mixture of mRNAs encoding all five factors significantly increased the expression of endogenous OCT4, NANOG, DNMT3β, REX1 and SALL4. When such transfected fibroblasts were also exposed to several small molecules (valproic acid, BIX01294 and 5'-aza-2'-deoxycytidine and cultured in human embryonic stem cell (ES medium they formed small aggregates positive for alkaline phosphatase activity and OCT4 protein within 30 days.Our results demonstrate that mRNA transfection can be a useful approach to precisely control the protein expression level and short-term expression of reprogramming factors is sufficient to activate pluripotency genes in differentiated cells.

  16. Intracellular expression of toll-like receptor 4 in neuroblastoma cells and their unresponsiveness to lipopolysaccharide

    International Nuclear Information System (INIS)

    Hassan, Ferdaus; Islam, Shamima; Tumurkhuu, Gantsetseg; Naiki, Yoshikazu; Koide, Naoki; Mori, Isamu; Yoshida, Tomoaki; Yokochi, Takashi

    2006-01-01

    Recently it has been reported that, toll-like receptors (TLRs) are expressed on a series of tumor cells, such as colon cancer, breast cancer, prostate cancer, melanoma and lung cancer. Although some cancer cells like melanoma cells are known to respond to lipopolysaccharide (LPS) via TLR4, not all cancer cells are positive for TLR4. There is little information on the expression and function of TLR4 in neuroblastoma cells. In this study, we investigated the expression of TLR4 in human neuroblastoma NB-1 cell line. Expression and localization of TLR4 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometric analysis, respectively. Activation of nuclear factor (NF)-κB by LPS was detected by degradation of IκB-α and NF-κB luciferase assay. Activation and expression of mitogen-activated protein (MAP) kinase and interferon regulatory factor (IRF)-3 was detected by immunoblot analysis. Human NB-1 neuroblastoma cells expressed intracellular form of TLR4, but not the cell surface form. Further, NB-1 cells express CD14, MD2 and MyD88, which are required for LPS response. However, LPS did not significantly induce NF-κB activation in NB-1 cells although it slightly degraded IκB-α. NB-1 cells expressed no IRF-3, which plays a pivotal role on the MyD88-independent pathway of LPS signaling. Collectively, NB-1 cells are capable to avoid their response to LPS. Although human NB-1 neuroblastoma cells possessed all the molecules required for LPS response, they did not respond to LPS. It might be responsible for intracellular expression of TLR4 or lack of IRF-3

  17. Knockdown of p53 suppresses Nanog expression in embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Abdelalim, Essam Mohamed, E-mail: emohamed@qf.org.qa [Qatar Biomedical Research Institute, Qatar Foundation, Doha 5825 (Qatar); Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan); Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia (Egypt); Tooyama, Ikuo [Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192 (Japan)

    2014-01-10

    Highlights: •We investigate the role of p53 in ESCs in the absence of DNA damage. •p53 knockdown suppresses ESC proliferation. •p53 knockdown downregulates Nanog expression. •p53 is essential for mouse ESC self-renewal. -- Abstract: Mouse embryonic stem cells (ESCs) express high levels of cytoplasmic p53. Exposure of mouse ESCs to DNA damage leads to activation of p53, inducing Nanog suppression. In contrast to earlier studies, we recently reported that chemical inhibition of p53 suppresses ESC proliferation. Here, we confirm that p53 signaling is involved in the maintenance of mouse ESC self-renewal. RNA interference-mediated knockdown of p53 induced downregulation of p21 and defects in ESC proliferation. Furthermore, p53 knockdown resulted in a significant downregulation in Nanog expression at 24 and 48 h post-transfection. p53 knockdown also caused a reduction in Oct4 expression at 48 h post-transfection. Conversely, exposure of ESCs to DNA damage caused a higher reduction of Nanog expression in control siRNA-treated cells than in p53 siRNA-treated cells. These data show that in the absence of DNA damage, p53 is required for the maintenance of mouse ESC self-renewal by regulating Nanog expression.

  18. Identification of the endogenous key substrates of the human organic cation transporter OCT2 and their implication in function of dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Dirk Taubert

    Full Text Available BACKGROUND: The etiology of neurodegenerative disorders, such as the accelerated loss of dopaminergic neurons in Parkinson's disease, is unclear. Current hypotheses suggest an abnormal function of the neuronal sodium-dependent dopamine transporter DAT to contribute to cell death in the dopaminergic system, but it has not been investigated whether sodium-independent amine transporters are implicated in the pathogenesis of Parkinson's disease. METHODOLOGY/PRINCIPAL FINDINGS: By the use of a novel tandem-mass spectrometry-based substrate search technique, we have shown that the dopaminergic neuromodulators histidyl-proline diketopiperazine (cyclo(his-pro and salsolinol were the endogenous key substrates of the sodium-independent organic cation transporter OCT2. Quantitative real-time mRNA expression analysis revealed that OCT2 in contrast to its related transporters was preferentially expressed in the dopaminergic regions of the substantia nigra where it colocalized with DAT and tyrosine hydroxylase. By assessing cell viability with the MTT reduction assay, we found that salsolinol exhibited a selective toxicity toward OCT2-expressing cells that was prevented by cyclo(his-pro. A frequent genetic variant of OCT2 with the amino acid substitution R400C reduced the transport efficiency for the cytoprotective cyclo(his-pro and thereby increased the susceptibility to salsolinol-induced cell death. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that the OCT2-regulated interplay between cyclo(his-pro and salsolinol is crucial for nigral cell integrity and that a shift in transport efficiency may impact the risk of Parkinson's disease.

  19. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells.

    Science.gov (United States)

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe; Sosa-Pineda, Beatriz; Dussaud, Sébastien; Billestrup, Nils; Madsen, Ole D; Serup, Palle; Heimberg, Harry; Mansouri, Ahmed

    2009-08-07

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell mass and curing diabetes in animals that have been chemically depleted of beta cells.

  20. IL-2 and IL-15 regulate CD154 expression on activated CD4 T cells

    DEFF Research Database (Denmark)

    Skov, S; Bonyhadi, M; Odum, Niels

    2000-01-01

    The cellular and humoral immune system is critically dependent upon CD40-CD154 (CD40 ligand) interactions between CD40 expressed on B cells, macrophages, and dendritic cells, and CD154 expressed primarily on CD4 T cells. Previous studies have shown that CD154 is transiently expressed on CD4 T cells...... after T cell receptor engagement in vitro. However, we found that stimulation of PBLs with maximal CD28 costimulation, using beads coupled to Abs against CD3 and CD28, led to a very prolonged expression of CD154 on CD4 cells (>4 days) that was dependent upon autocrine IL-2 production. Previously...... activated CD4 T cells could respond to IL-2, or the related cytokine IL-15, by de novo CD154 production and expression without requiring an additional signal from CD3 and CD28. These results provide evidence that CD28 costimulation of CD4 T cells, through autocrine IL-2 production, maintains high levels...

  1. Analysis of STAT4 expression in cutaneous T-cell lymphoma (CTCL) patients and patient-derived cell lines

    DEFF Research Database (Denmark)

    Litvinov, Ivan V; Cordeiro, Brendan; Fredholm, Simon Mayland

    2014-01-01

    Deregulation of STAT signaling has been implicated in the pathogenesis for a variety of cancers, including CTCL. Recent reports indicate that loss of STAT4 expression is an important prognostic marker for CTCL progression and is associated with the acquisition of T helper 2 cell phenotype......R-155 leads to upregulation in STAT4 expression in MyLa cells. In summary, our results suggest that loss of STAT4 expression and associated switch to Th2 phenotype during Mycosis Fungoides progression may be driven via aberrant histone acetylation and/or upregulation of oncogenic miR-155 microRNA....... by malignant cells. However, little is known about the molecular mechanism behind the downregulation of STAT4 in this cancer. In the current work we test the expression of STAT4 and STAT6 via RT-PCR and/or Western Blot in CTCL lesional skin samples and in immortalized patient-derived cell lines...

  2. Modulation of OCT3 expression by stress, and antidepressant-like activity of decynium-22 in an animal model of depression.

    Science.gov (United States)

    Marcinkiewcz, C A; Devine, D P

    2015-04-01

    The organic cation transporter-3 (OCT3) is a glucocorticoid-sensitive uptake mechanism that has been shown to regulate the bioavailability of monoamines in brain regions that are implicated in the pathophysiology of depression. In the present study, the relative impacts of acute stress alone and acute stress with a history of repeated stress (chronic+acute) were evaluated in two strains of rats: the stress-vulnerable Wistar-Kyoto (WKY) strain and the somewhat more stress-resilient Long-Evans (LE) strain. OCT3 mRNA was significantly upregulated in the hippocampus of LE rats 2h after exposure to acute restraint stress, but not in acutely-restrained rats with a history of repeated social defeat stress. WKY rats exhibited a very different pattern. OCT3 mRNA was unaffected by acute restraint stress alone but was robustly upregulated after repeated+acute stress. There was also a corresponding increase in cytosolic OCT3 protein following repeated+acute stress in WKY rats 3h after presentation of the acute stressor. These results are consistent with the hypothesis that altered expression of the OCT3 may play a role in stress coping, and strain differences in regulation of this expression may contribute to differences in physiological and behavioral responses to stress. Furthermore, the OCT3 inhibitor, decynium 22 (1 and 10μg/kg, i.p.) reduced immobility of WKY rats, but not that of LE rats, in the forced swim test, suggesting that blockade of the OCT3 has antidepressant-like effects. Since WKY rats also appear to be resistant to the behavioral effects of traditional antidepressants, this also suggests that OCT3 antagonism may be an alternative therapeutic strategy for the treatment of depression in individuals who do not respond to conventional antidepressants. Published by Elsevier Inc.

  3. Regulation of semaphorin 4D expression and cell proliferation of ovarian cancer by ERalpha and ERbeta

    Directory of Open Access Journals (Sweden)

    Y. Liu

    Full Text Available Ovarian cancer is one of the most common malignancies in women. Semaphorin 4D (sema 4D is involved in the progress of multiple cancers. In the presence of estrogen-like ligands, estrogen receptors (ERα and ERβ participate in the progress of breast and ovarian cancers by transcriptional regulation. The aim of the study was to investigate the role of sema 4D and elucidate the regulatory pattern of ERα and ERβ on sema 4D expression in ovarian cancers. Sema 4D levels were up-regulated in ovarian cancer SKOV-3 cells. Patients with malignant ovarian cancers had significantly higher sema 4D levels than controls, suggesting an oncogene role of sema 4D in ovarian cancer. ERα expressions were up-regulated in SKOV-3 cells compared with normal ovarian IOSE80 epithelial cells. Conversely, down-regulation of ERβ was observed in SKOV-3 cells. Forced over-expression of ERα and ERβ in SKOV-3 cells was manipulated to establish ERα+ and ERβ+ SKOV-3 cell lines. Incubation of ERα+ SKOV-3 cells with ERs agonist 17β-estradiol (E2 significantly enhanced sema 4D expression and rate of cell proliferation. Incubated with E2, ERβ+ SKOV-3 cells showed lower sema 4D expression and cell proliferation. Blocking ERα and ERβ activities with ICI182-780 inhibitor, sema 4D expressions and cell proliferation of ERα+ and ERβ+ SKOV-3 cells were recovered to control levels. Taken together, the data showed that sema 4D expression was positively correlated with the progress of ovarian cancer. ERα positively regulated sema 4D expression and accelerated cell proliferation. ERβ negatively regulated sema 4D expression and inhibited cell multiplication.

  4. Human rotavirus specific T cells: quantification by ELISPOT and expression of homing receptors on CD4+ T cells

    International Nuclear Information System (INIS)

    Rojas, Olga Lucia; Gonzalez, Ana Maria; Gonzalez, Rosabel; Perez-Schael, Irene; Greenberg, Harry B.; Franco, Manuel A.; Angel, Juana

    2003-01-01

    Using an intracellular cytokine assay, we recently showed that the frequencies of rotavirus (RV)-specific CD4 + and CD8 + T cells secreting INFγ, circulating in RV infected and healthy adults, are very low compared to the frequencies of circulating cytomegalovirus (CMV) reactive T cells in comparable individuals. In children with acute RV infection, these T cells were barely or not detectable. In the present study, an ELISPOT assay enabled detection of circulating RV-specific INFγ-secreting cells in children with RV diarrhea but not in children with non-RV diarrhea without evidence of a previous RV infection. Using microbead-enriched CD4 + and CD8 + T cell subsets, IFNγ-secreting RV-specific CD8 + but not CD4 + T cells were detected in recently infected children. Using the same approach, both CD4 + and CD8 + RV-specific T cells were detected in healthy adults. Furthermore, stimulation of purified subsets of PBMC that express lymphocyte homing receptors demonstrated that RV-specific INFγ-secreting CD4 + T cells from adult volunteers preferentially express the intestinal homing receptor α4β7, but not the peripheral lymph node homing receptor L-selectin. In contrast, CMV-specific INFγ-secreting CD4 + T cells preferentially express L-selectin but not α4β7. These results suggest that the expression of homing receptors on virus-specific T cells depends on the organ where these cells were originally stimulated and that their capacity to secrete INFγ is independent of the expression of these homing receptors

  5. Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing truncated human CD4 as surface marker.

    Science.gov (United States)

    David, Robert; Groebner, Michael; Franz, Wolfgang-Michael

    2005-04-01

    Embryonic stem (ES) cells offer great potential in regenerative medicine and tissue engineering. Clinical applications are still hampered by the lack of protocols for gentle, high-yield isolation of specific cell types for transplantation expressing no immunogenic markers. We describe labeling of stably transfected ES cells expressing a human CD4 molecule lacking its intracellular domain (DeltaCD4) under control of the phosphoglycerate kinase promoter for magnetic cell sorting (MACS). To track the labeled ES cells, we fused DeltaCD4 to an intracellular enhanced green fluorescent protein domain (DeltaCD4EGFP). We showed functionality of the membrane-bound fluorescent fusion protein and its suitability for MACS leading to purities greater than 97%. Likewise, expression of DeltaCD4 yielded up to 98.5% positive cells independently of their differentiation state. Purities were not limited by the initial percentage of DeltaCD4(+) cells, ranging from 0.6%-16%. The viability of MACS-selected cells was demonstrated by reaggregation and de novo formation of embryoid bodies developing all three germ layers. Thus, expression of DeltaCD4 in differentiated ES cells may enable rapid, high-yield purification of a desired cell type for tissue engineering and transplantation studies.

  6. Presumed pluripotency markers UTF-1 and REX-1 are expressed in human adult testes and germ cell neoplasms

    DEFF Research Database (Denmark)

    Kristensen, D.M.; Nielsen, J.E.; Skakkebaek, N.E.

    2008-01-01

    NANOG and OCT-3/4, UTF-1 and REX-1 are expressed throughout human testes development. The expression pattern indicated that UTF-1 plays a possible role in spermatogonial self-renewal, whereas expression of REX-1 in meiotic cells from both testes and ovary indicate a role in meiosis. UFT-1 and REX-1...... and REX-1 during human gonadal development and in TGCT. METHODS: Expression of UTF-1 and REX-1 was studied in 52 specimens from human gonadal development and in 86 samples from TGCT. RESULTS: UTF-1 and REX-1 were expressed throughout male gonadal development. In the mature testis, UTF-1 was expressed...

  7. Intracellular expression of toll-like receptor 4 in neuroblastoma cells and their unresponsiveness to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Mori Isamu

    2006-12-01

    Full Text Available Abstract Background Recently it has been reported that, toll-like receptors (TLRs are expressed on a series of tumor cells, such as colon cancer, breast cancer, prostate cancer, melanoma and lung cancer. Although some cancer cells like melanoma cells are known to respond to lipopolysaccharide (LPS via TLR4, not all cancer cells are positive for TLR4. There is little information on the expression and function of TLR4 in neuroblastoma cells. In this study, we investigated the expression of TLR4 in human neuroblastoma NB-1 cell line. Methods Expression and localization of TLR4 were detected by reverse transcription-polymerase chain reaction (RT-PCR and flow cytometric analysis, respectively. Activation of nuclear factor (NF-κB by LPS was detected by degradation of IκB-α and NF-κB luciferase assay. Activation and expression of mitogen-activated protein (MAP kinase and interferon regulatory factor (IRF-3 was detected by immunoblot analysis. Results Human NB-1 neuroblastoma cells expressed intracellular form of TLR4, but not the cell surface form. Further, NB-1 cells express CD14, MD2 and MyD88, which are required for LPS response. However, LPS did not significantly induce NF-κB activation in NB-1 cells although it slightly degraded IκB-α. NB-1 cells expressed no IRF-3, which plays a pivotal role on the MyD88-independent pathway of LPS signaling. Collectively, NB-1 cells are capable to avoid their response to LPS. Conclusion Although human NB-1 neuroblastoma cells possessed all the molecules required for LPS response, they did not respond to LPS. It might be responsible for intracellular expression of TLR4 or lack of IRF-3.

  8. YKL-40 is differentially expressed in human embryonic stem cells and in cell progeny of the three germ layers

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Johansen, Julia S; Larsen, Lars A

    2012-01-01

    oxygen tension, in culture medium with or without basic fibroblast growth factor, and on feeder layers comprising mouse embryonic fibroblasts or human foreskin fibroblasts to evaluate whether hESCs and their progeny produced YKL-40 and to characterize YKL-40 expression during differentiation. Secreted......The secreted glycoprotein YKL-40 participates in cell differentiation, inflammation, and cancer progression. High YKL-40 expression is reported during early human development, but its functions are unknown. Six human embryonic stem cell (hESC) lines were cultured in an atmosphere of low or high...... YKL-40 protein and YKL-40 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative RT-PCR. Serial-sectioned colonies were stained for YKL-40 protein and for pluripotent hESC (OCT4, NANOG) and germ layer (HNF-3ß, PDX1, CD34, p63, nestin, PAX6) markers. Double...

  9. Induction of chemokine receptor CXCR4 expression by transforming growth factor-β1 in human basal cell carcinoma cells.

    Science.gov (United States)

    Chu, Chia-Yu; Sheen, Yi-Shuan; Cha, Shih-Ting; Hu, Yeh-Fang; Tan, Ching-Ting; Chiu, Hsien-Ching; Chang, Cheng-Chi; Chen, Min-Wei; Kuo, Min-Liang; Jee, Shiou-Hwa

    2013-11-01

    Higher CXCR4 expression enhances basal cell carcinoma (BCC) invasion and angiogenesis. The underlying mechanism of increased CXCR4 expression in invasive BCC is still not well understood. To investigate the mechanisms involved in the regulation of CXCR4 expression in invasive BCC. We used qRT-PCR, RT-PCR, Western blot, and flow cytometric analyses to examine different CXCR4 levels among the clinical samples, co-cultured BCC cells and BCC cells treated with recombinant transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF). Immunohistochemical studies were used to demonstrate the correlation between TGF-β1 and CXCR4 expressions. The signal transduction pathway and transcriptional regulation were confirmed by treatments with chemical inhibitors, neutralizing antibodies, or short interfering RNAs, as well as luciferase reporter activity. Invasive BCC has higher TGF-β1 and CTGF levels compared to non-invasive BCC. Non-contact dermal fibroblasts co-culture with human BCC cells also increases the expression of CXCR4 in BCC cells. Treatment with recombinant human TGF-β1, but not CTGF, enhanced the CXCR4 levels in time- and dose-dependent manners. The protein level and surface expression of CXCR4 in human BCC cells was increased by TGF-β1 treatment. TGF-β1 was intensely expressed in the surrounding fibroblasts of invasive BCC and was positively correlated with the CXCR4 expression of BCC cells. The transcriptional regulation of CXCR4 by TGF-β1 is mediated by its binding to the TGF-β receptor II and phosphorylation of the extracellular signal-related kinase 1/2 (ERK1/2)-ETS-1 pathway. TGF-β1 induces upregulation of CXCR4 in human BCC cells by phosphorylation of ERK1/2-ETS-1 pathway. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Differential Expression of Ccn4 and Other Genes Between Metastatic and Non-metastatic EL4 Mouse Lymphoma Cells.

    Science.gov (United States)

    Chahal, Manpreet S; Ku, H Teresa; Zhang, Zhihong; Legaspi, Christian M; Luo, Angela; Hopkins, Mandi M; Meier, Kathryn E

    Previous work characterized variants of the EL4 murine lymphoma cell line. Some are non-metastatic, and others metastatic, in syngenic mice. In addition, metastatic EL4 cells were stably transfected with phospholipase D2 (PLD2), which further enhanced metastasis. Microarray analyses of mRNA expression was performed for non-metastatic, metastatic, and PLD2-expressing metastatic EL4 cells. Many differences were observed between non-metastatic and metastatic cell lines. One of the most striking new findings was up-regulation of mRNA for the matricellular protein WNT1-inducible signaling pathway protein 1 (CCN4) in metastatic cells; increased protein expression was verified by immunoblotting and immunocytochemistry. Other differentially expressed genes included those for reproductive homeobox 5 (Rhox5; increased in metastatic) and cystatin 7 (Cst7; decreased in metastatic). Differences between PLD2-expressing and parental cell lines were limited but included the signaling proteins Ras guanyl releasing protein 1 (RGS18; increased with PLD2) and suppressor of cytokine signaling 2 (SOCS2; decreased with PLD2). The results provide insights into signaling pathways potentially involved in conferring metastatic ability on lymphoma cells. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  11. CD52 expression on CD4+ T cells in HIV-positive individuals on cART

    DEFF Research Database (Denmark)

    Vojdeman, Fie Juhl; Gaardbo, Julie Christine; Hartling, Hans Jakob

    2018-01-01

    BACKGROUND: Human immune defect virus (HIV) persists in a latent state in quiescent CD4+ T cells preventing eradication of HIV. CD52 is a surface molecule modulated by HIV. We aimed at examining factors related to CD52 expression on CD4+ T cells in HIV-positive individuals and the impact...... of initiation of combination antiretroviral therapy (cART). METHODS: Peripheral blood mononuclear cells (PBMC) from 18 HIV-positive individuals and 10 uninfected age and gender matched controls were examined by flow cytometry for CD38 and CD52 expression on CD4+ T cells. Stimulation assays were performed on 8...... healthy blood donors to determine a cut-off for CD52 expression. RESULTS: All examined CD4+ T cells expressed CD52. However, both CD4+ T cells with higher (CD52++) and with lower CD52 expression (CD52dim) were found in HIV-positive individuals compared to uninfected controls. Two % CD52dim cells defined...

  12. Sal-like 4 (SALL4) suppresses CDH1 expression and maintains cell dispersion in basal-like breast cancer.

    Science.gov (United States)

    Itou, Junji; Matsumoto, Yoshiaki; Yoshikawa, Kiyotsugu; Toi, Masakazu

    2013-09-17

    In cell cultures, the dispersed phenotype is indicative of the migratory ability. Here we characterized Sal-like 4 (SALL4) as a dispersion factor in basal-like breast cancer. Our shRNA-mediated SALL4 knockdown system and SALL4 overexpression system revealed that SALL4 suppresses the expression of adhesion gene CDH1, and positively regulates the CDH1 suppressor ZEB1. Cell behavior analyses showed that SALL4 suppresses intercellular adhesion and maintains cell motility after cell-cell interaction and cell division, which results in the dispersed phenotype. Our findings indicate that SALL4 functions to suppress CDH1 expression and to maintain cell dispersion in basal-like breast cancer. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Regulation and Gene Expression Profiling of NKG2D Positive Human Cytomegalovirus-Primed CD4+ T-Cells

    Science.gov (United States)

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4+ T-cells, however recently a subset of NKG2D+ CD4+ T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D+ CD4+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D+ CD4+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D+ CD4+ T-cells, generated from HCMV-primed CD4+ T-cells. We show that the HCMV-primed NKG2D+ CD4+ T-cells possess a higher differentiated phenotype than the NKG2D– CD4+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4+ T-cells, whereas it is produced de novo in resting CD4+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D+ CD4+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression. PMID:22870231

  14. Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells.

    Directory of Open Access Journals (Sweden)

    Helle Jensen

    Full Text Available NKG2D is a stimulatory receptor expressed by natural killer (NK cells, CD8(+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4(+ T-cells, however recently a subset of NKG2D(+ CD4(+ T-cells has been found, which is specific for human cytomegalovirus (HCMV. This particular subset of HCMV-specific NKG2D(+ CD4(+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D(+ CD4(+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4(+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA to investigate the gene expression profile of NKG2D(+ CD4(+ T-cells, generated from HCMV-primed CD4(+ T-cells. We show that the HCMV-primed NKG2D(+ CD4(+ T-cells possess a higher differentiated phenotype than the NKG2D(- CD4(+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4(+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4(+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4(+ T-cells, whereas it is produced de novo in resting CD4(+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+ CD4(+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression.

  15. CD4+ Primary T Cells Expressing HCV-Core Protein Upregulate Foxp3 and IL-10, Suppressing CD4 and CD8 T Cells

    Science.gov (United States)

    Aguado, Enrique; Garcia-Cozar, Francisco

    2014-01-01

    Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127lowPD-1highTIM-3high regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein. PMID:24465502

  16. CD4+ primary T cells expressing HCV-core protein upregulate Foxp3 and IL-10, suppressing CD4 and CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Cecilia Fernandez-Ponce

    Full Text Available Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127(lowPD-1(highTIM-3(high regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein.

  17. Cysteinyl leukotrienes C4 and D4 downregulate human mast cell expression of toll-like receptors 1 through 7.

    Science.gov (United States)

    Karpov, V; Ilarraza, R; Catalli, A; Kulka, M

    2018-01-01

    Cysteinyl leukotrienes (CysLT) are potent inflammatory lipid molecules that mediate some of the pathophysiological responses associated with asthma such as bronchoconstriction, vasodilation and increased microvascular permeability. As a result, CysLT receptor antagonists (LRA), such as montelukast, have been used to effectively treat patients with asthma. We have recently shown that mast cells are necessary modulators of innate immune responses to bacterial infection and an important component of this innate immune response may involve the production of CysLT. However, the effect of LRA on innate immune receptors, particularly on allergic effector cells, is unknown. This study determined the effect of CysLT on toll-like receptor (TLR) expression by the human mast cell line LAD2. Real-time PCR analysis determined that LTC4, LTD4 and LTE4 downregulated mRNA expression of several TLR. Specifically in human CD34+-derived human mast cells (HuMC), LTC4 inhibited expression of TLR1, 2, 4, 5, 6 and 7 while LTD4 inhibited expression of TLR1-7. Montelukast blocked LTC4-mediated downregulation of all TLR, suggesting that these effects were mediated by activation of the CysLT1 receptor (CysLT1R). Flow cytometry analysis confirmed that LTC4 downregulated surface expression of TLR2 which was blocked by montelukast. These data show that CysLT can modulate human mast cell expression of TLR and that montelukast may be beneficial for innate immune responses mediated by mast cells.

  18. Establishment of cell lines with rat spermatogonial stem cell characteristics

    NARCIS (Netherlands)

    van Pelt, Ans M. M.; Roepers-Gajadien, Hermien L.; Gademan, Iris S.; Creemers, Laura B.; de Rooij, Dirk G.; van Dissel-Emiliani, Federica M. F.

    2002-01-01

    Spermatogonial cell lines were established by transfecting a mixed population of purified rat A(s) (stem cells), A(pr) and A(al) spermatogonia with SV40 large T antigen. Two cell lines were characterized and found to express Hsp90alpha and oct-4, specific markers for germ cells and A spermatogonia,

  19. TGF-beta1 expression in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Farmer, John T; Weigent, Douglas A

    2006-03-01

    Our previous studies show that growth hormone overexpression (GHo) upregulates the expression of the IGF-1R and IGF-2R resulting in the protection of the EL4 lymphoma cell line from apoptosis. In this study, we report that GHo also increases TGF-beta1 protein expression measured by luciferase promoter assay, Western analysis, and ELISA. Further, the data show that antibody to TGF-betaR2 decreases TGF-beta1 promoter activity to the level of vector alone control cells. GHo cells treated with (125)I-rh-latent TGF-beta1 showed increased activation of latent TGF-beta1 as measured by an increase in the active 24kDa, TGF-beta1 compared to vector alone control cells. The ability of endogenous GH to increase TGF-beta1 expression is blocked in EL4 cells by antisense but not sense oligodeoxynucleotides or in cells cultured with antibody to growth hormone (GH). The data suggest that endogenous GH may protect from apoptosis through the IGF-1R receptor while limiting cellular growth through increased expression and activation of TGF-beta1.

  20. Crystal Structure of the Dimeric Oct6 (Pou3fl) POU Domain Bound to Palindromic MORE DNA

    Energy Technology Data Exchange (ETDEWEB)

    R Jauch; S Choo; C Ng; P Kolatkar

    2011-12-31

    POU domains (named after their identification in Pit1, Oct1 unc86) are found in around 15 transcription factors encoded in mammalian genomes many of which feature prominently as key regulators at development bifurcations. For example, the POU III class Octamer binding protein 6 (Oct6) is expressed in embryonic stem cells and during neural development and drives the differentia5tion of myelinated cells in the central and peripheral nervous system. Defects in oct6 expression levels are linked to neurological disorders such as schizophrenia. POU proteins contain a bi-partite DNA binding domain that assembles on various DNA motifs with differentially configured subdomains. Intriguingly, alternative configurations of POU domains on different DNA sites were shown to affect the subsequent recruitment of transcriptional coactivators. Namely, binding of Oct1 to a Palindromic Oct-factor Recognition Element (PORE) was shown to facilitate the recruitment of the OBF1 coactivator whereas More of PORE (MORE) bound Oct1 does not. Moreover, Pit1 was shown to recruit the corepressor N-CoR only when bound to a variant MORE motif with a 2 bp half-site spacing. Therefore, POU proteins are seen as a paradigm for DNA induced allosteric effects on transcription factors modulating their regulatory potential. However, a big unresolved conundrum for the POU class and for most if not all other transcription factor classes is how highly similar proteins regulate different sets of genes causing fundamentally different biological responses. Ultimately, there must be subtle features enabling those factors to engage in contrasting molecular interactions in the cell. Thus, the dissection of the molecular details of the transcription-DNA recognition in general, and the formation of multimeric regulatory complexes, in particular, is highly desirable. To contribute to these efforts they solved the 2.05 {angstrom} crystal structure of Oct6 bound as a symmetrical homodimer to palindromic MORE DNA.

  1. Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes

    International Nuclear Information System (INIS)

    Pascal, Laura E; Liu, Alvin Y; Vêncio, Ricardo ZN; Page, Laura S; Liebeskind, Emily S; Shadle, Christina P; Troisch, Pamela; Marzolf, Bruz; True, Lawrence D; Hood, Leroy E

    2009-01-01

    Prostate cancer cells in primary tumors have been typed CD10 - /CD13 - /CD24 hi /CD26 + /CD38 lo /CD44 - /CD104 - . This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure. CD26 + cancer cells were isolated from Gleason 3+3 (G3) and Gleason 4+4 (G4) tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells. The G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines. Genes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types

  2. Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Dhananjay M Nawandar

    2015-10-01

    Full Text Available Epstein-Barr virus (EBV is a human herpesvirus associated with B-cell and epithelial cell malignancies. EBV lytically infects normal differentiated oral epithelial cells, where it causes a tongue lesion known as oral hairy leukoplakia (OHL in immunosuppressed patients. However, the cellular mechanism(s that enable EBV to establish exclusively lytic infection in normal differentiated oral epithelial cells are not currently understood. Here we show that a cellular transcription factor known to promote epithelial cell differentiation, KLF4, induces differentiation-dependent lytic EBV infection by binding to and activating the two EBV immediate-early gene (BZLF1 and BRLF1 promoters. We demonstrate that latently EBV-infected, telomerase-immortalized normal oral keratinocyte (NOKs cells undergo lytic viral reactivation confined to the more differentiated cell layers in organotypic raft culture. Furthermore, we show that endogenous KLF4 expression is required for efficient lytic viral reactivation in response to phorbol ester and sodium butyrate treatment in several different EBV-infected epithelial cell lines, and that the combination of KLF4 and another differentiation-dependent cellular transcription factor, BLIMP1, is highly synergistic for inducing lytic EBV infection. We confirm that both KLF4 and BLIMP1 are expressed in differentiated, but not undifferentiated, epithelial cells in normal tongue tissue, and show that KLF4 and BLIMP1 are both expressed in a patient-derived OHL lesion. In contrast, KLF4 protein is not detectably expressed in B cells, where EBV normally enters latent infection, although KLF4 over-expression is sufficient to induce lytic EBV reactivation in Burkitt lymphoma cells. Thus, KLF4, together with BLIMP1, plays a critical role in mediating lytic EBV reactivation in epithelial cells.

  3. Differential Expression of Ccn4 and Other Genes Between Metastatic and Non-metastatic EL4 Mouse Lymphoma Cells

    OpenAIRE

    S. CHAHAL, MANPREET; TERESA KU, H.; ZHANG, ZHIHONG; M. LEGASPI, CHRISTIAN; LUO, ANGELA; M. HOPKINS, MANDI; E. MEIER, KATHRYN

    2016-01-01

    Background: Previous work characterized variants of the EL4 murine lymphoma cell line. Some are non-metastatic, and others metastatic, in syngenic mice. In addition, metastatic EL4 cells were stably transfected with phospholipase D2 (PLD2), which further enhanced metastasis. Materials and Methods: Microarray analyses of mRNA expression was performed for non-metastatic, metastatic, and PLD2-expressing metastatic EL4 cells. Results: Many differences were observed between non-metastatic and meta...

  4. Increased expression of the regulatory T cell-associated marker CTLA-4 in bovine leukemia virus infection.

    Science.gov (United States)

    Suzuki, Saori; Konnai, Satoru; Okagawa, Tomohiro; Ikebuchi, Ryoyo; Nishimori, Asami; Kohara, Junko; Mingala, Claro N; Murata, Shiro; Ohashi, Kazuhiko

    2015-02-15

    Regulatory T cells (Tregs) play a critical role in the maintenance of the host's immune system. Tregs, particularly CD4(+)CD25(+)Foxp3(+) T cells, have been reported to be involved in the immune evasion mechanism of tumors and several pathogens that cause chronic infections. Recent studies showed that a Treg-associated marker, cytotoxic T-lymphocyte antigen 4 (CTLA-4), is closely associated with the progression of several diseases. We recently reported that the proportion of Foxp3(+)CD4(+) cells was positively correlated with the number of lymphocytes, virus titer, and virus load but inversely correlated with IFN-γ expression in cattle infected with bovine leukemia virus (BLV), which causes chronic infection and lymphoma in its host. Here the kinetics of CTLA-4(+) cells were analyzed in BLV-infected cattle. CTLA-4 mRNA was predominantly expressed in CD4(+) T cells in BLV-infected cattle, and the expression was positively correlated with Foxp3 mRNA expression. To test for differences in the protein expression level of CTLA-4, we measured the proportion of CTLA-4-expressing cells by flow cytometry. In cattle with persistent lymphocytosis (PL), mean fluorescence intensities (MFIs) of CTLA-4 on CD4(+) and CD25(+) T cells were significantly increased compared with that in control and aleukemic (AL) cattle. The percentage of CTLA-4(+) cells in the CD4(+) T cell subpopulation was positively correlated with TGF-β mRNA expression, suggesting that CD4(+)CTLA-4(+) T cells have a potentially immunosuppressive function in BLV infection. In the limited number of cattle that were tested, the anti-CTLA-4 antibody enhanced the expression of CD69, IL-2, and IFN-γ mRNA in anti-programmed death ligand 1 (PD-L1) antibody-treated peripheral blood mononuclear cells from BLV-infected cattle. Together with previous findings, the present results indicate that Tregs may be involved in the inhibition of T cell function during BLV infection. Copyright © 2014 Elsevier B.V. All rights

  5. Expression of TMPRSS4 in non-small cell lung cancer and its modulation by hypoxia

    Science.gov (United States)

    NGUYEN, TRI-HUNG; WEBER, WILLIAM; HAVARI, EVIS; CONNORS, TIMOTHY; BAGLEY, REBECCA G.; McLAREN, RAJASHREE; NAMBIAR, PRASHANT R.; MADDEN, STEPHEN L.; TEICHER, BEVERLY A.; ROBERTS, BRUCE; KAPLAN, JOHANNE; SHANKARA, SRINIVAS

    2012-01-01

    Overexpression of TMPRSS4, a cell surface-associated transmembrane serine protease, has been reported in pancreatic, colorectal and thyroid cancers, and has been implicated in tumor cell migration and metastasis. Few reports have investigated both TMPRSS4 gene expression levels and the protein products. In this study, quantitative RT-PCR and protein staining were used to assess TMPRSS4 expression in primary non-small cell lung carcinoma (NSCLC) tissues and in lung tumor cell lines. At the transcriptional level, TMPRSS4 message was significantly elevated in the majority of human squamous cell and adenocarcinomas compared with normal lung tissues. Staining of over 100 NSCLC primary tumor and normal specimens with rabbit polyclonal anti-TMPRSS4 antibodies confirmed expression at the protein level in both squamous cell and adenocarcinomas with little or no staining in normal lung tissues. Human lung tumor cell lines expressed varying levels of TMPRSS4 mRNA in vitro. Interestingly, tumor cell lines with high levels of TMPRSS4 mRNA failed to show detectable TMPRSS4 protein by either immunoblotting or flow cytometry. However, protein levels were increased under hypoxic culture conditions suggesting that hypoxia within the tumor microenvironment may upregulate TMPRSS4 protein expression in vivo. This was supported by the observation of TMPRSS4 protein in xenograft tumors derived from the cell lines. In addition, staining of human squamous cell carcinoma samples for carbonic anhydrase IX (CAIX), a hypoxia marker, showed TMPRSS4 positive cells adjacent to CAIX positive cells. Overall, these results indicate that the cancer-associated TMPRSS4 protein is overexpressed in NSCLC and may represent a potential therapeutic target. PMID:22692880

  6. TNF-α blockade induces IL-10 expression in human CD4+ T cells

    Science.gov (United States)

    Evans, Hayley G.; Roostalu, Urmas; Walter, Gina J.; Gullick, Nicola J.; Frederiksen, Klaus S.; Roberts, Ceri A.; Sumner, Jonathan; Baeten, Dominique L.; Gerwien, Jens G.; Cope, Andrew P.; Geissmann, Frederic; Kirkham, Bruce W.; Taams, Leonie S.

    2014-02-01

    IL-17+ CD4+ T (Th17) cells contribute to the pathogenesis of several human inflammatory diseases. Here we demonstrate that TNF inhibitor (TNFi) drugs induce the anti-inflammatory cytokine IL-10 in CD4+ T cells including IL-17+ CD4+ T cells. TNFi-mediated induction of IL-10 in IL-17+ CD4+ T cells is Treg-/Foxp3-independent, requires IL-10 and is overcome by IL-1β. TNFi-exposed IL-17+ CD4+ T cells are molecularly and functionally distinct, with a unique gene signature characterized by expression of IL10 and IKZF3 (encoding Aiolos). We show that Aiolos binds conserved regions in the IL10 locus in IL-17+ CD4+ T cells. Furthermore, IKZF3 and IL10 expression levels correlate in primary CD4+ T cells and Aiolos overexpression is sufficient to drive IL10 in these cells. Our data demonstrate that TNF-α blockade induces IL-10 in CD4+ T cells including Th17 cells and suggest a role for the transcription factor Aiolos in the regulation of IL-10 in CD4+ T cells.

  7. [Establishment and identification of mouse lymphoma cell line EL4 expressing red fluorescent protein].

    Science.gov (United States)

    Li, Yan-Jie; Cao, Jiang; Chen, Chong; Wang, Dong-Yang; Zeng, Ling-Yu; Pan, Xiu-Ying; Xu, Kai-Lin

    2010-02-01

    This study was purposed to construct a lentiviral vector encoding red fluorescent protein (DsRed) and transfect DsRed into EL4 cells for establishing mouse leukemia/lymphoma model expressing DsRed. The bicistronic SIN lentiviral transfer plasmid containing the genes encoding neo and internal ribosomal entry site-red fluorescent protein (IRES-DsRed) was constructed. Human embryonic kidney 293FT cells were co-transfected with the three plasmids by liposome method. The viral particles were collected and used to transfect EL4 cells, then the cells were selected by G418. The results showed that the plasmid pXZ208-neo-IRES-DsRed was constructed successfully, and the viral titer reached to 10(6) U/ml. EL4 cells were transfected by the viral solution efficiently. The transfected EL4 cells expressing DsRed survived in the final concentration 600 microg/ml of G418. The expression of DsRed in the transfected EL4 cells was demonstrated by fluorescence microscopy and flow cytometry. In conclusion, the EL4/DsRed cell line was established successfully.

  8. Inhibition of OCT2, MATE1 and MATE2-K as a possible mechanism of drug interaction between pazopanib and cisplatin.

    Science.gov (United States)

    Sauzay, C; White-Koning, M; Hennebelle, I; Deluche, T; Delmas, C; Imbs, D C; Chatelut, E; Thomas, F

    2016-08-01

    We hypothesized that pazopanib is an inhibitor of cisplatin renal transporters OCT2, MATE1 and MATE2-K based on previous studies demonstrating an interaction between tyrosine kinase inhibitors and these transporters. Because several combinations of targeted therapies and cytotoxics are currently in development for cancer treatment, such an interaction is worth investigating. Experiments on HEK293 cells stably transfected to express OCT2, MATE1, MATE2-K or an empty vector (EV) were conducted. The inhibitory effect of pazopanib on these transporters was measured using the uptake of fluorescent substrate ASP+ and cisplatin in the different cell lines. The effect of pazopanib on cisplatin-induced cytotoxicity was also evaluated. A decrease of ASP+ uptake was observed in OCT2-HEK, MATE1-HEK and MATE2K-HEK cell lines after addition of pazopanib at increasing concentrations. Pazopanib inhibited cisplatin specific uptake in OCT2-HEK, MATE1-HEK and MATE2K-HEK lines. Cytotoxicity experiments showed that co-incubation of cisplatin with pazopanib multiplied up to 2.7, 2.4 and 1.6 times the EC50 values of cisplatin in OCT2-HEK, MATE1-HEK and MATE2K-HEK cell lines respectively, reaching about the same values as in EV-HEK cells. To conclude, pazopanib inhibits OCT2, MATE1 and MATE2-K, which are involved in cisplatin secretion into urine. The combination of these two drugs may lead to an interaction and increase the cisplatin-induced systemic toxicity. Given the wide variability of plasma pazopanib concentrations observed in vivo, the interaction may occur in a clinical setting, particularly in overexposed patients. The existence of a drug-drug interaction should be investigated when pazopanib is associated with a substrate of these transporters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Depletion of 4-hydroxynonenal in hGSTA4-transfected HLE B-3 cells results in profound changes in gene expression

    International Nuclear Information System (INIS)

    Patrick, Brad; Li Jie; Jeyabal, Prince V.S.; Reddy, Prasada M.R.V.; Yang Yusong; Sharma, Rajendra; Sinha, Mala; Luxon, Bruce; Zimniak, Piotr; Awasthi, Sanjay; Awasthi, Yogesh C.

    2005-01-01

    Previously, we have shown that overexpression of 4-hydroxy-2-nonenal (HNE)-detoxifying enzyme glutathione S-transferase A4-4 (hGSTA4-4) in human lens epithelial cells (HLE B-3) leads to pro-carcinogenic phenotypic transformation of these cells [R. Sharma, et al. Eur. J. Biochem. 271 (2004) 1960-1701]. We now demonstrate that hGSTA4-transfection also causes a profound change in the expression of genes involved in cell adhesion, cell cycle control, proliferation, cell growth, and apoptosis, which is consistent with phenotypic changes of the transformed cells. The expression of p53, p21, p16, fibronectin 1, laminin γ1, connexin 43, Fas, integrin α6, TGFα, and c-jun was down-regulated, while the expression of protein kinase C beta II (PKCβII), c-myc, cyclin-dependent kinase 2 (CDK2), and TGFβ was up-regulated in transfected cells. These results demonstrate that HNE serves as a crucial signaling molecule and, by modulating the expression of genes, can influence cellular functions

  10. CD4+ T cell-mediated cytotoxicity is associated with MHC class II expression on malignant CD19+ B cells in diffuse large B cell lymphoma.

    Science.gov (United States)

    Zhou, Yong; Zha, Jie; Lin, Zhijuan; Fang, Zhihong; Zeng, Hanyan; Zhao, Jintao; Luo, Yiming; Li, Zhifeng; Xu, Bing

    2018-01-15

    Diffuse large B cell lymphoma (DLBCL) is a common B cell malignancy with approximately 30% of patients present relapsed or refractory disease after first-line therapy. Research of further treatment options is needed. Cytotoxic CD4 + T cells express cytolytic molecules and have potential antitumor function. Here, we showed that the CD19 + cells from DLBCL patients presented significantly reduced expression of MHC II molecules than those from healthy controls. Three years after the first-line treatment, patients that presented relapsed disease had significantly lower MHC II expression on their CD19 + cells than patients who did not show recurrence. Examining cytotoxic CD4 + T cells show that DLBCL patients presented significantly elevated frequencies of granzyme A-, granzyme B-, and/or perforin-expressing cytotoxic CD4 + T cells. Also, frequency of cytotoxic CD4 + T cells in DLBCL patients was positively correlated with the MHC II expression level. Subsequently, the cytotoxic potential of CD4 + T cells against autologous CD19 + cells was investigated. We found that the cytotoxic potential of CD4 + T cells was highest in MHC II-high, intermediate in MHC II-mid, and lowest in MHC II-low patients. The percentage of MHC II-expressing viable CD19 + cells presented a significant reduction after longer incubation with cytotoxic CD4 + T cells, suggesting that cytotoxic CD4 + T cells preferentially eliminated MHC II-expressing CD19 + cells. Blocking MHC II on CD19 + cells significantly reduced the cytolytic capacity of CD4 + T cells. Despite these discoveries, the frequency of cytotoxic CD4 + T cells did not predict the clinical outcome of DLBCL patients. Together, these results demonstrated that cytotoxic CD4 + T cells presented an MHC II-dependent cytotoxic potential against autologous CD19 + cells and could potentially represent a future treatment option for DLBCL. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Efficient generation of rat induced pluripotent stem cells using a non-viral inducible vector.

    Directory of Open Access Journals (Sweden)

    Claudia Merkl

    Full Text Available Current methods of generating rat induced pluripotent stem cells are based on viral transduction of pluripotency inducing genes (Oct4, Sox2, c-myc and Klf4 into somatic cells. These activate endogenous pluripotency genes and reprogram the identity of the cell to an undifferentiated state. Epigenetic silencing of exogenous genes has to occur to allow normal iPS cell differentiation. To gain more control over the expression of exogenous reprogramming factors, we used a novel doxycycline-inducible plasmid vector encoding Oct4, Sox2, c-Myc and Klf4. To ensure efficient and controlled generation of iPS cells by plasmid transfection we equipped the reprogramming vector with a bacteriophage φC31 attB site and used a φC31 integrase expression vector to enhance vector integration. A series of doxycycline-independent rat iPS cell lines were established. These were characterized by immunocytochemical detection of Oct4, SSEA1 and SSEA4, alkaline phosphatase staining, methylation analysis of the endogenous Oct4 promoter and RT-PCR analysis of endogenous rat pluripotency genes. We also determined the number of vector integrations and the extent to which reprogramming factor gene expression was controlled. Protocols were developed to generate embryoid bodies and rat iPS cells demonstrated as pluripotent by generating derivatives of all three embryonic germ layers in vitro, and teratoma formation in vivo. All data suggest that our rat iPS cells, generated by plasmid based reprogramming, are similar to rat ES cells. Methods of DNA transfection, protein transduction and feeder-free monolayer culture of rat iPS cells were established to enable future applications.

  12. Targeting Oct2 and P53: Formononetin prevents cisplatin-induced acute kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Di [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Wang, Chuangyuan [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian, Liaoning (China); Duan, Yingjie [General hospital of Fuxin mining (Group) Co., Ltd (China); Meng, Qiang; Liu, Zhihao; Huo, Xiaokui; Sun, Huijun; Ma, Xiaodong [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian, Liaoning (China); Liu, Kexin, E-mail: kexinliu@dlmedu.edu.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian, Liaoning (China)

    2017-07-01

    Nephrotoxicity is one of major side effects of cisplatin in chemotherapy. Therefore, there is an urgent medical need to develop drugs that may protect kidney from toxicity. In previous study, we found that it showed the protective effects of formononetin against apoptosis by upregulating Nrf2. In this study, we investigated the renoprotective effect of formononetin against cisplatin-induced AKI and tried to elucidate the possible mechanisms. The amelioration of renal function, histopathological changes, and apoptosis in tubular cells was observed after formononetin treatment. Formononetin decreased expression of organic cation transporter 2 (Oct2) and increased the expressions of multidrug resistance-associated proteins (Mrps), which might result in a decrease accumulation of cisplatin in tubular cells after AKI. 5-Bromo-2-deoxyuridine (BrdU) and Ki-67 staining assay indicated that formononetin could promote the renal tubular cells proliferation after cisplatin nephrotoxicity. Moreover, formononetin regulated cyclins and pro-apoptotic proteins to involve the regulation of cell cycle. Furthermore, formononetin decreased p53 expression via promoting the overexpression of murine double minute 2 (MDM2) and MDMX. Taken together, formononetin provided protective effects by promoting proliferation of surviving renal tubular cells and inhibiting apoptosis after cisplatin-induced AKI. - Highlights: • Formononetin ameliorated the cisplatin-induced AKI. • Oct2 were reduced by formononetin. • Protective effect of formononetin was closely related to the reduction of cisplatin.

  13. Targeting Oct2 and P53: Formononetin prevents cisplatin-induced acute kidney injury

    International Nuclear Information System (INIS)

    Huang, Di; Wang, Chuangyuan; Duan, Yingjie; Meng, Qiang; Liu, Zhihao; Huo, Xiaokui; Sun, Huijun; Ma, Xiaodong; Liu, Kexin

    2017-01-01

    Nephrotoxicity is one of major side effects of cisplatin in chemotherapy. Therefore, there is an urgent medical need to develop drugs that may protect kidney from toxicity. In previous study, we found that it showed the protective effects of formononetin against apoptosis by upregulating Nrf2. In this study, we investigated the renoprotective effect of formononetin against cisplatin-induced AKI and tried to elucidate the possible mechanisms. The amelioration of renal function, histopathological changes, and apoptosis in tubular cells was observed after formononetin treatment. Formononetin decreased expression of organic cation transporter 2 (Oct2) and increased the expressions of multidrug resistance-associated proteins (Mrps), which might result in a decrease accumulation of cisplatin in tubular cells after AKI. 5-Bromo-2-deoxyuridine (BrdU) and Ki-67 staining assay indicated that formononetin could promote the renal tubular cells proliferation after cisplatin nephrotoxicity. Moreover, formononetin regulated cyclins and pro-apoptotic proteins to involve the regulation of cell cycle. Furthermore, formononetin decreased p53 expression via promoting the overexpression of murine double minute 2 (MDM2) and MDMX. Taken together, formononetin provided protective effects by promoting proliferation of surviving renal tubular cells and inhibiting apoptosis after cisplatin-induced AKI. - Highlights: • Formononetin ameliorated the cisplatin-induced AKI. • Oct2 were reduced by formononetin. • Protective effect of formononetin was closely related to the reduction of cisplatin.

  14. Nuclear Factor of Activated T Cells Regulates the Expression of Interleukin-4 in Th2 Cells in an All-or-none Fashion*

    Science.gov (United States)

    Köck, Juliana; Kreher, Stephan; Lehmann, Katrin; Riedel, René; Bardua, Markus; Lischke, Timo; Jargosch, Manja; Haftmann, Claudia; Bendfeldt, Hanna; Hatam, Farahnaz; Mashreghi, Mir-Farzin; Baumgrass, Ria; Radbruch, Andreas; Chang, Hyun-Dong

    2014-01-01

    Th2 memory lymphocytes have imprinted their Il4 genes epigenetically for expression in dependence of T cell receptor restimulation. However, in a given restimulation, not all Th cells with a memory for IL-4 expression express IL-4. Here, we show that in reactivated Th2 cells, the transcription factors NFATc2, NF-kB p65, c-Maf, p300, Brg1, STAT6, and GATA-3 assemble at the Il4 promoter in Th2 cells expressing IL-4 but not in Th2 cells not expressing it. NFATc2 is critical for assembly of this transcription factor complex. Because NFATc2 translocation into the nucleus occurs in an all-or-none fashion, dependent on complete dephosphorylation by calcineurin, NFATc2 controls the frequencies of cells reexpressing Il4, translates analog differences in T cell receptor stimulation into a digital decision for Il4 reexpression, and instructs all reexpressing cells to express the same amount of IL-4. This analog-to-digital conversion may be critical for the immune system to respond to low concentrations of antigens. PMID:25037220

  15. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer.

    Science.gov (United States)

    Singh, Sandeep; Trevino, Jose; Bora-Singhal, Namrata; Coppola, Domenico; Haura, Eric; Altiok, Soner; Chellappan, Srikumar P

    2012-09-25

    Cancer stem cells are thought to be responsible for the initiation and progression of cancers. In non-small cell lung cancers (NSCLCs), Hoechst 33342 dye effluxing side population (SP) cells are shown to have stem cell like properties. The oncogenic capacity of cancer stem-like cells is in part due to their ability to self-renew; however the mechanistic correlation between oncogenic pathways and self-renewal of cancer stem-like cells has remained elusive. Here we characterized the SP cells at the molecular level and evaluated its ability to generate tumors at the orthotopic site in the lung microenvironment. Further, we investigated if the self-renewal of SP cells is dependent on EGFR mediated signaling. SP cells were detected and isolated from multiple NSCLC cell lines (H1650, H1975, A549), as well as primary human tumor explants grown in nude mice. SP cells demonstrated stem-like properties including ability to self-renew and grow as spheres; they were able to generate primary and metastatic tumors upon orthotopic implantation into the lung of SCID mice. In vitro study revealed elevated expression of stem cell associated markers like Oct4, Sox2 and Nanog as well as demonstrated intrinsic epithelial to mesenchymal transition features in SP cells. Further, we show that abrogation of EGFR, Src and Akt signaling through pharmacological or genetic inhibitors suppresses the self-renewal growth and expansion of SP-cells and resulted in specific downregulation of Sox2 protein expression. siRNA mediated depletion of Sox2 significantly blocked the SP phenotype as well as its self-renewal capacity; whereas other transcription factors like Oct4 and Nanog played a relatively lesser role in regulating self-renewal. Interestingly, Sox2 was elevated in metastatic foci of human NSCLC samples. Our findings suggest that Sox2 is a novel target of EGFR-Src-Akt signaling in NSCLCs that modulates self-renewal and expansion of stem-like cells from NSCLC. Therefore, the outcome of the

  16. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Singh Sandeep

    2012-09-01

    Full Text Available Abstract Background Cancer stem cells are thought to be responsible for the initiation and progression of cancers. In non-small cell lung cancers (NSCLCs, Hoechst 33342 dye effluxing side population (SP cells are shown to have stem cell like properties. The oncogenic capacity of cancer stem-like cells is in part due to their ability to self-renew; however the mechanistic correlation between oncogenic pathways and self-renewal of cancer stem-like cells has remained elusive. Here we characterized the SP cells at the molecular level and evaluated its ability to generate tumors at the orthotopic site in the lung microenvironment. Further, we investigated if the self-renewal of SP cells is dependent on EGFR mediated signaling. Results SP cells were detected and isolated from multiple NSCLC cell lines (H1650, H1975, A549, as well as primary human tumor explants grown in nude mice. SP cells demonstrated stem-like properties including ability to self-renew and grow as spheres; they were able to generate primary and metastatic tumors upon orthotopic implantation into the lung of SCID mice. In vitro study revealed elevated expression of stem cell associated markers like Oct4, Sox2 and Nanog as well as demonstrated intrinsic epithelial to mesenchymal transition features in SP cells. Further, we show that abrogation of EGFR, Src and Akt signaling through pharmacological or genetic inhibitors suppresses the self-renewal growth and expansion of SP-cells and resulted in specific downregulation of Sox2 protein expression. siRNA mediated depletion of Sox2 significantly blocked the SP phenotype as well as its self-renewal capacity; whereas other transcription factors like Oct4 and Nanog played a relatively lesser role in regulating self-renewal. Interestingly, Sox2 was elevated in metastatic foci of human NSCLC samples. Conclusions Our findings suggest that Sox2 is a novel target of EGFR-Src-Akt signaling in NSCLCs that modulates self-renewal and expansion of

  17. Susceptibility of Human Oral Squamous Cell Carcinoma (OSCC H103 and H376 cell lines to Retroviral OSKM mediated reprogramming

    Directory of Open Access Journals (Sweden)

    Nalini Devi Verusingam

    2017-04-01

    Full Text Available Although numbers of cancer cell lines have been shown to be successfully reprogrammed into induced pluripotent stem cells (iPSCs, reprogramming Oral Squamous Cell Carcinoma (OSCC to pluripotency in relation to its cancer cell type and the expression pattern of pluripotent genes under later passage remain unexplored. In our study, we reprogrammed and characterised H103 and H376 oral squamous carcinoma cells using retroviral OSKM mediated method. Reprogrammed cells were characterized for their embryonic stem cells (ESCs like morphology, pluripotent gene expression via quantitative real-time polymerase chain reaction (RT-qPCR, immunofluorescence staining, embryoid bodies (EB formation and directed differentiation capacity. Reprogrammed H103 (Rep-H103 exhibited similar ESCs morphologies with flatten cells and clear borders on feeder layer. Reprogrammed H376 (Rep-H376 did not show ESCs morphologies but grow with a disorganized morphology. Critical pluripotency genes Oct4, Sox2 and Nanog were expressed higher in Rep-H103 against the parental counterpart from passage 5 to passage 10. As for Rep-H376, Nanog expression against its parental counterpart showed a significant decrease at passage 5 and although increased in passage 10, the level of expression was similar to the parental cells. Rep-H103 exhibited pluripotent signals (Oct4, Sox2, Nanog and Tra-1-60 and could form EB with the presence of three germ layers markers. Rep-H103 displayed differentiation capacity into adipocytes and osteocytes. The OSCC cell line H103 which was able to be reprogrammed into an iPSC like state showed high expression of Oct4, Sox2 and Nanog at late passage and may provide a potential iPSC model to study multi-stage oncogenesis in OSCC.

  18. Cancer Stem Cells in Moderately Differentiated Buccal Mucosal Squamous Cell Carcinoma Express Components of the Renin-Angiotensin System

    Directory of Open Access Journals (Sweden)

    Therese Featherston

    2016-09-01

    Full Text Available Aim We have recently identified and characterized cancer stem cell (CSC subpopulations within moderately differentiated buccal mucosal squamous cell carcinoma (MDBMSCC. We hypothesized that these CSCs express components of the renin-angiotensin system (RAS.Methods 3,3-Diaminobenzidine (DAB immunohistochemical (IHC staining was performed on formalin-fixed paraffin-embedded MDBMSCC samples to investigate the expression of the components of the RAS: pro(renin receptor (PRR, angiotensin converting enzyme (ACE, angiotensin II receptor 1 (ATIIR1 and angiotensin II receptor 2 (ATIIR2. NanoString mRNA gene expression analysis and Western Blotting (WB were performed on snap-frozen MDBMSCC samples to confirm gene expression and translation of these transcripts, respectively. Double immunofluorescent (IF IHC staining of these components of the RAS with the embryonic stem cell markers OCT4 or SALL4 was performed to demonstrate their localization in relation to the CSC subpopulations within MDBMSCC.Results DAB IHC staining demonstrated expression of PRR, ACE, ATIIR1 and ATIIR2 in MDBMSCC. IF IHC staining showed that PRR was expressed by the CSC subpopulations within the tumor nests, the peri-tumoral stroma and the endothelium of the microvessels within the peri-tumoral stroma. ATIIR1 and ATIIR2 were localized to the CSC subpopulations within the tumor nests and the peri-tumoral stroma, while ACE was localized to the endothelium of the microvessels within the peri-tumoral stroma. WB and NanoString analyses confirmed protein expression and transcription activation of PRR, ACE and ATIIR1 but not of ATIIR2, respectively.

  19. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Chia-I Ko

    2014-01-01

    Full Text Available The aryl hydrocarbon receptor (AHR is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  20. Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells.

    Science.gov (United States)

    Salehi, Paria Motamen; Foroutan, Tahereh; Javeri, Arash; Taha, Masoumeh Fakhr

    2017-11-01

    In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Human ADSCs were isolated from subcutaneous abdominal adipose tissue and characterized by flow cytometric analysis for the expression of some mesenchymal stem cell markers and adipogenic and osteogenic differentiation. Frequent freeze-thaw technique was used to prepare cytoplasmic extract of ESCs. Plasma membranes of the ADSCs were reversibly permeabilized by streptolysin-O (SLO). Then the permeabilized ADSCs were incubated with the ESC extract and cultured in resealing medium. After reprogramming, the expression of some pluripotency genes was evaluated by RT-PCR and quantitative real-time PCR (qPCR) analyses. Third-passaged ADSCs showed a fibroblast-like morphology and expressed mesenchymal stem cell markers. They also showed adipogenic and osteogenic differentiation potential. QPCR analysis revealed a significant upregulation in the expression of some pluripotency genes including OCT4 , SOX2 , NANOG , REX1 and ESG1 in the reprogrammed ADSCs compared to the control group. These findings showed that mouse ESC extract can be used to induce reprogramming of human ADSCs. In fact, this method is applicable for reprogramming of human adult stem cells to a more pluripotent sate and may have a potential in regenerative medicine.

  1. Expression of delayed cell death (DCD) in the progeny of fish cells surviving 2,4-dichloroaniline (2,4-DCA) exposure

    International Nuclear Information System (INIS)

    Kilemade, Michael; Mothersill, Carmel

    2003-01-01

    Interest in and concern for the quality of the environment has prompted a great deal of research into methods of measuring and assessing changes in it. One problem of major interest is that of increasing amounts of mutagenic/carcinogenic chemicals generated and released into marine and freshwater ecosystems. Numerous techniques involving whole animals and cell culture for these genotoxic changes have been devised to assay specific chemicals. Little has been done to determine the effects of potential genotoxicants on aquatic organisms. The purpose of this study was to investigate if 2,4-Dichloroaniline (2,4-DCA) (CASRN: 554-00-7), induced delayed cell death (DCD) or delayed reproductive cell death a.k.a. as lethal mutations in a teleost cell line, CHSE-214. Delayed expression of cell death in the progeny of cells, which survived a toxic insult, was first shown for ionizing radiation and is one of the signs of induced genomic instability. The survival of cells initially treated with 2,4-DCA and the survival of their progeny were determined. When cells are exposed to a toxic insult, the component cells of a normal appearing survivor colony or clone were commonly thought to have proliferative capacity equivalent to that of the untreated cells. In this study, however, it was found that CHSE-214 cells surviving 2,4-DCA exposure carried heritable lethal defects, which came to light only after numerous apparently successful divisions, in the form of plating efficiencies, which were reduced below those of the untreated, control cells. DCD expression did not appear to be dose-dependent with poor cell survival occurring at the lower end of 2,4-DCA exposure and remained constant until recovering to something like 60% of the controls. A study of the CHSE-214 kinetics post-exposure showed that the apparent reduced growth rate of the cells was due to reduced numbers of reproductively viable cells in the population. Results showed that the expression of DCD occurred persistently

  2. Differential expression of the Slc4 bicarbonate transporter family in murine corneal endothelium and cell culture.

    Science.gov (United States)

    Shei, William; Liu, Jun; Htoon, Hla M; Aung, Tin; Vithana, Eranga N

    2013-01-01

    To characterize the relative expression levels of all the solute carrier 4 (Slc4) transporter family members (Slc4a1-Slc4a11) in murine corneal endothelium using real-time quantitative (qPCR), to identify further important members besides Slc4a11 and Slc4a4, and to explore how close to the baseline levels the gene expressions remain after cells have been subjected to expansion and culture. Descemet's membrane-endothelial layers of 8-10-week-old C57BL6 mice were stripped from corneas and used for both primary cell culture and direct RNA extraction. Total RNA (from uncultured cells as well as cultured cells at passages 2 and 7) was reverse transcribed, and the cDNA was used for real time qPCR using specific primers for all the Slc4 family members. The geNorm method was applied to determine the most stable housekeeping genes and normalization factor, which was calculated from multiple housekeeping genes for more accurate and robust quantification. qPCR analyses revealed that all Slc4 bicarbonate transporter family members were expressed in mouse corneal endothelium. Slc4a11 showed the highest expression, which was approximately three times higher than that of Slc4a4 (3.4±0.3; p=0.004). All Slc4 genes were also expressed in cultured cells, and interestingly, the expression of Slc4a11 in cultured cells was significantly reduced by approximately 20-fold (0.05±0.001; p=0.000001) in early passage and by approximately sevenfold (0.14±0.002; p=0.000002) in late passage cells. Given the known involvement of SLC4A4 and SLC4A11 in corneal dystrophies, we speculate that the other two highly expressed genes in the uncultured corneal endothelium, SLC4A2 and SLC4A7, are worthy of being considered as potential candidate genes for corneal endothelial diseases. Moreover, as cell culture can affect expression levels of Slc4 genes, caution and careful design of experiments are necessary when undertaking studies of Slc4-mediated ion transport in cultured cells.

  3. Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells

    International Nuclear Information System (INIS)

    Kyoizumi, Seishi; Akiyama, Mitoshi; Hirai, Yuko; Kusunoki; Yoichiro; Tanabe, Kazumi; Umeki, Shigeko; Nakamura, Nori; Yamakido, Michio; Hamamoto, Kazuko.

    1990-04-01

    The T-cell receptor CD3 (TCR/CD3) complex plays a central role in antigen recognition and activation of mature T cells, and therefore abnormalities in the expression of the complex should induce unresponsiveness of T cells to antigen stimulus. Using flow cytometry, we detected and enumerated variant cells with loss or alteration of surface TCR/CD3 expression among human mature CD4 + T cells. The presence of variant CD4 + T cells was demonstrated by isolating and cloning them from peripheral blood, and their abnormalities can be accounted for by alterations in TCR expression such as defects of protein expression and partial protein deletion. The variant frequency in peripheral blood increased with aging in normal donors and was highly elevated in patients with ataxia telangiectasia, an autosomal recessive inherited disease with defective DNA repair and variable T-cell immunodeficiency. These findings suggest that such alterations in TCR expression are induced by somatic mutagenesis of TCR genes and can be important factors related to age-dependent and genetic disease-associated T-cell dysfunction. (author)

  4. Chemotherapy and Stem Cell Transplantation Increase p16INK4a Expression, a Biomarker of T-cell Aging

    Directory of Open Access Journals (Sweden)

    William A. Wood

    2016-09-01

    Full Text Available The expression of markers of cellular senescence increases exponentially in multiple tissues with aging. Age-related physiological changes may contribute to adverse outcomes in cancer survivors. To investigate the impact of high dose chemotherapy and stem cell transplantation on senescence markers in vivo, we collected blood and clinical data from a cohort of 63 patients undergoing hematopoietic cell transplantation. The expression of p16INK4a, a well-established senescence marker, was determined in T-cells before and 6 months after transplant. RNA sequencing was performed on paired samples from 8 patients pre- and post-cancer therapy. In patients undergoing allogeneic transplant, higher pre-transplant p16INK4a expression was associated with a greater number of prior cycles of chemotherapy received (p = 0.003, prior autologous transplantation (p = 0.01 and prior exposure to alkylating agents (p = 0.01. Transplantation was associated with a marked increase in p16INK4a expression 6 months following transplantation. Patients receiving autologous transplant experienced a larger increase in p16INK4a expression (3.1-fold increase, p = 0.002 than allogeneic transplant recipients (1.9-fold increase, p = 0.0004. RNA sequencing of T-cells pre- and post- autologous transplant or cytotoxic chemotherapy demonstrated increased expression of transcripts associated with cellular senescence and physiological aging. Cytotoxic chemotherapy, especially alkylating agents, and stem cell transplantation strongly accelerate expression of a biomarker of molecular aging in T-cells.

  5. Expression of Toll-Like Receptor 4 in Glomerular Endothelial Cells under Diabetic Conditions

    International Nuclear Information System (INIS)

    Takata, Shunsuke; Sawa, Yoshihiko; Uchiyama, Takanobu; Ishikawa, Hiroyuki

    2013-01-01

    Diabetic conditions promote glomerulosclerosis by mesangial cells but the mechanisms are not fully elucidated. The present study evaluated the expression of toll-like receptor 4 in glomerular endothelial cells in the streptozotocin (STZ)-induced type 1 diabetic mouse (ICR-STZ) and the type 2 diabetic KK/TaJcl mouse which were fed a high fat diet feed (KK/Ta-HF). In the ICR-STZ and KK/Ta-HF almost glomeruli were immunostained with anti-TLR4 but there was no glomerulus immunostained by ani-TLR4 in the control ICR and KK/Ta. Laser-scanning confocal microscopy showed that the TLR4-positive region did not coincide with the podoplanin-positive region but coincide with the PECAM-1- and VE-cadherin-positive regions in the glomeruli of the ICR-STZ and KK/Ta-HF. The in situ hybridization showed that almost signals for TLR4 mRNA were present in the glomerulus of the ICR-STZ and KK/Ta-HF to a stronger extent than in the control ICR and KK/Ta. These suggest that glomerular endothelial cells usually express the TLR4 gene and hyperglycemia in the diabetic condition induces the TLR4 protein expression in the glomerular capillary endothelial cells. Cytokine productions through the TLR signaling pathway in glomerular endothelial cells may allow mesangial cells to produce extracellular matrix proteins in the diabetic milieu

  6. Nuclear Nox4 Role in Stemness Power of Human Amniotic Fluid Stem Cells

    Directory of Open Access Journals (Sweden)

    Tullia Maraldi

    2015-01-01

    Full Text Available Human amniotic fluid stem cells (AFSC are an attractive source for cell therapy due to their multilineage differentiation potential and accessibility advantages. However the clinical application of human stem cells largely depends on their capacity to expand in vitro, since there is an extensive donor-to-donor heterogeneity. Reactive oxygen species (ROS and cellular oxidative stress are involved in many physiological and pathophysiological processes of stem cells, including pluripotency, proliferation, differentiation, and stress resistance. The mode of action of ROS is also dependent on the localization of their target molecules. Thus, the modifications induced by ROS can be separated depending on the cellular compartments they affect. NAD(PH oxidase family, particularly Nox4, has been known to produce ROS in the nucleus. In the present study we show that Nox4 nuclear expression (nNox4 depends on the donor and it correlates with the expression of transcription factors involved in stemness regulation, such as Oct4, SSEA-4, and Sox2. Moreover nNox4 is linked with the nuclear localization of redox sensitive transcription factors, as Nrf2 and NF-κB, and with the differentiation potential. Taken together, these results suggest that nNox4 regulation may have important effects in stem cell capability through modulation of transcription factors and DNA damage.

  7. A viral long terminal repeat expressed in CD4+CD8+ precursors is downregulated in mature peripheral CD4-CD8+ or CD4+CD8- T cells.

    OpenAIRE

    Paquette, Y; Doyon, L; Laperrière, A; Hanna, Z; Ball, J; Sekaly, R P; Jolicoeur, P

    1992-01-01

    The long terminal repeat from a thymotropic mouse mammary tumor virus variant, DMBA-LV, was used to drive the expression of two reporter genes, murine c-myc and human CD4, in transgenic mice. Expression was observed specifically in thymic immature cells. Expression of c-myc in these cells induced oligoclonal CD4+ CD8+ T-cell thymomas. Expression of human CD4 was restricted to thymic progenitor CD4- CD8- and CD4+ CD8+ T cells and was shut off in mature CD4+ CD8- and CD4- CD8+ T cells, known to...

  8. PAI-1 expression and its regulation by promoter 4G/5G polymorphism in clear cell renal cell carcinoma.

    Science.gov (United States)

    Choi, Jung-Woo; Lee, Ju-Han; Park, Hong Seok; Kim, Young-Sik

    2011-10-01

    To characterise patients with high plasminogen activator inhibitor-1 (PAI-1) expression as oral PAI-1 antagonists are currently in preclinical trials, and to determine whether the PAI-1 promoter 4G/5G polymorphism regulates PAI-1 expression in clear cell renal cell carcinoma (CCRCC). PAI-1 expression was examined by immunohistochemistry in 69 CCRCC specimens. In addition, the promoter 4G/5G polymorphism was investigated by both allele-specific PCR and direct DNA sequencing. PAI-1 was overexpressed in 25/69 (36.2%) patients with CCRCC. PAI-1 staining was intense in tumour cells with a high Fuhrman nuclear grade and in spindle-shaped tumour cells. PAI-1 expression was significantly associated with older age at diagnosis (p=0.027), high nuclear grade (p5G and 31.9% (22/69) 5G/5G. The homozygous 4G/4G or 5G/5G group showed a tendency for a high nuclear grade (p=0.05) but the 4G/5G polymorphism was not related to other prognostic parameters. PAI-1 expression was poorly correlated with its promoter 4G/5G polymorphism (Spearman ρ=0.088). CCRCC with high PAI-1 expression is characterised by older age, high nuclear grade, advanced stage, distant metastasis and/or shortened disease-free survival. PAI-1 expression is not affected by the promoter 4G/5G polymorphism.

  9. Characterization of Cancer Stem Cells in Colon Adenocarcinoma Metastasis to the Liver

    Directory of Open Access Journals (Sweden)

    Hugo N. Humphries

    2018-01-01

    Full Text Available BackgroundFifty percent of colorectal cancer (CRC patients develop liver metastasis. This study identified and characterized cancer stem cells (CSCs within colon adenocarcinoma metastasis to the liver (CAML.Methods3,3-Diaminobenzidine immunohistochemical (IHC staining was performed on nine CAML samples for embryonic stem cell (ESC markers OCT4, SOX2, NANOG, c-Myc, and KLF4. Immunofluorescence (IF IHC staining was performed to investigate coexpression of two markers. NanoString mRNA expression analysis and colorimetric in situ hybridization (CISH were performed on four snap-frozen CAML tissue samples for transcript expression of these ESC markers. Cells stained positively and negatively for each marker by IHC and CISH staining were counted and analyzed.Results3,3-Diaminobenzidine IHC staining, and NanoString and CISH mRNA analyses demonstrated the expression of OCT4, SOX2, NANOG, c-Myc, and KLF4 within in all nine CAML samples, except for SOX2 which was below detectable levels on NanoString mRNA analysis. IF IHC staining showed the presence of a SOX2+/NANOG+/KLF4+/c-Myc+/OCT− CSC subpopulation within the tumor nests, and a SOX2+/NANOG+/KLF4+/c-Myc+/OCT4− CSC subpopulation and a SOX2+/NANOG+/KLF4+/c-Myc+/OCT4+ CSC subpopulation within the peritumoral stroma.ConclusionThe novel finding of three CSC subpopulations within CAML provides insights into the biology of CRC.

  10. Generation of a constitutively expressing Tetracycline repressor (TetR human embryonic stem cell line BJNhem20-TetR

    Directory of Open Access Journals (Sweden)

    Ronak Shetty

    2016-03-01

    Full Text Available Human embryonic stem cell line BJNhem20-TetR was generated using non-viral method. The construct pCAG-TetRnls was transfected using microporation procedure. BJNhem20-TetR can subsequently be transfected with any vector harbouring a TetO (Tet operator sequence to generate doxycycline based inducible line. For example, in human embryonic stem cells, the pSuperior based TetO system has been transfected into a TetR containing line to generate OCT4 knockdown cell line (Zafarana et al., 2009. Thus BJNhem20-TetR can be used as a tool to perturb gene expression in human embryonic stem cells.

  11. SOX4 expression is associated with treatment failure and chemoradioresistance in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Yoon, Tae Mi; Kim, Sun-Ae; Cho, Wan Seok; Lee, Dong Hoon; Lee, Joon Kyoo; Park, Young-Lan; Lee, Kyung-Hwa; Lee, Jae Hyuk; Kweon, Sun-Seog; Chung, Ik-Joo; Lim, Sang Chul; Joo, Young-Eun

    2015-01-01

    In humans, sex-determining region-Y (SRY) related high-mobility-group box 4 (SOX4) is linked to development and tumorigenesis. SOX4 is over-expressed in several cancers and has prognostic significance. This study evaluated whether SOX4 affects oncogenic behavior and chemoradiotherapy response in head and neck squamous cell carcinoma (HNSCC) cells, and documented the relationship between its expression and prognosis in oral squamous cell carcinoma (OSCC). We used small interfering RNA in HNSCC cells to evaluate the effect of SOX4 on cell proliferation, apoptosis, chemoradiation-induced apoptosis, invasion, and migration. SOX4 expression in OSCC tissues was investigated by immunohistochemistry. SOX4 knockdown (KO) decreased cell proliferation and induced apoptosis by activating caspases-3 and −7, and poly-ADP ribose polymerase and suppressing X-linked inhibitor of apoptosis protein in HNSCC cells; it also enhanced radiation/cisplatin-induced apoptosis; and suppressed tumor cell invasion and migration. Immunostaining showed SOX4 protein was significantly increased in OSCC tissues compared with adjacent normal mucosa. SOX4 expression was observed in 51.8 % of 85 OSCC tissues, and was significantly correlated with treatment failure (P = 0.032) and shorter overall survival (P = 0.036) in patients with OSCC. SOX4 may contribute to oncogenic phenotypes of HNSCC cells by promoting cell survival and causing chemoradioresistance. It could be a potential prognostic marker for OSCC. The online version of this article (doi:10.1186/s12885-015-1875-8) contains supplementary material, which is available to authorized users

  12. [OCT and neovascular glaucoma].

    Science.gov (United States)

    Bellotti, A; Labbé, A; Fayol, N; El Mahtoufi, A; Baudouin, C

    2007-06-01

    Neovascular glaucoma is a chronic and sight-threatening disease. Four different grades have been described. Anterior chamber optical coherence tomography (OCT) is a new imaging technique allowing the visualization of the anterior segment. The purpose of our study was to describe the appearance of the different neovascular glaucoma grades with the OCT in order to refine the clinical analysis of this disease. Eleven patients (nine men and two women) with different grades of neovascular glaucoma were analyzed in this study. Neovascular glaucoma complicated central retinal vein occlusion in seven patients and diabetic retinopathy in four patients. All patients had bilateral biomicroscopical examination and OCT analysis. OCT images and clinical examination were then compared. No modifications could be observed using OCT in patients with grade 1 neovascular glaucoma. For grade 2, a slightly hyper-reflective linear iris secondary to neovascularization was observed. For grade 3, OCT images showed a thickened hyper-reflective iridocorneal angle with possible iridocorneal synechiae. For grade 4, the iridocorneal angle was closed and associated with iris contraction and uveae ectropion. OCT is a new promising technique for the precise analysis of different grades of neovascular glaucoma. It certainly helps in the management of such cases.

  13. Lifespan Extension and Sustained Expression of Stem Cell Phenotype of Human Breast Epithelial Stem Cells in a Medium with Antioxidants

    Directory of Open Access Journals (Sweden)

    Kai-Hung Wang

    2016-01-01

    Full Text Available We have previously reported the isolation and culture of a human breast epithelial cell type with stem cell characteristics (Type I HBEC from reduction mammoplasty using the MSU-1 medium. Subsequently, we have developed several different normal human adult stem cell types from different tissues using the K-NAC medium. In this study, we determined whether this low calcium K-NAC medium with antioxidants (N-acetyl-L-cysteine and L-ascorbic acid-2-phosphate is a better medium to grow human breast epithelial cells. The results clearly show that the K-NAC medium is a superior medium for prolonged growth (cumulative population doubling levels ranged from 30 to 40 of normal breast epithelial cells that expressed stem cell phenotypes. The characteristics of these mammary stem cells include deficiency in gap junctional intercellular communication, expression of Oct-4, and the ability to differentiate into basal epithelial cells and to form organoid showing mammary ductal and terminal end bud-like structures. Thus, this new method of growing Type I HBECs will be very useful in future studies of mammary development, breast carcinogenesis, chemoprevention, and cancer therapy.

  14. Combinatorial binding in human and mouse embryonic stem cells identifies conserved enhancers active in early embryonic development.

    Directory of Open Access Journals (Sweden)

    Jonathan Göke

    2011-12-01

    Full Text Available Transcription factors are proteins that regulate gene expression by binding to cis-regulatory sequences such as promoters and enhancers. In embryonic stem (ES cells, binding of the transcription factors OCT4, SOX2 and NANOG is essential to maintain the capacity of the cells to differentiate into any cell type of the developing embryo. It is known that transcription factors interact to regulate gene expression. In this study we show that combinatorial binding is strongly associated with co-localization of the transcriptional co-activator Mediator, H3K27ac and increased expression of nearby genes in embryonic stem cells. We observe that the same loci bound by Oct4, Nanog and Sox2 in ES cells frequently drive expression in early embryonic development. Comparison of mouse and human ES cells shows that less than 5% of individual binding events for OCT4, SOX2 and NANOG are shared between species. In contrast, about 15% of combinatorial binding events and even between 53% and 63% of combinatorial binding events at enhancers active in early development are conserved. Our analysis suggests that the combination of OCT4, SOX2 and NANOG binding is critical for transcription in ES cells and likely plays an important role for embryogenesis by binding at conserved early developmental enhancers. Our data suggests that the fast evolutionary rewiring of regulatory networks mainly affects individual binding events, whereas "gene regulatory hotspots" which are bound by multiple factors and active in multiple tissues throughout early development are under stronger evolutionary constraints.

  15. Contribution of different bone marrow-derived cell types in endometrial regeneration using an irradiated murine model.

    Science.gov (United States)

    Gil-Sanchis, Claudia; Cervelló, Irene; Khurana, Satish; Faus, Amparo; Verfaillie, Catherine; Simón, Carlos

    2015-06-01

    To study the involvement of seven types of bone marrow-derived cells (BMDCs) in the endometrial regeneration in mice after total body irradiation. Prospective experimental animal study. University research laboratories. β-Actin-green fluorescent protein (GFP) transgenic C57BL/6-Tg (CAG-EGFP) and C57BL/6J female mice. The BMDCs were isolated from CAG-EGFP mice: unfractionated bone marrow cells, hematopoietic progenitor cells, endothelial progenitor cells (EPCs), and mesenchymal stem cells (MSCs). In addition three murine GFP(+) cell lines were used: mouse Oct4 negative BMDC multipotent adult progenitor cells (mOct4(-)BM-MAPCs), BMDC hypoblast-like stem cells (mOct4(+) BM-HypoSCs), and MSCs. All cell types were injected through the tail vein of 9 Gy-irradiated C57BL/6J female mice. Flow cytometry, cell culture, bone marrow transplantation assays, histologic evaluation, immunohistochemistry, proliferation, apoptosis, and statistical analysis. After 12 weeks, histologic analysis revealed that uteri of mice with mOct4(-)BM-MAPCs and MSC line were significantly smaller than uteri of mice with uncultured BMDCs or mOct4(+) BM-HypoSCs. The percentage of engrafted GFP(+) cells ranged from 0.13%-4.78%. Expression of Ki-67 was lower in all uteri from BMDCs treated mice than in the control, whereas TUNEL(+) cells were increased in the EPCs and mOct4(+)BM-HypoSCs groups. Low number of some BMDCs can be found in regenerating endometrium, including stromal, endotelial, and epithelial compartments. Freshly isolated MSCs and EPCs together with mOct4(+) BM-HypoSCs induced the greatest degree of regeneration, whereas culture isolated MSCs and mOct4(-)BM-MAPCs transplantation may have an inhibitory effect on endometrial regeneration. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Oct-1 potentiates CREB-driven cyclin D1 promoter activation via a phospho-CREB- and CREB binding protein-independent mechanism.

    Science.gov (United States)

    Boulon, Séverine; Dantonel, Jean-Christophe; Binet, Virginie; Vié, Annick; Blanchard, Jean-Marie; Hipskind, Robert A; Philips, Alexandre

    2002-11-01

    Cyclin D1, the regulatory subunit for mid-G(1) cyclin-dependent kinases, controls the expression of numerous cell cycle genes. A cyclic AMP-responsive element (CRE), located upstream of the cyclin D1 mRNA start site, integrates mitogenic signals that target the CRE-binding factor CREB, which can recruit the transcriptional coactivator CREB-binding protein (CBP). We describe an alternative mechanism for CREB-driven cyclin D1 induction that involves the ubiquitous POU domain protein Oct-1. In the breast cancer cell line MCF-7, overexpression of Oct-1 or its POU domain strongly increases transcriptional activation of cyclin D1 and GAL4 reporter genes that is specifically dependent upon CREB but independent of Oct-1 DNA binding. Gel retardation and chromatin immunoprecipitation assays confirm that POU forms a complex with CREB bound to the cyclin D1 CRE. In solution, CREB interaction with POU requires the CREB Q2 domain and, notably, occurs with CREB that is not phosphorylated on Ser 133. Accordingly, Oct-1 also potently enhances transcriptional activation mediated by a Ser133Ala CREB mutant. Oct-1/CREB synergy is not diminished by the adenovirus E1A 12S protein, a repressor of CBP coactivator function. In contrast, E1A strongly represses CBP-enhanced transactivation by CREB phosphorylated on Ser 133. Our observation that Oct-1 potentiates CREB-dependent cyclin D1 transcriptional activity independently of Ser 133 phosphorylation and E1A-sensitive coactivator function offers a new paradigm for the regulation of cyclin D1 induction by proliferative signals.

  17. Scaffold protein JLP mediates TCR-initiated CD4+T cell activation and CD154 expression.

    Science.gov (United States)

    Yan, Qi; Yang, Cheng; Fu, Qiang; Chen, Zhaowei; Liu, Shan; Fu, Dou; Rahman, Rahmat N; Nakazato, Ryota; Yoshioka, Katsuji; Kung, Sam K P; Ding, Guohua; Wang, Huiming

    2017-07-01

    CD4 + T-cell activation and its subsequent induction of CD154 (CD40 ligand, CD40L) expression are pivotal in shaping both the humoral and cellular immune responses. Scaffold protein JLP regulates signal transduction pathways and molecular trafficking inside cells, thus represents a critical component in maintaining cellular functions. Its role in regulating CD4 + T-cell activation and CD154 expression, however, is unclear. Here, we demonstrated expression of JLP in mouse tissues of lymph nodes, thymus, spleen, and also CD4 + T cells. Using CD4+ T cells from jlp-deficient and jlp-wild-type mice, we demonstrated that JLP-deficiency impaired T-cell proliferation, IL-2 production, and CD154 induction upon TCR stimulations, but had no impacts on the expression of other surface molecules such as CD25, CD69, and TCR. These observed impaired T-cell functions in the jlp-/- CD4 + T cells were associated with defective NF-AT activation and Ca 2 + influx, but not the MAPK, NF-κB, as well as AP-1 signaling pathways. Our findings indicated that, for the first time, JLP plays a critical role in regulating CD4 + T cells response to TCR stimulation partly by mediating the activation of TCR-initiated Ca 2+ /NF-AT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Expression of chemokine receptor CXCR4 in esophageal squamous cell and adenocarcinoma

    International Nuclear Information System (INIS)

    Gockel, Ines; Galle, Peter R; Junginger, Theodor; Moehler, Markus; Schimanski, Carl C; Heinrich, Christian; Wehler, T; Frerichs, K; Drescher, Daniel; Langsdorff, Christian von; Domeyer, Mario; Biesterfeld, Stefan

    2006-01-01

    Prognosis of esophageal cancer is poor despite curative surgery. The chemokine receptor CXCR4 has been proposed to distinctly contribute to tumor growth, dissemination and local immune escape in a limited number of malignancies. The aim of our study was to evaluate the role of CXCR4 in tumor spread of esophageal cancer with a differentiated view of the two predominant histologic types – squamous cell and adenocarcinoma. Esophageal cancer tissue samples were obtained from 102 consecutive patients undergoing esophageal resection for cancer with curative intent. The LSAB+ System was used to detect the protein CXCR4. Tumor samples were classified into two groups based on the homogeneous staining intensity. A cut-off between CXCR4w (= weak expression) and CXCR4s (= strong expression) was set at 1.5 (grouped 0 – 1.5 versus 2.0 – 3). Long-term survival rates were calculated using life tables and the Kaplan-Meier method. Using the Cox's proportional hazards analysis, a model of survival prediction was established. The overall expression rate for CXCR4 in esophageal squamous cell carcinoma was 94.1%. Subdividing these samples, CXCR4w was found in 54.9% and CXCR4s in 45.1%. In adenocarcinoma, an overall expression rate of 89.1% was detected with a weak intensitiy in 71.7% compared to strong staining in 29.3% (p = 0.066 squamous cell versus adenocarcinoma). The Cox's proportional hazards analysis identified the pM-category with a hazard ratio (HR) of 1.860 (95% CI: 1.014–3.414) (p = 0.045), the histologic tumor type (HR: 0.334; 95% CI: 0.180–0.618) (p = 0.0001) and the operative approach (transthoracic > transhiatal esophageal resection) (HR: 0.546; 95% CI: 0.324–0.920) (p = 0.023) as independent factors with a possible influence on the long-term prognosis in patients with esophageal carcinoma, whereas CXCR4 expression was statistically not significant (>0.05). Expression of the chemokine receptor CXCR4 in esophageal cancer is of major relevance in both

  19. Regulation of IFN regulatory factor 4 expression in human T cell leukemia virus-I-transformed T cells.

    Science.gov (United States)

    Sharma, Sonia; Grandvaux, Nathalie; Mamane, Yael; Genin, Pierre; Azimi, Nazli; Waldmann, Thomas; Hiscott, John

    2002-09-15

    IFN regulatory factor (IRF)-4 is a lymphoid/myeloid-restricted member of the IRF transcription factor family that plays an essential role in the homeostasis and function of mature lymphocytes. IRF-4 expression is tightly regulated in resting primary T cells and is transiently induced at the mRNA and protein levels after activation by Ag-mimetic stimuli such as TCR cross-linking or treatment with phorbol ester and calcium ionophore (PMA/ionomycin). However, IRF-4 is constitutively upregulated in human T cell leukemia virus type I (HTLV-I) infected T cells as a direct gene target for the HTLV-I Tax oncoprotein. In this study we demonstrate that chronic IRF-4 expression in HTLV-I-infected T lymphocytes is associated with a leukemic phenotype, and we examine the mechanisms by which continuous production of IRF-4 is achieved in HTLV-I-transformed T cells. IRF-4 expression in HTLV-1-infected cells is driven through activation of the NF-kappaB and NF-AT pathways, resulting in the binding of p50, p65, and c-Rel to the kappaB1 element and p50, c-Rel, and NF-ATp to the CD28RE element within the -617 to -209 region of the IRF-4 promoter. Furthermore, mutation of either the kappaB1 or CD28RE sites blocks Tax-mediated transactivation of the human IRF-4 promoter in T cells. These experiments constitute the first detailed analysis of human IRF-4 transcriptional regulation within the context of HTLV-I infection and transformation of CD4(+) T lymphocytes.

  20. Distinct types of primary cutaneous large B-cell lymphoma identified by gene expression profiling.

    Science.gov (United States)

    Hoefnagel, Juliette J; Dijkman, Remco; Basso, Katia; Jansen, Patty M; Hallermann, Christian; Willemze, Rein; Tensen, Cornelis P; Vermeer, Maarten H

    2005-05-01

    In the European Organization for Research and Treatment of Cancer (EORTC) classification 2 types of primary cutaneous large B-cell lymphoma (PCLBCL) are distinguished: primary cutaneous follicle center cell lymphomas (PCFCCL) and PCLBCL of the leg (PCLBCL-leg). Distinction between both groups is considered important because of differences in prognosis (5-year survival > 95% and 52%, respectively) and the first choice of treatment (radiotherapy or systemic chemotherapy, respectively), but is not generally accepted. To establish a molecular basis for this subdivision in the EORTC classification, we investigated the gene expression profiles of 21 PCLBCLs by oligonucleotide microarray analysis. Hierarchical clustering based on a B-cell signature (7450 genes) classified PCLBCL into 2 distinct subgroups consisting of, respectively, 8 PCFCCLs and 13 PCLBCLsleg. PCLBCLs-leg showed increased expression of genes associated with cell proliferation; the proto-oncogenes Pim-1, Pim-2, and c-Myc; and the transcription factors Mum1/IRF4 and Oct-2. In the group of PCFCCL high expression of SPINK2 was observed. Further analysis suggested that PCFCCLs and PCLBCLs-leg have expression profiles similar to that of germinal center B-cell-like and activated B-cell-like diffuse large B-cell lymphoma, respectively. The results of this study suggest that different pathogenetic mechanisms are involved in the development of PCFCCLs and PCLBCLs-leg and provide molecular support for the subdivision used in the EORTC classification.

  1. Monkey Adrenal Chromaffin Cells Express α6β4* Nicotinic Acetylcholine Receptors

    Science.gov (United States)

    Scadden, Mick´l; Carmona-Hidalgo, Beatriz; McIntosh, J. Michael; Albillos, Almudena

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs. PMID:24727685

  2. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors.

    Science.gov (United States)

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R; Greenleaf, William J; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2015-07-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.

  3. Validation of endogenous normalizing genes for expression analyses in adult human testis and germ cell neoplasms.

    Science.gov (United States)

    Svingen, T; Jørgensen, A; Rajpert-De Meyts, E

    2014-08-01

    The measurement of gene expression levels in cells and tissues typically depends on a suitable point of reference for inferring biological relevance. For quantitative (or real-time) RT-PCR assays, the method of choice is often to normalize gene expression data to an endogenous gene that is stably expressed across the samples analysed: a so-called normalizing or housekeeping gene. Although this is a valid strategy, the identification of stable normalizing genes has proved challenging and a gene showing stable expression across all cells or tissues is unlikely to exist. Therefore, it is necessary to define suitable normalizing genes for specific cells and tissues. Here, we report on the performance of a panel of nine commonly employed normalizing genes in adult human testis and testicular pathologies. Our analyses revealed significant variability in transcript abundance for commonly used normalizers, highlighting the importance of selecting appropriate normalizing genes as comparative measurements can yield variable results when different normalizing genes are employed. Based on our results, we recommend using RPS20, RPS29 or SRSF4 when analysing relative gene expression levels in human testis and associated testicular pathologies. OCT4 and SALL4 can be used with caution as second-tier normalizers when determining changes in gene expression in germ cells and germ cell tumour components, but the relative transcript abundance appears variable between different germ cell tumour types. We further recommend that such studies should be accompanied by additional assessment of histology and cellularity of each sample. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Plasmid-based generation of induced neural stem cells from adult human fibroblasts

    Directory of Open Access Journals (Sweden)

    Philipp Capetian

    2016-10-01

    Full Text Available Direct reprogramming from somatic to neural cell types has become an alternative to induced pluripotent stem cells. Most protocols employ viral expression systems, posing the risk of random genomic integration. Recent developments led to plasmid-based protocols, lowering this risk. However, these protocols either relied on continuous presence of a variety of small molecules or were only able to reprogram murine cells. We therefore established a reprogramming protocol based on vectors containing the Epstein-Barr virus (EBV-derived oriP/EBNA1 as well as the defined expression factors Oct3/4, Sox2, Klf4, L-myc, Lin28, and a small hairpin directed against p53. We employed a defined neural medium in combination with the neurotrophins bFGF, EGF and FGF4 for cultivation without the addition of small molecules. After reprogramming, cells demonstrated a temporary increase in the expression of endogenous Oct3/4. We obtained induced neural stem cells (iNSC 30 days after transfection. In contrast to previous results, plasmid vectors as well as a residual expression of reprogramming factors remained detectable in all cell lines. Cells showed a robust differentiation into neuronal (72% and glial cells (9% astrocytes, 6% oligodendrocytes. Despite the temporary increase of pluripotency-associated Oct3/4 expression during reprogramming, we did not detect pluripotent stem cells or non-neural cells in culture (except occasional residual fibroblasts. Neurons showed electrical activity and functional glutamatergic synapses. Our results demonstrate that reprogramming adult human fibroblasts to iNSC by plasmid vectors and basic neural medium without small molecules is possible and feasible. However, a full set of pluripotency-associated transcription factors may indeed result in the acquisition of a transient (at least partial pluripotent intermediate during reprogramming. In contrast to previous reports, the EBV-based plasmid system remained present and active inside

  5. Expression of Mesenchymal Stem Cells-Related Genes and Plasticity of Aspirated Follicular Cells Obtained from Infertile Women

    Directory of Open Access Journals (Sweden)

    Edo Dzafic

    2014-01-01

    Full Text Available After removal of oocytes for in vitro fertilization, follicular aspirates which are rich in somatic follicular cells are discarded in daily medical practice. However, there is some evidence that less differentiated cells with stem cell characteristics are present among aspirated follicular cells (AFCs. The aim of this study was to culture AFCs in vitro and to analyze their gene expression profile. Using the RT2 Profiler PCR array, we investigated the expression profile of 84 genes related to stemness, mesenchymal stem cells (MCSs, and cell differentiation in AFCs enriched by hypoosmotic protocol from follicular aspirates of infertile women involved in assisted reproduction programme in comparison with bone marrow-derived mesenchymal stem cells (BM-MSCs and fibroblasts. Altogether the expression of 57 genes was detected in AFCs: 16 genes (OCT4, CD49f, CD106, CD146, CD45, CD54, IL10, IL1B, TNF, VEGF, VWF, HDAC1, MITF, RUNX2, PPARG, and PCAF were upregulated and 20 genes (FGF2, CASP3, CD105, CD13, CD340, CD73, CD90, KDR, PDGFRB, BDNF, COL1A1, IL6, MMP2, NES, NUDT6, BMP6, SMURF2, BMP4, GDF5, and JAG1 were downregulated in AFCs when compared with BM-MSCs. The genes which were upregulated in AFCs were mostly related to MSCs and connected with ovarian function, and differed from those in fibroblasts. The cultured AFCs with predominating granulosa cells were successfully in vitro differentiated into adipogenic-, osteogenic-, and pancreatic-like cells. The upregulation of some MSC-specific genes and in vitro differentiation into other types of cells indicated a subpopulation of AFCs with specific stemness, which was not similar to those of BM-MSCs or fibroblasts.

  6. A population of serumdeprivation-induced bone marrow stem cells (SD-BMSC) expresses marker typical for embryonic and neural stem cells

    International Nuclear Information System (INIS)

    Sauerzweig, Steven; Munsch, Thomas; Lessmann, Volkmar; Reymann, Klaus G.; Braun, Holger

    2009-01-01

    The bone marrow represents an easy accessible source of adult stem cells suitable for various cell based therapies. Several studies in recent years suggested the existence of pluripotent stem cells within bone marrow stem cells (BMSC) expressing marker proteins of both embryonic and tissue committed stem cells. These subpopulations were referred to as MAPC, MIAMI and VSEL-cells. Here we describe SD-BMSC (serumdeprivation-induced BMSC) which are induced as a distinct subpopulation after complete serumdeprivation. SD-BMSC are generated from small-sized nestin-positive BMSC (S-BMSC) organized as round-shaped cells in the top layer of BMSC-cultures. The generation of SD-BMSC is caused by a selective proliferation of S-BMSC and accompanied by changes in both morphology and gene expression. SD-BMSC up-regulate not only markers typical for neural stem cells like nestin and GFAP, but also proteins characteristic for embryonic cells like Oct4 and SOX2. We hypothesize, that SD-BMSC like MAPC, MIAMI and VSEL-cells represent derivatives from a single pluripotent stem cell fraction within BMSC exhibiting characteristics of embryonic and tissue committed stem cells. The complete removal of serum might offer a simple way to specifically enrich this fraction of pluripotent embryonic like stem cells in BMSC cultures

  7. COUP-TFI mitotically regulates production and migration of dentate granule cells and modulates hippocampal Cxcr4 expression.

    Science.gov (United States)

    Parisot, Joséphine; Flore, Gemma; Bertacchi, Michele; Studer, Michèle

    2017-06-01

    Development of the dentate gyrus (DG), the primary gateway for hippocampal inputs, spans embryonic and postnatal stages, and involves complex morphogenetic events. We have previously identified the nuclear receptor COUP-TFI as a novel transcriptional regulator in the postnatal organization and function of the hippocampus. Here, we dissect its role in DG morphogenesis by inactivating it in either granule cell progenitors or granule neurons. Loss of COUP-TFI function in progenitors leads to decreased granule cell proliferative activity, precocious differentiation and increased apoptosis, resulting in a severe DG growth defect in adult mice. COUP-TFI-deficient cells express high levels of the chemokine receptor Cxcr4 and migrate abnormally, forming heterotopic clusters of differentiated granule cells along their paths. Conversely, high COUP-TFI expression levels downregulate Cxcr4 expression, whereas increased Cxcr4 expression in wild-type hippocampal cells affects cell migration. Finally, loss of COUP-TFI in postmitotic cells leads to only minor and transient abnormalities, and to normal Cxcr4 expression. Together, our results indicate that COUP-TFI is required predominantly in DG progenitors for modulating expression of the Cxcr4 receptor during granule cell neurogenesis and migration. © 2017. Published by The Company of Biologists Ltd.

  8. Expression of the alpha 6 beta 4 integrin by squamous cell carcinomas and basal cell carcinomas: possible relation to invasive potential?

    DEFF Research Database (Denmark)

    Rossen, K; Dahlstrøm, K K; Mercurio, A M

    1994-01-01

    We have studied the expression of alpha 6 beta 4 integrin, a carcinoma laminin receptor in ten squamous cell carcinomas (SCCs) and ten basal cell carcinomas (BCCs) of the skin in order to examine whether changes in alpha 6 beta 4 integrin expression may be related to invasive and metastatic...... potential. Monoclonal antibodies specific for each subunit were applied on cryosections, using a three step indirect peroxidase technique. In normal epidermis the basal cells expressed both the alpha 6 and the beta 4 subunits, and the expression was polarized against the basement membrane. In SCCs...

  9. Low pH induces co-ordinate regulation of gene expression in oesophageal cells.

    Science.gov (United States)

    Duggan, Shane P; Gallagher, William M; Fox, Edward J P; Abdel-Latif, Mohammed M; Reynolds, John V; Kelleher, Dermot

    2006-02-01

    The development of gastro-oesophageal reflux disease (GORD) is known to be a causative risk factor in the evolution of adenocarcinoma of the oesophagus. The major component of this reflux is gastric acid. However, the impact of low pH on gene expression has not been extensively studied in oesophageal cells. This study utilizes a transcriptomic and bioinformatic approach to assess regulation of gene expression in response to low pH. In more detail, oesophageal adenocarcinoma cell lines were exposed to a range of pH environments. Affymetrix microarrays were used for gene-expression analysis and results were validated using cycle limitation and real-time RT-PCR analysis, as well as northern and western blotting. Comparative promoter transcription factor binding site (TFBS) analysis (MatInspector) of hierarchically clustered gene-expression data was employed to identify the elements which may co-ordinately regulate individual gene clusters. Initial experiments demonstrated maximal induction of EGR1 gene expression at pH 6.5. Subsequent array experimentation revealed significant induction of gene expression from such functional categories as DNA damage response (EGR1-4, ATF3) and cell-cycle control (GADD34, GADD45, p57). Changes in expression of EGR1, EGR3, ATF3, MKP-1, FOSB, CTGF and CYR61 were verified in separate experiments and in a variety of oesophageal cell lines. TFBS analysis of promoters identified transcription factors that may co-ordinately regulate gene-expression clusters, Cluster 1: Oct-1, AP4R; Cluster 2: NF-kB, EGRF; Cluster 3: IKRS, AP-1F. Low pH has the ability to induce genes and pathways which can provide an environment suitable for the progression of malignancy. Further functional analysis of the genes and clusters identified in this low pH study is likely to lead to new insights into the pathogenesis and therapeutics of GORD and oesophageal cancer.

  10. Subchondral mesenchymal stem cells from osteoarthritic knees display high osteogenic differentiation capacity through microRNA-29a regulation of HDAC4.

    Science.gov (United States)

    Lian, Wei-Shiung; Wu, Ren-Wen; Lee, Mel S; Chen, Yu-Shan; Sun, Yi-Chih; Wu, Shing-Long; Ke, Huei-Jing; Ko, Jih-Yang; Wang, Feng-Sheng

    2017-12-01

    Subchondral bone deterioration and osteophyte formation attributable to excessive mineralization are prominent features of end-stage knee osteoarthritis (OA). The cellular events underlying subchondral integrity diminishment remained elusive. This study was undertaken to characterize subchondral mesenchymal stem cells (SMSCs) isolated from patients with end-stage knee OA who required total knee arthroplasty. The SMSCs expressed surface antigens CD29, CD44, CD73, CD90, CD105, and CD166 and lacked CD31, CD45, and MHCII expression. The cell cultures exhibited higher proliferation and greater osteogenesis and chondrogenesis potencies, whereas their population-doubling time and adipogenic lineage commitment were lower than those of bone marrow MSCs (BMMSCs). They also displayed higher expressions of embryonic stem cell marker OCT3/4 and osteogenic factors Wnt3a, β-catenin, and microRNA-29a (miR-29a), concomitant with lower expressions of joint-deleterious factors HDAC4, TGF-β1, IL-1β, TNF-α, and MMP3, in comparison with those of BMMSCs. Knockdown of miR-29a lowered Wnt3a expression and osteogenic differentiation of the SMSCs through elevating HDAC4 translation, which directly regulated the 3'-untranslated region of HDAC4. Likewise, transgenic mice that overexpressed miR-29a in osteoblasts exhibited a high bone mass in the subchondral region. SMSCs in the transgenic mice showed a higher osteogenic differentiation and lower HDAC4 signaling than those in wild-type mice. Taken together, high osteogenesis potency existed in the SMSCs in the osteoarthritic knee. The miR-29a modulation of HDAC4 and Wnt3a signaling was attributable to the increase in osteogenesis. This study shed an emerging light on the characteristics of SMSCs and highlighted the contribution of SMSCs in the exacerbation of subchondral integrity in end-stage knee OA. Subchondral MSCs (SMSCs) from OA knee expressed embryonic stem cell marker Oct3/4. The SMSCs showed high proliferation and osteogenic and

  11. Differential expression of FAK and Pyk2 in metastatic and non-metastatic EL4 lymphoma cell lines.

    Science.gov (United States)

    Zhang, Zhihong; Knoepp, Stewart M; Ku, Hsun; Sansbury, Heather M; Xie, Yuhuan; Chahal, Manpreet S; Tomlinson, Stephen; Meier, Kathryn E

    2011-08-01

    The murine EL4 lymphoma cell line exists in variants that are either sensitive or resistant to phorbol 12-myristate 13-acetate (PMA). In sensitive cells, PMA causes Erk MAPK activation and Erk-mediated growth arrest. In resistant cells, PMA induces a low level of Erk activation, without growth arrest. A relatively unexplored aspect of the phenotypes is that resistant cells are more adherent to culture substrate than are sensitive cells. In this study, the roles of the protein tyrosine kinases FAK and Pyk2 in EL4 phenotype were examined, with a particular emphasis on the role of these proteins in metastasis. FAK is expressed only in PMA-resistant (or intermediate phenotype) EL4 cells, correlating with enhanced cell-substrate adherence, while Pyk2 is more highly expressed in non-adherent PMA-sensitive cells. PMA treatment causes modulation of mRNA for FAK (up-regulation) and Pyk2 (down-regulation) in PMA-sensitive but not PMA-resistant EL4 cells. The increase in Pyk2 mRNA is correlated with an increase in Pyk2 protein expression. The roles of FAK in cell phenotype were further explored using transfection and knockdown experiments. The results showed that FAK does not play a major role in modulating PMA-induced Erk activation in EL4 cells. However, the knockdown studies demonstrated that FAK expression is required for proliferation and migration of PMA-resistant cells. In an experimental metastasis model using syngeneic mice, only FAK-expressing (PMA-resistant) EL4 cells form liver tumors. Taken together, these studies suggest that FAK expression promotes metastasis of EL4 lymphoma cells.

  12. Equivalency of Buffalo (Bubalus Bubalis) Embryonic Stem Cells Derived From Fertilized, Parthenogenetic, and Hand-Made Cloned Embryos

    Science.gov (United States)

    Muzaffar, Musharifa; Selokar, Naresh L.; Singh, Karn P.; Zandi, Mohammad; Singh, Manoj K.; Shah, Riaz A.; Chauhan, Manmohan S.; Singla, Suresh K.; Palta, Prabhat

    2012-01-01

    Abstract This study was aimed at establishing buffalo embryonic stem cells (ESCs) from in vitro fertilized (IVF), parthenogenetic, and hand-made cloned (HMC) embryos and to check their equivalency in terms of stem cell marker expression, longevity, proliferation, and differentiation pattern. ESCs derived from all three sources were found by immunofluorescence to express the pluripotency markers SSEA-4, TRA-1-60, TRA-1-81, OCT4, and SOX2 and were able to form embryoid bodies containing cells expressing genes specific to endoderm (AFP, HNF4, and GATA4), mesoderm (MSX1, BMP4, and ASA), and ectoderm (cytokeratin 8 and NF68). Reverse transcriptase PCR (RT-PCR) showed cells from all sources to be positive for pluripotency markers OCT4, SOX2, NANOG, STAT3, REX1, FOXD3, NUCLEOSTEMIN, and TELOMERASE. Pluripotency markers OCT4, SOX2, NANOG, and c-MYC were also analyzed by real-time PCR. No significant differences were observed among ESCs from all three sources for all these genes except NANOG, whose expression was higher (pcells (1.603±0.315 and 1±0, respectively). Pluripotent, stable buffalo ESC lines derived from IVF, parthenogenesis, and HMC embryos may be genetically manipulated to provide a powerful tool for studies involving embryonic development, genomic imprinting, gene targeting, cloning, chimera formation, and transgenic animal production. PMID:22582863

  13. Persistent expression of BMP-4 in embryonic chick adrenal cortical cells and its role in chromaffin cell development

    Directory of Open Access Journals (Sweden)

    Halbach Oliver

    2008-10-01

    Full Text Available Abstract Background Adrenal chromaffin cells and sympathetic neurons both originate from the neural crest, yet signals that trigger chromaffin development remain elusive. Bone morphogenetic proteins (BMPs emanating from the dorsal aorta are important signals for the induction of a sympathoadrenal catecholaminergic cell fate. Results We report here that BMP-4 is also expressed by adrenal cortical cells throughout chick embryonic development, suggesting a putative role in chromaffin cell development. Moreover, bone morphogenetic protein receptor IA is expressed by both cortical and chromaffin cells. Inhibiting BMP-4 with noggin prevents the increase in the number of tyrosine hydroxylase positive cells in adrenal explants without affecting cell proliferation. Hence, adrenal BMP-4 is likely to induce tyrosine hydroxylase in sympathoadrenal progenitors. To investigate whether persistent BMP-4 exposure is able to induce chromaffin traits in sympathetic ganglia, we locally grafted BMP-4 overexpressing cells next to sympathetic ganglia. Embryonic day 8 chick sympathetic ganglia, in addition to principal neurons, contain about 25% chromaffin-like cells. Ectopic BMP-4 did not increase this proportion, yet numbers and sizes of 'chromaffin' granules were significantly increased. Conclusion BMP-4 may serve to promote specific chromaffin traits, but is not sufficient to convert sympathetic neurons into a chromaffin phenotype.

  14. Analysis of the regulation of fatty acid binding protein 7 expression in human renal carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Sugiyama Takayuki

    2011-07-01

    Full Text Available Abstract Background Improving the treatment of renal cell carcinoma (RCC will depend on the development of better biomarkers for predicting disease progression and aiding the design of appropriate therapies. One such marker may be fatty acid binding protein 7 (FABP7, also known as B-FABP and BLBP, which is expressed normally in radial glial cells of the developing central nervous system and cells of the mammary gland. Melanomas, glioblastomas, and several types of carcinomas, including RCC, overexpress FABP7. The abundant expression of FABP7 in primary RCCs compared to certain RCC-derived cell lines may allow the definition of the molecular components of FABP7's regulatory system. Results We determined FABP7 mRNA levels in six RCC cell lines. Two were highly expressed, whereas the other and the embryonic kidney cell line (HEK293 were weakly expressed FABP7 transcripts. Western blot analysis of the cell lines detected strong FABP7 expression only in one RCC cell line. Promoter activity in the RCC cell lines was 3- to 21-fold higher than that of HEK293. Deletion analysis demonstrated that three FABP7 promoter regions contributed to upregulated expression in RCC cell lines, but not in the HEK293 cell. Competition analysis of gel shifts indicated that OCT1, OCT6, and nuclear factor I (NFI bound to the FABP7 promoter region. Supershift experiments indicated that BRN2 (POU3F2 and NFI bound to the FABP7 promoter region as well. There was an inverse correlation between FABP7 promoter activity and BRN2 mRNA expression. The FABP7-positive cell line's NFI-DNA complex migrated faster than in other cell lines. Levels of NFIA mRNA were higher in the HEK293 cell line than in any of the six RCC cell lines. In contrast, NFIC mRNA expression was lower in the HEK293 cell line than in the six RCC cell lines. Conclusions Three putative FABP7 promoter regions drive reporter gene expression in RCC cell lines, but not in the HEK293 cell line. BRN2 and NFI may be key

  15. TRPM4 expression is associated with activated B cell subtype and poor survival in diffuse large B cell lymphoma

    DEFF Research Database (Denmark)

    Loo, Suet K; Ch'ng, Ewe S; Md Salleh, Md Salzihan

    2017-01-01

    to investigate TRPM4 protein expression pattern in non-malignant tissues and DLBCL cases, and its association with clinico-demographic parameters and survival in DLBCL. METHODS AND RESULTS: Analysis of publicly available DLBCL microarray data sets showed that TRPM4 transcripts were up-regulated in DLBCL compared...... to normal germinal centre B (GCB) cells, were expressed more highly in the activated B cell-like DLBCL (ABC-DLBCL) subtype and higher TRPM4 transcripts conferred worse overall survival (OS) in R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone)-treated DLBCL cases (P ... immunohistochemical analysis showed that TRPM4 was expressed in various human tissues but not in normal B cells within lymphoid tissues (reactive tonsil, lymph node and appendix). TRPM4 protein was present in 26% (n = 49 of 189) of our cohort of R-CHOP-treated DLBCL cases and this was associated significantly...

  16. Preliminary study of histamine H4 receptor expressed on human CD4+ T cells and its immunomodulatory potency in the IL-17 pathway of psoriasis.

    Science.gov (United States)

    Han, Song Hee; Hur, Min Seok; Kim, Min Jung; Kim, Bo Mi; Kim, Kyoung Woon; Kim, Hae Rim; Choe, Yong Beom; Ahn, Kyu Joong; Lee, Yang Won

    2017-10-01

    Previous studies have shown the expression of histamine H 4 receptor (H4R) on CD4 + T cells, especially human CD4 + T h 2-polarized T cells. This study aimed to investigate the role of H4R on these effector T cells in psoriasis. We enrolled three patients each with active psoriasis, inactive psoriasis, scalp seborrheic dermatitis, and three normal controls, and compared the basal expression of H4R mRNA in their peripheral blood CD4 + T cells. Then, we identified H4R expression in dermal CD4 + T cells. Furthermore, we investigated H4R expression after stimulating separated peripheral blood CD4 + T cells with several inflammatory cytokines. The results showed higher H4R expression in the active psoriasis group compared to the inactive psoriasis group. It was interesting that interleukin (IL)-23, which is a representative cytokine contributing to T h 17 cell differentiation, stimulated H4R expression significantly. After adding a selective H4R antagonist (JNJ-7777120) while the CD4 + T cells were polarized into T h 17 cells, we observed a tendency toward suppressed IL-17 secretion. Histamine stimulation influences the IL-17 pathway in psoriasis via the fourth histamine receptor subtype, H4R, on CD4 + T cells. The immunomodulatory roles of H4R suggest its potency as a new therapeutic target for obstinate psoriasis. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  17. Different Effects of BORIS/CTCFL on Stemness Gene Expression, Sphere Formation and Cell Survival in Epithelial Cancer Stem Cells.

    Directory of Open Access Journals (Sweden)

    Loredana Alberti

    Full Text Available Cancer stem cells are cancer cells characterized by stem cell properties and represent a small population of tumor cells that drives tumor development, progression, metastasis and drug resistance. To date, the molecular mechanisms that generate and regulate cancer stem cells are not well defined. BORIS (Brother of Regulator of Imprinted Sites or CTCFL (CTCF-like is a DNA-binding protein that is expressed in normal tissues only in germ cells and is re-activated in tumors. Recent evidences have highlighted the correlation of BORIS/CTCFL expression with poor overall survival of different cancer patients. We have previously shown an association of BORIS-expressing cells with stemness gene expression in embryonic cancer cells. Here, we studied the role of BORIS in epithelial tumor cells. Using BORIS-molecular beacon that was already validated, we were able to show the presence of BORIS mRNA in cancer stem cell-enriched populations (side population and spheres of cervical, colon and breast tumor cells. BORIS silencing studies showed a decrease of sphere formation capacity in breast and colon tumor cells. Importantly, BORIS-silencing led to down-regulation of hTERT, stem cell (NANOG, OCT4, SOX2 and BMI1 and cancer stem cell markers (ABCG2, CD44 and ALDH1 genes. Conversely, BORIS-induction led to up-regulation of the same genes. These phenotypes were observed in cervical, colon and invasive breast tumor cells. However, a completely different behavior was observed in the non-invasive breast tumor cells (MCF7. Indeed, these cells acquired an epithelial mesenchymal transition phenotype after BORIS silencing. Our results demonstrate that BORIS is associated with cancer stem cell-enriched populations of several epithelial tumor cells and the different phenotypes depend on the origin of tumor cells.

  18. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression

    International Nuclear Information System (INIS)

    Xu, Hongliang; Wang, Zhaoxia; Jin, Suqin; Hao, Hongjun; Zheng, Lemin; Zhou, Boda; Zhang, Wei; Lv, He; Yuan, Yun

    2014-01-01

    Highlights: • Dux4 induced TE671 cell proliferation defect and G1 phase arrest. • Dux4 upregulated p21 expression without activating p53. • Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. • Sp1 binding site was required for Dux4-induced p21 promoter activation. - Abstract: It has been implicated that Dux4 plays crucial roles in development of facioscapulohumeral dystrophy. But the underlying myopathic mechanisms and related down-stream events of this retrogene were far from clear. Here, we reported that overexpression of Dux4 in a cell model TE671 reduced cell proliferation rate, and increased G1 phase accumulation. We also determined the impact of Dux4 on p53/p21 signal pathway, which controls the checkpoint in cell cycle progression. Overexpression of Dux4 increased p21 mRNA and protein level, while expression of p53, phospho-p53 remained unchanged. Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. Furthermore, we demonstrated that enhanced Dux4 expression increased p21 promoter activity and elevated expression of Sp1 transcription factor. Mutation of Sp1 binding site decreased dux4 induced p21 promoter activation. Chromatin immunoprecipitation (ChIP) assays confirmed the Dux4-induced binding of Sp1 to p21 promoter in vivo. These results suggest that Dux4 might induce proliferation inhibition and G1 phase arrest through upregulation of p21

  19. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongliang; Wang, Zhaoxia; Jin, Suqin; Hao, Hongjun [Department of Neurology, Peking University First Hospital, Beijing 100034 (China); Zheng, Lemin [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing 100191 (China); Zhou, Boda [The Department of Cardiology, Peking University Third Hospital, Beijing 100191 (China); Zhang, Wei; Lv, He [Department of Neurology, Peking University First Hospital, Beijing 100034 (China); Yuan, Yun, E-mail: yuanyun2002@sohu.com [Department of Neurology, Peking University First Hospital, Beijing 100034 (China)

    2014-03-28

    Highlights: • Dux4 induced TE671 cell proliferation defect and G1 phase arrest. • Dux4 upregulated p21 expression without activating p53. • Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. • Sp1 binding site was required for Dux4-induced p21 promoter activation. - Abstract: It has been implicated that Dux4 plays crucial roles in development of facioscapulohumeral dystrophy. But the underlying myopathic mechanisms and related down-stream events of this retrogene were far from clear. Here, we reported that overexpression of Dux4 in a cell model TE671 reduced cell proliferation rate, and increased G1 phase accumulation. We also determined the impact of Dux4 on p53/p21 signal pathway, which controls the checkpoint in cell cycle progression. Overexpression of Dux4 increased p21 mRNA and protein level, while expression of p53, phospho-p53 remained unchanged. Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. Furthermore, we demonstrated that enhanced Dux4 expression increased p21 promoter activity and elevated expression of Sp1 transcription factor. Mutation of Sp1 binding site decreased dux4 induced p21 promoter activation. Chromatin immunoprecipitation (ChIP) assays confirmed the Dux4-induced binding of Sp1 to p21 promoter in vivo. These results suggest that Dux4 might induce proliferation inhibition and G1 phase arrest through upregulation of p21.

  20. Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells

    International Nuclear Information System (INIS)

    Sanlioglu, Ahter D; Dirice, Ercument; Aydin, Cigdem; Erin, Nuray; Koksoy, Sadi; Sanlioglu, Salih

    2005-01-01

    Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) selectively induces apoptosis in cancer cells but not in normal cells. Despite this promising feature, TRAIL resistance observed in cancer cells seriously challenged the use of TRAIL as a death ligand in gene therapy. The current dispute concerns whether or not TRAIL receptor expression pattern is the primary determinant of TRAIL sensitivity in cancer cells. This study investigates TRAIL receptor expression pattern and its connection to TRAIL resistance in breast cancer cells. In addition, a DcR2 siRNA approach and a complementary gene therapy modality involving IKK inhibition (AdIKKβKA) were also tested to verify if these approaches could sensitize MCF7 breast cancer cells to adenovirus delivery of TRAIL (Ad5hTRAIL). TRAIL sensitivity assays were conducted using Molecular Probe's Live/Dead Cellular Viability/Cytotoxicity Kit following the infection of breast cancer cells with Ad5hTRAIL. The molecular mechanism of TRAIL induced cell death under the setting of IKK inhibition was revealed by Annexin V binding. Novel quantitative Real Time RT-PCR and flow cytometry analysis were performed to disclose TRAIL receptor composition in breast cancer cells. MCF7 but not MDA-MB-231 breast cancer cells displayed strong resistance to adenovirus delivery of TRAIL. Only the combinatorial use of Ad5hTRAIL and AdIKKβKA infection sensitized MCF7 breast cancer cells to TRAIL induced cell death. Moreover, novel quantitative Real Time RT-PCR assays suggested that while the level of TRAIL Decoy Receptor-4 (TRAIL-R4) expression was the highest in MCF7 cells, it was the lowest TRAIL receptor expressed in MDA-MB-231 cells. In addition, conventional flow cytometry analysis demonstrated that TRAIL resistant MCF7 cells exhibited substantial levels of TRAIL-R4 expression but not TRAIL decoy receptor-3 (TRAIL-R3) on surface. On the contrary, TRAIL sensitive MDA-MB-231 cells displayed very low levels of surface TRAIL-R4

  1. The expression of Toll-like receptors 2, 4, 5, 7 and 9 in Merkel cell carcinoma.

    Science.gov (United States)

    Jouhi, Lauri; Koljonen, Virve; Böhling, Tom; Haglund, Caj; Hagström, Jaana

    2015-04-01

    We sought to clarify whether the expression of toll-like receptors (TLR) in Merkel cell carcinoma (MCC) is linked to tumor and patient characteristics, especially the presence of Merkel cell polyoma virus (MCV). The study comprised of 128 patients with data on Merkel cell polyomavirus (MCV) status and clinical features were included in the study. Immunohistochemistry for TLR expression was performed on tissue microarray (TMA) slides. TLR 2, 4, 5, 7 and 9 expression was noted in most of the tumor specimens. Decreased expression of TLR 9 correlated strongly with MCV positivity. Cytoplasmic TLR 2 expression correlated with small tumor size, while nuclear TLR 2 and TLR 5 expressions with larger tumors. Increased nuclear TLR 4 expression and decreased TLR 7 expression were associated with older age. TLR 2, 4, 5, 7 and 9 appear to reflect certain clinicopathological variables and prognostic markers of MCC tumors. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. NOX4 mediates BMP4-induced upregulation of TRPC1 and 6 protein expressions in distal pulmonary arterial smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Qian Jiang

    Full Text Available Our previous studies demonstrated that bone morphogenetic protein 4 (BMP4 mediated, elevated expression of canonical transient receptor potential (TRPC largely accounts for the enhanced proliferation in pulmonary arterial smooth muscle cells (PASMCs. In the present study, we sought to determine the signaling pathway through which BMP4 up-regulates TRPC expression.We employed recombinant human BMP4 (rhBMP4 to determine the effects of BMP4 on NADPH oxidase 4 (NOX4 and reactive oxygen species (ROS production in rat distal PASMCs. We also designed small interfering RNA targeting NOX4 (siNOX4 and detected whether NOX4 knockdown affects rhBMP4-induced ROS, TRPC1 and 6 expression, cell proliferation and intracellular Ca2+ determination in PASMCs.In rhBMP4 treated rat distal PASMCs, NOX4 expression was (226.73±11.13 %, and the mean ROS level was (123.65±1.62 % of that in untreated control cell. siNOX4 transfection significantly reduced rhBMP4-induced elevation of the mean ROS level in PASMCs. Moreover, siNOX4 transfection markedly reduced rhBMP4-induced elevation of TRPC1 and 6 proteins, basal [Ca2+]i and SOCE. Furthermore, compared with control group (0.21±0.001, the proliferation of rhBMP4 treated cells was significantly enhanced (0.41±0.001 (P<0.01. However, such increase was attenuated by knockdown of NOX4. Moreover, external ROS (H2O2 100 µM, 24 h rescued the effects of NOX4 knockdown, which included the declining of TRPC1 and 6 expression, basal intracellular calcium concentration ([Ca2+]i and store-operated calcium entry (SOCE, suggesting that NOX4 plays as an important mediator in BMP4-induced proliferation and intracellular calcium homeostasis.These results suggest that BMP4 may increase ROS level, enhance TRPC1 and 6 expression and proliferation by up-regulating NOX4 expression in PASMCs.

  3. Activated T cells can induce high levels of CTLA-4 expression on B cells

    NARCIS (Netherlands)

    Kuiper, H. M.; Brouwer, M.; Linsley, P. S.; van Lier, R. A.

    1995-01-01

    Engagement of the TCR/CD3 complex together with ligation of CD28 by its counterstructures B7-1 (CD80) and B7-2 (CD86) on APC are required for mitogenic T cell activation. After activation, T cells not only express B7-1 and B7-2 molecules, but a second receptor for the B7 ligands, CTLA-4, can be

  4. Quantitative Proteomic Analysis of Optimal Cutting Temperature (OCT) Embedded Core-Needle Biopsy of Lung Cancer

    Science.gov (United States)

    Zhao, Xiaozheng; Huffman, Kenneth E.; Fujimoto, Junya; Canales, Jamie Rodriguez; Girard, Luc; Nie, Guangjun; Heymach, John V.; Wistuba, Igacio I.; Minna, John D.; Yu, Yonghao

    2017-10-01

    With recent advances in understanding the genomic underpinnings and oncogenic drivers of pathogenesis in different subtypes, it is increasingly clear that proper pretreatment diagnostics are essential for the choice of appropriate treatment options for non-small cell lung cancer (NSCLC). Tumor tissue preservation in optimal cutting temperature (OCT) compound is commonly used in the surgical suite. However, proteins recovered from OCT-embedded specimens pose a challenge for LC-MS/MS experiments, due to the large amounts of polymers present in OCT. Here we present a simple workflow for whole proteome analysis of OCT-embedded NSCLC tissue samples, which involves a simple trichloroacetic acid precipitation step. Comparisons of protein recovery between frozen versus OCT-embedded tissue showed excellent consistency with more than 9200 proteins identified. Using an isobaric labeling strategy, we quantified more than 5400 proteins in tumor versus normal OCT-embedded core needle biopsy samples. Gene ontology analysis indicated that a number of proliferative as well as squamous cell carcinoma (SqCC) marker proteins were overexpressed in the tumor, consistent with the patient's pathology based diagnosis of "poorly differentiated SqCC". Among the most downregulated proteins in the tumor sample, we noted a number of proteins with potential immunomodulatory functions. Finally, interrogation of the aberrantly expressed proteins using a candidate approach and cross-referencing with publicly available databases led to the identification of potential druggable targets in DNA replication and DNA damage repair pathways. We conclude that our approach allows LC-MS/MS proteomic analyses on OCT-embedded lung cancer specimens, opening the way to bring powerful proteomics into the clinic. [Figure not available: see fulltext.

  5. OCT/PS-OCT imaging of brachial plexus neurovascular structures

    Science.gov (United States)

    Raphael, David T.; Zhang, Jun; Zhang, Yaoping; Chen, Zhongping; Miller, Carol; Zhou, Li

    2004-07-01

    Introduction: Optical coherence tomography (OCT) allows high-resolution imaging (less than 10 microns) of tissue structures. A pilot study with OCT and polarization-sensitive OCT (PS-OCT) was undertaken to image ex-vivo neurovascular structures (vessels, nerves) of the canine brachial plexus. Methods: OCT is an interferometry-based optical analog of B-mode ultrasound, which can image through non-transparent biological tissues. With approval of the USC Animal Care and Use Committee, segments of the supra- and infraclavicular brachial plexus were excised from euthanized adult dogs, and the ex-vivo specimens were placed in cold pH-buffered physiologic solution. An OCT beam, in micrometer translational steps, scanned the fixed-position bisected specimens in transverse and longitudinal views. Two-dimensional images were obtained from identified arteries and nerves, with specific sections of interest stained with hematoxylin-eosin for later imaging through a surgical microscope. Results: with the beam scan direction transverse to arteries, the resulting OCT images showed an identifiable arterial lumen and arterial wall tissue layers. By comparison, transverse beam OCT images of nerves revealed a multitude of smaller nerve bundles contained within larger circular-shaped fascicles. PS-OCT imaging was helpful in showing the characteristic birefringence exhibited by arrayed neural structures. Discussion: High-resolution OCT imaging may be useful in the optical identification of neurovascular structures during attempted regional nerve blockade. If incorporated into a needle-shaped catheter endoscope, such a technology could prevent intraneural and intravascular injections immediately prior to local anesthetic injection. The major limitation of OCT is that it can form a coherent image of tissue structures only to a depth of 1.5 - 2 mm.

  6. Establishment of LIF-dependent human iPS cells closely related to basic FGF-dependent authentic iPS cells.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Hirai

    Full Text Available Human induced pluripotent stem cells (iPSCs can be divided into a leukemia inhibitory factor (LIF-dependent naïve type and a basic fibroblast growth factor (bFGF-dependent primed type. Although the former are more undifferentiated than the latter, they require signal transduction inhibitors and sustained expression of the transgenes used for iPSC production. We used a transcriptionally enhanced version of OCT4 to establish LIF-dependent human iPSCs without the use of inhibitors and sustained transgene expression. These cells belong to the primed type of pluripotent stem cell, similar to bFGF-dependent iPSCs. Thus, the particular cytokine required for iPSC production does not necessarily define stem cell phenotypes as previously thought. It is likely that the bFGF and LIF signaling pathways converge on unidentified OCT4 target genes. These findings suggest that our LIF-dependent human iPSCs could provide a novel model to investigate the role of cytokine signaling in cellular reprogramming.

  7. Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment.

    Directory of Open Access Journals (Sweden)

    Bin Bao

    Full Text Available Hypoxia is known to play critical roles in cell survival, angiogenesis, tumor invasion, and metastasis. Hypoxia mediated over-expression of hypoxia-inducible factor (HIF has been shown to be associated with therapeutic resistance, and contributes to poor prognosis of cancer patients. Emerging evidence suggest that hypoxia and HIF pathways contributes to the acquisition of epithelial-to-mesenchymal transition (EMT, maintenance of cancer stem cell (CSC functions, and also maintains the vicious cycle of inflammation-all which lead to therapeutic resistance. However, the precise molecular mechanism(s by which hypoxia/HIF drives these events are not fully understood. Here, we show, for the first time, that hypoxia leads to increased expression of VEGF, IL-6, and CSC signature genes Nanog, Oct4 and EZH2 consistent with increased cell migration/invasion and angiogenesis, and the formation of pancreatospheres, concomitant with increased expression of miR-21 and miR-210 in human pancreatic cancer (PC cells. The treatment of PC cells with CDF, a novel synthetic compound inhibited the production of VEGF and IL-6, and down-regulated the expression of Nanog, Oct4, EZH2 mRNAs, as well as miR-21 and miR-210 under hypoxia. CDF also led to decreased cell migration/invasion, angiogenesis, and formation of pancreatospheres under hypoxia. Moreover, CDF decreased gene expression of miR-21, miR-210, IL-6, HIF-1α, VEGF, and CSC signatures in vivo in a mouse orthotopic model of human PC. Collectively, these results suggest that the anti-tumor activity of CDF is in part mediated through deregulation of tumor hypoxic pathways, and thus CDF could become a novel, and effective anti-tumor agent for PC therapy.

  8. Efficient generation of induced pluripotent stem cells from human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Yulin, X; Lizhen, L; Lifei, Z; Shan, F; Ru, L; Kaimin, H; Huang, H

    2012-01-01

    Ectopic expression of defined sets of genetic factors can reprogramme somatic cells to induced pluripotent stem cells (iPSCs) that closely resemble embryonic stem cells. However, the low reprogramming efficiency is a significant handicap for mechanistic studies and potential clinical application. In this study, we used human bone marrow-derived mesenchymal stem cells (hBMMSCs) as target cells for reprogramming and investigated efficient iPSC generation from hBMMSCs using the compounds of p53 siRNA, valproic acid (VPA) and vitamin C (Vc) with four transcription factors OCT4, SOX2, KLF4, and c-MYC (compound induction system). The synergetic mechanism of the compounds was studied. Our results showed that the compound induction system could efficiently reprogramme hBMMSCs to iPSCs. hBMMSC-derived iPSC populations expressed pluripotent markers and had multi-potential to differentiate into three germ layer-derived cells. p53 siRNA, VPA and Vc had a synergetic effect on cell reprogramming and the combinatorial use of these substances greatly improved the efficiency of iPSC generation by suppressing the expression of p53, decreasing cell apoptosis, up-regulating the expression of the pluripotent gene OCT4 and modifying the cell cycle. Therefore, our study highlights a straightforward method for improving the speed and efficiency of iPSC generation and provides versatile tools for investigating early developmental processes such as haemopoiesis and relevant diseases. In addition, this study provides a paradigm for the combinatorial use of genetic factors and molecules to improve the efficiency of iPSC generation.

  9. Phototherapy up-regulates dentin matrix proteins expression and synthesis by stem cells from human-exfoliated deciduous teeth.

    Science.gov (United States)

    Turrioni, Ana Paula S; Basso, Fernanda G; Montoro, Liege A; Almeida, Leopoldina de Fátima D de; Costa, Carlos A de Souza; Hebling, Josimeri

    2014-10-01

    The aim of this study was to evaluate the effects of infrared LED (850nm) irradiation on dentin matrix proteins expression and synthesis by cultured stem cells from human exfoliated deciduous teeth (SHED). Near-exfoliation primary teeth were extracted (n=3), and SHED cultures were characterized by immunofluorescence using STRO-1, CD44, CD146, Nanog and OCT3/4 antibodies, before experimental protocol. The SHEDs were seeded (3×10(4) cells/cm(2)) with DMEM containing 10% FBS. After 24-h incubation, the culture medium was replaced by osteogenic differentiation medium, and the cells were irradiated with LED light at energy densities (EDs) of 0 (control), 2, or 4J/cm(2) (n=8). The irradiated SHEDs were then evaluated for alkaline phosphatase (ALP) activity, total protein (TP) production, and collagen synthesis (SIRCOL™ Assay), as well as ALP, collagen type I (Col I), dentin sialophosphoprotein (DSPP), and dentin matrix acidic phosphoprotein (DMP-1) gene expression (qPCR). Data were analyzed by Kruskal-Wallis and Mann-Whitney tests (α=0.05). Increased ALP activity and collagen synthesis, as well as gene expression of DSPP and ALP, were observed for both EDs compared with non-irradiated cells. The ED of 4J/cm(2) also increased gene expression of COL I and DMP-1. In conclusion, infrared LED irradiation was capable of biostimulating SHEDs by increasing the expression and synthesis of proteins related with mineralized tissue formation, with overall better results for the energy dose of 4J/cm(2). Phototherapy is an additional approach for the clinical application of LED in Restorative Dentistry. Infrared LED irradiation of the cavity's floor could biostimulate subjacent pulp cells, improving local tissue healing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The effects of silver nanoparticles on mouse embryonic stem cell self-renewal and proliferation

    Directory of Open Access Journals (Sweden)

    Pavan Rajanahalli

    2015-01-01

    Full Text Available Silver nanoparticles (AgNPs are gaining rapid popularity in many commonly used medical and commercial products for their unique anti-bacterial properties. The molecular mechanisms of effects of AgNPs on stem cell self-renewal and proliferation have not yet been well understood. The aim of the work is to use mouse embryonic stem cells (mESCs as a cellular model to evaluate the toxicity of AgNPs. mESC is a very special cell type which has self-renewal and differentiation properties. The objective of this project is to determine the effects of AgNPs with different surface chemical compositions on the self-renewal and cell cycle of mESCs. Two different surface chemical compositions of AgNPs, polysaccharide-coated and hydrocarbon-coated, were used to test their toxic effects on self-renewal and proliferation of mESCs. The results indicated that both polysaccharide-coated and hydrocarbon-coated AgNPs changed the cell morphology of mESCs. Cell cycle analysis indicated that AgNPs induced mESCs cell cycle arrest at G1 and S phases through inhibition of the hyperphosphorylation of Retinoblastoma (Rb protein. Furthermore, AgNPs exposure reduced Oct4A isoform expression which is responsible for the pluripotency of mESCs, and induced the expression of several isoforms OCT4B-265, OCT4B-190, OCT4B-164 which were suggested involved in stem cell stresses responses. In addition, the evidence of reactive oxygen species (ROS production with two different surface chemical compositions of AgNPs supported our hypothesis that the toxic effect AgNPs exposure is due to overproduction of ROS which altered the gene expression and protein modifications. Polysaccharide coating reduced ROS production, and thus reduced the AgNPs toxicity.

  11. Quantitation of multiple myeloma oncogene 1/interferon-regulatory factor 4 gene expression in malignant B-cell proliferations and normal leukocytes.

    Science.gov (United States)

    Yamada, M; Asanuma, K; Kobayashi, D; Moriai, R; Yajima, T; Yagihashi, A; Yamamori, S; Watanabe, N

    2001-01-01

    We studied multiple myeloma oncogene 1/interferon-regulatory factor 4 (MUM1/IRF4) mRNA expression in various malignant human hematopoietic cell lines and normal leukocyte fractions. A quantitative reverse transcription-polymerase chain reaction was used to assess expression and chromosomes were examined for anomalies by fluorescent in situ hybridization. Among 12 cell lines examined, mRNA transcripts were expressed only in B-lymphoblastic and myeloma cell lines. Myeloma cells and malignant cell lines derived from mature B cells expressed more transcript than cell lines derived from immature B cells. Transcript levels, however, showed no association with chromosomal translocations. Expression in B-cell fractions from healthy donors was much less than in the malignant cells. In addition, MUM1/IRF4 mRNA expressed in samples from patients with acute lymphoblastic leukemia derived from B cells but not T cells. Our results suggested that MUM1/IRF4 gene expression is related to stage of differentiation of malignant B cells and they indicated the possibility that the quantitative analysis of MUM1/IRF4 gene is a useful tool for detection of malignant B-cell proliferations in clinical laboratory tests.

  12. Expression of tyrosine hydroxylase in CD4+ T cells contributes to alleviation of Th17/Treg imbalance in collagen-induced arthritis.

    Science.gov (United States)

    Wang, Xiao-Qin; Liu, Yan; Cai, Huan-Huan; Peng, Yu-Ping; Qiu, Yi-Hua

    2016-12-01

    Tyrosine hydroxylase (TH), a rate-limiting enzyme for the synthesis of catecholamines, is expressed in T lymphocytes. However, the role of T cell-expressed TH in rheumatoid arthritis (RA) is less clear. Herein, we aimed to show the contribution of TH expression by CD4 + T cells to alleviation of helper T (Th)17/regulatory T (Treg) imbalance in collagen-induced arthritis (CIA), a mouse model of RA. CIA was prepared by intradermal injection of collagen type II (CII) at tail base of DBA1/J mice. Expression of TH in the spleen and the ankle joints was measured by real-time polymerase chain reaction and Western blot analysis. Percentages of TH-expressing Th17 and Treg cells in splenic CD4 + T cells were determined by flow cytometry. Overexpression and knockdown of TH gene in CD4 + T cells were taken to evaluate effects of TH on Th17 and Treg cells in CIA. TH expression was upregulated in both the inflamed tissues (spleen and ankle joints) and the CD4 + T cells of CIA mice. In splenic CD4 + T cells, the cells expressing TH were increased during CIA. These cells that expressed more TH in CIA were mainly Th17 cells rather than Treg cells. TH gene overexpression in CD4 + T cells from CIA mice reduced Th17 cell percentage as well as Th17-related transcription factor and cytokine expression and secretion, whereas TH gene knockdown enhanced the Th17 cell activity. In contrast, TH gene overexpression increased Treg-related cytokine expression and secretion in CD4 + T cells of CIA mice, while TH gene knockdown decreased the Treg cell changes. Collectively, these findings show that CIA induces TH expression in CD4 + T cells, particularly in Th17 cells, and suggest that the increased TH expression during CIA represents an anti-inflammatory mechanism.

  13. Expression Profiles of Ligands for Activating Natural Killer Cell Receptors on HIV Infected and Uninfected CD4⁺ T Cells.

    Science.gov (United States)

    Tremblay-McLean, Alexandra; Bruneau, Julie; Lebouché, Bertrand; Lisovsky, Irene; Song, Rujun; Bernard, Nicole F

    2017-10-12

    Natural Killer (NK) cell responses to HIV-infected CD4 T cells (iCD4) depend on the integration of signals received through inhibitory (iNKR) and activating NK receptors (aNKR). iCD4 activate NK cells to inhibit HIV replication. HIV infection-dependent changes in the human leukocyte antigen (HLA) ligands for iNKR on iCD4 are well documented. By contrast, less is known regarding the HIV infection related changes in ligands for aNKR on iCD4. We examined the aNKR ligand profiles HIV p24⁺ HIV iCD4s that maintained cell surface CD4 (iCD4⁺), did not maintain CD4 (iCD4 - ) and uninfected CD4 (unCD4) T cells for expression of unique long (UL)-16 binding proteins-1 (ULBP-1), ULBP-2/5/6, ULBP-3, major histocompatibility complex (MHC) class 1-related (MIC)-A, MIC-B, CD48, CD80, CD86, CD112, CD155, Intercellular adhesion molecule (ICAM)-1, ICAM-2, HLA-E, HLA-F, HLA-A2, HLA-C, and the ligands to NKp30, NKp44, NKp46, and killer immunoglobulin-like receptor 3DS1 (KIR3DS1) by flow cytometry on CD4 T cells from 17 HIV-1 seronegative donors activated and infected with HIV. iCD4cells had higher expression of aNKR ligands than did unCD4. However, the expression of aNKR ligands on iCD4 where CD4 was downregulated (iCD4 - ) was similar to (ULBP-1, ULBP-2/5/6, ULBP-3, MIC-A, CD48, CD80, CD86 and CD155) or significantly lower than (MIC-B, CD112 and ICAM-2) what was observed on unCD4. Thus, HIV infection can be associated with increased expression of aNKR ligands or either baseline or lower than baseline levels of aNKR ligands, concomitantly with the HIV-mediated downregulation of cell surface CD4 on infected cells.

  14. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells

    Directory of Open Access Journals (Sweden)

    BA Walter

    2016-07-01

    Full Text Available The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4 ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease.

  15. ATM kinase sustains breast cancer stem-like cells by promoting ATG4C expression and autophagy.

    Science.gov (United States)

    Antonelli, Martina; Strappazzon, Flavie; Arisi, Ivan; Brandi, Rossella; D'Onofrio, Mara; Sambucci, Manolo; Manic, Gwenola; Vitale, Ilio; Barilà, Daniela; Stagni, Venturina

    2017-03-28

    The efficacy of Ataxia-Telangiectasia Mutated (ATM) kinase signalling inhibition in cancer therapy is tempered by the identification of new emerging functions of ATM, which suggests that the role of this protein in cancer progression is complex. We recently demonstrated that this tumor suppressor gene could act as tumor promoting factor in HER2 (Human Epidermal Growth Factor Receptor 2) positive breast cancer. Herein we put in evidence that ATM expression sustains the proportion of cells with a stem-like phenotype, measured as the capability to form mammospheres, independently of HER2 expression levels. Transcriptomic analyses revealed that, in mammospheres, ATM modulates the expression of cell cycle-, DNA repair- and autophagy-related genes. Among these, the silencing of the autophagic gene, autophagy related 4C cysteine peptidase (ATG4C), impairs mammosphere formation similarly to ATM depletion. Conversely, ATG4C ectopic expression in cells silenced for ATM expression, rescues mammospheres growth. Finally, tumor array analyses, performed using public data, identify a significant correlation between ATM and ATG4C expression levels in all human breast cancer subtypes, except for the basal-like one.Overall, we uncover a new connection between ATM kinase and autophagy regulation in breast cancer. We demonstrate that, in breast cancer cells, ATM and ATG4C are essential drivers of mammosphere formation, suggesting that their targeting may improve current approaches to eradicate breast cancer cells with a stem-like phenotype.

  16. HOXB4 Gene Expression Is Regulated by CDX2 in Intestinal Epithelial Cells

    DEFF Research Database (Denmark)

    Jørgensen, Steffen; Coshun, Mehmet; Mikkelsen Homburg, Keld

    2016-01-01

    analysis and expression data from Caco2 cells also suggests a role for CDX2 in the regulation of HOXB4 gene expression in the intestinal epithelium. Thus, the aim of this study was to investigate whether HOXB4 gene expression is regulated by CDX2 in the intestinal epithelium. We demonstrated binding of CDX......The mammalian Caudal-related homeobox transcription factor 2 (CDX2) plays a key role in the homeobox regulatory network and is essential in regulating the expression of several homeobox (HOX) genes during embryonic development, particularly in the gut. Genome-wide CDX2 chromatin immunoprecipitation......2 to four different CDX2 binding sites in an enhancer region located upstream of the HOXB4 transcription start site. Mutations in the CDX2 binding sites reduced HOXB4 gene activity, and knock down of endogenous CDX2 expression by shRNA reduced HOXB4 gene expression. This is the first report...

  17. Expression of S100A4, ephrin-A1 and osteopontin in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Rud, Ane Kongsgaard; Lund-Iversen, Marius; Berge, Gisle; Brustugun, Odd Terje; Solberg, Steinar K; Mælandsmo, Gunhild M; Boye, Kjetil

    2012-01-01

    The metastasis-promoting protein S100A4 induces expression of ephrin-A1 and osteopontin in osteosarcoma cell lines. The aim of this study was to investigate S100A4-mediated stimulation of ephrin-A1 and osteopontin in non-small cell lung cancer (NSCLC) cell lines, and to characterize the expression of these biomarkers in primary tumor tissue from NSCLC patients. Four NSCLC cell lines were treated with extracellular S100A4, and ephrin-A1 and osteopontin expression was analyzed by real time RT-PCR and Western blotting. Immunohistochemical staining for S100A4, ephrin-A1 and osteopontin was performed on tissue microarrays containing primary tumor samples from a cohort of 217 prospectively recruited NSCLC patients, and associations with clinicopathological parameters were investigated. S100A4 induced ephrin-A1 mRNA and protein expression in adenocarcinoma, but not in squamous carcinoma cell lines, whereas the level of osteopontin was unaffected by S100A4 treatment. In primary tumors, moderate or strong immunoreactivity was observed in 57% of cases for cytoplasmic S100A4, 46% for nuclear S100A4, 86% for ephrin-A1 and 77% for osteopontin. Interestingly, S100A4 expression was associated with ephrin-A1 also in vivo, but there was no association between S100A4 and osteopontin. Expression levels of S100A4 and ephrin-A1 were significantly higher in adenocarcinomas compared to other histological subtypes, and S100A4-positive tumors were smaller and more differentiated than tumors without expression. Our findings suggest that S100A4, ephrin-A1 and osteopontin are involved in the biology of NSCLC, and further investigation of their potential use as biomarkers in NSCLC is warranted

  18. T-bet- and STAT4-dependent IL-33 receptor expression directly promotes antiviral Th1 cell responses.

    Science.gov (United States)

    Baumann, Claudia; Bonilla, Weldy V; Fröhlich, Anja; Helmstetter, Caroline; Peine, Michael; Hegazy, Ahmed N; Pinschewer, Daniel D; Löhning, Max

    2015-03-31

    During infection, the release of damage-associated molecular patterns, so-called "alarmins," orchestrates the immune response. The alarmin IL-33 plays a role in a wide range of pathologies. Upon release, IL-33 signals through its receptor ST2, which reportedly is expressed only on CD4(+) T cells of the Th2 and regulatory subsets. Here we show that Th1 effector cells also express ST2 upon differentiation in vitro and in vivo during lymphocytic choriomeningitis virus (LCMV) infection. The expression of ST2 on Th1 cells was transient, in contrast to constitutive ST2 expression on Th2 cells, and marked highly activated effector cells. ST2 expression on virus-specific Th1 cells depended on the Th1-associated transcription factors T-bet and STAT4. ST2 deficiency resulted in a T-cell-intrinsic impairment of LCMV-specific Th1 effector responses in both mixed bone marrow-chimeric mice and adoptive cell transfer experiments. ST2-deficient virus-specific CD4(+) T cells showed impaired expansion, Th1 effector differentiation, and antiviral cytokine production. Consequently, these cells mediated little virus-induced immunopathology. Thus, IL-33 acts as a critical and direct cofactor to drive antiviral Th1 effector cell activation, with implications for vaccination strategies and immunotherapeutic approaches.

  19. Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells Using Sendai Virus.

    Science.gov (United States)

    Soares, Filipa A C; Pedersen, Roger A; Vallier, Ludovic

    2016-01-01

    This protocol describes the efficient isolation of peripheral blood mononuclear cells from circulating blood via density gradient centrifugation and subsequent generation of integration-free human induced pluripotent stem cells. Peripheral blood mononuclear cells are cultured for 9 days to allow expansion of the erythroblast population. The erythroblasts are then used to derive human induced pluripotent stem cells using Sendai viral vectors, each expressing one of the four reprogramming factors Oct4, Sox2, Klf4, and c-Myc.

  20. New evidence for the origin of intracranial germ cell tumours from primordial germ cells

    DEFF Research Database (Denmark)

    Hoei-Hansen, C E; Sehested, A; Juhler, M

    2006-01-01

    that it is not required for the initiation of malignant germ cell transformation. The expression of genes associated with embryonic stem cell pluripotency in CNS germ cell tumours strongly suggests that these tumours are derived from cells that retain, at least partially, an embryonic stem cell-like phenotype, which...... germ cell tumours and analysed expression of a wide panel of stem cell-related proteins (C-KIT, OCT-3/4 (POU5F1), AP-2gamma (TFAP2C), and NANOG) and developmentally regulated germ cell-specific proteins (including MAGE-A4, NY-ESO-1, and TSPY). Expression at the protein level was analysed in 21 children...... and young adults with intracranial germinomas and non-germinomas, contributing to a careful description of these unusual tumours and adding to the understanding of pathogenesis. Stem cell related proteins were highly expressed in intracranial germ cell tumours, and many similarities were detected...

  1. Intraretinal Correlates of Reticular Pseudodrusen Revealed by Autofluorescence and En Face OCT.

    Science.gov (United States)

    Paavo, Maarjaliis; Lee, Winston; Merriam, John; Bearelly, Srilaxmi; Tsang, Stephen; Chang, Stanley; Sparrow, Janet R

    2017-09-01

    We sought to determine whether information revealed from the reflectance, autofluorescence, and absorption properties of RPE cells situated posterior to reticular pseudodrusen (RPD) could provide insight into the origins and structure of RPD. RPD were studied qualitatively by near-infrared fundus autofluorescence (NIR-AF), short-wavelength fundus autofluorescence (SW-AF), and infrared reflectance (IR-R) images, and the presentation was compared to horizontal and en face spectral domain optical coherence tomographic (SD-OCT) images. Images were acquired from 23 patients (39 eyes) diagnosed with RPD (mean age 80.7 ± 7.1 [SD]; 16 female; 4 Hispanics, 19 non-Hispanic whites). In SW-AF, NIR-AF, and IR-R images, fundus RPD were recognized as interlacing networks of small scale variations in IR-R and fluorescence (SW-AF, NIR-AF) intensities. Darkened foci of RPD colocalized in SW-AF and NIR-AF images, and in SD-OCT images corresponded to disturbances of the interdigitation (IZ) and ellipsoid (EZ) zones and to more pronounced hyperreflective lesions traversing photoreceptor-attributable bands in SD-OCT images. Qualitative assessment of the outer nuclear layer (ONL) revealed thinning as RPD extended radially from the outer to inner retina. In en face OCT, hyperreflective areas in the EZ band correlated topographically with hyporeflective foci at the level of the RPE. The hyperreflective lesions corresponding to RPD in SD-OCT scans are likely indicative of degenerating photoreceptor cells. The darkened foci at positions of RPD in NIR-AF and en face OCT images indicate changes in the RPE monolayer with the reduced NIR-AF and en face OCT signal suggesting a reduction in melanin that could be accounted for by RPE thinning.

  2. CXCR4 expression in feline mammary carcinoma cells: evidence of a proliferative role for the SDF-1/CXCR4 axis

    Directory of Open Access Journals (Sweden)

    Ferrari Angelo

    2012-03-01

    Full Text Available Abstract Background Mammary tumours frequently develop in female domestic cats being highly malignant in a large percentage of cases. Chemokines regulate many physiological and pathological processes including organogenesis, chemotaxis of inflammatory cells, as well as tumour progression and metastasization. In particular, the chemokine/receptor pair SDF-1/CXCR4 has been involved in the regulation of metastatic potential of neoplastic cells, including breast cancer. The aim of this study was the immunohistochemical defininition of the expression profile of CXCR4 in primary and metastatic feline mammary carcinomas and the evaluation of the role of SDF-1 in feline mammary tumour cell proliferation. Results A total of 45 mammary surgical samples, including 33 primary tumours (31 carcinomas and 2 adenomas, 6 metastases, and 4 normal mammary tissues were anlyzed. Tumor samples were collected from a total number of 26 animals, as in some cases concurrent occurrence of neoplasm in more than one mammary gland was observed. Tissues were processed for standard histological examination, and all lesions were classified according to the World Health Organization criteria. CXCR4 expression in neoplastic cells was evaluated by immunohistochemistry. The level of CXCR4 immunoreactivity was semi-quantitatively estimated as CXCR4 score evaluating both the number of positive cells and the intensity of staining. Six primary, fibroblast-free primary cultures were obtained from fresh feline mammary carcinomas and characterized by immunofluorescence for CXCR4 and malignant mammary cell marker expression. SDF-1-dependent in vitro proliferative effects were also assayed. CXCR4 expression was observed in 29 out of 31 malignant tissues with a higher CXCR4 score observed in 4 out of 6 metastatic lesions than in the respective primary tumours. In 2 benign lesions analyzed, only the single basaloid adenoma showed a mild positive immunostaining against CXCR4. Normal tissue did

  3. Transient Acquisition of Pluripotency During Somatic Cell Transdifferentiation with iPSC Reprogramming Factors

    OpenAIRE

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D.; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R.; Greenleaf, William J.; Massarwa, Rada

    2015-01-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors 1,2 . Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote linea...

  4. Selection of radioresistant tumor cells and presence of ALDH1 activity in vitro

    International Nuclear Information System (INIS)

    Mihatsch, Julia; Toulany, Mahmoud; Bareiss, Petra M.; Grimm, Sabrina; Lengerke, Claudia; Kehlbach, Rainer; Rodemann, H. Peter

    2011-01-01

    Background: Tumor resistance to radiotherapy has been hypothesized to be mediated by a tumor subpopulation, called cancer stem cells (CSCs). Based on the proposed function of CSCs in radioresistance, we explored the cancer stem cell properties of cells selected for radioresistance phenotype. Materials and methods: A549 and SK-BR-3 cells were radioselected with four single doses of 4 or 3 Gy in intervals of 10-12 days and used for colony formation assay and γ-H2AX foci formation assay. Expression of putative stem cell markers, i.e. Sox2, Oct4, ALDH1, and CD133 were analyzed using Western blotting. A549 and SK-BR-3 cells sorted based on their ALDH1 activity were analyzed in clonogenic survival assays. Results: Radioselected A549 and SK-BR-3 cells (A549-R, SK-BR-3-R) showed increased radioresistance and A549-R cells presented enhanced repair of DNA-double strand breaks. PI3K inhibition significantly reduced radioresistance of A549-R cells. Cell line specific differences in the expression of the putative CSC markers Sox2 and Oct4 were observed when parental and radioselected cells were compared but could not be directly correlated to the radioresistant phenotype. However, enzyme activity of the putative stem cell marker ALDH1 showed a correlation to radioresistance. Conclusions: Subpopulations of pooled radioresistant colonies, selected by various radiation exposures were analyzed for the presence of putative stem cell markers. Although the pattern of Sox2, Oct4, and CD133 expression was not generally associated with radioresistance, presence of ALDH1 seems to be indicative for subpopulations with increased radioresistance.

  5. Tumour cell expression of C4.4A, a structural homologue of the urokinase receptor, correlates with poor prognosis in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Hansen, Line V.; Skov, Birgit G; Ploug, Michael

    2007-01-01

    expression. In the present study, we therefore explored the possible association between C4.4A expression and prognosis in patients with non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN: Tissue sections from 108 NSCLC patients were subjected to immunohistochemical staining using a polyclonal antibody...

  6. Human Uterine Leiomyoma Stem/Progenitor Cells Expressing CD34 and CD49b Initiate Tumors In Vivo

    Science.gov (United States)

    Ono, Masanori; Moravek, Molly B.; Coon, John S.; Navarro, Antonia; Monsivais, Diana; Dyson, Matthew T.; Druschitz, Stacy A.; Malpani, Saurabh S.; Serna, Vanida A.; Qiang, Wenan; Chakravarti, Debabrata; Kim, J. Julie; Bulun, Serdar E.

    2015-01-01

    Context: Uterine leiomyoma is the most common benign tumor in reproductive-age women. Using a dye-exclusion technique, we previously identified a side population of leiomyoma cells exhibiting stem cell characteristics. However, unless mixed with mature myometrial cells, these leiomyoma side population cells did not survive or grow well in vitro or in vivo. Objective: The objective of this study was to identify cell surface markers to isolate leiomyoma stem/progenitor cells. Design: Real-time PCR screening was used to identify cell surface markers preferentially expressed in leiomyoma side population cells. In vitro colony-formation assay and in vivo tumor-regeneration assay were used to demonstrate functions of leiomyoma stem/progenitor cells. Results: We found significantly elevated CD49b and CD34 gene expression in side population cells compared with main population cells. Leiomyoma cells were sorted into three populations based on the expression of CD34 and CD49b: CD34+/CD49b+, CD34+/CD49b−, and CD34−/CD49b− cells, with the majority of the side population cells residing in the CD34+/CD49b+ fraction. Of these populations, CD34+/CD49b+ cells expressed the lowest levels of estrogen receptor-α, progesterone receptor, and α-smooth muscle actin, but the highest levels of KLF4, NANOG, SOX2, and OCT4, confirming their more undifferentiated status. The stemness of CD34+/CD49b+ cells was also demonstrated by their strongest in vitro colony-formation capacity and in vivo tumor-regeneration ability. Conclusions: CD34 and CD49b are cell surface markers that can be used to enrich a subpopulation of leiomyoma cells possessing stem/progenitor cell properties; this technique will accelerate efforts to develop new therapies for uterine leiomyoma. PMID:25658015

  7. Estrogen induced concentration dependent differential gene expression in human breast cancer (MCF7) cells: Role of transcription factors

    International Nuclear Information System (INIS)

    Chandrasekharan, Sabarinath; Kandasamy, Krishna Kumar; Dayalan, Pavithra; Ramamurthy, Viraragavan

    2013-01-01

    Highlights: •Estradiol (E2) at low dose induced cell proliferation in breast cancer cells. •E2 at high concentration induced cell stress in breast cancer cells. •Estrogen receptor physically interacts only with a few transcription factors. •Differential expression of genes with Oct-1 binding sites increased under stress. •Transcription factor binding sites showed distinct spatial distribution on genes. -- Abstract: Background: Breast cancer cells respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. The mechanism of this concentration dependent differential outcome is not well understood yet. Methodology: Meta-analysis of the expression data of MCF7 cells treated with low (1 nM) or high (100 nM) dose of estradiol (E2) was performed. We identified genes differentially expressed at the low or the high dose, and examined the nature of regulatory elements in the vicinity of these genes. Specifically, we looked for the difference in the presence, abundance and spatial distribution of binding sites for estrogen receptor (ER) and selected transcription factors (TFs) in the genomic region up to 25 kb upstream and downstream from the transcription start site (TSS) of these genes. Results: It was observed that at high dose E2 induced the expression of stress responsive genes, while at low dose, genes involved in cell cycle were induced. We found that the occurrence of transcription factor binding regions (TFBRs) for certain factors such as Sp1 and SREBP1 were higher on regulatory regions of genes expressed at low dose. At high concentration of E2, genes with a higher frequency of Oct-1 binding regions were predominantly involved. In addition, there were differences in the spatial distribution pattern of the TFBRs in the genomic regions among the two sets of genes. Discussion: E2 induced predominantly proliferative/metabolic response at low concentrations; but at high concentration, stress–rescue responses were induced

  8. Estrogen induced concentration dependent differential gene expression in human breast cancer (MCF7) cells: Role of transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekharan, Sabarinath, E-mail: csab@bio.psgtech.ac.in [Department of Biotechnology, PSG College of Technology, Coimbatore 641004 (India); Kandasamy, Krishna Kumar [Max Planck Institute for Biology of Ageing, Cologne (Germany); Dayalan, Pavithra; Ramamurthy, Viraragavan [Department of Biotechnology, PSG College of Technology, Coimbatore 641004 (India)

    2013-08-02

    Highlights: •Estradiol (E2) at low dose induced cell proliferation in breast cancer cells. •E2 at high concentration induced cell stress in breast cancer cells. •Estrogen receptor physically interacts only with a few transcription factors. •Differential expression of genes with Oct-1 binding sites increased under stress. •Transcription factor binding sites showed distinct spatial distribution on genes. -- Abstract: Background: Breast cancer cells respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. The mechanism of this concentration dependent differential outcome is not well understood yet. Methodology: Meta-analysis of the expression data of MCF7 cells treated with low (1 nM) or high (100 nM) dose of estradiol (E2) was performed. We identified genes differentially expressed at the low or the high dose, and examined the nature of regulatory elements in the vicinity of these genes. Specifically, we looked for the difference in the presence, abundance and spatial distribution of binding sites for estrogen receptor (ER) and selected transcription factors (TFs) in the genomic region up to 25 kb upstream and downstream from the transcription start site (TSS) of these genes. Results: It was observed that at high dose E2 induced the expression of stress responsive genes, while at low dose, genes involved in cell cycle were induced. We found that the occurrence of transcription factor binding regions (TFBRs) for certain factors such as Sp1 and SREBP1 were higher on regulatory regions of genes expressed at low dose. At high concentration of E2, genes with a higher frequency of Oct-1 binding regions were predominantly involved. In addition, there were differences in the spatial distribution pattern of the TFBRs in the genomic regions among the two sets of genes. Discussion: E2 induced predominantly proliferative/metabolic response at low concentrations; but at high concentration, stress–rescue responses were induced

  9. TGF-β induces the expression of Nedd4 family-interacting protein 1 (Ndfip1) to silence IL-4 production during iTreg cell differentiation

    Science.gov (United States)

    Beal, Allison M.; Ramos-Hernández, Natalia; Riling, Chris R.; Nowelsky, Erin A.; Oliver, Paula M.

    2011-01-01

    Mice deficient for the adaptor Ndfip1 develop inflammation at sites of environmental antigen exposure. We show here that these animals contain fewer inducible regulatory (iTreg) cells. In vitro, Ndfip1-deficient T cells express normal levels of the transcription factor Foxp3 during the first 48 hours of iTreg cell differentiation, however this cannot be sustained. Abortive Foxp3 expression is because Ndfip1–/– cells produce interleukin 4 (IL-4). We demonstrate that Ndfip1 is transiently unregulated during iTreg cell differentiation in a transforming growth factor-β (TGF-β) dependent manner. Once expressed Ndfip1 promotes Itch-mediated degradation of the transcription factor JunB, thus preventing IL-4 production. Based on these data, we propose that TGF-β signaling induces Ndfip1 expression to silence IL-4 production, thus permitting iTreg cell differentiation. PMID:22080920

  10. Expression pattern of pluripotent markers in different embryonic developmental stages of buffalo (Bubalus bubalis) embryos and putative embryonic stem cells generated by parthenogenetic activation.

    Science.gov (United States)

    Singh, Karn P; Kaushik, Ramakant; Garg, Veena; Sharma, Ruchi; George, Aman; Singh, Manoj K; Manik, Radhey S; Palta, Prabhat; Singla, Suresh K; Chauhan, Manmohan S

    2012-12-01

    In this study, we describe the production of buffalo parthenogenetic blastocysts and subsequent isolation of parthenogenetic embryonic stem cell (PGESC)-like cells. PGESC colonies exhibited dome-shaped morphology and were clearly distinguishable from the feeder layer cells. Different stages of development of parthenogenetic embryos and derived embryonic stem cell (ESC)-like cells expressed key ESC-specific markers, including OCT-4, NANOG, SOX-2, FOXD3, REX-1, STAT-3, TELOMERASE, NUCLEOSTEMIN, and cMYC. Immunofluorescence-based studies revealed that the PGESCs were positive for surface-based pluripotent markers, viz., SSEA-3, SSEA-4, TRA 1-80, TRA 1-60, CD-9, and CD-90 and exhibited high alkaline phosphatase (ALP) activity. PGEC cell-like cells formed embryoid body (EB)-like structures in hanging drop cultures and when cultured for extended period of time spontaneously differentiated into derivatives of three embryonic germ layers as confirmed by RT-PCR for ectodermal (CYTOKERATIN8, NF-68), mesodermal (MSX1, BMP-4, ASA), and endodermal markers (AFP, HNF-4, GATA-4). Differentiation of PGESCs toward the neuronal lineage was successfully directed by supplementation of serum-containing media with retinoic acid. Our results indicate that the isolated ESC-like cells from parthenogenetic blastocyst hold properties of ESCs and express markers of pluripotency. The pluripotency markers were also expressed by early cleavage-stage of buffalo embryos.

  11. CXCR4 Is Required by a Nonprimate Lentivirus: Heterologous Expression of Feline Immunodeficiency Virus in Human, Rodent, and Feline Cells

    Science.gov (United States)

    Poeschla, Eric M.; Looney, David J.

    1998-01-01

    A heterologous feline immunodeficiency virus (FIV) expression system permitted high-level expression of FIV proteins and efficient production of infectious FIV in human cells. These results identify the FIV U3 element as the sole restriction to the productive phase of replication in nonfeline cells. Heterologous FIV expression in a variety of human cell lines resulted in profuse syncytial lysis that was FIV env specific, CD4 independent, and restricted to cells that express CXCR4, the coreceptor for T-cell-line-adapted strains of human immunodeficiency virus. Stable expression of human CXCR4 in CXCR4-negative human and rodent cell lines resulted in extensive FIV Env-mediated, CXCR4-dependent cell fusion and infection. In feline cells, stable overexpression of human CXCR4 resulted in increased FIV infectivity and marked syncytium formation during FIV replication or after infection with FIV Env-expressing vectors. The use of CXCR4 is a fundamental feature of lentivirus biology independent of CD4 and a shared cellular link to infection and cytopathicity for distantly related lentiviruses that cause AIDS. Their conserved use implicates chemokine receptors as primordial lentivirus receptors. PMID:9658135

  12. Human Immunodeficiency Virus Type-1 Elite Controllers Maintain Low Co-Expression of Inhibitory Receptors on CD4+ T Cells.

    Science.gov (United States)

    Noyan, Kajsa; Nguyen, Son; Betts, Michael R; Sönnerborg, Anders; Buggert, Marcus

    2018-01-01

    Human immunodeficiency virus type-1 (HIV-1) elite controllers (ELCs) represent a unique population that control viral replication in the absence of antiretroviral therapy (cART). It is well established that expression of multiple inhibitory receptors on CD8+ T cells is associated with HIV-1 disease progression. However, whether reduced co-expression of inhibitory receptors on CD4+ T cells is linked to natural viral control and slow HIV-1 disease progression remains undefined. Here, we report on the expression pattern of numerous measurable inhibitory receptors, associated with T cell exhaustion (programmed cell death-1, CTLA-4, and TIGIT), on different CD4+ T cell memory populations in ELCs and HIV-infected subjects with or without long-term cART. We found that the co-expression pattern of inhibitory receptors was significantly reduced in ELCs compared with HIV-1 cART-treated and viremic subjects, and similar to healthy controls. Markers associated with T cell exhaustion varied among different memory CD4+ T cell subsets and highest levels were found mainly on transitional memory T cells. CD4+ T cells co-expressing all inhibitory markers were positively correlated to T cell activation (CD38+ HLA-DR+) as well as the transcription factors Helios and FoxP3. Finally, clinical parameters such as CD4 count, HIV-1 viral load, and the CD4/CD8 ratio all showed significant associations with CD4+ T cell exhaustion. We demonstrate that ELCs are able to maintain lower levels of CD4+ T cell exhaustion despite years of ongoing viral replication compared with successfully cART-treated subjects. Our findings suggest that ELCs harbor a "healthy" state of inhibitory receptor expression on CD4+ T cells that might play part in maintenance of their control status.

  13. Estrogen induced {beta}-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee-Jung [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Chung, Tae-Wook; Kim, Cheorl-Ho [Department of Molecular and Cellular Glycobiology, College of Natural Science, Sungkyunkwan University, Suwon, Kyungki-do (Korea, Republic of); Jeong, Han-Sol; Joo, Myungsoo [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Youn, BuHyun, E-mail: bhyoun72@pusan.ac.kr [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Ha, Ki-Tae, E-mail: hagis@pusan.ac.kr [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. Black-Right-Pointing-Pointer Estrogen-induced B4GALT1 expression through the direct binding of ER-{alpha} to ERE in MCF-7 cells. Black-Right-Pointing-Pointer B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. Black-Right-Pointing-Pointer Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose {beta}-1,4-N-acetylglucosamine (Gal{beta}1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Gal{beta}1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-{alpha}-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering

  14. Estrogen induced β-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    International Nuclear Information System (INIS)

    Choi, Hee-Jung; Chung, Tae-Wook; Kim, Cheorl-Ho; Jeong, Han-Sol; Joo, Myungsoo; Youn, BuHyun; Ha, Ki-Tae

    2012-01-01

    Highlights: ► We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. ► Estrogen-induced B4GALT1 expression through the direct binding of ER-α to ERE in MCF-7 cells. ► B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. ► Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose β-1,4-N-acetylglucosamine (Galβ1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Galβ1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-α-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering these results, we propose that estrogen regulates the expression of B4GALT1 through the direct binding of ER-α to ERE and

  15. Effectiveness of mesenchymal stems cells cultured by hanging drop vs. conventional culturing on the repair of hypoxic-ischemic-damaged mouse brains, measured by stemness gene expression

    OpenAIRE

    Lou Yongli; Guo Dewei; Zhang Hui; Song Laijun

    2016-01-01

    In this study, we investigated the therapeutic effects of Human Mesenchymal Stem Cells (hMSCs) cultured by hanging drop and conventional culturing methods on cerebellar repair in hypoxic-ischemic (HI) brain injured mice. Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to analyze the expression levels of three stemness genes, Oct4, Sox2 and Nanog, and the migration related gene CXCR4. MSC prepared by hanging drop or conventional techniques were adminis...

  16. Tiamulin inhibits human CYP3A4 activity in an NIH/3T3 cell line stably expressing CYP3A4 cDNA.

    Science.gov (United States)

    De Groene, E M; Nijmeijer, S M; Horbach, G J; Witkamp, R F

    1995-09-07

    Tiamulin is an antibiotic frequently used in veterinary medicine. The drug has been shown to produce clinically important interactions with other compounds that are administered simultaneously. An NIH/3T3 cell line, stably expressing human cytochrome P450 (EC 1.14.14.1) cDNA (CYP3A4), was used to study the effect of tiamulin on CYP3A4 activity. The 6 beta-hydroxylation activity of testosterone, which is increased in CYP3A4-expressing cells compared to vector-transfected cells, showed reduced activity after incubation with 1 microM tiamulin and was completely reduced to background level after incubation with 2, 5 and 10 microM tiamulin. The CYP3A4-expressing cell line was used in combination with a shuttle vector containing the bacterial lacZ' gene to study the effect of tiamulin on CYP3A4-mediated mutagenicity of aflatoxin B1. The mutation frequency of aflatoxin B1 could be completely inhibited by tiamulin in CYP3A4-expressing cells, but no effect was observed on the mutation frequency of the direct mutagen ethylmethanesulphonate. Western blotting of homogenates of the CYP3A4-expressing cell line showed stabilization of CYP3A4 protein after incubation with tiamulin, supporting the hypothesis that the mechanism of inhibition is by binding of tiamulin to the cytochrome.

  17. SOX4 expression in bladder carcinoma

    DEFF Research Database (Denmark)

    Aaboe, Mads; Birkenkamp-Demtroder, Karin; Wiuf, Carsten

    2006-01-01

    The human transcription factor SOX4 was 5-fold up-regulated in bladder tumors compared with normal tissue based on whole-genome expression profiling of 166 clinical bladder tumor samples and 27 normal urothelium samples. Using a SOX4-specific antibody, we found that the cancer cells expressed...... in the clinical bladder material and a small subset of the genes showed a high correlation to SOX4 expression. The present data suggest a role of SOX4 in the bladder cancer disease....... the SOX4 protein and, thus, did an evaluation of SOX4 protein expression in 2,360 bladder tumors using a tissue microarray with clinical annotation. We found a correlation (P bladder cell line HU609, SOX4...

  18. Blood feeding by the Rocky Mountain spotted fever vector, Dermacentor andersoni, induces interleukin-4 expression by cognate antigen responding CD4+ T cells

    Directory of Open Access Journals (Sweden)

    Wikel Stephen K

    2009-10-01

    Full Text Available Abstract Background Tick modulation of host defenses facilitates both blood feeding and pathogen transmission. Several tick species deviate host T cell responses toward a Th2 cytokine profile. The majority of studies of modulation of T cell cytokine expression by ticks were performed with lymphocytes from infested mice stimulated in vitro with polyclonal T cell activators. Those reports did not examine tick modulation of antigen specific responses. We report use of a transgenic T cell receptor (TCR adoptive transfer model reactive with influenza hemagglutinin peptide (110-120 to examine CD4+ T cell intracellular cytokine responses during infestation with the metastriate tick, Dermacentor andersoni, or exposure to salivary gland extracts. Results Infestation with pathogen-free D. andersoni nymphs or administration of an intradermal injection of female or male tick salivary gland extract induced significant increases of IL-4 transcripts in skin and draining lymph nodes of BALB/c mice as measured by quantitative real-time RT-PCR. Furthermore, IL-10 transcripts were significantly increased in skin while IL-2 and IFN-γ transcripts were not significantly changed by tick feeding or intradermal injection of salivary gland proteins, suggesting a superimposed Th2 response. Infestation induced TCR transgenic CD4+ T cells to divide more frequently as measured by CFSE dilution, but more notably these CD4+ T cells also gained the capacity to express IL-4. Intracellular levels of IL-4 were significantly increased. A second infestation administered 14 days after a primary exposure to ticks resulted in partially reduced CFSE dilution with no change in IL-4 expression when compared to one exposure to ticks. Intradermal inoculation of salivary gland extracts from both male and female ticks also induced IL-4 expression. Conclusion This is the first report of the influence of a metastriate tick on the cytokine profile of antigen specific CD4+ T cells. Blood feeding

  19. Increased levels of circulating CD34+ cells in neovascular age-related macular degeneration: relation with clinical and OCT features.

    Science.gov (United States)

    Kara, Caner; Özdal, Pınar Ç; Beyazyıldız, Emrullah; Özcan, Nurgül E; Teke, Mehmet Y; Vural, Gülden; Öztürk, Faruk

    2018-01-01

    To investigate the levels of circulating CD34+ stem cells in patients with neovascular type age-related macular degeneration (AMD) and its relation with clinical and optical coherence tomography (OCT) findings. The study consisted of 55 patients: 28 patients (18 male and 10 female) with neovascular type AMD as a study group and 27 patients (12 male and 15 female) scheduled for cataract surgery as a control group. The level of CD34+ stem cells was measured by flow cytometry. Demographic and clinical data were recorded. The mean ages of patients in the study and control groups were 71 ± 8 and 68 ± 6 years, respectively. There was no statistically significant difference in terms of age, sex, or systemic disease association between study and control groups. However, smoking status was significantly higher in the study group (67.9% vs 37.0%; p = 0.02). Stem cell levels were significantly higher in the study group (1.5 ± 0.9 vs 0.5 ± 0.3; p<0.001), but there was no relation between stem cell levels and clinical and OCT findings. Increased circulating CD34+ stem cell levels were observed in patients with choroidal neovascular membrane associated with AMD, but no significant relation was found between cell levels and clinical and OCT findings.

  20. The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development.

    NARCIS (Netherlands)

    M.M. Jaegle (Martine); M. Ghazvini (Mehrnaz); W.J. Mandemakers (Wim); M. Piirsoo (Marko); S. Driegen (Siska); F. Levavasseur (Francoise); S. Raghoenath; F.G. Grosveld (Frank); D. Meijer (Daniëlle)

    2003-01-01

    textabstractThe genetic hierarchy that controls myelination of peripheral nerves by Schwann cells includes the POU domain Oct-6/Scip/Tst-1and the zinc-finger Krox-20/Egr2 transcription factors. These pivotal transcription factors act to control the onset of myelination during

  1. The human complement inhibitor Sushi Domain-Containing Protein 4 (SUSD4) expression in tumor cells and infiltrating T cells is associated with better prognosis of breast cancer patients

    OpenAIRE

    Englund, Emelie; Reitsma, Bart; King, Ben C.; Escudero-Esparza, Astrid; Owen, Sioned; Orimo, Akira; Okroj, Marcin; Anagnostaki, Lola; Jiang, Wen G.; Jirström, Karin; Blom, Anna M.

    2015-01-01

    Background: The human Sushi Domain-Containing Protein 4 (SUSD4) was recently shown to function as a novel inhibitor of the complement system, but its role in tumor progression is unknown. \\ud \\ud Methods: Using immunohistochemistry and quantitative PCR, we investigated SUSD4 expression in breast cancer tissue samples from two cohorts. The effect of SUSD4 expression on cell migration and invasion was studied in vitro using two human breast cancer cell lines overexpressing SUSD4. \\ud \\ud Result...

  2. Regulation of Id2 expression in EL4 T lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Weigent, Douglas A

    2009-01-01

    In previous studies, we have shown that overexpression of growth hormone (GH) in cells of the immune system upregulates proteins involved in cell growth and protects from apoptosis. Here, we report that overexpression of GH in EL4 T lymphoma cells (GHo) also significantly increased levels of the inhibitor of differentiation-2 (Id2). The increase in Id2 was suggested in both Id2 promoter luciferase assays and by Western analysis for Id2 protein. To identify the regulatory elements that mediate transcriptional activation by GH in the Id2 promoter, promoter deletion analysis was performed. Deletion analysis revealed that transactivation involved a 301-132bp region upstream to the Id2 transcriptional start site. The pattern in the human GHo Jurkat T lymphoma cell line paralleled that found in the mouse GHo EL4 T lymphoma cell line. Significantly less Id2 was detected in the nucleus of GHo EL4 T lymphoma cells compared to vector alone controls. Although serum increased the levels of Id2 in control vector alone cells, no difference was found in the total levels of Id2 in GHo EL4 T lymphoma cells treated with or without serum. The increase in Id2 expression in GHo EL4 T lymphoma cells measured by Id2 promoter luciferase expression and Western blot analysis was blocked by the overexpression of a dominant-negative mutant of STAT5. The results suggest that in EL4 T lymphoma cells overexpressing GH, there is an upregulation of Id2 protein that appears to involve STAT protein activity.

  3. Effector/memory CD4 T cells making either Th1 or Th2 cytokines commonly co-express T-bet and GATA-3.

    Directory of Open Access Journals (Sweden)

    Arundhoti Das

    Full Text Available Naïve CD4 T (NCD4T cells post-activation undergo programming for inducible production of cytokines leading to generation of memory cells with various functions. Based on cytokine based polarization of NCD4T cells in vitro, programming for either 'Th1' (interferon-gamma [IFNg] or 'Th2' (interleukin [IL]-4/5/13 cytokines is thought to occur via mutually exclusive expression and functioning of T-bet or GATA-3 transcription factors (TFs. However, we show that a high proportion of mouse and human memory-phenotype CD4 T (MCD4T cells generated in vivo which expressed either Th1 or Th2 cytokines commonly co-expressed T-bet and GATA-3. While T-bet levels did not differ between IFNg-expressing and IL-4/5/13-expressing MCD4T cells, GATA-3 levels were higher in the latter. These observations were also confirmed in MCD4T cells from FVB/NJ or aged C57BL/6 or IFNg-deficient mice. While MCD4T cells from these strains showed greater Th2 commitment than those from young C57BL/6 mice, pattern of co-expression of TF was similar. Effector T cells generated in vivo following immunization also showed TF co-expression in Th1 or Th2 cytokine producing cells. We speculated that the difference in TF expression pattern of MCD4T cells generated in vivo and those generated in cytokine polarized cultures in vitro could be due to relative absence of polarizing conditions during activation in vivo. We tested this by NCD4T cell activation in non-polarizing conditions in vitro. Anti-CD3 and anti-CD28-mediated priming of polyclonal NCD4T cells in vitro without polarizing milieu generated cells that expressed either IFNg or IL-4/5/13 but not both, yet both IFNg- and IL-4/5/13-expressing cells showed upregulation of both TFs. We also tested monoclonal T cell populations activated in non-polarizing conditions. TCR-transgenic NCD4T cells primed in vitro by cognate peptide in non-polarizing conditions which expressed either IFNg or IL-4/5/13 also showed a high proportion of cells co-expressing

  4. Male and female rat bone marrow-derived mesenchymal stem cells are different in terms of the expression of germ cell specific genes.

    Science.gov (United States)

    Ghasemzadeh-Hasankolaei, Mohammad; Eslaminejad, Mohammadreza Baghaban; Batavani, Roozali; Ghasemzadeh-Hasankolaei, Maryam

    2015-06-01

    Recent studies have shown that mesenchymal stem cells (MSCs), under appropriate conditions, can differentiate into cell types including germ cells (GCs). These studies also show that MSCs without any induction express some GC-specific genes innately. Moreover, one report suggests that female MSCs have a greater tendency to differentiate into female instead of male GCs. Therefore, for the first time, this study attempts to assay and determine the differences between the expression levels of some important GC-specific genes (Stra8, Vasa, Dazl, Stella, Piwil2, Oct4, Fragilis, Rnf17 and c-Kit) in male and female bone marrow (BM)-MSCs of rats. BM sampling of the rate was performed by a newly established method. We cultured rat BM samples, then characterized male and female MSCs according to their adhesion onto the culture dish, their differentiation potential into bone, cartilage and fat cells, and phenotype analysis by flow cytometry. The expression of GC-specific genes and their expression levels were evaluated with reverse transcription polymerase chain reaction (RT-PCR) and real-time RT-PCR. Our results showed that Dazl and Rnf17 did not express in the cells. The majority of examined genes, except Piwil2, expressed at almost the same levels in male and female MSCs. Piwil2 had higher expression in male MSCs which was probably related to the more prominent role of Piwil2 in the male GC development process. Male BM-MSCs appeared more prone to differentiate into male rather than female GCs. Additional research should be performed to determine the exact role of different genes in the male and female GC development process.

  5. TGF-β induces the expression of the adaptor Ndfip1 to silence IL-4 production during iTreg cell differentiation.

    Science.gov (United States)

    Beal, Allison M; Ramos-Hernández, Natalia; Riling, Chris R; Nowelsky, Erin A; Oliver, Paula M

    2011-11-13

    Mice deficient in the adaptor Ndfip1 develop inflammation at sites of environmental antigen exposure. We show here that such mice had fewer inducible regulatory T cells (iT(reg) cells). In vitro, Ndfip1-deficient T cells expressed normal amounts of the transcription factor Foxp3 during the first 48 h of iT(reg) cell differentiation; however, this expression was not sustained. Abortive Foxp3 expression was caused by production of interleukin 4 (IL-4) by Ndfip1(-/-) cells. We found that Ndfip1 expression was transiently upregulated during iT(reg) cell differentiation in a manner dependent on transforming growth factor-β (TGF-β). Once expressed, Ndfip1 promoted degradation of the transcription factor JunB mediated by the E3 ubiquitin ligase Itch, thus preventing IL-4 production. On the basis of our data, we propose that TGF-β signaling induces Ndfip1 expression to silence IL-4 production, thus permitting iT(reg) cell differentiation.

  6. CXCR7 controls competition for recruitment of β-arrestin 2 in cells expressing both CXCR4 and CXCR7.

    Directory of Open Access Journals (Sweden)

    Nathaniel L Coggins

    Full Text Available Chemokine CXCL12 promotes growth and metastasis of more than 20 different human cancers, as well as pathogenesis of other common diseases. CXCL12 binds two different receptors, CXCR4 and CXCR7, both of which recruit and signal through the cytosolic adapter protein β-arrestin 2. Differences in CXCL12-dependent recruitment of β-arrestin 2 in cells expressing one or both receptors remain poorly defined. To quantitatively investigate parameters controlling association of β-arrestin 2 with CXCR4 or CXCR7 in cells co-expressing both receptors, we used a systems biology approach combining real-time, multi-spectral luciferase complementation imaging with computational modeling. Cells expressing only CXCR4 maintain low basal association with β-arrestin 2, and CXCL12 induces a rapid, transient increase in this interaction. In contrast, cells expressing only CXCR7 have higher basal association with β-arrestin 2 and exhibit more gradual, prolonged recruitment of β-arrestin 2 in response to CXCL12. We developed and fit a data-driven computational model for association of either CXCR4 or CXCR7 with β-arrestin 2 in cells expressing only one type of receptor. We then experimentally validated model predictions that co-expression of CXCR4 and CXCR7 on the same cell substantially decreases both the magnitude and duration of CXCL12-regulated recruitment of β-arrestin 2 to CXCR4. Co-expression of both receptors on the same cell only minimally alters recruitment of β-arrestin 2 to CXCR7. In silico experiments also identified β-arrestin 2 as a limiting factor in cells expressing both receptors, establishing that CXCR7 wins the "competition" with CXCR4 for CXCL12 and recruitment of β-arrestin 2. These results reveal how competition for β-arrestin 2 controls integrated responses to CXCL12 in cells expressing both CXCR4 and CXCR7. These results advance understanding of normal and pathologic functions of CXCL12, which is critical for developing effective

  7. Transcriptome Analysis of Mycobacteria-Specific CD4+ T Cells Identified by Activation-Induced Expression of CD154.

    Science.gov (United States)

    Kunnath-Velayudhan, Shajo; Goldberg, Michael F; Saini, Neeraj K; Johndrow, Christopher T; Ng, Tony W; Johnson, Alison J; Xu, Jiayong; Chan, John; Jacobs, William R; Porcelli, Steven A

    2017-10-01

    Analysis of Ag-specific CD4 + T cells in mycobacterial infections at the transcriptome level is informative but technically challenging. Although several methods exist for identifying Ag-specific T cells, including intracellular cytokine staining, cell surface cytokine-capture assays, and staining with peptide:MHC class II multimers, all of these have significant technical constraints that limit their usefulness. Measurement of activation-induced expression of CD154 has been reported to detect live Ag-specific CD4 + T cells, but this approach remains underexplored and, to our knowledge, has not previously been applied in mycobacteria-infected animals. In this article, we show that CD154 expression identifies adoptively transferred or endogenous Ag-specific CD4 + T cells induced by Mycobacterium bovis bacillus Calmette-Guérin vaccination. We confirmed that Ag-specific cytokine production was positively correlated with CD154 expression by CD4 + T cells from bacillus Calmette-Guérin-vaccinated mice and show that high-quality microarrays can be performed from RNA isolated from CD154 + cells purified by cell sorting. Analysis of microarray data demonstrated that the transcriptome of CD4 + CD154 + cells was distinct from that of CD154 - cells and showed major enrichment of transcripts encoding multiple cytokines and pathways of cellular activation. One notable finding was the identification of a previously unrecognized subset of mycobacteria-specific CD4 + T cells that is characterized by the production of IL-3. Our results support the use of CD154 expression as a practical and reliable method to isolate live Ag-specific CD4 + T cells for transcriptomic analysis and potentially for a range of other studies in infected or previously immunized hosts. Copyright © 2017 by The American Association of Immunologists, Inc.

  8. Expression of Caspase-3, P53 in EL-4 cells induced by ionizing radiation and its biological implications

    International Nuclear Information System (INIS)

    Ju Guizhi; Shen Bo; Sun Shilong; Yan Fengqin; Fu Shibo; Li Pengwu

    2006-01-01

    Objective: To investigate the effect of ionizing radiation on the expressions of Caspase-3 and P53 proteins in EL-4 cells and its implications in the induction of apoptosis and polyploid cells. Methods: EL- 4 cells were irradiated with 4.0 Gy X-rays (180 kV, 15 mA, 0.287 Gy/min). Fluorescent staining and flow cytometry analysis were used to measure protein expression, apoptosis and polyploid cells. Results: It was found that the expression of Caspase-3 protein was increased significantly at 8 h and 12 h after the irradiation compared with sham-irradiated control (P<0.05), and the expression of P53 protein was also increased significantly at 2,4,8,12 and 24 h after the irradiation compared with sham-irradiated control (P<0.05 or P<0.01). The results showed that apoptosis of EL-4 cells was increased significantly at 2,4,8,12,24,48, and 72 h after 4.0 Gy irradiation compared with sham-irradiated control (P<0.05 or P<0.01 or P<0.001). However, no significant change in the number of polyploidy cells was found during the period from 2 to 48 h after the irradiation with 4.0 Gy X-rays. Conclusions: It is indicated that the expressions of Caspase-3 and P53 protein in EL-4 cells can be induced by ionizing radiation, and play an important role in the induction of apoptosis; the molecular pathway for polyploid formation might be P53-independent. (authors)

  9. Ectopic AP4 expression induces cellular senescence via activation of p53 in long-term confluent retinal pigment epithelial cells.

    Science.gov (United States)

    Wang, Yiping; Wong, Matthew Man-Kin; Zhang, Xiaojian; Chiu, Sung-Kay

    2015-11-15

    When cells are grown to confluence, cell-cell contact inhibition occurs and drives the cells to enter reversible quiescence rather than senescence. Confluent retinal pigment epithelial (RPE) cells exhibiting contact inhibition was used as a model in this study to examine the role of overexpression of transcription factor AP4, a highly expressed transcription factor in many types of cancer, in these cells during long-term culture. We generated stable inducible RPE cell clones expressing AP4 or AP4 without the DNA binding domain (DN-AP4) and observed that, when cultured for 24 days, RPE cells with a high level of AP4 exhibit a large, flattened morphology and even cease proliferating; these changes were not observed in DN-AP4-expressing cells or non-induced cells. In addition, AP4-expressing cells exhibited senescence-associated β-galactosidase activity and the senescence-associated secretory phenotype. We demonstrated that the induced cellular senescence was mediated by enhanced p53 expression and that AP4 regulates the p53 gene by binding directly to two of the three E-boxes present on the promoter of the p53 gene. Moreover, we showed that serum is essential for AP4 in inducing p53-associated cellular senescence. Collectively, we showed that overexpression of AP4 mediates cellular senescence involving in activation of p53 in long-term post-confluent RPE cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Polymeric nanoparticles as OCT contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Al Rawashdeh, Wa' el [RWTH Aachen University, Experimental Molecular Imaging (Germany); Kray, Stefan [RWTH Aachen University, Institute for Semiconductor Electronics (Germany); Pich, Andrij; Pargen, Sascha; Balaceanu, Andreea [RWTH Aachen University, Interactive Material Research (DWI) (Germany); Lenz, Markus; Spoeler, Felix [RWTH Aachen University, Institute for Semiconductor Electronics (Germany); Kiessling, Fabian, E-mail: fkiessling@ukaachen.de; Lederle, Wiltrud [RWTH Aachen University, Experimental Molecular Imaging (Germany)

    2012-12-15

    In this study, the optical properties of two nano-sized polymer colloids in optical coherence tomography (OCT) were compared in vitro with respect to their potential use as contrast agents. We used two types of particles: compact hydrophobic spherical polystyrene (PS) particles and soft water-swollen nanogel (NG) particles both with grafted hydrophilic shell, both prepared at two different sizes (PS at 300 and 150 nm, NG at 300 and 200 nm). The OCT backscattering signals of the particles in a vessel-mimicking highly scattering agar/TiO{sub 2} phantom were compared on either number of particles or weight percent. Larger particles and higher concentrations produced higher OCT contrast. At each concentration tested, a markedly higher contrast was achieved by PS particles than NG particles. PS particles generated a markedly higher OCT contrast than the phantom at concentrations of at least 1 Multiplication-Sign 10{sup 10} or 0.1 % for PS 300 nm and at least 3 Multiplication-Sign 10{sup 11} particles/mL or 0.4 % for PS 150 nm. The contrast generated by NG 300 nm was above the phantom contrast at concentrations of at least 3 Multiplication-Sign 10{sup 11} particles/mL or 1 %, whereas NG 200 nm only at 4 %. At any given weight percent, the differences in OCT contrast between differently sized particles were much less evident than in the comparison based on particle number. PS 300 nm generated also a good contrast ex vivo on chicken muscle tissue. These results strongly suggest that PS spheres have strong potential as intravascular OCT contrast agent, while NG particles need further contrast enhancer for being used as OCT contrast agent.

  11. Dental OCT

    Science.gov (United States)

    Wilder-Smith, Petra; Otis, Linda; Zhang, Jun; Chen, Zhongping

    This chapter describes the applications of OCT for imaging in vivo dental and oral tissue. The oral cavity is a diverse environment that includes oral mucosa, gingival tissues, teeth and their supporting structures. Because OCT can image both hard and soft tissues of the oral cavity at high resolution, it offers the unique capacity to identity dental disease before destructive changes have progressed. OCT images depict clinically important anatomical features such as the location of soft tissue attachments, morphological changes in gingival tissue, tooth decay, enamel thickness and decay, as well as the structural integrity of dental restorations. OCT imaging allows for earlier intervention than is possible with current diagnostic modalities.

  12. Acquisition cancer stemness, mesenchymal transdifferentiation, and chemoresistance properties by chronic exposure of oral epithelial cells to arecoline.

    Science.gov (United States)

    Wang, Tung Yuan; Peng, Chih-Yu; Lee, Shiuan-Shinn; Chou, Ming-Yung; Yu, Cheng-Chia; Chang, Yu-Chao

    2016-12-20

    Oral squamous cell carcinoma (OSCC), one of the most deadliest malignancies in the world, is caused primarily by areca nut chewing in Southeast Asia. The mechanisms by which areca nut participates in OSCC tumorigenesis are not well understood. In this study, we investigated the effects of low dose long-term arecoline (10 μg/mL, 90-days), a major areca nut alkaloid, on enhancement cancer stemness of human oral epithelial (OE) cells. OE cells with chronic arecoline exposure resulted in increased ALDH1 population, CD44 positivity, stemness-related transcription factors (Oct4, Nanog, and Sox2), epithelial-mesenchymal transdifferentiation (EMT) traits, chemoresistance, migration/invasiveness/anchorage independent growth and in vivo tumor growth as compared to their untreated controls. Mechanistically, ectopic miR-145 over-expression in chronic arecoline-exposed OE (AOE) cells inhibited the cancer stemness and xenografic. In AOE cells, luciferase reporter assays further revealed that miR-145 directly targets the 3' UTR regions of Oct4 and Sox2 and overexpression of Sox2/Oct4 effectively reversed miR-145-regulated cancer stemness-associated phenomenas. Additionally, clinical results further revealed that Sox2 and Oct4 expression was inversely correlated with miR-145 in the tissues of areca quid chewing-associated OSCC patients. This study hence attempts to provide novel insight into areca nut-induced oral carcinogenesis and new intervention for the treatment of OSCC patients, especially in areca nut users.

  13. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro.

    Science.gov (United States)

    Cong, Shan; Cao, Guifang; Liu, Dongjun

    2014-12-01

    To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1-5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.

  14. Diverse effects of lead nitrate on the proliferation, differentiation, and gene expression of stem cells isolated from a dental origin.

    Science.gov (United States)

    Abdullah, Mariam; Rahman, Fazliny Abd; Gnanasegaran, Nareshwaran; Govindasamy, Vijayendran; Abu Kasim, Noor Hayaty; Musa, Sabri

    2014-01-01

    Lead (Pb(2+)) exposure continues to be a significant public health problem. Therefore, it is vital to have a continuous epidemiological dataset for a better understanding of Pb(2+) toxicity. In the present study, we have exposed stem cells isolated from deciduous and permanent teeth, periodontal ligament, and bone marrow to five different types of Pb(2+) concentrations (160, 80, 40, 20, and 10 µM) for 24 hours to identify the adverse effects of Pb(2+) on the proliferation, differentiation, and gene expression on these cell lines. We found that Pb(2+) treatment altered the morphology and adhesion of the cells in a dose-dependent manner. There were no significant changes in terms of cell surface phenotypes. Cells exposed to Pb(2+) continued to differentiate into chondrogenesis and adipogenesis, and a severe downregulation was observed in osteogenesis. Gene expression studies revealed a constant expression of key markers associated with stemness (Oct 4, Rex 1) and DNA repair enzyme markers, but downregulation occurred with some ectoderm and endoderm markers, demonstrating an irregular and untimely differentiation trail. Our study revealed for the first time that Pb(2+) exposure not only affects the phenotypic characteristics but also induces significant alteration in the differentiation and gene expression in the cells.

  15. Diverse Effects of Lead Nitrate on the Proliferation, Differentiation, and Gene Expression of Stem Cells Isolated from a Dental Origin

    Directory of Open Access Journals (Sweden)

    Mariam Abdullah

    2014-01-01

    Full Text Available Lead (Pb2+ exposure continues to be a significant public health problem. Therefore, it is vital to have a continuous epidemiological dataset for a better understanding of Pb2+ toxicity. In the present study, we have exposed stem cells isolated from deciduous and permanent teeth, periodontal ligament, and bone marrow to five different types of Pb2+ concentrations (160, 80, 40, 20, and 10 µM for 24 hours to identify the adverse effects of Pb2+ on the proliferation, differentiation, and gene expression on these cell lines. We found that Pb2+ treatment altered the morphology and adhesion of the cells in a dose-dependent manner. There were no significant changes in terms of cell surface phenotypes. Cells exposed to Pb2+ continued to differentiate into chondrogenesis and adipogenesis, and a severe downregulation was observed in osteogenesis. Gene expression studies revealed a constant expression of key markers associated with stemness (Oct 4, Rex 1 and DNA repair enzyme markers, but downregulation occurred with some ectoderm and endoderm markers, demonstrating an irregular and untimely differentiation trail. Our study revealed for the first time that Pb2+ exposure not only affects the phenotypic characteristics but also induces significant alteration in the differentiation and gene expression in the cells.

  16. Human second trimester amniotic fluid cells are able to create embryoid body-like structures in vitro and to show typical expression profiles of embryonic and primordial germ cells.

    Science.gov (United States)

    Antonucci, Ivana; Di Pietro, Roberta; Alfonsi, Melissa; Centurione, Maria Antonietta; Centurione, Lucia; Sancilio, Silvia; Pelagatti, Francesca; D'Amico, Maria Angela; Di Baldassarre, Angela; Piattelli, Adriano; Tetè, Stefano; Palka, Giandomenico; Borlongan, Cesar V; Stuppia, Liborio

    2014-01-01

    Human amniotic fluid-derived stem cells (AFSCs) represent a novel class of broadly multipotent stem cells sharing characteristics of both embryonic and adult stem cells. However, both the origin of these cells and their actual properties in terms of pluripotent differentiation potential are still debated. In order to verify the presence of features of pluripotency in human second trimester AFSCs, we have investigated the ability of these cells to form in vitro three-dimensional aggregates, known as embryoid bodies (EBs), and to express specific genes of embryonic stem cells (ESCs) and primordial germ cells (PGCs). EBs were obtained after 5 days of AFSC culture in suspension and showed positivity for alkaline phosphatase (AP) staining and for specific markers of pluripotency (OCT4 and SOX2). Moreover, EB-derived cells showed the expression of specific transcripts of the three germ layers. RT-PCR analysis, carried out at different culture times (second, third, fourth, fifth, and eighth passages), revealed the presence of specific markers of ESCs (such as FGF4 and DAPPA4), as well as of markers typical of PGCs and, in particular, genes involved in early stages of germ cell development (Fragilis, Stella, Vasa, c-Kit, Rnf17). Finally, the expression of genes related to the control of DNA methylation (DNMT3A, DNMT3b1, DNMT1, DNMT3L, MBD1, MBD2, MBD3, MDB4, MeCP2), as well as the lack of inactivation of the X-chromosome in female samples, was also demonstrated. Taken together, these data provide further evidence for the presence of common features among human AFSCs, PGCs, and ESCs.

  17. CyclinD1, CDK4, and P21 expression by IEC-6 cells in response to NiTi alloy and polymeric biomaterials

    International Nuclear Information System (INIS)

    Wang, Zhanhui; Yan, Jun; Zheng, Qi; Wang, Zhigang

    2012-01-01

    In order to investigate how cells recognize biomaterials, mRNA that was expressed in attached Intestinal epithelial cells (IEC-6) on various suture substrates was evaluated. The expressed cell cycle regulators (cyclin D1, CDK4 and p21) mRNA were then isolated and detected using the real time- polymerase chain reaction (PCR) method. As a result, cyclin D1 gene expression was affected by cell-polymer adhesion and was associated with cell proliferation. In addition, CDK4 gene expression was affected by cell proliferation rather than by cell-biomaterial interaction. The p21 mRNA gene expression was higher in cells on more hydrophilic surfaces than on hydrophobic surfaces. Further, the cyclin D1, CDK4 and p21 gene expression were also influenced by the surface chemistry of suture materials. We concluded that the expression of cyclin D1, CDK4 and p21 mRNA was a powerful method for studying cell-biomaterial interactions or the evaluation of the carcinogenic activity of biomaterials. - Highlights: ►We evaluated the effects of biomaterials on the cyclin D1, CDK4 and p21 expression. ►Cell-polymer adhesion and cell proliferation affected cyclin D1 and CDK4 expression. ►The p21 expression was higher on more hydrophilic surfaces than on hydrophobic. ►They were also influenced by surface chemistry of biomaterials.

  18. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions

    International Nuclear Information System (INIS)

    Ren Hongying; Cao Ying; Zhao, Qinjun; Li Jing; Zhou Cixiang; Liao Lianming; Jia Mingyue; Zhao Qian; Cai Huiguo; Han Zhongchao; Yang Renchi; Chen Guoqiang; Zhao, R.C.

    2006-01-01

    Low oxygen tension is a potent differentiation inducer of numerous cell types and an effective stimulus of many gene expressions. Here, we described that under 8% O 2 , bone marrow stromal cells (MSCs) exhibited proliferative and morphologic changes. The level of differentiated antigen H-2Dd and the number of G 2 /S/M phase cells increased evidently under 8% O 2 condition. Also, the proportion of wide, flattened, and epithelial-like cells (which were alkaline phosphatase staining positive) in MSCs increased significantly. When cultured in adipogenic medium, there was a 5- to 6-fold increase in the number of lipid droplets under hypoxic conditions compared with that in normoxic culture. We also demonstrated the existence of MSC differentiation under hypoxic conditions by electron microscopy. Expression of Oct4 was inhibited under 8% O 2 condition, but after adipocyte differentiation in normoxic culture and hypoxia-mimicking agents cobalt chloride (CoCl 2 ) and deferoxamine mesylate (DFX) treatments, Oct4 was still expressed in MSCs. These results indicate hypoxia accelerates MSC differentiation and hypoxia and hypoxia-mimicking agents exert different effects on MSC differentiation

  19. Application of Induced Pluripotent Stem Cells Reprogrammed from Dental Pulp Cells: a Novel Approach for Tooth Regeneration

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhou

    2011-03-01

    Full Text Available Introduction: Candidate human dental stem/progenitor cells have been isolated and charac-terized from dental tissues and shown to hold the capability to differentiate into tooth-generating cells. However, ad-vances in engineering a whole tooth by these stem cells are hindered by various factors, such as the poor availability of human primitive tooth bud stem cells, difficulties in isolating and purifying dental mesenchymal stem cells and ethical controversies when using embryonic oral epithelium. As a result it is meaningful to find other autologous dental cells for the purpose of reconstructing a tooth.The hypothesis: Previous studies demonstrated that somatic cells can be reprogrammed into induced pluripotent stem cells by ex-ogenous expression Oct-4 and Sox-2. On the basis of these findings we can reasonably hypothesize that when transfected with specific transcription factors Oct-4 and Sox-2, dental pulp cells, the main cell in pulp, could also be reprogrammed into induced pluripotent stem cells, which are considered to be of best potential to regenerate a whole tooth. Evaluation of the hypothesis: After transfection with Oct-4 and Sox-2 into human dental pulp cells, the positive colonies are isolated and then identified according to the characteristics of iPS cells. These cells are further investigated the capability in differentiating into ameloblasts and odontoblasts and finally seeded onto the sur-face of a tooth-shaped biodegradable polymer scaffold to detect the ability of constructing a bioengineered tooth.

  20. Quantification of numerical aperture-dependence of the OCT attenuation coefficient (Conference Presentation)

    Science.gov (United States)

    Peinado, Liliana M.; Bloemen, Paul R.; Almasian, Mitra; van Leeuwen, Ton G.; Faber, Dirk J.

    2016-03-01

    .1155/2011/825629. [3] Jung W and Boppart S. Optical coherence tomography for rapid tissue screening and directed histological sectioning. Anal Cell Pathol (Amst). 2012; 35(3): 129-143. [4] R. Wessels et al. Optical coherence tomography in vulvar intraepithelial neoplasia. J Biomed Opt 2012 Nov; 17(11): 116022. [5] Faber D, van der Meer F, Aalders M, van Leeuwen T. Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography. OPT EXPRESS 2004; 12 (19): 4353-43. [6] Thrane L, Yura HT, and Andersen PE. Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle. JOSA 2000; 17(3): 484-490.

  1. Human cerebrospinal fluid contains CD4+ memory T cells expressing gut- or skin-specific trafficking determinants: relevance for immunotherapy

    Directory of Open Access Journals (Sweden)

    Campbell James J

    2006-07-01

    Full Text Available Abstract Background Circulating memory T cells can be divided into tissue-specific subsets, which traffic through distinct tissue compartments during physiologic immune surveillance, based on their expression of adhesion molecules and chemokine receptors. We reasoned that a bias (either enrichment or depletion of CSF T cell expression of known organ-specific trafficking determinants might suggest that homing of T cells to the subarachnoid space could be governed by a CNS-specific adhesion molecule or chemokine receptor. Results The expression of cutaneous leukocyte antigen (CLA and CC-chemokine receptor 4 (CCR4; associated with skin-homing as well as the expression of integrin α4β7 and CCR9 (associated with gut-homing was analyzed on CD4+ memory T cells in CSF from individuals with non-inflammatory neurological diseases using flow cytometry. CSF contained similar proportions of CD4+ memory T cells expressing CLA, CCR4, integrin α4β7 and CCR9 as paired blood samples. Conclusion The results extend our previous findings that antigen-experienced CD4+ memory T cells traffic through the CSF in proportion to their abundance in the peripheral circulation. Furthermore, the ready access of skin- and gut-homing CD4+ memory T cells to the CNS compartment via CSF has implications for the mechanisms of action of immunotherapeutic strategies, such as oral tolerance or therapeutic immunization, where immunogens are administered using an oral or subcutaneous route.

  2. Expression of non-neuronal cholinergic system in maxilla of rat in vivo

    Directory of Open Access Journals (Sweden)

    Jie Guo

    2014-01-01

    Full Text Available BACKGROUND: Acetylcholine (ACh is known to be a key neurotransmitter in the central and peripheral nervous systems, which is also produced in a variety of non-neuronal tissues and cell. The existence of ACh in maxilla in vivo and potential regulation role for osteogenesis need further study. RESULTS: Components of the cholinergic system (ACh, esterase, choline acetyltransferase, high-affinity choline uptake, n- and mAChRs were determined in maxilla of rat in vivo, by means of Real-Time PCR and immunohistochemistry. Results showed RNA for CarAT, carnitine/acylcarnitine translocase member 20 (Slc25a20, VAChT, OCTN2, OCT1, OCT3, organic cation transporter member 4 (Slc22a4, AChE, BChE, nAChR subunits α1, α2, α3, α5, α7, α10, β1, β2, β4, γ and mAChR subunits M1, M2, M3, M4, M5 were detected in rat's maxilla. RNA of VAChT, AChE, nAChR subunits α2, β1, β4 and mAChR subunits M4 had abundant expression (2-ΔCt > 0.03. Immunohistochemical staining was conducted for ACh, VAChT, nAChRα7 and AChE. ACh was expressed in mesenchymal cells, chondroblast, bone and cartilage matrix and bone marrow cells, The VAChT expression was very extensively while ACh receptor α7 was strongly expressed in newly formed bone matrix of endochondral and bone marrow ossification, AchE was found only in mesenchymal stem cells, cartilage and bone marrow cells. CONCLUSIONS: ACh might exert its effect on the endochondral and bone marrow ossification, and bone matrix mineralization in maxilla.

  3. Gelatin–PMVE/MA composite scaffold promotes expansion of embryonic stem cells

    International Nuclear Information System (INIS)

    Chhabra, Hemlata; Gupta, Priyanka; Verma, Paul J.; Jadhav, Sameer; Bellare, Jayesh R.

    2014-01-01

    We introduce a new composite scaffold of gelatin and polymethyl vinyl ether-alt-maleic anhydride (PMVE/MA) for expansion of embryonic stem cells (ESCs) in an in vitro environment. To optimize the scaffold, we prepared a gelatin scaffold (G) and three composite scaffolds namely GP-1, GP-2, and GP-3 with varying PMVE/MA concentrations (0.2–1%) and characterized them by scanning electron microscopy (SEM), swelling study, compression testing and FTIR. SEM micrographs revealed interconnected porous structure in all the scaffolds. The permissible hemolysis ratio and activation of platelets by scaffolds confirmed the hemocompatibility of scaffolds. Initial biocompatibility assessment of scaffolds was conducted using hepatocarcinoma (Hep G2) cells and adhesion, proliferation and infiltration of Hep G2 cells in depth of scaffolds were observed, proving the scaffold's biocompatibility. Further Oct4B2 mouse embryonic stem cells (mESCs), which harbor a green fluorescence protein transgene under regulatory control of the Oct4 promotor, were examined for expansion on scaffolds with MTT assay. The GP-2 scaffold demonstrated the best cell proliferation and was further explored for ESC adherence and infiltration in depth (SEM and confocal), and pluripotent state of mESCs was assessed with the expression of Oct4-GFP and stage-specific embryonic antigen-1 (SSEA-1). This study reports the first demonstration of biocompatibility of gelatin–PMVE/MA composite scaffold and presents this scaffold as a promising candidate for embryonic stem cell based tissue engineering. - Highlights: • Composite scaffolds of gelatin and PMVE/MA were prepared by freeze-drying method. • SEM micrographs showed porous structure in all scaffolds of varying pore dimension. • GP-2 composite exhibited better cellular response in comparison to other scaffolds. • mESCs proliferated and expressed Oct-4 and SSEA-1, when cultured on GP-2 scaffold

  4. Gelatin–PMVE/MA composite scaffold promotes expansion of embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Hemlata [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India); Gupta, Priyanka [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India); IITB-Monash Research Academy, Mumbai (India); Department of Chemical Engineering, Monash University, Melbourne (Australia); Verma, Paul J. [Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia (Australia); Jadhav, Sameer; Bellare, Jayesh R. [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India)

    2014-04-01

    We introduce a new composite scaffold of gelatin and polymethyl vinyl ether-alt-maleic anhydride (PMVE/MA) for expansion of embryonic stem cells (ESCs) in an in vitro environment. To optimize the scaffold, we prepared a gelatin scaffold (G) and three composite scaffolds namely GP-1, GP-2, and GP-3 with varying PMVE/MA concentrations (0.2–1%) and characterized them by scanning electron microscopy (SEM), swelling study, compression testing and FTIR. SEM micrographs revealed interconnected porous structure in all the scaffolds. The permissible hemolysis ratio and activation of platelets by scaffolds confirmed the hemocompatibility of scaffolds. Initial biocompatibility assessment of scaffolds was conducted using hepatocarcinoma (Hep G2) cells and adhesion, proliferation and infiltration of Hep G2 cells in depth of scaffolds were observed, proving the scaffold's biocompatibility. Further Oct4B2 mouse embryonic stem cells (mESCs), which harbor a green fluorescence protein transgene under regulatory control of the Oct4 promotor, were examined for expansion on scaffolds with MTT assay. The GP-2 scaffold demonstrated the best cell proliferation and was further explored for ESC adherence and infiltration in depth (SEM and confocal), and pluripotent state of mESCs was assessed with the expression of Oct4-GFP and stage-specific embryonic antigen-1 (SSEA-1). This study reports the first demonstration of biocompatibility of gelatin–PMVE/MA composite scaffold and presents this scaffold as a promising candidate for embryonic stem cell based tissue engineering. - Highlights: • Composite scaffolds of gelatin and PMVE/MA were prepared by freeze-drying method. • SEM micrographs showed porous structure in all scaffolds of varying pore dimension. • GP-2 composite exhibited better cellular response in comparison to other scaffolds. • mESCs proliferated and expressed Oct-4 and SSEA-1, when cultured on GP-2 scaffold.

  5. PD-L1 expression is associated with p16INK4A expression in non-oropharyngeal head and neck squamous cell carcinoma

    Science.gov (United States)

    Chen, San-Chi; Chang, Peter Mu-Hsin; Wang, Hsiao-Jung; Tai, Shyh-Kuan; Chu, Pen-Yuan; Yang, Muh-Hwa

    2018-01-01

    PD-L1 expression is critical in helping tumor cells evade the immune system. However, the level of PD-L1 expression in non-oropharyngeal head and neck squamous cell carcinoma (non-OPHNSCC) and its association with patient prognosis remains unclear. A retrospective clinicopathological analysis was performed on 106 patients with non-OPHNSCC diagnosed between 2007 and 2014. In the current study, tissue arrays from paraffin-embedded non-OPHNSCC samples obtained from patients were constructed, and PD-L1 and p16INK4A expression were determined using immunohistochemistry. Systemic inflammatory factors, including C-reactive protein, serum white blood cell, neutrophil, monocyte and lymphocyte counts were also analyzed. The current study demonstrated that PD-L1 was overexpressed in 32.1% (34/106) and p16INK4A in 20.8% (22/106) of patients. The expression of PD-L1 was associated with p16INK4A expression (P<0.01) but was not associated with levels of systemic inflammatory factors. Tumor stage was determined to be a significant prognostic value (stage I/II vs. III/IV, P=0.03), however, PD-L1, p16INK4A or other clinicopathological factors were not. The current study identified an association between PD-L1 and p16INK4A expression in non-OPHNSCC. This may facilitate the development of anti-PD1/PDL1 therapies to treat patients with head and neck cancer. PMID:29434933

  6. Leukotriene B4 induces EMT and vimentin expression in PANC-1 pancreatic cancer cells: Involvement of BLT2 via ERK2 activation.

    Science.gov (United States)

    Kim, You Ri; Park, Mi Kyung; Kang, Gyeong Jin; Kim, Hyun Ji; Kim, Eun Ji; Byun, Hyun Jung; Lee, Moo-Yeol; Lee, Chang Hoon

    2016-12-01

    Leukotriene B 4 (LTB 4 ) is a leukocyte chemoattractant and plays a major role controlling inflammatory responses including pancreatitis. LTB 4 is known to be correlated with cancer progression. LTB 4 induces keratin phosphorylation and reorganization by activating extracellular regulated kinase (ERK) in PANC-1 pancreatic cancer cell lines. However, the role of LTB 4 in epithelial mesenchymal transition (EMT) and vimentin expression in pancreatic cancer cells is unknown. We examined whether LTB 4 induces EMT and vimentin expression by Western blot, si-RNA, and RT-PCR. LTB 4 induced morphological change, decreased E-cadherin expression and increased N-cadherin and vimentin expression. LTB4 increased migration and invasion of PANC-1 cancer cells. LTB 4 dose-dependently upregulated expression of vimentin in PANC-1 cancer cells. LTB 4 -induced vimentin expression was suppressed by LY255283 (BLT2 antagonist). Comp A, a BLT2 agonist, further increased vimentin expression. Gene silencing of BLT2 suppressed LTB 4 -or Comp A-induced vimentin expression in PANC-1 cells. The MEK inhibitor, PD98059 suppressed Comp A-induced vimentin expression. Comp A or transfection of plasmid containing BLT2 cDNA (pC BLT2 ) activated ERK, and BLT2 gene silencing suppressed Comp A-induced ERK activation. ERK2 siRNA abrogated Comp A-induced vimentin expression and ERK2 overexpression enhanced vimentin expression. One of well-known cause of ras mutation, cigarette smoke extracts increased BLT2 expression in PANC-1 cancer cells. Taken together, these results suggest that BLT2 is involved in LTB 4 -induced vimentin expression through ERK2 in PANC-1 cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Big Animal Cloning Using Transgenic Induced Pluripotent Stem Cells: A Case Study of Goat Transgenic Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Wang, Ziyu; Wang, Feng

    2016-02-01

    Using of embryonic stem cells (ESCs) could improve production traits and disease resistance by improving the efficiency of somatic cell nuclear transfer (SCNT) technology. However, robust ESCs have not been established from domestic ungulates. In the present study, we generated goat induced pluripotent stem cells (giPSCs) and transgenic cloned dairy goat induced pluripotent stem cells (tgiPSCs) from dairy goat fibroblasts (gFs) and transgenic cloned dairy goat fibroblasts (tgFs), respectively, using lentiviruses that contained hOCT4, hSOX2, hMYC, and hKLF4 without chemical compounds. The giPSCs and tgiPSCs expressed endogenous pluripotent markers, including OCT4, SOX2, MYC, KLF4, and NANOG. Moreover, they were able to maintain a normal karyotype and differentiate into derivatives from all three germ layers in vitro and in vivo. Using SCNT, tgFs and tgiPSCs were used as donor cells to produce embryos, which were named tgF-Embryos and tgiPSC-Embryos. The fusion rates and cleavage rates had no significant differences between tgF-Embryos and tgiPSC-Embryos. However, the expression of IGF-2, which is an important gene associated with embryonic development, was significantly lower in tgiPSC-Embryos than in tgF-Embryos and was not significantly different from vivo-Embryos.

  8. pVHL co-ordinately regulates CXCR4/CXCL12 and MMP2/MMP9 expression in human clear-cell renal cell carcinoma

    DEFF Research Database (Denmark)

    Struckmann, K; Mertz, Kd; Steu, S

    2008-01-01

    Loss of pVHL function, characteristic for clear-cell renal cell carcinoma (ccRCC), causes increased expression of CXCR4 chemokine receptor, which triggers expression of metastasis-associated MMP2/MMP9 in different human cancers. The impact of pVHL on MMP2/MMP9 expression and their relationship to...

  9. The early activation marker CD69 regulates the expression of chemokines and CD4 T cell accumulation in intestine.

    Directory of Open Access Journals (Sweden)

    Katarina Radulovic

    Full Text Available Migration of naïve and activated lymphocytes is regulated by the expression of various molecules such as chemokine receptors and ligands. CD69, the early activation marker of C-type lectin domain family, is also shown to regulate the lymphocyte migration by affecting their egress from the thymus and secondary lymphoid organs. Here, we aimed to investigate the role of CD69 in accumulation of CD4 T cells in intestine using murine models of inflammatory bowel disease. We found that genetic deletion of CD69 in mice increases the expression of the chemokines CCL-1, CXCL-10 and CCL-19 in CD4(+ T cells and/or CD4(- cells. Efficient in vitro migration of CD69-deficient CD4 T cells toward the chemokine stimuli was the result of increased expression and/or affinity of chemokine receptors. In vivo CD69(-/- CD4 T cells accumulate in the intestine in higher numbers than B6 CD4 T cells as observed in competitive homing assay, dextran sodium sulphate (DSS-induced colitis and antigen-specific transfer colitis. In DSS colitis CD69(-/- CD4 T cell accumulation in colonic lamina propria (cLP was associated with increased expression of CCL-1, CXCL-10 and CCL-19 genes. Furthermore, treatment of DSS-administrated CD69(-/- mice with the mixture of CCL-1, CXCL-10 and CCL-19 neutralizing Abs significantly decreased the histopathological signs of colitis. Transfer of OT-II×CD69(-/- CD45RB(high CD4 T cells into RAG(-/- hosts induced CD4 T cell accumulation in cLP. This study showed CD69 as negative regulator of inflammatory responses in intestine as it decreases the expression of chemotactic receptors and ligands and reduces the accumulation of CD4 T cells in cLP during colitis.

  10. Pou5f1-dependent EGF expression controls E-cad endocytosis, cell adhesion, and zebrafish epiboly movements

    Science.gov (United States)

    Song, Sungmin; Eckerle, Stephanie; Onichtchouk, Daria; Marrs, James A.; Nitschke, Roland; Driever, Wolfgang

    2013-01-01

    Summary Initiation of motile cell behavior in embryonic development occurs during late blastula stages when gastrulation begins. At this stage, the strong adhesion of blastomeres has to be modulated to enable dynamic behavior, similar to epithelial-to-mesenchymal transitions. We show that in zebrafish MZspg embryos mutant for the stem cell transcription factor Pou5f1/Oct4, which are severely delayed in the epiboly gastrulation movement, all blastomeres are defective in E-cad endosomal trafficking and E-cad accumulates at the plasma membrane. We find that Pou5f1-dependent control of EGF expression regulates endosomal E-cad trafficking. EGFR may act via modulation of p120 activity. Loss of E-cad dynamics reduces cohesion of cells in reaggregation assays. Quantitative analysis of cell behavior indicates that dynamic E-cad endosomal trafficking is required for epiboly cell movements. We hypothesize that dynamic control of E-cad trafficking is essential to effectively generate new adhesion sites when cells move relative to each other. PMID:23484854

  11. Validation of the UNC OCT Index for the Diagnosis of Early Glaucoma.

    Science.gov (United States)

    Mwanza, Jean-Claude; Lee, Gary; Budenz, Donald L; Warren, Joshua L; Wall, Michael; Artes, Paul H; Callan, Thomas M; Flanagan, John G

    2018-04-01

    To independently validate the performance of the University of North Carolina Optical Coherence Tomography (UNC OCT) Index in diagnosing and predicting early glaucoma. Data of 118 normal subjects (118 eyes) and 96 subjects (96 eyes) with early glaucoma defined as visual field mean deviation (MD) greater than -4 decibels (dB), aged 40 to 80 years, and who were enrolled in the Full-Threshold Testing Size III, V, VI comparison study were used in this study. CIRRUS OCT average and quadrants' retinal nerve fiber layer (RNFL); optic disc vertical cup-to-disc ratio (VCDR), cup-to-disc area ratio, and rim area; and average, minimum, and six sectoral ganglion cell-inner plexiform layer (GCIPL) measurements were run through the UNC OCT Index algorithm. Area under the receiver operating characteristic curve (AUC) and sensitivities at 95% and 99% specificity were calculated and compared between single parameters and the UNC OCT Index. Mean age was 60.1 ± 11.0 years for normal subjects and 66.5 ± 8.1 years for glaucoma patients ( P < 0.001). MD was 0.29 ± 1.04 dB and -1.30 ± 1.35 dB in normal and glaucomatous eyes ( P < 0.001), respectively. The AUC of the UNC OCT Index was 0.96. The best single metrics when compared to the UNC OCT Index were VCDR (0.93, P = 0.054), average RNFL (0.92, P = 0.014), and minimum GCIPL (0.91, P = 0.009). The sensitivities at 95% and 99% specificity were 85.4% and 76.0% (UNC OCT Index), 71.9% and 62.5% (VCDR, all P < 0.001), 64.6% and 53.1% (average RNFL, all P < 0.001), and 66.7% and 58.3% (minimum GCIPL, all P < 0.001), respectively. The findings confirm that the UNC OCT Index may provide improved diagnostic perforce over that of single OCT parameters and may be a good tool for detection of early glaucoma. The UNC OCT Index algorithm may be incorporated easily into routine clinical practice and be useful for detecting early glaucoma.

  12. Expression of functional toll-like receptor-2 and -4 on alveolar epithelial cells.

    Science.gov (United States)

    Armstrong, Lynne; Medford, Andrew R L; Uppington, Kay M; Robertson, John; Witherden, Ian R; Tetley, Teresa D; Millar, Ann B

    2004-08-01

    The recognition of potentially harmful microorganisms involves the specific recognition of pathogen-associated molecular patterns (PAMPs) and the family of Toll-like receptors (TLRs) is known to play a central role in this process. TLR-4 is the major recognition receptor for lipopolysaccharide (LPS), a component of gram-negative bacterial cell walls, whereas TLR-2 responds to bacterial products from gram-positive organisms. Although resident alveolar macrophages are the first line of defense against microbial attack, it is now understood that the alveolar epithelium also plays a pivotal role in the innate immunity of the lung. The purpose of the current study was to determine whether human primary type II alveolar epithelial cells (ATII) express functional TLR-2 and TLR-4 and how they may be regulated by inflammatory mediators. We have used reverse transcriptase-polymerase chain reaction and flow cytometry to determine basal and inducible expression on ATII. We have used highly purified preparations of the gram-positive bacterial product lipoteichoic acid (LTA) and LPS to look at the functional consequences of TLR-2 and TLR-4 ligation, respectively, in terms of interleukin-8 release. We have shown that human primary ATII cells express mRNA and protein for both TLR-2 and TLR-4, which can be modulated by incubation with LPS and tumor necrosis factor. Furthermore, we have demonstrated that these receptors are functional. This suggests that ATII have the potential to contribute significantly to the host defense of the human alveolus against bacteria.

  13. Gene expression profiling identifies HOXB4 as a direct downstream target of GATA-2 in human CD34+ hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Tohru Fujiwara

    Full Text Available Aplastic anemia is characterized by a reduced hematopoietic stem cell number. Although GATA-2 expression was reported to be decreased in CD34-positive cells in aplastic anemia, many questions remain regarding the intrinsic characteristics of hematopoietic stem cells in this disease. In this study, we identified HOXB4 as a downstream target of GATA-2 based on expression profiling with human cord blood-derived CD34-positive cells infected with control or GATA-2 lentiviral shRNA. To confirm the functional link between GATA-2 and HOXB4, we conducted GATA-2 gain-of-function and loss-of-function experiments, and HOXB4 promoter analysis, including luciferase assay, in vitro DNA binding analysis and quantitative ChIP analysis, using K562 and CD34-positive cells. The analyses suggested that GATA-2 directly regulates HOXB4 expression through the GATA sequence in the promoter region. Furthermore, we assessed GATA-2 and HOXB4 expression in CD34-positive cells from patients with aplastic anemia (n = 10 and idiopathic thrombocytopenic purpura (n = 13, and demonstrated that the expression levels of HOXB4 and GATA-2 were correlated in these populations (r = 0.6573, p<0.01. Our results suggested that GATA-2 directly regulates HOXB4 expression in hematopoietic stem cells, which may play an important role in the development and/or progression of aplastic anemia.

  14. Dissecting Transcriptional Heterogeneity in Pluripotency: Single Cell Analysis of Mouse Embryonic Stem Cells.

    Science.gov (United States)

    Guedes, Ana M V; Henrique, Domingos; Abranches, Elsa

    2016-01-01

    Mouse Embryonic Stem cells (mESCs) show heterogeneous and dynamic expression of important pluripotency regulatory factors. Single-cell analysis has revealed the existence of cell-to-cell variability in the expression of individual genes in mESCs. Understanding how these heterogeneities are regulated and what their functional consequences are is crucial to obtain a more comprehensive view of the pluripotent state.In this chapter we describe how to analyze transcriptional heterogeneity by monitoring gene expression of Nanog, Oct4, and Sox2, using single-molecule RNA FISH in single mESCs grown in different cell culture medium. We describe in detail all the steps involved in the protocol, from RNA detection to image acquisition and processing, as well as exploratory data analysis.

  15. Application of OCT in traumatic macular hole

    Directory of Open Access Journals (Sweden)

    Wen-Li Fu

    2017-12-01

    Full Text Available AIM: To observe the application of optical coherence tomography(OCTin the diseases of traumatic macular hole. METHODS: Twenty-five eyes of 23 patients with traumatic macular hole from January 2015 to January 2017 were enrolled in this study, including 9 eyes treated without surgeries, 16 eyes with surgeries. The image features were analyzed using OCT from ZEISS. RESULTS: The OCT characteristics in patients with traumatic macular hole were partial or full-thickness disappearance of the neuro-epithelium. Posterior vitreous detachment was not seen in the traumatic macular hole. OCT examination revealed that 4 eyes had partial detachment of macular hole and 21 eyes had full thickness detachment. Of the twenty-one eyes, 4 eyes had simple macular hole, 10 eyes had macular full-layer division with peripheral nerve epithelium edema, 7 eyes had the macular full-layer hole with the neuro-epithelium localized detachment. In the 25 eyes, 9 eyes did not undergo the surgery, of which 7 eyes were self-healing; 16 eyes were surgically treated. Postoperative OCT showed the macular structure were normal in 12 eyes with the visual acuity improved 3 lines; retinal nerve epithelium were thinning in 4 eyes, visual acuities were not significant improved after surgery. CONCLUSION: OCT examination is necessary for the diagnosis and treatment of traumatic macular hole.

  16. The distribution of IL-13 receptor alpha1 expression on B cells, T cells and monocytes and its regulation by IL-13 and IL-4.

    Science.gov (United States)

    Graber, P; Gretener, D; Herren, S; Aubry, J P; Elson, G; Poudrier, J; Lecoanet-Henchoz, S; Alouani, S; Losberger, C; Bonnefoy, J Y; Kosco-Vilbois, M H; Gauchat, J F

    1998-12-01

    To study the expression of IL-13 receptor alpha1 (IL-13Ralpha1), specific monoclonal antibodies (mAb) were generated. Surface expression of the IL-13Ralpha1 on B cells, monocytes and T cells was assessed by flow cytometry using these specific mAb. Among tonsillar B cells, the expression was the highest on the IgD+ CD38- B cell subpopulation which is believed to represent naive B cells. Expression was also detectable on a large fraction of the IgD-CD38- B cells but not on CD38+ B cells. Activation under conditions which promote B cell Ig class switching up-regulated the expression of the receptor. However, the same stimuli had an opposite effect for IL-13Ralpha1 expression levels on monocytes. While IL-13Ralpha1 mRNA was clearly detectable in T cell preparations, no surface expression was detected. However, permeabilization of the T cells showed a clear intracellular expression of the receptor. A soluble form of the receptor was immunoprecipitated from the supernatant of activated peripheral T cells, suggesting that T cell IL-13Ralpha1 might have functions unrelated to the capacity to form a type II IL-4/IL-13R with IL-4Ralpha.

  17. RepSox improves viability and regulates gene expression in rhesus monkey-pig interspecies cloned embryos.

    Science.gov (United States)

    Zhu, Hai-Ying; Jin, Long; Guo, Qing; Luo, Zhao-Bo; Li, Xiao-Chen; Zhang, Yu-Chen; Xing, Xiao-Xu; Xuan, Mei-Fu; Zhang, Guang-Lei; Luo, Qi-Rong; Wang, Jun-Xia; Cui, Cheng-Du; Li, Wen-Xue; Cui, Zheng-Yun; Yin, Xi-Jun; Kang, Jin-Dan

    2017-05-01

    To investigate the effect of the small molecule, RepSox, on the expression of developmentally important genes and the pre-implantation development of rhesus monkey-pig interspecies somatic cell nuclear transfer (iSCNT) embryos. Rhesus monkey cells expressing the monomeric red fluorescent protein 1 which have a normal (42) chromosome complement, were used as donor cells to generate iSCNT embryos. RepSox increased the expression levels of the pluripotency-related genes, Oct4 and Nanog (p  0.05), this was not significant. RepSox can improve the developmental potential of rhesus monkey-pig iSCNT embryos by regulating the expression of pluripotency-related genes.

  18. Interleukin-1 inhibits renin gene expression in As4.1 cells but not in native juxtaglomerular cells

    DEFF Research Database (Denmark)

    Jensen, B L; Lehle, U; Müller, Maja

    1998-01-01

    ) cells and in the mouse tumor cell line As4.1, which expresses renin mRNA. Renin mRNA levels and secretion of active renin were not significantly changed by IL-1beta in native JG cells. Activation of adenylyl cyclase by forskolin increased renin secretion and renin mRNA levels three- and fivefold......, respectively. These stimulatory responses to forskolin were not altered by IL-1beta. In contrast to native JG cells, renin mRNA abundance was markedly suppressed by IL-1beta in As4.1 cells, whereas secretion of active renin and the stability of renin mRNA were not changed. In As4.1 cells forskolin did...... not change renin secretion or renin mRNA abundance in the absence or in the presence of IL-1beta. These findings suggest that IL-1beta has no direct influence on renin secretion and renin mRNA abundance at the level of native JG cells....

  19. CD70-expressing CD4 T cells produce IFN-γ and IL-17 in rheumatoid arthritis

    NARCIS (Netherlands)

    Park, Jin Kyun; Han, Bobby Kwanghoon; Park, Ji Ah; Woo, Youn Jung; Kim, So Young; Lee, Eun Young; Lee, Eun Bong; Chalan, Paulina; Boots, Annemieke M.; Song, Yeong Wook

    2014-01-01

    OBJECTIVE: CD70-expressing CD4 T cells are enriched in RA and promote autoimmunity via co-stimulatory CD70-CD27 interaction. This study aimed to explore the phenotype and cytokine production of CD70(+) CD4 T cells in RA. METHODS: Peripheral blood mononuclear cells from 32 RA patients were isolated

  20. Isoproterenol Increases RANKL Expression in a ATF4/NFATc1-Dependent Manner in Mouse Osteoblastic Cells

    Directory of Open Access Journals (Sweden)

    Kyunghwa Baek

    2017-10-01

    Full Text Available Sympathetic nervous system stimulation-induced β-adrenergic signal transduction is known to induce bone loss and increase of osteoclast activity. Although isoproterenol, a nonspecific β-adrenergic receptor agonist, has been shown to increase receptor activator of NF-κB ligand (RANKL, the details of the regulatory mechanisms remain unclear. In the present study, we investigated the role of the nuclear factor of activated T-cells (NFAT in isoproterenol-induced RANKL expression in C2C12 and in primary cultured mouse calvarial cells. Isoproterenol increased nuclear factor of activated T-cells cytoplasmic 1 (NFATc1 and RANKL expressions at both mRNA and protein levels and increased NFAT reporter activity. NFATc1 knockdown blocked isoproterenol-mediated RANKL expression. Isoproterenol also promoted cAMP response element-binding protein 1 (CREB1 and activating transcription factor 4 (ATF4 phosphorylation. Isoproterenol-mediated transcriptional activation of NFAT was blocked by protein kinase A (PKA inhibitor H89. Isoproterenol-induced CREB1, ATF4, NFATc1, and RANKL expressions were suppressed by H89. Mutations in cAMP response element-like or NFAT-binding element suppressed isoproterenol-induced RANKL promoter activity. Chromatin immunoprecipitation analysis demonstrated that isoproterenol increased NFAT-binding and ATF4-binding activities on the mouse RANKL promoter, but did not increase CREB1-binding activity. Association of NFATc1 and ATF4 was not observed in a co-immunoprecipitation study. ATF4 knockdown suppressed isoproterenol-induced NFAT binding to the RANKL promoter, whereas NFATc1 knockdown did not suppress isoproterenol-induced ATF4 binding to the RANKL promoter. ATF4 knockdown suppressed isoproterenol-induced expressions of NFATc1 and RANKL. These results suggest that isoproterenol increases RANKL expression in an ATF4/NFATc1-dependent manner.

  1. Directed neuronal differentiation of human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Noggle Scott A

    2003-10-01

    Full Text Available Abstract Background We have developed a culture system for the efficient and directed differentiation of human embryonic stem cells (HESCs to neural precursors and neurons. HESC were maintained by manual passaging and were differentiated to a morphologically distinct OCT-4+/SSEA-4- monolayer cell type prior to the derivation of embryoid bodies. Embryoid bodies were grown in suspension in serum free conditions, in the presence of 50% conditioned medium from the human hepatocarcinoma cell line HepG2 (MedII. Results A neural precursor population was observed within HESC derived serum free embryoid bodies cultured in MedII conditioned medium, around 7–10 days after derivation. The neural precursors were organized into rosettes comprised of a central cavity surrounded by ring of cells, 4 to 8 cells in width. The central cells within rosettes were proliferating, as indicated by the presence of condensed mitotic chromosomes and by phosphoHistone H3 immunostaining. When plated and maintained in adherent culture, the rosettes of neural precursors were surrounded by large interwoven networks of neurites. Immunostaining demonstrated the expression of nestin in rosettes and associated non-neuronal cell types, and a radial expression of Map-2 in rosettes. Differentiated neurons expressed the markers Map-2 and Neurofilament H, and a subpopulation of the neurons expressed tyrosine hydroxylase, a marker for dopaminergic neurons. Conclusion This novel directed differentiation approach led to the efficient derivation of neuronal cultures from HESCs, including the differentiation of tyrosine hydroxylase expressing neurons. HESC were morphologically differentiated to a monolayer OCT-4+ cell type, which was used to derive embryoid bodies directly into serum free conditions. Exposure to the MedII conditioned medium enhanced the derivation of neural precursors, the first example of the effect of this conditioned medium on HESC.

  2. MECHANISMS OF MRP OVER-EXPRESSION IN 4 HUMAN LUNG-CANCER CELL-LINES AND ANALYSIS OF THE MRP AMPLICON

    NARCIS (Netherlands)

    EIJDEMS, EWHM; DEHAAS, M; COCOMARTIN, JM; OTTENHEIM, CPE; ZAMAN, GJR; DAUWERSE, HG; BREUNING, MH; TWENTYMAN, PR; BORST, P; BAAS, F

    1995-01-01

    Some multidrug resistant cell lines over-express the gene encoding the multidrug-resistance-associated protein (MRP). In all cell lines reported thus far, over-expression is associated with gene amplification. We have studied the predominant mechanisms of MRP over-expression in 4 human lung-cancer

  3. Inhibition of Focal Adhesion Kinase Signaling by Integrin α6β1 Supports Human Pluripotent Stem Cell Self-Renewal.

    Science.gov (United States)

    Villa-Diaz, Luis G; Kim, Jin Koo; Laperle, Alex; Palecek, Sean P; Krebsbach, Paul H

    2016-07-01

    Self-renewal of human embryonic stem cells and human induced pluripotent stem cells (hiPSCs)-known as pluripotent stem cells (PSC)-is influenced by culture conditions, including the substrate on which they are grown. However, details of the molecular mechanisms interconnecting the substrate and self-renewal of these cells remain unclear. We describe a signaling pathway in hPSCs linking self-renewal and expression of pluripotency transcription factors to integrin α6β1 and inactivation of focal adhesion kinase (FAK). Disruption of this pathway results in hPSC differentiation. In hPSCs, α6β1 is the dominant integrin and FAK is not phosphorylated at Y397, and thus, it is inactive. During differentiation, integrin α6 levels diminish and Y397 FAK is phosphorylated and activated. During reprogramming of fibroblasts into iPSCs, integrin α6 is upregulated and FAK is inactivated. Knockdown of integrin α6 and activation of β1 integrin lead to FAK phosphorylation and reduction of Nanog, Oct4, and Sox2, suggesting that integrin α6 functions in inactivation of integrin β1 and FAK signaling and prevention of hPSC differentiation. The N-terminal domain of FAK, where Y397 is localized, is in the nuclei of hPSCs interacting with Oct4 and Sox2, and this immunolocalization is regulated by Oct4. hPSCs remodel the extracellular microenvironment and deposit laminin α5, the primary ligand of integrin α6β1. Knockdown of laminin α5 resulted in reduction of integrin α6 expression, phosphorylation of FAK and decreased Oct4. In conclusion, hPSCs promote the expression of integrin α6β1, and nuclear localization and inactivation of FAK to supports stem cell self-renewal. Stem Cells 2016;34:1753-1764. © 2016 AlphaMed Press.

  4. Enforced expression of the transcriptional coactivator OBF1 impairs B cell differentiation at the earliest stage of development.

    Directory of Open Access Journals (Sweden)

    Alain Bordon

    Full Text Available OBF1, also known as Bob.1 or OCA-B, is a B lymphocyte-specific transcription factor which coactivates Oct1 and Oct2 on B cell specific promoters. So far, the function of OBF1 has been mainly identified in late stage B cell populations. The central defect of OBF1 deficient mice is a severely reduced immune response to T cell-dependent antigens and a lack of germinal center formation in the spleen. Relatively little is known about a potential function of OBF1 in developing B cells. Here we have generated transgenic mice overexpressing OBF1 in B cells under the control of the immunoglobulin heavy chain promoter and enhancer. Surprisingly, these mice have greatly reduced numbers of follicular B cells in the periphery and have a compromised immune response. Furthermore, B cell differentiation is impaired at an early stage in the bone marrow: a first block is observed during B cell commitment and a second differentiation block is seen at the large preB2 cell stage. The cells that succeed to escape the block and to differentiate into mature B cells have post-translationally downregulated the expression of transgene, indicating that expression of OBF1 beyond the normal level early in B cell development is deleterious. Transcriptome analysis identified genes deregulated in these mice and Id2 and Id3, two known negative regulators of B cell differentiation, were found to be upregulated in the EPLM and preB cells of the transgenic mice. Furthermore, the Id2 and Id3 promoters contain octamer-like sites, to which OBF1 can bind. These results provide evidence that tight regulation of OBF1 expression in early B cells is essential to allow efficient B lymphocyte differentiation.

  5. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro

    OpenAIRE

    Cong, Shan; Cao, Guifang; Liu, Dongjun

    2014-01-01

    To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1–5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic ...

  6. Onbaekwon Suppresses Colon Cancer Cell Invasion by Inhibiting Expression of the CXC Chemokine Receptor 4.

    Science.gov (United States)

    Kim, Buyun; Yoon, Jaewoo; Yoon, Seong Woo; Park, Byoungduck

    2017-06-01

    Cysteine X cysteine (CXC) chemokine receptor 4 (CXCR4) and C-X-C motif chemokine 12 (CXCL12) were originally identified as chemoattractants between immune cells and sites of inflammation. Since studies have validated an increased level of CXCL12 and its receptor in patients with colorectal cancers, CXCL12/CXCR4 axis has been considered as a valuable marker of cancer metastasis. Therefore, identification of CXCR4 inhibitors has great potential to abrogate tumor metastasis. Onbaekwon (OBW) is a complex herbal formula that is derived from the literature of traditional Korean medicine Dongeuibogam. In this study, we demonstrated that OBW suppressed CXCR4 expression in various cancer cell types in a concentration- and time-dependent manner. Both proteasomal and lysosomal inhibitors had no effect to prevent the OBW-induced suppression of CXCR4, suggesting that the inhibitory effect of OBW was not due to proteolytic degradation but occurred at the transcriptional level. Electrophoretic mobility shift assay further confirmed that OBW could block endogenous activation of nuclear factor kappa B, a key transcription factor that regulates the expression of CXCR4 in colon cancer cells. Consistent with the aforementioned molecular basis, OBW abolished cell invasion induced by CXCL12 in colon cancer cells. Together, our results suggest that OBW, as a novel inhibitor of CXCR4, could be a promising therapeutic agent contributing to cancer treatment.

  7. Tumor-Targeted Human T Cells Expressing CD28-Based Chimeric Antigen Receptors Circumvent CTLA-4 Inhibition.

    Directory of Open Access Journals (Sweden)

    Maud Condomines

    Full Text Available Adoptive T cell therapy represents a promising treatment for cancer. Human T cells engineered to express a chimeric antigen receptor (CAR recognize and kill tumor cells in a MHC-unrestricted manner and persist in vivo when the CAR includes a CD28 costimulatory domain. However, the intensity of the CAR-mediated CD28 activation signal and its regulation by the CTLA-4 checkpoint are unknown. We investigated whether T cells expressing an anti-CD19, CD3 zeta and CD28-based CAR (19-28z displayed the same proliferation and anti-tumor abilities than T cells expressing a CD3 zeta-based CAR (19z1 costimulated through the CD80/CD28, ligand/receptor pathway. Repeated in vitro antigen-specific stimulations indicated that 19-28z+ T cells secreted higher levels of Th1 cytokines and showed enhanced proliferation compared to those of 19z1+ or 19z1-CD80+ T cells. In an aggressive pre-B cell leukemia model, mice treated with 19-28z+ T cells had 10-fold reduced tumor progression compared to those treated with 19z1+ or 19z1-CD80+ T cells. shRNA-mediated CTLA-4 down-regulation in 19z1-CD80+ T cells significantly increased their in vivo expansion and anti-tumor properties, but had no effect in 19-28z+ T cells. Our results establish that CTLA-4 down-regulation may benefit human adoptive T cell therapy and demonstrate that CAR design can elude negative checkpoints to better sustain T cell function.

  8. Comprehensive Mass Cytometry Analysis of Cell Cycle, Activation, and Coinhibitory Receptors Expression in CD4 T Cells from Healthy and HIV-Infected Individuals.

    Science.gov (United States)

    Corneau, Aurélien; Cosma, Antonio; Even, Sophie; Katlama, Christine; Le Grand, Roger; Frachet, Véronique; Blanc, Catherine; Autran, Brigitte

    2017-01-01

    Mass cytometry allows large multiplex analysis of cell cycle stages together with differentiation, activation, and exhaustion markers, allowing further assessment of the quiescence status of resting CD4 T cells. Peripheral blood CD4 T lymphocytes from 8 individuals, 4 healthy donors, and 4 HIV-infected on antiretroviral treatment (T) were stained with the same 26 monoclonal antibodies and dyes targeting surface and intracellular markers of differentiation, activation, exhaustion, and cell cycle stages. Samples were run on a CYTOF-2. Patterns of naïve [TN] CD4 T cells strongly differed from all other memory subsets central-memory (CM), transitional-memory (TM), effector-memory (EM), and terminally differentiated RA-expressing (TEMRA) subsets, while stem-cell memory (SCM) and T follicular-helper cells (TfH) were close to CM and TM cells with the highest percentages in cell cycle. EM and TEMRA were the most altered by HIV infection, with an increased frequency of activated and cycling cells. Activation markers and coinhibitory receptor expression differed among cell cycle stages, with HLA-DR fitting better than CD25 or CD38 with cycle, and opposite PD-1 gradients along differentiation and cell cycle. "Resting" DR-CD25- CD4+ T cells contained similar amounts of cells in G1 than the activated DR ± CD25± ones but three fold lower cells in S-G2-M. This broad multiplex mass cytometry analysis demonstrates some subsets of the so-called "resting" CD25-DR- CD4+ T cells contain noticeable amounts of cells into cycle or expressing coinhibitory receptors, opening new avenues for a redefinition of resting peripheral blood CD4 T cells harboring the HIV reservoirs. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  9. Spectral domain OCT versus time domain OCT in the evaluation of macular features related to wet age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Isola V

    2012-02-01

    Full Text Available Luisa Pierro1, Elena Zampedri1, Paolo Milani2, Marco Gagliardi1, Vincenzo Isola2, Alfredo Pece21Department of Ophthalmology, University Vita-Salute, Scientific Institute San Raffaele, Milano, Italy, 2Fondazione Retina 3000, Milano, ItalyBackground: The aim of this study was to compare the agreement between spectral domain optical coherence tomography (SD OCT and time domain stratus OCT (TD OCT in evaluating macular morphology alterations in wet age-related macular degeneration (AMD.Methods: This retrospective study was performed on 77 eyes of 77 patients with primary or recurring subfoveal choroidal neovascularization secondary to AMD. All patients underwent OCT examination using Zeiss Stratus OCT 3 (Carl Zeiss Meditec Inc, Dublin, CA and Opko OTI Spectral SLO/OCT (Ophthalmic Technologies Inc, Toronto, Canada. In all radial line scans, the presence of intraretinal edema (IRE, serous pigment epithelium detachment (sPED, neurosensory serous retinal detachment (NSRD, epiretinal membrane (EM, inner limiting membrane thickening (ILMT, and hard exudates (HE were evaluated. The degree of matching was quantified by Kappa measure of agreement.Results: The percentage distribution of TD OCT findings versus SD OCT findings was: IRE 36.3% versus 77.9%, sPED 57.1% versus 85.7%, NSRD 38.9% versus 53.2%, EM 10.5% versus 26.3%, ILMT 3.8% versus 32.4%, and HE 6.4% versus 54.5%. The agreement was as follows: sPED: kappa value 0.15; NSRD: kappa value 0.61; IRE: kappa value 0.18; EM: kappa value 0.41; ILMT: kappa value 0.02; HE: kappa value 0.06.Conclusion: The agreement in the evaluation of macular lesions between the two techniques is poor and depends on the lesion considered. SD OCT allows better detection of the alterations typically related to choroidal neovascularization such as IRE, PED, ILM thickening, and HE. Consequently its use should be strongly considered in patients with wet AMD.Keywords: spectral domain, OCT, time domain, macular degeneration, AMD

  10. Control of Oxidative Stress and Generation of Induced Pluripotent Stem Cell-like Cells by Jun Dimerization Protein 2

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Shyh-Shin, E-mail: chiouss@kmu.edu.tw [Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Department of Pediatrics, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, 807 Kaohsiung 807, Taiwan (China); Wang, Sophie Sheng-Wen; Wu, Deng-Chyang [Department of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China); Lin, Ying-Chu [School of Dentistry, College of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Kao, Li-Pin [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung 807, Taiwan (China)

    2013-07-26

    We report here that the Jun dimerization protein 2 (JDP2) plays a critical role as a cofactor for the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2) and MafK in the regulation of the antioxidants and production of reactive oxygen species (ROS). JDP2 associates with Nrf2 and MafK (Nrf2-MafK) to increase the transcription of antioxidant response element-dependent genes. Oxidative-stress-inducing reagent led to an increase in the intracellular accumulation of ROS and cell proliferation in Jdp2 knock-out mouse embryonic fibroblasts. In Jdp2-Cre mice mated with reporter mice, the expression of JDP2 was restricted to granule cells in the brain cerebellum. The induced pluripotent stem cells (iPSC)-like cells were generated from DAOY medulloblastoma cell by introduction of JDP2, and the defined factor OCT4. iPSC-like cells expressed stem cell-like characteristics including alkaline phosphatase activity and some stem cell markers. However, such iPSC-like cells also proliferated rapidly, became neoplastic, and potentiated cell malignancy at a later stage in SCID mice. This study suggests that medulloblastoma cells can be reprogrammed successfully by JDP2 and OCT4 to become iPSC-like cells. These cells will be helpful for studying the generation of cancer stem cells and ROS homeostasis.

  11. Control of Oxidative Stress and Generation of Induced Pluripotent Stem Cell-like Cells by Jun Dimerization Protein 2

    Directory of Open Access Journals (Sweden)

    Naoto Yamaguchi

    2013-07-01

    Full Text Available We report here that the Jun dimerization protein 2 (JDP2 plays a critical role as a cofactor for the transcription factors nuclear factor-erythroid 2-related factor 2 (Nrf2 and MafK in the regulation of the antioxidants and production of reactive oxygen species (ROS. JDP2 associates with Nrf2 and MafK (Nrf2-MafK to increase the transcription of antioxidant response element-dependent genes. Oxidative-stress-inducing reagent led to an increase in the intracellular accumulation of ROS and cell proliferation in Jdp2 knock-out mouse embryonic fibroblasts. In Jdp2-Cre mice mated with reporter mice, the expression of JDP2 was restricted to granule cells in the brain cerebellum. The induced pluripotent stem cells (iPSC-like cells were generated from DAOY medulloblastoma cell by introduction of JDP2, and the defined factor OCT4. iPSC-like cells expressed stem cell-like characteristics including alkaline phosphatase activity and some stem cell markers. However, such iPSC-like cells also proliferated rapidly, became neoplastic, and potentiated cell malignancy at a later stage in SCID mice. This study suggests that medulloblastoma cells can be reprogrammed successfully by JDP2 and OCT4 to become iPSC-like cells. These cells will be helpful for studying the generation of cancer stem cells and ROS homeostasis.

  12. Generation, genome edition and characterization of iPSC lines from a patient with coenzyme Q10 deficiency harboring a heterozygous mutation in COQ4 gene

    Directory of Open Access Journals (Sweden)

    Damià Romero-Moya

    2017-10-01

    Full Text Available We report the generation, CRISPR/Cas9-edition and characterization of induced pluripotent stem cell (iPSC lines from a patient with coenzyme Q10 deficiency harboring the heterozygous mutation c.483G > C in the COQ4 gene. iPSCs were generated using non-integrative Sendai Viruses containing the reprogramming factors OCT4, SOX2, KLF4 and C-MYC. The iPSC lines carried the c.483G > C COQ4 mutation, silenced the OKSM expression and were mycoplasma-free. They were bona fide pluripotent cells as characterized by morphology, immunophenotype/gene expression for pluripotent-associated markers/genes, NANOG and OCT4 promoter demethylation, karyotype and teratoma formation. The COQ4 mutation was CRISPR/Cas9 edited resulting in isogenic, diploid and off-target free COQ4-corrected iPSCs.

  13. Expression of the Transcription Factor E4BP4 in Human Basophils

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Gohr, Maria; Poulsen, Lars Kærgaard

    2014-01-01

    Rationale The cytokine IL-3 plays an important role for human basophil development, function and survival. IL-3 is also reported to induce the expression of the transcription factor E4BP4, but it is not known whether E4BP4 is expressed in basophils and influences basophil responsiveness. The aim...... by Alcian blue. RNA was extracted (0.005-0.02 µg RNA from 0.5 - 1 x 106 cells), and the corresponding cDNA analyzed by real-time PCR where E4BP4 expression was calculated as 2-(CT(E4BP4) - CT(β-actin)). E4BP4 protein expression was visualized in basophil lysates (107 cells/ml) by Western blot followed...... the transcription factor E4BP4 which might have an impact on basophil histamine release....

  14. CXCL17 expression by tumor cells recruits CD11b+Gr1 high F4/80- cells and promotes tumor progression.

    Directory of Open Access Journals (Sweden)

    Aya Matsui

    Full Text Available BACKGROUND: Chemokines are involved in multiple aspects of pathogenesis and cellular trafficking in tumorigenesis. In this study, we report that the latest member of the C-X-C-type chemokines, CXCL17 (DMC/VCC-1, recruits immature myeloid-derived cells and enhances early tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: CXCL17 was preferentially expressed in some aggressive types of gastrointestinal, breast, and lung cancer cells. CXCL17 expression did not impart NIH3T3 cells with oncogenic potential in vitro, but CXCL17-expressing NIH3T3 cells could form vasculature-rich tumors in immunodeficient mice. Our data showed that CXCL17-expressing tumor cells increased immature CD11b(+Gr1(+ myeloid-derived cells at tumor sites in mice and promoted CD31(+ tumor angiogenesis. Extensive chemotactic assays proved that CXCL17-responding cells were CD11b(+Gr1(highF4/80(- cells (≈ 90% with a neutrophil-like morphology in vitro. Although CXCL17 expression could not increase the number of CD11b(+Gr1(+ cells in tumor-burdened SCID mice or promote metastases of low metastatic colon cancer cells, the existence of CXCL17-responding myeloid-derived cells caused a striking enhancement of xenograft tumor formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that aberrant expression of CXCL17 in tumor cells recruits immature myeloid-derived cells and promotes tumor progression through angiogenesis.

  15. Isolation and partial characterization of peripheral blood CD4+ T cell clones expressing γδT cell receptors

    International Nuclear Information System (INIS)

    Kyoizumi, Seishi; Akiyama, Mitoshi; Hirai, Yuko; Kusunoki, Yoichiro.

    1990-06-01

    Rare T cell clones bearing both CD4 and T cell receptors (TCRγ and TCRδ) were obtained from human peripheral blood by cell sorting using anti-CD4 and anti-TCRδ1 antibodies. All the clones established were reactive with anti-TCRγδ1 antibody, whereas only about 20 % of the clones showed reactivity with anti-δTCS1 antibody. Unlike CD4 + T cells bearing TCRαβ, all the clones tested were lectin-dependent and showed CD3 antibody-redirected cytolytic activity. About 60 % exhibited natural killer cell-like activity. Immunoprecipitation analysis of TCRγδ showed that each clone expressed either a disulfide-linked or nondisulfide-linked heterodimer consisting of 37-44 kilodalton TCRγ and TCRδ chains. Southern blot analyses of TCRγ and TCRδ genes revealed some identical rearrangement patterns, suggesting the limited heterogeneity of CD4 + TCRγδ + T cells in peripheral blood. (author)

  16. Involvement of over-expressed BMP4 in pentylenetetrazol kindling-induced cell proliferation in the dentate gyrus of adult rats

    International Nuclear Information System (INIS)

    Yin Jinbo; Ma Yuxin; Yin Qing; Xu Haiwei; An Ning; Liu Shiyong; Fan Xiaotang; Yang Hui

    2007-01-01

    The dentate gyrus (DG) of the hippocampus is one of a few regions in the adult mammalian brain characterized by ongoing neurogenesis. Proliferation of neural precursors in the granule cell layer of the DG has been identified in pentylenetetrazol (PTZ) kindling epilepsy model, however, little is known about the molecular mechanism. We previously reported that the expression pattern of bone morphogenetic proteins-4 (BMP4) mRNA in the hippocampus was developmentally regulated and mainly localized in the DG of the adult. To explore the role of BMP4 in epileptic activity, we detected BMP4 expression in the DG during PTZ kindling process and explore its correlation with cell proliferation combined with bromodeoxyuridine (BrdU) labeling technique. We found that dynamic changes in BMP4 level and BrdU labeled cells dependent on the kindling stage of PTZ induced seizure-prone state. The number of BMP4 mRNA-positive cells and BrdU labeled cells reached the top level 1 day after PTZ kindled, then declined to base level 2 months later. Furthermore, there was a significant correlation between increased BMP4 mRNA expression and increased number of BrdU labeled cells. After effectively blocked expression of BMP4 with antisense oligodeoxynucleotides(ASODN), the BrdU labeled cells in the dentate gyrus subgranular zone(DG-SGZ) and hilus were significantly decreased 16d after First PTZ injection and 1, 3, 7, 14d after kindled respectively. These findings suggest that increased proliferation in the DG of the hippocampus resulted from kindling epilepsy elicited by PTZ maybe be modulated by BMP4 over-expression

  17. In vitro identification and characterization of CD133(pos cancer stem-like cells in anaplastic thyroid carcinoma cell lines.

    Directory of Open Access Journals (Sweden)

    Giovanni Zito

    Full Text Available Recent publications suggest that neoplastic initiation and growth are dependent on a small subset of cells, termed cancer stem cells (CSCs. Anaplastic Thyroid Carcinoma (ATC is a very aggressive solid tumor with poor prognosis, characterized by high dedifferentiation. The existence of CSCs might account for the heterogeneity of ATC lesions. CD133 has been identified as a stem cell marker for normal and cancerous tissues, although its biological function remains unknown.ATC cell lines ARO, KAT-4, KAT-18 and FRO were analyzed for CD133 expression. Flow cytometry showed CD133(pos cells only in ARO and KAT-4 (64+/-9% and 57+/-12%, respectively. These data were confirmed by qRT-PCR and immunocytochemistry. ARO and KAT-4 were also positive for fetal marker oncofetal fibronectin and negative for thyrocyte-specific differentiating markers thyroglobulin, thyroperoxidase and sodium/iodide symporter. Sorted ARO/CD133(pos cells exhibited higher proliferation, self-renewal, colony-forming ability in comparison with ARO/CD133(neg. Furthermore, ARO/CD133(pos showed levels of thyroid transcription factor TTF-1 similar to the fetal thyroid cell line TAD-2, while the expression in ARO/CD133(neg was negligible. The expression of the stem cell marker OCT-4 detected by RT-PCR and flow cytometry was markedly higher in ARO/CD133(pos in comparison to ARO/CD133(neg cells. The stem cell markers c-KIT and THY-1 were negative. Sensitivity to chemotherapy agents was investigated, showing remarkable resistance to chemotherapy-induced apoptosis in ARO/CD133(pos when compared with ARO/CD133(neg cells.We describe CD133(pos cells in ATC cell lines. ARO/CD133(pos cells exhibit stem cell-like features--such as high proliferation, self-renewal ability, expression of OCT-4--and are characterized by higher resistance to chemotherapy. The simultaneous positivity for thyroid specific factor TTF-1 and onfFN suggest they might represent putative thyroid cancer stem-like cells. Our in

  18. T cell antigen receptor expression by subsets of Ly-2-L3T4- (CD8-CD4-) thymocytes

    DEFF Research Database (Denmark)

    Wilson, A; Ewing, T; Owens, T

    1988-01-01

    . No positive cells were detected among Ly-2-L3T4- thymocytes from V beta 8-negative SJL mice. In contrast to the adult thymus, Ly-2-L3T4- cells from embryonic CBA thymus lacked F23.1-positive cells. Subsets of adult CBA Ly-2-L3T4- thymocytes were separated to determine which expressed V beta 8. The major...... B2A2-M1/69- and Pgp-1+ all included strongly F23.1-positive cells. A minor subset, negative for most markers except Pgp-1 and presumed on the basis of this phenotype and some reconstitution studies to include the earliest intrathymic precursors, contained 28% F23.1-positive cells. However, no F.23...

  19. Establishment of a common acute lymphoblastic leukemia cell line (LC4-1) and effects of phorbol myristate acetate (PMA) on the surface antigen expression of the cell line.

    Science.gov (United States)

    Yoshimura, T; Mayumi, M; Yorifuji, T; Kim, K M; Heike, T; Miyanomae, T; Shinomiya, K; Mikawa, H

    1987-09-01

    A common acute lymphoblastic leukemia (ALL) cell line, designated LC4-1, was established from peripheral blood mononuclear cells of a patient with acute non-T-cell ALL. LC4-1 cells were characteristically positive for Ia, B4, and common ALL antigens (CALLA), but negative for B2, Tac, T3, T4, T8, T11, and M1 antigens and E-rosette formation. Approximately 30% of LC4-1 cells expressed detectable amounts of B1 antigens. LC4-1 cells expressed neither Epstein-Barr-virus-associated nuclear antigen (EBNA), cytoplasmic immunoglobulins (cIg) nor surface immunoglobulins (sIg). Gene rearrangements had already occurred in LC4-1 in the D-J region of immunoglobulin heavy chain genes, but not in T-cell receptor (beta-chain) genes, suggesting that LC4-1 is a progenitor cell line of B-cell lineage earlier than pre-B-cells. The expression of cell surface antigens of LC4-1 was changed by treatment with 4-phorbol 12-myristate 13-acetate (PMA) (0.1 ng/ml) for 2 days. Before treatment with PMA, about 98% of LC4-1 cells were positive for B4, CALLA, and Ia. However, following treatment they lost CALLA expression without any change in expression of Ia and B4. There was no change in B1-positive population. The change in surface antigens on LC4-1 cells seems to be due to differentiation induced in the cells by PMA. These results support the hypothesis that CALLA is a differentiation antigen and suggest one possible differentiation pathway for pre-B-cells.

  20. Platelet-activating factor induces TLR4 expression in intestinal epithelial cells: implication for the pathogenesis of necrotizing enterocolitis.

    Directory of Open Access Journals (Sweden)

    Antoine Soliman

    Full Text Available Necrotizing enterocolitis (NEC is a leading cause of morbidity and mortality in neonatal intensive care units, however its pathogenesis is not completely understood. We have previously shown that platelet activating factor (PAF, bacteria and TLR4 are all important factors in the development of NEC. Given that Toll-like receptors (TLRs are expressed at low levels in enterocytes of the mature gastrointestinal tract, but were shown to be aberrantly over-expressed in enterocytes in experimental NEC, we examined the regulation of TLR4 expression and signaling by PAF in intestinal epithelial cells using human and mouse in vitro cell lines, and the ex vivo rat intestinal loop model. In intestinal epithelial cell (IEC lines, PAF stimulation yielded upregulation of both TLR4 mRNA and protein expression and led to increased IL-8 secretion following stimulation with LPS (in an otherwise LPS minimally responsive cell line. PAF stimulation resulted in increased human TLR4 promoter activation in a dose dependent manner. Western blotting and immunohistochemical analysis showed PAF induced STAT3 phosphorylation and nuclear translocation in IEC, and PAF-induced TLR4 expression was inhibited by STAT3 and NFκB Inhibitors. Our findings provide evidence for a mechanism by which PAF augments inflammation in the intestinal epithelium through abnormal TLR4 upregulation, thereby contributing to the intestinal injury of NEC.

  1. Preparative scale production of functional mouse aquaporin 4 using different cell-free expression modes.

    Directory of Open Access Journals (Sweden)

    Lei Kai

    Full Text Available The continuous progress in the structural and functional characterization of aquaporins increasingly attracts attention to study their roles in certain mammalian diseases. Although several structures of aquaporins have already been solved by crystallization, the challenge of producing sufficient amounts of functional proteins still remains. CF (cell free expression has emerged in recent times as a promising alternative option in order to synthesize large quantities of membrane proteins, and the focus of this report was to evaluate the potential of this technique for the production of eukaryotic aquaporins. We have selected the mouse aquaporin 4 as a representative of mammalian aquaporins. The protein was synthesized in an E. coli extract based cell-free system with two different expression modes, and the efficiencies of two modes were compared. In both, the P-CF (cell-free membrane protein expression as precipitate mode generating initial aquaporin precipitates as well as in the D-CF (cell-free membrane protein expression in presence of detergent mode, generating directly detergent solubilized samples, we were able to obtain mg amounts of protein per ml of cell-free reaction. Purified aquaporin samples solubilized in different detergents were reconstituted into liposomes, and analyzed for the water channel activity. The calculated P(f value of proteoliposome samples isolated from the D-CF mode was 133 µm/s at 10°C, which was 5 times higher as that of the control. A reversible inhibitory effect of mercury chloride was observed, which is consistent with previous observations of in vitro reconstituted aquaporin 4. In this study, a fast and convenient protocol was established for functional expression of aquaporins, which could serve as basis for further applications such as water filtration.

  2. Expression of C4.4A in an in Vitro Human Tissue-Engineered Skin Model

    DEFF Research Database (Denmark)

    Jacobsen, Benedikte; Larouche, Danielle; Rochette-Drouin, Olivier

    2017-01-01

    , the biological function of C4.4A remains unknown. To enable further studies, we evaluated the expression of C4.4A in monolayer cultures of normal human keratinocytes and in tissue-engineered skin substitutes (TESs) produced by the self-assembly approach, which allow the formation of a fully differentiated...... epidermis tissue. Results showed that, in monolayer, C4.4A was highly expressed in the centre of keratinocyte colonies at cell-cell contacts areas, while some cells located at the periphery presented little C4.4A expression. In TES, emergence of C4.4A expression coincided with the formation of the stratum...

  3. Murine gammaherpesvirus M2 protein induction of IRF4 via the NFAT pathway leads to IL-10 expression in B cells.

    Directory of Open Access Journals (Sweden)

    Udaya S Rangaswamy

    2014-01-01

    Full Text Available Reactivation of the gammaherpesviruses Epstein-Barr virus (EBV, Kaposi's sarcoma-associated herpesvirus (KSHV and murine gammaherpesvirus 68 (MHV68 from latently infected B cells has been linked to plasma cell differentiation. We have previously shown that the MHV68 M2 protein is important for virus reactivation from B cells and, when expressed alone in primary murine B cells, can drive B cell differentiation towards a pre-plasma cell phenotype. In addition, expression of M2 in primary murine B cells leads to secretion of high levels of IL-10 along with enhanced proliferation and survival. Furthermore, the absence of M2 in vivo leads to a defect in the appearance of MHV68 infected plasma cells in the spleen at the peak of MHV68 latency. Here, employing an inducible B cell expression system, we have determined that M2 activates the NFAT pathway in a Src kinase-dependent manner--leading to induction of the plasma cell-associated transcription factor, Interferon Regulatory Factor-4 (IRF4. Furthermore, we show that expression of IRF4 alone in a B cell line up-regulates IL-10 expression in culture supernatants, revealing a novel role for IRF4 in B cell induced IL-10. Consistent with the latter observation, we show that IRF4 can regulate the IL-10 promoter in B cells. In primary murine B cells, addition of cyclosporine (CsA resulted in a significant decrease in M2-induced IL-10 levels as well as IRF4 expression, emphasizing the importance of the NFAT pathway in M2- -mediated induction of IL-10. Together, these studies argue in favor of a model wherein M2 activation of the NFAT pathway initiates events leading to increased levels of IRF4--a key player in plasma cell differentiation--which in turn triggers IL-10 expression. In the context of previous findings, the data presented here provides insights into how M2 facilitates plasma cell differentiation and subsequent virus reactivation.

  4. Protein profile of basal prostate epithelial progenitor cells--stage-specific embryonal antigen 4 expressing cells have enhanced regenerative potential in vivo.

    Science.gov (United States)

    Höfner, Thomas; Klein, Corinna; Eisen, Christian; Rigo-Watermeier, Teresa; Haferkamp, Axel; Sprick, Martin R

    2016-04-01

    The long-term propagation of basal prostate progenitor cells ex vivo has been very difficult in the past. The development of novel methods to expand prostate progenitor cells in vitro allows determining their cell surface phenotype in greater detail. Mouse (Lin(-)Sca-1(+) CD49f(+) Trop2(high)-phenotype) and human (Lin(-) CD49f(+) TROP2(high)) basal prostate progenitor cells were expanded in vitro. Human and mouse cells were screened using 242 anti-human or 176 antimouse monoclonal antibodies recognizing the cell surface protein profile. Quantitative expression was evaluated at the single-cell level using flow cytometry. Differentially expressed cell surface proteins were evaluated in conjunction with the known CD49f(+)/TROP2(high) phenotype of basal prostate progenitor cells and characterized by in vivo sandwich-transplantation experiments using nude mice. The phenotype of basal prostate progenitor cells was determined as CD9(+)/CD24(+)/CD29(+)/CD44(+)/CD47(+)/CD49f(+)/CD104(+)/CD147(+)/CD326(+)/Trop2(high) of mouse as well as human origin. Our analysis revealed several proteins, such as CD13, Syndecan-1 and stage-specific embryonal antigens (SSEAs), as being differentially expressed on murine and human CD49f(+) TROP2(+) basal prostate progenitor cells. Transplantation experiments suggest that CD49f(+) TROP2(high) SSEA-4(high) human prostate basal progenitor cells to be more potent to regenerate prostate tubules in vivo as compared with CD49f(+) TROP2(high) or CD49f(+) TROP2(high) SSEA-4(low) cells. Determination of the cell surface protein profile of functionally defined murine and human basal prostate progenitor cells reveals differentially expressed proteins that may change the potency and regenerative function of epithelial progenitor cells within the prostate. SSEA-4 is a candidate cell surface marker that putatively enables a more accurate identification of the basal PESC lineage. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by

  5. Comparison and interchangeability of macular thickness measured with Cirrus OCT and Stratus OCT in myopic eyes

    Directory of Open Access Journals (Sweden)

    Geng Wang

    2015-12-01

    Full Text Available AIM: To investigate the difference of macular thickness measurements between stratus optical coherence tomography (OCT and Cirrus OCT (Carl Zeiss Meditec, Dublin, CA, USA in the same myopic patient and to develop a conversion equation to interchange macular thickness obtained with these two OCT devices. METHODS: Eighty-nine healthy Chinese adults with spherical equivalent (SE ranging from -1.13 D to -9.63 D were recruited. The macular thickness was measured by Cirrus OCT and Stratus OCT. The correlation between macular thickness and axial length and the agreement between two OCT measurements were evaluated. A formula was generated to interchange macular thickness obtained with two OCT devices. RESULTS: Average macular thickness measured with Stratus OCT (r=-0.280, P=0.008 and Cirrus OCT (r=-0.224, P=0.034 were found to be negatively correlated with axial length. No statistically significant correlation was found between axial length and central subfield macular thickness (CMT measured with Stratus OCT (r=0.191, P=0.073 and Cirrus OCT (r=0.169, P=0.113. The mean CMT measured with Cirrus OCT was 53.63±7.94 μm thicker than with Stratus OCT. The formula CMTCirrus OCT=78.328+0.874×CMTStratus OCT was generated to interchange macular thickness obtained with two OCT devices. CONCLUSION: Macular thickness measured with Cirrus OCT were thicker than with Stratus OCT in myopic eyes. A formula can be used to interchange macular thickness measured with two OCT devices in myopic eyes. Studies with different OCT devices and larger samples are warranted to enable the comparison of macular values measured with different OCT devices.

  6. CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Yan Li

    Full Text Available The pluripotency of embryonic stem cells (ESCs is maintained by a small group of master transcription factors including Oct4, Sox2 and Nanog. These core factors form a regulatory circuit controlling the transcription of a number of pluripotency factors including themselves. Although previous studies have identified transcriptional regulators of this core network, the cis-regulatory DNA sequences required for the transcription of these key pluripotency factors remain to be defined. We analyzed epigenomic data within the 1.5 Mb gene-desert regions around the Sox2 gene and identified a 13kb-long super-enhancer (SE located 100kb downstream of Sox2 in mouse ESCs. This SE is occupied by Oct4, Sox2, Nanog, and the mediator complex, and physically interacts with the Sox2 locus via DNA looping. Using a simple and highly efficient double-CRISPR genome editing strategy we deleted the entire 13-kb SE and characterized transcriptional defects in the resulting monoallelic and biallelic deletion clones with RNA-seq. We showed that the SE is responsible for over 90% of Sox2 expression, and Sox2 is the only target gene along the chromosome. Our results support the functional significance of a SE in maintaining the pluripotency transcription program in mouse ESCs.

  7. Markers of Pluripotency in Human Amniotic Epithelial Cells and Their Differentiation to Progenitor of Cortical Neurons

    Science.gov (United States)

    García-Castro, Irma Lydia; García-López, Guadalupe; Ávila-González, Daniela; Flores-Herrera, Héctor; Molina-Hernández, Anayansi; Portillo, Wendy; Ramón-Gallegos, Eva; Díaz, Néstor Fabián

    2015-01-01

    Human pluripotent stem cells (hPSC) have promise for regenerative medicine due to their auto-renovation and differentiation capacities. Nevertheless, there are several ethical and methodological issues about these cells that have not been resolved. Human amniotic epithelial cells (hAEC) have been proposed as source of pluripotent stem cells. Several groups have studied hAEC but have reported inconsistencies about their pluripotency properties. The aim of the present study was the in vitro characterization of hAEC collected from a Mexican population in order to identify transcription factors involved in the pluripotency circuitry and to determine their epigenetic state. Finally, we evaluated if these cells differentiate to cortical progenitors. We analyzed qualitatively and quantitatively the expression of the transcription factors of pluripotency (OCT4, SOX2, NANOG, KLF4 and REX1) by RT-PCR and RT-qPCR in hAEC. Also, we determined the presence of OCT4, SOX2, NANOG, SSEA3, SSEA4, TRA-1-60, E-cadherin, KLF4, TFE3 as well as the proliferation and epigenetic state by immunocytochemistry of the cells. Finally, hAEC were differentiated towards cortical progenitors using a protocol of two stages. Here we show that hAEC, obtained from a Mexican population and cultured in vitro (P0-P3), maintained the expression of several markers strongly involved in pluripotency maintenance (OCT4, SOX2, NANOG, TFE3, KLF4, SSEA3, SSEA4, TRA-1-60 and E-cadherin). Finally, when hAEC were treated with growth factors and small molecules, they expressed markers characteristic of cortical progenitors (TBR2, OTX2, NeuN and β-III-tubulin). Our results demonstrated that hAEC express naïve pluripotent markers (KLF4, REX1 and TFE3) as well as the cortical neuron phenotype after differentiation. This highlights the need for further investigation of hAEC as a possible source of hPSC. PMID:26720151

  8. Expression of cancer-testis antigens MAGE-A4 and MAGE-C1 in oral squamous cell carcinoma.

    Science.gov (United States)

    Montoro, José Raphael de Moura Campos; Mamede, Rui Celso Martins; Neder Serafini, Luciano; Saggioro, Fabiano Pinto; Figueiredo, David Livingstone Alves; Silva, Wilson Araújo da; Jungbluth, Achim A; Spagnoli, Giulio Cesare; Zago, Marco Antônio

    2012-08-01

    Tumor markers are genes or their products expressed exclusively or preferentially in tumor cells and cancer-testis antigens (CTAs) form a group of genes with a typical expression pattern expressed in a variety of malignant neoplasms. CTAs are considered potential targets for cancer vaccines. It is possible that the CTA MAGE-A4 (melanoma antigen) and MAGE-C1 are expressed in carcinoma of the oral cavity and are related with survival. This study involved immunohistochemical analysis of 23 patients with oral squamous cell carcinoma (SCC) and was carried out using antibodies for MAGE-A4 and MAGE-C1. Fisher's exact test and log-rank test were used to evaluate the results. The expression of the MAGE-A4 and MAGE-C1 were 56.5% and 47.8% without statistical difference in studied variables and survival. The expression of at least 1 CTA was present in 78.3% of the patients, however, without correlation with clinicopathologic variables and survival. Copyright © 2011 Wiley Periodicals, Inc.

  9. The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Liang Dongming

    2012-05-01

    Full Text Available Abstract Background To study whether hypoxia influences the stem-like properties of ovarian cancer cells and their biological behavior under hypoxia. Method Ovarian cancer cell lines ES-2 and OVCAR-3 were cultivated in different oxygen tensions for proliferation, cell cycling and invasion analyses. The clonogenic potential of cells was examined by colony formation and sphere formation assays. Stem cell surface markers, SP and CD44bright and CD44dim cells were analyzed by flow cytometry. Protein expression of HIF-1α, HIF-2α, Ot3/4 and Sox2 were investigated by Western blotting. Results Both cell lines cultivated at hypoxic condition grew relatively slowly with extended G0/G1 phase. However, if the cells were pre-treated under 1% O2 for 48 hrs before brought back to normoxia, the cells showed significantly higher proliferation rate with higher infiltration capability, and significant more colonies and spheres, in comparison to the cells always cultivated under normoxia. CD44bright cells expressed significantly higher levels of Oct3/4 and Sox2 than the CD44dim cells and formed significantly more clones and spheres examined in vitro. Hypoxic treatment of the cells resulted in stronger CD44 expression in both cell lines, and stronger CD133 expression in the OVCAR-3 cell line. In parallel with these findings, significantly increased number of side population (SP cells and up-regulated expression of Oct3/4 and Sox2 in both ES-2 and OVCAR-3 cell lines were observed. Conclusion We conclude that ovarian cancer cells survive hypoxia by upgrading their stem-like properties through up-regulation of stemness-related factors and behave more aggressively when brought back to higher oxygen environment.

  10. IRF-4 and c-Rel expression in antiviral-resistant adult T-cell leukemia/lymphoma

    Science.gov (United States)

    Ramos, Juan Carlos; Ruiz, Phillip; Ratner, Lee; Reis, Isildinha M.; Brites, Carlos; Pedroso, Celia; Byrne, Gerald E.; Toomey, Ngoc L.; Andela, Valentine; Harhaj, Edward W.; Lossos, Izidore S.

    2007-01-01

    Adult T-cell leukemia/lymphoma (ATLL) is a generally fatal malignancy. Most ATLL patients fare poorly with conventional chemotherapy; however, antiviral therapy with zidovudine (AZT) and interferon alpha (IFN-α) has produced long-term clinical remissions. We studied primary ATLL tumors and identified molecular features linked to sensitivity and resistance to antiviral therapy. Enhanced expression of the proto-oncogene c-Rel was noted in 9 of 27 tumors. Resistant tumors exhibited c-Rel (6 of 10; 60%) more often than did sensitive variants (1 of 9; 11%). This finding was independent of the disease form. Elevated expression of the putative c-Rel target, interferon regulatory factor-4 (IRF-4), was observed in 10 (91%) of 11 nonresponders and in all tested patients with c-Rel+ tumors and occurred in the absence of the HTLV-1 oncoprotein Tax. In contrast, tumors in complete responders did not express c-Rel or IRF-4. Gene rearrangement studies demonstrated the persistence of circulating T-cell clones in long-term survivors maintained on antiviral therapy. The expression of nuclear c-Rel and IRF-4 occurs in the absence of Tax in primary ATLL and is associated with antiviral resistance. These molecular features may help guide treatment. AZT and IFN-α is a suppressive rather than a curative regimen, and patients in clinical remission should remain on maintenance therapy indefinitely. PMID:17138822

  11. Expression of insulin-like growth factor-2 receptors on EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Farmer, John T; Weigent, Douglas A

    2007-01-01

    In the present study, we report the upregulation of functional IGF-2Rs in cells overexpressing growth hormone (GH). EL4 lymphoma cells stably transfected with an rGH cDNA overexpression vector (GHo) exhibited an increase in the binding of (125)I-IGF-2 with no change in the binding affinity compared to vector alone controls. An increase in the expression of the insulin-like growth factor-2 receptor (IGF-2R) in cells overexpressing GH was confirmed by Western blot analysis and IGF-2R promoter luciferase assays. EL4 cells produce insulin-like growth factor-2 (IGF-2) as detected by the reverse transcription-polymerase chain reaction (RT-PCR); however, no IGF-2 protein was detected by Western analysis. The increase in the expression of the IGF-2R resulted in greater levels of IGF-2 uptake in GHo cells compared to vector alone controls. The data suggest that one of the consequences of the overexpression of GH is an increase in the expression of the IGF-2R.

  12. Aryl hydrocarbon receptor (AhR-mediated perturbations in gene expression during early stages of CD4+ T-cell differentiation

    Directory of Open Access Journals (Sweden)

    Diana eRohlman

    2012-08-01

    Full Text Available Activation of the aryl hydrocarbon receptor (AhR by its prototypic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, mediates potent suppression of T-cell dependent immune responses. The suppressive effects of TCDD occur early during CD4+ T-cell differentiation in the absence of effects on proliferation and have recently been associated with the induction of AhR-dependent regulatory T-cells (Treg. Since AhR functions as a ligand-activated transcription factor, changes in gene expression induced by TCDD during the early stages of CD4+ T-cell differentiation are likely to reflect fundamental mechanisms of AhR action. A custom panel of genes associated with T-cell differentiation was used to query changes in gene expression induced by exposure to 1 nM TCDD. CD4+ T-cells from AhR+/+ and AhR-/- mice were cultured with cytokines known to polarize the differentiation of T-cells to various effector lineages. Treatment with TCDD induced expression of Cyp1a1, Cyp1b1 and Ahrr in CD4+ T-cells from AhR+/+ mice under all culture conditions, validating the presence and activation of AhR in these cells. The highest levels of AhR activation occurred under Th17 conditions at 24 hours and Tr1 conditions at 48 hours. Unexpectedly, expression levels of most genes associated with early T-cell differentiation were unaltered by AhR activation, including lineage-specific genes that drive CD4+ T-cell polarization. The major exception was AhR-dependent up-regulation of Il22 that was seen under all culture conditions. Independent of TCDD, AhR down-regulated the expression of Il17a and Rorc based on increased expression of these genes in AhR-deficient cells across culture conditions. These findings are consistent with a role for AhR in down-regulation of inflammatory immune responses and implicate IL-22 as a potential contributor to the immunosuppressive effects of TCDD.

  13. Hypoxia-Mediated Epigenetic Regulation of Stemness in Brain Tumor Cells.

    Science.gov (United States)

    Prasad, Pankaj; Mittal, Shivani Arora; Chongtham, Jonita; Mohanty, Sujata; Srivastava, Tapasya

    2017-06-01

    Activation of pluripotency regulatory circuit is an important event in solid tumor progression and the hypoxic microenvironment is known to enhance the stemness feature of some cells. The distinct population of cancer stem cells (CSCs)/tumor initiating cells exist in a niche and augment invasion, metastasis, and drug resistance. Previously, studies have reported global hypomethylation and site-specific aberrant methylation in gliomas along with other epigenetic modifications as important contributors to genomic instability during glioma progression. Here, we have demonstrated the role of hypoxia-mediated epigenetic modifications in regulating expression of core pluripotency factors, OCT4 and NANOG, in glioma cells. We observe hypoxia-mediated induction of demethylases, ten-eleven-translocation (TET) 1 and 3, but not TET2 in our cell-line model. Immunoprecipitation studies reveal active demethylation and direct binding of TET1 and 3 at the Oct4 and Nanog regulatory regions. Tet1 and 3 silencing assays further confirmed induction of the pluripotency pathway involving Oct4, Nanog, and Stat3, by these paralogues, although with varying degrees. Knockdown of Tet1 and Tet3 inhibited the formation of neurospheres in hypoxic conditions. We observed independent roles of TET1 and TET3 in differentially regulating pluripotency and differentiation associated genes in hypoxia. Overall, this study demonstrates an active demethylation in hypoxia by TET1 and 3 as a mechanism of Oct4 and Nanog overexpression thus contributing to the formation of CSCs in gliomas. Stem Cells 2017;35:1468-1478. © 2017 AlphaMed Press.

  14. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hongying, Ren; Huiguo, Cai; Zhongchao, Han; Renchi, Yang; Zhao, Qinjun [State Key Lab of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin (China); Ying, Cao; Jing, Li [Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Cixiang, Zhou [Health Science Center, Shanghai Institutes of Biological Sciences, Chinese Academy of Science-SSMU, Shanghai (China); Lianming, Liao; Mingyue, Jia [Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Qian, Zhao [Health Science Center, Shanghai Institutes of Biological Sciences, Chinese Academy of Science-SSMU, Shanghai (China); Guoqiang, Chen [Health Science Center, Shanghai Institutes of Biological Sciences, Chinese Academy of Science-SSMU, Shanghai (China); Zhao, R C [State Key Lab of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union of Medical College, Tianjin (China); [Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China)]. E-mail: chunhuaz@public.tpt.tj.cn

    2006-08-18

    Low oxygen tension is a potent differentiation inducer of numerous cell types and an effective stimulus of many gene expressions. Here, we described that under 8% O{sub 2}, bone marrow stromal cells (MSCs) exhibited proliferative and morphologic changes. The level of differentiated antigen H-2Dd and the number of G{sub 2}/S/M phase cells increased evidently under 8% O{sub 2} condition. Also, the proportion of wide, flattened, and epithelial-like cells (which were alkaline phosphatase staining positive) in MSCs increased significantly. When cultured in adipogenic medium, there was a 5- to 6-fold increase in the number of lipid droplets under hypoxic conditions compared with that in normoxic culture. We also demonstrated the existence of MSC differentiation under hypoxic conditions by electron microscopy. Expression of Oct4 was inhibited under 8% O{sub 2} condition, but after adipocyte differentiation in normoxic culture and hypoxia-mimicking agents cobalt chloride (CoCl{sub 2}) and deferoxamine mesylate (DFX) treatments, Oct4 was still expressed in MSCs. These results indicate hypoxia accelerates MSC differentiation and hypoxia and hypoxia-mimicking agents exert different effects on MSC differentiation.

  15. Tuberculosis Therapy Modifies the Cytokine Profile, Maturation State, and Expression of Inhibitory Molecules on Mycobacterium tuberculosis-Specific CD4+ T-Cells.

    Directory of Open Access Journals (Sweden)

    Kapil K Saharia

    Full Text Available Little is known about the expression of inhibitory molecules cytotoxic T-lymphocyte antigen-4 (CTLA-4 and programmed-death-1 (PD-1 on Mycobacterium tuberculosis (Mtb-specific CD4 T-cells and how their expression is impacted by TB treatment.Cryopreserved PBMCs from HIV-TB co-infected and TB mono-infected patients with untreated and treated tuberculosis (TB disease were stimulated for six hours with PPD and stained. Using polychromatic flow cytometry, we characterized the differentiation state, cytokine profile, and inhibitory molecule expression on PPD-specific CD4 T-cells.In our HIV-TB co-infected cohort, TB treatment increased the proportion of PPD-specific CD4 T-cells co-producing IFN-γ+IL-2+TNF-α+ and IFN-γ+IL-2+ (p = 0.0004 and p = 0.0002, respectively while decreasing the proportion of PPD-specific CD4 T-cells co-producing IFN-γ+MIP1-β+TNF-α+ and IFN-γ+MIP1-β+. The proportion of PPD-specific CD4 T-cells expressing an effector memory phenotype decreased (63.6% vs 51.6%, p = 0.0015 while the proportion expressing a central memory phenotype increased (7.8% vs. 21.7%, p = 0.001 following TB treatment. TB treatment reduced the proportion of PPD-specific CD4 T-cells expressing CTLA-4 (72.4% vs. 44.3%, p = 0.0005 and PD-1 (34.5% vs. 29.2%, p = 0.03. Similar trends were noted in our TB mono-infected cohort.TB treatment alters the functional profile of Mtb-specific CD4 T-cells reflecting shifts towards a less differentiated maturational profile and decreases PD-1 and CTLA-4 expression. These could serve as markers of reduced mycobacterial burden. Further study is warranted.

  16. Dopamine receptor D3 expressed on CD4+ T cells favors neurodegeneration of dopaminergic neurons during Parkinson's disease.

    Science.gov (United States)

    González, Hugo; Contreras, Francisco; Prado, Carolina; Elgueta, Daniela; Franz, Dafne; Bernales, Sebastián; Pacheco, Rodrigo

    2013-05-15

    Emerging evidence has demonstrated that CD4(+) T cells infiltrate into the substantia nigra (SN) in Parkinson's disease (PD) patients and in animal models of PD. SN-infiltrated CD4(+) T cells bearing inflammatory phenotypes promote microglial activation and strongly contribute to neurodegeneration of dopaminergic neurons. Importantly, altered expression of dopamine receptor D3 (D3R) in PBLs from PD patients has been correlated with disease severity. Moreover, pharmacological evidence has suggested that D3R is involved in IFN-γ production by human CD4(+) T cells. In this study, we examined the role of D3R expressed on CD4(+) T cells in neurodegeneration of dopaminergic neurons in the SN using a mouse model of PD. Our results show that D3R-deficient mice are strongly protected against loss of dopaminergic neurons and microglial activation during 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. Notably, D3R-deficient mice become susceptible to MPTP-induced neurodegeneration and microglial activation upon transfer of wild-type (WT) CD4(+) T cells. Furthermore, RAG1 knockout mice, which are devoid of T cells and are resistant to MPTP-induced neurodegeneration, become susceptible to MPTP-induced loss of dopaminergic neurons when reconstituted with WT CD4(+) T cells but not when transferred with D3R-deficient CD4(+) T cells. In agreement, experiments analyzing activation and differentiation of CD4(+) T cells revealed that D3R favors both T cell activation and acquisition of the Th1 inflammatory phenotype. These findings indicate that D3R expressed on CD4(+) T cells plays a fundamental role in the physiopathology of MPTP-induced PD in a mouse model.

  17. Vesnarinone downregulates CXCR4 expression via upregulation of Krüppel-like factor 2 in oral cancer cells

    Directory of Open Access Journals (Sweden)

    Uchida Daisuke

    2009-08-01

    Full Text Available Abstract Background We have demonstrated that the stromal cell-derived factor-1 (SDF-1; CXCL12/CXCR4 system is involved in the establishment of lymph node metastasis in oral squamous cell carcinoma (SCC. Chemotherapy is a powerful tool for the treatment of oral cancer, including oral SCC; however, the effects of chemotherapeutic agents on the expression of CXCR4 are unknown. In this study, we examined the expression of CXCR4 associated with the chemotherapeutic agents in oral cancer cells. Results The expression of CXCR4 was examined using 3 different chemotherapeutic agents; 5-fluorouracil, cisplatin, and vesnarinone (3,4-dihydro-6-[4-(3,4-dimethoxybenzoyl-1-piperazinyl]-2-(1H-quinolinone in B88, a line of oral cancer cells that exhibits high levels of CXCR4 and lymph node metastatic potential. Of the 3 chemotherapeutic agents that we examined, only vesnarinone downregulated the expression of CXCR4 at the mRNA as well as the protein level. Vesnarinone significantly inhibited lymph node metastasis in tumor-bearing nude mice. Moreover, vesnarinone markedly inhibited 2.7-kb human CXCR4 promoter activity, and we identified the transcription factor, Krüppel-like factor 2 (KLF2, as a novel vesnarinone-responsive molecule, which was bound to the CXCR4 promoter at positions -300 to -167 relative to the transcription start site. The forced-expression of KLF2 led to the downregulation of CXCR4 mRNA and impaired CXCR4 promoter activity. The use of siRNA against KLF2 led to an upregulation of CXCR4 mRNA. Conclusion These Results indicate that vesnarinone downregulates CXCR4 via the upregulation of KLF2 in oral cancer.

  18. Dynamic full field OCT: metabolic contrast at subcellular level (Conference Presentation)

    Science.gov (United States)

    Apelian, Clement; Harms, Fabrice; Thouvenin, Olivier; Boccara, Claude A.

    2016-03-01

    Cells shape or density is an important marker of tissues pathology. However, individual cells are difficult to observe in thick tissues frequently presenting highly scattering structures such as collagen fibers. Endogenous techniques struggle to image cells in these conditions. Moreover, exogenous contrast agents like dyes, fluorophores or nanoparticles cannot always be used, especially if non-invasive imaging is required. Scatterers motion happening down to the millisecond scale, much faster than the still and highly scattering structures (global motion of the tissue), allowed us to develop a new approach based on the time dependence of the FF-OCT signals. This method reveals hidden cells after a spatiotemporal analysis based on singular value decomposition and wavelet analysis concepts. It does also give us access to local dynamics of imaged scatterers. This dynamic information is linked with the local metabolic activity that drives these scatterers. Our technique can explore subcellular scales with micrometric resolution and dynamics ranging from the millisecond to seconds. By this mean we studied a wide range of tissues, animal and human in both normal and pathological conditions (cancer, ischemia, osmotic shock…) in different organs such as liver, kidney, and brain among others. Different cells, undetectable with FF-OCT, were identified (erythrocytes, hepatocytes…). Different scatterers clusters express different characteristic times and thus can be related to different mechanisms that we identify with metabolic functions. We are confident that the D-FFOCT, by accessing to a new spatiotemporal metabolic contrast, will be a leading technique on tissue imaging and for better medical diagnosis.

  19. SSX2-4 expression in early-stage non-small cell lung cancer

    DEFF Research Database (Denmark)

    Greve, K B V; Pøhl, M; Olsen, K E

    2014-01-01

    The expression of cancer/testis antigens SSX2, SSX3, and SSX4 in non-small cell lung cancers (NSCLC) was examined, since they are considered promising targets for cancer immunotherapy due to their immunogenicity and testis-restricted normal tissue expression. We characterized three SSX antibodies...... was only detected in 5 of 143 early-stage NSCLCs, which is rare compared to other cancer/testis antigens (e.g. MAGE-A and GAGE). However, further studies are needed to determine whether SSX can be used as a prognostic or predictive biomarker in NSCLC....

  20. [Effect of down-regulation of HE4 gene expression on biologic behavior of ovarian cancer cells].

    Science.gov (United States)

    Zhou, Lei; Xiao, Ran; Chen, Ying; Zhang, Jing; Lu, Ren-quan; Guo, Lin

    2013-10-01

    To investigate the effects of HE4 gene knockdown on the proliferation, adhesion and invasion of the ovarian cancer cells SKOV3. The knockdown of HE4 gene was performed by RNAi technology. The recombinant plasmids (pSUPER-HE4 shDNAs) were constructed and transfected into human ovarian cancer cells SKOV3. HE4 expression was then identified by real-time PCR and Western blot analysis. The invasion and adhesion ability of transduced cells were determined. In addition, cell proliferation and growth were analyzed by colonies formation assay. Knockdown of HE4 was achieved, and further confirmed by real-time PCR and Western blot. The proliferation of HE4-down-regulated cells was not affected, but the invasion ability of the transfected cells was reduced (P cells.

  1. Transporters for Antiretroviral Drugs in Colorectal CD4+ T Cells and Circulating α4β7 Integrin CD4+ T Cells: Implications for HIV Microbicides.

    Science.gov (United States)

    Mukhopadhya, Indrani; Murray, Graeme I; Duncan, Linda; Yuecel, Raif; Shattock, Robin; Kelly, Charles; Iannelli, Francesco; Pozzi, Gianni; El-Omar, Emad M; Hold, Georgina L; Hijazi, Karolin

    2016-09-06

    CD4+ T lymphocytes in the colorectal mucosa are key in HIV-1 transmission and dissemination. As such they are also the primary target for antiretroviral (ARV)-based rectal microbicides for pre-exposure prophylaxis. Drug transporters expressed in mucosal CD4+ T cells determine ARV distribution across the cell membrane and, most likely, efficacy of microbicides. We describe transporters for antiretroviral drugs in colorectal mucosal CD4+ T lymphocytes and compare gene expression with circulating α4β7+CD4+ T cells, which traffic to the intestine and have been shown to be preferentially infected by HIV-1. Purified total CD4+ T cells were obtained from colorectal tissue and blood samples by magnetic separation. CD4+ T cells expressing α4β7 integrin were isolated by fluorescence-activated cell sorting from peripheral blood mononuclear cells of healthy volunteers. Expressions of 15 efflux and uptake drug transporter genes were quantified using Taqman qPCR assays. Expression of efflux transporters MRP3, MRP5, and BCRP and uptake transporter CNT2 were significantly higher in colorectal CD4+ T cells compared to circulating CD4+ T cells (p = 0.01-0.03). Conversely, circulating α4β7+CD4+ T cells demonstrated significantly higher expression of OATPD compared to colorectal CD4+ T cells (p = 0.001). To the best of our knowledge this is the first report of drug transporter gene expression in colorectal CD4+ and peripheral α4β7+CD4+ T cells. The qualitative and quantitative differences in drug transporter gene expression profiles between α4β7+CD4+ T cells and total mucosal CD4+ T cells may have significant implications for the efficacy of rectally delivered ARV-microbicides. Most notably, we have identified efflux drug transporters that could be targeted by selective inhibitors or beneficial drug-drug interactions to enhance intracellular accumulation of antiretroviral drugs.

  2. Delayed expression of apoptosis in X-irradiated human leukemic MOLT-4 cells transfected with mutant p53

    International Nuclear Information System (INIS)

    Nakano, Hisako; Yonekawa, Hiromichi; Shinohara, Kunio

    2003-01-01

    The effects of X-rays on cell survival, apoptosis, and long-term response in the development of cell death as measured by the dye exclusion test were studied in human leukemic MOLT-4 cells (p53 wild-type) stably transfected with a mutant p53 cDNA expression vector. Cell survival, as determined from colony-forming ability, was increased in an expression level dependent manner, but the increase was partial even with the highest-expressing clone (B3). This contrasts with the prior observation that cell death and apoptosis in B3 are completely inhibited at 24 h after irradiation with 1.8 Gy of X-rays. The examination of B3 cells incubated for longer than 24 h after X-irradiation showed a delay in the induction of cell death and apoptosis. Western blot analysis revealed that the time required to reach the highest level of wild-type p53 protein in B3 was longer than the time in MOLT-4 and that the p53 may be stabilized by the phosphorylation at Ser-15. These results suggest that the introduction of mutant p53 into MOLT-4 merely delays the development of apoptosis, during which the cells could repair the damage induced by X-rays, and results in the partial increase in cell survival. (author)

  3. Evaluation of the effect of Chrysin and Caffeic acid phenethyl ester on eIF4E expression in AGS cell line

    Directory of Open Access Journals (Sweden)

    Abolhasani Marziyeh

    2014-04-01

    Full Text Available Introduction: The Ras/Akt/mTORC1 signal transduction pathways play a critical role in regulating translation and converge on initiation factor eukaryotic translation initiation factor 4E (eIF4E which is overexpressed in various malignancies. In the current study we aimed to assess the effect of chrysin and caffeic acid phenethyl ester (CAPE on eIF4E expression level in human stomach cancer AGS cell line. Methods: AGS cells were treated with 15, 20, 30 and 40 μM concentration of chrysin and CAPE separately, then eIF4E expression was evaluated in treated cells using real time-PCR method. Results: A significant decrease in eIF4E expression in the cells following 40 μM chrysin treatment was observed (p<0.05. There was a significant decrease in CAPE-treated cells in a dose dependent manner. Indeed the cells treated with 30 and 40 μM concentrations of CAPE, showed a significant decline in eIF4E expression (p<0.05. Conclusion: Our results suggest that CAPE and chrysin may be useful as a potential therapeutic agent for treatment of gastric cancers with an elevated eIF4E expression level.

  4. Brief report: benchmarking human pluripotent stem cell markers during differentiation into the three germ layers unveils a striking heterogeneity: all markers are not equal.

    Science.gov (United States)

    Ramirez, Jean-Marie; Gerbal-Chaloin, Sabine; Milhavet, Ollivier; Qiang, Bai; Becker, Fabienne; Assou, Said; Lemaître, Jean-Marc; Hamamah, Samir; De Vos, John

    2011-09-01

    Pluripotent stem cells (PSC) are functionally characterized by their capacity to differentiate into all the cell types from the three germ layers. A wide range of markers, the expression of which is associated with pluripotency, has been used as surrogate evidence of PSC pluripotency, but their respective relevance is poorly documented. Here, we compared by polychromatic flow cytometry the kinetics of loss of expression of eight widely used pluripotency markers (SSEA3, SSEA4, TRA-1-60, TRA-1-81, CD24, OCT4, NANOG, and alkaline phosphatase [AP]) at days 0, 5, 7, and 9 after induction of PSC differentiation into cells representative of the three germ layers. Strikingly, each marker showed a different and specific kinetics of disappearance that was similar in all the PSC lines used and for all the induced differentiation pathways. OCT4, SSEA3, and TRA-1-60 were repeatedly the first markers to be downregulated, and their expression was completely lost at day 9. By contrast, AP activity, CD24, and NANOG proteins were still detectable at day 9. In addition, we show that differentiation markers are coexpressed with pluripotency markers before the latter begin to disappear. These results suggest that OCT4, SSEA3, and TRA-1-60 might be better to trace in vitro the emergence of pluripotent cells during reprogramming. Copyright © 2011 AlphaMed Press.

  5. NANOG priming before full reprogramming may generate germ cell tumours

    Directory of Open Access Journals (Sweden)

    I Grad

    2011-11-01

    Full Text Available Reprogramming somatic cells into a pluripotent state brings patient-tailored, ethical controversy-free cellular therapy closer to reality. However, stem cells and cancer cells share many common characteristics; therefore, it is crucial to be able to discriminate between them. We generated two induced pluripotent stem cell (iPSC lines, with NANOG pre-transduction followed by OCT3/4, SOX2, and LIN28 overexpression. One of the cell lines, CHiPS W, showed normal pluripotent stem cell characteristics, while the other, CHiPS A, though expressing pluripotency markers, failed to differentiate and gave rise to germ cell-like tumours in vivo. Comparative genomic hybridisation analysis of the generated iPS lines revealed that they were genetically more stable than human embryonic stem cell counterparts. This analysis proved to be predictive for the differentiation potential of analysed cells. Moreover, the CHiPS A line expressed a lower ratio of p53/p21 when compared to CHiPS W. NANOG pre-induction followed by OCT3/4, SOX2, MYC, and KLF4 induction resulted in the same tumour-inducing phenotype. These results underline the importance of a re-examination of the role of NANOG during reprogramming. Moreover, this reprogramming method may provide insights into primordial cell tumour formation and cancer stem cell transformation.

  6. Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development.

    Directory of Open Access Journals (Sweden)

    Eric J Hill

    Full Text Available Mood stabilising drugs such as lithium (LiCl and valproic acid (VPA are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4, neurons (Neurofilament M, astrocytes (GFAP or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals.

  7. Gene expression in tumor cells and stroma in dsRed 4T1 tumors in eGFP-expressing mice with and without enhanced oxygenation

    International Nuclear Information System (INIS)

    Moen, Ingrid; Øyan, Anne M; Stuhr, Linda EB; Jevne, Charlotte; Wang, Jian; Kalland, Karl-Henning; Chekenya, Martha; Akslen, Lars A; Sleire, Linda; Enger, Per Ø; Reed, Rolf K

    2012-01-01

    The tumor microenvironment is pivotal in tumor progression. Thus, we aimed to develop a mammary tumor model to elucidate molecular characteristics in the stroma versus the tumor cell compartment by global gene expression. Secondly, since tumor hypoxia influences several aspects of tumor pathophysiology, we hypothesized that hyperoxia might have an inhibitory effect on tumor growth per se. Finally, we aimed to identify differences in gene expression and key molecular mechanisms, both in the native state and following treatment. 4T1 dsRed breast cancer cells were injected into eGFP expressing NOD/SCID mice. Group 1 was exposed to 3 intermittent HBO treatments (Day 1, 4 and 7), Group 2 to 7 daily HBO treatments (both 2.5bar, 100% O 2 , à 90 min), whereas the controls were exposed to a normal atmosphere. Tumor growth, histology, vascularisation, cell proliferation, cell death and metastasis were assessed. Fluorescence-activated cell sorting was used to separate tumor cells from stromal cells prior to gene expression analysis. The purity of sorted cells was verified by fluorescence microscopy. Gene expression profiling demonstrated that highly expressed genes in the untreated tumor stroma included constituents of the extracellular matrix and matrix metalloproteinases. Tumor growth was significantly inhibited by HBO, and the MAPK pathway was found to be significantly reduced. Immunohistochemistry indicated a significantly reduced microvessel density after intermittent HBO, whereas daily HBO did not show a similar effect. The anti-angiogenic response was reflected in the expression trends of angiogenic factors. The present in vivo mammary tumor model enabled us to separate tumor and stromal cells, and demonstrated that the two compartments are characterized by distinct gene expressions, both in the native state and following HBO treatments. Furthermore, hyperoxia induced a significant tumor growth-inhibitory effect, with significant down-regulation of the MAPK pathway

  8. Research Upregulation of CD23 (FcεRII Expression in Human Airway Smooth Muscle Cells (huASMC in Response to IL-4, GM-CSF, and IL-4/GM-CSF

    Directory of Open Access Journals (Sweden)

    Lew D Betty

    2005-05-01

    Full Text Available Abstract Background Airway smooth muscle cells play a key role in remodeling that contributes to airway hyperreactivity. Airway smooth muscle remodeling includes hypertrophy and hyperplasia. It has been previously shown that the expression of CD23 on ASMC in rabbits can be induced by the IgE component of the atopic serum. We examined if other components of atopic serum are capable of inducing CD23 expression independent of IgE. Methods Serum starved huASMC were stimulated with either IL-4, GM-CSF, IL-13, IL-5, PGD2, LTD4, tryptase or a combination of IL-4, IL-5, IL-13 each with GM-CSF for a period of 24 h. CD23 expression was analyzed by flow cytometry, western blot, and indirect immunofluorescence. Results The CD23 protein expression was upregulated in huASMC in response to IL-4, GM-CSF, and IL-4/GM-CSF. The percentage of cells with increased fluorescence intensity above the control was 25.1 ± 4.2% (IL-4, 15.6 ± 2.7% (GM-CSF and 32.9 ± 13.9% (IL-4/GMCSF combination(n = 3. The protein content of IL-4/GMCSF stimulated cells was significantly elevated. Expression of CD23 in response to IL-4, GM-CSF, IL-4/GM-CSF was accompanied by changes in cell morphology including depolymerization of isoactin fibers, cell spreading, and membrane ruffling. Western blot revealed abundant expression of the IL-4Rα and a low level expression of IL-2Rγc in huASMC. Stimulation with IL-4 resulted in the phosphorylation of STAT-6 and an increase in the expression of the IL-2Rγc. Conclusion CD23 on huASMC is upregulated by IL-4, GM-CSF, and IL-4/GM-CSF. The expression of CD23 is accompanied by an increase in cell volume and an increase in protein content per cell, suggesting hypertrophy. Upregulation of CD23 by IL-4/GM-CSF results in phenotypic changes in huASMC that could play a role in cell migration or a change in the synthetic function of the cells. Upregulation of CD23 in huASMC by IL-4 and GM-CSF can contribute to changes in huASMC and may provide an avenue

  9. Gene expression patterns in CD4+ peripheral blood cells in healthy subjects and stage IV melanoma patients.

    Science.gov (United States)

    Felts, Sara J; Van Keulen, Virginia P; Scheid, Adam D; Allen, Kathleen S; Bradshaw, Renee K; Jen, Jin; Peikert, Tobias; Middha, Sumit; Zhang, Yuji; Block, Matthew S; Markovic, Svetomir N; Pease, Larry R

    2015-11-01

    Melanoma patients exhibit changes in immune responsiveness in the local tumor environment, draining lymph nodes, and peripheral blood. Immune-targeting therapies are revolutionizing melanoma patient care increasingly, and studies show that patients derive clinical benefit from these newer agents. Nonetheless, predicting which patients will benefit from these costly therapies remains a challenge. In an effort to capture individual differences in immune responsiveness, we are analyzing patterns of gene expression in human peripheral blood cells using RNAseq. Focusing on CD4+ peripheral blood cells, we describe multiple categories of immune regulating genes, which are expressed in highly ordered patterns shared by cohorts of healthy subjects and stage IV melanoma patients. Despite displaying conservation in overall transcriptome structure, CD4+ peripheral blood cells from melanoma patients differ quantitatively from healthy subjects in the expression of more than 2000 genes. Moreover, 1300 differentially expressed genes are found in transcript response patterns following activation of CD4+ cells ex vivo, suggesting that widespread functional discrepancies differentiate the immune systems of healthy subjects and melanoma patients. While our analysis reveals that the transcriptome architecture characteristic of healthy subjects is maintained in cancer patients, the genes expressed differentially among individuals and across cohorts provide opportunities for understanding variable immune states as well as response potentials, thus establishing a foundation for predicting individual responses to stimuli such as immunotherapeutic agents.

  10. Correction of rotational distortion for catheter-based en face OCT and OCT angiography

    Science.gov (United States)

    Ahsen, Osman O.; Lee, Hsiang-Chieh; Giacomelli, Michael G.; Wang, Zhao; Liang, Kaicheng; Tsai, Tsung-Han; Potsaid, Benjamin; Mashimo, Hiroshi; Fujimoto, James G.

    2015-01-01

    We demonstrate a computationally efficient method for correcting the nonuniform rotational distortion (NURD) in catheter-based imaging systems to improve endoscopic en face optical coherence tomography (OCT) and OCT angiography. The method performs nonrigid registration using fiducial markers on the catheter to correct rotational speed variations. Algorithm performance is investigated with an ultrahigh-speed endoscopic OCT system and micromotor catheter. Scan nonuniformity is quantitatively characterized, and artifacts from rotational speed variations are significantly reduced. Furthermore, we present endoscopic en face OCT and OCT angiography images of human gastrointestinal tract in vivo to demonstrate the image quality improvement using the correction algorithm. PMID:25361133

  11. OCT for industrial applications

    Science.gov (United States)

    Song, Guiju; Harding, Kevin

    2012-11-01

    Optical coherence tomography (OCT), as an interferometric method, has been studied as a distance ranger. As a technology capable of producing high-resolution, depth-resolved images of biological tissue, OCT had been widely used for the application of ophthalmology and has been commercialized in the market today. Enlightened by the emerging research interest in biomedical domain, the applications of OCT in industrial inspection were rejuvenated by a few groups to explore its potential for characterizing new materials, imaging or inspecting industrial parts as a service solution[3]. Benefiting from novel photonics components and devices, the industrial application of the older concepts in OCT can be re-visited with respect to the unique performance and availability. Commercial OCT developers such as Michelson Diagnostics (MDL; Orpington, U.K.) and Thorlabs (Newton, NJ) are actively exploring the application of OCT to industrial applications and they have outlined meaningful path toward the metrology application in emerging industry[3]. In this chapter, we will introduce the fundamental concepts of OCT and discuss its current and potential industrial applications.

  12. mRNA expression profile in DLD-1 and MOLT-4 cancer cell lines cultured under Microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — DLD-1 and MOLT-4 cell lines were cultured in a Rotating cell culture system to simulate microgravity and mRNA expression profile was observed in comparison to Static...

  13. Low Oxygen Modulates Multiple Signaling Pathways, Increasing Self-Renewal, While Decreasing Differentiation, Senescence, and Apoptosis in Stromal MIAMI Cells

    Science.gov (United States)

    Rios, Carmen; D'Ippolito, Gianluca; Curtis, Kevin M.; Delcroix, Gaëtan J.-R.; Gomez, Lourdes A.; El Hokayem, Jimmy; Rieger, Megan; Parrondo, Ricardo; de las Pozas, Alicia; Perez-Stable, Carlos; Howard, Guy A.

    2016-01-01

    Human bone marrow multipotent mesenchymal stromal cell (hMSC) number decreases with aging. Subpopulations of hMSCs can differentiate into cells found in bone, vasculature, cartilage, gut, and other tissues and participate in their repair. Maintaining throughout adult life such cell subpopulations should help prevent or delay the onset of age-related degenerative conditions. Low oxygen tension, the physiological environment in progenitor cell-rich regions of the bone marrow microarchitecture, stimulates the self-renewal of marrow-isolated adult multilineage inducible (MIAMI) cells and expression of Sox2, Nanog, Oct4a nuclear accumulation, Notch intracellular domain, notch target genes, neuronal transcriptional repressor element 1 (RE1)-silencing transcription factor (REST), and hypoxia-inducible factor-1 alpha (HIF-1α), and additionally, by decreasing the expression of (i) the proapoptotic proteins, apoptosis-inducing factor (AIF) and Bak, and (ii) senescence-associated p53 expression and β-galactosidase activity. Furthermore, low oxygen increases canonical Wnt pathway signaling coreceptor Lrp5 expression, and PI3K/Akt pathway activation. Lrp5 inhibition decreases self-renewal marker Sox2 mRNA, Oct4a nuclear accumulation, and cell numbers. Wortmannin-mediated PI3K/Akt pathway inhibition leads to increased osteoblastic differentiation at both low and high oxygen tension. We demonstrate that low oxygen stimulates a complex signaling network involving PI3K/Akt, Notch, and canonical Wnt pathways, which mediate the observed increase in nuclear Oct4a and REST, with simultaneous decrease in p53, AIF, and Bak. Collectively, these pathway activations contribute to increased self-renewal with concomitant decreased differentiation, cell cycle arrest, apoptosis, and/or senescence in MIAMI cells. Importantly, the PI3K/Akt pathway plays a central mechanistic role in the oxygen tension-regulated self-renewal versus osteoblastic differentiation of progenitor cells. PMID:27059084

  14. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    Science.gov (United States)

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists.

  15. Interference with PSMB4 Expression Exerts an Anti-Tumor Effect by Decreasing the Invasion and Proliferation of Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chen Cheng

    2018-01-01

    Full Text Available Background/Aims: Glioblastoma (GBM is a malignant brain tumor with a poor prognosis. Proteasome subunit beta type-4 (PSMB4 is an essential subunit that contributes to the assembly of the 20S proteasome complex. However, the role of PSMB4 in glioblastomas remains to be clarified. The aim of this study was to investigate the role of PSMB4 in GBM tumor progression. Methods: We first analyzed the PSMB4 protein and mRNA expression in 80 clinical brain specimens and 77 datasets from the National Center for Biotechnology Information (NCBI Gene Expression Omnibus (GEO database. Next, we inhibited the PSMB4 expression by siRNA in cellular and animal models to explore PSMB4’s underlying mechanisms. The cell survival after siPSMB4 transfection was assayed by MTT assay. Annexin V and propidium iodide staining was used to monitor the apoptosis by flow cytometric analysis. Moreover, the migration and invasion were evaluated by wound healing and Transwell assays. The expression of migration-related and invasion-related proteins after PSMB4 inhibition was detected by Western blotting. In addition, an orthotropic xenograft mouse model was used to assay the effect of PSMB4 knockdown in the in vivo study. Results: Basis on the results of bioinformatics study, glioma patients with higher PSMB4 expression had a shorter survival time than those with lower PSMB4 expression. The staining of clinical brain tissues showed elevated PSMB4 expression in GBM tissues compared with normal brain tissues. The PSMB4 inhibition decreased proliferation, migration and invasion abilities in human GBM cells. Downregulated PSMB4 resulted in cell cycle arrest and apoptosis in vitro. In an orthotropic xenograft mouse model, the glioma tumors progression was reduced when PSMB4 was down-regulated. The decreased PSMB4 enhanced the anti-tumor effect of temozolomide (TMZ on tumor growth. In addition, the absence of PSMB4 decreased the expression of phosphorylated focal adhesion kinase and

  16. Pluripotency gene expression and growth control in cultures of peripheral blood monocytes during their conversion into programmable cells of monocytic origin (PCMO: evidence for a regulatory role of autocrine activin and TGF-β.

    Directory of Open Access Journals (Sweden)

    Hendrik Ungefroren

    Full Text Available Previous studies have shown that peripheral blood monocytes can be converted in vitro to a stem cell-like cell termed PCMO as evidenced by the re-expression of pluripotency-associated genes, transient proliferation, and the ability to adopt the phenotype of hepatocytes and insulin-producing cells upon tissue-specific differentiation. However, the regulatory interactions between cultured cells governing pluripotency and mitotic activity have remained elusive. Here we asked whether activin(s and TGF-β(s, are involved in PCMO generation. De novo proliferation of PCMO was higher under adherent vs. suspended culture conditions as revealed by the appearance of a subset of Ki67-positive monocytes and correlated with down-regulation of p21WAF1 beyond day 2 of culture. Realtime-PCR analysis showed that PCMO express ActRIIA, ALK4, TβRII, ALK5 as well as TGF-β1 and the βA subunit of activin. Interestingly, expression of ActRIIA and ALK4, and activin A levels in the culture supernatants increased until day 4 of culture, while levels of total and active TGF-β1 strongly declined. PCMO responded to both growth factors in an autocrine fashion with intracellular signaling as evidenced by a rise in the levels of phospho-Smad2 and a drop in those of phospho-Smad3. Stimulation of PCMO with recombinant activins (A, B, AB and TGF-β1 induced phosphorylation of Smad2 but not Smad3. Inhibition of autocrine activin signaling by either SB431542 or follistatin reduced both Smad2 activation and Oct4A/Nanog upregulation. Inhibition of autocrine TGF-β signaling by either SB431542 or anti-TGF-β antibody reduced Smad3 activation and strongly increased the number of Ki67-positive cells. Furthermore, anti-TGF-β antibody moderately enhanced Oct4A/Nanog expression. Our data show that during PCMO generation pluripotency marker expression is controlled positively by activin/Smad2 and negatively by TGF-β/Smad3 signaling, while relief from growth inhibition is primarily the

  17. Ectopic expression of Msx-2 in posterior limb bud mesoderm impairs limb morphogenesis while inducing BMP-4 expression, inhibiting cell proliferation, and promoting apoptosis.

    Science.gov (United States)

    Ferrari, D; Lichtler, A C; Pan, Z Z; Dealy, C N; Upholt, W B; Kosher, R A

    1998-05-01

    expression of BMP-4, a secreted signaling molecule that is coexpressed with Msx-2 during normal limb development in the anterior limb mesoderm, the posterior necrotic zone, and interdigital mesenchyme. This indicates that Msx-2 regulates BMP-4 expression and that the suppressive effects of Msx-2 on limb morphogenesis might be mediated in part by BMP-4. These studies indicate that during normal limb development Msx-2 is a key component of a regulatory network that delimits the boundaries of the progress zone by suppressing the morphogenesis of the regions of the limb mesoderm in which it is highly expressed, thus restricting the outgrowth and formation of skeletal elements and associated structures to the progress zone. We also report that rather large numbers of apoptotic cells as well as proliferating cells are present throughout the AER during all stages of normal limb development we have examined, indicating that many of the cells of the AER are continuously undergoing programmed cell death at the same time that new AER cells are being generated by cell proliferation. Thus, a balance between cell proliferation and programmed cell death may play a very important role in maintaining the activity of the AER. Copyright 1998 Academic Press.

  18. CCR3 expression induced by IL-2 and IL-4 functioning as a death receptor for B cells

    DEFF Research Database (Denmark)

    Jinquan, Tan; Jacobi, Henrik H; Jing, Chen

    2003-01-01

    We report that CCR3 is not expressed on freshly isolated peripheral and germinal B cells, but is up-regulated after stimulation with IL-2 and IL-4 (approximately 98% CCR3(+)). Ligation of CCR3 by eotaxin/chemokine ligand (CCL) 11 induces apoptosis in IL-2- and IL-4-stimulated primary CD19......-4, and eotaxin/CCL11 (88% CD95 and 84% CD95L). We therefore propose that ligation of such newly induced CCR3 on peripheral and germinal B cells by eotaxin/CCL11 leads to the enhanced levels of CD95 and CD95L expression. Ligation of CD95 by its CD95L expressed on neigboring B cells triggers relevant....... Interaction between CCR3 and eotaxin/CCL11 may, besides promoting allergic reactions, drive activated B cells to apoptosis, thereby reducing levels of Ig production, including IgE, and consequently limit the development of the humoral immune response. The apoptotic action of eotaxin/CCL11 suggests...

  19. CD44 and SSEA-4 positive cells in an oral cancer cell line HSC-4 possess cancer stem-like cell characteristics.

    Science.gov (United States)

    Noto, Zenko; Yoshida, Toshiko; Okabe, Motonori; Koike, Chika; Fathy, Moustafa; Tsuno, Hiroaki; Tomihara, Kei; Arai, Naoya; Noguchi, Makoto; Nikaido, Toshio

    2013-08-01

    Cancer may be derived from cancer stem-like cells (CSCs), which are tumor-initiating cells that have properties similar to those of stem cells. Identification and isolation of CSCs needs to be improved further. CSCs markers were examined in human oral cancer cell lines by flow cytometry. The stem cell properties of subpopulations expressing different markers were assessed further by in vitro sphere formation assays, expression of stemness genes, drug resistance assays, and the ability to form tumors in nude mice. We demonstrated that CSCs could be isolated by the cell surface markers CD44 and stage-specific embryonic antigen-4 (SSEA-4). CD44+SSEA-4+ cells exhibited cancer stem-like properties, including extensive self-renewal into the bulk of cancer cells. In vivo xenograft experiments indicated that CD44+SSEA-4+ cells exhibit the highest tumorigenic capacity compared with the remaining subpopulations and parental cells. Double-positive cells for CD44 and SSEA-4 exhibited preferential expression of some stemness genes and were more resistant to the anticancer drugs, cisplatin and 5-fluorouracil (5-FU). In addition, cells expressing CD44 and SSEA-4 were detected in all tumor specimens analyzed, while coexpression of CD44 and SSEA-4 was not detectable in normal oral mucosa. Our findings suggest that CD44+SSEA-4+ cells exhibit the characteristics of CSCs in oral squamous cell carcinoma and provide a target for the development of more effective therapies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The TRPA1 ion channel is expressed in CD4+ T cells and restrains T-cell-mediated colitis through inhibition of TRPV1.

    Science.gov (United States)

    Bertin, Samuel; Aoki-Nonaka, Yukari; Lee, Jihyung; de Jong, Petrus R; Kim, Peter; Han, Tiffany; Yu, Timothy; To, Keith; Takahashi, Naoki; Boland, Brigid S; Chang, John T; Ho, Samuel B; Herdman, Scott; Corr, Maripat; Franco, Alessandra; Sharma, Sonia; Dong, Hui; Akopian, Armen N; Raz, Eyal

    2017-09-01

    Transient receptor potential ankyrin-1 (TRPA1) and transient receptor potential vanilloid-1 (TRPV1) are calcium (Ca 2+ )-permeable ion channels mostly known as pain receptors in sensory neurons. However, growing evidence suggests their crucial involvement in the pathogenesis of IBD. We explored the possible contribution of TRPA1 and TRPV1 to T-cell-mediated colitis. We evaluated the role of Trpa1 gene deletion in two models of experimental colitis (ie, interleukin-10 knockout and T-cell-adoptive transfer models). We performed electrophysiological and Ca 2+ imaging studies to analyse TRPA1 and TRPV1 functions in CD4+ T cells. We used genetic and pharmacological approaches to evaluate TRPV1 contribution to the phenotype of Trpa1 -/- CD4+ T cells. We also analysed TRPA1 and TRPV1 gene expression and TRPA1 + TRPV1 + T cell infiltration in colonic biopsies from patients with IBD. We identified a protective role for TRPA1 in T-cell-mediated colitis. We demonstrated the functional expression of TRPA1 on the plasma membrane of CD4+ T cells and identified that Trpa1 -/- CD4+ T cells have increased T-cell receptor-induced Ca 2+ influx, activation profile and differentiation into Th1-effector cells. This phenotype was abrogated upon genetic deletion or pharmacological inhibition of the TRPV1 channel in mouse and human CD4+ T cells. Finally, we found differential regulation of TRPA1 and TRPV1 gene expression as well as increased infiltration of TRPA1 + TRPV1 + T cells in the colon of patients with IBD. Our study indicates that TRPA1 inhibits TRPV1 channel activity in CD4+ T cells, and consequently restrains CD4+ T-cell activation and colitogenic responses. These findings may therefore have therapeutic implications for human IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. All-trans retinoic acid directs urothelial specification of murine embryonic stem cells via GATA4/6 signaling mechanisms.

    Directory of Open Access Journals (Sweden)

    Joshua R Mauney

    2010-07-01

    Full Text Available The urinary bladder and associated tract are lined by the urothelium, a transitional epithelium that acts as a specialized permeability barrier that protects the underlying tissue from urine via expression of a highly specific group of proteins known as the uroplakins (UP. To date, our understanding of the developmental processes responsible for urothelial differentiation has been hampered due to the lack of suitable models. In this study, we describe a novel in vitro cell culture system for derivation of urothelial cells from murine embryonic stem cells (ESCs following cultivation on collagen matrices in the presence all trans retinoic acid (RA. Upon stimulation with micromolar concentrations of RA, ESCs significantly downregulated the pluripotency factor OCT-4 but markedly upregulated UP1A, UP1B, UP2, UP3A, and UP3B mRNA levels in comparison to naïve ESCs and spontaneously differentiating controls. Pan-UP protein expression was associated with both p63- and cytokeratin 20-positive cells in discrete aggregating populations of ESCs following 9 and 14 days of RA stimulation. Analysis of endodermal transcription factors such as GATA4 and GATA6 revealed significant upregulation and nuclear enrichment in RA-treated UP2-GFP+ populations. GATA4-/- and GATA6-/- transgenic ESC lines revealed substantial attenuation of RA-mediated UP expression in comparison to wild type controls. In addition, EMSA analysis revealed that RA treatment induced formation of transcriptional complexes containing GATA4/6 on both UP1B and UP2 promoter fragments containing putative GATA factor binding sites. Collectively, these data suggest that RA mediates ESC specification toward a urothelial lineage via GATA4/6-dependent processes.

  2. Stem Cell Factor-Based Identification and Functional Properties of In Vitro-Selected Subpopulations of Malignant Mesothelioma Cells

    Directory of Open Access Journals (Sweden)

    Walter Blum

    2017-04-01

    Full Text Available Summary: Malignant mesothelioma (MM is an aggressive neoplasm characterized by a poor patient survival rate, because of rapid tumor recurrence following first-line therapy. Cancer stem cells (CSCs are assumed to be responsible for initiating tumorigenesis and driving relapse after therapeutic interventions. CSC-enriched MM cell subpopulations were identified by an OCT4/SOX2 reporter approach and were characterized by (1 increased resistance to cisplatin, (2 increased sensitivity toward the FAK inhibitor VS-6063 in vitro, and (3 a higher tumor-initiating capacity in vivo in orthotopic xenograft and allograft mouse models. Overexpression of NF2 (neurofibromatosis 2, merlin, a tumor suppressor often mutated or lost in MM, did not affect proliferation and viability of CSC-enriched MM populations but robustly decreased the viability of reporter-negative cells. In contrast, downregulation of calretinin strongly decreased proliferation and viability of both populations. In summary, we have enriched and characterized a small MM cell subpopulation that bears the expected CSC characteristics. : A cancer stem cell (CSC-enriched malignant mesothelioma (MM cell subpopulation was identified by an OCT4/SOX2 reporter approach. These EGFP-expressing cells showed an altered sensitivity toward chemotherapeutic drugs and a higher tumor-initiating capacity in vivo in orthotopic xenograft and allograft mouse models. While NF2 overexpression had no effect on proliferation/viability of CSC-enriched MM populations, they were susceptible to downregulation of calretinin. Keywords: mesothelioma, cancer stem cells, SOX2, OCT4, NF2, merlin, calretinin, defactinib

  3. Imaging of aortic valve dynamics in 4D OCT

    Directory of Open Access Journals (Sweden)

    Schnabel Christian

    2015-09-01

    Full Text Available The mechanical components of the heart, especially the valves and leaflets, are enormous stressed during lifetime. Therefore, those structures undergo different pathophysiological tissue transformations which affect cardiac output and in consequence living comfort of affected patients. These changes may lead to calcific aortic valve stenosis (AVS, the major heart valve disease in humans. The knowledge about changes of the dynamic behaviour during the course of this disease and the possibility of early stage diagnosis is of particular interest and could lead to the development of new treatment strategies and drug based options of prevention or therapy. 4D optical coherence tomography (OCT in combination with high-speed video microscopy were applied to characterize dynamic behaviour of the murine aortic valve and to characterize dynamic properties during artificial stimulation. We present a promising tool to investigate the aortic valve dynamics in an ex vivo disease model with a high spatial and temporal resolution using a multimodal imaging setup.

  4. TLR4-NOX4-AP-1 signaling mediates lipopolysaccharide-induced CXCR6 expression in human aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Patel, Devang N.; Bailey, Steven R.; Gresham, John K.; Schuchman, David B.; Shelhamer, James H.; Goldstein, Barry J.; Foxwell, Brian M.; Stemerman, Michael B.; Maranchie, Jodi K.; Valente, Anthony J.; Mummidi, Srinivas; Chandrasekar, Bysani

    2006-01-01

    CXCL16 is a transmembrane non-ELR CXC chemokine that signals via CXCR6 to induce aortic smooth muscle cell (ASMC) proliferation. While bacterial lipopolysaccharide (LPS) has been shown to stimulate CXCL16 expression in SMC, its effects on CXCR6 are not known. Here, we demonstrate that LPS upregulates CXCR6 mRNA, protein, and surface expression in human ASMC. Inhibition of TLR4 with neutralizing antibodies or specific siRNA interference blocked LPS-mediated CXCR6 expression. LPS stimulated both AP-1 (c-Fos, c-Jun) and NF-κB (p50 and p65) activation, but only inhibition of AP-1 attenuated LPS-induced CXCR6 expression. Using dominant negative expression vectors and siRNA interference, we demonstrate that LPS induces AP-1 activation via MyD88, TRAF6, ERK1/2, and JNK signaling pathways. Furthermore, the flavoprotein inhibitor diphenyleniodonium chloride significantly attenuated LPS-mediated AP-1-dependent CXCR6 expression, as did inhibition of NOX4 NADPH oxidase by siRNA. Finally, CXCR6 knockdown inhibited CXCL16-induced ASMC proliferation. These results demonstrate that LPS-TLR4-NOX4-AP-1 signaling can induce CXCR6 expression in ASMC, and suggest that the CXCL16-CXCR6 axis may be an important proinflammatory pathway in the pathogenesis of atherosclerosis

  5. Elevated frequencies of CD8 T cells expressing PD-1, CTLA-4 and Tim-3 within tumour from perineural squamous cell carcinoma patients.

    Science.gov (United States)

    Linedale, Richard; Schmidt, Campbell; King, Brigid T; Ganko, Annabelle G; Simpson, Fiona; Panizza, Benedict J; Leggatt, Graham R

    2017-01-01

    Perineural spread of tumour cells along cranial nerves is a severe complication of primary cutaneous squamous cell carcinomas of the head and neck region. While surgical excision of the tumour is the treatment of choice, removal of all the tumour is often complicated by the neural location and recurrence is frequent. Non-invasive immune treatments such as checkpoint inhibitor blockade may be useful in this set of tumours although little is understood about the immune response to perineural spread of squamous cell carcinomas. Immunohistochemistry studies suggest that perineural tumour contains a lymphocyte infiltrate but it is difficult to quantitate the different proportions of immune cell subsets and expression of checkpoint molecules such as PD-1, Tim-3 and CTLA-4. Using flow cytometry of excised perineural tumour tissue, we show that a T cell infiltrate is prominent in addition to less frequent B cell, NK cell and NKT cell infiltrates. CD8 T cells are more frequent than other T cells in the tumour tissue. Amongst CD8 T cells, the frequency of Tim-3, CTLA-4 and PD-1 expressing cells was significantly greater in the tumour relative to the blood, a pattern that was repeated for Tim-3, CTLA-4 and PD-1 amongst non-CD8 T cells. Using immunohistochemistry, PD-1 and PD-L1-expression could be detected in close proximity amongst perineural tumour tissue. The data suggest that perineural SCC contains a mixture of immune cells with a predominant T cell infiltrate containing CD8 T cells. Elevated frequencies of tumour-associated Tim-3+, CTLA-4+ and PD-1+ CD8 T cells suggests that a subset of patients may benefit from local antibody blockade of these checkpoint inhibitors.

  6. Elevated frequencies of CD8 T cells expressing PD-1, CTLA-4 and Tim-3 within tumour from perineural squamous cell carcinoma patients.

    Directory of Open Access Journals (Sweden)

    Richard Linedale

    Full Text Available Perineural spread of tumour cells along cranial nerves is a severe complication of primary cutaneous squamous cell carcinomas of the head and neck region. While surgical excision of the tumour is the treatment of choice, removal of all the tumour is often complicated by the neural location and recurrence is frequent. Non-invasive immune treatments such as checkpoint inhibitor blockade may be useful in this set of tumours although little is understood about the immune response to perineural spread of squamous cell carcinomas. Immunohistochemistry studies suggest that perineural tumour contains a lymphocyte infiltrate but it is difficult to quantitate the different proportions of immune cell subsets and expression of checkpoint molecules such as PD-1, Tim-3 and CTLA-4. Using flow cytometry of excised perineural tumour tissue, we show that a T cell infiltrate is prominent in addition to less frequent B cell, NK cell and NKT cell infiltrates. CD8 T cells are more frequent than other T cells in the tumour tissue. Amongst CD8 T cells, the frequency of Tim-3, CTLA-4 and PD-1 expressing cells was significantly greater in the tumour relative to the blood, a pattern that was repeated for Tim-3, CTLA-4 and PD-1 amongst non-CD8 T cells. Using immunohistochemistry, PD-1 and PD-L1-expression could be detected in close proximity amongst perineural tumour tissue. The data suggest that perineural SCC contains a mixture of immune cells with a predominant T cell infiltrate containing CD8 T cells. Elevated frequencies of tumour-associated Tim-3+, CTLA-4+ and PD-1+ CD8 T cells suggests that a subset of patients may benefit from local antibody blockade of these checkpoint inhibitors.

  7. Micro-tattoo guided OCT imaging of site specific inflammation

    Science.gov (United States)

    Phillips, Kevin G.; Choudhury, Niloy; Samatham, Ravikant V.; Singh, Harvinder; Jacques, Steven L.

    2010-02-01

    Epithelial biologists studying human skin diseases such as cancer formation and psoriasis commonly utilize mouse models to characterize the interplay among cells and intracellular signal transduction pathways that result in programmed changes in gene expression and cellular behaviors. The information obtained from animal models is useful only when phenotypic presentations of disease recapitulate those observed in humans. Excision of tissues followed by histochemical analysis is currently the primary means of establishing the morphological presentation. Non invasive imaging of animal models provides an alternate means to characterize tissue morphology associated with the disease of interest in vivo. While useful, the ability to perform in vivo imaging at different time points in the same tissue location has been a challenge. This information is key to understanding site specific changes as the imaged tissue can now be extracted and analyzed for mRNA expression. We present a method employing a micro-tattoo to guide optical coherence tomography (OCT) imaging of ultraviolet induced inflammation over time in the same tissue locations.

  8. Imprinting of CCR9 on CD4 T cells requires IL-4 signaling on mesenteric lymph node dendritic cells.

    Science.gov (United States)

    Elgueta, Raul; Sepulveda, Fernando E; Vilches, Felipe; Vargas, Leonardo; Mora, J Rodrigo; Bono, Maria Rosa; Rosemblatt, Mario

    2008-05-15

    It has recently been shown that IL-4 can educate dendritic cells (DC) to differentially affect T cell effector activity. In this study, we show that IL-4 can also act upon DC to instruct naive T cells to express the gut-associated homing receptor CCR9. Thus, effector T cells generated after coculture with mesenteric lymph node (MLN)-DC show a higher expression of CCR9 when activated in the presence of IL-4. In contrast, IL-4 had no effect on CCR9 expression when naive T cells were polyclonally activated in the absence of MLN-DC, suggesting that the effect of IL-4 on CCR9 expression passed through DC. Indeed, T cells activated by MLN-DC from IL-4Ralpha(-/-) mice showed a much lower CCR9 expression and a greatly reduced migration to the small intestine than T cells activated by wild-type MLN-DC even in the presence of IL-4. Consistent with the finding that the vitamin A metabolite retinoic acid (RA) induces gut-homing molecules on T cells, we further demonstrate that IL-4 up-regulated retinaldehyde dehydrogenase 2 mRNA on MLN-DC, a critical enzyme involved in the synthesis of RA. Moreover, LE135, a RA receptor antagonist, blocked the increased expression of CCR9 driven by IL-4-treated MLN-DC. Thus, besides the direct effect of RA on T cell gut tropism, our results show that the induction of a gut-homing phenotype on CD4(+) T cells is also influenced by the effect of IL-4 on gut-associated DC.

  9. Critical role of γ4 chain in the expression of functional Vγ4Vδ1 T cell receptor of gastric tumour-infiltrating γδT lymphocytes.

    Science.gov (United States)

    Jiang, Y; Tang, F; Li, Z; Cui, L; He, W

    2012-01-01

    4Vδ1 T cell receptor (TCRγ4δ1)-expressing γδT cells were the most dominant subset in gastric tumour-infiltrating γδT cells (γδTIL) we recently analyzed. To study the essential roles of γ and δ chains in assembly and function of TCRγ4δ1, we sequenced and constructed them into lentiviral vectors for the reconstitution of TCRγ4δ1 using different modalities of transduction. We were able to efficiently reconstitute TCRγ4δ1 with functional activities when both γ4 and δ1 chains are coexpressed in TCR-negative J.RT3-T3.5 cells. However, the expression of δ1 chain is greatly diminished when γ4 expression is absent, suggesting that the coexpressing γ4 is critical in maintaining the folding and stability of δ1 product. To functionally study the reconstituted TCRγ4δ1, we examined the cytolytic activity of TCRγ4δ1-reconstituted J.RT3-T3.5 cells and cytokine secretion and found the receptors are fully functional, but their functionality also requires the presence of γ4. Our results demonstrated that γ4 is critical for the stability of δ1 and the function of TCRγ4δ1. © 2011 The Authors. Scandinavian Journal of Immunology © 2011 Blackwell Publishing Ltd.

  10. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

    Directory of Open Access Journals (Sweden)

    Hui Xu

    2010-11-01

    Full Text Available MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.

  11. MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.

    Science.gov (United States)

    Xu, Hui; Yan, Yaping; Williams, Mark S; Carey, Gregory B; Yang, Jingxian; Li, Hongmei; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2010-11-01

    MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK) and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.

  12. Prostate cancer cell lines under hypoxia exhibit greater stem-like properties.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Ma

    Full Text Available Hypoxia is an important environmental change in many cancers. Hypoxic niches can be occupied by cancer stem/progenitor-like cells that are associated with tumor progression and resistance to radiotherapy and chemotherapy. However, it has not yet been fully elucidated how hypoxia influences the stem-like properties of prostate cancer cells. In this report, we investigated the effects of hypoxia on human prostate cancer cell lines, PC-3 and DU145. In comparison to normoxia (20% O(2, 7% O(2 induced higher expressions of HIF-1α and HIF-2α, which were associated with upregulation of Oct3/4 and Nanog; 1% O(2 induced even greater levels of these factors. The upregulated NANOG mRNA expression in hypoxia was confirmed to be predominantly retrogene NANOGP8. Similar growth rates were observed for cells cultivated under hypoxic and normoxic conditions for 48 hours; however, the colony formation assay revealed that 48 hours of hypoxic pretreatment resulted in the formation of more colonies. Treatment with 1% O(2 also extended the G(0/G(1 stage, resulting in more side population cells, and induced CD44 and ABCG2 expressions. Hypoxia also increased the number of cells positive for ABCG2 expression, which were predominantly found to be CD44(bright cells. Correspondingly, the sorted CD44(bright cells expressed higher levels of ABCG2, Oct3/4, and Nanog than CD44(dim cells, and hypoxic pretreatment significantly increased the expressions of these factors. CD44(bright cells under normoxia formed significantly more colonies and spheres compared with the CD44(dim cells, and hypoxic pretreatment even increased this effect. Our data indicate that prostate cancer cells under hypoxia possess greater stem-like properties.

  13. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    International Nuclear Information System (INIS)

    Varga, Nóra; Veréb, Zoltán; Rajnavölgyi, Éva; Német, Katalin; Uher, Ferenc; Sarkadi, Balázs; Apáti, Ágota

    2011-01-01

    Highlights: ► MSC like cells were derived from hESC by a simple and reproducible method. ► Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. ► MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  14. Genome-wide expression profiling analysis to identify key genes in the anti-HIV mechanism of CD4+ and CD8+ T cells.

    Science.gov (United States)

    Gao, Lijie; Wang, Yunqi; Li, Yi; Dong, Ya; Yang, Aimin; Zhang, Jie; Li, Fengying; Zhang, Rongqiang

    2018-07-01

    Comprehensive bioinformatics analyses were performed to explore the key biomarkers in response to HIV infection of CD4 + and CD8 + T cells. The numbers of CD4 + and CD8 + T cells of HIV infected individuals were analyzed and the GEO database (GSE6740) was screened for differentially expressed genes (DEGs) in HIV infected CD4 + and CD8 + T cells. Gene Ontology enrichment, KEGG pathway analyses, and protein-protein interaction (PPI) network were performed to identify the key pathway and core proteins in anti-HIV virus process of CD4 + and CD8 + T cells. Finally, we analyzed the expressions of key proteins in HIV-infected T cells (GSE6740 dataset) and peripheral blood mononuclear cells(PBMCs) (GSE511 dataset). 1) CD4 + T cells counts and ratio of CD4 + /CD8 + T cells decreased while CD8 + T cells counts increased in HIV positive individuals; 2) 517 DEGs were found in HIV infected CD4 + and CD8 + T cells at acute and chronic stage with the criterial of P-value T cells. The main biological processes of the DEGs were response to virus and defense response to virus. At chronic stage, ISG15 protein, in conjunction with IFN-1 pathway might play key roles in anti-HIV responses of CD4 + T cells; and 4) The expression of ISG15 increased in both T cells and PBMCs after HIV infection. Gene expression profile of CD4 + and CD8 + T cells changed significantly in HIV infection, in which ISG15 gene may play a central role in activating the natural antiviral process of immune cells. © 2018 Wiley Periodicals, Inc.

  15. Prevalence and Distribution of Segmentation Errors in Macular Ganglion Cell Analysis of Healthy Eyes Using Cirrus HD-OCT.

    Directory of Open Access Journals (Sweden)

    Rayan A Alshareef

    Full Text Available To determine the frequency of different types of spectral domain optical coherence tomography (SD-OCT scan artifacts and errors in ganglion cell algorithm (GCA in healthy eyes.Infrared image, color-coded map and each of the 128 horizontal b-scans acquired in the macular ganglion cell-inner plexiform layer scans using the Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA macular cube 512 × 128 protocol in 30 healthy normal eyes were evaluated. The frequency and pattern of each artifact was determined. Deviation of the segmentation line was classified into mild (less than 10 microns, moderate (10-50 microns and severe (more than 50 microns. Each deviation, if present, was noted as upward or downward deviation. Each artifact was further described as per location on the scan and zones in the total scan area.A total of 1029 (26.8% out of total 3840 scans had scan errors. The most common scan error was segmentation error (100%, followed by degraded images (6.70%, blink artifacts (0.09% and out of register artifacts (3.3%. Misidentification of the inner retinal layers was most frequent (62%. Upward Deviation of the segmentation line (47.91% and severe deviation (40.3% were more often noted. Artifacts were mostly located in the central scan area (16.8%. The average number of scans with artifacts per eye was 34.3% and was not related to signal strength on Spearman correlation (p = 0.36.This study reveals that image artifacts and scan errors in SD-OCT GCA analysis are common and frequently involve segmentation errors. These errors may affect inner retinal thickness measurements in a clinically significant manner. Careful review of scans for artifacts is important when using this feature of SD-OCT device.

  16. A Method to Identify and Isolate Pluripotent Human Stem Cells and Mouse Epiblast Stem Cells Using Lipid Body-Associated Retinyl Ester Fluorescence

    OpenAIRE

    Thangaselvam Muthusamy; Odity Mukherjee; Radhika Menon; Megha Prakash Bangalore; Mitradas M. Panicker

    2014-01-01

    Summary We describe the use of a characteristic blue fluorescence to identify and isolate pluripotent human embryonic stem cells and human-induced pluripotent stem cells. The blue fluorescence emission (450–500 nm) is readily observed by fluorescence microscopy and correlates with the expression of pluripotency markers (OCT4, SOX2, and NANOG). It allows easy identification and isolation of undifferentiated human pluripotent stem cells, high-throughput fluorescence sorting and subsequent propa...

  17. Generation and periodontal differentiation of human gingival fibroblasts-derived integration-free induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiaohui [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China); Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Li, Yang [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Li, Jingwen [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China); Li, Peng [Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR (China); Liu, Yinan [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Wen, Jinhua, E-mail: jhwen@bjmu.edu.cn [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Luan, Qingxian, E-mail: kqluanqx@126.com [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China)

    2016-05-06

    Induced pluripotent stem cells (iPSCs) have been recognized as a promising cell source for periodontal tissue regeneration. However, the conventional virus-based reprogramming approach is associated with a high risk of genetic mutation and limits their therapeutic utility. Here, we successfully generated iPSCs from readily accessible human gingival fibroblasts (hGFs) through an integration-free and feeder-free approach via delivery of reprogramming factors of Oct4, Sox2, Klf4, L-myc, Lin28 and TP53 shRNA with episomal plasmid vectors. The iPSCs presented similar morphology and proliferation characteristics as embryonic stem cells (ESCs), and expressed pluripotent markers including Oct4, Tra181, Nanog and SSEA-4. Additionally, these cells maintained a normal karyotype and showed decreased CpG methylation ratio in the promoter regions of Oct4 and Nanog. In vivo teratoma formation assay revealed the development of tissues representative of three germ layers, confirming the acquisition of pluripotency. Furthermore, treatment of the iPSCs in vitro with enamel matrix derivative (EMD) or growth/differentiation factor-5 (GDF-5) significantly up-regulated the expression of periodontal tissue markers associated with bone, periodontal ligament and cementum respectively. Taken together, our data demonstrate that hGFs are a valuable cell source for generating integration-free iPSCs, which could be sequentially induced toward periodontal cells under the treatment of EMD and GDF-5. - Highlights: • Integration-free iPSCs are successfully generated from hGFs via an episomal approach. • EMD promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • GDF-5 promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • hGFs-derived iPSCs could be a promising cell source for periodontal regeneration.

  18. Generation and periodontal differentiation of human gingival fibroblasts-derived integration-free induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Yin, Xiaohui; Li, Yang; Li, Jingwen; Li, Peng; Liu, Yinan; Wen, Jinhua; Luan, Qingxian

    2016-01-01

    Induced pluripotent stem cells (iPSCs) have been recognized as a promising cell source for periodontal tissue regeneration. However, the conventional virus-based reprogramming approach is associated with a high risk of genetic mutation and limits their therapeutic utility. Here, we successfully generated iPSCs from readily accessible human gingival fibroblasts (hGFs) through an integration-free and feeder-free approach via delivery of reprogramming factors of Oct4, Sox2, Klf4, L-myc, Lin28 and TP53 shRNA with episomal plasmid vectors. The iPSCs presented similar morphology and proliferation characteristics as embryonic stem cells (ESCs), and expressed pluripotent markers including Oct4, Tra181, Nanog and SSEA-4. Additionally, these cells maintained a normal karyotype and showed decreased CpG methylation ratio in the promoter regions of Oct4 and Nanog. In vivo teratoma formation assay revealed the development of tissues representative of three germ layers, confirming the acquisition of pluripotency. Furthermore, treatment of the iPSCs in vitro with enamel matrix derivative (EMD) or growth/differentiation factor-5 (GDF-5) significantly up-regulated the expression of periodontal tissue markers associated with bone, periodontal ligament and cementum respectively. Taken together, our data demonstrate that hGFs are a valuable cell source for generating integration-free iPSCs, which could be sequentially induced toward periodontal cells under the treatment of EMD and GDF-5. - Highlights: • Integration-free iPSCs are successfully generated from hGFs via an episomal approach. • EMD promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • GDF-5 promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • hGFs-derived iPSCs could be a promising cell source for periodontal regeneration.

  19. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice.

    Directory of Open Access Journals (Sweden)

    Budd A Tucker

    2011-04-01

    Full Text Available This study was designed to determine whether adult mouse induced pluripotent stem cells (iPSCs, could be used to produce retinal precursors and subsequently photoreceptor cells for retinal transplantation to restore retinal function in degenerative hosts. iPSCs were generated using adult dsRed mouse dermal fibroblasts via retroviral induction of the transcription factors Oct4, Sox2, KLF4 and c-Myc. As with normal mouse ES cells, adult dsRed iPSCs expressed the pluripotency genes SSEA1, Oct4, Sox2, KLF4, c-Myc and Nanog. Following transplantation into the eye of immune-compromised retinal degenerative mice these cells proceeded to form teratomas containing tissue comprising all three germ layers. At 33 days post-differentiation a large proportion of the cells expressed the retinal progenitor cell marker Pax6 and went on to express the photoreceptor markers, CRX, recoverin, and rhodopsin. When tested using calcium imaging these cells were shown to exhibit characteristics of normal retinal physiology, responding to delivery of neurotransmitters. Following subretinal transplantation into degenerative hosts differentiated iPSCs took up residence in the retinal outer nuclear layer and gave rise to increased electro retinal function as determined by ERG and functional anatomy. As such, adult fibroblast-derived iPSCs provide a viable source for the production of retinal precursors to be used for transplantation and treatment of retinal degenerative disease.

  20. Redistribution of cell cycle by arsenic trioxide is associated with demethylation and expression changes of cell cycle related genes in acute promyelocytic leukemia cell line (NB4).

    Science.gov (United States)

    Hassani, Saeed; Khaleghian, Ali; Ahmadian, Shahin; Alizadeh, Shaban; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir; Ghaffari, Seyed H

    2018-01-01

    PML-RARα perturbs the normal epigenetic setting, which is essential to oncogenic transformation in acute promyelocytic leukemia (APL). Transcription induction and recruitment of DNA methyltransferases (DNMTs) by PML-RARα and subsequent hypermethylation are components of this perturbation. Arsenic trioxide (ATO), an important drug in APL therapy, concurrent with degradation of PML-RARα induces cell cycle change and apoptosis. How ATO causes cell cycle alteration has remained largely unexplained. Here, we investigated DNA methylation patterns of cell cycle regulatory genes promoters, the effects of ATO on the methylated genes and cell cycle distribution in an APL cell line, NB4. Analysis of promoter methylation status of 22 cell cycle related genes in NB4 revealed that CCND1, CCNE1, CCNF, CDKN1A, GADD45α, and RBL1 genes were methylated 60.7, 84.6, 58.6, 8.7, 33.4, and 73.7%, respectively, that after treatment with 2 μM ATO for 48 h, turn into 0.6, 13.8, 0.1, 6.6, 10.7, and 54.5% methylated. ATO significantly reduced the expression of DNMT1, 3A, and 3B. ATO induced the expression of CCND1, CCNE1, and GADD45α genes, suppressed the expression of CCNF and CDKN1A genes, which were consistent with decreased number of cells in G1 and S phases and increased number of cells in G2/M phase. In conclusion, demethylation and alteration in the expression level of the cell cycle related genes may be possible mechanisms in ATO-induced cell cycle arrest in APL cells. It may suggest that ATO by demethylation of CCND1 and CCNE1 and their transcriptional activation accelerates G1 and S transition into the G2/M cell cycle arrest.

  1. Expression of chemokine CXCL12 and its receptor CXCR4 in folliculostellate (FS) cells of the rat anterior pituitary gland: the CXCL12/CXCR4 axis induces interconnection of FS cells.

    Science.gov (United States)

    Horiguchi, Kotaro; Ilmiawati, Cimi; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi

    2012-04-01

    The anterior pituitary gland is composed of five types of hormone-producing cells plus folliculostellate (FS) cells, which do not produce classical anterior pituitary hormones. FS cells are interconnected by cytoplasmic processes and encircle hormone-producing cells or aggregate homophilically. Using living-cell imaging of primary culture, we recently reported that some FS cells precisely extend their cytoplasmic processes toward other FS cells and form interconnections with them. These phenomena suggest the presence of a chemoattractant factor that facilitates the interconnection. In this study, we attempted to discover the factor that induces interconnection of FS cells and succeeded in identifying chemokine (CXC)-L12 and its receptor CXCR4 as potential candidate molecules. CXCL12 is a chemokine of the CXC subfamily. It exerts its effects via CXCR4, a G protein-coupled receptor. The CXCL12/CXCR4 axis is a potent chemoattractant for many types of neural cells. First, we revealed that CXCL12 and CXCR4 are expressed by FS cells in rat anterior pituitary gland. Next, to clarify the function of the CXCL12/CXCR4 axis in FS cells, we observed living anterior pituitary cells in primary culture with specific CXCL12 inhibitor or CXCR4 antagonist and noted that extension of cytoplasmic processes and interconnection of FS cells were inhibited. Finally, we examined FS cell migration and invasion by using Matrigel matrix assays. CXCL12 treatment resulted in markedly increased FS cell migration and invasion. These data suggest that FS cells express chemokine CXCL12 and its receptor CXCR4 and that the CXCL12/CXCR4 axis evokes interconnection of FS cells.

  2. Knockdown of CDK2AP1 in human embryonic stem cells reduces the threshold of differentiation.

    Directory of Open Access Journals (Sweden)

    Khaled N Alsayegh

    Full Text Available Recent studies have suggested a role for the Cyclin Dependent Kinase-2 Associated Protein 1 (CDK2AP1 in stem cell differentiation and self-renewal. In studies with mouse embryonic stem cells (mESCs derived from generated mice embryos with targeted deletion of the Cdk2ap1 gene, CDK2AP1 was shown to be required for epigenetic silencing of Oct4 during differentiation, with deletion resulting in persistent self-renewal and reduced differentiation potential. Differentiation capacity was restored in these cells following the introduction of a non-phosphorylatible form of the retinoblastoma protein (pRb or exogenous Cdk2ap1. In this study, we investigated the role of CDK2AP1 in human embryonic stem cells (hESCs. Using a shRNA to reduce its expression in hESCs, we found that CDK2AP1 knockdown resulted in a significant reduction in the expression of the pluripotency genes, OCT4 and NANOG. We also found that CDK2AP1 knockdown increased the number of embryoid bodies (EBs formed when differentiation was induced. In addition, the generated EBs had significantly higher expression of markers of all three germ layers, indicating that CDK2AP1 knockdown enhanced differentiation. CDK2AP1 knockdown also resulted in reduced proliferation and reduced the percentage of cells in the S phase and increased cells in the G2/M phase of the cell cycle. Further investigation revealed that a higher level of p53 protein was present in the CDK2AP1 knockdown hESCs. In hESCs in which p53 and CDK2AP1 were simultaneously downregulated, OCT4 and NANOG expression was not affected and percentage of cells in the S phase of the cell cycle was not reduced. Taken together, our results indicate that the knockdown of CDK2AP1 in hESCs results in increased p53 and enhances differentiation and favors it over a self-renewal fate.

  3. Jagged-1 Signaling Pathway in Prostate Cancer Cell Growth and Angiogenesis

    Science.gov (United States)

    2010-04-01

    Akt in PCa cells. As expect ed, over-expression of pAkt by Akt cDNA plasm id increased FoxM1 expression in PC-3 cells (Fi g. 10B). However, down...Notch-1 and Notch- 4 receptors as prognostic markers in breast cancer, Int. J. Surg. Pathol. (2010) (May 5, Electronic publication ahead of print). [19...2009) (Oct 9, Electronic publication ahead of print). [103] V.E. Chiuri, N. Silvestris, V. Lorusso, A. Tinelli, Efficacy and safety of the combina

  4. 17β-estradiol-induced ACSL4 protein expression promotes an invasive phenotype in estrogen receptor positive mammary carcinoma cells.

    Science.gov (United States)

    Belkaid, Anissa; Ouellette, Rodney J; Surette, Marc E

    2017-04-01

    Long chain acyl-CoA synthase-4 (ACSL4) expression has been associated with an aggressive phenotype in breast carcinoma cells, whereas its role in ERα-positive breast cancer has not been studied. ACSL4 prefers 20-carbon polyunsaturated fatty acid (PUFA) substrates, and along with other ACSLs has been associated with cellular uptake of exogenous fatty acids. 17β-estradiol induces proliferation and invasive capacities in ERα+ve breast carcinoma that is associated with modifications of cellular lipid metabolism. In this study, treatment of steroid-starved ERα-positive MCF-7 and T47D mammary carcinoma cells with 17β-estradiol resulted in increased cellular uptake of the PUFA arachidonic acid (AA) and eicosapentaenoic acid (EPA), important building blocks for cellular membranes, and increased ACSL4 protein levels. There was no change in the expression of the ACSL1, ACSL3 and ACSL6 protein isotypes. Increased ACSL4 protein expression was not accompanied by changes in ACSL4 mRNA expression, but was associated with a significant increase in the protein half-life compared to untreated cells. ERα silencing reversed the impact of 17β-estradiol on ACSL4 protein levels and half-life. Silencing of ACSL4 eliminated the 17β-estradiol-induced increase in AA and EPA uptake, as well as the 17β-estradiol-induced cell migration, proliferation and invasion capacities. ASCL4 silencing also prevented the 17β-estradiol induced increases in p-Akt and p-GSK3β, and decrease in E-cadherin expression, important events in epithelial to mesenchymal transition. Taken together, these results demonstrate that ACSL4 is a target of 17β-estradiol-stimulated ERα and is required for the cellular uptake of exogenous PUFA and the manifestation of a more malignant phenotype in ERα+ve breast carcinoma cells. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Colorectal cancer cells suppress CD4+ T cells immunity through canonical Wnt signaling.

    Science.gov (United States)

    Sun, Xuan; Liu, Suoning; Wang, Daguang; Zhang, Yang; Li, Wei; Guo, Yuchen; Zhang, Hua; Suo, Jian

    2017-02-28

    Understanding how colorectal cancer escapes from immunosurveillance and immune attack is important for developing novel immunotherapies for colorectal cancer. In this study we evaluated the role of canonical Wnt signaling in the regulation of T cell function in a mouse colorectal cancer model. We found that colorectal cancer cells expressed abundant Wnt ligands, and intratumoral T cells expressed various Frizzled proteins. Meanwhile, both active β-catenin and total β-catenin were elevated in intratumoral T cells. In vitro study indicated that colorectal cancer cells suppressed IFN-γ expression and increased IL-17a expression in activated CD4+ T cells. However, the cytotoxic activity of CD8+ T cells was not altered by colorectal cancer cells. To further evaluate the importance of Wnt signaling for CD4+ T cell-mediated cancer immunity, β-catenin expression was enforced in CD4+ T cells using lentiviral transduction. In an adoptive transfer model, enforced expression of β-catenin in intratumoral CD4+ T cells increased IL-17a expression, enhanced proliferation and inhibited apoptosis of colorectal cancer cells. Taken together, our study disclosed a new mechanism by which colorectal cancer impairs T cell immunity.

  6. Stress Altered Stem Cells with Decellularized Allograft to Improve Rate of Nerve Regeneration

    Science.gov (United States)

    2015-12-01

    Analysis of the treated cells exhibited no evidence of expression of the generally accepted embryonic stem cell markers Oct4, nanog or sox-2 via either...detect the presence of any tissue containing cells representative of the three germ layers (endoderm, mesoderm, or ectoderm). Rationale for...gone awry. In a controlled environment, pluripotent cells should indeed be able to generate any of the three germ layers , but in a directed fashion

  7. Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells

    International Nuclear Information System (INIS)

    Yang, Ji Hoon; Lee, Sung Ho; Heo, Young Tae; Uhm, Sang Jun; Lee, Hoon Taek

    2010-01-01

    A major problem in the treatment of type 1 diabetes mellitus is the limited availability of alternative sources of insulin-producing cells for islet transplantation. In this study, we investigated the effect of bone morphogenetic protein 4 (BMP-4) treatments of gnotobiotic porcine skin-derived stem cells (gSDSCs) on their reprogramming and subsequent differentiation into insulin-producing cells (IPCs). We isolated SDSCs from the ear skin of a gnotobiotic pig. During the proliferation period, the cells expressed stem-cell markers Oct-4, Sox-2, and CD90; nestin expression also increased significantly. The cells could differentiate into IPCs after treatments with activin-A, glucagon-like peptide-1 (GLP-1), and nicotinamide. After 15 days in the differentiation medium, controlled gSDSCs began expressing endocrine progenitor genes and proteins (Ngn3, Neuro-D, PDX-1, NKX2.2, NKX6.1, and insulin). The IPCs showed increased insulin synthesis after glucose stimulation. The results indicate that stem cells derived from the skin of gnotobiotic pigs can differentiate into IPCs under the appropriate conditions in vitro. Our three-stage induction protocol could be applied without genetic modification to source IPCs from stem cells in the skin of patients with diabetes for autologous transplantation.

  8. Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji Hoon; Lee, Sung Ho; Heo, Young Tae [Department of Bioscience and Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of); Uhm, Sang Jun [Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of); Lee, Hoon Taek, E-mail: htl3675@konkuk.ac.kr [Department of Animal Biotechnology, Bio-Organ Research Center, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2010-07-09

    A major problem in the treatment of type 1 diabetes mellitus is the limited availability of alternative sources of insulin-producing cells for islet transplantation. In this study, we investigated the effect of bone morphogenetic protein 4 (BMP-4) treatments of gnotobiotic porcine skin-derived stem cells (gSDSCs) on their reprogramming and subsequent differentiation into insulin-producing cells (IPCs). We isolated SDSCs from the ear skin of a gnotobiotic pig. During the proliferation period, the cells expressed stem-cell markers Oct-4, Sox-2, and CD90; nestin expression also increased significantly. The cells could differentiate into IPCs after treatments with activin-A, glucagon-like peptide-1 (GLP-1), and nicotinamide. After 15 days in the differentiation medium, controlled gSDSCs began expressing endocrine progenitor genes and proteins (Ngn3, Neuro-D, PDX-1, NKX2.2, NKX6.1, and insulin). The IPCs showed increased insulin synthesis after glucose stimulation. The results indicate that stem cells derived from the skin of gnotobiotic pigs can differentiate into IPCs under the appropriate conditions in vitro. Our three-stage induction protocol could be applied without genetic modification to source IPCs from stem cells in the skin of patients with diabetes for autologous transplantation.

  9. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide).

    Science.gov (United States)

    Wan, Yuqing; Wang, Yong; Liu, Zhimin; Qu, Xue; Han, Buxing; Bei, Jianzhong; Wang, Shenguo

    2005-07-01

    The impact of the surface topography of polylactone-type polymer on cell adhesion was to be concerned because the micro-scale texture of a surface can provide a significant effect on the adhesion behavior of cells on the surface. Especially for the application of tissue engineering scaffold, the pore size could have an influence on cell in-growth and subsequent proliferation. Micro-fabrication technology was used to generate specific topography to investigate the relationship between the cells and surface. In this study the pits-patterned surfaces of polystyrene (PS) film with diameters 2.2 and 0.45 microm were prepared by phase-separation, and the corresponding scale islands-patterned PLLA surface was prepared by a molding technique using the pits-patterned PS as a template. The adhesion and proliferation behavior of OCT-1 osteoblast-like cells morphology on the pits- and islands-patterned surface were characterized by SEM observation, cell attachment efficiency measurement and MTT assay. The results showed that the cell adhesion could be enhanced on PLLA and PS surface with nano-scale and micro-scale roughness compared to the smooth surfaces of the PLLA and PS. The OCT-1 osteoblast-like cells could grow along the surface with two different size islands of PLLA and grow inside the micro-scale pits of the PS. However, the proliferation of cells on the micro- and nano-scale patterned surface has not been enhanced compared with the controlled smooth surface.

  10. Perfluorooctane sulfonate disturbs Nanog expression through miR-490-3p in mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Bo Xu

    Full Text Available Perfluorooctane sulfonate (PFOS poses potential risks to reproduction and development. Mouse embryonic stem cells (mESCs are ideal models for developmental toxicity testing of environmental contaminants in vitro. However, the mechanism by which PFOS affects early embryonic development is still unclear. In this study, mESCs were exposed to PFOS for 24 h, and then general cytotoxicity and pluripotency were evaluated. MTT assay showed that neither PFOS (0.2 µM, 2 µM, 20 µM, and 200 µM nor control medium (0.1% DMSO treatments affected cell viability. Furthermore, there were no significant differences in cell cycle and apoptosis between the PFOS treatment and control groups. However, we found that the mRNA and protein levels of pluripotency markers (Sox2, Nanog in mESCs were significantly decreased following exposure to PFOS for 24 h, while there were no significant changes in the mRNA and protein levels of Oct4. Accordingly, the expression levels of miR-145 and miR-490-3p, which can regulate Sox2 and Nanog expressions were significantly increased. Chrm2, the host gene of miR-490-3p, was positively associated with miR-490-3p expression after PFOS exposure. Dual luciferase reporter assay suggests that miR-490-3p directly targets Nanog. These results suggest that PFOS can disturb the expression of pluripotency factors in mESCs, while miR-145 and miR-490-3p play key roles in modulating this effect.

  11. Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Tahmasebi Mirgani M

    2014-01-01

    Full Text Available Maryam Tahmasebi Mirgani,1 Benedetta Isacchi,2 Majid Sadeghizadeh,1,* Fabio Marra,3 Anna Rita Bilia,2,* Seyed Javad Mowla,1 Farhood Najafi,4 Esmael Babaei51Department of Genetics, Tarbiat Modares University, Tehran, Iran; 2Department of Chemistry, University of Florence, Sesto Fiorentino, Italy; 3Department of Experimental and Clinical Medicine, University of Florence, Italy; 4Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran; 5Department of Biology, University of Tabriz, Tabriz, Iran*These authors contributed equally to this workAbstract: Glioblastoma is an invasive tumor of the central nervous system. Tumor recurrence resulting from ineffective current treatments, mainly due to the blood–brain barrier, highlights the need for innovative therapeutic alternatives. The recent availability of nanotechnology represents a novel targeted strategy in cancer therapy. Natural products have received considerable attention for cancer therapy because of general lower side effects. Curcumin is a new candidate for anticancer treatment, but its low bioavailability and water solubility represent the main disadvantages of its use. Here, curcumin was efficiently encapsulated in a nontoxic nanocarrier, termed dendrosome, to overcome these problems. Dendrosomal curcumin was prepared as 142 nm spherical structures with constant physical and chemical stability. The inhibitory role of dendrosomal curcumin on the proliferation of U87MG cells, a cellular model of glioblastoma, was evaluated by considering master genes of pluripotency and regulatory miRNA (microribonucleic acid. Methylthiazol tetrazolium assay and flow cytometry were used to detect the antiproliferative effects of dendrosomal curcumin. Annexin-V-FLUOS and caspase assay were used to quantify apoptosis. Real-time polymerase chain reaction was used to analyze the expression of OCT4 (octamer binding protein 4 gene variants (OCT4A, OCT4B, and OCT4B1, SOX-2 (SRY

  12. How Do CD4+ T Cells Detect and Eliminate Tumor Cells That Either Lack or Express MHC Class II Molecules?

    Science.gov (United States)

    Haabeth, Ole Audun Werner; Tveita, Anders Aune; Fauskanger, Marte; Schjesvold, Fredrik; Lorvik, Kristina Berg; Hofgaard, Peter O.; Omholt, Hilde; Munthe, Ludvig A.; Dembic, Zlatko; Corthay, Alexandre; Bogen, Bjarne

    2014-01-01

    CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR) transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor-specific antigen by host antigen-presenting cells (APCs) appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315), where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR-transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-γ stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed. PMID:24782871

  13. How do CD4+ T cells detect and eliminate tumor cells that either lack or express MHC class II molecules?

    Directory of Open Access Journals (Sweden)

    Ole Audun Werner Haabeth

    2014-04-01

    Full Text Available CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor specific antigen by host antigen presenting cells (APCs appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315, where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-g stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed.

  14. 2B4 expression on natural killer cells increases in HIV-1 infected patients followed prospectively during highly active antiretroviral therapy

    DEFF Research Database (Denmark)

    Ostrowski, S R; Ullum, H; Pedersen, Bente Klarlund

    2005-01-01

    Human immunodeficiency virus (HIV)-1 infection influences natural killer (NK) cell expression of inhibitory NK receptors and activating natural cytotoxicity receptors. It is unknown whether expression of the co-stimulatory NK cell receptor 2B4 (CD244) on NK cells and CD3+ CD8+ cells are affected ...

  15. Toll-like receptor 3 signalling up-regulates expression of the HIV co-receptor G-protein coupled receptor 15 on human CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Miriam Kiene

    Full Text Available BACKGROUND: Many HIV-2 and SIV isolates, as well as some HIV-1 strains, can use the orphan 7-transmembrane receptor GPR15 as co-receptor for efficient entry into host cells. GPR15 is expressed on central memory and effector memory CD4(+ T cells in healthy individuals and a subset of these cells is susceptible to HIV-1 and SIV infection. However, it has not been determined whether GPR15 expression is altered in the context of HIV-1 infection. RESULTS: Here, we show that GPR15 expression in CD4(+ T cells is markedly up-regulated in some HIV-1 infected individuals compared to the rest of the infected patients and to healthy controls. Infection of the PM1 T cell line with primary HIV-1 isolates was found to up-regulate GPR15 expression on the infected cells, indicating that viral components can induce GPR15 expression. Up-regulation of GPR15 expression on CD4(+ T cells was induced by activation of Toll-like receptor 3 signalling via TIR-domain-containing adapter-inducing interferon-β (TRIF and was more prominent on gut-homing compared to lymph node-homing CD4(+ T cells. CONCLUSION: These results suggest that infection-induced up-regulation of GPR15 expression could increase susceptibility of CD4(+ T cells to HIV infection and target cell availability in the gut in some infected individuals.

  16. Ectopic expression of anti-HIV-1 shRNAs protects CD8+ T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation

    International Nuclear Information System (INIS)

    Kamata, Masakazu; Kim, Patrick Y.; Ng, Hwee L.; Ringpis, Gene-Errol E.; Kranz, Emiko; Chan, Joshua; O'Connor, Sean; Yang, Otto O.; Chen, Irvin S.Y.

    2015-01-01

    Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8 + T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8 + T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8 + T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24 Gag in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8 + T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8 + T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8 + T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance. - Highlights: • Ectopic expression of CD4ζ CAR in CD8 + T cells renders them susceptible to HIV-1 infection. • Co-expression of two anti-HIV-1 shRNAs protects CD4ζ CAR-modified CD8 + T cells from HIV-1 infection. • Protecting CD4ζ CAR-modified CD8 + T cells from HIV-1 infection suppresses its cytopathic effect

  17. MS4A1 dysregulation in asbestos-related lung squamous cell carcinoma is due to CD20 stromal lymphocyte expression.

    Directory of Open Access Journals (Sweden)

    Casey M Wright

    Full Text Available Asbestos-related lung cancer accounts for 4-12% of lung cancers worldwide. We have previously identified ADAM28 as a putative oncogene involved in asbestos-related lung adenocarcinoma (ARLC-AC. We hypothesised that similarly gene expression profiling of asbestos-related lung squamous cell carcinomas (ARLC-SCC may identify candidate oncogenes for ARLC-SCC. We undertook a microarray gene expression study in 56 subjects; 26 ARLC-SCC (defined as lung asbestos body (AB counts >20AB/gram wet weight (gww and 30 non-asbestos related lung squamous cell carcinoma (NARLC-SCC; no detectable lung asbestos bodies; 0AB/gww. Microarray and bioinformatics analysis identified six candidate genes differentially expressed between ARLC-SCC and NARLC-SCC based on statistical significance (p2-fold. Two genes MS4A1 and CARD18, were technically replicated by qRT-PCR and showed consistent directional changes. As we also found MS4A1 to be overexpressed in ARLC-ACs, we selected this gene for biological validation in independent test sets (one internal, and one external dataset (2 primary tumor sets. MS4A1 RNA expression dysregulation was validated in the external dataset but not in our internal dataset, likely due to the small sample size in the test set as immunohistochemical (IHC staining for MS4A1 (CD20 showed that protein expression localized predominantly to stromal lymphocytes rather than tumor cells in ARLC-SCC. We conclude that differential expression of MS4A1 in this comparative gene expression study of ARLC-SCC versus NARLC-SCC is a stromal signal of uncertain significance, and an example of the rationale for tumor cell enrichment in preparation for gene expression studies where the aim is to identify markers of particular tumor phenotypes. Finally, our study failed to identify any strong gene candidates whose expression serves as a marker of asbestos etiology. Future research is required to determine the role of stromal lymphocyte MS4A1 dysregulation in

  18. Gut memories do not fade: epigenetic regulation of lasting gut homing receptor expression in CD4+ memory T cells.

    Science.gov (United States)

    Szilagyi, B A; Triebus, J; Kressler, C; de Almeida, M; Tierling, S; Durek, P; Mardahl, M; Szilagyi, A; Floess, S; Huehn, J; Syrbe, U; Walter, J; Polansky, J K; Hamann, A

    2017-11-01

    The concept of a "topographical memory" in lymphocytes implies a stable expression of homing receptors mediating trafficking of lymphocytes back to the tissue of initial activation. However, a significant plasticity of the gut-homing receptor α 4 β 7 was found in CD8 + T cells, questioning the concept. We now demonstrate that α 4 β 7 expression in murine CD4 + memory T cells is, in contrast, imprinted and remains stable in the absence of the inducing factor retinoic acid (RA) or other stimuli from mucosal environments. Repetitive rounds of RA treatment enhanced the stability of de novo induced α 4 β 7 . A novel enhancer element in the murine Itga4 locus was identified that showed, correlating to stability, selective DNA demethylation in mucosa-seeking memory cells and methylation-dependent transcriptional activity in a reporter gene assay. This implies that epigenetic mechanisms contribute to the stabilization of α 4 β 7 expression. Analogous DNA methylation patterns could be observed in the human ITGA4 locus, suggesting that its epigenetic regulation is conserved between mice and men. These data prove that mucosa-specific homing mediated by α 4 β 7 is imprinted in CD4 + memory T cells, reinstating the validity of the concept of "topographical memory" for mucosal tissues, and imply a critical role of epigenetic mechanisms.

  19. Expression of human beta-defensins-1-4 in thyroid cancer cells and new insight on biologic activity of hBD-2 in vitro.

    Science.gov (United States)

    Zhuravel, O V; Gerashchenko, O L; Khetsuriani, M R; Soldatkina, M A; Pogrebnoy, P V

    2014-09-01

    The study was aimed on analysis of human beta-defensin-1-4 (hBDs) mRNA expression in cultured thyroid cancer cells and evaluation of effects of recombinant hBD-2 (rec-hBD-2) on growth patterns, migration properties and expression of E-cadherin and vimentin in these cells. The study was performed on cultured follicular thyroid cancer WRO cells, papillary thyroid cancer TPC1 cells, and anaplastic thyroid cancer KTC-2 cells. For analysis of hBD-1-4 mRNA expression in thyroid cancer cells, semiquantitative RT-PCR was used. Effects of rec-hBD-2 on cell proliferation, viability, and migration were analyzed using direct cell counting, MTT test, and scratch assay respectively. Expression of vimentin and E-cadherin was evaluated by quantitative PCR (qPCR). By the data of RT-PCR, all three studied thyroid cancer cell lines express hBD-1 and -4 mRNA, but not hBD-2 mRNA, while hBD-3 expression was detected in WRO and KTC-2 cells. The treatment of TPC-1, WRO, and KTC-2 cells with 100-1000 nM rec-hBD-2 resulted in significant concentration-dependent suppression of cell proliferation, viability, and migratory property. By the data of qPCR, significant up-regulation of vimentin expression was registered in KTC-2 and WRO cells treated with 500 nM rec-hBD-2. Significant down-regulation of E-cadherin expression (p cells treated with the defensin. Also, it has been shown that TPC-1 cells treated with 500 nM rec-hBD-2 acquired more elongated morphology. The data demonstrate that hBD-2 in concentrations higher than 100 nM exerts significant concentration-dependent suppression of thyroid cancer cell growth and migration, and affects vimentin and E-cadherin expression dependent on histologic type of thyroid cancer cells.

  20. Possible association between stem-like hallmark and radioresistance in human cervical carcinoma cells.

    Science.gov (United States)

    Kumazawa, Shoko; Kajiyama, Hiroaki; Umezu, Tomokazu; Mizuno, Mika; Suzuki, Shiro; Yamamoto, Eiko; Mitsui, Hiroko; Sekiya, Ryuichiro; Shibata, Kiyosumi; Kikkawa, Fumitaka

    2014-05-01

    We aimed to investigate the possibility of an association between a stem-like hallmark and radiotherapeutic sensitivity in human cervical carcinoma cells. Side-population (SP) cells and non-SP (NSP) cells in HeLa cells were isolated using flow cytometry and Hoechst 33342 efflux. We performed Western blot analysis to evaluate the expression of stem cell markers (CXCR4, Oct3/4, CD133, and SOX2) and apoptosis markers after irradiation. In addition, SP and NSP cells were injected into nude mice and we assessed subcutaneous tumor formation. To examine tolerance of irradiation, colony formation and apoptosis change were confirmed in the SP and NSP cells. SP cells showed a higher expression of CXCR4, Oct3/4, CD133, and SOX2 than NSP cells. The colony size of SP cells cultured on non-coated dishes was larger than that of NSP cells, and NSP cells were easily induced to undergo apoptosis. SP cells tended to form spheroids and showed a higher level of tumorigenicity compared with NSP cells. In addition, nude mice inoculated with SP cells showed greater tumor growth compared with NSP cells. SP cells showed a higher tumorigenicity and lower apoptotic potential, leading to enhanced radiotolerance. Tumor SP cells showed higher-level stem-cell-like characters and radioresistance than NSP cells. SP cells may be useful for new therapeutic approaches for radiation-resistant cervical cancer. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  1. Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Christensen, Marianne; Rasmussen, Mikkel Aabech

    2012-01-01

    Porcine induced pluripotent stem cells (piPSCs) have the capacity to differentiate in vitro and in vivo and form chimeras. However, the lack of transgene silencing of exogenous DNA integrated into the genome and the inability of cells to proliferate in the absence of transgene expression...... pluripotency in the pig. This may help to explain the difficulties in producing stable piPSCs and bona fide embryonic stem cell lines in this species....... transgenes on the expression of the porcine endogenous pluripotency machinery. Endogenous and exogenous gene expression of OCT4, NANOG, SOX2, KLF4, and cMYC was determined at passages 5, 10, 15, and 20, both in cells cultured at 1¿µg/mL doxycycline or 4¿µg/mL doxycycline. Our results revealed that endogenous...

  2. TSA and BIX-01294 Induced Normal DNA and Histone Methylation and Increased Protein Expression in Porcine Somatic Cell Nuclear Transfer Embryos.

    Science.gov (United States)

    Cao, Zubing; Hong, Renyun; Ding, Biao; Zuo, Xiaoyuan; Li, Hui; Ding, Jianping; Li, Yunsheng; Huang, Weiping; Zhang, Yunhai

    2017-01-01

    The poor efficiency of animal cloning is mainly attributed to the defects in epigenetic reprogramming of donor cells' chromatins during early embryonic development. Previous studies indicated that inhibition of histone deacetylases or methyltransferase, such as G9A, using Trichostatin A (TSA) or BIX-01294 significantly enhanced the developmental efficiency of porcine somatic cell nuclear transfer (SCNT) embryos. However, potential mechanisms underlying the improved early developmental competence of SCNT embryos exposed to TSA and BIX-01294 are largely unclear. Here we found that 50 nM TSA or 1.0 μM BIX-01294 treatment alone for 24 h significantly elevated the blastocyst rate (P TSA treatment alone significantly reduced H3K9me2 level at the 4-cell stage, which is comparable with that in in vivo and in vitro fertilized counterparts. However, only co-treatment significantly decreased the levels of 5mC and H3K9me2 in trophectoderm lineage and subsequently increased the expression of OCT4 and CDX2 associated with ICM and TE lineage differentiation. Altogether, these results demonstrate that co-treatment of TSA and BIX-01294 enhances the early developmental competence of porcine SCNT embryos via improvements in epigenetic status and protein expression.

  3. Ki-67 expression reveals strong, transient influenza specific CD4 T cell responses after adult vaccination

    OpenAIRE

    Li, Xi; Miao, Hongyu; Henn, Alicia; Topham, David J.; Wu, Hulin; Zand, Martin S.; Mosmann, Tim R.

    2012-01-01

    Although previous studies have found minimal changes in CD4 T cell responses after vaccination of adults with trivalent inactivated influenza vaccine, daily sampling and monitoring of the proliferation marker Ki-67 have now been used to reveal that a substantial fraction of influenza-specific CD4 T cells respond to vaccination. At 4–6 days after vaccination, there is a sharp rise in the numbers of Ki-67-expressing PBMC that produce IFNγ, IL-2 and/or TNFα in vitro in response to influenza vacc...

  4. Prostaglandin E2-Induced COX-2 Expressions via EP2 and EP4 Signaling Pathways in Human LoVo Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hsi-Hsien Hsu

    2017-05-01

    Full Text Available Metastasis is the most dangerous risk faced by patients with hereditary non-polyposis colon cancer (HNPCC. The expression of matrix metalloproteinases (MMPs has been observed in several types of human cancers and regulates the efficacy of many therapies. Here, we show that treatment with various concentrations of prostaglandin E2 (PGE2; 0, 1, 5 or 10 μM promotes the migration ability of the human LoVo colon cancer cell line. As demonstrated by mRNA and protein expression analyses, EP2 and EP4 are the major PGE2 receptors expressed on the LoVo cell membrane. The Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K/Akt cell survival pathway was upregulated by EP2 and EP4 activation. Following the activation of the PI3K/Akt pathway, β-catenin translocated into the nucleus and triggered COX2 transcription via LEF-1 and TCF-4 and its subsequent translation. COX2 expression correlated with the elevation in the migration ability of LoVo cells. The experimental evidence shows a possible mechanism by which PGE2 induces cancer cell migration and further suggests PGE2 to be a potential therapeutic target in colon cancer metastasis. On inhibition of PGE2, in order to determine the downstream pathway, the levels of PI3K/Akt pathway were suppressed and the β-catenin expression was also modulated. Inhibition of EP2 and EP4 shows that PGE2 induces protein expression of COX-2 through EP2 and EP4 receptors in LoVo colon cancer cells.

  5. Chick derived induced pluripotent stem cells by the poly-cistronic transposon with enhanced transcriptional activity.

    Science.gov (United States)

    Katayama, Masafumi; Hirayama, Takashi; Tani, Tetsuya; Nishimori, Katsuhiko; Onuma, Manabu; Fukuda, Tomokazu

    2018-02-01

    Induced pluripotent stem (iPS) cell technology lead terminally differentiated cells into the pluripotent stem cells through the expression of defined reprogramming factors. Although, iPS cells have been established in a number of mammalian species, including mouse, human, and monkey, studies on iPS cells in avian species are still very limited. To establish chick iPS cells, six factors were used within the poly-cistronic reprogramming vector (PB-R6F), containing M3O (MyoD derived transactivation domain fused with Oct3/4), Sox2, Klf4, c-Myc, Lin28, and Nanog. The PB-R6F derived iPS cells were alkaline-phosphatase and SSEA-1 positive, which are markers of pluripotency. Elevated levels of endogenous Oct3/4 and Nanog genes were detected in the established iPS cells, suggesting the activation of the FGF signaling pathway is critical for the pluripotent status. Histological analysis of teratoma revealed that the established chick iPS cells have differentiation ability into three-germ-layer derived tissues. This is the first report of establishment of avian derived iPS cells with a single poly-cistronic transposon based expression system. The establishment of avian derived iPS cells could contribute to the genetic conservation and modification of avian species. © 2017 Wiley Periodicals, Inc.

  6. Lycopene Inhibits Metastasis of Human Liver Adenocarcinoma SK-Hep-1 Cells by Downregulation of NADPH Oxidase 4 Protein Expression.

    Science.gov (United States)

    Jhou, Bo-Yi; Song, Tuzz-Ying; Lee, Inn; Hu, Miao-Lin; Yang, Nae-Cherng

    2017-08-16

    NADPH oxidase 4 (NOX4), with the sole function to produce reactive oxygen species (ROS), can be a molecular target for disrupting cancer metastasis. Several studies have indicated that lycopene exhibited anti-metastatic actions in vitro and in vivo. However, the role of NOX4 in the anti-metastatic action of lycopene remains unknown. Herein, we first confirmed the anti-metastatic effect of lycopene (0.1-5 μM) on human liver adenocarcinoma SK-Hep-1 cells. We showed that lycopene significantly inhibited NOX4 protein expression, with the strongest inhibition of 64.3 ± 10.2% (P lycopene. Lycopene also significantly inhibited NOX4 mRNA expression, NOX activity, and intracellular ROS levels in SK-Hep-1 cells. We then determined the effects of lycopene on transforming growth factor β (TGF-β)-induced metastasis. We found that TGF-β (5 ng/mL) significantly increased migration, invasion, and adhesion activity, the intracellular ROS level, matrix metalloproteinase 9 (MMP-9) and MMP-2 activities, the level of NOX4 protein expression, and NOX activity. All these TGF-β-induced effects were antagonized by the incubation of SK-Hep-1 cells with lycopene (2.5 μM). Using transient transfection of siRNA against NOX4, we found that the downregulation of NOX4 could mimic lycopene by inhibiting cell migration and the activities of MMP-9 and MMP-2 during the incubation with or without TGF-β on SK-Hep-1 cells. The results demonstrate that the downregulation of NOX4 plays a crucial role in the anti-metastatic action of lycopene in SK-Hep-1 cells.

  7. The expression of Smad4 after radiation of electromagnetic pulses and apoptosis in spermatogenic cells in mouse

    International Nuclear Information System (INIS)

    Ji Xinxin; Hou Wugang; Zhao Jie; Zhao Yong; Li Wei; Zhang Yuanqiang

    2007-01-01

    The aim of the study was to investigate the relationships between apoptosis induced by radiation of electromagnetic pulses (EMP) and the expression of Smad4 in mouse spermatogenic cells. 40 adult Balb/c mice were used, and 20 were irradiated with whole-body 400kV/m EMP. The mice were sacrificed and specimens were harvested at 1, 7, 14, 21 and 28 days after the irradiation. Histological changes were observed through Hematoxylin-Eosin staining (H-E staining), the apoptosis of spermatogenic cells was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling method (TUNEL method) and the Smad4 expression was observed using immunohistochemistry SABC methods. Severe injuries were observed 1 day after the radiation and seminiferous epithelium was mostly recovered 28d after the radiation. The localization of smad4 was significantly different in EMP group compared to the control group, and the expression densities of smad4 decreased significantly at 7, 14 and 21d after irradiation (p<0.05). TUNEL assays demonstrated that there was a significant increase in the mean apoptotic index (AI) in irradiation groups than that of control groups (p<0.01). The results suggested that Smad4 and TGF-13/Smad signal pathway might play an important role in spermatogenic cells apoptosis induced by radiation of EMP. (authors)

  8. Dual Role of miR-21 in CD4+T-Cells : Activation-Induced miR-21 Supports Survival of Memory T-Cells and Regulates CCR7 Expression in Naive T-Cells

    NARCIS (Netherlands)

    Smigielska-Czepiel, Katarzyna; van den Berg, Anke; Jellema, Pytrick; Slezak-Prochazka, Izabella; Maat, Henny; van den Bos, Hilda; van der Lei, Roelof Jan; Kluiver, Joost; Brouwer, Elisabeth; Boots, Anne Mieke H.; Kroesen, Bart-Jan

    2013-01-01

    Immune cell-type specific miRNA expression patterns have been described but the detailed role of single miRNAs in the function of T-cells remains largely unknown. We investigated the role of miR-21 in the function of primary human CD4+ T-cells. MiR-21 is substantially expressed in T-cells with a

  9. Phase sensitive multichannel OCT

    International Nuclear Information System (INIS)

    Trasischker, W.

    2015-01-01

    The main aim of this thesis was to develop and improve phase sensitive, multichannel methods for optical coherence tomography (OCT) using light in the 840 nm and 1040 nm regime. Conventional OCT provides purely structural information by illuminating the sample by one beam and recording the backscattered signal with one detection channel. Combination of this approach with a raster scan enables the acquisition of 2D and 3D structural information with a resolution in the micrometer regime. However, sometimes additional image contrast or information is desired. Amongst other approaches, this can be provided by a phase sensitive analysis of the interference pattern. Combining phase sensitivity with the illumination of the sample by more than one beam and/or by recording the data using more than one data acquisition channel allows for even more enhanced imaging. While phase sensitive OCT gives access to additional contrast and information, multichannel OCT can provide higher imaging speed, scan eld size and exible dierential measurements. Amongst the dierential, phase sensitive approaches, Doppler OCT (DOCT) and polarization sensitive OCT (PS-OCT) are two of the most promising OCT modalities. While the former targets information on the movement of backscattering particles, the latter measures alterations of the polarization state of the light induced by the sample. Both techniques provide additional image contrast and are, due to the non-invasive and fast character of OCT, well suited for in vivo imaging of the human eye. In the course of this thesis, two dierent multichannel, phase sensitive OCT systems will be presented. First, a D-OCT system with three dierent sampling beams is described. With a central wavelength of 840 nm these three beams are emitted by three individual laser sources. This eectively eliminates any cross talk and provides the full depth range for each channel. Furthermore, by illuminating the sample from three dierent directions, the absolute

  10. Expression of the MAP kinase phosphatase DUSP4 is associated with microsatellite instability in colorectal cancer (CRC) and causes increased cell proliferation.

    Science.gov (United States)

    Gröschl, Benedikt; Bettstetter, Marcus; Giedl, Christian; Woenckhaus, Matthias; Edmonston, Tina; Hofstädter, Ferdinand; Dietmaier, Wolfgang

    2013-04-01

    DUSP4 (MKP-2), a member of the mitogen-activated protein kinase phosphatase (MKP) family and potential tumor suppressor, negatively regulates the MAPKs (mitogen-activated protein kinases) ERK, p38 and JNK. MAPKs play a crucial role in cancer development and progression. Previously, using microarray analyses we found a conspicuously frequent overexpression of DUSP4 in colorectal cancer (CRC) with high frequent microsatellite instability (MSI-H) compared to microsatellite stable (MSS) CRC. Here we studied DUSP4 expression on mRNA level in 38 CRC (19 MSI-H and 19 MSS) compared to matched normal tissue as well as in CRC cell lines by RT-qPCR. DUSP4 was overexpressed in all 19 MSI-H tumors and in 14 MSS tumors. Median expression levels in MSI-H tumors were significantly higher than in MSS-tumors (p CRC cell lines showed 6.8-fold higher DUSP4 mRNA levels than MSS cell lines. DUSP4 expression was not regulated by promoter methylation since no methylation was found by quantitative methylation analysis of DUSP4 promoter in CRC cell lines neither in tumor samples. Furthermore, no DUSP4 mutation was found on genomic DNA level in four CRC cell lines. DUSP4 overexpression in CRC cell lines through DUSP4 transfection caused upregulated expression of MAPK targets CDC25A, CCND1, EGR1, FOS, MYC and CDKN1A in HCT116 as well as downregulation of mismatch repair gene MSH2 in SW480. Furthermore, DUSP4 overexpression led to increased proliferation in CRC cell lines. Our findings suggest that DUSP4 acts as an important regulator of cell growth within the MAPK pathway and causes enhanced cell growth in MSI-H CRC. Copyright © 2012 UICC.

  11. Generation of iPSC line epiHUVEC from human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Peggy Matz

    2015-11-01

    Full Text Available Human umbilical vein endothelial cells (HUVECs were used to generate the iPSC line epiHUVEC employing a combination of three episomal-based plasmids expressing OCT4, SOX2, NANOG, LIN28, c-MYC and KLF4. Pluripotency was confirmed both in vivo and in vitro. The transcriptome profile of epiHUVEC and the human embryonic stem cell line — H1 have a Pearson correlation of 0.899.

  12. Isolation and differentiation of chondrocytic cells derived from human embryonic stem cells using dlk1/FA1 as a novel surface marker

    DEFF Research Database (Denmark)

    Harkness, Linda; Taipaleenmaki, Hanna; Mahmood, Amer

    2009-01-01

    of dlk1/FA1 as a novel surface marker for chondroprogenitor cells during hESC differentiation. We found that, Dlk1/FA1 is expressed specifically in cells undergoing transition from proliferating to prehypertrophic chondrocytes during endochondral ossification of the mouse limb. In hESC cells, dlk1/FA1...... was not expressed by undifferentiated hESC, but expressed during in vitro embryoid bodies (hEBs) formation upon down-regulation of undifferentiated markers e.g. Oct 3/4. Similarly, dlk1/FA1 was expressed in chondrocytic cells during in vivo teratoma formation. Interestingly, treatment of hEBs with Activin B......, a member of TGF-ss family, markedly increased Dlk1 expression in association with up-regulation of the mesoderm-specific markers (e.g. FOXF1, KDR and VE-cadherin) and SOX9. dlk1/FA1(+) cells isolated by fluorescence activated cell sorting (FACS) were capable of differentiating into chondrocytic cells when...

  13. Identification of rabbit annulus fibrosus-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Chen Liu

    Full Text Available Annulus fibrosus (AF injuries can lead to substantial deterioration of intervertebral disc (IVD which characterizes degenerative disc disease (DDD. However, treatments for AF repair/regeneration remain challenging due to the intrinsic heterogeneity of AF tissue at cellular, biochemical, and biomechanical levels. In this study, we isolated and characterized a sub-population of cells from rabbit AF tissue which formed colonies in vitro and could self-renew. These cells showed gene expression of typical surface antigen molecules characterizing mesenchymal stem cells (MSCs, including CD29, CD44, and CD166. Meanwhile, they did not express negative markers of MSCs such as CD4, CD8, and CD14. They also expressed Oct-4, nucleostemin, and SSEA-4 proteins. Upon induced differentiation they showed typical osteogenesis, chondrogenesis, and adipogenesis potential. Together, these AF-derived colony-forming cells possessed clonogenicity, self-renewal, and multi-potential differentiation capability, the three criteria characterizing MSCs. Such AF-derived stem cells may potentially be an ideal candidate for DDD treatments using cell therapies or tissue engineering approaches.

  14. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  15. Preferential effects of leptin on CD4 T cells in central and peripheral immune system are critically linked to the expression of leptin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Yong; Lim, Ju Hyun [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Choi, Sung Won [Department of Molecular Biology, School of Arts and Sciences (S.W.C), Cornell University, Ithaca, NY 18450 (United States); Kim, Miyoung; Kim, Seong-Tae [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Kim, Min-Seon; Cho, You Sook [Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-600 (Korea, Republic of); Chun, Eunyoung, E-mail: chun.eunyoung@gmail.com [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Lee, Ki-Young, E-mail: thylee@med.skku.ac.kr [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of)

    2010-04-09

    Leptin can enhance thymopoiesis and modulate the T-cell immune response. However, it remains controversial whether these effects correlate with the expression of leptin receptor, ObR. We herein addressed this issue by using in vivo animal models and in vitro culture systems. Leptin treatment in both ob/ob mice and normal young mice induced increases of CD4 SP thymocytes in thymus and CD4 T cells in the periphery. Interestingly, expression of the long form ObR was significantly restricted to DN, DP and CD4 SP, but not CD8 SP thymocytes. Moreover, in the reaggregated DP thymocyte cultures with leptin plus TSCs, leptin profoundly induced differentiation of CD4 SP but not CD8 SP thymocytes, suggesting that the effects of leptin on thymocyte differentiation might be closely related to the expression of leptin receptor in developing thymocytes. Surprisingly, ObR expression was markedly higher in peripheral CD4 T cells than that in CD8 T cells. Furthermore, leptin treatment with or without IL-2 and PHA had preferential effects on cell proliferation of CD4 T cells compared to that of CD8 T cells. Collectively, these data provide evidence that the effects of leptin on differentiation and proliferation of CD4 T cells might be closely related to the expression of leptin receptor.

  16. Preferential effects of leptin on CD4 T cells in central and peripheral immune system are critically linked to the expression of leptin receptor

    International Nuclear Information System (INIS)

    Kim, So Yong; Lim, Ju Hyun; Choi, Sung Won; Kim, Miyoung; Kim, Seong-Tae; Kim, Min-Seon; Cho, You Sook; Chun, Eunyoung; Lee, Ki-Young

    2010-01-01

    Leptin can enhance thymopoiesis and modulate the T-cell immune response. However, it remains controversial whether these effects correlate with the expression of leptin receptor, ObR. We herein addressed this issue by using in vivo animal models and in vitro culture systems. Leptin treatment in both ob/ob mice and normal young mice induced increases of CD4 SP thymocytes in thymus and CD4 T cells in the periphery. Interestingly, expression of the long form ObR was significantly restricted to DN, DP and CD4 SP, but not CD8 SP thymocytes. Moreover, in the reaggregated DP thymocyte cultures with leptin plus TSCs, leptin profoundly induced differentiation of CD4 SP but not CD8 SP thymocytes, suggesting that the effects of leptin on thymocyte differentiation might be closely related to the expression of leptin receptor in developing thymocytes. Surprisingly, ObR expression was markedly higher in peripheral CD4 T cells than that in CD8 T cells. Furthermore, leptin treatment with or without IL-2 and PHA had preferential effects on cell proliferation of CD4 T cells compared to that of CD8 T cells. Collectively, these data provide evidence that the effects of leptin on differentiation and proliferation of CD4 T cells might be closely related to the expression of leptin receptor.

  17. Molecular Properties of Drugs Interacting with SLC22 Transporters OAT1, OAT3, OCT1, and OCT2: A Machine-Learning Approach.

    Science.gov (United States)

    Liu, Henry C; Goldenberg, Anne; Chen, Yuchen; Lun, Christina; Wu, Wei; Bush, Kevin T; Balac, Natasha; Rodriguez, Paul; Abagyan, Ruben; Nigam, Sanjay K

    2016-10-01

    Statistical analysis was performed on physicochemical descriptors of ∼250 drugs known to interact with one or more SLC22 "drug" transporters (i.e., SLC22A6 or OAT1, SLC22A8 or OAT3, SLC22A1 or OCT1, and SLC22A2 or OCT2), followed by application of machine-learning methods and wet laboratory testing of novel predictions. In addition to molecular charge, organic anion transporters (OATs) were found to prefer interacting with planar structures, whereas organic cation transporters (OCTs) interact with more three-dimensional structures (i.e., greater SP3 character). Moreover, compared with OAT1 ligands, OAT3 ligands possess more acyclic tetravalent bonds and have a more zwitterionic/cationic character. In contrast, OCT1 and OCT2 ligands were not clearly distinquishable form one another by the methods employed. Multiple pharmacophore models were generated on the basis of the drugs and, consistent with the machine-learning analyses, one unique pharmacophore created from ligands of OAT3 possessed cationic properties similar to OCT ligands; this was confirmed by quantitative atomic property field analysis. Virtual screening with this pharmacophore, followed by transport assays, identified several cationic drugs that selectively interact with OAT3 but not OAT1. Although the present analysis may be somewhat limited by the need to rely largely on inhibition data for modeling, wet laboratory/in vitro transport studies, as well as analysis of drug/metabolite handling in Oat and Oct knockout animals, support the general validity of the approach-which can also be applied to other SLC and ATP binding cassette drug transporters. This may make it possible to predict the molecular properties of a drug or metabolite necessary for interaction with the transporter(s), thereby enabling better prediction of drug-drug interactions and drug-metabolite interactions. Furthermore, understanding the overlapping specificities of OATs and OCTs in the context of dynamic transporter tissue

  18. Id1 expression promotes peripheral CD4{sup +} T cell proliferation and survival upon TCR activation without co-stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chen; Jin, Rong [Department of Immunology, Peking University Health Science Center, Beijing (China); Wang, Hong-Cheng [Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Tang, Hui; Liu, Yuan-Feng; Qian, Xiao-Ping; Sun, Xiu-Yuan; Ge, Qing [Department of Immunology, Peking University Health Science Center, Beijing (China); Sun, Xiao-Hong, E-mail: sunx@omrf.org [Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Zhang, Yu, E-mail: zhangyu007@bjmu.edu.cn [Department of Immunology, Peking University Health Science Center, Beijing (China)

    2013-06-21

    Highlights: •Id1 expression enables naïve T cell proliferation without anti-CD28 co-stimulation. •Id1 expression facilitates T cells survival when stimulated with anti-CD3. •Elevation of IL-2 production by Id1 contributes increased proliferation and survival. •Id1 potentiates NF-κB activation by anti-CD3 stimulation. -- Abstract: Although the role of E proteins in the thymocyte development is well documented, much less is known about their function in peripheral T cells. Here we demonstrated that CD4 promoter-driven transgenic expression of Id1, a naturally occurring dominant-negative inhibitor of E proteins, can substitute for the co-stimulatory signal delivered by CD28 to facilitate the proliferation and survival of naïve CD4{sup +} cells upon anti-CD3 stimulation. We next discovered that IL-2 production and NF-κB activity after anti-CD3 stimulation were significantly elevated in Id1-expressing cells, which may be, at least in part, responsible for the augmentation of their proliferation and survival. Taken together, results from this study suggest an important role of E and Id proteins in peripheral T cell activation. The ability of Id proteins to by-pass co-stimulatory signals to enable T cell activation has significant implications in regulating T cell immunity.

  19. The HIV-1 Tat protein modulates CD4 expression in human T cells through the induction of miR-222.

    Science.gov (United States)

    Orecchini, Elisa; Doria, Margherita; Michienzi, Alessandro; Giuliani, Erica; Vassena, Lia; Ciafrè, Silvia Anna; Farace, Maria Giulia; Galardi, Silvia

    2014-01-01

    Several cellular microRNAs show substantial changes in expression during HIV-1 infection and their active role in the viral life cycle is progressively emerging. In the present study, we found that HIV-1 infection of Jurkat T cells significantly induces the expression of miR-222. We show that this induction depends on HIV-1 Tat protein, which is able to increase the transcriptional activity of NFkB on miR-222 promoter. Moreover, we demonstrate that miR-222 directly targets CD4, a key receptor for HIV-1, thus reducing its expression. We propose that Tat, by inducing miR-222 expression, complements the CD4 downregulation activity exerted by other viral proteins (i.e., Nef, Vpu, and Env), and we suggest that this represents a novel mechanism through which HIV-1 efficiently represses CD4 expression in infected cells.

  20. New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells.

    Science.gov (United States)

    O'Brien, Carmel M; Chy, Hun S; Zhou, Qi; Blumenfeld, Shiri; Lambshead, Jack W; Liu, Xiaodong; Kie, Joshua; Capaldo, Bianca D; Chung, Tung-Liang; Adams, Timothy E; Phan, Tram; Bentley, John D; McKinstry, William J; Oliva, Karen; McMurrick, Paul J; Wang, Yu-Chieh; Rossello, Fernando J; Lindeman, Geoffrey J; Chen, Di; Jarde, Thierry; Clark, Amander T; Abud, Helen E; Visvader, Jane E; Nefzger, Christian M; Polo, Jose M; Loring, Jeanne F; Laslett, Andrew L

    2017-03-01

    The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterized monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here, we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs), confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs, providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition, we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs), normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency, and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. Stem Cells 2017;35:626-640. © 2016 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.