WorldWideScience

Sample records for cell-mediated experimental autoimmune

  1. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity.

    Science.gov (United States)

    Feyerabend, Thorsten B; Weiser, Anne; Tietz, Annette; Stassen, Michael; Harris, Nicola; Kopf, Manfred; Radermacher, Peter; Möller, Peter; Benoist, Christophe; Mathis, Diane; Fehling, Hans Jörg; Rodewald, Hans-Reimer

    2011-11-23

    Immunological functions of mast cells remain poorly understood. Studies in Kit mutant mice suggest key roles for mast cells in certain antibody- and T cell-mediated autoimmune diseases. However, Kit mutations affect multiple cell types of both immune and nonimmune origin. Here, we show that targeted insertion of Cre-recombinase into the mast cell carboxypeptidase A3 locus deleted mast cells in connective and mucosal tissues by a genotoxic Trp53-dependent mechanism. Cre-mediated mast cell eradication (Cre-Master) mice had, with the exception of a lack of mast cells and reduced basophils, a normal immune system. Cre-Master mice were refractory to IgE-mediated anaphylaxis, and this defect was rescued by mast cell reconstitution. This mast cell-deficient strain was fully susceptible to antibody-induced autoimmune arthritis and to experimental autoimmune encephalomyelitis. Differences comparing Kit mutant mast cell deficiency models to selectively mast cell-deficient mice call for a systematic re-evaluation of immunological functions of mast cells beyond allergy. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis.

    LENUS (Irish Health Repository)

    Fletcher, J M

    2012-02-01

    Multiple sclerosis (MS) is a demyelinating inflammatory disorder of the central nervous system (CNS), which involves autoimmune responses to myelin antigens. Studies in experimental autoimmune encephalomyelitis (EAE), an animal model for MS, have provided convincing evidence that T cells specific for self-antigens mediate pathology in these diseases. Until recently, T helper type 1 (Th1) cells were thought to be the main effector T cells responsible for the autoimmune inflammation. However more recent studies have highlighted an important pathogenic role for CD4(+) T cells that secrete interleukin (IL)-17, termed Th17, but also IL-17-secreting gammadelta T cells in EAE as well as other autoimmune and chronic inflammatory conditions. This has prompted intensive study of the induction, function and regulation of IL-17-producing T cells in MS and EAE. In this paper, we review the contribution of Th1, Th17, gammadelta, CD8(+) and regulatory T cells as well as the possible development of new therapeutic approaches for MS based on manipulating these T cell subtypes.

  3. Dendritic cells and anergic type I NKT cells play a crucial role in sulfatide-mediated immune regulation in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Maricic, Igor; Halder, Ramesh; Bischof, Felix; Kumar, Vipin

    2014-08-01

    CD1d-restricted NKT cells can be divided into two groups: type I NKT cells use a semi-invariant TCR, whereas type II express a relatively diverse set of TCRs. A major subset of type II NKT cells recognizes myelin-derived sulfatides and is selectively enriched in the CNS tissue during experimental autoimmune encephalomyelitis (EAE). We have shown that activation of sulfatide-reactive type II NKT cells by sulfatide prevents induction of EAE. In this article, we have addressed the mechanism of regulation, as well as whether a single immunodominant form of synthetic sulfatide can treat ongoing chronic and relapsing EAE in SJL/J mice. We have shown that the activation of sulfatide-reactive type II NKT cells leads to a significant reduction in the frequency and effector function of myelin proteolipid proteins 139-151/I-A(s)-tetramer(+) cells in lymphoid and CNS tissues. In addition, type I NKT cells and dendritic cells (DCs) in the periphery, as well as CNS-resident microglia, are inactivated after sulfatide administration, and mice deficient in type I NKT cells are not protected from disease. Moreover, tolerized DCs from sulfatide-treated animals can adoptively transfer protection into naive mice. Treatment of SJL/J mice with a synthetic cis-tetracosenoyl sulfatide, but not α-galactosylceramide, reverses ongoing chronic and relapsing EAE. Our data highlight a novel immune-regulatory pathway involving NKT subset interactions leading to inactivation of type I NKT cells, DCs, and microglial cells in suppression of autoimmunity. Because CD1 molecules are nonpolymorphic, the sulfatide-mediated immune-regulatory pathway can be targeted for development of non-HLA-dependent therapeutic approaches to T cell-mediated autoimmune diseases. Copyright © 2014 by The American Association of Immunologists, Inc.

  4. IL17 Mediates Pelvic Pain in Experimental Autoimmune Prostatitis (EAP.

    Directory of Open Access Journals (Sweden)

    Stephen F Murphy

    Full Text Available Chronic pelvic pain syndrome (CPPS is the most common form of prostatitis, accounting for 90-95% of all diagnoses. It is a complex multi-symptom syndrome with unknown etiology and limited effective treatments. Previous investigations highlight roles for inflammatory mediators in disease progression by correlating levels of cytokines and chemokines with patient reported symptom scores. It is hypothesized that alteration of adaptive immune mechanisms results in autoimmunity and subsequent development of pain. Mouse models of CPPS have been developed to delineate these immune mechanisms driving pain in humans. Using the experimental autoimmune prostatitis (EAP in C57BL/6 mice model of CPPS we examined the role of CD4+T-cell subsets in the development and maintenance of prostate pain, by tactile allodynia behavioral testing and flow cytometry. In tandem with increased CD4+IL17A+ T-cells upon EAP induction, prophylactic treatment with an anti-IL17 antibody one-day prior to EAP induction prevented the onset of pelvic pain. Therapeutic blockade of IL17 did not reverse pain symptoms indicating that IL17 is essential for development but not maintenance of chronic pain in EAP. Furthermore we identified a cytokine, IL7, to be associated with increased symptom severity in CPPS patients and is increased in patient prostatic secretions and the prostates of EAP mice. IL7 is fundamental to development of IL17 producing cells and plays a role in maturation of auto-reactive T-cells, it is also associated with autoimmune disorders including multiple sclerosis and type-1 diabetes. More recently a growing body of research has pointed to IL17's role in development of neuropathic and chronic pain. This report presents novel data on the role of CD4+IL17+ T-cells in development and maintenance of pain in EAP and CPPS.

  5. IL17 Mediates Pelvic Pain in Experimental Autoimmune Prostatitis (EAP).

    Science.gov (United States)

    Murphy, Stephen F; Schaeffer, Anthony J; Done, Joseph; Wong, Larry; Bell-Cohn, Ashlee; Roman, Kenny; Cashy, John; Ohlhausen, Michelle; Thumbikat, Praveen

    2015-01-01

    Chronic pelvic pain syndrome (CPPS) is the most common form of prostatitis, accounting for 90-95% of all diagnoses. It is a complex multi-symptom syndrome with unknown etiology and limited effective treatments. Previous investigations highlight roles for inflammatory mediators in disease progression by correlating levels of cytokines and chemokines with patient reported symptom scores. It is hypothesized that alteration of adaptive immune mechanisms results in autoimmunity and subsequent development of pain. Mouse models of CPPS have been developed to delineate these immune mechanisms driving pain in humans. Using the experimental autoimmune prostatitis (EAP) in C57BL/6 mice model of CPPS we examined the role of CD4+T-cell subsets in the development and maintenance of prostate pain, by tactile allodynia behavioral testing and flow cytometry. In tandem with increased CD4+IL17A+ T-cells upon EAP induction, prophylactic treatment with an anti-IL17 antibody one-day prior to EAP induction prevented the onset of pelvic pain. Therapeutic blockade of IL17 did not reverse pain symptoms indicating that IL17 is essential for development but not maintenance of chronic pain in EAP. Furthermore we identified a cytokine, IL7, to be associated with increased symptom severity in CPPS patients and is increased in patient prostatic secretions and the prostates of EAP mice. IL7 is fundamental to development of IL17 producing cells and plays a role in maturation of auto-reactive T-cells, it is also associated with autoimmune disorders including multiple sclerosis and type-1 diabetes. More recently a growing body of research has pointed to IL17's role in development of neuropathic and chronic pain. This report presents novel data on the role of CD4+IL17+ T-cells in development and maintenance of pain in EAP and CPPS.

  6. Membrane-bound Dickkopf-1 in Foxp3+ regulatory T cells suppresses T-cell-mediated autoimmune colitis.

    Science.gov (United States)

    Chae, Wook-Jin; Park, Jong-Hyun; Henegariu, Octavian; Yilmaz, Saliha; Hao, Liming; Bothwell, Alfred L M

    2017-10-01

    Induction of tolerance is a key mechanism to maintain or to restore immunological homeostasis. Here we show that Foxp3 + regulatory T (Treg) cells use Dickkopf-1 (DKK-1) to regulate T-cell-mediated tolerance in the T-cell-mediated autoimmune colitis model. Treg cells from DKK-1 hypomorphic doubleridge mice failed to control CD4 + T-cell proliferation, resulting in CD4 T-cell-mediated autoimmune colitis. Thymus-derived Treg cells showed a robust expression of DKK-1 but not in naive or effector CD4 T cells. DKK-1 expression in Foxp3 + Treg cells was further increased upon T-cell receptor stimulation in vitro and in vivo. Interestingly, Foxp3 + Treg cells expressed DKK-1 in the cell membrane and the functional inhibition of DKK-1 using DKK-1 monoclonal antibody abrogated the suppressor function of Foxp3 + Treg cells. DKK-1 expression was dependent on de novo protein synthesis and regulated by the mitogen-activated protein kinase pathway but not by the canonical Wnt pathway. Taken together, our results highlight membrane-bound DKK-1 as a novel Treg-derived mediator to maintain immunological tolerance in T-cell-mediated autoimmune colitis. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  7. Huperzine A ameliorates experimental autoimmune encephalomyelitis via the suppression of T cell-mediated neuronal inflammation in mice.

    Science.gov (United States)

    Wang, Jun; Chen, Fu; Zheng, Peng; Deng, Weijuan; Yuan, Jia; Peng, Bo; Wang, Ruochen; Liu, Wenjun; Zhao, Hui; Wang, Yanqing; Wu, Gencheng

    2012-07-01

    Huperzine A (HupA), a sesquiterpene alkaloid and a potent and reversible inhibitor of acetylcholinesterase, possesses potential anti-inflammatory properties and is used for the treatment of certain neurodegenerative diseases such as Alzheimer's disease. However, it is still unknown whether this chemical is beneficial in the treatment of multiple sclerosis, a progressive inflammatory disease of the central nervous system. In this study, we examined the immunomodulatory properties of HupA in experimental autoimmune encephalomyelitis (EAE), a T-cell mediated murine model of multiple sclerosis. The following results were obtained: (1) intraperitoneal injections of HupA significantly attenuate the neurological severity of EAE in mice. (2) HupA decreases the accumulation of inflammatory cells, autoimmune-related demyelination and axonal injury in the spinal cords of EAE mice. (3) HupA down-regulates mRNA levels of the pro-inflammatory cytokines (IFN-γ and IL-17) and chemokines (MCP-1, RANTES, and TWEAK) while enhancing levels of anti-inflammatory cytokines (IL-4 and IL-10) in the spinal cords of EAE mice. (4) HupA inhibits MOG(35-55) stimulation-induced T-cell proliferation and IFN-γ and IL-17 secretion in cultured splenocytes. (5) HupA inhibition of T-cell proliferation is reversed by the nicotinic acetylcholinergic receptor antagonist mecamylamine. We conclude that HupA can ameliorate EAE by suppressing autoimmune responses, inflammatory reactions, subsequent demyelination and axonal injury in the spinal cord. Therefore, HupA may have a potential therapeutic value for the treatment of multiple sclerosis and as a neuroimmunomodulatory drug to control human CNS pathology. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. NKT cells can help mediate the protective effects of 1,25-dihydroxyvitamin D3 in experimental autoimmune encephalomyelitis in mice.

    Science.gov (United States)

    Waddell, Amanda; Zhao, Jun; Cantorna, Margherita T

    2015-05-01

    Active vitamin D [1,25-dihydroxyvitamin D3 (1,25D3)] blocks the development of experimental autoimmune diseases. However, the molecular and immunobiological mechanisms underlying 1,25D3's anti-inflammatory properties are not fully understood. We employed a murine model of experimental autoimmune encephalomyelitis (EAE) in order to determine the role of NKT cells in 1,25D3-mediated protection from EAE. Wild-type (WT) mice or mice lacking all NKT cells (CD1d(-/-)) or invariant NKT cells (Jα18(-/-)) were fed control or 1,25D3-supplemented diets. All mice fed with the control diet developed severe EAE. 1,25D3 treatment of WT mice protected them from developing EAE. CD1d(-/-) and Jα18(-/-) mice treated with 1,25D3 were not protected to the same extent as WT mice. Myelin oligodendrocyte glycoprotein-specific IL-17 and IFN-γ production was significantly reduced in 1,25D3 WT mice compared with WT but was not decreased in 1,25D3 CD1d(-/-) mice compared with CD1d(-/-) mice. IL-4(-/-) mice were utilized to determine how IL-4 deficiency affects susceptibility to EAE. IL-4(-/-) mice were not protected from developing EAE by α-galactosylceramide (α-GalCer) or 1,25D3 treatment. Furthermore, 1,25D3 treatment of splenocytes in vitro decreased α-GalCer-induced IL-17 and increased IL-4, IL-5 and IL-10 production. 1,25D3 alters the cytokine profile of invariant NKT cells in vitro. These studies demonstrate that NKT cells are important mediators of 1,25D3-induced protection from EAE in mice and NKT cell-derived IL-4 may be an important factor in providing this protection. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Multivalent Soluble Antigen Arrays Exhibit High Avidity Binding and Modulation of B Cell Receptor-Mediated Signaling to Drive Efficacy against Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Hartwell, Brittany L; Pickens, Chad J; Leon, Martin; Berkland, Cory

    2017-06-12

    A pressing need exists for antigen-specific immunotherapies (ASIT) that induce selective tolerance in autoimmune disease while avoiding deleterious global immunosuppression. Multivalent soluble antigen arrays (SAgA PLP:LABL ), consisting of a hyaluronic acid (HA) linear polymer backbone cografted with multiple copies of autoantigen (PLP) and cell adhesion inhibitor (LABL) peptides, are designed to induce tolerance to a specific multiple sclerosis (MS) autoantigen. Previous studies established that hydrolyzable SAgA PLP:LABL , employing a degradable linker to codeliver PLP and LABL, was therapeutic in experimental autoimmune encephalomyelitis (EAE) in vivo and exhibited antigen-specific binding with B cells, targeted the B cell receptor (BCR), and dampened BCR-mediated signaling in vitro. Our results pointed to sustained BCR engagement as the SAgA PLP:LABL therapeutic mechanism, so we developed a new version of the SAgA molecule using nonhydrolyzable conjugation chemistry, hypothesizing it would enhance and maintain the molecule's action at the cell surface to improve efficacy. "Click SAgA" (cSAgA PLP:LABL ) uses hydrolytically stable covalent conjugation chemistry (Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC)) rather than a hydrolyzable oxime bond to attach PLP and LABL to HA. We explored cSAgA PLP:LABL B cell engagement and modulation of BCR-mediated signaling in vitro through flow cytometry binding and calcium flux signaling assays. Indeed, cSAgA PLP:LABL exhibited higher avidity B cell binding and greater dampening of BCR-mediated signaling than hydrolyzable SAgA PLP:LABL . Furthermore, cSAgA PLP:LABL exhibited significantly enhanced in vivo efficacy compared to hydrolyzable SAgA PLP:LABL , achieving equivalent efficacy at one-quarter of the dose. These results indicate that nonhydrolyzable conjugation increased the avidity of cSAgA PLP:LABL to drive in vivo efficacy through modulated BCR-mediated signaling.

  10. T Follicular Helper-Like Cells Are Involved in the Pathogenesis of Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Jun Guo

    2018-05-01

    Full Text Available Multiple sclerosis (MS and experimental autoimmune encephalomyelitis (EAE have been proved to be T cell-mediated autoimmune diseases. Recent researches indicate that humoral immunity is also involved in the pathogenesis of these disorders. T follicular helper (Tfh cells are critical for B cell differentiation and antibody production. However, the role of Tfh cells in MS and EAE remains unclear. Here, we found elevated frequencies of CD4+CXCR5+PD-1+ Tfh-like cells in both MS patients and EAE. In EAE mice, Tfh-like cells, together with B cells, were found in the ectopic lymphoid structures in spinal cords. Moreover, Tfh-like cells promoted the antibody production via IL-21/IL-21R and CD40 ligand/CD40 interaction and the synergy effect of STAT3 and non-canonical NF-κB signaling pathway inside B cells. Moreover, adoptive transfer of Tfh-like cells could increase the severity and delay the remission of EAE. In conclusion, our data indicate that Tfh-like cells contribute to the pathogenesis of EAE.

  11. Invariant NKT cells regulate experimental autoimmune uveitis through inhibition of Th17 differentiation.

    Science.gov (United States)

    Oh, Keunhee; Byoun, Ok-Jin; Ham, Don-Il; Kim, Yon Su; Lee, Dong-Sup

    2011-02-01

    Although NKT cells have been implicated in diverse immunomodulatory responses, the effector mechanisms underlying the NKT cell-mediated regulation of pathogenic T helper cells are not well understood. Here, we show that invariant NKT cells inhibited the differentiation of CD4(+) T cells into Th17 cells both in vitro and in vivo. The number of IL-17-producing CD4(+) T cells was reduced following co-culture with purified NK1.1(+) TCR(+) cells from WT, but not from CD1d(-/-) or Jα18(-/-) , mice. Co-cultured NKT cells from either cytokine-deficient (IL-4(-/-) , IL-10(-/-) , or IFN-γ(-/-) ) or WT mice efficiently inhibited Th17 differentiation. The contact-dependent mechanisms of NKT cell-mediated regulation of Th17 differentiation were confirmed using transwell co-culture experiments. On the contrary, the suppression of Th1 differentiation was dependent on IL-4 derived from the NKT cells. The in vivo regulatory capacity of NKT cells on Th17 cells was confirmed using an experimental autoimmune uveitis model induced with human IRBP(1-20) (IRBP, interphotoreceptor retinoid-binding protein) peptide. NKT cell-deficient mice (CD1d(-/-) or Jα18(-/-) ) demonstrated an increased disease severity, which was reversed by the transfer of WT or cytokine-deficient (IL-4(-/-) , IL-10(-/-) , or IFN-γ(-/-) ) NKT cells. Our results indicate that invariant NKT cells inhibited autoimmune uveitis predominantly through the cytokine-independent inhibition of Th17 differentiation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ctla-4 modulates the differentiation of inducible Foxp3+ Treg cells but IL-10 mediates their function in experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Johan Verhagen

    Full Text Available In vitro induced Foxp3+ T regulatory (iTreg cells form a novel and promising target for therapeutic tolerance induction. However, the potential of these cells as a target for the treatment of various immune diseases, as well as the factors involved in their development and function, remain debated. Here, we demonstrate in a myelin basic protein (MBP-specific murine model of CNS autoimmune disease that adoptive transfer of antigen-specific iTreg cells ameliorates disease progression. Moreover, we show that the co-stimulatory molecule CTLA-4 mediates in vitro differentiation of iTreg cells. Finally, we demonstrate that the secreted, immunosuppressive cytokine IL-10 controls the ability of antigen-specific iTreg cells to suppress autoimmune disease. Overall, we conclude that antigen-specific iTreg cells, which depend on various immune regulatory molecules for their differentiation and function, represent a major target for effective immunotherapy of autoimmune disease.

  13. TIM-1 glycoprotein binds the adhesion receptor P-selectin and mediates T cell trafficking during inflammation and autoimmunity

    Science.gov (United States)

    Angiari, Stefano; Donnarumma, Tiziano; Rossi, Barbara; Dusi, Silvia; Pietronigro, Enrica; Zenaro, Elena; Della Bianca, Vittorina; Toffali, Lara; Piacentino, Gennj; Budui, Simona; Rennert, Paul; Xiao, Sheng; Laudanna, Carlo; Casasnovas, Jose M.; Kuchroo, Vijay K.; Constantin, Gabriela

    2014-01-01

    SUMMARY Selectins play a central role in leukocyte trafficking by mediating tethering and rolling on vascular surfaces. Here we have reported that T cell immunoglobulin and mucin domain 1 (TIM-1) is a P-selectin ligand. We have shown that human and murine TIM-1 binds to P-selectin, and that TIM-1 mediates tethering and rolling of T helper-1 (Th1) and Th17, but not Th2 and regulatory T cells on P-selectin. Th1 and Th17 cells lacking the TIM-1 mucin domain showed reduced rolling in thrombin-activated mesenteric venules and inflamed brain microcirculation. Inhibition of TIM-1 had no effect on naive T cell homing, but reduced T cell recruitment in a skin hypersensitivity model and blocked experimental autoimmune encephalomyelitis. Uniquely, the TIM-1 IgV domain was also required for P-selectin binding. Our data demonstrate that TIM-1 is a major P-selectin ligand with a specialized role in T cell trafficking during inflammatory responses and the induction of autoimmune disease. PMID:24703780

  14. Prophylactic Effect of Probiotics on the Development of Experimental Autoimmune Myasthenia Gravis

    Science.gov (United States)

    Chae, Chang-Suk; Kwon, Ho-Keun; Hwang, Ji-Sun; Kim, Jung-Eun; Im, Sin-Hyeog

    2012-01-01

    Probiotics are live bacteria that confer health benefits to the host physiology. Although protective role of probiotics have been reported in diverse diseases, no information is available whether probiotics can modulate neuromuscular immune disorders. We have recently demonstrated that IRT5 probiotics, a mixture of 5 probiotics, could suppress diverse experimental disorders in mice model. In this study we further investigated whether IRT5 probiotics could modulate the progression of experimental autoimmune myasthenia gravis (EAMG). Myasthenia gravis (MG) is a T cell dependent antibody mediated autoimmune disorder in which acetylcholine receptor (AChR) at the neuromuscular junction is the major auto-antigen. Oral administration of IRT5 probiotics significantly reduced clinical symptoms of EAMG such as weight loss, body trembling and grip strength. Prophylactic effect of IRT5 probiotics on EMAG is mediated by down-regulation of effector function of AChR-reactive T cells and B cells. Administration of IRT5 probiotics decreased AChR-reactive lymphocyte proliferation, anti-AChR reactive IgG levels and inflammatory cytokine levels such as IFN-γ, TNF-α, IL-6 and IL-17. Down-regulation of inflammatory mediators in AChR-reactive lymphocytes by IRT5 probiotics is mediated by the generation of regulatory dendritic cells (rDCs) that express increased levels of IL-10, TGF-β, arginase 1 and aldh1a2. Furthermore, DCs isolated from IRT5 probiotics-fed group effectively converted CD4+ T cells into CD4+Foxp3+ regulatory T cells compared with control DCs. Our data suggest that IRT5 probiotics could be applicable to modulate antibody mediated autoimmune diseases including myasthenia gravis. PMID:23284891

  15. Regulatory T-cells and autoimmunity.

    LENUS (Irish Health Repository)

    Ni Choileain, Niamh

    2012-02-03

    Approximately 20% of the population is affected by autoimmune or inflammatory diseases mediated by an abnormal immune response. A characteristic feature of autoimmune disease is the selective targeting of a single cell type, organ or tissue by certain populations of autoreactive T-cells. Examples of such diseases include rheumatoid arthritis, insulin-dependent diabetes mellitus, and systemic lupus erythematosus (SLE), all of which are characterized by chronic inflammation, tissue destruction and target organ malfunction. Although strong evidence links most autoimmune diseases to specific genes, considerable controversy prevails regarding the role of regulatory T-cell populations in the disease process. These cells are now also believed to play a key role in mediating transplantation tolerance and inhibiting the induction of tumor immunity. Though the concept of therapeutic immune regulation aimed at treating autoimmune pathology has been validated in many animal models, the development of strategies for the treatment of human autoimmune disorders remains in its infancy. The main obstacles to this include the conflicting findings of different model systems, as well as the contrasting functions of regulatory T-cells and cytokines involved in the development of such disorders. This review examines the role of regulatory T-cells in the pathogenesis of autoimmunity and describes the therapeutic potential of these cells for the prevention of immune-mediated pathologies in the future. Although much remains to be learned about such pathologies, a clearer understanding of the mechanisms by which regulatory T-cells function will undoubtedly lead to exciting new possibilities for immunotherapeutics.

  16. Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis

    Science.gov (United States)

    Yeste, Ada; Nadeau, Meghan; Burns, Evan J.; Weiner, Howard L.; Quintana, Francisco J.

    2012-01-01

    The immune response is normally controlled by regulatory T cells (Tregs). However, Treg deficits are found in autoimmune diseases, and therefore the induction of functional Tregs is considered a potential therapeutic approach for autoimmune disorders. The activation of the ligand-activated transcription factor aryl hydrocarbon receptor by 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) or other ligands induces dendritic cells (DCs) that promote FoxP3+ Treg differentiation. Here we report the use of nanoparticles (NPs) to coadminister ITE and a T-cell epitope from myelin oligodendrocyte glycoprotein (MOG)35–55 to promote the generation of Tregs by DCs. NP-treated DCs displayed a tolerogenic phenotype and promoted the differentiation of Tregs in vitro. Moreover, NPs carrying ITE and MOG35–55 expanded the FoxP3+ Treg compartment and suppressed the development of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis. Thus, NPs are potential new tools to induce functional Tregs in autoimmune disorders. PMID:22745170

  17. IDO2: A Pathogenic Mediator of Inflammatory Autoimmunity

    Directory of Open Access Journals (Sweden)

    Lauren M.F. Merlo

    2016-01-01

    Full Text Available Indoleamine 2,3-dioxygenase 2 (IDO2, a homolog of the better-studied tryptophan-catabolizing enzyme IDO1, is an immunomodulatory molecule with potential effects on various diseases including cancer and autoimmunity. Here, we review what is known about the direct connections between IDO2 and immune function, particularly in relationship to autoimmune inflammatory disorders such as rheumatoid arthritis and lupus. Accumulating evidence indicates that IDO2 acts as a pro-inflammatory mediator of autoimmunity, with a functional phenotype distinct from IDO1. IDO2 is expressed in antigen-presenting cells, including B cells and dendritic cells, but affects inflammatory responses in the autoimmune context specifically by acting in B cells to modulate T cell help in multiple model systems. Given that expression of IDO2 can lead to exacerbation of inflammatory responses, IDO2 should be considered a potential therapeutic target for autoimmune disorders.

  18. Myeloid-derived suppressor cells as a potential therapy for experimental autoimmune myasthenia gravis.

    Science.gov (United States)

    Li, Yan; Tu, Zhidan; Qian, Shiguang; Fung, John J; Markowitz, Sanford D; Kusner, Linda L; Kaminski, Henry J; Lu, Lina; Lin, Feng

    2014-09-01

    We recently demonstrated that hepatic stellate cells induce the differentiation of myeloid-derived suppressor cells (MDSCs) from myeloid progenitors. In this study, we found that adoptive transfer of these MDSCs effectively reversed disease progression in experimental autoimmune myasthenia gravis (EAMG), a T cell-dependent and B cell-mediated model for myasthenia gravis. In addition to ameliorated disease severity, MDSC-treated EAMG mice showed suppressed acetylcholine receptor (AChR)-specific T cell responses, decreased levels of serum anti-AChR IgGs, and reduced complement activation at the neuromuscular junctions. Incubating MDSCs with B cells activated by anti-IgM or anti-CD40 Abs inhibited the proliferation of these in vitro-activated B cells. Administering MDSCs into mice immunized with a T cell-independent Ag inhibited the Ag-specific Ab production in vivo. MDSCs directly inhibit B cells through multiple mechanisms, including PGE2, inducible NO synthase, and arginase. Interestingly, MDSC treatment in EAMG mice does not appear to significantly inhibit their immune response to a nonrelevant Ag, OVA. These results demonstrated that hepatic stellate cell-induced MDSCs concurrently suppress both T and B cell autoimmunity, leading to effective treatment of established EAMG, and that the MDSCs inhibit AChR-specific immune responses at least partially in an Ag-specific manner. These data suggest that MDSCs could be further developed as a novel approach to treating myasthenia gravis and, even more broadly, other diseases in which T and B cells are involved in pathogenesis. Copyright © 2014 by The American Association of Immunologists, Inc.

  19. Mononuclear cell secretome protects from experimental autoimmune myocarditis.

    Science.gov (United States)

    Hoetzenecker, Konrad; Zimmermann, Matthias; Hoetzenecker, Wolfram; Schweiger, Thomas; Kollmann, Dagmar; Mildner, Michael; Hegedus, Balazs; Mitterbauer, Andreas; Hacker, Stefan; Birner, Peter; Gabriel, Christian; Gyöngyösi, Mariann; Blyszczuk, Przemyslaw; Eriksson, Urs; Ankersmit, Hendrik Jan

    2015-03-14

    Supernatants of serum-free cultured mononuclear cells (MNC) contain a mix of immunomodulating factors (secretome), which have been shown to attenuate detrimental inflammatory responses following myocardial ischaemia. Inflammatory dilated cardiomyopathy (iDCM) is a common cause of heart failure in young patients. Experimental autoimmune myocarditis (EAM) is a CD4+ T cell-dependent model, which mirrors important pathogenic aspects of iDCM. The aim of this study was to determine the influence of MNC secretome on myocardial inflammation in the EAM model. BALB/c mice were immunized twice with an alpha myosin heavy chain peptide together with Complete Freund adjuvant. Supernatants from mouse mononuclear cells were collected, dialysed, and injected i.p. at Day 0, Day 7, or Day 14, respectively. Myocarditis severity, T cell responses, and autoantibody formation were assessed at Day 21. The impact of MNC secretome on CD4+ T cell function and viability was evaluated using in vitro proliferation and cell viability assays. A single high-dose application of MNC secretome, injected at Day 14 after the first immunization, effectively attenuated myocardial inflammation. Mechanistically, MNC secretome induced caspase-8-dependent apoptosis in autoreactive CD4+ T cells. MNC secretome abrogated myocardial inflammation in a CD4+ T cell-dependent animal model of autoimmune myocarditis. This anti-inflammatory effect of MNC secretome suggests a novel and simple potential treatment concept for inflammatory heart diseases. © The Author 2013. Published by Oxford University Press on behalf of the European Society of Cardiology.

  20. Innate lymphoid cells in autoimmunity and chronic inflammatory diseases.

    Science.gov (United States)

    Xiong, Tingting; Turner, Jan-Eric

    2018-03-22

    Abnormal activation of the innate immune system is a common feature of autoimmune and chronic inflammatory diseases. Since their identification as a separate family of leukocytes, innate lymphoid cells (ILCs) have emerged as important effector cells of the innate immune system. Alterations in ILC function and subtype distribution have been observed in a variety of immune-mediated diseases in humans and evidence from experimental models suggests a subtype specific role of ILCs in the pathophysiology of autoimmune inflammation. In this review, we discuss recent advances in the understanding of ILC biology in autoimmune and chronic inflammatory disorders, including multiple sclerosis, inflammatory bowel diseases, psoriasis, and rheumatic diseases, with a special focus on the potential of ILCs as therapeutic targets for the development of novel treatment strategies in humans.

  1. Experimental autoimmune myasthenia gravis may occur in the context of a polarized Th1- or Th2-type immune response in rats

    DEFF Research Database (Denmark)

    Saoudi, A; Bernard, I; Hoedemaekers, A

    1999-01-01

    Experimental autoimmune myasthenia gravis (EAMG) is a T cell-dependent, Ab-mediated autoimmune disease induced in rats by a single immunization with acetylcholine receptor (AChR). Although polarized Th1 responses have been shown to be crucial for the development of mouse EAMG, the role of Th cell...

  2. Galectin-3 in autoimmunity and autoimmune diseases.

    Science.gov (United States)

    de Oliveira, Felipe L; Gatto, Mariele; Bassi, Nicola; Luisetto, Roberto; Ghirardello, Anna; Punzi, Leonardo; Doria, Andrea

    2015-08-01

    Galectin-3 (gal-3) is a β-galactoside-binding lectin, which regulates cell-cell and extracellular interactions during self/non-self-antigen recognition and cellular activation, proliferation, differentiation, migration and apoptosis. It plays a significant role in cellular and tissue pathophysiology by organizing niches that drive inflammation and immune responses. Gal-3 has some therapeutic potential in several diseases, including chronic inflammatory disorders, cancer and autoimmune diseases. Gal-3 exerts a broad spectrum of functions which differs according to its intra- or extracellular localization. Recombinant gal-3 strategy has been used to identify potential mode of action of gal-3; however, exogenous gal-3 may not reproduce the functions of the endogenous gal-3. Notably, gal-3 induces monocyte-macrophage differentiation, interferes with dendritic cell fate decision, regulates apoptosis on T lymphocytes and inhibits B-lymphocyte differentiation into immunoglobulin secreting plasma cells. Considering the influence of these cell populations in the pathogenesis of several autoimmune diseases, gal-3 seems to play a role in development of autoimmunity. Gal-3 has been suggested as a potential therapeutic agent in patients affected with some autoimmune disorders. However, the precise role of gal-3 in driving the inflammatory process in autoimmune or immune-mediated disorders remains elusive. Here, we reviewed the involvement of gal-3 in cellular and tissue events during autoimmune and immune-mediated inflammatory diseases. © 2015 by the Society for Experimental Biology and Medicine.

  3. Regulatory T cells control strain specific resistance to Experimental Autoimmune Prostatitis

    Science.gov (United States)

    Breser, Maria L.; Lino, Andreia C.; Motrich, Ruben D.; Godoy, Gloria J.; Demengeot, Jocelyne; Rivero, Virginia E.

    2016-01-01

    Susceptibility to autoimmune diseases results from the encounter of a complex and long evolved genetic context with a no less complex and changing environment. Major actors in maintaining health are regulatory T cells (Treg) that primarily dampen a large subset of autoreactive lymphocytes escaping thymic negative selection. Here, we directly asked whether Treg participate in defining susceptibility and resistance to Experimental Autoimmune Prostatitis (EAP). We analyzed three common laboratory strains of mice presenting with different susceptibility to autoimmune prostatitis upon immunization with prostate proteins. The NOD, the C57BL/6 and the BALB/c mice that can be classified along a disease score ranging from severe, mild and to undetectable, respectively. Upon mild and transient depletion of Treg at the induction phase of EAP, each model showed an increment along this score, most remarkably with the BALB/c mice switching from a resistant to a susceptible phenotype. We further show that disease associates with the upregulation of CXCR3 expression on effector T cells, a process requiring IFNγ. Together with recent advances on environmental factors affecting Treg, these findings provide a likely cellular and molecular explanation to the recent rise in autoimmune diseases incidence. PMID:27624792

  4. Systemic Toll-like receptor stimulation suppresses experimental allergic asthma and autoimmune diabetes in NOD mice.

    Directory of Open Access Journals (Sweden)

    Aude Aumeunier

    Full Text Available BACKGROUND: Infections may be associated with exacerbation of allergic and autoimmune diseases. Paradoxically, epidemiological and experimental data have shown that some microorganisms can also prevent these pathologies. This observation is at the origin of the hygiene hypothesis according to which the decline of infections in western countries is at the origin of the increased incidence of both Th1-mediated autoimmune diseases and Th2-mediated allergic diseases over the last decades. We have tested whether Toll-like receptor (TLR stimulation can recapitulate the protective effect of infectious agents on allergy and autoimmunity. METHODS AND FINDINGS: Here, we performed a systematic study of the disease-modifying effects of a set of natural or synthetic TLR agonists using two experimental models, ovalbumin (OVA-induced asthma and spontaneous autoimmune diabetes, presenting the same genetic background of the non obese diabetic mouse (NOD that is highly susceptible to both pathologies. In the same models, we also investigated the effect of probiotics. Additionally, we examined the effect of the genetic invalidation of MyD88 on the development of allergic asthma and spontaneous diabetes. We demonstrate that multiple TLR agonists prevent from both allergy and autoimmunity when administered parenterally. Probiotics which stimulate TLRs also protect from these two diseases. The physiological relevance of these findings is further suggested by the major acceleration of OVA-induced asthma in MyD88 invalidated mice. Our results strongly indicate that the TLR-mediated effects involve immunoregulatory cytokines such as interleukin (IL-10 and transforming growth factor (TGF-beta and different subsets of regulatory T cells, notably CD4+CD25+FoxP3+ T cells for TLR4 agonists and NKT cells for TLR3 agonists. CONCLUSIONS/SIGNIFICANCE: These observations demonstrate that systemic administration of TLR ligands can suppress both allergic and autoimmune responses

  5. Phenotype of Antigen Unexperienced TH Cells in the Inflamed Central Nervous System in Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Franck, Sophia; Paterka, Magdalena; Birkenstock, Jerome; Zipp, Frauke; Siffrin, Volker; Witsch, Esther

    2017-06-01

    Multiple sclerosis is a chronic, disseminated inflammation of the central nervous system which is thought to be driven by autoimmune T cells. Genetic association studies in multiple sclerosis and a large number of studies in the animal model of the disease support a role for effector/memory T helper cells. However, the mechanisms underlying relapses, remission and chronic progression in multiple sclerosis or the animal model experimental autoimmune encephalomyelitis, are not clear. In particular, there is only scarce information on the role of central nervous system-invading naive T helper cells in these processes. By applying two-photon laser scanning microscopy we could show in vivo that antigen unexperienced T helper cells migrated into the deep parenchyma of the inflamed central nervous system in experimental autoimmune encephalomyelitis, independent of their antigen specificity. Using flow cytometric analyses of central nervous system-derived lymphocytes we found that only antigen-specific, formerly naive T helper cells became activated during inflammation of the central nervous system encountering their corresponding antigen.

  6. In vivo evidence for CD4+ and CD8+ suppressor T cells in vaccination-induced suppression of murine experimental autoimmune thyroiditis

    International Nuclear Information System (INIS)

    Flynn, J.C.; Kong, Y.C.

    1991-01-01

    In several experimental autoimmune diseases, including experimental autoimmune thyroiditis (EAT), vaccination with attenuated autoantigen-specific T cells has provided protection against subsequent induction of disease. However, the mechanism(s) of vaccination-induced suppression remains to be clarified. Since the authors have previously shown that suppression generated by pretreatment with mouse thyroglobulin (MTg) or thyroid-stimulating hormone in EAT is mediated by CD4+, not CD8+, suppressor T cells, they examined the role of T cell subsets in vaccination-induced suppression of EAT. Mice were vaccinated with irradiated, MTg-primed, and MTg-activated spleen cells and then challenged. Pretreatment with these cells suppressed EAT induced by immunization with MTg and adjuvant, but not by adoptive transfer of thyroiditogenic cells, suggesting a mechanism of afferent suppression. The activation of suppressor mechanisms did not require CD8+ cells, since mice depleted of CD8+ cells before vaccination showed reduced EAT comparable to control vaccinated mice. Furthermore, depletion of either the CD4+ or the CD8+ subset after vaccination did not significantly abrogate suppression. However, suppression was eliminated by the depletion of both CD4+ and CD8+ cells in vaccinated mice. These results provide evidence for the cooperative effects of CD4+ and CD8+ T cells in vaccination-induced suppression of EAT

  7. Exacerbation of spontaneous autoimmune nephritis following regulatory T cell depletion in B cell lymphoma 2-interacting mediator knock-out mice.

    Science.gov (United States)

    Wang, Y M; Zhang, G Y; Wang, Y; Hu, M; Zhou, J J; Sawyer, A; Cao, Q; Wang, Y; Zheng, G; Lee, V W S; Harris, D C H; Alexander, S I

    2017-05-01

    Regulatory T cells (T regs ) have been recognized as central mediators for maintaining peripheral tolerance and limiting autoimmune diseases. The loss of T regs or their function has been associated with exacerbation of autoimmune disease. However, the temporary loss of T regs in the chronic spontaneous disease model has not been investigated. In this study, we evaluated the role of T regs in a novel chronic spontaneous glomerulonephritis model of B cell lymphoma 2-interacting mediator (Bim) knock-out mice by transient depleting T regs . Bim is a pro-apoptotic member of the B cell lymphoma 2 (Bcl-2) family. Bim knock-out (Bim -/- ) mice fail to delete autoreactive T cells in thymus, leading to chronic spontaneous autoimmune kidney disease. We found that T reg depletion in Bim -/- mice exacerbated the kidney injury with increased proteinuria, impaired kidney function, weight loss and greater histological injury compared with wild-type mice. There was a significant increase in interstitial infiltrate of inflammatory cells, antibody deposition and tubular damage. Furthermore, the serum levels of cytokines interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17α, interferon (IFN)-γ and tumour necrosis factor (TNF)-α were increased significantly after T reg depletion in Bim -/- mice. This study demonstrates that transient depletion of T regs leads to enhanced self-reactive T effector cell function followed by exacerbation of kidney disease in the chronic spontaneous kidney disease model of Bim-deficient mice. © 2017 British Society for Immunology.

  8. Vorinostat, a histone deacetylase inhibitor, suppresses dendritic cell function and ameliorates experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Ge, Zhenzhen; Da, Yurong; Xue, Zhenyi; Zhang, Kai; Zhuang, Hao; Peng, Meiyu; Li, Yan; Li, Wen; Simard, Alain; Hao, Junwei; Yao, Zhi; Zhang, Rongxin

    2013-03-01

    Vorinostat, a histone deacetylase inhibitor, has been used clinically as an anticancer drug and also has immunosuppressive properties. However, the underlying mechanisms of effects of vorinostat on central nervous system (CNS) inflammatory diseases remain incomplete. Here, this study investigates the effects of vorinostat on human CD14(+) monocyte-derived dendritic cells (DCs) and mouse immature DC in vitro. Furthermore, we explore the therapeutic effects and cellular mechanisms of vorinostat on animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) in vivo. Our findings demonstrate that vorinostat inhibited human CD14(+) monocyte-derived DCs differentiation, maturation, endocytosis, and further inhibited mDCs' stimulation of allogeneic T-cell proliferation. In addition, vorinostat inhibited DC-directed Th1- (Type 1T helper) and Th17-polarizing cytokine production. Furthermore, vorinostat ameliorated Th1- and Th17-mediated EAE by reducing CNS inflammation and demyelination. What's more, Th1 and Th17 cell functions were suppressed in vorinostat-treated EAE mice. Finally, vorinostat suppressed expression of costimulatory molecules of DC in EAE mice. These suggest therapeutic effects of vorinostat on EAE which may by suppress DCs and DCs-mediated Th1 and Th17 cell functions. Our findings warrant further investigation in the potential of vorinostat for the treatment of human multiple sclerosis. Copyright © 2012. Published by Elsevier Inc.

  9. Transplantation of autologous adipose stem cells lacks therapeutic efficacy in the experimental autoimmune encephalomyelitis model.

    Directory of Open Access Journals (Sweden)

    Xiujuan Zhang

    Full Text Available Multiple sclerosis (MS, characterized by chronic inflammation, demyelination, and axonal damage, is a complicated neurological disease of the human central nervous system. Recent interest in adipose stromal/stem cell (ASCs for the treatment of CNS diseases has promoted further investigation in order to identify the most suitable ASCs. To investigate whether MS affects the biologic properties of ASCs and whether autologous ASCs from MS-affected sources could serve as an effective source for stem cell therapy, cells were isolated from subcutaneous inguinal fat pads of mice with established experimental autoimmune encephalomyelitis (EAE, a murine model of MS. ASCs from EAE mice and their syngeneic wild-type mice were cultured, expanded, and characterized for their cell morphology, surface antigen expression, osteogenic and adipogenic differentiation, colony forming units, and inflammatory cytokine and chemokine levels in vitro. Furthermore, the therapeutic efficacy of the cells was assessed in vivo by transplantation into EAE mice. The results indicated that the ASCs from EAE mice displayed a normal phenotype, typical MSC surface antigen expression, and in vitro osteogenic and adipogenic differentiation capacity, while their osteogenic differentiation capacity was reduced in comparison with their unafflicted control mice. The ASCs from EAE mice also demonstrated increased expression of pro-inflammatory cytokines and chemokines, specifically an elevation in the expression of monocyte chemoattractant protein-1 and keratin chemoattractant. In vivo, infusion of wild type ASCs significantly ameliorate the disease course, autoimmune mediated demyelination and cell infiltration through the regulation of the inflammatory responses, however, mice treated with autologous ASCs showed no therapeutic improvement on the disease progression.

  10. Autoimmune Th17 Cells Induced Synovial Stromal and Innate Lymphoid Cell Secretion of the Cytokine GM-CSF to Initiate and Augment Autoimmune Arthritis.

    Science.gov (United States)

    Hirota, Keiji; Hashimoto, Motomu; Ito, Yoshinaga; Matsuura, Mayumi; Ito, Hiromu; Tanaka, Masao; Watanabe, Hitomi; Kondoh, Gen; Tanaka, Atsushi; Yasuda, Keiko; Kopf, Manfred; Potocnik, Alexandre J; Stockinger, Brigitta; Sakaguchi, Noriko; Sakaguchi, Shimon

    2018-06-19

    Despite the importance of Th17 cells in autoimmune diseases, it remains unclear how they control other inflammatory cells in autoimmune tissue damage. Using a model of spontaneous autoimmune arthritis, we showed that arthritogenic Th17 cells stimulated fibroblast-like synoviocytes via interleukin-17 (IL-17) to secrete the cytokine GM-CSF and also expanded synovial-resident innate lymphoid cells (ILCs) in inflamed joints. Activated synovial ILCs, which expressed CD25, IL-33Ra, and TLR9, produced abundant GM-CSF upon stimulation by IL-2, IL-33, or CpG DNA. Loss of GM-CSF production by either ILCs or radio-resistant stromal cells prevented Th17 cell-mediated arthritis. GM-CSF production by Th17 cells augmented chronic inflammation but was dispensable for the initiation of arthritis. We showed that GM-CSF-producing ILCs were present in inflamed joints of rheumatoid arthritis patients. Thus, a cellular cascade of autoimmune Th17 cells, ILCs, and stromal cells, via IL-17 and GM-CSF, mediates chronic joint inflammation and can be a target for therapeutic intervention. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Regulatory T cells and B cells: implication on autoimmune diseases

    OpenAIRE

    Wang, Ping; Zheng, Song Guo

    2013-01-01

    The regulatory T (Treg) cells play an important role in the maintenance of homeostasis and the prevention of autoimmune diseases. Although most studies are focusing on the role of Treg cells in T cells and T cells-mediated diseases, these cells also directly affect B cells and other non-T cells. This manuscript updates the role of Treg cells on the B cells and B cell-mediated diseases. In addition, the mechanisms whereby Treg cells suppress B cell responses have been discussed.

  12. Regulation of Th1 cells and experimental autoimmune encephalomyelitis (EAE) by glycogen synthase kinase-3

    Science.gov (United States)

    Beurel, Eléonore; Kaidanovich-Beilin, Oksana; Yeh, Wen-I; Song, Ling; Palomo, Valle; Michalek, Suzanne M.; Woodgett, James R.; Harrington, Laurie E.; Eldar-Finkelman, Hagit; Martinez, Ana; Jope, Richard S.

    2013-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a rodent model of multiple sclerosis (MS), a debilitating autoimmune disease of the central nervous system, for which only limited therapeutic interventions are available. Since MS is mediated in part by autoreactive T cells, particularly Th17 and Th1 cells, in the present study, we tested if inhibitors of glycogen synthase kinase-3 (GSK3), previously reported to reduce Th17 cell generation, also alter Th1 cell production or ameliorate EAE. GSK3 inhibitors were found to impede the production of Th1 cells by reducing STAT1 activation. Molecularly reducing the expression of either of the two GSK3 isoforms demonstrated that Th17 cell production was sensitive to reduced levels of GSK3β, and Th1 cell production was inhibited in GSK3α-deficient cells. Administration of the selective GSK3 inhibitors TDZD-8, VP2.51, VP0.7, or L803-mts, significantly reduced the clinical symptoms of MOG35-55-induced EAE in mice, nearly eliminating the chronic progressive phase, and reduced the number of Th17 and Th1 cells in the spinal cord. Administration of TDZD-8 or L803-mts after the initial disease episode ameliorated clinical symptoms in a relapsing/remitting model of PLP139-151-induced EAE. Furthermore, deletion of GSK3β specifically in T cells was sufficient to ameliorate MOG35-55-induced EAE. These results demonstrate isoform-selective effects of GSK3 on T cell generation, therapeutic effects of GSK3 inhibitors in EAE, and that GSK3 inhibition in T cells is sufficient to reduce the severity of EAE, suggesting that GSK3 may be a feasible target for developing new therapeutic interventions for MS. PMID:23606540

  13. Green tea EGCG, T-cell function, and T-cell-mediated autoimmune encephalomyelitis

    Science.gov (United States)

    Autoimmune diseases are common, disabling immune disorders affecting millions of people. Recent studies indicate that dysregulated balance of different CD4+ T-cell subpopulations plays a key role in immune pathogenesis of several major autoimmune diseases. Green tea and its active ingredient, epigal...

  14. The split personality of NKT cells in malignancy, autoimmune and allergic disorders

    Science.gov (United States)

    Subleski, Jeff J; Jiang, Qun; Weiss, Jonathan M; Wiltrout, Robert H

    2011-01-01

    NKT cells are a heterogeneous subset of specialized, self-reactive T cells, with innate and adaptive immune properties, which allow them to bridge innate and adaptive immunity and profoundly influence autoimmune and malignant disease outcomes. NKT cells mediate these activities through their ability to rapidly express pro- and anti-inflammatory cytokines that influence the type and magnitude of the immune response. Not only do NKT cells regulate the functions of other cell types, but experimental evidence has found NKT cell subsets can modulate the functions of other NKT subsets. Depending on underlying mechanisms, NKT cells can inhibit or exacerbate autoimmunity and malignancy, making them potential targets for disease intervention. NKT cells can respond to foreign and endogenous antigenic glycolipid signals that are expressed during pathogenic invasion or ongoing inflammation, respectively, allowing them to rapidly react to and influence a broad array of diseases. In this article we review the unique development and activation pathways of NKT cells and focus on how these attributes augment or exacerbate autoimmune disorders and malignancy. We also examine the growing evidence that NKT cells are involved in liver inflammatory conditions that can contribute to the development of malignancy. PMID:21995570

  15. The split personality of NKT cells in malignancy, autoimmune and allergic disorders.

    Science.gov (United States)

    Subleski, Jeff J; Jiang, Qun; Weiss, Jonathan M; Wiltrout, Robert H

    2011-10-01

    NKT cells are a heterogeneous subset of specialized, self-reactive T cells, with innate and adaptive immune properties, which allow them to bridge innate and adaptive immunity and profoundly influence autoimmune and malignant disease outcomes. NKT cells mediate these activities through their ability to rapidly express pro- and anti-inflammatory cytokines that influence the type and magnitude of the immune response. Not only do NKT cells regulate the functions of other cell types, but experimental evidence has found NKT cell subsets can modulate the functions of other NKT subsets. Depending on underlying mechanisms, NKT cells can inhibit or exacerbate autoimmunity and malignancy, making them potential targets for disease intervention. NKT cells can respond to foreign and endogenous antigenic glycolipid signals that are expressed during pathogenic invasion or ongoing inflammation, respectively, allowing them to rapidly react to and influence a broad array of diseases. In this article we review the unique development and activation pathways of NKT cells and focus on how these attributes augment or exacerbate autoimmune disorders and malignancy. We also examine the growing evidence that NKT cells are involved in liver inflammatory conditions that can contribute to the development of malignancy.

  16. IFN-γ signaling to astrocytes protects from autoimmune mediated neurological disability.

    Directory of Open Access Journals (Sweden)

    Claudia Hindinger

    Full Text Available Demyelination and axonal degeneration are determinants of progressive neurological disability in patients with multiple sclerosis (MS. Cells resident within the central nervous system (CNS are active participants in development, progression and subsequent control of autoimmune disease; however, their individual contributions are not well understood. Astrocytes, the most abundant CNS cell type, are highly sensitive to environmental cues and are implicated in both detrimental and protective outcomes during autoimmune demyelination. Experimental autoimmune encephalomyelitis (EAE was induced in transgenic mice expressing signaling defective dominant-negative interferon gamma (IFN-γ receptors on astrocytes to determine the influence of inflammation on astrocyte activity. Inhibition of IFN-γ signaling to astrocytes did not influence disease incidence, onset, initial progression of symptoms, blood brain barrier (BBB integrity or the composition of the acute CNS inflammatory response. Nevertheless, increased demyelination at peak acute disease in the absence of IFN-γ signaling to astrocytes correlated with sustained clinical symptoms. Following peak disease, diminished clinical remission, increased mortality and sustained astrocyte activation within the gray matter demonstrate a critical role of IFN-γ signaling to astrocytes in neuroprotection. Diminished disease remission was associated with escalating demyelination, axonal degeneration and sustained inflammation. The CNS infiltrating leukocyte composition was not altered; however, decreased IL-10 and IL-27 correlated with sustained disease. These data indicate that astrocytes play a critical role in limiting CNS autoimmune disease dependent upon a neuroprotective signaling pathway mediated by engagement of IFN-γ receptors.

  17. The interleukin-15 system suppresses T cell-mediated autoimmunity by regulating negative selection and nT(H)17 cell homeostasis in the thymus.

    Science.gov (United States)

    Hou, Mau-Sheng; Huang, Shih-Ting; Tsai, Ming-Han; Yen, Ching-Cheng; Lai, Yein-Gei; Liou, Yae-Huei; Lin, Chih-Kung; Liao, Nan-Shih

    2015-01-01

    The interleukin-15 (IL-15) system is important for regulating both innate and adaptive immune responses, however, its role in autoimmune disease remained unclear. Here we found that Il15(-/-) and Il15ra(-/-) mice spontaneously developed late-onset autoimmune phenotypes. CD4(+) T cells of the knockout mice showed elevated autoreactivity as demonstrated by the induction of lymphocyte infiltration in the lacrimal and salivary glands when transferred into nude mice. The antigen-presenting cells in the thymic medullary regions expressed IL-15 and IL-15Rα, whose deficiency resulted in insufficient negative selection and elevated number of natural IL-17A-producing CD4(+) thymocytes. These findings reveal previously unknown functions of the IL-15 system in thymocyte development, and thus a new layer of regulation in T cell-mediated autoimmunity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Dang, Shipeng; Xu, Huanbai; Xu, Congfeng; Cai, Wei; Li, Qian; Cheng, Yiji; Jin, Min; Wang, Ru-Xing; Peng, Yongde; Zhang, Yi; Wu, Changping; He, Xiaozhou; Wan, Bing; Zhang, Yanyun

    2014-07-01

    Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4(+) T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy.

  19. cells targeting a neuronal paraneoplastic antigen mediate tumor rejection and trigger CNS autoimmunity with humoral activation.

    Science.gov (United States)

    Blachère, Nathalie E; Orange, Dana E; Santomasso, Bianca D; Doerner, Jessica; Foo, Patricia K; Herre, Margaret; Fak, John; Monette, Sébastien; Gantman, Emily C; Frank, Mayu O; Darnell, Robert B

    2014-11-01

    Paraneoplastic neurologic diseases (PND) involving immune responses directed toward intracellular antigens are poorly understood. Here, we examine immunity to the PND antigen Nova2, which is expressed exclusively in central nervous system (CNS) neurons. We hypothesized that ectopic expression of neuronal antigen in the periphery could incite PND. In our C57BL/6 mouse model, CNS antigen expression limits antigen-specific CD4+ and CD8+ T-cell expansion. Chimera experiments demonstrate that this tolerance is mediated by antigen expression in nonhematopoietic cells. CNS antigen expression does not limit tumor rejection by adoptively transferred transgenic T cells but does limit the generation of a memory population that can be expanded upon secondary challenge in vivo. Despite mediating cancer rejection, adoptively transferred transgenic T cells do not lead to paraneoplastic neuronal targeting. Preliminary experiments suggest an additional requirement for humoral activation to induce CNS autoimmunity. This work provides evidence that the requirements for cancer immunity and neuronal autoimmunity are uncoupled. Since humoral immunity was not required for tumor rejection, B-cell targeting therapy, such as rituximab, may be a rational treatment option for PND that does not hamper tumor immunity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hepatocyte growth factor limits autoimmune neuroinflammation via glucocorticoid-induced leucine zipper expression in dendritic cells.

    Science.gov (United States)

    Benkhoucha, Mahdia; Molnarfi, Nicolas; Dunand-Sauthier, Isabelle; Merkler, Doron; Schneiter, Gregory; Bruscoli, Stefano; Riccardi, Carlo; Tabata, Yasuhiko; Funakoshi, Hiroshi; Nakamura, Toshikazu; Reith, Walter; Santiago-Raber, Marie-Laure; Lalive, Patrice H

    2014-09-15

    Autoimmune neuroinflammation, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), a prototype for T cell-mediated autoimmunity, is believed to result from immune tolerance dysfunction leading to demyelination and substantial neurodegeneration. We previously showed that CNS-restricted expression of hepatocyte growth factor (HGF), a potent neuroprotective factor, reduced CNS inflammation and clinical deficits associated with EAE. In this study, we demonstrate that systemic HGF treatment ameliorates EAE through the development of tolerogenic dendritic cells (DCs) with high expression levels of glucocorticoid-induced leucine zipper (GILZ), a transcriptional repressor of gene expression and a key endogenous regulator of the inflammatory response. RNA interference-directed neutralization of GILZ expression by DCs suppressed the induction of tolerance caused by HGF. Finally, adoptive transfer of HGF-treated DCs from wild-type but not GILZ gene-deficient mice potently mediated functional recovery in recipient mice with established EAE through effective modulation of autoaggressive T cell responses. Altogether, these results show that by inducing GILZ in DCs, HGF reproduces the mechanism of immune regulation induced by potent immunomodulatory factors such as IL-10, TGF-β1, and glucocorticoids and therefore that HGF therapy may have potential in the treatment of autoimmune dysfunctions. Copyright © 2014 by The American Association of Immunologists, Inc.

  1. Therapeutic Potential of Invariant Natural Killer T Cells in Autoimmunity

    Directory of Open Access Journals (Sweden)

    Luc Van Kaer

    2018-03-01

    Full Text Available Tolerance against self-antigens is regulated by a variety of cell types with immunoregulatory properties, such as CD1d-restricted invariant natural killer T (iNKT cells. In many experimental models of autoimmunity, iNKT cells promote self-tolerance and protect against autoimmunity. These findings are supported by studies with patients suffering from autoimmune diseases. Based on these studies, the therapeutic potential of iNKT cells in autoimmunity has been explored. Many of these studies have been performed with the potent iNKT cell agonist KRN7000 or its structural variants. These findings have generated promising results in several autoimmune diseases, although mechanisms by which iNKT cells modulate autoimmunity remain incompletely understood. Here, we will review these preclinical studies and discuss the prospects for translating their findings to patients suffering from autoimmune diseases.

  2. Adiponectin Suppresses T Helper 17 Cell Differentiation and Limits Autoimmune CNS Inflammation via the SIRT1/PPARγ/RORγt Pathway.

    Science.gov (United States)

    Zhang, Kai; Guo, Yawei; Ge, Zhenzhen; Zhang, Zhihui; Da, Yurong; Li, Wen; Zhang, Zimu; Xue, Zhenyi; Li, Yan; Ren, Yinghui; Jia, Long; Chan, Koon-Ho; Yang, Fengrui; Yan, Jun; Yao, Zhi; Xu, Aimin; Zhang, Rongxin

    2017-09-01

    T helper 17 (Th17) cells are vital components of the adaptive immune system involved in the pathogenesis of most autoimmune and inflammatory syndromes, and adiponectin(ADN) is correlated with inflammatory diseases such as multiple sclerosis (MS) and type II diabetes. However, the regulatory effects of adiponectin on pathogenic Th17 cell and Th17-mediated autoimmune central nervous system (CNS) inflammation are not fully understood. In this study, we demonstrated that ADN could inhibit Th1 and Th17 but not Th2 cells differentiation in vitro. In the in vivo study, we demonstrated that ADN deficiency promoted CNS inflammation and demyelination and exacerbated experimental autoimmune encephalomyelitis (EAE), an animal model of human MS. Furthermore, ADN deficiency increased the Th1 and Th17 cell cytokines of both the peripheral immune system and CNS in mice suffering from EAE. It is worth mentioning that ADN deficiency predominantly promoted the antigen-specific Th17 cells response in autoimmune encephalomyelitis. In addition, in vitro and in vivo, ADN upregulated sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ (PPARγ) and inhibited retinoid-related orphan receptor-γt (RORγt); the key transcription factor during Th17 cell differentiation. These results systematically uncovered the role and mechanism of adiponectin on pathogenic Th17 cells and suggested that adiponectin could inhibit Th17 cell-mediated autoimmune CNS inflammation.

  3. Key metalloproteinases are expressed by specific cell types in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Toft-Hansen, Henrik; Nuttall, Robert K; Edwards, Dylan R

    2004-01-01

    animal model, experimental autoimmune encephalomyelitis (EAE). We used real-time RT-PCR to profile the expression of all 22 known mouse MMPs, seven ADAMs, and all four known TIMPs in spinal cord from SJL/J mice and mice with adoptively transferred myelin basic protein (MBP)-specific EAE. A significant...... cellular sources of these strongly affected proteins in the inflamed CNS, we isolated macrophages, granulocytes, microglia, and T cells by cell sorting from the CNS of mice with EAE and analyzed their expression by real-time RT-PCR. This identified macrophages as a major source of MMP-12 and TIMP-1...

  4. Immunoglobulin E-Mediated Autoimmunity

    Directory of Open Access Journals (Sweden)

    Marcus Maurer

    2018-04-01

    Full Text Available The study of autoimmunity mediated by immunoglobulin E (IgE autoantibodies, which may be termed autoallergy, is in its infancy. It is now recognized that systemic lupus erythematosus, bullous pemphigoid (BP, and chronic urticaria, both spontaneous and inducible, are most likely to be mediated, at least in part, by IgE autoantibodies. The situation in other conditions, such as autoimmune uveitis, rheumatoid arthritis, hyperthyroid Graves’ disease, autoimmune pancreatitis, and even asthma, is far less clear but evidence for autoallergy is accumulating. To be certain of an autoallergic mechanism, it is necessary to identify both IgE autoantibodies and their targets as has been done with the transmembrane protein BP180 and the intracellular protein BP230 in BP and IL-24 in chronic spontaneous urticaria. Also, IgE-targeted therapies, such as anti-IgE, must have been shown to be of benefit to patients as has been done with both of these conditions. This comprehensive review of the literature on IgE-mediated autoallergy focuses on three related questions. What do we know about the prevalence of IgE autoantibodies and their targets in different diseases? What do we know about the relevance of IgE autoantibodies in different diseases? What do we know about the cellular and molecular effects of IgE autoantibodies? In addition to providing answers to these questions, based on a broad review of the literature, we outline the current gaps of knowledge in our understanding of IgE autoantibodies and describe approaches to address them.

  5. The murine gammaherpesvirus-68 chemokine-binding protein M3 inhibits experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Millward, Jason M; Holst, Peter J; Høgh-Petersen, Mette

    2010-01-01

    M3 (AdM3) directly to the CNS to evaluate the capacity of this protein to inhibit neuroinflammation using the experimental autoimmune encephalomyelitis (EAE) model. Treatment with the AdM3 vector significantly reduced the clinical severity of EAE, attenuated CNS histopathology, and reduced numbers......Chemokines are critical mediators of immune cell entry into the central nervous system (CNS), as occurs in neuroinflammatory disease such as multiple sclerosis. Chemokines are also implicated in the immune response to viral infections. Many viruses encode proteins that mimic or block chemokine...... of immune cells infiltrating the CNS. These results suggest that M3 may represent a novel therapeutic approach to neuroinflammatory disease....

  6. Different Mechanisms of Inflammation Induced in Virus and Autoimmune-Mediated Models of Multiple Sclerosis in C57BL6 Mice

    Directory of Open Access Journals (Sweden)

    Abhinoy Kishore

    2013-01-01

    Full Text Available Multiple sclerosis (MS is an inflammatory demyelinating disease of the human central nervous system (CNS. Neurotropic demyelinating strain of MHV (MHV-A59 or its isogenic recombinant strain RSA59 induces MS-like disease in mice mediated by microglia, along with a small population of T cells. The mechanism of demyelination is at least in part due to microglia-mediated myelin stripping, with some direct axonal injury. Immunization with myelin oligodendrocyte glycoprotein (MOG induces experimental autoimmune encephalomyelitis (EAE, a mainly CD4+ T-cell-mediated disease, although CD8+ T cells may play a significant role in demyelination. It is possible that both autoimmune and nonimmune mechanisms such as direct viral toxicity may induce MS. Our study directly compares CNS pathology in autoimmune and viral-induced MS models. Mice with viral-induced and EAE demyelinating diseases demonstrated similar patterns and distributions of demyelination that accumulated over the course of the disease. However, significant differences in acute inflammation were noted. Inflammation was restricted mainly to white matter at all times in EAE, whereas inflammation initially largely involved gray matter in acute MHV-induced disease and then is subsequently localized only in white matter in the chronic disease phase. The presence of dual mechanisms of demyelination may be responsible for the failure of immunosuppression to promote long-term remission in many MS patients.

  7. Genetic resistance in experimental autoimmune encephalomyelitis. I. Analysis of the mechanism of LeR resistance using radiation chimeras

    International Nuclear Information System (INIS)

    Pelfrey, C.M.; Waxman, F.J.; Whitacre, C.C.

    1989-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a cell-mediated autoimmune disease of the central nervous system that has been extensively studied in the rat. The Lewis rat is highly susceptible to the induction of EAE, while the Lewis resistant (LeR) rat is known to be resistant. In this paper, we demonstrate that the LeR rat, which was derived from the Lewis strain by inbreeding of fully resistant animals, is histocompatible with the Lewis strain. Radiation chimeras, a tool for distinguishing between immunologic and nonimmunologic resistance mechanisms, were utilized to analyze the cellular mechanisms involved in genetic resistance to EAE. By transplanting bone marrow cells from LeR rats into irradiated Lewis recipients, Lewis rats were rendered resistant to EAE induction. Likewise, transplanting Lewis bone marrow cells into irradiated LeR recipients rendered LeR rats susceptible. Mixed lymphoid cell chimeras using bone marrow, spleen, and thymus cells in Lewis recipient rats revealed individual lymphoid cell types and cell interactions that significantly affected the incidence and severity of EAE. Our results suggest that LeR resistance is mediated by hematopoietic/immune cells, and that cells located in the spleen appear to play a critical role in the resistance/susceptibility to EAE induction. Depletion of splenic adherent cells did not change the patterns of EAE resistance. In vivo cell mixing studies suggested the presence of a suppressor cell population in the LeR spleen preparations which exerted an inhibitory effect on Lewis autoimmune responses. Thus, the mechanism of LeR resistance appears to be different from that in other EAE-resistant animals

  8. Erythropoietin-derived nonerythropoietic peptide ameliorates experimental autoimmune neuritis by inflammation suppression and tissue protection.

    Directory of Open Access Journals (Sweden)

    Yuqi Liu

    Full Text Available Experimental autoimmune neuritis (EAN is an autoantigen-specific T-cell-mediated disease model for human demyelinating inflammatory disease of the peripheral nervous system. Erythropoietin (EPO has been known to promote EAN recovery but its haematopoiesis stimulating effects may limit its clinic application. Here we investigated the effects and potential mechanisms of an EPO-derived nonerythropoietic peptide, ARA 290, in EAN. Exogenous ARA 290 intervention greatly improved EAN recovery, improved nerve regeneration and remyelination, and suppressed nerve inflammation. Furthermore, haematopoiesis was not induced by ARA 290 during EAN treatment. ARA 290 intervention suppressed lymphocyte proliferation and altered helper T cell differentiation by inducing increase of Foxp3+/CD4+ regulatory T cells and IL-4+/CD4+ Th2 cells and decrease of IFN-γ+/CD4+ Th1 cells in EAN. In addition, ARA 290 inhibited inflammatory macrophage activation and promoted its phagocytic activity. In vitro, ARA 290 was shown to promote Schwann cell proliferation and inhibit its inflammatory activation. In summary, our data demonstrated that ARA 290 could effectively suppress EAN by attenuating inflammation and exerting direct cell protection, indicating that ARA 290 could be a potent candidate for treatment of autoimmune neuropathies.

  9. Regulatory dendritic cells in autoimmunity: A comprehensive review.

    Science.gov (United States)

    Liu, Juan; Cao, Xuetao

    2015-09-01

    Dendritic cells (DCs) are professional antigen-presenting cells (APC) with significant phenotypic heterogeneity and functional plasticity. DCs play crucial roles in initiating effective adaptive immune responses for elimination of invading pathogens and also in inducing immune tolerance toward harmless components to maintain immune homeostasis. The regulatory capacity of DCs depends on their immature state and distinct subsets, yet not restricted to the immature state and one specialized subset. The tolerogenicity of DC is controlled by a complex network of environmental signals and cellular intrinsic mechanisms. Regulatory DCs play an important role in the maintenance of immunological tolerance via the induction of T cell unresponsiveness or apoptosis, and generation of regulatory T cells. DCs play essential roles in driving autoimmunity via promoting the activation of effector T cells such as T helper 1 and T helper 17 cells, and/or suppressing the generation of regulatory T cells. Besides, a breakdown of DCs-mediated tolerance due to abnormal environmental signals or breakdown of intrinsic regulatory mechanisms is closely linked with the pathogenesis of autoimmune diseases. Novel immunotherapy taking advantage of the tolerogenic potential of regulatory DCs is being developed for treatment of autoimmune diseases. In this review, we will describe the current understanding on the generation of regulatory DC and the role of regulatory DCs in promoting tolerogenic immune responses and suppressing autoimmune responses. The emerging roles of DCs dysfunction in the pathogenesis of autoimmune diseases and the potential application of regulatory DCs in the treatment of autoimmune diseases will also be discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Ionizing radiation and autoimmunity: Induction of autoimmune disease in mice by high dose fractionated total lymphoid irradiation and its prevention by inoculating normal T cells

    International Nuclear Information System (INIS)

    Sakaguchi, N.; Sakaguchi, S.; Miyai, K.

    1992-01-01

    Ionizing radiation can functionally alter the immune system and break self-tolerance. High dose (42.5 Gy), fractionated (2.5 Gy 17 times) total lymphoid irradiation (TLI) on mice caused various organ-specific autoimmune diseases, such as gastritis, thyroiditis, and orchitis, depending on the radiation dosages, the extent of lymphoid irradiation, and the genetic background of the mouse strains. Radiation-induced tissue damage is not the primary cause of the autoimmune disease because irradiation of the target organs alone failed to elicit the autoimmunity and shielding of the organs from irradiation was unable to prevent it. In contrast, irradiation of both the thymus and the peripheral lymphoid organs/tissues was required for efficient induction of autoimmune disease by TLI. TLI eliminated the majority of mature thymocytes and the peripheral T cells for 1 mo, and inoculation of spleen cell, thymocyte, or bone marrow cell suspensions (prepared from syngeneic nonirradiated mice) within 2 wk after TLI effectively prevented the autoimmune development. Depletion of T cells from the inocula abrogated the preventive activity. CD4 + T cells mediated the autoimmune prevention but CD8 + T cells did not. CD4 + T cells also appeared to mediate the TLI-induced autoimmune disease because CD4 + T cells from disease-bearing TLI mice adoptively transferred the autoimmune disease to syngeneic naive mice. Taken together, these results indicate that high dose, fractionated ionizing radiation on the lymphoid organs/tissues can cause autoimmune disease by affecting the T cell immune system, rather than the target self-Ags, presumably by altering T cell-dependent control of self-reactive T cells. 62 refs., 9 figs., 2 tabs

  11. 1,25-Dihydroxyvitamin D3 inhibits the differentiation and migration of T(H17 cells to protect against experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Jae-Hoon Chang

    Full Text Available BACKGROUND: Vitamin D(3, the most physiologically relevant form of vitamin D, is an essential organic compound that has been shown to have a crucial effect on the immune responses. Vitamin D(3 ameliorates the onset of the experimental autoimmune encephalomyelitis (EAE; however, the direct effect of vitamin D(3 on T cells is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In an in vitro system using cells from mice, the active form of vitamin D(3 (1,25-dihydroxyvitamin D(3 suppresses both interleukin (IL-17-producing T cells (T(H17 and regulatory T cells (Treg differentiation via a vitamin D receptor signal. The ability of 1,25-dihydroxyvitamin D(3 (1,25(OH(2D(3 to reduce the amount of IL-2 regulates the generation of Treg cells, but not T(H17 cells. Under T(H17-polarizing conditions, 1,25(OH(2D(3 helps to increase the numbers of IL-10-producing T cells, but 1,25(OH(2D(3's negative regulation of T(H17 development is still defined in the IL-10(-/- T cells. Although the STAT1 signal reciprocally affects the secretion of IL-10 and IL-17, 1,25(OH(2D(3 inhibits IL-17 production in STAT1(-/- T cells. Most interestingly, 1,25(OH(2D(3 negatively regulates CCR6 expression which might be essential for T(H17 cells to enter the central nervous system and initiate EAE. CONCLUSIONS/SIGNIFICANCE: Our present results in an experimental murine model suggest that 1,25(OH(2D(3 can directly regulate T cell differentiation and could be applied in preventive and therapeutic strategies for T(H17-mediated autoimmune diseases.

  12. Comparative Effects of Human Neural Stem Cells and Oligodendrocyte Progenitor Cells on the Neurobehavioral Disorders of Experimental Autoimmune Encephalomyelitis Mice

    Directory of Open Access Journals (Sweden)

    Dae-Kwon Bae

    2016-01-01

    Full Text Available Since multiple sclerosis (MS is featured with widespread demyelination caused by autoimmune response, we investigated the recovery effects of F3.olig2 progenitors, established by transducing human neural stem cells (F3 NSCs with Olig2 transcription factor, in myelin oligodendrocyte glycoprotein- (MOG- induced experimental autoimmune encephalomyelitis (EAE model mice. Six days after EAE induction, F3 or F3.olig2 cells (1 × 106/mouse were intravenously transplanted. MOG-injected mice displayed severe neurobehavioral deficits which were remarkably attenuated and restored by cell transplantation, in which F3.olig2 cells were superior to its parental F3 cells. Transplanted cells migrated to the injured spinal cord, matured to oligodendrocytes, and produced myelin basic proteins (MBP. The F3.olig2 cells expressed growth and neurotrophic factors including brain-derived neurotrophic factor (BDNF, nerve growth factor (NGF, ciliary neurotrophic factor (CNTF, and leukemia inhibitory factor (LIF. In addition, the transplanted cells markedly attenuated inflammatory cell infiltration, reduced cytokine levels in the spinal cord and lymph nodes, and protected host myelins. The results indicate that F3.olig2 cells restore neurobehavioral symptoms of EAE mice by regulating autoimmune inflammatory responses as well as by stimulating remyelination and that F3.olig2 progenitors could be a candidate for the cell therapy of demyelinating diseases including MS.

  13. Mast Cells and Innate Lymphoid Cells: Underappreciated Players in CNS Autoimmune Demyelinating Disease.

    Science.gov (United States)

    Brown, Melissa A; Weinberg, Rebecca B

    2018-01-01

    Multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis, are autoimmune CNS inflammatory diseases. As a result of a breakdown in the relatively impermeable blood-brain barrier (BBB) in affected individuals, myelin-specific CD4 + and CD8 + T cells gain entry into the immune privileged CNS and initiate myelin, oligodendrocyte, and nerve axon destruction. However, despite the absolute requirement for T cells, there is increasing evidence that innate immune cells also play critical amplifying roles in disease pathogenesis. By modulating the character and magnitude of the myelin-reactive T cell response and regulating BBB integrity, innate cells affect both disease initiation and progression. Two classes of innate cells, mast cells and innate lymphoid cells (ILCs), have been best studied in models of allergic and gastrointestinal inflammatory diseases. Yet, there is emerging evidence that these cell types also exert a profound influence in CNS inflammatory disease. Both cell types are residents within the meninges and can be activated early in disease to express a wide variety of disease-modifying cytokines and chemokines. In this review, we discuss how mast cells and ILCs can have either disease-promoting or -protecting effects on MS and other CNS inflammatory diseases and how sex hormones may influence this outcome. These observations suggest that targeting these cells and their unique mediators can be exploited therapeutically.

  14. Cocaine/levamisole-associated autoimmune syndrome: a disease of neutrophil-mediated autoimmunity.

    Science.gov (United States)

    Cascio, Michael J; Jen, Kuang-Yu

    2018-01-01

    Levamisole was previously used for its immunomodulatory properties to treat rheumatoid arthritis and some cancers. However, because of serious side-effects, it was taken off the market in the United States. Recently, levamisole has reemerged as a popular cocaine adulterant. Some individuals who consume levamisole-adulterated cocaine can develop a life-threatening autoimmune syndrome. In this review, the medical consequences of levamisole exposure and postulated mechanisms by which levamisole induces these adverse effects are discussed. Although agranulocytosis and cutaneous vasculitis are the major findings in patients who develop cocaine/levamisole-associated autoimmune syndrome (CLAAS), more recent experience indicates that other organ systems can be involved as well. Current studies point to neutrophil activation and neutrophil extracellular trap formation with subsequent antineutrophil cytoplasmic antibody-mediated tissue injury as a possible mechanism of CLAAS. In the past decade, the detrimental effects of levamisole have reemerged because of its popularity as a cocaine adulterant. Although infrequent, some individuals develop a systemic autoimmune syndrome characterized by immune-mediated agranulocytosis and antineutrophil cytoplasmic antibody-mediated vasculitis. Mechanistically, neutrophil antigens appear to be a major player in inducing CLAAS. Prompt cessation of levamisole exposure is key to treatment, although relapses are frequent because of the addictive effects of cocaine and the high prevalence of levamisole within the cocaine supply.

  15. TH17 cells mediate inflammation in a novel model of spontaneous experimental autoimmune lacrimal keratoconjunctivitis with neural damage.

    Science.gov (United States)

    Seo, Kyoung Yul; Kitamura, Kazuya; Han, Soo Jung; Kelsall, Brian

    2017-09-27

    Dry eye disease (DED) affects one third of the population worldwide. In prior studies, experimental autoimmune lacrimal keratoconjunctivitis (EALK) induced by desiccating stress in mice has been used as a model of DED. This model is complicated by a requirement for exogenous epithelial cell injury and administration of anticholinergic agents with broad immunologic effects. We sought to develop a novel mouse model of EALK and to demonstrate the responsible pathogenic mechanisms. CD4 + CD45RB high naive T cells with and without CD4 + CD45RB low regulatory T cells were adoptively transferred to C57BL/10 recombination-activating gene 2 (Rag2) -/- mice. The eyes, draining lymph nodes, lacrimal glands, and surrounding tissues of mice with and without spontaneous keratoconjunctivitis were evaluated for histopathologic changes, cellular infiltration, and cytokine production in tissues and isolated cells. Furthermore, the integrity of the corneal nerves was evaluated using whole-tissue immunofluorescence imaging. Gene-deficient naive T cells or RAG2-deficient hosts were evaluated to assess the roles of IFN-γ, IL-17A, and IL-23 in disease pathogenesis. Finally, cytokine levels were determined in the tears of patients with DED. EALK developed spontaneously in C57BL/10 Rag2 -/- mice after adoptive transfer of CD4 + CD45RB high naive T cells and was characterized by infiltration of CD4 + T cells, macrophages, and neutrophils. In addition to lacrimal keratoconjunctivitis, mice had damage to the corneal nerve, which connects components of the lacrimal functional unit. Pathogenic T-cell differentiation was dependent on IL-23p40 and controlled by cotransferred CD4 + CD45RB low regulatory T cells. T H 17 rather than T H 1 CD4 + cells were primarily responsible for EALK, even though levels of both IL-17 and IFN-γ were increased in inflammatory tissues, likely because of their ability to drive expression of CXC chemokines within the cornea and the subsequent influx of myeloid cells

  16. Identification of gene expression patterns crucially involved in experimental autoimmune encephalomyelitis and multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Martin M. Herrmann

    2016-10-01

    Full Text Available After encounter with a central nervous system (CNS-derived autoantigen, lymphocytes leave the lymph nodes and enter the CNS. This event leads only rarely to subsequent tissue damage. Genes relevant to CNS pathology after cell infiltration are largely undefined. Myelin-oligodendrocyte-glycoprotein (MOG-induced experimental autoimmune encephalomyelitis (EAE is an animal model of multiple sclerosis (MS, a chronic autoimmune disease of the CNS that results in disability. To assess genes that are involved in encephalitogenicity and subsequent tissue damage mediated by CNS-infiltrating cells, we performed a DNA microarray analysis from cells derived from lymph nodes and eluted from CNS in LEW.1AV1 (RT1av1 rats immunized with MOG 91-108. The data was compared to immunizations with adjuvant alone or naive rats and to immunizations with the immunogenic but not encephalitogenic MOG 73-90 peptide. Here, we show involvement of Cd38, Cxcr4 and Akt and confirm these findings by the use of Cd38-knockout (B6.129P2-Cd38tm1Lnd/J mice, S1P-receptor modulation during EAE and quantitative expression analysis in individuals with MS. The hereby-defined underlying pathways indicate cellular activation and migration pathways mediated by G-protein-coupled receptors as crucial events in CNS tissue damage. These pathways can be further explored for novel therapeutic interventions.

  17. Chloroquine treatment enhances regulatory T cells and reduces the severity of experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Rodolfo Thomé

    Full Text Available BACKGROUND: The modulation of inflammatory processes is a necessary step, mostly orchestrated by regulatory T (Treg cells and suppressive Dendritic Cells (DCs, to prevent the development of deleterious responses and autoimmune diseases. Therapies that focused on adoptive transfer of Treg cells or their expansion in vivo achieved great success in controlling inflammation in several experimental models. Chloroquine (CQ, an anti-malarial drug, was shown to reduce inflammation, although the mechanisms are still obscure. In this context, we aimed to access whether chloroquine treatment alters the frequency of Treg cells and DCs in normal mice. In addition, the effects of the prophylactic and therapeutic treatment with CQ on Experimental Autoimmune Encephalomyelitis (EAE, an experimental model for human Multiple Sclerosis, was investigated as well. METHODOLOGY/PRINCIPAL FINDINGS: EAE was induced in C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein (MOG35-55 peptide. C57BL/6 mice were intraperitoneally treated with chloroquine. Results show that the CQ treatment provoked an increase in Treg cells frequency as well as a decrease in DCs. We next evaluated whether prophylactic CQ administration is capable of reducing the clinical and histopathological signs of EAE. Our results demonstrated that CQ-treated mice developed mild EAE compared to controls that was associated with lower infiltration of inflammatory cells in the central nervous system CNS and increased frequency of Treg cells. Also, proliferation of MOG35-55-reactive T cells was significantly inhibited by chloroquine treatment. Similar results were observed when chloroquine was administrated after disease onset. CONCLUSION: We show for the first time that CQ treatment promotes the expansion of Treg cells, corroborating previous reports indicating that chloroquine has immunomodulatory properties. Our results also show that CQ treatment suppress the inflammation in the CNS of

  18. Increased KPI containing amyloid precursor protein in experimental autoimmune encephalomyelitis brains.

    Science.gov (United States)

    Beilin, Orit; Karussis, Dimitrios M; Korczyn, Amos D; Gurwitz, David; Aronovich, Ramona; Mizrachi-Kol, Rachel; Chapman, Joab

    2007-04-16

    Amyloid precursor protein can be translated from three alternatively spliced mRNAs. We measured levels of amyloid precursor protein isoforms containing the Kunitz protease inhibitor domain (KPIAPP), and amyloid precursor protein without the Kunitz protease inhibitor domain (KPIAPP) in brain homogenates of acute experimental autoimmune encephalomyelitis mice. At the preclinical phase of the disease, both KPIAPP and KPIAPP levels were significantly higher in homogenates from brains of autoimmune encephalomyelitis mice, whereas at the acute phase of the disease only KPIAPP remained significantly elevated compared with controls. At the recovery phase, no differences were observed between the groups. The early and isoform-specific elevation of KPIAPP in autoimmune encephalomyelitis mice suggests a possible role for amyloid precursor protein in the immune response mediating the disease.

  19. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice.

    Science.gov (United States)

    Mallol, Cristina; Casana, Estefania; Jimenez, Veronica; Casellas, Alba; Haurigot, Virginia; Jambrina, Claudia; Sacristan, Victor; Morró, Meritxell; Agudo, Judith; Vilà, Laia; Bosch, Fatima

    2017-07-01

    Type 1 diabetes is characterized by autoimmune destruction of β-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding β-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for β-cells with immunomodulatory properties. Transgenic NOD mice overexpressing IGF1 specifically in β-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28-30 weeks. In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of β-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved β-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a

  20. CC chemokine receptor 4 is required for experimental autoimmune encephalomyelitis by regulating GM-CSF and IL-23 production in dendritic cells

    Science.gov (United States)

    Poppensieker, Karola; Otte, David-Marian; Schürmann, Britta; Limmer, Andreas; Dresing, Philipp; Drews, Eva; Schumak, Beatrix; Klotz, Luisa; Raasch, Jennifer; Mildner, Alexander; Waisman, Ari; Scheu, Stefanie; Knolle, Percy; Förster, Irmgard; Prinz, Marco; Maier, Wolfgang; Zimmer, Andreas; Alferink, Judith

    2012-01-01

    Dendritic cells (DCs) are pivotal for the development of experimental autoimmune encephalomyelitis (EAE). However, the mechanisms by which they control disease remain to be determined. This study demonstrates that expression of CC chemokine receptor 4 (CCR4) by DCs is required for EAE induction. CCR4−/− mice presented enhanced resistance to EAE associated with a reduction in IL-23 and GM-CSF expression in the CNS. Restoring CCR4 on myeloid cells in bone marrow chimeras or intracerebral microinjection of CCR4-competent DCs, but not macrophages, restored EAE in CCR4−/− mice, indicating that CCR4+ DCs are cellular mediators of EAE development. Mechanistically, CCR4−/− DCs were less efficient in GM-CSF and IL-23 production and also TH-17 maintenance. Intraspinal IL-23 reconstitution restored EAE in CCR4−/− mice, whereas intracerebral inoculation using IL-23−/− DCs or GM-CSF−/− DCs failed to induce disease. Thus, CCR4-dependent GM-CSF production in DCs required for IL-23 release in these cells is a major component in the development of EAE. Our study identified a unique role for CCR4 in regulating DC function in EAE, harboring therapeutic potential for the treatment of CNS autoimmunity by targeting CCR4 on this specific cell type. PMID:22355103

  1. Interleukin-12 promotes activation of effector cells that induce a severe destructive granulomatous form of murine experimental autoimmune thyroiditis.

    OpenAIRE

    Braley-Mullen, H.; Sharp, G. C.; Tang, H.; Chen, K.; Kyriakos, M.; Bickel, J. T.

    1998-01-01

    Granulomatous inflammatory lesions are a major histopathological feature of a wide spectrum of human infectious and autoimmune diseases. Experimental autoimmune thyroiditis (EAT) with granulomatous histopathological features can be induced by mouse thyroglobulin (MTg)-sensitized spleen cells activated in vitro with MTg and anti-interleukin-2 receptor (anti-IL-2R), anti-IL-2, or anti-interferon-gamma (anti-IFN-gamma) monoclonal antibody (MAb). These studies suggested that IFN-gamma-producing T...

  2. PR-957, a selective inhibitor of immunoproteasome subunit low-MW polypeptide 7, attenuates experimental autoimmune neuritis by suppressing Th17-cell differentiation and regulating cytokine production.

    Science.gov (United States)

    Liu, Haijie; Wan, Chunxiao; Ding, Yanan; Han, Ranran; He, Yating; Xiao, Jinting; Hao, Junwei

    2017-04-01

    Experimental autoimmune neuritis (EAN) is a CD4 + T-cell-mediated autoimmune inflammatory demyelinating disease of the peripheral nervous system. It has been replicated in an animal model of human inflammatory demyelinating polyradiculoneuropathy, Guillain-Barré syndrome. In this study, we evaluated the therapeutic efficacy of a selective inhibitor of the immunoproteasome subunit, low-MW polypeptide 7 (PR-957) in rats with EAN. Our results showed that PR-957 significantly delayed onset day, reduced severity and shortened duration of EAN, and alleviated demyelination and inflammatory infiltration in sciatic nerves. In addition to significantly regulating expression of the cytokine profile, PR-957 treatment down-regulated the proportion of proinflammatory T-helper (T h )17 cells in sciatic nerves and spleens of rats with EAN. Data presented show the role of PR-957 in the signal transducer and activator of transcription 3 (STAT3) pathway. PR-957 not only decreased expression of IL-6 and IL-23 but also led to down-regulation of STAT3 phosphorylation in CD4 + T cells. Regulation of the STAT3 pathway led to a reduction in retinoid-related orphan nuclear receptor γ t and IL-17 production. Furthermore, reduction of STAT3 phosphorylation may have directly suppressed T h 17-cell differentiation. Therefore, our study demonstrates that PR-957 could potently alleviate inflammation in rats with EAN and that it may be a likely candidate for treating Guillain-Barré syndrome.-Liu, H., Wan, C., Ding, Y., Han, R., He, Y., Xiao, J., Hao, J. PR-957, a selective inhibitor of immunoproteasome subunit low-MW polypeptide 7, attenuates experimental autoimmune neuritis by suppressing T h 17-cell differentiation and regulating cytokine production. © FASEB.

  3. End-point effector stress mediators in neuroimmune interactions: their role in immune system homeostasis and autoimmune pathology.

    Science.gov (United States)

    Dimitrijevic, Mirjana; Stanojevic, Stanislava; Kustrimovic, Natasa; Leposavic, Gordana

    2012-04-01

    Much evidence has identified a direct anatomical and functional link between the brain and the immune system, with glucocorticoids (GCs), catecholamines (CAs), and neuropeptide Y (NPY) as its end-point mediators. This suggests the important role of these mediators in immune system homeostasis and the pathogenesis of inflammatory autoimmune diseases. However, although it is clear that these mediators can modulate lymphocyte maturation and the activity of distinct immune cell types, their putative role in the pathogenesis of autoimmune disease is not yet completely understood. We have contributed to this field by discovering the influence of CAs and GCs on fine-tuning thymocyte negative selection and, in particular, by pointing to the putative CA-mediated mechanisms underlying this influence. Furthermore, we have shown that CAs are implicated in the regulation of regulatory T-cell development in the thymus. Moreover, our investigations related to macrophage biology emphasize the complex interaction between GCs, CAs and NPY in the modulation of macrophage functions and their putative significance for the pathogenesis of autoimmune inflammatory diseases.

  4. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells

    Science.gov (United States)

    Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M.; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F.; Breuer, Johanna; Herold, Martin; Gross, Catharina C.; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K.; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W.; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F.; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G.

    2016-01-01

    Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843

  5. Eosinophils in Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Daniela Čiháková

    2017-04-01

    Full Text Available Eosinophils are multifunctional granulocytes that contribute to initiation and modulation of inflammation. Their role in asthma and parasitic infections has long been recognized. Growing evidence now reveals a role for eosinophils in autoimmune diseases. In this review, we summarize the function of eosinophils in inflammatory bowel diseases, neuromyelitis optica, bullous pemphigoid, autoimmune myocarditis, primary biliary cirrhosis, eosinophilic granulomatosis with polyangiitis, and other autoimmune diseases. Clinical studies, eosinophil-targeted therapies, and experimental models have contributed to our understanding of the regulation and function of eosinophils in these diseases. By examining the role of eosinophils in autoimmune diseases of different organs, we can identify common pathogenic mechanisms. These include degranulation of cytotoxic granule proteins, induction of antibody-dependent cell-mediated cytotoxicity, release of proteases degrading extracellular matrix, immune modulation through cytokines, antigen presentation, and prothrombotic functions. The association of eosinophilic diseases with autoimmune diseases is also examined, showing a possible increase in autoimmune diseases in patients with eosinophilic esophagitis, hypereosinophilic syndrome, and non-allergic asthma. Finally, we summarize key future research needs.

  6. Eosinophils in Autoimmune Diseases

    Science.gov (United States)

    Diny, Nicola L.; Rose, Noel R.; Čiháková, Daniela

    2017-01-01

    Eosinophils are multifunctional granulocytes that contribute to initiation and modulation of inflammation. Their role in asthma and parasitic infections has long been recognized. Growing evidence now reveals a role for eosinophils in autoimmune diseases. In this review, we summarize the function of eosinophils in inflammatory bowel diseases, neuromyelitis optica, bullous pemphigoid, autoimmune myocarditis, primary biliary cirrhosis, eosinophilic granulomatosis with polyangiitis, and other autoimmune diseases. Clinical studies, eosinophil-targeted therapies, and experimental models have contributed to our understanding of the regulation and function of eosinophils in these diseases. By examining the role of eosinophils in autoimmune diseases of different organs, we can identify common pathogenic mechanisms. These include degranulation of cytotoxic granule proteins, induction of antibody-dependent cell-mediated cytotoxicity, release of proteases degrading extracellular matrix, immune modulation through cytokines, antigen presentation, and prothrombotic functions. The association of eosinophilic diseases with autoimmune diseases is also examined, showing a possible increase in autoimmune diseases in patients with eosinophilic esophagitis, hypereosinophilic syndrome, and non-allergic asthma. Finally, we summarize key future research needs. PMID:28496445

  7. Costimulatory signal blockade in murine relapsing experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Schaub, M; Issazadeh-Navikas, Shohreh; Stadlbauer, T H

    1999-01-01

    Blockade of the CD28-B7 or CD40L-CD40 T cell costimulatory signals prevents induction of experimental autoimmune encephalomyelitis (EAE). However, the effect of simultaneous blockade of these signals in EAE is unknown. We show that administration of either MR1 (to block CD40L) or CTLA4Ig (to block...... B7) after immunization or after the first attack protects from EAE. Treatment with a combination of CTLA4Ig and MR1 provides additive protection, and is associated with complete absence of mononuclear cell infiltrates in the central nervous system, and marked suppression of proliferation of primed T...... cells in the periphery. Selective B7-1 blockade did not protect from EAE. These observations have implications for therapy of autoimmune diseases....

  8. Grouping annotations on the subcellular layered interactome demonstrates enhanced autophagy activity in a recurrent experimental autoimmune uveitis T cell line.

    Directory of Open Access Journals (Sweden)

    Xiuzhi Jia

    Full Text Available Human uveitis is a type of T cell-mediated autoimmune disease that often shows relapse-remitting courses affecting multiple biological processes. As a cytoplasmic process, autophagy has been seen as an adaptive response to cell death and survival, yet the link between autophagy and T cell-mediated autoimmunity is not certain. In this study, based on the differentially expressed genes (GSE19652 between the recurrent versus monophasic T cell lines, whose adoptive transfer to susceptible animals may result in respective recurrent or monophasic uveitis, we proposed grouping annotations on a subcellular layered interactome framework to analyze the specific bioprocesses that are linked to the recurrence of T cell autoimmunity. That is, the subcellular layered interactome was established by the Cytoscape and Cerebral plugin based on differential expression, global interactome, and subcellular localization information. Then, the layered interactomes were grouping annotated by the ClueGO plugin based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. The analysis showed that significant bioprocesses with autophagy were orchestrated in the cytoplasmic layered interactome and that mTOR may have a regulatory role in it. Furthermore, by setting up recurrent and monophasic uveitis in Lewis rats, we confirmed by transmission electron microscopy that, in comparison to the monophasic disease, recurrent uveitis in vivo showed significantly increased autophagy activity and extended lymphocyte infiltration to the affected retina. In summary, our framework methodology is a useful tool to disclose specific bioprocesses and molecular targets that can be attributed to a certain disease. Our results indicated that targeted inhibition of autophagy pathways may perturb the recurrence of uveitis.

  9. T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Adam L. Burrack

    2017-12-01

    Full Text Available Type 1 diabetes (T1D results from destruction of pancreatic beta cells by T cells of the immune system. Despite improvements in insulin analogs and continuous blood glucose level monitoring, there is no cure for T1D, and some individuals develop life-threatening complications. Pancreas and islet transplantation have been attractive therapeutic approaches; however, transplants containing insulin-producing cells are vulnerable to both recurrent autoimmunity and conventional allograft rejection. Current immune suppression treatments subdue the immune system, but not without complications. Ideally a successful approach would target only the destructive immune cells and leave the remaining immune system intact to fight foreign pathogens. This review discusses the autoimmune diabetes disease process, diabetic complications that warrant a transplant, and alloimmunity. First, we describe the current understanding of autoimmune destruction of beta cells including the roles of CD4 and CD8 T cells and several possibilities for antigen-specific tolerance induction. Second, we outline diabetic complications necessitating beta cell replacement. Third, we discuss transplant recognition, potential sources for beta cell replacement, and tolerance-promoting therapies under development. We hypothesize that a better understanding of autoreactive T cell targets during disease pathogenesis and alloimmunity following transplant destruction could enhance attempts to re-establish tolerance to beta cells.

  10. Administration of Mycobacterium leprae rHsp65 aggravates experimental autoimmune uveitis in mice.

    Directory of Open Access Journals (Sweden)

    Eliana B Marengo

    Full Text Available The 60 kDa heat shock protein family, Hsp60, constitutes an abundant and highly conserved class of molecules that are highly expressed in chronic-inflammatory and autoimmune processes. Experimental autoimmune uveitis [EAU] is a T cell mediated intraocular inflammatory disease that resembles human uveitis. Mycobacterial and homologous Hsp60 peptides induces uveitis in rats, however their participation in aggravating the disease is poorly known. We here evaluate the effects of the Mycobacterium leprae Hsp65 in the development/progression of EAU and the autoimmune response against the eye through the induction of the endogenous disequilibrium by enhancing the entropy of the immunobiological system with the addition of homologous Hsp. B10.RIII mice were immunized subcutaneously with interphotoreceptor retinoid-binding protein [IRBP], followed by intraperitoneally inoculation of M. leprae recombinant Hsp65 [rHsp65]. We evaluated the proliferative response, cytokine production and the percentage of CD4(+IL-17(+, CD4(+IFN-gamma(+ and CD4(+Foxp3(+ cells ex vivo, by flow cytometry. Disease severity was determined by eye histological examination and serum levels of anti-IRBP and anti-Hsp60/65 measured by ELISA. EAU scores increased in the Hsp65 group and were associated with an expansion of CD4(+IFN-gamma(+ and CD4(+IL-17(+ T cells, corroborating with higher levels of IFN-gamma. Our data indicate that rHsp65 is one of the managers with a significant impact over the immune response during autoimmunity, skewing it to a pathogenic state, promoting both Th1 and Th17 commitment. It seems comprehensible that the specificity and primary function of Hsp60 molecules can be considered as a potential pathogenic factor acting as a whistleblower announcing chronic-inflammatory diseases progression.

  11. Follicular helper T cell in immunity and autoimmunity

    Directory of Open Access Journals (Sweden)

    D. Mesquita Jr

    2016-01-01

    Full Text Available The traditional concept that effector T helper (Th responses are mediated by Th1/Th2 cell subtypes has been broadened by the recent demonstration of two new effector T helper cells, the IL-17 producing cells (Th17 and the follicular helper T cells (Tfh. These new subsets have many features in common, such as the ability to produce IL-21 and to express the IL-23 receptor (IL23R, the inducible co-stimulatory molecule ICOS, and the transcription factor c-Maf, all of them essential for expansion and establishment of the final pool of both subsets. Tfh cells differ from Th17 by their ability to home to B cell areas in secondary lymphoid tissue through interactions mediated by the chemokine receptor CXCR5 and its ligand CXCL13. These CXCR5+ CD4+ T cells are considered an effector T cell type specialized in B cell help, with a transcriptional profile distinct from Th1 and Th2 cells. The role of Tfh cells and its primary product, IL-21, on B-cell activation and differentiation is essential for humoral immunity against infectious agents. However, when deregulated, Tfh cells could represent an important mechanism contributing to exacerbated humoral response and autoantibody production in autoimmune diseases. This review highlights the importance of Tfh cells by focusing on their biology and differentiation processes in the context of normal immune response to infectious microorganisms and their role in the pathogenesis of autoimmune diseases.

  12. Epitope-Specific Tolerance Modes Differentially Specify Susceptibility to Proteolipid Protein-Induced Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-11-01

    Full Text Available Immunization with myelin components can elicit experimental autoimmune encephalomyelitis (EAE. EAE susceptibility varies between mouse strains, depending on the antigen employed. BL/6 mice are largely resistant to EAE induction with proteolipid protein (PLP, probably a reflection of antigen-specific tolerance. However, the extent and mechanism(s of tolerance to PLP remain unclear. Here, we identified three PLP epitopes in PLP-deficient BL/6 mice. PLP-sufficient mice did not respond against two of these, whereas tolerance was “leaky” for an epitope with weak predicted MHCII binding, and only this epitope was encephalitogenic. In TCR transgenic mice, the “EAE-susceptibility-associated” epitope was “ignored” by specific CD4 T cells, whereas the “resistance-associated” epitope induced clonal deletion and Treg induction in the thymus. Central tolerance was autoimmune regulator dependent and required expression and presentation of PLP by thymic epithelial cells (TECs. TEC-specific ablation of PLP revealed that peripheral tolerance, mediated by dendritic cells through recessive tolerance mechanisms (deletion and anergy, could largely compensate for a lack of central tolerance. However, adoptive EAE was exacerbated in mice lacking PLP in TECs, pointing toward a non-redundant role of the thymus in dominant tolerance to PLP. Our findings reveal multiple layers of tolerance to a central nervous system autoantigen that vary among epitopes and thereby specify disease susceptibility. Understanding how different modalities of tolerance apply to distinct T cell epitopes of a target in autoimmunity has implications for antigen-specific strategies to therapeutically interfere with unwanted immune reactions against self.

  13. NK Cell Subtypes as Regulators of Autoimmune Liver Disease

    Directory of Open Access Journals (Sweden)

    Guohui Jiao

    2016-01-01

    Full Text Available As major components of innate immunity, NK cells not only exert cell-mediated cytotoxicity to destroy tumors or infected cells, but also act to regulate the functions of other cells in the immune system by secreting cytokines and chemokines. Thus, NK cells provide surveillance in the early defense against viruses, intracellular bacteria, and cancer cells. However, the effecter function of NK cells must be exquisitely controlled to prevent inadvertent attack against normal “self” cells. In an organ such as the liver, where the distinction between immunotolerance and immune defense against routinely processed pathogens is critical, the plethora of NK cells has a unique role in the maintenance of homeostasis. Once self-tolerance is broken, autoimmune liver disease resulted. NK cells act as a “two-edged weapon” and even play opposite roles with both regulatory and inducer activities in the hepatic environment. That is, NK cells act not only to produce inflammatory cytokines and chemokines, but also to alter the proliferation and activation of associated lymphocytes. However, the precise regulatory mechanisms at work in autoimmune liver diseases remain to be identified. In this review, we focus on recent research with NK cells and their potential role in the development of autoimmune liver disease.

  14. Interferon-¿ regulates oxidative stress during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C.; Penkowa, Milena; Saez-Torres, I.

    2002-01-01

    Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress......Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress...

  15. B cell depletion reduces T cell activation in pancreatic islets in a murine autoimmune diabetes model.

    Science.gov (United States)

    Da Rosa, Larissa C; Boldison, Joanne; De Leenheer, Evy; Davies, Joanne; Wen, Li; Wong, F Susan

    2018-06-01

    Type 1 diabetes is a T cell-mediated autoimmune disease characterised by the destruction of beta cells in the islets of Langerhans, resulting in deficient insulin production. B cell depletion therapy has proved successful in preventing diabetes and restoring euglycaemia in animal models of diabetes, as well as in preserving beta cell function in clinical trials in the short term. We aimed to report a full characterisation of B cell kinetics post B cell depletion, with a focus on pancreatic islets. Transgenic NOD mice with a human CD20 transgene expressed on B cells were injected with an anti-CD20 depleting antibody. B cells were analysed using multivariable flow cytometry. There was a 10 week delay in the onset of diabetes when comparing control and experimental groups, although the final difference in the diabetes incidence, following prolonged observation, was not statistically significant (p = 0.07). The co-stimulatory molecules CD80 and CD86 were reduced on stimulation of B cells during B cell depletion and repopulation. IL-10-producing regulatory B cells were not induced in repopulated B cells in the periphery, post anti-CD20 depletion. However, the early depletion of B cells had a marked effect on T cells in the local islet infiltrate. We demonstrated a lack of T cell activation, specifically with reduced CD44 expression and effector function, including IFN-γ production from both CD4 + and CD8 + T cells. These CD8 + T cells remained altered in the pancreatic islets long after B cell depletion and repopulation. Our findings suggest that B cell depletion can have an impact on T cell regulation, inducing a durable effect that is present long after repopulation. We suggest that this local effect of reducing autoimmune T cell activity contributes to delay in the onset of autoimmune diabetes.

  16. An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis

    Science.gov (United States)

    Quintana, Francisco J.; Murugaiyan, Gopal; Farez, Mauricio F.; Mitsdoerffer, Meike; Tukpah, Ann-Marcia; Burns, Evan J.; Weiner, Howard L.

    2010-01-01

    The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) participates in the differentiation of FoxP3+ Treg, Tr1 cells, and IL-17–producing T cells (Th17). Most of our understanding on the role of AHR on the FoxP3+ Treg compartment results from studies using the toxic synthetic chemical 2,3,7,8-tetrachlorodibenzo-p-dioxin. Thus, the physiological relevance of AHR signaling on FoxP3+ Treg in vivo is unclear. We studied mice that carry a GFP reporter in the endogenous foxp3 locus and a mutated AHR protein with reduced affinity for its ligands, and found that AHR signaling participates in the differentiation of FoxP3+ Treg in vivo. Moreover, we found that treatment with the endogenous AHR ligand 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) given parenterally or orally induces FoxP3+ Treg that suppress experimental autoimmune encephalomyelitis. ITE acts not only on T cells, but also directly on dendritic cells to induce tolerogenic dendritic cells that support FoxP3+ Treg differentiation in a retinoic acid-dependent manner. Thus, our work demonstrates that the endogenous AHR ligand ITE promotes the induction of active immunologic tolerance by direct effects on dendritic and T cells, and identifies nontoxic endogenous AHR ligands as potential unique compounds for the treatment of autoimmune disorders. PMID:21068375

  17. Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis.

    Science.gov (United States)

    Berard, Jennifer L; Zarruk, Juan G; Arbour, Nathalie; Prat, Alexandre; Yong, V Wee; Jacques, Francois H; Akira, Shizuo; David, Samuel

    2012-07-01

    Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model of multiple sclerosis (MS), an inflammatory, demyelinating disease of the central nervous system (CNS). EAE pathogenesis involves various cell types, cytokines, chemokines, and adhesion molecules. Given the complexity of the inflammatory response in EAE, it is likely that many immune mediators still remain to be discovered. To identify novel immune mediators of EAE pathogenesis, we performed an Affymetrix gene array screen on the spinal cords of mice at the onset stage of disease. This screening identified the gene encoding lipocalin 2 (Lcn2) as being significantly upregulated. Lcn2 is a multi-functional protein that plays a role in glial activation, matrix metalloproteinase (MMP) stabilization, and cellular iron flux. As many of these processes have been implicated in EAE, we characterized the expression and role of Lcn2 in this disease in C57BL/6 mice. We show that Lcn2 is significantly upregulated in the spinal cord throughout EAE and is expressed predominantly by monocytes and reactive astrocytes. The Lcn2 receptor, 24p3R, is also expressed on monocytes, macrophages/microglia, and astrocytes in EAE. In addition, we show that EAE severity is increased in Lcn2(-/-) mice as compared with wild-type controls. Finally, we demonstrate that elevated levels of Lcn2 are detected in the plasma and cerebrospinal fluid (CSF) in MS and in immune cells in CNS lesions in MS tissue sections. These data indicate that Lcn2 is a modulator of EAE pathogenesis and suggest that it may also play a role in MS. Copyright © 2012 Wiley Periodicals, Inc.

  18. Short- and long-term effects of T-cell modulating agents in experimental autoimmunity

    International Nuclear Information System (INIS)

    Mellergaard, Johan; Havarinasab, Said; Hultman, Per

    2004-01-01

    Due to the easy and reliable induction of a disease condition with many of the features present in human autoimmunity, mercury-induced autoimmunity (mHgAI) in rodents is a favourable autoimmune model. Genetically susceptible (H-2 s ) mice develop in response to mercury (Hg) a systemic autoimmune condition with antinucleolar antibodies (ANoA) targeting the protein fibrillarin, transient polyclonal B-cell activation, hyperimmunoglobulinemia, and systemic immune-complex (IC) deposits. In order to study the short- and long-term effects of treatment with immunomodulating agents on the disease parameters in HgAI, groups of B10.S (H-2 s ) mice were given 6 mg HgCl 2 /l drinking water for 22 weeks. Three weeks initial treatment with cyclosporin A (CyA), a high dose of tacrolimus (HD tacrolimus), or anti-CD4 monoclonal antibody (a-CD4) inhibited induction of ANoA and IC deposit by Hg. This effect persisted for the subsequent 19 weeks when the mice were only treated with Hg. Initial treatment with anti-IL-4 monoclonal antibody (a-IL-4) for 3 weeks inhibited induction of IgE and IC deposits by Hg, but not ANoA. However, subsequent treatment with Hg without a-IL-4 for 19 weeks induced IC deposits. The T-cell modulating agents aggravated some of the HgAI disease parameters: a-CD4 stimulated the polyclonal B-cell activation, a-IL-4 increased the IgG antichromatin antibody response, and a low dose of tacrolimus (LD tacrolimus) enhanced the ANoA, the polyclonal B-cell activation, and the IC deposits. We conclude that a short initial treatment with a-CD4 or CyA efficiently protects against induction of systemic autoimmunity for an extended period of time. However, some of the T-cell modulating agents, especially a low dose of tacrolimus, aggravate autoimmune manifestations not only during ongoing treatment, but also after treatment with these agents has ceased

  19. Mast cells are important modifiers of autoimmune disease: With so much evidence, why is there controversy?

    Directory of Open Access Journals (Sweden)

    Melissa Ann Brown

    2012-06-01

    Full Text Available There is abundant evidence that mast cells are active participants in events that mediate tissue damage in autoimmune disease. Disease-associated increases in mast cell numbers accompanied by mast cell degranulation and elaboration of numerous mast cell mediators at sites of inflammation are commonly observed in many human autoimmune diseases including multiple sclerosis, rheumatoid arthritis and bullous pemphigoid. In animal models, treatment with mast cell stabilizing drugs or mast cell ablation can result in diminished disease. A variety of receptors including those engaged by antibody, complement, pathogens and intrinsic danger signals are implicated in mast cell activation in disease. Similar to their role as first responders in infection settings, mast cells likely orchestrate early recruitment of immune cells, including neutrophils, to the sites of autoimmune destruction. This co-localization promotes cellular crosstalk and activation and results in the amplification of the local inflammatory response thereby promoting and sustaining tissue damage. Despite the evidence, there is still a debate regarding the relative role of mast cells in these processes. However, by definition, mast cells can only act as accessory cells to the self-reactive T and/or antibody driven autoimmune responses. Thus, when evaluating mast cell involvement using existing and somewhat imperfect animal models of disease, their importance is sometimes obscured. However, these potent immune cells are undoubtedly major contributors to autoimmunity and should be considered as important targets for therapeutic disease intervention.

  20. Vitamin D Actions on CD4+ T cells in Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Colleen Elizabeth Hayes

    2015-03-01

    Full Text Available This review summarizes and integrates research on vitamin D and CD4+ T lymphocyte biology to develop new mechanistic insights into the molecular etiology of autoimmune disease. A deep understanding of molecular mechanisms relevant to gene-environment interactions is needed to deliver etiology-based autoimmune disease prevention and treatment strategies. Evidence linking sunlight, vitamin D, and the risk of multiple sclerosis and type 1 diabetes is summarized to develop the thesis that vitamin D is the environmental factor that most strongly influences autoimmune disease development. Evidence for CD4+ T cell involvement in autoimmune disease pathogenesis and for paracrine calcitriol signaling to CD4+ T lymphocytes is summarized to support the thesis that calcitriol is sunlight’s main protective signal transducer in autoimmune disease risk. Animal modeling and human mechanistic data to support the view that vitamin D probably influences thymic negative selection, effector Th1 and Th17 pathogenesis and responsiveness to extrinsic cell death signals, FoxP3+CD4+ Treg cell and CD4+ Tr1 cell functions, and a Th1-Tr1 switch. The proposed Th1-Tr1 switch appears to bridge two stable, self-reinforcing immune states, pro- and anti-inflammatory, each with a characteristic gene regulatory network. The bi-stable switch would enable T cells to integrate signals from pathogens, hormones, cell-cell interactions, and soluble mediators and respond in a biologically appropriate manner. Finally, we highlight unanswered questions that potentially informative future research directions that may speed delivery of etiology-based strategies to reduce autoimmune disease.

  1. Immunomodulatory effects of Longdan Xiegan Tang on CD4+/CD8+ T cells and associated inflammatory cytokines in rats with experimental autoimmune uveitis.

    Science.gov (United States)

    Tang, Kai; Guo, Dadong; Zhang, Lian; Guo, Junguo; Zheng, Fengming; Si, Junkang; Bi, Hongsheng

    2016-09-01

    Longdan Xiegan Tang (LXT) is a mixture of herbal extracts commonly used in traditional Chinese medicine that may exert immunomodulatory effects for the treatment of autoimmune diseases. However, the detailed mechanisms that mediate the actions of LXT are unclear. The present study induced an experimental autoimmune uveitis (EAU) model in Lewis rats via injection of IRBP1177‑1191 emulsion. The model was used to investigate the effects of LXT on EAU rats and assess the efficacy of LXT by measuring clinical manifestations and histopathological changes caused by EAU. Additionally, alterations in the ratio of CD4+/CD8+‑T cells were determined by flow cytometry, and the expression of interferon (IFN)‑γ, interleukin (IL)‑17, IL‑10 and tumor necrosis factor (TNF)‑α were measured using reverse transcription‑quantitative polymerase chain reaction and enzyme‑linked immunosorbent assay analysis. The results of the present study demonstrate that LXT can efficiently alleviate the symptoms of EAU, inhibit the differentiation of uveitogenic CD4+ T cells and reduce the expression of proinflammatory cytokines, including IFN‑γ, IL‑17 and TNF‑α. Furthermore, LXT promotes the production of IL‑10 and accelerates the recovery of EAU, indicating that the immunomodulatory effects of LXT may potentially be used for the treatment of uveitis.

  2. The interaction of dendritic cells and γδ T cells promotes the activation of γδ T cells in experimental autoimmune uveitis

    Directory of Open Access Journals (Sweden)

    Beibei Wang

    2017-03-01

    Full Text Available Uveitis is a severe inflammatory disease that can cause visual impairment. Recently, activated γδ T cells were proved to play a central role in the development of experimental autoimmune uveitis (EAU. However, the mechanism underlying γδ T-cell activation in EAU is incompletely known. In this study, we determined the percentage changes in and the phenotypes of γδ T cells and dendritic cells (DCs obtained from the spleens of immunized C57BL/6 (B6 mice, an animal model of EAU. We found that the number of γδ T cells and DCs obviously increased during the inflammation phase of EAU (days 16–20 of our experiment, and that during this time, γδ T cells expressed high levels of CD69 and the integrin lymphocyte function–associated antigen-1 (LFA-1 and secreted high levels of interleukin (IL-17A. Moreover, DCs obtained during this phase expressed high levels of CD80, CD83, CD86, and intracellular cell adhesion molecule-1 (ICAM-1. Furthermore, we studied the interaction between DCs and γδ T cells by using flow cytometry and confocal microscopy in order to determine whether DCs affected γδ T-cell activation in vitro. Co-cultures of the two types of cells showed that DCs induced high levels of CD69, LFA-1, and IL-17A in γδ T cells. Imaging studies revealed contact between the DCs and γδ T cells. This interaction was mediated by the accumulation of ICAM-1 and LFA-1 at the interface of DCs-γδ T cells. Thus, the activation of γδ T cells in EAU was promoted by DCs interacting with γδ T cells.

  3. Regulatory immune cells and functions in autoimmunity and transplantation immunology.

    Science.gov (United States)

    Papp, Gabor; Boros, Peter; Nakken, Britt; Szodoray, Peter; Zeher, Margit

    2017-05-01

    In physiological circumstances, various tolerogenic mechanisms support the protection of self-structures during immune responses. However, quantitative and/or qualitative changes in regulatory immune cells and mediators can evoke auto-reactive immune responses, and upon susceptible genetic background, along with the presence of other concomitant etiological factors, autoimmune disease may develop. In transplant immunology, tolerogenic mechanisms are also critical, since the balance between of alloantigen-reactive effector cells and the regulatory immune cells will ultimately determine whether a graft is accepted or rejected. Better understanding of the immunological tolerance and the potential modulations of immune regulatory processes are crucial for developing effective therapies in autoimmune diseases as well as in organ transplantation. In this review, we focus on the novel insights regarding the impaired immune regulation and other relevant factors contributing to the development of auto-reactive and graft-reactive immune responses in autoimmune diseases and transplant rejection, respectively. We also address some promising approaches for modification of immune-regulatory processes and tolerogenic mechanisms in autoimmunity and solid organ transplantation, which may be beneficial in future therapeutic strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Combined short-term immunotherapy for experimental autoimmune myasthenia gravis

    International Nuclear Information System (INIS)

    Pestronk, A.; Drachman, D.B.; Teoh, R.; Adams, R.N.

    1983-01-01

    A therapeutic strategy was designed to eliminate the humoral immune response to acetylcholine receptor (AChR) in ongoing experimental autoimmune myasthenia gravis (EAMG). Rats with EAMG were treated with a protocol consisting of three components: (1) A single high dose of cyclophosphamide (200 mg/kg) was used to produce a rapid and sustained fall in the anti-AChR antibody levels by preferential destruction of antibody-producing B-lymphocytes. ''Memory'' lymphocytes were not eliminated by cyclophosphamide. (2) Irradiation (600 rads) was used to eliminate the ''memory'' cells. It eliminated the anamnestic response to a challenge with the antigen AChR. (3) Bone marrow transplantation was used to repopulate the hematopoietic system after the otherwise lethal dose of cyclophosphamide. We used bone marrow from syngeneic rats with active EAMG to simulate an autologous transplant. Rats with EAMG treated with this combined protocol showed a prompt and sustained fall in the anti-AChR antibody levels and had no anamnestic response to a challenge with AChR. Thus, an affected animal's own marrow could be stored and used later for repopulation after cyclophosphamide-irradiation treatment. This treatment eliminates the animal's ongoing immune responses and reconstitutes the immune system in its original state. The success of this approach suggests that, if their safety could be established, similar ''curative'' strategies might be developed for the treatment of patients with severe antibody-mediated autoimmune disorders, such as myasthenia gravis

  5. Antigen-Experienced CD4lo T Cells Are Linked to Deficient Contraction of the Immune Response in Autoimmune Diabetes

    Directory of Open Access Journals (Sweden)

    Sean Linkes

    2010-01-01

    Full Text Available Following proper activation, naïve “CD4lo” T cells differentiate into effector T cells with enhanced expression of CD4 -“CD4hi” effectors. Autoimmune diabetes-prone NOD mice display a unique set of antigen-experienced “CD4lo” T cells that persist after primary stimulation. Here, we report that a population of such cells remained after secondary and tertiary TCR stimulation and produced cytokines upon antigenic challenge. However, when NOD blasts were induced in the presence of rIL-15, the number of antigen-experienced “CD4lo” T cells was significantly reduced. Clonal contraction, mediated in part by CD95-dependent activation-induced cell death (AICD, normally regulates the accumulation of “CD4hi” effectors. Interestingly, CD95 expression was dramatically reduced on the AICD-resistant NOD “CD4lo” T cells. Thus, while autoimmune disease has often been attributed to the engagement of robust autoimmunity, we suggest that the inability to effectively contract the immune response distinguishes benign autoimmunity from progressive autoimmune diseases that are characterized by chronic T cell-mediated inflammation.

  6. NK cell autoreactivity and autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Alessandro ePoggi

    2014-02-01

    Full Text Available Increasing evidences have pointed out the relevance of Natural Killer (NK cells in organ specific and systemic autoimmune diseases. NK cells bear a plethora of activating and inhibiting receptors that can play a role in regulating reactivity with autologous cells. The activating receptors recognize natural ligands upregulated on virus-infected or stressed or neoplastic cells. Of note, several autoimmune diseases are thought to be linked to viral infections as one of the first event in inducing autoimmunity. Also, it is conceivable that autoimmunity can be triggered when a dysregulation of innate immunity occurs, activating T and B lymphocytes to react with self-components. This would imply that NK cells can play a regulatory role during adaptive immunity; indeed, innate lymphoid cells (ILC, comprising the classical CD56+ NK cells, have a role in maintaining or alterating tissue homeostasis secreting protective and/or proinflammatory cytokines. In addition, NK cells display activating receptors involved in natural cytotoxicity and the activating isoforms of receptors for HLA class I that can interact with healthy host cells and induce damage without any evidence of viral infection or neoplastic-induced alteration. In this context, the interrelationship among ILC, extracellular matrix components and mesenchymal stromal cells can be considered a key point for the control of homeostasis. Herein, we summarize evidences for a role of NK cells in autoimmune diseases and will give a point of view of the interplay between NK cells and self-cells in triggering autoimmunity.

  7. Dietary Omega-3 Fatty Acids Suppress Experimental Autoimmune Uveitis in Association with Inhibition of Th1 and Th17 Cell Function

    Science.gov (United States)

    Shoda, Hiromi; Yanai, Ryoji; Yoshimura, Takeru; Nagai, Tomohiko; Kimura, Kazuhiro; Sobrin, Lucia; Connor, Kip M.; Sakoda, Yukimi; Tamada, Koji; Ikeda, Tsunehiko; Sonoda, Koh-Hei

    2015-01-01

    Omega (ω)–3 long-chain polyunsaturated fatty acids (LCPUFAs) inhibit the production of inflammatory mediators and thereby contribute to the regulation of inflammation. Experimental autoimmune uveitis (EAU) is a well-established animal model of autoimmune retinal inflammation. To investigate the potential effects of dietary intake of ω-3 LCPUFAs on uveitis, we examined the anti-inflammatory properties of these molecules in comparison with ω-6 LCPUFAs in a mouse EAU model. C57BL/6 mice were fed a diet containing ω-3 LCPUFAs or ω-6 LCPUFAs for 2 weeks before as well as after the induction of EAU by subcutaneous injection of a fragment of human interphotoreceptor retinoid-binding protein emulsified with complete Freund’s adjuvant. Both clinical and histological scores for uveitis were smaller for mice fed ω-3 LCPUFAs than for those fed ω-6 LCPUFAs. The concentrations of the T helper 1 (Th1) cytokine interferon-γ and the Th17 cytokine interleukin-17 in intraocular fluid as well as the production of these cytokines by lymph node cells were reduced for mice fed ω-3 LCPUFAs. Furthermore, the amounts of mRNAs for the Th1- and Th17-related transcription factors T-bet and RORγt, respectively, were reduced both in the retina and in lymph node cells of mice fed ω-3 LCPUFAs. Our results thus show that a diet enriched in ω-3 LCPUFAs suppressed uveitis in mice in association with inhibition of Th1 and Th17 cell function. PMID:26393358

  8. Nitrosative stress and nitrated proteins in trichloroethene-mediated autoimmunity.

    Directory of Open Access Journals (Sweden)

    Gangduo Wang

    Full Text Available Exposure to trichloroethene (TCE, a ubiquitous environmental contaminant, has been linked to a variety of autoimmune diseases (ADs including SLE, scleroderma and hepatitis. Mechanisms involved in the pathogenesis of ADs are largely unknown. Earlier studies from our laboratory in MRL+/+ mice suggested the contribution of oxidative/nitrosative stress in TCE-induced autoimmunity, and N-acetylcysteine (NAC supplementation provided protection by attenuating oxidative stress. This study was undertaken to further evaluate the contribution of nitrosative stress in TCE-mediated autoimmunity and to identify proteins susceptible to nitrosative stress. Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, ∼ 250 mg/kg/day via drinking water. TCE exposure led to significant increases in serum anti-nuclear and anti-histone antibodies together with significant induction of iNOS and increased formation of nitrotyrosine (NT in sera and livers. Proteomic analysis identified 14 additional nitrated proteins in the livers of TCE-treated mice. Furthermore, TCE exposure led to decreased GSH levels and increased activation of NF-κB. Remarkably, NAC supplementation not only ameliorated TCE-induced nitrosative stress as evident from decreased iNOS, NT, nitrated proteins, NF-κB p65 activation and increased GSH levels, but also the markers of autoimmunity, as evident from decreased levels of autoantibodies in the sera. These findings provide support to the role of nitrosative stress in TCE-mediated autoimmune response and identify specific nitrated proteins which could have autoimmune potential. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for designing therapeutic strategies.

  9. Amelioration of ongoing experimental autoimmune encephalomyelitis with fluoxetine.

    Science.gov (United States)

    Bhat, Roopa; Mahapatra, Sidharth; Axtell, Robert C; Steinman, Lawrence

    2017-12-15

    In patients with multiple sclerosis, the selective serotonin reuptake inhibitor, fluoxetine, resulted in less acute disease activity. We tested the immune modulating effects of fluoxetine in a mouse model of multiple sclerosis, i.e. experimental autoimmune encephalomyelitis (EAE). We show that fluoxetine delayed the onset of disease and reduced clinical paralysis in mice with established disease. Fluoxetine had abrogating effects on proliferation of immune cells and inflammatory cytokine production by both antigen-presenting cells and T cells. Specifically, in CD 4 T cells, fluoxetine increased Fas-induced apoptosis. We conclude that fluoxetine possesses immune-modulating effects resulting in the amelioration of symptoms in EAE. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. IL17/IL17RA as a Novel Signaling Axis Driving Mesenchymal Stem Cell Therapeutic Function in Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Mónica Kurte

    2018-04-01

    Full Text Available The therapeutic effect of mesenchymal stem cells (MSCs in multiple sclerosis (MS and the experimental autoimmune encephalomyelitis (EAE model has been well described. This effect is, in part, mediated through the inhibition of IL17-producing cells and the generation of regulatory T cells. While proinflammatory cytokines such as IFNγ, TNFα, and IL1β have been shown to enhance MSCs immunosuppressive function, the role of IL17 remains poorly elucidated. The aim of this study was, therefore, to investigate the role of the IL17/IL17R pathway on MSCs immunoregulatory effects focusing on Th17 cell generation in vitro and on Th17-mediated EAE pathogenesis in vivo. In vitro, we showed that the immunosuppressive effect of MSCs on Th17 cell proliferation and differentiation is partially dependent on IL17RA expression. This was associated with a reduced expression level of MSCs immunosuppressive mediators such as VCAM1, ICAM1, and PD-L1 in IL17RA−/− MSCs as compared to wild-type (WT MSCs. In the EAE model, we demonstrated that while WT MSCs significantly reduced the clinical scores of the disease, IL17RA−/− MSCs injected mice exhibited a clinical worsening of the disease. The disability of IL17RA−/− MSCs to reduce the progression of the disease paralleled the inability of these cells to reduce the frequency of Th17 cells in the draining lymph node of the mice as compared to WT MSCs. Moreover, we showed that the therapeutic effect of MSCs was correlated with the generation of classical Treg bearing the CD4+CD25+Foxp3+ signature in an IL17RA-dependent manner. Our findings reveal a novel role of IL17RA on MSCs immunosuppressive and therapeutic potential in EAE and suggest that the modulation of IL17RA in MSCs could represent a novel method to enhance their therapeutic effect in MS.

  11. Evidence from Human and Animal Studies: Pathological Roles of CD8(+) T Cells in Autoimmune Peripheral Neuropathies.

    Science.gov (United States)

    Yang, Mu; Peyret, Corentin; Shi, Xiang Qun; Siron, Nicolas; Jang, Jeong Ho; Wu, Sonia; Fournier, Sylvie; Zhang, Ji

    2015-01-01

    Autoimmune peripheral neuropathies such as Guillain-Barre Syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP) affect millions of people worldwide. Despite significant advances in understanding the pathology, the molecular and cellular mechanisms of immune-mediated neuropathies remain elusive. T lymphocytes definitely play an important role in disease pathogenesis and CD4(+) T cells have been the main area of research for decades. This is partly due to the fact that the most frequent animal model to study autoimmune peripheral neuropathy is experimental allergic neuritis (EAN). As it is induced commonly by immunization with peripheral nerve proteins, EAN is driven mainly by CD4(+) T cells. However, similarly to what has been reported for patients suffering from multiple sclerosis, a significant body of evidence indicates that CD8(+) T cells may play a pathogenic role in GBS and CIDP disease development and/or progression. Here, we summarize clinical studies pertaining to the presence and potential role of CD8(+) T cells in autoimmune peripheral neuropathies. We also discuss the findings from our most recent studies using a transgenic mouse line (L31 mice) in which the T cell co-stimulator molecule B7.2 (CD86) is constitutively expressed in antigen presenting cells of the nervous tissues. L31 mice spontaneously develop peripheral neuropathy, and CD8(+) T cells are found accumulating in peripheral nerves of symptomatic animals. Interestingly, depletion of CD4(+) T cells accelerates disease onset and increases disease prevalence. Finally, we point out some unanswered questions for future research to dissect the critical roles of CD8(+) T cells in autoimmune peripheral neuropathies.

  12. Evidence from Human and Animal Studies: Pathological Roles of CD8+ T Cells in Autoimmune Peripheral Neuropathies

    Science.gov (United States)

    Yang, Mu; Peyret, Corentin; Shi, Xiang Qun; Siron, Nicolas; Jang, Jeong Ho; Wu, Sonia; Fournier, Sylvie; Zhang, Ji

    2015-01-01

    Autoimmune peripheral neuropathies such as Guillain-Barre Syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP) affect millions of people worldwide. Despite significant advances in understanding the pathology, the molecular and cellular mechanisms of immune-mediated neuropathies remain elusive. T lymphocytes definitely play an important role in disease pathogenesis and CD4+ T cells have been the main area of research for decades. This is partly due to the fact that the most frequent animal model to study autoimmune peripheral neuropathy is experimental allergic neuritis (EAN). As it is induced commonly by immunization with peripheral nerve proteins, EAN is driven mainly by CD4+ T cells. However, similarly to what has been reported for patients suffering from multiple sclerosis, a significant body of evidence indicates that CD8+ T cells may play a pathogenic role in GBS and CIDP disease development and/or progression. Here, we summarize clinical studies pertaining to the presence and potential role of CD8+ T cells in autoimmune peripheral neuropathies. We also discuss the findings from our most recent studies using a transgenic mouse line (L31 mice) in which the T cell co-stimulator molecule B7.2 (CD86) is constitutively expressed in antigen presenting cells of the nervous tissues. L31 mice spontaneously develop peripheral neuropathy, and CD8+ T cells are found accumulating in peripheral nerves of symptomatic animals. Interestingly, depletion of CD4+ T cells accelerates disease onset and increases disease prevalence. Finally, we point out some unanswered questions for future research to dissect the critical roles of CD8+ T cells in autoimmune peripheral neuropathies. PMID:26528293

  13. Combined short-term immunotherapy for experimental autoimmune myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Pestronk, A.; Drachman, D.B.; Teoh, R.; Adams, R.N.

    1983-08-01

    A therapeutic strategy was designed to eliminate the humoral immune response to acetylcholine receptor (AChR) in ongoing experimental autoimmune myasthenia gravis (EAMG). Rats with EAMG were treated with a protocol consisting of three components: (1) A single high dose of cyclophosphamide (200 mg/kg) was used to produce a rapid and sustained fall in the anti-AChR antibody levels by preferential destruction of antibody-producing B-lymphocytes. ''Memory'' lymphocytes were not eliminated by cyclophosphamide. (2) Irradiation (600 rads) was used to eliminate the ''memory'' cells. It eliminated the anamnestic response to a challenge with the antigen AChR. (3) Bone marrow transplantation was used to repopulate the hematopoietic system after the otherwise lethal dose of cyclophosphamide. We used bone marrow from syngeneic rats with active EAMG to simulate an autologous transplant. Rats with EAMG treated with this combined protocol showed a prompt and sustained fall in the anti-AChR antibody levels and had no anamnestic response to a challenge with AChR. Thus, an affected animal's own marrow could be stored and used later for repopulation after cyclophosphamide-irradiation treatment. This treatment eliminates the animal's ongoing immune responses and reconstitutes the immune system in its original state. The success of this approach suggests that, if their safety could be established, similar ''curative'' strategies might be developed for the treatment of patients with severe antibody-mediated autoimmune disorders, such as myasthenia gravis.

  14. Arctigenin Suppress Th17 Cells and Ameliorates Experimental Autoimmune Encephalomyelitis Through AMPK and PPAR-γ/ROR-γt Signaling.

    Science.gov (United States)

    Li, Wen; Zhang, Zhihui; Zhang, Kai; Xue, Zhenyi; Li, Yan; Zhang, Zimu; Zhang, Lijuan; Gu, Chao; Zhang, Qi; Hao, Junwei; Da, Yurong; Yao, Zhi; Kong, Ying; Zhang, Rongxin

    2016-10-01

    Arctigenin is a herb compound extract from Arctium lappa and is reported to exhibit pharmacological properties, including neuronal protection and antidiabetic, antitumor, and antioxidant properties. However, the effects of arctigenin on autoimmune inflammatory diseases of the CNS, multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE) are still unclear. In this study, we demonstrated that arctigenin-treated mice are resistant to EAE; the clinical scores of arctigenin-treated mice are significantly reduced. Histochemical assays of spinal cord sections also showed that arctigenin reduces inflammation and demyelination in mice with EAE. Furthermore, the Th1 and Th17 cells in peripheral immune organs are inhibited by arctigenin in vivo. In addition, the Th1 cytokine IFN-γ and transcription factor T-bet, as well as the Th17 cytokines IL-17A, IL-17F, and transcription factor ROR-γt are significantly suppressed upon arctigenin treatment in vitro and in vivo. Interestedly, Th17 cells are obviously inhibited in CNS of mice with EAE, while Th1 cells do not significantly change. Besides, arctigenin significantly restrains the differentiation of Th17 cells. We further demonstrate that arctigenin activates AMPK and inhibits phosphorylated p38, in addition, upregulates PPAR-γ, and finally suppresses ROR-γt. These findings suggest that arctigenin may have anti-inflammatory and immunosuppressive properties via inhibiting Th17 cells, indicating that it could be a potential therapeutic drug for multiple sclerosis or other autoimmune inflammatory diseases.

  15. The kinase TBK1 functions in dendritic cells to regulate T cell homeostasis, autoimmunity, and antitumor immunity.

    Science.gov (United States)

    Xiao, Yichuan; Zou, Qiang; Xie, Xiaoping; Liu, Ting; Li, Haiyan S; Jie, Zuliang; Jin, Jin; Hu, Hongbo; Manyam, Ganiraju; Zhang, Li; Cheng, Xuhong; Wang, Hui; Marie, Isabelle; Levy, David E; Watowich, Stephanie S; Sun, Shao-Cong

    2017-05-01

    Dendritic cells (DCs) are crucial for mediating immune responses but, when deregulated, also contribute to immunological disorders, such as autoimmunity. The molecular mechanism underlying the function of DCs is incompletely understood. In this study, we have identified TANK-binding kinase 1 (TBK1), a master innate immune kinase, as an important regulator of DC function. DC-specific deletion of Tbk1 causes T cell activation and autoimmune symptoms and also enhances antitumor immunity in animal models of cancer immunotherapy. The TBK1-deficient DCs have up-regulated expression of co-stimulatory molecules and increased T cell-priming activity. We further demonstrate that TBK1 negatively regulates the induction of a subset of genes by type I interferon receptor (IFNAR). Deletion of IFNAR1 could largely prevent aberrant T cell activation and autoimmunity in DC-conditional Tbk1 knockout mice. These findings identify a DC-specific function of TBK1 in the maintenance of immune homeostasis and tolerance. © 2017 Xiao et al.

  16. COPA mutations impair ER-Golgi transport causing hereditary autoimmune-mediated lung disease and arthritis

    Science.gov (United States)

    Watkin, Levi B.; Jessen, Birthe; Wiszniewski, Wojciech; Vece, Timothy; Jan, Max; Sha, Youbao; Thamsen, Maike; Santos-Cortez, Regie L. P.; Lee, Kwanghyuk; Gambin, Tomasz; Forbes, Lisa; Law, Christopher S.; Stray-Petersen, Asbjørg; Cheng, Mickie H.; Mace, Emily M.; Anderson, Mark S.; Liu, Dongfang; Tang, Ling Fung; Nicholas, Sarah K.; Nahmod, Karen; Makedonas, George; Canter, Debra; Kwok, Pui-Yan; Hicks, John; Jones, Kirk D.; Penney, Samantha; Jhangiani, Shalini N.; Rosenblum, Michael D.; Dell, Sharon D.; Waterfield, Michael R.; Papa, Feroz R.; Muzny, Donna M.; Zaitlen, Noah; Leal, Suzanne M.; Gonzaga-Jauregui, Claudia; Boerwinkle, Eric; Eissa, N. Tony; Gibbs, Richard A.; Lupski, James R.; Orange, Jordan S.; Shum, Anthony K.

    2015-01-01

    Advances in genomics have allowed unbiased genetic studies of human disease with unexpected insights into the molecular mechanisms of cellular immunity and autoimmunity1. We performed whole exome sequencing (WES) and targeted sequencing in patients with an apparent Mendelian syndrome of autoimmune disease characterized by high-titer autoantibodies, inflammatory arthritis and interstitial lung disease (ILD). In five families, we identified four unique deleterious variants in the Coatomer subunit alpha (COPA) gene all located within the same functional domain. We hypothesized that mutant COPA leads to a defect in intracellular transport mediated by coat protein complex I (COPI)2–4. We show that COPA variants impair binding of proteins targeted for retrograde Golgi to ER transport and demonstrate that expression of mutant COPA leads to ER stress and the upregulation of Th17 priming cytokines. Consistent with this pattern of cytokine expression, patients demonstrated a significant skewing of CD4+ T cells toward a T helper 17 (Th17) phenotype, an effector T cell population implicated in autoimmunity5,6. Our findings uncover an unexpected molecular link between a vesicular transport protein and a syndrome of autoimmunity manifested by lung and joint disease. These findings provide a unique opportunity to understand how alterations in cellular homeostasis caused by a defect in the intracellular trafficking pathway leads to the generation of human autoimmune disease. PMID:25894502

  17. Regulatory B and T cell responses in patients with autoimmune thyroid disease and healthy controls

    DEFF Research Database (Denmark)

    Kristensen, Birte; Hegedüs, Laszlo

    2016-01-01

    ). HT is primarily a T-cell mediated disease, and whether B cells play a pathogenic role in the pathogenesis is still unclear. Both GD and HT are characterized by infiltration of the thyroid gland by self-reactive T cells and B cells. In the first paper of this thesis, the role of regulatory B cells...... (Bregs) and regulatory T cells (Tregs) were investigated in the context of GD and HT. First, we studied the role of the thyroid self-antigen, thyroglobulin (TG) in healthy donors. The self-antigen TG, but not the foreign recall antigen tetanus toxoid (TT), was able to induce interleukin 10 (IL-10......Autoimmune diseases occur due to faulty self-tolerance. Graves' disease (GD) and Hashimoto's thyroiditis (HT) are classic examples of organ-specific autoimmune diseases. GD is an auto-antibody-mediated disease where autoantibodies are produced against the thyroid stimulating hormone receptor (TSHR...

  18. Role of passive T-cell death in chronic experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Abdallah, K; Chitnis, T

    2000-01-01

    central nervous system (CNS) compared with controls. There was also a decreased number of apoptotic cells in the CNS of Bcl-x(L) transgenic mice when compared with littermates at all time points tested. This is the first report of an autoimmune disease model in Bcl-x(L) transgenic mice. Our data indicate...

  19. Quetiapine, an atypical antipsychotic, is protective against autoimmune-mediated demyelination by inhibiting effector T cell proliferation.

    Directory of Open Access Journals (Sweden)

    Feng Mei

    Full Text Available Quetiapine (Que, a commonly used atypical antipsychotic drug (APD, can prevent myelin from breakdown without immune attack. Multiple sclerosis (MS, an autoimmune reactive inflammation demyelinating disease, is triggered by activated myelin-specific T lymphocytes (T cells. In this study, we investigated the potential efficacy of Que as an immune-modulating therapeutic agent for experimental autoimmune encephalomyelitis (EAE, a mouse model for MS. Que treatment was initiated on the onset of MOG(35-55 peptide induced EAE mice and the efficacy of Que on modulating the immune response was determined by Flow Cytometry through analyzing CD4(+/CD8(+ populations and the proliferation of effector T cells (CD4(+CD25(- in peripheral immune organs. Our results show that Que dramatically attenuates the severity of EAE symptoms. Que treatment decreases the extent of CD4(+/CD8(+ T cell infiltration into the spinal cord and suppresses local glial activation, thereby diminishing the loss of mature oligodendrocytes and myelin breakdown in the spinal cord of EAE mice. Our results further demonstrate that Que treatment decreases the CD4(+/CD8(+ T cell populations in lymph nodes and spleens of EAE mice and inhibits either MOG(35-55 or anti-CD3 induced proliferation as well as IL-2 production of effector T cells (CD4(+CD25(- isolated from EAE mice spleen. Together, these findings suggest that Que displays an immune-modulating role during the course of EAE, and thus may be a promising candidate for treatment of MS.

  20. Functional Role of Milk Fat Globule-Epidermal Growth Factor VIII in Macrophage-Mediated Inflammatory Responses and Inflammatory/Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Young-Su Yi

    2016-01-01

    Full Text Available Inflammation involves a series of complex biological processes mediated by innate immunity for host defense against pathogen infection. Chronic inflammation is considered to be one of the major causes of serious diseases, including a number of autoimmune/inflammatory diseases, cancers, cardiovascular diseases, and neurological diseases. Milk fat globule-epidermal growth factor 8 (MFG-E8 is a secreted protein found in vertebrates and was initially discovered as a critical component of the milk fat globule. Previously, a number of studies have reported that MFG-E8 contributes to various biological functions including the phagocytic removal of damaged and apoptotic cells from tissues, the induction of VEGF-mediated neovascularization, the maintenance of intestinal epithelial homeostasis, and the promotion of mucosal healing. Recently, emerging studies have reported that MFG-E8 plays a role in inflammatory responses and inflammatory/autoimmune diseases. This review describes the characteristics of MFG-E8-mediated signaling pathways, summarizes recent findings supporting the roles of MFG-E8 in inflammatory responses and inflammatory/autoimmune diseases, and discusses MFG-E8 targeting as a potential therapeutic strategy for the development of anti-inflammatory/autoimmune disease drugs.

  1. Chronic Pelvic Pain Development and Prostate Inflammation in Strains of Mice With Different Susceptibility to Experimental Autoimmune Prostatitis.

    Science.gov (United States)

    Breser, Maria L; Motrich, Ruben D; Sanchez, Leonardo R; Rivero, Virginia E

    2017-01-01

    Experimental autoimmune prostatitis (EAP) is an autoimmune inflammatory disease of the prostate characterized by peripheral prostate-specific autoimmune responses associated with prostate inflammation. EAP is induced in rodents upon immunization with prostate antigens (PAg) plus adjuvants and shares important clinical and immunological features with the human disease chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). EAP was induced in young NOD, C57BL/6, and BALB/c male mice by immunization with PAg plus complete Freund́s adjuvant. Tactile allodynia was assessed using Von Frey fibers as a measure of pelvic pain at baseline and at different time points after immunization. Using conventional histology, immunohistochemistry, FACS analysis, and protein arrays, an interstrain comparative study of prostate cell infiltration and inflammation was performed. Chronic pelvic pain development was similar between immunized NOD and C57BL/6 mice, although the severity of leukocyte infiltration was greater in the first case. Coversely, minimal prostate cell infiltration was observed in immunized BALB/c mice, who showed no pelvic pain development. Increased numbers of mast cells, mostly degranulated, were detected in prostate samples from NOD and C57BL/6 mice, while lower total counts and resting were observed in BALB/c mice. Prostate tissue from NOD mice revealed markedly increased expression levels of inflammatory cytokines, chemokines, adhesion molecules, vascular endothelial growth factor, and metalloproteinases. Similar results, but to a lesser extent, were observed when analyzing prostate tissue from C57BL/6 mice. On the contrary, the expression of the above mediators was very low in prostate tissue from immunized BALB/c mice, showing significantly slight increments only for CXCL1 and IL4. Our results provide new evidence indicating that NOD, C57BL/6, and BALB/c mice develop different degrees of chronic pelvic pain, type, and amount of prostate cell infiltration

  2. Dysregulation of T lymphocyte proliferative responses in autoimmunity.

    Directory of Open Access Journals (Sweden)

    Sydney K Elizer

    Full Text Available T cells are critically dependent on cellular proliferation in order to carry out their effector functions. Autoimmune strains are commonly thought to have uncontrolled T cell proliferation; however, in the murine model of autoimmune diabetes, hypo-proliferation of T cells leading to defective AICD was previously uncovered. We now determine whether lupus prone murine strains are similarly hyporesponsive. Upon extensive characterization of T lymphocyte activation, we have observed a common feature of CD4 T cell activation shared among three autoimmune strains-NOD, MRL, and NZBxNZW F1s. When stimulated with a polyclonal mitogen, CD4 T cells demonstrate arrested cell division and diminished dose responsiveness as compared to the non-autoimmune strain C57BL/6, a phenotype we further traced to a reliance on B cell mediated costimulation, which underscores the success of B cell directed immune therapies in preventing T cell mediated tissue injury. In turn, the diminished proliferative capacity of these CD4 T cells lead to a decreased, but activation appropriate, susceptibility to activation induced cell death. A similar decrement in stimulation response was observed in the CD8 compartment of NOD mice; NOD CD8 T cells were distinguished from lupus prone strains by a diminished dose-responsiveness to anti-CD3 mediated stimulation. This distinction may explain the differential pathogenetic pathways activated in diabetes and lupus prone murine strains.

  3. Transgenic expression of soluble human CD5 enhances experimentally-induced autoimmune and anti-tumoral immune responses.

    Directory of Open Access Journals (Sweden)

    Rafael Fenutría

    Full Text Available CD5 is a lymphoid-specific transmembrane glycoprotein constitutively expressed on thymocytes and mature T and B1a lymphocytes. Current data support the view that CD5 is a negative regulator of antigen-specific receptor-mediated signaling in these cells, and that this would likely be achieved through interaction with CD5 ligand/s (CD5L of still undefined nature expressed on immune or accessory cells. To determine the functional consequence of loss of CD5/CD5L interaction in vivo, a new transgenic mouse line was generated (shCD5EμTg, expressing a circulating soluble form of human CD5 (shCD5 as a decoy to impair membrane-bound CD5 function. These shCD5EμTg mice showed an enhanced response to autologous antigens, as deduced from the presentation of more severe forms of experimentally inducible autoimmune disease (collagen-induced arthritis, CIA; and experimental autoimmune encephalitis, EAE, as well as an increased anti-tumoral response in non-orthotopic cancer models (B16 melanoma. This enhancement of the immune response was in agreement with the finding of significantly reduced proportions of spleen and lymph node Treg cells (CD4+CD25+FoxP3+, and of peritoneal IL-10-producing and CD5+ B cells, as well as an increased proportion of spleen NKT cells in shCD5EμTg mice. Similar changes in lymphocyte subpopulations were observed in wild-type mice following repeated administration of exogenous recombinant shCD5 protein. These data reveal the relevant role played by CD5/CD5L interactions on the homeostasis of some functionally relevant lymphocyte subpopulations and the modulation of immune responses to autologous antigens.

  4. Oxidative and nitrosative stress in trichloroethene-mediated autoimmune response

    International Nuclear Information System (INIS)

    Wang Gangduo; Cai Ping; Ansari, G.A.S.; Khan, M. Firoze

    2007-01-01

    Reactive oxygen and nitrogen species (RONS) are implicated in the pathogenesis of several autoimmune diseases. Also, increased lipid peroxidation and protein nitration are reported in systemic autoimmune diseases. Lipid peroxidation-derived aldehydes (LPDAs) such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are highly reactive and bind proteins covalently, but their potential to elicit an autoimmune response and contribution to disease pathogenesis remain unclear. Similarly, nitration of protein could also contribute to disease pathogenesis. To assess the status of lipid peroxidation and/or RONS, autoimmune-prone female MRL+/+ mice (5-week old) were treated with trichloroethene (TCE), an environmental contaminant known to induce autoimmune response, for 48 weeks (0.5 mg/ml via drinking water), and formation of antibodies to LPDA-protein adducts was followed in the sera of control and TCE-treated mice. TCE treatment led to greater formation of both anti-MDA- and -HNE-protein adduct antibodies and higher serum iNOS and nitrotyrosine levels. The increase in TCE-induced oxidative stress was associated with increases in anti-nuclear-, anti-ssDNA- and anti-dsDNA-antibodies. These findings suggest that TCE exposure not only leads to oxidative/nitrosative stress, but is also associated with induction/exacerbation of autoimmune response in MRL+/+ mice. Further interventional studies are needed to establish a causal role of RONS in TCE-mediated autoimmunity

  5. GM-CSF: An Immune Modulatory Cytokine that can Suppress Autoimmunity

    Science.gov (United States)

    Bhattacharya, Palash; Thiruppathi, Muthusamy; Elshabrawy, Hatem A.; Alharshawi, Khaled; Kumar, Prabhakaran; Prabhakar, Bellur S.

    2015-01-01

    GM-CSF was originally identified as a colony stimulating factor (CSF) because of its ability to induce granulocyte and macrophage populations from precursor cells. Multiple studies have demonstrated that GM-CSF is also an immune-modulatory cytokine, capable of affecting not only the phenotype of myeloid lineage cells, but also T-cell activation through various myeloid intermediaries. This property has been implicated in the sustenance of several autoimmune diseases like arthritis and multiple sclerosis. In contrast, several studies using animal models have shown that GM-CSF is also capable of suppressing many autoimmune diseases like Crohn's disease, Type-1 diabetes, Myasthenia gravis and experimental autoimmune thyroiditis. Knockout mouse studies have suggested that the role of GM-CSF in maintaining granulocyte and macrophage populations in the physiological steady state is largely redundant. Instead, its immune-modulatory role plays a significant role in the development or resolution of autoimmune diseases. This is mediated either through the differentiation of precursor cells into specialized non-steady state granulocytes, macrophages and dendritic cells, or through the modulation of the phenotype of mature myeloid cells. Thus, outside of myelopoiesis, GM-CSF has a profound role in regulating the immune response and maintaining immunological tolerance. PMID:26113402

  6. Protein adducts of malondialdehyde and 4-hydroxynonenal contribute to trichloroethene-mediated autoimmunity via activating Th17 cells: Dose– and time–response studies in female MRL+/+ mice

    International Nuclear Information System (INIS)

    Wang, Gangduo; Wang, Jianling; Fan, Xiuzhen; Ansari, G.A.S.; Khan, M. Firoze

    2012-01-01

    Highlights: ► TCE exposure led to dose- and time-related increases in MDA-/HNE-protein adducts and their antibodies. ► Increased MDA-/HNE-adducts were associated with increases in serum autoantibodies. ► MDA-/HNE-albumin adducts trigger greater release of IL-17 and IL-21 from splenocytes of TCE-treated mice. ► Results support that MDA-/HNE-modified proteins could contribute to an autoimmune response. -- Abstract: Trichloroethene (TCE), a common occupational and environmental toxicant, is known to induce autoimmunity. Previous studies in our laboratory showed increased oxidative stress in TCE-mediated autoimmunity. To further establish the role of oxidative stress and to investigate the mechanisms of TCE-mediated autoimmunity, dose– and time–response studies were conducted in MRL+/+ mice by treating them with TCE via drinking water at doses of 0.5, 1.0 or 2.0 mg/ml for 12, 24 or 36 weeks. TCE exposure led to dose-related increases in malondialdehyde (MDA)-/hydroxynonenal (HNE)-protein adducts and their corresponding antibodies in the sera and decreases in GSH and GSH/GSSG ratio in the kidneys at 24 and 36 weeks, with greater changes at 36 weeks. The increases in these protein adducts and decreases in GSH/GSSG ratio were associated with significant elevation in serum anti-nuclear- and anti-ssDNA-antibodies, suggesting an association between TCE-induced oxidative stress and autoimmune response. Interestingly, splenocytes from mice treated with TCE for 24 weeks secreted significantly higher levels of IL-17 and IL-21 than did splenocytes from controls after stimulation with MDA-mouse serum albumin (MSA) or HNE-MSA adducts. The increased release of these cytokines showed a dose-related response and was more pronounced in mice treated with TCE for 36 weeks. These studies provide evidence that MDA- and or HNE-protein adducts contribute to TCE-mediated autoimmunity, which may be via activation of Th17 cells.

  7. The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion.

    Science.gov (United States)

    Hucke, Stephanie; Herold, Martin; Liebmann, Marie; Freise, Nicole; Lindner, Maren; Fleck, Ann-Katrin; Zenker, Stefanie; Thiebes, Stephanie; Fernandez-Orth, Juncal; Buck, Dorothea; Luessi, Felix; Meuth, Sven G; Zipp, Frauke; Hemmer, Bernhard; Engel, Daniel Robert; Roth, Johannes; Kuhlmann, Tanja; Wiendl, Heinz; Klotz, Luisa

    2016-09-01

    Innate immune responses by myeloid cells decisively contribute to perpetuation of central nervous system (CNS) autoimmunity and their pharmacologic modulation represents a promising strategy to prevent disease progression in Multiple Sclerosis (MS). Based on our observation that peripheral immune cells from relapsing-remitting and primary progressive MS patients exhibited strongly decreased levels of the bile acid receptor FXR (farnesoid-X-receptor, NR1H4), we evaluated its potential relevance as therapeutic target for control of established CNS autoimmunity. Pharmacological FXR activation promoted generation of anti-inflammatory macrophages characterized by arginase-1, increased IL-10 production, and suppression of T cell responses. In mice, FXR activation ameliorated CNS autoimmunity in an IL-10-dependent fashion and even suppressed advanced clinical disease upon therapeutic administration. In analogy to rodents, pharmacological FXR activation in human monocytes from healthy controls and MS patients induced an anti-inflammatory phenotype with suppressive properties including control of effector T cell proliferation. We therefore, propose an important role of FXR in control of T cell-mediated autoimmunity by promoting anti-inflammatory macrophage responses.

  8. Evaluation of Marijuana Compounds on Neuroimmune Endpoints in Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Kaplan, Barbara L F

    2018-02-21

    Cannabinoid compounds refer to a group of more than 60 plant-derived compounds in Cannabis sativa, more commonly known as marijuana. Exposure to marijuana and cannabinoid compounds has been increasing due to increased societal acceptance for both recreational and possible medical use. Cannabinoid compounds suppress immune function, and while this could compromise one's ability to fight infections, immune suppression is the desired effect for therapies for autoimmune diseases. It is critical, therefore, to understand the effects and mechanisms by which cannabinoid compounds alter immune function, especially immune responses induced in autoimmune disease. Therefore, this unit will describe induction and assessment of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), and its potential alteration by cannabinoid compounds. The unit includes three approaches to induce EAE, two of which provide correlations to two forms of MS, and the third specifically addresses the role of autoreactive T cells in EAE. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  9. Regulation of Th1 and Th17 cell differentiation and amelioration of experimental autoimmune encephalomyelitis by natural product compound berberine.

    Science.gov (United States)

    Qin, Xia; Guo, Bingshi T; Wan, Bing; Fang, Lei; Lu, Limin; Wu, Lili; Zang, Ying Qin; Zhang, Jingwu Z

    2010-08-01

    Berberine (BBR), an isoquinoline alkaloid derived from plants, is widely used as an anti-inflammatory remedy in traditional Chinese medicine. In this study, we showed that BBR was efficacious in the amelioration of experimental autoimmune encephalomyelitis (EAE) through novel regulatory mechanisms involving pathogenic Th1 and Th17 cells. BBR inhibited differentiation of Th17 cells and, to a lesser degree, Th1 cells through direct actions on the JAK/STAT pathway, whereas it had no effect on the relative number of CD4(+)Foxp3(+) regulatory T cells. In addition, BBR indirectly influenced Th17 and Th1 cell functions through its effect on the expression and function of costimulatory molecules and the production of IL-6, which was attributable to the inhibition of NF-kappaB activity in CD11b(+) APCs. BBR treatment completely abolished the encephalitogenicity of MOG(35-55)-reactive Th17 cells in an adoptive transfer EAE model, and the same treatment significantly inhibited the ability of MOG(35-55)-reactive Th1 cells to induce EAE. This study provides new evidence that natural compounds, such as BBR, are of great value in the search for novel anti-inflammatory agents and therapeutic targets for autoimmune diseases.

  10. Autoimmune liver disease and therapy in childhood

    Directory of Open Access Journals (Sweden)

    Matjaž Homan

    2013-10-01

    Full Text Available Autoimmune hepatitis is a chronic immune-mediated disease of the liver. In childhood, autoimmune liver disorders include autoimmune hepatitis type I and II, autoimmune sclerosing cholangitis, Coombs-positive giant cell hepatitis, and de novo autoimmune hepatitis after liver transplantation. Autoimmune liver disease has a more aggressive course in children, especially autoimmune hepatitis type II. Standard therapy is a combination of corticosteroids and azathioprine. Around 80 % of children with autoimmune liver disease show a rapid response to combination therapy. The non-responders are treated with more potent drugs, otherwise autoimmune disease progresses to cirrhosis of the liver and the child needs liver transplantation as rescue therapy.

  11. SAP Suppresses the Development of Experimental Autoimmune Encephalomyelitis in C57BL6 Mice

    Science.gov (United States)

    Ji, Zhe; Ke, Zun-Ji; Geng, Jian-Guo

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell-mediated disease of the CNS. Serum amyloid P component (SAP) is a highly conserved plasma protein named for its universal presence in amyloid deposits. Here we report SAP transgenic mice had unexpectedly attenuated EAE due to impaired encephalitogenic responses. Following induction with myelin oligodendroglial glycoprotein (MOG) peptide 35–55 in CFA, SAP transgenic mice showed reduced spinal cord inflammation with lower severity of EAE attacks as compared with control C57BL/6 mice. However in SAP-KO mice, the severity of EAE is enhanced. Adoptive transfer of Ag-restimulated T cells from wild-type to SAP transgenic mice or transfer of SAP transgenic Ag-restimulated T cells to control mice induced milder EAE. T cells from MOG-primed SAP transgenic mice showed weak proliferative responses. Furthermore, in SAP transgenic mice, there is little infiltration of CD45-positive cells in the spinal cord. In vitro, SAP suppressed the secretion of IL-2 stimulated by P-selectin, and blocked P-selectin binding to T cells. Moreover, SAP could change the affinity between α4-integrin and T cells. These data suggested that SAP could antagonize the development of the acute phase of inflammation accompanying EAE by modulating the function of P-selectin. PMID:21647172

  12. Mechanisms of action of cannabidiol in adoptively transferred experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    González-García, Coral; Torres, Irene Moreno; García-Hernández, Ruth; Campos-Ruíz, Lucía; Esparragoza, Luis Rodríguez; Coronado, María José; Grande, Aranzazu García; García-Merino, Antonio; Sánchez López, Antonio J

    2017-12-01

    Cannabidiol (CBD) is one of the most important compounds in Cannabis sativa, lacks psychotropic effects, and possesses a high number of therapeutic properties including the amelioration of experimental autoimmune encephalomyelitis (EAE). The aim of this study was to analyse the relative efficacy of CBD in adoptively transferred EAE (at-EAE), a model that allows better delineation of the effector phase of EAE. Splenocytes and lymph nodes from mice with actively induced EAE were cultured in the presence of MOG 35-55 and IL-12 and inoculated intraperitoneally in recipient female C57BL/6J mice. The effects of CBD were evaluated using clinical scores and magnetic resonance imaging (MRI). In the central nervous system, the extent of cell infiltration, axonal damage, demyelination, microglial activation and cannabinoid receptors expression was assessed by immunohistochemistry. Lymph cell viability, apoptosis, oxidative stress and IL-6 production were measured in vitro. Preventive intraperitoneal treatment with CBD ameliorated the clinical signs of at-EAE, and this improvement was accompanied by a reduction of the apparent diffusion coefficient in the subiculum area of the brain. Inflammatory infiltration, axonal damage, and demyelination were reduced, and cannabinoid receptor expression was modulated. Incubation with CBD decreased encephalitogenic cell viability, increasing early apoptosis and reactive oxygen species (ROS) and decreasing IL-6 production. The reduction in viability was not mediated by CB 1 , CB 2 or GPR55 receptors. CBD markedly improved the clinical signs of at-EAE and reduced infiltration, demyelination and axonal damage. The CBD-mediated decrease in the viability of encephalitogenic cells involves ROS generation, apoptosis and a decrease in IL-6 production and may contribute to the therapeutic effect of this compound. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Biomimetic Nanosponges for Treating Antibody-Mediated Autoimmune Diseases.

    Science.gov (United States)

    Jiang, Yao; Fang, Ronnie H; Zhang, Liangfang

    2018-04-18

    Autoimmune diseases are characterized by overactive immunity, where the body's defense system launches an attack against itself. If left unchecked, this can result in the destruction of healthy tissue and significantly affect patient well-being. In the case of type II autoimmune hypersensitivities, autoreactive antibodies attack the host's own cells or extracellular matrix. Current clinical treatment modalities for managing this class of disease are generally nonspecific and face considerable limitations. In this Topical Review, we cover emerging therapeutic strategies, with an emphasis on novel nanomedicine platforms. Specifically, the use of biomimetic cell membrane-coated nanosponges that are capable of specifically binding and neutralizing pathological antibodies will be explored. There is significant untapped potential in the application of nanotechnology for the treatment of autoimmune diseases, and continued development along this line may help to eventually change the clinical landscape.

  14. Divergent Roles of Interferon-γ and Innate Lymphoid Cells in Innate and Adaptive Immune Cell-Mediated Intestinal Inflammation.

    Science.gov (United States)

    Brasseit, Jennifer; Kwong Chung, Cheong K C; Noti, Mario; Zysset, Daniel; Hoheisel-Dickgreber, Nina; Genitsch, Vera; Corazza, Nadia; Mueller, Christoph

    2018-01-01

    Aberrant interferon gamma (IFNγ) expression is associated with the pathogenesis of numerous autoimmune- and inflammatory disorders, including inflammatory bowel diseases (IBD). However, the requirement of IFNγ for the pathogenesis of chronic intestinal inflammation remains controversial. The aim of this study was thus to investigate the role of IFNγ in experimental mouse models of innate and adaptive immune cell-mediated intestinal inflammation using genetically and microbiota-stabilized hosts. While we find that IFNγ drives acute intestinal inflammation in the anti-CD40 colitis model in an innate lymphoid cell (ILC)-dependent manner, IFNγ secreted by both transferred CD4 T cells and/or cells of the lymphopenic Rag1 -/- recipient mice was dispensable for CD4 T cell-mediated colitis. In the absence of IFNγ, intestinal inflammation in CD4 T cell recipient mice was associated with enhanced IL17 responses; consequently, targeting IL17 signaling in IFNγ-deficient mice reduced T cell-mediated colitis. Intriguingly, in contrast to the anti-CD40 model of colitis, depletion of ILC in the Rag1 -/- recipients of colitogenic CD4 T cells did not prevent induction of colonic inflammation. Together, our findings demonstrate that IFNγ represents an essential, or a redundant, pro-inflammatory cytokine for the induction of intestinal inflammation, depending on the experimental mouse model used and on the nature of the critical disease inducing immune cell populations involved.

  15. Involvement of hypothalamus autoimmunity in patients with autoimmune hypopituitarism: role of antibodies to hypothalamic cells.

    Science.gov (United States)

    De Bellis, A; Sinisi, A A; Pane, E; Dello Iacovo, A; Bellastella, G; Di Scala, G; Falorni, A; Giavoli, C; Gasco, V; Giordano, R; Ambrosio, M R; Colao, A; Bizzarro, A; Bellastella, A

    2012-10-01

    Antipituitary antibodies (APA) but not antihypothalamus antibodies (AHA) are usually searched for in autoimmune hypopituitarism. Our objective was to search for AHA and characterize their hypothalamic target in patients with autoimmune hypopituitarism to clarify, on the basis of the cells stained by these antibodies, the occurrence of autoimmune subclinical/clinical central diabetes insipidus (CDI) and/or possible joint hypothalamic contribution to their hypopituitarism. We conducted a cross-sectional cohort study. Ninety-five APA-positive patients with autoimmune hypopituitarism, 60 without (group 1) and 35 with (group 2) lymphocytic hypophysitis, were studied in comparison with 20 patients with postsurgical hypopituitarism and 50 normal subjects. AHA by immunofluorescence and posterior pituitary function were evaluated; then AHA-positive sera were retested by double immunofluorescence to identify the hypothalamic cells targeted by AHA. AHA were detected at high titer in 12 patients in group 1 and in eight patients in group 2. They immunostained arginine vasopressin (AVP)-secreting cells in nine of 12 in group 1 and in four of eight in group 2. All AVP cell antibody-positive patients presented with subclinical/clinical CDI; in contrast, four patients with GH/ACTH deficiency but with APA staining only GH-secreting cells showed AHA targeting CRH- secreting cells. The occurrence of CDI in patients with lymphocytic hypophysitis seems due to an autoimmune hypothalamic involvement rather than an expansion of the pituitary inflammatory process. To search for AVP antibody in these patients may help to identify those of them prone to develop an autoimmune CDI. The detection of AHA targeting CRH-secreting cells in some patients with GH/ACTH deficiency but with APA targeting only GH-secreting cells indicates that an autoimmune aggression to hypothalamus is jointly responsible for their hypopituitarism.

  16. A B Cell-Driven Autoimmune Pathway Leading to Pathological Hallmarks of Progressive Multiple Sclerosis in the Marmoset Experimental Autoimmune Encephalomyelitis Model

    Directory of Open Access Journals (Sweden)

    Bert A. ’t Hart

    2017-07-01

    Full Text Available The absence of pathological hallmarks of progressive multiple sclerosis (MS in commonly used rodent models of experimental autoimmune encephalomyelitis (EAE hinders the development of adequate treatments for progressive disease. Work reviewed here shows that such hallmarks are present in the EAE model in marmoset monkeys (Callithrix jacchus. The minimal requirement for induction of progressive MS pathology is immunization with a synthetic peptide representing residues 34–56 from human myelin oligodendrocyte glycoprotein (MOG formulated with a mineral oil [incomplete Freund’s adjuvant (IFA]. Pathological aspects include demyelination of cortical gray matter with microglia activation, oxidative stress, and redistribution of iron. When the peptide is formulated in complete Freund’s adjuvant, which contains mycobacteria that relay strong activation signals to myeloid cells, oxidative damage pathways are strongly boosted leading to more intensive pathology. The proven absence of immune potentiating danger signals in the MOG34–56/IFA formulation implies that a narrow population of antigen-experienced T cells present in the monkey’s immune repertoire is activated. This novel pathway involves the interplay of lymphocryptovirus-infected B cells with MHC class Ib/Caja-E restricted CD8+ CD56+ cytotoxic T lymphocytes.

  17. Cutting Edge: 2B4-Mediated Coinhibition of CD4+ T Cells Underlies Mortality in Experimental Sepsis.

    Science.gov (United States)

    Chen, Ching-Wen; Mittal, Rohit; Klingensmith, Nathan J; Burd, Eileen M; Terhorst, Cox; Martin, Greg S; Coopersmith, Craig M; Ford, Mandy L

    2017-09-15

    Sepsis is a leading cause of death in the United States, but the mechanisms underlying sepsis-induced immune dysregulation remain poorly understood. 2B4 (CD244, SLAM4) is a cosignaling molecule expressed predominantly on NK cells and memory CD8 + T cells that has been shown to regulate T cell function in models of viral infection and autoimmunity. In this article, we show that 2B4 signaling mediates sepsis lymphocyte dysfunction and mortality. 2B4 expression is increased on CD4 + T cells in septic animals and human patients at early time points. Importantly, genetic loss or pharmacologic inhibition of 2B4 significantly increased survival in a murine cecal ligation and puncture model. Further, CD4-specific conditional knockouts showed that 2B4 functions on CD4 + T cell populations in a cell-intrinsic manner and modulates adaptive and innate immune responses during sepsis. Our results illuminate a novel role for 2B4 coinhibitory signaling on CD4 + T cells in mediating immune dysregulation. Copyright © 2017 by The American Association of Immunologists, Inc.

  18. Suppression of autoimmune retinal inflammation by an antiangiogenic drug.

    Directory of Open Access Journals (Sweden)

    Takeru Yoshimura

    Full Text Available Chronic and recurrent uveitis account for approximately 10% of legal blindness in the western world. Autoimmune uveitis is driven by activated CD4(+ T cells that differentiate into effector T helper cells (Th1, Th2, and Th17 which release proinflammatory cytokines that damage the retina. In this study we investigated the effect of the methionine aminopeptidase 2 (MetAP2 inhibitor, Lodamin, on T cell activation and differentiation. MetAp2 is an enzyme which regulates cellular protein synthesis and is highly expressed in T cells. Lodamin was found to suppress T cell receptor (TCR mediated T cell proliferation and reduced the production of Th1 and Th17 cells. Further, Lodamin suppressed overall inflammation in the mouse model of experimental autoimmune uveitis (EAU by a six fold. This effect was attributed in part to a reduction in retinal proinflammatory cytokines, down regulation of MetAP2 expression in purified lymph node CD4(+ T cells, and a general normalization of the systemic immune reaction.

  19. Suppression of Autoimmune Retinal Inflammation by an Antiangiogenic Drug

    Science.gov (United States)

    Bazinet, Lauren; D’Amato, Robert J.

    2013-01-01

    Chronic and recurrent uveitis account for approximately 10% of legal blindness in the western world. Autoimmune uveitis is driven by activated CD4+ T cells that differentiate into effector T helper cells (Th1, Th2, and Th17) which release proinflammatory cytokines that damage the retina. In this study we investigated the effect of the methionine aminopeptidase 2 (MetAP2) inhibitor, Lodamin, on T cell activation and differentiation. MetAp2 is an enzyme which regulates cellular protein synthesis and is highly expressed in T cells. Lodamin was found to suppress T cell receptor (TCR) mediated T cell proliferation and reduced the production of Th1 and Th17 cells. Further, Lodamin suppressed overall inflammation in the mouse model of experimental autoimmune uveitis (EAU) by a six fold. This effect was attributed in part to a reduction in retinal proinflammatory cytokines, down regulation of MetAP2 expression in purified lymph node CD4+ T cells, and a general normalization of the systemic immune reaction. PMID:23785488

  20. CD73 Expressed on γδ T Cells Shapes Their Regulatory Effect in Experimental Autoimmune Uveitis.

    Directory of Open Access Journals (Sweden)

    Dongchun Liang

    Full Text Available γδ T cells can either enhance or inhibit an adaptive immune response, but the mechanisms involved are not fully understood. Given that CD73 is the main enzyme responsible for conversion of AMP into the immunosuppressive molecule adenosine, we investigated its role in the regulatory function of γδ T cells in experimental autoimmune uveitis (EAU. We found that γδ T cells expressed different amounts of CD73 during the different stages of EAU and that low CD73 expression on γδ T cells correlated with enhanced Th17 response-promoting activity. Functional comparison of CD73-deficient and wild-type B6 (CD73+/+ mice showed that failure to express CD73 decreased both the enhancing and suppressive effects of γδ T cells on EAU. We also demonstrated that γδ T cells expressed different amounts of CD73 when activated by different pathways, which enabled them to either enhance or inhibit an adaptive immune response. Our results demonstrate that targeting CD73 expression on γδ T cells may allow us to manipulate their pro- or anti-inflammatory effect on Th17 responses.

  1. Modulation of Autoimmune T-Cell Memory by Stem Cell Educator Therapy: Phase 1/2 Clinical Trial.

    Science.gov (United States)

    Delgado, Elias; Perez-Basterrechea, Marcos; Suarez-Alvarez, Beatriz; Zhou, Huimin; Revuelta, Eva Martinez; Garcia-Gala, Jose Maria; Perez, Silvia; Alvarez-Viejo, Maria; Menendez, Edelmiro; Lopez-Larrea, Carlos; Tang, Ruifeng; Zhu, Zhenlong; Hu, Wei; Moss, Thomas; Guindi, Edward; Otero, Jesus; Zhao, Yong

    2015-12-01

    Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that causes a deficit of pancreatic islet β cells. The complexities of overcoming autoimmunity in T1D have contributed to the challenges the research community faces when devising successful treatments with conventional immune therapies. Overcoming autoimmune T cell memory represents one of the key hurdles. In this open-label, phase 1/phase 2 study, Caucasian T1D patients (N = 15) received two treatments with the Stem Cell Educator (SCE) therapy, an approach that uses human multipotent cord blood-derived multipotent stem cells (CB-SCs). SCE therapy involves a closed-loop system that briefly treats the patient's lymphocytes with CB-SCs in vitro and returns the "educated" lymphocytes (but not the CB-SCs) into the patient's blood circulation. This study is registered with ClinicalTrials.gov, NCT01350219. Clinical data demonstrated that SCE therapy was well tolerated in all subjects. The percentage of naïve CD4(+) T cells was significantly increased at 26 weeks and maintained through the final follow-up at 56 weeks. The percentage of CD4(+) central memory T cells (TCM) was markedly and constantly increased at 18 weeks. Both CD4(+) effector memory T cells (TEM) and CD8(+) TEM cells were considerably decreased at 18 weeks and 26 weeks respectively. Additional clinical data demonstrated the modulation of C-C chemokine receptor 7 (CCR7) expressions on naïve T, TCM, and TEM cells. Following two treatments with SCE therapy, islet β-cell function was improved and maintained in individuals with residual β-cell function, but not in those without residual β-cell function. Current clinical data demonstrated the safety and efficacy of SCE therapy in immune modulation. SCE therapy provides lasting reversal of autoimmune memory that could improve islet β-cell function in Caucasian subjects. Obra Social "La Caixa", Instituto de Salud Carlos III, Red de Investigación Renal, European Union FEDER Funds, Principado de

  2. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells

    Science.gov (United States)

    Rezende, Rafael M.; Oliveira, Rafael P.; Medeiros, Samara R.; Gomes-Santos, Ana C.; Alves, Andrea C.; Loli, Flávia G.; Guimarães, Mauro A.F.; Amaral, Sylvia S.; da Cunha, André P.; Weiner, Howard L.; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M.C.

    2013-01-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. PMID:22939403

  3. CD1d(hi)CD5+ B cells expanded by GM-CSF in vivo suppress experimental autoimmune myasthenia gravis.

    Science.gov (United States)

    Sheng, Jian Rong; Quan, Songhua; Soliven, Betty

    2014-09-15

    IL-10-competent subset within CD1d(hi)CD5(+) B cells, also known as B10 cells, has been shown to regulate autoimmune diseases. Whether B10 cells can prevent or suppress the development of experimental autoimmune myasthenia gravis (EAMG) has not been studied. In this study, we investigated whether low-dose GM-CSF, which suppresses EAMG, can expand B10 cells in vivo, and whether adoptive transfer of CD1d(hi)CD5(+) B cells would prevent or suppress EAMG. We found that treatment of EAMG mice with low-dose GM-CSF increased the proportion of CD1d(hi)CD5(+) B cells and B10 cells. In vitro coculture studies revealed that CD1d(hi)CD5(+) B cells altered T cell cytokine profile but did not directly inhibit T cell proliferation. In contrast, CD1d(hi)CD5(+) B cells inhibited B cell proliferation and its autoantibody production in an IL-10-dependent manner. Adoptive transfer of CD1d(hi)CD5(+) B cells to mice could prevent disease, as well as suppress EAMG after disease onset. This was associated with downregulation of mature dendritic cell markers and expansion of regulatory T cells resulting in the suppression of acetylcholine receptor-specific T cell and B cell responses. Thus, our data have provided significant insight into the mechanisms underlying the tolerogenic effects of B10 cells in EAMG. These observations suggest that in vivo or in vitro expansion of CD1d(hi)CD5(+) B cells or B10 cells may represent an effective strategy in the treatment of human myasthenia gravis. Copyright © 2014 by The American Association of Immunologists, Inc.

  4. Dynamics of intraocular IFN-γ, IL-17 and IL-10-producing cell populations during relapsing and monophasic rat experimental autoimmune uveitis.

    Directory of Open Access Journals (Sweden)

    Ulrike Kaufmann

    Full Text Available A major limitation of most animal models of autoimmune diseases is that they do not reproduce the chronic or relapsing-remitting pattern characteristic of many human autoimmune diseases. This problem has been overcome in our rat models of experimentally induced monophasic or relapsing-remitting autoimmune uveitis (EAU, which depend on the inducing antigen peptides from retinal S-Antigen (monophasic EAU or interphotoreceptor retinoid-binding protein (relapsing EAU. These models enable us to compare autoreactive and regulatory T cell populations. Intraocular, but not peripheral T cells differ in their cytokine profiles (IFN-γ, IL-17 and IL-10 at distinct time points during monophasic or relapsing EAU. Only intraocular T cells concomitantly produced IFN-γ, IL-17 and/or IL-10. Monophasic EAU presented rising numbers of cells expressing IFN-γ and IL-17 (Th1/Th17 and cells expressing IL-10 or Foxp3. During relapsing uveitis an increase of intraocular IFN-γ+ cells and a concomitant decrease of IL-17+ cells was detected, while IL-10+ populations remained stable. Foxp3+ cells and cells expressing IL-10, even in combination with IFN-γ or IL-17, increased during the resolution of monophasic EAU, suggesting a regulatory role for these T cells. In general, cells producing multiple cytokines increased in monophasic and decreased in relapsing EAU. The distinct appearance of certain intraocular populations with characteristics of regulatory cells points to a differential influence of the ocular environment on T cells that induce acute and monophasic or relapsing disease. Here we provide evidence that different autoantigens can elicit distinct and differently regulated immune responses. IFN-γ, but not IL-17 seems to be the key player in relapsing-remitting uveitis, as shown by increased, synchronized relapses after intraocular application of IFN-γ. We demonstrated dynamic changes of the cytokine pattern during monophasic and relapsing-remitting disease

  5. IL-5 promotes induction of antigen-specific CD4+CD25+ T regulatory cells that suppress autoimmunity.

    Science.gov (United States)

    Tran, Giang T; Hodgkinson, Suzanne J; Carter, Nicole M; Verma, Nirupama D; Plain, Karren M; Boyd, Rochelle; Robinson, Catherine M; Nomura, Masaru; Killingsworth, Murray; Hall, Bruce M

    2012-05-10

    Immune responses to foreign and self-Ags can be controlled by regulatory T cells (Tregs) expressing CD4 and IL-2Rα chain (CD25). Defects in Tregs lead to autoimmunity, whereas induction of Ag-specific CD4+CD25+ Tregs restores tolerance. Ag-specific CD4+CD25+ FOXP3+Tregs activated by the T helper type 2 (Th2) cytokine, IL-4, and specific alloantigen promote allograft tolerance. These Tregs expressed the specific IL-5Rα and in the presence of IL-5 proliferate to specific but not third-party Ag. These findings suggest that recombinant IL-5 (rIL-5) therapy may promote Ag-specific Tregs to mediate tolerance. This study showed normal CD4+CD25+ Tregs cultured with IL-4 and an autoantigen expressed Il-5rα. Treatment of experimental autoimmune neuritis with rIL-5 markedly reduced clinical paralysis, weight loss, demyelination, and infiltration of CD4+ (Th1 and Th17) CD8+ T cells and macrophages in nerves. Clinical improvement was associated with expansion of CD4+CD25+FOXP3+ Tregs that expressed Il-5rα and proliferated only to specific autoantigen that was enhanced by rIL-5. Depletion of CD25+ Tregs or blocking of IL-4 abolished the benefits of rIL-5. Thus, rIL-5 promoted Ag-specific Tregs, activated by autoantigen and IL-4, to control autoimmunity. These findings may explain how Th2 responses, especially to parasitic infestation, induce immune tolerance. rIL-5 therapy may be able to induce Ag-specific tolerance in autoimmunity.

  6. Neuroprotection in Experimental Autoimmune Encephalomyelitis and Progressive Multiple Sclerosis by Cannabis-Based Cannabinoids.

    Science.gov (United States)

    Pryce, Gareth; Riddall, Dieter R; Selwood, David L; Giovannoni, Gavin; Baker, David

    2015-06-01

    Multiple sclerosis (MS) is the major immune-mediated, demyelinating, neurodegenerative disease of the central nervous system. Compounds within cannabis, notably Δ9-tetrahydrocannabinol (Δ9-THC) can limit the inappropriate neurotransmissions that cause MS-related problems and medicinal cannabis is now licenced for the treatment of MS symptoms. However, the biology indicates that the endocannabinoid system may offer the potential to control other aspects of disease. Although there is limited evidence that the cannabinoids from cannabis are having significant immunosuppressive activities that will influence relapsing autoimmunity, we and others can experimentally demonstrate that they may limit neurodegeneration that drives progressive disability. Here we show that synthetic cannabidiol can slow down the accumulation of disability from the inflammatory penumbra during relapsing experimental autoimmune encephalomyelitis (EAE) in ABH mice, possibly via blockade of voltage-gated sodium channels. In addition, whilst non-sedating doses of Δ9-THC do not inhibit relapsing autoimmunity, they dose-dependently inhibit the accumulation of disability during EAE. They also appear to slow down clinical progression during MS in humans. Although a 3 year, phase III clinical trial did not detect a beneficial effect of oral Δ9-THC in progressive MS, a planned subgroup analysis of people with less disability who progressed more rapidly, demonstrated a significant slowing of progression by oral Δ9-THC compared to placebo. Whilst this may support the experimental and biological evidence for a neuroprotective effect by the endocannabinoid system in MS, it remains to be established whether this will be formally demonstrated in further trials of Δ9-THC/cannabis in progressive MS.

  7. First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases.

    Science.gov (United States)

    Borroto, Aldo; Reyes-Garau, Diana; Jiménez, M Angeles; Carrasco, Esther; Moreno, Beatriz; Martínez-Pasamar, Sara; Cortés, José R; Perona, Almudena; Abia, David; Blanco, Soledad; Fuentes, Manuel; Arellano, Irene; Lobo, Juan; Heidarieh, Haleh; Rueda, Javier; Esteve, Pilar; Cibrián, Danay; Martinez-Riaño, Ana; Mendoza, Pilar; Prieto, Cristina; Calleja, Enrique; Oeste, Clara L; Orfao, Alberto; Fresno, Manuel; Sánchez-Madrid, Francisco; Alcamí, Antonio; Bovolenta, Paola; Martín, Pilar; Villoslada, Pablo; Morreale, Antonio; Messeguer, Angel; Alarcon, Balbino

    2016-12-21

    Modulating T cell activation is critical for treating autoimmune diseases but requires avoiding concomitant opportunistic infections. Antigen binding to the T cell receptor (TCR) triggers the recruitment of the cytosolic adaptor protein Nck to a proline-rich sequence in the cytoplasmic tail of the TCR's CD3ε subunit. Through virtual screening and using combinatorial chemistry, we have generated an orally available, low-molecular weight inhibitor of the TCR-Nck interaction that selectively inhibits TCR-triggered T cell activation with an IC 50 (median inhibitory concentration) ~1 nM. By modulating TCR signaling, the inhibitor prevented the development of psoriasis and asthma and, furthermore, exerted a long-lasting therapeutic effect in a model of autoimmune encephalomyelitis. However, it did not prevent the generation of a protective memory response against a mouse pathogen, suggesting that the compound might not exert its effects through immunosuppression. These results suggest that inhibiting an immediate TCR signal has promise for treating a broad spectrum of human T cell-mediated autoimmune and inflammatory diseases. Copyright © 2016, American Association for the Advancement of Science.

  8. Proinflammatory effects of exogenously administered IL-10 in experimental autoimmune orchitis

    DEFF Research Database (Denmark)

    Kaneko, Tetsushi; Itoh, Masahiro; Nakamura, Yoichi

    2003-01-01

    We studied the effects of exogenously administered recombinant murine interleukin (IL)-10 on the development of experimental autoimmune orchitis (EAO) in C3H/He mice. IL-10 significantly augments histological signs of EAO when administered for 6 consecutive days from days 15 to 20 after primary...... immunisations with testicular germ cells. These data demonstrate that IL-10, in addition to its well-known antiinflammatory property, also has proinflammatory functions capable of up-regulating testicular immunoinflammatory processes in vivo....

  9. Vorinostat Modulates the Imbalance of T Cell Subsets, Suppresses Macrophage Activity, and Ameliorates Experimental Autoimmune Uveoretinitis.

    Science.gov (United States)

    Fang, Sijie; Meng, Xiangda; Zhang, Zhuhong; Wang, Yang; Liu, Yuanyuan; You, Caiyun; Yan, Hua

    2016-03-01

    The purpose of the study was to investigate the anti-inflammatory efficiency of vorinostat, a histone deacetylase inhibitor, in experimental autoimmune uveitis (EAU). EAU was induced in female C57BL/6J mice immunized with interphotoreceptor retinoid-binding protein peptide. Vorinostat or the control treatment, phosphate-buffered saline, was administrated orally from 3 days before immunization until euthanasia at day 21 after immunization. The clinical and histopathological scores of mice were graded, and the integrity of the blood-retinal barrier was examined by Evans blue staining. T helper cell subsets were measured by flow cytometry, and the macrophage functions were evaluated with immunohistochemistry staining and immunofluorescence assays. The mRNA levels of tight junction proteins were measured by qRT-PCR. The expression levels of intraocular cytokines and transcription factors were examined by western blotting. Vorinostat relieved both clinical and histopathological manifestations of EAU in our mouse model, and the BRB integrity was maintained in vorinostat-treated mice, which had less vasculature leakage and higher mRNA and protein expressions of tight junction proteins than controls. Moreover, vorinostat repressed Th1 and Th17 cells and increased Th0 and Treg cells. Additionally, the INF-γ and IL-17A expression levels were significantly decreased, while the IL-10 level was increased by vorinostat treatment. Furthermore, due to the reduced TNF-α level, the macrophage activity was considerably inhibited in EAU mice. Finally, transcription factors, including STAT1, STAT3, and p65, were greatly suppressed by vorinostat treatment. Our data suggest that vorinostat might be a potential anti-inflammatory agent in the management of uveitis and other autoimmune inflammatory diseases.

  10. BJ-1108, a 6-Amino-2,4,5-trimethylpyridin-3-ol analogue, regulates differentiation of Th1 and Th17 cells to ameliorate experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Kang, Youra; Timilshina, Maheshwor; Nam, Tae-Gyu; Jeong, Byeong-Seon; Chang, Jae-Hoon

    2017-02-28

    CD4 + T cells play an important role in the initiation of an immune response by providing help to other cells. Among the helper T subsets, interferon-γ (IFN-γ)-secreting T helper 1 (Th1) and IL-17-secreting T helper 17 (Th17) cells are indispensable for clearance of intracellular as well as extracellular pathogens. However, Th1 and Th17 cells are also associated with pathogenesis and contribute to the progression of multiple inflammatory conditions and autoimmune diseases. In the current study, we found that BJ-1108, a 6-aminopyridin-3-ol analogue, significantly inhibited Th1 and Th17 differentiation in vitro in a concentration-dependent manner, with no effect on proliferation or apoptosis of activated T cells. Moreover, BJ-1108 inhibited differentiation of Th1 and Th17 cells in ovalbumin (OVA)-specific OT II mice. A complete Freund's adjuvant (CFA)/OVA-induced inflammatory model revealed that BJ-1108 can reduce generation of proinflammatory Th1 and Th17 cells. Furthermore, in vivo studies showed that BJ-1108 delayed onset of disease and suppressed experimental autoimmune encephalomyelitis (EAE) disease progression by inhibiting differentiation of Th1 and Th17 cells. BJ-1108 treatment ameliorates inflammation and EAE by inhibiting Th1 and Th17 cells differentiation. Our findings suggest that BJ-1108 is a promising novel therapeutic agent for the treatment of inflammation and autoimmune disease.

  11. Regulatory B and T cell responses in patients with autoimmune thyroid disease and healthy controls

    DEFF Research Database (Denmark)

    Kristensen, Birte

    2016-01-01

    Autoimmune diseases occur due to faulty self-tolerance. Graves' disease (GD) and Hashimoto's thyroiditis (HT) are classic examples of organ-specific autoimmune diseases. GD is an auto-antibody-mediated disease where autoantibodies are produced against the thyroid stimulating hormone receptor (TSHR...... (Bregs) and regulatory T cells (Tregs) were investigated in the context of GD and HT. First, we studied the role of the thyroid self-antigen, thyroglobulin (TG) in healthy donors. The self-antigen TG, but not the foreign recall antigen tetanus toxoid (TT), was able to induce interleukin 10 (IL-10......) secretion by B cells and CD4+ T cells. These IL-10 producing B cells (B10 cells) from healthy donors were enriched with the CD5+ and CD24hi phenotype. In addition, TG was able to induce IL-6 production by B cells. In contrast, TT induced production of Th1-type pro-inflammatory cytokines including interferon...

  12. Stem cell therapy for severe autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Marmont Alberto M.

    2002-01-01

    Full Text Available Intense immunosuppresion followed by alogenic or autogenic hematopoietic stem cell transplantation is a relatively recent procedure which was used for the first time in severe, refractory cases of systemic lupus erythematosus. Currently three agressive procedures are used in the treatment of autoimmune diseases: high dose chemotherapy without stem cell rescue, intense immunosuppression with subsequent infusion of the alogenic hematopoietic stem cell transplantation combined with or without the selection of CD34+ cells, and the autogenic hematopoietic stem cell transplantation. Proof of the graft-versus-leukemia effect observed define SCT as a form of immunotherapy, with additional evidence of an similar Graft-vs-Autoimmunity effect which is suggestive of a cure for autoimmune diseases in this type of therapy. The use of alogenic SCT improved due to its safety compared to autogenic transplantations. In this report, data of multiply sclerosis and systemic lupus erythematosus are reported, with the conclusion that Immunoablation followed by SCT is clearly indicated in such cases.

  13. Functional genomics analysis of vitamin D effects on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis ‬

    KAUST Repository

    Zeitelhofer, Manuel; Adzemovic, Milena Z.; Gomez-Cabrero, David; Bergman, Petra; Hochmeister, Sonja; N'diaye, Marie; Paulson, Atul; Ruhrmann, Sabrina; Almgren, Malin; Tegner, Jesper; Ekströ m, Tomas J.; Guerreiro-Cacais, André Ortlieb; Jagodic, Maja

    2017-01-01

    Vitamin D exerts multiple immunomodulatory functions and has been implicated in the etiology and treatment of several autoimmune diseases, including multiple sclerosis (MS). We have previously reported that in juvenile/adolescent rats, vitamin D supplementation protects from experimental autoimmune encephalomyelitis (EAE), a model of MS. Here we demonstrate that this protective effect associates with decreased proliferation of CD4+ T cells and lower frequency of pathogenic T helper (Th) 17 cells. Using transcriptome, methylome, and pathway analyses in CD4+ T cells, we show that vitamin D affects multiple signaling and metabolic pathways critical for T-cell activation and differentiation into Th1 and Th17 subsets in vivo. Namely, Jak/Stat, Erk/Mapk, and Pi3K/Akt/mTor signaling pathway genes were down-regulated upon vitamin D supplementation. The protective effect associated with epigenetic mechanisms, such as (i) changed levels of enzymes involved in establishment and maintenance of epigenetic marks, i.e., DNA methylation and histone modifications; (ii) genome-wide reduction of DNA methylation, and (iii) up-regulation of noncoding RNAs, including microRNAs, with concomitant down-regulation of their protein-coding target RNAs involved in T-cell activation and differentiation. We further demonstrate that treatment of myelin-specific T cells with vitamin D reduces frequency of Th1 and Th17 cells, down-regulates genes in key signaling pathways and epigenetic machinery, and impairs their ability to transfer EAE. Finally, orthologs of nearly 50% of candidate MS risk genes and 40% of signature genes of myelin-reactive T cells in MS changed their expression in vivo in EAE upon supplementation, supporting the hypothesis that vitamin D may modulate risk for developing MS.

  14. Functional genomics analysis of vitamin D effects on CD4+ T cells in vivo in experimental autoimmune encephalomyelitis ‬

    KAUST Repository

    Zeitelhofer, Manuel

    2017-02-15

    Vitamin D exerts multiple immunomodulatory functions and has been implicated in the etiology and treatment of several autoimmune diseases, including multiple sclerosis (MS). We have previously reported that in juvenile/adolescent rats, vitamin D supplementation protects from experimental autoimmune encephalomyelitis (EAE), a model of MS. Here we demonstrate that this protective effect associates with decreased proliferation of CD4+ T cells and lower frequency of pathogenic T helper (Th) 17 cells. Using transcriptome, methylome, and pathway analyses in CD4+ T cells, we show that vitamin D affects multiple signaling and metabolic pathways critical for T-cell activation and differentiation into Th1 and Th17 subsets in vivo. Namely, Jak/Stat, Erk/Mapk, and Pi3K/Akt/mTor signaling pathway genes were down-regulated upon vitamin D supplementation. The protective effect associated with epigenetic mechanisms, such as (i) changed levels of enzymes involved in establishment and maintenance of epigenetic marks, i.e., DNA methylation and histone modifications; (ii) genome-wide reduction of DNA methylation, and (iii) up-regulation of noncoding RNAs, including microRNAs, with concomitant down-regulation of their protein-coding target RNAs involved in T-cell activation and differentiation. We further demonstrate that treatment of myelin-specific T cells with vitamin D reduces frequency of Th1 and Th17 cells, down-regulates genes in key signaling pathways and epigenetic machinery, and impairs their ability to transfer EAE. Finally, orthologs of nearly 50% of candidate MS risk genes and 40% of signature genes of myelin-reactive T cells in MS changed their expression in vivo in EAE upon supplementation, supporting the hypothesis that vitamin D may modulate risk for developing MS.

  15. Autoimmunity in Arabidopsis acd11 Is Mediated by Epigenetic Regulation of an Immune Receptor

    DEFF Research Database (Denmark)

    Palma, K.; Thorgrimsen, S.; Malinovsky, F.G.

    2010-01-01

    Certain pathogens deliver effectors into plant cells to modify host protein targets and thereby suppress immunity. These target modifications can be detected by intracellular immune receptors, or Resistance (R) proteins, that trigger strong immune responses including localized host cell death....... The accelerated cell death 11 (acd11) "lesion mimic" mutant of Arabidopsis thaliana exhibits autoimmune phenotypes such as constitutive defense responses and cell death without pathogen perception. ACD11 encodes a putative sphingosine transfer protein, but its precise role during these processes is unknown......, and that cell death in other lesion mimic mutants may also be caused by inappropriate activation of R genes. Moreover, SDG8 is required for basal and R protein-mediated pathogen resistance in Arabidopsis, revealing the importance of chromatin remodeling as a key process in plant innate immunity....

  16. Cell Fusion along the Anterior-Posterior Neuroaxis in Mice with Experimental Autoimmune Encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Sreenivasa R Sankavaram

    Full Text Available It is well documented that bone marrow-derived cells can fuse with a diverse range of cells, including brain cells, under normal or pathological conditions. Inflammation leads to robust fusion of bone marrow-derived cells with Purkinje cells and the formation of binucleate heterokaryons in the cerebellum. Heterokaryons form through the fusion of two developmentally differential cells and as a result contain two distinct nuclei without subsequent nuclear or chromosome loss.In the brain, fusion of bone marrow-derived cells appears to be restricted to the complex and large Purkinje cells, raising the question whether the size of the recipient cell is important for cell fusion in the central nervous system. Purkinje cells are among the largest neurons in the central nervous system and accordingly can harbor two nuclei.Using a well-characterized model for heterokaryon formation in the cerebellum (experimental autoimmune encephalomyelitis - a mouse model of multiple sclerosis, we report for the first time that green fluorescent protein-labeled bone marrow-derived cells can fuse and form heterokaryons with spinal cord motor neurons. These spinal cord heterokaryons are predominantly located in or adjacent to an active or previously active inflammation site, demonstrating that inflammation and infiltration of immune cells are key for cell fusion in the central nervous system. While some motor neurons were found to contain two nuclei, co-expressing green fluorescent protein and the neuronal marker, neuron-specific nuclear protein, a number of small interneurons also co-expressed green fluorescent protein and the neuronal marker, neuron-specific nuclear protein. These small heterokaryons were scattered in the gray matter of the spinal cord.This novel finding expands the repertoire of neurons that can form heterokaryons with bone marrow-derived cells in the central nervous system, albeit in low numbers, possibly leading to a novel therapy for spinal cord

  17. Combined treatment with ribavirin and tiazofurin attenuates response of glial cells in experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Nedeljković Nadežda

    2012-01-01

    Full Text Available Experimental autoimmune encephalomyelitis (EAE is an animal model of multiple sclerosis (MS, a human inflammatory and demyelinating disease. Microglia and astrocytes are glial cells of the central nervous system (CNS that play a dual role in MS and EAE pathology. The aim of this study was to examine the effect of combined treatment with two nucleoside analogues, ribavirin and tiazofurin, on microglia and astrocytes in actively induced EAE. Therapeutic treatment with a combination of these two nucleoside analogues reduced disease severity, mononuclear cell infiltration and demyelination. The obtained histological results indicate that ribavirin and tiazofurin changed activated microglia into an inactive type and attenuated astrocyte reactivity at the end of the treatment period. Since reduction of reactive microgliosis and astrogliosis correlated with EAE suppression, the present study also suggests that the obtained beneficial effect of ribavirin and tiazofurin could be a consequence of their action inside as well as outside the CNS. [Acknowledgments. This work was supported by the Serbian Ministry of Education and Science, Project No: III41014.

  18. CD8 Follicular T Cells Promote B Cell Antibody Class Switch in Autoimmune Disease.

    Science.gov (United States)

    Valentine, Kristen M; Davini, Dan; Lawrence, Travis J; Mullins, Genevieve N; Manansala, Miguel; Al-Kuhlani, Mufadhal; Pinney, James M; Davis, Jason K; Beaudin, Anna E; Sindi, Suzanne S; Gravano, David M; Hoyer, Katrina K

    2018-05-09

    CD8 T cells can play both a protective and pathogenic role in inflammation and autoimmune development. Recent studies have highlighted the ability of CD8 T cells to function as T follicular helper (Tfh) cells in the germinal center in the context of infection. However, whether this phenomenon occurs in autoimmunity and contributes to autoimmune pathogenesis is largely unexplored. In this study, we show that CD8 T cells acquire a CD4 Tfh profile in the absence of functional regulatory T cells in both the IL-2-deficient and scurfy mouse models. Depletion of CD8 T cells mitigates autoimmune pathogenesis in IL-2-deficient mice. CD8 T cells express the B cell follicle-localizing chemokine receptor CXCR5, a principal Tfh transcription factor Bcl6, and the Tfh effector cytokine IL-21. CD8 T cells localize to the B cell follicle, express B cell costimulatory proteins, and promote B cell differentiation and Ab isotype class switching. These data reveal a novel contribution of autoreactive CD8 T cells to autoimmune disease, in part, through CD4 follicular-like differentiation and functionality. Copyright © 2018 by The American Association of Immunologists, Inc.

  19. Anti-inflammatory mechanisms of IFN-γ studied in experimental autoimmune encephalomyelitis reveal neutrophils as a potential target in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Nichole M Miller

    2015-08-01

    Full Text Available Multiple sclerosis (MS is an autoimmune disease of the central nervous system (CNS mediated by T helper (h1 and/or Th17 CD4 T cells that drive inflammatory lesion development along with demyelination and neuronal damage. Defects in immune regulatory mechanisms are thought to play a role in the pathogenesis of MS. While an early clinical trial indicated that IFN-γ administration was detrimental to MS, studies in the mouse model of MS, experimental autoimmune encephalomyelitis (EAE, indicated that IFN-γ exhibits a number of anti-inflammatory properties within the CNS. These mechanisms include inhibition of IL-17 production, induction of regulatory T cells, T cell apoptosis and regulation of chemokine production. Mice deficient in IFN-γ or its receptor were instrumental in deciphering the anti-inflammatory properties of IFN-γ in the CNS. In particular, they revealed that IFN-γ is a major regulator of neutrophil recruitment into the CNS, which by a variety of mechanisms including disruption of the blood-brain-barrier (BBB and production of reactive oxygen species are thought to contribute to the onset and progression of EAE. Neutrophils were also shown to be instrumental in EAE relapses. To date neutrophils have not been appreciated as a driver of MS, but more recently based largely on the strong EAE data this view is being reevaluated by some investigators in the field.

  20. Suppression of immune-mediated liver injury after vaccination with attenuated pathogenic cells.

    Science.gov (United States)

    Mei, Yunhua; Wang, Ying; Xu, Lingyun

    2007-05-15

    Cell vaccination via immunization with attenuated pathogenic cells is an effective preventive method that has been successfully applied in several animal models of inflammatory or autoimmune diseases. Concanavalin A (Con A)-induced hepatitis (CIH) is a commonly used experimental model to study immune-mediated liver injury. Multiple cell types including T lymphocytes, macrophages and neutrophils have been found to be involved in the pathogenesis of CIH. In this study, we used attenuated spleen lymphocytes or peripheral blood lymphocytes as vaccines to investigate whether they could induce protective immune responses to prevent mice from developing CIH. We found that mice receiving such vaccination before CIH induction developed much milder diseases, exhibited a lower level of alanine aminotransferase (ALT) released into their plasma and had less inflammatory lesions in their livers. Such CIH-suppression is dose- and frequency-dependent. The suppressive effect was associated with inhibition of several major inflammatory mediators, pro-inflammatory cytokines and chemokines.

  1. Combined treatment with lisofylline and exendin-4 reverses autoimmune diabetes

    International Nuclear Information System (INIS)

    Yang Zandong; Chen Meng; Carter, Jeffrey D.; Nunemaker, Craig S.; Garmey, James C.; Kimble, Sarah D.; Nadler, Jerry L.

    2006-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease leading to near complete pancreatic β-cell destruction. New evidence suggests that β-cell regeneration is possible, but ongoing autoimmune damage prevents restoration of β-cell mass. We tested the hypothesis that simultaneously blocking autoimmune cytokine damage and supplying a growth-promoting stimulus for β-cells would provide a novel approach to reverse T1DM. Therefore, in this study we combined lisofylline to suppress autoimmunity and exendin-4 to enhance β-cell proliferation for treating autoimmune-mediated diabetes in the non-obese diabetic (NOD) mouse model. We found that this combined therapy effectively reversed new-onset diabetes within a week of therapy, and even maintained euglycemia up to 145 days after treatment withdrawal. The therapeutic effect of this regimen was associated with improved β-cell metabolism and insulin secretion, while reducing β-cell apoptosis. It is possible that such combined therapy could become a new strategy to defeat T1DM in humans

  2. Roles of T Cells in the Pathogenesis of Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Dinglei Su

    2013-01-01

    Full Text Available γδ T cells are a minor population of T cells that express the TCR γδ chains, mainly distributed in the mucosal and epithelial tissue and accounting for less than 5% of the total T cells in the peripheral blood. By bridging innate and adaptive immunity, γδ T cells play important roles in the anti-infection, antitumor, and autoimmune responses. Previous research on γδ T cells was primarily concentrated on infectious diseases and tumors, whereas their functions in autoimmune diseases attracted much attention. In this paper, we summarized the various functions of γδ T cells in two prototypical autoimmune connective tissue diseases, that is, SLE and RA, elaborating on their antigen-presenting capacity, secretion of proinflammatory cytokines, immunomodulatory effects, and auxiliary function for B cells, which contribute to overproduction of proinflammatory cytokines and pathogenic autoantibodies, ultimately leading to the onset of these autoimmune diseases. Elucidation of the roles of γδ T cells in autoimmune diseases is not only conducive to in-depth understanding of the pathogenesis of these diseases, but also beneficial in providing theoretical support for the development of γδ T-cell-targeted therapy.

  3. Experimental models of autoimmune inflammatory ocular diseases

    Directory of Open Access Journals (Sweden)

    Fabio Gasparin

    2012-04-01

    Full Text Available Ocular inflammation is one of the leading causes of blindness and loss of vision. Human uveitis is a complex and heterogeneous group of diseases characterized by inflammation of intraocular tissues. The eye may be the only organ involved, or uveitis may be part of a systemic disease. A significant number of cases are of unknown etiology and are labeled idiopathic. Animal models have been developed to the study of the physiopathogenesis of autoimmune uveitis due to the difficulty in obtaining human eye inflamed tissues for experiments. Most of those models are induced by injection of specific photoreceptors proteins (e.g., S-antigen, interphotoreceptor retinoid-binding protein, rhodopsin, recoverin, phosducin. Non-retinal antigens, including melanin-associated proteins and myelin basic protein, are also good inducers of uveitis in animals. Understanding the basic mechanisms and pathogenesis of autoimmune ocular diseases are essential for the development of new treatment approaches and therapeutic agents. The present review describes the main experimental models of autoimmune ocular inflammatory diseases.

  4. Medullary Thymic Epithelial Cells and Central Tolerance in Autoimmune Hepatitis Development: Novel Perspective from a New Mouse Model

    Directory of Open Access Journals (Sweden)

    Konstantina Alexandropoulos

    2015-01-01

    Full Text Available Autoimmune hepatitis (AIH is an immune-mediated disorder that affects the liver parenchyma. Diagnosis usually occurs at the later stages of the disease, complicating efforts towards understanding the causes of disease development. While animal models are useful for studying the etiology of autoimmune disorders, most of the existing animal models of AIH do not recapitulate the chronic course of the human condition. In addition, approaches to mimic AIH-associated liver inflammation have instead led to liver tolerance, consistent with the high tolerogenic capacity of the liver. Recently, we described a new mouse model that exhibited spontaneous and chronic liver inflammation that recapitulated the known histopathological and immunological parameters of AIH. The approach involved liver-extrinsic genetic engineering that interfered with the induction of T-cell tolerance in the thymus, the very process thought to inhibit AIH induction by liver-specific expression of exogenous antigens. The mutation led to depletion of specialized thymic epithelial cells that present self-antigens and eliminate autoreactive T-cells before they exit the thymus. Based on our findings, which are summarized below, we believe that this mouse model represents a relevant experimental tool towards elucidating the cellular and molecular aspects of AIH development and developing novel therapeutic strategies for treating this disease.

  5. Blockade of Extracellular ATP Effect by Oxidized ATP Effectively Mitigated Induced Mouse Experimental Autoimmune Uveitis (EAU.

    Directory of Open Access Journals (Sweden)

    Ronglan Zhao

    Full Text Available Various pathological conditions are accompanied by ATP release from the intracellular to the extracellular compartment. Extracellular ATP (eATP functions as a signaling molecule by activating purinergic P2 purine receptors. The key P2 receptor involved in inflammation was identified as P2X7R. Recent studies have shown that P2X7R signaling is required to trigger the Th1/Th17 immune response, and oxidized ATP (oxATP effectively blocks P2X7R activation. In this study we investigated the effect of oxATP on mouse experimental autoimmune uveitis (EAU. Our results demonstrated that induced EAU in B6 mice was almost completely abolished by the administration of small doses of oxATP, and the Th17 response, but not the Th1 response, was significantly weakened in the treated mice. Mechanistic studies showed that the therapeutic effects involve the functional change of a number of immune cells, including dendritic cells (DCs, T cells, and regulatory T cells. OxATP not only directly inhibits the T cell response; it also suppresses T cell activation by altering the function of DCs and Foxp3+ T cell. Our results demonstrated that inhibition of P2X7R activation effectively exempts excessive autoimmune inflammation, which may indicate a possible therapeutic use in the treatment of autoimmune diseases.

  6. The dopaminergic system in autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Rodrigo ePacheco

    2014-03-01

    Full Text Available Bidirectional interactions between the immune and the nervous systems are of considerable interest both for deciphering their functioning and for designing novel therapeutic strategies. The past decade has brought a burst of insights into the molecular mechanisms involved in neuro-immune communications mediated by dopamine. Studies of dendritic cells (DCs revealed that they express the whole machinery to synthesize and store dopamine, which may act in an autocrine manner to stimulate dopamine receptors (DARs. Depending on specific DARs stimulated on DCs and T cells, dopamine may differentially favor CD4+ T cell differentiation into Th1 or Th17 inflammatory cells. Regulatory T cells can also release high amounts of dopamine that acts in an autocrine DAR-mediated manner to inhibit their suppressive activity. These dopaminergic regulations could represent a driving force during autoimmunity. Indeed, dopamine levels are altered in the brain of mouse models of multiple sclerosis (MS and lupus, and in inflamed tissues of patients with inflammatory bowel diseases or rheumatoid arthritis. The distorted expression of DARs in peripheral lymphocytes of lupus and MS patients also supports the importance of dopaminergic regulations in autoimmunity. Moreover, dopamine analogs had beneficial therapeutic effects in animal models, and in patients with lupus or rheumatoid arthritis. We propose models that may underlie key roles of dopamine and its receptors in autoimmune diseases.

  7. From Single Nucleotide Polymorphisms to Constant Immunosuppression: Mesenchymal Stem Cell Therapy for Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Raghavan Chinnadurai

    2013-01-01

    Full Text Available The regenerative abilities and the immunosuppressive properties of mesenchymal stromal cells (MSCs make them potentially the ideal cellular product of choice for treatment of autoimmune and other immune mediated disorders. Although the usefulness of MSCs for therapeutic applications is in early phases, their potential clinical use remains of great interest. Current clinical evidence of use of MSCs from both autologous and allogeneic sources to treat autoimmune disorders confers conflicting clinical benefit outcomes. These varied results may possibly be due to MSC use across wide range of autoimmune disorders with clinical heterogeneity or due to variability of the cellular product. In the light of recent genome wide association studies (GWAS, linking predisposition of autoimmune diseases to single nucleotide polymorphisms (SNPs in the susceptible genetic loci, the clinical relevance of MSCs possessing SNPs in the critical effector molecules of immunosuppression is largely undiscussed. It is of further interest in the allogeneic setting, where SNPs in the target pathway of MSC's intervention may also modulate clinical outcome. In the present review, we have discussed the known critical SNPs predisposing to disease susceptibility in various autoimmune diseases and their significance in the immunomodulatory properties of MSCs.

  8. CD4+ type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes

    DEFF Research Database (Denmark)

    Kadri, Nadir; Korpos, Eva; Gupta, Shashank

    2012-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic ß cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry ...

  9. Diverse exocytic pathways for mast cell mediators.

    Science.gov (United States)

    Xu, Hao; Bin, Na-Ryum; Sugita, Shuzo

    2018-04-17

    Mast cells play pivotal roles in innate and adaptive immunities but are also culprits in allergy, autoimmunity, and cardiovascular diseases. Mast cells respond to environmental changes by initiating regulated exocytosis/secretion of various biologically active compounds called mediators (e.g. proteases, amines, and cytokines). Many of these mediators are stored in granules/lysosomes and rely on intricate degranulation processes for release. Mast cell stabilizers (e.g. sodium cromoglicate), which prevent such degranulation processes, have therefore been clinically employed to treat asthma and allergic rhinitis. However, it has become increasingly clear that different mast cell diseases often involve multiple mediators that rely on overlapping but distinct mechanisms for release. This review illustrates existing evidence that highlights the diverse exocytic pathways in mast cells. We also discuss strategies to delineate these pathways so as to identify unique molecular components which could serve as new drug targets for more effective and specific treatments against mast cell-related diseases. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  10. Gut-associated lymphoid tissue, gut microbes and susceptibility to experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Stanisavljević, S; Lukić, J; Momčilović, M; Miljković, M; Jevtić, B; Kojić, M; Golić, N; Mostarica Stojković, M; Miljković, D

    2016-06-01

    Gut microbiota and gut-associated lymphoid tissue have been increasingly appreciated as important players in pathogenesis of various autoimmune diseases, including multiple sclerosis. Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis that can be induced with an injection of spinal cord homogenate emulsified in complete Freund's adjuvant in Dark Agouti (DA) rats, but not in Albino Oxford (AO) rats. In this study, mesenteric lymph nodes (MLN), Peyer's patches (PP) and gut microbiota were analysed in these two rat strains. There was higher proportion of CD4(+) T cells and regulatory T cells in non-immunised DA rats in comparison to AO rats. Also, DA rat MLN and PP cells were higher producers of pro-inflammatory cytokines interferon-γ and interleukin-17. Finally, microbial analyses showed that uncultivated species of Turicibacter and Atopostipes genus were exclusively present in AO rats, in faeces and intestinal tissue, respectively. Thus, it is clear that in comparison of an EAE-susceptible with an EAE-resistant strain of rats, various discrepancies at the level of gut associated lymphoid tissue, as well as at the level of gut microbiota can be observed. Future studies should determine if the differences have functional significance for EAE pathogenesis.

  11. Stimulation of dopamine receptor D5 expressed on dendritic cells potentiates Th17-mediated immunity.

    Science.gov (United States)

    Prado, Carolina; Contreras, Francisco; González, Hugo; Díaz, Pablo; Elgueta, Daniela; Barrientos, Magaly; Herrada, Andrés A; Lladser, Álvaro; Bernales, Sebastián; Pacheco, Rodrigo

    2012-04-01

    Dendritic cells (DCs) are responsible for priming T cells and for promoting their differentiation from naive T cells into appropriate effector cells. Emerging evidence suggests that neurotransmitters can modulate T cell-mediated immunity. However, the involvement of specific neurotransmitters or receptors remains poorly understood. In this study, we analyzed the role of dopamine in the regulation of DC function. We found that DCs express dopamine receptors as well as the machinery necessary to synthesize, store, and degrade dopamine. Notably, the expression of D5R decreased upon LPS-induced DC maturation. Deficiency of D5R on the surface of DCs impaired LPS-induced IL-23 and IL-12 production and consequently attenuated the activation and proliferation of Ag-specific CD4(+) T cells. To determine the relevance of D5R expressed on DCs in vivo, we studied the role of this receptor in the modulation of a CD4(+) T cell-driven autoimmunity model. Importantly, D5R-deficient DCs prophylactically transferred into wild-type recipients were able to reduce the severity of experimental autoimmune encephalomyelitis. Furthermore, mice transferred with D5R-deficient DCs displayed a significant reduction in the percentage of Th17 cells infiltrating the CNS without differences in the percentage of Th1 cells compared with animals transferred with wild-type DCs. Our findings demonstrate that by contributing to CD4(+) T cell activation and differentiation to Th17 phenotype, D5R expressed on DCs is able to modulate the development of an autoimmune response in vivo.

  12. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    Science.gov (United States)

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C., III; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E.

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis.

  13. Individual behavioral characteristics of wild-type rats predict susceptibility to experimental autoimmune encephalomyelitis

    NARCIS (Netherlands)

    Kavelaars, A; Heijnen, CJ; Tennekes, R; Bruggink, JE; Koolhaas, JM

    1999-01-01

    Neuroendocrine-immune interactions are thought to be important in determining susceptibility to autoimmune disease. Animal studies have revealed that differences in susceptibility to experimental autoimmune encephalomyelitis (EAE) are related to:reactivity in the hypothalamo-pituitary-adrenal axis.

  14. Exploring the interplay between autoimmunity and cancer to find the target therapeutic hotspots.

    Science.gov (United States)

    Kumar, Neeraj; Chugh, Heerak; Tomar, Ravi; Tomar, Vartika; Singh, Vimal Kishor; Chandra, Ramesh

    2018-06-01

    Autoimmunity arises when highly active immune responses are developed against the tissues or substances of one's own body. It is one of the most prevalent disorders among the old-age population with prospects increasing with age. The major cause of autoimmunity and associated diseases is the dysregulation of host immune surveillance. Impaired repairment of immune system and apoptosis regulation can be seen as major landmarks in autoimmune disorders such as the mutation of p53 gene which results in rheumatoid arthritis, bowel disease which consequently lead to tissue destruction, inflammation and dysfunctioning of body organs. Cytokines mediated apoptosis and proliferation of cells plays a regulatory role in cell cycle and further in cancer development. Anti-TNF therapy, Treg therapy and stem cell therapy have been used for autoimmune diseases, however, with the increase in the use of immunomodulatory therapies and their development for autoimmune diseases and cancer, the understanding of human immune system tends to become an increasing requirement. Hence, the findings associated with the relationship between autoimmune diseases and cancer may prove to be beneficial for the improvement in the health of suffering patients. Here in, we are eliciting the underlying mechanisms which result in autoimmune disorders causing the onset of cancer, exploration of interactome to find the pathways which are mutual to both, and recognition of hotspots which might play important role in autoimmunity mediated therapeutics with different therapies such as anti-TNF therapy, Treg therapy and stem cell therapy.

  15. A minimum number of autoimmune T cells to induce autoimmunity?

    Czech Academy of Sciences Publication Activity Database

    Bosch, A.J.T.; Bolinger, B.; Keck, S.; Štěpánek, Ondřej; Ozga, A.J.; Galati-Fournier, V.; Stein, J.V.; Palmer, E.

    2017-01-01

    Roč. 316, jaro (2017), s. 21-31 ISSN 0008-8749 R&D Projects: GA ČR GJ16-09208Y Institutional support: RVO:68378050 Keywords : T cell * Tolerance * Autoimmunity Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Immunology Impact factor: 3.172, year: 2016

  16. Coagulopathy triggered autoimmunity: experimental antiphospholipid syndrome in factor V Leiden mice

    Science.gov (United States)

    2013-01-01

    Background We investigated interactions between genetically and autoimmune-mediated coagulopathies by inducing experimental antiphospholipid syndrome (eAPS) in mice carrying the factor V Leiden (FVL) mutation. Methods eAPS was induced in heterozygous and homozygous FVL transgenic mice (C57BL/6 background) by immunization with β2-glycoprotein I (β2-GPI). Autoantibody levels were measured at 1 and 5 months post-immunization. Mice were tested at 4 months post-immunization for behavior and cognitive function in the staircase, elevated plus-maze, and swim T-maze tests. Brains were removed and analyzed by immunohistochemistry for inflammatory markers and neurodegenerative processes. Results A single immunization with β2-GPI induced significantly higher and longer-lasting immune responses, and this was dependent on the number of FVL alleles. At 1 and 5 months post-immunization, levels of antibodies rose from 1.17 ± 0.07 to 1.62 ± 0.17 (optical density units; ODU) in homozygous FVL mice, compared with stable levels of 0.59 ± 0.17 and 0.48 ± 0.16 ODU in heterozygous FVL mice and a drop from 1.62 ± 0.21 to 0.61 ± 0.13 ODU in wild-type mice. Behavioral and cognitive clinical features of eAPS were also correlated with FVL allele load, as assessed by the elevated plus-maze (altered anxiety), staircase (hyperactivity and higher exploration), and swim T-maze (impaired learning) tests. Histological studies identified significant neurodegenerative changes in both grey and white matter in the eAPS-FVL brains. In spite of the potential interaction of two prothrombotic disease states, there were no ischemic lesions seen in this group. Conclusions The results indicate that genetically mediated coagulopathies increase the risk of developing coagulation-targeted autoimmune responses, and suggest the importance of antibody-mediated neurodegenerative processes in the brain in APS. PMID:23566870

  17. miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity.

    Science.gov (United States)

    Li, Bo; Wang, Xi; Choi, In Young; Wang, Yu-Chen; Liu, Siyuan; Pham, Alexander T; Moon, Heesung; Smith, Drake J; Rao, Dinesh S; Boldin, Mark P; Yang, Lili

    2017-10-02

    Autoreactive CD4 T cells that differentiate into pathogenic Th17 cells can trigger autoimmune diseases. Therefore, investigating the regulatory network that modulates Th17 differentiation may yield important therapeutic insights. miR-146a has emerged as a critical modulator of immune reactions, but its role in regulating autoreactive Th17 cells and organ-specific autoimmunity remains largely unknown. Here, we have reported that miR-146a-deficient mice developed more severe experimental autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS). We bred miR-146a-deficient mice with 2D2 T cell receptor-Tg mice to generate 2D2 CD4 T cells that are deficient in miR-146a and specific for myelin oligodendrocyte glycoprotein (MOG), an autoantigen in the EAE model. miR-146a-deficient 2D2 T cells induced more severe EAE and were more prone to differentiate into Th17 cells. Microarray analysis revealed enhancements in IL-6- and IL-21-induced Th17 differentiation pathways in these T cells. Further study showed that miR-146a inhibited the production of autocrine IL-6 and IL-21 in 2D2 T cells, which in turn reduced their Th17 differentiation. Thus, our study identifies miR-146a as an important molecular brake that blocks the autocrine IL-6- and IL-21-induced Th17 differentiation pathways in autoreactive CD4 T cells, highlighting its potential as a therapeutic target for treating autoimmune diseases.

  18. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze, E-mail: mfkhan@utmb.edu

    2013-11-15

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure resulted in

  19. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    International Nuclear Information System (INIS)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze

    2013-01-01

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure resulted in

  20. Intravenous delivery of HIV-based lentiviral vectors preferentially transduces F4/80+ and Ly-6C+ cells in spleen, important target cells in autoimmune arthritis.

    Directory of Open Access Journals (Sweden)

    Ben T van den Brand

    Full Text Available Antigen presenting cells (APCs play an important role in arthritis and APC specific gene therapeutic targeting will enable intracellular modulation of cell activity. Viral mediated overexpression is a potent approach to achieve adequate transgene expression levels and lentivirus (LV is useful for sustained expression in target cells. Therefore, we studied the feasibility of lentiviral mediated targeting of APCs in experimental arthritis. Third generation VSV-G pseudotyped self-inactivating (SIN-LV were injected intravenously and spleen cells were analyzed with flow cytometry for green fluorescent protein (GFP transgene expression and cell surface markers. Collagen-induced arthritis (CIA was induced by immunization with bovine collagen type II in complete Freund's adjuvant. Effect on inflammation was monitored macroscopically and T-cell subsets in spleen were analyzed by flow cytometry. Synovium from arthritic knee joints were analyzed for proinflammatory cytokine expression. Lentiviruses injected via the tail vein preferentially infected the spleen and transduction peaks at day 10. A dose escalating study showed that 8% of all spleen cells were targeted and further analysis showed that predominantly Ly6C+ and F4/80+ cells in spleen were targeted by the LV. To study the feasibility of blocking TAK1-dependent pathways by this approach, a catalytically inactive mutant of TAK1 (TAK1-K63W was overexpressed during CIA. LV-TAK1-K63W significantly reduced incidence and arthritis severity macroscopically. Further histological analysis showed a significant decrease in bone erosion in LV-TAK1-K63W treated animals. Moreover, systemic Th17 levels were decreased by LV-TAK1-K63W treatment in addition to diminished IL-6 and KC production in inflamed synovium. In conclusion, systemically delivered LV efficiently targets monocytes and macrophages in spleen that are involved in autoimmune arthritis. Moreover, this study confirms efficacy of TAK1 targeting in

  1. The leukotriene B{sub 4} receptor, BLT1, is required for the induction of experimental autoimmune encephalomyelitis

    Energy Technology Data Exchange (ETDEWEB)

    Kihara, Yasuyuki, E-mail: kihara-yasuyuki@umin.net [Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yokomizo, Takehiko [Department of Medical Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Core Research for Embryonic Science and Technology (CREST), Japan Science and Technology Agency (Japan); Kunita, Akiko; Morishita, Yasuyuki; Fukayama, Masashi [Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033 (Japan); Ishii, Satoshi; Shimizu, Takao [Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2010-04-09

    Leukotriene B{sub 4} (LTB{sub 4}) is a potent chemoattractant and activator of neutrophils, macrophages and T cells. These cells are a key component of inflammation and all express BLT1, a high affinity G-protein-coupled receptor for LTB{sub 4}. However, little is known about the neuroimmune functions of BLT1. In this study, we describe a distinct role for BLT1 in the pathology of experimental autoimmune encephalomyelitis (EAE) and T{sub H}1/T{sub H}17 immune responses. BLT1 mRNA was highly upregulated in the spinal cord of EAE mice, especially during the induction phase. BLT1{sup -/-} mice had delayed onset and less severe symptoms of EAE than BLT1{sup +/+} mice. Additionally, inflammatory cells were recruited to the spinal cord of asymptomatic BLT1{sup +/+}, but not BLT1{sup -/-} mice before the onset of disease. Ex vivo studies showed that both the proliferation and the production of IFN-{gamma}, TNF-{alpha}, IL-17 and IL-6 were impaired in BLT1{sup -/-} cells, as compared with BLT1{sup +/+} cells. Thus, we suggest that BLT1 exacerbates EAE by regulating the migration of inflammatory cells and T{sub H}1/T{sub H}17 immune responses. Our findings provide a novel therapeutic option for the treatment of multiple sclerosis and other T{sub H}17-mediated diseases.

  2. Origin of B-Cell Neoplasms in Autoimmune Disease.

    Directory of Open Access Journals (Sweden)

    Kari Hemminki

    Full Text Available Autoimmune diseases (ADs are associated with a number of B-cell neoplasms but the associations are selective in regard to the type of neoplasm and the conferred risks are variable. So far no mechanistic bases for these differential associations have been demonstrated. We speculate that developmental origin of B-cells might propose a mechanistic rationale for their carcinogenic response to autoimmune stimuli and tested the hypothesis on our previous studies on the risks of B-cell neoplasms after any of 33 ADs. We found that predominantly germinal center (GC-derived B-cells showed multiple associations with ADs: diffuse large B cell lymphoma associated with 15 ADs, follicular lymphoma with 7 ADs and Hodgkin lymphoma with 11 ADs. Notably, these neoplasms shared significant associations with 5 ADs (immune thrombocytopenic purpura, polymyositis/dermatomyositis, rheumatoid arthritis, Sjogren syndrome and systemic lupus erythematosis. By contrast, primarily non-GC neoplasms, acute lymphocytic leukemia, chronic lymphocytic leukemia and myeloma associated with 2 ADs only and mantle cell lymphoma with 1 AD. None of the neoplasms shared associated ADs. These data may suggest that autoimmune stimulation critically interferes with the rapid cell division, somatic hypermutation, class switch recombination and immunological selection of maturing B-cell in the GC and delivers damage contributing to transformation.

  3. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse.

    Science.gov (United States)

    Miraghazadeh, Bahar; Cook, Matthew C

    2018-01-01

    NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense mediated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, differentiation, and survival. Non-canonical signaling mediated by nuclear translocation of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate these mechanisms to autoimmune phenotypes described in what is now a substantial catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB mutations, and speculate on implications for understanding sporadic autoimmune disease.

  4. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells.

    Directory of Open Access Journals (Sweden)

    Mehrnaz Nouri

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE, the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers. These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms and at 14 days (i.e., at the stage of paralysis after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies.

  5. Intestinal Barrier Dysfunction Develops at the Onset of Experimental Autoimmune Encephalomyelitis, and Can Be Induced by Adoptive Transfer of Auto-Reactive T Cells

    Science.gov (United States)

    Nouri, Mehrnaz; Bredberg, Anders; Weström, Björn; Lavasani, Shahram

    2014-01-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE), the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers). These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms) and at 14 days (i.e., at the stage of paralysis) after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies. PMID:25184418

  6. Study of the immune response to thyroglobulin through a model of experimental autoimmune thyroiditis

    International Nuclear Information System (INIS)

    Santos Castro, M. dos.

    1981-01-01

    The cellular and humoral immune response to thyroglobulin of different species was studied in guinea pigs. The experiments described suggested that the immune system can be activated against self-determinants. Human and pork thyroglobulin were able to induce the experimental thyroiditis as well as some immune responses, such as in vitro proliferative response, delayed hypersensitivity and antibodies. Although guinea pig thyroglobulin was unable to induce specific T-lymphocyte proliferation in vitro, delayed hypersensitivity response and antibodies, it was very efficient in inducing the autoimmune thyroiditis. On the contrary, bovine thyroglobulin did not induce experimental autoimmune thyroiditis despite producing good responses as determined by similar in vitro proliferative response, delayed hypersensitivity and on the humoral level. These results suggest that the assays utilised were not able to evaluate the relevant immune response to genesis of the thyroiditis. The determinant selection mechanisms operating in these immune responses are probably selecting determinants not responsible for self-recognition in vivo. It was suggested that the macrophage could be the cell responsible for the presentation of these determinants to the lymphocyte in an immunogenic form. (Author) [pt

  7. T Helper 17 Cells Interplay with CD4+CD25highFoxp3+ Tregs in Regulation of Inflammations and Autoimmune Diseases

    Science.gov (United States)

    Mai, Jietang; Wang, Hong; Yang#, Xiao-Feng

    2010-01-01

    Interleukin-17 (IL-17)-secreting T helper 17 cells (Th17) are a recently identified CD4+ T helper subset that has been implicated in various inflammatory and autoimmune diseases. Th17, along with CD4+CD25high Foxp3+ regulatory T cells (Tregs) and other newly emergent T helper subsets, Th9 and Tfh, have expanded the Th1-Th2 paradigm. Although this newly proposed six-subset paradigm significantly improved our understanding on the differentiation of CD4+ T helper cell subsets and the regulation of T helper cells in inflammation and autoimmunity, many questions remain to be answered. In this overview, we will briefly review the following issues: a) Old Th1-Th2 paradigm versus new multi-subset paradigm; b) Structural features of IL-17 family cytokines; c) Th17 cells; d) Effects of IL-17 on various cell types and tissues; e) IL-17 receptor and signaling pathways; f) Th17-mediated inflammations; and g) Protective mechanisms of IL-17 in infections. Lastly, we will look into the interaction of Th17 and Treg in autoimmune diseases and inflammation: Th17 cells interplay with Tregs. Regulation of autoimmunity and inflammation lies in the interplays of the different T helper subsets, therefore, better understanding of these subsets’ interactions with one another would greatly improve our approaches in developing therapy to combat inflammatory and autoimmune diseases. PMID:20515737

  8. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P; Voskuhl, Rhonda R

    2014-02-18

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.

  9. A cannabigerol derivative suppresses immune responses and protects mice from experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Carrillo-Salinas, Francisco J; Navarrete, Carmen; Mecha, Miriam; Feliú, Ana; Collado, Juan A; Cantarero, Irene; Bellido, María L; Muñoz, Eduardo; Guaza, Carmen

    2014-01-01

    Phytocannabinoids that do not produce psychotropic effects are considered of special interest as novel therapeutic agents in CNS diseases. A cannabigerol quinone, the compound VCE-003, has been shown to alleviate symptoms in a viral model of multiple sclerosis (MS). Hence, we studied T cells and macrophages as targets for VCE-003 and its efficacy in an autoimmune model of MS. Proliferation, cell cycle, expression of activation markers was assessed by FACs in human primary T cells, and cytokine and chemokine production was evaluated. Transcription was studied in Jurkat cells and RAW264.7 cells were used to study the effects of VCE-003 on IL-17-induced macrophage polarization to a M1 phenotype. Experimental autoimmune encephalomyelitis (EAE) was induced by myelin oligodendrocyte glycoprotein (MOG₃₅₋₅₅) immunization and spinal cord pathology was assessed by immunohistochemistry. Neurological impairment was evaluated using disease scores. We show here that VCE-003 inhibits CD3/CD28-induced proliferation, cell cycle progression and the expression of the IL-2Rα and ICAM-1 activation markers in human primary T cells. VCE-003 inhibits the secretion of Th1/Th17 cytokines and chemokines in primary murine T cells, and it reduces the transcriptional activity of the IL-2, IL-17 and TNFα promoters induced by CD3/CD28. In addition, VCE-003 and JWH-133, a selective CB2 agonist, dampened the IL-17-induced polarization of macrophages to a pro-inflammatory M1 profile. VCE-003 also prevented LPS-induced iNOS expression in microglia. VCE-003 ameliorates the neurological defects and the severity of MOG-induced EAE in mice through CB2 and PPARγ receptor activation. A reduction in cell infiltrates, mainly CD4+ T cells, was observed, and Th1 and Th17 responses were inhibited in the spinal cord of VCE-003-treated mice, accompanied by weaker microglial activation, structural preservation of myelin sheets and reduced axonal damage. This study highlights the therapeutic potential

  10. A cannabigerol derivative suppresses immune responses and protects mice from experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Francisco J Carrillo-Salinas

    Full Text Available Phytocannabinoids that do not produce psychotropic effects are considered of special interest as novel therapeutic agents in CNS diseases. A cannabigerol quinone, the compound VCE-003, has been shown to alleviate symptoms in a viral model of multiple sclerosis (MS. Hence, we studied T cells and macrophages as targets for VCE-003 and its efficacy in an autoimmune model of MS. Proliferation, cell cycle, expression of activation markers was assessed by FACs in human primary T cells, and cytokine and chemokine production was evaluated. Transcription was studied in Jurkat cells and RAW264.7 cells were used to study the effects of VCE-003 on IL-17-induced macrophage polarization to a M1 phenotype. Experimental autoimmune encephalomyelitis (EAE was induced by myelin oligodendrocyte glycoprotein (MOG₃₅₋₅₅ immunization and spinal cord pathology was assessed by immunohistochemistry. Neurological impairment was evaluated using disease scores. We show here that VCE-003 inhibits CD3/CD28-induced proliferation, cell cycle progression and the expression of the IL-2Rα and ICAM-1 activation markers in human primary T cells. VCE-003 inhibits the secretion of Th1/Th17 cytokines and chemokines in primary murine T cells, and it reduces the transcriptional activity of the IL-2, IL-17 and TNFα promoters induced by CD3/CD28. In addition, VCE-003 and JWH-133, a selective CB2 agonist, dampened the IL-17-induced polarization of macrophages to a pro-inflammatory M1 profile. VCE-003 also prevented LPS-induced iNOS expression in microglia. VCE-003 ameliorates the neurological defects and the severity of MOG-induced EAE in mice through CB2 and PPARγ receptor activation. A reduction in cell infiltrates, mainly CD4+ T cells, was observed, and Th1 and Th17 responses were inhibited in the spinal cord of VCE-003-treated mice, accompanied by weaker microglial activation, structural preservation of myelin sheets and reduced axonal damage. This study highlights the

  11. Autoimmune Addison's disease - An update on pathogenesis.

    Science.gov (United States)

    Hellesen, Alexander; Bratland, Eirik; Husebye, Eystein S

    2018-06-01

    Autoimmunity against the adrenal cortex is the leading cause of Addison's disease in industrialized countries, with prevalence estimates ranging from 93-220 per million in Europe. The immune-mediated attack on adrenocortical cells cripples their ability to synthesize vital steroid hormones and necessitates life-long hormone replacement therapy. The autoimmune disease etiology is multifactorial involving variants in immune genes and environmental factors. Recently, we have come to appreciate that the adrenocortical cell itself is an active player in the autoimmune process. Here we summarize the complex interplay between the immune system and the adrenal cortex and highlight unanswered questions and gaps in our current understanding of the disease. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Autoimmune gastritis mediated by CD4+ T cells promotes the development of gastric cancer.

    Science.gov (United States)

    Nguyen, Thanh-Long M; Khurana, Shradha S; Bellone, Clifford J; Capoccia, Benjamin J; Sagartz, John E; Kesman, Russell A; Mills, Jason C; DiPaolo, Richard J

    2013-04-01

    Chronic inflammation is a major risk factor for cancer, including gastric cancers and other gastrointestinal cancers. For example, chronic inflammation caused by autoimmune gastritis (AIG) is associated with an increased risk of gastric polyps, gastric carcinoid tumors, and possibly adenocarcinomas. In this study, we characterized the progression of gastric cancer in a novel mouse model of AIG. In this model, disease was caused by CD4(+) T cells expressing a transgenic T-cell receptor specific for a peptide from the H(+)/K(+) ATPase proton pump, a protein expressed by parietal cells in the stomach. AIG caused epithelial cell aberrations that mimicked most of those seen in progression of human gastric cancers, including chronic gastritis followed by oxyntic atrophy, mucous neck cell hyperplasia, spasmolytic polypeptide-expressing metaplasia, dysplasia, and ultimately gastric intraepithelial neoplasias. Our work provides the first direct evidence that AIG supports the development of gastric neoplasia and provides a useful model to study how inflammation drives gastric cancer. ©2013 AACR.

  13. Tolerogenic Dendritic Cells Generated with Tofacitinib Ameliorate Experimental Autoimmune Encephalomyelitis through Modulation of Th17/Treg Balance

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2016-01-01

    Full Text Available It is well known that dendritic cells (DCs play a pivotal role in triggering self-specific responses. Conversely, tolerogenic DCs (tolDCs, a specialized subset, induce tolerance and negatively regulate autoreactive responses. Tofacitinib, a Janus kinase inhibitor developed by Pfizer for treatment of rheumatoid arthritis, is probable to be a promising candidate for inducing tolDCs. The aims of this study were to evaluate the effectiveness of tolDCs induced by tofacitinib in a myelin oligodendrocyte glycoprotein- (MOG- specific experimental autoimmune encephalomyelitis (EAE model and to investigate their effects on Th17/Treg balance in the animal model of multiple sclerosis (MS. Our results revealed that tofacitinib-treated DCs maintained a steady semimature phenotype with a low level of proinflammatory cytokines and costimulatory molecules. DCs treated by tofacitinib also induced antigen-specific T cells hyporesponsiveness in a concentration-dependent manner. Upon intravenous injection into EAE mice, MOG pulsed tolDCs significantly dampened disease activity, and adoptive cell therapy (ACT disturbed Th17/Treg balance with a remarkable decrease of Th1/Th17 cells and an increase in regulatory T cells (Tregs. Overall, DCs modified by tofacitinib exhibited a typical tolerogenic phenotype, and the antigen-specific tolDCs may represent a new avenue of research for the development of future clinical treatments for MS.

  14. Activation-induced cytidine deaminase deficiency causes organ-specific autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Koji Hase

    Full Text Available Activation-induced cytidine deaminase (AID expressed by germinal center B cells is a central regulator of somatic hypermutation (SHM and class switch recombination (CSR. Humans with AID mutations develop not only the autosomal recessive form of hyper-IgM syndrome (HIGM2 associated with B cell hyperplasia, but also autoimmune disorders by unknown mechanisms. We report here that AID-/- mice spontaneously develop tertiary lymphoid organs (TLOs in non-lymphoid tissues including the stomach at around 6 months of age. At a later stage, AID-/- mice develop a severe gastritis characterized by loss of gastric glands and epithelial hyperplasia. The disease development was not attenuated even under germ-free (GF conditions. Gastric autoantigen -specific serum IgM was elevated in AID-/- mice, and the serum levels correlated with the gastritis pathological score. Adoptive transfer experiments suggest that autoimmune CD4+ T cells mediate gastritis development as terminal effector cells. These results suggest that abnormal B-cell expansion due to AID deficiency can drive B-cell autoimmunity, and in turn promote TLO formation, which ultimately leads to the propagation of organ-specific autoimmune effector CD4+ T cells. Thus, AID plays an important role in the containment of autoimmune diseases by negative regulation of autoreactive B cells.

  15. Obesity, islet cell autoimmunity, and cardiovascular risk factors in youth at onset of type 1 autoimmune diabetes.

    Science.gov (United States)

    Cedillo, Maribel; Libman, Ingrid M; Arena, Vincent C; Zhou, Lei; Trucco, Massimo; Ize-Ludlow, Diego; Pietropaolo, Massimo; Becker, Dorothy J

    2015-01-01

    The current increase in childhood type 1 diabetes (T1D) and obesity has led to two conflicting hypotheses and conflicting reports regarding the effects of overweight on initiation and spreading of islet cell autoimmunity vs earlier clinical manifestation of preexisting autoimmune β-cell damage driven by excess weight. The objective of the study was to address the question of whether the degree of β-cell autoimmunity and age are related to overweight at diabetes onset in a large cohort of T1D youth. This was a prospective cross-sectional study of youth with autoimmune T1D consecutively recruited at diabetes onset. The study was conducted at a regional academic pediatric diabetes center. Two hundred sixty-three consecutive children younger than 19 years at onset of T1D participated in the study. Relationships between body mass index and central obesity (waist circumference and waist to height ratio) and antigen spreading (islet cell autoantibody number), age, and cardiovascular (CVD) risk factors examined at onset and/or 3 months after the diagnosis were measured. There were no significant associations between number of autoantibodies with measures of adiposity. Age relationships revealed that a greater proportion of those with central obesity (21%) were in the youngest age group (0-4 y) compared with those without central obesity (6%) (P = .001). PATIENTS with central obesity had increased CVD risk factors and higher onset C-peptide levels (P obesity accelerates progression of autoantibody spreading once autoimmunity, marked by standard islet cell autoantibody assays, is present. Central obesity was present in almost one-third of the subjects and was associated with early CVD risk markers already at onset.

  16. Paraneoplastic autoimmune movement disorders.

    Science.gov (United States)

    Lim, Thien Thien

    2017-11-01

    To provide an overview of paraneoplastic autoimmune disorders presenting with various movement disorders. The spectrum of paraneoplastic autoimmune disorders has been expanding with the discovery of new antibodies against cell surface and intracellular antigens. Many of these paraneoplastic autoimmune disorders manifest as a form of movement disorder. With the discovery of new neuronal antibodies, an increasing number of idiopathic or neurodegenerative movement disorders are now being reclassified as immune-mediated movement disorders. These include anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis which may present with orolingual facial dyskinesia and stereotyped movements, CRMP-5 IgG presenting with chorea, anti-Yo paraneoplastic cerebellar degeneration presenting with ataxia, anti-VGKC complex (Caspr2 antibodies) neuromyotonia, opsoclonus-myoclonus-ataxia syndrome, and muscle rigidity and episodic spasms (amphiphysin, glutamic acid decarboxylase, glycine receptor, GABA(A)-receptor associated protein antibodies) in stiff-person syndrome. Movement disorders may be a presentation for paraneoplastic autoimmune disorders. Recognition of these disorders and their common phenomenology is important because it may lead to the discovery of an occult malignancy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Beneficial role of rapamycin in experimental autoimmune myositis.

    Directory of Open Access Journals (Sweden)

    Nicolas Prevel

    Full Text Available We developed an experimental autoimmune myositis (EAM mouse model of polymyositis where we outlined the role of regulatory T (Treg cells. Rapamycin, this immunosuppressant drug used to prevent rejection in organ transplantation, is known to spare Treg. Our aim was to test the efficacy of rapamycin in vivo in this EAM model and to investigate the effects of the drug on different immune cell sub-populations.EAM is induced by 3 injections of myosin emulsified in CFA. Mice received rapamycin during 25 days starting one day before myosin immunization (preventive treatment, or during 10 days following the last myosin immunization (curative treatment.Under preventive or curative treatment, an increase of muscle strength was observed with a parallel decrease of muscle inflammation, both being well correlated (R(2 = -0.645, p<0.0001. Rapamycin induced a general decrease in muscle of CD4 and CD8 T cells in lymphoid tissues, but spared B cells. Among T cells, the frequency of Treg was increased in rapamycin treated mice in draining lymph nodes (16.9 ± 2.2% vs. 9.3 ± 1.4%, p<0.001, which were mostly activated regulatory T cells (CD62L(lowCD44(high: 58.1 ± 5.78% vs. 33.1 ± 7%, treated vs. untreated, p<0.001. In rapamycin treated mice, inhibition of proliferation (Ki-67(+ is more important in effector T cells compared to Tregs cells (p<0.05. Furthermore, during preventive treatment, rapamycin increased the levels of KLF2 transcript in CD44(low CD62L(high naive T cell and in CD62L(low CD44(high activated T cell.Rapamycin showed efficacy both as curative and preventive treatment in our murine model of experimental myositis, in which it induced an increase of muscle strength with a parallel decrease in muscle inflammation. Rapamycin administration was also associated with a decrease in the frequency of effector T cells, an increase in Tregs, and, when administered as preventive treatment, an upregulation of KFL2 in naive and activated T cells.

  18. Genetic deletion of Mst1 alters T cell function and protects against autoimmunity.

    Directory of Open Access Journals (Sweden)

    Konstantin V Salojin

    Full Text Available Mammalian sterile 20-like kinase 1 (Mst1 is a MAPK kinase kinase kinase which is involved in a wide range of cellular responses, including apoptosis, lymphocyte adhesion and trafficking. The contribution of Mst1 to Ag-specific immune responses and autoimmunity has not been well defined. In this study, we provide evidence for the essential role of Mst1 in T cell differentiation and autoimmunity, using both genetic and pharmacologic approaches. Absence of Mst1 in mice reduced T cell proliferation and IL-2 production in vitro, blocked cell cycle progression, and elevated activation-induced cell death in Th1 cells. Mst1 deficiency led to a CD4+ T cell development path that was biased toward Th2 and immunoregulatory cytokine production with suppressed Th1 responses. In addition, Mst1-/- B cells showed decreased stimulation to B cell mitogens in vitro and deficient Ag-specific Ig production in vivo. Consistent with altered lymphocyte function, deletion of Mst1 reduced the severity of experimental autoimmune encephalomyelitis (EAE and protected against collagen-induced arthritis development. Mst1-/- CD4+ T cells displayed an intrinsic defect in their ability to respond to encephalitogenic antigens and deletion of Mst1 in the CD4+ T cell compartment was sufficient to alleviate CNS inflammation during EAE. These findings have prompted the discovery of novel compounds that are potent inhibitors of Mst1 and exhibit desirable pharmacokinetic properties. In conclusion, this report implicates Mst1 as a critical regulator of adaptive immune responses, Th1/Th2-dependent cytokine production, and as a potential therapeutic target for immune disorders.

  19. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    Science.gov (United States)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  20. The nuclear IκB family protein IκBNS influences the susceptibility to experimental autoimmune encephalomyelitis in a murine model.

    Science.gov (United States)

    Kobayashi, Shuhei; Hara, Akira; Isagawa, Takayuki; Manabe, Ichiro; Takeda, Kiyoshi; MaruYama, Takashi

    2014-01-01

    The nuclear IκB family protein IκBNS is expressed in T cells and plays an important role in Interferon (IFN)-γ and Interleukin (IL)-2 production. IκB-ζ, the most similar homolog of IκBNS, plays an important role in the generation of T helper (Th)17 cells in cooperation with RORγt, a master regulator of Th17 cells. Thus, IκB-ζ deficient mice are resistant to Th17-dependent experimental autoimmune encephalomyelitis (EAE). However, IκB-ζ deficient mice develop the autoimmune-like Sjögren syndrome with aging. Here we found that IκBNS-deficient (Nfkbid-/-) mice show resistance against developing Th17-dependent EAE. We found that Nfkbid-/- T cells have decreased expression of IL-17-related genes and RORγt in response to Transforming Growth Factor (TGF)-β1 and IL-6 stimulation. Thus, IκBNS plays a pivotal role in the generation of Th17 cells and in the control of Th17-dependent EAE.

  1. PTEN drives Th17 cell differentiation by preventing IL-2 production.

    Science.gov (United States)

    Kim, Hyeong Su; Jang, Sung Woong; Lee, Wonyong; Kim, Kiwan; Sohn, Hyogon; Hwang, Soo Seok; Lee, Gap Ryol

    2017-11-06

    T helper 17 (Th17) cells are a CD4 + T cell subset that produces IL-17A to mediate inflammation and autoimmunity. IL-2 inhibits Th17 cell differentiation. However, the mechanism by which IL-2 is suppressed during Th17 cell differentiation remains unclear. Here, we show that phosphatase and tensin homologue (PTEN) is a key factor that regulates Th17 cell differentiation by suppressing IL-2 production. Th17-specific Pten deletion ( Pten fl/fl Il17a cre ) impairs Th17 cell differentiation in vitro and ameliorated symptoms of experimental autoimmune encephalomyelitis (EAE), a model of Th17-mediated autoimmune disease. Mechanistically, Pten deficiency up-regulates IL-2 and phosphorylation of STAT5, but reduces STAT3 phosphorylation, thereby inhibiting Th17 cell differentiation. PTEN inhibitors block Th17 cell differentiation in vitro and in the EAE model. Thus, PTEN plays a key role in Th17 cell differentiation by blocking IL-2 expression. © 2017 Kim et al.

  2. RAE-1 expression is induced during experimental autoimmune encephalomyelitis and is correlated with microglia cell proliferation.

    Science.gov (United States)

    Djelloul, Mehdi; Popa, Natalia; Pelletier, Florence; Raguénez, Gilda; Boucraut, José

    2016-11-01

    Retinoic acid early induced transcript-1 (RAE-1) glycoproteins are ligands of the activating immune receptor NKG2D. They are known as stress molecules induced in pathological conditions. We previously reported that progenitor cells express RAE-1 in physiological conditions and we described a correlation between RAE-1 expression and cell proliferation. In addition, we showed that Raet1 transcripts are induced in the spinal cord of experimental autoimmune encephalomyelitis (EAE) mice. EAE is a model for multiple sclerosis which is accompanied by microglia proliferation and activation, recruitment of immune cells and neurogenesis. We herein studied the time course expression of the two members of the Raet1 gene family present in C57BL/6 mice, namely Raet1d and Raet1e, in the spinal cord during EAE. We report that Raet1d and Raet1e genes are induced early upon EAE onset and reach a maximal expression at the peak of the pathology. We show that myeloid cells, i.e. macrophages as well as microglia, are cellular sources of Raet1 transcripts. We also demonstrate that only Raet1d expression is induced in microglia, whereas macrophages expressed both Raet1d and Raet1e. Furthermore, we investigated the dynamics of RAE-1 expression in microglia cultures. RAE-1 induction correlated with cell proliferation but not with M1/M2 phenotypic orientation. We finally demonstrate that macrophage colony-stimulating factor (M-CSF) is a major factor controlling RAE-1 expression in microglia. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Immune cell-derived c3 is required for autoimmune diabetes induced by multiple low doses of streptozotocin.

    Science.gov (United States)

    Lin, Marvin; Yin, Na; Murphy, Barbara; Medof, M Edward; Segerer, Stephan; Heeger, Peter S; Schröppel, Bernd

    2010-09-01

    The complement system contributes to autoimmune injury, but its involvement in promoting the development of autoimmune diabetes is unknown. In this study, our goal was to ascertain the role of complement C3 in autoimmune diabetes. Susceptibility to diabetes development after multiple low-dose streptozotocin treatment in wild-type (WT) and C3-deficient mice was analyzed. Bone marrow chimeras, luminex, and quantitative reverse transcription PCR assays were performed to evaluate the phenotypic and immunologic impact of C3 in the development of this diabetes model. Coincident with the induced elevations in blood glucose levels, we documented alternative pathway complement component gene expression within the islets of the diabetic WT mice. When we repeated the experiments with C3-deficient mice, we observed complete resistance to disease, as assessed by the absence of histologic insulitis and the absence of T-cell reactivity to islet antigens. Studies of WT chimeras bearing C3-deficient bone marrow cells showed that bone marrow cell-derived C3, and not serum C3, is involved in the induction of diabetes in this model. The data reveal a key role for immune cell-derived C3 in the pathogenesis of murine multiple low-dose streptozotocin-induced diabetes and support the concept that immune cell mediated diabetes is in part complement-dependent.

  4. Recombinant adenovirus-mediated gene transfer suppresses experimental arthritis

    Directory of Open Access Journals (Sweden)

    E. Quattrocchi

    2011-09-01

    Full Text Available Collagen Induced Arthritis (CIA is a widely studied animal model to develop and test novel therapeutic approaches for treating Rheumatoid Arthritis (RA in humans. Soluble Cytotoxic T-Lymphocyte Antigen 4 (CTLA4-Ig, which binds B7 molecule on antigen presenting cells and blocks CD28 mediated T-lymphocyte activation, has been shown to ameliorate experimental autoimmune diseases such as lupus, diabetes and CIA. Objective of our research was to investigate in vivo the effectiveness of blocking the B7/CD28 T-lymphocyte co-stimulatory pathway, utilizing a gene transfer technology, as a therapeutic strategy against CIA. Replication-deficient adenoviruses encoding a chimeric CTLA4-Ig fusion protein, or β-galactosidase as control, have been injected intravenously once at arthritis onset. Disease activity has been monitored by the assessment of clinical score, paw thickness and type II collagen (CII specific cellular and humoral immune responses for 21 days. The adenovirally delivered CTLA4-Ig fusion protein at a dose of 2×108 pfu suppressed established CIA, whereas the control β-galactosidase did not significantly affect the disease course. CII-specific lymphocyte proliferation, IFNg production and anti-CII antibodies were significantly reduced by CTLA4-Ig treatment. Our results demonstrate that blockade of the B7/CD28 co-stimulatory pathway by adenovirus-mediated CTLA4-Ig gene transfer is effective in treating established CIA suggesting its potential in treating RA.

  5. Excess circulating alternatively activated myeloid (M2 cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Ilan Vaknin

    Full Text Available Circulating immune cells including autoreactive T cells and monocytes have been documented as key players in maintaining, protecting and repairing the central nervous system (CNS in health and disease. Here, we hypothesized that neurodegenerative diseases might be associated, similarly to tumors, with increased levels of circulating peripheral myeloid derived suppressor cells (MDSCs, representing a subset of suppressor cells that often expand under pathological conditions and inhibit possible recruitment of helper T cells needed for fighting off the disease.We tested this working hypothesis in amyotrophic lateral sclerosis (ALS and its mouse model, which are characterized by a rapid progression once clinical symptoms are evident. Adaptive transfer of alternatively activated myeloid (M2 cells, which homed to the spleen and exhibited immune suppressive activity in G93A mutant superoxide dismutase-1 (mSOD1 mice at a stage before emergence of disease symptoms, resulted in earlier appearance of disease symptoms and shorter life expectancy. The same protocol mitigated the inflammation-induced disease model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE, which requires circulating T cells for disease induction. Analysis of whole peripheral blood samples obtained from 28 patients suffering from sporadic ALS (sALS, revealed a two-fold increase in the percentage of circulating MDSCs (LIN(-/LowHLA-DR(-CD33(+ compared to controls.Taken together, these results emphasize the distinct requirements for fighting the inflammatory neurodegenerative disease, multiple sclerosis, and the neurodegenerative disease, ALS, though both share a local inflammatory component. Moreover, the increased levels of circulating MDSCs in ALS patients indicates the operation of systemic mechanisms that might lead to an impairment of T cell reactivity needed to overcome the disease conditions within the CNS. This high level of suppressive immune cells might

  6. MHC class II polymorphisms, autoreactive T-cells and autoimmunity

    Directory of Open Access Journals (Sweden)

    Sue eTsai

    2013-10-01

    Full Text Available Major histocompatibility complex (MHC genes, also known as human leukocyte antigen genes (HLA in humans, are the prevailing contributors of genetic susceptibility to autoimmune diseases such as Type 1 Diabetes (T1D, Multiple Sclerosis (MS, and Rheumatoid arthritis (RA, among others (Todd and Wicker, 2001;MacKay et al., 2002;Hafler et al., 2007. Although the pathways through which MHC molecules afford autoimmune risk or resistance remain to be fully mapped out, it is generally accepted that they do so by shaping the central and peripheral T cell repertoires of the host towards autoimmune proclivity or resistance, respectively. Disease-predisposing MHC alleles would both spare autoreactive thymocytes from central tolerance and bias their development towards a pathogenic phenotype. Protective MHC alleles, on the other hand, would promote central deletion of autoreactive thymocytes and skew their development towards non-pathogenic phenotypes. This interpretation of the data is at odds with two other observations: that in MHC-heterozygous individuals, resistance is dominant over susceptibility; and that it is difficult to understand how deletion of one or a few clonal autoreactive T cell types would suffice to curb autoimmune responses driven by hundreds if not thousands of autoreactive T cell specificities. This review provides an update on current advances in our understanding of the mechanisms underlying MHC class II-associated autoimmune disease susceptibility and/or resistance and attempts to reconcile these seemingly opposing concepts.

  7. NETs: The missing link between cell death and systemic autoimmune diseases?

    Directory of Open Access Journals (Sweden)

    Felipe eAndrade

    2013-01-01

    Full Text Available For almost 20 years, apoptosis and secondary necrosis have been considered the major source of autoantigens and endogenous adjuvants in the pathogenic model of systemic autoimmune diseases. This focus is justified in part because initial evidence in systemic lupus erythematosus (SLE guided investigators toward the study of apoptosis, but also because other forms of cell death were unknown. To date, it is known that many other forms of cell death occur, and that they vary in their capacity to stimulate as well as inhibit the immune system. Among these, NETosis (an antimicrobial form of death in neutrophils in which nuclear material is extruded from the cell forming extracellular traps, is gaining major interest as a process that may trigger some of the immune features found in SLE, granulomatosis with polyangiitis (formerly Wegener’s granulomatosis and Felty’s syndrome. Although there have been volumes of very compelling studies published on the role of cell death in autoimmunity, no unifying theory has been adopted nor have any successful therapeutics been developed based on this important pathway. The recent inclusion of NETosis into the pathogenic model of autoimmune diseases certainly adds novel insights into this paradigm, but also reveals a previously unappreciated level of complexity and raises many new questions. This review discusses the role of cell death in systemic autoimmune diseases with a focus on apoptosis and NETosis, highlights the current short comings in our understanding of the vast complexity of cell death, and considers the potential shift in the cell death paradigm in autoimmunity. Understanding this complexity is critical in order to develop tools to clearly define the death pathways that are active in systemic autoimmune diseases, identify drivers of disease propagation, and develop novel therapeutics.

  8. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice.

    Science.gov (United States)

    Schmitz, Katja; de Bruin, Natasja; Bishay, Philipp; Männich, Julia; Häussler, Annett; Altmann, Christine; Ferreirós, Nerea; Lötsch, Jörn; Ultsch, Alfred; Parnham, Michael J; Geisslinger, Gerd; Tegeder, Irmgard

    2014-11-01

    R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4(+)CD25(+)FoxP3(+) regulatory T cells, CTLA4(+) inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  9. Exercise training attenuates experimental autoimmune encephalomyelitis by peripheral immunomodulation rather than direct neuroprotection.

    Science.gov (United States)

    Einstein, Ofira; Fainstein, Nina; Touloumi, Olga; Lagoudaki, Roza; Hanya, Ester; Grigoriadis, Nikolaos; Katz, Abram; Ben-Hur, Tamir

    2018-01-01

    Conflicting results exist on the effects of exercise training (ET) on Experimental Autoimmune Encephalomyelitis (EAE), nor is it known how exercise impacts on disease progression. We examined whether ET ameliorates the development of EAE by modulating the systemic immune system or exerting direct neuroprotective effects on the CNS. Healthy mice were subjected to 6weeks of motorized treadmill running. The Proteolipid protein (PLP)-induced transfer EAE model in mice was utilized. To assess effects of ET on systemic autoimmunity, lymph-node (LN)-T cells from trained- vs. sedentary donor mice were transferred to naïve recipients. To assess direct neuroprotective effects of ET, PLP-reactive LN-T cells were transferred into recipient mice that were trained prior to EAE transfer or to sedentary mice. EAE severity was assessed in vivo and the characteristics of encephalitogenic LN-T cells derived from PLP-immunized mice were evaluated in vitro. LN-T cells obtained from trained mice induced an attenuated clinical and pathological EAE in recipient mice vs. cells derived from sedentary animals. Training inhibited the activation, proliferation and cytokine gene expression of PLP-reactive T cells in response to CNS-derived autoantigen, but strongly enhanced their proliferation in response to Concanavalin A, a non-specific stimulus. However, there was no difference in EAE severity when autoreactive encephalitogenic T cells were transferred to trained vs. sedentary recipient mice. ET inhibits immune system responses to an auto-antigen to attenuate EAE, rather than generally suppressing the immune system, but does not induce a direct neuro-protective effect against EAE. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. GM-CSF-Producing Th Cells in Rats Sensitive and Resistant to Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Stojić-Vukanić, Zorica; Pilipović, Ivan; Vujnović, Ivana; Nacka-Aleksić, Mirjana; Petrović, Raisa; Arsenović-Ranin, Nevena; Dimitrijević, Mirjana; Leposavić, Gordana

    2016-01-01

    Given that granulocyte macrophage colony-stimulating factor (GM-CSF) is identified as the key factor to endow auto-reactive Th cells with the potential to induce neuroinflammation in experimental autoimmune encephalomyelitis (EAE) models, the frequency and phenotype of GM-CSF-producing (GM-CSF+) Th cells in draining lymph nodes (dLNs) and spinal cord (SC) of Albino Oxford (AO) and Dark Agouti (DA) rats immunized for EAE were examined. The generation of neuroantigen-specific GM-CSF+ Th lymphocytes was impaired in dLNs of AO rats (relatively resistant to EAE induction) compared with their DA counterparts (susceptible to EAE) reflecting impaired CD4+ lymphocyte proliferation and less supportive of GM-CSF+ Th cell differentiation dLN cytokine microenvironment. Immunophenotyping of GM-CSF+ Th cells showed their phenotypic heterogeneity in both strains and revealed lower frequency of IL-17+IFN-γ+, IL-17+IFN-γ-, and IL-17-IFN-γ+ cells accompanied by higher frequency of IL-17-IFN-γ- cells among them in AO than in DA rats. Compared with DA, in AO rats was also found (i) slightly lower surface density of CCR2 (drives accumulation of highly pathogenic GM-CSF+IFN-γ+ Th17 cells in SC) on GM-CSF+IFN-γ+ Th17 lymphocytes from dLNs, and (ii) diminished CCL2 mRNA expression in SC tissue, suggesting their impaired migration into the SC. Moreover, dLN and SC cytokine environments in AO rats were shown to be less supportive of GM-CSF+IFN-γ+ Th17 cell differentiation (judging by lower expression of mRNAs for IL-1β, IL-6 and IL-23/p19). In accordance with the (i) lower frequency of GM-CSF+ Th cells in dLNs and SC of AO rats and their lower GM-CSF production, and (ii) impaired CCL2 expression in the SC tissue, the proportion of proinflammatory monocytes among peripheral blood cells and their progeny (CD45hi cells) among the SC CD11b+ cells were reduced in AO compared with DA rats. Collectively, the results indicate that the strain specificities in efficacy of several mechanisms

  11. Membrane attack complex of complement is not essential for immune mediated demyelination in experimental autoimmune neuritis.

    Science.gov (United States)

    Tran, Giang T; Hodgkinson, Suzanne J; Carter, Nicole M; Killingsworth, Murray; Nomura, Masaru; Verma, Nirupama D; Plain, Karren M; Boyd, Rochelle; Hall, Bruce M

    2010-12-15

    Antibody deposition and complement activation, especially membrane attack complex (MAC) formation are considered central for immune mediated demyelination. To examine the role of MAC in immune mediated demyelination, we studied experimental allergic neuritis (EAN) in Lewis rats deficient in complement component 6 (C6) that cannot form MAC. A C6 deficient Lewis (Lewis/C6-) strain of rats was bred by backcrossing the defective C6 gene, from PVG/C6- rats, onto the Lewis background. Lewis/C6- rats had the same C6 gene deletion as PVG/C6- rats and their sera did not support immune mediated haemolysis unless C6 was added. Active EAN was induced in Lewis and Lewis/C6- rats by immunization with bovine peripheral nerve myelin in complete Freund's adjuvant (CFA), and Lewis/C6- rats had delayed clinical EAN compared to the Lewis rats. Peripheral nerve demyelination in Lewis/C6- was also delayed but was similar in extent at the peak of disease. Compared to Lewis, Lewis/C6- nerves had no MAC deposition, reduced macrophage infiltrate and IL-17A, but similar T cell infiltrate and Th1 cytokine mRNA expression. ICAM-1 and P-selectin mRNA expression and immunostaining on vascular endothelium were delayed in Lewis C6- compared to Lewis rats' nerves. This study found that MAC was not required for immune mediated demyelination; but that MAC enhanced early symptoms and early demyelination in EAN, either by direct lysis or by sub-lytic induction of vascular endothelial expression of ICAM-1 and P-selectin. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Does Autoimmunity have a Role in Myoclonic Astatic Epilepsy? A Case Report of Voltage Gated Potassium Channel Mediated Seizures.

    Science.gov (United States)

    Sirsi, Deepa; Dolce, Alison; Greenberg, Benjamin M; Thodeson, Drew

    2016-01-01

    There is expanding knowledge about the phenotypic variability of patients with voltage gated potassium channel complex (VGKC) antibody mediated neurologic disorders. The phenotypes are diverse and involve disorders of the central and peripheral nervous systems. The central nervous system manifestations described in the literature include limbic encephalitis, status epilepticus, and acute encephalitis. We report a 4.5 year-old boy who presented with intractable Myoclonic Astatic Epilepsy (MAE) or Doose syndrome and positive VGKC antibodies in serum. Treatment with steroids led to resolution of seizures and electrographic normalization. This case widens the spectrum of etiologies for MAE to include autoimmunity, in particular VGKC auto-antibodies and CNS inflammation, as a primary or contributing factor. There is an evolving understanding of voltage gated potassium channel complex mediated autoimmunity in children and the role of inflammation and autoimmunity in MAE and other intractable pediatric epilepsy syndromes remains to be fully defined. A high index of suspicion is required for diagnosis and appropriate management of antibody mediated epilepsy syndromes.

  13. Harnessing Apoptotic Cell Clearance to Treat Autoimmune Arthritis

    Directory of Open Access Journals (Sweden)

    Philippe Saas

    2017-10-01

    Full Text Available Early-stage apoptotic cells possess immunomodulatory properties. Proper apoptotic cell clearance during homeostasis has been shown to limit subsequent immune responses. Based on these observations, early-stage apoptotic cell infusion has been used to prevent unwanted inflammatory responses in different experimental models of autoimmune diseases or transplantation. Moreover, this approach has been shown to be feasible without any toxicity in patients undergoing allogeneic hematopoietic cell transplantation to prevent graft-versus-host disease. However, whether early-stage apoptotic cell infusion can be used to treat ongoing inflammatory disorders has not been reported extensively. Recently, we have provided evidence that early-stage apoptotic cell infusion is able to control, at least transiently, ongoing collagen-induced arthritis. This beneficial therapeutic effect is associated with the modulation of antigen-presenting cell functions mainly of macrophages and plasmacytoid dendritic cells, as well as the induction of collagen-specific regulatory CD4+ T cells (Treg. Furthermore, the efficacy of this approach is not altered by the association with two standard treatments of rheumatoid arthritis (RA, methotrexate and tumor necrosis factor (TNF inhibition. Here, in the light of these observations and recent data of the literature, we discuss the mechanisms of early-stage apoptotic cell infusion and how this therapeutic approach can be transposed to patients with RA.

  14. IL-12p35 Inhibits Neuroinflammation and Ameliorates Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Jin Kyeong Choi

    2017-10-01

    Full Text Available Multiple sclerosis (MS is an inflammatory demyelinating disease in which cytokines produced by immune cells that infiltrate the brain and spinal cord play a central role. We show here that the IL-12p35, the alpha subunit of IL-12 or IL-35 cytokine, might be an effective biologic for suppressing neuroinflammatory responses and ameliorating the pathology of experimental autoimmune encephalomyelitis (EAE, the mouse model of human MS. We further show that IL-12p35 conferred protection from neuropathy by inhibiting the expansion of pathogenic Th17 and Th1 cells and inhibiting trafficking of inflammatory cells into the brain and spinal cord. In addition, in vitro exposure of encephalitogenic cells to IL-12p35 suppressed their capacity to induce EAE by adoptive transfer. Importantly, the IL-12p35-mediated expansion of Treg and Breg cells and its amelioration of EAE correlated with inhibition of cytokine-induced activation of STAT1/STAT3 pathways. Moreover, IL-12p35 inhibited lymphocyte proliferation by suppressing the expressions of cell-cycle regulatory proteins. Taken together, these results suggest that IL-12p35 can be exploited as a novel biologic for treating central nervous system autoimmune diseases and offers the promise of ex vivo production of large amounts of Tregs and Bregs for immunotherapy.

  15. Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota.

    Science.gov (United States)

    Cignarella, Francesca; Cantoni, Claudia; Ghezzi, Laura; Salter, Amber; Dorsett, Yair; Chen, Lei; Phillips, Daniel; Weinstock, George M; Fontana, Luigi; Cross, Anne H; Zhou, Yanjiao; Piccio, Laura

    2018-06-05

    Multiple sclerosis (MS) is more common in western countries with diet being a potential contributing factor. Here we show that intermittent fasting (IF) ameliorated clinical course and pathology of the MS model, experimental autoimmune encephalomyelitis (EAE). IF led to increased gut bacteria richness, enrichment of the Lactobacillaceae, Bacteroidaceae, and Prevotellaceae families and enhanced antioxidative microbial metabolic pathways. IF altered T cells in the gut with a reduction of IL-17 producing T cells and an increase in regulatory T cells. Fecal microbiome transplantation from mice on IF ameliorated EAE in immunized recipient mice on a normal diet, suggesting that IF effects are at least partially mediated by the gut flora. In a pilot clinical trial in MS patients, intermittent energy restriction altered blood adipokines and the gut flora resembling protective changes observed in mice. In conclusion, IF has potent immunomodulatory effects that are at least partially mediated by the gut microbiome. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Fetal microchimeric cells in autoimmune thyroid diseases

    Science.gov (United States)

    Lepez, Trees; Vandewoestyne, Mado; Deforce, Dieter

    2013-01-01

    Autoimmune thyroid diseases (AITD) show a female predominance, with an increased incidence in the years following parturition. Fetal microchimerism has been suggested to play a role in the pathogenesis of AITD. However, only the presence of fetal microchimeric cells in blood and in the thyroid gland of these patients has been proven, but not an actual active role in AITD. Is fetal microchimerism harmful for the thyroid gland by initiating a Graft versus Host reaction (GvHR) or being the target of a Host versus Graft reaction (HvGR)? Is fetal microchimerism beneficial for the thyroid gland by being a part of tissue repair or are fetal cells just innocent bystanders in the process of autoimmunity? This review explores every hypothesis concerning the role of fetal microchimerism in AITD. PMID:23723083

  17. Severe T-cell depletion from the PALS leads to altered spleen composition in common marmosets with experimental autoimmune encephalomyelitis (EAE)

    NARCIS (Netherlands)

    De Vos, Alex F; van Riel, Debby A J; van Meurs, Marjan; Brok, Herbert P M; Boon, Louis; Hintzen, Rogier Q; Claassen, Eric H J H M; 't Hart, Bert A; Laman, Jon D

    Recent data suggest that the spleen is a crucial component of the immune system in the development of experimental autoimmune encephalomyelitis (EAE) in marmoset monkeys. Using immunohistochemistry, we investigated changes in the distribution of leukocytes in the spleen associated with clinical

  18. Distinct evolution of TLR-mediated dendritic cell cytokine secretion in patients with limited and diffuse cutaneous systemic sclerosis.

    NARCIS (Netherlands)

    Bon, L. van; Popa, C.; Huibens, R.J.F.; Vonk, M.C.; York, M.; Simms, R.; Hesselstrand, R.; Wuttge, D.M.; Lafyatis, R.; Radstake, T.R.D.J.

    2010-01-01

    BACKGROUND: Systemic sclerosis (SSc) is an autoimmune disease and accumulating evidence suggests a role for Toll-like receptor (TLR)-mediated activation of dendritic cells (DCs). OBJECTIVE: To map TLR-mediated cytokine responses of DCs from patients with SSc. METHODS: 45 patients with SSc were

  19. Human neutrophils in auto-immunity.

    Science.gov (United States)

    Thieblemont, Nathalie; Wright, Helen L; Edwards, Steven W; Witko-Sarsat, Véronique

    2016-04-01

    Human neutrophils have great capacity to cause tissue damage in inflammatory diseases via their inappropriate activation to release reactive oxygen species (ROS), proteases and other tissue-damaging molecules. Furthermore, activated neutrophils can release a wide variety of cytokines and chemokines that can regulate almost every element of the immune system. In addition to these important immuno-regulatory processes, activated neutrophils can also release, expose or generate neoepitopes that have the potential to break immune tolerance and result in the generation of autoantibodies, that characterise a number of human auto-immune diseases. For example, in vasculitis, anti-neutrophil cytoplasmic antibodies (ANCA) that are directed against proteinase 3 or myeloperoxidase are neutrophil-derived autoantigens and activated neutrophils are the main effector cells of vascular damage. In other auto-immune diseases, these neutrophil-derived neoepitopes may arise from a number of processes that include release of granule enzymes and ROS, changes in the properties of components of their plasma membrane as a result of activation or apoptosis, and via the release of Neutrophil Extracellular Traps (NETs). NETs are extracellular structures that contain chromatin that is decorated with granule enzymes (including citrullinated proteins) that can act as neo-epitopes to generate auto-immunity. This review therefore describes the processes that can result in neutrophil-mediated auto-immunity, and the role of neutrophils in the molecular pathologies of auto-immune diseases such as vasculitis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We discuss the potential role of NETs in these processes and some of the debate in the literature regarding the role of this phenomenon in microbial killing, cell death and auto-immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Experimental autoimmune prostatitis induces microglial activation in the spinal cord.

    Science.gov (United States)

    Wong, Larry; Done, Joseph D; Schaeffer, Anthony J; Thumbikat, Praveen

    2015-01-01

    The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host's immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain. Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S14-S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain. Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF. Our data show that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain. © 2014 Wiley Periodicals, Inc.

  1. The severity of experimental autoimmune cystitis can be ameliorated by anti-CXCL10 Ab treatment.

    Directory of Open Access Journals (Sweden)

    Udai P Singh

    Full Text Available Interstitial cystitis (IC, more recently called painful bladder syndrome (PBS is a complex disease associated with chronic bladder inflammation that primarily affects women. Its symptoms include frequent urinary urgency accompanied by discomfort or pain in the bladder and lower abdomen. In the United States, eight million people, mostly women, have IC/PBS. New evidence that autoimmune mechanisms are important in the pathogenesis of IC/PBS triggered interest.SWXJ mice immunized with a homogenate of similar mice's urinary bladders develop an autoimmune phenotype comparable to clinical IC with functional and histological alterations confined to the urinary bladder. Using the murine model of experimental autoimmune cystitis (EAC, we found that serum levels of CXCR3 ligand and local T helper type 1 (Th1 cytokine are elevated. Also, IFN-γ-inducible protein10 (CXCL10 blockade attenuated overall cystitis severity scores; reversed the development of IC; decreased local production of CXCR3 and its ligands, IFN-γ, and tumor necrosis factor-α (TNF-α; and lowered systemic levels of CXCR3 ligands. Urinary bladder CD4(+ T cells, mast cells, and neutrophils infiltrates were reduced following anti-CXCL10 antibody (Ab treatment of mice. Anti-CXCL10 Ab treatment also reversed the upregulated level of CXCR3 ligand mRNA at urinary bladder sites. The decreased number and percentage of systemic CD4(+ T cells in EAC mice returned to normal after anti-CXCL10 Ab treatment.Taken together, our findings provide important new information about the mechanisms underlying EAC pathogenesis, which has symptoms similar to those of IC/PBS. CXCL10 has the potential for use in developing new therapy for IC/PBS.

  2. Increased autoimmune activity against 5-HT: a key component of depression that is associated with inflammation and activation of cell-mediated immunity, and with severity and staging of depression.

    Science.gov (United States)

    Maes, Michael; Ringel, Karl; Kubera, Marta; Berk, Michael; Rybakowski, Janusz

    2012-02-01

    Depression is characterized by inflammation and cell-mediated immune (CMI) activation and autoimmune reactions directed against a multitude of self-epitopes. There is evidence that the inflammatory response in depression causes dysfunctions in the metabolism of 5-HT, e.g. lowering the 5-HT precursor tryptophan, and upregulating 5-HT receptor mRNA. This study has been undertaken to examine autoimmune activity directed against 5-HT in relation to CMI activation and inflammation. 5-HT antibodies were examined in major depressed patients (n=109) versus normal controls (n=35) in relation to serum neopterin and lysozyme, and plasma pro-inflammatory cytokines (PIC), i.e. interleukin-1 (IL-1) and tumor necrosis factor-α (TNFα). Severity of depression was assessed with the Hamilton Depression Rating Scale (HDRS) and severity of fatigue and somatic symptoms with the Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale. The incidence of anti-5-HT antibody activity was significantly higher in depressed patients (54.1%), and in particular in those with melancholia (82.9%), than in controls (5.7%). Patients with positive 5-HT antibodies showed increased serum neopterin and lysozyme, and plasma TNFα and IL-1; higher scores on the HDRS and FF scales, and more somatic symptoms, including malaise and neurocognitive dysfunctions. There was a significant association between autoimmune activity to 5-HT and the number of previous depressive episodes. The autoimmune reactions directed against 5-HT might play a role in the pathophysiology of depression and the onset of severe depression. The strong association between autoimmune activity against 5-HT and inflammation/CMI activation is explained by multiple, reciprocal pathways between these factors. Exposure to previous depressive episodes increases the incidence of autoimmune activity directed against 5-HT, which in turn may increase the likelihood to develop new depressive episodes. These findings suggest that sensitization

  3. Role of Nuclear Factor (Erythroid-Derived 2-Like 2 Signaling for Effects of Fumaric Acid Esters on Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Anna Hammer

    2017-12-01

    Full Text Available To date, the intracellular signaling pathways involved in dendritic cell (DC function are poorly understood. The antioxidative transcription factor nuclear factor (erythroid-derived 2-like 2 (Nrf2 has been shown to affect maturation, function, and subsequent DC-mediated T cell responses of murine and human DCs. In experimental autoimmune encephalomyelitis (EAE, as prototype animal model for a T helper cell-mediated autoimmune disease, antigen presentation, cytokine production, and costimulation by DCs play a major role. We explore the role of Nrf2 in DC function, and DC-mediated T cell responses during T cell-mediated autoimmunity of the central nervous system using genetic ablation and pharmacological activation in mice and men to corroborate our data in a translational setting. In murine and human DCs, monomethyl fumarate induced Nrf2 signaling inhibits DC maturation and DC-mediated T cell proliferation by reducing inflammatory cytokine production and expression of costimulatory molecules. In contrast, Nrf2-deficient DCs generate more activated T helper cells (Th1/Th17 but fewer regulatory T cells and foster T cell proliferation. Transfer of DCs with Nrf2 activation during active EAE reduces disease severity and T cell infiltration. Our data demonstrate that Nrf2 signaling modulates autoimmunity in murine and human systems via inhibiting DC maturation and function thus shedding further light on the mechanism of action of antioxidative stress pathways in antigen-presenting cells.

  4. TAM receptor knockout mice are susceptible to retinal autoimmune induction.

    Science.gov (United States)

    Ye, Fei; Li, Qiutang; Ke, Yan; Lu, Qingjun; Han, Lixia; Kaplan, Henry J; Shao, Hui; Lu, Qingxian

    2011-06-16

    TAM receptors are expressed mainly by dendritic cells and macrophages in the immune system, and mice lacking TAM receptors develop systemic autoimmune diseases because of inefficient negative control of the cytokine signaling in those cells. This study aims to test the susceptibility of the TAM triple knockout (tko) mice to the retina-specific autoantigen to develop experimental autoimmune uveoretinitis (EAU). TAM tko mice that were or were not immunized with interphotoreceptor retinoid-binding protein (IRBP) peptides were evaluated for retinal infiltration of the macrophages and CD3(+) T cells by immunohistochemistry, spontaneous activation of CD4(+) T cells, and memory T cells by flow cytometry and proliferation of IRBP-specific CD4(+) T cells by [(3)H]thymidine incorporation assay. Ocular inflammation induced by IRBP peptide immunization and specific T cell transfer were observed clinically by funduscopy and confirmed by histology. Tko mice were found to have less naive, but more activated, memory T cells, among which were exhibited high sensitivity to ocular IRBP autoantigens. Immunization with a low dose of IRBP and adoptive transfer of small numbers of IRBP-specific T cells from immunized tko mice caused the infiltration of lymphocytes, including CD3(+) T cells, into the tko retina. Mice without TAM receptor spontaneously develop IRBP-specific CD4(+) T cells and are more susceptible to retinal autoantigen immunization. This TAM knockout mouse line provides an animal model with which to study the role of antigen-presenting cells in the development of T cell-mediated uveitis.

  5. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals.

    Science.gov (United States)

    Bach, Jean-François

    2018-02-01

    The incidence of autoimmune diseases has been steadily rising. Concomitantly, the incidence of most infectious diseases has declined. This observation gave rise to the hygiene hypothesis, which postulates that a reduction in the frequency of infections contributes directly to the increase in the frequency of autoimmune and allergic diseases. This hypothesis is supported by robust epidemiological data, but the underlying mechanisms are unclear. Pathogens are known to be important, as autoimmune disease is prevented in various experimental models by infection with different bacteria, viruses and parasites. Gut commensal bacteria also play an important role: dysbiosis of the gut flora is observed in patients with autoimmune diseases, although the causal relationship with the occurrence of autoimmune diseases has not been established. Both pathogens and commensals act by stimulating immunoregulatory pathways. Here, I discuss the importance of innate immune receptors, in particular Toll-like receptors, in mediating the protective effect of pathogens and commensals on autoimmunity.

  6. Unresolved issues in theories of autoimmune disease using myocarditis as a framework.

    Science.gov (United States)

    Root-Bernstein, Robert; Fairweather, DeLisa

    2015-06-21

    Many theories of autoimmune disease have been proposed since the discovery that the immune system can attack the body. These theories include the hidden or cryptic antigen theory, modified antigen theory, T cell bypass, T cell-B cell mismatch, epitope spread or drift, the bystander effect, molecular mimicry, anti-idiotype theory, antigenic complementarity, and dual-affinity T cell receptors. We critically review these theories and relevant mathematical models as they apply to autoimmune myocarditis. All theories share the common assumption that autoimmune diseases are triggered by environmental factors such as infections or chemical exposure. Most, but not all, theories and mathematical models are unifactorial assuming single-agent causation of disease. Experimental and clinical evidence and mathematical models exist to support some aspects of most theories, but evidence/models that support one theory almost invariably supports other theories as well. More importantly, every theory (and every model) lacks the ability to account for some key autoimmune disease phenomena such as the fundamental roles of innate immunity, sex differences in disease susceptibility, the necessity for adjuvants in experimental animal models, and the often paradoxical effect of exposure timing and dose on disease induction. We argue that a more comprehensive and integrated theory of autoimmunity associated with new mathematical models is needed and suggest specific experimental and clinical tests for each major theory that might help to clarify how they relate to clinical disease and reveal how theories are related. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Unresolved issues in theories of autoimmune disease using myocarditis as a framework

    Science.gov (United States)

    Root-Bernstein, Robert; Fairweather, DeLisa

    2014-01-01

    Many theories of autoimmune disease have been proposed since the discovery that the immune system can attack the body. These theories include the hidden or cryptic antigen theory, modified antigen theory, T cell bypass, T cell-B cell mismatch, epitope spread or drift, the bystander effect, molecular mimicry, anti-idiotype theory, antigenic complementarity, and dual-affinity T cell receptors. We critically review these theories and relevant mathematical models as they apply to autoimmune myocarditis. All theories share the common assumption that autoimmune diseases are triggered by environmental factors such as infections or chemical exposure. Most, but not all, theories and mathematical models are unifactorial assuming single-agent causation of disease. Experimental and clinical evidence and mathematical models exist to support some aspects of most theories, but evidence/models that support one theory almost invariably supports other theories as well. More importantly, every theory (and every model) lacks the ability to account for some key autoimmune disease phenomena such as the fundamental roles of innate immunity, sex differences in disease susceptibility, the necessity for adjuvants in experimental animal models, and the often paradoxical effect of exposure timing and dose on disease induction. We argue that a more comprehensive and integrated theory of autoimmunity associated with new mathematical models is needed and suggest specific experimental and clinical tests for each major theory that might help to clarify how they relate to clinical disease and reveal how theories are related. PMID:25484004

  8. STAT3 Regulates Proliferation and Survival of CD8+ T Cells: Enhances Effector Responses to HSV-1 Infection, and Inhibits IL-10+ Regulatory CD8+ T Cells in Autoimmune Uveitis

    Directory of Open Access Journals (Sweden)

    Cheng-Rong Yu

    2013-01-01

    Full Text Available STAT3 regulates CD4+ T cell survival and differentiation. However, its effects on CD8+ T cells are not well understood. Here, we show that in comparison to WT CD8+ T cells, STAT3-deficient CD8+ T cells exhibit a preactivated memory-like phenotype, produce more IL-2, proliferate faster, and are more sensitive to activation-induced cell death (AICD. The enhanced proliferation and sensitivity to AICD correlated with downregulation of class-O forkhead transcription factors (FoxO1, FoxO3A, , , Bcl-2, OX-40, and upregulation of FasL, Bax, and Bad. We examined whether STAT3-deficient CD8+ T cells can mount effective response during herpes simplex virus (HSV-1 infection and experimental autoimmune uveitis (EAU. Compared to WT mice, HSV-1-infected STAT3-deficient mice (STAT3KO produced less IFN- and virus-specific KLRG-1+ CD8+ T cells. STAT3KO mice are also resistant to EAU and produced less IL-17-producing Tc17 cells. Resistance of STAT3KO to EAU correlated with marked expansion of IL-10-producing regulatory CD8+ T cells (CD8-Treg implicated in recovery from autoimmune encephalomyelitis. Thus, increases of IL-6-induced STAT3 activation observed during inflammation may inhibit expansion of CD8-Tregs, thereby impeding recovery from uveitis. These results suggest that STAT3 is a potential therapeutic target for upregulating CD8+ T cell-mediated responses to viruses and suggest the successful therapeutic targeting of STAT3 as treatment for uveitis, derived, in part, from promoting CD8-Treg expansion.

  9. Toll-Like Receptor 2 mediates in vivo pro- and anti-inflammatory effects of Mycobacterium tuberculosis and modulates autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Alessia ePiermattei

    2016-05-01

    Full Text Available Mycobacteria display pro- and anti-inflammatory effects in human and experimental pathology. We show here that both effects are mediated by Toll like receptor 2 (Tlr2, by exploiting a previously characterized Tlr2 variant (Met82Ile. Tlr2 82ile promoted self-specific pro-inflammatory polarization as well as expansion of ag-specific FoxP3+ Tregs, while Tlr2 82met impairs the expansion of Tregs and reduces the production of IFN-γ and IL-17 pro-inflammatory cytokines. Preferential dimerization with Tlr1 or Tlr6 could not explain these differences. In silico, we showed that Tlr2 variant Met82Ile modified the binding pocket for peptidoglycans and participate directly to a putative binding pocket for sugars and Cadherins. The distinct pro- and anti-inflammatory actions impacted on severity, extent of remission and distribution of the lesions within the Central Nervous System of Experimental Autoimmune Encephalomyelitis. Thus, Tlr2 has a janus function in vivo as mediator of the role of bacterial products in balancing pro- and anti-inflammatory immune responses.

  10. Dual-reactive B cells are autoreactive and highly enriched in the plasmablast and memory B cell subsets of autoimmune mice

    Science.gov (United States)

    Fournier, Emilie M.; Velez, Maria-Gabriela; Leahy, Katelyn; Swanson, Cristina L.; Rubtsov, Anatoly V.; Torres, Raul M.

    2012-01-01

    Rare dual-reactive B cells expressing two types of Ig light or heavy chains have been shown to participate in immune responses and differentiate into IgG+ cells in healthy mice. These cells are generated more often in autoreactive mice, leading us to hypothesize they might be relevant in autoimmunity. Using mice bearing Igk allotypic markers and a wild-type Ig repertoire, we demonstrate that the generation of dual-κ B cells increases with age and disease progression in autoimmune-prone MRL and MRL/lpr mice. These dual-reactive cells express markers of activation and are more frequently autoreactive than single-reactive B cells. Moreover, dual-κ B cells represent up to half of plasmablasts and memory B cells in autoimmune mice, whereas they remain infrequent in healthy mice. Differentiation of dual-κ B cells into plasmablasts is driven by MRL genes, whereas the maintenance of IgG+ cells is partly dependent on Fas inactivation. Furthermore, dual-κ B cells that differentiate into plasmablasts retain the capacity to secrete autoantibodies. Overall, our study indicates that dual-reactive B cells significantly contribute to the plasmablast and memory B cell populations of autoimmune-prone mice suggesting a role in autoimmunity. PMID:22927551

  11. Increased demyelination and axonal damage in metallothionein I+II-deficient mice during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Martínez-Cáceres, E M

    2003-01-01

    Metallothioneins I+II (MT-I+II) are antioxidant, neuroprotective factors. We previously showed that MT-I+II deficiency during experimental autoimmune encephalomyelitis (EAE) leads to increased disease incidence and clinical symptoms. Moreover, the inflammatory response of macrophages and T cells......, oxidative stress, and apoptotic cell death during EAE were increased by MT-I+II deficiency. We now show for the first time that demyelination and axonal damage are significantly increased in MT-I+II deficient mice during EAE. Furthermore, oligodendroglial regeneration, growth cone formation, and tissue...... repair including expression of trophic factors were significantly reduced in MT-I+II-deficient mice during EAE. Accordingly, MT-I+II have protective and regenerative roles in the brain....

  12. Arg deficiency does not influence the course of Myelin Oligodendrocyte Glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Jacobsen, Freja Aksel; Hulst, Camilla; Bäckström, Thomas

    2016-01-01

    Background: Inhibition of Abl kinases has an ameliorating effect on the rodent model for multiple sclerosis, experimental autoimmune encephalomyelitis, and arrests lymphocyte activation. The family of Abl kinases consists of the Abl1/Abl and Abl2/Arg tyrosine kinases. While the Abl kinase has bee...... encephalomyelitis is not dependent on Arg, but Arg plays a role for the number of B cells in immunized mice. This might suggest a novel role for the Arg kinase in B-cell trafficking or regulation. Furthermore, the results suggest that Arg is important for normal embryonic development....

  13. Understanding mechanisms of autoimmunity through translational research in vitiligo

    Science.gov (United States)

    Strassner, James P; Harris, John E

    2016-01-01

    Vitiligo is an autoimmune disease of the skin that leads to life-altering depigmentation and remains difficult to treat. However, clinical observations and translational studies over 30-40 years have led to the development of an insightful working model of disease pathogenesis: Genetic risk spanning both immune and melanocyte functions is pushed over a threshold by known and suspected environmental factors to initiate autoimmune T cell-mediated killing of melanocytes. While under cellular stress, melanocytes appear to signal innate immunity to activate T cells. Once the autoimmune T cell response is established, the IFN-γ-STAT1-CXCL10 signaling axis becomes the primary inflammatory pathway driving both progression and maintenance of vitiligo. This pathway is a tempting target for both existing and developing pharmaceuticals, but further detailing how melanocytes signal their own demise may also lead to new therapeutic targets. Research in vitiligo may be the future key to understand the pathogenesis of organ-specific autoimmunity, as vitiligo is common, reversible, progresses over the life of the individual, has been relatively well-defined, and is quite easy to study using translational and clinical approaches. What is revealed in these studies can lead to innovative treatments and also help elucidate the principles that underlie similar organ-specific autoimmune diseases, especially in cases where the target organ is less accessible. PMID:27764715

  14. Chondroitin 6-O-sulfate ameliorates experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Miyamoto, Katsuichi; Tanaka, Noriko; Moriguchi, Kota; Ueno, Rino; Kadomatsu, Kenji; Kitagawa, Hiroshi; Kusunoki, Susumu

    2014-05-01

    Chondroitin sulfate proteoglycans (CSPGs) are the main component of the extracellular matrix in the central nervous system (CNS) and influence neuroplasticity. Although CSPG is considered an inhibitory factor for nerve repair in spinal cord injury, it is unclear whether CSPG influences the pathogenetic mechanisms of neuroimmunological diseases. We induced experimental autoimmune encephalomyelitis (EAE) in chondroitin 6-O-sulfate transferase 1-deficient (C6st1(-/-)) mice. C6ST1 is the enzyme that transfers sulfate residues to position 6 of N-acetylgalactosamine in the sugar chain of CSPG. The phenotypes of EAE in C6st1(-/-) mice were more severe than those in wild-type (WT) mice were. In adoptive-transfer EAE, in which antigen-reactive T cells from WT mice were transferred to C6st1(-/-) and WT mice, phenotypes were significantly more severe in C6st1(-/-) than in WT mice. The recall response of antigen-reactive T cells was not significantly different among the groups. Furthermore, the number of pathogenic T cells within the CNS was also not considerably different. When EAE was induced in C6ST1 transgenic mice with C6ST1 overexpression, the mice showed considerably milder symptoms compared with those in WT mice. In conclusion, the presence of sulfate at position 6 of N-acetylgalactosamine of CSPG may influence the effecter phase of EAE to prevent the progression of pathogenesis. Thus, modification of the carbohydrate residue of CSPG may be a novel therapeutic strategy for neuroimmunological diseases such as multiple sclerosis.

  15. Endogenous interleukin (IL)-17A promotes pristane-induced systemic autoimmunity and lupus nephritis induced by pristane.

    Science.gov (United States)

    Summers, S A; Odobasic, D; Khouri, M B; Steinmetz, O M; Yang, Y; Holdsworth, S R; Kitching, A R

    2014-06-01

    Interleukin (IL)-17A is increased both in serum and in kidney biopsies from patients with lupus nephritis, but direct evidence of pathogenicity is less well established. Administration of pristane to genetically intact mice results in the production of autoantibodies and proliferative glomerulonephritis, resembling human lupus nephritis. These studies sought to define the role of IL-17A in experimental lupus induced by pristane administration. Pristane was administered to wild-type (WT) and IL-17A(-/-) mice. Local and systemic immune responses were assessed after 6 days and 8 weeks, and autoimmunity, glomerular inflammation and renal injury were measured at 7 months. IL-17A production increased significantly 6 days after pristane injection, with innate immune cells, neutrophils (Ly6G(+)) and macrophages (F4/80(+)) being the predominant source of IL-17A. After 8 weeks, while systemic IL-17A was still readily detected in WT mice, the levels of proinflammatory cytokines, interferon (IFN)-γ and tumour necrosis factor (TNF) were diminished in the absence of endogenous IL-17A. Seven months after pristane treatment humoral autoimmunity was diminished in the absence of IL-17A, with decreased levels of immunoglobulin (Ig)G and anti-dsDNA antibodies. Renal inflammation and injury was less in the absence of IL-17A. Compared to WT mice, glomerular IgG, complement deposition, glomerular CD4(+) T cells and intrarenal expression of T helper type 1 (Th1)-associated proinflammatory mediators were decreased in IL-17A(-/-) mice. WT mice developed progressive proteinuria, but functional and histological renal injury was attenuated in the absence of IL-17A. Therefore, IL-17A is required for the full development of autoimmunity and lupus nephritis in experimental SLE, and early in the development of autoimmunity, innate immune cells produce IL-17A. © 2014 British Society for Immunology.

  16. Minocycline Effects on the Cerebrospinal Fluid Proteome of Experimental Autoimmune Encephalomyelitis Rats

    NARCIS (Netherlands)

    Stoop, Marcel P.; Rosenling, Therese; Attali, Amos; Meesters, Roland J. W.; Stingl, Christoph; Dekker, Lennard J.; van Aken, Hans; Suidgeest, Ernst; Hintzen, Rogier Q.; Tuinstra, Tinka; van Gool, Alain; Luider, Theo M.; Bischoff, Rainer

    2012-01-01

    To identify response biomarkers for pharmaceutical treatment of multiple sclerosis, we induced experimental autoimmune encephalomyelitis (EAE) in rats and treated symptomatic animals with minocycline. Cerebrospinal fluid (CSF) samples were collected 14 days after EAE induction at the peak of

  17. Minocycline effects on the cerebrospinal fluid proteome of experimental autoimmune encephalomyelitis rats

    NARCIS (Netherlands)

    Stoop, M.P.; Rosenling, T.; Attali, A.; Meesters, R.J.; Stingl, C.; Dekker, L.J.; van Aken, H.; Suidgeest, E.; Hintzen, R.Q.; Tuinstra, T.; Gool, A.J. van; Luider, T.M.; Bischoff, R.

    2012-01-01

    To identify response biomarkers for pharmaceutical treatment of multiple sclerosis, we induced experimental autoimmune encephalomyelitis (EAE) in rats and treated symptomatic animals with minocycline. Cerebrospinal fluid (CSF) samples were collected 14 days after EAE induction at the peak of

  18. Gut Microbiota Confers Resistance of Albino Oxford Rats to the Induction of Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Stanisavljević, Suzana; Dinić, Miroslav; Jevtić, Bojan; Đedović, Neda; Momčilović, Miljana; Đokić, Jelena; Golić, Nataša; Mostarica Stojković, Marija; Miljković, Đorđe

    2018-01-01

    Albino Oxford (AO) rats are extremely resistant to induction of experimental autoimmune encephalomyelitis (EAE). EAE is an animal model of multiple sclerosis, a chronic inflammatory disease of the central nervous system (CNS), with established autoimmune pathogenesis. The autoimmune response against the antigens of the CNS is initiated in the peripheral lymphoid tissues after immunization of AO rats with CNS antigens. Subsequently, limited infiltration of the CNS occurs, yet without clinical sequels. It has recently become increasingly appreciated that gut-associated lymphoid tissues (GALT) and gut microbiota play an important role in regulation and propagation of encephalitogenic immune response. Therefore, modulation of AO gut microbiota by antibiotics was performed in this study. The treatment altered composition of gut microbiota in AO rats and led to a reduction in the proportion of regulatory T cells in Peyer's patches, mesenteric lymph nodes, and in lymph nodes draining the site of immunization. Upregulation of interferon-γ and interleukin (IL)-17 production was observed in the draining lymph nodes. The treatment led to clinically manifested EAE in AO rats with more numerous infiltrates and higher production of IL-17 observed in the CNS. Importantly, transfer of AO gut microbiota into EAE-prone Dark Agouti rats ameliorated the disease. These results clearly imply that gut microbiota is an important factor in AO rat resistance to EAE and that gut microbiota transfer is an efficacious way to treat CNS autoimmunity. These findings also support the idea that gut microbiota modulation has a potential as a future treatment of multiple sclerosis.

  19. Ameliorating Role Exerted by Al-Hijamah in Autoimmune Diseases: Effect on Serum Autoantibodies and Inflammatory Mediators

    Science.gov (United States)

    Baghdadi, Hussam; Abdel-Aziz, Nada; Ahmed, Nagwa Sayed; Mahmoud, Hany Salah; Barghash, Ayman; Nasrat, Abdullah; Nabo, Manal Mohamed Helmy; El Sayed, Salah Mohamed

    2015-01-01

    Autoimmune diseases have common properties characterized by abnormal blood chemistry with high serum autoimmune antibodies, and inflammatory mediators. Those causative pathological substances (CPS) cannot be excreted by physiological mechanisms. Current treatments for autoimmune diseases involve steroids, cytotoxic drugs, plasmapheresis and monoclonal antibodies. Wet cupping therapy (WCT) of prophetic medicine is called Al-hijamah that treats numerous diseases having different etiology and pathogenesis via a pressure-dependent and size-dependent non-specific filtration then excretion of CPS causing clearance of blood and interstitial fluids. Al-hijamah clears blood passing through the fenestrated skin capillaries. Medical bases of Al-hijamah were reported in the evidence-based Taibah mechanism (Taibah theory). Al-hijamah was reported to be an excellent treatment for rheumatoid arthritis that improved patients’ blood chemistry and induced significant clinical improvement and pharmacological potentiation. Al-hijamah improved the natural immunity and suppressed the pathological immunity through decreasing the serum level of autoantibodies, inflammatory mediators, and serum ferritin (a key player in autoimmunity). Al-hijamah reduced significantly pain severity, number of swollen joints and disease activity with no significant side effects. Main steps of Al-hijamah are skin suction (cupping), scarification (sharatmihjam in Arabic) and second suction (triple S technique) that is better therapeutically than the traditional WCT (double S technique). Whenever an excess noxious substance is to be removed from patients’ blood and interstitial fluids, Al-hijamah is indicated. Shartatmihjam is a curative treatment in prophetic teachings according to the prophetic hadeeth: “Cure is in three: in shartatmihjam, oral honey and cauterization. I do not recommend my nation to cauterize”. Al-hijamah may have better therapeutic benefits than plasmapheresis. Al-hijamah may be

  20. Innate lymphoid cells are pivotal actors in allergic, inflammatory and autoimmune diseases.

    Science.gov (United States)

    Sanati, Golshid; Aryan, Zahra; Barbadi, Mehri; Rezaei, Nima

    2015-01-01

    Innate lymphoid cells (ILCs) are lymphoid cells that do not express V(D)J-rearranged receptors and play a role in the innate immune system. ILCs are categorized into three groups with respect to their function in the immune system. ILC1 induces production of IFN-γ via T-box expressed on T cells, ILC2 promotes production of type 2 cytokines via GATA-binding protein-3 and ILC3 promotes IL-17 and IL-22 production via retinoic acid receptor-related orphan receptor-γt. ILCs can maintain homeostasis in epithelial surfaces by responding to locally produced cytokines or direct recognition of danger patterns. Altered epithelial barrier function seems to be a key point in inappropriate activation of ILCs to promote inflammatory and allergic responses. ILCs play an essential role in initiation and maintenance of defense against infections as well as immune-mediated diseases. In this paper, we discuss the role of ILCs in inflammatory, allergic and autoimmune diseases.

  1. Immune mechanisms in the transfer of experimental autoimmune encephalomyelitis without adjuvant

    International Nuclear Information System (INIS)

    Silberg, D.G.

    1985-01-01

    Experimental autoimmune encephalomyelitis (EAE) can be induced in Lewis rats without the use of adjuvant. Spleen cells of naive rats were sensitized to myelin basic protein (MBP) in vitro. Transfer of these cells did not result in the development of EAE. However, spleen cells from primary recipients, taken 10 days post transfer, and cultured with MBP (secondary culture, transferred EAE to secondary recipients. EAE can be induced in primary recipients by the transfer of secondary cultured cells or cultured cells or challenge with MBP in complete Freund's adjuvant (CFA) or incomplete Freund's adjuvant (IFA) 10 days after injection of naive cultured cells. The finding that MBP-CFA challenged 1' recipients developed EAE, suggests that the rats have been primed to MBP through the naive cultured cell transfer. The cells from naive culture that sensitize the primary recipient were radioresistant (1500 R), probably macrophages. This is in contrast to the cells transferring EAE to the secondary recipient, which were radiosensitive. Unlike the spleen cells which transfer EAE from MBP-CFA sensitized rats, the cells in the secondary transfer could not be activated to transfer EAE when cultured with concanavalin A. Clinical EAE in the secondary recipient was more severe when these rats were irradiated (200 R) prior to transfer. There is evidence that low dose irradiation eliminates naturally occurring suppressor cells. EAE also developed in lethally irradiated (850 R) recipients of secondary cultured cells, suggesting that the transferred cells can induce EAE alone or by recruiting radioresistant cells in the secondary host

  2. E2-2 Dependent Plasmacytoid Dendritic Cells Control Autoimmune Diabetes.

    Directory of Open Access Journals (Sweden)

    Lisbeth Hansen

    Full Text Available Autoimmune diabetes is a consequence of immune-cell infiltration and destruction of pancreatic β-cells in the islets of Langerhans. We analyzed the cellular composition of the insulitic lesions in the autoimmune-prone non-obese diabetic (NOD mouse and observed a peak in recruitment of plasmacytoid dendritic cells (pDCs to NOD islets around 8-9 weeks of age. This peak coincides with increased spontaneous expression of type-1-IFN response genes and CpG1585 induced production of IFN-α from NOD islets. The transcription factor E2-2 is specifically required for the maturation of pDCs, and we show that knocking out E2-2 conditionally in CD11c+ cells leads to a reduced recruitment of pDCs to pancreatic islets and reduced CpG1585 induced production of IFN-α during insulitis. As a consequence, insulitis has a less aggressive expression profile of the Th1 cytokine IFN-γ and a markedly reduced diabetes incidence. Collectively, these observations demonstrate a disease-promoting role of E2-2 dependent pDCs in the pancreas during autoimmune diabetes in the NOD mouse.

  3. Antagonist Anti-CD28 Therapeutics for the Treatment of Autoimmune Disorders

    Directory of Open Access Journals (Sweden)

    Bernard Vanhove

    2017-11-01

    Full Text Available The effector functions of T lymphocytes are responsible for most autoimmune disorders and act by directly damaging tissues or by indirectly promoting inflammation and antibody responses. Co-stimulatory and co-inhibitory T cell receptor molecules are the primary pharmacological targets that enable interference with immune-mediated diseases. Among these, selective CD28 antagonists have drawn special interest, since they tip the co-stimulation/co-inhibition balance towards efficiently inhibiting effector T cells while promoting suppression by pre-existing regulatory T-cells. After having demonstrated outstanding therapeutic efficacy in multiple models of autoimmunity, inflammation and transplantation, and safety in phase-I studies in humans, selective CD28 antagonists are currently in early clinical development for the treatment of systemic lupus erythematous and rheumatoid arthritis. Here, we review the available proof of concept studies for CD28 antagonists in autoimmunity, with a special focus on the mechanisms of action.

  4. Total glucosides of paeony suppresses experimental autoimmune uveitis in association with inhibition of Th1 and Th2 cell function in mice.

    Science.gov (United States)

    Huang, Xue-Tao; Wang, Bin; Zhang, Wen-Hua; Peng, Man-Qiang; Lin, Ding

    2018-01-01

    Total glucosides of paeony (TGP) are active components extracted from the roots of Paeonia lactiflora Pall. In this study, we investigated the role and mechanisms of TGP in experimental autoimmune uveitis (EAU) model of mice. The C57BL/6 mice were randomly divided into three groups: sham group, EAU-control group, and EAU-TGP group. Clinical score of images of the eye fundus were taken on 7, 14, 21, and 28 days after induction of EAU. The concentrations of proinflammatory cytokines in intraocular fluid were measured at 14 days after EAU induction with the use of a multiplex assay system. Flow cytometry was used to analyze the frequency of CD4+, CD8+, interferon-gamma (IFN-γ), and CD4+/CD8+ ratio in spleen and lymph nodes. Western blotting was used to measure expressions of mitogen-activated protein kinase (MAPK) pathway-related proteins in retina. Clinical scores for uveitis were lower in TGP-treated EAU mice than those without TGP treatment. Importantly, the concentrations of cytokines induced by T-helper 1 (Th1) and T-helper 2 (Th2) cells in intraocular fluid were reduced in EAU mice treated with TGP. Furthermore, the frequency of CD4+, IFN-γ, and CD4+/CD8+ ratio was decreased and the frequency of CD8+ was increased in spleen and lymph nodes of mice treated with TGP. The anti-inflammatory effects of TGP were mediated by inhibiting the MAPK signaling pathways. Our results showed that TGP suppressed uveitis in mice via the inhibition of Th1 and Th2 cell function. Thus, TGP may be a promising therapeutic strategy for uveitis, as well as other ocular inflammatory diseases.

  5. The Role and Potential Therapeutic Application of Myeloid-Derived Suppressor Cells in Allo- and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2015-01-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are a heterogeneous population of cells that consists of myeloid progenitor cells and immature myeloid cells. They have been identified as a cell population that may affect the activation of CD4+ and CD8+ T-cells to regulate the immune response negatively, which makes them attractive targets for the treatment of transplantation and autoimmune diseases. Several studies have suggested the potential suppressive effect of MDSCs on allo- and autoimmune responses. Conversely, MDSCs have also been found at various stages of differentiation, accumulating during pathological situations, not only during tumor development but also in a variety of inflammatory immune responses, bone marrow transplantation, and some autoimmune diseases. These findings appear to be contradictory. In this review, we summarize the roles of MDSCs in different transplantation and autoimmune diseases models as well as the potential to target these cells for therapeutic benefit.

  6. Cholinergic stimulation prevents the development of autoimmune diabetes: Evidence for the modulation of Th17 effector cells via an IFNgamma-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Junu George

    2016-10-01

    Full Text Available Type I diabetes (T1D results from T cell-mediated damage of pancreatic β-cells and loss of insulin production. The cholinergic anti-inflammatory pathway represents a physiological link connecting the central nervous and immune systems via vagus nerve, and functions to control the release of proinflammatory cytokines. Using the multiple-low-dose streptozotocin (MLD-STZ model to induce experimental autoimmune diabetes, we investigated the potential of regulating the development of hyperglycemia through administration of paraoxon, a highly specific acetylcholinesterase inhibitor (AChEI. We demonstrate that pretreatment with paraoxon prevented hyperglycemia in STZ-treated C57BL/6 mice. This correlated with a reduction in T cell infiltration into pancreatic islets and preservation of the structure and functionality of β-cells. Gene expression analysis of pancreatic tissue revealed that increased peripheral cholinergic activity prevented STZ-mediated loss of insulin production, this being associated with a reduction in IL-1β, IL-6, and IL-17 proinflammatory cytokines. Intracellular cytokine analysis in splenic T cells demonstrated that inhibition of AChE led to a shift in STZ-induced immune response from a predominantly disease-causing IL-17-expressing Th17 cells to IFNγ-positive Th1 cells. Consistent with this conclusion, inhibition of AChE failed to prevent STZ-induced hyperglycemia in IFNγ-deficient mice. Our results provide mechanistic evidence for the prevention of murine T1D by inhibition of AChE and suggest a promising strategy for modulating disease severity.

  7. Immunomodulatory effects of helminths and protozoa in multiple sclerosis and experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Hasseldam, Henrik; Hansen, C S; Johansen, F F

    2013-01-01

    hygiene standards that exist in the western world, with reduced exposure to various pathogens, including parasites, as a consequence. Parasites are known to employ various immunomodulatory and anti-inflammatory strategies, which enable them to evade destruction by the immune system. This is most likely...... one of the reasons for the disease-dampening effects, reported in numerous studies investigating parasite infections and autoimmunity. This review will focus on recent advances in the field of parasites as beneficial immunomodulators, in multiple sclerosis and the animal model experimental autoimmune...

  8. Treatment of autoimmune inflammation by a TLR7 ligand regulating the innate immune system.

    Directory of Open Access Journals (Sweden)

    Tomoko Hayashi

    Full Text Available The Toll-like receptors (TLR have been advocated as attractive therapeutic targets because TLR signaling plays dual roles in initiating adaptive immune responses and perpetuating inflammation. Paradoxically, repeated stimulation of bone marrow mononuclear cells with a synthetic TLR7 ligand 9-benzyl-8-hydroxy-2-(2-methoxyethoxy adenine (called 1V136 leads to subsequent TLR hyporesponsiveness. Further studies on the mechanism of action of this pharmacologic agent demonstrated that the TLR7 ligand treatment depressed dendritic cell activation, but did not directly affect T cell function. To verify this mechanism, we utilized experimental allergic encephalitis (EAE as an in vivo T cell dependent autoimmune model. Drug treated SJL/J mice immunized with proteolipid protein (PLP(139-151 peptide had attenuated disease severity, reduced accumulation of mononuclear cells in the central nervous system (CNS, and limited demyelination, without any apparent systemic toxicity. Splenic T cells from treated mice produced less cytokines upon antigenic rechallenge. In the spinal cords of 1V136-treated EAE mice, the expression of chemoattractants was also reduced, suggesting innate immune cell hyposensitization in the CNS. Indeed, systemic 1V136 did penetrate the CNS. These experiments indicated that repeated doses of a TLR7 ligand may desensitize dendritic cells in lymphoid organs, leading to diminished T cell responses. This treatment strategy might be a new modality to treat T cell mediated autoimmune diseases.

  9. Cell-mediated immunity against human retinal extract, S-antigen, and interphotoreceptor retinoid binding protein in onchocercal chorioretinopathy

    NARCIS (Netherlands)

    van der Lelij, A.; Rothova, A.; Stilma, J. S.; Hoekzema, R.; Kijlstra, A.

    1990-01-01

    Autoimmune mechanisms are thought to be involved in the pathogenesis of onchocercal chorioretinopathy. Cell-mediated immune responses to human retinal S-antigen, interphotoreceptor retinoid binding protein (IRBP), and crude retinal extract were investigated in patients with onchocerciasis from

  10. DMPD: Toll-like receptors: paving the path to T cell-driven autoimmunity? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17888644 Toll-like receptors: paving the path to T cell-driven autoimmunity? Marsla... Toll-like receptors: paving the path to T cell-driven autoimmunity? PubmedID 17888644 Title Toll-like recep...tors: paving the path to T cell-driven autoimmunity? Authors Marsland BJ, Kopf M.

  11. The Role of Pathogenic Autoantibodies in Autoimmunity

    Directory of Open Access Journals (Sweden)

    Merrill J. Rowley

    2015-11-01

    Full Text Available The serological presence of autoantibodies is diagnostic of autoimmunity, and these autoantibodies may be present for many years before the presentation of autoimmune disease (AID. Although a pathogenic role has been demonstrated for various autoantibodies reactive with cell surface and extracellular autoantigens, studies using monoclonal antibodies (mAb show not all antibodies in the polyclonal response are pathogenic. Differences depend on Fab-mediated diversity in epitope specificity, Fc-mediated effects based on immunoglobulin (Ig class and subclass, activation of complement, and the milieu in which the reaction occurs. These autoantibodies often occur in organ-specific AID and this review illustrates their pathogenic and highly specific effects. The role of autoantibodies associated with intracellular antigens is less clear. In vitro they may inhibit or adversely affect well-defined intracellular biochemical pathways, yet, in vivo they are separated from their autoantigens by multiple cellular barriers. Recent evidence that Ig can traverse cell membranes, interact with intracellular proteins, and induce apoptosis has provided new evidence for a pathogenic role for such autoantibodies. An understanding of how autoantibodies behave in the polyclonal response and their role in pathogenesis of AID may help identify populations of culprit B-cells and selection of treatments that suppress or eliminate them.

  12. Experimental Autoimmune Encephalomyelitis (EAE) as Animal Models of Multiple Sclerosis (MS).

    Science.gov (United States)

    Glatigny, Simon; Bettelli, Estelle

    2018-01-08

    Multiple sclerosis (MS) is a multifocal demyelinating disease of the central nervous system (CNS) leading to the progressive destruction of the myelin sheath surrounding axons. It can present with variable clinical and pathological manifestations, which might reflect the involvement of distinct pathogenic processes. Although the mechanisms leading to the development of the disease are not fully understood, numerous evidences indicate that MS is an autoimmune disease, the initiation and progression of which are dependent on an autoimmune response against myelin antigens. In addition, genetic susceptibility and environmental triggers likely contribute to the initiation of the disease. At this time, there is no cure for MS, but several disease-modifying therapies (DMTs) are available to control and slow down disease progression. A good number of these DMTs were identified and tested using animal models of MS referred to as experimental autoimmune encephalomyelitis (EAE). In this review, we will recapitulate the characteristics of EAE models and discuss how they help shed light on MS pathogenesis and help test new treatments for MS patients. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Autoimmune vitiligo does not require the ongoing priming of naïve CD8 T cells for disease progression or associated protection against melanoma1

    Science.gov (United States)

    Byrne, Katelyn T.; Zhang, Peisheng; Steinberg, Shannon M.; Turk, Mary Jo

    2014-01-01

    Vitiligo is a CD8 T cell-mediated autoimmune disease that has been shown to promote the longevity of memory T cell responses to melanoma. However mechanisms whereby melanocyte/melanoma antigen-specific T cell responses are perpetuated in the context of vitiligo are not well understood. The present studies investigate the possible phenomenon of naïve T cell priming in hosts with melanoma-initiated, self-perpetuating, autoimmune vitiligo. Using naïve pmel (gp10025-33-specific) transgenic CD8 T cells, we demonstrate that autoimmune melanocyte destruction induces naive T cell proliferation in skin-draining lymph nodes, in an antigen-dependent fashion. These pmel T cells upregulate expression of CD44, P-selectin ligand, and granzyme B. However, they do not downregulate CD62L, nor do they acquire the ability to produce IFN-γ, indicating a lack of functional priming. Accordingly, adult thymectomized mice exhibit no reduction in the severity or kinetics of depigmentation or long-lived protection against melanoma, indicating that the continual priming of naïve T cells is not required for vitiligo or its associated anti-tumor immunity. Despite this, depletion of CD4 T cells during the course of vitiligo rescues the priming of naïve pmel T cells that are capable of producing IFN-γ and persisting as memory, suggesting an ongoing and dominant mechanism of suppression by regulatory T cells. This work reveals the complex regulation of self-reactive CD8 T cells in vitiligo, and demonstrates the overall poorly immunogenic nature of this autoimmune disease setting. PMID:24403535

  14. B cell-derived transforming growth factor-β1 expression limits the induction phase of autoimmune neuroinflammation.

    Science.gov (United States)

    Bjarnadóttir, Kristbjörg; Benkhoucha, Mahdia; Merkler, Doron; Weber, Martin S; Payne, Natalie L; Bernard, Claude C A; Molnarfi, Nicolas; Lalive, Patrice H

    2016-10-06

    Studies in experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS), have shown that regulatory B cells modulate the course of the disease via the production of suppressive cytokines. While data indicate a role for transforming growth factor (TGF)-β1 expression in regulatory B cell functions, this mechanism has not yet been tested in autoimmune neuroinflammation. Transgenic mice deficient for TGF-β1 expression in B cells (B-TGF-β1 -/- ) were tested in EAE induced by recombinant mouse myelin oligodendrocyte glycoprotein (rmMOG). In this model, B-TGF-β1 -/- mice showed an earlier onset of neurologic impairment compared to their littermate controls. Exacerbated EAE susceptibility in B-TGF-β1 -/- mice was associated with augmented CNS T helper (Th)1/17 responses. Moreover, selective B cell TGF-β1-deficiency increased the frequencies and activation of myeloid dendritic cells, potent professional antigen-presenting cells (APCs), suggesting that B cell-derived TGF-β1 can constrain Th1/17 responses through inhibition of APC activity. Collectively our data suggest that B cells can down-regulate the function of APCs, and in turn encephalitogenic Th1/17 responses, via TGF-β1, findings that may be relevant to B cell-targeted therapies.

  15. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Vowinckel, E; Reutens, D; Becher, B

    1997-01-01

    Activated glial cells are implicated in regulating and effecting the immune response that occurs within the CNS as part of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). The peripheral benzodiazepine receptor (PBR) is expressed in glial cells. We...... examined the utility of using in vitro and in vivo ligand binding to the PBR as a measure of lesion activity in autoimmune CNS demyelinating diseases. Applying a combined autoradiography and immunohistochemical approach to spinal cord and brain tissues from mice with EAE, we found a correlation at sites...... of inflammatory lesions between [3H]-PK11195 binding and immunoreactivity for the activated microglial/macrophage marker Mac-1/CD11b. In MS tissues, [3H]-PK11195 binding correlated with sites of immunoreactivity for the microglial/macrophage marker CD68, at the edges of chronic active plaques. Positron emission...

  16. Vaccines, adjuvants and autoimmunity.

    Science.gov (United States)

    Guimarães, Luísa Eça; Baker, Britain; Perricone, Carlo; Shoenfeld, Yehuda

    2015-10-01

    Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Augmentation of transfer of experimental autoimmune thyroiditis (EAT) in mice by irradiation of recipients

    International Nuclear Information System (INIS)

    Williams, W.V.; Kyriakos, M.; Sharp, G.C.; Braley-Mullen, H.

    1987-01-01

    Experimental autoimmune thyroiditis (EAT) can be adoptively transferred to normal syngeneic recipients using spleen cells from susceptible strains of mice primed in vivo with mouse thyroglobulin (MTg) and lipopolysaccharide (LPS) following in vitro activation of spleen cells by culture with MTg. Irradiation of recipient animals markedly augments the severity of thyroiditis induced in this system. Irradiation of recipients does not alter the time course of the development of thyroiditis, nor does it alter the requirement for both in vivo priming and in vitro activation of spleen cells for the development of EAT. Spleen cells from EAT-resistant strains of mice (e.g., Balb/c) do not induce EAT in irradiated recipients. Irradiated recipients develop significant levels of anti-MTg antibodies while unirradiated recipients have little detectable antibody response. The augmenting effect of irradiation can be substantially reversed by transferring naive spleen cells to recipients prior to the transfer of MTg/LPS-primed in vitro-activated spleen cells. In addition athymic CBA/Tufts nude mice develop more severe EAT than CBA/Tufts nude/+ littermates following transfer of activated CBA/J spleen cells. These data suggest that natural suppressor cells may regulate the development of EAT at the effector cell level

  18. Secretion of autoimmune antibodies in the human subcutaneous adipose tissue.

    Science.gov (United States)

    Frasca, Daniela; Diaz, Alain; Romero, Maria; Thaller, Seth; Blomberg, Bonnie B

    2018-01-01

    The adipose tissue (AT) contributes to systemic and B cell intrinsic inflammation, reduced B cell responses and secretion of autoimmune antibodies. In this study we show that adipocytes in the human obese subcutaneous AT (SAT) secrete several pro-inflammatory cytokines and chemokines, which contribute to the establishment and maintenance of local and systemic inflammation, and consequent suboptimal immune responses in obese individuals, as we have previously shown. We also show that pro-inflammatory chemokines recruit immune cells expressing the corresponding receptors to the SAT, where they also contribute to local and systemic inflammation, secreting additional pro-inflammatory mediators. Moreover, we show that the SAT generates autoimmune antibodies. During the development of obesity, reduced oxygen and consequent hypoxia and cell death lead to further release of pro-inflammatory cytokines, "self" protein antigens, cell-free DNA and lipids. All these stimulate class switch and the production of autoimmune IgG antibodies which have been described to be pathogenic. In addition to hypoxia, we have measured cell cytotoxicity and DNA damage mechanisms, which may also contribute to the release of "self" antigens in the SAT. All these processes are significantly elevated in the SAT as compared to the blood. We definitively found that fat-specific IgG antibodies are secreted by B cells in the SAT and that B cells express mRNA for the transcription factor T-bet and the membrane marker CD11c, both involved in the production of autoimmune IgG antibodies. Finally, the SAT also expresses RNA for cytokines known to promote Germinal Center formation, isotype class switch, and plasma cell differentiation. Our results show novel mechanisms for the generation of autoimmune antibody responses in the human SAT and allow the identification of new pathways to possibly manipulate in order to reduce systemic inflammation and autoantibody production in obese individuals.

  19. Correlation of gut microbiota composition with resistance to experimental autoimmune encephalomyelitis in rats

    Directory of Open Access Journals (Sweden)

    Suzana Stanisavljevic

    2016-12-01

    Full Text Available Multiple sclerosis is a chronic inflammatory disease of the central nervous system (CNS. It is widely accepted that autoimmune response against the antigens of the CNS is the essential pathogenic force in the disease. It has recently become increasingly appreciated that activated encephalitogenic cells tend to migrate towards gut associated lymphoid tissues (GALT and that interrupted balance between regulatory and inflammatory immunity within the GALT might have decisive role in the initiation and propagation of the CNS autoimmunity. Gut microbiota composition and function has the major impact on the balance in the GALT. Thus, our aim was to perform analyses of gut microbiota in experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis. Albino Oxford (AO rats that are highly resistant to EAE induction and Dark Agouti (DA rats that develop EAE after mild immunization were compared for gut microbiota composition in different phases after EAE induction. Microbial analyses of the genus Lactobacillus and related lactic acid bacteria showed higher diversity of Lactobacillus spp. in EAE-resistant AO rats, while some members of Firmicutes and Proteobacteria (Undibacterium oligocarboniphilum were detected only in faeces of DA rats at the peak of the disease (between 13 and 16 days after induction. Interestingly, Turicibacter sp. that was found exclusively in non-immunized AO, but not in DA rats in our previous study was detected in DA rats that remained healthy 16 days after induction. Similar observation was obtained for the members of Lachnospiraceae. As dominant presence of the members of Lachnospiraceae family in gut microbial community has been linked with mild symptoms of various diseases, it is tempting to assume that Turicibacter sp. and Lachnospiraceae contribute to the prevention of EAE development and the alleviation of the disease symptoms. Further, production of a typical regulatory cytokine interleukin-10 was

  20. Oral delivery of ACE2/Ang-(1-7) bioencapsulated in plant cells protects against experimental uveitis and autoimmune uveoretinitis.

    Science.gov (United States)

    Shil, Pollob K; Kwon, Kwang-Chul; Zhu, Ping; Verma, Amrisha; Daniell, Henry; Li, Qiuhong

    2014-12-01

    Hyperactivity of the renin-angiotensin system (RAS) resulting in elevated Angiotensin II (Ang II) contributes to all stages of inflammatory responses including ocular inflammation. The discovery of angiotensin-converting enzyme 2 (ACE2) has established a protective axis of RAS involving ACE2/Ang-(1-7)/Mas that counteracts the proinflammatory and hypertrophic effects of the deleterious ACE/AngII/AT1R axis. Here we investigated the hypothesis that enhancing the systemic and local activity of the protective axis of the RAS by oral delivery of ACE2 and Ang-(1-7) bioencapsulated in plant cells would confer protection against ocular inflammation. Both ACE2 and Ang-(1-7), fused with the non-toxic cholera toxin subunit B (CTB) were expressed in plant chloroplasts. Increased levels of ACE2 and Ang-(1-7) were observed in circulation and retina after oral administration of CTB-ACE2 and Ang-(1-7) expressing plant cells. Oral feeding of mice with bioencapsulated ACE2/Ang-(1-7) significantly reduced endotoxin-induced uveitis (EIU) in mice. Treatment with bioencapsulated ACE2/Ang-(1-7) also dramatically decreased cellular infiltration, retinal vasculitis, damage and folding in experimental autoimmune uveoretinitis (EAU). Thus, enhancing the protective axis of RAS by oral delivery of ACE2/Ang-(1-7) bioencapsulated in plant cells provide an innovative, highly efficient and cost-effective therapeutic strategy for ocular inflammatory diseases.

  1. Stress proteins, autoimmunity, and autoimmune disease.

    Science.gov (United States)

    Winfield, J B; Jarjour, W N

    1991-01-01

    At birth, the immune system is biased toward recognition of microbial antigens in order to protect the host from infection. Recent data suggest that an important initial line of defense in this regard involves autologous stress proteins, especially conserved peptides of hsp60, which are presented to T cells bearing gamma delta receptors by relatively nonpolymorphic class lb molecules. Natural antibodies may represent a parallel B cell mechanism. Through an evolving process of "physiological" autoreactivity and selection by immunodominant stress proteins common to all prokaryotes, B and T cell repertoires expand during life to meet the continuing challenge of infection. Because stress proteins of bacteria are homologous with stress proteins of the host, there exists in genetically susceptible individuals a constant risk of autoimmune disease due to failure of mechanisms for self-nonself discrimination. That stress proteins actually play a role in autoimmune processes is supported by a growing body of evidence which, collectively, suggests that autoreactivity in chronic inflammatory arthritis involves, at least initially, gamma delta cells which recognize epitopes of the stress protein hsp60. Alternate mechanisms for T cell stimulation by stress proteins undoubtedly also exist, e.g., molecular mimicry of the DR beta third hypervariable region susceptibility locus for rheumatoid arthritis by a DnaJ stress protein epitope in gram-negative bacteria. While there still is confusion with respect to the most relevant stress protein epitopes, a central role for stress proteins in the etiology of arthritis appears likely. Furthermore, insight derived from the work thus far in adjuvant-induced arthritis already is stimulating analyses of related phenomena in autoimmune diseases other than those involving joints. Only limited data are available in the area of humoral autoimmunity to stress proteins. Autoantibodies to a number of stress proteins have been identified in SLE and

  2. GILZ Promotes Production of Peripherally Induced Treg Cells and Mediates the Crosstalk between Glucocorticoids and TGF-β Signaling

    Directory of Open Access Journals (Sweden)

    Oxana Bereshchenko

    2014-04-01

    Full Text Available Regulatory T (Treg cells expressing the transcription factor forkhead box P3 (FoxP3 control immune responses and prevent autoimmunity. Treatment with glucocorticoids (GCs has been shown to increase Treg cell frequency, but the mechanisms of their action on Treg cell induction are largely unknown. Here, we report that glucocorticoid-induced leucine zipper (GILZ, a protein induced by GCs, promotes Treg cell production. In mice, GILZ overexpression causes an increase in Treg cell number, whereas GILZ deficiency results in impaired generation of peripheral Treg cells (pTreg, associated with increased spontaneous and experimental intestinal inflammation. Mechanistically, we found that GILZ is required for GCs to cooperate with TGF-β in FoxP3 induction, while it enhances TGF-β signaling by binding to and promoting Smad2 phosphorylation and activation of FoxP3 expression. Thus, our results establish an essential GILZ-mediated link between the anti-inflammatory action of GCs and the regulation of TGF-β-dependent pTreg production.

  3. Long-Term Therapeutic Effects of Mesenchymal Stem Cells Compared to Dexamethasone on Recurrent Experimental Autoimmune Uveitis of Rats

    Science.gov (United States)

    Zhang, Lingjun; Zheng, Hui; Shao, Hui; Nian, Hong; Zhang, Yan; Bai, Lingling; Su, Chang; Liu, Xun; Dong, Lijie; Li, Xiaorong; Zhang, Xiaomin

    2014-01-01

    Purpose. We tested the long-term effects of different regimens of mesenchymal stem cell (MSC) administration in a recurrent experimental autoimmune uveitis (rEAU) model in rats, and compared the efficacy of MSC to that of dexamethasone (DEX). Methods. One or two courses of MSC treatments were applied to R16-specific T cell–induced rEAU rats before or after disease onsets. The DEX injections were given for 7 or 50 days continuously after disease onsets. Clinical appearances were observed until the 50th day after transfer. On the 10th day, T cells from control and MSC groups were analyzed by flow cytometry. Supernatants from the proliferation assay and aqueous humor were collected for cytokine detection. Functions of T cells and APCs in spleens also were studied by lymphocyte proliferation assays. Results. One course of MSC therapy, administered after disease onset, led to a lasting therapeutic effect, with a decreased incidence, reduced mean clinical score, and reduced retinal impairment after 50 days of observation, while multiple courses of treatment did not improve the therapeutic benefit. Although DEX and MSCs equally reduced the severity of the first episode of rEAU, the effect of DEX was shorter lasting, and DEX therapy failed to control the disease even with long periods of treatment. The MSCs significantly decreased T helper 1 (Th1) and Th17 responses, suppressed the function of antigen-presenting cells, and upregulated T regulatory cells. Conclusions. These results suggested that MSCs might be new corticosteroid spring agents, while providing fewer side effects and longer lasting suppressive effects for recurrent uveitis. PMID:25125599

  4. Autoimmune gastritis.

    Science.gov (United States)

    Kulnigg-Dabsch, Stefanie

    2016-10-01

    Autoimmune gastritis is a chronic inflammatory disease with destruction of parietal cells of the corpus and fundus of the stomach. The known consequence is vitamin B12 deficiency and, consequently, pernicious anemia. However, loss of parietal cells reduces secretion of gastric acid which is also required for absorption of inorganic iron; thus, iron deficiency is commonly found in patients with autoimmune gastritis. This usually precedes vitamin B12 deficiency and is found mainly in young women. Patients with chronic iron deficiency, especially those refractory to oral iron therapy, should therefore be evaluated for the presence of autoimmune gastritis.

  5. Astragaloside IV attenuates experimental autoimmune encephalomyelitis of mice by counteracting oxidative stress at multiple levels.

    Directory of Open Access Journals (Sweden)

    Yixin He

    Full Text Available Multiple sclerosis (MS is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI, a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily attenuated the severity of experimental autoimmune encephalomyelitis (EAE in mice significantly. Further studies disclosed that ASI treatment inhibited the increase of ROS and pro-inflammatory cytokine levels, down-regulation of SOD and GSH-Px activities, and elevation of iNOS, p53 and phosphorylated tau in central nervous system (CNS as well as the leakage of BBB of EAE mice. Meanwhile, the decreased ratio of Bcl-2/Bax was reversed by ASI. Moreover, ASI regulated T-cell differentiation and infiltration into CNS. In neuroblast SH-SY5Y cells, ASI dose-dependently reduced cellular ROS level and phosphorylation of tau in response to hydrogen peroxide challenge by modulation of Bcl-2/Bax ratio. ASI also inhibited activation of microglia both in vivo and in vitro. iNOS up-regulation induced by IFNγ stimulation was abolished by ASI dose-dependently in BV-2 cells. In summary, ASI prevented the severity of EAE progression possibly by counterbalancing oxidative stress and its effects via reduction of cellular ROS level, enhancement of antioxidant defense system, increase of anti-apoptotic and anti-inflammatory pathways, as well as modulation of T-cell differentiation and infiltration into CNS. The study suggested ASI may be effective for clinical therapy/prevention of MS.

  6. Astragaloside IV attenuates experimental autoimmune encephalomyelitis of mice by counteracting oxidative stress at multiple levels.

    Science.gov (United States)

    He, Yixin; Du, Min; Gao, Yan; Liu, Hongshuai; Wang, Hongwei; Wu, Xiaojun; Wang, Zhengtao

    2013-01-01

    Multiple sclerosis (MS) is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI), a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily attenuated the severity of experimental autoimmune encephalomyelitis (EAE) in mice significantly. Further studies disclosed that ASI treatment inhibited the increase of ROS and pro-inflammatory cytokine levels, down-regulation of SOD and GSH-Px activities, and elevation of iNOS, p53 and phosphorylated tau in central nervous system (CNS) as well as the leakage of BBB of EAE mice. Meanwhile, the decreased ratio of Bcl-2/Bax was reversed by ASI. Moreover, ASI regulated T-cell differentiation and infiltration into CNS. In neuroblast SH-SY5Y cells, ASI dose-dependently reduced cellular ROS level and phosphorylation of tau in response to hydrogen peroxide challenge by modulation of Bcl-2/Bax ratio. ASI also inhibited activation of microglia both in vivo and in vitro. iNOS up-regulation induced by IFNγ stimulation was abolished by ASI dose-dependently in BV-2 cells. In summary, ASI prevented the severity of EAE progression possibly by counterbalancing oxidative stress and its effects via reduction of cellular ROS level, enhancement of antioxidant defense system, increase of anti-apoptotic and anti-inflammatory pathways, as well as modulation of T-cell differentiation and infiltration into CNS. The study suggested ASI may be effective for clinical therapy/prevention of MS.

  7. GUCY2C-directed CAR-T cells oppose colorectal cancer metastases without autoimmunity.

    Science.gov (United States)

    Magee, Michael S; Kraft, Crystal L; Abraham, Tara S; Baybutt, Trevor R; Marszalowicz, Glen P; Li, Peng; Waldman, Scott A; Snook, Adam E

    2016-01-01

    Adoptive T-cell therapy (ACT) is an emerging paradigm in which T cells are genetically modified to target cancer-associated antigens and eradicate tumors. However, challenges treating epithelial cancers with ACT reflect antigen targets that are not tumor-specific, permitting immune damage to normal tissues, and preclinical testing in artificial xenogeneic models, preventing prediction of toxicities in patients. In that context, mucosa-restricted antigens expressed by cancers exploit anatomical compartmentalization which shields mucosae from systemic antitumor immunity. This shielding may be amplified with ACT platforms employing antibody-based chimeric antigen receptors (CARs), which mediate MHC-independent recog-nition of antigens. GUCY2C is a cancer mucosa antigen expressed on the luminal surfaces of the intestinal mucosa in mice and humans, and universally overexpressed by colorectal tumors, suggesting its unique utility as an ACT target. T cells expressing CARs directed by a GUCY2C-specific antibody fragment recognized GUCY2C, quantified by expression of activation markers and cytokines. Further, GUCY2C CAR-T cells lysed GUCY2C-expressing, but not GUCY2C-deficient, mouse colorectal cancer cells. Moreover, GUCY2C CAR-T cells reduced tumor number and morbidity and improved survival in mice harboring GUCY2C-expressing colorectal cancer metastases. GUCY2C-directed T cell efficacy reflected CAR affinity and surface expression and was achieved without immune-mediated damage to normal tissues in syngeneic mice. These observations highlight the potential for therapeutic translation of GUCY2C-directed CAR-T cells to treat metastatic tumors, without collateral autoimmunity, in patients with metastatic colorectal cancer.

  8. Low doses of cholera toxin and its mediator cAMP induce CTLA-2 secretion by dendritic cells to enhance regulatory T cell conversion.

    Directory of Open Access Journals (Sweden)

    Cinthia Silva-Vilches

    Full Text Available Immature or semi-mature dendritic cells (DCs represent tolerogenic maturation stages that can convert naive T cells into Foxp3+ induced regulatory T cells (iTreg. Here we found that murine bone marrow-derived DCs (BM-DCs treated with cholera toxin (CT matured by up-regulating MHC-II and costimulatory molecules using either high or low doses of CT (CThi, CTlo or with cAMP, a known mediator CT signals. However, all three conditions also induced mRNA of both isoforms of the tolerogenic molecule cytotoxic T lymphocyte antigen 2 (CTLA-2α and CTLA-2β. Only DCs matured under CThi conditions secreted IL-1β, IL-6 and IL-23 leading to the instruction of Th17 cell polarization. In contrast, CTlo- or cAMP-DCs resembled semi-mature DCs and enhanced TGF-β-dependent Foxp3+ iTreg conversion. iTreg conversion could be reduced using siRNA blocking of CTLA-2 and reversely, addition of recombinant CTLA-2α increased iTreg conversion in vitro. Injection of CTlo- or cAMP-DCs exerted MOG peptide-specific protective effects in experimental autoimmune encephalomyelitis (EAE by inducing Foxp3+ Tregs and reducing Th17 responses. Together, we identified CTLA-2 production by DCs as a novel tolerogenic mediator of TGF-β-mediated iTreg induction in vitro and in vivo. The CT-induced and cAMP-mediated up-regulation of CTLA-2 also may point to a novel immune evasion mechanism of Vibrio cholerae.

  9. 18F-FAC PET selectively images hepatic infiltrating CD4 and CD8 T cells in a mouse model of autoimmune hepatitis.

    Science.gov (United States)

    Salas, Jessica R; Chen, Bao Ying; Wong, Alicia; Cheng, Donghui; Van Arnam, John S; Witte, Owen N; Clark, Peter M

    2018-04-26

    Immune cell-mediated attack on the liver is a defining feature of autoimmune hepatitis and hepatic allograft rejection. Despite an assortment of diagnostic tools, invasive biopsies remain the only method for identifying immune cells in the liver. We evaluated whether PET imaging with radiotracers that quantify immune activation ( 18 F-FDG and 18 F-FAC) and hepatocyte biology ( 18 F-DFA) can visualize and quantify hepatic infiltrating immune cells and hepatocyte inflammation, respectively, in a preclinical model of autoimmune hepatitis. Methods: Mice treated with Concanavalin A (ConA) to induce a model of autoimmune hepatitis or vehicle were imaged with 18 F-FDG, 18 F-FAC, and 18 F-DFA PET. Immunohistochemistry, digital autoradiography, and ex vivo accumulation assays were used to localize areas of altered radiotracer accumulation in the liver. For comparison, mice treated with an adenovirus to induce a viral hepatitis or vehicle were imaged with 18 F-FDG, 18 F-FAC, and 18 F-DFA PET. 18 F-FAC PET was performed on mice treated with ConA, and vehicle or dexamethasone. Biopsy samples of patients suffering from autoimmune hepatitis were immunostained for deoxycytidine kinase (dCK). Results: Hepatic accumulation of 18 F-FDG and 18 F-FAC was 173% and 61% higher, respectively, and hepatic accumulation of 18 F-DFA was 41% lower in a mouse model of autoimmune hepatitis compared to control mice. Increased hepatic 18 F-FDG accumulation was localized to infiltrating leukocytes and inflamed sinusoidal endothelial cells, increased hepatic 18 F-FAC accumulation was concentrated in infiltrating CD4 and CD8 cells, and decreased hepatic 18 F-DFA accumulation was apparent in hepatocytes throughout the liver. In contrast, viral hepatitis increased hepatic 18 F-FDG accumulation by 109% and decreased hepatic 18 F-DFA accumulation by 20% but had no effect on hepatic 18 F-FAC accumulation (non-significant 2% decrease). 18 F-FAC PET provided a non-invasive biomarker of the efficacy of

  10. Reversible lacrimal gland-protective regulatory T-cell dysfunction underlies male-specific autoimmune dacryoadenitis in the non-obese diabetic mouse model of Sjögren syndrome

    Science.gov (United States)

    Lieberman, Scott M; Kreiger, Portia A; Koretzky, Gary A

    2015-01-01

    CD4+ CD25+ Foxp3+ regulatory T (Treg) cells are required to maintain immunological tolerance; however, defects in specific organ-protective Treg cell functions have not been demonstrated in organ-specific autoimmunity. Non-obese diabetic (NOD) mice spontaneously develop lacrimal and salivary gland autoimmunity and are a well-characterized model of Sjögren syndrome. Lacrimal gland disease in NOD mice is male-specific, but the role of Treg cells in this sex-specificity is not known. This study aimed to determine if male-specific autoimmune dacryoadenitis in the NOD mouse model of Sjögren syndrome is the result of lacrimal gland-protective Treg cell dysfunction. An adoptive transfer model of Sjögren syndrome was developed by transferring cells from the lacrimal gland-draining cervical lymph nodes of NOD mice to lymphocyte-deficient NOD-SCID mice. Transfer of bulk cervical lymph node cells modelled the male-specific dacryoadenitis that spontaneously develops in NOD mice. Female to female transfers resulted in dacryoadenitis if the CD4+ CD25+ Treg-enriched population was depleted before transfer; however, male to male transfers resulted in comparable dacryoadenitis regardless of the presence or absence of Treg cells within the donor cell population. Hormone manipulation studies suggested that this Treg cell dysfunction was mediated at least in part by androgens. Surprisingly, male Treg cells were capable of preventing the transfer of dacryoadenitis to female recipients. These data suggest that male-specific factors promote reversible dysfunction of lacrimal gland-protective Treg cells and, to our knowledge, form the first evidence for reversible organ-protective Treg cell dysfunction in organ-specific autoimmunity. PMID:25581706

  11. Inhibition of myeloperoxidase by N-acetyl lysyltyrosylcysteine amide reduces experimental autoimmune encephalomyelitis-induced injury and promotes oligodendrocyte regeneration and neurogenesis in a murine model of progressive multiple sclerosis.

    Science.gov (United States)

    Yu, Guoliang; Zheng, Shikan; Zhang, Hao

    2018-02-07

    It is known that oxidative stress produced by proinflammatory myeloid cells plays an important role in demyelination and neuronal injury in progressive multiple sclerosis (MS). Myeloperoxidase (MPO) is a pro-oxidative enzyme released from myeloid cells during inflammation. It has been shown that MPO-dependent oxidative stress plays important roles in inducing tissue injury in many inflammatory diseases. In this report, we treated NOD experimental autoimmune encephalomyelitis (EAE) mice, a murine model of progressive MS, with N-acetyl lysyltyrosylcysteine amide (KYC), a novel specific MPO inhibitor. Our data showed that KYC treatment not only attenuated MPO-mediated oxidative stress but also reduced demyelination and axonal injury in NOD EAE mice. More importantly, we found that KYC treatment increased oligodendrocyte regeneration and neurogenesis in NOD EAE mice. Taken together, our data suggests that targeting MPO should be a good therapeutic approach for reducing oxidative injury and preserving neuronal function in progressive MS patients.

  12. Therapeutic Effect of CD4+CD25+ Regulatory T Cells Amplified In Vitro on Experimental Autoimmune Neuritis in Rats

    Directory of Open Access Journals (Sweden)

    Feng-Jie Wang

    2018-05-01

    Full Text Available Background/Aims: This study aimed to explore whether the adoptive transfusion of autologous CD4+CD25+ regulatory T cells (CD4+CD25+ Tregs has a therapeutic effect on Experimental autoimmune neuritis (EAN model rats, and it provides new experimental and theoretical bases for the immunotherapy of Guillain-Barre syndrome (GBS. Methods: CD4+CD25+ Tregs were sorted from the spleens of rats using immunomagnetic bead separation techniques combined with flow cytometry. Their in vitro inhibitory function was determined using a lymphocyte proliferation inhibition test, and their purity was confirmed by flow cytometry. Cells were stimulated using CD3/CD28 monoclonal antibodies and were cultured in culture medium containing interleukin 2 (IL-2, transforming growth factor-β (TGF-β and rapamycin. After 15 days of amplification, CD4+CD25+ Tregs were collected and transfused into EAN model rats. Changes in the pathology and electron microscopical morphology of rat sciatic nerves in the normal group, untreated group, low-dose group (2 × 107 and high-dose group (4 × 107 were observed, and the expression of CD4+CD25+FOXP3 in peripheral blood in the four groups of rats was detected by flow cytometry. Results: Compared with rats in the untreated group, rats in the treatment groups had significantly reduced infiltration of inflammatory cells in the sciatic nerve, as well as myelin and axonal damage. Additionally, the CD4+CD25+ Tregs levels in peripheral blood were significantly higher than those in the untreated group (P< 0. 05. Moreover, the therapeutic effect became more significant with an increase in the dose of adoptive transfusion. Conclusion: Adoptive transfusion of CD4+CD25+ Tregs into EAN model rats has significant therapeutic effects.

  13. Endogenous Tim-1 (Kim-1) promotes T-cell responses and cell-mediated injury in experimental crescentic glomerulonephritis.

    Science.gov (United States)

    Nozaki, Yuji; Nikolic-Paterson, David J; Snelgrove, Sarah L; Akiba, Hisaya; Yagita, Hideo; Holdsworth, Stephen R; Kitching, A Richard

    2012-05-01

    The T-cell immunoglobulin mucin 1 (Tim-1) modulates CD4(+) T-cell responses and is also expressed by damaged proximal tubules in the kidney where it is known as kidney injury molecule-1 (Kim-1). We sought to define the role of endogenous Tim-1 in experimental T-cell-mediated glomerulonephritis induced by sheep anti-mouse glomerular basement membrane globulin acting as a planted foreign antigen. Tim-1 is expressed by infiltrating activated CD4(+) cells in this model, and we studied the effects of an inhibitory anti-Tim-1 antibody (RMT1-10) on immune responses and glomerular disease. Crescentic glomerulonephritis, proliferative injury, and leukocyte accumulation were attenuated following treatment with anti-Tim-1 antibodies, but interstitial foxp3(+) cell accumulation and interleukin-10 mRNA were increased. T-cell proliferation and apoptosis decreased in the immune system along with a selective reduction in Th1 and Th17 cellular responses both in the immune system and within the kidney. The urinary excretion and renal expression of Kim-1 was reduced by anti-Tim-1 antibodies reflecting diminished interstitial injury. The effects of anti-Tim-1 antibodies were not apparent in the early phase of renal injury, when the immune response to sheep globulin was developing. Thus, endogenous Tim-1 promotes Th1 and Th17 nephritogenic immune responses and its neutralization reduces renal injury while limiting inflammation in cell-mediated glomerulonephritis.

  14. Suppressive effects of a novel compound on interphotoreceptor retinoid-binding protein-induced experimental autoimmune uveoretinitis in rats

    Directory of Open Access Journals (Sweden)

    Jun-ichi Sakai

    1999-01-01

    Full Text Available The immunosuppressive effect of ethyl O-(N-(pcarboxyphenyl-carbamoyl-mycophenolate(CAM was examined in interphotoreceptor retinoid-binding protein (IRBP-induced experimental autoimmune uveoretinitis (EAU in rats. Lewis rats immunized with bovine IRBP were treated with various oral doses of CAM postimmunization. The degree of inflammation was assessed clinically each day and histologically on day 14 or day 20. Production of various cytokines and IRBP-specific antibody, as well as IRBP-specific proliferation response, was assessed. Complete inhibition of EAU in rats, both by clinical and histologic criteria, was achieved with 50 mg/kg CAM when administered daily for 14 days following IRBP immunization. Partial inhibition was observed at lesser doses of CAM. This CAM-mediated response was accompanied by diminished production of cytokines interleukin-2, interferon-γ and tumor necrosis factor-α, as well as a reduction in IRBP-specific antibody production. Furthermore, administration of CAM either in the induction phase only (days 0–7 or in the effector phase only (days 9 or 11 to day 20 was also capable of suppressing EAU, as assessed histopathologically on day 20. We conclude that CAM is effective in suppressing EAU in rats and its mechanism of action appears to involve modulation of T cell function.

  15. Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Tatiana I Novobrantseva

    2012-01-01

    Full Text Available Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP for durable and potent in vivo RNA interference (RNAi-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA. In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.

  16. Helminth Products Potently Modulate Experimental Autoimmune Encephalomyelitis by Downregulating Neuroinflammation and Promoting a Suppressive Microenvironment

    Directory of Open Access Journals (Sweden)

    Alberto N. Peón

    2017-01-01

    Full Text Available A negative correlation between the geographical distribution of autoimmune diseases and helminth infections has been largely associated in the last few years with a possible role for such type of parasites in the regulation of inflammatory diseases, suggesting new pathways for drug development. However, few helminth-derived immunomodulators have been tested in experimental autoimmune encephalomyelitis (EAE, an animal model of the human disease multiple sclerosis (MS. The immunomodulatory activities of Taenia crassiceps excreted/secreted products (TcES that may suppress EAE development were sought for. Interestingly, it was discovered that TcES was able to suppress EAE development with more potency than dexamethasone; moreover, TcES treatment was still effective even when inoculated at later stages after the onset of EAE. Importantly, the TcES treatment was able to induce a range of Th2-type cytokines, while suppressing Th1 and Th17 responses. Both the polyclonal and the antigen-specific proliferative responses of lymphocytes were also inhibited in EAE-ill mice receiving TcES in association with a potent recruitment of suppressor cell populations. Peritoneal inoculation of TcES was able to direct the normal inflammatory cell traffic to the site of injection, thus modulating CNS infiltration, which may work along with Th2 immune polarization and lymphocyte activation impairment to downregulate EAE development.

  17. Autoimmunity in Arabidopsis acd11 is mediated by epigenetic regulation of an immune receptor.

    Directory of Open Access Journals (Sweden)

    Kristoffer Palma

    Full Text Available Certain pathogens deliver effectors into plant cells to modify host protein targets and thereby suppress immunity. These target modifications can be detected by intracellular immune receptors, or Resistance (R proteins, that trigger strong immune responses including localized host cell death. The accelerated cell death 11 (acd11 "lesion mimic" mutant of Arabidopsis thaliana exhibits autoimmune phenotypes such as constitutive defense responses and cell death without pathogen perception. ACD11 encodes a putative sphingosine transfer protein, but its precise role during these processes is unknown. In a screen for lazarus (laz mutants that suppress acd11 death we identified two genes, LAZ2 and LAZ5. LAZ2 encodes the histone lysine methyltransferase SDG8, previously shown to epigenetically regulate flowering time via modification of histone 3 (H3. LAZ5 encodes an RPS4-like R-protein, defined by several dominant negative alleles. Microarray and chromatin immunoprecipitation analyses showed that LAZ2/SDG8 is required for LAZ5 expression and H3 lysine 36 trimethylation at LAZ5 chromatin to maintain a transcriptionally active state. We hypothesize that LAZ5 triggers cell death in the absence of ACD11, and that cell death in other lesion mimic mutants may also be caused by inappropriate activation of R genes. Moreover, SDG8 is required for basal and R protein-mediated pathogen resistance in Arabidopsis, revealing the importance of chromatin remodeling as a key process in plant innate immunity.

  18. Central canal ependymal cells proliferate extensively in response to traumatic spinal cord injury but not demyelinating lesions.

    Directory of Open Access Journals (Sweden)

    Steve Lacroix

    Full Text Available The adult mammalian spinal cord has limited regenerative capacity in settings such as spinal cord injury (SCI and multiple sclerosis (MS. Recent studies have revealed that ependymal cells lining the central canal possess latent neural stem cell potential, undergoing proliferation and multi-lineage differentiation following experimental SCI. To determine whether reactive ependymal cells are a realistic endogenous cell population to target in order to promote spinal cord repair, we assessed the spatiotemporal dynamics of ependymal cell proliferation for up to 35 days in three models of spinal pathologies: contusion SCI using the Infinite Horizon impactor, focal demyelination by intraspinal injection of lysophosphatidylcholine (LPC, and autoimmune-mediated multi-focal demyelination using the active experimental autoimmune encephalomyelitis (EAE model of MS. Contusion SCI at the T9-10 thoracic level stimulated a robust, long-lasting and long-distance wave of ependymal proliferation that peaked at 3 days in the lesion segment, 14 days in the rostral segment, and was still detectable at the cervical level, where it peaked at 21 days. This proliferative wave was suppressed distal to the contusion. Unlike SCI, neither chemical- nor autoimmune-mediated demyelination triggered ependymal cell proliferation at any time point, despite the occurrence of demyelination (LPC and EAE, remyelination (LPC and significant locomotor defects (EAE. Thus, traumatic SCI induces widespread and enduring activation of reactive ependymal cells, identifying them as a robust cell population to target for therapeutic manipulation after contusion; conversely, neither demyelination, remyelination nor autoimmunity appears sufficient to trigger proliferation of quiescent ependymal cells in models of MS-like demyelinating diseases.

  19. Toxicogenomic analysis reveals profibrogenic effects of trichloroethylene in autoimmune-mediated cholangitis in mice.

    Science.gov (United States)

    Kopec, Anna K; Sullivan, Bradley P; Kassel, Karen M; Joshi, Nikita; Luyendyk, James P

    2014-10-01

    Epidemiological studies suggest that exposure to environmental chemicals increases the risk of developing autoimmune liver disease. However, the identity of specific chemical perpetrators and the mechanisms whereby environmental chemicals modify liver disease is unclear. Previous studies link exposure to trichloroethylene (TCE) with the development of autoimmune liver disease and exacerbation of autoimmunity in lupus-prone MRL mice. In this study, we utilized NOD.c3c4 mice, which spontaneously develop autoimmune cholangitis bearing resemblance to some features of primary biliary cirrhosis. Nine-week-old female NOD.c3c4 mice were given TCE (0.5 mg/ml) or its vehicle (1% Cremophor-EL) in drinking water for 4 weeks. TCE had little effect on clinical chemistry, biliary cyst formation, or hepatic CD3+ T-cell accumulation. Hepatic microarray profiling revealed a dramatic suppression of early growth response 1 (EGR1) mRNA in livers of TCE-treated mice, which was verified by qPCR and immunohistochemical staining. Consistent with a reported link between reduced EGR1 expression and liver fibrosis, TCE increased hepatic type I collagen (COL1A1) mRNA and protein levels in livers of NOD.c3c4 mice. In contrast, TCE did not increase COL1A1 expression in NOD.ShiLtJ mice, which do not develop autoimmune cholangitis. These results suggest that in the context of concurrent autoimmune liver disease with a genetic basis, modification of hepatic gene expression by TCE may increase profibrogenic signaling in the liver. Moreover, these studies suggest that NOD.c3c4 mice may be a novel model to study gene-environment interactions critical for the development of autoimmune liver disease. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Long-term safety of rituximab induced peripheral B-cell depletion in autoimmune neurological diseases.

    Directory of Open Access Journals (Sweden)

    Anza B Memon

    Full Text Available B-cells play a pivotal role in several autoimmune diseases, including patients with immune-mediated neurological disorders (PIMND, such as neuromyelitis optica (NMO, multiple sclerosis (MS, and myasthenia gravis (MG. Targeting B-cells has been an effective approach in ameliorating both central and peripheral autoimmune diseases. However, there is a paucity of literature on the safety of continuous B-cell depletion over a long period of time.The aim of this study was to examine the long-term safety, incidence of infections, and malignancies in subjects receiving continuous therapy with a B-cell depleting agent rituximab over at least 3 years or longer.This was a retrospective study involving PIMND who received continuous cycles of rituximab infusions every 6 to 9 months for up to 7 years. The incidence of infection related adverse events (AE, serious adverse events (SAE, and malignancies were observed.There were a total of 32 AE and 4 SAE with rituximab treatment. The 3 SAE were noted after 9 cycles (48 months and 1 SAE was observed after 11 cycles (60 months of rituximab. There were no cases of Progressive multifocal leukoencephalopathy (PML and malignancies observed throughout the treatment period. Rituximab was well tolerated without any serious infusion reactions. Also, rituximab was found to be beneficial in treating PIMND over a 7-year period.This study demonstrates that long-term depletion of peripheral B-cells appears safe and efficacious in treating PIMND. Longer and larger prospective studies with rituximab are needed to carefully ascertain risks associated with chronic B-cell depletion, including malignancies. Recognizing that this is a small, retrospective study, such data nonetheless complement the growing literature documenting the safety and tolerability of B-cell depleting agents in neurological diseases.

  1. Immunomodulatory effects of dietary non-digestible oligosaccharides in T cell-mediated autoimmune arthritis

    NARCIS (Netherlands)

    Rogier, R.; Ederveen, T.; Hartog, A.; Walgreen, B.; Van Den Bersselaar, L.; Helsen, M.; Vos, P.; Garssen, J.; Willemsen, L.; Van Den Berg, W.; Koenders, M.; Abdollahi-Roodsaz, S.

    2015-01-01

    Background: Accumulating evidence indicates the relevance of intestinal microbiota in shaping the immune response and supports its contribution to the development of autoimmune diseases. Prebiotic non-digestible oligosaccharides are known to selectively support growth of commensal Bifidobacteria and

  2. Protective role of complement C3 against cytokine-mediated beta cell apoptosis

    DEFF Research Database (Denmark)

    Dos Santos, R. S.; Marroqui, L.; Grieco, F. A.

    2017-01-01

    Background and aims: Type 1 diabetes is a chronic autoimmune disease characterized by pancreatic islet inflammation and β-cell destruction by pro-inflammatory cytokines and other mediators. The complement system, a major component of the immune system, has been recently shown to also act in metab...... in metabolic organs, such as liver, adipose tissue, and pancreas. In the present study we identified complement C3 as an important hub of a cytokine-modified complement network in human islets and characterized the role of C3 in β-cell survival....

  3. Molecular role of TGF-beta, secreted from a new type of CD4+ suppressor T cell, NY4.2, in the prevention of autoimmune IDDM in NOD mice.

    Science.gov (United States)

    Han, H S; Jun, H S; Utsugi, T; Yoon, J W

    1997-06-01

    A new type of CD4+ T cell clone (NY4.2) isolated from pancreatic islet-infiltrated lymphocytes of acutely diabetic non-obese diabetic (NOD) mice prevents the development of insulin-dependent diabetes mellitus (IDDM) in NOD mice, as well as the recurrence of autoimmune diabetes in syngeneic islet-transplanted NOD mice. It has been demonstrated that the cytokine TGF-beta, secreted from the cells of this clone, is the substance which prevents autoimmune IDDM. This investigation was initiated to determine the molecular role TGF-beta plays in the prevention of autoimmune IDDM by determining its effect on IL-2-induced signal transduction in Con A-activated NOD mouse splenocytes and HT-2 cells. First, we determined whether TGF-beta, secreted from NY4.2 T cells, inhibits IL-2-dependent T cell proliferation in HT-2 cells (IL-2-dependent T cell line) and NOD splenocytes. We found that TGF-beta suppresses IL-2-dependent T cell proliferation. Second, we determined whether TGF-beta inhibits the activation of Janus kinases (JAKs), as well as signal transducers and activators of transcription (STAT) proteins, involved in an IL-2-induced signalling pathway that normally leads to the proliferation of T cells. We found that TGF-beta inhibited tyrosine phosphorylation of JAK1, JAK3, STAT3 and STAT5 in Con A blasts from NOD splenocytes and HT-2 cells. Third, we examined whether TGF-beta inhibits the cooperation between STAT proteins and mitogen-activated protein kinase (MAPK), especially extracellular signal-regulated kinase 2 (ERK2). We found that TGF-beta inhibited the association of STAT3 and STAT5 with ERK2 in Con A blasts from NOD splenocytes and HT-2 cells. On the basis of these observations, we conclude that TGF-beta may interfere with signal transduction via inhibition of the IL-2-induced JAK/STAT pathway and inhibition of the association of STAT proteins with ERK2 in T cells from NOD splenocytes, resulting in the inhibition of IL-2-dependent T cell proliferation. TGF-beta-mediated

  4. Rehabilitation or the death penalty: autoimmune B cells in the dock.

    Science.gov (United States)

    Dahal, Lekh N; Cragg, Mark S

    2015-03-01

    CD20-based monoclonal antibodies have become established as treatments for lymphoma, rheumatoid arthritis, systemic lupus erythematosus, vasculitis and dermatomyositis, with the principle therapeutic mechanism relating to B-cell depletion through effector cell engagement. An article by Brühl et al. in this issue of the European Journal of Immunology [Eur. J. Immunol. 2015. 45: 705-715] reveals a fundamentally distinct mechanism of silencing autoimmune B-cell responses. Rather than B-cell depletion, the authors use anti-CD79b antibodies to induce B-cell tolerance and suppress humoral immune responses against collagen to prevent the development of arthritis in mice. Here we highlight the differences in the mechanisms used by anti-CD20 and anti-CD79b Ab therapy and discuss why depletion of B cells may not be required to treat autoimmune arthritis and other B-cell-associated pathologies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Bee Venom Acupuncture Alleviates Experimental Autoimmune Encephalomyelitis by Upregulating Regulatory T Cells and Suppressing Th1 and Th17 Responses.

    Science.gov (United States)

    Lee, Min Jung; Jang, Minhee; Choi, Jonghee; Lee, Gihyun; Min, Hyun Jung; Chung, Won-Seok; Kim, Jong-In; Jee, Youngheun; Chae, Younbyoung; Kim, Sung-Hoon; Lee, Sung Joong; Cho, Ik-Hyun

    2016-04-01

    The protective and therapeutic mechanism of bee venom acupuncture (BVA) in neurodegenerative disorders is not clear. We investigated whether treatment with BVA (0.25 and 0.8 mg/kg) at the Zusanli (ST36) acupoints, located lateral from the anterior border of the tibia, has a beneficial effect in a myelin basic protein (MBP)(68-82)-induced acute experimental autoimmune encephalomyelitis (EAE) rat model. Pretreatment (every 3 days from 1 h before immunization) with BVA was more effective than posttreatment (daily after immunization) with BVA with respect to clinical signs (neurological impairment and loss of body weight) of acute EAE rats. Treatment with BVA at the ST36 acupoint in normal rats did not induce the clinical signs. Pretreatment with BVA suppressed demyelination, glial activation, expression of cytokines [interferon (IFN)-γ, IL-17, IL-17A, tumor necrosis factor-alpha (TNF-α), and IL-1β], chemokines [RANTES, monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein (MIP)-1α], and inducible nitric oxide synthase (iNOS), and activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB (p65 and phospho-IκBα) signaling pathways in the spinal cord of acute EAE rats. Pretreatment with BVA decreased the number of CD4(+), CD4(+)/IFN-γ(+), and CD4(+)/IL-17(+) T cells, but increased the number of CD4(+)/Foxp3(+) T cells in the spinal cord and lymph nodes of acute EAE rats. Treatment with BVA at six placebo acupoints (SP9, GB39, and four non-acupoints) did not have a positive effect in acute EAE rats. Interestingly, onset and posttreatment with BVA at the ST36 acupoint markedly attenuated neurological impairment in myelin oligodendrocyte glycoprotein (MOG)(35-55)-induced chronic EAE mice compared to treatment with BVA at six placebo acupoints. Our findings strongly suggest that treatment with BVA with ST36 acupoint could delay or attenuate the development and progression of EAE by upregulating regulatory T cells and

  6. Expanding Role of T Cells in Human Autoimmune Diseases of the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Deepti Pilli

    2017-06-01

    Full Text Available It is being increasingly recognized that a dysregulation of the immune system plays a vital role in neurological disorders and shapes the treatment of the disease. Aberrant T cell responses, in particular, are key in driving autoimmunity and have been traditionally associated with multiple sclerosis. Yet, it is evident that there are other neurological diseases in which autoreactive T cells have an active role in pathogenesis. In this review, we report on the recent progress in profiling and assessing the functionality of autoreactive T cells in central nervous system (CNS autoimmune disorders that are currently postulated to be primarily T cell driven. We also explore the autoreactive T cell response in a recently emerging group of syndromes characterized by autoantibodies against neuronal cell-surface proteins. Common methodology implemented in T cell biology is further considered as it is an important determinant in their detection and characterization. An improved understanding of the contribution of autoreactive T cells expands our knowledge of the autoimmune response in CNS disorders and can offer novel methods of therapeutic intervention.

  7. Deficient p75 low-affinity neurotrophin receptor expression does alter the composition of cellular infiltrate in experimental autoimmune encephalomyelitis in C57BL/6 mice

    NARCIS (Netherlands)

    Kust, B; Mantingh-Otter, [No Value; Boddeke, E; Copray, S

    We have shown earlier that induction of experimental autoimmune encephalomyelitis (EAE)-a model for the human disease multiple sclerosis-in C5713L/6 wild-type mice resulted in the expression of the p75 low-affinity neurotrophin receptor (p75(NTR)) in endothelial cells in the CNS. In comparison to

  8. Immune complex-mediated autoimmunity in a patient With Smith-Magenis syndrome (del 17p11.2).

    Science.gov (United States)

    Yang, Jianying; Chandrasekharappa, Settara C; Vilboux, Thierry; Smith, Ann C M; Peterson, Erik J

    2014-08-01

    Smith-Magenis syndrome (SMS) is a sporadic congenital disorder involving multiple organ systems caused by chromosome 17p11.2 deletions. Smith-Magenis syndrome features craniofacial and skeletal anomalies, cognitive impairment, and neurobehavioral abnormalities. In addition, some SMS patients may exhibit hypogammaglobulinemia. We report the first case of SMS-associated autoimmunity in a woman who presented with adult onset of multiple autoimmune disorders, including systemic lupus erythematosus, antiphospholipid antibody syndrome, and autoimmune hepatitis. Molecular analysis using single-nucleotide polymorphism array confirmed a de novo 3.8-Mb deletion (breakpoints, chr17: 16,660,721-20,417,975), resulting in haploinsufficiency for TACI (transmembrane activator and CAML interactor). Our data are consistent with potential loss of function for the BAFF (B cell-activating factor) receptor TACI as a contributing factor to human autoimmune phenomena.

  9. Small heat shock protein αA-crystallin prevents photoreceptor degeneration in experimental autoimmune uveitis.

    Directory of Open Access Journals (Sweden)

    Narsing A Rao

    Full Text Available The small heat shock protein, αA-crystallin null (αA-/- mice are known to be more prone to retinal degeneration than the wild type mice in Experimental Autoimmune Uveoretinitis (EAU. In this report we demonstrate that intravenous administration of αA preserves retinal architecture and prevents photoreceptor damage in EAU. Interestingly, only αA and not αB-crystallin (αB, a closely related small heat shock protein works, pointing to molecular specificity in the observed retinal protection. The possible involvement of αA in retinal protection through immune modulation is corroborated by adaptive transfer experiments, (employing αA-/- and wild type mice with EAU as donors and Rag2-/- as the recipient mice, which indicate that αA protects against the autoimmune challenge by modulating the systemic B and T cell immunity. We show that αA administration causes marked reduction in Th1 cytokines (TNF-α, IL-12 and IFN-γ, both in the retina and in the spleen; notably, IL-17 was only reduced in the retina suggesting local intervention. Importantly, expression of Toll-like receptors and their associated adaptors is also inhibited suggesting that αA protection, against photoreceptor loss in EAU, is associated with systemic suppression of both the adaptive and innate immune responses.

  10. Small heat shock protein αA-crystallin prevents photoreceptor degeneration in experimental autoimmune uveitis.

    Science.gov (United States)

    Rao, Narsing A; Saraswathy, Sindhu; Pararajasegaram, Geeta; Bhat, Suraj P

    2012-01-01

    The small heat shock protein, αA-crystallin null (αA-/-) mice are known to be more prone to retinal degeneration than the wild type mice in Experimental Autoimmune Uveoretinitis (EAU). In this report we demonstrate that intravenous administration of αA preserves retinal architecture and prevents photoreceptor damage in EAU. Interestingly, only αA and not αB-crystallin (αB), a closely related small heat shock protein works, pointing to molecular specificity in the observed retinal protection. The possible involvement of αA in retinal protection through immune modulation is corroborated by adaptive transfer experiments, (employing αA-/- and wild type mice with EAU as donors and Rag2-/- as the recipient mice), which indicate that αA protects against the autoimmune challenge by modulating the systemic B and T cell immunity. We show that αA administration causes marked reduction in Th1 cytokines (TNF-α, IL-12 and IFN-γ), both in the retina and in the spleen; notably, IL-17 was only reduced in the retina suggesting local intervention. Importantly, expression of Toll-like receptors and their associated adaptors is also inhibited suggesting that αA protection, against photoreceptor loss in EAU, is associated with systemic suppression of both the adaptive and innate immune responses.

  11. Screening Immunomodulators To Skew the Antigen-Specific Autoimmune Response.

    Science.gov (United States)

    Northrup, Laura; Sullivan, Bradley P; Hartwell, Brittany L; Garza, Aaron; Berkland, Cory

    2017-01-03

    Current therapies to treat autoimmune diseases often result in side effects such as nonspecific immunosuppression. Therapies that can induce antigen-specific immune tolerance provide an opportunity to reverse autoimmunity and mitigate the risks associated with global immunosuppression. In an effort to induce antigen-specific immune tolerance, co-administration of immunomodulators with autoantigens has been investigated in an effort to reprogram autoimmunity. To date, identifying immunomodulators that may skew the antigen-specific immune response has been ad hoc at best. To address this need, we utilized splenocytes obtained from mice with experimental autoimmune encephalomyelitis (EAE) in order to determine if certain immunomodulators may induce markers of immune tolerance following antigen rechallenge. Of the immunomodulatory compounds investigated, only dexamethasone modified the antigen-specific immune response by skewing the cytokine response and decreasing T-cell populations at a concentration corresponding to a relevant in vivo dose. Thus, antigen-educated EAE splenocytes provide an ex vivo screen for investigating compounds capable of skewing the antigen-specific immune response, and this approach could be extrapolated to antigen-educated cells from other diseases or human tissues.

  12. ZFAT plays critical roles in peripheral T cell homeostasis and its T cell receptor-mediated response

    International Nuclear Information System (INIS)

    Doi, Keiko; Fujimoto, Takahiro; Okamura, Tadashi; Ogawa, Masahiro; Tanaka, Yoko; Mototani, Yasumasa; Goto, Motohito; Ota, Takeharu; Matsuzaki, Hiroshi; Kuroki, Masahide; Tsunoda, Toshiyuki; Sasazuki, Takehiko; Shirasawa, Senji

    2012-01-01

    Highlights: ► We generated Cd4-Cre-mediated T cell-specific Zfat-deficient mice. ► Zfat-deficiency leads to reduction in the number of the peripheral T cells. ► Impaired T cell receptor-mediated response in Zfat-deficient peripheral T cells. ► Decreased expression of IL-7Rα, IL-2Rα and IL-2 in Zfat-deficient peripheral T cells. ► Zfat plays critical roles in peripheral T cell homeostasis. -- Abstract: ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in apoptosis, development and primitive hematopoiesis. Zfat is highly expressed in T- and B-cells in the lymphoid tissues, however, its physiological function in the immune system remains totally unknown. Here, we generated the T cell-specific Zfat-deficient mice and demonstrated that Zfat-deficiency leads to a remarkable reduction in the number of the peripheral T cells. Intriguingly, a reduced expression of IL-7Rα and the impaired responsiveness to IL-7 for the survival were observed in the Zfat-deficient T cells. Furthermore, a severe defect in proliferation and increased apoptosis in the Zfat-deficient T cells following T cell receptor (TCR) stimulation was observed with a reduced IL-2Rα expression as well as a reduced IL-2 production. Thus, our findings reveal that Zfat is a critical regulator in peripheral T cell homeostasis and its TCR-mediated response.

  13. CD8+ T cells in human autoimmune arthritis : The unusual suspects

    NARCIS (Netherlands)

    Petrelli, Alessandra; Van Wijk, Femke

    2016-01-01

    CD8+ T cells are key players in the body's defence against viral infections and cancer. To date, data on the role of CD8+ T cells in autoimmune diseases have been scarce, especially when compared with the wealth of research on CD4+ T cells. However, growing evidence suggests that CD8+ T-cell

  14. Antigen-specific tolerance inhibits autoimmune uveitis in pre-sensitized animals by deletion and CD4+CD25+ T-regulatory cells.

    Science.gov (United States)

    Matta, Bharati; Jha, Purushottam; Bora, Puran S; Bora, Nalini S

    2010-02-01

    The objective of this study was to inhibit experimental autoimmune anterior uveitis (EAAU) by establishing antigen-specific immune tolerance in animals pre-sensitized with melanin-associated antigen (MAA). Intravenous administration of MAA on days 6, 7, 8 and 9 post-immunization induced tolerance and inhibited EAAU in all Lewis rats. The number of cells (total T cells, CD4(+) T cells and CD8(+) T cells) undergoing apoptosis dramatically increased in the popliteal lymph nodes (LNs) of the tolerized animals compared with non-tolerized animals. In addition, Fas ligand (FasL), TNF receptor 1 (TNFR1) and caspase-8 were upregulated in tolerized rats. Proliferation of total lymphocytes, CD4(+)T cells and CD8(+) T cells (harvested from the popliteal LNs) in response to antigenic stimulation was drastically reduced in the state of tolerance compared with the cells from non-tolerized animals. The level of interferon (IFN)-gamma and IL-2 decreased, whereas TGF-beta2 was elevated in the state of tolerance. Furthermore, the number of CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) increased in the popliteal LNs of tolerized animals compared with non-tolerized animals. In conclusion, our results suggest that deletion of antigen-specific T cells by apoptosis and active suppression mediated by Tregs has an important role in the induction of antigen specific immune tolerance in animals with an established immune response against MAA.

  15. A Tandem Repeat in Decay Accelerating Factor 1 Is Associated with Severity of Murine Mercury-Induced Autoimmunity

    Directory of Open Access Journals (Sweden)

    David M. Cauvi

    2014-01-01

    Full Text Available Decay accelerating factor (DAF, a complement-regulatory protein, protects cells from bystander complement-mediated lysis and negatively regulates T cells. Reduced expression of DAF occurs in several systemic autoimmune diseases including systemic lupus erythematosus, and DAF deficiency exacerbates disease in several autoimmune models, including murine mercury-induced autoimmunity (mHgIA. Daf1, located within Hmr1, a chromosome 1 locus associated in DBA/2 mice with resistance to mHgIA, could be a candidate. Here we show that reduced Daf1 transcription in lupus-prone mice was not associated with a reduction in the Daf1 transcription factor SP1. Studies of NZB mice congenic for the mHgIA-resistant DBA/2 Hmr1 locus suggested that Daf1 expression was controlled by the host genome and not the Hmr1 locus. A unique pentanucleotide repeat variant in the second intron of Daf1 in DBA/2 mice was identified and shown in F2 intercrosses to be associated with less severe disease; however, analysis of Hmr1 congenics indicated that this most likely reflected the presence of autoimmunity-predisposing genetic variants within the Hmr1 locus or that Daf1 expression is mediated by the tandem repeat in epistasis with other genetic variants present in autoimmune-prone mice. These studies argue that the effect of DAF on autoimmunity is complex and may require multiple genetic elements.

  16. The BAFF/APRIL system: emerging functions beyond B cell biology and autoimmunity.

    Science.gov (United States)

    Vincent, Fabien B; Saulep-Easton, Damien; Figgett, William A; Fairfax, Kirsten A; Mackay, Fabienne

    2013-06-01

    The BAFF system plays a key role in the development of autoimmunity, especially in systemic lupus erythematosus (SLE). This often leads to the assumption that BAFF is mostly a B cell factor with a specific role in autoimmunity. Focus on BAFF and autoimmunity, driven by pharmaceutical successes with the recent approval of a novel targeted therapy Belimumab, has relegated other potential roles of BAFF to the background. Far from being SLE-specific, the BAFF system has a much broader relevance in infection, cancer and allergy. In this review, we provide the latest views on additional roles of the BAFF system in health and diseases, as well as an update on BAFF and autoimmunity, with particular focus on current clinical trials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Autoimmunity and Gastric Cancer

    Science.gov (United States)

    Bizzaro, Nicola; Antico, Antonio; Villalta, Danilo

    2018-01-01

    Alterations in the immune response of patients with autoimmune diseases may predispose to malignancies, and a link between chronic autoimmune gastritis and gastric cancer has been reported in many studies. Intestinal metaplasia with dysplasia of the gastric corpus-fundus mucosa and hyperplasia of chromaffin cells, which are typical features of late-stage autoimmune gastritis, are considered precursor lesions. Autoimmune gastritis has been associated with the development of two types of gastric neoplasms: intestinal type and type I gastric carcinoid. Here, we review the association of autoimmune gastritis with gastric cancer and other autoimmune features present in gastric neoplasms. PMID:29373557

  18. Implication of the intestinal microbiome as a potential surrogate marker of immune responsiveness to experimental therapies in autoimmune diabetes

    NARCIS (Netherlands)

    Needell, J.C.; Dinarello, C.A.; Ir, D.; Robertson, C.E.; Ryan, S.M.; Kroehl, M.E.; Frank, D.N.; Zipris, D.

    2017-01-01

    Type 1 diabetes (T1D) is an autoimmune proinflammatory disease with no effective intervention. A major obstacle in developing new immunotherapies for T1D is the lack of means for monitoring immune responsiveness to experimental therapies. The LEW1.WR1 rat develops autoimmunity following infection

  19. Phosphoproteomics Reveals Regulatory T Cell-Mediated DEF6 Dephosphorylation That Affects Cytokine Expression in Human Conventional T Cells

    KAUST Repository

    Joshi, Rubin N.

    2017-09-25

    Regulatory T cells (Tregs) control key events of immune tolerance, primarily by suppression of effector T cells. We previously revealed that Tregs rapidly suppress T cell receptor (TCR)-induced calcium store depletion in conventional CD4CD25 T cells (Tcons) independently of IP levels, consequently inhibiting NFAT signaling and effector cytokine expression. Here, we study Treg suppression mechanisms through unbiased phosphoproteomics of primary human Tcons upon TCR stimulation and Treg-mediated suppression, respectively. Tregs induced a state of overall decreased phosphorylation as opposed to TCR stimulation. We discovered novel phosphosites (T595_S597) in the DEF6 (SLAT) protein that were phosphorylated upon TCR stimulation and conversely dephosphorylated upon coculture with Tregs. Mutation of these DEF6 phosphosites abrogated interaction of DEF6 with the IP receptor and affected NFAT activation and cytokine transcription in primary Tcons. This novel mechanism and phosphoproteomics data resource may aid in modifying sensitivity of Tcons to Treg-mediated suppression in autoimmune disease or cancer.

  20. Role of inflammasomes in inflammatory autoimmune rheumatic diseases.

    Science.gov (United States)

    Yi, Young-Su

    2018-01-01

    Inflammasomes are intracellular multiprotein complexes that coordinate anti-pathogenic host defense during inflammatory responses in myeloid cells, especially macrophages. Inflammasome activation leads to activation of caspase-1, resulting in the induction of pyroptosis and the secretion of pro-inflammatory cytokines including interleukin (IL)-1β and IL-18. Although the inflammatory response is an innate host defense mechanism, chronic inflammation is the main cause of rheumatic diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), ankylosing spondylitis (AS), and Sjögren's syndrome (SS). Since rheumatic diseases are inflammatory/autoimmune disorders, it is reasonable to hypothesize that inflammasomes activated during the inflammatory response play a pivotal role in development and progression of these diseases. Indeed, previous studies have provided important observations that inflammasomes are actively involved in the pathogenesis of inflammatory/autoimmune rheumatic diseases. In this review, we summarize the current knowledge on several types of inflammasomes during macrophage-mediated inflammatory responses and discuss recent research regarding the role of inflammasomes in the pathogenesis of inflammatory/autoimmune rheumatic diseases. This avenue of research could provide new insights for the development of promising therapeutics to treat inflammatory/autoimmune rheumatic diseases.

  1. Autoimmune gastritis: Pathologist's viewpoint.

    Science.gov (United States)

    Coati, Irene; Fassan, Matteo; Farinati, Fabio; Graham, David Y; Genta, Robert M; Rugge, Massimo

    2015-11-14

    Western countries are seeing a constant decline in the incidence of Helicobacter pylori-associated gastritis, coupled with a rising epidemiological and clinical impact of autoimmune gastritis. This latter gastropathy is due to autoimmune aggression targeting parietal cells through a complex interaction of auto-antibodies against the parietal cell proton pump and intrinsic factor, and sensitized T cells. Given the specific target of this aggression, autoimmune gastritis is typically restricted to the gastric corpus-fundus mucosa. In advanced cases, the oxyntic epithelia are replaced by atrophic (and metaplastic) mucosa, creating the phenotypic background in which both gastric neuroendocrine tumors and (intestinal-type) adenocarcinomas may develop. Despite improvements in our understanding of the phenotypic changes or cascades occurring in this autoimmune setting, no reliable biomarkers are available for identifying patients at higher risk of developing a gastric neoplasm. The standardization of autoimmune gastritis histology reports and classifications in diagnostic practice is a prerequisite for implementing definitive secondary prevention strategies based on multidisciplinary diagnostic approaches integrating endoscopy, serology, histology and molecular profiling.

  2. Effector Regulatory T Cells Reflect the Equilibrium between Antitumor Immunity and Autoimmunity in Adult T-cell Leukemia.

    Science.gov (United States)

    Ureshino, Hiroshi; Shindo, Takero; Nishikawa, Hiroyoshi; Watanabe, Nobukazu; Watanabe, Eri; Satoh, Natsuko; Kitaura, Kazutaka; Kitamura, Hiroaki; Doi, Kazuko; Nagase, Kotaro; Kimura, Hiromi; Samukawa, Makoto; Kusunoki, Susumu; Miyahara, Masaharu; Shin-I, Tadasu; Suzuki, Ryuji; Sakaguchi, Shimon; Kimura, Shinya

    2016-08-01

    The regulatory T cells (Treg) with the most potent immunosuppressive activity are the effector Tregs (eTreg) with a CD45RA(-)Foxp3(++)CCR4(+) phenotype. Adult T-cell leukemia (ATL) cells often share the Treg phenotype and also express CCR4. Although mogamulizumab, a monoclonal antibody to CCR4, shows marked antitumor effects against ATL and peripheral T-cell lymphoma, concerns have been raised that it may induce severe autoimmune immunopathology by depleting eTregs. Here, we present case reports for two patients with ATL who responded to mogamulizumab but developed a severe skin rash and autoimmune brainstem encephalitis. Deep sequencing of the T-cell receptor revealed that ATL cells and naturally occurring Tregs within the cell population with a Treg phenotype can be clearly distinguished according to CADM1 expression. The onset of skin rash and brainstem encephalitis was coincident with eTreg depletion from the peripheral blood, whereas ATL relapses were coincident with eTreg recovery. These results imply that eTreg numbers in the peripheral blood sensitively reflect the equilibrium between antitumor immunity and autoimmunity, and that mogamulizumab might suppress ATL until the eTreg population recovers. Close monitoring of eTreg numbers is crucial if we are to provide immunomodulatory treatments that target malignancy without severe adverse events. Cancer Immunol Res; 4(8); 644-9. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Ageing and recurrent episodes of neuroinflammation promote progressive experimental autoimmune encephalomyelitis in Biozzi ABH mice

    NARCIS (Netherlands)

    Peferoen, Laura A. N.; Breur, Marjolein; van de Berg, Sarah; Peferoen-Baert, Regina; Boddeke, Erik H. W. G. M.; van der Valk, Paul; Pryce, Gareth; van Noort, Johannes M.; Baker, David; Amor, Sandra

    2016-01-01

    Current therapies for multiple sclerosis (MS) reduce the frequency of relapses by modulating adaptive immune responses but fail to limit the irreversible neurodegeneration driving progressive disability. Experimental autoimmune encephalomyelitis (EAE) in Biozzi ABH mice recapitulates clinical

  4. Hapten-Induced Contact Hypersensitivity, Autoimmune Reactions, and Tumor Regression: Plausibility of Mediating Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Dan A. Erkes

    2014-01-01

    Full Text Available Haptens are small molecule irritants that bind to proteins and elicit an immune response. Haptens have been commonly used to study allergic contact dermatitis (ACD using animal contact hypersensitivity (CHS models. However, extensive research into contact hypersensitivity has offered a confusing and intriguing mechanism of allergic reactions occurring in the skin. The abilities of haptens to induce such reactions have been frequently utilized to study the mechanisms of inflammatory bowel disease (IBD to induce autoimmune-like responses such as autoimmune hemolytic anemia and to elicit viral wart and tumor regression. Hapten-induced tumor regression has been studied since the mid-1900s and relies on four major concepts: (1 ex vivo haptenation, (2 in situ haptenation, (3 epifocal hapten application, and (4 antigen-hapten conjugate injection. Each of these approaches elicits unique responses in mice and humans. The present review attempts to provide a critical appraisal of the hapten-mediated tumor treatments and offers insights for future development of the field.

  5. Cell-specific type I IFN signatures in autoimmunity and viral infection: what makes the difference?

    Directory of Open Access Journals (Sweden)

    Chieko Kyogoku

    Full Text Available Gene expression profiling of peripheral blood mononuclear cells (PBMCs has revealed a crucial role for type I interferon (IFN in the pathogenesis of systemic lupus erythematosus (SLE. However, it is unclear how particular leucocyte subsets contribute to the overall type I IFN signature of PBMCs and whole blood samples.Furthermore, a detailed analysis describing the differences in the IFN signature in autoimmune diseases from that observed after viral infection has not been performed to date. Therefore, in this study, the transcriptional responses in peripheral T helper cells (CD4(+ and monocyte subsets (CD16(- inflammatory and CD16(+ resident monocytes isolated from patients with SLE, healthy donors (ND immunised with the yellow fever vaccine YFV-17Dand untreated controls were compared by global gene expression profiling.It was striking that all of the transcripts that were regulated in response to viral exposure were also found to be differentially regulated in SLE, albeit with markedly lower fold-change values. In addition to this common IFN signature, a pathogenic IFN-associated gene signature was detected in the CD4(+ T cells and monocytes from the lupus patients. IL-10, IL-9 and IL-15-mediated JAK/STAT signalling was shown to be involved in the pathological amplification of IFN responses observed in SLE. Type I IFN signatures identified were successfully applied for the monitoring of interferon responses in PBMCs of an independent cohort of SLE patients and virus-infected individuals. Moreover, these cell-type specific gene signatures allowed a correct classification of PBMCs independent from their heterogenic cellular composition. In conclusion, our data show for the first time that monocytes and CD4 cells are sensitive biosensors to monitor type I interferon response signatures in autoimmunity and viral infection and how these transriptional responses are modulated in a cell- and disease-specific manner.

  6. The role of Th1 and Th17 cells in glomerulonephritis.

    Science.gov (United States)

    Azadegan-Dehkordi, Fatemeh; Bagheri, Nader; Shirzad, Hedayatollah; Rafieian-Kopaei, Mahmoud

    2015-04-01

    T helper (Th) cells as an important part of the immune is responsible for elimination of invading pathogens. But, if Th cell responses are not regulated effectively, the autoimmune diseases might develop. The Th17 subset usually produces interleukin-17A which in experimental models of organ-specific autoimmune inflammation is very important. Directory of open access journals (DOAJ), Google Scholar, Embase, Scopus, PubMed and Web of Science have been searched. Fifty-six articles were found and searched. In the present review article, we tried to summarize the recently published data about characteristics and role of Th1 and Th17 cells and discuss in detail, the potential role of these T helpers immune responses in renal inflammation and renal injury, focusing on glomerulonephritis. Published papers in animal and human studies indicated that autoimmune diseases such as rheumatoid arthritis and multiple sclerosis, classically believed to be Th1-mediated, are mainly derived from a Th17 immune response. Identification of the Th17 subgroup has explained seemingly paradoxical observations and improved our understanding of immune-mediated inflammatory responses. Secretion of IL-17A, as well as IL-17F, IL-21, IL-22, suggests that Th17 subset may play a crucial role as a pleiotropic pro-inflammatory Th subset. There is experimental evidence to support the notion that Th1 and Th17 cells contribute to kidney injury in renal inflammatory diseases like glomerulonephritis.

  7. Treatment with metallothionein prevents demyelination and axonal damage and increases oligodendrocyte precursors and tissue repair during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, Milena; Hidalgo, Juan

    2003-01-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model for the human demyelinating disease multiple sclerosis (MS). EAE and MS are characterized by significant inflammation, demyelination, neuroglial damage, and cell death. Metallothionein-I and -II (MT-I + II) are antiinflammatory an......)beta, neurotrophin-3 (NT-3), NT-4/5, and nerve growth factor (NGF). These beneficial effects of Zn-MT-II treatment could not be attributable to its zinc content per se. The present results support further the use of Zn-MT-II as a safe and successful therapy for multiple sclerosis....

  8. Does vitamin D play a role in autoimmune endocrine disorders? A proof of concept.

    Science.gov (United States)

    Altieri, Barbara; Muscogiuri, Giovanna; Barrea, Luigi; Mathieu, Chantal; Vallone, Carla V; Mascitelli, Luca; Bizzaro, Giorgia; Altieri, Vincenzo M; Tirabassi, Giacomo; Balercia, Giancarlo; Savastano, Silvia; Bizzaro, Nicola; Ronchi, Cristina L; Colao, Annamaria; Pontecorvi, Alfredo; Della Casa, Silvia

    2017-09-01

    In the last few years, more attention has been given to the "non-calcemic" effect of vitamin D. Several observational studies and meta-analyses demonstrated an association between circulating levels of vitamin D and outcome of many common diseases, including endocrine diseases, chronic diseases, cancer progression, and autoimmune diseases. In particular, cells of the immune system (B cells, T cells, and antigen presenting cells), due to the expression of 1α-hydroxylase (CYP27B1), are able to synthesize the active metabolite of vitamin D, which shows immunomodulatory properties. Moreover, the expression of the vitamin D receptor (VDR) in these cells suggests a local action of vitamin D in the immune response. These findings are supported by the correlation between the polymorphisms of the VDR or the CYP27B1 gene and the pathogenesis of several autoimmune diseases. Currently, the optimal plasma 25-hydroxyvitamin D concentration that is necessary to prevent or treat autoimmune diseases is still under debate. However, experimental studies in humans have suggested beneficial effects of vitamin D supplementation in reducing the severity of disease activity. In this review, we summarize the evidence regarding the role of vitamin D in the pathogenesis of autoimmune endocrine diseases, including type 1 diabetes mellitus, Addison's disease, Hashimoto's thyroiditis, Graves' disease and autoimmune polyendocrine syndromes. Furthermore, we discuss the supplementation with vitamin D to prevent or treat autoimmune diseases.

  9. Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer.

    Science.gov (United States)

    Marrero, Idania; Ware, Randle; Kumar, Vipin

    2015-01-01

    Natural killer T cells (NKT) recognize self and microbial lipid antigens presented by non-polymorphic CD1d molecules. Two major NKT cell subsets, type I and II, express different types of antigen receptors (TCR) with distinct mode of CD1d/lipid recognition. Though type II NKT cells are less frequent in mice and difficult to study, they are predominant in human. One of the major subsets of type II NKT cells reactive to the self-glycolipid sulfatide is the best characterized and has been shown to induce a dominant immune regulatory mechanism that controls inflammation in autoimmunity and in anti-cancer immunity. Recently, type II NKT cells reactive to other self-glycolipids and phospholipids have been identified suggesting both promiscuous and specific TCR recognition in microbial immunity as well. Since the CD1d pathway is highly conserved, a detailed understanding of the biology and function of type II NKT cells as well as their interplay with type I NKT cells or other innate and adaptive T cells will have major implications for potential novel interventions in inflammatory and autoimmune diseases, microbial immunity, and cancer.

  10. ZFAT plays critical roles in peripheral T cell homeostasis and its T cell receptor-mediated response

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Keiko [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute of Life Sciences for the Next Generation of Women Scientists, Fukuoka University, Fukuoka (Japan); Fujimoto, Takahiro [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Okamura, Tadashi [Division of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo (Japan); Ogawa, Masahiro [Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Tanaka, Yoko [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Mototani, Yasumasa; Goto, Motohito [Division of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo (Japan); Ota, Takeharu; Matsuzaki, Hiroshi [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Kuroki, Masahide [Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Tsunoda, Toshiyuki [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan); Sasazuki, Takehiko [Institute for Advanced Study, Kyushu University, Fukuoka (Japan); Shirasawa, Senji, E-mail: sshirasa@fukuoka-u.ac.jp [Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka (Japan); Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka (Japan)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer We generated Cd4-Cre-mediated T cell-specific Zfat-deficient mice. Black-Right-Pointing-Pointer Zfat-deficiency leads to reduction in the number of the peripheral T cells. Black-Right-Pointing-Pointer Impaired T cell receptor-mediated response in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Decreased expression of IL-7R{alpha}, IL-2R{alpha} and IL-2 in Zfat-deficient peripheral T cells. Black-Right-Pointing-Pointer Zfat plays critical roles in peripheral T cell homeostasis. -- Abstract: ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in apoptosis, development and primitive hematopoiesis. Zfat is highly expressed in T- and B-cells in the lymphoid tissues, however, its physiological function in the immune system remains totally unknown. Here, we generated the T cell-specific Zfat-deficient mice and demonstrated that Zfat-deficiency leads to a remarkable reduction in the number of the peripheral T cells. Intriguingly, a reduced expression of IL-7R{alpha} and the impaired responsiveness to IL-7 for the survival were observed in the Zfat-deficient T cells. Furthermore, a severe defect in proliferation and increased apoptosis in the Zfat-deficient T cells following T cell receptor (TCR) stimulation was observed with a reduced IL-2R{alpha} expression as well as a reduced IL-2 production. Thus, our findings reveal that Zfat is a critical regulator in peripheral T cell homeostasis and its TCR-mediated response.

  11. Acquisition and Cure of Autoimmune Disease Following Allogeneic Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Hsin-An Hou

    2007-09-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT can either cause or eliminate autoimmune disease. Here, we report two cases. One was a 33-year-old woman with myelodysplastic syndrome (refractory anemia who received bone marrow transplantation from her human leukocyte antigen (HLA-identical sister who had a history of Graves' disease. Antithyroid antibodies, including antimicrosomal antibody and antithy-roglobulin antibody, appeared 4 months after transplantation. Clinical hyperthyroidism appeared 7 months after transplantation, and a hypothyroid state was noted 2 months later. The other case was a 50-year-old woman with Sjögren's syndrome and hypothyroidism who was diagnosed with peripheral T cell non-Hodgkin's lymphoma. She received allogeneic peripheral blood stem cell transplantation (PBSCT from her histocompatible sister owing to only partial response to traditional chemotherapy. Cure of lymphoma and remission of Sjögren's syndrome was noted 4 years after PBSCT. These two illustrative cases, one of acquisition of hyperthyroidism and the other of remission of Sjögren's syndrome after transplantation, highlights that HSCT can induce adoptive autoimmune disease or cure coincidental autoimmune disease. Donor selection and attentive monitoring is required in such circumstances.

  12. Allogeneic Adipose-Derived Mesenchymal Stromal Cells Ameliorate Experimental Autoimmune Encephalomyelitis by Regulating Self-Reactive T Cell Responses and Dendritic Cell Function

    Directory of Open Access Journals (Sweden)

    Per Anderson

    2017-01-01

    Full Text Available Multipotent mesenchymal stromal cells (MSCs have emerged as a promising therapy for autoimmune diseases, including multiple sclerosis (MS. Administration of MSCs to MS patients has proven safe with signs of immunomodulation but their therapeutic efficacy remains low. The aim of the current study has been to further characterize the immunomodulatory mechanisms of adipose tissue-derived MSCs (ASCs in vitro and in vivo using the EAE model of chronic brain inflammation in mice. We found that murine ASCs (mASCs suppress T cell proliferation in vitro via inducible nitric oxide synthase (iNOS and cyclooxygenase- (COX- 1/2 activities. mASCs also prevented the lipopolysaccharide- (LPS- induced maturation of dendritic cells (DCs in vitro. The addition of the COX-1/2 inhibitor indomethacin, but not the iNOS inhibitor L-NAME, reversed the block in DC maturation implicating prostaglandin (PG E2 in this process. In vivo, early administration of murine and human ASCs (hASCs ameliorated myelin oligodendrocyte protein- (MOG35-55- induced EAE in C57Bl/6 mice. Mechanistic studies showed that mASCs suppressed the function of autoantigen-specific T cells and also decreased the frequency of activated (CD11c+CD40high and CD11c+TNF-α+ DCs in draining lymph nodes (DLNs. In summary, these data suggest that mASCs reduce EAE severity, in part, through the impairment of DC and T cell function.

  13. Insulinotropic and anti-inflammatory effects of rosiglitazone in experimental autoimmune diabetes.

    Science.gov (United States)

    Awara, Wageh M; el-Sisi, Alaa E; el-Refaei, Mohamed; el-Naa, Mona M; el-Desoky, Karima

    2005-01-01

    Cytokines and nitric oxide (NO) are involved in the pathogenesis of autoimmune diabetes mellitus (DM). Rosiglitazone is an insulin-sensitizing drug that is a ligand for the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR-gamma). The anti-inflammatory and immunomodulating properties of PPAR-gamma have been documented. The aim of this study is to investigate the effectiveness of rosiglitazone in autoimmune DM and to clarify the possible mechanism(s) involved. Autoimmune DM was induced in adult male Balb/c mice by co-administration of cyclosporin A and multiple low doses of streptozotocin. Diabetic mice were treated daily with rosiglitazone (7 mg/kg, p.o.) for 21 days. Blood glucose level (BGL), serum insulin level and pancreatic levels of tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma) and NO were measured. Histopathological examination and immunohistochemical determination of CD4 and CD8 T lymphocytes in the pancreatic islets were performed. In addition, analysis of pancreatic protein expression was carried out. The results showed that rosiglitazone treatment resulted in a significant decrease in the BGL and the pancreatic levels of TNF-alpha, IFN-gamma and NO compared to diabetic mice. The serum insulin level was significantly increased after rosiglitazone treatment compared to diabetic mice. The destroyed pancreatic islets were regenerated and became free from both CD4 and CD8 T cells after treatment. Furthermore, many changes in pancreatic protein expression were observed. These results suggest that rosiglitazone has a beneficial effect in the treatment of autoimmune diabetes, an effect that seemed to be a secondary consequence of its anti-inflammatory and immunomodulating properties and might be reflected at the level of protein expression.

  14. The mechanism of effective electroacupuncture on T cell response in rats with experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Yumei Liu

    Full Text Available Previously, we demonstrated that electroacupuncture (EA decreased lymphocyte infiltration into the spinal cords of rats presenting with experimental autoimmune encephalomyelitis (EAE, a disease model used in the study of multiple sclerosis (MS. The aim of this study was to characterize the effects of EA on the EAE. Female Lewis rats were divided into either CFA, EAE, EA, or injection with naloxone after electroacupuncture (NAL groups. Electroacupuncture was administered every day for 21 days. To evaluate proliferation and apoptosis, lymphocytes from rats presenting with EAE were collected and cultured with β-endorphin. Immunohistochemisty, flow cytometry and radio-immunity methods were applied to detect the expression of β-endorphin. Results presented in this report demonstrate that the beneficial anti-inflammatory effects of EA on EAE were related to β-endorphin production that balances the Thl/Th2 and Th17/Treg responses. These results suggest that β-endorphin could be an important component in the development of EA-based therapies used for the treatment of EAE.

  15. Caspase-1 inhibitor regulates humoral responses in experimental autoimmune myasthenia gravis via IL-6- dependent inhibiton of STAT3.

    Science.gov (United States)

    Wang, Cong-Cong; Zhang, Min; Li, Heng; Li, Xiao-Li; Yue, Long-Tao; Zhang, Peng; Liu, Ru-Tao; Chen, Hui; Li, Yan-Bin; Duan, Rui-Sheng

    2017-08-24

    We have previously demonstrated that Cysteinyl aspartate-specific proteinase-1 (caspase-1) inhibitor ameliorates experimental autoimmune myasthenia gravis (EAMG) by inhibited cellular immune response, via suppressing DC IL-1 β, CD4 + T and γdT cells IL-17 pathways. In this study, we investigated the effect of caspase-1 inhibitor on humoral immune response of EAMG and further explore the underlying mechanisms. An animal model of MG was induced by region 97-116 of the rat AChR α subunit (R97-116 peptide) in Lewis rats. Rats were treated with caspase-1 inhibitor Ac-YVAD-cmk intraperitoneally (i.p.) every second day from day 13 after the first immunization. Flow cytometry, western blot, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the neuroprotective effect of caspase-1 inhibitor on humoral immune response of EAMG. The results showed that caspase-1 inhibitor reduced the relative affinity of anti-R97-116 IgG, suppressed germinal center response, decreased follicular helper T cells, and increased follicular regulatory T cells and regulatory B cells. In addition, we found that caspase-1 inhibitor inhibited humoral immunity response in EAMG rats via suppressing IL-6-STAT3-Bcl-6 pathways. These results suggest that caspase-1 inhibitor ameliorates EAMG by regulating humoral immune response, thus providing new insights into the development of myasthenia gravis and other autoimmune diseases therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Science.gov (United States)

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Rhesus anti-D immunoglobulin in chronic autoimmune neuropathy

    NARCIS (Netherlands)

    de Jager, AEJ; van der Hoeven, JH

    Objective - To investigate the effect of Rhesus anti-D immunoglobulin (anti-D) in patients with an autoimmune demyelinating neuropathy. Material and methods - Three patients with an autoimmune mediated neuropathy received 1000 IU anti-D weekly for 2 months. Results - Two patients worsened gradually

  18. Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis.

    Science.gov (United States)

    Li, Cheuk Wun; Menconi, Francesca; Osman, Roman; Mezei, Mihaly; Jacobson, Eric M; Concepcion, Erlinda; David, Chella S; Kastrinsky, David B; Ohlmeyer, Michael; Tomer, Yaron

    2016-02-19

    We previously showed that an HLA-DR variant containing arginine at position 74 of the DRβ1 chain (DRβ1-Arg74) is the specific HLA class II variant conferring risk for autoimmune thyroid diseases (AITD). We also identified 5 thyroglobulin (Tg) peptides that bound to DRβ1-Arg74. We hypothesized that blocking the binding of these peptides to DRβ1-Arg74 could block the continuous T-cell activation in thyroiditis needed to maintain the autoimmune response to the thyroid. The aim of the current study was to identify small molecules that can block T-cell activation by Tg peptides presented within DRβ1-Arg74 pockets. We screened a large and diverse library of compounds and identified one compound, cepharanthine that was able to block peptide binding to DRβ1-Arg74. We then showed that Tg.2098 is the dominant peptide when inducing experimental autoimmune thyroiditis (EAT) in NOD mice expressing human DRβ1-Arg74. Furthermore, cepharanthine blocked T-cell activation by thyroglobulin peptides, in particular Tg.2098 in mice that were induced with EAT. For the first time we identified a small molecule that can block Tg peptide binding and presentation to T-cells in autoimmune thyroiditis. If confirmed cepharanthine could potentially have a role in treating human AITD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Dendritic cell-mediated T cell polarization

    NARCIS (Netherlands)

    de Jong, Esther C.; Smits, Hermelijn H.; Kapsenberg, Martien L.

    2005-01-01

    Effective defense against diverse types of micro-organisms that invade our body requires specialized classes of antigen-specific immune responses initiated and maintained by distinct subsets of effector CD4(+) T helper (Th) cells. Excessive or detrimental (e.g., autoimmune) responses by effector T

  20. Systemic autoimmunity induced by the TLR7/8 agonist Resiquimod causes myocarditis and dilated cardiomyopathy in a new mouse model of autoimmune heart disease

    Directory of Open Access Journals (Sweden)

    Muneer G. Hasham

    2017-03-01

    Full Text Available Systemic autoimmune diseases such as systemic lupus erythematosus (SLE and rheumatoid arthritis (RA show significant heart involvement and cardiovascular morbidity, which can be due to systemically increased levels of inflammation or direct autoreactivity targeting cardiac tissue. Despite high clinical relevance, cardiac damage secondary to systemic autoimmunity lacks inducible rodent models. Here, we characterise immune-mediated cardiac tissue damage in a new model of SLE induced by topical application of the Toll-like receptor 7/8 (TLR7/8 agonist Resiquimod. We observe a cardiac phenotype reminiscent of autoimmune-mediated dilated cardiomyopathy, and identify auto-antibodies as major contributors to cardiac tissue damage. Resiquimod-induced heart disease is a highly relevant mouse model for mechanistic and therapeutic studies aiming to protect the heart during autoimmunity.

  1. Selected Aspects in the Pathogenesis of Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    György Nagy

    2015-01-01

    Full Text Available Autoimmune processes can be found in physiological circumstances. However, they are quenched with properly functioning regulatory mechanisms and do not evolve into full-blown autoimmune diseases. Once developed, autoimmune diseases are characterized by signature clinical features, accompanied by sustained cellular and/or humoral immunological abnormalities. Genetic, environmental, and hormonal defects, as well as a quantitative and qualitative impairment of immunoregulatory functions, have been shown in parallel to the relative dominance of proinflammatory Th17 cells in many of these diseases. In this review we focus on the derailed balance between regulatory and Th17 cells in the pathogenesis of autoimmune diseases. Additionally, we depict a cytokine imbalance, which gives rise to a biased T-cell homeostasis. The assessment of Th17/Treg-cell ratio and the simultaneous quantitation of cytokines, may give a useful diagnostic tool in autoimmune diseases. We also depict the multifaceted role of dendritic cells, serving as antigen presenting cells, contributing to the development of the pathognomonic cytokine signature and promote cellular and humoral autoimmune responses. Finally we describe the function and role of extracellular vesicles in particular autoimmune diseases. Targeting these key players of disease progression in patients with autoimmune diseases by immunomodulating therapy may be beneficial in future therapeutic strategies.

  2. Partial deficiency of sphingosine-1-phosphate lyase confers protection in experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Andreas Billich

    Full Text Available BACKGROUND: Sphingosine-1-phosphate (S1P regulates the egress of T cells from lymphoid organs; levels of S1P in the tissues are controlled by S1P lyase (Sgpl1. Hence, Sgpl1 offers a target to block T cell-dependent inflammatory processes. However, the involvement of Sgpl1 in models of disease has not been fully elucidated yet, since Sgpl1 KO mice have a short life-span. METHODOLOGY: We generated inducible Sgpl1 KO mice featuring partial reduction of Sgpl1 activity and analyzed them with respect to sphingolipid levels, T-cell distribution, and response in models of inflammation. PRINCIPAL FINDINGS: The partially Sgpl1 deficient mice are viable but feature profound reduction of peripheral T cells, similar to the constitutive KO mice. While thymic T cell development in these mice appears normal, mature T cells are retained in thymus and lymph nodes, leading to reduced T cell numbers in spleen and blood, with a skewing towards increased proportions of memory T cells and T regulatory cells. The therapeutic relevance of Sgpl1 is demonstrated by the fact that the inducible KO mice are protected in experimental autoimmune encephalomyelitis (EAE. T cell immigration into the CNS was found to be profoundly reduced. Since S1P levels in the brain of the animals are unchanged, we conclude that protection in EAE is due to the peripheral effect on T cells, leading to reduced CNS immigration, rather than on local effects in the CNS. SIGNIFICANCE: The data suggest Sgpl1 as a novel therapeutic target for the treatment of multiple sclerosis.

  3. Effector/memory CD8+ T cells synergize with co-stimulation competent macrophages to trigger autoimmune peripheral neuropathy.

    Science.gov (United States)

    Yang, Mu; Shi, Xiang Qun; Peyret, Corentin; Oladiran, Oladayo; Wu, Sonia; Chambon, Julien; Fournier, Sylvie; Zhang, Ji

    2018-04-05

    Autoimmune peripheral neuropathy (APN) such as Guillain Barre Syndrome (GBS) is a debilitating illness and sometimes life threatening. The molecular and cellular mechanisms remain elusive but exposure to environmental factors including viral/bacterial infection and injury is highly associated with disease incidence. We demonstrated previously that both male and female B7.2 (CD86) transgenic L31 and L31/CD4KO mice develop spontaneous APN. Here we further reveal that CD8 + T cells in these mice exhibit an effector/memory phenotype, which bears a resemblance to the CD8 + T cell response following persistent cytomegalovirus (CMV) infection in humans and mice, whilst CMV has been considered as one of the most relevant pathogens in APN development. These activated, peripheral myelin Ag specific CD8 + T cells are required for the disease initiation. While an injury to a peripheral nerve results in Wallerian degeneration in control littermates, the same injury accelerates the development of APN in other non-injured nerves of L31 mice which have a predisposed inflammatory background consisting of effector/memory CD8 + T (CD8 + T EM ) cells. However, CD8 + T EM cells alone are not sufficient. A certain threshold of B7.2 expression on nerve macrophages is an additional requisite. Our findings reveal that indeed, the synergism between CD8 + T EM cells and co-stimulation competent macrophages is crucial in inducing autoimmune-mediated peripheral neuropathy. The identification of decisive molecular/cellular players connecting environmental triggers and the occurrence of APN provides opportunities to prevent disease onset, reduce relapses and develop new therapeutic strategies. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  4. The experimental autoimmune encephalomyelitis disease course is modulated by nicotine and other cigarette smoke components.

    Directory of Open Access Journals (Sweden)

    Zhen Gao

    Full Text Available Epidemiological studies have reported that cigarette smoking increases the risk of developing multiple sclerosis (MS and accelerates its progression. However, the molecular mechanisms underlying these effects remain unsettled. We have investigated here the effects of the nicotine and the non-nicotine components in cigarette smoke on MS using the experimental autoimmune encephalomyelitis (EAE model, and have explored their underlying mechanism of action. Our results show that nicotine ameliorates the severity of EAE, as shown by reduced demyelination, increased body weight, and attenuated microglial activation. Nicotine administration after the development of EAE symptoms prevented further disease exacerbation, suggesting that it might be useful as an EAE/MS therapeutic. In contrast, the remaining components of cigarette smoke, delivered as cigarette smoke condensate (CSC, accelerated and increased adverse clinical symptoms during the early stages of EAE, and we identify a particular cigarette smoke compound, acrolein, as one of the potential mediators. We also show that the mechanisms underlying the opposing effects of nicotine and CSC on EAE are likely due to distinct effects on microglial viability, activation, and function.

  5. Nanorobotic investigation identifies novel visual, structural and functional correlates of autoimmune pathology in a blistering skin disease model.

    Directory of Open Access Journals (Sweden)

    Kristina Seiffert-Sinha

    Full Text Available There remain major gaps in our knowledge regarding the detailed mechanisms by which autoantibodies mediate damage at the tissue level. We have undertaken novel strategies at the interface of engineering and clinical medicine to integrate nanoscale visual and structural data using nanorobotic atomic force microscopy with cell functional analyses to reveal previously unattainable details of autoimmune processes in real-time. Pemphigus vulgaris is a life-threatening autoimmune blistering skin condition in which there is disruption of desmosomal cell-cell adhesion structures that are associated with the presence of antibodies directed against specific epithelial proteins including Desmoglein (Dsg 3. We demonstrate that pathogenic (blister-forming anti-Dsg3 antibodies, distinct from non-pathogenic (non-blister forming anti-Dsg3 antibodies, alter the structural and functional properties of keratinocytes in two sequential steps--an initial loss of cell adhesion and a later induction of apoptosis-related signaling pathways, but not full apoptotic cell death. We propose a "2-Hit" model for autoimmune disruption associated with skin-specific pathogenic autoantibodies. These data provide unprecedented details of autoimmune processes at the tissue level and offer a novel conceptual framework for understanding the action of self-reactive antibodies.

  6. The role of monocytes and monocyte-derived dendritic cells in type 1 diabetes mellitus and autoimmune thyroid disease

    NARCIS (Netherlands)

    W.K. Lam-Tse

    2003-01-01

    textabstractType 1 diabetes mellitus (DM1) and autoimmune thyroid disease (AITD) are organ specific autoimmune diseases in which the immune system is directed against the ß cells and the thyrocytes respectively. The etio-pathogenesis of organ-specific or endocrine autoimmune diseases is complex,

  7. Autoimmune gastritis: Pathologist’s viewpoint

    Science.gov (United States)

    Coati, Irene; Fassan, Matteo; Farinati, Fabio; Graham, David Y; Genta, Robert M; Rugge, Massimo

    2015-01-01

    Western countries are seeing a constant decline in the incidence of Helicobacter pylori-associated gastritis, coupled with a rising epidemiological and clinical impact of autoimmune gastritis. This latter gastropathy is due to autoimmune aggression targeting parietal cells through a complex interaction of auto-antibodies against the parietal cell proton pump and intrinsic factor, and sensitized T cells. Given the specific target of this aggression, autoimmune gastritis is typically restricted to the gastric corpus-fundus mucosa. In advanced cases, the oxyntic epithelia are replaced by atrophic (and metaplastic) mucosa, creating the phenotypic background in which both gastric neuroendocrine tumors and (intestinal-type) adenocarcinomas may develop. Despite improvements in our understanding of the phenotypic changes or cascades occurring in this autoimmune setting, no reliable biomarkers are available for identifying patients at higher risk of developing a gastric neoplasm. The standardization of autoimmune gastritis histology reports and classifications in diagnostic practice is a prerequisite for implementing definitive secondary prevention strategies based on multidisciplinary diagnostic approaches integrating endoscopy, serology, histology and molecular profiling. PMID:26576102

  8. Tertiary Lymphoid Organs in Central Nervous System Autoimmunity

    Directory of Open Access Journals (Sweden)

    Meike Mitsdoerffer

    2016-10-01

    Full Text Available Multiple sclerosis (MS is an autoimmune disease characterized by chronic inflammation in the central nervous system (CNS, which results in permanent neuronal damage and substantial disability in patients. Autoreactive T cells are important drivers of the disease, however, the efficacy of B cell depleting therapies uncovered an essential role for B cells in disease pathogenesis. They can contribute to inflammatory processes via presentation of autoantigen, secretion of pro-inflammatory cytokines and production of pathogenic antibodies. Recently, B cell aggregates reminiscent of tertiary lymphoid organs (TLOs were discovered in the meninges of MS patients, leading to the hypothesis that differentiation and maturation of autopathogenic B and T cells may partly occur inside the CNS. Since these structures were associated with a more severe disease course, it is extremely important to gain insight into the mechanism of induction, their precise function and clinical significance. Mechanistic studies in patiens are limited. However, a few studies in the MS animal model experimental autoimmune encephalomyelitis (EAE recapitulate TLO formation in the CNS and provide new insight into CNS TLO features, formation and function. This review summarizes what we know so far about CNS TLOs in MS and what we have learned about them from EAE models. It also highlights the areas that are in need of further experimental work, as we are just beginning to understand and evaluate the phenomenon of CNS TLOs.

  9. CD4+ CD25+ cells in type 1 diabetic patients with other autoimmune manifestations

    Directory of Open Access Journals (Sweden)

    Dalia S. Abd Elaziz

    2014-11-01

    Full Text Available The existence of multiple autoimmune disorders in diabetics may indicate underlying primary defects of immune regulation. The study aims at estimation of defects of CD4+ CD25+high cells among diabetic children with multiple autoimmune manifestations, and identification of disease characteristics in those children. Twenty-two cases with type 1 diabetes associated with other autoimmune diseases were recruited from the Diabetic Endocrine and Metabolic Pediatric Unit (DEMPU, Cairo University along with twenty-one normal subjects matched for age and sex as a control group. Their anthropometric measurements, diabetic profiles and glycemic control were recorded. Laboratory investigations included complete blood picture, glycosylated hemoglobin, antithyroid antibodies, celiac antibody panel and inflammatory bowel disease markers when indicated. Flow cytometric analysis of T-cell subpopulation was performed using anti-CD3, anti-CD4, anti-CD8, anti-CD25 monoclonal antibodies. Three cases revealed a proportion of CD4+ CD25+high below 0.1% and one case had zero counts. However, this observation did not mount to a significant statistical difference between the case and control groups neither in percentage nor absolute numbers. Significant statistical differences were observed between the case and the control groups regarding their height, weight centiles, as well as hemoglobin percentage, white cell counts and the absolute lymphocytic counts. We concluded that, derangements of CD4+ CD25+high cells may exist among diabetic children with multiple autoimmune manifestations indicating defects of immune controllers.

  10. Autoimmune Cytopenias In Common Variable Immunodeficiency (CVID

    Directory of Open Access Journals (Sweden)

    Roshini Sarah Abraham

    2012-07-01

    Full Text Available Common variable immunodeficiency (CVID is a humoral immunodeficiency whose primary diagnostic features include hypogammaglobulinemia involving two or more immunoglobulin isotypes and impaired functional antibody responses in the majority of patients. While increased susceptibility to respiratory and other infections is a common thread that binds a large cross-section of CVID patients, the presence of autoimmune complications in this immunologically and clinically heterogeneous disorder is recognized in up to two-thirds of patients. Among the autoimmune manifestations reported in CVID (20-50%(Chapel et al., 2008;Cunningham-Rundles, 2008, autoimmune cytopenias are by far the most common occurring variably in 4-20% (Michel et al., 2004;Chapel et al., 2008 of these patients who have some form of autoimmunity. Association of autoimmune cytopenias with granulomatous disease and splenomegaly has been reported. The spectrum of autoimmune cytopenias includes thrombocytopenia, anemia and neutropenia. While it may seem paradoxical prima facie that autoimmunity is present in patients with primary immune deficiencies, in reality, it could be considered two sides of the same coin, each reflecting a different but inter-connected facet of immune dysregulation. The expansion of CD21low B cells in CVID patients with autoimmune cytopenias and other autoimmune features has also been previously reported. It has been demonstrated that this unique subset of B cells is enriched for autoreactive germline antibodies. Further, a correlation has been observed between various B cell subsets, such as class-switched memory B cells and plasmablasts, and autoimmunity in CVID. This review attempts to explore the most recent concepts and highlights, along with treatment of autoimmune hematological manifestations of CVID.

  11. Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity

    Science.gov (United States)

    Cole, David K.; Bulek, Anna M.; Dolton, Garry; Schauenberg, Andrea J.; Szomolay, Barbara; Trimby, Andrew; Jothikumar, Prithiviraj; Fuller, Anna; Skowera, Ania; Rossjohn, Jamie; Zhu, Cheng; Miles, John J.; Wooldridge, Linda; Rizkallah, Pierre J.; Sewell, Andrew K.

    2016-01-01

    The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide–major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I–restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides. We generated high-resolution structures of the 1E6 TCR bound to 7 altered peptide ligands, including a pathogen-derived peptide that was an order of magnitude more potent than the natural self-peptide. Evaluation of these structures demonstrated that binding was stabilized through a conserved lock-and-key–like minimal binding footprint that enables 1E6 TCR to tolerate vast numbers of substitutions outside of this so-called hotspot. Highly potent antigens of the 1E6 TCR engaged with a strong antipathogen-like binding affinity; this engagement was governed though an energetic switch from an enthalpically to entropically driven interaction compared with the natural autoimmune ligand. Together, these data highlight how T cell cross-reactivity with pathogen-derived antigens might break self-tolerance to induce autoimmune disease. PMID:27183389

  12. A Convenient Model of Severe, High Incidence Autoimmune Gastritis Caused by Polyclonal Effector T Cells and without Perturbation of Regulatory T Cells

    Science.gov (United States)

    Tu, Eric; Ang, Desmond K. Y.; Hogan, Thea V.; Read, Simon; Chia, Cheryl P. Z.; Gleeson, Paul A.; van Driel, Ian R.

    2011-01-01

    Autoimmune gastritis results from the breakdown of T cell tolerance to the gastric H+/K+ ATPase. The gastric H+/K+ ATPase is responsible for the acidification of gastric juice and consists of an α subunit (H/Kα) and a β subunit (H/Kβ). Here we show that CD4+ T cells from H/Kα-deficient mice (H/Kα−/−) are highly pathogenic and autoimmune gastritis can be induced in sublethally irradiated wildtype mice by adoptive transfer of unfractionated CD4+ T cells from H/Kα−/− mice. All recipient mice consistently developed the most severe form of autoimmune gastritis 8 weeks after the transfer, featuring hypertrophy of the gastric mucosa, complete depletion of the parietal and zymogenic cells, and presence of autoantibodies to H+/K+ ATPase in the serum. Furthermore, we demonstrated that the disease significantly affected stomach weight and stomach pH of recipient mice. Depletion of parietal cells in this disease model required the presence of both H/Kα and H/Kβ since transfer of H/Kα−/− CD4+ T cells did not result in depletion of parietal cells in H/Kα−/− or H/Kβ−/− recipient mice. The consistency of disease severity, the use of polyclonal T cells and a specific T cell response to the gastric autoantigen make this an ideal disease model for the study of many aspects of organ-specific autoimmunity including prevention and treatment of the disease. PMID:22096532

  13. A convenient model of severe, high incidence autoimmune gastritis caused by polyclonal effector T cells and without perturbation of regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Eric Tu

    Full Text Available Autoimmune gastritis results from the breakdown of T cell tolerance to the gastric H(+/K(+ ATPase. The gastric H(+/K(+ ATPase is responsible for the acidification of gastric juice and consists of an α subunit (H/Kα and a β subunit (H/Kβ. Here we show that CD4(+ T cells from H/Kα-deficient mice (H/Kα(-/- are highly pathogenic and autoimmune gastritis can be induced in sublethally irradiated wildtype mice by adoptive transfer of unfractionated CD4(+ T cells from H/Kα(-/- mice. All recipient mice consistently developed the most severe form of autoimmune gastritis 8 weeks after the transfer, featuring hypertrophy of the gastric mucosa, complete depletion of the parietal and zymogenic cells, and presence of autoantibodies to H(+/K(+ ATPase in the serum. Furthermore, we demonstrated that the disease significantly affected stomach weight and stomach pH of recipient mice. Depletion of parietal cells in this disease model required the presence of both H/Kα and H/Kβ since transfer of H/Kα(-/- CD4(+ T cells did not result in depletion of parietal cells in H/Kα(-/- or H/Kβ(-/- recipient mice. The consistency of disease severity, the use of polyclonal T cells and a specific T cell response to the gastric autoantigen make this an ideal disease model for the study of many aspects of organ-specific autoimmunity including prevention and treatment of the disease.

  14. TAM receptors in apoptotic cell clearance, autoimmunity, and cancer.

    Science.gov (United States)

    Nguyen, Khanh-Quynh; Tsou, Wen-I; Kotenko, Sergei; Birge, Raymond B

    2013-08-01

    Receptor tyrosine kinases, Tyro-3, Axl and Mer, collectively designated as TAM, are involved in the clearance of apoptotic cells. TAM ligands, Gas6 and Protein S, bind to the surfaces of apoptotic cells, and at the same time, interact directly with TAM expressed on phagocytes, impacting the engulfment and clearance of apoptotic cells and debris. The well-tuned and balanced actions of TAM may affect a variety of human pathologies including autoimmunity, retinal degeneration, and cancer. This article emphasizes some of the emerging findings and mechanistic insights into TAM functions that are clinically relevant and possibly therapeutically targeted.

  15. Primary Biliary Cirrhosis Is a Generalized Autoimmune Epithelitis

    Directory of Open Access Journals (Sweden)

    Jun Gao

    2015-03-01

    Full Text Available Primary biliary cirrhosis (PBC is a chronic progressive autoimmune cholestatic liver disease characterized by highly specific antimitochondrial antibodies (AMAs and the specific immune-mediated injury of small intrahepatic bile ducts. Unique apoptotic feature of biliary epithelial cells (BECs may contribute to apotope presentation to the immune system, causing unique tissue damage in PBC. Perpetuation of inflammation may result in senescence of BECs, contributing to irreversible loss of bile duct. In addition to the classic liver manifestations, focal inflammation and tissue damage are also seen in salivary glands and urinary tract in a significant proportion of PBC patients. These findings provide potent support to the idea that molecular mimicry may be involved in the breakdown of autoimmune tolerance and mucosal immunity may lead to a systematic epithelitis in PBC patients. Thus, PBC is considered a generalized epithelitis in clinical practice.

  16. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ra Jeong Chan

    2011-10-01

    Full Text Available Abstract Prolonged life expectancy, life style and environmental changes have caused a changing disease pattern in developed countries towards an increase of degenerative and autoimmune diseases. Stem cells have become a promising tool for their treatment by promoting tissue repair and protection from immune-attack associated damage. Patient-derived autologous stem cells present a safe option for this treatment since these will not induce immune rejection and thus multiple treatments are possible without any risk for allogenic sensitization, which may arise from allogenic stem cell transplantations. Here we report the outcome of treatments with culture expanded human adipose-derived mesenchymal stem cells (hAdMSCs of 10 patients with autoimmune associated tissue damage and exhausted therapeutic options, including autoimmune hearing loss, multiple sclerosis, polymyotitis, atopic dermatitis and rheumatoid arthritis. For treatment, we developed a standardized culture-expansion protocol for hAdMSCs from minimal amounts of fat tissue, providing sufficient number of cells for repetitive injections. High expansion efficiencies were routinely achieved from autoimmune patients and from elderly donors without measurable loss in safety profile, genetic stability, vitality and differentiation potency, migration and homing characteristics. Although the conclusions that can be drawn from the compassionate use treatments in terms of therapeutic efficacy are only preliminary, the data provide convincing evidence for safety and therapeutic properties of systemically administered AdMSC in human patients with no other treatment options. The authors believe that ex-vivo-expanded autologous AdMSCs provide a promising alternative for treating autoimmune diseases. Further clinical studies are needed that take into account the results obtained from case studies as those presented here.

  17. Human periodontal ligament stem cells secretome from multiple sclerosis patients suppresses NALP3 inflammasome activation in experimental autoimmune encephalomyelitis

    Science.gov (United States)

    Soundara Rajan, Thangavelu; Giacoppo, Sabrina; Diomede, Francesca; Bramanti, Placido; Trubiani, Oriana; Mazzon, Emanuela

    2017-01-01

    Research in recent years has largely explored the immunomodulatory effects of mesenchymal stem cells (MSCs) and their secretory products, called “secretome,” in the treatment of neuroinflammatory diseases. Here, we examined whether such immunosuppressive effects might be elicited due to inflammasome inactivation. To this end, we treated experimental autoimmune encephalomyelitis (EAE) mice model of multiple sclerosis (MS) with the conditioned medium or purified exosomes/microvesicles (EMVs) obtained from relapsing-remitting-MS patients human periodontal ligament stem cells (hPDLSCs) and investigated the regulation of NALP3 inflammasome. We noticed enhanced expression of NALP3, Cleaved Caspase 1, interleukin (IL)-1β, and IL-18 in EAE mouse spinal cord. Conversely, hPDLSCs-conditioned medium and EMVs significantly blocked NALP3 inflammasome activation and provided protection from EAE. Reduction in NALP3, Cleaved Caspase 1, IL-1β, and IL-18 level was noticed in conditioned medium and EMVs-treated EAE mice. Pro-inflammatory Toll-like receptor (TLR)-4 and nuclear factor (NF)-κB were elevated in EAE, while hPDLSCs-conditioned medium and EMVs treatment reduced their expression and increased IκB-α expression. Characterization of hPDLSCs-conditioned medium showed substantial level of anti-inflammatory IL-10, transforming growth factor (TGF)-β, and stromal cell–derived factor 1α (SDF-1α). We propose that the immunosuppressive role of hPDLSCs-derived conditioned medium and EMVs in EAE mice may partly attribute to the presence of soluble immunomodulatory factors, NALP3 inflammasome inactivation, and NF-κB reduction. PMID:28764573

  18. CD8+ T-Cell Deficiency, Epstein-Barr Virus Infection, Vitamin D Deficiency, and Steps to Autoimmunity: A Unifying Hypothesis

    Directory of Open Access Journals (Sweden)

    Michael P. Pender

    2012-01-01

    Full Text Available CD8+ T-cell deficiency is a feature of many chronic autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, dermatomyositis, primary biliary cirrhosis, primary sclerosing cholangitis, ulcerative colitis, Crohn's disease, psoriasis, vitiligo, bullous pemphigoid, alopecia areata, idiopathic dilated cardiomyopathy, type 1 diabetes mellitus, Graves' disease, Hashimoto's thyroiditis, myasthenia gravis, IgA nephropathy, membranous nephropathy, and pernicious anaemia. It also occurs in healthy blood relatives of patients with autoimmune diseases, suggesting it is genetically determined. Here it is proposed that this CD8+ T-cell deficiency underlies the development of chronic autoimmune diseases by impairing CD8+ T-cell control of Epstein-Barr virus (EBV infection, with the result that EBV-infected autoreactive B cells accumulate in the target organ where they produce pathogenic autoantibodies and provide costimulatory survival signals to autoreactive T cells which would otherwise die in the target organ by activation-induced apoptosis. Autoimmunity is postulated to evolve in the following steps: (1 CD8+ T-cell deficiency, (2 primary EBV infection, (3 decreased CD8+ T-cell control of EBV, (4 increased EBV load and increased anti-EBV antibodies, (5 EBV infection in the target organ, (6 clonal expansion of EBV-infected autoreactive B cells in the target organ, (7 infiltration of autoreactive T cells into the target organ, and (8 development of ectopic lymphoid follicles in the target organ. It is also proposed that deprivation of sunlight and vitamin D at higher latitudes facilitates the development of autoimmune diseases by aggravating the CD8+ T-cell deficiency and thereby further impairing control of EBV. The hypothesis makes predictions which can be tested, including the prevention and successful treatment of chronic autoimmune diseases by controlling EBV infection.

  19. Autoimmune Memory T Helper 17 Cell Function and Expansion Are Dependent on Interleukin-23

    Directory of Open Access Journals (Sweden)

    Christopher J. Haines

    2013-05-01

    Full Text Available Interleukin-23 (IL-23 is essential for the differentiation of pathogenic effector T helper 17 (Th17 cells, but its role in memory Th17 cell responses is unclear. Using the experimental autoimmune encephalomyelitis (EAE model, we report that memory Th17 cells rapidly expanded in response to rechallenge and migrated to the CNS in high numbers, resulting in earlier onset and increased severity of clinical disease. Memory Th17 cells were generated from IL-17+ and RORγt+ precursors, and the stability of the Th17 cell phenotype depended on the amount of time allowed for the primary response. IL-23 was required for this enhanced recall response. IL-23 receptor blockade did not directly impact IL-17 production, but did impair the subsequent proliferation and generation of effectors coexpressing the Th1 cell-specific transcription factor T-bet. In addition, many genes required for cell-cycle progression were downregulated in Th17 cells that lacked IL-23 signaling, showing that a major mechanism for IL-23 in primary and memory Th17 cell responses operates via regulation of proliferation-associated pathways.

  20. IL-4/IL-13 Heteroreceptor Influences Th17 Cell Conversion and Sensitivity to Regulatory T Cell Suppression To Restrain Experimental Allergic Encephalomyelitis.

    Science.gov (United States)

    Barik, Subhasis; Ellis, Jason S; Cascio, Jason A; Miller, Mindy M; Ukah, Tobechukwu K; Cattin-Roy, Alexis N; Zaghouani, Habib

    2017-10-01

    IL-4 and IL-13 have been defined as anti-inflammatory cytokines that can counter myelin-reactive T cells and modulate experimental allergic encephalomyelitis. However, it is not known whether endogenous IL-4 and IL-13 contribute to the maintenance of peripheral tolerance and whether their function is coordinated with T regulatory cells (Tregs). In this study, we used mice in which the common cytokine receptor for IL-4 and IL-13, namely the IL-4Rα/IL-13Rα1 (13R) heteroreceptor (HR), is compromised and determined whether the lack of signaling by endogenous IL-4 and IL-13 through the HR influences the function of effector Th1 and Th17 cells in a Treg-dependent fashion. The findings indicate that mice-deficient for the HR (13R -/- ) are more susceptible to experimental allergic encephalomyelitis than mice sufficient for the HR (13R +/+ ) and develop early onset and more severe disease. Moreover, Th17 cells from 13R -/- mice had reduced ability to convert to Th1 cells and displayed reduced sensitivity to suppression by Tregs relative to Th17 effectors from 13R +/+ mice. These observations suggest that IL-4 and IL-13 likely operate through the HR and influence Th17 cells to convert to Th1 cells and to acquire increased sensitivity to suppression, leading to control of immune-mediated CNS inflammation. These previously unrecognized findings shed light on the intricacies underlying the contribution of cytokines to peripheral tolerance and control of autoimmunity. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Progranulin antibodies in autoimmune diseases.

    Science.gov (United States)

    Thurner, Lorenz; Preuss, Klaus-Dieter; Fadle, Natalie; Regitz, Evi; Klemm, Philipp; Zaks, Marina; Kemele, Maria; Hasenfus, Andrea; Csernok, Elena; Gross, Wolfgang L; Pasquali, Jean-Louis; Martin, Thierry; Bohle, Rainer Maria; Pfreundschuh, Michael

    2013-05-01

    Systemic vasculitides constitute a heterogeneous group of diseases. Autoimmunity mediated by B lymphocytes and their humoral effector mechanisms play a major role in ANCA-associated vasculitis (AAV) as well as in non-ANCA associated primary systemic vasculitides and in the different types of autoimmune connective tissue disorders and rheumatoid arthritis. In order to detect autoantibodies in systemic vasculitides, we screened protein macroarrays of human cDNA expression libraries with sera from patients with ANCA-associated and ANCA-negative primary systemic vasculitides. This approach led to the identification of antibodies against progranulin, a 88 kDA secreted glycoprotein with strong anti-inflammatory activity in the course of disease of giant-cell arteritis/polymyalgia rheumatica (14/65), Takayasu's arteritis (4/13), classical panarteritis nodosa (4/10), Behcet's disease (2/6) and in the course of disease in granulomatosis with polyangiitis (31/75), Churg-Strauss syndrome (7/23) and in microscopic polyangiitis (7/19). In extended screenings the progranulin antibodies were also detected in other autoimmune diseases such as systemic lupus erythematosus (39/91) and rheumatoid arthritis (16/44). Progranulin antibodies were detected only in 1 of 97 healthy controls. Anti-progranulin positive patients with systemic vasculitides, systemic lupus erythematosus or rheumatoid arthritis had significant lower progranulin plasma levels, indicating a neutralizing effect. In light of the anti-inflammatory effects of progranulin, progranulin antibodies might exert pro-inflammatory effects thus contributing to the pathogenesis of the respective autoimmune diseases and might serve as a marker for disease activity. This hypothesis is supported by the fact that a positive progranulin antibody status was associated with active disease in granulomatosis with polyangiitis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis.

    Science.gov (United States)

    Czaja, Albert J

    2016-11-14

    The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies.

  3. Deficits in Endogenous Adenosine Formation by Ecto-5′-Nucleotidase/CD73 Impair Neuromuscular Transmission and Immune Competence in Experimental Autoimmune Myasthenia Gravis

    Directory of Open Access Journals (Sweden)

    Laura Oliveira

    2015-01-01

    Full Text Available AMP dephosphorylation via ecto-5′-nucleotidase/CD73 is the rate limiting step to generate extracellular adenosine (ADO from released adenine nucleotides. ADO, via A2A receptors (A2ARs, is a potent modulator of neuromuscular and immunological responses. The pivotal role of ecto-5′-nucleotidase/CD73, in controlling extracellular ADO formation, prompted us to investigate its role in a rat model of experimental autoimmune myasthenia gravis (EAMG. Results show that CD4+CD25+FoxP3+ regulatory T cells express lower amounts of ecto-5′-nucleotidase/CD73 as compared to controls. Reduction of endogenous ADO formation might explain why proliferation of CD4+ T cells failed upon blocking A2A receptors activation with ZM241385 or adenosine deaminase in EAMG animals. Deficits in ADO also contribute to neuromuscular transmission failure in EAMG rats. Rehabilitation of A2AR-mediated immune suppression and facilitation of transmitter release were observed by incubating the cells with the nucleoside precursor, AMP. These findings, together with the characteristic increase in serum adenosine deaminase activity of MG patients, strengthen our hypothesis that the adenosinergic pathway may be dysfunctional in EAMG. Given that endogenous ADO formation is balanced by ecto-5′-nucleotidase/CD73 activity and that A2ARs exert a dual role to restore use-dependent neurocompetence and immune suppression in myasthenics, we hypothesize that stimulation of the two mechanisms may have therapeutic potential in MG.

  4. A four step model for the IL-6 amplifier, a regulator of chromic inflammations in tissue specific MHC class II-associated autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Masaaki eMurakami

    2011-06-01

    Full Text Available It is thought autoimmune diseases are caused by the breakdown of self-tolerance, which suggests the recognition of specific antigens by autoreactive CD4+ T cells contribute to the specificity of autoimmune diseases. In several cases, however, even for diseases associated with class II MHC alleles, the causative tissue-specific antigens recognized by memory/activated CD4+ T cells have not been established. Rheumatoid arthritis (RA and arthritis in F759 knock-in mouse line (F759 mice are such examples, even though evidences support a pathogenic role for CD4+ T cells in both diseases. We have recently shown local events such as microbleeding together with an accumulation of activated CD4+ T cells in a manner independent of tissue antigen-recognitions induces arthritis in the joints of F759 mice. For example, local microbleeding-mediated CCL20 expression induced such an accumulation, causing arthritis development via chronic activation of an IL-17A-dependent IL-6 signaling amplification loop in type 1 collagen+ cells that is triggered by CD4+ T cell-derived cytokine(s such as IL-17A, which leads to the synergistic activation of STAT3 and NFκB in non hematopoietic cells in the joint. We named this loop the IL-6-mediated inflammation amplifier, or IL-6 amplifier. Thus, certain class II MHC–associated, tissue-specific autoimmune diseases may be induced by local events that cause an antigen-independent accumulation of effector CD4+ T cells followed by the induction of the IL-6 amplifier in the affected tissue. To explain this hypothesis, we have proposed a Four Step Model for MHC class II associated autoimmune diseases. The interaction of four local events results in chronic activation of the IL-6 amplifier, leading to the manifestation of autoimmune diseases. Thus, we have concluded the IL-6 amplifier is a critical regulator of chromic inflammations in tissue specific MHC class II-associated autoimmune diseases.

  5. High salt intake does not exacerbate murine autoimmune thyroiditis

    Science.gov (United States)

    Kolypetri, P; Randell, E; Van Vliet, B N; Carayanniotis, G

    2014-01-01

    Recent studies have shown that high salt (HS) intake exacerbates experimental autoimmune encephalomyelitis and have raised the possibility that a HS diet may comprise a risk factor for autoimmune diseases in general. In this report, we have examined whether a HS diet regimen could exacerbate murine autoimmune thyroiditis, including spontaneous autoimmune thyroiditis (SAT) in non-obese diabetic (NOD.H2h4) mice, experimental autoimmune thyroiditis (EAT) in C57BL/6J mice challenged with thyroglobulin (Tg) and EAT in CBA/J mice challenged with the Tg peptide (2549–2560). The physiological impact of HS intake was confirmed by enhanced water consumption and suppressed aldosterone levels in all strains. However, the HS treatment failed to significantly affect the incidence and severity of SAT or EAT or Tg-specific immunoglobulin (Ig)G levels, relative to control mice maintained on a normal salt diet. In three experimental models, these data demonstrate that HS intake does not exacerbate autoimmune thyroiditis, indicating that a HS diet is not a risk factor for all autoimmune diseases. PMID:24528002

  6. Repeated 0.5 Gy gamma-ray irradiation attenuates autoimmune disease in MRL-lpr/lpr mice with up-regulation of regulatory T cells

    International Nuclear Information System (INIS)

    Mitsutoshi Tsukimoto; Fumitoshi Tago; Hiroko Nakatsukasa; Shuji Kojima

    2007-01-01

    Complete text of publication follows. MRL-lpr/lpr mice present a single gene mutation on the Fas (CD95) gene that leads to reduced signaling for apoptosis. With aging, these mice spontaneously develop autoimmune disease and are used as a model of systemic lupus erythematosus. We previously reported attenuation of autoimmune disease in MRL-lpr/lpr mice by repeated γ-ray irradiation (0.5 Gy each time). In this study, we investigated the mechanisms of this attenuation focusing the highly activated CD3 + CD4 - CD8 - B220 + T cells, which are characteristically involved in autoimmune pathology in these mice. We measured the weight of the spleen and the population of CD3 + CD4 - CD8 - B220 + T cells. Splenomegaly and increase in percentage of CD3 + CD4 - CD8 - B220 + T cells, which occur with aging in non-irradiated mice, were suppressed in irradiated mice. To investigate the function of CD3 + CD4 - CD8 - B220 + T cells, we isolated these cells from splenocytes by magnetic cell sorting. Isolated CD3 + CD4 - CD8 - B220 + T cells were more resistant to irradiation-induced cell death than isolated CD4 + T cells. Although high proliferation rate and IL-6 production were observed in isolated CD3 + CD4 - CD8 - B220 + T cells, the proliferation rate and IL-6 production were lower in the cells isolated from the irradiated mice. Moreover, the production of autoantibodies (anti-collagen antibody and anti-single strand DNA antibody) was also lowered by irradiation. These results indicate that activation of CD3 + CD4 - CD8 - B220 + T cells and progression of pathology would be suppressed by repeated 0.5 Gy γ-ray irradiation. To uncover the mechanism of the immune suppression, we analyzed population of regulatory T cells (CD4 + CD25 + Foxp3 + ), which suppress activated T cells and excessive autoimmune responses. Intriguingly, significant increase of the percentage of regulatory T cells was observed in irradiated mice. In conclusion, we found that repeated 0.5 Gy γ-ray irradiation

  7. [Immunomodulatory properties of stem mesenchymal cells in autoimmune diseases].

    Science.gov (United States)

    Sánchez-Berná, Isabel; Santiago-Díaz, Carlos; Jiménez-Alonso, Juan

    2015-01-20

    Autoimmune diseases are a cluster of disorders characterized by a failure of the immune tolerance and a hyperactivation of the immune system that leads to a chronic inflammation state and the damage of several organs. The medications currently used to treat these diseases usually consist of immunosuppressive drugs that have significant systemic toxic effects and are associated with an increased risk of opportunistic infections. Recently, several studies have demonstrated that mesenchymal stem cells have immunomodulatory properties, a feature that make them candidates to be used in the treatment of autoimmune diseases. In the present study, we reviewed the role of this therapy in the treatment of systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, Crohn's disease and multiple sclerosis, as well as the potential risks associated with its use. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  8. CD4(+) type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes.

    Science.gov (United States)

    Kadri, Nadir; Korpos, Eva; Gupta, Shashank; Briet, Claire; Löfbom, Linda; Yagita, Hideo; Lehuen, Agnes; Boitard, Christian; Holmberg, Dan; Sorokin, Lydia; Cardell, Susanna L

    2012-04-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic β cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry diverse TCRs, prevented T1D in the NOD mouse model for the human disease. In this study, we show that CD4(+) 24αβ type II NKT cells, but not CD4/CD8 double-negative NKT cells, were sufficient to downregulate diabetogenic CD4(+) BDC2.5 NOD T cells in adoptive transfer experiments. CD4(+) 24αβ NKT cells exhibited a memory phenotype including high ICOS expression, increased cytokine production, and limited display of NK cell markers, compared with double-negative 24αβ NKT cells. Blocking of ICOS or the programmed death-1/programmed death ligand 1 pathway was shown to abolish the regulation that occurred in the pancreas draining lymph nodes. To our knowledge, these results provide for the first time cellular and molecular information on how type II CD1d-restricted NKT cells regulate T1D.

  9. Conjugates of Cell Adhesion Peptides for Therapeutics and Diagnostics Against Cancer and Autoimmune Diseases.

    Science.gov (United States)

    Moral, Mario E G; Siahaan, Teruna J

    2017-01-01

    Overexpressed cell-surface receptors are hallmarks of many disease states and are often used as markers for targeting diseased cells over healthy counterparts. Cell adhesion peptides, which are often derived from interacting regions of these receptor-ligand proteins, mimic surfaces of intact proteins and, thus, have been studied as targeting agents for various payloads to certain cell targets for cancers and autoimmune diseases. Because many cytotoxic agents in the free form are often harmful to healthy cells, the use of cell adhesion peptides in targeting their delivery to diseased cells has been studied to potentially reduce required effective doses and associated harmful side-effects. In this review, multiple cell adhesion peptides from extracellular matrix and ICAM proteins were used to selectively direct drug payloads, signal-inhibitor peptides, and diagnostic molecules, to diseased cells over normal counterparts. RGD constructs have been used to improve the selectivity and efficacy of diagnostic and drug-peptide conjugates against cancer cells. From this precedent, novel conjugates of antigenic and cell adhesion peptides, called Bifunctional Peptide Inhibitors (BPIs), have been designed to selectively regulate immune cells and suppress harmful inflammatory responses in autoimmune diseases. Similar peptide conjugations with imaging agents have delivered promising diagnostic methods in animal models of rheumatoid arthritis. BPIs have also been shown to generate immune tolerance and suppress autoimmune diseases in animal models of type-1 diabetes, rheumatoid arthritis, and multiple sclerosis. Collectively, these studies show the potential of cell adhesion peptides in improving the delivery of drugs and diagnostic agents to diseased cells in clinical settings. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Autoimmunity as a Driving Force of Cognitive Evolution

    Directory of Open Access Journals (Sweden)

    Serge Nataf

    2017-10-01

    Full Text Available In the last decades, increasingly robust experimental approaches have formally demonstrated that autoimmunity is a physiological process involved in a large range of functions including cognition. On this basis, the recently enunciated “brain superautoantigens” theory proposes that autoimmunity has been a driving force of cognitive evolution. It is notably suggested that the immune and nervous systems have somehow co-evolved and exerted a mutual selection pressure benefiting to both systems. In this two-way process, the evolutionary-determined emergence of neurons expressing specific immunogenic antigens (brain superautoantigens has exerted a selection pressure on immune genes shaping the T-cell repertoire. Such a selection pressure on immune genes has translated into the emergence of a finely tuned autoimmune T-cell repertoire that promotes cognition. In another hand, the evolutionary-determined emergence of brain-autoreactive T-cells has exerted a selection pressure on neural genes coding for brain superautoantigens. Such a selection pressure has translated into the emergence of a neural repertoire (defined here as the whole of neurons, synapses and non-neuronal cells involved in cognitive functions expressing brain superautoantigens. Overall, the brain superautoantigens theory suggests that cognitive evolution might have been primarily driven by internal cues rather than external environmental conditions. Importantly, while providing a unique molecular connection between neural and T-cell repertoires under physiological conditions, brain superautoantigens may also constitute an Achilles heel responsible for the particular susceptibility of Homo sapiens to “neuroimmune co-pathologies” i.e., disorders affecting both neural and T-cell repertoires. These may notably include paraneoplastic syndromes, multiple sclerosis as well as autism, schizophrenia and neurodegenerative diseases. In the context of this theoretical frame, a specific

  11. Immunomodulation in human and experimental uveitis: Recent advances

    Directory of Open Access Journals (Sweden)

    Singh Vijay

    1999-01-01

    Full Text Available Experimental autoimmune uveitis (EAU is a T-cell mediated autoimmune disease that targets the neural retina and serves as a model of human uveitis. EAU can be induced against several retinal proteins in rats, mice, and subhuman primates. These include the S-antigen, a major protein in retinal photoreceptor cells; interphotoreceptor retinoid-binding protein (IRBP; and rhodopsin and other antigens of retinal origin. There are many similarities between clinical uveitis and EAU, but the latter differs in being self-limited, and needs adjuvant for disease induction. The experimental disease can be induced only in susceptible animal strains. Use of the EAU model has helped investigators understand the pathophysiology of the disease and to evaluate disease-modifying strategies, which could be applied in the clinic. There has been significant progress in this field during last decade, but much more understanding is needed before the knowledge can be transferred to clinical practice. A deeper understanding of the immune mechanisms involved in the EAU model may lead to the development of new therapeutic approaches targeted at various components of the immune response by immunomodulation to control uveitis. This review summarises the evidence from the EAU model, which could be of relevance to the clinical management of patients with uveitis.

  12. Direct binding of autoimmune disease related T cell epitopes to purified Lewis rat MHC class II molecules

    DEFF Research Database (Denmark)

    Joosten, I; Wauben, M H; Holewijn, M C

    1994-01-01

    New strategies applied in the treatment of experimental autoimmune disease models involve blocking or modulation of MHC-peptide-TCR interactions either at the level of peptide-MHC interaction or, alternatively, at the level of T cell recognition. In order to identify useful competitor peptides one...... characteristics of the Lewis rat MHC class II RT1.B1 molecule. We have now developed a biochemical binding assay which enables competition studies in which the relative MHC binding affinity of a set of non-labelled peptides can be assessed while employing detection of biotinylated marker peptides...

  13. Current multiple sclerosis treatments have improved our understanding of MS autoimmune pathogenesis.

    Science.gov (United States)

    Martin, Roland; Sospedra, Mireia; Rosito, Maria; Engelhardt, Britta

    2016-09-01

    Multiple sclerosis (MS) is the most common inflammatory disorder of the central nervous system (CNS) in young adults. When MS is not treated, it leads to irreversible and severe disability. The etiology of MS and its pathogenesis are not fully understood. The recent discovery that MS-associated genetic variants code for molecules related to the function of specific immune cell subsets is consistent with the concept of MS as a prototypic, T-cell-mediated autoimmune disease targeting the CNS. While the therapeutic efficacy of the currently available immunomodulatory therapies further strengthen this concept, differences observed in responses to MS treatment as well as additional clinical and imaging observations have also shown that the autoimmune pathogenesis underlying MS is much more complex than previously thought. There is therefore an unmet need for continued detailed phenotypic and functional analysis of disease-relevant adaptive immune cells and tissues directly derived from MS patients to unravel the immune etiology of MS in its entire complexity. In this review, we will discuss the currently available MS treatment options and approved drugs, including how they have contributed to the understanding of the immune pathology of this autoimmune disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. 5-Androstenediol Ameliorates Pleurisy, Septic Shock, and Experimental Autoimmune Encephalomyelitis in Mice

    Directory of Open Access Journals (Sweden)

    Ferdinando Nicoletti

    2010-01-01

    Full Text Available Androstenediol (androst-5-ene-3β,17β-diol; 5-AED, a natural adrenal steroid, has been shown to suppress experimental autoimmune encephalomyelitis (EAE in female SJL/J mice. We here report that 5-AED limits inflammation and proinflammatory cytokines including TNFα in murine models of carrageenan-induced pleurisy and lippopolysaccaride- (LPS induced septic shock. 5-AED binds to and transactivates sex steroid receptors with the same general rank order of potency (ERβ > ERα ≫ AR. 5-AED provides benefit in EAE in a dose-dependent fashion, even when treatment is delayed until onset of disease. The minimally effective dose may be as low as 4 mg/kg in mice. However, benefit was not observed when 5-AED was given in soluble formulation, leading to a short half-life and rapid clearance. These observations suggest that treatment with 5-AED limits the production of pro-inflammatory cytokines in these animal models and, ultimately, when formulated and administered properly, may be beneficial for patients with multiple sclerosis and other Th1-driven autoimmune diseases.

  15. Adverse effects of gluten ingestion and advantages of gluten withdrawal in nonceliac autoimmune disease.

    Science.gov (United States)

    Lerner, Aaron; Shoenfeld, Yehuda; Matthias, Torsten

    2017-12-01

    In light of the coincident surge in overall gluten intake and the incidence of autoimmune diseases, the possible biological adverse effects of gluten were explored. PubMed, MEDLINE, and the Cochrane Library databases were screened for reports published between 1964 and 2016 regarding the adverse effects of gluten as well as the effects of a gluten-free diet on autoimmune diseases. In vitro and in vivo studies describing gluten intake in animal models or cell lines and gluten-free diets in human autoimmune diseases were reviewed. Multiple detrimental aspects of gluten affect human health, including gluten-dependent digestive and extradigestive manifestations mediated by potentially immunological or toxic reactions that induce gastrointestinal inadequacy. Gluten affects the microbiome and increases intestinal permeability. It boosts oxidative stress and affects epigenetic behavior. It is also immunogenic, cytotoxic, and proinflammatory. Gluten intake increases apoptosis and decreases cell viability and differentiation. In certain nonceliac autoimmune diseases, gluten-free diets may help curtail the adverse effects of gluten. Additional in vivo studies are needed to unravel the puzzle of gluten effects in humans and to explore the potential beneficial effects of gluten-free diets in autoimmune diseases. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Induction of regulatory T cells: A role for probiotics and prebiotics to suppress autoimmunity.

    Science.gov (United States)

    Dwivedi, Mitesh; Kumar, Prasant; Laddha, Naresh C; Kemp, E Helen

    2016-04-01

    Regulatory T cells (Tregs) are comprised of a heterogeneous population of cells that play a vital role in suppressing inflammation and maintaining immune tolerance. Given the crucial role of Tregs in maintaining immune homeostasis, it is probably not surprising that many microbial species and their metabolites have the potential to induce Tregs. There is now great interest in the therapeutic potential of probiotics and prebiotics based strategies for a range of autoimmune disorders. This review will summarise recent findings concerning the role of probiotics and prebiotics in induction of Tregs to ameliorate the autoimmune conditions. In addition, the article is focused to explain the different mechanisms of Treg induction and function by these probiotics and prebiotics, based on the available studies till date. The article further proposes that induction of Tregs by probiotics and prebiotics could lead to the development of new therapeutic approach towards curbing the autoimmune response and as an alternative to detrimental immunosuppressive drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Protective influences on experimental autoimmune encephalomyelitis by MHC class I and class II alleles

    DEFF Research Database (Denmark)

    Mustafa, M; Vingsbo, C; Olsson, T

    1994-01-01

    are resistant. Interestingly, rats with the MHC u haplotype develop an immune response to the MBP 63-88, but do not get EAE. In this study we have used intra-MHC recombinant rat strains to compare the influences of the MHC u with the a haplotype. We discovered the following: 1) The class II region of the MHC...... a haplotype permits EAE and a Th1 type of immune response as measured by IFN-gamma production after in vitro challenge of in vivo-primed T cells with MBP 63-88. 2) The class II region of the u haplotype is associated with a disease-protective immune response characterized by production of not only IFN......Experimental autoimmune encephalomyelitis (EAE) is influenced by polymorphism of the MHC. We have previously found that Lewis rats with certain MHC haplotypes are susceptible to disease induced with the myelin basic protein (MBP) peptide 63-88, whereas Lewis rats with other MHC haplotypes...

  18. Regulatory T-cells in B-cell chronic lymphocytic leukemia: their role in disease progression and autoimmune cytopenias.

    Science.gov (United States)

    Lad, Deepesh P; Varma, Subhash; Varma, Neelam; Sachdeva, Man Updesh Singh; Bose, Parveen; Malhotra, Pankaj

    2013-05-01

    Regulatory T-cells (Tregs) have been shown to be important for the balance of autoimmunity and oncogenesis. Tregs have a protective role in autoimmune diseases and conversely promote oncogenesis. Chronic lymphocytic leukemia (CLL) is unique in being at the cross-roads of oncogenesis and autoimmunity. We studied Tregs, defined as CD4+CD25(high)CD127(low)FOXP3+, in 32 treatment-naive patients with CLL. Our study shows that patients with CLL had a higher absolute Treg count than the control group (p < 0.001). A progressive increase of Tregs was noted in advanced stages of the disease (p < 0.001). The increase in absolute Treg count is more significant than the increase in percentage Tregs. The absolute Treg count appears to be more important in disease pathogenesis. The absolute Treg count was significantly higher in those patients having autoimmune cytopenias. There was an inverse correlation between lymphocyte doubling time and absolute Treg count (p = 0.03). The absolute Treg count may be used as a prognostic marker in CLL.

  19. Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation.

    Directory of Open Access Journals (Sweden)

    Volkert A L Huurman

    2008-06-01

    Full Text Available Islet cell transplantation can cure type 1 diabetes (T1D, but only a minority of recipients remains insulin-independent in the following years. We tested the hypothesis that allograft rejection and recurrent autoimmunity contribute to this progressive loss of islet allograft function.Twenty-one T1D patients received cultured islet cell grafts prepared from multiple donors and transplanted under anti-thymocyte globulin (ATG induction and tacrolimus plus mycophenolate mofetil (MMF maintenance immunosuppression. Immunity against auto- and alloantigens was measured before and during one year after transplantation. Cellular auto- and alloreactivity was assessed by lymphocyte stimulation tests against autoantigens and cytotoxic T lymphocyte precursor assays, respectively. Humoral reactivity was measured by auto- and alloantibodies. Clinical outcome parameters--including time until insulin independence, insulin independence at one year, and C-peptide levels over one year--remained blinded until their correlation with immunological parameters. All patients showed significant improvement of metabolic control and 13 out of 21 became insulin-independent. Multivariate analyses showed that presence of cellular autoimmunity before and after transplantation is associated with delayed insulin-independence (p = 0.001 and p = 0.01, respectively and lower circulating C-peptide levels during the first year after transplantation (p = 0.002 and p = 0.02, respectively. Seven out of eight patients without pre-existent T-cell autoreactivity became insulin-independent, versus none of the four patients reactive to both islet autoantigens GAD and IA-2 before transplantation. Autoantibody levels and cellular alloreactivity had no significant association with outcome.In this cohort study, cellular islet-specific autoimmunity associates with clinical outcome of islet cell transplantation under ATG-tacrolimus-MMF immunosuppression. Tailored immunotherapy targeting cellular

  20. MicroRNA expressions in PMBCs, CD4+, and CD8+ T-cells from patients suffering from autoimmune Addison's disease.

    Science.gov (United States)

    Bernecker, C; Halim, F; Haase, M; Willenberg, H S; Ehlers, M; Schott, M

    2013-08-01

    Autoimmune Addison's disease (AD) is a rare but potentially life threatening disease. The exact etiology of the immune response to the adrenal gland is still unknown. MicroRNAs (miRNAs) critically control gene-expression and play an important role in regulating the immune response. The aim of this study was to determine key immunoregulatory miRNAs influencing autoimmune adrenal insufficiency. For this purpose selected miRNAs were amplified by a semiquantitative SYBR Green PCR from blood mononuclear cells and after purification from CD4+ and CD 8+ cells of 6 patients with autoimmune adrenal insufficiency and 10 healthy controls. In CD4+ T-cells miRNA 181a*_1 (18.02 in AD vs. 11.99 in CG, p=0.0047) is significantly increased whereas miRNA 200a_1 (12.48 in AD vs. 19.40 in CG, p=0.0003) and miRNA 200a_2* (8.59 in AD vs. 17.94 in CG, p=0.0160) are significantly decreased. miRNA 200a_1 (12.37 in AD group vs. 18.12 in control group, p=0.001) and miRNA 200a_2* (10.72 in AD group vs. 17.84 in control group, p=0.022) are also significantly decreased in CD8+ T-cells. This study could show for the first time a significant change of three defined miRNAs in PBMCs, CD4+, and CD8+ T-cells of autoimmune AD patients in vivo. These data may help to better understand the cause of the autoimmune processes leading to autoimmune AD. They extend our very limited knowledge concerning miRNAs in autoimmune Addison's disease. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Oral Tolerance: Therapeutic Implications for Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Ana M. C. Faria

    2006-01-01

    Full Text Available Oral tolerance is classically defined as the suppression of immune responses to antigens (Ag that have been administered previously by the oral route. Multiple mechanisms of tolerance are induced by oral Ag. Low doses favor active suppression, whereas higher doses favor clonal anergy/deletion. Oral Ag induces Th2 (IL-4/IL-10 and Th3 (TGF-β regulatory T cells (Tregs plus CD4+CD25+ regulatory cells and LAP+T cells. Induction of oral tolerance is enhanced by IL-4, IL-10, anti-IL-12, TGF-β, cholera toxin B subunit (CTB, Flt-3 ligand, anti-CD40 ligand and continuous feeding of Ag. In addition to oral tolerance, nasal tolerance has also been shown to be effective in suppressing inflammatory conditions with the advantage of a lower dose requirement. Oral and nasal tolerance suppress several animal models of autoimmune diseases including experimental allergic encephalomyelitis (EAE, uveitis, thyroiditis, myasthenia, arthritis and diabetes in the nonobese diabetic (NOD mouse, plus non-autoimmune diseases such as asthma, atherosclerosis, colitis and stroke. Oral tolerance has been tested in human autoimmune diseases including MS, arthritis, uveitis and diabetes and in allergy, contact sensitivity to DNCB, nickel allergy. Positive results have been observed in phase II trials and new trials for arthritis, MS and diabetes are underway. Mucosal tolerance is an attractive approach for treatment of autoimmune and inflammatory diseases because of lack of toxicity, ease of administration over time and Ag-specific mechanism of action. The successful application of oral tolerance for the treatment of human diseases will depend on dose, developing immune markers to assess immunologic effects, route (nasal versus oral, formulation, mucosal adjuvants, combination therapy and early therapy.

  2. Strain-related effects of fenbendazole treatment on murine experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Ramp, A A; Hall, C; Orian, J M

    2010-07-01

    Parasitic infections are a concern in animal facilities, in view of their influence on physiological processes and the immune status of animals. Pinworms are effectively controlled with the anthelminthic fenbendazole (FBZ, [5-(phenylthio)-1H-benzamidazol-2-yl]carbamic acid methyl ester; C(15)H(13)N(3)O(2)S); however, questions remain as to whether prolonged FBZ exposure alters the disease course in specific experimental models, such as those pertaining to the immune system. We report that a three-month regimen of FBZ-medicated feed severely affected the onset and disease severity of murine experimental autoimmune encephalomyelitis (EAE), a disease that mimics multiple sclerosis. Differences were recorded between mouse strains used. Our data suggest that where the use of FBZ is mandatory, its full effect should be verified on the particular EAE variant adopted by the laboratory.

  3. NKT Cell Subsets Can Exert Opposing Effects in Autoimmunity, Tumor Surveillance and Inflammation

    Science.gov (United States)

    Viale, Rachael; Ware, Randle; Maricic, Igor; Chaturvedi, Varun; Kumar, Vipin

    2014-01-01

    The innate-like natural killer T (NKT) cells are essential regulators of immunity. These cells comprise at least two distinct subsets and recognize different lipid antigens presented by the MHC class I like molecules CD1d. The CD1d-dependent recognition pathway of NKT cells is highly conserved from mouse to humans. While most type I NKT cells can recognize αGalCer and express a semi-invariant T cell receptor (TCR), a major population of type II NKT cells reactive to sulfatide utilizes an oligoclonal TCR. Furthermore TCR recognition features of NKT subsets are also distinctive with almost parallel as opposed to perpendicular footprints on the CD1d molecules for the type I and type II NKT cells respectively. Here we present a view based upon the recent studies in different clinical and experimental settings that while type I NKT cells are more often pathogenic, they may also be regulatory. On the other hand, sulfatide-reactive type II NKT cells mostly play an inhibitory role in the control of autoimmune and inflammatory diseases. Since the activity and cytokine secretion profiles of NKT cell subsets can be modulated differently by lipid ligands or their analogs, novel immunotherapeutic strategies are being developed for their differential activation for potential intervention in inflammatory diseases. PMID:25288922

  4. Somatic HLA mutations expose the role of class I–mediated autoimmunity in aplastic anemia and its clonal complications

    Science.gov (United States)

    Duke, Jamie L.; Xie, Hongbo M.; Stanley, Natasha; Atienza, Jamie; Perdigones, Nieves; Nicholas, Peter; Ferriola, Deborah; Li, Yimei; Huang, Hugh; Ye, Wenda; Morrissette, Jennifer J. D.; Kearns, Jane; Porter, David L.; Podsakoff, Gregory M.; Eisenlohr, Laurence C.; Biegel, Jaclyn A.; Chou, Stella T.; Monos, Dimitrios S.; Bessler, Monica; Olson, Timothy S.

    2017-01-01

    Acquired aplastic anemia (aAA) is an acquired deficiency of early hematopoietic cells, characterized by inadequate blood production, and a predisposition to myelodysplastic syndrome (MDS) and leukemia. Although its exact pathogenesis is unknown, aAA is thought to be driven by human leukocyte antigen (HLA)–restricted T cell immunity, with earlier studies favoring HLA class II-mediated pathways. Using whole-exome sequencing (WES), we recently identified 2 patients with aAA with somatic mutations in HLA class I genes. We hypothesized that HLA class I mutations are pathognomonic for autoimmunity in aAA, but were previously underappreciated because the major histocompatibility complex (MHC) region is notoriously difficult to analyze by WES. Using a combination of targeted deep sequencing of HLA class I genes and single nucleotide polymorphism array (SNP-A) genotyping, we screened 66 patients with aAA for somatic HLA class I loss. We found somatic HLA loss in 11 patients (17%), with 13 loss-of-function mutations in HLA-A*33:03, HLA-A*68:01, HLA-B*14:02, and HLA-B*40:02 alleles. Three patients had more than 1 mutation targeting the same HLA allele. Interestingly, HLA-B*14:02 and HLA-B*40:02 were significantly overrepresented in patients with aAA compared with ethnicity-matched controls. Patients who inherited the targeted HLA alleles, regardless of HLA mutation status, had a more severe disease course with more frequent clonal complications as assessed by WES, SNP-A, and metaphase cytogenetics, and more frequent secondary MDS. The finding of recurrent HLA class I mutations provides compelling evidence for a predominant HLA class I-driven autoimmunity in aAA and establishes a novel link between immunogenetics and clonal evolution of patients with aAA. PMID:28971166

  5. Somatic HLA Mutations Expose the Role of Class I-Mediated Autoimmunity in Aplastic Anemia and its Clonal Complications.

    Science.gov (United States)

    Babushok, Daria V; Duke, Jamie L; Xie, Hongbo M; Stanley, Natasha; Atienza, Jamie; Perdigones, Nieves; Nicholas, Peter; Ferriola, Deborah; Li, Yimei; Huang, Hugh; Ye, Wenda; Morrissette, Jennifer J D; Kearns, Jane; Porter, David L; Podsakoff, Gregory M; Eisenlohr, Laurence C; Biegel, Jaclyn A; Chou, Stella T; Monos, Dimitrios S; Bessler, Monica; Olson, Timothy S

    2017-10-10

    Acquired aplastic anemia (aAA) is an acquired deficiency of early hematopoietic cells, characterized by inadequate blood production, and a predisposition to myelodysplastic syndrome (MDS) and leukemia. Although its exact pathogenesis is unknown, aAA is thought to be driven by Human Leukocyte Antigen (HLA)-restricted T cell immunity, with earlier studies favoring HLA class II-mediated pathways. Using whole exome sequencing (WES), we recently identified two aAA patients with somatic mutations in HLA class I genes. We hypothesized that HLA class I mutations are pathognomonic for autoimmunity in aAA, but were previously underappreciated because the Major Histocompatibility Complex (MHC) region is notoriously difficult to analyze by WES. Using a combination of targeted deep sequencing of HLA class I genes and single nucleotide polymorphism array (SNP-A) genotyping we screened 66 aAA patients for somatic HLA class I loss. We found somatic HLA loss in eleven patients (17%), with thirteen loss-of-function mutations in HLA-A *33:03, HLA-A *68:01, HLA-B *14:02 and HLA-B *40:02 alleles. Three patients had more than one mutation targeting the same HLA allele. Interestingly, HLA-B *14:02 and HLA-B *40:02 were significantly overrepresented in aAA patients, compared to ethnicity-matched controls. Patients who inherited the targeted HLA alleles, regardless of HLA mutation status, had a more severe disease course with more frequent clonal complications as assessed by WES, SNP-A, and metaphase cytogenetics, and more frequent secondary MDS. The finding of recurrent HLA class I mutations provides compelling evidence for a predominant HLA class I-driven autoimmunity in aAA, and establishes a novel link between aAA patients' immunogenetics and clonal evolution.

  6. Regulation of adenosine deaminase (ADA) on induced mouse experimental autoimmune uveitis (EAU) ‡

    Science.gov (United States)

    Liang, Dongchun; Zuo, Aijun; Zhao, Ronglan; Shao, Hui; Kaplan, Henry J.; Sun, Deming

    2016-01-01

    Adenosine is an important regulator of the immune response and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies have shown that adenosine receptor (AR) agonists can be either anti- or pro-inflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoimmune uveitis (EAU) induced by immunizing EAU-prone mice with a known uveitogenic peptide, IRBP1–20. Our results showed that the effective time to administer a single dose of ADA to suppress induction of EAU was 8–14 days post-immunization, shortly before EAU expression, but ADA treatment at other time points exacerbated disease. ADA preferentially inhibited Th17 responses and this effect was γδ T cell-dependent. Our results demonstrated that the existing immune status strongly influences the anti- or proinflammatory effects of ADA. Our observations should help improve the design of ADA- and AR-targeted therapies. PMID:26856700

  7. Low Frequencies of Autoimmunity-Associated PTPN22 Polymorphisms in MODY Patients, Including Those Transiently Expressing Islet Cell Autoantibodies.

    Science.gov (United States)

    Heneberg, Petr; Malá, Milena; Yorifuji, Tohru; Gat-Yablonski, Galia; Lebenthal, Yael; Tajima, Toshihiro; Nogaroto, Viviane; Rypáčková, Blanka; Kocková, Lucie; Urbanová, Jana; Anděl, Michal

    2015-01-01

    The protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene encodes lymphoid tyrosine phosphatase (LYP), which is expressed primarily in lymphoid tissues. The functional but geographically highly variable PTPN22 single-nucleotide polymorphisms (SNPs), particularly c.1858C>T, contribute to the onset and progression of autoimmunity-associated diseases and facilitate the expression of disease-associated autoantibodies. In Central Europe, 17-25% of patients with monogenic diabetes (maturity-onset diabetes of the young, MODY) transiently express islet cell autoantibodies. We addressed the links between the functional and geographically variable PTPN22 SNPs with MODY manifestation and the expression of islet cell autoantibodies in 276 MODY patients who originated from four regions (the Czech Republic, Israel, Japan and Brazil). The frequency of PTPN22 polymorphisms in the MODY patients was similar to those in geographically matched healthy populations, with the exception of c.788G>A, the minor allele frequency of which was significantly elevated in the Czech hepatocyte nuclear factor 1-α (HNF1A) MODY patients [odds ratio (OR) 4.8, 95% confidence interval (CI) 2.2-10.7] and the Brazilian MODY patients (OR 8.4, 95% CI 1.8-39.1). A barely significant increase in the c.788G>A minor allele was also detected in the islet cell autoantibody-positive Czech MODY patients. However, c.788A behaves as a loss-of-function mutant in T cells, and thus protects against autoimmunity. MODY patients (including islet cell autoantibody-positive cases) do not display any increase in autoimmunity-associated PTPN22 alleles. The absence of autoimmunity-associated PTPN22 alleles was also demonstrated in latent autoimmune diabetes in adults, which suggests that the slow kinetics of the onset of autoantibodies is subject to a regulation that is different from that experienced in type 1 diabetes and other autoimmune disorders. © 2015 S. Karger AG, Basel.

  8. Th17 Response and Inflammatory Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Janelle C. Waite

    2012-01-01

    Full Text Available The proinflammatory activity of T helper 17 (Th17 cells can be beneficial to the host during infection. However, uncontrolled or inappropriate Th17 activation has been linked to several autoimmune and autoinflammatory pathologies. Indeed, preclinical and clinical data show that Th17 cells are associated with several autoimmune diseases such as arthritis, multiple sclerosis, psoriasis, and lupus. Furthermore, targeting the interleukin-17 (IL-17 pathway has attenuated disease severity in preclinical models of autoimmune diseases. Interestingly, a recent report brings to light a potential role for Th17 cells in the autoinflammatory disorder adult-onset Still's disease (AOSD. Whether Th17 cells are the cause or are directly involved in AOSD remains to be shown. In this paper, we discuss the biology of Th17 cells, their role in autoimmune disease development, and in AOSD in particular, as well as the growing interest of the pharmaceutical industry in their use as therapeutic targets.

  9. Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors — Recommendations for methods and experimental designs

    Science.gov (United States)

    Losen, Mario; Martinez-Martinez, Pilar; Molenaar, Peter C.; Lazaridis, Konstantinos; Tzartos, Socrates; Brenner, Talma; Duan, Rui-Sheng; Luo, Jie; Lindstrom, Jon; Kusner, Linda

    2015-01-01

    Myasthenia gravis (MG) with antibodies against the acetylcholine receptor (AChR) is characterized by a chronic, fatigable weakness of voluntary muscles. The production of autoantibodies involves the dysregulation of T cells which provide the environment for the development of autoreactive B cells. The symptoms are caused by destruction of the postsynaptic membrane and degradation of the AChR by IgG autoantibodies, predominantly of the G1 and G3 subclasses. Active immunization of animals with AChR from mammalian muscles, AChR from Torpedo or Electrophorus electric organs, and recombinant or synthetic AChR fragments generates a chronic model of MG, termed experimental autoimmune myasthenia gravis (EAMG). This model covers cellular mechanisms involved in the immune response against the AChR, e.g. antigen presentation, T cell-help and regulation, B cell selection and differentiation into plasma cells. Our aim is to define standard operation procedures and recommendations for the rat EAMG model using purified AChR from the Torpedo californica electric organ, in order to facilitate more rapid translation of preclinical proof of concept or efficacy studies into clinical trials and, ultimately, clinical practice. PMID:25796590

  10. High Dose Cyclophosphamide without Stem Cell Rescue in 207 Patients with Aplastic anemia and other Autoimmune Diseases

    Science.gov (United States)

    DeZern, Amy E.; Petri, Michelle; Drachman, Daniel B.; Kerr, Doug; Hammond, Edward R.; Kowalski, Jeanne; Tsai, Hua-Ling; Loeb, David M.; Anhalt, Grant; Wigley, Fredrick; Jones, Richard J.; Brodsky, Robert A.

    2011-01-01

    High-dose cyclophosphamide has long been used an anticancer agent, a conditioning regimen for hematopoietic stem cell transplantation and as potent immunosuppressive agent in autoimmune diseases including aplastic anemia. High-dose cyclophosphamide is highly toxic to lymphocytes but spares hematopoietic stem cells because of their abundant levels of aldehyde dehydrogenase, the major mechanism of cyclophosphamide inactivation. High dose cyclophosphamide therapy induces durable remissions in most patients with acquired aplastic anemia. Moreover, high-dose cyclophosphamide without hematopoietic stem cell rescue has shown activity in a variety of other severe autoimmune diseases. Here we review the history of cyclophosphamide as is applies to aplastic anemia (AA) and other autoimmune diseases. Included here are the historical data from early patients treated for AA as well as an observational retrospective study in a single tertiary care hospital. This latter component was designed to assess the safety and efficacy of high-dose cyclophosphamide therapy without stem cell rescue in patients with refractory autoimmune diseases. We analyzed fully the 140 patients with severe, progressive autoimmune diseases treated. All patients discussed here received cyclophosphamide, 50 mg/kg per day for 4 consecutive days. Response, relapse and overall survival were measured. Response was defined as a decrease in disease activity in conjunction with a decrease or elimination of immune modulating drugs. Relapse was defined as worsening disease activity and/or a requirement of an increase in dose of, or administration of new, immunosuppressive medications. Hematologic recovery occurred in all patients. The overall response rate of the was 95%, and 44% of those patients remain progression-free with a median follow up time of 36 (range 1–120) months for the 140 patients analyzed together. The overall actuarial and event free survival across all diseases at 60 months is 90.7% and 20

  11. CCR5 and CXCR3 are dispensable for liver infiltration, but CCR5 protects against virus-induced T-cell-mediated hepatic steatosis

    DEFF Research Database (Denmark)

    Holst, P J; Orskov, C; Qvortrup, K

    2007-01-01

    CCR5 and CXCR3 are important molecules in regulating the migration of activated lymphocytes. Thus, the majority of tissue-infiltrating T cells found in the context of autoimmune conditions and viral infections express CCR5 and CXCR3, and the principal chemokine ligands are expressed within inflam...... of CCR5 is associated with the induction of CD8(+) T-cell-mediated immunopathology consisting of marked hepatic microvesicular steatosis....

  12. Invariant natural killer T cells trigger adaptive lymphocytes to churn up bile.

    Science.gov (United States)

    Joyce, Sebastian; Van Kaer, Luc

    2008-05-15

    How innate immune response causes autoimmunity has remained an enigma. In this issue of Cell Host & Microbe, Mattner et al. demonstrate that invariant natural killer T cells activated by the mucosal commensal Novosphingobium aromaticivorans precipitate chronic T cell-mediated autoimmunity against small bile ducts that mirrors human primary biliary cirrhosis. These findings provide a mechanistic understanding of the role of innate immunity toward a microbe in the development of autoimmunity.

  13. Ultraviolet radiation and autoimmune disease: insights from epidemiological research

    International Nuclear Information System (INIS)

    Ponsonby, Anne-Louise; McMichael, Anthony; Mei, Ingrid van der

    2002-01-01

    This review examines the epidemiological evidence that suggests ultraviolet radiation (UVR) may play a protective role in three autoimmune diseases: multiple sclerosis, insulin-dependent diabetes mellitus and rheumatoid arthritis. To date, most of the information has accumulated from population studies that have studied the relationship between geography or climate and autoimmune disease prevalence. An interesting gradient of increasing prevalence with increasing latitude has been observed for at least two of the three diseases. This is most evident for multiple sclerosis, but a similar gradient has been shown for insulin-dependent diabetes mellitus in Europe and North America. Seasonal influences on both disease incidence and clinical course and, more recently, analytical studies at the individual level have provided further support for a possible protective role for UVR in some of these diseases but the data are not conclusive. Organ-specific autoimmune diseases involve Th1 cell-mediated immune processes. Recent work in photoimmunology has shown ultraviolet B (UVB) can specifically attenuate these processes through several mechanisms which we discuss. In particular, the possible contribution of an UVR-induced increase in serum vitamin D (1,25(OH) 2 D 3 ) levels in the beneficial immunomodulation of these diseases is discussed

  14. Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives

    Science.gov (United States)

    Lang, Yue

    2018-01-01

    The gut environment and gut microbiome dysbiosis have been demonstrated to significantly influence a range of disorders in humans, including obesity, diabetes, rheumatoid arthritis, and multiple sclerosis (MS). MS is an autoimmune disease affecting the central nervous system (CNS). The etiology of MS is not clear, and it should involve both genetic and extrinsic factors. The extrinsic factors responsible for predisposition to MS remain elusive. Recent studies on MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have found that gastrointestinal microbiota may play an important role in the pathogenesis of MS/EAE. Thus, gut microbiome adjustment may be a future direction of treatment in MS. In this review, we discuss the characteristics of the gut microbiota, the connection between the brain and the gut, and the changes in gut microbiota in MS/EAE, and we explore the possibility of applying microbiota therapies in patients with MS. PMID:29805314

  15. The Use of Mesenchymal Stem Cells for the Treatment of Autoimmunity: From Animals Models to Human Disease.

    Science.gov (United States)

    Fierabracci, Alessandra; Del Fattore, Andrea; Muraca, Marta; Delfino, Domenico Vittorio; Muraca, Maurizio

    2016-01-01

    Mesenchymal stem cells are multipotent progenitors able to differentiate into osteoblasts, chondrocytes and adipocytes. These cells also exhibit remarkable immune regulatory properties, which stimulated both in vitro and in vivo experimental studies to unravel the underlying mechanisms as well as extensive clinical applications. Here, we describe the effects of MSCs on immune cells and their application in animal models as well as in clinical trials of autoimmune diseases. It should be pointed out that, while the number of clinical applications is increasing steadily, results should be interpreted with caution, in order to avoid rising false expectations. Major issues conditioning clinical application are the heterogeneity of MSCs and their unpredictable behavior following therapeutic administration. However, increasing knowledge on the interaction between exogenous cell and host tissue, as well as some encouraging clinical observations suggest that the therapeutic applications of MSCs will be further expanded on firmer grounds in the near future.

  16. Thyroid dysfunction: an autoimmune aspect.

    Science.gov (United States)

    Khan, Farah Aziz; Al-Jameil, Noura; Khan, Mohammad Fareed; Al-Rashid, May; Tabassum, Hajera

    2015-01-01

    Auto immune thyroid disease (AITD) is the common organ specific autoimmune disorder, Hashimoto thyroiditis (HT) and Grave's disease (GD) are its well-known sequelae. It occurs due to loss of tolerance to autoantigens thyroid peroxidase (TPO), thyroglobulin (Tg), thyroid stimulating hormone receptor (TSH-R) which leads to the infiltration of the gland. T cells in chronic autoimmune thyroiditis (cAIT) induce apoptosis in thyroid follicular cells and cause destruction of the gland. Presences of TPO antibodies are common in HT and GD, while Tg has been reported as an independent predictor of thyroid malignancy. Cytokines are small proteins play an important role in autoimmunity, by stimulating B and T cells. Various cytokines IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, IL-14, TNF-α and IFN-γ are found in thyroid follicular cells which enhance inflammatory response with nitric oxide (NO) and prostaglandins.

  17. Regulatory T-cells in autoimmune diseases: challenges, controversies and--yet--unanswered questions.

    Science.gov (United States)

    Grant, Charlotte R; Liberal, Rodrigo; Mieli-Vergani, Giorgina; Vergani, Diego; Longhi, Maria Serena

    2015-02-01

    Regulatory T cells (Tregs) are central to the maintenance of self-tolerance and tissue homeostasis. Markers commonly used to define human Tregs in the research setting include high expression of CD25, FOXP3 positivity and low expression/negativity for CD127. Many other markers have been proposed, but none unequivocally identifies bona fide Tregs. Tregs are equipped with an array of mechanisms of suppression, including the modulation of antigen presenting cell maturation and function, the killing of target cells, the disruption of metabolic pathways and the production of anti-inflammatory cytokines. Treg impairment has been reported in a number of human autoimmune conditions and includes Treg numerical and functional defects and conversion into effector cells in response to inflammation. In addition to intrinsic Treg impairment, resistance of effector T cells to Treg control has been described. Discrepancies in the literature are common, reflecting differences in the choice of study participants and the technical challenges associated with investigating this cell population. Studies differ in terms of the methodology used to define and isolate putative regulatory cells and to assess their suppressive function. In this review we outline studies describing Treg frequency and suppressive function in systemic and organ specific autoimmune diseases, with a specific focus on the challenges faced when investigating Tregs in these conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Syncytial giant-cell hepatitis due to autoimmune hepatitis type II (LKM1+) presenting as subfulminant hepatitis.

    Science.gov (United States)

    Ben-Ari, Z; Broida, E; Monselise, Y; Kazatsker, A; Baruch, J; Pappo, O; Skappa, E; Tur-Kaspa, R

    2000-03-01

    Giant cell hepatitis (GCH) in adults is a rare event. The diagnosis of GCH is based on findings of syncytial giant hepatocytes. It is commonly associated with either viral infection or autoimmune hepatitis type I. A patient with GCH due to autoimmune hepatitis type II (LKM1+) is described, a combination that has not been previously reported. Corticosteroid therapy was effective in decreasing serum liver enzymes; however, the patient deteriorated rapidly and developed subfulminant hepatic failure. Although an emergency orthotopic liver transplantation was performed, the patient died because of reperfusion injury. Interestingly, only a few giant hepatocytes were noted in the explanted liver. This case stresses the association of GCH with autoimmune disorders, the possible immune mechanism involved in the formation of giant cell hepatocytes, and illustrates the rapidly progressive course and unfavorable prognosis that these patients can develop.

  19. Regulatory T cells in multiple sclerosis and myasthenia gravis.

    Science.gov (United States)

    Danikowski, K M; Jayaraman, S; Prabhakar, B S

    2017-06-09

    Multiple sclerosis (MS) is a chronic debilitating disease of the central nervous system primarily mediated by T lymphocytes with specificity to neuronal antigens in genetically susceptible individuals. On the other hand, myasthenia gravis (MG) primarily involves destruction of the neuromuscular junction by antibodies specific to the acetylcholine receptor. Both autoimmune diseases are thought to result from loss of self-tolerance, which allows for the development and function of autoreactive lymphocytes. Although the mechanisms underlying compromised self-tolerance in these and other autoimmune diseases have not been fully elucidated, one possibility is numerical, functional, and/or migratory deficits in T regulatory cells (Tregs). Tregs are thought to play a critical role in the maintenance of peripheral immune tolerance. It is believed that Tregs function by suppressing the effector CD4+ T cell subsets that mediate autoimmune responses. Dysregulation of suppressive and migratory markers on Tregs have been linked to the pathogenesis of both MS and MG. For example, genetic abnormalities have been found in Treg suppressive markers CTLA-4 and CD25, while others have shown a decreased expression of FoxP3 and IL-10. Furthermore, elevated levels of pro-inflammatory cytokines such as IL-6, IL-17, and IFN-γ secreted by T effectors have been noted in MS and MG patients. This review provides several strategies of treatment which have been shown to be effective or are proposed as potential therapies to restore the function of various Treg subsets including Tr1, iTr35, nTregs, and iTregs. Strategies focusing on enhancing the Treg function find importance in cytokines TGF-β, IDO, interleukins 10, 27, and 35, and ligands Jagged-1 and OX40L. Likewise, strategies which affect Treg migration involve chemokines CCL17 and CXCL11. In pre-clinical animal models of experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune myasthenia gravis (EAMG), several strategies

  20. Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices

    Science.gov (United States)

    Singha, Santiswarup; Shao, Kun; Yang, Yang; Clemente-Casares, Xavier; Solé, Patricia; Clemente, Antonio; Blanco, Jesús; Dai, Qin; Song, Fayi; Liu, Shang Wan; Yamanouchi, Jun; Umeshappa, Channakeshava Sokke; Nanjundappa, Roopa Hebbandi; Detampel, Pascal; Amrein, Matthias; Fandos, César; Tanguay, Robert; Newbigging, Susan; Serra, Pau; Khadra, Anmar; Chan, Warren C. W.; Santamaria, Pere

    2017-07-01

    We have shown that nanoparticles (NPs) can be used as ligand-multimerization platforms to activate specific cellular receptors in vivo. Nanoparticles coated with autoimmune disease-relevant peptide-major histocompatibility complexes (pMHC) blunted autoimmune responses by triggering the differentiation and expansion of antigen-specific regulatory T cells in vivo. Here, we define the engineering principles impacting biological activity, detail a synthesis process yielding safe and stable compounds, and visualize how these nanomedicines interact with cognate T cells. We find that the triggering properties of pMHC-NPs are a function of pMHC intermolecular distance and involve the sustained assembly of large antigen receptor microclusters on murine and human cognate T cells. These compounds show no off-target toxicity in zebrafish embryos, do not cause haematological, biochemical or histological abnormalities, and are rapidly captured by phagocytes or processed by the hepatobiliary system. This work lays the groundwork for the design of ligand-based NP formulations to re-program in vivo cellular responses using nanotechnology.

  1. Celiac disease and endocrine autoimmunity.

    Science.gov (United States)

    Kahaly, George J; Schuppan, Detlef

    2015-01-01

    Celiac disease (CD) is a small-intestinal inflammatory disease that is triggered by the ingestion of the storage proteins (gluten) of wheat, barley and rye. Endocrine autoimmunity is prevalent in patients with CD and their relatives. The genes that predispose to endocrine autoimmune diseases, e.g. type 1 diabetes, autoimmune thyroid diseases, and Addison's disease, i.e. DR3-DQ2 and DR4-DQ8, are also the major genetic determinants of CD, which is the best understood HLA-linked disease. Thus, up to 30% of first-degree relatives both of patients with CD and/or endocrine autoimmunity are affected by the other disease. In CD, certain gluten proteins bind with high affinity to HLA-DQ2 or -DQ8 in the small-intestinal mucosa, to activate gluten-specific T cells which are instrumental in the destruction of the resorptive villi. Here, the autoantigen tissue transglutaminase increases the T cell response by generating deamidated gluten peptides that bind more strongly to DQ2 or DQ8. Classical symptoms such as diarrhea and consequences of malabsorption like anemia and osteoporosis are often absent in patients with (screening-detected) CD, but this absence does not significantly affect these patients' incidence of endocrine autoimmunity. Moreover, once autoimmunity is established, a gluten-free diet is not able to induce remission. However, ongoing studies attempt to address how far a gluten-free diet may prevent or retard the development of CD and endocrine autoimmunity in children at risk. The close relationship between CD and endocrine autoimmunity warrants a broader immune genetic and endocrine screening of CD patients and their relatives. © 2015 S. Karger AG, Basel.

  2. Role of T cell – glial cell interactions in creating and amplifying Central Nervous System inflammation and Multiple Sclerosis disease symptoms

    Directory of Open Access Journals (Sweden)

    Eric S. Huseby

    2015-08-01

    Full Text Available Multiple Sclerosis (MS is an inflammatory disease of the Central Nervous System (CNS that causes the demyelination of nerve cells and destroys oligodendrocytes, neurons and axons. Historically, MS has been thought of as a T cell-mediated autoimmune disease of CNS white matter. However, recent studies have identified gray matter lesions in MS patients, suggesting that CNS antigens other than myelin proteins may be involved during the MS disease process. We have recently found that T cells targeting astrocyte-specific antigens can drive unique aspects of inflammatory CNS autoimmunity, including the targeting of gray matter and white matter of the brain and inducing heterogeneous clinical disease courses. In addition to being a target of T cells, astrocytes play a critical role in propagating the inflammatory response within the CNS through cytokine induced NF-ΚB signaling. Here, we will discuss the pathophysiology of CNS inflammation mediated by T cell – glial cell interactions and its contributions to CNS autoimmunity.

  3. Bipolar Role for Myelo-Monocytic Cells in Autoimmune Diseases and Psychiatric Disorders

    NARCIS (Netherlands)

    W. Beumer (Wouter)

    2013-01-01

    markdownabstract__Abstract__ The immune system is a complex system of tissue with cells and messenger molecules interacting to protect an organism against pathogens. Autoimmunity is the failure of the immune system to recognize its own constituent parts as harmless self and therefore it leads to

  4. Dimethyl sulfoxide inhibits spontaneous diabetes and autoimmune recurrence in non-obese diabetic mice by inducing differentiation of regulatory T cells

    International Nuclear Information System (INIS)

    Lin, Gu-Jiun; Sytwu, Huey-Kang; Yu, Jyh-Cherng; Chen, Yuan-Wu; Kuo, Yu-Liang; Yu, Chiao-Chi; Chang, Hao-Ming; Chan, De-Chuan; Huang, Shing-Hwa

    2015-01-01

    Type 1 diabetes mellitus (T1D) is caused by the destruction of insulin-producing β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective therapeutic strategy for T1D. However, the survival of islet grafts can be disrupted by recurrent autoimmunity. Dimethyl sulfoxide (DMSO) is a solvent for organic and inorganic substances and an organ-conserving agent used in solid organ transplantations. DMSO also exerts anti-inflammatory, reactive oxygen species scavenger and immunomodulatory effects and therefore exhibits therapeutic potential for the treatment of several human inflammatory diseases. In this study, we investigated the therapeutic potential of DMSO in the inhibition of autoimmunity. We treated an animal model of islet transplantation (NOD mice) with DMSO. The survival of the syngeneic islet grafts was significantly prolonged. The population numbers of CD8, DC and Th1 cells were decreased, and regulatory T (Treg) cell numbers were increased in recipients. The expression levels of IFN-γ and proliferation of T cells were also reduced following DMSO treatment. Furthermore, the differentiation of Treg cells from naive CD4 T cells was significantly increased in the in vitro study. Our results demonstrate for the first time that in vivo DMSO treatment suppresses spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Treg cells. - Highlights: • We report a therapeutic potential of DMSO in autoimmune diabetes. • DMSO exhibits an immune modulatory effect. • DMSO treatment increases regulatory T cell differentiation. • The increase in STAT5 signaling pathway explains the effect of DMSO in Tregs

  5. Dimethyl sulfoxide inhibits spontaneous diabetes and autoimmune recurrence in non-obese diabetic mice by inducing differentiation of regulatory T cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Gu-Jiun [Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC (China); Sytwu, Huey-Kang [Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, ROC (China); Yu, Jyh-Cherng [Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China); Chen, Yuan-Wu [School of Dentistry, National Defense Medical Center, Taipei, Taiwan, ROC (China); Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China); Kuo, Yu-Liang [Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC (China); School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan, ROC (China); Yu, Chiao-Chi [Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC (China); Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China); Chang, Hao-Ming; Chan, De-Chuan [Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China); Huang, Shing-Hwa, E-mail: h610129@gmail.com [Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC (China); Department of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC (China)

    2015-01-15

    Type 1 diabetes mellitus (T1D) is caused by the destruction of insulin-producing β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective therapeutic strategy for T1D. However, the survival of islet grafts can be disrupted by recurrent autoimmunity. Dimethyl sulfoxide (DMSO) is a solvent for organic and inorganic substances and an organ-conserving agent used in solid organ transplantations. DMSO also exerts anti-inflammatory, reactive oxygen species scavenger and immunomodulatory effects and therefore exhibits therapeutic potential for the treatment of several human inflammatory diseases. In this study, we investigated the therapeutic potential of DMSO in the inhibition of autoimmunity. We treated an animal model of islet transplantation (NOD mice) with DMSO. The survival of the syngeneic islet grafts was significantly prolonged. The population numbers of CD8, DC and Th1 cells were decreased, and regulatory T (Treg) cell numbers were increased in recipients. The expression levels of IFN-γ and proliferation of T cells were also reduced following DMSO treatment. Furthermore, the differentiation of Treg cells from naive CD4 T cells was significantly increased in the in vitro study. Our results demonstrate for the first time that in vivo DMSO treatment suppresses spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Treg cells. - Highlights: • We report a therapeutic potential of DMSO in autoimmune diabetes. • DMSO exhibits an immune modulatory effect. • DMSO treatment increases regulatory T cell differentiation. • The increase in STAT5 signaling pathway explains the effect of DMSO in Tregs.

  6. Enhanced Autoimmunity Associated with Induction of Tumor Immunity in Thyroiditis-Susceptible Mice

    Science.gov (United States)

    Kari, Suresh; Flynn, Jeffrey C.; Zulfiqar, Muhammad; Snower, Daniel P.; Elliott, Bruce E.

    2013-01-01

    Background: Immunotherapeutic modalities to bolster tumor immunity by targeting specific sites of the immune network often result in immune dysregulation with adverse autoimmune sequelae. To understand the relative risk for opportunistic autoimmune disorders, we studied established breast cancer models in mice resistant to experimental autoimmune thyroiditis (EAT). EAT is a murine model of Hashimoto's thyroiditis, an autoimmune syndrome with established MHC class II control of susceptibility. The highly prevalent Hashimoto's thyroiditis is a prominent autoimmune sequela in immunotherapy, and its relative ease of diagnosis and treatment could serve as an early indicator of immune dysfunction. Here, we examined EAT-susceptible mice as a combined model for induction of tumor immunity and EAT under the umbrella of disrupted regulatory T cell (Treg) function. Methods: Tumor immunity was evaluated in female CBA/J mice after depleting Tregs by intravenous administration of CD25 monoclonal antibody and/or immunizing with irradiated mammary adenocarcinoma cell line A22E-j before challenge; the role of T cell subsets was determined by injecting CD4 and/or CD8 antibodies after tumor immunity induction. Tumor growth was monitored 3×/week by palpation. Subsequent EAT was induced by mouse thyroglobulin (mTg) injections (4 daily doses/week over 4 weeks). For some experiments, EAT was induced before establishing tumor immunity by injecting mTg+interleukin-1, 7 days apart. EAT was evaluated by mTg antibodies and thyroid infiltration. Results: Strong resistance to tumor challenge after Treg depletion and immunization with irradiated tumor cells required participation of both CD4+ and CD8+ T cells. This immunity was not altered by induction of mild thyroiditis with our protocol of Treg depletion and adjuvant-free, soluble mTg injections. However, the increased incidence of mild thyroiditis can be directly related to Treg depletion needed to achieve strong tumor immunity. Moreover

  7. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed.

    Science.gov (United States)

    Vainchtein, I D; Vinet, J; Brouwer, N; Brendecke, S; Biagini, G; Biber, K; Boddeke, H W G M; Eggen, B J L

    2014-10-01

    Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system (CNS) characterized by loss of myelin accompanied by infiltration of T-lymphocytes and monocytes. Although it has been shown that these infiltrates are important for the progression of MS, the role of microglia, the resident macrophages of the CNS, remains ambiguous. Therefore, we have compared the phenotypes of microglia and macrophages in a mouse model for MS, experimental autoimmune encephalomyelitis (EAE). In order to properly discriminate between these two cell types, microglia were defined as CD11b(pos) CD45(int) Ly-6C(neg) , and infiltrated macrophages as CD11b(pos) CD45(high) Ly-6C(pos) . During clinical EAE, microglia displayed a weakly immune-activated phenotype, based on the expression of MHCII, co-stimulatory molecules (CD80, CD86, and CD40) and proinflammatory genes [interleukin-1β (IL-1β) and tumour necrosis factor- α (TNF-α)]. In contrast, CD11b(pos) CD45(high) Ly-6C(pos) infiltrated macrophages were strongly activated and could be divided into two populations Ly-6C(int) and Ly-6C(high) , respectively. Ly-6C(high) macrophages contained less myelin than Ly-6C(int) macrophages and expression levels of the proinflammatory cytokines IL-1β and TNF-α were higher in Ly-6C(int) macrophages. Together, our data show that during clinical EAE, microglia are only weakly activated whereas infiltrated macrophages are highly immune reactive. © 2014 Wiley Periodicals, Inc.

  8. Endogenous interferon-β-inducible gene expression and interferon-β-treatment are associated with reduced T cell responses to myelin basic protein in multiple sclerosis

    DEFF Research Database (Denmark)

    Börnsen, Lars; Christensen, Jeppe Romme; Ratzer, Rikke

    2015-01-01

    Autoreactive CD4+ T-cells are considered to play a major role in the pathogenesis of multiple sclerosis. In experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, exogenous and endogenous type I interferons restrict disease severity. Recombinant interferon-β is used for......-induced CD4+ T-cell autoreactivity in interferon-β-treated multiple sclerosis patients may be mediated by monocyte-derived interleukin-10.......Autoreactive CD4+ T-cells are considered to play a major role in the pathogenesis of multiple sclerosis. In experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, exogenous and endogenous type I interferons restrict disease severity. Recombinant interferon-β is used...... for treatment of multiple sclerosis, and some untreated multiple sclerosis patients have increased expression levels of type I interferon-inducible genes in immune cells. The role of endogenous type I interferons in multiple sclerosis is controversial: some studies found an association of high expression levels...

  9. Differential expression of metallothioneins in the CNS of mice with experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C; Carrasco, J; Hidalgo, J

    2001-01-01

    Multiple sclerosis is an inflammatory, demyelinating disease of the CNS. Metallothioneins-I+II are antioxidant proteins induced in the CNS by immobilisation stress, trauma or degenerative diseases which have been postulated to play a neuroprotective role, while the CNS isoform metallothionein......-III has been related to Alzheimer's disease. We have analysed metallothioneins-I-III expression in the CNS of mice with experimental autoimmune encephalomyelitis. Moreover, we have examined the putative role of interferon-gamma, a pro-inflammatory cytokine, in the control of metallothioneins expression...

  10. AUTOIMMUNE CYTOPENIAS IN CHRONIC LYMPHOCYTIC LEUKEMIA, FACTS AND MYTHS

    Directory of Open Access Journals (Sweden)

    Pavankumar Tandra

    2013-11-01

    Full Text Available CLL has been defined as presence of more than 5000 small mature appearing monoclonal B lymphocytes with a specific immunophenotype in peripheral blood. It is a well-known fact that CLL is associated with autoimmune cytopenias. CLL cells are CD5+ B lymphocytes, and usually are not the “guilty” cells which produce autoantibodies. T cell defect is another characteristic of CLL and the total number of T cells is increased, and there is inversion of the CD4/CD8 ratio. Autoimmune hemolytic anemia (AIHA is the most common autoimmune complication of CLL and has been reported in 10-25% of CLL patients. However, the stage-adjusted estimated rate of AIHA in CLL is about 5%. Conversely, CLL is three times more common in patients who present with AIHA. Direct agglutinin test (DAT is positive in 7-14% of CLL patients but AIHA may also occur in DAT negative patients. Autoimmune thrombocytopenia (AIT is the second most common complication of CLL and has been reported in 2-3% of patients. DAT is positive in AIT but presence of antiplatelet antibodies is neither diagnostic nor reliable. Autoimmune neutropenia (AIN and pure red cell aplasia (PRCA are very rare complications of CLL and like other autoimmune complications of CLL may occur at any clinical stage. It is believed that most case reports of AIN and PRCA in CLL actually belong to large granular lymphocytic leukemia (LGL. Non-hematologic autoimmune complications of CLL including cold agglutinin disease (CAD, paraneoplastic pemphigus (PNP, acquired angioedema, and anti-myelin associated globulin are rare. Before starting any treatment, clinicians should distinguish between autoimmune cytopenias and massive bone marrow infiltration since autoimmune complications of CLL are not necessarily equal to advanced disease with poor prognosis. According to IWCLL guideline, steroids are the mainstay of treatment of simple autoimmunity. Intravenous immunoglobulin (IVIg, cyclosporine, and rituximab are used in

  11. Lupus erythematosus, thyroiditis, alopecia areata and vitiligo – A multiple autoimmune syndrome type 3 case presentation

    Directory of Open Access Journals (Sweden)

    Alin Laurentiu Tatu

    2017-04-01

    Full Text Available The combination of at least three autoimmune diseases in the same patient has defined as multiple autoimmune syndrome (MAS. Abnormalities of T cell-mediated immunity and humoral immunity have been described previously in the literature. Aims of work were to investigate the 22 years old patient with lupus erythematosus for three years and autoimune thyroiditis for one year, regardind other possible autoimmune conditions and to establish a treatment to control the diseases. The clinical exam revealed some circular hairless patches on the beard appeared about three months ago and white depigmented disseminated areas started one month ago and the laboratory investigations were performed. The modified laboratory findings were total IgE 530 UI/mL, Anti-SSA (anti-RO antibodies> 200 IU/mL, SSB negative, Antinuclear antibodies (ANA positive and fine speckled, Lupus anticoagulant testing positive, Anti-thyroid peroxidase antibodies 951 UI/ml, TSH 4,7 µUI/mL. The diagnosis of multiple autoimmune syndrome(MAS type 3 including Lupus erythematosus, autoimune Thyroiditis, Alopecia Areata and Vitiligo was established. Endocrine autoimmunities are associated with autoantibodies that react to specific antigens, whereas patients with collagen diseases synthesize immunoglobulins that recognize nonorgan-specific cellular targets, such as nucleoproteins and nucleic acids. Cellular autoimmunity is important in the pathogenesis MAS. The existence of one autoimmune disorder helps lead to the discovery of other autoimmune conditions.

  12. Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE

    DEFF Research Database (Denmark)

    Liu, Yawei; Teige, Ingrid; Birnir, Bryndis

    2006-01-01

    Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS) inflamma......Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS......) inflammation. Neurons induce the proliferation of activated CD4+ T cells through B7-CD28 and transforming growth factor (TGF)-beta1-TGF-beta receptor signaling pathways, resulting in amplification of T-cell receptor signaling through phosphorylated ZAP-70, interleukin (IL)-2 and IL-9. The interaction between...... neurons and T cells results in the conversion of encephalitogenic T cells to CD25+ TGF-beta1+ CTLA-4+ FoxP3+ T regulatory (Treg) cells that suppress encephalitogenic T cells and inhibit experimental autoimmune encephalomyelitis. Suppression is dependent on cytotoxic T lymphocyte antigen (CTLA)-4...

  13. De novo autoimmune hepatitis after liver transplantation.

    Science.gov (United States)

    Lohse, Ansgar W; Weiler-Norman, Christina; Burdelski, Martin

    2007-10-01

    The Kings College group was the first to describe a clinical syndrome similar to autoimmune hepatitis in children and young adults transplanted for non-immune mediated liver diseases. They coined the term "de novo autoimmune hepatitis". Several other liver transplant centres confirmed this observation. Even though the condition is uncommon, patients with de novo AIH are now seen in most of the major transplant centres. The disease is usually characterized by features of acute hepatitis in otherwise stable transplant recipients. The most characteristic laboratory hallmark is a marked hypergammaglobulinaemia. Autoantibodies are common, mostly ANA. We described also a case of LKM1-positivity in a patients transplanted for Wilson's disease, however this patients did not develop clinical or histological features of AIH. Development of SLA/LP-autoantibodies is also not described. Therefore, serologically de novo AIH appears to correspond to type 1 AIH. Like classical AIH patients respond promptly to treatment with increased doses of prednisolone and azathioprine, while the calcineurin inhibitors cyclosporine or tacrolimus areof very limited value - which is not surprising, as almost all patients develop de novo AIH while receiving these drugs. Despite the good response to treatment, most patients remain a clinical challenge as complete stable remissions are uncommon and flares, relapses and chronic disease activity can often occur. Pathogenetically this syndrome is intriguing. It is not clear, if the immune response is directed against allo-antigens, neo-antigens in the liver, or self-antigens, possibly shared by donor and host cells. It is very likely that the inflammatory milieu due to alloreactive cells in the transplanted organ contribute to the disease process. Either leading to aberrant antigen presentation, or providing co-stimulatory signals leading to the breaking of self-tolerance. The development of this disease in the presence of treatment with calcineurin

  14. Strain-specific induction of experimental autoimmune prostatitis (EAP) in mice.

    Science.gov (United States)

    Jackson, Christopher M; Flies, Dallas B; Mosse, Claudio A; Parwani, Anil; Hipkiss, Edward L; Drake, Charles G

    2013-05-01

    Prostatitis, a clinical syndrome characterized by pelvic pain and inflammation, is common in adult males. Although several induced and spontaneous murine models of prostatitis have been explored, the role of genetic background on induction has not been well-defined. Using a standard methodology for the induction of experimental autoimmune prostatitis (EAP), we investigated both acute and chronic inflammation on several murine genetic backgrounds. In our colony, nonobese diabetic (NOD) mice evinced spontaneous prostatitis that was not augmented by immunization with rat prostate extract (RPE). In contrast, the standard laboratory strain Balb/c developed chronic inflammation in response to RPE immunization. Development of EAP in other strains was variable. These data suggest that Balb/c mice injected with RPE may provide a useful model for chronic prostatic inflammation. Copyright © 2012 Wiley Periodicals, Inc.

  15. Midkine and multiple sclerosis

    OpenAIRE

    Takeuchi, Hideyuki

    2014-01-01

    Multiple sclerosis (MS) is an autoimmune neurological disease characterized by inflammatory demyelination with subsequent neuronal damage in the CNS. MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have been thought as autoreactive Th1 and Th17 cell-mediated diseases. CD4+CD25+FoxP3+ regulatory T-cell (Treg) plays a pivotal role in autoimmune tolerance, and tolerogenic dendritic cells (DCreg) drive the development of inducible Treg cells. Thus, a dysfunction in the d...

  16. Midkine inhibits inducible regulatory T cell differentiation by suppressing the development of tolerogenic dendritic cells.

    Science.gov (United States)

    Sonobe, Yoshifumi; Li, Hua; Jin, Shijie; Kishida, Satoshi; Kadomatsu, Kenji; Takeuchi, Hideyuki; Mizuno, Tetsuya; Suzumura, Akio

    2012-03-15

    Midkine (MK), a heparin-binding growth factor, reportedly contributes to inflammatory diseases, including Crohn's disease and rheumatoid arthritis. We previously showed that MK aggravates experimental autoimmune encephalomyelitis (EAE) by decreasing regulatory CD4(+)CD25(+)Foxp3(+) T cells (Tregs), a population that regulates the development of autoimmune responses, although the precise mechanism remains uncertain. In this article, we show that MK produced in inflammatory conditions suppresses the development of tolerogenic dendritic cells (DCregs), which drive the development of inducible Treg. MK suppressed DCreg-mediated expansion of the CD4(+)CD25(+)Foxp3(+) Treg population. DCregs expressed significantly higher levels of CD45RB and produced significantly less IL-12 compared with conventional dendritic cells. However, MK downregulated CD45RB expression and induced IL-12 production by reducing phosphorylated STAT3 levels via src homology region 2 domain-containing phosphatase-2 in DCreg. Inhibiting MK activity with anti-MK RNA aptamers, which bind to the targeted protein to suppress the function of the protein, increased the numbers of CD11c(low)CD45RB(+) dendritic cells and Tregs in the draining lymph nodes and suppressed the severity of EAE, an animal model of multiple sclerosis. Our results also demonstrated that MK was produced by inflammatory cells, in particular, CD4(+) T cells under inflammatory conditions. Taken together, these results suggest that MK aggravates EAE by suppressing DCreg development, thereby impairing the Treg population. Thus, MK is a promising therapeutic target for various autoimmune diseases.

  17. Differential effects of B7-1 blockade in the rat experimental autoimmune encephalomyelitis model

    DEFF Research Database (Denmark)

    Gallon, L; Chandraker, A; Issazadeh-Navikas, Shohreh

    1997-01-01

    that CD28-B7 blockade by systemic administration of CTLA4Ig prevents actively induced EAE. Since CTLA4Ig binds to both B7-1 and B7-2, we used a mutant form of CTLA4Ig (CTLA4IgY100F) that binds only B7-1, to study the role of B7-1 blockade in this model. Such a reagent avoids the potential of signaling...... treated with systemic CTLA4gY100F did not. More importantly, systemic administration of CTLA4IgY100F abrogated the protective effect of ex vivo treated APCs. These data suggest an important regulatory role for B7-1, perhaps through binding to CTLA4, in this model of EAE. Understanding the role......Blocking the CD28-B7 T cell costimulatory activation pathway protects animals from developing experimental autoimmune encephalomyelitis (EAE). In the mouse EAE model, selective blockade of B7-1 by specific mAbs has been shown to protect animals from EAE. In the Lewis rat model, we have shown...

  18. Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell-mediated liver regeneration

    DEFF Research Database (Denmark)

    Jelnes, Peter; Santoni-Rugiu, Eric; Rasmussen, Morten

    2007-01-01

    The experimental protocols used in the investigation of stem cell-mediated liver regeneration in rodents are characterized by activation of the hepatic stem cell compartment in the canals of Hering followed by transit amplification of oval cells and their subsequent differentiation along hepatic...... the molecular phenotypes of oval cells in several of the most commonly used protocols of stem cell-mediated liver regeneration-namely, treatment with 2-acetylaminofluorene and partial (70%) hepatectomy (AAF/PHx); a choline-deficient, ethionine-supplemented (CDE) diet; a 3,5-diethoxycarbonyl-1,4-dihydro...... remarkable phenotypic discrepancies exhibited by oval cells in stem cell-mediated liver regeneration between rats and mice and underline the importance of careful extrapolation between individual species....

  19. Hot topics in autoimmune diseases: perspectives from the 2013 Asian Congress of Autoimmunity.

    Science.gov (United States)

    Selmi, Carlo

    2014-08-01

    Our understanding of the pathogenic mechanisms and possible treatments of autoimmune diseases has significantly increased over the past decade. Nonetheless, numerous major issues remain open and such issues span from epidemiology to clinimetrics and from the role of infectious agents to the search for accurate biomarkers in paradigmatic conditions such as systemic lupus erythematosus, rheumatoid arthritis, and spondyloarthropathies. In the case of cardiovascular comorbidities of autoimmune diseases or, more generally, the pathogenesis of atherosclerosis, fascinating evidence points to a central role of autoimmunity and metabolic dysfunctions and a possible role of therapies targeting inflammation to ameliorate both conditions. Basic science and translational medicine contribute to identify common mechanisms that underlie different autoimmune diseases, as in the case of tumor necrosis factor alpha, and more recently vitamin D, autoantibodies, T and B regulatory cells, and microRNA. Finally, new therapies are expected to significantly change our approach to autoimmune diseases, as represented by the recent FDA approval of the first oral JAK inhibitor. The present article moves from the major topics that were discussed at the 2013 Asian Congress of Autoimmunity in Hong Kong to illustrate the most recent data from leading journals in autoimmunity and immunology. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Hydrolyzed infant formula and early β-cell autoimmunity

    DEFF Research Database (Denmark)

    Knip, Mikael; Åkerblom, Hans K; Becker, Dorothy

    2014-01-01

    -associated autoantibodies out of 4 analyzed. Autoantibodies to insulin, glutamic acid decarboxylase, and the insulinoma-associated-2 (IA-2) molecule were analyzed using radiobinding assays and islet cell antibodies with immunofluorescence during a median observation period of 7.0 years (mean, 6.3 years). RESULTS......IMPORTANCE: The disease process leading to clinical type 1 diabetes often starts during the first years of life. Early exposure to complex dietary proteins may increase the risk of β-cell autoimmunity in children at genetic risk for type 1 diabetes. Extensively hydrolyzed formulas do not contain...... intact proteins. OBJECTIVE: To test the hypothesis that weaning to an extensively hydrolyzed formula decreases the cumulative incidence of diabetes-associated autoantibodies in young children. DESIGN, SETTING, AND PARTICIPANTS: A double-blind randomized clinical trial of 2159 infants with HLA...

  1. Delayed onset of experimental autoimmune encephalomyelitis in Olig1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaoli Guo

    Full Text Available BACKGROUND: Olig1 is a basic helix-loop-helix (bHLH transcription factor that is essential for oligodendrogenesis and efficient remyelination. However, its role in neurodegenerative disorders has not been well-elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of Olig1 deficiency on experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. We show that the mean disease onset of myelin oligodendrocyte glycoprotein (MOG-induced EAE in Olig1(-/- mice is significantly slower than wide-type (WT mice (19.8 ± 2.2 in Olig1(-/- mice and 9.5 ± 0.3 days in WT mice. In addition, 10% of Olig1(-/- mice did not develop EAE by the end of the observation periods (60 days. The severity of EAE, the extent of demyelination, and the activation of microglial cells and astrocytes in spinal cords, were significantly milder in Olig1(-/- mice compared with WT mice in the early stage. Moreover, the visual function, as assessed by the second-kernel of multifocal electroretinograms, was better preserved, and the number of degenerating axons in the optic nerve was significantly reduced in Olig1(-/- mice. Interestingly, Olig1 deficiency had no effect on T cell response capability, however, it reduced the expression of myelin proteins such as MOG, myelin basic protein (MBP and myelin-associated glycoprotein (MAG. The expression of Olig2 remained unchanged in the optic nerve and brain, and it was reduced in the spinal cord of Olig1(-/- mice. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the Olig1 signaling pathways may be involved in the incidence rate and the severity of neurological symptoms in MS.

  2. CD83 Antibody Inhibits Human B Cell Responses to Antigen as well as Dendritic Cell-Mediated CD4 T Cell Responses.

    Science.gov (United States)

    Wong, Kuan Y; Baron, Rebecca; Seldon, Therese A; Jones, Martina L; Rice, Alison M; Munster, David J

    2018-05-15

    Anti-CD83 Ab capable of Ab-dependent cellular cytotoxicity can deplete activated CD83 + human dendritic cells, thereby inhibiting CD4 T cell-mediated acute graft-versus-host disease. As CD83 is also expressed on the surface of activated B lymphocytes, we hypothesized that anti-CD83 would also inhibit B cell responses to stimulation. We found that anti-CD83 inhibited total IgM and IgG production in vitro by allostimulated human PBMC. Also, Ag-specific Ab responses to immunization of SCID mice xenografted with human PBMC were inhibited by anti-CD83 treatment. This inhibition occurred without depletion of all human B cells because anti-CD83 lysed activated CD83 + B cells by Ab-dependent cellular cytotoxicity and spared resting (CD83 - ) B cells. In cultured human PBMC, anti-CD83 inhibited tetanus toxoid-stimulated B cell proliferation and concomitant dendritic cell-mediated CD4 T cell proliferation and expression of IFN-γ and IL-17A, with minimal losses of B cells (80% of B cells but had no effect on CD4 T cell proliferation and cytokine expression. By virtue of the ability of anti-CD83 to selectively deplete activated, but not resting, B cells and dendritic cells, with the latter reducing CD4 T cell responses, anti-CD83 may be clinically useful in autoimmunity and transplantation. Advantages might include inhibited expansion of autoantigen- or alloantigen-specific B cells and CD4 T cells, thus preventing further production of pathogenic Abs and inflammatory cytokines while preserving protective memory and regulatory cells. Copyright © 2018 by The American Association of Immunologists, Inc.

  3. Autoantibodies in autoimmune thyroid disease promote immune complex formation with self antigens and increase B cell and CD4+ T cell proliferation in response to self antigens

    DEFF Research Database (Denmark)

    Nielsen, Claus Henrik; Hegedüs, Laszlo; Leslie, Robert Graham Quinton

    2004-01-01

    's thyroiditis (HT), Graves' disease (GD) and healthy controls were incubated with human thyroglobulin (Tg) before adding normal peripheral blood mononuclear cells. The deposition of immunoglobulins and C3 fragments on B cells was then assessed. Inclusion of Tg in serum from HT patients promoted B cell capture......B cells are centrally involved as antigen-presenting cells in certain autoimmune diseases. To establish whether autoantibodies form immune complexes (IC) with self-antigens in autoimmune thyroid disease (AITD) and promote B cell uptake of self-antigen, sera from patients with Hashimoto...

  4. Autoantibodies in autoimmune thyroid disease promote immune complex formation with self antigens and increase B cell and CD4+ T cell proliferation in response to self antigens

    DEFF Research Database (Denmark)

    Nielsen, Claus Henrik; Hegedüs, Laszlo; Leslie, Robert Graham Quinton

    2004-01-01

    B cells are centrally involved as antigen-presenting cells in certain autoimmune diseases. To establish whether autoantibodies form immune complexes (IC) with self-antigens in autoimmune thyroid disease (AITD) and promote B cell uptake of self-antigen, sera from patients with Hashimoto......'s thyroiditis (HT), Graves' disease (GD) and healthy controls were incubated with human thyroglobulin (Tg) before adding normal peripheral blood mononuclear cells. The deposition of immunoglobulins and C3 fragments on B cells was then assessed. Inclusion of Tg in serum from HT patients promoted B cell capture...

  5. AUTOIMMUNE DISEASE DURING PREGNANCY AND THE MICROCHIMERISM LEGACY OF PREGNANCY

    Science.gov (United States)

    Adams Waldorf, Kristina M.; Nelson, J. Lee

    2009-01-01

    Pregnancy has both short-term effects and long-term consequences. For women who have an autoimmune disease and subsequently become pregnant, pregnancy can induce amelioration of the mother’s disease, such as in rheumatoid arthritis, while exacerbating or having no effect on other autoimmune diseases like systemic lupus erythematosus. That pregnancy also leaves a long-term legacy has recently become apparent by the discovery that bi-directional cell trafficking results in persistence of fetal cells in the mother and of maternal cells in her offspring for decades after birth. The long-term persistence of a small number of cells (or DNA) from a genetically disparate individual is referred to as microchimerism. While microchimerism is common in healthy individuals and is likely to have health benefits, microchimerism has been implicated in some autoimmune diseases such as systemic sclerosis. In this paper, we will first discuss short-term effects of pregnancy on women with autoimmune disease. Pregnancy-associated changes will be reviewed for selected autoimmune diseases including rheumatoid arthritis, systemic lupus erythematosus and autoimmune thyroid disease. The pregnancy-induced amelioration of rheumatoid arthritis presents a window of opportunity for insights into both immunological mechanisms of fetal-maternal tolerance and pathogenic mechanisms in autoimmunity. A mechanistic hypothesis for the pregnancy-induced amelioration of rheumatoid arthritis will be described. We will then discuss the legacy of maternal-fetal cell transfer from the perspective of autoimmune diseases. Fetal and maternal microchimerism will be reviewed with a focus on systemic sclerosis (scleroderma), autoimmune thyroid disease, neonatal lupus and type I diabetes mellitus. PMID:18716941

  6. Autoimmune gastritis and parietal cell reactivity in two children with abnormal intestinal permeability

    NARCIS (Netherlands)

    Greenwood, Deanne L. V.; Crock, Patricia; Braye, Stephen; Davidson, Patricia; Sentry, John W.

    Autoimmune gastritis is characterised by lymphocytic infiltration of the gastric submucosa, with loss of parietal and chief cells and achlorhydria. Often, gastritis is expressed clinically as cobalamin deficiency with megaloblastic anaemia, which is generally described as a disease of the elderly.

  7. Treatment with NAD(+) inhibited experimental autoimmune encephalomyelitis by activating AMPK/SIRT1 signaling pathway and modulating Th1/Th17 immune responses in mice.

    Science.gov (United States)

    Wang, Jueqiong; Zhao, Congying; Kong, Peng; Sun, Huanhuan; Sun, Zhe; Bian, Guanyun; Sun, Yafei; Guo, Li

    2016-10-01

    Nicotinamide adenine dinucleotide (NAD(+)) plays vital roles in mitochondrial functions, cellular energy metabolism and calcium homeostasis. In this study, we investigated the effect of NAD(+) administration for the treatment of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. EAE, a classical animal model of multiple sclerosis (MS), was induced by subcutaneous injection of myelin oligodendrocyteglycoprotein (MOG). The mice were treated with 250mg/kg (body weight) NAD(+) in PBS administered intraperitoneally once daily. We observed that NAD(+) treatment could lessen the severity of EAE. Additionally, NAD(+) treatment attenuated pathological injuries of EAE mice. We also found that the AMP-activated protein kinase (AMPK)/silent mating-type information regulation 2 homolog 1(SIRT1) pathway was activated in the NAD(+)-treated mice and NAD(+) treatment suppressed pro-inflammatory T cell responses. Our findings demonstrated that NAD(+) could be an effective and promising agent to treat multiple sclerosis and its effects on other autoimmune diseases should be explored. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Cellular immunity and immunopathology in autoimmune Addison's disease.

    Science.gov (United States)

    Bratland, Eirik; Husebye, Eystein S

    2011-04-10

    Autoimmune adrenocortical failure, or Addison's disease, is a prototypical organ-specific autoimmune disorder. In common with related autoimmune endocrinopathies, Addison's disease is only manageable to a certain extent with replacement therapy being the only treatment option. Unfortunately, the available therapy does not restore the physiological hormone levels and biorhythm. The key to progress in treating and preventing autoimmune Addison's disease lies in improving our understanding of the predisposing factors, the mechanisms responsible for the progression of the disease, and the interactions between adrenal antigens and effector cells and molecules of the immune system. The aim of the present review is to summarize the current knowledge on the role of T cells and cellular immunity in the pathogenesis of autoimmune Addison's disease. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID.

    Science.gov (United States)

    Sauer, Aisha V; Brigida, Immacolata; Carriglio, Nicola; Hernandez, Raisa Jofra; Scaramuzza, Samantha; Clavenna, Daniela; Sanvito, Francesca; Poliani, Pietro L; Gagliani, Nicola; Carlucci, Filippo; Tabucchi, Antonella; Roncarolo, Maria Grazia; Traggiai, Elisabetta; Villa, Anna; Aiuti, Alessandro

    2012-02-09

    Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)-mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA-treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA(-/-) Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA-treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA-treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID.

  10. Cerebral biochemical pathways in experimental autoimmune encephalomyelitis and adjuvant arthritis: a comparative metabolomic study.

    Directory of Open Access Journals (Sweden)

    Norbert W Lutz

    Full Text Available Many diseases, including brain disorders, are associated with perturbations of tissue metabolism. However, an often overlooked issue is the impact that inflammations outside the brain may have on brain metabolism. Our main goal was to study similarities and differences between brain metabolite profiles of animals suffering from experimental autoimmune encephalomyelitis (EAE and adjuvant arthritis (AA in Lewis rat models. Our principal objective was the determination of molecular protagonists involved in the metabolism underlying these diseases. EAE was induced by intraplantar injection of complete Freund's adjuvant (CFA and spinal-cord homogenate (SC-H, whereas AA was induced by CFA only. Naive rats served as controls (n = 9 for each group. Two weeks after inoculation, animals were sacrificed, and brains were removed and processed for metabolomic analysis by NMR spectroscopy or for immunohistochemistry. Interestingly, both inflammatory diseases caused similar, though not identical, changes in metabolites involved in regulation of brain cell size and membrane production: among the osmolytes, taurine and the neuronal marker, N-acetylaspartate, were decreased, and the astrocyte marker, myo-inositol, slightly increased in both inoculated groups compared with controls. Also ethanolamine-containing phospholipids, sources of inflammatory agents, and several glycolytic metabolites were increased in both inoculated groups. By contrast, the amino acids, aspartate and isoleucine, were less concentrated in CFA/SC-H and control vs. CFA rats. Our results suggest that inflammatory brain metabolite profiles may indicate the existence of either cerebral (EAE or extra-cerebral (AA inflammation. These inflammatory processes may act through distinct pathways that converge toward similar brain metabolic profiles. Our findings open new avenues for future studies aimed at demonstrating whether brain metabolic effects provoked by AA are pain/stress-mediated and

  11. Cerebral biochemical pathways in experimental autoimmune encephalomyelitis and adjuvant arthritis: a comparative metabolomic study.

    Science.gov (United States)

    Lutz, Norbert W; Fernandez, Carla; Pellissier, Jean-François; Cozzone, Patrick J; Béraud, Evelyne

    2013-01-01

    Many diseases, including brain disorders, are associated with perturbations of tissue metabolism. However, an often overlooked issue is the impact that inflammations outside the brain may have on brain metabolism. Our main goal was to study similarities and differences between brain metabolite profiles of animals suffering from experimental autoimmune encephalomyelitis (EAE) and adjuvant arthritis (AA) in Lewis rat models. Our principal objective was the determination of molecular protagonists involved in the metabolism underlying these diseases. EAE was induced by intraplantar injection of complete Freund's adjuvant (CFA) and spinal-cord homogenate (SC-H), whereas AA was induced by CFA only. Naive rats served as controls (n = 9 for each group). Two weeks after inoculation, animals were sacrificed, and brains were removed and processed for metabolomic analysis by NMR spectroscopy or for immunohistochemistry. Interestingly, both inflammatory diseases caused similar, though not identical, changes in metabolites involved in regulation of brain cell size and membrane production: among the osmolytes, taurine and the neuronal marker, N-acetylaspartate, were decreased, and the astrocyte marker, myo-inositol, slightly increased in both inoculated groups compared with controls. Also ethanolamine-containing phospholipids, sources of inflammatory agents, and several glycolytic metabolites were increased in both inoculated groups. By contrast, the amino acids, aspartate and isoleucine, were less concentrated in CFA/SC-H and control vs. CFA rats. Our results suggest that inflammatory brain metabolite profiles may indicate the existence of either cerebral (EAE) or extra-cerebral (AA) inflammation. These inflammatory processes may act through distinct pathways that converge toward similar brain metabolic profiles. Our findings open new avenues for future studies aimed at demonstrating whether brain metabolic effects provoked by AA are pain/stress-mediated and/or due to the

  12. Progress in diagnosis and treatment of autoimmune pancreatitis

    Directory of Open Access Journals (Sweden)

    YIN Tao

    2015-05-01

    Full Text Available Autoimmune pancreatitis (AIP is a special type of chronic pancreatitis that originates from an autoimmune-mediated mechanism. AIP has unique radiological, serological, and histopathological features, often accompanied by peripancreatic lesions. AIP may be easily confused with pancreatic cancer and cholangiocarcinoma. It is necessary to diagnose AIP while integrating a variety of clinical indicators. Steroid therapy should be performed for patients diagnosed with AIP, and surgical treatment can be selected if necessary.

  13. Autoimmunity-Basics and link with periodontal disease.

    Science.gov (United States)

    Kaur, Gagandeep; Mohindra, Kanika; Singla, Shifali

    2017-01-01

    Autoimmune reactions reflect an imbalance between effector and regulatory immune responses, typically develop through stages of initiation and propagation, and often show phases of resolution (indicated by clinical remissions) and exacerbations (indicated by symptomatic flares). The fundamental underlying mechanism of autoimmunity is defective elimination and/or control of self-reactive lymphocytes. Periodontal diseases are characterized by inflammatory conditions that directly affect teeth-supporting structures, which are the major cause of tooth loss. Several studies have demonstrated the involvement of autoimmune responses in periodontal disease. Evidence of involvement of immunopathology has been reported in periodontal disease. Bacteria in the dental plaque induce antibody formation. Autoreactive T-cells, natural killer cells, ANCA, heat shock proteins, autoantibodies, and genetic factors are reported to have an important role in the autoimmune component of periodontal disease. The present review describes the involvement of autoimmune responses in periodontal diseases and also the mechanisms underlying these responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Microsomal Prostaglandin E Synthase-1 Facilitates an Intercellular Interaction between CD4⁺ T Cells through IL-1β Autocrine Function in Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Takemiya, Takako; Takeuchi, Chisen; Kawakami, Marumi

    2017-12-19

    Microsomal prostaglandin synthetase-1 (mPGES-1) is an inducible terminal enzyme that produces prostaglandin E₂ (PGE₂). In our previous study, we investigated the role of mPGES-1 in the inflammation and demyelination observed in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, using mPGES - 1 -deficient ( mPGES-1 -/- ) and wild-type (wt) mice. We found that mPGES-1 facilitated inflammation, demyelination, and paralysis and was induced in vascular endothelial cells and macrophages and microglia around inflammatory foci. Here, we investigated the role of interleukin-1β (IL-1β) in the intercellular mechanism stimulated by mPGES-1 in EAE spinal cords in the presence of inflammation. We found that the area invaded by CD4-positive (CD4⁺) T cells was extensive, and that PGE₂ receptors EP1-4 were more induced in activated CD4⁺ T cells of wt mice than in those of mPGES - 1 -/- mice. Moreover, IL-1β and IL-1 receptor 1 (IL-1r1) were produced by 65% and 48% of CD4⁺ T cells in wt mice and by 44% and 27% of CD4⁺ T cells in mPGES-1 -/- mice. Furthermore, interleukin-17 (IL-17) was released from the activated CD4⁺ T cells. Therefore, mPGES-1 stimulates an intercellular interaction between CD4⁺ T cells by upregulating the autocrine function of IL-1β in activated CD4⁺ T cells, which release IL-17 to facilitate axonal and myelin damage in EAE mice.

  15. Endogenous n-3 polyunsaturated fatty acids attenuate T cell-mediated hepatitis via autophagy activation

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2016-09-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFAs exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A was administered intravenously to wild-type (WT and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase (ALT activity, and inhibited production of pro-inflammatory cytokines (e.g. TNF-α, IL-6, IL-17A and IFN-γ. In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism, and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  16. The effect of types I and III interferons on adrenocortical cells and its possible implications for autoimmune Addison's disease.

    Science.gov (United States)

    Hellesen, A; Edvardsen, K; Breivik, L; Husebye, E S; Bratland, E

    2014-06-01

    Autoimmune Addison's disease (AAD) is caused by selective destruction of the hormone-producing cells of the adrenal cortex. As yet, little is known about the potential role played by environmental factors in this process. Type I and/or type III interferons (IFNs) are signature responses to virus infections, and have also been implicated in the pathogenesis of autoimmune endocrine disorders such as type 1 diabetes and autoimmune thyroiditis. Transient development of AAD and exacerbation of established or subclinical disease, as well as the induction of autoantibodies associated with AAD, have been reported following therapeutic administration of type I IFNs. We therefore hypothesize that exposure to such IFNs could render the adrenal cortex susceptible to autoimmune attack in genetically predisposed individuals. In this study, we investigated possible immunopathological effects of type I and type III IFNs on adrenocortical cells in relation to AAD. Both types I and III IFNs exerted significant cytotoxicity on NCI-H295R adrenocortical carcinoma cells and potentiated IFN-γ- and polyinosine-polycytidylic acid [poly (I : C)]-induced chemokine secretion. Furthermore, we observed increased expression of human leucocyte antigen (HLA) class I molecules and up-regulation of 21-hydroxylase, the primary antigenic target in AAD. We propose that these combined effects could serve to initiate or aggravate an ongoing autoimmune response against the adrenal cortex in AAD. © 2014 British Society for Immunology.

  17. Inhibition of Myeloperoxidase at the Peak of Experimental Autoimmune Encephalomyelitis Restores Blood-Brain-Barrier Integrity and Ameliorates Disease Severity.

    Science.gov (United States)

    Zhang, Hao; Ray, Avijit; Miller, Nichole M; Hartwig, Danielle; Pritchard, Kirkwood A; Dittel, Bonnie N

    2015-11-12

    Oxidative stress is thought to contribute to disease pathogenesis in the central nervous system (CNS) disease multiple sclerosis (MS). Myeloperoxidase (MPO), a potent peroxidase that generates toxic radicals and oxidants, is increased in the CNS during MS. However, the exact mechanism whereby MPO drives MS pathology is not known. We addressed this question by inhibiting MPO in mice with experimental autoimmune encephalomyelitis (EAE) using our non-toxic MPO inhibitor KYC. We found that therapeutic administration of KYC for five days starting at the peak of disease significantly attenuated EAE disease severity, reduced myeloid cell numbers and permeability of the blood-brain-barrier (BBB). These data indicate that inhibition of MPO by KYC restores BBB integrity thereby limiting migration of myeloid cells into the CNS that drive EAE pathogenesis. In addition, these observations indicate that KYC may be an effective therapeutic agent for the treatment of MS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Type 1 diabetes and polyglandular autoimmune syndrome: A review

    Science.gov (United States)

    Hansen, Martin P; Matheis, Nina; Kahaly, George J

    2015-01-01

    Type 1 diabetes (T1D) is an autoimmune disorder caused by inflammatory destruction of the pancreatic tissue. The etiopathogenesis and characteristics of the pathologic process of pancreatic destruction are well described. In addition, the putative susceptibility genes for T1D as a monoglandular disease and the relation to polyglandular autoimmune syndrome (PAS) have also been well explored. The incidence of T1D has steadily increased in most parts of the world, especially in industrialized nations. T1D is frequently associated with autoimmune endocrine and non-endocrine diseases and patients with T1D are at a higher risk for developing several glandular autoimmune diseases. Familial clustering is observed, which suggests that there is a genetic predisposition. Various hypotheses pertaining to viral- and bacterial-induced pancreatic autoimmunity have been proposed, however a definitive delineation of the autoimmune pathomechanism is still lacking. In patients with PAS, pancreatic and endocrine autoantigens either colocalize on one antigen-presenting cell or are expressed on two/various target cells sharing a common amino acid, which facilitates binding to and activation of T cells. The most prevalent PAS phenotype is the adult type 3 variant or PAS type III, which encompasses T1D and autoimmune thyroid disease. This review discusses the findings of recent studies showing noticeable differences in the genetic background and clinical phenotype of T1D either as an isolated autoimmune endocrinopathy or within the scope of polyglandular autoimmune syndrome. PMID:25685279

  19. Downregulation of IL-12 and a novel negative feedback system mediated by CD25+CD4+ T cells

    International Nuclear Information System (INIS)

    Sato, Kojiro; Tateishi, Shoko; Kubo, Kanae; Mimura, Toshihide; Yamamoto, Kazuhiko; Kanda, Hiroko

    2005-01-01

    CD25 + CD4 + regulatory T cells suppress immune responses and are believed to play roles in preventing autoimmune diseases. However, the mechanism(s) underlying the suppression and the regulation of their homeostasis remain to be elucidated. Here we show that these regulatory T cells downregulated CD25 - CD4 + T-cell-mediated production of IL-12 from antigen-presenting cells, which can act as a growth factor for CD25 - CD4 + T cells. We further found that CD25 + CD4 + T cells, despite their well-documented 'anergic' nature, proliferate significantly in vitro only when CD25 - CD4 + T cells are present. Notably, this proliferation was strongly dependent on IL-2 and relatively independent of IL-12. Thus, CD25 + CD4 + T cells suppress CD25 - CD4 + T-cell responses, at least in part, by inhibiting IL-12 production while they themselves can undergo proliferation with the mediation of CD25 - CD4 + T cells in vitro. These results offer a novel negative feedback system involving a tripartite interaction among CD25 + CD4 + and CD25 - CD4 + T cells, and APCs that may contribute to the termination of immune responses

  20. B cell biology: implications for treatment of systemic lupus erythematosus.

    Science.gov (United States)

    Anolik, J H

    2013-04-01

    B cells are critical players in the orchestration of properly regulated immune responses, normally providing protective immunity without autoimmunity. Balance in the B cell compartment is achieved through the finely regulated participation of multiple B cell populations with different antibody-dependent and independent functions. Both types of functions allow B cells to modulate other components of the innate and adaptive immune system. Autoantibody-independent B cell functions include antigen presentation, T cell activation and polarization, and dendritic cell modulation. Several of these functions are mediated by the ability of B cells to produce immunoregulatory cytokines and chemokines and by their critical contribution to lymphoid tissue development and organization including the development of ectopic tertiary lymphoid tissue. Additionally, the functional versatility of B cells enables them to play either protective or pathogenic roles in autoimmunity. In turn, B cell dysfunction has been critically implicated in the pathophysiology of systemic lupus erythematosus (SLE), a complex disease characterized by the production of autoantibodies and heterogeneous clinical involvement. Thus, the breakdown of B cell tolerance is a defining and early event in the disease process and may occur by multiple pathways, including alterations in factors that affect B cell activation thresholds, B cell longevity, and apoptotic cell processing. Once tolerance is broken, autoantibodies contribute to autoimmunity by multiple mechanisms including immune-complex mediated Type III hypersensitivity reactions, type II antibody-dependent cytotoxicity, and by instructing innate immune cells to produce pathogenic cytokines including IFNα, TNF and IL-1. The complexity of B cell functions has been highlighted by the variable success of B cell-targeted therapies in multiple autoimmune diseases, including those conventionally viewed as T cell-mediated conditions. Given the widespread

  1. Green tea epigallocatechin-3-gallate modulates differentiation of naive CD4+ T cells into specific lineage effector cells

    Science.gov (United States)

    CD4+ T helper (Th) subsets Th1, Th9, and Th17 cells are implicated in inducing autoimmunity whereas regulatory T cells (Treg) have a protective effect. We previously showed that epigallocatechin-3-gallate (EGCG) attenuated experimental autoimmune encephalomyelitis (EAE) and altered CD4+ T cell subpo...

  2. The Transcriptional Coactivator Bob1 Is Associated With Pathologic B Cell Responses in Autoimmune Tissue Inflammation

    NARCIS (Netherlands)

    Levels, Maria J.; Van Tok, Melissa N.; Cantaert, Tineke; Canete, Juan D.; Kroese, Frans G. M.; Germar, Kristine; Spits, Hergen; Baeten, Dominique L. P.; Yeremenko, Nataliya G.

    Objective. The molecular mechanisms steering abnormal B cell responses in autoimmune diseases remain poorly understood. We undertook this study to identify molecular switches controlling pathologic B cell responses in rheumatoid arthritis (RA). Methods. Candidate molecules were identified by gene

  3. Two Unusual Cases of Oral Lichen Planus Arising After Oral Squamous Cell Carcinoma: Can Oral Cancer Trigger Autoimmunity?

    Science.gov (United States)

    Gissi, Davide Bartolomeo; Asioli, Sofia; Gabusi, Andrea

    2017-08-01

    Autoimmune diseases occur when the immune system fails to recognize self-antigens expressed on the body's own cells and attacks them. Oral lichen planus (OLP) is a chronic autoimmune mucocutaneous disease of the oral cavity characterized by white/red lesions. Considered a potentially malignant disorder, OLP evolution into oral squamous cell carcinoma (OSCC) is still a matter of debate. While chronic autoimmune inflammation is considered a potential risk factor for malignant transformation in many solid tumors, the opposite idea that cancer may trigger autoimmune responses remains controversial. We describe 2 patients who developed lesions clinically suggestive of OLP with histological evidence of lichenoid infiltration some time after OSCC removal, even in areas far from the neoplastic site. Neither patient had OLP before the diagnosis of OSCC, or reported exposure to OLP-associated etiologic factors, and neither. experienced tumor recurrence during follow-up. Our findings suggest that oral cancer remission may be linked to OLP development, but further studies are necessary to unveil the underlying mechanisms and possible prognostic implications.

  4. A Novel Approach to Reinstating Tolerance in Experimental Autoimmune Myasthenia Gravis Using a Targeted Fusion Protein, mCTA1–T146

    Directory of Open Access Journals (Sweden)

    Alessandra Consonni

    2017-09-01

    Full Text Available Reinstating tissue-specific tolerance has attracted much attention as a means to treat autoimmune diseases. However, despite promising results in rodent models of autoimmune diseases, no established tolerogenic therapy is clinically available yet. In the experimental autoimmune myasthenia gravis (EAMG model several protocols have been reported that induce tolerance against the prime disease-associated antigen, the acetylcholine receptor (AChR at the neuromuscular junction. Using the whole AChR, the extracellular part or peptides derived from the receptor, investigators have reported variable success with their treatments, though, usually relatively large amounts of antigen has been required. Hence, there is a need for better formulations and strategies to improve on the efficacy of the tolerance-inducing therapies. Here, we report on a novel targeted fusion protein carrying the immunodominant peptide from AChR, mCTA1–T146, which given intranasally in repeated microgram doses strongly suppressed induction as well as ongoing EAMG disease in mice. The results corroborate our previous findings, using the same fusion protein approach, in the collagen-induced arthritis model showing dramatic suppressive effects on Th1 and Th17 autoaggressive CD4 T cells and upregulated regulatory T cell activities with enhanced IL10 production. A suppressive gene signature with upregulated expression of mRNA for TGFβ, IL10, IL27, and Foxp3 was clearly detectable in lymph node and spleen following intranasal treatment with mCTA1–T146. Amelioration of EAMG disease was accompanied by reduced loss of muscle AChR and lower levels of anti-AChR serum antibodies. We believe this targeted highly effective fusion protein mCTA1–T146 is a promising candidate for clinical evaluation in myasthenia gravis patients.

  5. High frequency of cytolytic 21-hydroxylase-specific CD8+ T cells in autoimmune Addison's disease patients.

    Science.gov (United States)

    Dawoodji, Amina; Chen, Ji-Li; Shepherd, Dawn; Dalin, Frida; Tarlton, Andrea; Alimohammadi, Mohammad; Penna-Martinez, Marissa; Meyer, Gesine; Mitchell, Anna L; Gan, Earn H; Bratland, Eirik; Bensing, Sophie; Husebye, Eystein S; Pearce, Simon H; Badenhoop, Klaus; Kämpe, Olle; Cerundolo, Vincenzo

    2014-09-01

    The mechanisms behind destruction of the adrenal glands in autoimmune Addison's disease remain unclear. Autoantibodies against steroid 21-hydroxylase, an intracellular key enzyme of the adrenal cortex, are found in >90% of patients, but these autoantibodies are not thought to mediate the disease. In this article, we demonstrate highly frequent 21-hydroxylase-specific T cells detectable in 20 patients with Addison's disease. Using overlapping 18-aa peptides spanning the full length of 21-hydroxylase, we identified immunodominant CD8(+) and CD4(+) T cell responses in a large proportion of Addison's patients both ex vivo and after in vitro culture of PBLs ≤20 y after diagnosis. In a large proportion of patients, CD8(+) and CD4(+) 21-hydroxylase-specific T cells were very abundant and detectable in ex vivo assays. HLA class I tetramer-guided isolation of 21-hydroxylase-specific CD8(+) T cells showed their ability to lyse 21-hydroxylase-positive target cells, consistent with a potential mechanism for disease pathogenesis. These data indicate that strong CTL responses to 21-hydroxylase often occur in vivo, and that reactive CTLs have substantial proliferative and cytolytic potential. These results have implications for earlier diagnosis of adrenal failure and ultimately a potential target for therapeutic intervention and induction of immunity against adrenal cortex cancer. Copyright © 2014 by The American Association of Immunologists, Inc.

  6. Mediators of Mast Cells in Bullous Pemphigoid and Dermatitis Herpetiformis

    Directory of Open Access Journals (Sweden)

    Agnieszka Zebrowska

    2014-01-01

    Full Text Available Bullous pemphigoid (BP and dermatitis herpetiformis (DH are skin diseases associated with inflammation. However, few findings exist concerning the role of mast cells in autoimmune blistering disease. Skin biopsies were taken from 27 BP and 14 DH patients, as well as 20 healthy individuals. Immunohistochemistry was used to identify the localization and mast cell expression of TNFα and MMP9 in skin lesions and perilesional skin. The serum concentrations of TNFα, MMP9, chymase, tryptase, PAF, and IL-4 were measured by immunoassay. TNFα and MMP9 expression in the epidermis and in inflammatory influxed cells in the dermis was detected in skin biopsies from patients. Although these mediators were found to be expressed in the perilesional skin of all patients, the level was much lower than that in lesional skin. Increased serum PAF levels were observed in BP patients. Mast cells may play an essential role in activating inflammation, which ultimately contributes to the tissue damage observed in BP and DH. Our findings suggest that differences in the pattern of cytokine expression directly contribute to variations in cellular infiltration in DH and BP.

  7. Novel aspects of defensins' involvement in virus-induced autoimmunity in the central nervous system.

    Science.gov (United States)

    Kazakos, Evangelos I; Kountouras, Jannis; Polyzos, Stergios A; Deretzi, Georgia

    2017-05-01

    Recent research on re-circulation of interstitial fluid from the brain parenchyma to the periphery and its inferred importance in immune surveillance dysregulation are changing our conceptualization of the pathophysiology of virus-induced autoimmunity. In this context, it is necessary to reassess the immunomodulatory properties of human defensins that are variably expressed by cerebral microglia, astrocytes and choroid plexus epithelial cells and exhibit complex and often confounding roles in neuroinflammatory processes. Therefore, in this review we describe current contributions in this field and we propose novel hypotheses regarding the potential impact of defensin-related pathways on virus-driven autoimmune neurodegeneration. In this regard, we have previously proposed that abnormal expression of defensins by penetrating the blood-brain barrier (BBB) may contribute to the pathophysiology of Helicobacter pylori-related brain neurodegenerative disorders through variable modulations of innate and adaptive immune responses. We hereby propose that impaired expression of defensins by structural components of the BBB may impede glymphatic circulation and disrupt receptor signalling in pericytes that is essential for microvascular stability, thereby retaining blood-derived toxins and bystander activated T-cells in the brain and further impairing BBB integrity and hampering viral clearance. Autoreactive T-cell infiltrates in neuronaxonal lesions characteristic of chronic central nervous system diseases, such as multiple sclerosis, are directed against both, myelin and non-myelin, antigens the precise nature of which remains enigmatic. Inadequate expression of the autoimmune regulator (AIRE), a gene expressed in medullary thymic epithelial cells, induces the recruitment of defensin-specific T-cells. These cells may access the brain, thereby causing a decrease in defensin expression and subsequent down-regulation of CD91/LRP1-mediated clearance of amyloid-β that

  8. Antibodies to actin in autoimmune haemolytic anaemia

    Directory of Open Access Journals (Sweden)

    Ritzmann Mathias

    2010-03-01

    Full Text Available Abstract Background In autoimmune haemolytic anaemia (AIHA, autoreactive antibodies directed against red blood cells are up-regulated, leading to erythrocyte death. Mycoplasma suis infections in pigs induce AIHA of both the warm and cold types. The aim of this study was to identify the target autoantigens of warm autoreactive IgG antibodies. Sera from experimentally M. suis-infected pigs were screened for autoreactivity. Results Actin-reactive antibodies were found in the sera of 95% of all animals tested. The reactivity was species-specific, i.e. reactivity with porcine actin was significantly higher than with rabbit actin. Sera of animals previously immunised with the M. suis adhesion protein MSG1 showed reactivity with actin prior to infection with M. suis indicating that molecular mimicry is involved in the specific autoreactive mechanism. A potentially cross-reactive epitope was detected. Conclusions This is the first report of autoreactive anti-actin antibodies involved in the pathogenesis of autoimmune haemolytic anaemia.

  9. HTLV-1, Immune Response and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Juarez A S Quaresma

    2015-12-01

    Full Text Available Human T-lymphotropic virus type-1 (HTLV-1 infection is associated with adult T-cell leukemia/lymphoma (ATL. Tropical spastic paraparesis/HTLV-1-associated myelopathy (PET/HAM is involved in the development of autoimmune diseases including Rheumatoid Arthritis (RA, Systemic Lupus Erythematosus (SLE, and Sjögren’s Syndrome (SS. The development of HTLV-1-driven autoimmunity is hypothesized to rely on molecular mimicry, because virus-like particles can trigger an inflammatory response. However, HTLV-1 modifies the behavior of CD4+ T cells on infection and alters their cytokine production. A previous study showed that in patients infected with HTLV-1, the activity of regulatory CD4+ T cells and their consequent expression of inflammatory and anti-inflammatory cytokines are altered. In this review, we discuss the mechanisms underlying changes in cytokine release leading to the loss of tolerance and development of autoimmunity.

  10. Coxsackievirus-mediated hyperglycemia is enhanced by reinfection and this occurs independent of T cells

    International Nuclear Information System (INIS)

    Horwitz, Marc S.; Ilic, Alex; Fine, Cody; Rodriguez, Enrique; Sarvetnick, Nora

    2003-01-01

    The induction of autoimmunity by viruses has been hypothesized to occur by a number of mechanisms. Coxsackievirus B4 (CB4) induces hyperglycemia in SJL mice resembling diabetes in humans. While virus is effectively cleared within 2 weeks, hyperglycemia does not appear until about 8-12 weeks postinfection at a time when replicative virus is no longer detectable. In SJL mice, reinfection with CB4 enhanced the development of hyperglycemia. As predicted, the immune system responded more rapidly to the second infection and virus was cleared more swiftly. However, while infiltrating T cells were found within the pancreas, depletion of the CD4 T cell population prior to secondary infection or use of CD8 knock-out mice had no effect on the development of virus-mediated hyperglycemia. In conclusion, enhanced hyperglycemia induced by CB4 occurs independent of the T cell response

  11. Current topics in autoimmune hepatitis.

    Science.gov (United States)

    Muratori, Luigi; Muratori, Paolo; Granito, Alessandro; Pappas, Giorgios; Cassani, Fabio; Lenzi, Marco

    2010-11-01

    Autoimmune hepatitis is a chronic liver disease of unknown aetiology characterized by interface hepatitis, hypergammaglobulinaemia and circulating autoantibodies. In the last decade a number of advancements have been made in the field of clinical and basic research: the simplified diagnostic criteria, the complete response defined as normalization of transaminase levels, the molecular identification of the antigenic targets of anti-liver cytosol antibody type 1 and anti-soluble liver antigen, the detection of anti-actin antibodies, the description of de novo autoimmune hepatitis after liver transplantation for non-autoimmune liver diseases, the characterization of autoimmune hepatitis with overlapping features of primary biliary cirrhosis or primary sclerosing cholangitis, the preliminary experience with novel treatment strategies based on cyclosporine, mycophenolate mofetil and budesonide, the role played by "impaired" regulatory T cells and the development of novel animal models of autoimmune hepatitis. Copyright © 2010 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  12. Autoimmunity in Wiskott-Aldrich Syndrome: an unsolved enigma

    Directory of Open Access Journals (Sweden)

    Marco eCatucci

    2012-07-01

    Full Text Available Wiskott-Aldrich Syndrome (WAS is a severe X-linked Primary Immunodeficiency (PID that affects 1 to 10 out of 1 million male individuals. WAS is caused by mutations in the WAS Protein (WASP expressing gene that leads to the absent or reduced expression of the protein. WASP is a cytoplasmic protein that regulates the formation of actin filaments in hematopoietic cells. WASP deficiency causes many immune cell defects both in humans and in the WAS murine model, the Was-/- mouse. Both cellular and humoral immune defects in WAS patients contribute to the onset of severe clinical manifestations, in particular microthrombocytopenia, eczema, recurrent infections and a high susceptibility to develop autoimmunity and malignancies. Autoimmune diseases affect from 22% to 72% of WAS patients and the most common manifestation is autoimmune hemolytic anemia, followed by vasculitis, arthritis, neutropenia, inflammatory bowel disease and IgA nephropathy. Many groups have widely explored immune cell functionality in WAS partially explaining how cellular defects may lead to pathology. However, the mechanisms underlying the occurrence of autoimmune manifestations have not been clearly described yet. In the present review, we report the most recent progresses in the study of immune cell function in WAS that have started to unveil the mechanisms contributing to autoimmune complications in WAS patients.

  13. Moringin activates Wnt canonical pathway by inhibiting GSK3β in a mouse model of experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Giacoppo S

    2016-10-01

    Full Text Available Sabrina Giacoppo,1 Thangavelu Soundara Rajan,1 Gina Rosalinda De Nicola,2 Renato Iori,2 Placido Bramanti,1 Emanuela Mazzon1 1IRCCS Centre Neurolesi “Bonino-Pulejo”, Messina, Italy; 2Council for Agricultural Research and Economics, Research Centre for Industrial Crops (CREA-CIN, Bologna, Italy Abstract: Aberrant canonical Wnt–β-catenin signaling has been reported in multiple sclerosis (MS, although the results are controversial. The present study aimed to examine the role of the Wnt–β-catenin pathway in experimental MS and also to test moringin (4-[α-L-rhamnopyranosyloxy]-benzyl isothiocyanate, resulting from exogenous myrosinase hydrolysis of the natural phytochemical glucomoringin 4(α-L-rhamnosyloxy-benzyl glucosinolate as a modulator of neuroinflammation via the β-catenin–PPARγ axis. Experimental autoimmune encephalomyelitis (EAE, the most common model of MS, was induced in C57BL/6 mice by immunization with MOG35–55. Released moringin (10 mg/kg glucomoringin +5 µL myrosinase/mouse was administered daily for 1 week before EAE induction and continued until mice were killed on day 28 after EAE induction. Our results clearly showed that the Wnt–β-catenin pathway was downregulated in the EAE model, whereas moringin pretreatment was able to avert this. Moringin pretreatment normalizes the aberrant Wnt–β-catenin pathway, resulting in GSK3β inhibition and β-catenin upregulation, which regulates T-cell activation (CD4 and FoxP3, suppresses the main inflammatory mediators (IL-1β, IL-6, and COX2, through activation of PPARγ. In addition, moringin attenuates apoptosis by reducing the expression of the Fas ligand and cleaved caspase 9, and in parallel increases antioxidant Nrf2 expression in EAE mice. Taken together, our results provide an interesting discovery in identifying moringin as a modulator of the Wnt–β-catenin signaling cascade and as a new potential therapeutic target for MS treatment. Keywords: Wnt

  14. Spontaneous autoimmunity in 129 and C57BL/6 mice-implications for autoimmunity described in gene-targeted mice.

    Directory of Open Access Journals (Sweden)

    Anne E Bygrave

    2004-08-01

    Full Text Available Systemic lupus erythematosus (SLE is a multisystem autoimmune disorder in which complex genetic factors play an important role. Several strains of gene-targeted mice have been reported to develop SLE, implicating the null genes in the causation of disease. However, hybrid strains between 129 and C57BL/6 mice, widely used in the generation of gene-targeted mice, develop spontaneous autoimmunity. Furthermore, the genetic background markedly influences the autoimmune phenotype of SLE in gene-targeted mice. This suggests an important role in the expression of autoimmunity of as-yet-uncharacterised background genes originating from these parental mouse strains. Using genome-wide linkage analysis, we identified several susceptibility loci, derived from 129 and C57BL/6 mice, mapped in the lupus-prone hybrid (129 x C57BL/6 model. By creating a C57BL/6 congenic strain carrying a 129-derived Chromosome 1 segment, we found that this 129 interval was sufficient to mediate the loss of tolerance to nuclear antigens, which had previously been attributed to a disrupted gene. These results demonstrate important epistatic modifiers of autoimmunity in 129 and C57BL/6 mouse strains, widely used in gene targeting. These background gene influences may account for some, or even all, of the autoimmune traits described in some gene-targeted models of SLE.

  15. To B or not to B cells-mediate a healthy start to life.

    Science.gov (United States)

    Nguyen, T G; Ward, C M; Morris, J M

    2013-02-01

    Maternal immune responses during pregnancy are critical in programming the future health of a newborn. The maternal immune system is required to accommodate fetal immune tolerance as well as to provide a protective defence against infections for the immunocompromised mother and her baby during gestation and lactation. Natural immunity and antibody production by maternal B cells play a significant role in providing such immunoprotection. However, aberrations in the B cell compartment as a consequence of maternal autoimmunity can pose serious risks to both the mother and her baby. Despite their potential implication in shaping pregnancy outcomes, the role of B cells in human pregnancy has been poorly studied. This review focuses on the role of B cells and the implications of B cell depletion therapy in pregnancy. It highlights the evidence of an association between aberrant B cell compartment and obstetric conditions. It also alludes to the potential mechanisms that amplify these B cell aberrances and thereby contribute to exacerbation of some maternal autoimmune conditions and poor neonatal outcomes. Clinical and experimental evidence suggests strongly that maternal autoantibodies contribute directly to the pathologies of obstetric and neonatal conditions that have significant implications for the lifelong health of a newborn. The evidence for clinical benefit and safety of B cell depletion therapies in pregnancy is reviewed, and an argument is mounted for further clinical evaluation of B cell-targeted therapies in high-risk pregnancy, with an emphasis on improving neonatal outcomes and prevention of neonatal conditions such as congenital heart block and fetal/neonatal alloimmune thrombocytopenia. © 2012 British Society for Immunology.

  16. HSC extrinsic sex-related and intrinsic autoimmune disease-related human B-cell variation is recapitulated in humanized mice.

    Science.gov (United States)

    Borsotti, Chiara; Danzl, Nichole M; Nauman, Grace; Hölzl, Markus A; French, Clare; Chavez, Estefania; Khosravi-Maharlooei, Mohsen; Glauzy, Salome; Delmotte, Fabien R; Meffre, Eric; Savage, David G; Campbell, Sean R; Goland, Robin; Greenberg, Ellen; Bi, Jing; Satwani, Prakash; Yang, Suxiao; Bathon, Joan; Winchester, Robert; Sykes, Megan

    2017-10-24

    B cells play a major role in antigen presentation and antibody production in the development of autoimmune diseases, and some of these diseases disproportionally occur in females. Moreover, immune responses tend to be stronger in female vs male humans and mice. Because it is challenging to distinguish intrinsic from extrinsic influences on human immune responses, we used a personalized immune (PI) humanized mouse model, in which immune systems were generated de novo from adult human hematopoietic stem cells (HSCs) in immunodeficient mice. We assessed the effect of recipient sex and of donor autoimmune diseases (type 1 diabetes [T1D] and rheumatoid arthritis [RA]) on human B-cell development in PI mice. We observed that human B-cell levels were increased in female recipients regardless of the source of human HSCs or the strain of immunodeficient recipient mice. Moreover, mice injected with T1D- or RA-derived HSCs displayed B-cell abnormalities compared with healthy control HSC-derived mice, including altered B-cell levels, increased proportions of mature B cells and reduced CD19 expression. Our study revealed an HSC-extrinsic effect of recipient sex on human B-cell reconstitution. Moreover, the PI humanized mouse model revealed HSC-intrinsic defects in central B-cell tolerance that recapitulated those in patients with autoimmune diseases. These results demonstrate the utility of humanized mouse models as a tool to better understand human immune cell development and regulation.

  17. Clinical Tolerogenic Dendritic Cells: Exploring Therapeutic Impact on Human Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Brett Eugene Phillips

    2017-10-01

    Full Text Available Tolerogenic dendritic cell (tDC-based clinical trials for the treatment of autoimmune diseases are now a reality. Clinical trials are currently exploring the effectiveness of tDC to treat autoimmune diseases of type 1 diabetes mellitus, rheumatoid arthritis, multiple sclerosis (MS, and Crohn’s disease. This review will address tDC employed in current clinical trials, focusing on cell characteristics, mechanisms of action, and clinical findings. To date, the publicly reported human trials using tDC indicate that regulatory lymphocytes (largely Foxp3+ T-regulatory cell and, in one trial, B-regulatory cells are, for the most part, increased in frequency in the circulation. Other than this observation, there are significant differences in the major phenotypes of the tDC. These differences may affect the outcome in efficacy of recently launched and impending phase II trials. Recent efforts to establish a catalog listing where tDC converge and diverge in phenotype and functional outcome are an important first step toward understanding core mechanisms of action and critical “musts” for tDC to be therapeutically successful. In our view, the most critical parameter to efficacy is in vivo stability of the tolerogenic activity over phenotype. As such, methods that generate tDC that can induce and stably maintain immune hyporesponsiveness to allo- or disease-specific autoantigens in the presence of powerful pro-inflammatory signals are those that will fare better in primary endpoints in phase II clinical trials (e.g., disease improvement, preservation of autoimmunity-targeted tissue, allograft survival. We propose that pre-treatment phenotypes of tDC in the absence of functional stability are of secondary value especially as such phenotypes can dramatically change following administration, especially under dynamic changes in the inflammatory state of the patient. Furthermore, understanding the outcomes of different methods of cell delivery and sites

  18. Nitric oxide synthase 2 is required for conversion of pro-fibrogenic inflammatory CD133(+) progenitors into F4/80(+) macrophages in experimental autoimmune myocarditis.

    Science.gov (United States)

    Blyszczuk, Przemyslaw; Berthonneche, Corrine; Behnke, Silvia; Glönkler, Marcel; Moch, Holger; Pedrazzini, Thierry; Lüscher, Thomas F; Eriksson, Urs; Kania, Gabriela

    2013-02-01

    Experimental autoimmune myocarditis (EAM) model mirrors important mechanisms of inflammatory dilated cardiomyopathy (iDCM). In EAM, inflammatory CD133(+) progenitors are a major cellular source of cardiac myofibroblasts in the post-inflammatory myocardium. We hypothesized that exogenous delivery of macrophage-colony-stimulating factor (M-CSF) can stimulate macrophage lineage differentiation of inflammatory progenitors and, therefore, prevent their naturally occurring myofibroblast fate in EAM. EAM was induced in wild-type (BALB/c) and nitric oxide synthase 2-deficient (Nos2(-/-)) mice and CD133(+) progenitors were isolated from inflamed hearts. In vitro, M-CSF converted inflammatory CD133(+) progenitors into nitric oxide-producing F4/80(+) macrophages and prevented transforming growth factor-β-mediated myofibroblast differentiation. Importantly, only a subset of heart-infiltrating CD133(+) progenitors expresses macrophage-specific antigen F4/80 in EAM. These CD133(+)/F4/80(hi) cells show impaired myofibrogenic potential compared with CD133(+)/F4/80(-) cells. M-CSF treatment of wild-type mice with EAM at the peak of disease markedly increased CD133(+)/F4/80(hi) cells in the myocardium, and CD133(+) progenitors isolated from M-CSF-treated mice failed to differentiate into myofibroblasts. In contrast, M-CSF was not effective in converting CD133(+) progenitors from inflamed hearts of Nos2(-/-) mice into macrophages, and M-CSF treatment did not result in increased CD133(+)/F4/80(hi) cell population in hearts of Nos2(-/-) mice. Accordingly, M-CSF prevented post-inflammatory fibrosis and left ventricular dysfunction in wild-type but not in Nos2(-/-) mice. Active and NOS2-dependent induction of macrophage lineage differentiation abrogates the myofibrogenic potential of heart-infiltrating CD133(+) progenitors. Modulating the in vivo differentiation fate of specific progenitors might become a novel approach for the treatment of inflammatory heart diseases.

  19. Helicobacter pylori and autoimmune disease: Cause or bystander

    Science.gov (United States)

    Smyk, Daniel S; Koutsoumpas, Andreas L; Mytilinaiou, Maria G; Rigopoulou, Eirini I; Sakkas, Lazaros I; Bogdanos, Dimitrios P

    2014-01-01

    Helicobacter pylori (H. pylori) is the main cause of chronic gastritis and a major risk factor for gastric cancer. This pathogen has also been considered a potential trigger of gastric autoimmunity, and in particular of autoimmune gastritis. However, a considerable number of reports have attempted to link H. pylori infection with the development of extra-gastrointestinal autoimmune disorders, affecting organs not immediately relevant to the stomach. This review discusses the current evidence in support or against the role of H. pylori as a potential trigger of autoimmune rheumatic and skin diseases, as well as organ specific autoimmune diseases. We discuss epidemiological, serological, immunological and experimental evidence associating this pathogen with autoimmune diseases. Although over one hundred autoimmune diseases have been investigated in relation to H. pylori, we discuss a select number of papers with a larger literature base, and include Sjögrens syndrome, rheumatoid arthritis, systemic lupus erythematosus, vasculitides, autoimmune skin conditions, idiopathic thrombocytopenic purpura, autoimmune thyroid disease, multiple sclerosis, neuromyelitis optica and autoimmune liver diseases. Specific mention is given to those studies reporting an association of anti-H. pylori antibodies with the presence of autoimmune disease-specific clinical parameters, as well as those failing to find such associations. We also provide helpful hints for future research. PMID:24574735

  20. Immunogenetic mechanisms for the coexistence of organ-specific and systemic autoimmune diseases.

    Science.gov (United States)

    Fridkis-Hareli, Masha

    2008-02-15

    Organ-specific autoimmune diseases affect particular targets in the body, whereas systemic diseases engage multiple organs. Both types of autoimmune diseases may coexist in the same patient, either sequentially or concurrently, sustained by the presence of autoantibodies directed against the corresponding autoantigens. Multiple factors, including those of immunological, genetic, endocrine and environmental origin, contribute to the above condition. Due to association of certain autoimmune disorders with HLA alleles, it has been intriguing to examine the immunogenetic basis for autoantigen presentation leading to the production of two or more autoantibodies, each distinctive of an organ-specific or systemic disease. This communication offers the explanation for shared autoimmunity as illustrated by organ-specific blistering diseases and the connective tissue disorders of systemic nature. Several hypothetical mechanisms implicating HLA determinants, autoantigenic peptides, T cells, and B cells have been proposed to elucidate the process by which two autoimmune diseases are induced in the same individual. One of these scenarios, based on the assumption that the patient carries two disease-susceptible HLA genes, arises when a single T cell epitope of each autoantigen recognizes its HLA protein, leading to the generation of two types of autoreactive B cells, which produce autoantibodies. Another mechanism functioning whilst an epitope derived from either autoantigen binds each of the HLA determinants, resulting in the induction of both diseases by cross-presentation. Finally, two discrete epitopes originating from the same autoantigen may interact with each of the HLA specificities, eliciting the production of both types of autoantibodies. Despite the lack of immediate or unequivocal experimental evidence supporting the present hypothesis, several approaches may secure a better understanding of shared autoimmunity. Among these are animal models expressing the transgenes

  1. "Warming yang and invigorating qi" acupuncture alters acetylcholine receptor expression in the neuromuscular junction of rats with experimental autoimmune myasthenia gravis

    Directory of Open Access Journals (Sweden)

    Hai-peng Huang

    2016-01-01

    Full Text Available Myasthenia gravis is an autoimmune disorder in which antibodies have been shown to form against the nicotinic acetylcholine nicotinic postsynaptic receptors located at the neuromuscular junction. "Warming yang and invigorating qi" acupuncture treatment has been shown to reduce serum inflammatory cytokine expression and increase transforming growth factor beta expression in rats with experimental autoimmune myasthenia gravis. However, few studies have addressed the effects of this type of acupuncture on the acetylcholine receptors at the neuromuscular junction. Here, we used confocal laser scanning microscopy to examine the area and density of immunoreactivity for an antibody to the nicotinic acetylcholine receptor at the neuromuscular junction in the phrenic nerve of rats with experimental autoimmune myasthenia gravis following "warming yang and invigorating qi" acupuncture therapy. Needles were inserted at acupressure points Shousanli (LI10, Zusanli (ST36, Pishu (BL20, and Shenshu (BL23 once daily for 7 consecutive days. The treatment was repeated after 1 day of rest. We found that area and the integrated optical density of the immunoreactivity for the acetylcholine receptor at the neuromuscular junction of the phrenic nerve was significantly increased following acupuncture treatment. This outcome of the acupuncture therapy was similar to that of the cholinesterase inhibitor pyridostigmine bromide. These findings suggest that "warming yang and invigorating qi" acupuncture treatment increases acetylcholine receptor expression at the neuromuscular junction in a rat model of autoimmune myasthenia gravis.

  2. An enhanced postnatal autoimmune profile in 24 week-old C57BL/6 mice developmentally exposed to TCDD

    International Nuclear Information System (INIS)

    Mustafa, A.; Holladay, S.D.; Goff, M.; Witonsky, S.G.; Kerr, R.; Reilly, C.M.; Sponenberg, D.P.; Gogal, R.M.

    2008-01-01

    Developmental exposure of mice to the environmental contaminant and AhR agonist, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), causes persistent postnatal suppression of T cell-mediated immune responses. The extent to which prenatal TCDD may induce or exacerbate postnatal autoimmune disease remains unknown. In the present study, time-pregnant high affinity AhR C57BL/6 mice received a single oral administration of 0, 2.5, or 5 μg/kg TCDD on gestation day (gd) 12. Offspring of these mice (n = 5/gender/treatment) were evaluated at 24 weeks-of-age and showed considerable immune dysregulation that was often gender-specific. Decreased thymic weight and percentages of CD4 + CD8 + thymocytes, and increased CD4 + CD8 - thymocytes, were present in the female but not male offspring. Males but not females showed decreased CD4 - CD8 + T cells, and increased Vβ3 + and Vβ17a + T cells, in the spleen. Males but not females also showed increased percentages of bone marrow CD24 - B220 + B cell progenitors. Antibody titers to dsDNA, ssDNA and cardiolipin displayed increasing trends in both male and female mice, reaching significance for anti-dsDNA in both genders and for ssDNA in males at 5 μg/kg TCDD. Immunofluorescent staining of IgG and C3 deposition in kidney glomeruli increased in both genders of prenatal TCDD-exposed mice, suggestive of early stages of autoimmune glomerulonephritis. Collectively, these results show that exposure to TCDD during immune system development causes persistent humoral immune dysregulation as well as altered cell-mediated responses, and induces an adult profile of changes suggestive of increased risk for autoimmune disease

  3. Autoimmune thyrotoxicosis: diagnostic challenges.

    Science.gov (United States)

    Ponto, Katharina A; Kahaly, George J

    2012-09-01

    Autoimmune thyrotoxicosis or Graves' disease (GD) is the most common cause of hyperthyroidism in the United States (full text available online: http://education.amjmed.com/pp1/249). GD occurs more often in women (ratio 5:1) and has a population prevalence of 1-2%. A genetic determinant to the susceptibility to GD is suspected because of familial clustering of the disease, a high sibling recurrence risk, and the familial occurrence of thyroid autoantibodies. GD is a systemic autoimmune thyroid disorder characterized by the infiltration of immune effector cells and thyroid-antigen-specific T cells into the thyroid and thyroid stimulating hormone receptor (TSHR) expressing tissues, i.e. orbit, skin, with the production of autoantibodies to well-defined thyroidal antigens. Stimulatory autoantibodies in GD activate the TSHR leading to thyroid hyperplasia and unregulated thyroid hormone production and secretion. Diagnosis of GD is straightforward in a patient with a diffusely enlarged, heterogeneous, hypervascular (increased Doppler flow on neck ultrasound) thyroid gland, associated orbitopathy, biochemically confirmed thyrotoxicosis, positive TSHR autoantibodies, and often a family history of autoimmune disorders. Copyright © 2012. Published by Elsevier Inc.

  4. Anti-IL-39 (IL-23p19/Ebi3) polyclonal antibodies ameliorate autoimmune symptoms in lupus-like mice

    Science.gov (United States)

    Wang, Xiaoqian; Zhang, Yu; Wang, Zhiding; Liu, Xiaoling; Zhu, Gaizhi; Han, Gencheng; Chen, Guojiang; Hou, Chunmei; Wang, Tianxiao; Shen, Beifen; Li, Yan; Xiao, He; Ma, Ning; Wang, Renxi

    2018-01-01

    The interleukin (IL)-12 family cytokines have been examined as therapeutic targets in the treatment of several autoimmune diseases. Our previous study showed that a novel IL-12 family cytokine, IL-39 (IL-23p19/Ebi3) mediates inflammation in lupus-like mice. In the present study, the effect of anti-mouse IL-39 polyclonal antibodies on autoimmune symptoms in lupus-like mice was investigated. Rabbit anti-mouse IL-39 polyclonal antibodies were produced by immunization with recombinant mouse IL-39, and purified using protein A chromatography. These antibodies were subsequently used to treat lupus-like mice. Flow cytometry, captured images, ELISA and H&E staining were used to determine the effect of anti-IL-39 polyclonal antibodies on inflammatory cells, autoantibody titers, proteinuria, infiltrating inflammatory cells and the structure of the glomerular region. The anti-IL-39 polyclonal antibodies effectively reduced the numbers of inflammatory cells, splenomegaly, autoantibody titers, proteinuria, infiltrating inflammatory cells, and restored the structure of the glomerular region in MRL/lpr mice. Taken together, these results suggested that anti-IL-39 polyclonal antibodies ameliorated autoimmune symptoms in lupus-like mice. Therefore, IL-39 may be used as a possible target for the treatment of systemic lupus erythematosus. PMID:29138852

  5. Fetal microchimeric cells in autoimmune thyroid diseases: harmful, beneficial or innocent for the thyroid gland?

    Science.gov (United States)

    Lepez, Trees; Vandewoestyne, Mado; Deforce, Dieter

    2013-01-01

    Autoimmune thyroid diseases (AITD) show a female predominance, with an increased incidence in the years following parturition. Fetal microchimerism has been suggested to play a role in the pathogenesis of AITD. However, only the presence of fetal microchimeric cells in blood and in the thyroid gland of these patients has been proven, but not an actual active role in AITD. Is fetal microchimerism harmful for the thyroid gland by initiating a Graft versus Host reaction (GvHR) or being the target of a Host versus Graft reaction (HvGR)? Is fetal microchimerism beneficial for the thyroid gland by being a part of tissue repair or are fetal cells just innocent bystanders in the process of autoimmunity? This review explores every hypothesis concerning the role of fetal microchimerism in AITD.

  6. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID

    Science.gov (United States)

    Sauer, Aisha V.; Brigida, Immacolata; Carriglio, Nicola; Jofra Hernandez, Raisa; Scaramuzza, Samantha; Clavenna, Daniela; Sanvito, Francesca; Poliani, Pietro L.; Gagliani, Nicola; Carlucci, Filippo; Tabucchi, Antonella; Roncarolo, Maria Grazia; Traggiai, Elisabetta; Villa, Anna

    2012-01-01

    Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)–mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA–treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA−/− Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA–treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA–treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID. Trials were registered at www.clinicaltrials.gov as NCT00598481/NCT00599781. PMID:22184407

  7. Transplantation of autoimmune potential. IV. Reversal of the NZB autoimmune syndrome by bone marrow transplantation

    International Nuclear Information System (INIS)

    Morton, J.I.; Siegel, B.V.

    1979-01-01

    The results of the present experiments support the concept of an etiology of autoimmune disease predicated upon innate properties of the hemopoietic stem cell and its differentiated lymphocytic progeny, independent of the host internal environment. It was concluded earlier that the NZB mouse strain possessed an enlarged compartment of cyclically active stem cells, providing an etiological basis for the development of autoimmune disease. Conceivably, a rapidly cycling stem cell population could randomly generate excessive numbers of lymphocytic progeny. Autoantibody formation would represent, then, a manifestation of the consequent hyperresponsiveness to immunological stimuli, both foreign and autologous. Alternatively, there may exist a parallel defect in the homeostatic regulation of both stem cell and immunocyte populations, attributable to either a defect in a shared regulator mechanism or to an unusually high threshold of these cells in response to negative feedback signals

  8. The CXC Chemokine Receptor 3 Inhibits Autoimmune Cholangitis via CD8+ T Cells but Promotes Colitis via CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Qing-Zhi Liu

    2018-05-01

    Full Text Available CXC chemokine receptor 3 (CXCR3, a receptor for the C-X-C motif chemokines (CXCL CXCL9, CXCL10, and CXCL11, which not only plays a role in chemotaxis but also regulates differentiation and development of memory and effector T cell populations. Herein, we explored the function of CXCR3 in the modulation of different organ-specific autoimmune diseases in interleukin (IL-2 receptor deficiency (CD25−/− mice, a murine model for both cholangitis and colitis. We observed higher levels of CXCL9 and CXCL10 in the liver and colon and higher expression of CXCR3 on T cells of the CD25−/− mice compared with control animals. Deletion of CXCR3 resulted in enhanced liver inflammation but alleviated colitis. These changes in liver and colon pathology after CXCR3 deletion were associated with increased numbers of hepatic CD4+ and CD8+ T cells, in particular effector memory CD8+ T cells, as well as decreased T cells in mesenteric lymph nodes and colon lamina propria. In addition, increased interferon-γ response and decreased IL-17A response was observed in both liver and colon after CXCR3 deletion. CXCR3 modulated the functions of T cells involved in different autoimmune diseases, whereas the consequence of such modulation was organ-specific regarding to their effects on disease severity. Our findings emphasize the importance of extra caution in immunotherapy for organ-specific autoimmune diseases, as therapeutic interventions aiming at a target such as CXCR3 for certain disease could result in adverse effects in an unrelated organ.

  9. BCG and BCG/DNAhsp65 Vaccinations Promote Protective Effects without Deleterious Consequences for Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Sofia Fernanda Gonçalves Zorzella-Pezavento

    2013-01-01

    Full Text Available A prime-boost strategy conserving BCG is considered the most promising vaccine to control tuberculosis. A boost with a DNA vaccine containing the mycobacterial gene of a heat shock protein (pVAXhsp65 after BCG priming protected mice against experimental tuberculosis. However, anti-hsp65 immunity could worsen an autoimmune disease due to molecular mimicry. In this investigation, we evaluated the effect of a previous BCG or BCG/pVAXhsp65 immunization on experimental autoimmune encephalomyelitis (EAE development. Female Lewis rats were immunized with BCG or BCG followed by pVAXhsp65 boosters. The animals underwent EAE induction and were daily evaluated for weight loss and clinical score. They were euthanized during recovery phase to assess immune response and inflammatory infiltration at the central nervous system. Previous immunization did not aggravate or accelerate clinical score or weight loss. In addition, this procedure clearly decreased inflammation in the brain. BCG immunization modulated the host immune response by triggering a significant reduction in IL-10 and IFN-γ levels induced by myelin basic protein. These data indicated that vaccination protocols with BCG or BCG followed by boosters with pVAXhsp65 did not trigger a deleterious effect on EAE evolution.

  10. Palivizumab Exposure and the Risk of Autoimmune Disease

    DEFF Research Database (Denmark)

    Haerskjold, Ann; Linder, Marie; Henriksen, Lonny

    2016-01-01

    of autoimmune disease were diagnosed among palivizumab-exposed children during the period of observation. Among the children exposed to palivizumab, one child in Denmark developed inflammatory bowel disease; in Sweden, children developed juvenile arthritis (one child), diabetes mellitus (two children), celiac......BACKGROUND: Treatment with biologic pharmaceuticals may be associated with an increased risk of immune-mediated disease. Palivizumab is a humanized monoclonal antibody designed to provide passive immunity against respiratory syncytial virus infection. Palivizumab is primarily used in preterm...... children known to be immunologically immature. The long-term effect of palivizumab in terms of autoimmune diseases has not yet been investigated. AIM: Our objective was to investigate whether exposure to palivizumab was associated with the development of autoimmune diseases in children. METHODS...

  11. [Autoimmune thyroid disease and other non-endocrine autoimmune diseases].

    Science.gov (United States)

    Dilas, Ljiljana Todorović; Icin, Tijana; Paro, Jovanka Novaković; Bajkin, Ivana

    2011-01-01

    Autoimmune diseases are chronic conditions initiated by the loss of immunological tolerance to self-antigens. They constitute heterogeneous group of disorders, in which multiple alterations in the immune system result in a spectrum of syndromes that either target specific organs or affect the body systematically. Recent epidemiological studies have shown a possible shift of one autoimmune disease to another or the fact that more than one autoimmune disease may coexist in a single patient or in the same family. Numerous autoimmune diseases have been shown to coexist frequently with thyroid autoimmune diseases. AUTOIMMNUNE THYROID DISEASE AND OTHER ORGAN SPECIFIC NON-ENDOCRINE AUTOIMMUNE DISEASES: This part of the study reviews the prevalence of autoimmune thyroid disease coexisting with: pernicious anaemia, vitiligo, celiac disease, autoimmune liver disease, miastenia gravis, alopecia areata and sclerosis multiplex, and several recommendations for screening have been given. AUTOIMMUNE THYROID DISEASE AND OTHER ORGAN NON-SPECIFIC NON-ENDOCRINE AUTOIMMUNE DISEASES: Special attention is given to the correlation between autoimmune thyroid disease and rheumatoid arthritis, systemic lupus erythematosus, syndrome Sjögren, systemic sclerosis and mixed connective tissue disease. Screening for autoimmune thyroid diseases should be recommended in everyday clinical practice, in patients with primary organ-specific or organ non-specific autoimmune disease. Otherwise, in patients with primary thyroid autoimmune disease, there is no good reason of seeking for all other autoimmune diseases, although these patients have a greater risk of developing other autoimmune disease. Economic aspects of medicine require further analyzing of these data, from cost/benefit point of view to justified either mandatory screening or medical practitioner judgment.

  12. Elevated Expression of Fractalkine (CX3CL1 and Fractalkine Receptor (CX3CR1 in the Dorsal Root Ganglia and Spinal Cord in Experimental Autoimmune Encephalomyelitis: Implications in Multiple Sclerosis-Induced Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Wenjun Zhu

    2013-01-01

    Full Text Available Multiple sclerosis (MS is a central nervous system (CNS disease resulting from a targeted autoimmune-mediated attack on myelin proteins in the CNS. The release of Th1 inflammatory mediators in the CNS activates macrophages, antibodies, and microglia resulting in myelin damage and the induction of neuropathic pain (NPP. Molecular signaling through fractalkine (CX3CL1, a nociceptive chemokine, via its receptor (CX3CR1 is thought to be associated with MS-induced NPP. An experimental autoimmune encephalomyelitis (EAE model of MS was utilized to assess time dependent gene and protein expression changes of CX3CL1 and CX3CR1. Results revealed significant increases in mRNA and the protein expression of CX3CL1 and CX3CR1 in the dorsal root ganglia (DRG and spinal cord (SC 12 days after EAE induction compared to controls. This increased expression correlated with behavioural thermal sensory abnormalities consistent with NPP. Furthermore, this increased expression correlated with the peak neurological disability caused by EAE induction. This is the first study to identify CX3CL1 signaling through CX3CR1 via the DRG /SC anatomical connection that represents a critical pathway involved in NPP induction in an EAE model of MS.

  13. Immune modulation by a tolerogenic myelin oligodendrocyte glycoprotein (MOG)10-60 containing fusion protein in the marmoset experimental autoimmune encephalomyelitis model

    NARCIS (Netherlands)

    Kap, Y. S.; van Driel, N.; Arends, R.; Rouwendal, G.; Verolin, M.; Blezer, E.; Lycke, N.; 't Hart, B. A.

    2015-01-01

    Summary: Current therapies for multiple sclerosis (MS), a chronic autoimmune neuroinflammatory disease, mostly target general cell populations or immune molecules, which may lead to a compromised immune system. A more directed strategy would be to re-enforce tolerance of the autoaggressive T cells

  14. From blood coagulation to innate and adaptive immunity: the role of platelets in the physiology and pathology of autoimmune disorders.

    Science.gov (United States)

    Łukasik, Zuzanna Małgorzata; Makowski, Marcin; Makowska, Joanna Samanta

    2018-02-28

    Thrombosis and cardiovascular complications are common manifestations of a variety of pathological conditions, including infections and chronic inflammatory diseases. Hence, there is great interest in determining the hitherto unforeseen immune role of the main blood coagulation executor-the platelet. Platelets store and release a plethora of immunoactive molecules, generate microparticles, and interact with cells classically belonging to the immune system. The observed effects of platelet involvement in immune processes, especially in autoimmune diseases, are conflicting-from inciting inflammation to mediating its resolution. An in-depth understanding of the role of platelets in inflammation and immunity could open new therapeutic pathways for patients with autoimmune disorders. This review aims to summarize the current knowledge on the role of platelets in the patomechanisms of autoimmune disorders and suggests directions for future research.

  15. Multiplex autoantibody detection for autoimmune liver diseases and autoimmune gastritis.

    Science.gov (United States)

    Vanderlocht, Joris; van der Cruys, Mart; Stals, Frans; Bakker-Jonges, Liesbeth; Damoiseaux, Jan

    2017-09-01

    Autoantibody detection for autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC) and autoimmune gastritis (AIG) is traditionally performed by IIF on a combination of tissues. Multiplex line/dot blots (LIA/DIA) offer multiple advantages, i.e. automation, objective reading, no interfering reactivities, no coincidental findings. In the current study we evaluated automated DIA (D-Tek) for detecting autoantibodies related to autoimmune diseases of the gastrointestinal tract. We tested samples of the Dutch EQC program and compared the results with the consensus of the participating labs. For the autoimmune liver diseases and AIG, respectively, 64 and 36 samples were tested. For anti-mitochondrial and anti-smooth muscle antibodies a concordance rate of 97% and 88% was observed, respectively. The concordance rate for anti-parietal cell antibodies was 92% when samples without EQC consensus (n=15) were excluded. For antibodies against intrinsic factor a concordance of 96% was observed. For all these antibodies discrepancies were identified that relate to the different test characteristics and the preponderance of IIF utilizing labs in the EQC program. In conclusion, we observed good agreement of the tested DIA blots with the consensus results of the Dutch EQC program. Taken together with the logistic advantages these blots are a good alternative for autoantibody detection in the respective diseases. A large prospective multicenter study is warranted to position these novel tests further in the whole spectrum of assays for the detection of these antibodies in a routine autoimmune laboratory. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Autoreactive effector/memory CD4+ and CD8+ T cells infiltrating grafted and endogenous islets in diabetic NOD mice exhibit similar T cell receptor usage.

    Directory of Open Access Journals (Sweden)

    Ramiro Diz

    Full Text Available Islet transplantation provides a "cure" for type 1 diabetes but is limited in part by recurrent autoimmunity mediated by β cell-specific CD4(+ and CD8(+ T cells. Insight into the T cell receptor (TCR repertoire of effector T cells driving recurrent autoimmunity would aid the development of immunotherapies to prevent islet graft rejection. Accordingly, we used a multi-parameter flow cytometry strategy to assess the TCR variable β (Vβ chain repertoires of T cell subsets involved in autoimmune-mediated rejection of islet grafts in diabetic NOD mouse recipients. Naïve CD4(+ and CD8(+ T cells exhibited a diverse TCR repertoire, which was similar in all tissues examined in NOD recipients including the pancreas and islet grafts. On the other hand, the effector/memory CD8(+ T cell repertoire in the islet graft was dominated by one to four TCR Vβ chains, and specific TCR Vβ chain usage varied from recipient to recipient. Similarly, islet graft- infiltrating effector/memory CD4(+ T cells expressed a limited number of prevalent TCR Vβ chains, although generally TCR repertoire diversity was increased compared to effector/memory CD8(+ T cells. Strikingly, the majority of NOD recipients showed an increase in TCR Vβ12-bearing effector/memory CD4(+ T cells in the islet graft, most of which were proliferating, indicating clonal expansion. Importantly, TCR Vβ usage by effector/memory CD4(+ and CD8(+ T cells infiltrating the islet graft exhibited greater similarity to the repertoire found in the pancreas as opposed to the draining renal lymph node, pancreatic lymph node, or spleen. Together these results demonstrate that effector/memory CD4(+ and CD8(+ T cells mediating autoimmune rejection of islet grafts are characterized by restricted TCR Vβ chain usage, and are similar to T cells that drive destruction of the endogenous islets.

  17. Down-regulation of NTPDase2 and ADP-sensitive P2 Purinoceptors Correlate with Severity of Symptoms during Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Marija Jakovljevic

    2017-10-01

    Full Text Available The present study explores tissue and cellular distribution of ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2 and the gene and protein expression in rat spinal cord during the course of experimental autoimmune encephalomyelitis (EAE. Given that NTPDase2 hydrolyzes ATP with a transient accumulation of ADP, the expression of ADP-sensitive P2 purinoceptors was analyzed as well. The autoimmune disease was actively induced in Dark Agouti female rats and the changes were analyzed 10, 15 and 29 days after the induction. These selected time points correspond to the onset (Eo, peak (Ep and recovery (Er from EAE. In control animals, NTPDase2 was confined in the white matter, in most of the glial fibrillary acidic protein (GFAP-immunoreactive (ir astrocytes and in a considerable number of nestin-ir cells, while the other cell types were immunonegative. Immunoreactivity corresponding to NTPDase2 decreased significantly at Eo and Ep and then returned to the baseline levels at Er. The preservation of the proportion of GFAP single-labeled and GFAP/NTPDase2 double-labeled elements along the course of EAE indicated that changes in NTPDase2-ir occurred at fibrous astrocytes that typically express NTPDase2 in normal conditions. Significant downregulation of P2Y1 and P2Y12 receptor proteins at Eo and several-fold induction of P2Y12 and P2Y13 receptor proteins at Ep and/or Er were observed implying that the pathophysiological process in EAE may be linked to ADP signaling. Cell-surface expression of NTPDase2, NTPDase1/CD39 and ecto-5′-nucleotidase (eN/CD73 was analyzed in CD4+ T cells of a draining lymph node by fluorescence-activated cell sorting. The induction of EAE was associated with a transient decrease in a number of CD4+ NTPDase2+ T cells in a draining lymph node, whereas the recovery was characterized by an increase in NTPDase2+ cells in both CD4+ and CD4− cell populations. The opposite was found for NTPDase1/CD39+ and eN/CD73+ cells, which

  18. Factors associated with elevated serum chromogranin A levels in patients with autoimmune gastritis.

    Science.gov (United States)

    Kalkan, Çağdaş; Karakaya, Fatih; Soykan, İrfan

    2016-11-01

    Chromogranin A is an important tool in the diagnosis of neuroendocrine tumors. Autoimmune gastritis is an autoimmune disorder marked by hypergastrinemia, which stimulates enterochromaffin-like cell proliferation. Chromogranin A is also elevated in autoimmune gastritis patients with a different level of increase in each patient. The goal of this study is to explore constituents that influence serum chromogranin A levels in autoimmune gastritis patients. One hundred and eighty-eight autoimmune gastritis patients and 20 patients with type I gastric carcinoid tumors were analyzed retrospectively and compared to 110 functional dyspepsia patients in terms of factors that might affect serum chromogranin A levels. The mean serum chromogranin A level was 171.17±67.3 ng/mL in autoimmune gastritis patients (n=62) without enterochromaffin-like cell hyperplasia, and 303.3±102.82 ng/mL in patients (n=126) with enterochromaffin-like cell hyperplasia (pgastritis were the presence of ECL cell hyperplasia and serum gastrin levels. Serum chromogranin A levels maybe helpful in distinguishing autoimmune gastritis patients and gastric carcinoid type I from the control group, but not useful in the differentiation of individuals with autoimmune gastritis from patients with gastric carcinoids.

  19. Pervasive Sharing of Genetic Effects in Autoimmune Disease

    DEFF Research Database (Denmark)

    Cotsapas, Chris; Voight, Benjamin F.; Rossin, Elizabeth

    2011-01-01

    Genome-wide association (GWA) studies have identified numerous, replicable, genetic associations between common single nucleotide polymorphisms (SNPs) and risk of common autoimmune and inflammatory (immune-mediated) diseases, some of which are shared between two diseases. Along with epidemiologic...

  20. Intravitreal injection of anti-Interleukin (IL)-6 antibody attenuates experimental autoimmune uveitis in mice.

    Science.gov (United States)

    Tode, Jan; Richert, Elisabeth; Koinzer, Stefan; Klettner, Alexa; Pickhinke, Ute; Garbers, Christoph; Rose-John, Stefan; Nölle, Bernhard; Roider, Johann

    2017-08-01

    To evaluate the effect of an intravitreally applied anti-IL-6 antibody for the treatment of experimental autoimmune uveitis (EAU). EAU was induced in female B10.RIII mice by Inter-Photoreceptor-Binding-Protein (IRBP) in complete Freund's adjuvant, boosted by Pertussis toxin. Single blinded intravitreal injections of anti-IL-6 antibody were applied 5-7days as well as 8-10days (3day interval) after EAU induction into the randomized treatment eye and phosphate buffered saline (PBS) into the fellow control eye. Clinical and fluorescein angiography scoring (6 EAU grades) was done at each injection day and at enucleation day 14. Enucleated eyes were either scored histologically (6 EAU grades) or examined by ELISA for levels of IL-6, IL-17 and IL-6 soluble Receptor (sIL-6R). Uveitis developed in all 12 mice. Clinical uveitis score was significantly reduced (p=0.035) in treated eyes (median 2.0, range 0-4.0, n=12) compared to the fellow control eyes (median 3.0, range 1.0-4.0, n=12). Angiography scores were reduced in 9/12 treated eyes and histological scores in 3/4 treated eyes compared to the fellow control eyes. Cytokine levels were determined in 8 mice, of which 4 responded to anti-IL-6 treatment and 4 did not respond. All mice responding to treatment had a significant reduction of IL-6 (ptreatment significantly attenuates experimental autoimmune uveitis in mice. EAU activity correlates with ocular IL-6 and IL-17 levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Immune modulation by a tolerogenic myelin oligodendrocyte glycoprotein (MOG)10-60 containing fusion protein in the marmoset experimental autoimmune encephalomyelitis model

    NARCIS (Netherlands)

    Kap, Y. S.; van Driel, N.; Arends, R.; Rouwendal, G.; Verolin, M.; Blezer, E.; Lycke, N.; 't Hart, Bert A.

    Current therapies for multiple sclerosis (MS), a chronic autoimmune neuroinflammatory disease, mostly target general cell populations or immune molecules, which may lead to a compromised immune system. A more directed strategy would be to re-enforce tolerance of the autoaggressive T cells that drive

  2. High frequency of cytolytic 21-Hydroxylase specific CD8+ T cells in autoimmune Addison’s disease patients1

    Science.gov (United States)

    Dawoodji, Amina; Chen, Ji-Li; Shepherd, Dawn; Dalin, Frida; Tarlton, Andrea; Alimohammadi, Mohammad; Penna-Martinez, Marissa; Meyer, Gesine; Mitchell, Anna L; Gan, Earn H; Bratland, Eirik; Bensing, Sophie; Husebye, Eystein; Pearce, Simon H.; Badenhoop, Klaus; Kämpe, Olle; Cerundolo, Vincenzo

    2016-01-01

    The mechanisms behind the destruction of the adrenal glands in autoimmune Addison’s disease remain unclear. Autoantibodies against steroid 21-hydroxylase, an intracellular key enzyme of the adrenal cortex, are found in over 90% of patients, but these autoantibodies are not thought to mediate the disease. Here we demonstrate highly frequent 21-hydroxylase specific T cells detectable in 20 patients with Addison’s disease. Using overlapping 18aa peptides spanning the full length of 21-hydroxylase, we identified immunodominant CD8+ and CD4+ T cell responses in a large proportion of Addison’s patients both ex-vivo and after in-vitro culture of peripheral blood lymphocytes up to 20 years after diagnosis. In a large proportion of patients, CD8+ 21-hydroxylase specific T cells and CD4+ 21-hydroxylase specific T cells were very abundant and detectable in ex-vivo assays. HLA class-I tetramer-guided isolation of 21-hydroxylase specific CD8+ T cells showed their ability to lyse 21-hydroxylase positive target cells, consistent with a potential mechanism for disease pathogenesis. These data indicate strong cytotoxic T lymphocyte responses to 21-hydroxylase often occur in-vivo, and that reactive cytotoxic T lymphocytes have substantial proliferative and cytolytic potential. These results have implications for earlier diagnosis of adrenal failure and ultimately a potential target for therapeutic intervention and induction of immunity against adrenal cortex cancer. PMID:25063864

  3. Autoimmune hematological diseases after allogeneic hematopoietic stem cell transplantation in children: an Italian multicenter experience.

    Science.gov (United States)

    Faraci, Maura; Zecca, Marco; Pillon, Marta; Rovelli, Attilio; Menconi, Maria Cristina; Ripaldi, Mimmo; Fagioli, Franca; Rabusin, Marco; Ziino, Ottavio; Lanino, Edoardo; Locatelli, Franco; Daikeler, Thomas; Prete, Arcangelo

    2014-02-01

    Autoimmune hematological diseases (AHDs) may occur after allogeneic hematopoietic stem cell transplantation (HSCT), but reports on these complications in large cohorts of pediatric patients are lacking. Between 1998 and 2011, 1574 consecutive children underwent allogeneic HSCT in 9 Italian centers. Thirty-three children (2.1%) developed AHDs: 15 autoimmune hemolytic anemia (45%), 10 immune thrombocytopenia (30%), 5 Evans' syndrome (15%), 2 pure red cell aplasia (6%), and 1 immune neutropenia (3%). The 10-year cumulative incidence of AHDs was 2.5% (95% confidence interval, 1.7 to 3.6). In a multivariate analysis, the use of alternative donor and nonmalignant disease was statistically associated with AHDs. Most patients with AHDs (64%) did not respond to steroids. Sustained complete remission was achieved in 87% of cases with the anti-CD20 monoclonal antibody (rituximab). Four patients (9%) (1 autoimmune hemolytic anemia, 1 Evans' syndrome, 2 immune thrombocytopenia) died at a median of 87 days after AHD diagnosis as a direct or indirect consequence of their disorder. Our data suggest that AHDs are a relatively rare complication occurring after HSCT that usually respond to treatment with rituximab. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  4. Breaking Tolerance to Thyroid Antigens: Changing Concepts in Thyroid Autoimmunity

    Science.gov (United States)

    Rapoport, Basil

    2014-01-01

    Thyroid autoimmunity involves loss of tolerance to thyroid proteins in genetically susceptible individuals in association with environmental factors. In central tolerance, intrathymic autoantigen presentation deletes immature T cells with high affinity for autoantigen-derived peptides. Regulatory T cells provide an alternative mechanism to silence autoimmune T cells in the periphery. The TSH receptor (TSHR), thyroid peroxidase (TPO), and thyroglobulin (Tg) have unusual properties (“immunogenicity”) that contribute to breaking tolerance, including size, abundance, membrane association, glycosylation, and polymorphisms. Insight into loss of tolerance to thyroid proteins comes from spontaneous and induced animal models: 1) intrathymic expression controls self-tolerance to the TSHR, not TPO or Tg; 2) regulatory T cells are not involved in TSHR self-tolerance and instead control the balance between Graves' disease and thyroiditis; 3) breaking TSHR tolerance involves contributions from major histocompatibility complex molecules (humans and induced mouse models), TSHR polymorphism(s) (humans), and alternative splicing (mice); 4) loss of tolerance to Tg before TPO indicates that greater Tg immunogenicity vs TPO dominates central tolerance expectations; 5) tolerance is induced by thyroid autoantigen administration before autoimmunity is established; 6) interferon-α therapy for hepatitis C infection enhances thyroid autoimmunity in patients with intact immunity; Graves' disease developing after T-cell depletion reflects reconstitution autoimmunity; and 7) most environmental factors (including excess iodine) “reveal,” but do not induce, thyroid autoimmunity. Micro-organisms likely exert their effects via bystander stimulation. Finally, no single mechanism explains the loss of tolerance to thyroid proteins. The goal of inducing self-tolerance to prevent autoimmune thyroid disease will require accurate prediction of at-risk individuals together with an antigen

  5. Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity?

    Science.gov (United States)

    Xie, Heng; Zhou, Fubo; Liu, Ling; Zhu, Guannan; Li, Qiang; Li, Chunying; Gao, Tianwen

    2016-01-01

    Vitiligo is a common depigmentation disorder characterized by a loss of functional melanocytes and melanin from epidermis, in which the autoantigens and subsequent autoimmunity caused by oxidative stress play significant roles according to hypotheses. Various factors lead to reactive oxygen species (ROS) overproduction in the melanocytes of vitiligo: the exogenous and endogenous stimuli that cause ROS production, low levels of enzymatic and non-enzymatic antioxidants, disturbed antioxidant pathways and polymorphisms of ROS-associated genes. These factors synergistically contribute to the accumulation of ROS in melanocytes, finally leading to melanocyte damage and the production of autoantigens through the following ways: apoptosis, accumulation of misfolded peptides and cytokines induced by endoplasmic reticulum stress as well as the sustained unfolded protein response, and an 'eat me' signal for phagocytic cells triggered by calreticulin. Subsequently, autoantigens presentation and dendritic cells maturation occurred mediated by the release of antigen-containing exosomes, adenosine triphosphate and melanosomal autophagy. With the involvement of inducible heat shock protein 70, cellular immunity targeting autoantigens takes the essential place in the destruction of melanocytes, which eventually results in vitiligo. Several treatments, such as narrow band ultraviolet, quercetin and α-melanophore-stimulating hormone, are reported to be able to lower ROS thereby achieving repigmentation in vitiligo. In therapies targeting autoimmunity, restore of regulatory T cells is absorbing attention, in which narrow band ultraviolet also plays a role. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Tracking Differential Gene Expression in MRL/MpJ Versus C57BL/6 Anergic B Cells: Molecular Markers of Autoimmunity

    Directory of Open Access Journals (Sweden)

    Amy G. Clark

    2008-01-01

    Full Text Available Background: Anergy is a key mechanism controlling expression of autoreactive B cells and a major site for failed regulation in autoimmune diseases. Yet the molecular basis for this differentiated cell state remains poorly understood. The current lack of well-characterized surface or molecular markers hinders the isolation of anergic cells for further study. Global gene profiling recently identified transcripts whose expression differentiates anergic from naïve B cells in model mouse systems. The objective of the current study was to evaluate the molecular and cellular processes that differentiate anergic cells that develop in the healthy C57BL/6 (B6 milieu from those that develop in the autoimmune-prone MRL/MpJ (MRL background. This approach takes advantage of B6 and MRL mice bearing an anti-laminin Ig transgene with a well characterized anergic B cell phenotype.Results: Global gene expression was evaluated in purified transgenic B cells using Operon version 3.0 oligonucleotide microarray assaying 31,000 oligoprobes. Genes with a 2-fold expression difference in B6 as compared to MRL anergic B cells were identified. Expression of selected genes was confirmed using quantitative RT-PCR. This approach identified 43 probes corresponding to 37 characterized genes, including Ptpn22, CD74, Birc1f/Naip, and Ctla4, as differentially expressed in anergic B cells in the two strains. Gene Ontology classification identified differentiation, cell cycle, proliferation, development, apoptosis, and cell death as prominently represented ontology groups. Ingenuity Pathway Analysis identified two major networks incorporating 27 qualifying genes. Network 1 centers on beta-estradiol and TP53, and Network 2 encompasses RB1, p38 MAPK, and NFkB cell growth, proliferation, and cell cycle signaling pathways.Conclusion: Using microarray analysis we identified 37 characterized genes and two functional pathways engaged in maintenance of B cell anergy for which expression is

  7. Experimental autoimmune encephalomyelitis: Association with mutual regulation of RelA (p65)/NF-κB and phospho-IκB in the CNS

    International Nuclear Information System (INIS)

    Hwang, Insun; Ha, Danbee; Ahn, Ginnae; Park, Eunjin; Joo, Haejin; Jee, Youngheun

    2011-01-01

    Highlights: → The phosphorylation of RelA's inhibitory factor IκB and subsequent RelA activation are important to the disease process of EAE. → The expression of RelA and phospho-IκB was markedly increased in the initiation and during the progression of EAE. → TPCK-treated EAE mice showed lower incidence of EAE with less severe symptoms and quicker recovery than vehicle-treated EAE mice. → TPCK significantly suppressed the MOG 35-55 -specific T cell proliferation by reducing the production of IFN-γ and IL-17 cytokines in EAE. → The NF-κB cascade's activity increased gradually with the development of symptoms and brain pathology of EAE. -- Abstract: Recently emerging evidence that the NF-κB family plays an important role in autoimmune disease has produced very broad and sometimes paradoxical conclusions. In the present study, we elucidated that the activation of RelA (p65) of NF-κB and IκB dissociation assumes a distinct role in experimental autoimmune encephalomyelitis (EAE) progression by altering IκB phosphorylation and/or degradation. In the present study of factors that govern EAE, the presence and immunoreactivity of nuclear RelA and phospho-IκB were recorded at the initiation and peak stage, and degradation of IκBα progressed rapidly at an early stage then stabilized during recovery. The immunoreactivity to RelA and phospho-IκB occurred mainly in inflammatory cells and microglial cells but only slightly in astrocytes. Subsequently, the blockade of IκB dissociation from NF-κB reduced the severity of disease by decreasing antigen-specific T cell response and production of IL-17 in EAE. Thus, blocking the dissociation of IκB from NF-κB can be utilized as a strategy to inhibit the NF-κB signal pathway thereby to reduce the initiation, progression, and severity of EAE.

  8. Epigenetics of Autoantigens: New Opportunities for Therapy of Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Marko Radic

    2013-01-01

    Full Text Available The field of epigenetics requires that traditional divisions between scientific disciplines give way to cross-fertilization of concepts and ideas from different areas of investigation. Such is the case with research in autoimmunity. Recent discoveries of stimuli that induce autoimmunity reveal that epigenetic marks of autoantigens are recognized by autoreactive B and T cell receptors. Thus, insights into the initiation of autoimmunity, its prevention and therapy will arise from understanding the biochemistry, cell biology and microbiology of autoantigen epigenetics. Here, we highlight potential benefits from the inhibition of a histone modifying enzyme and the administration of a phosphorylated, spliceosome-derived peptide, in the treatment of autoimmunity.

  9. Intraocular inflammation in autoimmune diseases.

    Science.gov (United States)

    Pras, Eran; Neumann, Ron; Zandman-Goddard, Gisele; Levy, Yair; Assia, Ehud I; Shoenfeld, Yehuda; Langevitz, Pnina

    2004-12-01

    The uveal tract represents the vascular organ of the eye. In addition to providing most of the blood supply to the intraocular structures, it acts as a conduit for immune cells, particularly lymphocytes, to enter the eye. Consequently, the uveal tract is represented in many intraocular inflammatory processes. Uveitis is probably a misnomer unless antigens within the uvea are the direct targets of the inflammatory process. A better term of the condition is "intraocular inflammation" (IOI). To review the presence of IOI in autoimmune diseases, the immunopathogenic mechanisms leading to disease, and treatment. We reviewed the English medical literature by using MEDLINE (1984-2003) employing the terms "uveitis," "intraocular inflammation," and "autoimmune diseases." An underlying autoimmune disease was identified in up to 40% of patients with IOI, and included spondyloarthropathies, Behcets disease, sarcoidosis, juvenile chronic arthritis, Vogt-Koyanagi-Harada syndrome (an inflammatory syndrome including uveitis with dermatologic and neurologic manifestations), immune recovery syndrome, and uveitis with tubulointerstitial disease. The immunopathogenesis of IOI involves enhanced T-cell response. Recently, guidelines for the use of immunosuppressive drugs for inflammatory eye disease were established and include: corticosteroids, azathioprine, methotrexate, mycophenolate mofetil, cyclosporine, tacrolimus, cyclophosphamide, and chlorambucil. New therapies with limited experience include the tumor necrosis factor alpha inhibitors, interferon alfa, monoclonal antibodies against lymphocyte surface antigens, intravenous immunoglobulin (IVIG), and the intraocular delivery of immunosuppressive agents. An underlying autoimmune disease was identified in up to 40% of patients with IOI. Immunosuppressive drugs, biologic agents, and IVIG are employed for the treatment of IOI in autoimmune diseases.

  10. Immune ablation and stem-cell therapy in autoimmune disease: Clinical experience

    OpenAIRE

    Tyndall, Alan; Gratwohl, Alois

    2000-01-01

    In the past 5 years, around 350 patients have received haematopoietic stem cell (HSC) transplantation for an autoimmune disease, with 275 of these registered in an international data base in Basel under the auspices of the European League Against Rheumatism (EULAR) and the European Group for Blood and Marrow Transplantation(EBMT). Most patients had either a progressive form of multiple sclerosis (MS; n = 88) or scleroderma (now called systemic sclerosis; n = 55). Other diseases were rheumatoi...

  11. Neuropathic pain in experimental autoimmune neuritis is associated with altered electrophysiological properties of nociceptive DRG neurons.

    Science.gov (United States)

    Taha, Omneya; Opitz, Thoralf; Mueller, Marcus; Pitsch, Julika; Becker, Albert; Evert, Bernd Oliver; Beck, Heinz; Jeub, Monika

    2017-11-01

    Guillain-Barré syndrome (GBS) is an acute, immune-mediated polyradiculoneuropathy characterized by rapidly progressive paresis and sensory disturbances. Moderate to severe and often intractable neuropathic pain is a common symptom of GBS, but its underlying mechanisms are unknown. Pathology of GBS is classically attributed to demyelination of large, myelinated peripheral fibers. However, there is increasing evidence that neuropathic pain in GBS is associated with impaired function of small, unmyelinated, nociceptive fibers. We therefore examined the functional properties of small DRG neurons, the somata of nociceptive fibers, in a rat model of GBS (experimental autoimmune neuritis=EAN). EAN rats developed behavioral signs of neuropathic pain. This was accompanied by a significant shortening of action potentials due to a more rapid repolarization and an increase in repetitive firing in a subgroup of capsaicin-responsive DRG neurons. Na + current measurements revealed a significant increase of the fast TTX-sensitive current and a reduction of the persistent TTX-sensitive current component. These changes of Na + currents may account for the significant decrease in AP duration leading to an overall increase in excitability and are therefore possibly directly linked to pathological pain behavior. Thus, like in other animal models of neuropathic and inflammatory pain, Na + channels seem to be crucially involved in the pathology of GBS and may constitute promising targets for pain modulating pharmaceuticals. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Autoimmune hemolytic anemia: transfusion challenges and solutions

    Directory of Open Access Journals (Sweden)

    Barros MM

    2017-03-01

    Full Text Available Melca M O Barros, Dante M Langhi Jr, José O Bordin Department of Clinical and Experimental Oncology, Universidade Federal de São Paulo, São Paulo, Brazil Abstract: Autoimmune hemolytic anemia (AIHA is defined as the increased destruction of red blood cells (RBCs in the presence of anti-RBC autoantibodies and/or complement. Classification of AIHA is based on the optimal auto-RBC antibody reactivity temperatures and includes warm, cold-reactive, mixed AIHA, and drug-induced AIHA subtypes. AIHA is a rare disease, and recommendations for transfusion are based mainly on results from retrospective data and relatively small cohort studies, including heterogeneous patient samples or single case reports. In this article, we will review the challenges and solutions to safely transfuse AIHA patients. We will reflect on the indication for transfusion in AIHA and the difficulty in the accomplishment of immunohematological procedures for the selection of the safest and most compatible RBC units. Keywords: hemolytic anemia, RBC autoantibodies, autoimmunity, hemolysis, direct ­antiglobulin test

  13. [Experimental research in vitro of TK/GCV system for osteosarcoma MG-63 cell damage].

    Science.gov (United States)

    Zhang, Hua-Dong; Lu, Zhi; Feng, Yi; Liu, Xiao-Li; Hou, Hui-Ming

    2014-03-01

    To study the killing effects of the liposome-mediated thymidine kinase (TK)/ganciclovir (GCV) system on MG-63 osteosarcoma (OS) cells and its bystander effects. Liposome-mediated TK gene transfected into MG-63 OS cells, the efficiency of transfection was analyzed by flow cytometry and observed under inverted fluorescence microscope. Non-transfected osteosarcoma MG-63 cells were divided into three groups,in the experimental group 1 transfected TK/GCV cells cultured in solutiona liquid mixture by supernatant by 1/10,1/7,1/5,1/2 ratio to original broth; in the experimental group 2 transfected cells cultured in solutiona liquid mixture of supernatant filtered through 0.22 microm filter by 1/10,1/7, 1/5, 1/2 ratio to original broth, in control group the transfection cells cultured in original culture solution. Cell growth inhibition rate and osteosarcoma cell sensitivity to TK/GCV system were measured by MTT assay in each group. The TK gene was transfected into MG-63 OS cells successfully by liposome-mediated, flow cytometry instrument detection TK gene transfection cell transfection efficiency can reach 75.5%. Six days later the MTT assay showed that in the experimental group 1 inhibition rate of all concentration ratio of the mixed culture fluid were statistically significant as compared with the control group (P culture medium was not statistically significant as compared with the control group (P > 0.05). TK gene transfected MG-63 cells increased with the the GCV concentration,the cell apoptosis rate increased. The experiment demonstrated that the MG-63 OS cells are sensitive to the liposome-mediated TK/GCV system and bystander effects are significant.

  14. Glucagon-Like Peptide-1 Analog, Liraglutide, Delays Onset of Experimental Autoimmune Encephalitis in Lewis Rats

    DEFF Research Database (Denmark)

    DellaValle, Brian; Brix, Gitte S; Brock, Birgitte

    2016-01-01

    (GLP-1) family, is also anti-diabetic and weight-reducing and is, moreover, directly neuroprotective and anti-inflammatory in a broad spectrum of experimental models of brain disease. In this study we investigate the potential for this FDA-approved drug, liraglutide, as a treatment for MS by utilizing...... the experimental model, experimental autoimmune encephalitis (EAE). Methods: EAE was induced in 30 female Lewis rats that subsequently received twice-daily liraglutide (200 μg/kg s.c.) or saline. Healthy controls were included (saline, n = 6, liraglutide, n = 7). Clinical score and weight were assessed daily...... treatment delayed disease onset (group clinical score significantly >0) by 2 days and markedly reduced disease severity (median clinical score 2 vs. 5; p = 0.0003). Fourteen of 15 (93%) of vehicle-treated rats reached the humane endpoint (clinical score ≥4) by day 11 compared to 5 of 15 (33%) of liraglutide...

  15. Immune regulation and CNS autoimmune disease

    DEFF Research Database (Denmark)

    Antel, J P; Owens, T

    1999-01-01

    The central nervous system is a demonstrated target of both clinical and experimental immune mediated disorders. Immune regulatory mechanisms operative at the levels of the systemic immune system, the blood brain barrier, and within the CNS parenchyma are important determinants of the intensity...... and duration of the tissue directed injury. Convergence of research, involving direct manipulation of specific cells and molecular mediators in animal models and in vitro analysis of human immune and neural cells and tissues, is providing increasing insight into the role of these immune regulatory functions...

  16. Free radical theory of autoimmunity

    Directory of Open Access Journals (Sweden)

    Kannan Subburaj

    2006-06-01

    Full Text Available Abstract Background Despite great advances in clinical oncology, the molecular mechanisms underlying the failure of chemotherapeutic intervention in treating lymphoproliferative and related disorders are not well understood. Hypothesis A hypothetical scheme to explain the damage induced by chemotherapy and associated chronic oxidative stress is proposed on the basis of published literature, experimental data and anecdotal observations. Brief accounts of multidrug resistance, lymphoid malignancy, the cellular and molecular basis of autoimmunity and chronic oxidative stress are assembled to form a basis for the hypothesis and to indicate the likelihood that it is valid in vivo. Conclusion The argument set forward in this article suggests a possible mechanism for the development of autoimmunity. According to this view, the various sorts of damage induced by chemotherapy have a role in the pattern of drug resistance, which is associated with the initiation of autoimmunity.

  17. The therapeutic effects of MSc1 nanocomplex, synthesized by nanochelating technology, on experimental autoimmune encephalomyelitic C57/BL6 mice

    Directory of Open Access Journals (Sweden)

    Fakharzadeh S

    2014-08-01

    Full Text Available Saideh Fakharzadeh,1 Mohammad Ali Sahraian,2 Maryam Hafizi,1 Somayeh Kalanaky,1 Zahra Masoumi,1 Mehdi Mahdavi,1 Nasser Kamalian,3 Alireza Minagar,4 Mohammad Hassan Nazaran1 1Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran; 2MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; 3Department of Pathology, Medical School of Tehran University of Medical Sciences, Tehran, Iran; 4Department of Neurology, LSU Health Sciences Centre, Shreveport, LA, USA Purpose: Currently approved therapies for multiple sclerosis (MS at best only slow down its progression. Therefore, it is necessary to utilize novel technologies in order to synthesize smart multifunctional structures. In the present study, for the first time we evaluated the therapeutic potential of MSc1 nanocomplex, which was designed based on novel nanochelating technology. Materials and methods: MSc1 cell-protection capacity, with and without iron bond, was evaluated against hydrogen peroxide (H2O2-induced oxidative stress in cultured rat pheochromocytoma-12 cells. The ability of MSc1 to maintain iron bond at pH ranges of 1–7 was evaluated. Nanocomplex toxicity was examined by estimating the intraperitoneal median lethal dose (LD50. Experimental autoimmune encephalomyelitic mice were injected with MSc1 14 days after disease induction, when the clinical symptoms appeared. The clinical score, body weight, and disease-induced mortality were monitored until day 54. In the end, after collecting blood samples for assessing hemoglobin and red blood cell count, the brains and livers of the mice were isolated for hematoxylin and eosin staining and analysis of iron content, respectively. Results: The results showed that MSc1 prevented H2O2-induced cell death even after binding with iron, and it preserved its bond with iron constant at pH ranges 1–7. The nanocomplex intraperitoneal LD50 was 1,776.59 mg/kg. MSc1 prompted therapeutic

  18. Exacerbation of autoimmune neuro-inflammation in mice cured from blood-stage Plasmodium berghei infection.

    Directory of Open Access Journals (Sweden)

    Rodolfo Thomé

    Full Text Available The thymus plays an important role shaping the T cell repertoire in the periphery, partly, through the elimination of inflammatory auto-reactive cells. It has been shown that, during Plasmodium berghei infection, the thymus is rendered atrophic by the premature egress of CD4+CD8+ double-positive (DP T cells to the periphery. To investigate whether autoimmune diseases are affected after Plasmodium berghei NK65 infection, we immunized C57BL/6 mice, which was previously infected with P. berghei NK65 and treated with chloroquine (CQ, with MOG35-55 peptide and the clinical course of Experimental Autoimmune Encephalomyelitis (EAE was evaluated. Our results showed that NK65+CQ+EAE mice developed a more severe disease than control EAE mice. The same pattern of disease severity was observed in MOG35-55-immunized mice after adoptive transfer of P. berghei-elicited splenic DP-T cells. The higher frequency of IL-17+- and IFN-γ+-producing DP lymphocytes in the Central Nervous System of these mice suggests that immature lymphocytes contribute to disease worsening. To our knowledge, this is the first study to integrate the possible relationship between malaria and multiple sclerosis through the contribution of the thymus. Notwithstanding, further studies must be conducted to assert the relevance of malaria-induced thymic atrophy in the susceptibility and clinical course of other inflammatory autoimmune diseases.

  19. Treatment with Rutin - A Therapeutic Strategy for Neutrophil-Mediated Inflammatory and Autoimmune Diseases - Anti-inflammatory Effects of Rutin on Neutrophils -

    Directory of Open Access Journals (Sweden)

    Bahareh Abd Nikfarjam

    2017-03-01

    Full Text Available Objectives: Neutrophils represent the front line of human defense against infections. Immediately after stimulation, neutrophilic enzymes are activated and produce toxic mediators such as pro-inflammatory cytokines, nitric oxide (NO and myeloperoxidase (MPO. These mediators can be toxic not only to infectious agents but also to host tissues. Because flavonoids exhibit antioxidant and anti-inflammatory effects, they are subjects of interest for pharmacological modulation of inflammation. In the present study, the effects of rutin on stimulus-induced NO and tumor necrosis factor (TNF-α productions and MPO activity in human neutrophils were investigated. Methods: Human peripheral blood neutrophils were isolated using Ficoll-Hypaque density gradient centrifugation coupled with dextran T500 sedimentation. The cell preparations containing > 98% granulocytes were determined by morphological examination through Giemsa staining. Neutrophils were cultured in complete Roswell Park Memorial Institute (RPMI medium, pre-incubated with or without rutin (25 μM for 45 minutes, and stimulated with phorbol 12-myristate 13-acetate (PMA. Then, the TNF-α, NO and MPO productions were analyzed using enzyme-linked immunosorbent assay (ELISA, Griess Reagent, and MPO assay kits, respectively. Also, the viability of human neutrophils was assessed using tetrazolium salt 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT, and neutrophils were treated with various concentrations of rutin (1 - 100 μM, after which MTT was appended and incubated at 37ºC for 4 hour. Results: Rutin at concentrations up to 100 μM did not affect neutrophil viability during the 4-hour incubation period. Rutin significantly decreased the NO and TNF-α productions in human peripheral blood neutrophils compared to PMA-control cells (P < 0.001. Also, MPO activity was significantly reduced by rutin (P < 0.001. Conclusion: In this in vitro study, rutin had an anti-inflammatory effect

  20. Specific removal of autoantibodies by extracorporeal immunoadsorption ameliorates experimental autoimmune myasthenia gravis.

    Science.gov (United States)

    Lazaridis, Konstantinos; Dalianoudis, Ioannis; Baltatzidi, Vasiliki; Tzartos, Socrates J

    2017-11-15

    Myasthenia gravis (MG) is caused by autoantibodies, the majority of which target the muscle acetylcholine receptor (AChR). Plasmapheresis and IgG-immunoadsorption are useful therapy options, but are highly non-specific. Antigen-specific immunoadsorption would remove only the pathogenic autoantibodies, reducing the possibility of side effects while maximizing the benefit. We have extensively characterized such adsorbents, but in vivo studies are missing. We used rats with experimental autoimmune MG to perform antigen-specific immunoadsorptions over three weeks, regularly monitoring symptoms and autoantibody titers. Immunoadsorption was effective, resulting in a marked autoantibody titer decrease while the immunoadsorbed, but not the mock-treated, animals showed a dramatic symptom improvement. Overall, the procedure was found to be efficient, suggesting the subsequent initiation of clinical trials. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Dual acylation and lipid raft association of Src-family protein tyrosine kinases are required for SDF-1/CXCL12-mediated chemotaxis in the Jurkat human T cell lymphoma cell line.

    Science.gov (United States)

    Zaman, Sabiha N; Resek, Mary E; Robbins, Stephen M

    2008-10-01

    Chemokines play pivotal roles in regulating a wide variety of biological processes by modulating cell migration and recruitment. Deregulation of chemokine signaling can alter cell recruitment, contributing to the pathogenic states associated with autoimmune disease, inflammatory disorders, and sepsis. During chemotaxis, lipid rafts and their resident signaling molecules have been demonstrated to partition to different parts of the cell. Herein, we investigated the role of lipid raft resident Src-family kinases (SFK) in stromal cell-derived factor 1/CXCL12-mediated chemotaxis. We have shown that Lck-deficient J.CaM 1.6 cells are defective in CXCL12-mediated chemotaxis in contrast to their parental counterpart, Jurkat cells. Ectopic expression of the SFK hematopoietic cell kinase (Hck) in J.CaM 1.6 cells reconstituted CXCL12 responsiveness. The requirement of lipid raft association of SFK was assessed using both isoforms of Hck: the dually acylated p59(Hck) isoform that is targeted to lipid rafts and the monoacylated p61(Hck) isoform that is nonraft-associated. We have shown using several gain and loss of acylation alleles that dual acylation of Hck was required for CXCL12-mediated chemotaxis in J.CaM 1.6 cells. These results highlight the importance of the unique microenvironment provided by lipid rafts and their specific contribution in providing specificity to CXCL12 signaling.

  2. Mechanisms of diabetic autoimmunity: I--the inductive interface between islets and the immune system at onset of inflammation.

    Science.gov (United States)

    Askenasy, Nadir

    2016-04-01

    The mechanisms of autoimmune reactivity onset in type 1 diabetes (T1D) remain elusive despite extensive experimentation and discussion. We reconsider several key aspects of the early stages of autoimmunity at four levels: islets, pancreatic lymph nodes, thymic function and peripheral immune homeostasis. Antigen presentation is the islets and has the capacity to provoke immune sensitization, either in the process of physiological neonatal β cell apoptosis or as a consequence of cytolytic activity of self-reactive thymocytes that escaped negative regulation. Diabetogenic effectors are efficiently expanded in both the islets and the lymph nodes under conditions of empty lymphoid niches during a period of time coinciding with a synchronized wave of β cell apoptosis surrounding weaning. A major drive of effector cell activation and expansion is inherent peripheral lymphopenia characteristic of neonates, though it remains unclear when is autoimmunity triggered in subjects displaying hyperglycemia in late adolescence. Our analysis suggests that T1D evolves through coordinated activity of multiple physiological mechanisms of stimulation within specific characteristics of the neonate immune system.

  3. DNA breaks and chromatin structural changes enhance the transcription of autoimmune regulator target genes.

    Science.gov (United States)

    Guha, Mithu; Saare, Mario; Maslovskaja, Julia; Kisand, Kai; Liiv, Ingrid; Haljasorg, Uku; Tasa, Tõnis; Metspalu, Andres; Milani, Lili; Peterson, Pärt

    2017-04-21

    The autoimmune regulator (AIRE) protein is the key factor in thymic negative selection of autoreactive T cells by promoting the ectopic expression of tissue-specific genes in the thymic medullary epithelium. Mutations in AIRE cause a monogenic autoimmune disease called autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. AIRE has been shown to promote DNA breaks via its interaction with topoisomerase 2 (TOP2). In this study, we investigated topoisomerase-induced DNA breaks and chromatin structural alterations in conjunction with AIRE-dependent gene expression. Using RNA sequencing, we found that inhibition of TOP2 religation activity by etoposide in AIRE-expressing cells had a synergistic effect on genes with low expression levels. AIRE-mediated transcription was not only enhanced by TOP2 inhibition but also by the TOP1 inhibitor camptothecin. The transcriptional activation was associated with structural rearrangements in chromatin, notably the accumulation of γH2AX and the exchange of histone H1 with HMGB1 at AIRE target gene promoters. In addition, we found the transcriptional up-regulation to co-occur with the chromatin structural changes within the genomic cluster of carcinoembryonic antigen-like cellular adhesion molecule genes. Overall, our results suggest that the presence of AIRE can trigger molecular events leading to an altered chromatin landscape and the enhanced transcription of low-expressed genes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Imaging dynamics of CD11c+ cells and Foxp3+ cells in progressive autoimmune insulitis in the NOD mouse model of type 1 diabetes

    DEFF Research Database (Denmark)

    Schmidt-Christensen, Anja; Hansen, Lisbeth; Ilegems, Erwin

    2013-01-01

    the endocrine pancreas during initiation and progression of insulitis in the NOD mouse. Individual, ACE-transplanted islets of Langerhans were longitudinally and repetitively imaged by stereomicroscopy and two-photon microscopy to follow fluorescently labelled leucocyte subsets. Results We demonstrate that......, in spite of the immune privileged status of the eye, the ACE-transplanted islets develop infiltration and beta cell destruction, recapitulating the autoimmune insulitis of the pancreas, and exemplify this by analysing reporter cell populations expressing green fluorescent protein under the Cd11c or Foxp3......Aims/hypothesis The aim of this study was to visualise the dynamics and interactions of the cells involved in autoimmune-driven inflammation in type 1 diabetes. Methods We adopted the anterior chamber of the eye (ACE) transplantation model to perform non-invasive imaging of leucocytes infiltrating...

  5. Crosstalk between Innate Lymphoid Cells and Other Immune Cells in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Fabian Flores-Borja

    2016-01-01

    Full Text Available Our knowledge and understanding of the tumor microenvironment (TME have been recently expanded with the recognition of the important role of innate lymphoid cells (ILC. Three different groups of ILC have been described based on their ability to produce cytokines that mediate the interactions between innate and adaptive immune cells in a variety of immune responses in infection, allergy, and autoimmunity. However, recent evidence from experimental models and clinical studies has demonstrated that ILC contribute to the mechanisms that generate suppressive or tolerant environments that allow tumor regression or progression. Defining the complex network of interactions and crosstalk of ILC with other immune cells and understanding the specific contributions of each type of ILC leading to tumor development will allow the manipulation of their function and will be important to develop new interventions and therapeutic strategies.

  6. Crosstalk between Innate Lymphoid Cells and Other Immune Cells in the Tumor Microenvironment

    Science.gov (United States)

    Irshad, Sheeba; Gordon, Peter; Wong, Felix; Sheriff, Ibrahim; Tutt, Andrew; Ng, Tony

    2016-01-01

    Our knowledge and understanding of the tumor microenvironment (TME) have been recently expanded with the recognition of the important role of innate lymphoid cells (ILC). Three different groups of ILC have been described based on their ability to produce cytokines that mediate the interactions between innate and adaptive immune cells in a variety of immune responses in infection, allergy, and autoimmunity. However, recent evidence from experimental models and clinical studies has demonstrated that ILC contribute to the mechanisms that generate suppressive or tolerant environments that allow tumor regression or progression. Defining the complex network of interactions and crosstalk of ILC with other immune cells and understanding the specific contributions of each type of ILC leading to tumor development will allow the manipulation of their function and will be important to develop new interventions and therapeutic strategies. PMID:27882334

  7. [Autoimmune diseases of the thyroid gland].

    Science.gov (United States)

    Allelein, S; Feldkamp, J; Schott, M

    2017-01-01

    Autoimmune diseases of the thyroid gland are considered to be the most frequent cause of thyroid gland disorders. Autoimmune thyroid diseases consist of two subgroups: autoimmune thyroiditis (AIT) and Graves' disease. The AIT is the most common human autoimmune disease. Infiltration of the thyroid gland with cytotoxic T‑cells can lead to an initial thyrotoxicosis und during the course to hypothyroidism due to destruction of the thyroid gland. Substitution with Levothyroxine is indicated for manifest hypothyroidism and subclinical hypothyroidism with increased thyroid antibodies with the intention of normalizing the serum thyroid stimulating hormone (TSH). Graves' disease is characterized by the appearance of stimulating TSH receptor antibodies leading to hyperthyroidism. Endocrine ophthalmopathy may also occur. Ablative therapy with radioiodine therapy or thyroidectomy is administered to patients with Graves' disease without remission after at least 1 year of antithyroid drug therapy.

  8. Cyclic AMP-Responsive Element-Binding Protein (CREB is Critical in Autoimmunity by Promoting Th17 but Inhibiting Treg Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Xiaohu Wang

    2017-11-01

    Full Text Available The molecular mechanisms that govern differential T cell development into pro-inflammatory Th17 vs. regulatory T (Treg cells remain unclear. Here, we show that selective deletion of CREB in T cells or Th17 cells impaired Th17 cell differentiation in vitro and in vivo, and led to resistance to autoimmune diseases. Mechanistically, CREB, activated by CD3-PKC-ϴ signaling, plays a key role in regulating Th17 cell differentiation, at least in part through directly binding to the Il17-Il17f gene locus. Unexpectedly, although dispensable for FOXP3 expression and for the homeostasis and suppressive function of thymus-derived Treg cells, CREB negatively regulates the survival of TGF-β-induced Treg cells, and deletion of CREB resulted in increased FOXP3+ Treg cells in the intestine and protection in a colitis model. Thus, CREB is critical in autoimmune diseases by promoting Th17 cell and inhibiting de novo Treg cell generation.

  9. Pivotal Roles of GM-CSF in Autoimmunity and Inflammation

    Science.gov (United States)

    Shiomi, Aoi; Usui, Takashi

    2015-01-01

    Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor, which stimulates the proliferation of granulocytes and macrophages from bone marrow precursor cells. In autoimmune and inflammatory diseases, Th17 cells have been considered as strong inducers of tissue inflammation. However, recent evidence indicates that GM-CSF has prominent proinflammatory functions and that this growth factor (not IL-17) is critical for the pathogenicity of CD4+ T cells. Therefore, the mechanism of GM-CSF-producing CD4+ T cell differentiation and the role of GM-CSF in the development of autoimmune and inflammatory diseases are gaining increasing attention. This review summarizes the latest knowledge of GM-CSF and its relationship with autoimmune and inflammatory diseases. The potential therapies targeting GM-CSF as well as their possible side effects have also been addressed in this review. PMID:25838639

  10. Assay of mast cell mediators

    DEFF Research Database (Denmark)

    Rådinger, Madeleine; Jensen, Bettina M; Swindle, Emily

    2015-01-01

    Mediator release from activated mast cells is a major initiator of the symptomology associated with allergic disorders such as anaphylaxis and asthma. Thus, methods to monitor the generation and release of such mediators have widespread applicability in studies designed to understand the processes...... regulating mast cell activation and for the identification of therapeutic approaches to block mast cell-driven disease. In this chapter, we discuss approaches used for the determination of mast cell degranulation, lipid-derived inflammatory mediator production, and cytokine/chemokine gene expression as well...

  11. Autoimmune disease and risk for Parkinson disease A population-based case-control study

    DEFF Research Database (Denmark)

    Rugbjerg, K.; Friis, S.; Ritz, B.

    2009-01-01

    Objective: Inflammatory mediators are increased in autoimmune diseases and may activate microglia and might cause an inflammatory state and degeneration of dopaminergic neurons in the brain. Thus, we evaluated whether having an autoimmune disease increases the risk for developing Parkinson disease...... do not support the hypothesis that autoimmune diseases increase the risk for Parkinson disease. The decreased risk observed among patients with rheumatoid arthritis might be explained by underdiagnosis of movement disorders such as Parkinson disease in this patient group or by a protective effect...

  12. Huperzine A inhibits CCL2 production in experimental autoimmune encephalomyelitis mice and in cultured astrocyte.

    Science.gov (United States)

    Tian, G X; Zhu, X Q; Chen, Y; Wu, G C; Wang, J

    2013-01-01

    The active role of chemokines and inflammatory cytokines in the central nervous system (CNS) during the pathogenesis of experimental autoimmune encephalomyelitis (EAE) has been clearly established. Recent studies from our laboratory reported that Huperzine A (HupA) can attenuate the disease process in EAE by the inhibition of inflammation, demyelination, and axonal injury in the spinal cord as well as encephalomyelitic T-cell proliferation. In this study, the effects of low dose HupA on CCL2, TNF-alpha, IL-6, and IL-1beta expression were evaluated in EAE. The effect of HupA on lipopolysachharide (LPS)-induced inflammatory molecule secretion was investigated in cultured-astrocytes in vitro. In MOG35-55-induced EAE mice, intraperitoneal injections of HupA (0.1 mg/kg•d−1) significantly suppressed the expression of CCL2, IL-6, TNF-alpha, and IL-1beta in the spinal cord. HupA also repressed LPS-induced CCL2 production, but with little influence on pro-inflammatory cytokines in primary cultured astrocytes. The inhibition effect of HupA on CCL2 is PPARgamma-dependent and nicotine receptor-independent. Conditioned culture media from HupA-treated astrocyte decreased PBMC migration in vitro. Collectively, these results suggest that HupA can ameliorate EAE by inhibiting CCL2 production in astrocyte, which may consequently decrease inflammatory cell infiltration in the spinal cord. HupA may have a potential therapeutic value for the treatment of MS and other neuroinflammatory diseases.

  13. Cellular stress and innate inflammation in organ-specific autoimmunity: lessons learned from vitiligo

    Science.gov (United States)

    Harris, John E.

    2015-01-01

    Summary For decades, research in autoimmunity has focused primarily on immune contributions to disease. Yet recent studies report elevated levels of reactive oxygen species (ROS) and abnormal activation of the unfolded protein response (UPR) in cells targeted by autoimmunity, implicating cellular stress originating from the target tissue as a contributing factor. A better understanding of this contribution may help to answer important lingering questions in organ-specific autoimmunity, like what factors initiate disease, and what directs its tissue specificity. Vitiligo, an autoimmune disease of the skin, has been the focus of translational research for over 30 years, and both melanocyte stress and immune mechanisms have been thought to be mutually exclusive explanations for pathogenesis. Chemical-induced vitiligo is a unique clinical presentation that reflects the importance of environmental influences on autoimmunity, provides insight into a new paradigm linking cell stress to the immune response, and serves as a template for other autoimmune diseases. In this review I will discuss the evidence for cell stress contributions to a number of autoimmune diseases, the questions that remain, and how vitiligo, an underappreciated example of organ-specific autoimmunity, helps to answer them. PMID:26683142

  14. Diagnosis and classification of autoimmune orchitis.

    Science.gov (United States)

    Silva, C A; Cocuzza, M; Carvalho, J F; Bonfá, E

    2014-01-01

    Autoimmune orchitis is characterized by testis inflammation and the presence of specific antisperm antibodies (ASA). It is classified in two categories. Primary autoimmune orchitis is defined by infertility and asymptomatic orchitis associated with ASA (100%) directed to the basement membrane or seminiferous tubules in infertile men, without any systemic disease and usually asymptomatic. Secondary autoimmune orchitis is characterized by symptomatic orchitis and/or testicular vasculiti`s associated with a systemic autoimmune disease, particularly vasculitis. These patients typically demonstrate testicular pain, erythema and/or swelling. ASA in secondary autoimmune orchitis have been reported in up to 50% of patients, especially in systemic lupus erythematosus patients. The pathogenesis of primary as well as secondary autoimmune orchitis is still unknown. Although the etiology is likely to be multifactorial, testicular inflammation, infection or trauma may induce T cell response with pro-inflammatory cytokine production with a consequent blood-testis-barrier permeability alteration, ASA production and apoptosis of spermatocytes and spermatids. ASA is known to cause immobilization and/or agglutination of spermatozoa, which may block sperm-egg interaction resulting in infertility. Assisted reproduction has been used as an efficient option in primary cases and immunosuppressive therapy for secondary autoimmune orchitis, although there is no double-blind, randomized trial to confirm the efficacy of any treatment regimens for these conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The Biology of Autoimmune Response in the Scurfy Mice that Lack the CD4+Foxp3+ Regulatory T-Cells.

    Science.gov (United States)

    Ju, Shyr-Te; Sharma, Rahul; Gaskin, Felicia; Kung, John T; Fu, Shu Man

    2012-04-04

    Due to a mutation in the Foxp3 transcription factor, Scurfy mice lack regulatory T-cells that maintain self-tolerance of the immune system. They develop multi-organ inflammation (MOI) and die around four weeks old. The affected organs are skin, tail, lungs and liver. In humans, endocrine and gastrointestinal inflammation are also observed, hence the disease is termed IPEX (Immunodysregulation, Polyendocrinopathy, Enteropathy, X-linked) syndrome. The three week period of fatal MOI offers a useful autoimmune model in which the controls by genetics, T-cell subsets, cytokines, and effector mechanisms could be efficiently investigated. In this report, we will review published work, summarize our recent studies of Scurfy double mutants lacking specific autoimmune-related genes, discuss the cellular and cytokine controls by these genes on MOI, the organ-specificities of the MOI controlled by environments, and the effector mechanisms regulated by specific Th cytokines, including several newly identified control mechanisms for organ-specific autoimmune response.

  16. The role of melatonin in autoimmune and atopic diseases

    Directory of Open Access Journals (Sweden)

    J.R. Calvo

    2016-04-01

    Full Text Available Melatonin is the main secretory product synthesized and secreted by the pineal gland during the night. Melatonin is a pleitropic molecule with a wide distribution within phylogenetically distant organisms and has a great functional versatility, including the regulation of circadian and seasonal rhythms and antioxidant and anti-inflammatory properties. It also possesses the capacity to modulate immune responses by regulation of the TH1/TH2 balance and cytokine production. Immune system eradicates infecting organisms without serious injury to host tissues, but sometimes these responses are inadequately controlled, giving rise to called hypersensitivity diseases, or inappropriately targeted to host tissues, causing the autoimmune diseases. In clinical medicine, the hypersensitivity diseases include the allergic or atopic diseases and the hallmarks of these diseases are the activation of TH2 cells and the production of IgE antibody. Regarding autoimmunity, at the present time we know that the key events in the development of autoimmunity are a failure or breakdown of the mechanisms normally responsible for maintaining self-tolerance in B lymphocytes, T lymphocytes, or both, the recognition of self-antigens by autoreactive lymphocytes, the activation of these cells to proliferate and differentiate into effector cells, and the tissue injury caused by the effector cells and their products. Melatonin treatment has been investigated in atopic diseases, in several animal models of autoimmune diseases, and has been also evaluated in clinical autoimmune diseases. This review summarizes the role of melatonin in atopic diseases (atopic dermatitis and asthma and in several autoimmune diseases, such as arthritis rheumatoid, multiple sclerosis, systemic lupus erythematosus, type 1 diabetes mellitus, and inflammatory bowel diseases.

  17. NLRP3 and ASC suppress lupus-like autoimmunity by driving the immunosuppressive effects of TGF-β receptor signalling.

    Science.gov (United States)

    Lech, Maciej; Lorenz, Georg; Kulkarni, Onkar P; Grosser, Marian O O; Stigrot, Nora; Darisipudi, Murthy N; Günthner, Roman; Wintergerst, Maximilian W M; Anz, David; Susanti, Heni Eka; Anders, Hans-Joachim

    2015-12-01

    The NLRP3/ASC inflammasome drives host defence and autoinflammatory disorders by activating caspase-1 to trigger the secretion of mature interleukin (IL)-1β/IL-18, but its potential role in autoimmunity is speculative. We generated and phenotyped Nlrp3-deficient, Asc-deficient, Il-1r-deficient and Il-18-deficient C57BL/6-lpr/lpr mice, the latter being a mild model of spontaneous lupus-like autoimmunity. While lack of IL-1R or IL-18 did not affect the C57BL/6-lpr/lpr phenotype, lack of NLRP3 or ASC triggered massive lymphoproliferation, lung T cell infiltrates and severe proliferative lupus nephritis within 6 months, which were all absent in age-matched C57BL/6-lpr/lpr controls. Lack of NLRP3 or ASC increased dendritic cell and macrophage activation, the expression of numerous proinflammatory mediators, lymphocyte necrosis and the expansion of most T cell and B cell subsets. In contrast, plasma cells and autoantibody production were hardly affected. This unexpected immunosuppressive effect of NLRP3 and ASC may relate to their known role in SMAD2/3 phosphorylation during tumour growth factor (TGF)-β receptor signalling, for example, Nlrp3-deficiency and Asc-deficiency significantly suppressed the expression of numerous TGF-β target genes in C57BL/6-lpr/lpr mice and partially recapitulated the known autoimmune phenotype of Tgf-β1-deficient mice. These data identify a novel non-canonical immunoregulatory function of NLRP3 and ASC in autoimmunity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Exacerbation of experimental autoimmune encephalomyelitis in prion protein (PrPc-null mice: evidence for a critical role of the central nervous system

    Directory of Open Access Journals (Sweden)

    Gourdain Pauline

    2012-01-01

    Full Text Available Abstract Background The cellular prion protein (PrPc is a host-encoded glycoprotein whose transconformation into PrP scrapie (PrPSc initiates prion diseases. The role of PrPc in health is still obscure, but many candidate functions have been attributed to the protein, both in the immune and the nervous systems. Recent data show that experimental autoimmune encephalomyelitis (EAE is worsened in mice lacking PrPc. Disease exacerbation has been attributed to T cells that would differentiate into more aggressive effectors when deprived of PrPc. However, alternative interpretations such as reduced resistance of neurons to autoimmune insult and exacerbated gliosis leading to neuronal deficits were not considered. Method To better discriminate the contribution of immune cells versus neural cells, reciprocal bone marrow chimeras with differential expression of PrPc in the lymphoid or in the central nervous system (CNS were generated. Mice were subsequently challenged with MOG35-55 peptide and clinical disease as well as histopathology were compared in both groups. Furthermore, to test directly the T cell hypothesis, we compared the encephalitogenicity of adoptively transferred PrPc-deficient versus PrPc-sufficient, anti-MOG T cells. Results First, EAE exacerbation in PrPc-deficient mice was confirmed. Irradiation exacerbated EAE in all the chimeras and controls, but disease was more severe in mice with a PrPc-deleted CNS and a normal immune system than in the reciprocal construction. Moreover, there was no indication that anti-MOG responses were different in PrPc-sufficient and PrPc-deficient mice. Paradoxically, PrPc-deficient anti-MOG 2D2 T cells were less pathogenic than PrPc-expressing 2D2 T cells. Conclusions In view of the present data, it can be concluded that the origin of EAE exacerbation in PrPc-ablated mice resides in the absence of the prion protein in the CNS. Furthermore, the absence of PrPc on both neural and immune cells does not

  19. In vitro induced regulatory T cells are unique from endogenous regulatory T cells and effective at suppressing late stages of ongoing autoimmunity.

    Directory of Open Access Journals (Sweden)

    Thanh-Long M Nguyen

    Full Text Available Strategies to boost the numbers and functions of regulatory T cells (Tregs are currently being tested as means to treat autoimmunity. While Tregs have been shown to be effective in this role, strategies to manipulate Tregs to effectively suppress later stages of ongoing diseases need to be established. In this study, we evaluated the ability of TGF-β-induced Tregs (iTregs specific for the major self-antigen in autoimmune gastritis to suppress established autoimmune gastritis in mice. When transferred into mice during later stages of disease, iTregs demethylated the Foxp3 promoter, maintained Foxp3 expression, and suppressed effector T cell proliferation. More importantly, these iTregs were effective at stopping disease progression. Untreated mice had high numbers of endogenous Tregs (enTregs but these were unable to stop disease progression. In contrast, iTregs, were found in relatively low numbers in treated mice, yet were effective at stopping disease progression, suggesting qualitative differences in suppressor functions. We identified several inhibitory receptors (LAG-3, PD-1, GARP, and TNFR2, cytokines (TGF-β1 and IL12p35, and transcription factors (IRF4 and Tbet expressed at higher levels by iTregs compared to enTregs isolated form mice with ongoing disease, which likely accounts for superior suppressor ability in this disease model. These data support efforts to use iTregs in therapies to treat establish autoimmunity, and show that iTregs are more effective than enTregs at suppressing inflammation in this disease model.

  20. SHIP-1 Deficiency in AID+ B Cells Leads to the Impaired Function of B10 Cells with Spontaneous Autoimmunity.

    Science.gov (United States)

    Chen, Yingjia; Hu, Fanlei; Dong, Xuejiao; Zhao, Meng; Wang, Jing; Sun, Xiaolin; Kim, Tae Jin; Li, Zhanguo; Liu, Wanli

    2017-11-01

    Unlike conventional B cells, regulatory B cells exhibit immunosuppressive functions to downregulate inflammation via IL-10 production. However, the molecular mechanism regulating the production of IL-10 is not fully understood. In this study, we report the finding that activation-induced cytidine deaminase (AID) is highly upregulated in the IL-10-competent B cell (B10) cell from Innp5d fl/fl Aicda Cre/+ mice, whereas the 5' inositol phosphatase SHIP-1 is downregulated. Notably, SHIP-1 deficiency in AID + B cells leads to a reduction in cell count and impaired IL-10 production by B10 cells. Furthermore, the Innp5d fl/fl Aicda Cre/+ mouse model shows B cell-dependent autoimmune lupus-like phenotypes, such as elevated IgG serum Abs, formation of spontaneous germinal centers, production of anti-dsDNA and anti-nuclear Abs, and the obvious deposition of IgG immune complexes in the kidney with age. We observe that these lupus-like phenotypes can be reversed by the adoptive transfer of B10 cells from control Innp5d fl/fl mice, but not from the Innp5d fl/fl Aicda Cre/+ mice. This finding highlights the importance of defective B10 cells in Innp5d fl/fl Aicda Cre/+ mice. Whereas p-Akt is significantly upregulated, MAPK and AP-1 activation is impaired in B10 cells from Innp5d fl/fl Aicda Cre/+ mice, resulting in the reduced production of IL-10. These results show that SHIP-1 is required for the maintenance of B10 cells and production of IL-10, and collectively suggests that SHIP-1 could be a new potential therapeutic target for the treatment of autoimmune diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Autoimmune Diabetes and Thyroiditis Complicating Treatment with Nivolumab

    Directory of Open Access Journals (Sweden)

    Li Li

    2017-03-01

    Full Text Available Programmed cell death-1 (PD-1 ligand inhibitors have gained popularity in the treatment of advanced non-small-cell lung cancer. The immune system is regulated by stimulatory and inhibitory signaling and aims to achieve the balance between activation and inhibition. Treatment with immune checkpoint inhibitors enhances immune response, but is also known to diminish immune tolerance and increase autoimmune toxicity. Here we present a case of a patient with advanced squamous cell lung cancer who developed type I diabetes and thyroiditis after treatment with PD-1 checkpoint inhibitor nivolumab. The presence of autoimmune diabetes mellitus and thyroiditis were confirmed by markedly elevated titers of the glutamic acid decarboxylase autoantibody and thyroid peroxidase antibody, respectively. This report serves to heighten awareness of potential autoimmune toxicities related to anti-PD-1 therapy, especially as these toxicities are manageable if identified in a timely manner.

  2. Autoimmunity and dysmetabolism of human acquired immunodeficiency syndrome.

    Science.gov (United States)

    Huang, Yan-Mei; Hong, Xue-Zhi; Xu, Jia-Hua; Luo, Jiang-Xi; Mo, Han-You; Zhao, Hai-Lu

    2016-06-01

    Acquired immunodeficiency syndrome (AIDS) remains ill-defined by lists of symptoms, infections, tumors, and disorders in metabolism and immunity. Low CD4 cell count, severe loss of body weight, pneumocystis pneumonia, and Kaposi's sarcoma are the major disease indicators. Lines of evidence indicate that patients living with AIDS have both immunodeficiency and autoimmunity. Immunodeficiency is attributed to deficits in the skin- and mucosa-defined innate immunity, CD4 T cells and regulatory T cells, presumably relating human immunodeficiency virus (HIV) infection. The autoimmunity in AIDS is evident by: (1) overproduction of autoantibodies, (2) impaired response of CD4 cells and CD8 cells, (3) failure of clinical trials of HIV vaccines, and (4) therapeutic benefits of immunosuppression following solid organ transplantation and bone marrow transplantation in patients at risk of AIDS. Autoantibodies are generated in response to antigens such as debris and molecules de novo released from dead cells, infectious agents, and catabolic events. Disturbances in metabolic homeostasis occur at the interface of immunodeficiency and autoimmunity in the development of AIDS. Optimal treatments favor therapeutics targeting on the regulation of metabolism to restore immune homeostasis.

  3. Environmental adjuvants, apoptosis and the censorship over autoimmunity.

    Science.gov (United States)

    Rovere-Querini, Patrizia; Manfredi, Angelo A; Sabbadini, Maria Grazia

    2005-11-01

    Alterations during apoptosis lead to the activation of autoreactive T cells and the production of autoantibodies. This article discusses the pathogenic potential of cells dying in vivo, dissecting the role of signals that favor immune responses (adjuvants) and the influence of genetic backgrounds. Diverse factors determine whether apoptosis leads or not to a self-sustaining, clinically apparent autoimmune disease. The in vivo accumulation of uncleared dying cells per se is not sufficient to cause disease. However, dying cells are antigenic and their complementation with immune adjuvants causes lethal diseases in predisposed lupus-prone animals. At least some adjuvant signals directly target the function and the activation state of antigen presenting cells. Several laboratories are aggressively pursuing the molecular identification of endogenous adjuvants. Sodium monourate and the high mobility group B1 protein (HMGB1) are, among those identified so far, well known to rheumatologists. However, even the complementation of apoptotic cells with potent adjuvant signals fail to cause clinical autoimmunity in most strains: autoantibodies generated are transient, do not undergo to epitope/spreading and do not cause disease. Novel tools for drug development will derive from the molecular identification of the constraints that prevent autoimmunity in normal subjects.

  4. Transfer of experimental autoimmune thyroiditis with T cell clones

    International Nuclear Information System (INIS)

    Romball, C.G.; Weigle, W.O.

    1987-01-01

    We have investigated three T lymphocyte clones isolated from CBA/CaJ mice primed with mouse thyroid extract (MTE) in adjuvant. All three clones are L3T4+, Ig-, and Lyt2- and proliferate to MTE, mouse thyroglobulin (MTG) and rat thyroid extract. Clones A7 and B7 transfer thyroiditis to irradiated (475 rad) syngeneic mice, but not to normal recipients. The thyroid lesion induced by the B7 clone is characterized by the infiltration of both mononuclear and polymorphonuclear cells. The thyroiditis is transient in that lesions are apparent 7 and 14 days after transfer, but thyroids return to normal by day 21. Clone B7 showed helper activity for trinitrophenyl-keyhole limpet hemocyanin-primed B cells in vitro when stimulated with trinitrophenyl-MTG and also stimulated the production of anti-MTG antibody in recipient mice. Clone A7 induced thyroid lesions characterized by infiltration of the thyroid with mononuclear cells, with virtually no polymorphonuclear cell infiltration. This clone has shown no helper activity following stimulation with trinitrophenyl-MTG. The third clone (D2) proliferates to and shows helper activity to MTG, but fails to transfer thyroiditis to syngeneic, irradiated mice. On continuous culture, clone B7 lost its surface Thy. The loss of Thy appears unrelated to the ability to transfer thyroiditis since subclones of B7 with markedly different percentages of Thy+ cells transferred disease equally well

  5. The role of human endogenous retroviruses in the pathogenesis of autoimmune diseases.

    Science.gov (United States)

    Brodziak, Andrzej; Ziółko, Ewa; Muc-Wierzgoń, Małgorzata; Nowakowska-Zajdel, Ewa; Kokot, Teresa; Klakla, Katarzyna

    2012-06-01

    This paper presents a new, recently formulated theory, which concerns the etiopathological process of autoimmune diseases. This theory takes into account the existence in the human genome, since approximately 40 million years, of so-called human endogenous retroviruses (HERVs), which are transmitted to descendants "vertically" by the germ cells. It was recently established that these generally silent sequences perform some physiological roles, but occasionally become active and influence the development of some chronic diseases like diabetes, some neoplasms, chronic diseases of the nervous system (eg, sclerosis multiplex), schizophrenia and autoimmune diseases. We present a short synopsis of immunological processes involved in the pathogenesis of autoimmune diseases, such as molecular mimicry, epitope spreading and activation of the superantigen. We then focus on experimental findings related to systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome and some diseases of hepar and otorhinal tissues. We conclude the outline of this new model of the development of chronic diseases and indicate the conclusions important for the teaching of the basis of pathology.

  6. Curcumin and autoimmune disease.

    Science.gov (United States)

    Bright, John J

    2007-01-01

    The immune system has evolved to protect the host from microbial infection; nevertheless, a breakdown in the immune system often results in infection, cancer, and autoimmune diseases. Multiple sclerosis, rheumatoid arthritis, type 1 diabetes, inflammatory bowel disease, myocarditis, thyroiditis, uveitis, systemic lupus erythromatosis, and myasthenia gravis are organ-specific autoimmune diseases that afflict more than 5% of the population worldwide. Although the etiology is not known and a cure is still wanting, the use of herbal and dietary supplements is on the rise in patients with autoimmune diseases, mainly because they are effective, inexpensive, and relatively safe. Curcumin is a polyphenolic compound isolated from the rhizome of the plant Curcuma longa that has traditionally been used for pain and wound-healing. Recent studies have shown that curcumin ameliorates multiple sclerosis, rheumatoid arthritis, psoriasis, and inflammatory bowel disease in human or animal models. Curcumin inhibits these autoimmune diseases by regulating inflammatory cytokines such as IL-1beta, IL-6, IL-12, TNF-alpha and IFN-gamma and associated JAK-STAT, AP-1, and NF-kappaB signaling pathways in immune cells. Although the beneficial effects of nutraceuticals are traditionally achieved through dietary consumption at low levels for long periods of time, the use of purified active compounds such as curcumin at higher doses for therapeutic purposes needs extreme caution. A precise understanding of effective dose, safe regiment, and mechanism of action is required for the use of curcumin in the treatment of human autoimmune diseases.

  7. Altered B cell homeostasis and Toll-like receptor 9-driven response in patients affected by autoimmune polyglandular syndrome Type 1: Altered B cell phenotype and dysregulation of the B cell function in APECED patients.

    Science.gov (United States)

    Perri, Valentina; Gianchecchi, Elena; Scarpa, Riccardo; Valenzise, Mariella; Rosado, Maria Manuela; Giorda, Ezio; Crinò, Antonino; Cappa, Marco; Barollo, Susi; Garelli, Silvia; Betterle, Corrado; Fierabracci, Alessandra

    2017-02-01

    APECED is a T-cell mediated disease with increased frequencies of CD8+ effector and reduction of FoxP3+ T regulatory cells. Antibodies against affected organs and neutralizing to cytokines are found in the peripheral blood. The contribution of B cells to multiorgan autoimmunity in Aire-/- mice was reported opening perspectives on the utility of anti-B cell therapy. We aimed to analyse the B cell phenotype of APECED patients compared to age-matched controls. FACS analysis was conducted on PBMC in basal conditions and following CpG stimulation. Total B and switched memory (SM) B cells were reduced while IgM memory were increased in patients. In those having more than 15 years from the first clinical manifestation the defect included also mature and transitional B cells; total memory B cells were increased, while SM were unaffected. In patients with shorter disease duration, total B cells were unaltered while SM and IgM memory behaved as in the total group. A defective B cell proliferation was detected after 4day-stimulation. In conclusion APECED patients show, in addition to a significant alteration of the B cell phenotype, a dysregulation of the B cell function involving peripheral innate immune mechanisms particularly those with longer disease duration. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. A role for VAV1 in experimental autoimmune encephalomyelitis and multiple sclerosis

    DEFF Research Database (Denmark)

    Jagodic, Maja; Colacios, Celine; Nohra, Rita

    2009-01-01

    Multiple sclerosis, the most common cause of progressive neurological disability in young adults, is a chronic inflammatory disease. There is solid evidence for a genetic influence in multiple sclerosis, and deciphering the causative genes could reveal key pathways influencing the disease. A genome...... region on rat chromosome 9 regulates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Using interval-specific congenic rat lines and association of single-nucleotide polymorphisms with inflammatory phenotypes, we localized the gene of influence to Vav1, which codes for a signal......-transducing protein in leukocytes. Analysis of seven human cohorts (12,735 individuals) demonstrated an association of rs2546133-rs2617822 haplotypes in the first VAV1 intron with multiple sclerosis (CA: odds ratio, 1.18; CG: odds ratio, 0.86; TG: odds ratio, 0.90). The risk CA haplotype also predisposed for higher...

  9. PD-1 Checkpoint Inhibitor Associated Autoimmune Encephalitis

    Directory of Open Access Journals (Sweden)

    Stephanie Schneider

    2017-05-01

    Full Text Available Objective: To report first-hand narrative experience of autoimmune encephalitis and to briefly review currently available evidence of autoimmune encephalitis in cancer patients treated with immune checkpoint inhibitors. Setting: A case study is presented on the management of a patient who developed autoimmune encephalitis during nivolumab monotherapy occurring after 28 weeks on anti-PD-1 monotherapy (nivolumab 3 mg/kg every 2 weeks for non-small cell lung cancer. Results: No substantial improvement was observed by antiepileptic treatment. After administration of 80 mg methylprednisolone, neurologic symptoms disappeared within 24 h and the patient fully recovered. Conclusions: Immune checkpoint inhibitor treatment can lead to autoimmune encephalitis. Clinical trial data indicate a frequency of autoimmune encephalitis of ≥0.1 to <1% with a higher probability during combined or sequential anti-CTLA-4/anti-PD-1 therapy than during anti-PD-1 or anti-PD-L1 monotherapy. Further collection of evidence and translational research is warranted.

  10. The chronic autoimmune thyroiditis quality of life selenium trial (CATALYST)

    DEFF Research Database (Denmark)

    Winther, Kristian Hillert; Watt, Torquil; Bjørner, Jakob Bue

    2014-01-01

    Patients with chronic autoimmune thyroiditis have impaired health-related quality of life. The thyroid gland has a high selenium concentration, and specific selenoprotein enzyme families are crucial to immune function, and catalyze thyroid hormone metabolism and redox processes in thyroid cells......-enriched yeast or matching placebo tablets daily for 12 months. The experimental supplement will be SelenoPrecise(R). The primary outcome is thyroid-related quality of life assessed by the Thyroid Patient-Reported Outcome (ThyPRO) questionnaire. Secondary outcomes include serum thyroid peroxidase antibody...

  11. Prevention and reversal of experimental autoimmune thyroiditis (EAT) in mice by administration of anti-L3T4 monoclonal antibody at different stages of disease development.

    Science.gov (United States)

    Stull, S J; Kyriakos, M; Sharp, G C; Braley-Mullen, H

    1988-11-01

    Experimental autoimmune thyroiditis (EAT) can be induced in CBA/J mice following the transfer of spleen cells from mouse thyroglobulin (MTg)-sensitized donors that have been activated in vitro with MTg. Since L3T4+ T cells are required to transfer EAT in this model, the present study was undertaken to assess the effectiveness of the anti-L3T4 monoclonal antibody (mAb) GK1.5 in preventing or arresting the development of EAT. Spleen cells from mice given mAb GK1.5 prior to sensitization with MTg and adjuvant could not transfer EAT to normal recipients and cells from these mice did not proliferate in vitro to MTg. Donor mice given GK1.5 before immunization did not develop anti-MTg autoantibody and recipients of cells from such mice also produced little anti-MTg. GK1.5 could also prevent the proliferation and activation of sensitized effector cell precursors when added to in vitro cultures. When a single injection of mAb GK1.5 was given to recipients of in vitro-activated spleen cells, EAT was reduced whether the mAb was given prior to cell transfer or as late as 19 days after cell transfer. Whereas the incidence and severity of EAT was consistently reduced by injecting recipient mice with GK1.5, the same mice generally had no reduction in anti-MTg autoantibody. Since EAT is consistently induced in control recipients by 14-19 days after cell transfer, the ability of mAb GK1.5 to inhibit EAT when injected 14 or 19 days after cell transfer indicates that a single injection of the mAb GK1.5 can cause reversal of the histopathologic lesions of EAT in mice. These studies further establish the important role of L3T4+ T cells in the pathogenesis of EAT in mice and also suggest that therapy with an appropriate mAb may be an effective treatment for certain autoimmune diseases even when the therapy is initiated late in the course of the disease.

  12. Therapeutic effect of cortistatin on experimental arthritis by downregulating inflammatory and Th1 responses.

    Science.gov (United States)

    Gonzalez-Rey, Elena; Chorny, Alejo; Del Moral, Raimundo G; Varela, Nieves; Delgado, Mario

    2007-05-01

    Rheumatoid arthritis is a chronic autoimmune disease of unknown aetiology characterised by chronic inflammation in the joints and subsequent destruction of the cartilage and bone. To propose a new strategy for the treatment of arthritis based on the administration of cortistatin, a newly discovered neuropeptide with anti-inflammatory actions. DBA/1J mice with collagen-induced arthritis were treated with cortistatin after the onset of disease, and the clinical score and joint histopathology were evaluated. Inflammatory response was determined by measuring the levels of various inflammatory mediators (cytokines and chemokines) in joints and serum. T helper cell type 1 (Th1)-mediated autoreactive response was evaluated by determining the proliferative response and cytokine profile of draining lymph node cells stimulated with collagen and by assaying the content of serum autoantibodies. Cortistatin treatment significantly reduced the severity of established collagen-induced arthritis, completely abrogating joint swelling and destruction of cartilage and bone. The therapeutic effect of cortistatin was associated with a striking reduction in the two deleterious components of the disease-that is, the Th1-driven autoimmune and inflammatory responses. Cortistatin downregulated the production of various inflammatory cytokines and chemokines, decreased the antigen-specific Th1-cell expansion, and induced the production of regulatory cytokines, such as interleukin 10 and transforming growth factor beta1. Cortistatin exerted its effects on synovial cells through both somatostatin and ghrelin receptors, showing a higher effect than both peptides protecting against experimental arthritis. This work provides a powerful rationale for the assessment of the efficacy of cortistatin as a novel therapeutic approach to the treatment of rheumatoid arthritis.

  13. Loss of the receptor tyrosine kinase Axl leads to enhanced inflammation in the CNS and delayed removal of myelin debris during Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Prieto Anne L

    2011-05-01

    Full Text Available Abstract Background Axl, together with Tyro3 and Mer, constitute the TAM family of receptor tyrosine kinases. In the nervous system, Axl and its ligand Growth-arrest-specific protein 6 (Gas6 are expressed on multiple cell types. Axl functions in dampening the immune response, regulating cytokine secretion, clearing apoptotic cells and debris, and maintaining cell survival. Axl is upregulated in various disease states, such as in the cuprizone toxicity-induced model of demyelination and in multiple sclerosis (MS lesions, suggesting that it plays a role in disease pathogenesis. To test for this, we studied the susceptibility of Axl-/- mice to experimental autoimmune encephalomyelitis (EAE, an animal model for multiple sclerosis. Methods WT and Axl-/- mice were immunized with myelin oligodendrocyte glycoprotein (MOG35-55 peptide emulsified in complete Freund's adjuvant and injected with pertussis toxin on day 0 and day 2. Mice were monitored daily for clinical signs of disease and analyzed for pathology during the acute phase of disease. Immunological responses were monitored by flow cytometry, cytokine analysis and proliferation assays. Results Axl-/- mice had a significantly more severe acute phase of EAE than WT mice. Axl-/- mice had more spinal cord lesions with larger inflammatory cuffs, more demyelination, and more axonal damage than WT mice during EAE. Strikingly, lesions in Axl-/- mice had more intense Oil-Red-O staining indicative of inefficient clearance of myelin debris. Fewer activated microglia/macrophages (Iba1+ were found in and/or surrounding lesions in Axl-/- mice relative to WT mice. In contrast, no significant differences were noted in immune cell responses between naïve and sensitized animals. Conclusions These data show that Axl alleviates EAE disease progression and suggests that in EAE Axl functions in the recruitment of microglia/macrophages and in the clearance of debris following demyelination. In addition, these data

  14. The Janus Face of NKT Cell Function in Autoimmunity and Infectious Diseases

    Directory of Open Access Journals (Sweden)

    Alessandra Torina

    2018-02-01

    Full Text Available Natural killer T cells (NKT are a subset of T lymphocytes bridging innate and adaptive immunity. These cells recognize self and microbial glycolipids bound to non-polymorphic and highly conserved CD1d molecules. Three NKT cell subsets, type I, II, and NKT-like expressing different antigen receptors (TCR were described and TCR activation promotes intracellular events leading to specific functional activities. NKT can exhibit different functions depending on the secretion of soluble molecules and the interaction with other cell types. NKT cells act as regulatory cells in the defense against infections but, on the other hand, their effector functions can be involved in the pathogenesis of several inflammatory disorders due to their exposure to different microbial or self-antigens, respectively. A deep understanding of the biology and functions of type I, II, and NKT-like cells as well as their interplay with cell types acting in innate (neuthrophils, innate lymphoid cells, machrophages, and dendritic cells and adaptive immunity (CD4+,CD8+, and double negative T cells should be important to design potential immunotherapies for infectious and autoimmune diseases.

  15. Diagnosis and Management of the Overlap Syndromes of Autoimmune Hepatitis

    Directory of Open Access Journals (Sweden)

    Albert J Czaja

    2013-01-01

    Full Text Available BACKGROUND: Autoimmune hepatitis may have cholestatic features that are outside the classical phenotype and that resemble findings in other immune-mediated liver diseases. These cholestatic phenotypes have been designated ‘overlap syndromes’.

  16. Downregulation of cathepsin G reduces the activation of CD4+ T cells in murine autoimmune diabetes.

    Science.gov (United States)

    Zou, Fang; Lai, Xiaoyang; Li, Jing; Lei, Shuihong; Hu, Lei

    2017-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease due to progressive injury of islet cells mediated by T lymphocytes (T cells). Our previous studies have shown that only cathepsin G (CatG), not other proteases, is involved in the antigen presentation of proinsulin, and if the presentation is inhibited, the activation of CD4+ T cells induced by proinsulin is alleviated in T1DM patients, and CatG-specific inhibitor reduces the activation of CD4+ cells induced by proinsulin in T1DM patients. Therefore, we hypothesize that CatG may play an important role in the activation of CD4+ T cells in T1DM. To this end, mouse studies were conducted to demonstrate that CatG impacts the activation of CD4+ T cells in non-obese diabetic (NOD) mice. CatG gene expression and the activation of CD4+ T cells were examined in NOD mice. The effect of CatG inhibitor was investigated in NOD mice on the activation of CD4+ T cells, islet β cell function, islet inflammation and β-cell apoptosis. Furthermore, NOD mice were injected with CatG siRNA in early stage to observe the effect of CatG knockdown on the activation status of CD4+ T cells and the progression of diabetes. During the pathogenesis of diabetes, the expression level of CatG in NOD mice gradually increased and the CD4+ T cells were gradually activated, resulting in more TH1 cells and less TH2 and Treg cells. Treatment with CatG-specific inhibitor reduced the blood glucose level, improved the function of islet β cells and reduced the activation of CD4+ T cells. Early application of CatG siRNA improved the function of islet β cells, reduced islet inflammation and β cell apoptosis, and lowered the activation level of CD4+ T cells, thus slowing down the progression of diabetes.

  17. The role of Epstein-Barr virus infection in the development of autoimmune thyroid diseases.

    Science.gov (United States)

    Janegova, Andrea; Janega, Pavol; Rychly, Boris; Kuracinova, Kristina; Babal, Pavel

    2015-01-01

    Autoimmune thyroid diseases, including Graves' and Hashimoto's thyroiditis, are the most frequent autoimmune disorders. Viral infection, including Epstein-Barr virus (EBV), is one of the most frequently considered environmental factors involved in autoimmunity. Its role in the development of AITD has not been confirmed so far. Surgical specimens of Graves' and Hashimoto's diseases and nodular goitres were included in the study. The expression of EBV latent membrane protein 1 (LMP1) was analysed by immunohistochemistry, with the parallel detection of virus-encoded small nuclear non-polyadenylated RNAs (EBER) by in situ hybridisation. In none of the Graves' disease specimens but in 34.5% of Hashimoto's thyroiditis cases the cytoplasmic expression of LMP1 was detected in follicular epithelial cells and in infiltrating lymphocytes. EBER nuclear expression was detected in 80.7% of Hashimoto's thyroiditis cases and 62.5% of Graves' disease cases, with positive correlation between LMP1 and EBER positivity in all Hashimoto's thyroiditis LMP1-positive cases. We assume that high prevalence of EBV infection in cases of Hashimoto's and Graves' diseases imply a potential aetiological role of EBV in autoimmune thyroiditis. The initiation of autoimmune thyroiditis could start with EBV latency type III infection of follicular epithelium characterised by LMP1 expression involving the production of inflammatory mediators leading to recruitment of lymphocytes. The EBV positivity of the infiltrating lymphocytes could be only the presentation of a carrier state, but in cases with EBER+/ LMP1+ lymphocytes (transforming latent infection) it could represent a negative prognostic marker pointing to a higher risk of primary thyroid lymphoma development.

  18. Interleukin-27 Gene Therapy Prevents the Development of Autoimmune Encephalomyelitis but Fails to Attenuate Established Inflammation due to the Expansion of CD11b+Gr-1+ Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Jianmin Zhu

    2018-04-01

    Full Text Available Interleukin-27 (IL-27 and its subunit P28 (also known as IL-30 have been shown to inhibit autoimmunity and have been suggested as potential immunotherapeutic for autoimmune diseases such as multiple sclerosis (MS. However, the potential of IL-27 and IL-30 as immunotherapeutic, and their mechanisms of action have not been fully understood. In this study, we evaluated the efficacy of adeno-associated viral vector (AAV-delivered IL-27 (AAV-IL-27 and IL-30 (AAV-IL-30 in a murine model of MS. We found that one single administration of AAV-IL-27, but not AAV-IL-30 completely blocked the development of experimental autoimmune encephalomyelitis (EAE. AAV-IL-27 administration reduced the frequencies of Th17, Treg, and GM-CSF-producing CD4+ T cells and induced T cell expression of IFN-γ, IL-10, and PD-L1. However, experiments involving IL-10-deficient mice and PD-1 blockade revealed that AAV-IL-27-induced IL-10 and PD-L1 expression were not required for the prevention of EAE development. Surprisingly, neither AAV-IL-27 nor AAV-IL-30 treatment inhibited EAE development and Th17 responses when given at disease onset. We found that mice with established EAE had significant expansion of CD11b+Gr-1+ cells, and AAV-IL-27 treatment further expanded these cells and induced their expression of Th17-promoting cytokines such as IL-6. Adoptive transfer of AAV-IL-27-expanded CD11b+Gr-1+ cells enhanced EAE development. Thus, expansion of CD11b+Gr-1+ cells provides an explanation for the resistance to IL-27 therapy in mice with established disease.

  19. Clinical Effect of IRT-5 Probiotics on Immune Modulation of Autoimmunity or Alloimmunity in the Eye

    Directory of Open Access Journals (Sweden)

    Jaeyoung Kim

    2017-10-01

    Full Text Available Background: Although the relation of the gut microbiota to a development of autoimmune and inflammatory diseases has been investigated in various animal models, there are limited studies that evaluate the effect of probiotics in the autoimmune eye disease. Therefore, we aimed to investigate the effect of IRT-5 probiotics consisting of Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus reuteri, Bifidobacterium bifidum, and Streptococcus thermophilus on the autoimmunity of uveitis and dry eye and alloimmunity of corneal transplantation. Methods: Experimental autoimmune uveitis was induced by subcutaneous immunization with interphotoreceptor-binding protein and intraperitoneal injection of pertussis toxin in C57BL/6 (B6 mice. For an autoimmune dry eye model, 12-weeks-old NOD.B10.H2b mice were used. Donor cornea of B6 mice was transplanted into BALB/C mice. IRT-5 probiotics or phosphate buffered saline (PBS were administered for three weeks immediately after induction of uveitis or transplantation. The inflammation score of the retinal tissues, dry eye manifestations (corneal staining and tear secretion, and graft survival were measured in each model. The changes of T cells were evaluated in drainage lymph nodes using fluorescence-activated cell sorting. Results: Retinal histology score in IRT-5 group of uveitis was lower than that in PBS group (p = 0.045. Ocular staining score was lower (p < 0.0001 and tear secretion was higher (p < 0.0001 in the IRT-5 group of NOD.B10.H2b mice than that in the PBS group. However, the graft survival in the IRT-5 group was not different from those of PBS group. The percentage of regulatory T cells was increased in the IRT-5-treated dry eye models (p = 0.032. The percentage of CD8+IL-17hi (p = 0.027 and CD8+ interferon gamma (IFNγhi cells (p = 0.022 were significantly decreased in the IRT-5-treated uveitis models and the percentage of CD8+IFNγhi cells was markedly reduced (p = 0.036 in IRT-5-treated dry

  20. Targeting of tolerogenic dendritic cells towards heat-shock proteins: a novel therapeutic strategy for autoimmune diseases?

    Science.gov (United States)

    Jansen, Manon A A; Spiering, Rachel; Broere, Femke; van Laar, Jacob M; Isaacs, John D; van Eden, Willem; Hilkens, Catharien M U

    2018-01-01

    Tolerogenic dendritic cells (tolDCs) are a promising therapeutic tool to restore immune tolerance in autoimmune diseases. The rationale of using tolDCs is that they can specifically target the pathogenic T-cell response while leaving other, protective, T-cell responses intact. Several ways of generating therapeutic tolDCs have been described, but whether these tolDCs should be loaded with autoantigen(s), and if so, with which autoantigen(s), remains unclear. Autoimmune diseases, such as rheumatoid arthritis, are not commonly defined by a single, universal, autoantigen. A possible solution is to use surrogate autoantigens for loading of tolDCs. We propose that heat-shock proteins may be a relevant surrogate antigen, as they are evolutionarily conserved between species, ubiquitously expressed in inflamed tissues and have been shown to induce regulatory T cells, ameliorating disease in various arthritis mouse models. In this review, we provide an overview on how immune tolerance may be restored by tolDCs, the problem of selecting relevant autoantigens for loading of tolDCs, and why heat-shock proteins could be used as surrogate autoantigens. © 2017 John Wiley & Sons Ltd.