Sample records for cell membrane proteins

  1. Functional dynamics of cell surface membrane proteins

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio


    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  2. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Laible, Philip D; Hanson, Deborah K


    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  3. Denaturation of membrane proteins and hyperthermic cell killing

    Burgman, Paulus Wilhelmus Johannes Jozef


    Summarizing: heat induced denaturation of membrane proteins is probably related to hyperthermic cell killing. Induced resistance of heat sensitive proteins seems to be involved in the development of thermotolerance. Although many questions remain still to be answered, it appears that HSP72, when bound to membrane proteins, is capable of providing heat resistance to these proteins. ... Zie: Summary

  4. Gangliosides in cell recognition and membrane protein regulation

    Lopez, Pablo H. H.; Schnaar, Ronald L.


    Gangliosides, sialic acid-bearing glycosphingolipids, are expressed on all vertebrate cells, and are the major glycans on nerve cells. They are anchored to the plasma membrane through their ceramide lipids with their varied glycans extending into the extracellular space. Through sugar-specific interactions with glycan binding proteins on apposing cells, gangliosides function as receptors in cell-cell recognition, regulating natural killer cell cytotoxicity via Siglec-7 binding, myelin-axon in...

  5. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan


    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  6. Membrane proteins of dense lysosomes from Chinese hamster ovary cells

    In this work membrane proteins from lysosomes were studied in order to gain more information on the biogenesis and intracellular sorting of this class of membrane proteins. Membrane proteins were isolated from a purified population of lysosomes. These proteins were then examined for various co- and post-translational modifications which could serve as potential intracellular sorting signals. Biochemical analysis using marker enzymatic activities detected no plasma membrane, Golgi, endoplasmic reticulum, peroxisomes, mitochondria, or cytosol. Analysis after incorporation of [3H]thymidine or [3H]uridine detected no nuclei or ribosomes. A fraction containing integral membrane proteins was obtained from the dense lysosomes by extraction with Triton X-114. Twenty-three polypeptides which incorporated both [35S]methionine and [3H]leucine were detected by SDS PAGE in this membrane fraction, and ranged in molecular weight from 30-130 kDa. After incorporation by cells of various radioactive metabolic precursors, the membrane fraction from dense lysosomes was examined and was found to be enriched in mannose, galactose, fucose, palmitate, myristate, and sulfate, but was depleted in phosphate. The membrane fraction from dense lysosomes was then analyzed by SDS PAGE to determine the apparent molecular weights of modified polypepties

  7. Formation of functional cell membrane domains: the interplay of lipid- and protein-mediated interactions.

    Harder, Thomas


    Numerous cell membrane associated processes, including signal transduction, membrane sorting, protein processing and virus trafficking take place in membrane subdomains. Protein-protein interactions provide the frameworks necessary to generate biologically functional membrane domains. For example, coat proteins define membrane areas destined for sorting processes, viral proteins self-assemble to generate a budding virus, and adapter molecules organize multimolecular signalling assemblies, whi...

  8. Detecting protein association at the T cell plasma membrane.

    Baumgart, Florian; Schütz, Gerhard J


    At the moment, many models on T cell signaling rely on results obtained via rather indirect methodologies, which makes direct comparison and conclusions to the in vivo situation difficult. Recently, a variety of new imaging methods were developed, which have the potential to directly shed light onto the mysteries of protein association at the T cell membrane. While the new modalities are extremely promising, for a broad readership it may be difficult to judge the results, since technological shortcomings are not always obvious. In this review article, we put key questions on the mechanism of protein interactions in the T cell plasma membrane into relation with techniques that allow to address such questions. We discuss applicability of the techniques, their strengths and weaknesses. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling. PMID:25300585

  9. Drugging Membrane Protein Interactions.

    Yin, Hang; Flynn, Aaron D


    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind cells to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally "undruggable" regions of membrane proteins, enabling modulation of protein-protein, protein-lipid, and protein-nucleic acid interactions. In this review, we survey the state of the art of high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  10. Combining in Vitro Folding with Cell Free Protein Synthesis for Membrane Protein Expression.

    Focke, Paul J; Hein, Christopher; Hoffmann, Beate; Matulef, Kimberly; Bernhard, Frank; Dötsch, Volker; Valiyaveetil, Francis I


    Cell free protein synthesis (CFPS) has emerged as a promising methodology for protein expression. While polypeptide production is very reliable and efficient using CFPS, the correct cotranslational folding of membrane proteins during CFPS is still a challenge. In this contribution, we describe a two-step protocol in which the integral membrane protein is initially expressed by CFPS as a precipitate followed by an in vitro folding procedure using lipid vesicles for converting the protein precipitate to the correctly folded protein. We demonstrate the feasibility of using this approach for the K(+) channels KcsA and MVP and the amino acid transporter LeuT. We determine the crystal structure of the KcsA channel obtained by CFPS and in vitro folding to show the structural similarity to the cellular expressed KcsA channel and to establish the feasibility of using this two-step approach for membrane protein production for structural studies. Our studies show that the correct folding of these membrane proteins with complex topologies can take place in vitro without the involvement of the cellular machinery for membrane protein biogenesis. This indicates that the folding instructions for these complex membrane proteins are contained entirely within the protein sequence. PMID:27384110

  11. Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells

    Wang, Wei; Yang, Yunze; Wang, Shaopeng; Nagaraj, Vinay J.; Liu, Qiang; Wu, Jie; Tao, Nongjian


    Membrane proteins mediate a variety of cellular responses to extracellular signals. Although membrane proteins are studied intensively for their values as disease biomarkers and therapeutic targets, in situ investigation of the binding kinetics of membrane proteins with their ligands has been a challenge. Traditional approaches isolate membrane proteins and then study them ex situ, which does not reflect accurately their native structures and functions. We present a label-free plasmonic microscopy method to map the local binding kinetics of membrane proteins in their native environment. This analytical method can perform simultaneous plasmonic and fluorescence imaging, and thus make it possible to combine the strengths of both label-based and label-free techniques in one system. Using this method, we determined the distribution of membrane proteins on the surface of single cells and the local binding kinetic constants of different membrane proteins. Furthermore, we studied the polarization of the membrane proteins on the cell surface during chemotaxis.

  12. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling

    Zhang, Haizhen; Brown, Roslyn N.; Qian, Wei-Jun; Monroe, Matthew E.; Purvine, Samuel O.; Moore, Ronald J.; Gritsenko, Marina A.; Shi, Liang; Romine, Margaret F; Fredrickson, James K.; Paša-Tolić, Ljiljana; Smith, Richard D.; Lipton, Mary S.


    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope 18O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level 16O and 18O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in ΔgspD mutant cells of many outer membrane proteins including the outer membrane c-cype cytochromes OmcA and MtrC, in agreement with previously investigation demonstrating that these proteins are substrates of the type II secretion system. PMID:20380418

  13. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane

    Sevcsik, Eva; Brameshuber, Mario; Fölser, Martin; Weghuber, Julian; Honigmann, Alf; Schütz, Gerhard J.


    The organization of proteins and lipids in the plasma membrane has been subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here, we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored mGFP) directly in the live cell plasma membrane and measu...

  14. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane.

    Sevcsik, E.; Brameshuber, M.; Fölser, M.; Weghuber, J.; Honigmann, A.; Schütz, G


    The organization of proteins and lipids in the plasma membrane has been the subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored-mGFP) directly in the live cell plasma membrane and me...

  15. Selective Accumulation of Raft-Associated Membrane Protein Lat in T Cell Receptor Signaling Assemblies

    Harder, Thomas; Kuhn, Marina


    Activation of T cell antigen receptor (TCR) induces tyrosine phosphorylations that mediate the assembly of signaling protein complexes. Moreover, cholesterol-sphingolipid raft membrane domains have been implicated to play a role in TCR signal transduction. Here, we studied the assembly of TCR with signal transduction proteins and raft markers in plasma membrane subdomains of Jurkat T leukemic cells. We employed a novel method to immunoisolate plasma membrane subfragments that were highly conc...

  16. Overexpressing Human Membrane Proteins in Stably Transfected and Clonal Human Embryonic Kidney 293S Cells

    Chaudhary, Sarika; Pak, John E.; Gruswitz, Franz; Sharma, Vinay; Stroud, Robert M.


    X-ray crystal structures of human membrane proteins, while potentially being of extremely high impact, are highly underrepresented relative to those of prokaryotic membrane proteins. One key reason for this is that human membrane proteins can be difficult to express at a level, and at a quality, suitable for structural studies. This protocol describes the methods that we utilize to overexpress human membrane proteins from clonal HEK293S GnTI- cells, and was recently used in our 2.1 Å X-ray cr...

  17. Cell surface molecules and fibronectin-mediated cell adhesion: effect of proteolytic digestion of membrane proteins


    Proteases have been used as a tool to investigate the role of surface molecules in fibronectin-mediated cell adhesion. Proteolytic digestion of membrane-proteins by pronase (1 mg/ml for 20 min at 37 degrees C) completely inhibited adhesion of baby hamster kidney (BHK) fibroblasts on fibronectin-coated plastic dishes. Various degrees of inhibition were also obtained after treatment with proteinase K, chymotrypsin, papain, subtilopeptidase A, and thermolysin. Protein synthesis was required to r...

  18. Interaction of Protein and Cell with Different Chitosan Membranes


    Interaction between proteins, cells and biomaterial surfaces is commonly observed and often used to measure biocompatibility of biomaterials.In this investigation, three kinds of biomaterials derived from chitosan were prepared.The surface wettability of these polymers, interaction of protein with material surface, and their effects on cell adhesion and growth were studied.The results show that the surface contact angle and surface charge of biomaterials have a close bearing on protein adsorption as well as cell adhesion and growth, indicating that through different chemical modifications, chitosan can be made into different kinds of biomedical materials to satisfy various needs.

  19. Production of plasma membrane vesicles with chloride salts and their utility as a cell membrane mimetic for biophysical characterization of membrane protein interactions

    Del Piccolo, Nuala; Placone, Jesse; He, Lijuan; Agudelo, Sandra Carolina; Hristova, Kalina


    Plasma membrane derived vesicles are used as a model system for the biochemical and biophysical investigations of membrane proteins and membrane organization. The most widely used vesiculation procedure relies on formaldehyde and dithiothreitol (DTT), but these active chemicals may introduce artifacts in the experimental results. Here we describe a procedure to vesiculate Chinese hamster ovary (CHO) cells, widely used for the expression of recombinant proteins, using a hypertonic vesiculation...

  20. Vectorial insertion of apical and basolateral membrane proteins in polarized epithelial cells revealed by quantitative 3D live cell imaging

    Hua, Wei; Sheff, David; Toomre, Derek; Mellman, Ira


    Although epithelial cells are known to exhibit a polarized distribution of membrane components, the pathways responsible for delivering membrane proteins to their appropriate domains remain unclear. Using an optimized approach to three-dimensional live cell imaging, we have visualized the transport of newly synthesized apical and basolateral membrane proteins in fully polarized filter-grown Madin–Darby canine kidney cells. We performed a detailed quantitative kinetic analysis of trans-Golgi n...

  1. Mapping membrane protein interactions in cell signaling systems.

    Light, Yooli Kim; Hadi, Masood Z.; Lane, Pamela; Jacobsen, Richard B.; Hong, Joohee; Ayson, Marites J.; Wood, Nichole L.; Schoeniger, Joseph S.; Young, Malin M.


    We proposed to apply a chemical cross-linking, mass spectrometry and modeling method called MS3D to the structure determination of the rhodopsin-transducin membrane protein complex (RTC). Herein we describe experimental progress made to adapt the MS3D approach for characterizing membrane protein systems, and computational progress in experimental design, data analysis and protein structure modeling. Over the past three years, we have developed tailored experimental methods for all steps in the MS3D method for rhodopsin, including protein purification, a functional assay, cross-linking, proteolysis and mass spectrometry. In support of the experimental effort. we have out a data analysis pipeline in place that automatically selects the monoisotopic peaks in a mass spectrometric spectrum, assigns them and stores the results in a database. Theoretical calculations using 24 experimentally-derived distance constraints have resulted in a backbone-level model of the activated form of rhodopsin, which is a critical first step towards building a model of the RTC. Cross-linked rhodopsin-transducin complexes have been isolated via gel electrophoresis and further mass spectrometric characterization of the cross-links is underway.

  2. Fluorescent in situ folding control for rapid optimization of cell-free membrane protein synthesis.

    Annika Müller-Lucks

    Full Text Available Cell-free synthesis is an open and powerful tool for high-yield protein production in small reaction volumes predestined for high-throughput structural and functional analysis. Membrane proteins require addition of detergents for solubilization, liposomes, or nanodiscs. Hence, the number of parameters to be tested is significantly higher than with soluble proteins. Optimization is commonly done with respect to protein yield, yet without knowledge of the protein folding status. This approach contains a large inherent risk of ending up with non-functional protein. We show that fluorophore formation in C-terminal fusions with green fluorescent protein (GFP indicates the folding state of a membrane protein in situ, i.e. within the cell-free reaction mixture, as confirmed by circular dichroism (CD, proteoliposome reconstitution and functional assays. Quantification of protein yield and in-gel fluorescence intensity imply suitability of the method for membrane proteins of bacterial, protozoan, plant, and mammalian origin, representing vacuolar and plasma membrane localization, as well as intra- and extracellular positioning of the C-terminus. We conclude that GFP-fusions provide an extension to cell-free protein synthesis systems eliminating the need for experimental folding control and, thus, enabling rapid optimization towards membrane protein quality.

  3. Analysis of lysosomal membrane proteins exposed to melanin in HeLa cells

    Bang, Seung Hyuck; Park, Dong Jun; Kim, Yang-Hoon; Min, Jiho


    Objectives There have been developed to use targeting ability for antimicrobial, anticancerous, gene therapy and cosmetics through analysis of various membrane proteins isolated from cell organelles. Methods It was examined about the lysosomal membrane protein extracted from lysosome isolated from HeLa cell treated by 100 ppm melanin for 24 hours in order to find associated with targeting ability to melanin using by 2-dimensional electrophoresis. Results The result showed 14 up-regulated (1.5...

  4. Quantitative Fluorescence Studies in Living Cells: Extending Fluorescence Fluctuation Spectroscopy to Peripheral Membrane Proteins

    Smith, Elizabeth Myhra

    The interactions of peripheral membrane proteins with both membrane lipids and proteins are vital for many cellular processes including membrane trafficking, cellular signaling, and cell growth/regulation. Building accurate biophysical models of these processes requires quantitative characterization of the behavior of peripheral membrane proteins, yet methods to quantify their interactions inside living cells are very limited. Because peripheral membrane proteins usually exist both in membrane-bound and cytoplasmic forms, the separation of these two populations is a key challenge. This thesis aims at addressing this challenge by extending fluorescence fluctuation spectroscopy (FFS) to simultaneously measure the oligomeric state of peripheral membrane proteins in the cytoplasm and at the plasma membrane. We developed a new method based on z-scan FFS that accounts for the fluorescence contributions from cytoplasmic and membrane layers by incorporating a fluorescence intensity z-scan through the cell. H-Ras-EGFP served as a model system to demonstrate the feasibility of the technique. The resolvability and stability of z-scanning was determined as well as the oligomeric state of H-Ras-EGFP at the plasma membrane and in the cytoplasm. Further, we successfully characterized the binding affinity of a variety of proteins to the plasma membrane by quantitative analysis of the z-scan fluorescence intensity profile. This analysis method, which we refer to as z-scan fluorescence profile deconvoution, was further used in combination with dual-color competition studies to determine the lipid specificity of protein binding. Finally, we applied z-scan FFS to provide insight into the early assembly steps of the HTLV-1 retrovirus.

  5. Identification of a cell membrane protein that binds alveolar surfactant.

    Strayer, D. S.


    Alveolar surfactants are complex mixtures of proteins and phospholipids produced by type II alveolar cells and responsible for lowering pulmonary surface tension. The process by which surfactant is produced and exported and by which its production by pulmonary cells is regulated are not well understood. This study was designed to identify a cellular receptor for surfactant constituents. To do so, monoclonal anti-idiotypic antibodies directed against antibodies to porcine and rabbit surfactant...

  6. Homeostatic restitution of cell membranes. Nuclear membrane lipid biogenesis and transport of protein from cytosol to intranuclear spaces.

    Amalia Slomiany, Maria Grabska, Bronislaw L. Slomiany


    Full Text Available Our studies on homeostatic restitution of cellular and subcellular membranes showed that vesicular intracellular transport is engaged in systematic and coordinated replacement of lipids and proteins in the membranes of the secretory, non-dividing epithelial cells (Slomiany et al., J. Physiol. Pharmacol. 2004; 55: 837-860. In this report, we present evidence on the homeostatic restitution of lipids in the biomembranes that constitute nuclear envelopes. We investigated nuclear membranes lipid synthesis by employing purified intact nuclei (IN, the outer nuclear membrane (ONM, the inner nuclear membrane (INM and the cell cytosol (CC. In contrast to Endoplasmic Reticulum (ER which in the presence of CC generates new biomembrane that forms ER vesicles transporting ER products to Golgi, the IN, ONM and INM are not producing transport vesicles. Instead, the newly synthesized lipids remain in the nuclear membranes. The membranes (INM, ONM of IN incubated with CC become enriched with newly synthesized phosphatidylcholine (PC, phosphatidylinositol (PI, phosphatidylinositol phosphates (PIPs and phosphatidic acid (PA. The incubation of separated ONM and INM with CC also enriched the membranes with IN specific lipids identified above. Moreover, the incubation of IN or its membranes with CC afforded retention of numerous CC proteins on the nuclear membrane. Here, we concentrated on 30kDa CC protein that displayed affinity to nuclear membrane PIP2. The 30kDa CC protein bound to PIP2 of IN, INM, and ONM. With IN, initially the PIP2-30kDa CC protein complex was detected on ONM, after 30-120 min of incubation, was found on INM and in nuclear contents. At the same time when the 30 kDa protein was released from INM and found in nuclear contents, the PIP2 of INM and ONM became undetectable, while the lipid extract from the membrane displaced from IN contained labeled PI only. Since ONM is an uninterrupted continuum of ER and INM, we speculate that the synthesis of

  7. Chimera proteins with affinity for membranes and microtubule tips polarize in the membrane of fission yeast cells.

    Recouvreux, Pierre; Sokolowski, Thomas R; Grammoustianou, Aristea; Ten Wolde, Pieter Rein; Dogterom, Marileen


    Cell polarity refers to a functional spatial organization of proteins that is crucial for the control of essential cellular processes such as growth and division. To establish polarity, cells rely on elaborate regulation networks that control the distribution of proteins at the cell membrane. In fission yeast cells, a microtubule-dependent network has been identified that polarizes the distribution of signaling proteins that restricts growth to cell ends and targets the cytokinetic machinery to the middle of the cell. Although many molecular components have been shown to play a role in this network, it remains unknown which molecular functionalities are minimally required to establish a polarized protein distribution in this system. Here we show that a membrane-binding protein fragment, which distributes homogeneously in wild-type fission yeast cells, can be made to concentrate at cell ends by attaching it to a cytoplasmic microtubule end-binding protein. This concentration results in a polarized pattern of chimera proteins with a spatial extension that is very reminiscent of natural polarity patterns in fission yeast. However, chimera levels fluctuate in response to microtubule dynamics, and disruption of microtubules leads to disappearance of the pattern. Numerical simulations confirm that the combined functionality of membrane anchoring and microtubule tip affinity is in principle sufficient to create polarized patterns. Our chimera protein may thus represent a simple molecular functionality that is able to polarize the membrane, onto which additional layers of molecular complexity may be built to provide the temporal robustness that is typical of natural polarity patterns. PMID:26831106

  8. Uroplakins, specific membrane proteins of urothelial umbrella cells, as histological markers of metastatic transitional cell carcinomas.

    Moll, R.; Wu, X. R.; Lin, J.H.; Sun, T. T.


    Uroplakins (UPs) Ia, Ib, II, and III, transmembrane proteins constituting the asymmetrical unit membrane of urothelial umbrella cells, are the first specific urothelial differentiation markers described. We investigated the presence and localization patterns of UPs in various human carcinomas by applying immunohistochemistry (avidin-biotin-peroxidase complex method), using rabbit antibodies against UPs II and III, to paraffin sections. Positive reactions for UP III (sometimes very focal) were...

  9. Production of Antibodies against Multipass Membrane Proteins Expressed in Human Tumor Cells Using Dendritic Cell Immunization

    Takahiko Tamura; Joe Chiba


    Antibody mediated therapeutic strategies against human malignant tumors have been widely authorized and clinically applied to cancer patients. In order to develop methods to generate antibodies reactive to the extracellular domains of multipass plasma membrane proteins specifically expressed in malignant tumors, we examined the use of dendritic cells (DCs) for immunization. DCs were transduced with genes encoding the human six transmembrane epithelial antigen of prostate 1 (STEAP1), STEAP4, a...

  10. Comparative proteomic analysis of plasma membrane proteins between human osteosarcoma and normal osteoblastic cell lines

    Osteosarcoma (OS) is the most common primary malignant tumor of bone in children and adolescents. However, the knowledge in diagnostic modalities has progressed less. To identify new biomarkers for the early diagnosis of OS as well as for potential novel therapeutic candidates, we performed a sub-cellular comparative proteomic research. An osteosarcoma cell line (MG-63) and human osteoblastic cells (hFOB1.19) were used as our comparative model. Plasma membrane (PM) was obtained by aqueous two-phase partition. Proteins were analyzed through iTRAQ-based quantitative differential LC/MS/MS. The location and function of differential proteins were analyzed through GO database. Protein-protein interaction was examined through String software. One of differentially expressed proteins was verified by immunohistochemistry. 342 non-redundant proteins were identified, 68 of which were differentially expressed with 1.5-fold difference, with 25 up-regulated and 43 down-regulated. Among those differential proteins, 69% ware plasma membrane, which are related to the biological processes of binding, cell structure, signal transduction, cell adhesion, etc., and interaction with each other. One protein--CD151 located in net nodes was verified to be over-expressed in osteosarcoma tissue by immunohistochemistry. It is the first time to use plasma membrane proteomics for studying the OS membrane proteins according to our knowledge. We generated preliminary but comprehensive data about membrane protein of osteosarcoma. Among these, CD151 was further validated in patient samples, and this small molecule membrane might be a new target for OS research. The plasma membrane proteins identified in this study may provide new insight into osteosarcoma biology and potential diagnostic and therapeutic biomarkers

  11. Communication Between the Cell Membrane and the Nucleus: Role of Protein Compartmentalization

    Lelievre, Sophie A; Bissell, Mina J


    Understanding how the information is conveyed from outside to inside the cell is a critical challenge for all biologists involved in signal transduction. The flow of information initiated by cell-cell and cell-extracellular matrix contacts is mediated by the formation of adhesion complexes involving multiple proteins. Inside adhesion complexes, connective membrane skeleton (CMS) proteins are signal transducers that bind to adhesion molecules, organize the cytoskeleton, and initiate biochemical cascades. Adhesion complex-mediated signal transduction ultimately directs the formation of supramolecular structures in the cell nucleus, as illustrated by the establishment of multi complexes of DNA-bound transcription factors, and the redistribution of nuclear structural proteins to form nuclear subdomains. Recently, several CMS proteins have been observed to travel to the cell nucleus, suggesting a distinctive role for these proteins in signal transduction. This review focuses on the nuclear translocation of structural signal transducers of the membrane skeleton and also extends our analysis to possible translocation of resident nuclear proteins to the membrane skeleton. This leads us to envision the communication between spatially distant cellular compartments (i.e., membrane skeleton and cell nucleus) as a bidirectional flow of information (a dynamic reciprocity) based on subtle multilevel structural and biochemical equilibria. At one level, it is mediated by the interaction between structural signal transducers and their binding partners, at another level it may be mediated by the balance and integration of signal transducers in different cellular compartments.

  12. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling.

    Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A; Rodriguez, Pedro L; Albert, Armando


    Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca(2+) are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca(2+) signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca(2+)-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca(2+) sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca(2+)-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress. PMID:26719420

  13. Membrane protein nanoclustering as a functional unit of immune cells : from nanoscopy to single molecule dynamics

    Torreño Piña, Juan Andrés


    State-of-the-art biophysical techniques featuring high temporal and spatial resolution have allowed for the first time the direct visualization of individual transmembrane proteins on the cell membrane. These techniques have revealed that a large amount of molecular components of the cell membrane do not organize in a random manner but they rather grouped together forming so-called clusters at the nanoscale. Moreover, the lateral behavior of these clusters shows a great dependence on the comp...

  14. GPI-anchored proteins do not reside in ordered domains in the live cell plasma membrane

    Sevcsik, Eva; Brameshuber, Mario; Fölser, Martin; Weghuber, Julian; Honigmann, Alf; Schütz, Gerhard J.


    The organization of proteins and lipids in the plasma membrane has been the subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored-mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase nor result in any enrichment of nanoscopic-ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane.

  15. Electrophoresis and isoelectric focusing of whole cell and membrane proteins from the extremely halophilic archaebacteria

    Stan-Lotter, Helga; Lang, Frank J., Jr.; Hochstein, Lawrence I.


    The subunits from two purified halobacterial membrane enzymes (ATPase and nitrate reductase) behaved differently with respect to isoelectric focusing, silver staining and interaction with ampholytes. Differential behavior was also observed in whole cell proteins from Halobacterium saccharovorum regarding resolution in two-dimensional gels and silver staining. It is proposed that these differences reflect the existence of two classes of halobacterial proteins.

  16. Role of amphipathic helix of a herpesviral protein in membrane deformation and T cell receptor downregulation.

    Chan-Ki Min


    Full Text Available Lipid rafts are membrane microdomains that function as platforms for signal transduction and membrane trafficking. Tyrosine kinase interacting protein (Tip of T lymphotropic Herpesvirus saimiri (HVS is targeted to lipid rafts in T cells and downregulates TCR and CD4 surface expression. Here, we report that the membrane-proximal amphipathic helix preceding Tip's transmembrane (TM domain mediates lipid raft localization and membrane deformation. In turn, this motif directs Tip's lysosomal trafficking and selective TCR downregulation. The amphipathic helix binds to the negatively charged lipids and induces liposome tubulation, the TM domain mediates oligomerization, and cooperation of the membrane-proximal helix with the TM domain is sufficient for localization to lipid rafts and lysosomal compartments, especially the mutivesicular bodies. These findings suggest that the membrane-proximal amphipathic helix and TM domain provide HVS Tip with the unique ability to deform the cellular membranes in lipid rafts and to downregulate TCRs potentially through MVB formation.

  17. Forward transport of proteins in the plasma membrane of migrating cerebellar granule cells.

    Wang, Dong; She, Liang; Sui, Ya-nan; Yuan, Xiao-bing; Wen, Yunqing; Poo, Mu-ming


    Directional flow of membrane components has been detected at the leading front of fibroblasts and the growth cone of neuronal processes, but whether there exists global directional flow of plasma membrane components over the entire migrating neuron remains largely unknown. By analyzing the trajectories of antibody-coated single quantum dots (QDs) bound to two membrane proteins, overexpressed myc-tagged synaptic vesicle-associated membrane protein VAMP2 and endogenous neurotrophin receptor TrkB, we found that these two proteins exhibited net forward transport, which is superimposed upon Brownian motion, in both leading and trailing processes of migrating cerebellar granule cells in culture. Furthermore, no net directional transport of membrane proteins was observed in nonmigrating cells with either growing or stalling leading processes. Analysis of the correlation of motion direction between two QDs on the same process in migrating neurons also showed a higher frequency of correlated forward than rearward movements. Such correlated QD movements were markedly reduced in the presence of myosin II inhibitor blebbistatin,suggesting the involvement of myosin II-dependent active transport processes. Thus, a net forward transport of plasma membrane proteins exists in the leading and trailing processes of migrating neurons, in line with the translocation of the soma. PMID:23213239

  18. Cell-free expression and stable isotope labelling strategies for membrane proteins

    Membrane proteins are highly underrepresented in the structural data-base and remain one of the most challenging targets for functional and structural elucidation. Their roles in transport and cellular communication, furthermore, often make over-expression toxic to their host, and their hydrophobicity and structural complexity make isolation and reconstitution a complicated task, especially in cases where proteins are targeted to inclusion bodies. The development of cell-free expression systems provides a very interesting alternative to cell-based systems, since it circumvents many problems such as toxicity or necessity for the transportation of the synthesized protein to the membrane, and constitutes the only system that allows for direct production of membrane proteins in membrane-mimetic environments which may be suitable for liquid state NMR measurements. The unique advantages of the cell-free expression system, including strong expression yields as well as the direct incorporation of almost any combination of amino acids with very little metabolic scrambling, has allowed for the development of a wide-array of isotope labelling techniques which facilitate structural investigations of proteins whose spectral congestion and broad line-widths may have earlier rendered them beyond the scope of NMR. Here we explore various labelling strategies in conjunction with cell-free developments, with a particular focus on α-helical transmembrane proteins which benefit most from such methods.

  19. Cell-based analysis of Chikungunya virus E1 protein in membrane fusion

    Kuo Szu-Cheng


    Full Text Available Abstract Background Chikungunya fever is a pandemic disease caused by the mosquito-borne Chikungunya virus (CHIKV. E1 glycoprotein mediation of viral membrane fusion during CHIKV infection is a crucial step in the release of viral genome into the host cytoplasm for replication. How the E1 structure determines membrane fusion and whether other CHIKV structural proteins participate in E1 fusion activity remain largely unexplored. Methods A bicistronic baculovirus expression system to produce recombinant baculoviruses for cell-based assay was used. Sf21 insect cells infected by recombinant baculoviruses bearing wild type or single-amino-acid substitution of CHIKV E1 and EGFP (enhanced green fluorescence protein were employed to investigate the roles of four E1 amino acid residues (G91, V178, A226, and H230 in membrane fusion activity. Results Western blot analysis revealed that the E1 expression level and surface features in wild type and mutant substituted cells were similar. However, cell fusion assay found that those cells infected by CHIKV E1-H230A mutant baculovirus showed little fusion activity, and those bearing CHIKV E1-G91D mutant completely lost the ability to induce cell-cell fusion. Cells infected by recombinant baculoviruses of CHIKV E1-A226V and E1-V178A mutants exhibited the same membrane fusion capability as wild type. Although the E1 expression level of cells bearing monomeric-E1-based constructs (expressing E1 only was greater than that of cells bearing 26S-based constructs (expressing all structural proteins, the sizes of syncytial cells induced by infection of baculoviruses containing 26S-based constructs were larger than those from infections having monomeric-E1 constructs, suggesting that other viral structure proteins participate or regulate E1 fusion activity. Furthermore, membrane fusion in cells infected by baculovirus bearing the A226V mutation constructs exhibited increased cholesterol-dependences and lower pH thresholds

  20. Selective Labeling of Proteins on Living Cell Membranes Using Fluorescent Nanodiamond Probes

    Shingo Sotoma


    Full Text Available The impeccable photostability of fluorescent nanodiamonds (FNDs is an ideal property for use in fluorescence imaging of proteins in living cells. However, such an application requires highly specific labeling of the target proteins with FNDs. Furthermore, the surface of unmodified FNDs tends to adsorb biomolecules nonspecifically, which hinders the reliable targeting of proteins with FNDs. Here, we combined hyperbranched polyglycerol modification of FNDs with the β-lactamase-tag system to develop a strategy for selective imaging of the protein of interest in cells. The combination of these techniques enabled site-specific labeling of Interleukin-18 receptor alpha chain, a membrane receptor, with FNDs, which eventually enabled tracking of the diffusion trajectory of FND-labeled proteins on the membrane surface.

  1. Synthesis and assembly of membrane skeletal proteins in mammalian red cell precursors

    The synthesis of membrane skeletal proteins in avian nucleated red cells has been the subject of extensive investigation, whereas little is known about skeletal protein synthesis in bone marrow erythroblasts and peripheral blood reticulocytes in mammals. To address this question, we have isolated nucleated red cell precursors and reticulocytes from spleens and from the peripheral blood, respectively, of rats with phenylhydrazine-induced hemolytic anemia and pulse-labeled them with [35S]methionine. Pulse-labeling of nucleated red cell precursors shows that the newly synthesized alpha- and beta-spectrins are present in the cytosol, with a severalfold excess of alpha-spectrin over beta-spectrin. However, in the membrane-skeletal fraction, newly synthesized alpha- and beta-spectrins are assembled in stoichiometric amounts, suggesting that the association of alpha-spectrin with the membrane skeleton may- be rate-limited by the amount of beta-spectrin synthesized, as has been shown recently in avian erythroid cells. Pulse-chase experiments in the rat nucleated red cell precursors show that the newly synthesized alpha- and beta-spectrin of the cytosol turn over coordinately and extremely rapidly. In contrast, in the membrane-skeletal fraction, the newly synthesized polypeptides of spectrin are stable. In contrast to nucleated erythroid cells, in reticulocytes the synthesis of alpha- and beta-spectrins is markedly diminished compared with the synthesis and assembly of proteins comigrating with bands 2.1 and 4.1 on SDS gels. Thus, in nucleated red cell precursors, the newly synthesized spectrin may be attached to the plasma membrane before proteins 2.1 and 4.1 are completely synthesized and incorporated in the membrane

  2. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    Marciniak Bogumiła C


    Full Text Available Abstract Background Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe status, its genetic accessibility and its capacity to grow in large fermentations. However, production of heterologous proteins still faces limitations. Results This study aimed at the identification of bottlenecks in secretory protein production by analyzing the response of B. subtilis at the transcriptome level to overproduction of eight secretory proteins of endogenous and heterologous origin and with different subcellular or extracellular destination: secreted proteins (NprE and XynA of B. subtilis, Usp45 of Lactococcus lactis, TEM-1 β-lactamase of Escherichia coli, membrane proteins (LmrA of L. lactis and XylP of Lactobacillus pentosus and lipoproteins (MntA and YcdH of B. subtilis. Responses specific for proteins with a common localization as well as more general stress responses were observed. The latter include upregulation of genes encoding intracellular stress proteins (groES/EL, CtsR regulated genes. Specific responses include upregulation of the liaIHGFSR operon under Usp45 and TEM-1 β-lactamase overproduction; cssRS, htrA and htrB under all secreted proteins overproduction; sigW and SigW-regulated genes mainly under membrane proteins overproduction; and ykrL (encoding an HtpX homologue specifically under membrane proteins overproduction. Conclusions The results give better insights into B. subtilis responses to protein overproduction stress and provide potential targets for genetic engineering in order to further improve B. subtilis as a protein production host.

  3. Characterization of the latent membrane protein 1 signaling complex of Epstein-Barr virus in the membrane of mammalian cells with bimolecular fluorescence complementation

    Everly David N; Emery Amanda; Talaty Pooja


    Abstract Background Bimolecular fluorescence complementation (BiFC) is a novel technique to examine protein-protein interaction through the assembly of fluorescent proteins. In the present study, BiFC was used to study the assembly of the Epstein-Barr virus latent membrane protein 1 (LMP1) signaling complex within the membrane of mammalian cells. LMP1 signaling requires oligomerization, localization to lipid rafts, and association of the cytoplasmic domain to adaptor proteins, such as the tum...

  4. Modeling of band-3 protein diffusion in the normal and defective red blood cell membrane.

    Li, He; Zhang, Yihao; Ha, Vi; Lykotrafitis, George


    We employ a two-component red blood cell (RBC) membrane model to simulate lateral diffusion of band-3 proteins in the normal RBC and in the RBC with defective membrane proteins. The defects reduce the connectivity between the lipid bilayer and the membrane skeleton (vertical connectivity), or the connectivity of the membrane skeleton itself (horizontal connectivity), and are associated with the blood disorders of hereditary spherocytosis (HS) and hereditary elliptocytosis (HE) respectively. Initially, we demonstrate that the cytoskeleton limits band-3 lateral mobility by measuring the band-3 macroscopic diffusion coefficients in the normal RBC membrane and in a lipid bilayer without the cytoskeleton. Then, we study band-3 diffusion in the defective RBC membrane and quantify the relation between band-3 diffusion coefficients and percentage of protein defects in HE RBCs. In addition, we illustrate that at low spectrin network connectivity (horizontal connectivity) band-3 subdiffusion can be approximated as anomalous diffusion, while at high horizontal connectivity band-3 diffusion is characterized as confined diffusion. Our simulations show that the band-3 anomalous diffusion exponent depends on the percentage of protein defects in the membrane cytoskeleton. We also confirm that the introduction of attraction between the lipid bilayer and the spectrin network reduces band-3 diffusion, but we show that this reduction is lower than predicted by the percolation theory. Furthermore, we predict that the attractive force between the spectrin filament and the lipid bilayer is at least 20 times smaller than the binding forces at band-3 and glycophorin C, the two major membrane binding sites. Finally, we explore diffusion of band-3 particles in the RBC membrane with defects related to vertical connectivity. We demonstrate that in this case band-3 diffusion can be approximated as confined diffusion for all attraction levels between the spectrin network and the lipid bilayer

  5. Immunocapture and Identification of Cell Membrane Protein Antigenic Targets of Serum Autoantibodies*

    Littleton, Edward; Dreger, Mathias; Palace, Jackie; Vincent, Angela


    There is increasing interest in the role of antibodies targeting specific membrane proteins in neurological and other diseases. The target(s) of these pathogenic antibodies is known in a few diseases, usually when candidate cell surface proteins have been tested. Approaches for identifying new antigens have mainly resulted in the identification of antibodies to intracellular proteins, which are often very useful as diagnostic markers for disease but unlikely to be directly involved in disease pathogenesis because they are not accessible to circulating antibodies. To identify cell surface antigens, we developed a “conformational membrane antigen isolation and identification” strategy. First, a cell line is identified that reacts with patient sera but not with control sera. Second, intact cells are exposed to sera to allow the binding of presumptive autoantibodies to their cell surface targets. After washing off non-bound serum components, the cells are lysed, and immune complexes are precipitated. Third, the bound surface antigen is identified by mass spectrometry. As a model system we used a muscle cell line, TE671, that endogenously expresses muscle-specific tyrosine receptor kinase (MuSK) and sera or plasmas from patients with a subtype of the autoimmune disease myasthenia gravis in which patients have autoantibodies against MuSK. MuSK was robustly detected as the only membrane protein in immunoprecipitates from all three patient samples tested and not from the three MuSK antibody-negative control samples processed in parallel. Of note, however, there were many intracellular proteins found in the immunoprecipitates from both patients and controls, suggesting that these were nonspecifically immunoprecipitated from cell extracts. The conformational membrane antigen isolation and identification technique should be of value for the detection of highly relevant antigenic targets in the growing number of suspected antibody-mediated autoimmune disorders. The

  6. Insulin-induced glycosylphosphatidylinositol (GPI binding to red cell membrane proteins



    Full Text Available In this work GPI binding to membrane proteins from erythrocytes of insulinoma patients for whom prolonged hyperinsulinism and hypoglycemia were characteristic, as well as from normal erythrocytes incubated with supraphysiological concentrations of insulin were analyzed. In the RBCs from insulinoma patients, covalent GPI binding to red cell membrane proteins in the spectrin/ankyrin region, band 4.1 and two proteins of molecular mass of 115 and 110 kD was demonstrated. In erythrocytes incubated with insulin label was associated with band 4.1 and two proteins of molecular mass of 115 and 110 kD. Extraction studies showed that the 100-kD proteins are unrelated to band 3 since they were found in Triton-prepared cytoskeleton. To our knowledge this is the first demonstration of such a modification of red cell skeletal proteins, and the first demonstration of post-translation GPI binding to red cell skeletal proteins in response to insulin. A mechanism proposed for GPI binding to red cell skeletal proteins as well as the relevance of these results for physiological disorders that are characterized by hyperinsulinism are briefly discussed.

  7. Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view

    Nathalie eLeborgne-Castel


    Full Text Available In order to ensure their physiological and cellular functions, plasma membrane (PM proteins must be properly conveyed from their site of synthesis, i.e. the endoplasmic reticulum, to their final destination, the PM, through the secretory pathway. PM protein homeostasis also relies on recycling and/or degradation, two processes that are initiated by endocytosis. Vesicular membrane trafficking events to and from the PM have been shown to be altered when plant cells are exposed to mutualistic or pathogenic microbes. In this review, we will describe the fine-tune regulation of such alterations, and their consequence in PM protein activity. We will consider the formation of intracellular perimicrobial compartments, the PM protein trafficking machinery of the host, and the delivery or retrieval of signaling and transport proteins such as pattern-recognition receptors, producers of reactive oxygen species, and sugar transporters.

  8. Reconstitution of Membrane Proteins into Model Membranes: Seeking Better Ways to Retain Protein Activities

    Trevor Lithgow; Lisa Martin; Hsin-Hui Shen


    The function of any given biological membrane is determined largely by the specific set of integral membrane proteins embedded in it, and the peripheral membrane proteins attached to the membrane surface. The activity of these proteins, in turn, can be modulated by the phospholipid composition of the membrane. The reconstitution of membrane proteins into a model membrane allows investigation of individual features and activities of a given cell membrane component. However, the activity of mem...

  9. Interactions between mycoplasma lipid-associated membrane proteins and the host cells

    YOU Xiao-xing; ZENG Yan-hua; WU Yi-mou


    Mycoplamas are a group of wall-less prokaryotes widely distributed in nature, some of which are pathogenic for humans and animals. There are many lipoproteins anchored on the outer face of the plasma membrane, called lipid-associated membrane proteins (LAMPs). LAMPs are highly antigenic and could undergo phase and size variation, and are recognized by the innate immune system through Toll-like receptors (TLR) 2 and 6. LAMPs can modulate the immune system, and could induce immune cells apoptosis or death. In addition, they may associate with malignant transformation of host cells and are also considered to be cofactors in the progression of AIDS.

  10. Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host cells.

    Kafsack, Björn F C; Pena, Janethe D O; Coppens, Isabelle; Ravindran, Sandeep; Boothroyd, John C; Carruthers, Vern B


    Perforin-like proteins are expressed by many bacterial and protozoan pathogens, yet little is known about their function or mode of action. Here, we describe Toxoplasma perforin-like protein 1 (TgPLP1), a secreted perforin-like protein of the intracellular protozoan pathogen Toxoplasma gondii that displays structural features necessary for pore formation. After intracellular growth, TgPLP1-deficient parasites failed to exit normally, resulting in entrapment within host cells. We show that this defect is due to an inability to rapidly permeabilize the parasitophorous vacuole membrane and host plasma membrane during exit. TgPLP1 ablation had little effect on growth in culture but resulted in a reduction greater than five orders of magnitude of acute virulence in mice. Perforin-like proteins from other intracellular pathogens may play a similar role in microbial egress and virulence. PMID:19095897

  11. Ca++- and cyclic AMP-induced changes in intact cell phosphorylation of ileal microvillus membrane proteins

    Pieces of rabbit distal ileal mucosa, with the muscularis propria and serosa removed, were incubated for 90 minutes in Krebs-Ringer bicarborate buffer (KRB) with 32PO4 to label the intracellular nucleotide pools. After rinsing, the mucosal pieces were transferred to KRB in the absence and presence of 10 μM A23187 or 10 mM theophylline. After a further 10 minutes the cells were scraped off and microvillus membranes prepared. The membranes were solubilized, subjected to two dimensional gel electrophoresis and autoradiography, and analyzed by densitometry. A23187 increased the phosphorylation of four microvillus membrane proteins with M/sub r/ of 32, 52, 110 and 116K. Increased phosphorylation of the 52 and 116K proteins has also been detected in microvillus membranes subjected to Ca++ and calmodulin in the presence of γ-32P-ATP. Theophylline increased the phosphorylation of the same 32 and 52K proteins and, additionally, of a second 32K peptide. While any of these proteins could be involved in the control of electrolyte transport, it is noteworthy that increased Ca++, and increased cyclic AMP levels exert similar effects upon intestinal electrolyte transport. That A23187 and theophylline both increase the phosphorylation of the 32 and 52K proteins increases the possibility that these are involved in ion transport

  12. Dynamic Structure Formation of Peripheral Membrane Proteins

    Morozova, Diana; Guigas, Gernot; Weiss, Matthias


    Author Summary Eukaryotic cells are subdivided into a variety of compartments by membranes, i.e. by lipid bilayers into which a multitude of proteins are embedded. About 30% of all protein species in a cell are associated with membranes to perform vital functions, e.g. in signaling and transport pathways. A plethora of membrane-associated proteins, so-called peripheral membrane proteins, penetrate only one monolayer whereas transmembrane proteins span the entire thickness of a lipid bilayer. ...

  13. Preferential transfer of certain plasma membrane proteins onto T and B cells by trogocytosis.

    Sandrine Daubeuf

    Full Text Available T and B cells capture antigens via membrane fragments of antigen presenting cells (APC in a process termed trogocytosis. Whether (and how a preferential transfer of some APC components occurs during trogocytosis is still largely unknown. We analyzed the transfer onto murine T and B cells of a large panel of fluorescent proteins with different intra-cellular localizations in the APC or various types of anchors in the plasma membrane (PM. Only the latter were transferred by trogocytosis, albeit with different efficiencies. Unexpectedly, proteins anchored to the PM's cytoplasmic face, or recruited to it via interaction with phosphinositides, were more efficiently transferred than those facing the outside of the cell. For proteins spanning the PM's whole width, transfer efficiency was found to vary quite substantially, with tetraspanins, CD4 and FcRgamma found among the most efficiently transferred proteins. We exploited our findings to set immunodiagnostic assays based on the capture of preferentially transferred components onto T or B cells. The preferential transfer documented here should prove useful in deciphering the cellular structures involved in trogocytosis.

  14. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers—Mast Cell Case

    Halova, Ivana; Draber, Petr


    The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.

  15. Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell-cell fusion but not interaction with M protein

    Coronaviruses are enveloped RNA viruses that generally cause mild disease in humans. However, the recently emerged coronavirus that caused severe acute respiratory syndrome (SARS-CoV) is the most pathogenic human coronavirus discovered to date. The SARS-CoV spike (S) protein mediates virus entry by binding cellular receptors and inducing fusion between the viral envelope and the host cell membrane. Coronavirus S proteins are palmitoylated, which may affect function. Here, we created a non-palmitoylated SARS-CoV S protein by mutating all nine cytoplasmic cysteine residues. Palmitoylation of SARS-CoV S was required for partitioning into detergent-resistant membranes and for cell-cell fusion. Surprisingly, however, palmitoylation of S was not required for interaction with SARS-CoV M protein. This contrasts with the requirement for palmitoylation of mouse hepatitis virus S protein for interaction with M protein and may point to important differences in assembly and infectivity of these two coronaviruses.

  16. Expression of membrane-associated proteins within single emulsion cell facsimiles

    Chanasakulniyom, Mayuree; Martino, Chiara; Paterson, David; Horsfall, Louise; Rosser, Susan; Cooper, Jonathan M.


    MreB is a structural membrane-associated protein which is one of the key components of the bacterial cytoskeleton. Although it plays an important role in shape maintenance of rod-like bacteria, the understanding of its mechanism of action is still not fully understood. This study shows how segmented flow and microdroplet technology can be used as a new tool for biological in vitro investigation of this protein. In this paper, we demonstrate cell-free expression in a single emulsion system to ...

  17. Membrane toxicity of abnormal prion protein in adrenal chromaffin cells of scrapie infected sheep.

    Gillian McGovern

    Full Text Available Transmissible spongiform encephalopathies (TSEs or prion diseases are associated with accumulations of disease specific PrP (PrP(d in the central nervous system (CNS and often the lymphoreticular system (LRS. Accumulations have additionally been recorded in other tissues including the peripheral nervous system and adrenal gland. Here we investigate the effect of sheep scrapie on the morphology and the accumulation of PrP(d in the adrenal medulla of scrapie affected sheep using light and electron microscopy. Using immunogold electron microscopy, non-fibrillar forms of PrP(d were shown to accumulate mainly in association with chromaffin cells, occasional nerve endings and macrophages. PrP(d accumulation was associated with distinctive membrane changes of chromaffin cells including increased electron density, abnormal linearity and invaginations. Internalisation of PrP(d from the chromaffin cell plasma membrane occurred in association with granule recycling following hormone exocytosis. PrP(d accumulation and internalisation from membranes is similarly associated with perturbations of membrane structure and trafficking in CNS neurons and tingible body macrophages of the LRS. These data suggest that a major toxic effect of PrP(d is at the level of plasma membranes. However, the precise nature of PrP(d-membrane toxicity is tissue and cell specific suggesting that the normal protein may act as a multi-functional scaffolding molecule. We further suggest that the co-localisation of PrP(d with exocytic granules of the hormone trafficking system may provide an additional source of infectivity in blood.

  18. Tp17 membrane protein of Treponema pallidum activates endothelial cells in vitro.

    Zhang, Rui-Li; Wang, Qian-Qiu; Zhang, Jing-Ping; Yang, Li-Jia


    Tp17, a membrane immunogen of Treponema pallidum subsp. pallidum, was initially recognized as an inflammatory mediator of syphilis. Because the histopathology of syphilis is characterized by endothelial cell abnormalities, we investigated the effects of recombinant Tp17 (rTp17) on endothelial cell activation in vitro. Using real-time reverse transcription-PCR and whole-cell ELISA, we found that rTp17 activated endothelial cells, as demonstrated by the up-regulated expression and increased gene transcription of intercellular adhesion molecule 1 (ICAM-1), E-selectin, and monocyte chemoattractant protein-1 (MCP-1). rTp17 also enhanced the migration and subsequent adhesion of monocytes to endothelial cells as well as increased transendothelial migration of monocytes. These data suggest that the ability of Tp17 to activate endothelial cells may play an important role in the immunopathogenesis of syphilis. PMID:25744604

  19. Immunoprecipitation of membrane proteins from rat basophilic leukemia cells by the antiganglioside monoclonal antibody AA4

    In previous studies, mAb AA4 inhibited IgE binding, induced rapid morphologic changes, and blocked histamine release in rat basophilic leukemia (RBL-2H3) cells. It bound to two novel derivatives of ganglioside GD1b (Ag I and Ag II) that appear to be present only in rat mast cells. The present study demonstrates the importance of gangliosides Ag I and Ag II for binding of mAb AA4 to intact cells. We also investigated the presence of gangliosides Ag I and Ag II and proteins immunoprecipitated with mAb AA4 in the parental and four variant cell lines. In comparison with the parental RBL-2H3, two variant cell lines had very low (0.5% and 2.0%) and two others had intermediate levels (9% and 18%) of 125I-AA4 binding. mAb AA4 inhibited 125I-IgE binding to the parental RBL-2H3 cells and to only one variant with intermediate amounts of gangliosides Ag I and Ag II. Therefore, there are variations in the proximity of these gangliosides to the high affinity IgE receptor (Fc epsilon RI) among different cell lines. mAb AA4 immunoprecipitated proteins of 50 to 60, 120, and 135 kDa from 125I-surface labeled cells. These were different from the subunits of Fc epsilon RI. The amount of gangliosides Ag I and Ag II in cell extracts correlated with the number of mAb AA4 binding sites on the cell surface and with the quantity of proteins precipitated from the different cell lines. Thus, these membrane proteins appear to be associated with gangliosides Ag I and Ag II. The binding of mAb AA4 to the surface gangliosides could induce intracellular changes through transmembrane signaling by these proteins

  20. Molecular dynamics of membrane proteins.

    Woolf, Thomas B. (Johns Hopkins University School of Medicine, Baltimore, MD); Crozier, Paul Stewart; Stevens, Mark Jackson


    Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.

  1. Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue

    Armstrong, James P. K.; Shakur, Rameen; Horne, Joseph P.; Dickinson, Sally C.; Armstrong, Craig T.; Lau, Katherine; Kadiwala, Juned; Lowe, Robert; Seddon, Annela; Mann, Stephen; Anderson, J. L. Ross; Perriman, Adam W.; Hollander, Anthony P.


    Restricted oxygen diffusion can result in central cell necrosis in engineered tissue, a problem that is exacerbated when engineering large tissue constructs for clinical application. Here we show that pre-treating human mesenchymal stem cells (hMSCs) with synthetic membrane-active myoglobin-polymer-surfactant complexes can provide a reservoir of oxygen capable of alleviating necrosis at the centre of hyaline cartilage. This is achieved through the development of a new cell functionalization methodology based on polymer-surfactant conjugation, which allows the delivery of functional proteins to the hMSC membrane. This new approach circumvents the need for cell surface engineering using protein chimerization or genetic transfection, and we demonstrate that the surface-modified hMSCs retain their ability to proliferate and to undergo multilineage differentiation. The functionalization technology is facile, versatile and non-disruptive, and in addition to tissue oxygenation, it should have far-reaching application in a host of tissue engineering and cell-based therapies.

  2. Structural organization of the lens fiber cell plasma membrane protein MP18

    The 18,000-dalton bovine lens fiber cell intrinsic membrane protein MP18 was phosphorylated on a serine residue by both cAMP-dependent protein kinase and protein kinase C. In addition, this protein bound calmodulin and was recognized by a monoclonal antibody (2D10). These different regions were localized using enzymatic and chemical fragmentation of electrophoretically purified MP18 that had been phosphorylated with either cAMP-dependent protein kinase or protein kinase C. Partial digestion of 32P-labeled MP18 with protease V8 resulted in a Mr = 17,000 peptide that bound calmodulin, but neither contained 32P or was recognized by the monoclonal antibody 2D10. Furthermore, the 17-kDa peptide had the same N-terminal amino acid sequence as MP18. Thus, the monoclonal antibody 2D10 recognition site and the protein kinase phosphorylation site(s) are close together and confined to a small region in the C terminus of MP18. This conclusion was confirmed in experiments where MP18 was fragmented with trypsin, endoproteinase Lys-C, or CNBr. The location of the phosphorylation site was confirmed by sequencing the small 32P-labeled, C-terminal peptide that resulted from protease V8 digestion of 32P-labeled MP18. This peptide contained a consensus sequence for cAMP-dependent protein kinase

  3. Ligand binding to G protein-coupled receptors in tethered cell membranes

    Martinez, Karen L.; Meyer, Bruno H.; Hovius, Ruud; Lundstrom, Kenneth; Vogel, Horst


    of receptor function and in turn for the design and development of novel therapeutic compound. Here we show how ligand-receptor interaction can be investigated in situ with high sensitivity on sensor surfaces by total internal reflection fluorescence (TIRF) measurements. A generally applicable method...... streptavidin. TIRF measurements showed that a fluorescent agonist binds to the receptor on the sensor surface with similar affinity as to the receptor in live cells. This approach offers the possibility to investigate minute amounts of membrane protein in an active form and in its native environment without...

  4. Second-harmonic generation of biological interfaces: probing the membrane protein bacteriorhodopsin and imaging membrane potential around GFP molecules at specific sites in neuronal cells of C. elegans

    Lewis, Aaron; Khatchatouriants, Artium; Treinin, Millet; Chen, Zhongping; Peleg, Gadi; Friedman, Noga; Bouevitch, Oleg; Rothman, Zvi; Loew, Leslie; Sheres, Mordechai


    Second-harmonic generation (SHG) is applied to problems of probing membrane proteins and functionally imaging around selective sites and at single molecules in biological membranes. The membrane protein bacteriorhodopsin (bR) has been shown to have large second-harmonic (SH) intensities that are modulated by protein/retinylidene chromophore interactions. The nonlinear optical properties of model compounds, which simulate these protein chromophore interactions in retinal proteins, are studied in this work by surface SHG and by hyper-Rayleigh scattering. Our results indicate that non-conjugated charges and hydrogen bonding effects have a large effect on the molecular hyperpolarizability of the retinal chromophore. However, mbR, the model system studies suggest that polarizable amino acids strongly affect the vertically excited state of the retinylidene chromophore and appear to play the major role in the observed protein enhancement (>50%) of the retinylidene chromophore molecular hyperpolarizability and associated induced dipole. Furthermore, the data provide insights on emulating these interactions for the design of organic nonlinear optical materials. Our studies have also led to the development of dyes with large SH intensities that can be embedded in cell membranes and can functionally image membrane potential. Single molecules of such dyes in selected single molecular regions of a cell membrane have been detected. SHG from green fluorescent protein (GFP) selectively expressed in concert with a specific protein in neuronal cells in a transgenic form of the worm C. elegans is also reported. The membrane potential around the GFP molecules expressed in these cells has been imaged with SHG in live animals.

  5. Structure of the major membrane protein complex from urinary bladder epithelial cells by cryo-electron crystallography

    Oostergetel, GT; Keegstra, W; Brisson, A


    Numerous protein plaques cover the apical surface of mammalian urinary bladder epithelial cells. These plaques contain four integral membrane proteins, called uroplakins, which form a well-ordered array of hexameric complexes. The 3D structure of these naturally occurring 2D crystals was studied by

  6. Imaging individual proteins and nanodomains on intact cell membranes with a probe-based optical antenna.

    van Zanten, Thomas S; Lopez-Bosque, Maria J; Garcia-Parajo, Maria F


    Optical antennas that confine and enhance electromagnetic fields in a nanometric region hold great potential for nanobioimaging and biosensing. Probe-based monopole optical antennas are fabricated to enhance fields localized to antenna apex in aqueous conditions. These probes are used under appropriate excitation antenna conditions to image individual antibodies with an unprecedented resolution of 26 +/- 4 nm and virtually no surrounding background. On intact cell membranes in physiological conditions, the obtained resolution is 30 +/- 6 nm. Importantly, the method allows individual proteins to be distinguished from nanodomains and the degree of clustering to be quantified by directly measuring physical size and intensity of individual fluorescent spots. Improved antenna geometries should lead to true live cell imaging below 10-nm resolution with position accuracy in the subnanometric range. PMID:19943247

  7. Efficient Isolation and Quantitative Proteomic Analysis of Cancer Cell Plasma Membrane Proteins for Identification of Metastasis-Associated Cell Surface Markers

    Lund, Rikke; Leth-Larsen, Rikke; Jensen, Ole N; Ditzel, Henrik J


    proteins that could be quantified from 40 to 93%. Repeated LC-MS/MS analyses (3-4 times) of each sample increased the number of identified proteins by 60%. The use of Percoll/sucrose density separation allowed subfractionation of membranes leading to enrichment of membrane proteins (66%) and reduction from...... 33% to only 16% of protein from other membranous organelles such as endoplasmatic reticulum, Golgi, and mitochondria. In total, our optimized methods resulted in 1919 protein identifications (corresponding to 826 at similarity level 80% (SL80); 1145 (509 at SL80) were identified by two or more...... peptides of which 622 (300 at SL80) were membrane proteins. The quantitative proteomic analysis identified 16 cell surface proteins as potential markers of the ability of breast cancer cells to form distant metastases....

  8. Interaction of Clostridium perfringens epsilon-toxin with biological and model membranes: A putative protein receptor in cells.

    Manni, Marco M; Sot, Jesús; Goñi, Félix M


    Epsilon-toxin (ETX) is a powerful toxin produced by some strains of Clostridium perfringens (classified as types B and D) that is responsible for enterotoxemia in animals. ETX forms pores through the plasma membrane of eukaryotic cells, consisting of a β-barrel of 14 amphipathic β-strands. ETX shows a high specificity for certain cell lines, of which Madin-Darby canine kidney (MDCK) is the first sensitive cell line identified and the most studied one. The aim of this study was to establish the role of lipids in the toxicity caused by ETX and the correlation of its activity in model and biological membranes. In MDCK cells, using cell counting and confocal microscopy, we have observed that the toxin causes cell death mediated by toxin binding to plasma membrane. Moreover, ETX binds and permeabilizes the membranes of giant plasma membrane vesicles (GPMV). However, little effect is observed on protein-free vesicles. The data suggest the essential role of a protein receptor for the toxin in cell membranes. PMID:25485476

  9. Rapid recognition and functional analysis of membrane proteins on human cancer cells using atomic force microscopy.

    Li, Mi; Xiao, Xiubin; Liu, Lianqing; Xi, Ning; Wang, Yuechao


    Understanding the physicochemical properties of cell surface signalling molecules is important for us to uncover the underlying mechanisms that guide the cellular behaviors. Atomic force microscopy (AFM) has become a powerful tool for detecting the molecular interactions on individual cells with nanometer resolution. In this paper, AFM peak force tapping (PFT) imaging mode was applied to rapidly locate and visually map the CD20 molecules on human lymphoma cells using biochemically sensitive tips. First, avidin-biotin system was used to test the effectiveness of using PFT imaging mode to probe the specific molecular interactions. The adhesion images obtained on avidin-coated mica using biotin-tethered tips obviously showed the recognition spots which corresponded to the avidins in the simultaneously obtained topography images. The experiments confirmed the specificity and reproducibility of the recognition results. Then, the established procedure was applied to visualize the nanoscale organization of CD20s on the surface of human lymphoma Raji cells using rituximab (a monoclonal anti-CD20 antibody)-tethered tips. The experiments showed that the recognition spots in the adhesion images corresponded to the specific CD20-rituximab interactions. The cluster sizes of CD20s on lymphoma Raji cells were quantitatively analyzed from the recognition images. Finally, under the guidance of fluorescence recognition, the established procedure was applied to cancer cells from a clinical lymphoma patient. The results showed that there were significant differences between the adhesion images obtained on cancer cells and on normal cells (red blood cell). The CD20 distributions on ten cancer cells from the patient were quantified according to the adhesion images. The experimental results demonstrate the capability of applying PFT imaging to rapidly investigate the nanoscale biophysical properties of native membrane proteins on the cell surface, which is of potential significance in

  10. Metastasis-related plasma membrane proteins of human breast cancer cells identified by comparative quantitative mass spectrometry

    Leth-Larsen, Rikke; Lund, Rikke; Hansen, Helle V;


    clinical samples or in vitro assays is not feasible. We have used a unique model system consisting of two isogenic human breast cancer cell lines that are equally tumorigenic in mice, but while one gives rise to metastasis, the other disseminates single cells that remain dormant at distant organs. Membrane...... purification and comparative quantitative LC-MS/MS proteomic analysis identified 13 membrane proteins that were expressed at higher levels and 3 that were under-expressed in the metastatic compared to the non-metastatic cell line from a total of 1919 identified protein entries. Among the proteins were ecto-5......'-nucleotidase (ecto-5'-NT, CD73), Ndrg1, integrin beta1, CD44, CD74 and MHC class II proteins. The altered expression levels of proteins identified by LC-MS/MS were validated using flow cytometry, Western blotting, immunocyto- and immunohisto-chemistry. Analysis of clinical breast cancer biopsies demonstrated a...

  11. Proteomic analysis of ERK1/2-mediated human sickle red blood cell membrane protein phosphorylation

    Soderblom Erik J


    Full Text Available Abstract Background In sickle cell disease (SCD, the mitogen-activated protein kinase (MAPK ERK1/2 is constitutively active and can be inducible by agonist-stimulation only in sickle but not in normal human red blood cells (RBCs. ERK1/2 is involved in activation of ICAM-4-mediated sickle RBC adhesion to the endothelium. However, other effects of the ERK1/2 activation in sickle RBCs leading to the complex SCD pathophysiology, such as alteration of RBC hemorheology are unknown. Results To further characterize global ERK1/2-induced changes in membrane protein phosphorylation within human RBCs, a label-free quantitative phosphoproteomic analysis was applied to sickle and normal RBC membrane ghosts pre-treated with U0126, a specific inhibitor of MEK1/2, the upstream kinase of ERK1/2, in the presence or absence of recombinant active ERK2. Across eight unique treatment groups, 375 phosphopeptides from 155 phosphoproteins were quantified with an average technical coefficient of variation in peak intensity of 19.8%. Sickle RBC treatment with U0126 decreased thirty-six phosphopeptides from twenty-one phosphoproteins involved in regulation of not only RBC shape, flexibility, cell morphology maintenance and adhesion, but also glucose and glutamate transport, cAMP production, degradation of misfolded proteins and receptor ubiquitination. Glycophorin A was the most affected protein in sickle RBCs by this ERK1/2 pathway, which contained 12 unique phosphorylated peptides, suggesting that in addition to its effect on sickle RBC adhesion, increased glycophorin A phosphorylation via the ERK1/2 pathway may also affect glycophorin A interactions with band 3, which could result in decreases in both anion transport by band 3 and band 3 trafficking. The abundance of twelve of the thirty-six phosphopeptides were subsequently increased in normal RBCs co-incubated with recombinant ERK2 and therefore represent specific MEK1/2 phospho-inhibitory targets mediated via ERK2

  12. Bee venom phospholipase A2 as a membrane-binding vector for cell surface display or internalization of soluble proteins.

    Babon, Aurélie; Wurceldorf, Thibault; Almunia, Christine; Pichard, Sylvain; Chenal, Alexandre; Buhot, Cécile; Beaumelle, Bruno; Gillet, Daniel


    We showed that bee venom phospholipase A2 can be used as a membrane-binding vector to anchor to the surface of cells a soluble protein fused to its C-terminus. ZZ, a two-domain derivative of staphylococcal protein A capable of binding constant regions of antibodies was fused to the C-terminus of the phospholipase or to a mutant devoid of enzymatic activity. The fusion proteins bound to the surface of cells and could themselves bind IgGs. Their fate depended on the cell type to which they bound. On the A431 carcinoma cell line the proteins remained exposed on the cell surface. In contrast, on human dendritic cells the proteins were internalized into early endosomes. PMID:26253725


    Prakash G. Doiphode


    Full Text Available Crystallography is more like an art than science. Crystallizing membrane proteins are a big challenge; membrane proteins are present in the cell membrane and serve as cell support. The most important feature of membrane protein is that it contains both hydrophobic and hydrophilic regions on its surface. They are generally much more difficult to study than soluble proteins. The problem becomes more difficult when trying to obtain crystals to determine the high resolution structures of membrane proteins. We want to utilize this opportunity to briefly examine various approaches for crystallization of membrane proteins. The important factors for determining the success of crystallization experiments for membrane proteins lies in the purification, preparation of membrane samples, the environment in which the crystals are grown and the technique used to grow the crystals. All the X-ray structures of membrane protein are grown from preparations of detergents by different methods developed to crystallize. In this review different techniques for the crystallization of membrane proteins are being described. The cubic phase method also known as in meso method is discussed along with other methods to understand about the crystallization of membrane proteins, its general applicability, salt, detergent and screening effects on crystallization. Low volumes as nano-liter of samples can be used for crystallization. The effects of different detergents on the crystallization of membrane protein, as well as the use of surfactants like polyoxyethylene. Approach based on the detergent complexation to prove the ability of cyclodextrins to remove detergent from ternary mixtures in order to get 2D crystals. Crystallization of membrane proteins using non-ionic surfactants as well as Lipidic sponge phase and with swollen lipidic mesophases is discussed to better understand the crystallization of membrane proteins.

  14. Erythrocyte membrane proteins and membrane skeleton

    LU Yiqin; LIU Junfan


    Considerable advances in the research field of erythrocyte membrane were achieved in the recent two decades.New findings in the structure-function correlation and interactions of erythrocyte membrane proteins have attracted extensive attention.Interesting progress was also made in the molecular pathogenesis of erythrocyte membrane disorders.Advances in the composition,function and interaction of erythrocyte membrane proteins,erythrocyte membrane skeleton,and relevant diseases are briefly described and summarized here on the basis of domestic and world literatures.

  15. A homologous cell-free system for studying protein translocation across the endoplasmic reticulum membrane in fission yeast.

    Brennwald, P; Wise, J A


    We report the development of a homologous in vitro assay system for analysing translocation of proteins across the endoplasmic reticulum (ER) membrane of the fission yeast Schizosaccharomyces pombe. Our protocol for preparing an S. pombe extract capable of translating natural messenger RNAs was modified from a procedure previously used for Saccharomyces cerevisiae, in which cells are lysed in a bead-beater. However, we were unable to prepare fission yeast microsomes active in protein translocation using existing budding yeast protocols. Instead, our most efficient preparations were isolated by fractionating spheroplasts, followed by extensive washing and size exclusion chromatography of the crude membranes. Translocation of two ER-targeted proteins, pre-acid phosphatase from S. pombe and prepro-alpha-factor from S. cerevisiae, was monitored using two distinct assays. First, evidence that a fraction of both proteins was sequestered within membrane-enclosed vesicles was provided by resistance to exogenously added protease. Second, the protected fraction of each protein was converted to a higher molecular weight, glycosylated form; attachment of carbohydrate to the translocated proteins was confirmed by their ability to bind Concanavalin A-Sepharose. Finally, we examined whether proteins could be translocated across fission yeast microsomal membranes after their synthesis was complete. Our results indicate that S. cerevisiae prepro-alpha-factor can be post-translationally imported into the fission yeast ER, while S. pombe pre-acid phosphatase crosses the membrane only by a co-translational mechanism. PMID:8203158

  16. SecA is required for membrane targeting of the cell division protein DivIVA in vivo



    Full Text Available The conserved protein DivIVA is involved in different morphogenetic processes in Gram-positive bacteria. In Bacillus subtilis, the protein localises to the cell division site and cell poles, and functions as a scaffold for proteins that regulate division site selection, and for proteins that are required for sporulation. To identify other proteins that bind to DivIVA, we performed an in vivo cross-linking experiment. A possible candidate that emerged was the secretion motor ATPase SecA. SecA mutants have been described that inhibit sporulation, and since DivIVA is necessary for sporulation, we examined the localisation of DivIVA in these mutants. Surprisingly, DivIVA was delocalised, suggesting that SecA is required for DivIVA targeting. To further corroborate this, we performed SecA depletion and inhibition experiments, which provided further indications that DivIVA localisation depends on SecA. Cell fractionation experiments showed that SecA is important for binding of DivIVA to the cell membrane. This was unexpected since DivIVA does not contain a signal sequence, and is able to bind to artificial lipid membranes in vitro without support of other proteins. SecA is required for protein secretion and membrane insertion, and therefore its role in DivIVA localisation is likely indirect. Possible alternative roles of SecA in DivIVA folding and/or targeting are discussed.

  17. Selective Methyl Labeling of Eukaryotic Membrane Proteins Using Cell-Free Expression

    Linser, R.; Gelev, V.; Hagn, F.; Arthanari, H.; Hyberts, S.; Wagner, G.


    Structural characterization of membrane proteins and other large proteins with NMR relies increasingly on perdeuteration combined with incorporation of specifically protonated amino acid moieties, such as methyl groups of isoleucines, valines, or leucines. The resulting proton dilution reduces dipolar broadening producing sharper resonance lines, ameliorates spectral crowding, and enables measuring of crucial distances between and to methyl groups. While incorporation of specific methyl label...

  18. Identification and characterization of LFD-2, a predicted fringe protein required for membrane integrity during cell fusion in neurospora crassa.

    Palma-Guerrero, Javier; Zhao, Jiuhai; Gonçalves, A Pedro; Starr, Trevor L; Glass, N Louise


    The molecular mechanisms of membrane merger during somatic cell fusion in eukaryotic species are poorly understood. In the filamentous fungus Neurospora crassa, somatic cell fusion occurs between genetically identical germinated asexual spores (germlings) and between hyphae to form the interconnected network characteristic of a filamentous fungal colony. In N. crassa, two proteins have been identified to function at the step of membrane fusion during somatic cell fusion: PRM1 and LFD-1. The absence of either one of these two proteins results in an increase of germling pairs arrested during cell fusion with tightly appressed plasma membranes and an increase in the frequency of cell lysis of adhered germlings. The level of cell lysis in ΔPrm1 or Δlfd-1 germlings is dependent on the extracellular calcium concentration. An available transcriptional profile data set was used to identify genes encoding predicted transmembrane proteins that showed reduced expression levels in germlings cultured in the absence of extracellular calcium. From these analyses, we identified a mutant (lfd-2, for late fusion defect-2) that showed a calcium-dependent cell lysis phenotype. lfd-2 encodes a protein with a Fringe domain and showed endoplasmic reticulum and Golgi membrane localization. The deletion of an additional gene predicted to encode a low-affinity calcium transporter, fig1, also resulted in a strain that showed a calcium-dependent cell lysis phenotype. Genetic analyses showed that LFD-2 and FIG1 likely function in separate pathways to regulate aspects of membrane merger and repair during cell fusion. PMID:25595444

  19. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    Marciniak, Bogumila C.; Trip, Hein; van-der Veek, Patricia J.; Kuipers, Oscar P.; Marciniak, Bogumiła C.


    Background: Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe) status, its genetic accessibility and its capacity to grow in large fermentatio

  20. Membrane labeling of coral gastrodermal cells by biotinylation: the proteomic identification of surface proteins involving cnidaria-dinoflagellate endosymbiosis.

    Hsing-Hui Li

    Full Text Available The cellular and molecular-scale processes underlying the stability of coral-Symbiodinium endosymbioses remain unclear despite decades of investigation. As the coral gastroderm is the only tissue layer characterized by this unique symbiotic association, the membranes of these symbiotic gastrodermal cells (SGCs may play important roles in the initiation and maintenance of the endosymbiosis. In order to elucidate the interactions between the endosymbiotic dinoflagellates and their coral hosts, a thorough characterization of SGC membranes is therefore required. Cell surface proteins of isolated SGCs were biotinylated herein by a cell impermeant agent, biotin-XX sulfosuccinimidyl ester. The in situ distribution of these biotinylated proteins was uncovered by both fluorescence and transmission electron microscopic imaging of proteins bound to Alexa Fluor® 488-conjugated streptavidin. The identity of these proteins was then determined by two-dimensional gel electrophoresis followed by liquid chromatography-tandem mass spectrometry. Nineteen (19 proteins were identified, and they are known to be involved in the molecular chaperone/stress response, cytoskeletal remodeling, and energy metabolism. These results not only reveal the molecular characters of the host SGC membrane, but also provide critical insight into understanding the possible role of host membranes in this ecologically important endosymbiotic association.

  1. Protein 90 Recognized as an Iron-Binding Protein Associated with the Plasma Membrane of HeLa Cells

    Kovář, Jan; Štýbrová, Hana; Novák, J.; Ehrlichová, Marie; Truksa, Jaroslav; Koc, Michal; Kriegerbecková, Karin; Scheiber-Mojdehkar, B.; Goldenberg, H.

    1-2, č. 14 (2004), s. 41-46. ISSN 1015-8987 R&D Projects: GA AV ČR IAA5052702; GA ČR GA301/01/0041 Keywords : heat shock protein 90 * iron - binding protein * plasma membrane Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.093, year: 2004

  2. Reduced membrane protein associated with resistance of human squamous carcinoma cells to methotrexate and cis-platinum.

    Bernal, S D; Speak, J A; Boeheim, K; Dreyfuss, A I; Wright, J E; Teicher, B A; Rosowsky, A; Tsao, S W; Wong, Y C


    A membrane protein recognized by monoclonal antibody SQM1 was identified in human squamous carcinomas, including those originating in the head and neck (SqCHN), lung and cervix. Cell lines derived from SqCHN of previously untreated patients expressed high amounts of this protein. In contrast, many cell lines established from SqCHN of patients previously treated with chemotherapy and/or radiation showed diminished amounts of this SQM1 protein. The expression of SQM1 antigen was determined in several SqCHN cell lines made resistant by exposure to methotrexate (MTX) in vitro. The parent cell lines all exhibited strong binding to SQM1 antibody. The MTX-resistant sublines showed much lower membrane binding of SQM1. The lowest SQM1 reactivity was found in cell lines with high resistance to MTX and with diminished rate of MTX transport. Some highly MTX-resistant cell lines which had high levels of dihydrofolate reductase, but which retained a high rate of MTX transport, also retained high levels of SQM1 binding. Reduced SQM1 protein was also found in SqCHN cells which developed resistance to the alkylating drug cis-latinum (CDDP) and which showed reduced membrane transport of CDDP. Cell growth kinetics and non-specific antigenic shifts were not responsible for the differences in SQM1 binding between the parent cell lines and their drug-resistant sublines. The finding of a novel protein which is reduced in cells resistant to MTX and CDDP could contribute to our understanding of the basic mechanisms of drug resistance. By detecting SQM1 protein in clinical specimens, it may be possible to monitor the development of drug resistance in tumors. PMID:2195318

  3. Structural genomics of membrane proteins

    Walian, Peter; Cross, Timothy A.; Jap, Bing K.


    Improvements in the fields of membrane-protein molecular biology and biochemistry, technical advances in structural data collection and processing, and the availability of numerous sequenced genomes have paved the way for membrane-protein structural genomics efforts. There has been significant recent progress, but various issues essential for high-throughput membrane-protein structure determination remain to be resolved.

  4. Regulation of B Cell Differentiation by Intracellular Membrane-Associated Proteins and microRNAs: Role in the Antibody Response.

    Lou, Zheng; Casali, Paolo; Xu, Zhenming


    B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes, and autophagosomes) and protein factors specifically associated with these membranes, including Rab7, Atg5, and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, class switch DNA recombination (CSR)/somatic hypermutation (SHM), and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation, and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulating AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses. PMID:26579118

  5. Regulation of B cell differentiation by intracellular membrane associated proteins and microRNAs: role in the antibody response

    Zheng eLou


    Full Text Available B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes and autophagosomes and protein factors specifically associated with these membranes, including Rab7, Atg5 and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, CSR/SHM, and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulate AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses.

  6. Characterization of Four Outer Membrane Proteins Involved in Binding Starch to the Cell Surface of Bacteroides thetaiotaomicron

    Shipman, Joseph A.; Berleman, James E.; Salyers, Abigail A.


    Bacteroides thetaiotaomicron, a gram-negative obligate anaerobe, utilizes polysaccharides by binding them to its cell surface and allowing cell-associated enzymes to hydrolyze them into digestible fragments. We use the starch utilization system as a model to analyze the initial steps involved in polysaccharide binding and breakdown. In a recent paper, we reported that one of the outer membrane proteins involved, SusG, had starch-degrading activity but was not sufficient for growth on starch. ...

  7. Phosphorylation-dependent Trafficking of Plasma Membrane Proteins in Animal and Plant Cells

    Remko Offringa; and Fang Huang


    In both unicellular and multicellular organisms, transmembrane (TM) proteins are sorted to and retained at specific membrane domains by endomembrane trafficking mechanisms that recognize sorting signals in the these proteins. The trafficking and distribution of plasma membrane (PM)-localized TM proteins (PM proteins), especially of those PM proteins that show an asymmetric distribution over the PM, has received much attention, as their proper PM localization is crucial for elementary signaling and transport processes, and defects in their localization often lead to severe disease symptoms or developmental defects. The subcellular localization of PM proteins is dynamically regulated by post-translational modifications, such as phosphorylation and ubiquitination. These modificaitons mostly occur on sorting signals that are located in the larger cytosolic domains of the cargo proteins. Here we review the effects of phosphorylation of PM proteins on their trafficking, and present the key examples from the animal field that have been subject to studies for already several decades, such as that of aquaporin 2 and the epidermal growth factor receptor. Our knowledge on cargo trafficking in plants is largely based on studies of the family of PIN FORMED (PIN) carriers that mediate the efflux of the plant hormone auxin. We will review what is known on the subcellular distribution and trafficking of PIN proteins, with a focus on how this is modulated by phosphorylation, and identify and discuss analogies and differences in trafficking with the well-studied animal examples.

  8. The Novel Tail-anchored Membrane Protein Mff Controls Mitochondrial and Peroxisomal Fission in Mammalian Cells

    Gandre-Babbe, Shilpa; van der Bliek, Alexander M.


    Few components of the mitochondrial fission machinery are known, even though mitochondrial fission is a complex process of vital importance for cell growth and survival. Here, we describe a novel protein that controls mitochondrial fission. This protein was identified in a small interfering RNA (siRNA) screen using Drosophila cells. The human homologue of this protein was named Mitochondrial fission factor (Mff). Mitochondria of cells transfected with Mff siRNA form a closed network similar t...

  9. Variable opacity (Opa) outer membrane proteins account for the cell tropisms displayed by Neisseria gonorrhoeae for human leukocytes and epithelial cells.

    Kupsch, E M; Knepper, B; Kuroki, T; Heuer, I; Meyer, T F


    Opacity proteins (Opa) of Neisseria gonorrhoeae, a family of variant outer membrane proteins implicated in pathogenesis, are subject to phase variation. In strain MS11, 11 different opa gene alleles have been identified, the expression of which can be turned on and off independently. Using a reverse genetic approach, we demonstrate that a single Opa protein variant of strain MS11, Opa50, enables gonococci to invade epithelial cells. The remaining variant Opa proteins show no, or very little, ...

  10. Identification and validation of T-cell epitopes in outer membrane protein (OMP) of Salmonella typhi.

    Tanu, Arifur Rahman; Ashraf, Mohammad Arif; Hossain, Md Faruk; Ismail, Md; Shekhar, Hossain Uddin


    This study aims to design epitope-based peptides for the utility of vaccine development by targeting outer membrane protein F (Omp F), because two available licensed vaccines, live oral Ty21a and injectable polysaccharide, are 50% to 80% protective with a higher rate of side effects. Conventional vaccines take longer time for development and have less differentiation power between vaccinated and infected cells. On the other hand, Peptide-based vaccines present few advantages over other vaccines, such as stability of peptide, ease to manufacture, better storage, avoidance of infectious agents during manufacture, and different molecules can be linked with peptides to enhance their immunogenicity. Omp F is highly conserved and facilitates attachment and fusion of Salmonella typhi with host cells. Using various databases and tools, immune parameters of conserved sequences from Omp F of different isolates of Salmonella typhi were tested to predict probable epitopes. Binding analysis of the peptides with MHC molecules, epitopes conservancy, population coverage, and linear B cell epitope prediction were analyzed. Among all those predicted peptides, ESYTDMAPY epitope interacted with six MHC alleles and it shows highest amount of interaction compared to others. The cumulative population coverage for these epitopes as vaccine candidates was approximately 70%. Structural analysis suggested that epitope ESYTDMAPY fitted well into the epitope-binding groove of HLA-C*12:03, as this HLA molecule was common which interact with each and every predicted epitopes. So, this potential epitope may be linked with other molecules to enhance its immunogenicity and used for vaccine development. PMID:25258481

  11. Identification of an additional class of C3-binding membrane proteins of human peripheral blood leukocytes and cell lines.

    Cole, J L; Housley, G A; Dykman, T R; MacDermott, R P; Atkinson, J P


    Proteins binding the third component of complement (C3) were isolated by affinity chromatography from surface-labeled solubilized membranes of human peripheral blood cells and cell lines. The isolated molecules were subjected to NaDodSO4/PAGE, and autoradiographs of these gels indicated that C3-binding proteins could be divided into three groups based on Mr: (i) gp200, an approximately 200,000 Mr molecule previously identified as the C3b/C4b receptor or CR1; (ii) gp140, an approximately 140,0...

  12. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe


    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images. PMID:23085529

  13. The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity.

    Håkansson, S; Schesser, K; Persson, C; Galyov, E E; Rosqvist, R; Homblé, F; Wolf-Watz, H


    During infection of cultured epithelial cells, surface-located Yersinia pseudotuberculosis deliver Yop (Yersinia outer protein) virulence factors into the cytoplasm of the target cell. A non-polar yopB mutant strain displays a wild-type phenotype with respect to in vitro Yop regulation and secretion but fails to elicit a cytotoxic response in cultured HeLa cells and is unable to inhibit phagocytosis by macrophage-like J774 cells. Additionally, the yopB mutant strain was avirulent in the mouse model. No YopE or YopH protein were observed within HeLa cells infected with the yopB mutant strain, suggesting that the loss of virulence of the mutant strain was due to its inability to translocate Yop effector proteins through the target cell plasma membrane. Expression of YopB is necessary for Yersinia-induced lysis of sheep erythrocytes. Purified YopB was shown to have membrane disruptive activity in vitro. YopB-dependent haemolytic activity required cell contact between the bacteria and the erythrocytes and could be inhibited by high, but not low, molecular weight carbohydrates. Similarly, expression of YopE reduced haemolytic activity. Therefore, we propose that YopB is essential for the formation of a pore in the target cell membrane that is required for the cell-to-cell transfer of Yop effector proteins. PMID:8918459

  14. Hydrophobic organization of membrane proteins

    Rees, D C; DeAntonio, L.; Eisenberg, D.


    Membrane-exposed residues are more hydrophobic than buried interior residues in the transmembrane regions of the photosynthetic reaction center from Rhodobacter sphaeroides. This hydrophobic organization is opposite to that of water-soluble proteins. The relative polarities of interior and surface residues of membrane and water soluble proteins are not simply reversed, however. The hydrophobicities of interior residues of both membrane and water-soluble proteins are comparable, whereas the bi...

  15. Generation, modulation and maintenance of the plasma membrane asymmetric phospholipid composition in yeast cells during growth: their relation to surface potential and membrane protein activity.

    Cerbón, J; Calderón, V


    During growth a cyclic exposure of anionic phospholipids to the external surface of the plasma membrane was found. The surface charge density (sigma) increased gradually reaching a maximum in the first 5 h of growth and returned gradually to their initial value at the end of the logarithmic phase of growth (10-12 h). Phosphatidylinositol, that determines to a large extent the magnitude of the sigma, increased 83% in the yeast cells during the first 4 h of growth and returned gradually to their initial level at 10-12 h. During the stationary phase (12-24 h), both sigma and the anionic/zwitterionic phospholipid ratio, remained without any significant variation. The high-affinity H-linked glutamate transport system that behaves as a sensor of the changes in the membrane surface potential (phi) increased its activity in the first 5 h and then decreased it, following with great accuracy the sigma variations and remained without changes during the stationary phase of growth. The phosphatidylserine (PS) relative concentration in the cells (9.0%) did not significantly change during the whole growth curve, but their asymmetric distribution varied, contributing to the changes in sigma. PS facing the outer membrane surface increased 2.45-times during the first 5 h of growth and then returned to their original value at the end of the log phase (12 h). Phosphatidylcholine (PC) remained constant during the whole growth curve (50%), while phosphatidylethanolamine (PE) decreased 3-fold in the first 4 h and then increased to its original value at 10 h. Interestingly, PE at the outer membrane surface remained constant (3% of the total phospholipids) during the whole growth curve. During growth yeast cells change their phospholipid composition originating altered patterns of the plasma membrane phospholipid composition and IN-OUT distribution. This dynamic asymmetry is involved in the regulation of the surface potential and membrane protein activity. PMID:7718598

  16. Characterization of the latent membrane protein 1 signaling complex of Epstein-Barr virus in the membrane of mammalian cells with bimolecular fluorescence complementation

    Everly David N


    Full Text Available Abstract Background Bimolecular fluorescence complementation (BiFC is a novel technique to examine protein-protein interaction through the assembly of fluorescent proteins. In the present study, BiFC was used to study the assembly of the Epstein-Barr virus latent membrane protein 1 (LMP1 signaling complex within the membrane of mammalian cells. LMP1 signaling requires oligomerization, localization to lipid rafts, and association of the cytoplasmic domain to adaptor proteins, such as the tumor necrosis factor receptor associated factors (TRAFs. Methods LMP1-TRAF and LMP1-LMP1 interactions were assayed by BiFC using fluorescence microscopy and flow cytometry. Function of LMP1 BiFC contructs were confirmed by transformation assays and nuclear factor- κB (NF-κB reporter assays. Results BiFC was observed between LMP1 and TRAF2 or TRAF3 and mutation of the LMP1 signaling domains reduced complementation. Fluorescence was observed in previously described LMP1 signaling locations. Oligomerization of LMP1 with itself induced complementation and BiFC. LMP1-BiFC constructs were fully functional in rodent fibroblast transformation assays and activation of NF-κB reporter activity. The BiFC domain partially suppressed some LMP1 mutant phenotypes. Conclusions Together these data suggest that BiFC is a unique and novel platform to identify and characterize proteins recruited to the LMP1-signaling complex.

  17. Characterization of the methotrexate transport pathway in murine L1210 leukemia cells: Involvement of a membrane receptor and a cytosolic protein

    A radioiodinated photoaffinity analogue of methotrexate, Nα-(4-amino-4-deoxy-10-methyl-pteroyl)-Nε-(4-azidosalicylyl)-L-lysine (APA-ASA-Lys), was recently used to identify the plasma membrane derived binding protein involved in the transport of this folate antagonist into murine L1210 cells. The labeled protein has an apparent molecular weight of 46K-48K when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but no such labeling occurs in a methotrexate transport-defective cell line (L1210/R81). Labeling of the total cytosolic protein from disrupted cells, followed by electrophoresis and autoradiography, showed, among other proteins, a 21K band, corresponding to dihydrofolate reductase (DHFR), in both the parent and R81 cells and a 38K band only in the parent cells. However, when whole cells were UV irradiated at various times at 37 degree C following addition of radiolabeled APA-ASA-Lys, the 38K protein and DHFR were the only cytosolic proteins labeled in the parent cells, while the intact R81 cells showed no labeled cytosolic protein, since the photoprobe is not transported. Further, when the parent cells were treated with a pulse of radiolabeled photoprobe, followed by UV irradiation at different times at 37 degree C, the probe appeared sequentially on the 48K membrane protein and both the 38K cytosolic protein and dihydrofolate reductase. A 48K protein could be detected in both parent L1210 cells and the R81 cells on Western blots using antisera to a membrane folate binding protein from human placenta. These results suggest a vectorial transport of APA-ASA-Lys or methotrexate and reduced folate coenzymes into murine L1210 cells mediated by a 48K integral membrane protein and a 38K cytosolic or peripheral membrane protein. The 38K protein may help in the trafficking of reduced folate coenzymes, shuttling them to various cytosolic targets

  18. Characterising antimicrobial protein-membrane complexes

    Full text: Antimicrobial proteins (AMPs) are host defence molecules that protect organisms from microbial infection. A number of hypotheses for AMP activity have been proposed which involve protein membrane interactions. However, there is a paucity of information describing AMP-membrane complexes in detail. The aim of this project is to characterise the interactions of amoebapore-A (APA-1) with membrane models using primarily solution-state NMR spectroscopy. APA-1 is an AMP which is regulated by a pH-dependent dimerisation event. Based on the atomic resolution solution structure of monomeric APA-1, it is proposed that this dimerisation is a prerequisite for ring-like hexameric pore formation. Due to the cytotoxicity of APA-1, we have developed a cell-free system to produce this protein. To facilitate our studies, we have adapted the cell-free system to isotope label APA-1. 13C/15N-enriched APA-1 sample was achieved and we have begun characterising APA-1 dimerisation and membrane interactions using NMR spectroscopy and other biochemical/biophysical methods. Neutron reflectometry is a surface-sensitive technique and therefore represents an ideal technique to probe how APA-1 interacts with membranes at the molecular level under different physiological conditions. Using Platypus, the pH-induced APA-1-membrane interactions should be detectable as an increase of the amount of protein adsorbed at the membrane surface and changes in the membrane properties. Specifically, detailed information of the structure and dimensions of the protein-membrane complex, the position and amount of the protein in the membrane, and the perturbation of the membrane phospholipids on protein incorporation can be extracted from the neutron reflectometry measurement. Such information will enable critical assessment of current proposed mechanisms of AMP activity in bacterial membranes and complement our NMR studies

  19. Lactoperoxidase-catalyzed iodination of membrane proteins in normal and neoplastic epidermal cells

    Cell surface proteins of normal human, mouse, and rat cells in primary culture, of human basal cell carcinoma, and of carcinogen-transformed cell lines were examined by lactoperoxidase-catalyzed iodination. Autoradiography was used to record the distribution of label in the polypeptide subunits separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. There was no significant difference in the results for normal cells of human, mouse, and rat. On the other hand, carcinogen-transformed mouse cells had many more labeled polypeptide bands of widely distributed molecular weights. The iodination profiles from human basal cell carcinoma cells were much more akin to those from normal cells than to those from carcinogen-transformed cells. Treatment of iodinated cells with proteolytic enzymes visibly altered the polypeptide bands

  20. When physics takes over: BAR proteins and membrane curvature

    Simunovic, Mijo; Voth, Gregory A.; Callan-Jones, Andrew; Bassereau, Patricia


    Cell membranes become highly curved during membrane trafficking, cytokinesis, infection, immune response or cell motion. Bin/amphiphysin/Rvs (BAR) domain proteins with their intrinsically curved and anisotropic shape are involved in many of these processes, but with a large spectrum of modes of action. In vitro experiments and multiscale computer simulations have contributed in identifying a minimal set of physical parameters, namely protein density on the membrane, membrane tension, and membrane shape, that control how bound BAR domain proteins behave on the membrane. In this review, we summarize the multifaceted coupling of BAR proteins to membrane mechanics and propose a simple phase diagram that recapitulates the effects of these parameters. PMID:26519988

  1. Kinetics of B Cell Responses to Plasmodium falciparum Erythrocyte Membrane Protein 1 in Ghanaian Women Naturally Exposed to Malaria Parasites

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F;


    Naturally acquired protective immunity to Plasmodium falciparum malaria takes years to develop. It relies mainly on Abs, particularly IgG specific for Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) proteins on the infected erythrocyte surface. It is only partially understood why...... acquisition of clinical protection takes years to develop, but it probably involves a range of immune-evasive parasite features, not least of which are PfEMP1 polymorphism and clonal variation. Parasite-induced subversion of immunological memory and expansion of "atypical" memory B cells may also contribute...

  2. Membrane protein structure determination in membrana.

    Ding, Yi; Yao, Yong; Marassi, Francesca M


    The two principal components of biological membranes, the lipid bilayer and the proteins integrated within it, have coevolved for specific functions that mediate the interactions of cells with their environment. Molecular structures can provide very significant insights about protein function. In the case of membrane proteins, the physical and chemical properties of lipids and proteins are highly interdependent; therefore structure determination should include the membrane environment. Considering the membrane alongside the protein eliminates the possibility that crystal contacts or detergent molecules could distort protein structure, dynamics, and function and enables ligand binding studies to be performed in a natural setting. Solid-state NMR spectroscopy is compatible with three-dimensional structure determination of membrane proteins in phospholipid bilayer membranes under physiological conditions and has played an important role in elucidating the physical and chemical properties of biological membranes, providing key information about the structure and dynamics of the phospholipid components. Recently, developments in the recombinant expression of membrane proteins, sample preparation, pulse sequences for high-resolution spectroscopy, radio frequency probes, high-field magnets, and computational methods have enabled a number of membrane protein structures to be determined in lipid bilayer membranes. In this Account, we illustrate solid-state NMR methods with examples from two bacterial outer membrane proteins (OmpX and Ail) that form integral membrane β-barrels. The ability to measure orientation-dependent frequencies in the solid-state NMR spectra of membrane-embedded proteins provides the foundation for a powerful approach to structure determination based primarily on orientation restraints. Orientation restraints are particularly useful for NMR structural studies of membrane proteins because they provide information about both three-dimensional structure

  3. A transmembrane inner nuclear membrane protein in the mitotic spindle

    Figueroa, Ricardo; Gudise, Santhosh; Larsson, Veronica; Hallberg, Einar


    We have recently characterized a novel transmembrane protein of the inner nuclear membrane of mammalian cells. The protein has two very interesting features. First, despite being an integral membrane protein it is able to concentrate in the membranes colocalizing with the mitotic spindle in metaphase and anaphase. Hence, the protein was named Samp1, Spindle associated membrane protein 1. Secondly, it displays a functional connection to centrosomes. This article discusses various aspects of Sa...

  4. Modelling of proteins in membranes

    Sperotto, Maria Maddalena; May, S.; Baumgaertner, A.


    This review describes some recent theories and simulations of mesoscopic and microscopic models of lipid membranes with embedded or attached proteins. We summarize results supporting our understanding of phenomena for which the activities of proteins in membranes are expected to be significantly ...

  5. Protein Solvation in Membranes and at Water-Membrane Interfaces

    Pohorille, Andrew; Chipot, Christophe; Wilson, Michael A.


    Different salvation properties of water and membranes mediate a host of biologically important processes, such as folding, insertion into a lipid bilayer, associations and functions of membrane proteins. These processes will be discussed in several examples involving synthetic and natural peptides. In particular, a mechanism by which a helical peptide becomes inserted into a model membrane will be described. Further, the molecular mechanism of recognition and association of protein helical segments in membranes will be discussed. These processes are crucial for proper functioning of a cell. A membrane-spanning domain of glycophorin A, which exists as a helical dimer, serves as the model system. For this system, the free energy of dissociation of the helices is being determined for both the wild type and a mutant, in which dimerization is disrupted.

  6. Decidual-secreted factors alter invasive trophoblast membrane and secreted proteins implying a role for decidual cell regulation of placentation.

    Menkhorst, Ellen Melaleuca; Lane, Natalie; Winship, Amy Louise; Li, Priscilla; Yap, Joanne; Meehan, Katie; Rainczuk, Adam; Stephens, Andrew; Dimitriadis, Evdokia


    Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the 'extravillous trophoblast' (EVT) invade through the differentiated uterine endometrium (the decidua) to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by altering the production of EVT membrane and secreted factors. We used a proteomics approach to identify EVT membrane and secreted proteins regulated by decidual cell factors. Human endometrial stromal cells were decidualized in vitro by treatment with estradiol (10(-8) M), medroxyprogesterone acetate (10(-7) M) and cAMP (0.5 mM) for 14 days. Conditioned media (CM) was collected on day 2 (non-decidualized CM) and 14 (decidualized CM) of treatment. Isolated primary EVT cultured on Matrigel™ were treated with media control, non-decidualized or decidualized CM for 16 h. EVT CM was fractionated for proteins HPLC-MS/MS. 43 proteins produced by EVT were identified; 14 not previously known to be expressed in the placenta and 12 which had previously been associated with diseases of pregnancy including preeclampsia. Profilin 1, lysosome associated membrane glycoprotein 1 (LAMP1), dipeptidyl peptidase 1 (DPP1/cathepsin C) and annexin A2 expression by interstitial EVT in vivo was validated by immunhistochemistry. Decidual CM regulation in vitro was validated by western blotting: decidualized CM upregulated profilin 1 in EVT CM and non-decidualized CM upregulated annexin A2 in EVT CM and pro-DPP1 in EVT cell lysate. Here, non-decidualized factors induced protease expression by EVT suggesting that non-decidualized factors may induce a pro-inflammatory cascade. Preeclampsia is a pro-inflammatory condition. Overall, we have demonstrated the potential of a proteomics approach to identify novel

  7. NMR of Membrane Proteins: Beyond Crystals.

    Rajesh, Sundaresan; Overduin, Michael; Bonev, Boyan B


    Membrane proteins are essential for the flow of signals, nutrients and energy between cells and between compartments of the cell. Their mechanisms can only be fully understood once the precise structures, dynamics and interactions involved are defined at atomic resolution. Through advances in solution and solid state NMR spectroscopy, this information is now available, as demonstrated by recent studies of stable peripheral and transmembrane proteins. Here we highlight recent cases of G-protein coupled receptors, outer membrane proteins, such as VDAC, phosphoinositide sensors, such as the FAPP-1 pleckstrin homology domain, and enzymes including the metalloproteinase MMP-12. The studies highlighted have resulted in the determination of the 3D structures, dynamical properties and interaction surfaces for membrane-associated proteins using advanced isotope labelling strategies, solubilisation systems and NMR experiments designed for very high field magnets. Solid state NMR offers further insights into the structure and multimeric assembly of membrane proteins in lipid bilayers, as well as into interactions with ligands and targets. Remaining challenges for wider application of NMR to membrane structural biology include the need for overexpression and purification systems for the production of isotope-labelled proteins with fragile folds, and the availability of only a few expensive perdeuterated detergents.Step changes that may transform the field include polymers, such as styrene maleic acid, which obviate the need for detergent altogether, and allow direct high yield purification from cells or membranes. Broader demand for NMR may be facilitated by MODA software, which instantly predicts membrane interactive residues that can subsequently be validated by NMR. In addition, recent developments in dynamic nuclear polarization NMR instrumentation offer a remarkable sensitivity enhancement from low molarity samples and cell surfaces. These advances illustrate the current

  8. Insulin rapidly stimulates phosphorylation of a 46-kDa membrane protein on tyrosine residues as well as phosphorylation of several soluble proteins in intact fat cells

    It is speculated that the transmission of an insulin signal across the plasma membrane of cells occurs through activation of the tyrosine-specific receptor kinase, autophosphorylation of the receptor, and subsequent phosphorylation of unidentified substrates in the cell. In an attempt to identify possible substrates, the authors labeled intact rat fat cells with [32P]orthophosphate and used an antiphosphotyrosine antibody to identify proteins that become phosphorylated on tyrosine residues in an insulin-stimulated way. In the membrane fraction of the fat cells, they found, in addition to the 95-kDa β-subunit of the receptor, a 46-kDa phosphoprotein that is phosphorylated exclusively on tyrosine residues. This protein is not immunoprecipitated by antibodies against different regions of the insulin receptor and its HPLC tryptic peptide map is different from the tryptic peptide map of the insulin receptor, suggesting that it is not derived from the receptor β-subunit. Insulin stimulates the tyrosine phosphorylation of the 46-kDa protein within 150 sec in the intact cell 3- to 4-fold in a dose-dependent way at insulin concentrations between 0.5 nM and 100 nM. Insulin (0.5 nM, 100 nM) stimulated within 2 min the 32P incorporation into a 116-kDa band, a 62 kDa band, and three bands between 45 kDa and 50 kDa 2- to 10-fold. They suggest that the 46-kDa membrane protein and possibly also the soluble proteins are endogenous substrates of the receptor tyrosine kinase in fat cells and that their phosphorylation is an early step in insulin signal transmission

  9. The Membrane Receptor for Plasma Retinol Binding Protein, a New Type of Cell-Surface Receptor



    Vitamin A is essential for diverse aspects of life ranging from embryogenesis to the proper functioning of most adult organs. Its derivatives (retinoid) have potent biological activities such as regulating cell growth and differentiation. Plasma retinol binding protein (RBP) is the specific vitamin A carrier protein in the blood that binds to vitamin A with high affinity and delivers it to target organs. A large amount of evidence has accumulated over the past decades supporting the existence...

  10. The Microtubule-Associated Protein END BINDING1 Modulates Membrane Trafficking Pathways in Plant Root Cells

    Shahidi, Saeid


    EB1 protein preferentially binds to the fast growing ends of microtubules where it regulates microtubule dynamics. In addition to microtubules, EB1 interacts with several additional proteins, and through these interactions modulates various cellular processes. Arabidopsis thaliana eb1 mutants have roots that exhibit aberrant responses to touch/gravity cues. Columella cells in the centre of the root cap are polarized and play key roles in these responses by functioning as sensors.I examined th...

  11. Latent membrane protein 1 is critical for efficient growth transformation of human B cells by epstein-barr virus.

    Dirmeier, Ulrike; Neuhierl, Bernhard; Kilger, Ellen; Reisbach, Gilbert; Sandberg, Mark L; Hammerschmidt, Wolfgang


    The EBV latent membrane protein 1 (LMP1) is an integral membrane protein that acts like a constitutively activated receptor. LMP1 interacts with members of the tumor necrosis factor receptor-associated factor family, as well as with tumor necrosis factor receptor-associated death domain, resulting in induction of nuclear factor-kappaB, the p38 mitogen-activated protein kinase pathway, and the c-Jun NH(2)-terminal kinase activator protein 1-signaling cascade. The binding of Janus kinase 3 results in activation of signal transducers and activators of transcription. The domain structure of LMP1 has been mapped extensively, but the quantitative contribution of distinct LMP1 domains to the efficiency of B-cell proliferation by EBV has not been determined. On the basis of the maxi-EBV system, which allows us to introduce and study mutations in the context of the complete EBV genome, a panel of 10 EBV mutants with alterations in the LMP1 gene locus was established. The mutant EBVs were tested for their efficiency to induce and maintain proliferation of clonal B-cell lines in vitro. Surprisingly and with reduced frequency, EBV mutants which deleted LMP1's COOH terminus, transmembrane domains, or the entire open reading frame were able to generate proliferating B-cell clones that were dependent on the presence of human fibroblast feeder cells. A B-cell clone carrying the LMP1-null mutant EBV genome was also analyzed for oncogenicity in severe combined immunodeficiency mice. Our results demonstrate that LMP1 is critical but not mandatory for the generation of proliferating B cells in vitro. LMP1 functions greatly contribute to EBV's transformation potential and appear essential for its oncogenicity in severe combined immunodeficiency mice. PMID:12782607

  12. Rice Hypersensitive Induced Reaction Protein 1 (OsHIR1 associates with plasma membrane and triggers hypersensitive cell death

    Sun Sai-Ming


    Full Text Available Abstract Background In plants, HIR (Hypersensitive Induced Reaction proteins, members of the PID (Proliferation, Ion and Death superfamily, have been shown to play a part in the development of spontaneous hypersensitive response lesions in leaves, in reaction to pathogen attacks. The levels of HIR proteins were shown to correlate with localized host cell deaths and defense responses in maize and barley. However, not much was known about the HIR proteins in rice. Since rice is an important cereal crop consumed by more than 50% of the populations in Asia and Africa, it is crucial to understand the mechanisms of disease responses in this plant. We previously identified the rice HIR1 (OsHIR1 as an interacting partner of the OsLRR1 (rice Leucine-Rich Repeat protein 1. Here we show that OsHIR1 triggers hypersensitive cell death and its localization to the plasma membrane is enhanced by OsLRR1. Result Through electron microscopy studies using wild type rice plants, OsHIR1 was found to mainly localize to the plasma membrane, with a minor portion localized to the tonoplast. Moreover, the plasma membrane localization of OsHIR1 was enhanced in transgenic rice plants overexpressing its interacting protein partner, OsLRR1. Co-localization of OsHIR1 and OsLRR1 to the plasma membrane was confirmed by double-labeling electron microscopy. Pathogen inoculation studies using transgenic Arabidopsis thaliana expressing either OsHIR1 or OsLRR1 showed that both transgenic lines exhibited increased resistance toward the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. However, OsHIR1 transgenic plants produced more extensive spontaneous hypersensitive response lesions and contained lower titers of the invading pathogen, when compared to OsLRR1 transgenic plants. Conclusion The OsHIR1 protein is mainly localized to the plasma membrane, and its subcellular localization in that compartment is enhanced by OsLRR1. The expression of OsHIR1 may sensitize the plant

  13. Lysosome-associated membrane proteins (LAMPs) regulate intracellular positioning of mitochondria in MC3T3-E1 cells.

    Rajapakshe, Anupama R; Podyma-Inoue, Katarzyna A; Terasawa, Kazue; Hasegawa, Katsuya; Namba, Toshimitsu; Kumei, Yasuhiro; Yanagishita, Masaki; Hara-Yokoyama, Miki


    The intracellular positioning of both lysosomes and mitochondria meets the requirements of degradation and energy supply, which are respectively the two major functions for cellular maintenance. The positioning of both lysosomes and mitochondria is apparently affected by the nutrient status of the cells. However, the mechanism coordinating the positioning of the organelles has not been sufficiently elucidated. Lysosome-associated membrane proteins-1 and -2 (LAMP-1 and LAMP-2) are highly glycosylated proteins that are abundant in lysosomal membranes. In the present study, we demonstrated that the siRNA-mediated downregulation of LAMP-1, LAMP-2 or their combination enhanced the perinuclear localization of mitochondria, in the pre-osteoblastic cell line MC3T3-E1. On the other hand, in the osteocytic cell line MLO-Y4, in which both the lysosomes and mitochondria originally accumulate in the perinuclear region and mitochondria also fill dendrites, the effect of siRNA of LAMP-1 or LAMP-2 was barely observed. LAMPs are not directly associated with mitochondria, and there do not seem to be any accessory molecules commonly required to recruit the motor proteins to lysosomes and mitochondria. Our results suggest that LAMPs may regulate the positioning of lysosomes and mitochondria. A possible mechanism involving the indirect and context-dependent action of LAMPs is discussed. PMID:25246127

  14. Expression and Purification of the Major Outer Membrane Protein of Chlamydia Trachomatis in Prokaryotic Cell

    李忠玉; 吴移谋; 陈超群; 万艳平; 朱翠明


    To clone and construct the recombinant plasmid containing the major outer membrane protein (MOMP) gene of Chlamydia trachomatis ( C.trachomatis ) and to express the fusion protein in E. coli BL21, the MOMP gene was amphfied by polymerase chain reaction (PCR) from genome of C. trachomatis serovar D. The fragment was cloned into the prokaryotic expression vector pET-22b( + ) after digestion with BamH Ⅰ and Not Ⅰ and transformed into E. coli XL1-Blue. Recombinants were selected by enzyme digestion and sequencing and the recombinant plasmid with MOMP gene was then transformed into E. coli BL21 with IPTG to express the target gene. The expression recombinant proteins were purified by Ni-NTA affinity chromatography, and identified by SDS-PAGE and Western blot. It was found that a 1.2 kb MOMP gene was isolated. The DNA sequence of MOMP was found to be just the same as the sequence published by GenBank. A recombinant plasmid containing MOMP gene was constructed to express the fusion proteins in E.coli. SDS-PAGE analysis showed that the relative molecular weight of the recombinant protein was about 47 kDa that was consistent with the theoretical predicted value, and the specificity of the expressed protein was conformed by Western blot. It concluded that the MOMP gene could be expressed in the prokaryotic system, by which it provided the foundation for the future studies on the biological activities of C. trachomatis and for the development of vaccine against this pathogen.

  15. Macrolide Resistance Mediated by a Bifidobacterium breve Membrane Protein

    Margolles, Abelardo; Moreno, José Antonio; van Sinderen, Douwe; de los Reyes-Gavilán, Clara G.


    A gene coding for a hypothetical membrane protein from Bifidobacterium breve was expressed in Lactococcus lactis. Immunoblotting demonstrated that this protein is located in the membrane. Phenotypical changes in sensitivity towards 21 antibiotics were determined. The membrane protein-expressing cells showed higher levels of resistance to several macrolides.

  16. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication? [version 1; referees: 2 approved

    Simon Imhof


    Full Text Available Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature.

  17. Human Immunodeficiency Virus Type 1 Nef protein modulates the lipid composition of virions and host cell membrane microdomains

    Geyer Matthias


    Full Text Available Abstract Background The Nef protein of Human Immunodeficiency Viruses optimizes viral spread in the infected host by manipulating cellular transport and signal transduction machineries. Nef also boosts the infectivity of HIV particles by an unknown mechanism. Recent studies suggested a correlation between the association of Nef with lipid raft microdomains and its positive effects on virion infectivity. Furthermore, the lipidome analysis of HIV-1 particles revealed a marked enrichment of classical raft lipids and thus identified HIV-1 virions as an example for naturally occurring membrane microdomains. Since Nef modulates the protein composition and function of membrane microdomains we tested here if Nef also has the propensity to alter microdomain lipid composition. Results Quantitative mass spectrometric lipidome analysis of highly purified HIV-1 particles revealed that the presence of Nef during virus production from T lymphocytes enforced their raft character via a significant reduction of polyunsaturated phosphatidylcholine species and a specific enrichment of sphingomyelin. In contrast, Nef did not significantly affect virion levels of phosphoglycerolipids or cholesterol. The observed alterations in virion lipid composition were insufficient to mediate Nef's effect on particle infectivity and Nef augmented virion infectivity independently of whether virus entry was targeted to or excluded from membrane microdomains. However, altered lipid compositions similar to those observed in virions were also detected in detergent-resistant membrane preparations of virus producing cells. Conclusion Nef alters not only the proteome but also the lipid composition of host cell microdomains. This novel activity represents a previously unrecognized mechanism by which Nef could manipulate HIV-1 target cells to facilitate virus propagation in vivo.

  18. A Prediction Model for Membrane Proteins Using Moments Based Features

    Butt, Ahmad Hassan; Khan, Sher Afzal; Jamil, Hamza; Rasool, Nouman; Khan, Yaser Daanial


    The most expedient unit of the human body is its cell. Encapsulated within the cell are many infinitesimal entities and molecules which are protected by a cell membrane. The proteins that are associated with this lipid based bilayer cell membrane are known as membrane proteins and are considered to play a significant role. These membrane proteins exhibit their effect in cellular activities inside and outside of the cell. According to the scientists in pharmaceutical organizations, these membrane proteins perform key task in drug interactions. In this study, a technique is presented that is based on various computationally intelligent methods used for the prediction of membrane protein without the experimental use of mass spectrometry. Statistical moments were used to extract features and furthermore a Multilayer Neural Network was trained using backpropagation for the prediction of membrane proteins. Results show that the proposed technique performs better than existing methodologies. PMID:26966690

  19. Architecture and Function of Mechanosensitive Membrane Protein Lattices

    Osman Kahraman; Koch, Peter D.; Klug, William S.; Haselwandter, Christoph A.


    Experiments have revealed that membrane proteins can form two-dimensional clusters with regular translational and orientational protein arrangements, which may allow cells to modulate protein function. However, the physical mechanisms yielding supramolecular organization and collective function of membrane proteins remain largely unknown. Here we show that bilayer-mediated elastic interactions between membrane proteins can yield regular and distinctive lattice architectures of protein cluster...

  20. Identification of an additional class of C3-binding membrane proteins of human peripheral blood leukocytes and cell lines.

    Cole, J L; Housley, G A; Dykman, T R; MacDermott, R P; Atkinson, J P


    Proteins binding the third component of complement (C3) were isolated by affinity chromatography from surface-labeled solubilized membranes of human peripheral blood cells and cell lines. The isolated molecules were subjected to NaDodSO4/PAGE, and autoradiographs of these gels indicated that C3-binding proteins could be divided into three groups based on Mr: (i) gp200, an approximately 200,000 Mr molecule previously identified as the C3b/C4b receptor or CR1; (ii) gp140, an approximately 140,000 Mr molecule previously identified as the C3d receptor or CR2; and (iii) gp45-70, a heretofore unrecognized group of 45,000-70,000 Mr C3-binding molecules. The cell distribution, Mr, antigenic cross-reactivity, and specificity of gp45-70 were examined. Erythrocytes have no detectable gp45-70, but all leukocyte populations examined possess this group of molecules. On neutrophils and mononuclear phagocytes, CR1 is the predominant C3-binding glycoprotein, but gp45-70 is present on both cell populations and on macrophage and neutrophil cell lines. B plus null cells, chronic lymphocytic leukemia cells, and an Epstein-Barr virus-transformed B-cell line possess CR1, CR2, and gp45-70. On T cells and T-cell lines gp45-70 is the predominant or, in some cases, the only C3-binding protein isolated. gp45-70 is structurally characterized as a broad band or doublet with a mean Mr that is slightly different for each cell population. gp45-70 binds iC3, C3b, and C4b, but not C3d, indicating that the binding region is probably within the C3c portion of C3b. A polyclonal antibody to CR1 and monoclonal antibodies to CR1 and CR2 do not immunoprecipitate gp45-70. While gp45-70 has not been previously characterized on human cells, a C3b-binding glycoprotein of similar Mr is present on rabbit alveolar macrophages. We conclude that gp45-70 is an additional group of membrane proteins present on human leukocytes that possess ligand-binding activity for C3b. PMID:3871945

  1. Monoclonal antibodies and coupling reagents to cell membrane proteins for leukocyte labeling

    Current gamma-emitting agents for tagging leukocytes, In-111 oxine or tropolone, label all cell types indiscriminantly, and nuclear localization in lymphocytes results in radiation damage. Coupling reagents and murine monoclonal antibodies (Mab) specific for cell surface antigens of human leukocytes were tried as cell labeling agents to avoid nuclear localization. 10/sup 8/ mixed human leukocytes in Hepes buffer were added to tubes coated with 5 mg of dry cyclic dianhydride of DTPA for 15 minutes at room temperature. After washing, 0.1 ml of In-111 Cl in ACD (pH 6.8) was added. After 30 minutes, a cell labeling yield of 23% was obtained. Washing the cells in an elutriation centrifuge showed that this label was irreversible. Mab for cell surface antigens of human granulocytes were labeled with 300 μCi of I-125 using the Iodobead technic and unbound activity was removed by gel column chromatography. 1-10 μg were added to 10/sup 8/ mixed leukocytes in 0.5 ml plasma or saline for 1 hr. With Mab anti-leu M4 (clone G7 E11), an IgM, the cell labeling yield was 21%, irreversible, and specific for granulocytes. With anti-human leukocyte Mab NEI-042 (clone 9.4), and IgG2a, and anti-granulocyte Mab MAS-065 (clone FMCl1) an IgG1, the cell labeling was relatively unstable. Labeling of leukocyte subpopulations with Mab is feasible, and the binding of multivalent IgM is stronger than that of other immunoglobulins. DTPA cyclic anhydride is firmly bound to cell membranes, but the labeling is non-specific

  2. HMPAS: Human Membrane Protein Analysis System

    Kim, Min-Sung; Yi, Gwan-Su


    Background Membrane proteins perform essential roles in diverse cellular functions and are regarded as major pharmaceutical targets. The significance of membrane proteins has led to the developing dozens of resources related with membrane proteins. However, most of these resources are built for specific well-known membrane protein groups, making it difficult to find common and specific features of various membrane protein groups. Methods We collected human membrane proteins from the dispersed...

  3. Specific glycosylation of membrane proteins in epithelial ovarian cancer cell lines: glycan structures reflect gene expression and DNA methylation status.

    Anugraham, Merrina; Jacob, Francis; Nixdorf, Sheri; Everest-Dass, Arun Vijay; Heinzelmann-Schwarz, Viola; Packer, Nicolle H


    Epithelial ovarian cancer is the fifth most common cause of cancer in women worldwide bearing the highest mortality rate among all gynecological cancers. Cell membrane glycans mediate various cellular processes such as cell signaling and become altered during carcinogenesis. The extent to which glycosylation changes are influenced by aberrant regulation of gene expression is nearly unknown for ovarian cancer and remains crucial in understanding the development and progression of this disease. To address this effect, we analyzed the membrane glycosylation of non-cancerous ovarian surface epithelial (HOSE 6.3 and HOSE 17.1) and serous ovarian cancer cell lines (SKOV 3, IGROV1, A2780, and OVCAR 3), the most common histotype among epithelial ovarian cancers. N-glycans were released from membrane glycoproteins by PNGase F and analyzed using nano-liquid chromatography on porous graphitized carbon and negative-ion electrospray ionization mass spectrometry (ESI-MS). Glycan structures were characterized based on their molecular masses and tandem MS fragmentation patterns. We identified characteristic glycan features that were unique to the ovarian cancer membrane proteins, namely the "bisecting N-acetyl-glucosamine" type N-glycans, increased levels of α 2-6 sialylated N-glycans and "N,N'-diacetyl-lactosamine" type N-glycans. These N-glycan changes were verified by examining gene transcript levels of the enzymes specific for their synthesis (MGAT3, ST6GAL1, and B4GALNT3) using qRT-PCR. We further evaluated the potential epigenetic influence on MGAT3 expression by treating the cell lines with 5-azacytidine, a DNA methylation inhibitor. For the first time, we provide evidence that MGAT3 expression may be epigenetically regulated by DNA hypomethylation, leading to the synthesis of the unique "bisecting GlcNAc" type N-glycans on the membrane proteins of ovarian cancer cells. Linking the observation of specific N-glycan substructures and their complex association with epigenetic

  4. Covisualization by computational optical-sectioning microscopy of integrin and associated proteins at the cell membrane of living onion protoplasts

    Gens, J. S.; Reuzeau, C.; Doolittle, K. W.; McNally, J. G.; Pickard, B. G.; Evans, M. L. (Principal Investigator)


    Using higher-resolution wide-field computational optical-sectioning fluorescence microscopy, the distribution of antigens recognized by antibodies against animal beta 1 integrin, fibronectin, and vitronectin has been visualized at the outer surface of enzymatically protoplasted onion epidermis cells and in depectinated cell wall fragments. On the protoplast all three antigens are colocalized in an array of small spots, as seen in raw images, in Gaussian filtered images, and in images restored by two different algorithms. Fibronectin and vitronectin but not beta 1 integrin antigenicities colocalize as puncta in comparably prepared and processed images of the wall fragments. Several control visualizations suggest considerable specifity of antibody recognition. Affinity purification of onion cell extract with the same anti-integrin used for visualization has yielded protein that separates in SDS-PAGE into two bands of about 105-110 and 115-125 kDa. These bands are again recognized by the visualization antibody, which was raised against the extracellular domain of chicken beta 1 integrin, and are also recognized by an antibody against the intracellular domain of chicken beta 1 integrin. Because beta 1 integrin is a key protein in numerous animal adhesion sites, it appears that the punctate distribution of this protein in the cell membranes of onion epidermis represents the adhesion sites long known to occur in cells of this tissue. Because vitronectin and fibronection are matrix proteins that bind to integrin in animals, the punctate occurrence of antigenically similar proteins both in the wall (matrix) and on enzymatically prepared protoplasts reinforces the concept that onion cells have adhesion sites with some similarity to certain kinds of adhesion sites in animals.

  5. Membrane protein assembly: genetic, evolutionary and medical perspectives.

    Manoil, C; Traxler, B


    Lipid bilayers are delicate structures that are easily disrupted by a variety of amphipathic molecules. Yet the viability of a cell requires the continued assembly of large amphipathic proteins within its membranes without damage. The need to minimize bilayer disruption may account for a number of fundamental features of membrane protein assembly. These include the use of redundant sequence information to establish the topologies and folded structures of membrane proteins, and the existence of efficient mechanisms to rid cells of misassembled proteins. Most missense mutations that inactivate a membrane protein probably do so by altering the folding of the membrane-inserted structure rather than by rearranging the topology or by changing key residues involved directly in function. Such misfolded membrane proteins may be toxic to cells if they escape cellular safeguards. This toxicity may underlie some human degenerative diseases due to mutant membrane proteins. PMID:8825471

  6. Membrane proteomic analysis of pancreatic cancer cells

    Liu Xiaojun


    Full Text Available Abstract Background Pancreatic cancer is one of the most aggressive human tumors due to its high potential of local invasion and metastasis. The aim of this study was to characterize the membrane proteomes of pancreatic ductal adenocarcinoma (PDAC cells of primary and metastatic origins, and to identify potential target proteins related to metastasis of pancreatic cancer. Methods Membrane/membrane-associated proteins were isolated from AsPC-1 and BxPC-3 cells and identified with a proteomic approach based on SDS-PAGE, in-gel tryptic digestion and liquid chromatography with tandem mass spectrometry (LC-MS/MS. X! Tandem was used for database searching against the SwissProt human protein database. Results We identified 221 & 208 proteins from AsPC-1 and BxPC-3 cells, respectively, most of which are membrane or membrane-associated proteins. A hundred and nine proteins were found in both cell lines while the others were present in either AsPC-1 or BxPC-3 cells. Differentially expressed proteins between two cell lines include modulators of cell adhesion, cell motility or tumor invasion as well as metabolic enzymes involved in glycolysis, tricarboxylic acid cycle, or nucleotide/lipid metabolism. Conclusion Membrane proteomes of AsPC-1 (metastatic and BxPC-3 (primary cells are remarkably different. The differentially expressed membrane proteins may serve as potential targets for diagnostic and therapeutic interventions.

  7. Membrane Organization and Dynamics in Cell Polarity

    Orlando, Kelly; Guo, Wei


    The establishment and maintenance of cell polarity is important to a wide range of biological processes ranging from chemotaxis to embryogenesis. An essential feature of cell polarity is the asymmetric organization of proteins and lipids in the plasma membrane. In this article, we discuss how polarity regulators such as small GTP-binding proteins and phospholipids spatially and kinetically control vesicular trafficking and membrane organization. Conversely, we discuss how membrane trafficking...

  8. Persistent directional cell migration requires ion transport proteins as direction sensors and membrane potential differences in order to maintain directedness

    Sharma Priyanka


    Full Text Available Abstract Background Ion transport proteins generate small electric fields that can induce directional cell motility; however, little is known about their mechanisms that lead to directedness. We investigated Na, K-ATPase (NaKA and Na+/H+ exchanger isoforms (NHE1 and 3 in SaOS-2 and Calvarial osteoblasts, which present anode- and cathode- directed motility, during electrotaxis. Results Significant colocalizations of NaKA with vinculin and pNHE3 with ß-actin were observed to occur at the leading edges of cells. The directedness were attenuated when NaKA or NHE3 was inhibited, confirming their implication in directional sensing. Depending on the perceived direction, a divergent regulation in PIP2 levels as a function of NHE3 and NaKA levels was observed, suggesting that PIP2 may act as a spatiotemporal regulator of the cell membrane during electrotaxis. Moreover, at the same places where pNHE3 accumulates, bubble-shaped H+ clouds were observed, suggesting a physio-mechanical role for NHE3. The cell membrane becomes hyperpolarized at the front and depolarized at the back, which confirms NaKA activity at the leading edge. Conclusion We suggest a novel role for both NaKA and NHE3 that extends beyond ion translocation and conclude that they can act as directional sensors and Vmem as a regulatory cue which maintain the persistent direction in electrotaxis.

  9. Decidual-secreted factors alter invasive trophoblast membrane and secreted proteins implying a role for decidual cell regulation of placentation.

    Ellen Melaleuca Menkhorst

    Full Text Available Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the 'extravillous trophoblast' (EVT invade through the differentiated uterine endometrium (the decidua to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by altering the production of EVT membrane and secreted factors. We used a proteomics approach to identify EVT membrane and secreted proteins regulated by decidual cell factors. Human endometrial stromal cells were decidualized in vitro by treatment with estradiol (10(-8 M, medroxyprogesterone acetate (10(-7 M and cAMP (0.5 mM for 14 days. Conditioned media (CM was collected on day 2 (non-decidualized CM and 14 (decidualized CM of treatment. Isolated primary EVT cultured on Matrigel™ were treated with media control, non-decidualized or decidualized CM for 16 h. EVT CM was fractionated for proteins <30 kDa using size-exclusion affinity nanoparticles (SEAN before trypsin digestion and HPLC-MS/MS. 43 proteins produced by EVT were identified; 14 not previously known to be expressed in the placenta and 12 which had previously been associated with diseases of pregnancy including preeclampsia. Profilin 1, lysosome associated membrane glycoprotein 1 (LAMP1, dipeptidyl peptidase 1 (DPP1/cathepsin C and annexin A2 expression by interstitial EVT in vivo was validated by immunhistochemistry. Decidual CM regulation in vitro was validated by western blotting: decidualized CM upregulated profilin 1 in EVT CM and non-decidualized CM upregulated annexin A2 in EVT CM and pro-DPP1 in EVT cell lysate. Here, non-decidualized factors induced protease expression by EVT suggesting that non-decidualized factors may induce a pro-inflammatory cascade. Preeclampsia is a pro

  10. Major Intrinsic Proteins in Biomimetic Membranes

    Helix Nielsen, Claus


    internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 109 molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other....../separation technology, a unique class of membrane transport proteins is especially interesting the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells...... or as sensor devices based on e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix...

  11. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral Latent Membrane Protein 1 and the immunomodulatory protein galectin 9

    Nasopharyngeal carcinomas (NPC) are consistently associated with the Epstein-Barr virus (EBV). Their malignant epithelial cells contain the viral genome and express several antigenic viral proteins. However, the mechanisms of immune escape in NPCs are still poorly understood. EBV-transformed B-cells have been reported to release exosomes carrying the EBV-encoded latent membrane protein 1 (LMP1) which has T-cell inhibitory activity. Although this report suggested that NPC cells could also produce exosomes carrying immunosuppressive proteins, this hypothesis has remained so far untested. Malignant epithelial cells derived from NPC xenografts – LMP1-positive (C15) or negative (C17) – were used to prepare conditioned culture medium. Various microparticles and vesicles released in the culture medium were collected and fractionated by differential centrifugation. Exosomes collected in the last centrifugation step were further purified by immunomagnetic capture on beads carrying antibody directed to HLA class II molecules. Purified exosomes were visualized by electron microscopy and analysed by western blotting. The T-cell inhibitory activities of recombinant LMP1 and galectin 9 were assessed on peripheral blood mononuclear cells activated by CD3/CD28 cross-linking. HLA-class II-positive exosomes purified from C15 and C17 cell supernatants were containing either LMP1 and galectin 9 (C15) or galectin 9 only (C17). Recombinant LMP1 induced a strong inhibition of T-cell proliferation (IC50 = 0.17 nM). In contrast recombinant galectin 9 had a weaker inhibitory effect (IC50 = 46 nM) with no synergy with LMP1. This study provides the proof of concept that NPC cells can release HLA class-II positive exosomes containing galectin 9 and/or LMP1. It confirms that the LMP1 molecule has intrinsic T-cell inhibitory activity. These findings will encourage investigations of tumor exosomes in the blood of NPC patients and assessment of their effects on various types of target cells

  12. Hyperspectral image correlation for monitoring membrane protein dynamics in living cells

    Davis, Ryan W.; Carson, Bryan; Jones, Howland D. T.; Sinclair, Michael B.


    Temporal image correlation provides a powerful fluorescence technique for measuring several biologically relevant parameters of molecules in living cells. These parameters include, but are not limited to local concentrations, diffusion dynamics, and aggregation states of biomolecules. However, the complex cellular environment presents several limitations, precluding high quantitative accuracy and constraining biological implementation. In order to address these issues, high speed spectral imaging was employed to compare the results of image correlation from spectrally unmixed and virtually implemented fluorescence emission filters. Of particular interest in this study is the impact of cellular autofluorescence, which is ubiquitous in fluorescence imaging of cells and tissues. Using traditional instrumentation, corrections for autofluorescence are commonly estimated as a static offset collected from a separate control specimen. While this may be sufficient in highly homogenous regions of interest, the low analyte concentrations requisite to fluctuation-based methods result in the potential for unbounded error resulting from spectral cross-talk between local autofluorescence inhomogeneities and the fluorescence signal of interest. Thus we demonstrate the importance of accurate autofluorescence characterization and discuss potential corrections using a case study focusing on fluorescence confocal spectral imaging of immune cells before and after stimulation with lipopolysaccheride (LPS). In these experiments, binding of LPS to the membrane receptor, YFP-TLR4, is observed to result in initiation of the immune response characterized by altered receptor diffusion dynamics and apparent heterogeneous aggregation states. In addition to characterizing errors resulting from autofluorescence spectral bleed-through, we present data leading to a deeper understanding of the molecular dynamics of the immune response and suggest hypotheses for future work utilizing hyperspectrally

  13. Co-evolution of primordial membranes and membrane proteins

    Mulkidjanian, Armen Y.; Galperin, Michael Y; Koonin, Eugene V


    Studies of the past several decades have provided major insights into the structural organization of biological membranes and mechanisms of many membrane molecular machines. However, the origin(s) of the membrane(s) and membrane proteins remain enigmatic. We discuss different concepts of the origin and early evolution of membranes, with a focus on the evolution of the (im)permeability to charged molecules, such as proteins and nucleic acids, and small ions. Reconstruction of the evolution of ...


    Huang, Hector Han-Li


    The cell membrane is a complex mixture of various lipids, proteins and other biomolecules that are all organized into a fluid 2-dimensional bilayer. A rather unique trait of this organelle is the lateral mobility of the component molecules. Surprisingly, these molecules are not necessarily distributed homogeneously in the membrane. From a physical perspective, these inhomogeneities are interesting because they indicate some level of organization in the membrane. From a biological perspect...

  15. Measuring the Energetics of Membrane Protein Dimerization in Mammalian Membranes

    Chen, Lirong; Novicky, Lawrence; Merzlyakov, Mikhail; Hristov, Tihomir; Hristova, Kalina


    Thus far, methods that give quantitative information about lateral interactions in membranes have been restricted peptides or simplified protein constructs studied in detergents, lipid vesicles or bacterial membranes. None of the available methods have been extended to complex or full length membrane proteins. Here we show how free energies of membrane protein dimerization can be measured in mammalian plasma membrane-derived vesicles. The measurements, performed in single vesicles, utilize th...

  16. 1,25-Dihydroxyvitamin D3 translocates protein kinase C beta to nucleus and enhances plasma membrane association of protein kinase C alpha in renal epithelial cells.

    Simboli-Campbell, M; Gagnon, A; Franks, D J; Welsh, J


    1,25-Dihydroxycholecalciferol (1,25-(OH)2-D3) increases membrane-associated protein kinase C (PKC) activity and immunoreactivity in renal epithelial (Madin Darby bovine kidney, MDBK) cells (Simboli-Campbell, M., Franks, D. J., and Welsh, J. E. (1992) Cell Signalling 4, 99-109). We have now characterized the effects of 1,25-(OH)2-D3 on the subcellular localization of three individual isozymes by immunofluorescence and immunoblotting. Although the total amount of PKC alpha, PKC beta, and PKC zeta are unaffected by 1,25-(OH)2-D3, this steroid hormone induces subcellular redistribution of both PKC alpha and PKC beta. Treatment with 1,25-(OH)2-D3 (100 nM, 24 h) enhances plasma membrane association of PKC alpha and induces translocation of PKC beta to the nuclear membrane. The effects of 1,25-(OH)2-D3 appear to be limited to the calcium-dependent PKC isozymes, since 1,25-(OH)2-D3 has no effect on the calcium independent isozyme, PKC zeta. In contrast to rapid transient PKC translocation seen in response to agents which interact with membrane receptors to induce phospholipid hydrolysis, modulation of PKC alpha and PKC beta is observed after 24 h treatment with 1,25-(OH)2-D3. In MDBK cells, the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) (100 nM, 24 h) down-regulates PKC alpha and, to a lesser extent, PKC zeta, without altering their subcellular distribution. TPA also induces translocation of PKC beta to the nuclear membrane. MDBK cells treated with 1,25-(OH)2-D3, but not TPA, exhibit enhanced phosphorylation of endogenous nuclear proteins. In addition to the distinct effects of 1,25-(OH)2-D3 and TPA on PKC isozyme patterns, 1,25-(OH)2-D3 up-regulates both the vitamin D receptor and calbindin D-28K, whereas TPA down-regulates the expression of both proteins. These data support the involvement of PKC in the mechanism of action of 1,25-(OH)2-D3 and specifically implicate PKC beta in 1,25-(OH)2-D3-mediated nuclear events. PMID:8106362

  17. Cationic amphipathic peptides accumulate sialylated proteins and lipids in the plasma membrane of eukaryotic host cells

    Weghuber, Julian; Aichinger, Michael C.; Brameshuber, Mario; Wieser, Stefan; Ruprecht, Verena; Plochberger, Birgit; Madl, Josef; Horner, Andreas; Reipert, Siegfried; Lohner, Karl; Henics, Tamas; Schuetz, Gerhard J


    Cationic antimicrobial peptides (CAMPs) selectively target bacterial membranes by electrostatic interactions with negatively charged lipids. It turned out that for inhibition of microbial growth a high CAMP membrane concentration is required, which can be realized by the incorporation of hydrophobic groups within the peptide. Increasing hydrophobicity, however, reduces the CAMP selectivity for bacterial over eukaryotic host membranes, thereby causing the risk of detrimental side-effects. In t...

  18. Nanodisc-solubilized membrane protein library reflects the membrane proteome

    Marty, Michael T.; Wilcox, Kyle C.; Klein, William L.; Sligar, Stephen G.


    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membr...

  19. Membrane Protein Structure Determination: Back to the Membrane

    Yao, Yong; Ding, Yi; Tian, Ye; Opella, Stanley J.; Marassi, Francesca M.


    NMR spectroscopy enables the structures of membrane proteins to be determined in the native-like environment of the phospholipid bilayer membrane. This chapter outlines the methods for membrane protein structural studies using solid-state NMR spectroscopy with samples of membrane proteins incorporated in proteoliposomes or planar lipid bilayers. The methods for protein expression and purification, sample preparation, and NMR experiments are described and illustrated with examples from OmpX an...

  20. Major intrinsic proteins in biomimetic membranes.

    Nielsen, Claus Hélix


    Biological membranes define the structural and functional boundaries in living cells and their organelles. The integrity of the cell depends on its ability to separate inside from outside and yet at the same time allow massive transport of matter in and out the cell. Nature has elegantly met this challenge by developing membranes in the form of lipid bilayers in which specialized transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create a membrane based sensor and/or separation device? In the development of a biomimetic sensor/separation technology, a unique class of membrane transport proteins is especially interesting-the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 10(9) molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other permeants such as carbon dioxide, nitric oxide, ammonia, hydrogen peroxide and the metalloids antimonite, arsenite, silicic and boric acid depending on the effective restriction mechanism of the protein. The flux properties of MIPs thus lead to the question ifMIPs can be used in separation devices or as sensor devices based on, e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to both electrolytes and non-electrolytes. The feasibility of a biomimetic MIP device thus depends on the relative transport

  1. Surface heat shock protein 90 serves as a potential receptor for calcium oxalate crystal on apical membrane of renal tubular epithelial cells.

    Fong-Ngern, Kedsarin; Sueksakit, Kanyarat; Thongboonkerd, Visith


    Adhesion of calcium oxalate monohydrate (COM) crystals on renal tubular epithelial cells is a crucial step in kidney stone formation. Finding potential crystal receptors on the apical membrane of the cells may lead to a novel approach to prevent kidney stone disease. Our previous study identified a large number of crystal-binding proteins on the apical membrane of MDCK cells. However, their functional role as potential crystal receptors had not been validated. The present study aimed to address the potential role of heat shock protein 90 (HSP90) as a COM crystal receptor. The apical membrane was isolated from polarized MDCK cells by the peeling method and recovered proteins were incubated with COM crystals. Western blot analysis confirmed the presence of HSP90 in the apical membrane and the crystal-bound fraction. Immunofluorescence staining without permeabilization and laser-scanning confocal microscopy confirmed the surface HSP90 expression on the apical membrane of the intact cells. Crystal adhesion assay showed that blocking surface HSP90 by specific anti-HSP90 antibody and knockdown of HSP90 by small interfering RNA (siRNA) dramatically reduced crystal binding on the apical surface of MDCK cells (by approximately 1/2 and 2/3, respectively). Additionally, crystal internalization assay revealed the presence of HSP90 on the membrane of endocytic vesicle containing the internalized COM crystal. Moreover, pretreatment of MDCK cells with anti-HSP90 antibody significantly reduced crystal internalization (by approximately 1/3). Taken together, our data indicate that HSP90 serves as a potential receptor for COM crystals on the apical membrane of renal tubular epithelial cells and is involved in endocytosis/internalization of the crystals into the cells. PMID:27115409

  2. Lipid-associated membrane proteins of Mycoplasma penetrans induce production of proinflammatory cytokines in human monocytic cells



    The aim of this study is to explore potential pathogenicity of Mycoplasma penetrans, and to investigate whether M. penetrans lipid-associated membrane proteins (LAMPs) could induce human monocytic cell line (THP-1) to produce some proinflammatory cytokines in vitro, including interleukin-1β (IL1β), tumor necrosis factor alpha (TNF-α), and IL-8. THP-1 was stimulated with different concentrations of M. penetrans LAMPs and at different time to analyze the production of human IL-1β, TNF-α and IL-8.The protein levels of human IL-1β, TNF-α and IL-8 were measured by enzyme-linked immunoadsorbent assay (ELISA) and the mRNA levels of these proinflammatory cytokines were detected by reverse transcriptase-PCR (RT-PCR). It was demonstrated in the present study that the production of IL-1β, TNF-αand IL-8 increased in dose- and time-dependent manner after stimulation with M. penetrans LAMPs in THP-1 cells. M.penetrans LAMPs also induced the expression of IL-1β, TNF-α and IL-8 mRNA. The production of IL-1β, TNF-α and IL-8 and the expression of mRNA were down-regulated by pyrrolidine dithiocarbamate (PDTC). This study demonstrated that M. penetrans LAMPs can induce the production of proinflammatory cytokines in human monocytic cells in vitro, thus suggesting that it may be an important etiological factor.

  3. A prokaryotic membrane anchor sequence: carboxyl terminus of bacteriophage f1 gene III protein retains it in the membrane.

    Boeke, J D; Model, P


    Gene III protein of bacteriophage f1 is inserted into the host cell membrane where it is assembled into phage particles. A truncated form of gene III protein, encoded by a recombinant plasmid and lacking the carboxyl terminus, does not remain in the membrane but instead appears to slip through it. Fusion of a hydrophobic "membrane anchor" from another membrane protein, the gene VIII protein, to the truncated gene III protein (by manipulation of the recombinant plasmid) restores membrane ancho...

  4. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    Huisman, I.H.; Prádanos, P.; Hernández, A.


    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  5. Membrane protein structure determination: back to the membrane.

    Yao, Yong; Ding, Yi; Tian, Ye; Opella, Stanley J; Marassi, Francesca M


    NMR spectroscopy enables the structures of membrane proteins to be determined in the native-like environment of the phospholipid bilayer membrane. This chapter outlines the methods for membrane protein structural studies using solid-state NMR spectroscopy with samples of membrane proteins incorporated in proteoliposomes or planar lipid bilayers. The methods for protein expression and purification, sample preparation, and NMR experiments are described and illustrated with examples from OmpX and Ail, two bacterial outer membrane proteins that function in bacterial virulence. PMID:23975776

  6. Organization and dynamics of SNARE proteins in the presynaptic membrane

    Milovanovic, Dragomir; Jahn, Reinhard


    Our view of the lateral organization of lipids and proteins in the plasma membrane has evolved substantially in the last few decades. It is widely accepted that many, if not all, plasma membrane proteins and lipids are organized in specific domains. These domains vary widely in size, composition, and stability, and they represent platforms governing diverse cell functions. The presynaptic plasma membrane is a well-studied example of a membrane which undergoes rearrangements, especially during...

  7. Retinoid- and sodium-butyrate– induced decrease in heat shock protein 70 membrane-positive tumor cells is associated with reduced sensitivity to natural killer cell lysis, growth delay, and altered growth morphology

    Gehrmann, Mathias; Schönberger, Johann; Zilch, Tanja; Rossbacher, Lydia; Thonigs, Gerald; Eilles, Christoph; Multhoff, Gabriele


    Human tumors frequently present heat shock protein 70 (Hsp70) on their cell membranes, whereas corresponding normal tissues fail to do so. Therefore, an Hsp70 membrane-positive phenotype provided a tumor-specific marker. Moreover, membrane-bound Hsp70 provides a target structure for the cytolytic attack mediated by natural killer (NK) cells. Vitamin A derivatives 13-cis retinoic acid (13-RA) and all-trans retinoic acid (ATRA) and sodium-butyrate (SBU) are known for their redifferentiating cap...

  8. Size-dependent protein segregation at membrane interfaces

    Schmid, Eva M.; Bakalar, Matthew H.; Choudhuri, Kaushik; Weichsel, Julian; Ann, Hyoung Sook; Geissler, Phillip L.; Dustin, Michael L.; Fletcher, Daniel A.


    Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane proteins whose organization is critical for intracellular signalling. To isolate the role of membrane protein size in pattern formation, we reconstituted model membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between membrane proteins can drastically alter their organization at membrane interfaces, with as little as a ~5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally driven membrane height fluctuations that transiently limit access to the interface. This sensitive and highly effective means of physically segregating proteins has implications for cell-cell contacts such as T-cell immunological synapses (for example, CD45 exclusion) and epithelial cell junctions (for example, E-cadherin enrichment), as well as for protein sorting at intracellular contact points between membrane-bound organelles.

  9. Identification of extracellularly phosphorylated membrane proteins.

    Burghoff, Sandra; Willberg, Wibke; Schrader, Jürgen


    Ecto-protein kinases phosphorylate extracellular membrane proteins and exhibit similarities to casein kinases and protein kinases A and C. However, the identification of their protein substrates still remains a challenge because a clear separation from intracellular phosphoproteins is difficult. Here, we describe a straightforward method for the identification of extracellularly phosphorylated membrane proteins in human umbilical vein endothelial cells (HUVECs) and K562 cells which used the protease bromelain to selectively remove ectoproteins from intact cells and combined this with the subsequent analysis using IMAC and LC-MS/MS. A "false-positive" strategy in which cells without protease treatment served as controls was applied. Using this approach we identified novel phosphorylation sites on five ectophosphoproteins (NOTCH1, otopetrin 1, regulator of G-protein signalling 13 (RGS13), protein tyrosine phosphatase receptor type D isoform 3 (PTPRD), usherin isoform B (USH2A)). Use of bromelain appears to be a reliable technique for the further identification of phosphorylated surface-exposed peptides when extracellular adenosine-5'-triphosphate is elevated during purinergic signalling. PMID:26152529

  10. Immune cell membrane fatty acids and inflammatory marker, C-reactive protein, in patients with multiple sclerosis

    Smuts, Cornelius; Hon, G; Hassan, M; van Rensburg, SJ; Abel, S; Marais de, W; Van Jaarsveld, P; Erasmus, R; Matsha, T.


    Measurement of fatty acids in biological fluids and cell membranes including leucocytes from multiple sclerosis patients is inconsistent. The objective of the present study was to investigate the fatty acid composition within the different membrane phospholipid fractions in peripheral blood mononuclear cells in multiple sclerosis patients, and correlate with severity of neurological outcome as measured by the Kurtzke Expanded Disability Status Scale and Functional System Scores. The fatty aci...

  11. Multiscale Simulation of Protein Mediated Membrane Remodeling

    Ayton, Gary S.; Voth, Gregory A.


    Proteins interacting with membranes can result in substantial membrane deformations and curvatures. This effect is known in its broadest terms as membrane remodeling. This review article will survey current multiscale simulation methodologies that have been employed to examine protein-mediated membrane remodeling.

  12. Membrane insertion of gap junction connexins: polytopic channel forming membrane proteins


    Connexins, the proteins that form gap junction channels, are polytopic plasma membrane (PM) proteins that traverse the plasma membrane bilayer four times. The insertion of five different connexins into the membrane of the ER was studied by synthesizing connexins in translation- competent cell lysates supplemented with pancreatic ER-derived microsomes, and by expressing connexins in vivo in several eucaryotic cell types. In addition, the subcellular distribution of the connexins was determined...

  13. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral Latent Membrane Protein 1 and the immunomodulatory protein galectin 9

    Hirashima Mitsuomi


    Full Text Available Abstract Background Nasopharyngeal carcinomas (NPC are consistently associated with the Epstein-Barr virus (EBV. Their malignant epithelial cells contain the viral genome and express several antigenic viral proteins. However, the mechanisms of immune escape in NPCs are still poorly understood. EBV-transformed B-cells have been reported to release exosomes carrying the EBV-encoded latent membrane protein 1 (LMP1 which has T-cell inhibitory activity. Although this report suggested that NPC cells could also produce exosomes carrying immunosuppressive proteins, this hypothesis has remained so far untested. Methods Malignant epithelial cells derived from NPC xenografts – LMP1-positive (C15 or negative (C17 – were used to prepare conditioned culture medium. Various microparticles and vesicles released in the culture medium were collected and fractionated by differential centrifugation. Exosomes collected in the last centrifugation step were further purified by immunomagnetic capture on beads carrying antibody directed to HLA class II molecules. Purified exosomes were visualized by electron microscopy and analysed by western blotting. The T-cell inhibitory activities of recombinant LMP1 and galectin 9 were assessed on peripheral blood mononuclear cells activated by CD3/CD28 cross-linking. Results HLA-class II-positive exosomes purified from C15 and C17 cell supernatants were containing either LMP1 and galectin 9 (C15 or galectin 9 only (C17. Recombinant LMP1 induced a strong inhibition of T-cell proliferation (IC50 = 0.17 nM. In contrast recombinant galectin 9 had a weaker inhibitory effect (IC50 = 46 nM with no synergy with LMP1. Conclusion This study provides the proof of concept that NPC cells can release HLA class-II positive exosomes containing galectin 9 and/or LMP1. It confirms that the LMP1 molecule has intrinsic T-cell inhibitory activity. These findings will encourage investigations of tumor exosomes in the blood of NPC patients and

  14. Novel Tripod Amphiphiles for Membrane Protein Analysis

    Chae, Pil Seok; Kruse, Andrew C; Gotfryd, Kamil; Rana, Rohini R; Cho, Kyung Ho; Rasmussen, Søren G F; Bae, Hyoung Eun; Chandra, Richa; Gether, Ulrik; Guan, Lan; Kobilka, Brian K; Loland, Claus J; Byrne, Bernadette; Gellman, Samuel H


    Integral membrane proteins play central roles in controlling the flow of information and molecules across membranes. Our understanding of membrane protein structures and functions, however, is seriously limited, mainly due to difficulties in handling and analysing these proteins in aqueous solution....... The use of a detergent or other amphipathic agents is required to overcome the intrinsic incompatibility between the large lipophilic surfaces displayed by the membrane proteins in their native forms and the polar solvent molecules. Here, we introduce new tripod amphiphiles displaying favourable...... behaviours toward several membrane protein systems, leading to an enhanced protein solubilisation and stabilisation compared to both conventional detergents and previously described tripod amphiphiles....

  15. Analysis of Protein-Membrane Interactions

    Kemmer, Gerdi Christine

    are implemented by soluble proteins reversibly binding to, as well as by integral membrane proteins embedded in, cellular membranes. The activity and interaction of these proteins is furthermore modulated by the lipids of the membrane. Here, liposomes were used as model membrane systems to investigate...... interactions between proteins and lipids. First, interactions of soluble proteins with membranes and specific lipids were studied, using two proteins: Annexin V and Tma1. The protein was first subjected to a lipid/protein overlay assay to identify candidate interaction partners in a fast and efficient way....... Discovered interactions were then probed on the level of the membrane using liposome-based assays. In the second part, a transmembrane protein was investigated. Assays to probe activity of the plasma membrane ATPase (Arabidopsis thaliana H+ -ATPase isoform 2 (AHA2)) in single liposomes using both giant...

  16. Membrane-Bound Dynamic Structure of an Arginine-Rich Cell-Penetrating Peptide, the Protein Transduction Domain of HIV TAT, from Solid-State NMR

    Su, Yongchao; Alan J Waring; Ruchala, Piotr; Hong, Mei


    The protein transduction domain of HIV-1 TAT, TAT(48-60), is an efficient cell-penetrating peptide (CPP) that diffuses across the lipid membranes of cells despite eight cationic Arg and Lys residues. To understand its mechanism of membrane translocation against the free energy barrier, we have conducted solid-state NMR experiments to determine the site-specific conformation, dynamics, and lipid interaction of the TAT peptide in anionic lipid bilayers. We found that TAT(48-60) is a highly dyna...

  17. Oligomerization but Not Membrane Bending Underlies the Function of Certain F-BAR Proteins in Cell Motility and Cytokinesis.

    McDonald, Nathan A; Vander Kooi, Craig W; Ohi, Melanie D; Gould, Kathleen L


    F-BAR proteins function in diverse cellular processes by linking membranes to the actin cytoskeleton. Through oligomerization, multiple F-BAR domains can bend membranes into tubules, though the physiological importance of F-BAR-to-F-BAR assemblies is not yet known. Here, we investigate the F-BAR domain of the essential cytokinetic scaffold, Schizosaccharomyces pombe Cdc15, during cytokinesis. Challenging a widely held view that membrane deformation is a fundamental property of F-BARs, we report that the Cdc15 F-BAR binds, but does not deform, membranes in vivo or in vitro, and six human F-BAR domains-including those from Fer and RhoGAP4-share this property. Nevertheless, tip-to-tip interactions between F-BAR dimers are critical for Cdc15 oligomerization and high-avidity membrane binding, stabilization of contractile ring components at the medial cortex, and the fidelity of cytokinesis. F-BAR oligomerization is also critical for Fer and RhoGAP4 physiological function, demonstrating its broad importance to F-BAR proteins that function without membrane bending. PMID:26702831

  18. Cell-penetrating peptides mediated protein cross-membrane delivery and its use in bacterial vector vaccine.

    Ma, Jimei; Xu, Jinmei; Guan, Lingyu; Hu, Tianjian; Liu, Qin; Xiao, Jingfan; Zhang, Yuanxing


    It is an attractive strategy to develop a recombinant bacterial vector vaccine by expressing exogenous protective antigen to induce the immune response, and the main concern is how to enhance the cellular internalization of antigen produced by bacterial vector. Cell-penetrating peptides (CPPs) are short cationic/amphipathic peptides which facilitate cellular uptake of various molecular cargoes and therefore have great potentials in vector vaccine design. In this work, eleven different CPPs were fused to the C-terminus of EGFP respectively, and the resultant EGFP-CPP fusion proteins were expressed and purified to assay their cross-membrane transport in macrophage J774 A.1 cells. Among the tested CPPs, TAT showed an excellent capability to deliver the cargo protein EGFP into cytoplasm. In order to establish an efficient antigen delivery system in Escherichia coli, the EGFP-TAT synthesis circuit was combined with an in vivo inducible lysis circuit PviuA-E in E. coli to form an integrated antigen delivery system, the resultant E. coli was proved to be able to lyse upon the induction of a mimic in vivo signal and thus release intracellular EGFP-TAT intensively, which were assumed to undergo a more efficient intracellular delivery by CPP to evoke protective immune responses. Based on the established antigen delivery system, the protective antigen gene flgD from an invasive intracellular fish pathogen Edwardsiella tarda EIB202, was applied to establish an E. coli recombinant vector vaccine. This E. coli vector vaccine presented superior immune protection (RPS = 63%) under the challenge with E. tarda EIB202, suggesting that the novel antigen delivery system had great potential in bacterial vector vaccine applications. PMID:24746937

  19. Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multi-scale dynamics of glycine receptors in the neuronal membrane

    Masson, Jean-Baptiste; Salvatico, Charlotte; Renner, Marianne; Specht, Christian G; Triller, Antoine; Dahan, Maxime


    Protein mobility is conventionally analyzed in terms of an effective diffusion. Yet, this description often fails to properly distinguish and evaluate the physical parameters (such as the membrane friction) and the biochemical interactions governing the motion. Here, we present a method combining high-density single-molecule imaging and statistical inference to separately map the diffusion and energy landscapes of membrane proteins across the cell surface at ~100 nm resolution (with acquisition of a few minutes). When applying these analytical tools to glycine neurotransmitter receptors (GlyRs) at inhibitory synapses, we find that gephyrin scaffolds act as shallow energy traps (~3 kBT) for GlyRs, with a depth modulated by the biochemical properties of the receptor-gephyrin interaction loop. In turn, the inferred maps can be used to simulate the dynamics of proteins in the membrane, from the level of individual receptors to that of the population, and thereby, to model the stochastic fluctuations of physiologi...

  20. Resistance of cell membranes to different detergents

    Schuck, Sebastian; Honsho, Masanori; Ekroos, Kim; Shevchenko, Andrej; Simons, Kai


    Partial resistance of cell membranes to solubilization with mild detergents and the analysis of isolated detergent-resistant membranes (DRMs) have been used operationally to define membrane domains. Given the multitude of detergents used for this purpose, we sought to investigate whether extraction with different detergents might reflect the same underlying principle of domain formation. We therefore compared the protein and lipid content of DRMs prepared with a variety of detergents from two...

  1. The Origin and Early Evolution of Membrane Proteins

    Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.


    Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins.

  2. Heat shock protein 70 inhibits shrinkage-induced programmed cell death via mechanisms independent of effects on cell volume-regulatory membrane transport proteins

    Nylandsted, J; Jäättelä, M; Hoffmann, E K;


    Cell shrinkage is a ubiquitous feature of programmed cell death (PCD), but whether it is an obligatory signalling event in PCD is unclear. Heat shock protein 70 (Hsp70) potently counteracts PCD in many cells, by mechanisms that are incompletely understood. In the present investigation, we found......) and Na(+),K(+),2Cl(-)-cotransporter (NKCC1) to RVI. Hypertonic stress induced caspase-3 activity in WEHI cells and iMEFs, an effect potentiated by Hsp70 in WEHI cells but inhibited by Hsp70 in iMEFs. Osmotic shrinkage-induced PCD was associated with Hsp70-inhibitable cysteine cathepsin release in i......MEFs and attenuated by caspase and cathepsin inhibitors in WEHI cells. Treatment with TNF-alpha or the NHE1 inhibitor 5'-(N-ethyl-N-isopropyl)amiloride (EIPA) reduced the viability of WEHI cells further under isotonic and mildly, but not severely, hypertonic conditions. Thus, it is concluded that shrinkage...

  3. Proton exchange membrane fuel cells

    Qi, Zhigang


    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  4. A framework for protein and membrane interactions

    Bacci, Giorgio; Miculan, Marino; 10.4204/EPTCS.11.2


    We introduce the BioBeta Framework, a meta-model for both protein-level and membrane-level interactions of living cells. This formalism aims to provide a formal setting where to encode, compare and merge models at different abstraction levels; in particular, higher-level (e.g. membrane) activities can be given a formal biological justification in terms of low-level (i.e., protein) interactions. A BioBeta specification provides a protein signature together a set of protein reactions, in the spirit of the kappa-calculus. Moreover, the specification describes when a protein configuration triggers one of the only two membrane interaction allowed, that is "pinch" and "fuse". In this paper we define the syntax and semantics of BioBeta, analyse its properties, give it an interpretation as biobigraphical reactive systems, and discuss its expressivity by comparing with kappa-calculus and modelling significant examples. Notably, BioBeta has been designed after a bigraphical metamodel for the same purposes. Hence, each ...

  5. Bilayer-thickness-mediated interactions between integral membrane proteins

    Kahraman, Osman; Koch, Peter D.; Klug, William S.; Haselwandter, Christoph A.


    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane

  6. Purification and characterization of a membrane-associated 3,3',5-triiodo-L-thyronine binding protein from a human carcinoma cell line

    A membrane-associated binding protein for 3,3',5-triiodo-L-thyronine (T3) was purified to apparent homogeneity from A431 human epidermoid carcinoma cells. A431 cells were specifically labeled with the N-bromoacetyl derivative of T3 labeled with 125I at the 3' position (BrAc[125I]T3) and were extracted with 3-[3-(cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), a zwitterionic detergent. The solubilized BrAc[125I]T3-labeled protein was successively purified by chromatography on Sephadex G-200 and QAE-Sephadex followed by NaDodSO4/PAGE. Approximately 0.2 mg of purified protein was obtained from 2.5 x 109 cells, which represents a 3000-fold purification. The membrane-associated T3 binding protein is an acidic protein with a pI of 5.1 and an apparent molecular mass of 55,000 daltons determined by NaDodSO4/PAGE. Polyclonal antibodies against the 55-kDa protein were prepared and used in indirect immunofluorescence to show that the 55-kDa protein was mainly found in the nuclear envelope and endoplasmic reticulum

  7. Fate of the major outer membrane protein P.IA in early and late events of gonococcal infection of epithelial cells.

    Weel, J F; van Putten, J P


    We investigated the fate of the major outer membrane protein of Neisseria gonorrhoeae, P.IA, during gonococcal infection of Chang conjunctiva epithelial cells by using immunoelectron microscopy. Probing of P.IA epitopes with mono- and polyclonal antibodies revealed variable, fixation-dependent P.IA epitope exposure in the gonococci used as an inoculum in the infection experiments. Detection of invariable exposed P.IA epitopes in cryosections of infected epithelial cells with a polyclonal antiserum revealed unaltered P.IA exposure on the bacterial membranes during early attachment of the bacteria to the eukaryotic cells. Upon entry of the bacteria into the host cells, however, labelling was extended to membraneous structures that intercalated between the bacteria and the host cell surface, and, occasionally, to the host cell plasma membrane. The latter observation is consistent with the suggested active role of P.I. in the uptake process (as shown in 1985 by E.C. Gotschlich). Once inside the epithelial cells, both morphologically intact and disintegrating bacteria could be distinguished. The disintegration of the bacteria was accompanied by a loss of P.IA immunoreactivity. PMID:1725221

  8. Cell Membrane Softening in Cancer Cells

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  9. Role of amphipathic helix of a herpesviral protein in membrane deformation and T cell receptor downregulation.

    Chan-Ki Min; Sun-Young Bang; Bon-A Cho; Yun-Hui Choi; Jae-Seong Yang; Sun-Hwa Lee; Seung-Yong Seong; Ki Woo Kim; Sanguk Kim; Jae Ung Jung; Myung-Sik Choi; Ik-Sang Kim; Nam-Hyuk Cho


    Author Summary Herpesvirus persists in its host by entering a latent state, periodically reactivating to produce infectious viral particles. Some of the herpesviruses have also been known to be related to cancers. Herpesvirus saimiri (HVS), an oncogenic monkey herpesvirus, persists in the T lymphocytes of its natural host, the squirrel monkey, without any apparent disease symptoms, but infection of other species of New World and Old World primates results in fulminant T cell lymphomas. Two vi...

  10. Membrane tension and peripheral protein density mediate membrane shape transitions

    Shi, Zheng; Baumgart, Tobias


    Endocytosis is a ubiquitous eukaryotic membrane budding, vesiculation and internalization process fulfilling numerous roles including compensation of membrane area increase after bursts of exocytosis. The mechanism of the coupling between these two processes to enable homeostasis is not well understood. Recently, an ultrafast endocytosis (UFE) pathway was revealed with a speed significantly exceeding classical clathrin-mediated endocytosis (CME). Membrane tension reduction is a potential mechanism by which endocytosis can be rapidly activated at remote sites. Here, we provide experimental evidence for a mechanism whereby membrane tension reduction initiates membrane budding and tubulation mediated by endocytic proteins, such as endophilin A1. We find that shape instabilities occur at well-defined membrane tensions and surface densities of endophilin. From our data, we obtain a membrane shape stability diagram that shows remarkable consistency with a quantitative model. This model applies to all laterally diffusive curvature-coupling proteins and therefore a wide range of endocytic proteins.

  11. A Flip Turn for Membrane Protein Insertion

    Shao, Sichen; Hegde, Ramanujan S.


    The transmembrane domains in a membrane protein must be recognized and correctly oriented before their insertion into the lipid bilayer. Devaraneni et al. (2011) generate snapshots at different stages of membrane protein biogenesis, revealing a dynamic set of steps that imply an unexpectedly flexible membrane insertion machinery.

  12. Proteins and Peptides in Biomimetic Polymeric Membranes

    Perez, Alfredo Gonzalez


    other kind of nonbiological amphiphilic molecules. An interesting possibility could be the use of self-assembled proteins in a lipid-free membrane mimicking the capside of some viruses. The membrane proteins that have been more actively used in combination with block copolymer membranes are gramicidin A...

  13. Specialized membrane biogenesis in mammary epithelial cells

    The apical membrane of the mammary gland epithelial cell is highly differentiated and adapted to participate in the process of fat secretion. Certain of the apical membrane differentiation antigens are frequently expressed on membrane carcinoma cells, and knowledge of the normal mechanisms by which these antigens are regulated may have implications for a better understanding of tumor antigen expression. Because the apical membrane of the cell is lost during secretion, active membrane biosynthesis must accompany fat secretion, and the cell represents a good model for studying membrane biogenesis in polarized epithelial cells. Experiments have been carried out using primary cultures of cells established from mammary glands of late pregnant mice and also a mouse cell line, COMMA-1-D, that differentiates in an appropriate milieu. When fat globule membranes are purified from mouse milk and the protein composition analyzed by SDS-polyacrylamide gel electrophoresis, four major proteins are identifiable with molecular weights of 55, 67, 90, and 150 kDa. The 67-kDa component was identified as butyrophilin and the 150-kDa one as xanthine oxidase. In addition, a high molecular weight carbohydrate rich glycoprotein, PAS-O, is also present. 3 refs., 3 figs

  14. Nonlinear electromagnetic responses of active membrane protein complexes in live cells and organelles

    Nawarathna, Dharmakirthi

    The response of biological cells to an applied oscillating electric field contains both linear and nonlinear components (eg. induced harmonics). Such noninvasive measurements can be used to study active processes taking place inside the cells. The measurement of induced harmonics is the tool used for the study described here. A highly sensitive superconducting quantum interference device (SQUID) is used to detect the response at low frequencies, which greatly reduces electrode polarization effects. At high frequencies, a four- probe method is used. At low frequencies, harmonic generation by budding yeast cells in response to a sinusoidal electric field is reported, which is seen to be minimal when the field amplitude is less than a threshold value. Surprisingly, sodium metavanadate, an inhibitor of P-type ATPases and glucose, a substrate of P-type ATPase responsible for nonlinear response in yeast, reduces the threshold field amplitude, increasing harmonic generation at low amplitudes while reducing it at large amplitudes. We have thus proposed a model that explicitly introduces a threshold field, similar to those observed in density waves, where fields above threshold drive charge transport through an energy landscape with multiple wells, and in Coulomb blockade tunnel junctions, recently exploited to define the current standard. At high frequencies, the induced harmonics exhibit pronounced features that depend on the specific organism. Budding yeast (S. cerevisiae ) cells produce numerous harmonics. When the second or third harmonic amplitude is plotted vs. applied frequency, we observe two peaks, around 3 kHz and 12 kHz, which are suppressed by the respiratory inhibitor potassium cyanide. We then measured the response to oscillatory electric fields of intact bovine heart mitochondria, a reproducible second harmonic (at ˜3-4 kHz applied frequency) was detected. Further, with coupled mouse mitochondria, an ADP sensitive peak (˜ 12-15 kHz applied frequency) was

  15. Effect of membrane curvature on lateral distribution of membrane proteins

    Bendix, Pól Martin


    membrane tubes out of Giant Unilamellar lipid Vesicles (GUVs). The tube diameter can be tuned by aspirating the GUV into a micropipette for controlling the membrane tension. By using fluorescently labled proteins we have shown that sorting of proteins like e.g. FBAR onto tubes is significantly increased...

  16. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion

    Dong, Jinlan; Bruening, Merlin L.


    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO2 nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  17. Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood-brain barrier

    Thomsen, Maj Schneider; Birkelund, Svend; Burkhart, Annette;


    The brain vascular basement membrane is important for both blood-brain barrier (BBB) development, stability, and barrier integrity and the contribution hereto from brain capillary endothelial cells (BCECs), pericytes, and astrocytes of the BBB is probably significant. The aim of the present study......-culture, in co-culture with pericytes or mixed glial cells, or as a triple-culture with both pericytes and mixed glial cells. The integrity of the BBB models was validated by measures of transendothelial electrical resistance (TEER) and passive permeability to mannitol. The expression of basement membrane...... proteins was analysed using RT-qPCR, mass spectrometry, and immunocytochemistry. Co-culturing mBCECs with pericytes, mixed glial cells, or both significantly increased the TEER compared to the mono-culture, and a low passive permeability was correlated with high TEER. The mBCECs expressed all major...

  18. Kinetics and Thermodynamics of Membrane Protein Folding

    Ernesto A. Roman


    Full Text Available Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane β-barrel proteins but challenging for α-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.

  19. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface

    Behrendt, N; Rønne, E; Danø, K


    explain additional observations for which the mechanisms involved have not yet been clarified experimentally. uPAR is a highly glycosylated, 3-domain protein, anchored in the plasma membrane by a glycolipid moiety. The domain organization is important for efficient ligand-binding, and the NH2-terminal...... interaction between uPAR and uPA. The growing knowledge on the structure and function of uPAR which is a result of protein chemical analyses, functional studies and analyses of other, interacting components, should help to obtain a better understanding of the regulation of extracellular proteolysis. In...

  20. Anti-EMP2 diabody blocks Epithelial Membrane Protein 2 (EMP2) and FAK mediated collagen gel contraction in ARPE-19 cells

    Morales, Shawn A.; Telander, David G.; Mareninov, Sergey; Nagy, Agnes; Wadehra, Madhuri; Braun, Jonathan; Gordon, Lynn K.


    Epithelial membrane protein 2 (EMP2) regulates collagen gel contraction by the retinal pigment epithelium cell line ARPE-19 by modulating FAK activation. Collagen gel contraction is one in vitro model for an aberrant wound healing response, proliferative vitreoretinopathy (PVR), which occurs as a complication of severe ocular trauma. The purpose of this study is to investigate whether EMP2 specific recombinant diabody decreases activation of FAK and collagen gel contraction in ARPE-19. Anti-E...

  1. Contrasting in vitro vs. in vivo effects of a cell membrane-specific CC-chemokine binding protein on macrophage chemotaxis

    McNeill, E; Iqbal, AJ; Patel, J; White, GE; Regan-Komito, D; Greaves, DR; Channon, KM


    Abstract Chemokines (CK) provide directional cues that mediate the recruitment of leukocytes to sites of inflammation. Broad-spectrum blockade of the CC-CK family, using the vaccinia virus 35K protein, has been shown to cause a potent reduction of systemic inflammation in models of atherosclerosis, vein graft disease and arthritis. We have used a cell membrane-targeted form of 35K, Mem35K, to probe whether cell-associated blockade of chemokine response is sufficient to reduce cell recruitment...

  2. Co-operation between different targeting pathways during integration of a membrane protein

    Keller, Rebecca; de Keyzer, Jeanine; Driessen, Arnold J. M.; Palmer, Tracy


    Membrane protein assembly is a fundamental process in all cells. The membrane-bound Rieske iron-sulfur protein is an essential component of the cytochrome bc(1) and cytochrome b(6)f complexes, and it is exported across the energy-coupling membranes of bacteria and plants in a folded conformation by the twin arginine protein transport pathway (Tat) transport pathway. Although the Rieske protein in most organisms is a monotopic membrane protein, in actinobacteria, it is a polytopic protein with...

  3. Sorting pathways of mitochondrial inner membrane proteins

    Mahlke, Kerstin; Pfanner, Nikolaus; Martin, Jörg; Horwich, Arthur; Hartl, Franz-Ulrich; Neupert, Walter


    Two distinct pathways of sorting and assembly of nuclear-encoded mitochondrial inner membrane proteins are described. In the first pathway, precursor proteins that carry amino-terminal targeting signals are initially translocated via contact sites between both mitochondrial membranes into the mitochondrial matrix. They become proteolytically processed, interact with the 60-kDa heat-shock protein hsp60 in the matrix and are retranslocated to the inner membrane. The sorting of subunit 9 of Neur...

  4. Revolutionizing membrane protein overexpression in bacteria

    Schlegel, Susan; Klepsch, Mirjam; Gialama, Dimitra; Wickström, David; Slotboom, Dirk Jan; De Gier, Jan‐Willem


    Summary The bacterium Escherichia coli is the most widely used expression host for overexpression trials of membrane proteins. Usually, different strains, culture conditions and expression regimes are screened for to identify the optimal overexpression strategy. However, yields are often not satisfactory, especially for eukaryotic membrane proteins. This has initiated a revolution of membrane protein overexpression in bacteria. Recent studies have shown that it is feasible to (i) engineer or ...

  5. Roles of membrane trafficking in plant cell wall dynamics

    Ebine, Kazuo; Ueda, Takashi


    The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transpor...

  6. Fuel cell with ionization membrane

    Hartley, Frank T. (Inventor)


    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  7. Evaluation of Epstein-Barr Virus Latent Membrane Protein 2 Specific T-Cell Receptors Driven by T-Cell Specific Promoters Using Lentiviral Vector

    Dongchang Yang


    Full Text Available Transduction of latent membrane protein 2 (LMP2-specific T-cell receptors into activated T lymphocytes may provide a universal, MHC-restricted mean to treat EBV-associated tumors in adoptive immunotherapy. We compared TCR-specific promoters of distinct origin in lentiviral vectors, that is, Vβ6.7, delta, luria, and Vβ5.1 to evaluate TCR gene expression in human primary peripheral blood monocytes and T cell line HSB2. Vectors containing Vβ 6.7 promoter were found to be optimal for expression in PBMCs, and they maintained expression of the transduced TCRs for up to 7 weeks. These cells had the potential to recognize subdominant EBV latency antigens as measured by cytotoxicity and IFN-γ secretion. The nude mice also exhibited significant resistance to the HLA-A2 and LMP2-positive CNE tumor cell challenge after being infused with lentiviral transduced CTLs. In conclusion, LMP2-specific CTLs by lentiviral transduction have the potential use for treatment of EBV-related tumors.

  8. Ligand selectivity of 105 kDa and 130 kDa lipoprotein-binding proteins in vascular-smooth-muscle-cell membranes is unique.

    Bochkov, V N; Tkachuk, V A; Philippova, M P; Stambolsky, D V; Bühler, F R; Resink, T J


    Using ligand blotting techniques, with low-density lipoprotein (LDL) as ligand, we have previously described the existence of atypical lipoprotein-binding proteins (105 kDa and 130 kDa) in membranes from human aortic medical tissue. The present study demonstrates that these proteins are also present in membranes from cultured human (aortic and mesenteric) and rat (aortic) vascular smooth-muscle cells (VSMCs). To assess the relationship of 105 and 130 kDa lipoprotein-binding proteins to known lipoprotein receptors, ligand binding specificity was studied. We tested effects of substances known to antagonize ligand binding to either the LDL [apolipoprotein B,E (apo B,E)] receptor (dextran sulphate, heparin, pentosan polysulphate, protamine, spermine, histone), the scavenger receptor (dextran sulphate, fucoidin), the very-low-density-lipoprotein (VLDL) receptor [receptor-associated protein (RAP)], or LDL receptor-related protein (RAP, alpha 2-macroglobulin, lipoprotein lipase, exotoxin-A). None of these substances, with the exception of dextran sulphate, influenced binding of LDL to either 105 or 130 kDa proteins. Sodium oleate or oleic acid, known stimuli for the lipoprotein binding activity of the lipolysis-stimulated receptor, were also without effect. LDL binding to 105 and 130 kDa proteins was inhibited by anti-LDL (apo B) antibodies. LDL and VLDL bound to 105 and 130 kDa proteins with similar affinities (approximately 50 micrograms/ml). The unique ligand selectivity of 105 and 130 kDa proteins supports the existence of a novel lipoprotein-binding protein that is distinct from all other currently identified LDL receptor family members. The similar ligand selectivity of 105 and 130 kDa proteins suggests that they may represent variant forms of an atypical lipoprotein-binding protein. PMID:8694779

  9. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors

    Jeppesen, Dennis Kjølhede; Nawrocki, Arkadiusz; Jensen, Steffen Grann;


    Cancer cells secrete soluble factors and various extracellular vesicles, including exosomes, into their tissue microenvironment. The secretion of exosomes is speculated to facilitate local invasion and metastatic spread. Here, we used an in vivo metastasis model of human bladder carcinoma cell line...... T24 without metastatic capacity and its two isogenic derivate cell lines SLT4 and FL3, which form metastases in the lungs and liver of mice, respectively. Cultivation in CLAD1000 bioreactors rather than conventional culture flasks resulted in a 13-16-fold increased exosome yield and facilitated...... quantitative proteomics of fractionated exosomes. Exosomes from T24, SLT4, and FL3 cells were partitioned into membrane and luminal fractions and changes in protein abundance related to the gain of metastatic capacity were identified by quantitative iTRAQ- proteomics. We identified several proteins linked...

  10. Solitons in cell membranes

    Das, Pradip; Schwarz, W. H.


    Using a two-dimensional smectic liquid crystal model, we have shown the plausibility of electrical solitary wave propagation along a bimolecular leaflet such as the cell membrane of a nerve axon which consists of chiral, lipid building blocks. Our model is a head-to-tail correlated ferroelectric, chiral Sm-C* liquid crystal, which is a unique class of substances that combines the electric polarization and anisotropy of ferroelectric crystals with the hydrodynamic properties of liquids. Polar Sm-A models can also be used with the same results. In addition to the usual transverse ferroelectricity, characteristic of the Sm-C* liquid crystal, the head-to-tail correlation ensures a longitudinal ferroelectricity component. The electric polarization due to the latter can couple to the transmembrane electric field resulting from the ionic imbalance between the two sides of the membrane-a mechanism detailed in the so-called Hodgkin-Huxley set of partial differential equations for the propagation of the action potential. We obtain a Landau-de Gennes-like free energy, which is the sum of elastic, fluctuation, and polarization terms, together with a ferroelectric term showing a direct coupling between the electric field and the mechanical deformation variable. Minimizing and equating to a viscous damping term leads to an equation similar to one equation of the Fitzhugh-Nagumo coupled set of partial differential equations, which is a simplified version of the Hodgkin-Huxley equations. The other equation of the set resembles an equation derived from the Nernst-Planck equation, which describes transmembrane ion transport and hence provides a mechanism for transmembrane potential variation. A more complete calculation of the velocity of the asymptotic wave form shows a lower wave speed than the estimate of Nagumo et al. The piezoelectric properties of the phase compete with its curvature elasticity to produce the soliton lattice of the cell membrane, which consists of juxtaposed

  11. On the mechanism of transport of Inner Nuclear Membrane Proteins

    Laba, Justyna Katarzyna


    The nucleus is usually the biggest, round-shaped organelle in the cell, which contains numerous proteins and nucleic acids and protects the DNA. Nuclear components are contained within the boarders of Nuclear Envelope (NE), a double membrane system, formed by the fusion of Outer Nuclear Membrane (OM

  12. Cell invasion through basement membrane

    Morrissey, Meghan A; Hagedorn, Elliott J.; Sherwood, David R.


    Cell invasion through basement membrane is an essential part of normal development and physiology, and occurs during the pathological progression of human inflammatory diseases and cancer. F-actin-rich membrane protrusions, called invadopodia, have been hypothesized to be the “drill bits” of invasive cells, mediating invasion through the dense, highly cross-linked basement membrane matrix. Though studied in vitro for over 30 y, invadopodia function in vivo has remained elusive. We have recent...

  13. Model cell membranes

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite


    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  14. Effects of protein crowding on membrane systems.

    Guigas, Gernot; Weiss, Matthias


    Cellular membranes are typically decorated with a plethora of embedded and adsorbed macromolecules, e.g. proteins, that participate in numerous vital processes. With typical surface densities of 30,000 proteins per μm(2) cellular membranes are indeed crowded places that leave only few nanometers of private space for individual proteins. Here, we review recent advances in our understanding of protein crowding in membrane systems. We first give a brief overview on state-of-the-art approaches in experiment and simulation that are frequently used to study crowded membranes. After that, we review how crowding can affect diffusive transport of proteins and lipids in membrane systems. Next, we discuss lipid and protein sorting in crowded membrane systems, including effects like protein cluster formation, phase segregation, and lipid droplet formation. Subsequently, we highlight recent progress in uncovering crowding-induced conformational changes of membranes, e.g. membrane budding and vesicle formation. Finally, we give a short outlook on potential future developments in the field of crowded membrane systems. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26724385

  15. Immunogenicity of a chimeric peptide corresponding to T helper and B cell epitopes of the Chlamydia trachomatis major outer membrane protein


    The immunogenicity of a chimeric T/B cell peptide corresponding to antigenically characterized epitopes of the Chlamydia trachomatis major outer membrane protein (MOMP) was studied in mice to further define its potential use in the development of a subunit vaccine in preventing blinding trachoma in humans. The chimeric peptide, designated A8-VDI, corresponds to a conserved MOMP T helper (Th) cell epitope(s) (A8, residues 106-130) and serovar A VDI (residues 66-80), which contains the serovar-...

  16. APPL proteins FRET at the BAR: direct observation of APPL1 and APPL2 BAR domain-mediated interactions on cell membranes using FRET microscopy.

    Heidi J Chial

    Full Text Available BACKGROUND: Human APPL1 and APPL2 are homologous RAB5 effectors whose binding partners include a diverse set of transmembrane receptors, signaling proteins, and phosphoinositides. APPL proteins associate dynamically with endosomal membranes and are proposed to function in endosome-mediated signaling pathways linking the cell surface to the cell nucleus. APPL proteins contain an N-terminal Bin/Amphiphysin/Rvs (BAR domain, a central pleckstrin homology (PH domain, and a C-terminal phosphotyrosine binding (PTB domain. Previous structural and biochemical studies have shown that the APPL BAR domains mediate homotypic and heterotypic APPL-APPL interactions and that the APPL1 BAR domain forms crescent-shaped dimers. Although previous studies have shown that APPL minimal BAR domains associate with curved cell membranes, direct interaction between APPL BAR domains on cell membranes in vivo has not been reported. METHODOLOGY: Herein, we used a laser-scanning confocal microscope equipped with a spectral detector to carry out fluorescence resonance energy transfer (FRET experiments with cyan fluorescent protein/yellow fluorescent protein (CFP/YFP FRET donor/acceptor pairs to examine interactions between APPL minimal BAR domains at the subcellular level. This comprehensive approach enabled us to evaluate FRET levels in a single cell using three methods: sensitized emission, standard acceptor photobleaching, and sequential acceptor photobleaching. We also analyzed emission spectra to address an outstanding controversy regarding the use of CFP donor/YFP acceptor pairs in FRET acceptor photobleaching experiments, based on reports that photobleaching of YFP converts it into a CFP-like species. CONCLUSIONS: All three methods consistently showed significant FRET between APPL minimal BAR domain FRET pairs, indicating that they interact directly in a homotypic (i.e., APPL1-APPL1 and APPL2-APPL2 and heterotypic (i.e., APPL1-APPL2 manner on curved cell membranes

  17. Tandem Facial Amphiphiles for Membrane Protein Stabilization

    Chae, Pil Seok; Gotfryd, Kamil; Pacyna, Jennifer; Miercke, Larry J W; Rasmussen, Søren G F; Robbins, Rebecca A; Rana, Rohini R; Løland, Claus Juul; Kobilka, Brian; Stroud, Robert; Byrne, Bernadette; Gether, Ulrik; Gellman, Samuel H


    We describe a new type of synthetic amphiphile that is intended to support biochemical characterization of intrinsic membrane proteins. Members of this new family displayed favorable behavior with four of five membrane proteins tested, and these amphiphiles formed relatively small micelles....

  18. Active Nuclear Import of Membrane Proteins Revisited

    Laba, Justyna K; Steen, Anton; Popken, Petra; Chernova, Alina; Poolman, Bert; Veenhoff, Liesbeth M


    It is poorly understood how membrane proteins destined for the inner nuclear membrane pass the crowded environment of the Nuclear Pore Complex (NPC). For the Saccharomyces cerevisiae proteins Src1/Heh1 and Heh2, a transport mechanism was proposed where the transmembrane domains diffuse through the m

  19. Interaction of peptides with cell membranes: insights from molecular modeling

    The investigation of the interaction of peptides with cell membranes is the focus of active research. It can enhance the understanding of basic membrane functions such as membrane transport, fusion, and signaling processes, and it may shed light on potential applications of peptides in biomedicine. In this review, we will present current advances in computational studies on the interaction of different types of peptides with the cell membrane. Depending on the properties of the peptide, membrane, and external environment, the peptide–membrane interaction shows a variety of different forms. Here, on the basis of recent computational progress, we will discuss how different peptides could initiate membrane pores, translocate across the membrane, induce membrane endocytosis, produce membrane curvature, form fibrils on the membrane surface, as well as interact with functional membrane proteins. Finally, we will present a conclusion summarizing recent progress and providing some specific insights into future developments in this field. (topical review)

  20. Photoaffinity analogues of methotrexate as folate antagonist binding probes. 2. Transport studies, photoaffinity labeling, and identification of the membrane carrier protein for methotrexate from murine L1210 cells

    A membrane-derived component of the methotrexate/one-carbon-reduced folate transport system in murine L1210 cells has been identified by using a photoaffinity analogue of methotrexate. The compound, a radioiodinated 4-azidosalicylyl derivative of the lysine analogue of methotrexate, is transported into murine L1210 cells in a temperature-dependent, sulfhydryl reagent inhibitable manner with a K/sub t/ of 506 +/- 79 nM and a V/sub max/ of 17.9 +/- 4.2 pmol min-1 (mg of total cellular protein)-1. Uptake of the iodinated compound at 200 nM is inhibited by low amounts of methotrexate. The parent compounds of the iodinated photoprobe inhibit [3H]methotrexate uptake, with the uniodinated 4-azidosalicylyl derivative exhibiting a K/sub i/ of 66 +/- 21 nM. UV irradiation, at 4 0C, of a cell suspension that had been incubated with the probe results in the covalent modification of a 46K-48K protein. This can be demonstrated when the plasma membranes from the labeled cells are analyzed via sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Labeling of this protein occurs half-maximally at a reagent concentration that correlates with the K/sub t/ for transport of the iodinated compound. Protection against labeling of this protein by increasing amounts of methotrexate parallels the concentration dependence of inhibition of photoprobe uptake by methotrexate. Evidence that, in the absence of irradiation and at 370C, the iodinated probe is actually internalized is demonstrated by the labeling of two soluble proteins (M/sub r/ 38K and 21K) derived from the cell homogenate supernatant

  1. Towards functional proteomics of membrane protein complexes: analysis of thylakoid membranes from Chlamydomonas reinhardtii.

    Hippler, M; Klein, J; Fink, A; Allinger, T; Hoerth, P


    Functional proteomics of membrane proteins is an important tool for the understanding of protein networks in biological membranes but structural studies on this part of the proteome are limited. In this study we undertook such an approach to analyse photosynthetic thylakoid membranes isolated from wild-type and mutant strains of Chlamydomonas reinhardtii. Thylakoid membrane proteins were separated by high-resolution two-dimensional gel electrophoresis (2-DE) and analysed by immuno-blotting and mass spectrometry for the presence of membrane-spanning proteins. Our data show that light-harvesting complex proteins (LHCP), that cross the membrane with three transmembrane domains, can be separated using this method. We have identified more than 30 different LHCP spots on our gels. Mass spectrometric analysis of 2-DE separated Lhcb1 indicates that this major LHCII protein can associate with the thylakoid membrane with part of its putative transit sequence. Separation of isolated photosystem I (PSI) complexes by 2-DE revealed the presence of 18 LHCI protein spots. The use of two peptide-specific antibodies directed against LHCI subunits supports the interpretation that some of these spots represent products arising from differential processing and post-translational modifications. In addition our data indicate that the reaction centre subunit of PSI, PsaA, that possesses 11 transmembrane domains, can be separated by 2-DE. Comparison between 2-DE maps from thylakoid membrane proteins isolated from a PSI-deficient (Deltaycf4) and a crd1 mutant, which is conditionally reduced in PSI and LHCI under copper-deficiency, showed the presence of most of the LHCI spots in the former but their absence in the latter. Our data demonstrate that (i) hydrophobic membrane proteins like the LHCPs can be faithfully separated by 2-DE, and (ii) that high-resolution 2-DE facilitates the comparative analysis of membrane protein complexes in wild-type and mutants cells. PMID:11849598

  2. High cell density and latent membrane protein 1 expression induce cleavage of the mixed lineage leukemia gene at 11q23 in nasopharyngeal carcinoma cell line

    Sim Sai-Peng


    Full Text Available Abstract Background Nasopharyngeal carcinoma (NPC is commonly found in Southern China and South East Asia. Epstein-Barr virus (EBV infection is well associated with NPC and has been implicated in its pathogenesis. Moreover, various chromosome rearrangements were reported in NPC. However, the underlying mechanism of chromosome rearrangement remains unclear. Furthermore, the relationship between EBV and chromosome rearrangement with respect to the pathogenesis of NPC has not been established. We hypothesize that during virus- or stress-induced apoptosis, chromosomes are initially cleaved at the base of the chromatin loop domain structure. Upon DNA repair, cell may survive with rearranged chromosomes. Methods In this study, cells were seeded at various densities to induce apoptosis. Genomic DNA extracted was processed for Southern hybridization. In order to investigate the role of EBV, especially the latent membrane protein 1 (LMP1, LMP1 gene was overexpressed in NPC cells and chromosome breaks were analyzed by inverse polymerase chain (IPCR reaction. Results Southern analysis revealed that high cell density resulted in cleavage of the mixed lineage leukemia (MLL gene within the breakpoint cluster region (bcr. This high cell density-induced cleavage was significantly reduced by caspase inhibitor, Z-DEVD-FMK. Similarly, IPCR analysis showed that LMP1 expression enhanced cleavage of the MLL bcr. Breakpoint analysis revealed that these breaks occurred within the matrix attachment region/scaffold attachment region (MAR/SAR. Conclusions Since MLL locates at 11q23, a common deletion site in NPC, our results suggest a possibility of stress- or virus-induced apoptosis in the initiation of chromosome rearrangements at 11q23. The breakpoint analysis results also support the role of chromatin structure in defining the site of chromosome rearrangement.

  3. A unifying mechanism accounts for sensing of membrane curvature by BAR domains, amphipathic helices and membrane-anchored proteins

    Bhatia, Vikram Kjøller; Hatzakis, Nikos; Stamou, Dimitrios


    itself. We thus anticipate that membrane curvature will promote the redistribution of proteins that are anchored in membranes through any type of hydrophobic moiety, a thesis that broadens tremendously the implications of membrane curvature for protein sorting, trafficking and signaling in cell biology.......The discovery of proteins that recognize membrane curvature created a paradigm shift by suggesting that membrane shape may act as a cue for protein localization that is independent of lipid or protein composition. Here we review recent data on membrane curvature sensing by three structurally...... unrelated motifs: BAR domains, amphipathic helices and membrane-anchored proteins. We discuss the conclusion that the curvature of the BAR dimer is not responsible for sensing and that the sensing properties of all three motifs can be rationalized by the physicochemical properties of the curved membrane...

  4. Domain formation in membranes caused by lipid wetting of protein

    Akimov, Sergey A.; Frolov, Vladimir A. J.; Kuzmin, Peter I.; Zimmerberg, Joshua; Chizmadzhev, Yuri A.; Cohen, Fredric S.


    Formation of rafts and other domains in cell membranes is considered as wetting of proteins by lipids. The membrane is modeled as a continuous elastic medium. Thermodynamic functions of the lipid films that wet proteins are calculated using a mean-field theory of liquid crystals as adapted to biomembranes. This approach yields the conditions necessary for a macroscopic wetting film to form; its thickness could also be determined. It is shown that films of macroscopic thicknesses form around l...

  5. Membrane Protein Production in the Yeast, S. cerevisiae.

    Cartwright, Stephanie P; Mikaliunaite, Lina; Bill, Roslyn M


    The first crystal structures of recombinant mammalian membrane proteins were solved in 2005 using protein that had been produced in yeast cells. One of these, the rabbit Ca(2+)-ATPase SERCA1a, was synthesized in Saccharomyces cerevisiae. All host systems have their specific advantages and disadvantages, but yeast has remained a consistently popular choice in the eukaryotic membrane protein field because it is quick, easy and cheap to culture, whilst being able to post-translationally process eukaryotic membrane proteins. Very recent structures of recombinant membrane proteins produced in S. cerevisiae include those of the Arabidopsis thaliana NRT1.1 nitrate transporter and the fungal plant pathogen lipid scramblase, TMEM16. This chapter provides an overview of the methodological approaches underpinning these successes. PMID:27485327

  6. Protein receptor-independent plasma membrane remodeling by HAMLET

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L.;


    A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This "protein-centric" view is increasingly challenged by evidence for the involvement of specialized membrane domains in...... signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range of...... tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a "receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET...

  7. Activity assay of membrane transport proteins

    Hao Xie


    Membrane transport proteins are integral membrane proteins and considered as potential drug targets. Activity assay of transport proteins is essential for developing drugs to target these proteins. Major issues related to activity assessment of transport proteins include availability of transporters,transport activity of transporters, and interactions between ligands and transporters. Researchers need to consider the physiological status of proteins (bound in lipid membranes or purified), availability and specificity of substrates, and the purpose of the activity assay (screening, identifying, or comparing substrates and inhibitors) before choosing appropriate assay strategies and techniques. Transport proteins bound in vesicular membranes can be assayed for transporting substrate across membranes by means of uptake assay or entrance counterflow assay. Alternatively, transport proteins can be assayed for interactions with ligands by using techniques such as isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, or surface plasmon resonance. Other methods and techniques such as fluorometry, scintillation proximity assay, electrophysiological assay, or stopped-flow assay could also be used for activity assay of transport proteins. In this paper the major strategies and techniques for activity assessment of membrane transport proteins are reviewed.

  8. Inefficient quality control of thermosensitive proteins on the plasma membrane.

    Michael J Lewis

    Full Text Available BACKGROUND: Misfolded proteins are generally recognised by cellular quality control machinery, which typically results in their ubiquitination and degradation. For soluble cytoplasmic proteins, degradation is mediated by the proteasome. Membrane proteins that fail to fold correctly are subject to ER associated degradation (ERAD, which involves their extraction from the membrane and subsequent proteasome-dependent destruction. Proteins with abnormal transmembrane domains can also be recognised in the Golgi or endosomal system and targeted for destruction in the vacuole/lysosome. It is much less clear what happens to membrane proteins that reach their destination, such as the cell surface, and then suffer damage. METHODOLOGY/PRINCIPAL FINDINGS: We have tested the ability of yeast cells to degrade membrane proteins to which temperature-sensitive cytoplasmic alleles of the Ura3 protein or of phage lambda repressor have been fused. In soluble form, these proteins are rapidly degraded upon temperature shift, in part due to the action of the Doa10 and San1 ubiquitin ligases and the proteasome. When tethered to the ER protein Use1, they are also degraded. However, when tethered to a plasma membrane protein such as Sso1 they escape degradation, either in the vacuole or by the proteasome. CONCLUSIONS/SIGNIFICANCE: Membrane proteins with a misfolded cytoplasmic domain appear not to be efficiently recognised and degraded once they have escaped the ER, even though their defective domains are exposed to the cytoplasm and potentially to cytoplasmic quality controls. Membrane tethering may provide a way to reduce degradation of unstable proteins.

  9. Human tetraspanin transmembrane 4 superfamily member 4 or intestinal and liver tetraspan membrane protein is overexpressed in hepatocellular carcinoma and accelerates tumor cell growth

    Ying Li; Leiming Wang; Jie Qiu; Liang Da; Pierre Tiollais; Zaiping Li; Mujun Zhao


    The human transmembrane 4 superfamily member 4 or intestinal and liver tetraspan membrane protein (TM4SF4/il-TMP) was originally cloned as an intestinal and liver tetraspan membrane protein and mediates density-dependent cell proliferation.The rat homolog of TM4SF4 was found to be up-regulated in regenerating liver after two-thirds hepatectomy and overexpression of TM4SF4 could enhance liver injury induced by CCl4.However,the expression and significance of TM4SF4/il-TMP in liver cancer remain unknown.Here,we report that TM4SF4/il-TMP is frequently and significantly overexpressed in hepatocellular carcinoma (HCC).Real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis showed that TM4SF4/il-TMP mRNA and protein levels were upregulated in ~80% of HCC tissues,Immunohistochemical analysis of a 75 paired HCC tissue microarray revealed that TM4SF4/il-TMP was significantly overexpressed in HCC tissues (P < 0.001),and high immunointensity of TM4SF4/iI-TMP tended to be in well-to-moderately differentiated HCC compared with poorly differentiated tumors.Functional studies showed that overexpression of TM4SF4/il-TMP in QGY-7701 and BEL-7404 HCC cell lines through stable transfection of TM4SF4 expression plasmid significantly promoted both cell growth and colony formation of HCC cells.Reduction of TM4SF4/il-TMP expression in QGY-7701 and BEL-7404 cells by stably transfecting TM4SF4 antisense plasmid caused great inhibition of cell proliferation.Our findings suggest that TM4SF4/il-TMP has the potential to be biomarker in HCC and plays a crucial role in promotion of cancer cell proliferation.

  10. Two Golgi integral membrane proteins (GIMPS) exhibit region- and cell type-specific distribution in the epididymis of the adult rat.

    Suarez-Quian, C A; Jelesoff, N


    The epididymis participates in the post-testicular maturation and storage of spermatozoa by secreting proteins into the tubule lumen in a region-specific fashion. The underlying molecular mechanisms leading to biogenesis of these region-specific differences, however, are not known, although components of the Golgi complex membrane container must undoubtedly be intimately involved. Two monoclonal antibodies raised against Golgi integral membrane proteins, recognizing either the cis (GIMPc) or trans Golgi (GIMPt) cisternae, were used as molecular probes of these regions to begin the characterization of the Golgi complex of in vivo and in vitro epididymal cells. Immunolocalization of GIMPs was performed on frozen sections and in cultured cells using biotin-streptavidin-peroxidase immunocytochemistry. In tissue sections, immunostaining of GIMPt was extremely robust in the supranuclear cytoplasm throughout the epididymis. In contrast, no GIMPc immunostaining was detected in the initial segment or in clear cells of the distal caput, corpus, and cauda. Immunodetection of GIMPc and GIMPt in epididymal cells in vitro revealed a reticular, perinuclear pattern, and NH4Cl treatment preferentially disrupted the GIMPt immunolocalization. These results characterizing the molecular components of the Golgi complex will form the basis of additional studies to gain further insight into mechanisms leading to generation of regional differences in epididymal function. PMID:7873795

  11. Targeting membrane proteins for antibody discovery using phage display.

    Jones, Martina L; Alfaleh, Mohamed A; Kumble, Sumukh; Zhang, Shuo; Osborne, Geoffrey W; Yeh, Michael; Arora, Neetika; Hou, Jeff Jia Cheng; Howard, Christopher B; Chin, David Y; Mahler, Stephen M


    A critical factor in the successful isolation of new antibodies by phage display is the presentation of a correctly folded antigen. While this is relatively simple for soluble proteins which can be purified and immobilized onto a plastic surface, membrane proteins offer significant challenges for antibody discovery. Whole cell panning allows presentation of the membrane protein in its native conformation, but is complicated by a low target antigen density, high background of irrelevant antigens and non-specific binding of phage particles to cell surfaces. The method described here uses transient transfection of alternating host cell lines and stringent washing steps to address each of these limitations. The successful isolation of antibodies from a naive scFv library is described for three membrane bound proteins; human CD83, canine CD117 and bat CD11b. PMID:27189586

  12. Preparation of cell membranes for high resolution imaging by AFM

    Studies of cell membrane structure by atomic force microscopy (AFM) have been limited because of the softness of cell membranes. Here, we utilize a new technique of sample preparation to lay red blood cell membranes on the top of a mica surface to obtain high resolution images by in-situ AFM on both sides of cell membranes. Our results indicate that the location of oligosaccharides and proteins in red blood cell membranes might be different from the current membrane model. The inner membrane leaflet is covered by dense proteins with fewer free lipids than expected. In contrast, the outer membrane leaflet is quite smooth; oligosaccharides and peptides supposed to protrude out of the outer membrane leaflet surface might be actually hidden in the middle of hydrophilic lipid heads; transmembrane proteins might form domains in the membranes revealed by PNGase F and trypsin digestion. Our result could be significant to interpret some functions about red blood cell membranes and guide to heal the blood diseases related to cell membranes.

  13. The role of heparan sulfate on adhesion of 47 and 51 kDa outer membrane proteins of Helicobacter pylori to gastric cancer cells.

    López-Bolaños, Claudia C; Guzmán-Murillo, Maria A; Ruiz-Bustos, Eduardo; Ascencio, Felipe


    Helicobacter pylori is a common gastrointestinal pathogenic bacterium in humans and the usual preference for the stomach's outer membrane proteins (OMPs) are antigens involved in the adhesion process. Through SDS-PAGE and blotting analyses, using horseradish peroxidase-labeled heparan sulfate (HRP-HS) as a probe, we identified H. pylori OMPs with affinity for heparan sulfate (OMP-HS). Biotin-streptavidin bacterial-adhesion assay was used to evaluate participation of OMP-HS in the adhesion of H. pylori to semi-confluent HeLa S3 and Kato III cell monolayers. The results provide evidence that induction of antibodies against 2 OMP-HSs (HSBP-47 and HSBP-51) could reduce binding of H. pylori to both cell lines and induce detachment of cell-bound bacteria from infected cultured cells. PMID:19396245

  14. Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation

    Foster, Leonard J; Zeemann, Patricia A; Li, Chen; Mann, Matthias; Jensen, Ole Nørregaard; Kassem, Moustapha


    of another 21 decreased by at least twofold. For example, alkaline phosphatase (ALP), versican core protein, and tenascin increased 27-, 12-, and 4-fold, respectively, and fatty acid synthase decreased sixfold. The observed increases in veriscan and ALP were confirmed using immunocytochemistry and......One of the major limitations for understanding the biology of human mesenchymal stem cells (hMSCs) is the absence of prospective markers needed for distinguishing them from other cells and for monitoring lineage-specific differentiation. Mass spectrometry (MS)-based proteomics has proven extremely...... in a cell model of hMSCs established by overexpression of human telomerase reverse-transcriptase gene. We identified 463 unique proteins with extremely high confidence, including all known markers of hMSCs (e.g., SH3 [CD71], SH2 [CD105], CD166, CD44, Thy1, CD29, and HOP26 [CD63]) among 148 integral...

  15. Glasslike Membrane Protein Diffusion in a Crowded Membrane.

    Munguira, Ignacio; Casuso, Ignacio; Takahashi, Hirohide; Rico, Felix; Miyagi, Atsushi; Chami, Mohamed; Scheuring, Simon


    Many functions of the plasma membrane depend critically on its structure and dynamics. Observation of anomalous diffusion in vivo and in vitro using fluorescence microscopy and single particle tracking has advanced our concept of the membrane from a homogeneous fluid bilayer with freely diffusing proteins to a highly organized crowded and clustered mosaic of lipids and proteins. Unfortunately, anomalous diffusion could not be related to local molecular details given the lack of direct and unlabeled molecular observation capabilities. Here, we use high-speed atomic force microscopy and a novel analysis methodology to analyze the pore forming protein lysenin in a highly crowded environment and document coexistence of several diffusion regimes within one membrane. We show the formation of local glassy phases, where proteins are trapped in neighbor-formed cages for time scales up to 10 s, which had not been previously experimentally reported for biological membranes. Furthermore, around solid-like patches and immobile molecules a slower glass phase is detected leading to protein trapping and creating a perimeter of decreased membrane diffusion. PMID:26859708

  16. Statistical thermodynamics of membrane bending mediated protein-protein attraction

    Chou, Tom; Kim, Ken S.; Oster, George


    Integral membrane proteins deform the surrounding bilayer creating long-ranged forces that influence distant proteins. These forces can be attractive or repulsive, depending on the proteins' shape, height, contact angle with the bilayer, as well as the local membrane curvature. Although interaction energies are not pairwise additive, for sufficiently low protein density, thermodynamic properties depend only upon pair interactions. Here, we compute pair interaction potentials and entropic cont...

  17. The multi-facet aspects of cell sentience and their relevance for the integrative brain actions: role of membrane protein energy landscape.

    Agnati, Luigi F; Marcoli, Manuela; Maura, Guido; Fuxe, Kjell; Guidolin, Diego


    Several ion channels can be randomly and spontaneously in an open state, allowing the exchange of ion fluxes between extracellular and intracellular environments. We propose that the random changes in the state of ion channels could be also due to proteins exploring their energy landscapes. Indeed, proteins can modify their steric conformation under the effects of the physicochemical parameters of the environments with which they are in contact, namely, the extracellular, intramembrane and intracellular environments. In particular, it is proposed that the random walk of proteins in their energy landscape is towards attractors that can favor the open or close condition of the ion channels and/or intrinsic activity of G-protein-coupled receptors. The main aspect of the present proposal is that some relevant physicochemical parameters of the environments (e.g. molecular composition, temperature, electrical fields) with which some signaling-involved plasma membrane proteins are in contact alter their conformations. In turn, these changes can modify their information handling via a modulatory action on their random walk towards suitable attractors of their energy landscape. Thus, spontaneous and/or signal-triggered electrical activities of neurons occur that can have emergent properties capable of influencing the integrative actions of brain networks. Against this background, Cook's hypothesis on 'cell sentience' is developed by proposing that physicochemical parameters of the environments with which the plasma-membrane proteins of complex cellular networks are in contact fulfill a fundamental role in their spontaneous and/or signal-triggered activity. Furthermore, it is proposed that a specialized organelle, the primary cilium, which is present in most cells (also neurons and astrocytes), could be of peculiar importance to pick up chemical signals such as ions and transmitters and to detect physical signals such as pressure waves, thermal gradients, and local field

  18. Polyene antibiotic that inhibits membrane transport proteins.

    te Welscher, Yvonne Maria; van Leeuwen, Martin Richard; de Kruijff, Ben; Dijksterhuis, Jan; Breukink, Eefjan


    The limited therapeutic arsenal and the increase in reports of fungal resistance to multiple antifungal agents have made fungal infections a major therapeutic challenge. The polyene antibiotics are the only group of antifungal antibiotics that directly target the plasma membrane via a specific interaction with the main fungal sterol, ergosterol, often resulting in membrane permeabilization. In contrast to other polyene antibiotics that form pores in the membrane, the mode of action of natamycin has remained obscure but is not related to membrane permeabilization. Here, we demonstrate that natamycin inhibits growth of yeasts and fungi via the immediate inhibition of amino acid and glucose transport across the plasma membrane. This is attributable to ergosterol-specific and reversible inhibition of membrane transport proteins. It is proposed that ergosterol-dependent inhibition of membrane proteins is a general mode of action of all the polyene antibiotics, of which some have been shown additionally to permeabilize the plasma membrane. Our results imply that sterol-protein interactions are fundamentally important for protein function even for those proteins that are not known to reside in sterol-rich domains. PMID:22733749

  19. A method to investigate protein association with intact sealed mycobacterial membrane vesicles.

    D'Lima, Nadia G; Teschke, Carolyn M


    In mycobacteria, probing the association of cytoplasmic proteins with the membrane itself, as well as with integral or peripheral membrane proteins, is limited by the difficulty in extracting intact sealed membrane vesicles due to the complex cell wall structure. Here we tested the association of Mycobacterium tuberculosis SecA1 and SecA2 proteins with intact membrane vesicles by a flotation assay using iodixanol density gradients. These protocols have wide applications for studying the association of other mycobacterial cytoplasmic proteins with the membrane and membrane-associated proteins. PMID:26099936



    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes. With the...... thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  1. A Systematic Assessment of Mature MBP in Membrane Protein Production: Overexpression, Membrane targeting and Purification

    Hu, Jian; Qin, Huajun; Gao, Fei Philip; Cross, Timothy A


    Obtaining enough membrane protein in native or native-like status is still a challenge in membrane protein structure biology. Maltose binding protein (MBP) has been widely used as a fusion partner in improving membrane protein production. In the present work, a systematic assessment on the application of mature MBP (mMBP) for membrane protein overexpression and purification was performed on 42 membrane proteins, most of which showed no or poor expression level in membrane fraction fused with ...

  2. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes

    Yoshino, Yuta [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Yuan, Bo, E-mail: [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Kaise, Toshikazu [Laboratory of Environmental Chemodynamics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Takeichi, Makoto [Yoneyama Maternity Hospital, 2-12 Shin-machi, Hachioji, Tokyo 192-0065 (Japan); Tanaka, Sachiko; Hirano, Toshihiko [Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Kroetz, Deanna L. [Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Toyoda, Hiroo [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan)


    Arsenic trioxide (arsenite, As{sup III}) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As{sup III} on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As{sup III} on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As{sup III}-mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As{sup III} were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As{sup III} than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As{sup III} in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As{sup III}-mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As{sup III} cytotoxicity between these cells. -- Highlights: Black-Right-Pointing-Pointer Examination of effect of As{sup III} on primary cultured chorion (C) and amnion

  3. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes

    Arsenic trioxide (arsenite, AsIII) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of AsIII on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of AsIII on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent AsIII-mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of AsIII were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to AsIII than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by AsIII in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to AsIII-mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to AsIII cytotoxicity between these cells. -- Highlights: ► Examination of effect of AsIII on primary cultured chorion (C) and amnion (A) cells. ► Dose-dependent AsIII-mediated cytotoxicity in C-cells, not in A-cells

  4. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface

    Behrendt, N; Rønne, E; Danø, K


    PA receptor, uPAR, is a cell-surface protein which plays an important role in the localization and regulation of these processes. In the present article a number of established conclusions concerning the structure and function of uPAR are presented, and in addition various models are discussed which might...... domain is directly involved in the molecular contact with uPA. The receptor binds uPA as well as its proenzyme, pro-uPA, in such a manner that the activation cascade can occur directly on the cell surface. Furthermore, the activation rates are enhanced relative to the situation in solution, probably due...

  5. Loss of lysosomal membrane protein NCU-G1 in mice results in spontaneous liver fibrosis with accumulation of lipofuscin and iron in Kupffer cells

    Xiang Y. Kong


    Full Text Available Human kidney predominant protein, NCU-G1, is a highly conserved protein with an unknown biological function. Initially described as a nuclear protein, it was later shown to be a bona fide lysosomal integral membrane protein. To gain insight into the physiological function of NCU-G1, mice with no detectable expression of this gene were created using a gene-trap strategy, and Ncu-g1gt/gt mice were successfully characterized. Lysosomal disorders are mainly caused by lack of or malfunctioning of proteins in the endosomal-lysosomal pathway. The clinical symptoms vary, but often include liver dysfunction. Persistent liver damage activates fibrogenesis and, if unremedied, eventually leads to liver fibrosis/cirrhosis and death. We demonstrate that the disruption of Ncu-g1 results in spontaneous liver fibrosis in mice as the predominant phenotype. Evidence for an increased rate of hepatic cell death, oxidative stress and active fibrogenesis were detected in Ncu-g1gt/gt liver. In addition to collagen deposition, microscopic examination of liver sections revealed accumulation of autofluorescent lipofuscin and iron in Ncu-g1gt/gt Kupffer cells. Because only a few transgenic mouse models have been identified with chronic liver injury and spontaneous liver fibrosis development, we propose that the Ncu-g1gt/gt mouse could be a valuable new tool in the development of novel treatments for the attenuation of fibrosis due to chronic liver damage.

  6. Monocrotaline pyrrole-induced megalocytosis of lung and breast epithelial cells: Disruption of plasma membrane and Golgi dynamics and an enhanced unfolded protein response

    The pyrrolizidine alkaloid monocrotaline (MCT) initiates pulmonary hypertension by inducing a 'megalocytosis' phenotype in target pulmonary arterial endothelial, smooth muscle and Type II alveolar epithelial cells. In cultured endothelial cells, a single exposure to the pyrrolic derivative of monocrotaline (MCTP) results in large cells with enlarged endoplasmic reticulum (ER) and Golgi and increased vacuoles. However, these cells fail to enter mitosis. Largely based upon data from endothelial cells, we proposed earlier that a disruption of the trafficking and mitosis-sensor functions of the Golgi (the 'Golgi blockade' hypothesis) may represent the subcellular mechanism leading to MCTP-induced megalocytosis. In the present study, we investigated the applicability of the Golgi blockade hypothesis to epithelial cells. MCTP induced marked megalocytosis in cultures of lung A549 and breast MCF-7 cells. This was associated with a change in the distribution of the cis-Golgi scaffolding protein GM130 from a discrete juxtanuclear localization to a circumnuclear distribution consistent with an anterograde block of GM130 trafficking to/through the Golgi. There was also a loss of plasma membrane caveolin-1 and E-cadherin, cortical actin together with a circumnuclear accumulation of clathrin heavy chain (CHC) and α-tubulin. Flotation analyses revealed losses/alterations in the association of caveolin-1, E-cadherin and CHC with raft microdomains. Moreover, megalocytosis was accompanied by an enhanced unfolded protein response (UPR) as evidenced by nuclear translocation of Ire1α and glucose regulated protein 58 (GRP58/ER-60/ERp57) and a circumnuclear accumulation of PERK kinase and protein disulfide isomerase (PDI). These data further support the hypothesis that an MCTP-induced Golgi blockade and enhanced UPR may represent the subcellular mechanism leading to enlargement of ER and Golgi and subsequent megalocytosis

  7. A light-controlled switch after dual targeting of proliferating tumor cells via the membrane receptor EGFR and the nuclear protein Ki-67.

    Wang, Sijia; Hüttmann, Gereon; Scholzen, Thomas; Zhang, Zhenxi; Vogel, Alfred; Hasan, Tayyaba; Rahmanzadeh, Ramtin


    Using nanotechnology for optical manipulation of molecular processes in cells with high spatial and temporal precision promises new therapeutic options. Especially tumor therapy may profit as it requires a combination of both selectivity and an effective cell killing mechanism. Here we show a dual targeting approach for selective and efficient light-controlled killing of cells which are positive for epidermal growth factor receptor (EGFR) and Ki-67. Liposomes with the covalently linked EGFR antibody Erbitux enabled selective uptake of FITC-labeled Ki-67 antibody TuBB-9 in EGFR-positive cells pre-loaded with the photoactive dye BPD. After irradiation at 690 nm, BPD disrupted the endosomal membranes and delivered the antibodies to the nucleoli of the cells. The second irradiation at 490 nm activated the FITC-labeled TuBB-9, which caused inactivation of the Ki-67 protein and subsequent cell death via apoptosis. Efficient cell killing was possible at nanomolar concentrations of TuBB-9 due to the effective transport by immune liposomes and the high efficacy of the Ki-67 light-inactivation. Delivery of the liposomal constructs and cell destruction correlated well with the EGFR expression pattern of different cell lines (HeLa, OVCAR-5, MCF-7, and human fibroblasts), demonstrating an excellent selectivity. PMID:27246531

  8. Efficient preparation and analysis of membrane and membrane protein systems.

    Javanainen, Matti; Martinez-Seara, Hector


    Molecular dynamics (MD) simulations have become a highly important technique to consider lipid membrane systems, and quite often they provide considerable added value to laboratory experiments. Rapid development of both software and hardware has enabled the increase of time and size scales reachable by MD simulations to match those attainable by several accurate experimental techniques. However, until recently, the quality and maturity of software tools available for building membrane models for simulations as well as analyzing the results of these simulations have seriously lagged behind. Here, we discuss the recent developments of such tools from the end-users' point of view. In particular, we review the software that can be employed to build lipid bilayers and other related structures with or without embedded membrane proteins to be employed in MD simulations. Additionally, we provide a brief critical insight into force fields and MD packages commonly used for membrane and membrane protein simulations. Finally, we list analysis tools that can be used to study the properties of membrane and membrane protein systems. In all these points we comment on the respective compatibility of the covered tools. We also share our opinion on the current state of the available software. We briefly discuss the most commonly employed tools and platforms on which new software can be built. We conclude the review by providing a few ideas and guidelines on how the development of tools can be further boosted to catch up with the rapid pace at which the field of membrane simulation progresses. This includes improving the compatibility between software tools and promoting the openness of the codes on which these applications rely. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26947184

  9. Protein receptor-independent plasma membrane remodeling by HAMLET: a tumoricidal protein-lipid complex.

    Nadeem, Aftab; Sanborn, Jeremy; Gettel, Douglas L; James, Ho C S; Rydström, Anna; Ngassam, Viviane N; Klausen, Thomas Kjær; Pedersen, Stine Falsig; Lam, Matti; Parikh, Atul N; Svanborg, Catharina


    A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This ''protein-centric" view is increasingly challenged by evidence for the involvement of specialized membrane domains in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a ''receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. Finally, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features suggest that HAMLET-induced curvature-dependent membrane conformations serve as surrogate receptors for initiating signal transduction cascades, ultimately leading to cell death. PMID:26561036

  10. Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches

    Wang, Feng; Wu, Jiazhen; Gao, Jing; Liu, Shuheng; Jiang, Junguang; Jiang, Shibo; Wang, Hongda


    The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms. PMID:24806512

  11. Rationalizing α-helical membrane protein crystallization

    Newstead, Simon; Ferrandon, Sébastien; Iwata, So


    X-ray crystallography is currently the most successful method for determining the three-dimensional structure of membrane proteins. Nevertheless, growing the crystals required for this technique presents one of the major bottlenecks in this area of structural biology. This is especially true for the α-helical type membrane proteins that are of particular interest due to their medical relevance. To address this problem we have undertaken a detailed analysis of the crystallization conditions fr...

  12. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion

    Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cells and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72 h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion. - Highlights: • Heparan sulfate- and receptor-binding motifs of DENV2 envelope protein were mutated. • Four mutant viruses were isolated—all could fuse C6/36 cells. • Two of these mutants were lethal in Vero cells without further modification. • Lethal mutations were KK291/295EV and KKK305/307/310EEE. • Cell attachment was implicated as the replication block for both mutants

  13. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion

    Roehrig, John T., E-mail: [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Butrapet, Siritorn; Liss, Nathan M. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Bennett, Susan L. [Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 (United States); Luy, Betty E.; Childers, Thomas; Boroughs, Karen L.; Stovall, Janae L.; Calvert, Amanda E. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States); Blair, Carol D. [Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523 (United States); Huang, Claire Y.-H. [Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521 (United States)


    Using an infectious cDNA clone we engineered seven mutations in the putative heparan sulfate- and receptor-binding motifs of the envelope protein of dengue virus serotype 2, strain 16681. Four mutant viruses, KK122/123EE, E202K, G304K, and KKK305/307/310EEE, were recovered following transfection of C6/36 cells. A fifth mutant, KK291/295EE, was recovered from C6/36 cells with a compensatory E295V mutation. All mutants grew in and mediated fusion of virus-infected C6/36 cells, but three of the mutants, KK122/123EE, E202K, G304K, did not grow in Vero cells without further modification. Two Vero cell lethal mutants, KK291/295EV and KKK307/307/310EEE, failed to replicate in DC-SIGN-transformed Raji cells and did not react with monoclonal antibodies known to block DENV attachment to Vero cells. Additionally, both mutants were unable to initiate negative-strand vRNA synthesis in Vero cells by 72 h post-infection, suggesting that the replication block occurred prior to virus-mediated membrane fusion. - Highlights: • Heparan sulfate- and receptor-binding motifs of DENV2 envelope protein were mutated. • Four mutant viruses were isolated—all could fuse C6/36 cells. • Two of these mutants were lethal in Vero cells without further modification. • Lethal mutations were KK291/295EV and KKK305/307/310EEE. • Cell attachment was implicated as the replication block for both mutants.

  14. A Survey of Membrane Proteins in Human Serum

    Dung, Nguyen Tien; Chi, Phan Van


    Serum and membrane proteins are two of the most attractive targets for proteomic analysis. Previous membrane protein studies tend to focus on tissue sample, while membrane protein studies in serum are still limited. In this study, an analysis of membrane proteins in normal human serum was carried out. Nano-liquid chromatography-electrospray ionization mass spectrometry (NanoLC-ESI-MS/MS) and bioinformatics tools were used to identify membrane proteins. Two hundred and seventeen membrane prote...

  15. Helix insertion into bilayers and the evolution of membrane proteins

    Renthal, Robert


    Polytopic α-helical membrane proteins cannot spontaneously insert into lipid bilayers without assistance from polytopic α-helical membrane proteins that already reside in the membrane. This raises the question of how these proteins evolved. Our current knowledge of the insertion of α-helices into natural and model membranes is reviewed with the goal of gaining insight into the evolution of membrane proteins. Topics include: translocon-dependent membrane protein insertion, antibiotic peptides ...

  16. Domain formation in membranes caused by lipid wetting of protein.

    Akimov, Sergey A; Frolov, Vladimir A J; Kuzmin, Peter I; Zimmerberg, Joshua; Chizmadzhev, Yuri A; Cohen, Fredric S


    Formation of rafts and other domains in cell membranes is considered as wetting of proteins by lipids. The membrane is modeled as a continuous elastic medium. Thermodynamic functions of the lipid films that wet proteins are calculated using a mean-field theory of liquid crystals as adapted to biomembranes. This approach yields the conditions necessary for a macroscopic wetting film to form; its thickness could also be determined. It is shown that films of macroscopic thicknesses form around large (tens nanometers in diameter) lipid-protein aggregates; only thin adsorption films form around single proteins or small complexes. The means by which wetting films can facilitate the merger of these aggregates is considered. It is shown that a wetting film prevents a protein from leaving an aggregate. Using experimentally derived values of elastic moduli and spontaneous curvatures as well as height mismatch between aggregates and bulk membrane, we obtained numerical results, which can be compared with the experimental data. PMID:18643096

  17. Regulation of Latent Membrane Protein 1 Signaling through Interaction with Cytoskeletal Proteins

    Holthusen, Kirsten; Talaty, Pooja; Everly, David N.


    Latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) induces constitutive signaling in EBV-infected cells to ensure the survival of the latently infected cells. LMP1 is localized to lipid raft domains to induce signaling. In the present study, a genome-wide screen based on bimolecular fluorescence complementation (BiFC) was performed to identify LMP1-binding proteins. Several actin cytoskeleton-associated proteins were identified in the screen. Overexpression of these proteins affecte...

  18. Affinity Capillary Electrophoresis:Study of the Binding of HIV-1 gp41 with a Membrane Protein (P45) on the Human B Cell Line,Raji


    Affinity capillary electrophoresis has been used to study the interaction between a membrane protein (P45) isolated from the Human B cell line, Raji, and rsgp41. P45, rsgp41 and the complexes were well resolved. The entire separation was achieved in less than 3min. Formations of two kinds of stable P45-rsgp41 complexes were confirmed based on migration time comparison; the binding equilibrium was achieved as soon as two proteins were mixed. The results indicate that the interaction between P45 and rsgp41 is strong with a fast association rate and a slow dissociation rate, and there are at least two kinds of binding sites with different binding constants between P45 and rsgp41.

  19. Comparative Analysis of Techniques to Purify Plasma Membrane Proteins

    Weekes, Michael P.; Antrobus, Robin; Lill, Jennie R.; Duncan, Lidia M; Hör, Simon; Lehner, Paul J.


    The aim of this project was to identify the best method for the enrichment of plasma membrane (PM) proteins for proteomics experiments. Following tryptic digestion and extended liquid chromatography-tandem mass spectrometry acquisitions, data were processed using MaxQuant and Gene Ontology (GO) terms used to determine protein subcellular localization. The following techniques were examined for the total number and percentage purity of PM proteins identified: (a) whole cell lysate (total numbe...

  20. Virus-like particles of SARS-like coronavirus formed by membrane proteins from different origins demonstrate stimulating activity in human dendritic cells.

    Bingke Bai

    Full Text Available The pathogenesis of SARS coronavirus (CoV remains poorly understood. In the current study, two recombinant baculovirus were generated to express the spike (S protein of SARS-like coronavirus (SL-CoV isolated from bats (vAcBS and the envelope (E and membrane (M proteins of SARS-CoV, respectively. Co-infection of insect cells with these two recombinant baculoviruses led to self-assembly of virus-like particles (BVLPs as demonstrated by electron microscopy. Incorporation of S protein of vAcBS (BS into VLPs was confirmed by western blot and immunogold labeling. Such BVLPs up-regulated the level of CD40, CD80, CD86, CD83, and enhanced the secretion of IL-6, IL-10 and TNF-alpha in immature dendritic cells (DCs. Immune responses were compared in immature DCs inoculated with BVLPs or with VLPs formed by S, E and M proteins of human SARS-CoV. BVLPs showed a stronger ability to stimulate DCs in terms of cytokine induction as evidenced by 2 to 6 fold higher production of IL-6 and TNF-alpha. Further study indicated that IFN-gamma+ and IL-4+ populations in CD4+ T cells increased upon co-cultivation with DCs pre-exposed with BVLPs or SARS-CoV VLPs. The observed difference in DC-stimulating activity between BVLPs and SARS CoV VLPs was very likely due to the S protein. In agreement, SL-CoV S DNA vaccine evoked a more vigorous antibody response and a stronger T cell response than SARS-CoV S DNA in mice. Our data have demonstrated for the first time that SL-CoV VLPs formed by membrane proteins of different origins, one from SL-CoV isolated from bats (BS and the other two from human SARS-CoV (E and M, activated immature DCs and enhanced the expression of co-stimulatory molecules and the secretion of cytokines. Finding in this study may provide important information for vaccine development as well as for understanding the pathogenesis of SARS-like CoV.

  1. Energy-coupled outer membrane transport proteins and regulatory proteins.

    Braun, Volkmar; Endriss, Franziska


    FhuA and FecA are two examples of energy-coupled outer membrane import proteins of gram-negative bacteria. FhuA transports iron complexed by the siderophore ferrichrome and serves as a receptor for phages, a toxic bacterial peptide, and a toxic protein. FecA transports diferric dicitrate and regulates transcription of an operon encoding five ferric citrate (Fec) transport genes. Properties of FhuA mutants selected according to the FhuA crystal structure are described. FhuA mutants in the TonB box, the hatch, and the beta-barrel are rather robust. TonB box mutants in FhuA FecA, FepA, Cir, and BtuB are compared; some mutations are suppressed by mutations in TonB. Mutant studies have not revealed a ferrichrome diffusion pathway, and tolerance to mutations in the region linking the TonB box to the hatch does not disclose a mechanism for how energy transfer from the cytoplasmic membrane to FhuA changes the conformation of FhuA such that bound substrates are released, the pore is opened, and substrates enter the periplasm, or how surface loops change their conformation such that TonB-dependent phages bind irreversibly and release their DNA into the cells. The FhuA and FecA crystal structures do not disclose the mechanism of these proteins, but they provide important information for specific functional studies. FecA is also a regulatory protein that transduces a signal from the cell surface into the cytoplasm. The interacting subdomains of the proteins in the FecA --> FecR --> FecI --> RNA polymerase signal transduction pathway resulting in fecABCDE transcription have been determined. Energy-coupled transporters transport not only iron and vitamin B12, but also other substrates of very low abundance such as sugars across the outer membrane; transcription regulation of the transport genes may occur similarly to that of the Fec transport genes. PMID:17370038

  2. Anatomy of the red cell membrane skeleton: unanswered questions.

    Lux, Samuel E


    The red cell membrane skeleton is a pseudohexagonal meshwork of spectrin, actin, protein 4.1R, ankyrin, and actin-associated proteins that laminates the inner membrane surface and attaches to the overlying lipid bilayer via band 3-containing multiprotein complexes at the ankyrin- and actin-binding ends of spectrin. The membrane skeleton strengthens the lipid bilayer and endows the membrane with the durability and flexibility to survive in the circulation. In the 36 years since the first primitive model of the red cell skeleton was proposed, many additional proteins have been discovered, and their structures and interactions have been defined. However, almost nothing is known of the skeleton's physiology, and myriad questions about its structure remain, including questions concerning the structure of spectrin in situ, the way spectrin and other proteins bind to actin, how the membrane is assembled, the dynamics of the skeleton when the membrane is deformed or perturbed by parasites, the role lipids play, and variations in membrane structure in unique regions like lipid rafts. This knowledge is important because the red cell membrane skeleton is the model for spectrin-based membrane skeletons in all cells, and because defects in the red cell membrane skeleton underlie multiple hemolytic anemias. PMID:26537302

  3. Multi-protein assemblies underlie the mesoscale organization of the plasma membrane

    Saka, Sinem K.; Honigmann, Alf; Eggeling, Christian; Hell, Stefan W.; Lang, Thorsten; Rizzoli, Silvio O.


    Most proteins have uneven distributions in the plasma membrane. Broadly speaking, this may be caused by mechanisms specific to each protein, or may be a consequence of a general pattern that affects the distribution of all membrane proteins. The latter hypothesis has been difficult to test in the past. Here, we introduce several approaches based on click chemistry, through which we study the distribution of membrane proteins in living cells, as well as in membrane sheets. We found that the plasma membrane proteins form multi-protein assemblies that are long lived (minutes), and in which protein diffusion is restricted. The formation of the assemblies is dependent on cholesterol. They are separated and anchored by the actin cytoskeleton. Specific proteins are preferentially located in different regions of the assemblies, from their cores to their edges. We conclude that the assemblies constitute a basic mesoscale feature of the membrane, which affects the patterning of most membrane proteins, and possibly also their activity.

  4. Determining nuclear shape: The role of farnesylated nuclear membrane proteins

    Polychronidou, Maria; Großhans, Jörg


    Changes in nuclear morphology are observed in diverse developmental processes as well as in pathological conditions. Modification of nuclear membrane and nuclear lamina protein levels results in altered nuclear shapes, as it has been demonstrated in experimental systems ranging from yeast to human cells. The important role of nuclear membrane components in regulating nuclear morphology is additionally highlighted by the abnormally shaped nuclei observed in diseases where nuclear lamina protei...

  5. Modulation of B-cell endoplasmic reticulum calcium homeostasis by Epstein-Barr virus Latent Membrane Protein-1

    Joab Irène


    Full Text Available Abstract Background Calcium signaling plays an important role in B lymphocyte survival and activation, and is critically dependent on the inositol-1,4,5-tris-phosphate-induced release of calcium stored in the endoplasmic reticulum (ER. Calcium is accumulated in the ER by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes, and therefore these enzymes play an important role in ER calcium homeostasis and in the control of B of cell activation. Because Epstein-Barr virus (EBV can immortalize B cells and contributes to lymphomagenesis, in this work the effects of the virus on SERCA-type calcium pump expression and calcium accumulation in the endoplasmic reticulum of B cells was investigated. Results Two Sarco-Endoplasmic Reticulum Calcium transport ATPase isoforms, the low Ca2+-affinity SERCA3, and the high Ca2+-affinity SERCA2 enzymes are simultaneously expressed in B cells. Latency type III infection of Burkitt's lymphoma cell lines with immortalization-competent virus expressing the full set of latency genes selectively decreased the expression of SERCA3 protein, whereas infection with immortalization-deficient virus that does not express the EBNA2 or LMP-1 viral genes was without effect. Down-modulation of SERCA3 expression could be observed upon LMP-1, but not EBNA2 expression in cells carrying inducible transgenes, and LMP-1 expression was associated with enhanced resting cytosolic calcium levels and increased calcium storage in the endoplasmic reticulum. Similarly to virus-induced B cell immortalisation, SERCA3 expression was also decreased in normal B cells undergoing activation and blastic transformation in germinal centers of lymph node follicles. Conclusion The data presented in this work indicate that EBV-induced immortalization leads to the remodelling of ER calcium homeostasis of B cells by LMP-1 that copies a previously unknown normal phenomenon taking place during antigen driven B cell activation. The functional remodelling of

  6. Modelling Cellular Processes using Membrane Systems with Peripheral and Integral Proteins

    Cavaliere, Matteo; Sedwards, Sean


    Membrane systems were introduced as models of computation inspired by the structure and functioning of biological cells. Recently, membrane systems have also been shown to be suitable to model cellular processes. We introduce a new model called Membrane Systems with Peripheral and Integral Proteins. The model has compartments enclosed by membranes, floating objects, objects associated to the internal and external surfaces of the membranes and also objects integral to the membranes. The floati...

  7. Membrane protein targeting to the outskirts of the endoplasmic reticulum : A characterization of sorting signals

    Kralt, Annemarie


    The majority of membrane proteins synthesized in the cell is inserted into the membrane of the endoplasmic reticulum (ER). The ER forms a network that extends from the nuclear envelope (NE), a double membrane surrounding the nucleus, to the cortical ER that underlies the plasma membrane (PM). Locali

  8. The cholesterol membrane anchor of the Hedgehog protein confers stable membrane association to lipid-modified proteins

    Peters, Carsten; Wolf, Alexander; Wagner, Melanie; Kuhlmann, Jürgen; Waldmann, Herbert


    The Hedgehog proteins are potent organizers of animal development. They carry a cholesterol ester at the C terminus of their signaling domain. The membrane anchoring mediated by this lipophilic modification was studied by means of an approach integrating cell biology, biochemistry, biophysics, and organic chemistry techniques. Sterol-modified and fluorescent-labeled Hedgehog-derived peptides and proteins were synthesized and investigated in biophysical and cell-biological assays. These experi...

  9. Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins

    Elortza, Felix; Nühse, Thomas S; Foster, Leonard J;


    Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are a functionally and structurally diverse family of post-translationally modified membrane proteins found mostly in the outer leaflet of the plasma membrane in a variety of eukaryotic cells. Although the general role of GPI-APs remains...... unclear, they have attracted attention because they act as enzymes and receptors in cell adhesion, differentiation, and host-pathogen interactions. GPI-APs may represent potential diagnostic and therapeutic targets in humans and are interesting in plant biotechnology because of their key role in root...... and 44 GPI-APs in an Arabidopsis thaliana membrane preparation, representing the largest experimental dataset of GPI-anchored proteins to date....

  10. Membrane proteins PmpG and PmpH are major constituents of Chlamydia trachomatis L2 outer membrane complex

    Mygind, Per H; Christiansen, Gunna; Roepstorff, P;


    The outer membrane complex of Chlamydia is involved in the initial adherence and ingestion of Chlamydia by the host cell. In order to identify novel proteins in the outer membrane of Chlamydia trachomatis L2, proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. By...