WorldWideScience

Sample records for cell lineage determination

  1. Cell fate determination in the Caenorhabditis elegans epidermal lineages

    NARCIS (Netherlands)

    Soete, G.A.J.

    2007-01-01

    The starting point for this work was to use the hypodermal seam of C. elegans as a model system to study cell fate determination. Even though the seam is a relatively simple developmental system, the mechanisms that control cell fate determination in the seam lineages are connected in a highly

  2. Pathologic Stimulus Determines Lineage Commitment of Cardiac C-kit+ Cells.

    Science.gov (United States)

    Chen, Zhongming; Zhu, Wuqiang; Bender, Ingrid; Gong, Wuming; Kwak, Il-Youp; Yellamilli, Amritha; Hodges, Thomas J; Nemoto, Natsumi; Zhang, Jianyi; Garry, Daniel J; van Berlo, Jop H

    2017-12-12

    Although cardiac c-kit + cells are being tested in clinical trials, the circumstances that determine lineage differentiation of c-kit + cells in vivo are unknown. Recent findings suggest that endogenous cardiac c-kit + cells rarely contribute cardiomyocytes to the adult heart. We assessed whether various pathological stimuli differentially affect the eventual cell fates of c-kit + cells. We used single-cell sequencing and genetic lineage tracing of c-kit + cells to determine whether various pathological stimuli would result in different fates of c-kit + cells. Single-cell sequencing of cardiac CD45 - c-kit + cells showed innate heterogeneity, indicative of the existence of vascular and mesenchymal c-kit + cells in normal hearts. Cardiac pressure overload resulted in a modest increase in c-kit-derived cardiomyocytes, with significant increases in the numbers of endothelial cells and fibroblasts. Doxorubicin-induced acute cardiotoxicity did not increase c-kit-derived endothelial cell fates but instead induced cardiomyocyte differentiation. Mechanistically, doxorubicin-induced DNA damage in c-kit + cells resulted in expression of p53. Inhibition of p53 blocked cardiomyocyte differentiation in response to doxorubicin, whereas stabilization of p53 was sufficient to increase c-kit-derived cardiomyocyte differentiation. These results demonstrate that different pathological stimuli induce different cell fates of c-kit + cells in vivo. Although the overall rate of cardiomyocyte formation from c-kit + cells is still below clinically relevant levels, we show that p53 is central to the ability of c-kit + cells to adopt cardiomyocyte fates, which could lead to the development of strategies to preferentially generate cardiomyocytes from c-kit + cells. © 2017 American Heart Association, Inc.

  3. Y-chromosome lineage determines cardiovascular organ T-cell infiltration in the stroke-prone spontaneously hypertensive rat.

    Science.gov (United States)

    Khan, Shanzana I; Andrews, Karen L; Jackson, Kristy L; Memon, Basimah; Jefferis, Ann-Maree; Lee, Man K S; Diep, Henry; Wei, Zihui; Drummond, Grant R; Head, Geoffrey A; Jennings, Garry L; Murphy, Andrew J; Vinh, Antony; Sampson, Amanda K; Chin-Dusting, Jaye P F

    2018-05-01

    The essential role of the Y chromosome in male sex determination has largely overshadowed the possibility that it may exert other biologic roles. Here, we show that Y-chromosome lineage is a strong determinant of perivascular and renal T-cell infiltration in the stroke-prone spontaneously hypertensive rat, which, in turn, may influence vascular function and blood pressure (BP). We also show, for the first time to our knowledge, that augmented perivascular T-cell levels can directly instigate vascular dysfunction, and that the production of reactive oxygen species that stimulate cyclo-oxygenase underlies this. We thus provide strong evidence for the consideration of Y-chromosome lineage in the diagnosis and treatment of male hypertension, and point to the modulation of cardiovascular organ T-cell infiltration as a possible mechanism that underpins Y- chromosome regulation of BP.-Khan, S. I., Andrews, K. L., Jackson, K. L., Memon, B., Jefferis, A.-M., Lee, M. K. S., Diep, H., Wei, Z., Drummond, G. R., Head, G. A., Jennings, G. L., Murphy, A. J., Vinh, A., Sampson, A. K., Chin-Dusting, J. P. F. Y-chromosome lineage determines cardiovascular organ T-cell infiltration in the stroke-prone spontaneously hypertensive rat.

  4. Determining the control networks regulating stem cell lineages in colonic crypts

    OpenAIRE

    Yang, J; Axelrod, DE; Komarova, NL

    2017-01-01

    The question of stem cell control is at the center of our understanding of tissue functioning, both in healthy and cancerous conditions. It is well accepted that cellular fate decisions (such as divisions, differentiation, apoptosis) are orchestrated by a network of regulatory signals emitted by different cell populations in the lineage and the surrounding tissue. The exact regulatory network that governs stem cell lineages in a given tissue is usually unknown. Here we propose an algorithm to...

  5. Cell lineages of the embryo of the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Deppe, U; Schierenberg, E; Cole, T; Krieg, C; Schmitt, D; Yoder, B; von Ehrenstein, G

    1978-01-01

    Embryogenesis of the free-living soil nematode Caenorhabditis elegans produces a juvenile having about 550 cells at hatching. We have determined the lineages of 182 cells by tracing the divisions of individual cells in living embryos. An invariant pattern of cleavage divisions of the egg generates a set of stem cells. These stem cells are the founders of six stem cell lineages. Each lineage has its own clock--i.e., an autonomous rhythm of synchronous cell divisions. The rhythms are maintained in spite of extensive cellular rearrangement. The rate and the orientation of the cell divisions of the cell lineages are essentially invariant among individuals. Thus, the destiny of cells seems to depend primarily on their lineage history. The anterior position of the site of origin of the stem cells in the egg relates to the rate of the cell cycle clock, suggesting intracellular preprogramming of the uncleaved egg. We used a technique that allows normal embryogenesis, from the fertilized egg to hatching, outside the parent under a cover glass. Embryogenesis was followed microscopically with Nomarski interference optics and high-resolution video recording.

  6. Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture

    OpenAIRE

    Kim, Euiseok J.; Battiste, James; Nakagawa, Yasushi; Johnson, Jane E.

    2008-01-01

    Ascl1 (previously Mash1) is a bHLH transcription factor essential for neuronal differentiation and specification in the nervous system. Although it has been studied for its role in several neural lineages, the full complement of lineages arising from Ascl1 progenitor cells remains unknown. Using an inducible Cre-flox genetic fate mapping strategy, Ascl1 lineages were determined throughout the brain. Ascl1 is present in proliferating progenitor cells but these cells are actively differentiatin...

  7. Stem Cell Lineages: Between Cell and Organism

    Directory of Open Access Journals (Sweden)

    Melinda Bonnie Fagan

    2017-01-01

    Full Text Available Ontologies of living things are increasingly grounded on the concepts and practices of current life science. Biological development is a process, undergone by living things, which begins with a single cell and (in an important class of cases ends with formation of a multicellular organism. The process of development is thus prima facie central for ideas about biological individuality and organismality. However, recent accounts of these concepts do not engage developmental biology. This paper aims to fill the gap, proposing the lineage view of stem cells as an ontological framework for conceptualizing organismal development. This account is grounded on experimental practices of stem cell research, with emphasis on new techniques for generating biological organization in vitro. On the lineage view, a stem cell is the starting point of a cell lineage with a specific organismal source, time-interval of existence, and ‘tree topology’ of branch-points linking the stem to developmental termini. The concept of ‘enkapsis’ accommodates the cell-organism relation within the lineage view; this hierarchical notion is further explicated by considering the methods and results of stem cell experiments. Results of this examination include a (partial characterization of stem cells’ developmental versatility, and the context-dependence of developmental processes involving stem cells.

  8. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells

    Science.gov (United States)

    Sojka, Dorothy K; Plougastel-Douglas, Beatrice; Yang, Liping; Pak-Wittel, Melissa A; Artyomov, Maxim N; Ivanova, Yulia; Zhong, Chao; Chase, Julie M; Rothman, Paul B; Yu, Jenny; Riley, Joan K; Zhu, Jinfang; Tian, Zhigang; Yokoyama, Wayne M

    2014-01-01

    Natural killer (NK) cells belong to the innate immune system; they can control virus infections and developing tumors by cytotoxicity and producing inflammatory cytokines. Most studies of mouse NK cells, however, have focused on conventional NK (cNK) cells in the spleen. Recently, we described two populations of liver NK cells, tissue-resident NK (trNK) cells and those resembling splenic cNK cells. However, their lineage relationship was unclear; trNK cells could be developing cNK cells, related to thymic NK cells, or a lineage distinct from both cNK and thymic NK cells. Herein we used detailed transcriptomic, flow cytometric, and functional analysis and transcription factor-deficient mice to determine that liver trNK cells form a distinct lineage from cNK and thymic NK cells. Taken together with analysis of trNK cells in other tissues, there are at least four distinct lineages of NK cells: cNK, thymic, liver (and skin) trNK, and uterine trNK cells. DOI: http://dx.doi.org/10.7554/eLife.01659.001 PMID:24714492

  9. Trophoblast lineage cells derived from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-01-01

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro

  10. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  11. Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture.

    Science.gov (United States)

    Kim, Euiseok J; Battiste, James; Nakagawa, Yasushi; Johnson, Jane E

    2008-08-01

    Ascl1 (previously Mash1) is a bHLH transcription factor essential for neuronal differentiation and specification in the nervous system. Although it has been studied for its role in several neural lineages, the full complement of lineages arising from Ascl1 progenitor cells remains unknown. Using an inducible Cre-flox genetic fate-mapping strategy, Ascl1 lineages were determined throughout the brain. Ascl1 is present in proliferating progenitor cells but these cells are actively differentiating as evidenced by rapid migration out of germinal zones. Ascl1 lineage cells contribute to distinct cell types in each major brain division: the forebrain including the cerebral cortex, olfactory bulb, hippocampus, striatum, hypothalamus, and thalamic nuclei, the midbrain including superior and inferior colliculi, and the hindbrain including Purkinje and deep cerebellar nuclei cells and cells in the trigeminal sensory system. Ascl1 progenitor cells at early stages in each CNS region preferentially become neurons, and at late stages they become oligodendrocytes. In conclusion, Ascl1-expressing progenitor cells in the brain give rise to multiple, but not all, neuronal subtypes and oligodendrocytes depending on the temporal and spatial context, consistent with a broad role in neural differentiation with some subtype specification.

  12. Determining Lineage Pathways from Cellular Barcoding Experiments

    Directory of Open Access Journals (Sweden)

    Leïla Perié

    2014-02-01

    Full Text Available Cellular barcoding and other single-cell lineage-tracing strategies form experimental methodologies for analysis of in vivo cell fate that have been instrumental in several significant recent discoveries. Due to the highly nonlinear nature of proliferation and differentiation, interrogation of the resulting data for evaluation of potential lineage pathways requires a new quantitative framework complete with appropriate statistical tests. Here, we develop such a framework, illustrating its utility by analyzing data from barcoded multipotent cells of the blood system. This application demonstrates that the data require additional paths beyond those found in the classical model, which leads us to propose that hematopoietic differentiation follows a loss of potential mechanism and to suggest further experiments to test this deduction. Our quantitative framework can evaluate the compatibility of lineage trees with barcoded data from any proliferating and differentiating cell system.

  13. Lineage-Restricted Mammary Stem Cells Sustain the Development, Homeostasis, and Regeneration of the Estrogen Receptor Positive Lineage.

    Science.gov (United States)

    Van Keymeulen, Alexandra; Fioramonti, Marco; Centonze, Alessia; Bouvencourt, Gaëlle; Achouri, Younes; Blanpain, Cédric

    2017-08-15

    The mammary gland (MG) is composed of different cell lineages, including the basal and the luminal cells (LCs) that are maintained by distinct stem cell (SC) populations. LCs can be subdivided into estrogen receptor (ER) + and ER - cells. LCs act as the cancer cell of origin in different types of mammary tumors. It remains unclear whether the heterogeneity found in luminal-derived mammary tumors arises from a pre-existing heterogeneity within LCs. To investigate LC heterogeneity, we used lineage tracing to assess whether the ER + lineage is maintained by multipotent SCs or by lineage-restricted SCs. To this end, we generated doxycycline-inducible ER-rtTA mice that allowed us to perform genetic lineage tracing of ER + LCs and study their fate and long-term maintenance. Our results show that ER + cells are maintained by lineage-restricted SCs that exclusively contribute to the expansion of the ER + lineage during puberty and their maintenance during adult life. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Cell lineage analysis of the mammalian female germline.

    Directory of Open Access Journals (Sweden)

    Yitzhak Reizel

    Full Text Available Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote. We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development.

  15. Two subpopulations of stem cells for T cell lineage

    International Nuclear Information System (INIS)

    Katsura, Y.; Amagai, T.; Kina, T.; Sado, T.; Nishikawa, S.

    1985-01-01

    An assay system for the stem cell that colonizes the thymus and differentiates into T cells was developed, and by using this assay system the existence of two subpopulations of stem cells for T cell lineage was clarified. Part-body-shielded and 900-R-irradiated C57BL/6 (H-2b, Thy-1.2) recipient mice, which do not require the transfer of pluripotent stem cells for their survival, were transferred with cells from B10 X Thy-1.1 (H-2b, Thy-1.1) donor mice. The reconstitution of the recipient's thymus lymphocytes was accomplished by stem cells in the donor cells and those spared in the shielded portion of the recipient that competitively colonize the thymus. Thus, the stem cell activity of donor cells can be evaluated by determining the proportion of donor-type (Thy-1.1+) cells in the recipient's thymus. Bone marrow cells were the most potent source of stem cells. By contrast, when the stem cell activity was compared between spleen and bone marrow cells of whole-body-irradiated (800 R) C57BL/6 mice reconstituted with B10 X Thy-1.1 bone marrow cells by assaying in part-body-shielded and irradiated C57BL/6 mice, the activity of these two organs showed quite a different time course of development. The results strongly suggest that the stem cells for T cell lineage in the bone marrow comprise at least two subpopulations, spleen-seeking and bone marrow-seeking cells

  16. Cell lineage branching as a strategy for proliferative control.

    Science.gov (United States)

    Buzi, Gentian; Lander, Arthur D; Khammash, Mustafa

    2015-02-19

    How tissue and organ sizes are specified is one of the great unsolved mysteries in biology. Experiments and mathematical modeling implicate feedback control of cell lineage progression, but a broad understanding of what lineage feedback accomplishes is lacking. By exploring the possible effects of various biologically relevant disturbances on the dynamic and steady state behaviors of stem cell lineages, we find that the simplest and most frequently studied form of lineage feedback - which we term renewal control - suffers from several serious drawbacks. These reflect fundamental performance limits dictated by universal conservation-type laws, and are independent of parameter choice. Here we show that introducing lineage branches can circumvent all such limitations, permitting effective attenuation of a wide range of perturbations. The type of feedback that achieves such performance - which we term fate control - involves promotion of lineage branching at the expense of both renewal and (primary) differentiation. We discuss the evidence that feedback of just this type occurs in vivo, and plays a role in tissue growth control. Regulated lineage branching is an effective strategy for dealing with disturbances in stem cell systems. The existence of this strategy provides a dynamics-based justification for feedback control of cell fate in vivo.

  17. Colon stem cell and crypt dynamics exposed by cell lineage reconstruction.

    Directory of Open Access Journals (Sweden)

    Yitzhak Reizel

    2011-07-01

    Full Text Available Stem cell dynamics in vivo are often being studied by lineage tracing methods. Our laboratory has previously developed a retrospective method for reconstructing cell lineage trees from somatic mutations accumulated in microsatellites. This method was applied here to explore different aspects of stem cell dynamics in the mouse colon without the use of stem cell markers. We first demonstrated the reliability of our method for the study of stem cells by confirming previously established facts, and then we addressed open questions. Our findings confirmed that colon crypts are monoclonal and that, throughout adulthood, the process of monoclonal conversion plays a major role in the maintenance of crypts. The absence of immortal strand mechanism in crypts stem cells was validated by the age-dependent accumulation of microsatellite mutations. In addition, we confirmed the positive correlation between physical and lineage proximity of crypts, by showing that the colon is separated into small domains that share a common ancestor. We gained new data demonstrating that colon epithelium is clustered separately from hematopoietic and other cell types, indicating that the colon is constituted of few progenitors and ruling out significant renewal of colonic epithelium from hematopoietic cells during adulthood. Overall, our study demonstrates the reliability of cell lineage reconstruction for the study of stem cell dynamics, and it further addresses open questions in colon stem cells. In addition, this method can be applied to study stem cell dynamics in other systems.

  18. High Yield of Adult Oligodendrocyte Lineage Cells Obtained from Meningeal Biopsy

    Directory of Open Access Journals (Sweden)

    Sissi Dolci

    2017-10-01

    Full Text Available Oligodendrocyte loss can lead to cognitive and motor deficits. Current remyelinating therapeutic strategies imply either modulation of endogenous oligodendrocyte precursors or transplantation of in vitro expanded oligodendrocytes. Cell therapy, however, still lacks identification of an adequate source of oligodendrocyte present in adulthood and able to efficiently produce transplantable cells. Recently, a neural stem cell-like population has been identified in meninges. We developed a protocol to obtain high yield of oligodendrocyte lineage cells from one single biopsy of adult rat meningeal tissue. From 1 cm2 of adult rat spinal cord meninges, we efficiently expanded a homogenous culture of 10 millions of meningeal-derived oligodendrocyte lineage cells in a short period of time (approximately 4 weeks. Meningeal-derived oligodendrocyte lineage cells show typical mature oligodendrocyte morphology and express specific oligodendrocyte markers, such as galactosylceramidase and myelin basic protein. Moreover, when transplanted in a chemically demyelinated spinal cord model, meningeal-derived oligodendrocyte lineage cells display in vivo-remyelinating potential. This oligodendrocyte lineage cell population derives from an accessible and adult source, being therefore a promising candidate for autologous cell therapy of demyelinating diseases. In addition, the described method to differentiate meningeal-derived neural stem cells into oligodendrocyte lineage cells may represent a valid in vitro model to dissect oligodendrocyte differentiation and to screen for drugs capable to promote oligodendrocyte regeneration.

  19. Cytomegalovirus immune evasion of myeloid lineage cells.

    Science.gov (United States)

    Brinkmann, Melanie M; Dağ, Franziska; Hengel, Hartmut; Messerle, Martin; Kalinke, Ulrich; Čičin-Šain, Luka

    2015-06-01

    Cytomegalovirus (CMV) evades the immune system in many different ways, allowing the virus to grow and its progeny to spread in the face of an adverse environment. Mounting evidence about the antiviral role of myeloid immune cells has prompted the research of CMV immune evasion mechanisms targeting these cells. Several cells of the myeloid lineage, such as monocytes, dendritic cells and macrophages, play a role in viral control, but are also permissive for CMV and are naturally infected by it. Therefore, CMV evasion of myeloid cells involves mechanisms that qualitatively differ from the evasion of non-CMV-permissive immune cells of the lymphoid lineage. The evasion of myeloid cells includes effects in cis, where the virus modulates the immune signaling pathways within the infected myeloid cell, and those in trans, where the virus affects somatic cells targeted by cytokines released from myeloid cells. This review presents an overview of CMV strategies to modulate and evade the antiviral activity of myeloid cells in cis and in trans.

  20. Lineage Switching in Acute Leukemias: A Consequence of Stem Cell Plasticity?

    Directory of Open Access Journals (Sweden)

    Elisa Dorantes-Acosta

    2012-01-01

    Full Text Available Acute leukemias are the most common cancer in childhood and characterized by the uncontrolled production of hematopoietic precursor cells of the lymphoid or myeloid series within the bone marrow. Even when a relatively high efficiency of therapeutic agents has increased the overall survival rates in the last years, factors such as cell lineage switching and the rise of mixed lineages at relapses often change the prognosis of the illness. During lineage switching, conversions from lymphoblastic leukemia to myeloid leukemia, or vice versa, are recorded. The central mechanisms involved in these phenomena remain undefined, but recent studies suggest that lineage commitment of plastic hematopoietic progenitors may be multidirectional and reversible upon specific signals provided by both intrinsic and environmental cues. In this paper, we focus on the current knowledge about cell heterogeneity and the lineage switch resulting from leukemic cells plasticity. A number of hypothetical mechanisms that may inspire changes in cell fate decisions are highlighted. Understanding the plasticity of leukemia initiating cells might be fundamental to unravel the pathogenesis of lineage switch in acute leukemias and will illuminate the importance of a flexible hematopoietic development.

  1. Cell tracing reveals a dorsoventral lineage restriction plane in the mouse limb bud mesenchyme.

    Science.gov (United States)

    Arques, Carlos G; Doohan, Roisin; Sharpe, James; Torres, Miguel

    2007-10-01

    Regionalization of embryonic fields into independent units of growth and patterning is a widespread strategy during metazoan development. Compartments represent a particular instance of this regionalization, in which unit coherence is maintained by cell lineage restriction between adjacent regions. Lineage compartments have been described during insect and vertebrate development. Two common characteristics of the compartments described so far are their occurrence in epithelial structures and the presence of signaling regions at compartment borders. Whereas Drosophila compartmental organization represents a background subdivision of embryonic fields that is not necessarily related to anatomical structures, vertebrate compartment borders described thus far coincide with, or anticipate, anatomical or cell-type discontinuities. Here, we describe a general method for clonal analysis in the mouse and use it to determine the topology of clone distribution along the three limb axes. We identify a lineage restriction boundary at the limb mesenchyme dorsoventral border that is unrelated to any anatomical discontinuity, and whose lineage restriction border is not obviously associated with any signaling center. This restriction is the first example in vertebrates of a mechanism of primordium subdivision unrelated to anatomical boundaries. Furthermore, this is the first lineage compartment described within a mesenchymal structure in any organism, suggesting that lineage restrictions are fundamental not only for epithelial structures, but also for mesenchymal field patterning. No lineage compartmentalization was found along the proximodistal or anteroposterior axes, indicating that patterning along these axes does not involve restriction of cell dispersion at specific axial positions.

  2. Single cell lineage analysis of mouse embryonic stem cells at the exit from pluripotency

    Directory of Open Access Journals (Sweden)

    Jamie Trott

    2013-08-01

    Understanding how interactions between extracellular signalling pathways and transcription factor networks influence cellular decision making will be crucial for understanding mammalian embryogenesis and for generating specialised cell types in vitro. To this end, pluripotent mouse Embryonic Stem (mES cells have proven to be a useful model system. However, understanding how transcription factors and signalling pathways affect decisions made by individual cells is confounded by the fact that measurements are generally made on groups of cells, whilst individual mES cells differentiate at different rates and towards different lineages, even in conditions that favour a particular lineage. Here we have used single-cell measurements of transcription factor expression and Wnt/β-catenin signalling activity to investigate their effects on lineage commitment decisions made by individual cells. We find that pluripotent mES cells exhibit differing degrees of heterogeneity in their expression of important regulators from pluripotency, depending on the signalling environment to which they are exposed. As mES cells differentiate, downregulation of Nanog and Oct4 primes cells for neural commitment, whilst loss of Sox2 expression primes cells for primitive streak commitment. Furthermore, we find that Wnt signalling acts through Nanog to direct cells towards a primitive streak fate, but that transcriptionally active β-catenin is associated with both neural and primitive streak commitment. These observations confirm and extend previous suggestions that pluripotency genes influence lineage commitment and demonstrate how their dynamic expression affects the direction of lineage commitment, whilst illustrating two ways in which the Wnt signalling pathway acts on this network during cell fate assignment.

  3. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential.

    Science.gov (United States)

    Bolton, Helen; Graham, Sarah J L; Van der Aa, Niels; Kumar, Parveen; Theunis, Koen; Fernandez Gallardo, Elia; Voet, Thierry; Zernicka-Goetz, Magdalena

    2016-03-29

    Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic.

  4. Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction.

    Science.gov (United States)

    Poleshko, Andrey; Shah, Parisha P; Gupta, Mudit; Babu, Apoorva; Morley, Michael P; Manderfield, Lauren J; Ifkovits, Jamie L; Calderon, Damelys; Aghajanian, Haig; Sierra-Pagán, Javier E; Sun, Zheng; Wang, Qiaohong; Li, Li; Dubois, Nicole C; Morrisey, Edward E; Lazar, Mitchell A; Smith, Cheryl L; Epstein, Jonathan A; Jain, Rajan

    2017-10-19

    Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Quantitative rather than qualitative differences in gene expression predominate in intestinal cell maturation along distinct cell lineages

    International Nuclear Information System (INIS)

    Velcich, Anna; Corner, Georgia; Paul, Doru; Zhuang Min; Mariadason, John M.; Laboisse, Christian; Augenlicht, Leonard

    2005-01-01

    Several cell types are present in the intestinal epithelium that likely arise from a common precursor, the stem cell, and each mature cell type expresses a unique set of genes that characterizes its functional phenotype. Although the process of differentiation is intimately linked to the cessation of proliferation, the mechanisms that dictate intestinal cell fate determination are not well characterized. To investigate the reprogramming of gene expression during the cell lineage allocation/differentiation process, we took advantage of a unique system of two clonal derivatives of HT29 cells, Cl16E and Cl19A cells, which spontaneously differentiate as mucus producing goblet and chloride-secreting cells, respectively, as a function of time. By profiling gene expression, we found that these two cell lines show remarkably similar kinetics of change in gene expression and common clusters of coordinately regulated genes. This demonstrates that lineage-specific differentiation of intestinal epithelial cells is characterized overall by the sequential recruitment of functionally similar gene sets independent of the final phenotype of the mature cells

  6. Ezh2 represses the basal cell lineage during lung endoderm development.

    Science.gov (United States)

    Snitow, Melinda E; Li, Shanru; Morley, Michael P; Rathi, Komal; Lu, Min Min; Kadzik, Rachel S; Stewart, Kathleen M; Morrisey, Edward E

    2015-01-01

    The development of the lung epithelium is regulated in a stepwise fashion to generate numerous differentiated and stem cell lineages in the adult lung. How these different lineages are generated in a spatially and temporally restricted fashion remains poorly understood, although epigenetic regulation probably plays an important role. We show that the Polycomb repressive complex 2 component Ezh2 is highly expressed in early lung development but is gradually downregulated by late gestation. Deletion of Ezh2 in early lung endoderm progenitors leads to the ectopic and premature appearance of Trp63+ basal cells that extend the entire length of the airway. Loss of Ezh2 also leads to reduced secretory cell differentiation. In their place, morphologically similar cells develop that express a subset of basal cell genes, including keratin 5, but no longer express high levels of either Trp63 or of standard secretory cell markers. This suggests that Ezh2 regulates the phenotypic switch between basal cells and secretory cells. Together, these findings show that Ezh2 restricts the basal cell lineage during normal lung endoderm development to allow the proper patterning of epithelial lineages during lung formation. © 2015. Published by The Company of Biologists Ltd.

  7. Involvement of multiple cell lineages in atherogenesis | Ogeng'o ...

    African Journals Online (AJOL)

    Involvement of multiple cell lineages in atherogenesis. ... mast cells, dendritic cells, macrophages and immigrant cells usually found in blood, namely ... which influence inflammation, migration, proliferation and secretory activity of each other in ...

  8. Polycomb enables primitive endoderm lineage priming in embryonic stem cells

    DEFF Research Database (Denmark)

    Illingworth, Robert S; Hölzenspies, Jurriaan J; Roske, Fabian V

    2016-01-01

    Mouse embryonic stem cells (ESCs), like the blastocyst from which they are derived, contain precursors of the epiblast (Epi) and primitive endoderm (PrEn) lineages. While transient in vivo, these precursor populations readily interconvert in vitro. We show that altered transcription is the driver...... polycomb with dynamic changes in transcription and stalled lineage commitment, allowing cells to explore alternative choices prior to a definitive decision....

  9. Long-term live cell imaging and automated 4D analysis of drosophila neuroblast lineages.

    Directory of Open Access Journals (Sweden)

    Catarina C F Homem

    Full Text Available The developing Drosophila brain is a well-studied model system for neurogenesis and stem cell biology. In the Drosophila central brain, around 200 neural stem cells called neuroblasts undergo repeated rounds of asymmetric cell division. These divisions typically generate a larger self-renewing neuroblast and a smaller ganglion mother cell that undergoes one terminal division to create two differentiating neurons. Although single mitotic divisions of neuroblasts can easily be imaged in real time, the lack of long term imaging procedures has limited the use of neuroblast live imaging for lineage analysis. Here we describe a method that allows live imaging of cultured Drosophila neuroblasts over multiple cell cycles for up to 24 hours. We describe a 4D image analysis protocol that can be used to extract cell cycle times and growth rates from the resulting movies in an automated manner. We use it to perform lineage analysis in type II neuroblasts where clonal analysis has indicated the presence of a transit-amplifying population that potentiates the number of neurons. Indeed, our experiments verify type II lineages and provide quantitative parameters for all cell types in those lineages. As defects in type II neuroblast lineages can result in brain tumor formation, our lineage analysis method will allow more detailed and quantitative analysis of tumorigenesis and asymmetric cell division in the Drosophila brain.

  10. Mesenchymal progenitor cells for the osteogenic lineage.

    Science.gov (United States)

    Ono, Noriaki; Kronenberg, Henry M

    2015-09-01

    Mesenchymal progenitors of the osteogenic lineage provide the flexibility for bone to grow, maintain its function and homeostasis. Traditionally, colony-forming-unit fibroblasts (CFU-Fs) have been regarded as surrogates for mesenchymal progenitors; however, this definition cannot address the function of these progenitors in their native setting. Transgenic murine models including lineage-tracing technologies based on the cre-lox system have proven to be useful in delineating mesenchymal progenitors in their native environment. Although heterogeneity of cell populations of interest marked by a promoter-based approach complicates overall interpretation, an emerging complexity of mesenchymal progenitors has been revealed. Current literatures suggest two distinct types of bone progenitor cells; growth-associated mesenchymal progenitors contribute to explosive growth of bone in early life, whereas bone marrow mesenchymal progenitors contribute to the much slower remodeling process and response to injury that occurs mainly in adulthood. More detailed relationships of these progenitors need to be studied through further experimentation.

  11. Retinoic Acid Is Essential for Th1 Cell Lineage Stability and Prevents Transition to a Th17 Cell Program

    Science.gov (United States)

    Brown, Chrysothemis C.; Esterhazy, Daria; Sarde, Aurelien; London, Mariya; Pullabhatla, Venu; Osma-Garcia, Ines; al-Bader, Raya; Ortiz, Carla; Elgueta, Raul; Arno, Matthew; de Rinaldis, Emanuele; Mucida, Daniel; Lord, Graham M.; Noelle, Randolph J.

    2015-01-01

    Summary CD4+ T cells differentiate into phenotypically distinct T helper cells upon antigenic stimulation. Regulation of plasticity between these CD4+ T-cell lineages is critical for immune homeostasis and prevention of autoimmune disease. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARα, sustains stable expression of Th1 lineage specifying genes, as well as repressing genes that instruct Th17-cell fate. RA signaling is essential for limiting Th1-cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our study identifies RA-RARα as a key component of the regulatory network governing maintenance and plasticity of Th1-cell fate and defines an additional pathway for the development of Th17 cells. PMID:25769610

  12. Instruction of hematopoietic lineage choice by cytokine signaling

    Energy Technology Data Exchange (ETDEWEB)

    Endele, Max; Etzrodt, Martin; Schroeder, Timm, E-mail: timm.schroeder@bsse.ethz.ch

    2014-12-10

    Hematopoiesis is the cumulative consequence of finely tuned signaling pathways activated through extrinsic factors, such as local niche signals and systemic hematopoietic cytokines. Whether extrinsic factors actively instruct the lineage choice of hematopoietic stem and progenitor cells or are only selectively allowing survival and proliferation of already intrinsically lineage-committed cells has been debated over decades. Recent results demonstrated that cytokines can instruct lineage choice. However, the precise function of individual cytokine-triggered signaling molecules in inducing cellular events like proliferation, lineage choice, and differentiation remains largely elusive. Signal transduction pathways activated by different cytokine receptors are highly overlapping, but support the production of distinct hematopoietic lineages. Cellular context, signaling dynamics, and the crosstalk of different signaling pathways determine the cellular response of a given extrinsic signal. New tools to manipulate and continuously quantify signaling events at the single cell level are therefore required to thoroughly interrogate how dynamic signaling networks yield a specific cellular response. - Highlights: • Recent studies provided definite proof for lineage-instructive action of cytokines. • Signaling pathways involved in hematopoietic lineage instruction remain elusive. • New tools are emerging to quantitatively study dynamic signaling networks over time.

  13. Clonal analysis of the cell lineages in the male flower of maize

    International Nuclear Information System (INIS)

    Dawe, R.K.; Freeling, M.

    1990-01-01

    The cell lineages in the male flower of maize were characterized using X-rays and transposable elements to produce clonal sectors differing in anthocyanin pigmentation. Less than 50% of the somatic tassel mutations (caused by reversion of unstable color mutations) that were visible on the anther wall were sexually transmitted by the male gametes, unless the sectors were larger than half the tassel circumference. This result is explained by showing that: (a) both the outer (LI) and inner (LII) lineages of the shoot apical meristem form a cell layer in the bilayered anther wall, and that anther pigmentation can be derived from either cell layer; and that (b) the male germ cells are derived almost exclusively from the LII. Therefore, while reversion events in either the LI or LII are visible on the anther, only the LII events are heritable. Reversion events that occur prior to the organization of the shoot apical meristem however, produce large (usually more than one-half tassel) sectors that include both the outer and inner lineages. In contrast to the high level of cell layer invasion previously reported during leaf development, during anther development less than 10(-3) cells in the LI invade the LII to form male gametes. The strong correlation between cell lineage and cell fate in the maize anther has implications for studies on plant evolution and the genetic improvement of cereals by DNA transformation

  14. Differentiation of Equine Mesenchymal Stromal Cells into Cells of Neural Lineage: Potential for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Claudia Cruz Villagrán

    2014-01-01

    Full Text Available Mesenchymal stromal cells (MSCs are able to differentiate into extramesodermal lineages, including neurons. Positive outcomes were obtained after transplantation of neurally induced MSCs in laboratory animals after nerve injury, but this is unknown in horses. Our objectives were to test the ability of equine MSCs to differentiate into cells of neural lineage in vitro, to assess differences in morphology and lineage-specific protein expression, and to investigate if horse age and cell passage number affected the ability to achieve differentiation. Bone marrow-derived MSCs were obtained from young and adult horses. Following demonstration of stemness, MSCs were neurally induced and microscopically assessed at different time points. Results showed that commercially available nitrogen-coated tissue culture plates supported proliferation and differentiation. Morphological changes were immediate and all the cells displayed a neural crest-like cell phenotype. Expression of neural progenitor proteins, was assessed via western blot or immunofluorescence. In our study, MSCs generated from young and middle-aged horses did not show differences in their ability to undergo differentiation. The effect of cell passage number, however, is inconsistent and further experiments are needed. Ongoing work is aimed at transdifferentiating these cells into Schwann cells for transplantation into a peripheral nerve injury model in horses.

  15. Retinoic acid is essential for Th1 cell lineage stability and prevents transition to a Th17 cell program.

    Science.gov (United States)

    Brown, Chrysothemis C; Esterhazy, Daria; Sarde, Aurelien; London, Mariya; Pullabhatla, Venu; Osma-Garcia, Ines; Al-Bader, Raya; Ortiz, Carla; Elgueta, Raul; Arno, Matthew; de Rinaldis, Emanuele; Mucida, Daniel; Lord, Graham M; Noelle, Randolph J

    2015-03-17

    CD4(+) T cells differentiate into phenotypically distinct T helper cells upon antigenic stimulation. Regulation of plasticity between these CD4(+) T-cell lineages is critical for immune homeostasis and prevention of autoimmune disease. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARα, sustains stable expression of Th1 lineage specifying genes, as well as repressing genes that instruct Th17-cell fate. RA signaling is essential for limiting Th1-cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our study identifies RA-RARα as a key component of the regulatory network governing maintenance and plasticity of Th1-cell fate and defines an additional pathway for the development of Th17 cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Acute leukemias of ambiguous lineage.

    Science.gov (United States)

    Béné, Marie C; Porwit, Anna

    2012-02-01

    The 2008 edition of the WHO Classification of Tumors of Haematopoietic and Lymphoid Tissues recognizes a special category called "leukemias of ambiguous lineage." The vast majority of these rare leukemias are classified as mixed phenotype acute leukemia (MPAL), although acute undifferentiated leukemias and natural killer lymphoblastic leukemias are also included. The major immunophenotypic markers used by the WHO 2008 to determine the lineage for these proliferations are myeloperoxidase, CD19, and cytoplasmic CD3. However, extensive immunophenotyping is necessary to confirm that the cells indeed belong to 2 different lineages or coexpress differentiation antigens of more than 1 lineage. Specific subsets of MPAL are defined by chromosomal anomalies such as the t(9;22) Philadelphia chromosome BCR-ABL1 or involvement of the MLL gene on chromosome 11q23. Other MPAL are divided into B/myeloid NOS, T/myeloid NOS, B/T NOS, and B/T/myeloid NOS. MPAL are usually of dire prognosis, respond variably to chemotherapy of acute lymphoblastic or acute myeloblastic type, and benefit most from rapid allogeneic hematopoietic stem cell transplantation.

  17. Single-cell protein secretomic signatures as potential correlates to tumor cell lineage evolution and cell-cell interaction

    Directory of Open Access Journals (Sweden)

    Minsuk eKwak

    2013-02-01

    Full Text Available Secreted proteins including cytokines, chemokines and growth factors represent important functional regulators mediating a range of cellular behavior and cell-cell paracrine/autocrine signaling, e.g. in the immunological system, tumor microenvironment or stem cell niche. Detection of these proteins is of great value not only in basic cell biology but also for diagnosis and therapeutic monitoring of human diseases such as cancer. However, due to co-production of multiple effector proteins from a single cell, referred to as polyfunctionality, it is biologically informative to measure a panel of secreted proteins, or secretomic signature, at the level of single cells. Recent evidence further indicates that a genetically-identical cell population can give rise to diverse phenotypic differences. It is known that cytokines, for example, in the immune system define the effector functions and lineage differentiation of immune cells. In this Perspective Article, we hypothesize that protein secretion profile may represent a universal measure to identify the definitive correlate in the larger context of cellular functions to dissect cellular heterogeneity and evolutionary lineage relationship in human cancer.

  18. Telomerase Protects Werner Syndrome Lineage-Specific Stem Cells from Premature Aging

    Directory of Open Access Journals (Sweden)

    Hoi-Hung Cheung

    2014-04-01

    Full Text Available Werner syndrome (WS patients exhibit premature aging predominantly in mesenchyme-derived tissues, but not in neural lineages, a consequence of telomere dysfunction and accelerated senescence. The cause of this lineage-specific aging remains unknown. Here, we document that reprogramming of WS fibroblasts to pluripotency elongated telomere length and prevented telomere dysfunction. To obtain mechanistic insight into the origin of tissue-specific aging, we differentiated iPSCs to mesenchymal stem cells (MSCs and neural stem/progenitor cells (NPCs. We observed recurrence of premature senescence associated with accelerated telomere attrition and defective synthesis of the lagging strand telomeres in MSCs, but not in NPCs. We postulate this “aging” discrepancy is regulated by telomerase. Expression of hTERT or p53 knockdown ameliorated the accelerated aging phenotypein MSC, whereas inhibition of telomerase sensitized NPCs to DNA damage. Our findings unveil a role for telomerase in the protection of accelerated aging in a specific lineage of stem cells.

  19. Concise Review: Plasma and Nuclear Membranes Convey Mechanical Information to Regulate Mesenchymal Stem Cell Lineage.

    Science.gov (United States)

    Uzer, Gunes; Fuchs, Robyn K; Rubin, Janet; Thompson, William R

    2016-06-01

    Numerous factors including chemical, hormonal, spatial, and physical cues determine stem cell fate. While the regulation of stem cell differentiation by soluble factors is well-characterized, the role of mechanical force in the determination of lineage fate is just beginning to be understood. Investigation of the role of force on cell function has largely focused on "outside-in" signaling, initiated at the plasma membrane. When interfaced with the extracellular matrix, the cell uses integral membrane proteins, such as those found in focal adhesion complexes to translate force into biochemical signals. Akin to these outside-in connections, the internal cytoskeleton is physically linked to the nucleus, via proteins that span the nuclear membrane. Although structurally and biochemically distinct, these two forms of mechanical coupling influence stem cell lineage fate and, when disrupted, often lead to disease. Here we provide an overview of how mechanical coupling occurs at the plasma and nuclear membranes. We also discuss the role of force on stem cell differentiation, with focus on the biochemical signals generated at the cell membrane and the nucleus, and how those signals influence various diseases. While the interaction of stem cells with their physical environment and how they respond to force is complex, an understanding of the mechanical regulation of these cells is critical in the design of novel therapeutics to combat diseases associated with aging, cancer, and osteoporosis. Stem Cells 2016;34:1455-1463. © 2016 AlphaMed Press.

  20. Lineage specific expression of Polycomb Group Proteins in human embryonic stem cells in vitro.

    Science.gov (United States)

    Pethe, Prasad; Pursani, Varsha; Bhartiya, Deepa

    2015-05-01

    Human embryonic (hES) stem cells are an excellent model to study lineage specification and differentiation into various cell types. Differentiation necessitates repression of specific genes not required for a particular lineage. Polycomb Group (PcG) proteins are key histone modifiers, whose primary function is gene repression. PcG proteins form complexes called Polycomb Repressive Complexes (PRCs), which catalyze histone modifications such as H2AK119ub1, H3K27me3, and H3K9me3. PcG proteins play a crucial role during differentiation of stem cells. The expression of PcG transcripts during differentiation of hES cells into endoderm, mesoderm, and ectoderm lineage is yet to be shown. In-house derived hES cell line KIND1 was differentiated into endoderm, mesoderm, and ectoderm lineages; followed by characterization using RT-PCR for HNF4A, CDX2, MEF2C, TBX5, SOX1, and MAP2. qRT-PCR and western blotting was performed to compare expression of PcG transcripts and proteins across all the three lineages. We observed that cells differentiated into endoderm showed upregulation of RING1B, BMI1, EZH2, and EED transcripts. Mesoderm differentiation was characterized by significant downregulation of all PcG transcripts during later stages. BMI1 and RING1B were upregulated while EZH2, SUZ12, and EED remained low during ectoderm differentiation. Western blotting also showed distinct expression of BMI1 and EZH2 during differentiation into three germ layers. Our study shows that hES cells differentiating into endoderm, mesoderm, and ectoderm lineages show distinct PcG expression profile at transcript and protein level. © 2015 International Federation for Cell Biology.

  1. Pox neuro control of cell lineages that give rise to larval poly-innervated external sensory organs in Drosophila.

    Science.gov (United States)

    Jiang, Yanrui; Boll, Werner; Noll, Markus

    2015-01-15

    The Pox neuro (Poxn) gene of Drosophila plays a crucial role in the development of poly-innervated external sensory (p-es) organs. However, how Poxn exerts this role has remained elusive. In this study, we have analyzed the cell lineages of all larval p-es organs, namely of the kölbchen, papilla 6, and hair 3. Surprisingly, these lineages are distinct from any previously reported cell lineages of sensory organs. Unlike the well-established lineage of mono-innervated external sensory (m-es) organs and a previously proposed model of the p-es lineage, we demonstrate that all wild-type p-es lineages exhibit the following features: the secondary precursor, pIIa, gives rise to all three support cells-socket, shaft, and sheath, whereas the other secondary precursor, pIIb, is neuronal and gives rise to all neurons. We further show that in one of the p-es lineages, that of papilla 6, one cell undergoes apoptosis. By contrast in Poxn null mutants, all p-es lineages have a reduced number of cells and their pattern of cell divisions is changed to that of an m-es organ, with the exception of a lineage in a minority of mutant kölbchen that retains a second bipolar neuron. Indeed, the role of Poxn in p-es lineages is consistent with the specification of the developmental potential of secondary precursors and the regulation of cell division but not apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells.

    Science.gov (United States)

    Tsang, Jason C H; Yu, Yong; Burke, Shannon; Buettner, Florian; Wang, Cui; Kolodziejczyk, Aleksandra A; Teichmann, Sarah A; Lu, Liming; Liu, Pentao

    2015-09-21

    Hematopoietic stem cells (HSCs) are a rare cell type with the ability of long-term self-renewal and multipotency to reconstitute all blood lineages. HSCs are typically purified from the bone marrow using cell surface markers. Recent studies have identified significant cellular heterogeneities in the HSC compartment with subsets of HSCs displaying lineage bias. We previously discovered that the transcription factor Bcl11a has critical functions in the lymphoid development of the HSC compartment. In this report, we employ single-cell transcriptomic analysis to dissect the molecular heterogeneities in HSCs. We profile the transcriptomes of 180 highly purified HSCs (Bcl11a (+/+) and Bcl11a (-/-)). Detailed analysis of the RNA-seq data identifies cell cycle activity as the major source of transcriptomic variation in the HSC compartment, which allows reconstruction of HSC cell cycle progression in silico. Single-cell RNA-seq profiling of Bcl11a (-/-) HSCs reveals abnormal proliferative phenotypes. Analysis of lineage gene expression suggests that the Bcl11a (-/-) HSCs are constituted of two distinct myeloerythroid-restricted subpopulations. Remarkably, similar myeloid-restricted cells could also be detected in the wild-type HSC compartment, suggesting selective elimination of lymphoid-competent HSCs after Bcl11a deletion. These defects are experimentally validated in serial transplantation experiments where Bcl11a (-/-) HSCs are myeloerythroid-restricted and defective in self-renewal. Our study demonstrates the power of single-cell transcriptomics in dissecting cellular process and lineage heterogeneities in stem cell compartments, and further reveals the molecular and cellular defects in the Bcl11a-deficient HSC compartment.

  3. Hacking cell differentiation: transcriptional rerouting in reprogramming, lineage infidelity and metaplasia.

    Science.gov (United States)

    Regalo, Gonçalo; Leutz, Achim

    2013-08-01

    Initiating neoplastic cell transformation events are of paramount importance for the comprehension of regeneration and vanguard oncogenic processes but are difficult to characterize and frequently clinically overlooked. In epithelia, pre-neoplastic transformation stages are often distinguished by the appearance of phenotypic features of another differentiated tissue, termed metaplasia. In haemato/lymphopoietic malignancies, cell lineage ambiguity is increasingly recorded. Both, metaplasia and biphenotypic leukaemia/lymphoma represent examples of dysregulated cell differentiation that reflect a history of trans-differentiation and/or epigenetic reprogramming. Here we compare the similarity between molecular events of experimental cell trans-differentiation as an emerging therapeutic concept, with lineage confusion, as in metaplasia and dysplasia forecasting tumour development. © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  4. Multiple mesodermal lineage differentiation of Apodemus sylvaticus embryonic stem cells in vitro

    Directory of Open Access Journals (Sweden)

    Yu Weihua

    2010-06-01

    Full Text Available Abstract Background Embryonic stem (ES cells have attracted significant attention from researchers around the world because of their ability to undergo indefinite self-renewal and produce derivatives from the three cell lineages, which has enormous value in research and clinical applications. Until now, many ES cell lines of different mammals have been established and studied. In addition, recently, AS-ES1 cells derived from Apodemus sylvaticus were established and identified by our laboratory as a new mammalian ES cell line. Hence further research, in the application of AS-ES1 cells, is warranted. Results Herein we report the generation of multiple mesodermal AS-ES1 lineages via embryoid body (EB formation by the hanging drop method and the addition of particular reagents and factors for induction at the stage of EB attachment. The AS-ES1 cells generated separately in vitro included: adipocytes, osteoblasts, chondrocytes and cardiomyocytes. Histochemical staining, immunofluorescent staining and RT-PCR were carried out to confirm the formation of multiple mesodermal lineage cells. Conclusions The appropriate reagents and culture milieu used in mesodermal differentiation of mouse ES cells also guide the differentiation of in vitro AS-ES1 cells into distinct mesoderm-derived cells. This study provides a better understanding of the characteristics of AS-ES1 cells, a new species ES cell line and promotes the use of Apodemus ES cells as a complement to mouse ES cells in future studies.

  5. Zika Virus Exhibits Lineage-Specific Phenotypes in Cell Culture, in Aedes aegypti Mosquitoes, and in an Embryo Model

    Directory of Open Access Journals (Sweden)

    Katherine A. Willard

    2017-12-01

    Full Text Available Zika virus (ZIKV has quietly circulated in Africa and Southeast Asia for the past 65 years. However, the recent ZIKV epidemic in the Americas propelled this mosquito-borne virus to the forefront of flavivirus research. Based on historical evidence, ZIKV infections in Africa were sporadic and caused mild symptoms such as fever, skin rash, and general malaise. In contrast, recent Asian-lineage ZIKV infections in the Pacific Islands and the Americas are linked to birth defects and neurological disorders. The aim of this study is to compare replication, pathogenicity, and transmission efficiency of two historic and two contemporary ZIKV isolates in cell culture, the mosquito host, and an embryo model to determine if genetic variation between the African and Asian lineages results in phenotypic differences. While all tested isolates replicated at similar rates in Vero cells, the African isolates displayed more rapid viral replication in the mosquito C6/36 cell line, yet they exhibited poor infection rates in Aedes aegypti mosquitoes compared to the contemporary Asian-lineage isolates. All isolates could infect chicken embryos; however, infection with African isolates resulted in higher embryo mortality than infection with Asian-lineage isolates. These results suggest that genetic variation between ZIKV isolates can significantly alter experimental outcomes.

  6. Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells

    NARCIS (Netherlands)

    Semrau, Stefan; Goldmann, Johanna E; Soumillon, Magali; Mikkelsen, Tarjei S; Jaenisch, Rudolf; van Oudenaarden, Alexander

    2017-01-01

    Gene expression heterogeneity in the pluripotent state of mouse embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and lineage commitment have not been studied systematically at the single-cell level. Here we measure the gene expression

  7. The differentiation potential of adipose tissue-derived mesenchymal stem cells into cell lineage related to male germ cells

    Directory of Open Access Journals (Sweden)

    P. Bräunig

    Full Text Available ABSTRACT The adipose tissue is a reliable source of Mesenchymal stem cells (MSCs showing a higher plasticity and transdifferentiation potential into multilineage cells. In the present study, adipose tissue-derived mesenchymal stem cells (AT-MSCs were isolated from mice omentum and epididymis fat depots. The AT-MSCs were initially compared based on stem cell surface markers and on the mesodermal trilineage differentiation potential. Additionally, AT-MSCs, from both sources, were cultured with differentiation media containing retinoic acid (RA and/or testicular cell-conditioned medium (TCC. The AT-MSCs expressed mesenchymal surface markers and differentiated into adipogenic, chondrogenic and osteogenic lineages. Only omentum-derived AT-MSCs expressed one important gene marker related to male germ cell lineages, after the differentiation treatment with RA. These findings reaffirm the importance of adipose tissue as a source of multipotent stromal-stem cells, as well as, MSCs source regarding differentiation purpose.

  8. Integrin αv in the mechanical response of osteoblast lineage cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Keiko [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Ito, Masako [Medical Work-Life-Balance Center, Nagasaki University Hospital, Nagasaki 852-8501 (Japan); Naoe, Yoshinori [Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Lacy-Hulbert, Adam [Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114 (United States); Ikeda, Kyoji, E-mail: kikeda@ncgg.go.jp [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan)

    2014-05-02

    Highlights: • Deletion of integrin αv in osteoblast lineage results in an impaired SOST response to loading in vivo. • c-Src–p130Cas–JNK–YAP/TAZ is activated via integrin αv on osteoblasts in response to FSS. • Deletion of integrin αv in osteoblasts results in impaired responses to mechanical stimulation. • Integrin αv is a key component of the mechanosensing machinery in bone. - Abstract: Although osteoblast lineage cells, especially osteocytes, are thought to be a primary mechanosensory cell in bone, the identity of the mechano-receptor and downstream mechano-signaling pathways remain largely unknown. Here we show using osteoblastic cell model of mechanical stimulation with fluid shear stress that in the absence of integrin αv, phosphorylation of the Src substrate p130Cas and JNK was impaired, culminating in an inhibition of nuclear translocation of YAP/TAZ and subsequent transcriptional activation of target genes. Targeted deletion of the integrin αv in osteoblast lineage cells results in an attenuated response to mechanical loading in terms of Sost gene expression, indicative of a role for integrin αv in mechanoreception in vivo. Thus, integrin αv may be integral to a mechanosensing machinery in osteoblastic cells and involved in activation of a Src–JNK–YAP/TAZ pathway in response to mechanical stimulation.

  9. Integrin αv in the mechanical response of osteoblast lineage cells

    International Nuclear Information System (INIS)

    Kaneko, Keiko; Ito, Masako; Naoe, Yoshinori; Lacy-Hulbert, Adam; Ikeda, Kyoji

    2014-01-01

    Highlights: • Deletion of integrin αv in osteoblast lineage results in an impaired SOST response to loading in vivo. • c-Src–p130Cas–JNK–YAP/TAZ is activated via integrin αv on osteoblasts in response to FSS. • Deletion of integrin αv in osteoblasts results in impaired responses to mechanical stimulation. • Integrin αv is a key component of the mechanosensing machinery in bone. - Abstract: Although osteoblast lineage cells, especially osteocytes, are thought to be a primary mechanosensory cell in bone, the identity of the mechano-receptor and downstream mechano-signaling pathways remain largely unknown. Here we show using osteoblastic cell model of mechanical stimulation with fluid shear stress that in the absence of integrin αv, phosphorylation of the Src substrate p130Cas and JNK was impaired, culminating in an inhibition of nuclear translocation of YAP/TAZ and subsequent transcriptional activation of target genes. Targeted deletion of the integrin αv in osteoblast lineage cells results in an attenuated response to mechanical loading in terms of Sost gene expression, indicative of a role for integrin αv in mechanoreception in vivo. Thus, integrin αv may be integral to a mechanosensing machinery in osteoblastic cells and involved in activation of a Src–JNK–YAP/TAZ pathway in response to mechanical stimulation

  10. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells.

    Science.gov (United States)

    Hawkins, R David; Hon, Gary C; Lee, Leonard K; Ngo, Queminh; Lister, Ryan; Pelizzola, Mattia; Edsall, Lee E; Kuan, Samantha; Luu, Ying; Klugman, Sarit; Antosiewicz-Bourget, Jessica; Ye, Zhen; Espinoza, Celso; Agarwahl, Saurabh; Shen, Li; Ruotti, Victor; Wang, Wei; Stewart, Ron; Thomson, James A; Ecker, Joseph R; Ren, Bing

    2010-05-07

    Human embryonic stem cells (hESCs) share an identical genome with lineage-committed cells, yet possess the remarkable properties of self-renewal and pluripotency. The diverse cellular properties in different cells have been attributed to their distinct epigenomes, but how much epigenomes differ remains unclear. Here, we report that epigenomic landscapes in hESCs and lineage-committed cells are drastically different. By comparing the chromatin-modification profiles and DNA methylomes in hESCs and primary fibroblasts, we find that nearly one-third of the genome differs in chromatin structure. Most changes arise from dramatic redistributions of repressive H3K9me3 and H3K27me3 marks, which form blocks that significantly expand in fibroblasts. A large number of potential regulatory sequences also exhibit a high degree of dynamics in chromatin modifications and DNA methylation. Additionally, we observe novel, context-dependent relationships between DNA methylation and chromatin modifications. Our results provide new insights into epigenetic mechanisms underlying properties of pluripotency and cell fate commitment.

  11. Notch lineages and activity in intestinal stem cells determined by a new set of knock-in mice.

    Directory of Open Access Journals (Sweden)

    Silvia Fre

    Full Text Available The conserved role of Notch signaling in controlling intestinal cell fate specification and homeostasis has been extensively studied. Nevertheless, the precise identity of the cells in which Notch signaling is active and the role of different Notch receptor paralogues in the intestine remain ambiguous, due to the lack of reliable tools to investigate Notch expression and function in vivo. We generated a new series of transgenic mice that allowed us, by lineage analysis, to formally prove that Notch1 and Notch2 are specifically expressed in crypt stem cells. In addition, a novel Notch reporter mouse, Hes1-EmGFP(SAT, demonstrated exclusive Notch activity in crypt stem cells and absorptive progenitors. This roster of knock-in and reporter mice represents a valuable resource to functionally explore the Notch pathway in vivo in virtually all tissues.

  12. Determination of osteogenic or adipogenic lineages in muscle-derived stem cells (MDSCs) by a collagen-binding peptide (CBP) derived from bone sialoprotein (BSP)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Jung [Dental Regenerative Biotechnology Major, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749 (Korea, Republic of); Lee, Jue Yeon [Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Lee, Seung Jin [Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Seoul (Korea, Republic of); Chung, Chong-Pyoung, E-mail: ccpperio@snu.ac.kr [Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul (Korea, Republic of); Park, Yoon Jeong, E-mail: parkyj@snu.ac.kr [Dental Regenerative Biotechnology Major, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749 (Korea, Republic of); Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer CBP sequence is identified from BSP and has collagen binding activity. Black-Right-Pointing-Pointer CBP directly activates the MAPK signaling, especially ERK1/2. Black-Right-Pointing-Pointer CBP increase osteoblastic differentiation by the activation of Runx2. Black-Right-Pointing-Pointer CBP decrease adipogenic differentiation by the inhibition of PPAR{gamma}. -- Abstract: Bone sialoprotein (BSP) is a mineralized, tissue-specific, non-collagenous protein that is normally expressed only in mineralized tissues such as bone, dentin, cementum, and calcified cartilage, and at sites of new mineral formation. The binding of BSP to collagen is thought to be important for initiating bone mineralization and bone cell adhesion to the mineralized matrix. Several recent studies have isolated stem cells from muscle tissue, but their functional properties are still unclear. In this study, we examined the effects of a synthetic collagen-binding peptide (CBP) on the differentiation efficiency of muscle-derived stem cells (MDSCs). The CBP sequence (NGVFKYRPRYYLYKHAYFYPHLKRFPVQ) corresponds to residues 35-62 of bone sialoprotein (BSP), which are located within the collagen-binding domain in BSP. Interestingly, this synthetic CBP inhibited adipogenic differentiation but increased osteogenic differentiation in MDSCs. The CBP also induced expression of osteoblastic marker proteins, including alkaline phosphatase (ALP), type I collagen, Runt-related transcription factor 2 (Runx2), and osteocalcin; prevented adipogenic differentiation in MDSCs; and down-regulated adipose-specific mRNAs, such as adipocyte protein 2 (aP2) and peroxisome proliferator-activated receptor {gamma}. The CBP increased Extracellular signal-regulated kinases (ERK) 1/2 protein phosphorylation, which is important in lineage determination. These observations suggest that this CBP determines the osteogenic or adipogenic lineage in MDSCs by activating ERK1/2. Taken together, a

  13. Foetal stem cell derivation & characterization for osteogenic lineage

    Directory of Open Access Journals (Sweden)

    A Mangala Gowri

    2013-01-01

    Full Text Available Background & objectives: Mesencymal stem cells (MSCs derived from foetal tissues present a multipotent progenitor cell source for application in tissue engineering and regenerative medicine. The present study was carried out to derive foetal mesenchymal stem cells from ovine source and analyze their differentiation to osteogenic linage to serve as an animal model to predict human applications. Methods: Isolation and culture of sheep foetal bone marrow cells were done and uniform clonally derived MSC population was collected. The cells were characterized using cytochemical, immunophenotyping, biochemical and molecular analyses. The cells with defined characteristics were differentiated into osteogenic lineages and analysis for differentiated cell types was done. The cells were analyzed for cell surface marker expression and the gene expression in undifferentiated and differentiated osteoblast was checked by reverse transcriptase PCR (RT PCR analysis and confirmed by sequencing using genetic analyzer. Results: Ovine foetal samples were processed to obtain mononuclear (MNC cells which on culture showed spindle morphology, a characteristic oval body with the flattened ends. MSC population CD45 - /CD14 - was cultured by limiting dilution to arrive at uniform spindle morphology cells and colony forming units. The cells were shown to be positive for surface markers such as CD44, CD54, integrinβ1, and intracellular collagen type I/III and fibronectin. The osteogenically induced MSCs were analyzed for alkaline phosphatase (ALP activity and mineral deposition. The undifferentiated MSCs expressed RAB3B, candidate marker for stemness in MSCs. The osteogenically induced and uninduced MSCs expressed collagen type I and MMP13 gene in osteogenic induced cells. Interpretation & conclusions: The protocol for isolation of ovine foetal bone marrow derived MSCs was simple to perform, and the cultural method of obtaining pure spindle morphology cells was established

  14. Image segmentation and dynamic lineage analysis in single-cell fluorescence microscopy.

    Science.gov (United States)

    Wang, Quanli; Niemi, Jarad; Tan, Chee-Meng; You, Lingchong; West, Mike

    2010-01-01

    An increasingly common component of studies in synthetic and systems biology is analysis of dynamics of gene expression at the single-cell level, a context that is heavily dependent on the use of time-lapse movies. Extracting quantitative data on the single-cell temporal dynamics from such movies remains a major challenge. Here, we describe novel methods for automating key steps in the analysis of single-cell, fluorescent images-segmentation and lineage reconstruction-to recognize and track individual cells over time. The automated analysis iteratively combines a set of extended morphological methods for segmentation, and uses a neighborhood-based scoring method for frame-to-frame lineage linking. Our studies with bacteria, budding yeast and human cells, demonstrate the portability and usability of these methods, whether using phase, bright field or fluorescent images. These examples also demonstrate the utility of our integrated approach in facilitating analyses of engineered and natural cellular networks in diverse settings. The automated methods are implemented in freely available, open-source software.

  15. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Morizane, Ryuji [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Monkawa, Toshiaki, E-mail: monkawa@sc.itc.keio.ac.jp [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Itoh, Hiroshi [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan)

    2009-12-25

    Embryonic stem (ES) cells which have the unlimited proliferative capacity and extensive differentiation potency can be an attractive source for kidney regeneration therapies. Recent breakthroughs in the generation of induced pluripotent stem (iPS) cells have provided with another potential source for the artificially-generated kidney. The purpose of this study is to know how to differentiate mouse ES and iPS cells into renal lineage. We used iPS cells from mouse fibroblasts by transfection of four transcription factors, namely Oct4, Sox2, c-Myc and Klf4. Real-time PCR showed that renal lineage markers were expressed in both ES and iPS cells after the induction of differentiation. It also showed that a tubular specific marker, KSP progressively increased to day 18, although the differentiation of iPS cells was slower than ES cells. The results indicated that renal lineage cells can be differentiated from both murine ES and iPS cells. Several inducing factors were tested whether they influenced on cell differentiation. In ES cells, both of GDNF and BMP7 enhanced the differentiation to metanephric mesenchyme, and Activin enhanced the differentiation of ES cells to tubular cells. Activin also enhanced the differentiation of iPS cells to tubular cells, although the enhancement was lower than in ES cells. ES and iPS cells have a potential to differentiate to renal lineage cells, and they will be an attractive resource of kidney regeneration therapy. This differentiation is enhanced by Activin in both ES and iPS cells.

  16. Two hemocyte lineages exist in silkworm larval hematopoietic organ.

    Science.gov (United States)

    Nakahara, Yuichi; Kanamori, Yasushi; Kiuchi, Makoto; Kamimura, Manabu

    2010-07-28

    Insects have multiple hemocyte morphotypes with different functions as do vertebrates, however, their hematopoietic lineages are largely unexplored with the exception of Drosophila melanogaster. To study the hematopoietic lineage of the silkworm, Bombyx mori, we investigated in vivo and in vitro differentiation of hemocyte precursors in the hematopoietic organ (HPO) into the four mature hemocyte subsets, namely, plasmatocytes, granulocytes, oenocytoids, and spherulocytes. Five days after implantation of enzymatically-dispersed HPO cells from a GFP-expressing transgenic line into the hemocoel of normal larvae, differentiation into plasmatocytes, granulocytes and oenocytoids, but not spherulocytes, was observed. When the HPO cells were cultured in vitro, plasmatocytes appeared rapidly, and oenocytoids possessing prophenol oxidase activity appeared several days later. HPO cells were also able to differentiate into a small number of granulocytes, but not into spherulocytes. When functionally mature plasmatocytes were cultured in vitro, oenocytoids were observed 10 days later. These results suggest that the hemocyte precursors in HPO first differentiate into plasmatocytes, which further change into oenocytoids. From these results, we propose that B. mori hemocytes can be divided into two major lineages, a granulocyte lineage and a plasmatocyte-oenocytoid lineage. The origins of the spherulocytes could not be determined in this study. We construct a model for the hematopoietic lineages at the larval stage of B. mori.

  17. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages.

    Science.gov (United States)

    Xie, Jingwei; Willerth, Stephanie M; Li, Xiaoran; Macewan, Matthew R; Rader, Allison; Sakiyama-Elbert, Shelly E; Xia, Younan

    2009-01-01

    Due to advances in stem cell biology, embryonic stem (ES) cells can be induced to differentiate into a particular mature cell lineage when cultured as embryoid bodies. Although transplantation of ES cells-derived neural progenitor cells has been demonstrated with some success for either spinal cord injury repair in small animal model, control of ES cell differentiation into complex, viable, higher ordered tissues is still challenging. Mouse ES cells have been induced to become neural progenitors by adding retinoic acid to embryoid body cultures for 4 days. In this study, we examine the use of electrospun biodegradable polymers as scaffolds not only for enhancing the differentiation of mouse ES cells into neural lineages but also for promoting and guiding the neurite outgrowth. A combination of electrospun fiber scaffolds and ES cells-derived neural progenitor cells could lead to the development of a better strategy for nerve injury repair.

  18. Radiation effect on oligodendroglial lineage cells of brain

    International Nuclear Information System (INIS)

    Yu Dahai; Tianye

    2009-01-01

    Radiotherapy is a important treatment method for primary and metastatic cancers in the brain. How-ever, a high dose of radiation always leads to the brain injury. A representative pathological manifest of the radiation-induced brain impairment is demyelination. Therefore oligodendrocytes, the myelin-forming cells in the central nervous system, have been focused more attention recently. Oligodendrocytes originate from the migratory, mitotic progenitors and mature progressively into postmitotic myelinating cells. Recent years, a series of studies have been initiated to address the role of oligodendrocyte lineage cells in radiation-induced neurotoxic processes. This article pays attention to these studies, aiming to explore mechanisms of the radiation-induced brain impairment. (authors)

  19. Inductive differentiation of two neural lineages reconstituted in a microculture system from Xenopus early gastrula cells.

    Science.gov (United States)

    Mitani, S; Okamoto, H

    1991-05-01

    Neural induction of ectoderm cells has been reconstituted and examined in a microculture system derived from dissociated early gastrula cells of Xenopus laevis. We have used monoclonal antibodies as specific markers to monitor cellular differentiation from three distinct ectoderm lineages in culture (N1 for CNS neurons from neural tube, Me1 for melanophores from neural crest and E3 for skin epidermal cells from epidermal lineages). CNS neurons and melanophores differentiate when deep layer cells of the ventral ectoderm (VE, prospective epidermis region; 150 cells/culture) and an appropriate region of the marginal zone (MZ, prospective mesoderm region; 5-150 cells/culture) are co-cultured, but not in cultures of either cell type on their own; VE cells cultured alone yield epidermal cells as we have previously reported. The extent of inductive neural differentiation in the co-culture system strongly depends on the origin and number of MZ cells initially added to culture wells. The potency to induce CNS neurons is highest for dorsal MZ cells and sharply decreases as more ventrally located cells are used. The same dorsoventral distribution of potency is seen in the ability of MZ cells to inhibit epidermal differentiation. In contrast, the ability of MZ cells to induce melanophores shows the reverse polarity, ventral to dorsal. These data indicate that separate developmental mechanisms are used for the induction of neural tube and neural crest lineages. Co-differentiation of CNS neurons or melanophores with epidermal cells can be obtained in a single well of co-cultures of VE cells (150) and a wide range of numbers of MZ cells (5 to 100). Further, reproducible differentiation of both neural lineages requires intimate association between cells from the two gastrula regions; virtually no differentiation is obtained when cells from the VE and MZ are separated in a culture well. These results indicate that the inducing signals from MZ cells for both neural tube and neural

  20. Two hemocyte lineages exist in silkworm larval hematopoietic organ.

    Directory of Open Access Journals (Sweden)

    Yuichi Nakahara

    Full Text Available BACKGROUND: Insects have multiple hemocyte morphotypes with different functions as do vertebrates, however, their hematopoietic lineages are largely unexplored with the exception of Drosophila melanogaster. METHODOLOGY/PRINCIPAL FINDINGS: To study the hematopoietic lineage of the silkworm, Bombyx mori, we investigated in vivo and in vitro differentiation of hemocyte precursors in the hematopoietic organ (HPO into the four mature hemocyte subsets, namely, plasmatocytes, granulocytes, oenocytoids, and spherulocytes. Five days after implantation of enzymatically-dispersed HPO cells from a GFP-expressing transgenic line into the hemocoel of normal larvae, differentiation into plasmatocytes, granulocytes and oenocytoids, but not spherulocytes, was observed. When the HPO cells were cultured in vitro, plasmatocytes appeared rapidly, and oenocytoids possessing prophenol oxidase activity appeared several days later. HPO cells were also able to differentiate into a small number of granulocytes, but not into spherulocytes. When functionally mature plasmatocytes were cultured in vitro, oenocytoids were observed 10 days later. These results suggest that the hemocyte precursors in HPO first differentiate into plasmatocytes, which further change into oenocytoids. CONCLUSIONS/SIGNIFICANCE: From these results, we propose that B. mori hemocytes can be divided into two major lineages, a granulocyte lineage and a plasmatocyte-oenocytoid lineage. The origins of the spherulocytes could not be determined in this study. We construct a model for the hematopoietic lineages at the larval stage of B. mori.

  1. Effects of ultrasound on the proliferation and differentiation of cementoblast lineage cells

    NARCIS (Netherlands)

    Inubushi, T.; Tanaka, E.; Rego, E.B.; Kitagawa, M.; Kawazoe, A.; Ohta, A.; Okada, H.; Koolstra, J.H.; Miyauchi, M.; Takata, T.; Tanne, K.

    2008-01-01

    Background: The purpose of this study was to investigate the effects of low-intensity pulsed ultrasound (LIPUS) stimulation on the proliferation and differentiation of cementoblast lineage cells. Methods: An immortalized human periodontal ligament cell line (HPL) showing immature cementoblastic

  2. Differentiation in Stem Cell Lineages and in Life: Explorations in the Male Germ Line Stem Cell Lineage.

    Science.gov (United States)

    Fuller, Margaret T

    2016-01-01

    I have been privileged to work on cellular differentiation during a great surge of discovery that has revealed the molecular mechanisms and genetic regulatory circuitry that control embryonic development and adult tissue maintenance and repair. Studying the regulation of proliferation and differentiation in the male germ line stem cell lineage has allowed us investigate how the developmental program imposes layers of additional controls on fundamental cellular processes like cell cycle progression and gene expression to give rise to the huge variety of specialized cell types in our bodies. We are beginning to understand how local signals from somatic support cells specify self-renewal versus differentiation in the stem cell niche at the apical tip of the testis. We are discovering the molecular events that block cell proliferation and initiate terminal differentiation at the switch from mitosis to meiosis-a signature event of the germ cell program. Our work is beginning to reveal how the developmental program that sets up the dramatic new cell type-specific transcription program that prepares germ cells for meiotic division and spermatid differentiation is turned on when cells become spermatocytes. I have had the privilege of working with incredible students, postdocs, and colleagues who have discovered, brainstormed, challenged, and refined our science and our ideas of how developmental pathways and cellular mechanisms work together to drive differentiation. © 2016 Elsevier Inc. All rights reserved.

  3. Bridging the gap between postembryonic cell lineages and identified embryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Oliver Birkholz

    2015-03-01

    Full Text Available The clarification of complete cell lineages, which are produced by specific stem cells, is fundamental for understanding mechanisms, controlling the generation of cell diversity and patterning in an emerging tissue. In the developing Central Nervous System (CNS of Drosophila, neural stem cells (neuroblasts exhibit two periods of proliferation: During embryogenesis they produce primary lineages, which form the larval CNS. After a phase of mitotic quiescence, a subpopulation of them resumes proliferation in the larva to give rise to secondary lineages that build up the CNS of the adult fly. Within the ventral nerve cord (VNC detailed descriptions exist for both primary and secondary lineages. However, while primary lineages have been linked to identified neuroblasts, the assignment of secondary lineages has so far been hampered by technical limitations. Therefore, primary and secondary neural lineages co-existed as isolated model systems. Here we provide the missing link between the two systems for all lineages in the thoracic and abdominal neuromeres. Using the Flybow technique, embryonic neuroblasts were identified by their characteristic and unique lineages in the living embryo and their further development was traced into the late larval stage. This comprehensive analysis provides the first complete view of which embryonic neuroblasts are postembryonically reactivated along the anterior/posterior-axis of the VNC, and reveals the relationship between projection patterns of primary and secondary sublineages.

  4. Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage

    Directory of Open Access Journals (Sweden)

    Ben W. Dulken

    2017-01-01

    Full Text Available Neural stem cells (NSCs in the adult mammalian brain serve as a reservoir for the generation of new neurons, oligodendrocytes, and astrocytes. Here, we use single-cell RNA sequencing to characterize adult NSC populations and examine the molecular identities and heterogeneity of in vivo NSC populations. We find that cells in the NSC lineage exist on a continuum through the processes of activation and differentiation. Interestingly, rare intermediate states with distinct molecular profiles can be identified and experimentally validated, and our analysis identifies putative surface markers and key intracellular regulators for these subpopulations of NSCs. Finally, using the power of single-cell profiling, we conduct a meta-analysis to compare in vivo NSCs and in vitro cultures, distinct fluorescence-activated cell sorting strategies, and different neurogenic niches. These data provide a resource for the field and contribute to an integrative understanding of the adult NSC lineage.

  5. Decoding the DNA Methylome of Mantle Cell Lymphoma in the Light of the Entire B Cell Lineage

    NARCIS (Netherlands)

    Queirós, A.C. (Ana C.); R. Beekman (Renée); Vilarrasa-Blasi, R. (Roser); Duran-Ferrer, M. (Martí); Clot, G. (Guillem); Merkel, A. (Angelika); Raineri, E. (Emanuele); Russiñol, N. (Nuria); Castellano, G. (Giancarlo); S. Bea (Silvia); Navarro, A. (Alba); Kulis, M. (Marta); Verdaguer-Dot, N. (Núria); P. Jares (Pedro); A. Enjuanes (Anna); M.J. Calasanz (Maria); Bergmann, A. (Anke); Vater, I. (Inga); Salaverría, I. (Itziar); H.J.G. van de Werken (Harmen); W.H. Wilson (Wyndham); Datta, A. (Avik); P. Flicek (Paul); Royo, R. (Romina); J.H.A. Martens (Joost); Giné, E. (Eva); Lopez-Guillermo, A. (Armando); H. Stunnenberg (Henk); W. Klapper (Wolfram); C. Pott (Christiane); Heath, S. (Simon); I. Gut (Ivo); R. Siebert (Reiner); G. Campo (Gianluca); J.I. Martin-Subero (J.)

    2016-01-01

    textabstractWe analyzed the in silico purified DNA methylation signatures of 82 mantle cell lymphomas (MCL) in comparison with cell subpopulations spanning the entire B cell lineage. We identified two MCL subgroups, respectively carrying epigenetic imprints of germinal-center-inexperienced and

  6. Cell lineage analysis demonstrates an endodermal origin of the distal urethra and perineum.

    Science.gov (United States)

    Seifert, Ashley W; Harfe, Brian D; Cohn, Martin J

    2008-06-01

    Congenital malformations of anorectal and genitourinary (collectively, anogenital) organs occur at a high frequency in humans, however the lineage of cells that gives rise to anogenital organs remains poorly understood. The penile urethra has been reported to develop from two cell populations, with the proximal urethra developing from endoderm and the distal urethra forming from an apical ectodermal invagination, however this has never been tested by direct analysis of cell lineage. During gut development, endodermal cells express Sonic hedgehog (Shh), which is required for normal patterning of digestive and genitourinary organs. We have taken advantage of the properties of Shh expression to genetically label and follow the fate of posterior gut endoderm during anogenital development. We report that the entire urethra, including the distal (glandar) region, is derived from endoderm. Cloacal endoderm also gives rise to the epithelial linings of the bladder, rectum and anterior region of the anus. Surprisingly, the lineage map also revealed an endodermal origin of the perineum, which is the first demonstration that endoderm differentiates into skin. In addition, we fate mapped genital tubercle ectoderm and show that it makes no detectable contribution to the urethra. In males, formation of the urethral tube involves septation of the urethral plate by continued growth of the urorectal septum. Analysis of cell lineage following disruption of androgen signaling revealed that the urethral plate of flutamide-treated males does not undergo this septation event. Instead, urethral plate cells persist to the ventral margin of the tubercle, mimicking the pattern seen in females. Based on these spatial and temporal fate maps, we present a new model for anogenital development and suggest that disruptions at specific developmental time points can account for the association between anorectal and genitourinary defects.

  7. The stream of precursors that colonizes the thymus proceeds selectively through the early T lineage precursor stage of T cell development

    Science.gov (United States)

    Benz, Claudia; Martins, Vera C.; Radtke, Freddy; Bleul, Conrad C.

    2008-01-01

    T cell development in the thymus depends on continuous colonization by hematopoietic precursors. Several distinct T cell precursors have been identified, but whether one or several independent precursor cell types maintain thymopoiesis is unclear. We have used thymus transplantation and an inducible lineage-tracing system to identify the intrathymic precursor cells among previously described thymus-homing progenitors that give rise to the T cell lineage in the thymus. Extrathymic precursors were not investigated in these studies. Both approaches show that the stream of T cell lineage precursor cells, when entering the thymus, selectively passes through the early T lineage precursor (ETP) stage. Immigrating precursor cells do not exhibit characteristics of double-negative (DN) 1c, DN1d, or DN1e stages, or of populations containing the common lymphoid precursor 2 (CLP-2) or the thymic equivalent of circulating T cell progenitors (CTPs). It remains possible that an unknown hematopoietic precursor cell or previously described extrathymic precursors with a CLP, CLP-2, or CTP phenotype feed into T cell development by circumventing known intrathymic T cell lineage progenitor cells. However, it is clear that of the known intrathymic precursors, only the ETP population contributes significant numbers of T lineage precursors to T cell development. PMID:18458114

  8. Lineage-related cytotoxicity and clonogenic profile of 1,4-benzoquinone-exposed hematopoietic stem and progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Paik Wah [Biomedical Science Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Abdul Hamid, Zariyantey, E-mail: zyantey@ukm.edu.my [Biomedical Science Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Chan, Kok Meng [Environmental Health and Industrial Safety Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Inayat-Hussain, Salmaan Hussain [Environmental Health and Industrial Safety Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Rajab, Nor Fadilah [Biomedical Science Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia)

    2015-04-01

    Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) are sensitive targets for benzene-induced hematotoxicity and leukemogenesis. The impact of benzene exposure on the complex microenvironment of HSCs and HPCs remains elusive. This study aims to investigate the mechanism linking benzene exposure to targeting HSCs and HPCs using phenotypic and clonogenic analyses. Mouse bone marrow (BM) cells were exposed ex vivo to the benzene metabolite, 1,4-benzoquinone (1,4-BQ), for 24 h. Expression of cellular surface antigens for HSC (Sca-1), myeloid (Gr-1, CD11b), and lymphoid (CD45, CD3e) populations were confirmed by flow cytometry. The clonogenicity of cells was studied using the colony-forming unit (CFU) assay for multilineage (CFU-GM and CFU-GEMM) and single-lineage (CFU-E, BFU-E, CFU-G, and CFU-M) progenitors. 1,4-BQ demonstrated concentration-dependent cytotoxicity in mouse BM cells. The percentage of apoptotic cells increased (p < 0.05) following 1,4-BQ exposure. Exposure to 1,4-BQ showed no significant effect on CD3e{sup +} cells but reduced the total counts of Sca-1{sup +}, CD11b{sup +}, Gr-1{sup +}, and CD45{sup +} cells at 7 and 12 μM (p < 0.05). Furthermore, the CFU assay showed reduced (p < 0.05) clonogenicity in 1,4-BQ-treated cells. 1,4-BQ induced CFU-dependent cytotoxicity by significantly inhibiting colony growth for CFU-E, BFU-E, CFU-G, and CFU-M starting at a low concentration of exposure (5 μM); whereas for the CFU-GM and CFU-GEMM, the inhibition of colony growth was remarkable only at 7 and 12 μM of 1,4-BQ, respectively. Taken together, 1,4-BQ caused lineage-related cytotoxicity in mouse HPCs, demonstrating greater toxicity in single-lineage progenitors than in those of multi-lineage. - Highlights: • We examine 1,4-BQ toxicity targeting mouse hematopoietic cell lineages. • 1,4-BQ induces concentration-dependent cytotoxicity in bone marrow (BM) cells. • 1,4-BQ shows lineage-related toxicity on hematopoietic stem and

  9. Lineage-related cytotoxicity and clonogenic profile of 1,4-benzoquinone-exposed hematopoietic stem and progenitor cells

    International Nuclear Information System (INIS)

    Chow, Paik Wah; Abdul Hamid, Zariyantey; Chan, Kok Meng; Inayat-Hussain, Salmaan Hussain; Rajab, Nor Fadilah

    2015-01-01

    Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) are sensitive targets for benzene-induced hematotoxicity and leukemogenesis. The impact of benzene exposure on the complex microenvironment of HSCs and HPCs remains elusive. This study aims to investigate the mechanism linking benzene exposure to targeting HSCs and HPCs using phenotypic and clonogenic analyses. Mouse bone marrow (BM) cells were exposed ex vivo to the benzene metabolite, 1,4-benzoquinone (1,4-BQ), for 24 h. Expression of cellular surface antigens for HSC (Sca-1), myeloid (Gr-1, CD11b), and lymphoid (CD45, CD3e) populations were confirmed by flow cytometry. The clonogenicity of cells was studied using the colony-forming unit (CFU) assay for multilineage (CFU-GM and CFU-GEMM) and single-lineage (CFU-E, BFU-E, CFU-G, and CFU-M) progenitors. 1,4-BQ demonstrated concentration-dependent cytotoxicity in mouse BM cells. The percentage of apoptotic cells increased (p < 0.05) following 1,4-BQ exposure. Exposure to 1,4-BQ showed no significant effect on CD3e + cells but reduced the total counts of Sca-1 + , CD11b + , Gr-1 + , and CD45 + cells at 7 and 12 μM (p < 0.05). Furthermore, the CFU assay showed reduced (p < 0.05) clonogenicity in 1,4-BQ-treated cells. 1,4-BQ induced CFU-dependent cytotoxicity by significantly inhibiting colony growth for CFU-E, BFU-E, CFU-G, and CFU-M starting at a low concentration of exposure (5 μM); whereas for the CFU-GM and CFU-GEMM, the inhibition of colony growth was remarkable only at 7 and 12 μM of 1,4-BQ, respectively. Taken together, 1,4-BQ caused lineage-related cytotoxicity in mouse HPCs, demonstrating greater toxicity in single-lineage progenitors than in those of multi-lineage. - Highlights: • We examine 1,4-BQ toxicity targeting mouse hematopoietic cell lineages. • 1,4-BQ induces concentration-dependent cytotoxicity in bone marrow (BM) cells. • 1,4-BQ shows lineage-related toxicity on hematopoietic stem and progenitors. • 1,4-BQ

  10. Distinguishing between stochasticity and determinism: Examples from cell cycle duration variability.

    Science.gov (United States)

    Pearl Mizrahi, Sivan; Sandler, Oded; Lande-Diner, Laura; Balaban, Nathalie Q; Simon, Itamar

    2016-01-01

    We describe a recent approach for distinguishing between stochastic and deterministic sources of variability, focusing on the mammalian cell cycle. Variability between cells is often attributed to stochastic noise, although it may be generated by deterministic components. Interestingly, lineage information can be used to distinguish between variability and determinism. Analysis of correlations within a lineage of the mammalian cell cycle duration revealed its deterministic nature. Here, we discuss the sources of such variability and the possibility that the underlying deterministic process is due to the circadian clock. Finally, we discuss the "kicked cell cycle" model and its implication on the study of the cell cycle in healthy and cancerous tissues. © 2015 WILEY Periodicals, Inc.

  11. The fps/fes proto-oncogene regulates hematopoietic lineage output.

    Science.gov (United States)

    Sangrar, Waheed; Gao, Yan; Zirngibl, Ralph A; Scott, Michelle L; Greer, Peter A

    2003-12-01

    The fps/fes proto-oncogene is abundantly expressed in myeloid cells, and the Fps/Fes cytoplasmic protein-tyrosine kinase is implicated in signaling downstream from hematopoietic cytokines, including interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and erythropoietin (EPO). Studies using leukemic cell lines have previously suggested that Fps/Fes contributes to granulomonocytic differentiation, and that it might play a more selective role in promoting survival and differentiation along the monocytic pathway. In this study we have used a genetic approach to explore the role of Fps/Fes in hematopoiesis. We used transgenic mice that tissue-specifically express a mutant human fps/fes transgene (fps(MF)) that was engineered to encode Fps/Fes kinase that is activated through N-terminal myristoylation (MFps). Hematopoietic function was assessed using lineage analysis, hematopoietic progenitor cell colony-forming assays, and biochemical approaches. fps(MF) transgenic mice displayed a skewed hematopoietic output reflected by increased numbers of circulating granulocytic and monocytic cells and a corresponding decrease in lymphoid cells. Bone marrow colony assays of progenitor cells revealed a significant increase in the number of both granulomonocytic and multi-lineage progenitors. A molecular analysis of signaling in mature monocytic cells showed that MFps promoted GM-CSF-induced STAT3, STAT5, and ERK1/2 activation. These observations support a role for Fps/Fes in signaling pathways that contribute to lineage determination at the level of multi-lineage hematopoietic progenitors as well as the more committed granulomonocytic progenitors.

  12. IL-4/IL-13 Signaling Inhibits the Potential of Early Thymic Progenitors To Commit to the T Cell Lineage.

    Science.gov (United States)

    Barik, Subhasis; Miller, Mindy M; Cattin-Roy, Alexis N; Ukah, Tobechukwu K; Chen, Weirong; Zaghouani, Habib

    2017-10-15

    Early thymic progenitors (ETPs) are endowed with diverse potencies and can give rise to myeloid and lymphoid lineage progenitors. How the thymic environment guides ETP commitment and maturation toward a specific lineage remains obscure. We have previously shown that ETPs expressing the heteroreceptor (HR) comprising IL-4Rα and IL-13Rα1 give rise to myeloid cells but not T cells. In this article, we show that signaling through the HR inhibits ETP maturation to the T cell lineage but enacts commitment toward the myeloid cells. Indeed, HR + ETPs, but not HR - ETPs, exhibit activated STAT6 transcription factor, which parallels with downregulation of Notch1, a critical factor for T cell development. Meanwhile, the myeloid-specific transcription factor C/EBPα, usually under the control of Notch1, is upregulated. Furthermore, in vivo inhibition of STAT6 phosphorylation restores Notch1 expression in HR + ETPs, which regain T lineage potential. In addition, upon stimulation with IL-4 or IL-13, HR - ETPs expressing virally transduced HR also exhibit STAT6 phosphorylation and downregulation of Notch1, leading to inhibition of lymphoid, but not myeloid, lineage potential. These observations indicate that environmental cytokines play a role in conditioning ETP lineage choice, which would impact T cell development. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Developmental origin and lineage plasticity of endogenous cardiac stem cells

    Science.gov (United States)

    Santini, Maria Paola; Forte, Elvira; Harvey, Richard P.; Kovacic, Jason C.

    2016-01-01

    Over the past two decades, several populations of cardiac stem cells have been described in the adult mammalian heart. For the most part, however, their lineage origins and in vivo functions remain largely unexplored. This Review summarizes what is known about different populations of embryonic and adult cardiac stem cells, including KIT+, PDGFRα+, ISL1+ and SCA1+ cells, side population cells, cardiospheres and epicardial cells. We discuss their developmental origins and defining characteristics, and consider their possible contribution to heart organogenesis and regeneration. We also summarize the origin and plasticity of cardiac fibroblasts and circulating endothelial progenitor cells, and consider what role these cells have in contributing to cardiac repair. PMID:27095490

  14. Identification and Characterization of Mouse Otic Sensory Lineage Genes

    Directory of Open Access Journals (Sweden)

    Byron H. Hartman

    2015-03-01

    Full Text Available Vertebrate embryogenesis gives rise to all cell types of an organism through the development of many unique lineages derived from the three primordial germ layers. The otic sensory lineage arises from the otic vesicle, a structure formed through invagination of placodal non-neural ectoderm. This developmental lineage possesses unique differentiation potential, giving rise to otic sensory cell populations including hair cells, supporting cells, and ganglion neurons of the auditory and vestibular organs. Here we present a systematic approach to identify transcriptional features that distinguish the otic sensory lineage (from early otic progenitors to otic sensory populations from other major lineages of vertebrate development. We used a microarray approach to analyze otic sensory lineage populations including microdissected otic vesicles (embryonic day 10.5 as well as isolated neonatal cochlear hair cells and supporting cells at postnatal day 3. Non-otic tissue samples including periotic tissues and whole embryos with otic regions removed were used as reference populations to evaluate otic specificity. Otic populations shared transcriptome-wide correlations in expression profiles that distinguish members of this lineage from non-otic populations. We further analyzed the microarray data using comparative and dimension reduction methods to identify individual genes that are specifically expressed in the otic sensory lineage. This analysis identified and ranked top otic sensory lineage-specific transcripts including Fbxo2, Col9a2, and Oc90, and additional novel otic lineage markers. To validate these results we performed expression analysis on select genes using immunohistochemistry and in situ hybridization. Fbxo2 showed the most striking pattern of specificity to the otic sensory lineage, including robust expression in the early otic vesicle and sustained expression in prosensory progenitors and auditory and vestibular hair cells and supporting

  15. TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells.

    Science.gov (United States)

    Tsagaratou, Ageliki; González-Avalos, Edahí; Rautio, Sini; Scott-Browne, James P; Togher, Susan; Pastor, William A; Rothenberg, Ellen V; Chavez, Lukas; Lähdesmäki, Harri; Rao, Anjana

    2017-01-01

    TET proteins oxidize 5-methylcytosine in DNA to 5-hydroxymethylcytosine and other oxidation products. We found that simultaneous deletion of Tet2 and Tet3 in mouse CD4 + CD8 + double-positive thymocytes resulted in dysregulated development and proliferation of invariant natural killer T cells (iNKT cells). Tet2-Tet3 double-knockout (DKO) iNKT cells displayed pronounced skewing toward the NKT17 lineage, with increased DNA methylation and impaired expression of genes encoding the key lineage-specifying factors T-bet and ThPOK. Transfer of purified Tet2-Tet3 DKO iNKT cells into immunocompetent recipient mice resulted in an uncontrolled expansion that was dependent on the nonclassical major histocompatibility complex (MHC) protein CD1d, which presents lipid antigens to iNKT cells. Our data indicate that TET proteins regulate iNKT cell fate by ensuring their proper development and maturation and by suppressing aberrant proliferation mediated by the T cell antigen receptor (TCR).

  16. Generation of polyhormonal and multipotent pancreatic progenitor lineages from human pluripotent stem cells.

    Science.gov (United States)

    Korytnikov, Roman; Nostro, Maria Cristina

    2016-05-15

    Generation of pancreatic β-cells from human pluripotent stem cells (hPSCs) has enormous importance in type 1 diabetes (T1D), as it is fundamental to a treatment strategy based on cellular therapeutics. Being able to generate β-cells, as well as other mature pancreatic cells, from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) will also enable the development of platforms that can be used for disease modeling and drug testing for a variety of pancreas-associated diseases, including cystic fibrosis. For this to occur, it is crucial to develop differentiation strategies that are robust and reproducible across cell lines and laboratories. In this article we describe two serum-free differentiation protocols designed to generate specific pancreatic lineages from hPSCs. Our approach employs a variety of cytokines and small molecules to mimic developmental pathways active during pancreatic organogenesis and allows for the in vitro generation of distinct pancreatic populations. The first protocol is designed to give rise to polyhormonal cells that have the potential to differentiate into glucagon-producing cells. The second protocol is geared to generate multipotent pancreatic progenitor cells, which harbor the potential to generate all pancreatic lineages including: monohormonal endocrine cells, acinar, and ductal cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Lineage relationship of prostate cancer cell types based on gene expression

    Directory of Open Access Journals (Sweden)

    Ware Carol B

    2011-05-01

    Full Text Available Abstract Background Prostate tumor heterogeneity is a major factor in disease management. Heterogeneity could be due to multiple cancer cell types with distinct gene expression. Of clinical importance is the so-called cancer stem cell type. Cell type-specific transcriptomes are used to examine lineage relationship among cancer cell types and their expression similarity to normal cell types including stem/progenitor cells. Methods Transcriptomes were determined by Affymetrix DNA array analysis for the following cell types. Putative prostate progenitor cell populations were characterized and isolated by expression of the membrane transporter ABCG2. Stem cells were represented by embryonic stem and embryonal carcinoma cells. The cancer cell types were Gleason pattern 3 (glandular histomorphology and pattern 4 (aglandular sorted from primary tumors, cultured prostate cancer cell lines originally established from metastatic lesions, xenografts LuCaP 35 (adenocarcinoma phenotype and LuCaP 49 (neuroendocrine/small cell carcinoma grown in mice. No detectable gene expression differences were detected among serial passages of the LuCaP xenografts. Results Based on transcriptomes, the different cancer cell types could be clustered into a luminal-like grouping and a non-luminal-like (also not basal-like grouping. The non-luminal-like types showed expression more similar to that of stem/progenitor cells than the luminal-like types. However, none showed expression of stem cell genes known to maintain stemness. Conclusions Non-luminal-like types are all representatives of aggressive disease, and this could be attributed to the similarity in overall gene expression to stem and progenitor cell types.

  18. The Mediator complex: a master coordinator of transcription and cell lineage development.

    Science.gov (United States)

    Yin, Jing-wen; Wang, Gang

    2014-03-01

    Mediator is a multiprotein complex that is required for gene transcription by RNA polymerase II. Multiple subunits of the complex show specificity in relaying information from signals and transcription factors to the RNA polymerase II machinery, thus enabling control of the expression of specific genes. Recent studies have also provided novel mechanistic insights into the roles of Mediator in epigenetic regulation, transcriptional elongation, termination, mRNA processing, noncoding RNA activation and super enhancer formation. Based on these specific roles in gene regulation, Mediator has emerged as a master coordinator of development and cell lineage determination. Here, we describe the most recent advances in understanding the mechanisms of Mediator function, with an emphasis on its role during development and disease.

  19. CRX is a diagnostic marker of retinal and pineal lineage tumors.

    Directory of Open Access Journals (Sweden)

    Sandro Santagata

    2009-11-01

    Full Text Available CRX is a homeobox transcription factor whose expression and function is critical to maintain retinal and pineal lineage cells and their progenitors. To determine the biologic and diagnostic potential of CRX in human tumors of the retina and pineal, we examined its expression in multiple settings.Using situ hybridization and immunohistochemistry we show that Crx RNA and protein expression are exquisitely lineage restricted to retinal and pineal cells during normal mouse and human development. Gene expression profiling analysis of a wide range of human cancers and cancer cell lines also supports that CRX RNA is highly lineage restricted in cancer. Immunohistochemical analysis of 22 retinoblastomas and 13 pineal parenchymal tumors demonstrated strong expression of CRX in over 95% of these tumors. Importantly, CRX was not detected in the majority of tumors considered in the differential diagnosis of pineal region tumors (n = 78. The notable exception was medulloblastoma, 40% of which exhibited CRX expression in a heterogeneous pattern readily distinguished from that seen in retino-pineal tumors.These findings describe new potential roles for CRX in human cancers and highlight the general utility of lineage restricted transcription factors in cancer biology. They also identify CRX as a sensitive and specific clinical marker and a potential lineage dependent therapeutic target in retinoblastoma and pineoblastoma.

  20. Dynamic balance between master transcription factors determines the fates and functions of CD4 T cell and innate lymphoid cell subsets

    Science.gov (United States)

    2017-01-01

    CD4 T cells, including T regulatory cells (Treg cells) and effector T helper cells (Th cells), and recently identified innate lymphoid cells (ILCs) play important roles in host defense and inflammation. Both CD4 T cells and ILCs can be classified into distinct lineages based on their functions and the expression of lineage-specific genes, including those encoding effector cytokines, cell surface markers, and key transcription factors. It was first recognized that each lineage expresses a specific master transcription factor and the expression of these factors is mutually exclusive because of cross-regulation among these factors. However, recent studies indicate that the master regulators are often coexpressed. Furthermore, the expression of master regulators can be dynamic and quantitative. In this review, we will first discuss similarities and differences between the development and functions of CD4 T cell and ILC subsets and then summarize recent literature on quantitative, dynamic, and cell type–specific balance between the master transcription factors in determining heterogeneity and plasticity of these subsets. PMID:28630089

  1. B lymphocyte lineage cells and the respiratory system

    Science.gov (United States)

    Kato, Atsushi; Hulse, Kathryn E.; Tan, Bruce K.; Schleimer, Robert P.

    2013-01-01

    Adaptive humoral immune responses in the airways are mediated by B cells and plasma cells that express highly evolved and specific receptors and produce immunoglobulins of most isotypes. In some cases, such as autoimmune diseases or inflammatory diseases caused by excessive exposure to foreign antigens, these same immune cells can cause disease by virtue of overly vigorous responses. This review discusses the generation, differentiation, signaling, activation and recruitment pathways of B cells and plasma cells, with special emphasis on unique characteristics of subsets of these cells functioning within the respiratory system. The primary sensitization events that generate B cells responsible for effector responses throughout the airways usually occur in the upper airways, in tonsils and adenoid structures that make up Waldeyer’s Ring. Upon secondary exposure to antigen in the airways, antigen-processing dendritic cells migrate into secondary lymphoid organs such as lymph nodes that drain the upper and lower airways and further B cell expansion takes place at those sites. Antigen exposure in the upper or lower airways can also drive expansion of B lineage cells in the airway mucosal tissue and lead to the formation of inducible lymphoid follicles or aggregates that can mediate local immunity or disease. PMID:23540615

  2. SHIP1-expressing mesenchymal stem cells regulate hematopoietic stem cell homeostasis and lineage commitment during aging.

    Science.gov (United States)

    Iyer, Sonia; Brooks, Robert; Gumbleton, Matthew; Kerr, William G

    2015-05-01

    Hematopoietic stem cell (HSC) self-renewal and lineage choice are subject to intrinsic control. However, this intrinsic regulation is also impacted by external cues provided by niche cells. There are multiple cellular components that participate in HSC support with the mesenchymal stem cell (MSC) playing a pivotal role. We had previously identified a role for SH2 domain-containing inositol 5'-phosphatase-1 (SHIP1) in HSC niche function through analysis of mice with germline or induced SHIP1 deficiency. In this study, we show that the HSC compartment expands significantly when aged in a niche that contains SHIP1-deficient MSC; however, this expanded HSC compartment exhibits a strong bias toward myeloid differentiation. In addition, we show that SHIP1 prevents chronic G-CSF production by the aging MSC compartment. These findings demonstrate that intracellular signaling by SHIP1 in MSC is critical for the control of HSC output and lineage commitment during aging. These studies increase our understanding of how myeloid bias occurs in aging and thus could have implications for the development of myeloproliferative disease in aging.

  3. Th17-lineage cells in pulmonary sarcoidosis and Löfgren's syndrome: Friend or foe?

    Science.gov (United States)

    Miedema, Jelle R; Kaiser, Ylva; Broos, Caroline E; Wijsenbeek, Marlies S; Grunewald, Johan; Kool, Mirjam

    2018-02-01

    Sarcoidosis, a multisystem granulomatous disorder, has historically been classified as Th1-driven disease. However, increasing data demonstrate a key role of Th17-cell plasticity in granuloma formation and maintenance. In Löfgren's syndrome (LS), an acute and distinct phenotype of sarcoidosis with a favorable outcome, differences in Th17-lineage cell subsets, cytokine expression and T-cell suppressive mechanisms may account for differences in clinical presentation as well as prognosis compared to non-LS sarcoidosis. In contrast with LS, up to 20% of non-LS sarcoidosis patients may progress to irreversible pulmonary fibrosis. In non-LS sarcoidosis patients, IFN-γ-producing Th17.1-cells appear to be more pathogenic and possibly linked to disease progression, while a broader range of cytokines is found in bronchoalveolar lavage fluid (BALF) in LS patients. Differences in Cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression on Th17-cells and regulatory T-cells (Treg) could contribute to Th17-cell pathogenicity and consequently to either disease resolution or ongoing inflammation in sarcoidosis. Furthermore, several genes and SNPs are associated with disease susceptibility and outcome in sarcoidosis, the majority of which are involved in antigen presentation, T-cell activation or regulation of T-cell survival. Novel insights into the role of Th17-cells in the pathogenesis of both LS and non-LS sarcoidosis will unravel pathogenic and benign Th17-lineage cell function and drivers of Th17-cell plasticity. This will also help identify new treatment strategies for LS and non-LS sarcoidosis patients by altering Th17-cell activation, suppress conversion into more pathogenic subtypes, or influence cytokine signaling towards a beneficial signature of Th17-lineage cells. In this review, we summarize new insights into Th17-cell plasticity in the complex pathogenesis of sarcoidosis and connect these cells to the different disease phenotypes, discuss the role of genetic

  4. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells

    International Nuclear Information System (INIS)

    Dontu, Gabriela; Jackson, Kyle W; McNicholas, Erin; Kawamura, Mari J; Abdallah, Wissam M; Wicha, Max S

    2004-01-01

    Notch signaling has been implicated in the regulation of cell-fate decisions such as self-renewal of adult stem cells and differentiation of progenitor cells along a particular lineage. Moreover, depending on the cellular and developmental context, the Notch pathway acts as a regulator of cell survival and cell proliferation. Abnormal expression of Notch receptors has been found in different types of epithelial metaplastic lesions and neoplastic lesions, suggesting that Notch may act as a proto-oncogene. The vertebrate Notch1 and Notch4 homologs are involved in normal development of the mammary gland, and mutated forms of these genes are associated with development of mouse mammary tumors. In order to determine the role of Notch signaling in mammary cell-fate determination, we have utilized a newly described in vitro system in which mammary stem/progenitor cells can be cultured in suspension as nonadherent 'mammospheres'. Notch signaling was activated using exogenous ligands, or was inhibited using previously characterized Notch signaling antagonists. Utilizing this system, we demonstrate that Notch signaling can act on mammary stem cells to promote self-renewal and on early progenitor cells to promote their proliferation, as demonstrated by a 10-fold increase in secondary mammosphere formation upon addition of a Notch-activating DSL peptide. In addition to acting on stem cells, Notch signaling is also able to act on multipotent progenitor cells, facilitating myoepithelial lineage-specific commitment and proliferation. Stimulation of this pathway also promotes branching morphogenesis in three-dimensional Matrigel cultures. These effects are completely inhibited by a Notch4 blocking antibody or a gamma secretase inhibitor that blocks Notch processing. In contrast to the effects of Notch signaling on mammary stem/progenitor cells, modulation of this pathway has no discernable effect on fully committed, differentiated, mammary epithelial cells. These studies

  5. A mex3 homolog is required for differentiation during planarian stem cell lineage development

    Science.gov (United States)

    Zhu, Shu Jun; Hallows, Stephanie E; Currie, Ko W; Xu, ChangJiang; Pearson, Bret J

    2015-01-01

    Neoblasts are adult stem cells (ASCs) in planarians that sustain cell replacement during homeostasis and regeneration of any missing tissue. While numerous studies have examined genes underlying neoblast pluripotency, molecular pathways driving postmitotic fates remain poorly defined. In this study, we used transcriptional profiling of irradiation-sensitive and irradiation-insensitive cell populations and RNA interference (RNAi) functional screening to uncover markers and regulators of postmitotic progeny. We identified 32 new markers distinguishing two main epithelial progenitor populations and a planarian homolog to the MEX3 RNA-binding protein (Smed-mex3-1) as a key regulator of lineage progression. mex3-1 was required for generating differentiated cells of multiple lineages, while restricting the size of the stem cell compartment. We also demonstrated the utility of using mex3-1(RNAi) animals to identify additional progenitor markers. These results identified mex3-1 as a cell fate regulator, broadly required for differentiation, and suggest that mex3-1 helps to mediate the balance between ASC self-renewal and commitment. DOI: http://dx.doi.org/10.7554/eLife.07025.001 PMID:26114597

  6. Chicken globin gene transcription is cell lineage specific during the time of the switch

    International Nuclear Information System (INIS)

    Lois, R.; Martinson, H.G.

    1989-01-01

    Posttranscriptional silencing of embryonic globin gene expression occurs during hemoglobin switching in chickens. Here the authors use Percoll density gradients to fractionate the red blood cells of 5-9 day embryos in order to determine the cellular source and the timing of this posttranscriptional process. By means of nuclear run-on transcription in vitro they show that it is within mature primitive cells that production of embryonic globin mRNA is terminated posttranscriptionally. In contrast, young definitive cells produce little (or no) embryonic globin mRNA because of regulation at the transcriptional level. Thus the lineage specificity of embryonic and adult globin gene expression is determined transcriptionally, and the posttranscriptional process described by Landes et al. is a property of the senescing primitive cells, not a mechanism operative in the hemoglobin switch. This conclusion is supported by [ 3 H]leucine incorporation experiments on Percoll-fractionated cells which reveal no posttranscriptional silencing of the embryonic genes during the early stages of the switch. In the course of these studies they have noticed a strong transcriptional pause near the second exon of the globin genes which is induced by 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) and which resembles a natural pause near that position

  7. Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chanson, L. [Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. of Bioengineering; Brownfield, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Univ. of California, Berkeley, CA (United States). Dept. of Bioengineering; Garbe, J. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Kuhn, I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Stampfer, M. R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Bissell, M. J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; LaBarge, M. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.

    2011-02-07

    Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal human mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells.

  8. DNA Methyltransferases Modulate Hepatogenic Lineage Plasticity of Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Chien-Wei Lee

    2017-07-01

    Full Text Available The irreversibility of developmental processes in mammalian cells has been challenged by rising evidence that de-differentiation of hepatocytes occurs in adult liver. However, whether reversibility exists in mesenchymal stromal cell (MSC-derived hepatocytes (dHeps remains elusive. In this study, we find that hepatogenic differentiation (HD of MSCs is a reversible process and is modulated by DNA methyltransferases (DNMTs. DNMTs are regulated by transforming growth factor β1 (TGFβ1, which in turn controls hepatogenic differentiation and de-differentiation. In addition, a stepwise reduction in TGFβ1 concentrations in culture media increases DNMT1 and decreases DNMT3 in primary hepatocytes (Heps and confers Heps with multi-differentiation potentials similarly to MSCs. Hepatic lineage reversibility of MSCs and lineage conversion of Heps are regulated by DNMTs in response to TGFβ1. This previously unrecognized TGFβ1-DNMTs-MSC-HD axis may further increase the understanding the normal and pathological processes in the liver, as well as functions of MSCs after transplantation to treat liver diseases.

  9. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology.

    Science.gov (United States)

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-03-17

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated.

  10. Optical Imaging for Stem Cell Differentiation to Neuronal Lineage

    International Nuclear Information System (INIS)

    Hwang, Do Won; Lee, Dong Soo

    2012-01-01

    In regenerative medicine, the prospect of stem cell therapy hold great promise for the recovery of injured tissues and effective treatment of intractable diseases. Tracking stem cell fate provides critical information to understand and evaluate the success of stem cell therapy. The recent emergence of in vivo noninvasive molecular imaging has enabled assessment of the behavior of grafted stem cells in living subjects. In this review, we provide an overview of current optical imaging strategies based on cell or tissue specific reporter gene expression and of in vivo methods to monitor stem cell differentiation into neuronal lineages. These methods use optical reporters either regulated by neuron-specific promoters or containing neuron-specific microRNA binding sites. Both systems revealed dramatic changes in optical reporter imaging signals in cells differentiating a yeast GAL4 amplification system or an engineering-enhanced luciferase reported gene. Furthermore, we propose an advanced imaging system to monitor neuronal differentiation during neurogenesis that uses in vivo multiplexed imaging techniques capable of detecting several targets simultaneously

  11. Characterization of glucose‐related metabolic pathways in differentiated rat oligodendrocyte lineage cells

    Science.gov (United States)

    Amaral, Ana I.; Hadera, Mussie G.; Tavares, Joana M.

    2015-01-01

    Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope‐labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2‐13C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1‐13C]lactate or [1,2‐13C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2‐13C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2‐13C]acetate and [1,2‐13C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. GLIA 2016;64:21–34 PMID:26352325

  12. Luminal progenitors restrict their lineage potential during mammary gland development.

    Science.gov (United States)

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-02-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.

  13. Comprehensive evaluation of leukocyte lineage derived from human hematopoietic cells in humanized mice.

    Science.gov (United States)

    Takahashi, Masayuki; Tsujimura, Noriyuki; Otsuka, Kensuke; Yoshino, Tomoko; Mori, Tetsushi; Matsunaga, Tadashi; Nakasono, Satoshi

    2012-04-01

    Recently, humanized animals whereby a part of the animal is biologically engineered using human genes or cells have been utilized to overcome interspecific differences. Herein, we analyzed the detail of the differentiation states of various human leukocyte subpopulations in humanized mouse and evaluated comprehensively the similarity of the leukocyte lineage between humanized mice and humans. Humanized mice were established by transplanting human CD34(+) cord blood cells into irradiated severely immunodeficient NOD/Shi-scid/IL2Rγ(null) (NOG) mice, and the phenotypes of human cells contained in bone marrow, thymus, spleen and peripheral blood from the mice were analyzed at monthly intervals until 4 months after cell transplantation. The analysis revealed that transplanted human hematopoietic stem cells via the caudal vein homed and engrafted themselves successfully at the mouse bone marrow. Subsequently, the differentiated leukocytes migrated to the various tissues. Almost all of the leukocytes within the thymus were human cells. Furthermore, analysis of the differentiation states of human leukocytes in various tissues and organs indicated that it is highly likely that the human-like leukocyte lineage can be developed in mice. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Nonstimulated human uncommitted mesenchymal stem cells express cell markers of mesenchymal and neural lineages.

    Science.gov (United States)

    Minguell, José J; Fierro, Fernando A; Epuñan, María J; Erices, Alejandro A; Sierralta, Walter D

    2005-08-01

    Ex vivo cultures of human bone marrow-derived mesenchymal stem cells (MSCs) contain subsets of progenitors exhibiting dissimilar properties. One of these subsets comprises uncommitted progenitors displaying distinctive features, such as morphology, a quiescent condition, growth factor production, and restricted tissue biodistribution after transplantation. In this study, we assessed the competence of these cells to express, in the absence of differentiation stimuli, markers of mesoderm and ectodermic (neural) cell lineages. Fluorescence microscopy analysis showed a unique pattern of expression of osteogenic, chondrogenic, muscle, and neural markers. The depicted "molecular signature" of these early uncommitted progenitors, in the absence of differentiation stimuli, is consistent with their multipotentiality and plasticity as suggested by several in vitro and in vivo studies.

  15. Rat bone marrow progenitor cells transduced in situ by rSV40 vectors differentiate into multiple central nervous system cell lineages.

    Science.gov (United States)

    Louboutin, Jean-Pierre; Liu, Bianling; Reyes, Beverly A S; Van Bockstaele, Elisabeth J; Strayer, David S

    2006-12-01

    Using bone marrow-directed gene transfer, we tested whether bone marrow-derived cells may function as progenitors of central nervous system (CNS) cells in adult animals. SV40-derived gene delivery vectors were injected directly into femoral bone marrow, and we examined transgene expression in blood and brain for 0-16 months thereafter by immunostaining for FLAG epitope marker. An average of 5% of peripheral blood cells and 25% of femoral marrow cells were FLAG(+) throughout the study. CNS FLAG-expressing cells were mainly detected in the dentate gyrus (DG) and periventricular subependymal zone (PSZ). Although absent before 1 month and rare at 4 months, DG and PSZ FLAG(+) cells were abundant 16 months after bone marrow injection. Approximately 5% of DG cells expressed FLAG, including neurons (48.6%) and microglia (49.7%), and occasional astrocytes (1.6%), as determined by double immunostaining for FLAG and lineage markers. These data suggest that one or more populations of cells resident within adult bone marrow can migrate to the brain and differentiate into CNS-specific cells.

  16. Cytokine-Regulated GADD45G Induces Differentiation and Lineage Selection in Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Frederic B. Thalheimer

    2014-07-01

    Full Text Available The balance of self-renewal and differentiation in long-term repopulating hematopoietic stem cells (LT-HSC must be strictly controlled to maintain blood homeostasis and to prevent leukemogenesis. Hematopoietic cytokines can induce differentiation in LT-HSCs; however, the molecular mechanism orchestrating this delicate balance requires further elucidation. We identified the tumor suppressor GADD45G as an instructor of LT-HSC differentiation under the control of differentiation-promoting cytokine receptor signaling. GADD45G immediately induces and accelerates differentiation in LT-HSCs and overrides the self-renewal program by specifically activating MAP3K4-mediated MAPK p38. Conversely, the absence of GADD45G enhances the self-renewal potential of LT-HSCs. Videomicroscopy-based tracking of single LT-HSCs revealed that, once GADD45G is expressed, the development of LT-HSCs into lineage-committed progeny occurred within 36 hr and uncovered a selective lineage choice with a severe reduction in megakaryocytic-erythroid cells. Here, we report an unrecognized role of GADD45G as a central molecular linker of extrinsic cytokine differentiation and lineage choice control in hematopoiesis.

  17. Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds.

    Science.gov (United States)

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L

    2013-07-01

    Taking inspiration from tissue morphogenesis in utero, this study tests the concept of using tissue engineering scaffolds as delivery devices to modulate emergent structure-function relationships at early stages of tissue genesis. We report on the use of a combined computational fluid dynamics (CFD) modeling, advanced manufacturing methods, and experimental fluid mechanics (micro-piv and strain mapping) for the prospective design of tissue engineering scaffold geometries that deliver spatially resolved mechanical cues to stem cells seeded within. When subjected to a constant magnitude global flow regime, the local scaffold geometry dictates the magnitudes of mechanical stresses and strains experienced by a given cell, and in a spatially resolved fashion, similar to patterning during morphogenesis. In addition, early markers of mesenchymal stem cell lineage commitment relate significantly to the local mechanical environment of the cell. Finally, by plotting the range of stress-strain states for all data corresponding to nascent cell lineage commitment (95% CI), we begin to "map the mechanome", defining stress-strain states most conducive to targeted cell fates. In sum, we provide a library of reference mechanical cues that can be delivered to cells seeded on tissue engineering scaffolds to guide target tissue phenotypes in a temporally and spatially resolved manner. Knowledge of these effects allows for prospective scaffold design optimization using virtual models prior to prototyping and clinical implementation. Finally, this approach enables the development of next generation scaffolds cum delivery devices for genesis of complex tissues with heterogenous properties, e.g., organs, joints or interface tissues such as growth plates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Cell lineage specific distribution of H3K27 trimethylation accumulation in an in vitro model for human implantation.

    Directory of Open Access Journals (Sweden)

    Gijs Teklenburg

    Full Text Available Female mammals inactivate one of their two X-chromosomes to compensate for the difference in gene-dosage with males that have just one X-chromosome. X-chromosome inactivation is initiated by the expression of the non-coding RNA Xist, which coats the X-chromosome in cis and triggers gene silencing. In early mouse development the paternal X-chromosome is initially inactivated in all cells of cleavage stage embryos (imprinted X-inactivation followed by reactivation of the inactivated paternal X-chromosome exclusively in the epiblast precursors of blastocysts, resulting temporarily in the presence of two active X-chromosomes in this specific lineage. Shortly thereafter, epiblast cells randomly inactivate either the maternal or the paternal X-chromosome. XCI is accompanied by the accumulation of histone 3 lysine 27 trimethylation (H3K27me3 marks on the condensed X-chromosome. It is still poorly understood how XCI is regulated during early human development. Here we have investigated lineage development and the distribution of H3K27me3 foci in human embryos derived from an in-vitro model for human implantation. In this system, embryos are co-cultured on decidualized endometrial stromal cells up to day 8, which allows the culture period to be extended for an additional two days. We demonstrate that after the co-culture period, the inner cell masses have relatively high cell numbers and that the GATA4-positive hypoblast lineage and OCT4-positive epiblast cell lineage in these embryos have segregated. H3K27me3 foci were observed in ∼25% of the trophectoderm cells and in ∼7.5% of the hypoblast cells, but not in epiblast cells. In contrast with day 8 embryos derived from the co-cultures, foci of H3K27me3 were not observed in embryos at day 5 of development derived from regular IVF-cultures. These findings indicate that the dynamics of H3K27me3 accumulation on the X-chromosome in human development is regulated in a lineage specific fashion.

  19. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages

    International Nuclear Information System (INIS)

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J.; Fernandez, Anne

    2008-01-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal β III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders

  20. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages.

    Science.gov (United States)

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J; Fernandez, Anne

    2008-04-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal beta III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders.

  1. Lineage-specific function of Engrailed-2 in the progression of chronic myelogenous leukemia to T-cell blast crisis.

    Science.gov (United States)

    Abollo-Jiménez, Fernando; Campos-Sánchez, Elena; Toboso-Navasa, Amparo; Vicente-Dueñas, Carolina; González-Herrero, Inés; Alonso-Escudero, Esther; González, Marcos; Segura, Víctor; Blanco, Oscar; Martínez-Climent, José Angel; Sánchez-García, Isidro; Cobaleda, César

    2014-01-01

    In hematopoietic malignancies, oncogenic alterations interfere with cellular differentiation and lead to tumoral development. Identification of the proteins regulating differentiation is essential to understand how they are altered in malignancies. Chronic myelogenous leukemia (CML) is a biphasic disease initiated by an alteration taking place in hematopoietic stem cells. CML progresses to a blast crisis (BC) due to a secondary differentiation block in any of the hematopoietic lineages. However, the molecular mechanisms of CML evolution to T-cell BC remain unclear. Here, we have profiled the changes in DNA methylation patterns in human samples from BC-CML, in order to identify genes whose expression is epigenetically silenced during progression to T-cell lineage-specific BC. We have found that the CpG-island of the ENGRAILED-2 (EN2) gene becomes methylated in this progression. Afterwards, we demonstrate that En2 is expressed during T-cell development in mice and humans. Finally, we further show that genetic deletion of En2 in a CML transgenic mouse model induces a T-cell lineage BC that recapitulates human disease. These results identify En2 as a new regulator of T-cell differentiation whose disruption induces a malignant T-cell fate in CML progression, and validate the strategy used to identify new developmental regulators of hematopoiesis.

  2. Bioenergetic Changes during Differentiation of Human Embryonic Stem Cells along the Hepatic Lineage

    DEFF Research Database (Denmark)

    Hopkinson, Branden M; Madsen, Claus Desler; Kalisz, Mark

    2017-01-01

    Mitochondrial dysfunction has been demonstrated to result in premature aging due to its effects on stem cells. Nevertheless, a full understanding of the role of mitochondrial bioenergetics through differentiation is still lacking. Here we show the bioenergetics profile of human stem cells...... of embryonic origin differentiating along the hepatic lineage. Our study reveals especially the transition between hepatic specification and hepatic maturation as dependent on mitochondrial respiration and demonstrates that even though differentiating cells are primarily dependent on glycolysis until induction...

  3. Stability of Control Networks in Autonomous Homeostatic Regulation of Stem Cell Lineages.

    Science.gov (United States)

    Komarova, Natalia L; van den Driessche, P

    2018-05-01

    Design principles of biological networks have been studied extensively in the context of protein-protein interaction networks, metabolic networks, and regulatory (transcriptional) networks. Here we consider regulation networks that occur on larger scales, namely the cell-to-cell signaling networks that connect groups of cells in multicellular organisms. These are the feedback loops that orchestrate the complex dynamics of cell fate decisions and are necessary for the maintenance of homeostasis in stem cell lineages. We focus on "minimal" networks that are those that have the smallest possible numbers of controls. For such minimal networks, the number of controls must be equal to the number of compartments, and the reducibility/irreducibility of the network (whether or not it can be split into smaller independent sub-networks) is defined by a matrix comprised of the cell number increments induced by each of the controlled processes in each of the compartments. Using the formalism of digraphs, we show that in two-compartment lineages, reducible systems must contain two 1-cycles, and irreducible systems one 1-cycle and one 2-cycle; stability follows from the signs of the controls and does not require magnitude restrictions. In three-compartment systems, irreducible digraphs have a tree structure or have one 3-cycle and at least two more shorter cycles, at least one of which is a 1-cycle. With further work and proper biological validation, our results may serve as a first step toward an understanding of ways in which these networks become dysregulated in cancer.

  4. Pax7 lineage contributions to the mammalian neural crest.

    Directory of Open Access Journals (Sweden)

    Barbara Murdoch

    Full Text Available Neural crest cells are vertebrate-specific multipotent cells that contribute to a variety of tissues including the peripheral nervous system, melanocytes, and craniofacial bones and cartilage. Abnormal development of the neural crest is associated with several human maladies including cleft/lip palate, aggressive cancers such as melanoma and neuroblastoma, and rare syndromes, like Waardenburg syndrome, a complex disorder involving hearing loss and pigment defects. We previously identified the transcription factor Pax7 as an early marker, and required component for neural crest development in chick embryos. In mammals, Pax7 is also thought to play a role in neural crest development, yet the precise contribution of Pax7 progenitors to the neural crest lineage has not been determined.Here we use Cre/loxP technology in double transgenic mice to fate map the Pax7 lineage in neural crest derivates. We find that Pax7 descendants contribute to multiple tissues including the cranial, cardiac and trunk neural crest, which in the cranial cartilage form a distinct regional pattern. The Pax7 lineage, like the Pax3 lineage, is additionally detected in some non-neural crest tissues, including a subset of the epithelial cells in specific organs.These results demonstrate a previously unappreciated widespread distribution of Pax7 descendants within and beyond the neural crest. They shed light regarding the regionally distinct phenotypes observed in Pax3 and Pax7 mutants, and provide a unique perspective into the potential roles of Pax7 during disease and development.

  5. Epiblast cells that express MyoD recruit pluripotent cells to the skeletal muscle lineage

    Science.gov (United States)

    Gerhart, Jacquelyn; Neely, Christine; Stewart, Benjamin; Perlman, Jordanna; Beckmann, David; Wallon, Margaretha; Knudsen, Karen; George-Weinstein, Mindy

    2004-01-01

    Embryonic stem cells are derived from the epiblast. A subpopulation of epiblast cells expresses MyoD mRNA and the G8 antigen in vivo. G8 positive (G8pos) and G8 negative (G8neg) populations were isolated by magnetic cell sorting. Nearly all G8pos cells switched from E- to N-cadherin and differentiated into skeletal muscle in culture. G8neg cells were impaired in their ability to switch cadherins and few formed skeletal muscle. Medium conditioned by G8pos cells stimulated skeletal myogenesis and N-cadherin synthesis in G8neg cultures. The effect of conditioned medium from G8pos cultures was inhibited by bone morphogenetic protein (BMP) 4. Treatment of G8neg cells with a soluble form of the BMP receptor-IA or Noggin promoted N-cadherin synthesis and skeletal myogenesis. These results demonstrate that MyoD-positive epiblast cells recruit pluripotent cells to the skeletal muscle lineage. The mechanism of recruitment involves blocking the BMP signaling pathway. PMID:14981095

  6. Leu-9 (CD 7) positivity in acute leukemias: a marker of T-cell lineage?

    Science.gov (United States)

    Ben-Ezra, J; Winberg, C D; Wu, A; Rappaport, H

    1987-01-01

    Monoclonal antibody Leu-9 (CD 7) has been reported to be a sensitive and specific marker for T-cell lineage in leukemic processes, since it is positive in patients whose leukemic cells fail to express other T-cell antigens. To test whether Leu-9 is indeed specific for T-cell leukemias, we examined in detail 10 cases of acute leukemia in which reactions were positive for Leu-9 and negative for other T-cell-associated markers including T-11, Leu-1, T-3, and E-rosettes. Morphologically and cytochemically, 2 of these 10 leukemias were classified as lymphoblastic, 4 as myeloblastic, 2 as monoblastic, 1 as megakaryoblastic, and 1 as undifferentiated. The case of acute megakaryoblastic leukemia is the first reported case to be Leu-9 positive. None of the 10 were TdT positive. Of six cases (two monoblastic, one lymphoblastic, one myeloblastic, one megakaryoblastic, and one undifferentiated) in which we evaluated for DNA gene rearrangements, only one, a peroxidase-positive leukemia, showed a novel band on study of the T-cell-receptor beta-chain gene. We therefore conclude that Leu-9 is not a specific marker to T-cell lineage and that, in the absence of other supporting data, Leu-9 positivity should not be used as the sole basis of classifying an acute leukemia as being T-cell derived.

  7. Imaging retinal progenitor lineages in developing zebrafish embryos.

    Science.gov (United States)

    Jusuf, Patricia; Harris, William A; Poggi, Lucia

    2013-03-01

    In this protocol, we describe how to make and analyze four dimensional (4D) movies of retinal lineage in the zebrafish embryo in vivo. 4D consists of three spatial dimensions (3D) reconstructed from stacks of confocal planes plus one time dimension. Our imaging is performed on transgenic cells that express fluorescent proteins under the control of cell-specific promoters or on cells that transiently express such reporters in specific retinal cell progenitors. An important aspect of lineage tracing is the ability to follow individual cells as they undergo multiple cell divisions, final migration, and differentiation. This may mean many hours of 4D imaging, requiring that cells be kept healthy and maintained under conditions suitable for normal development. The longest movies we have made are ∼50 h. By analyzing these movies, we can see when a specific cell was born and who its sister was, allowing us to reconstruct its retinal lineages in vivo.

  8. Clonal reversal of ageing-associated stem cell lineage bias via a pluripotent intermediate

    DEFF Research Database (Denmark)

    Wahlestedt, Martin; Erlandsson, Eva; Kristiansen, Trine

    2017-01-01

    Ageing associates with significant alterations in somatic/adult stem cells and therapies to counteract these might have profound benefits for health. In the blood, haematopoietic stem cell (HSC) ageing is linked to several functional shortcomings. However, besides the recent realization...... with the generation of induced pluripotent stem (iPS) cells. This allows us to specifically focus on aged HSCs presenting with a pronounced lineage skewing, a hallmark of HSC ageing. Functional and molecular evaluations reveal haematopoiesis from these iPS clones to be indistinguishable from that associating...

  9. At the crossroads of fate - somatic cell lineage specification in the fetal gonad

    DEFF Research Database (Denmark)

    Rotgers, Emmi; Jørgensen, Anne; Yao, Humphrey Hung-Chang

    2018-01-01

    The reproductive endocrine systems are vastly different between male and female. This sexual dimorphism of endocrine milieu originates from sex-specific differentiation of the somatic cells in the gonads during fetal life. The majority of gonadal somatic cells arise from the adrenogonadal...... of the reproductive tracts. Impairment of lineage specification and function of gonadal somatic cells can lead to disorders of sexual development (DSDs) in humans. Human DSDs and processes for gonadal development have been successfully modelled using genetically modified mouse models. In this review, we focus...

  10. Cell lineage identification and stem cell culture in a porcine model for the study of intestinal epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Liara M Gonzalez

    Full Text Available Significant advances in intestinal stem cell biology have been made in murine models; however, anatomical and physiological differences between mice and humans limit mice as a translational model for stem cell based research. The pig has been an effective translational model, and represents a candidate species to study intestinal epithelial stem cell (IESC driven regeneration. The lack of validated reagents and epithelial culture methods is an obstacle to investigating IESC driven regeneration in a pig model. In this study, antibodies against Epithelial Adhesion Molecule 1 (EpCAM and Villin marked cells of epithelial origin. Antibodies against Proliferative Cell Nuclear Antigen (PCNA, Minichromosome Maintenance Complex 2 (MCM2, Bromodeoxyuridine (BrdU and phosphorylated Histone H3 (pH3 distinguished proliferating cells at various stages of the cell cycle. SOX9, localized to the stem/progenitor cells zone, while HOPX was restricted to the +4/'reserve' stem cell zone. Immunostaining also identified major differentiated lineages. Goblet cells were identified by Mucin 2 (MUC2; enteroendocrine cells by Chromogranin A (CGA, Gastrin and Somatostatin; and absorptive enterocytes by carbonic anhydrase II (CAII and sucrase isomaltase (SIM. Transmission electron microscopy demonstrated morphologic and sub-cellular characteristics of stem cell and differentiated intestinal epithelial cell types. Quantitative PCR gene expression analysis enabled identification of stem/progenitor cells, post mitotic cell lineages, and important growth and differentiation pathways. Additionally, a method for long-term culture of porcine crypts was developed. Biomarker characterization and development of IESC culture in the porcine model represents a foundation for translational studies of IESC-driven regeneration of the intestinal epithelium in physiology and disease.

  11. Transcriptional regulation of lineage commitment--a stochastic model of cell fate decisions.

    Directory of Open Access Journals (Sweden)

    Jose Teles

    Full Text Available Molecular mechanisms employed by individual multipotent cells at the point of lineage commitment remain largely uncharacterized. Current paradigms span from instructive to noise-driven mechanisms. Of considerable interest is also whether commitment involves a limited set of genes or the entire transcriptional program, and to what extent gene expression configures multiple trajectories into commitment. Importantly, the transient nature of the commitment transition confounds the experimental capture of committing cells. We develop a computational framework that simulates stochastic commitment events, and affords mechanistic exploration of the fate transition. We use a combined modeling approach guided by gene expression classifier methods that infers a time-series of stochastic commitment events from experimental growth characteristics and gene expression profiling of individual hematopoietic cells captured immediately before and after commitment. We define putative regulators of commitment and probabilistic rules of transition through machine learning methods, and employ clustering and correlation analyses to interrogate gene regulatory interactions in multipotent cells. Against this background, we develop a Monte Carlo time-series stochastic model of transcription where the parameters governing promoter status, mRNA production and mRNA decay in multipotent cells are fitted to experimental static gene expression distributions. Monte Carlo time is converted to physical time using cell culture kinetic data. Probability of commitment in time is a function of gene expression as defined by a logistic regression model obtained from experimental single-cell expression data. Our approach should be applicable to similar differentiating systems where single cell data is available. Within our system, we identify robust model solutions for the multipotent population within physiologically reasonable values and explore model predictions with regard to

  12. Does cell lineage in the developing cerebral cortex contribute to its columnar organization?

    Directory of Open Access Journals (Sweden)

    Marcos R Costa

    2010-06-01

    Full Text Available Since the pioneer work of Lorente de Nó, Ramón y Cajal, Brodmann, Mountcastle, Hubel and Wiesel and others, the cerebral cortex has been seen as a jigsaw of anatomic and functional modules involved in the processing of different sets of information. In fact, a columnar distribution of neurons displaying similar functional properties throughout the cerebral cortex has been observed by many researchers. Although it has been suggested that much of the anatomical substrate for such organization would be already specified at early developmental stages, before activity-dependent mechanisms could take place, it is still unclear whether gene expression in the ventricular zone could play a role in the development of discrete functional units, such as minicolumns or columns. Cell lineage experiments using replication-incompetent retroviral vectors have shown that the progeny of a single neuroepithelial/radial glial cell in the dorsal telencephalon is organized into discrete radial clusters of sibling excitatory neurons, which have a higher propensity for developing chemical synapses with each other rather than with neighbouring non-siblings. Here, we will discuss the possibility that the cell lineage of single neuroepithelial/radial glia cells could contribute for the columnar organization of the neocortex by generating radial columns of sibling, interconnected neurons. Borrowing some concepts from the studies on cell-cell recognition and transcription factor networks, we will also touch upon the potential molecular mechanisms involved in the establishment of sibling-neuron circuits.

  13. MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16

    DEFF Research Database (Denmark)

    Yin, Hang; Pasut, Alessandra; Soleimani, Vahab D

    2013-01-01

    Brown adipose tissue (BAT) is an energy-dispensing thermogenic tissue that plays an important role in balancing energy metabolism. Lineage-tracing experiments indicate that brown adipocytes are derived from myogenic progenitors during embryonic development. However, adult skeletal muscle stem cells...... (satellite cells) have long been considered uniformly determined toward the myogenic lineage. Here, we report that adult satellite cells give rise to brown adipocytes and that microRNA-133 regulates the choice between myogenic and brown adipose determination by targeting the 3'UTR of Prdm16. Antagonism...... of microRNA-133 during muscle regeneration increases uncoupled respiration, glucose uptake, and thermogenesis in local treated muscle and augments whole-body energy expenditure, improves glucose tolerance, and impedes the development of diet-induced obesity. Finally, we demonstrate that miR-133 levels...

  14. Cell lineage patterns in the shoot meristem of the sunflower embryo in the dry seed

    International Nuclear Information System (INIS)

    Jegla, D.E.; Sussex, I.M.

    1989-01-01

    We mapped the fate of cells in the shoot meristem of the dry-seed embryo of sunflower, Helianthus annuus L. cv. Peredovic, using irradiation-induced somatic sectors. We analyzed 249 chlorophyll-deficient or glabrous (hairless) sectors generated in 236 plants. Most sectors observed in the inflorescence extended into vegetative nodes. Thus cell lineages that ultimately gave rise to reproductive structures also contributed to vegetative structures. No single sector extended the entire length of the shoot. Thus the shoot is not derived from one or a few apical initials. Rather, the position, vertical extent, and width of the sectors at different levels of the shoot suggest that the shoot is derived from three to four circumferential populations of cells in each of three cell layers of the embryo meristem. Sectors had no common boundaries even in plants with two or three independent sectors, but varied in extent and overlapped along the length of the shoot. Thus individual cells in a single circumferential population behaved independently to contribute lineages of different vertical extents to the growing shoot. The predicted number of circumferential populations of cells as well as the apparent cell number in each population was consistent with the actual number of cells in the embryo meristem observed in histological sections

  15. Hematopoietic microenvironment. Origin, lineage, and transplantability of the stromal cells in long-term bone marrow cultures from chimeric mice

    International Nuclear Information System (INIS)

    Perkins, S.; Fleischman, R.A.

    1988-01-01

    Studies of bone marrow transplant patients have suggested that the stromal cells of the in vitro hematopoietic microenvironment are transplantable into conditioned recipients. Moreover, in patients with myeloproliferative disorders, all of the stromal cells, which include presumptive endothelial cells, appear to be derived from hematopoietic precursors. To confirm these findings, we have constructed two chimeric mouse models: (a) traditional radiation chimeras, and (b) fetal chimeras, produced by placental injection of bone marrow into genetically anemic Wx/Wv fetuses, a technique that essentially precludes engraftment of nonhematopoietic cells. Using two-color indirect immunofluorescence, the stromal cells in long-term bone marrow culture derived from these chimeras were analyzed for donor or host origin by strain-specific H-2 antigens, and for cell lineage by a variety of other specific markers. 75-95% of the stromal cells were shown to be hematopoietic cells of the monocyte-macrophage lineage, based upon donor origin, phagocytosis, and expression of specific hematopoietic surface antigens. The remaining 5-25% of the stromal cells were exclusively host in origin. Apart from occasional fat cells, these cells uniformly expressed collagen type IV, laminin, and a surface antigen associated with endothelial cells. Since these endothelial-like cells are not transplantable into radiation or fetal chimeras, they are not derived from hematopoietic stem cells. The contrast between our findings and human studies suggests either unexpected species differences in the origin of stromal lineages or limitations in the previous methodology used to detect nonhematopoietic stromal cells

  16. Limiting dilution analysis of the stem cells for T cell lineage

    International Nuclear Information System (INIS)

    Katsura, Y.; Kina, T.; Amagai, T.; Tsubata, T.; Hirayoshi, K.; Takaoki, Y.; Sado, T.; Nishikawa, S.I.

    1986-01-01

    Stem cell activities of bone marrow, spleen, thymus, and fetal liver cells for T cell lineage were studied comparatively by transferring the cells from these organs through i.v. or intrathymus (i.t.) route into right leg- and tail-shielded (L-T-shielded) and 900 R-irradiated recipient mice, which were able to survive without supplying hemopoietic stem cells. Cells from B10.Thy-1.1 (H-2b, Thy-1.1) mice were serially diluted and were transferred into L-T-shielded and irradiated C57BL/6 (H-2b, Thy-1.2) mice, and 21 days later the thymus cells of recipient mice were assayed for Thy-1.1+ cells by flow cytofluorometry. The percentage of recipient mice possessing donor-type T cells was plotted against the number of cells transferred, and the stem cell activity in each cell source was expressed as the 50% positive value, the number of donor cells required for generating donor-type T cells in the thymuses of 50% of recipient mice. In i.v. transfer experiments, the activity of bone marrow cells was similar to that of fetal liver cells, and about 100 times and nearly 1000 times higher than those of spleen cells and thymus cells, respectively. In i.t. transfer experiments, the number of cells required for generating donor-type T cells was much lower than that in i.v. transfer experiments, although the ratio in 50% positive values between i.v. and i.t. transfers differed among cell sources. In i.t. transfers, the 50% positive value of bone marrow cells was five times, 400 times, and 500 times higher than that of fetal liver cells, spleen cells, and thymus cells, respectively. Our previous finding that stem cells are enriched in the spleens of mice which were whole body-irradiated and marrow-reconstituted 7 days earlier was confirmed also by the present limiting dilution assay carried out in i.v. as well as i.t. transfers

  17. Differentiation of retinal ganglion cells and photoreceptor precursors from mouse induced pluripotent stem cells carrying an Atoh7/Math5 lineage reporter.

    Directory of Open Access Journals (Sweden)

    Bin-Bin Xie

    Full Text Available The neural retina is a critical component of the visual system, which provides the majority of sensory input in humans. Various retinal degenerative diseases can result in the permanent loss of retinal neurons, especially the light-sensing photoreceptors and the centrally projecting retinal ganglion cells (RGCs. The replenishment of lost RGCs and the repair of optic nerve damage are particularly challenging, as both RGC specification and their subsequent axonal growth and projection involve complex and precise regulation. To explore the developmental potential of pluripotent stem cell-derived neural progenitors, we have established mouse iPS cells that allow cell lineage tracing of progenitors that have expressed Atoh7/Math5, a bHLH transcription factor required for RGC production. These Atoh7 lineage reporter iPS cells encode Cre to replace one copy of the endogenous Atoh7 gene and a Cre-dependent YFP reporter in the ROSA locus. In addition, they express pluripotent markers and are capable of generating teratomas in vivo. Under anterior neural induction and neurogenic conditions in vitro, the Atoh7-Cre/ROSA-YFP iPS cells differentiate into neurons that co-express various RGC markers and YFP, indicating that these neurons are derived from Atoh7-expressing progenitors. Consistent with previous in vivo cell lineage studies, the Atoh7-Cre/ROSA-YFP iPS cells also give rise to a subset of Crx-positive photoreceptor precursors. Furthermore, inhibition of Notch signaling in the iPSC cultures results in a significant increase of YFP-positive RGCs and photoreceptor precursors. Together, these results show that Atoh7-Cre/ROSA-YFP iPS cells can be used to monitor the development and survival of RGCs and photoreceptors from pluripotent stem cells.

  18. Epigenetic Reprogramming of Lineage-Committed Human Mammary Epithelial Cells Requires DNMT3A and Loss of DOT1L

    Directory of Open Access Journals (Sweden)

    Jerrica L. Breindel

    2017-09-01

    Full Text Available Organogenesis and tissue development occur through sequential stepwise processes leading to increased lineage restriction and loss of pluripotency. An exception to this appears in the adult human breast, where rare variant epithelial cells exhibit pluripotency and multilineage differentiation potential when removed from the signals of their native microenvironment. This phenomenon provides a unique opportunity to study mechanisms that lead to cellular reprogramming and lineage plasticity in real time. Here, we show that primary human mammary epithelial cells (HMECs lose expression of differentiated mammary epithelial markers in a manner dependent on paracrine factors and epigenetic regulation. Furthermore, we demonstrate that HMEC reprogramming is dependent on gene silencing by the DNA methyltransferase DNMT3A and loss of histone transcriptional marks following downregulation of the methyltransferase DOT1L. These results demonstrate that lineage commitment in adult tissues is context dependent and highlight the plasticity of somatic cells when removed from their native tissue microenvironment.

  19. Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages.

    Science.gov (United States)

    Gasimli, Leyla; Hickey, Anne Marie; Yang, Bo; Li, Guoyun; dela Rosa, Mitche; Nairn, Alison V; Kulik, Michael J; Dordick, Jonathan S; Moremen, Kelley W; Dalton, Stephen; Linhardt, Robert J

    2014-06-01

    Proteoglycans are found on the cell surface and in the extracellular matrix, and serve as prime sites for interaction with signaling molecules. Proteoglycans help regulate pathways that control stem cell fate, and therefore represent an excellent tool to manipulate these pathways. Despite their importance, there is a dearth of data linking glycosaminoglycan structure within proteoglycans with stem cell differentiation. Human embryonic stem cell line WA09 (H9) was differentiated into early mesoderm and endoderm lineages, and the glycosaminoglycanomic changes accompanying these transitions were studied using transcript analysis, immunoblotting, immunofluorescence and disaccharide analysis. Pluripotent H9 cell lumican had no glycosaminoglycan chains whereas in splanchnic mesoderm lumican was glycosaminoglycanated. H9 cells have primarily non-sulfated heparan sulfate chains. On differentiation towards splanchnic mesoderm and hepatic lineages N-sulfo group content increases. Differences in transcript expression of NDST1, HS6ST2 and HS6ST3, three heparan sulfate biosynthetic enzymes, within splanchnic mesoderm cells compared to H9 cells correlate to changes in glycosaminoglycan structure. Differentiation of embryonic stem cells markedly changes the proteoglycanome. The glycosaminoglycan biosynthetic pathway is complex and highly regulated, and therefore, understanding the details of this pathway should enable better control with the aim of directing stem cell differentiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. A reporter mouse model for in vivo tracing and in vitro molecular studies of melanocytic lineage cells and their diseases

    Directory of Open Access Journals (Sweden)

    Melissa Crawford

    2017-08-01

    Full Text Available Alterations in melanocytic lineage cells give rise to a plethora of distinct human diseases, including neurocristopathies, cutaneous pigmentation disorders, loss of vision and hearing, and melanoma. Understanding the ontogeny and biology of melanocytic cells, as well as how they interact with their surrounding environment, are key steps in the development of therapies for diseases that involve this cell lineage. Efforts to culture and characterize primary melanocytes from normal or genetically engineered mouse models have at times yielded contrasting observations. This is due, in part, to differences in the conditions used to isolate, purify and culture these cells in individual studies. By breeding ROSAmT/mG and Tyr::CreERT2 mice, we generated animals in which melanocytic lineage cells are identified through expression of green fluorescent protein. We also used defined conditions to systematically investigate the proliferation and migration responses of primary melanocytes on various extracellular matrix (ECM substrates. Under our culture conditions, mouse melanocytes exhibit doubling times in the range of 10 days, and retain exponential proliferative capacity for 50-60 days. In culture, these melanocytes showed distinct responses to different ECM substrates. Specifically, laminin-332 promoted cell spreading, formation of dendrites, random motility and directional migration. In contrast, low or intermediate concentrations of collagen I promoted adhesion and acquisition of a bipolar morphology, and interfered with melanocyte forward movements. Our systematic evaluation of primary melanocyte responses emphasizes the importance of clearly defining culture conditions for these cells. This, in turn, is essential for the interpretation of melanocyte responses to extracellular cues and to understand the molecular basis of disorders involving the melanocytic cell lineage.

  1. Cloning from stem cells: different lineages, different species, same story.

    Science.gov (United States)

    Oback, Björn

    2009-01-01

    Following nuclear transfer (NT), the most stringent measure of extensive donor cell reprogramming is development into viable offspring. This is referred to as cloning efficiency and quantified as the proportion of cloned embryos transferred into surrogate mothers that survive into adulthood. Cloning efficiency depends on the ability of the enucleated recipient cell to carry out the reprogramming reactions ('reprogramming ability') and the ability of the nuclear donor cell to be reprogrammed ('reprogrammability'). It has been postulated that reprogrammability of the somatic donor cell epigenome is inversely proportional to its differentiation status. In order to test this hypothesis, reprogrammability was compared between undifferentiated stem cells and their differentiated isogenic progeny. In the mouse, cells of divergent differentiation status from the neuronal, haematopoietic and skin epithelial lineage were tested. In cattle and deer, skeletal muscle and antler cells, respectively, were used as donors. No conclusive correlation between differentiation status and cloning efficiency was found, indicating that somatic donor cell type may not be the limiting factor for cloning success. This may reflect technical limitations of the NT-induced reprogramming assay. Alternatively, differentiation status and reprogrammability may be unrelated, making all cells equally difficult to reprogramme once they have left the ground state of pluripotency.

  2. Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice

    Science.gov (United States)

    Adam, Rene C.; Yang, Hanseul; Rockowitz, Shira; Larsen, Samantha B.; Nikolova, Maria; Oristian, Daniel S.; Polak, Lisa; Kadaja, Meelis; Asare, Amma; Zheng, Deyou; Fuchs, Elaine

    2015-01-01

    Adult stem cells (SCs) reside in niches which balance self-renewal with lineage selection and progression during tissue homeostasis. Following injury, culture or transplantation, SCs outside their niche often display fate flexibility1-4. Here we show that super-enhancers5 underlie the identity, lineage commitment and plasticity of adult SCs in vivo. Using hair follicle (HF) as model, we map the global chromatin domains of HFSCs and their committed progenitors in their native microenvironments. We show that super-enhancers and their dense clusters (‘epicenters’) of transcription factor (TF) binding sites change upon lineage progression. New fate is acquired by decommissioning old and establishing new super-enhancers and/or epicenters, an auto-regulatory process that abates one master regulator subset while enhancing another. We further show that when outside their niche, either in vitro or in wound-repair, HFSCs dynamically remodel super-enhancers in response to changes in their microenvironment. Intriguingly, some key super-enhancers shift epicenters, enabling them to remain active and maintain a transitional state in an ever-changing transcriptional landscape. Finally, we identify SOX9 as a crucial chromatin rheostat of HFSC super-enhancers, and provide functional evidence that super-enhancers are dynamic, dense TF-binding platforms which are acutely sensitive to pioneer master regulators whose levels define not only spatial and temporal features of lineage-status, but also stemness, plasticity in transitional states and differentiation. PMID:25799994

  3. A minimal spatial cell lineage model of epithelium: tissue stratification and multi-stability

    Science.gov (United States)

    Yeh, Wei-Ting; Chen, Hsuan-Yi

    2018-05-01

    A minimal model which includes spatial and cell lineage dynamics for stratified epithelia is presented. The dependence of tissue steady state on cell differentiation models, cell proliferation rate, cell differentiation rate, and other parameters are studied numerically and analytically. Our minimal model shows some important features. First, we find that morphogen or mechanical stress mediated interaction is necessary to maintain a healthy stratified epithelium. Furthermore, comparing with tissues in which cell differentiation can take place only during cell division, tissues in which cell division and cell differentiation are decoupled can achieve relatively higher degree of stratification. Finally, our model also shows that in the presence of short-range interactions, it is possible for a tissue to have multiple steady states. The relation between our results and tissue morphogenesis or lesion is discussed.

  4. Exploiting Heparan Sulfate Proteoglycans in Human Neurogenesis—Controlling Lineage Specification and Fate

    Directory of Open Access Journals (Sweden)

    Chieh Yu

    2017-10-01

    Full Text Available Unspecialized, self-renewing stem cells have extraordinary application to regenerative medicine due to their multilineage differentiation potential. Stem cell therapies through replenishing damaged or lost cells in the injured area is an attractive treatment of brain trauma and neurodegenerative neurological disorders. Several stem cell types have neurogenic potential including neural stem cells (NSCs, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and mesenchymal stem cells (MSCs. Currently, effective use of these cells is limited by our lack of understanding and ability to direct lineage commitment and differentiation of neural lineages. Heparan sulfate proteoglycans (HSPGs are ubiquitous proteins within the stem cell microenvironment or niche and are found localized on the cell surface and in the extracellular matrix (ECM, where they interact with numerous signaling molecules. The glycosaminoglycan (GAG chains carried by HSPGs are heterogeneous carbohydrates comprised of repeating disaccharides with specific sulfation patterns that govern ligand interactions to numerous factors including the fibroblast growth factors (FGFs and wingless-type MMTV integration site family (Wnts. As such, HSPGs are plausible targets for guiding and controlling neural stem cell lineage fate. In this review, we provide an overview of HSPG family members syndecans and glypicans, and perlecan and their role in neurogenesis. We summarize the structural changes and subsequent functional implications of heparan sulfate as cells undergo neural lineage differentiation as well as outline the role of HSPG core protein expression throughout mammalian neural development and their function as cell receptors and co-receptors. Finally, we highlight suitable biomimetic approaches for exploiting the role of HSPGs in mammalian neurogenesis to control and tailor cell differentiation into specific lineages. An improved ability to control stem cell specific neural

  5. Synergic Functions of miRNAs Determine Neuronal Fate of Adult Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Meritxell Pons-Espinal

    2017-04-01

    Full Text Available Summary: Adult neurogenesis requires the precise control of neuronal versus astrocyte lineage determination in neural stem cells. While microRNAs (miRNAs are critically involved in this step during development, their actions in adult hippocampal neural stem cells (aNSCs has been unclear. As entry point to address that question we chose DICER, an endoribonuclease essential for miRNA biogenesis and other RNAi-related processes. By specific ablation of Dicer in aNSCs in vivo and in vitro, we demonstrate that miRNAs are required for the generation of new neurons, but not astrocytes, in the adult murine hippocampus. Moreover, we identify 11 miRNAs, of which 9 have not been previously characterized in neurogenesis, that determine neurogenic lineage fate choice of aNSCs at the expense of astrogliogenesis. Finally, we propose that the 11 miRNAs sustain adult hippocampal neurogenesis through synergistic modulation of 26 putative targets from different pathways. : In this article, the authors demonstrate that Dicer-dependent miRNAs are required for the generation of new neurons, but not astrocytes, in the adult hippocampus in vivo and in vitro. The authors identify a new set of 11 miRNAs that synergistically converge on multiple targets in different pathways to sustain neurogenic lineage fate commitment in aNSCs. Keywords: mouse, hippocampus, neural stem cells, fate choice, adult neurogenesis, astrogliogenesis, DICER, microRNAs, synergy

  6. No evidence for Fabaceae Gametophytic self-incompatibility being determined by Rosaceae, Solanaceae, and Plantaginaceae S-RNase lineage genes.

    Science.gov (United States)

    Aguiar, Bruno; Vieira, Jorge; Cunha, Ana E; Vieira, Cristina P

    2015-06-02

    Fabaceae species are important in agronomy and livestock nourishment. They have a long breeding history, and most cultivars have lost self-incompatibility (SI), a genetic barrier to self-fertilization. Nevertheless, to improve legume crop breeding, crosses with wild SI relatives of the cultivated varieties are often performed. Therefore, it is fundamental to characterize Fabaceae SI system(s). We address the hypothesis of Fabaceae gametophytic (G)SI being RNase based, by recruiting the same S-RNase lineage gene of Rosaceae, Solanaceae or Plantaginaceae SI species. We first identify SSK1 like genes (described only in species having RNase based GSI), in the Trifolium pratense, Medicago truncatula, Cicer arietinum, Glycine max, and Lupinus angustifolius genomes. Then, we characterize the S-lineage T2-RNase genes in these genomes. In T. pratense, M. truncatula, and C. arietinum we identify S-RNase lineage genes that in phylogenetic analyses cluster with Pyrinae S-RNases. In M. truncatula and C. arietinum genomes, where large scaffolds are available, these sequences are surrounded by F-box genes that in phylogenetic analyses also cluster with S-pollen genes. In T. pratense the S-RNase lineage genes show, however, expression in tissues not involved in GSI. Moreover, levels of diversity are lower than those observed for other S-RNase genes. The M. truncatula and C. arietinum S-RNase and S-pollen like genes phylogenetically related to Pyrinae S-genes, are also expressed in tissues other than those involved in GSI. To address if other T2-RNases could be determining Fabaceae GSI, here we obtained a style with stigma transcriptome of Cytisus striatus, a species that shows significant difference on the percentage of pollen growth in self and cross-pollinations. Expression and polymorphism analyses of the C. striatus S-RNase like genes revealed that none of these genes, is the S-pistil gene. We find no evidence for Fabaceae GSI being determined by Rosaceae, Solanaceae, and

  7. Dendritic Cell Lineage Potential in Human Early Hematopoietic Progenitors

    Directory of Open Access Journals (Sweden)

    Julie Helft

    2017-07-01

    Full Text Available Conventional dendritic cells (cDCs are thought to descend from a DC precursor downstream of the common myeloid progenitor (CMP. However, a mouse lymphoid-primed multipotent progenitor has been shown to generate cDCs following a DC-specific developmental pathway independent of monocyte and granulocyte poiesis. Similarly, here we show that, in humans, a large fraction of multipotent lymphoid early progenitors (MLPs gives rise to cDCs, in particular the subset known as cDC1, identified by co-expression of DNGR-1 (CLEC9A and CD141 (BDCA-3. Single-cell analysis indicates that over one-third of MLPs have the potential to efficiently generate cDCs. cDC1s generated from CMPs or MLPs do not exhibit differences in transcriptome or phenotype. These results demonstrate an early imprinting of the cDC lineage in human hematopoiesis and highlight the plasticity of developmental pathways giving rise to human DCs.

  8. Dendritic cell fate is determined by BCL11A

    Science.gov (United States)

    Ippolito, Gregory C.; Dekker, Joseph D.; Wang, Yui-Hsi; Lee, Bum-Kyu; Shaffer, Arthur L.; Lin, Jian; Wall, Jason K.; Lee, Baeck-Seung; Staudt, Louis M.; Liu, Yong-Jun; Iyer, Vishwanath R.; Tucker, Haley O.

    2014-01-01

    The plasmacytoid dendritic cell (pDC) is vital to the coordinated action of innate and adaptive immunity. pDC development has not been unequivocally traced, nor has its transcriptional regulatory network been fully clarified. Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and demonstrate this lineage-specific requirement in the adult organism. Furthermore, we identify BCL11A gene targets and provide a molecular mechanism for its action in pDC commitment. Embryonic germ-line deletion of Bcl11a revealed an absolute cellular, molecular, and functional absence of pDCs in fetal mice. In adults, deletion of Bcl11a in hematopoietic stem cells resulted in perturbed yet continued generation of progenitors, loss of downstream pDC and B-cell lineages, and persisting myeloid, conventional dendritic, and T-cell lineages. Challenge with virus resulted in a marked reduction of antiviral response in conditionally deleted adults. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators, including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development, supporting a model wherein differentiation into pDCs represents a primed “default” pathway for common dendritic cell progenitors. PMID:24591644

  9. A reporter mouse model for in vivo tracing and in vitro molecular studies of melanocytic lineage cells and their diseases.

    Science.gov (United States)

    Crawford, Melissa; Leclerc, Valerie; Dagnino, Lina

    2017-08-15

    Alterations in melanocytic lineage cells give rise to a plethora of distinct human diseases, including neurocristopathies, cutaneous pigmentation disorders, loss of vision and hearing, and melanoma. Understanding the ontogeny and biology of melanocytic cells, as well as how they interact with their surrounding environment, are key steps in the development of therapies for diseases that involve this cell lineage. Efforts to culture and characterize primary melanocytes from normal or genetically engineered mouse models have at times yielded contrasting observations. This is due, in part, to differences in the conditions used to isolate, purify and culture these cells in individual studies. By breeding ROSA mT/mG and Tyr::CreER T2 mice, we generated animals in which melanocytic lineage cells are identified through expression of green fluorescent protein. We also used defined conditions to systematically investigate the proliferation and migration responses of primary melanocytes on various extracellular matrix (ECM) substrates. Under our culture conditions, mouse melanocytes exhibit doubling times in the range of 10 days, and retain exponential proliferative capacity for 50-60 days. In culture, these melanocytes showed distinct responses to different ECM substrates. Specifically, laminin-332 promoted cell spreading, formation of dendrites, random motility and directional migration. In contrast, low or intermediate concentrations of collagen I promoted adhesion and acquisition of a bipolar morphology, and interfered with melanocyte forward movements. Our systematic evaluation of primary melanocyte responses emphasizes the importance of clearly defining culture conditions for these cells. This, in turn, is essential for the interpretation of melanocyte responses to extracellular cues and to understand the molecular basis of disorders involving the melanocytic cell lineage. © 2017. Published by The Company of Biologists Ltd.

  10. After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination.

    Science.gov (United States)

    Gomez-Sanchez, Jose A; Pilch, Kjara S; van der Lans, Milou; Fazal, Shaline V; Benito, Cristina; Wagstaff, Laura J; Mirsky, Rhona; Jessen, Kristjan R

    2017-09-13

    There is consensus that, distal to peripheral nerve injury, myelin and Remak cells reorganize to form cellular columns, Bungner's bands, which are indispensable for regeneration. However, knowledge of the structure of these regeneration tracks has not advanced for decades and the structure of the cells that form them, denervated or repair Schwann cells, remains obscure. Furthermore, the origin of these cells from myelin and Remak cells and their ability to give rise to myelin cells after regeneration has not been demonstrated directly, although these conversions are believed to be central to nerve repair. Using genetic lineage-tracing and scanning-block face electron microscopy, we show that injury of sciatic nerves from mice of either sex triggers extensive and unexpected Schwann cell elongation and branching to form long, parallel processes. Repair cells are 2- to 3-fold longer than myelin and Remak cells and 7- to 10-fold longer than immature Schwann cells. Remarkably, when repair cells transit back to myelinating cells, they shorten ∼7-fold to generate the typically short internodes of regenerated nerves. The present experiments define novel morphological transitions in injured nerves and show that repair Schwann cells have a cell-type-specific structure that differentiates them from other cells in the Schwann cell lineage. They also provide the first direct evidence using genetic lineage tracing for two basic assumptions in Schwann cell biology: that myelin and Remak cells generate the elongated cells that build Bungner bands in injured nerves and that such cells can transform to myelin cells after regeneration. SIGNIFICANCE STATEMENT After injury to peripheral nerves, the myelin and Remak Schwann cells distal to the injury site reorganize and modify their properties to form cells that support the survival of injured neurons, promote axon growth, remove myelin-associated growth inhibitors, and guide regenerating axons to their targets. We show that the

  11. Visualization and correction of automated segmentation, tracking and lineaging from 5-D stem cell image sequences.

    Science.gov (United States)

    Wait, Eric; Winter, Mark; Bjornsson, Chris; Kokovay, Erzsebet; Wang, Yue; Goderie, Susan; Temple, Sally; Cohen, Andrew R

    2014-10-03

    Neural stem cells are motile and proliferative cells that undergo mitosis, dividing to produce daughter cells and ultimately generating differentiated neurons and glia. Understanding the mechanisms controlling neural stem cell proliferation and differentiation will play a key role in the emerging fields of regenerative medicine and cancer therapeutics. Stem cell studies in vitro from 2-D image data are well established. Visualizing and analyzing large three dimensional images of intact tissue is a challenging task. It becomes more difficult as the dimensionality of the image data increases to include time and additional fluorescence channels. There is a pressing need for 5-D image analysis and visualization tools to study cellular dynamics in the intact niche and to quantify the role that environmental factors play in determining cell fate. We present an application that integrates visualization and quantitative analysis of 5-D (x,y,z,t,channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks. By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. We combine unsupervised image

  12. Modulation of Hematopoietic Lineage Specification Impacts TREM2 Expression in Microglia-Like Cells Derived From Human Stem Cells.

    Science.gov (United States)

    Amos, Peter J; Fung, Susan; Case, Amanda; Kifelew, Jerusalem; Osnis, Leah; Smith, Carole L; Green, Kevin; Naydenov, Alipi; Aloi, Macarena; Hubbard, Jesse J; Ramakrishnan, Aravind; Garden, Gwenn A; Jayadev, Suman

    2017-01-01

    Microglia are the primary innate immune cell type in the brain, and their dysfunction has been linked to a variety of central nervous system disorders. Human microglia are extraordinarily difficult to obtain for experimental investigation, limiting our ability to study the impact of human genetic variants on microglia functions. Previous studies have reported that microglia-like cells can be derived from human monocytes or pluripotent stem cells. Here, we describe a reproducible relatively simple method for generating microglia-like cells by first deriving embryoid body mesoderm followed by exposure to microglia relevant cytokines. Our approach is based on recent studies demonstrating that microglia originate from primitive yolk sac mesoderm distinct from peripheral macrophages that arise during definitive hematopoiesis. We hypothesized that functional microglia could be derived from human stem cells by employing BMP-4 mesodermal specification followed by exposure to microglia-relevant cytokines, M-CSF, GM-CSF, IL-34, and TGF-β. Using immunofluorescence microscopy, flow cytometry, and reverse transcription polymerase chain reaction, we observed cells with microglia morphology expressing a repertoire of markers associated with microglia: Iba1, CX3CR1, CD11b, TREM2, HexB, and P2RY12. These microglia-like cells maintain myeloid functional phenotypes including Aβ peptide phagocytosis and induction of pro-inflammatory gene expression in response to lipopolysaccharide stimulation. Addition of small molecules BIO and SB431542, previously demonstrated to drive definitive hematopoiesis, resulted in decreased surface expression of TREM2. Together, these data suggest that mesodermal lineage specification followed by cytokine exposure produces microglia-like cells in vitro from human pluripotent stem cells and that this phenotype can be modulated by factors influencing hematopoietic lineage in vitro.

  13. Lineage plasticity-mediated therapy resistance in prostate cancer.

    Science.gov (United States)

    Blee, Alexandra M; Huang, Haojie

    2018-06-12

    Therapy resistance is a significant challenge for prostate cancer treatment in clinic. Although targeted therapies such as androgen deprivation and androgen receptor (AR) inhibition are effective initially, tumor cells eventually evade these strategies through multiple mechanisms. Lineage reprogramming in response to hormone therapy represents a key mechanism that is increasingly observed. The studies in this area have revealed specific combinations of alterations present in adenocarcinomas that provide cells with the ability to transdifferentiate and perpetuate AR-independent tumor growth after androgen-based therapies. Interestingly, several master regulators have been identified that drive plasticity, some of which also play key roles during development and differentiation of the cell lineages in the normal prostate. Thus, further study of each AR-independent tumor type and understanding underlying mechanisms are warranted to develop combinational therapies that combat lineage plasticity in prostate cancer.

  14. Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage.

    Science.gov (United States)

    Lu, Chenggang; Fuller, Margaret T

    2015-12-01

    Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s). In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC), a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs), spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages.

  15. Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via re-specification of lineage-restricted precursors

    Science.gov (United States)

    Doulatov, Sergei; Vo, Linda T.; Chou, Stephanie S.; Kim, Peter G.; Arora, Natasha; Li, Hu; Hadland, Brandon K.; Bernstein, Irwin D.; Collins, James J.; Zon, Leonard I.; Daley, George Q.

    2013-01-01

    Summary Human pluripotent stem cells (hPSCs) represent a promising source of patient-specific cells for disease modeling, drug screens, and cellular therapies. However, the inability to derive engraftable human hematopoietic stem and progenitor (HSPCs) has limited their characterization to in vitro assays. We report a strategy to re-specify lineage-restricted CD34+CD45+ myeloid precursors derived from hPSCs into multilineage progenitors that can be expanded in vitro and engraft in vivo. HOXA9, ERG, and RORA conferred self-renewal and multilineage potential in vitro and maintained primitive CD34+CD38− cells. Screening cells via transplantation revealed that two additional factors, SOX4 and MYB, were required for engraftment. Progenitors specified with all five factors gave rise to reproducible short-term engraftment with myeloid and erythroid lineages. Erythroid precursors underwent hemoglobin switching in vivo, silencing embryonic and activating adult globin expression. Our combinatorial screening approach establishes a strategy for obtaining transcription factor-mediated engraftment of blood progenitors from human pluripotent cells. PMID:24094326

  16. Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation

    Directory of Open Access Journals (Sweden)

    Hourinaz Behesti

    2013-01-01

    BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival.

  17. The transcriptional corepressor MTGR1 regulates intestinal secretory lineage allocation.

    Science.gov (United States)

    Parang, Bobak; Rosenblatt, Daniel; Williams, Amanda D; Washington, Mary K; Revetta, Frank; Short, Sarah P; Reddy, Vishruth K; Hunt, Aubrey; Shroyer, Noah F; Engel, Michael E; Hiebert, Scott W; Williams, Christopher S

    2015-03-01

    Notch signaling largely determines intestinal epithelial cell fate. High Notch activity drives progenitors toward absorptive enterocytes by repressing secretory differentiation programs, whereas low Notch permits secretory cell assignment. Myeloid translocation gene-related 1 (MTGR1) is a transcriptional corepressor in the myeloid translocation gene/Eight-Twenty-One family. Given that Mtgr1(-/-) mice have a dramatic reduction of intestinal epithelial secretory cells, we hypothesized that MTGR1 is a key repressor of Notch signaling. In support of this, transcriptome analysis of laser capture microdissected Mtgr1(-/-) intestinal crypts revealed Notch activation, and secretory markers Mucin2, Chromogranin A, and Growth factor-independent 1 (Gfi1) were down-regulated in Mtgr1(-/-) whole intestines and Mtgr1(-/-) enteroids. We demonstrate that MTGR1 is in a complex with Suppressor of Hairless Homolog, a key Notch effector, and represses Notch-induced Hairy/Enhancer of Split 1 activity. Moreover, pharmacologic Notch inhibition using a γ-secretase inhibitor (GSI) rescued the hyperproliferative baseline phenotype in the Mtgr1(-/-) intestine and increased production of goblet and enteroendocrine lineages in Mtgr1(-/-) mice. GSI increased Paneth cell production in wild-type mice but failed to do so in Mtgr1(-/-) mice. We determined that MTGR1 can interact with GFI1, a transcriptional corepressor required for Paneth cell differentiation, and repress GFI1 targets. Overall, the data suggest that MTGR1, a transcriptional corepressor well characterized in hematopoiesis, plays a critical role in intestinal lineage allocation. © FASEB.

  18. Identification of a PVL-negative SCCmec-IVa sub-lineage of the methicillin-resistant Staphylococcus aureus CC80 lineage

    DEFF Research Database (Denmark)

    Edslev, Sofie Marie; Westh, Henrik Torkil; Andersen, Paal Skytt

    2018-01-01

    of the CC80 S. aureus lineage was conducted from whole-genome sequences of 217 isolates (23 MSSA and 194 MRSA) from 22 countries. All isolates were further genetically characterized in regard to resistance determinants and PVL carriage, and epidemiological data was obtained for selected isolates. RESULTS....... CONCLUSIONS: This study reports the emergence of a novel CC80 CA-MRSA sub-lineage, showing that the CC80 lineage is more diverse than previously assumed....

  19. Extracting Fluorescent Reporter Time Courses of Cell Lineages from High-Throughput Microscopy at Low Temporal Resolution

    Science.gov (United States)

    Downey, Mike J.; Jeziorska, Danuta M.; Ott, Sascha; Tamai, T. Katherine; Koentges, Georgy; Vance, Keith W.; Bretschneider, Till

    2011-01-01

    The extraction of fluorescence time course data is a major bottleneck in high-throughput live-cell microscopy. Here we present an extendible framework based on the open-source image analysis software ImageJ, which aims in particular at analyzing the expression of fluorescent reporters through cell divisions. The ability to track individual cell lineages is essential for the analysis of gene regulatory factors involved in the control of cell fate and identity decisions. In our approach, cell nuclei are identified using Hoechst, and a characteristic drop in Hoechst fluorescence helps to detect dividing cells. We first compare the efficiency and accuracy of different segmentation methods and then present a statistical scoring algorithm for cell tracking, which draws on the combination of various features, such as nuclear intensity, area or shape, and importantly, dynamic changes thereof. Principal component analysis is used to determine the most significant features, and a global parameter search is performed to determine the weighting of individual features. Our algorithm has been optimized to cope with large cell movements, and we were able to semi-automatically extract cell trajectories across three cell generations. Based on the MTrackJ plugin for ImageJ, we have developed tools to efficiently validate tracks and manually correct them by connecting broken trajectories and reassigning falsely connected cell positions. A gold standard consisting of two time-series with 15,000 validated positions will be released as a valuable resource for benchmarking. We demonstrate how our method can be applied to analyze fluorescence distributions generated from mouse stem cells transfected with reporter constructs containing transcriptional control elements of the Msx1 gene, a regulator of pluripotency, in mother and daughter cells. Furthermore, we show by tracking zebrafish PAC2 cells expressing FUCCI cell cycle markers, our framework can be easily adapted to different cell

  20. Extracting fluorescent reporter time courses of cell lineages from high-throughput microscopy at low temporal resolution.

    Directory of Open Access Journals (Sweden)

    Mike J Downey

    Full Text Available The extraction of fluorescence time course data is a major bottleneck in high-throughput live-cell microscopy. Here we present an extendible framework based on the open-source image analysis software ImageJ, which aims in particular at analyzing the expression of fluorescent reporters through cell divisions. The ability to track individual cell lineages is essential for the analysis of gene regulatory factors involved in the control of cell fate and identity decisions. In our approach, cell nuclei are identified using Hoechst, and a characteristic drop in Hoechst fluorescence helps to detect dividing cells. We first compare the efficiency and accuracy of different segmentation methods and then present a statistical scoring algorithm for cell tracking, which draws on the combination of various features, such as nuclear intensity, area or shape, and importantly, dynamic changes thereof. Principal component analysis is used to determine the most significant features, and a global parameter search is performed to determine the weighting of individual features. Our algorithm has been optimized to cope with large cell movements, and we were able to semi-automatically extract cell trajectories across three cell generations. Based on the MTrackJ plugin for ImageJ, we have developed tools to efficiently validate tracks and manually correct them by connecting broken trajectories and reassigning falsely connected cell positions. A gold standard consisting of two time-series with 15,000 validated positions will be released as a valuable resource for benchmarking. We demonstrate how our method can be applied to analyze fluorescence distributions generated from mouse stem cells transfected with reporter constructs containing transcriptional control elements of the Msx1 gene, a regulator of pluripotency, in mother and daughter cells. Furthermore, we show by tracking zebrafish PAC2 cells expressing FUCCI cell cycle markers, our framework can be easily adapted

  1. iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions

    OpenAIRE

    Wu, Jinhong; Yang, Jialong; Yang, Kai; Wang, Hongxia; Gorentla, Balachandra; Shin, Jinwook; Qiu, Yurong; Que, Loretta G.; Foster, W. Michael; Xia, Zhenwei; Chi, Hongbo; Zhong, Xiao-Ping

    2014-01-01

    Terminal maturation of invariant NKT (iNKT) cells from stage 2 (CD44+NK1.1–) to stage 3 (CD44+NK1.1+) is accompanied by a functional acquisition of a predominant IFN-γ–producing (iNKT-1) phenotype; however, some cells develop into IL-17–producing iNKT (iNKT-17) cells. iNKT-17 cells are rare and restricted to a CD44+NK1.1– lineage. It is unclear how iNKT terminal maturation is regulated and what factors mediate the predominance of iNKT-1 compared with iNKT-17. The tumor suppressor tuberous scl...

  2. Rearrangements of genes for the antigen receptor on T cells as markers of lineage and clonality in human lymphoid neoplasms.

    Science.gov (United States)

    Waldmann, T A; Davis, M M; Bongiovanni, K F; Korsmeyer, S J

    1985-09-26

    The T alpha and T beta chains of the heterodimeric T-lymphocyte antigen receptor are encoded by separated DNA segments that recombine during T-cell development. We have used rearrangements of the T beta gene as a widely applicable marker of clonality in the T-cell lineage. We show that the T beta genes are used in both the T8 and T4 subpopulations of normal T cells and that Sézary leukemia, adult T-cell leukemia, and the non-B-lineage acute lymphoblastic leukemias are clonal expansions of T cells. Furthermore, circulating T cells from a patient with the T8-cell-predominantly lymphocytosis associated with granulocytopenia are shown to be monoclonal. Finally, the sensitivity and specificity of this tumor-associated marker have been exploited to monitor the therapy of a patient with adult T-cell leukemia. These unique DNA rearrangements provide insights into the cellular origin, clonality, and natural history of T-cell neoplasia.

  3. Defined three-dimensional culture conditions mediate efficient induction of definitive endoderm lineage from human umbilical cord Wharton's jelly mesenchymal stem cells.

    Science.gov (United States)

    Al Madhoun, Ashraf; Ali, Hamad; AlKandari, Sarah; Atizado, Valerie Lopez; Akhter, Nadeem; Al-Mulla, Fahd; Atari, Maher

    2016-11-16

    Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) are gaining increasing interest as an alternative source of stem cells for regenerative medicine applications. Definitive endoderm (DE) specification is a prerequisite for the development of vital organs such as liver and pancreas. Hence, efficient induction of the DE lineage from stem cells is crucial for subsequent generation of clinically relevant cell types. Here we present a defined 3D differentiation protocol of WJ-MSCs into DE cells. WJ-MSCs were cultured in suspension to generate spheroids, about 1500 cells each, for 7 days. The serum-free differentiation media contained specific growth factors, cytokines, and small molecules that specifically regulate signaling pathways including sonic hedgehog, bone morphogenetic protein, Activin/Wnt, and Notch. We obtained more than 85 % DE cells as shown with FACS analysis using antibodies directed against the DE marker CXCR4. In addition, biochemical and molecular analysis of bona-fide DE markers revealed a time-course induction of Sox17, CXCR4, and FoxA2. Focused PCR-based array also indicated a specific induction into the DE lineage. In this study, we report an efficient serum-free protocol to differentiate WJ-MSCs into DE cells utilizing 3D spheroid formation. Our approach might aid in the development of new protocols to obtain DE-derivative lineages including liver-like and pancreatic insulin-producing cells.

  4. Engineered Murine HSCs Reconstitute Multi-lineage Hematopoiesis and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Yi-Fen Lu

    2016-12-01

    Full Text Available Hematopoietic stem cell (HSC transplantation is curative for malignant and genetic blood disorders, but is limited by donor availability and immune-mismatch. Deriving HSCs from patient-matched embryonic/induced-pluripotent stem cells (ESCs/iPSCs could address these limitations. Prior efforts in murine models exploited ectopic HoxB4 expression to drive self-renewal and enable multi-lineage reconstitution, yet fell short in delivering robust lymphoid engraftment. Here, by titrating exposure of HoxB4-ESC-HSC to Notch ligands, we report derivation of engineered HSCs that self-renew, repopulate multi-lineage hematopoiesis in primary and secondary engrafted mice, and endow adaptive immunity in immune-deficient recipients. Single-cell analysis shows that following engraftment in the bone marrow niche, these engineered HSCs further specify to a hybrid cell type, in which distinct gene regulatory networks of hematopoietic stem/progenitors and differentiated hematopoietic lineages are co-expressed. Our work demonstrates engineering of fully functional HSCs via modulation of genetic programs that govern self-renewal and lineage priming.

  5. Towards consistent generation of pancreatic lineage progenitors from human pluripotent stem cells.

    Science.gov (United States)

    Rostovskaya, Maria; Bredenkamp, Nicholas; Smith, Austin

    2015-10-19

    Human pluripotent stem cells can in principle be used as a source of any differentiated cell type for disease modelling, drug screening, toxicology testing or cell replacement therapy. Type I diabetes is considered a major target for stem cell applications due to the shortage of primary human beta cells. Several protocols have been reported for generating pancreatic progenitors by in vitro differentiation of human pluripotent stem cells. Here we first assessed one of these protocols on a panel of pluripotent stem cell lines for capacity to engender glucose sensitive insulin-producing cells after engraftment in immunocompromised mice. We observed variable outcomes with only one cell line showing a low level of glucose response. We, therefore, undertook a systematic comparison of different methods for inducing definitive endoderm and subsequently pancreatic differentiation. Of several protocols tested, we identified a combined approach that robustly generated pancreatic progenitors in vitro from both embryo-derived and induced pluripotent stem cells. These findings suggest that, although there are intrinsic differences in lineage specification propensity between pluripotent stem cell lines, optimal differentiation procedures may consistently direct a substantial fraction of cells into pancreatic specification. © 2015 The Authors.

  6. Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage.

    Directory of Open Access Journals (Sweden)

    Chenggang Lu

    2015-12-01

    Full Text Available Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s. In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC, a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs, spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages.

  7. A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage

    Science.gov (United States)

    Faure, Emmanuel; Savy, Thierry; Rizzi, Barbara; Melani, Camilo; Stašová, Olga; Fabrèges, Dimitri; Špir, Róbert; Hammons, Mark; Čúnderlík, Róbert; Recher, Gaëlle; Lombardot, Benoît; Duloquin, Louise; Colin, Ingrid; Kollár, Jozef; Desnoulez, Sophie; Affaticati, Pierre; Maury, Benoît; Boyreau, Adeline; Nief, Jean-Yves; Calvat, Pascal; Vernier, Philippe; Frain, Monique; Lutfalla, Georges; Kergosien, Yannick; Suret, Pierre; Remešíková, Mariana; Doursat, René; Sarti, Alessandro; Mikula, Karol; Peyriéras, Nadine; Bourgine, Paul

    2016-01-01

    The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology. PMID:26912388

  8. Stem Cell Fate Determination during Development and Regeneration of Ectodermal Organs

    Science.gov (United States)

    Jiménez-Rojo, Lucía; Granchi, Zoraide; Graf, Daniel; Mitsiadis, Thimios A.

    2012-01-01

    The development of ectoderm-derived appendages results in a large variety of highly specialized organs such as hair follicles, mammary glands, salivary glands, and teeth. Despite varying in number, shape, and function, all these ectodermal organs develop through continuous and reciprocal epithelial–mesenchymal interactions, sharing common morphological and molecular features especially during their embryonic development. Diseases such as ectodermal dysplasias can affect simultaneously these organs, suggesting that they may arise from common multipotent precursors residing in the embryonic ectoderm. During embryogenesis, these putative ectodermal stem cells may adopt different fates and consequently be able to generate a variety of tissue-specific stem cells, which are the sources for the various cell lineages that form the diverse organs. The specification of those common epithelial precursors, as well as their further lineage commitment to tissue-specific stem cells, might be controlled by specific signals. It has been well documented that Notch, Wnt, bone morphogenetic protein, and fibroblast growth factor signaling pathways regulate cell fate decisions during the various stages of ectodermal organ development. However, the in vivo spatial and temporal dynamics of these signaling pathways are not yet well understood. Improving the current knowledge on the mechanisms involved in stem cell fate determination during organogenesis and homeostasis of ectodermal organs is crucial to develop effective stem cell-based therapies in order to regenerate or replace pathological and damaged tissues. PMID:22539926

  9. The 3’UTR of Nanos2 directs enrichment in the germ cell lineage of the sea urchin

    OpenAIRE

    Oulhen, Nathalie; Yoshida, Takaya; Yajima, Mamiko; Song, Jia; Sakuma, Tetsushi; Sakamoto, Naoaki; Yamamoto, Takashi; Wessel, Gary M.

    2013-01-01

    Nanos is a translational regulator required for the survival and maintenance of primordial germ cells during embryogenesis. Three nanos homologs are present in the genome of the sea urchin Strongylocentrotus purpuratus (Sp), and each nanos mRNA accumulates specifically in the small micromere (sMic) lineage. We found that a highly conserved element in the 3’ UTR of nanos2 is sufficient for reporter expression selectively in the sMic lineage: microinjection into a Sp fertilized egg of an RNA th...

  10. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells.

    Science.gov (United States)

    Soucie, Erinn L; Weng, Ziming; Geirsdóttir, Laufey; Molawi, Kaaweh; Maurizio, Julien; Fenouil, Romain; Mossadegh-Keller, Noushine; Gimenez, Gregory; VanHille, Laurent; Beniazza, Meryam; Favret, Jeremy; Berruyer, Carole; Perrin, Pierre; Hacohen, Nir; Andrau, J-C; Ferrier, Pierre; Dubreuil, Patrice; Sidow, Arend; Sieweke, Michael H

    2016-02-12

    Differentiated macrophages can self-renew in tissues and expand long term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network that controls self-renewal. Single-cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells. Copyright © 2016, American Association for the Advancement of Science.

  11. Immunoliposome-mediated delivery of neomycin phosphotransferase for the lineage-specific selection of differentiated/committed stem cell progenies: potential advantages over transfection with marker genes, fluorescence-activated and magnetic affinity cell-sorting.

    Science.gov (United States)

    Heng, Boon Chin; Cao, Tong

    2005-01-01

    A major challenge in the therapeutic application of stem cells in regenerative medicine is the lineage-specific selection of their committed/differentiated progenies for transplantation. This is necessary to avoid engraftment of undesired lineages at the transplantation site, i.e. fibroblastic scar tissue, as well as to enhance the efficacy of transplantation therapy. Commonly used techniques for lineage-specific selection of committed/differentiated stem cell progenies include marker gene transfection, fluorescence-activated (FACS) and magnetic-affinity (MACS) cell-sorting. Nevertheless, these have their disadvantages for therapeutic applications. Marker gene transfection invariably leads to permanent genetic modification of stem cells, which in turn limits their use in human clinical therapy due to overwhelming ethical and safety concerns. FACS requires expensive instrumentation and highly-skilled personnel, and is unsuited for handling bulk quantities of cells that would almost certainly be required for transplantation therapy. MACS is a cheaper alternative, but the level of purity attained is also reduced. A possible novel approach that has yet to be investigated is immunoliposome-mediated delivery of neomycin phosphotranferase (NPT) for lineage-specific selection of stem cell progenies. This would avoid permanent genetic modification to the cell, unlike recombinant NPT expression linked to activation of specific promoter sequences. Moreover, it could potentially provide a much more practical and cost-effective alternative for handling bulk quantities of cells that would be required for transplantation therapy, as compared to FACS or MACS. As such, this alternative approach needs to be rigorously investigated, in view of its potentially useful applications in stem cell therapeutics.

  12. SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development

    Directory of Open Access Journals (Sweden)

    Rhys J.P. Skelton

    2014-07-01

    Full Text Available The study of human cardiogenesis would benefit from a detailed cell lineage fate map akin to that established for the haematopoietic lineages. Here we sought to define cell lineage relationships based on the expression of NKX2-5 and the cell surface markers VCAM1, SIRPA and CD34 during human cardiovascular development. Expression of NKX2-5GFP was used to identify cardiac progenitors and cardiomyocytes generated during the differentiation of NKX2-5GFP/w human embryonic stem cells (hESCs. Cardiovascular cell lineages sub-fractionated on the basis of SIRPA, VCAM1 and CD34 expression were assayed for differentiation potential and gene expression. The NKX2-5posCD34pos population gave rise to endothelial cells that rapidly lost NKX2-5 expression in culture. Conversely, NKX2-5 expression was maintained in myocardial committed cells, which progressed from being NKX2-5posSIRPApos to NKX2-5posSIRPAposVCAM1pos. Up-regulation of VCAM1 was accompanied by the expression of myofilament markers and reduced clonal capacity, implying a restriction of cell fate potential. Combinatorial expression of NKX2-5, SIRPA, VCAM1 and CD34 can be used to define discrete stages of cardiovascular cell lineage differentiation. These markers identify specific stages of cardiomyocyte and endothelial lineage commitment and, thus provide a scaffold for establishing a fate map of early human cardiogenesis.

  13. Targeting CD147 for T to NK Lineage Reprogramming and Tumor Therapy.

    Science.gov (United States)

    Geng, Jie-Jie; Tang, Juan; Yang, Xiang-Min; Chen, Ruo; Zhang, Yang; Zhang, Kui; Miao, Jin-Lin; Chen, Zhi-Nan; Zhu, Ping

    2017-06-01

    CD147 is highly expressed on the surface of numerous tumor cells to promote invasion and metastasis. Targeting these cells with CD147-specific antibodies has been validated as an effective approach for lung and liver cancer therapy. In the immune system, CD147 is recognized as a co-stimulatory receptor and impacts the outcome of thymic selection. Using T cell-specific deletion, we showed here that in thymus CD147 is indispensable for the stable αβ T cell lineage commitment: loss of CD147 biases both multipotent DN (double negative) and fully committed DP (double positive) cells into innate NK-like lineages. Mechanistically, CD147 deficiency results in impaired Wnt signaling and expression of BCL11b, a master transcription factor in determining T cell identity. In addition, functional blocking of CD147 by antibody phenocopies genetic deletion to enrich NK-like cells in the periphery. Furthermore, using a melanoma model and orthotopic liver cancer transplants, we showed that the augmentation of NK-like cells strongly associates with resistance against tumor growth upon CD147 suppression. Therefore, besides its original function in tumorigenesis, CD147 is also an effective surface target for immune modulation in tumor therapy. Copyright © 2017. Published by Elsevier B.V.

  14. Targeting CD147 for T to NK Lineage Reprogramming and Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Jie-Jie Geng

    2017-06-01

    Full Text Available CD147 is highly expressed on the surface of numerous tumor cells to promote invasion and metastasis. Targeting these cells with CD147-specific antibodies has been validated as an effective approach for lung and liver cancer therapy. In the immune system, CD147 is recognized as a co-stimulatory receptor and impacts the outcome of thymic selection. Using T cell-specific deletion, we showed here that in thymus CD147 is indispensable for the stable αβ T cell lineage commitment: loss of CD147 biases both multipotent DN (double negative and fully committed DP (double positive cells into innate NK-like lineages. Mechanistically, CD147 deficiency results in impaired Wnt signaling and expression of BCL11b, a master transcription factor in determining T cell identity. In addition, functional blocking of CD147 by antibody phenocopies genetic deletion to enrich NK-like cells in the periphery. Furthermore, using a melanoma model and orthotopic liver cancer transplants, we showed that the augmentation of NK-like cells strongly associates with resistance against tumor growth upon CD147 suppression. Therefore, besides its original function in tumorigenesis, CD147 is also an effective surface target for immune modulation in tumor therapy.

  15. What happens in the thymus does not stay in the thymus: how T cells recycle the CD4+-CD8+ lineage commitment transcriptional circuitry to control their function

    Science.gov (United States)

    Vacchio, Melanie S.; Bosselut, Rémy

    2016-01-01

    MHC-restricted CD4+ and CD8+ T cell are at the core of most adaptive immune responses. Although these cells carry distinct functions, they arise from a common precursor during thymic differentiation, in a developmental sequence that matches CD4 and CD8 expression and functional potential with MHC restriction. While the transcriptional control of CD4+-CD8+ lineage choice in the thymus is now better understood, less was known about what maintains the CD4+- and CD8+-lineage integrity of mature T cells. In this review, we discuss the mechanisms that establish in the thymus, and maintain in post-thymic cells, the separation of these lineages. We focus on recent studies that address the mechanisms of epigenetic control of Cd4 expression and emphasize how maintaining a transcriptional circuitry nucleated around Thpok and Runx proteins, the key architects of CD4+-CD8+ lineage commitment in the thymus, is critical for CD4+ T cell helper functions. PMID:27260768

  16. T-lineage blast crisis of chronic myelogenous leukemia: simple record of 4 cases

    Directory of Open Access Journals (Sweden)

    Kartika W. Taroeno-Hariadi

    2005-09-01

    Full Text Available Blast crisis (BC transformation in chronic myelogenous leukemia (CML can involve each differentiation lineage of the hematopoietic system, i.e. granulocyte, monocyte, erythrocyte, megakaryocyte, and lymphocyte lineage. The lymphoid blast crisis (BC leukemia cells usually belong to B-lineage, commonly having the phenotype of Pre-B stage of the B-lineage, in which cell-surface immunoglobulin (sIg is not yet expressed. In contrast, T-lineage BC of CML is extremely rare. The objective of this study is to describe the fenotype, fusion transcript of bcr-abl, TdT, and cytoplasmic CD3 in T-lineage BC CML cases. Case report study. This report shows a simple summary of 4 cases of T-lineage BC of CML which have been collected in the phenotypic and genotypic analysis study for 17 years (1987-2004. In all cases, the chromosomal analysis revealed the presence of t(9;22(q34;q11 at presentation. Cell surface analysis were done at diagnosis. Cases’ mononuclear cells stored as 10% DMSO were retrieved to be performed reverse transcription (RT PCR BCR-ABL multiplex to demonstrate the presence of the fusion transcript of bcr-abl. RT-PCR was also performed for detecting the expression of cytoplasmic CD3ε and terminal deoxynucleotydil transferase (TdT. The results of cell surface antigen (CSA at presentation showed that 1 case was CD7+, CD5-, and CD2-; 1 case CD7+, CD5+, and CD2-; and 2 cases CD7+, CD5+ and CD2+ indicating that all these T-lineage BC of CML cells show the phenotype of pre-(pro- thymic stage phenotype. In the present study, two cases showed b2a2, one e1a2, and one negative bcr-abl transcript. The RT-PCR revealed the presence of CD3ε mRNA in all cases, and TdT mRNA in only one case. These results can constitute a basis for the future analysis of T-lineage BC of CML from now on. (Med J Indones 2005; 14: 184-9Keywords: chronic myelogenous leukemia (CML, blastic crisis (BC, T-lineage, bcr-abl fusion gene, CDε, TdT

  17. Human mesenchymal stem cells derived from limb bud can differentiate into all three embryonic germ layers lineages.

    Science.gov (United States)

    Jiao, Fei; Wang, Juan; Dong, Zhao-Lun; Wu, Min-Juan; Zhao, Ting-Bao; Li, Dan-Dan; Wang, Xin

    2012-08-01

    Mesenchymal stem cells (MSCs) have been isolated from many sources, including adults and fetuses. Previous studies have demonstrated that, compared with their adult counterpart, fetal MSCs with several remarkable advantages may be a better resource for clinical applications. In this study, we successfully isolated a rapidly proliferating cell population from limb bud of aborted fetus and termed them "human limb bud-derived mesenchymal stem cells" (hLB-MSCs). Characteristics of their morphology, phenotype, cell cycle, and differentiation properties were analyzed. These adherent cell populations have a typically spindle-shaped morphology. Flow cytometry analysis showed that hLB-MSCs are positive for CD13, CD29, CD90, CD105, and CD106, but negative for CD3, CD4, CD5, CD11b, CD14, CD15, CD34, CD45, CD45RA, and HLA-DR. The detection of cell cycle from different passages indicated that hLB-MSCs have a similar potential for propagation during long culture in vitro. The most novel finding here is that, in addition to their mesodermal differentiation (osteoblasts and adipocytes), hLB-MSCs can also differentiated into extramesenchymal lineages, such as neural (ectoderm) and hepatic (endoderm) progenies. These results indicate that hLB-MSCs have a high level of plasticity and can differentiate into cell lineages from all three embryonic layers in vitro.

  18. AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes.

    Science.gov (United States)

    Young, Nathan P; Kamireddy, Anwesh; Van Nostrand, Jeanine L; Eichner, Lillian J; Shokhirev, Maxim Nikolaievich; Dayn, Yelena; Shaw, Reuben J

    2016-03-01

    Faithful execution of developmental programs relies on the acquisition of unique cell identities from pluripotent progenitors, a process governed by combinatorial inputs from numerous signaling cascades that ultimately dictate lineage-specific transcriptional outputs. Despite growing evidence that metabolism is integrated with many molecular networks, how pathways that control energy homeostasis may affect cell fate decisions is largely unknown. Here, we show that AMP-activated protein kinase (AMPK), a central metabolic regulator, plays critical roles in lineage specification. Although AMPK-deficient embryonic stem cells (ESCs) were normal in the pluripotent state, these cells displayed profound defects upon differentiation, failing to generate chimeric embryos and preferentially adopting an ectodermal fate at the expense of the endoderm during embryoid body (EB) formation. AMPK(-/-) EBs exhibited reduced levels of Tfeb, a master transcriptional regulator of lysosomes, leading to diminished endolysosomal function. Remarkably, genetic loss of Tfeb also yielded endodermal defects, while AMPK-null ESCs overexpressing this transcription factor normalized their differential potential, revealing an intimate connection between Tfeb/lysosomes and germ layer specification. The compromised endolysosomal system resulting from AMPK or Tfeb inactivation blunted Wnt signaling, while up-regulating this pathway restored expression of endodermal markers. Collectively, these results uncover the AMPK pathway as a novel regulator of cell fate determination during differentiation. © 2016 Young et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Stochastic differentiation into an osteoclast lineage from cloned macrophage-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Shin-Ichi, E-mail: shayashi@med.tottori-u.ac.jp [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan); Murata, Akihiko; Okuyama, Kazuki; Shimoda, Yuhki; Hikosaka, Mari [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan); Yasuda, Hisataka [Planning and Development, Bioindustry Division, Oriental Yeast Co., Ltd, Itabashi-Ku, Tokyo 174-8505 (Japan); Yoshino, Miya [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer The frequency of C7 differentiation into osteoclast was low and constant. Black-Right-Pointing-Pointer Only extended C7 cell cultures exponentially increased osteoclast+ cultures. Black-Right-Pointing-Pointer C7 cell differentiation into committed osteoclast precursors is on 'autopilot'. Black-Right-Pointing-Pointer The system may maintain the stem cell self-renewal and differentiation. -- Abstract: Differentiation into osteoclasts is induced by a macrophage colony-stimulating factor and receptor activator of nuclear-factor {kappa}B ligand. The macrophage-like cell line, C7 has the potential to differentiate into osteoclasts when it is cultured with both factors for 6 days. Although C7 is an established cell line, the frequency of differentiation into this lineage was less than 10%, and the ratio was maintained at a constant level, even after repeated cloning. In this study, to increase the differentiation of C7 cells to osteoclasts, C7 derivative treatments with several activators and/or inhibitors were performed for 3 days prior to setting osteoclast induction analysis; however, a reagent to significantly up-regulate the frequency of differentiation was not found. Only extended cultures for osteoclastogenesis exponentially increased the frequency of osteoclast precursors. It is likely that C7 cell differentiation into committed osteoclast precursors is on 'autopilot' rather than requiring specific signals to drive this process.

  20. Stochastic differentiation into an osteoclast lineage from cloned macrophage-like cells

    International Nuclear Information System (INIS)

    Hayashi, Shin-Ichi; Murata, Akihiko; Okuyama, Kazuki; Shimoda, Yuhki; Hikosaka, Mari; Yasuda, Hisataka; Yoshino, Miya

    2012-01-01

    Highlights: ► The frequency of C7 differentiation into osteoclast was low and constant. ► Only extended C7 cell cultures exponentially increased osteoclast+ cultures. ► C7 cell differentiation into committed osteoclast precursors is on ‘autopilot’. ► The system may maintain the stem cell self-renewal and differentiation. -- Abstract: Differentiation into osteoclasts is induced by a macrophage colony-stimulating factor and receptor activator of nuclear-factor κB ligand. The macrophage-like cell line, C7 has the potential to differentiate into osteoclasts when it is cultured with both factors for 6 days. Although C7 is an established cell line, the frequency of differentiation into this lineage was less than 10%, and the ratio was maintained at a constant level, even after repeated cloning. In this study, to increase the differentiation of C7 cells to osteoclasts, C7 derivative treatments with several activators and/or inhibitors were performed for 3 days prior to setting osteoclast induction analysis; however, a reagent to significantly up-regulate the frequency of differentiation was not found. Only extended cultures for osteoclastogenesis exponentially increased the frequency of osteoclast precursors. It is likely that C7 cell differentiation into committed osteoclast precursors is on ‘autopilot’ rather than requiring specific signals to drive this process.

  1. Autoantigens targeted in scleroderma patients with vascular disease are enriched in endothelial lineage cells

    Science.gov (United States)

    McMahan, Zsuzsanna H.; Cottrell, Tricia R.; Wigley, Fredrick M.; Antiochos, Brendan; Zambidis, Elias T.; Park, Tea Soon; Halushka, Marc K.; Gutierrez-Alamillo, Laura; Cimbro, Raffaello; Rosen, Antony; Casciola-Rosen, Livia

    2016-01-01

    Objective Scleroderma patients with autoantibodies to centromere proteins (CENPs) and/or interferon-inducible protein 16 (IFI16) are at increased risk of severe vascular complications. We set out to define whether these autoantigens are enriched in cells of the vasculature. Methods Successive stages of embryoid bodies (EBs) as well as vascular progenitors were used to evaluate the expression of scleroderma autoantigens IFI16 and CENP by immunoblotting. CD31 was included to mark early blood vessels. IFI16 and CD31 expression were defined in skin paraffin sections from scleroderma patients and from healthy controls. IFI16 expression was determined by flow cytometry in circulating endothelial cells (CECs) and circulating progenitor cells (CPCs). Results Expression of CENP-A, IFI16 and CD31 was enriched in EBs at days 10 and 12 of differentiation, and particularly in cultures enriched in vascular progenitors (IFI16, CD31, CENPs A and-B). This pattern was distinct from that of comparator autoantigens. Immunohistochemical staining of skin paraffin sections showed enrichment of IFI16 in CD31-positive vascular endothelial cells in biopsies from scleroderma patients and normal controls. Flow cytometry analysis revealed IFI16 expression in CPCs, but minimal expression in CECs. Conclusion Expression of scleroderma autoantigens IFI16 and CENPs, which are associated with severe vascular disease, is increased in vascular progenitors and mature endothelial cells. High level, lineage-enriched expression of autoantigens may explain the striking association between clinical phenotypes and the immune targeting of specific autoantigens. PMID:27159521

  2. Functional Characterization of DNA Methylation in the Oligodendrocyte Lineage

    Directory of Open Access Journals (Sweden)

    Sarah Moyon

    2016-04-01

    Full Text Available Oligodendrocytes derive from progenitors (OPCs through the interplay of epigenomic and transcriptional events. By integrating high-resolution methylomics, RNA-sequencing, and multiple transgenic lines, this study defines the role of DNMT1 in developmental myelination. We detected hypermethylation of genes related to cell cycle and neurogenesis during differentiation of OPCs, yet genetic ablation of Dnmt1 resulted in inefficient OPC expansion and severe hypomyelination associated with ataxia and tremors in mice. This phenotype was not caused by lineage switch or massive apoptosis but was characterized by a profound defect of differentiation associated with changes in exon-skipping and intron-retention splicing events and by the activation of an endoplasmic reticulum stress response. Therefore, loss of Dnmt1 in OPCs is not sufficient to induce a lineage switch but acts as an important determinant of the coordination between RNA splicing and protein synthesis necessary for myelin formation.

  3. Bioconductor workflow for single-cell RNA sequencing: Normalization, dimensionality reduction, clustering, and lineage inference [version 1; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Fanny Perraudeau

    2017-07-01

    Full Text Available Novel single-cell transcriptome sequencing assays allow researchers to measure gene expression levels at the resolution of single cells and offer the unprecendented opportunity to investigate at the molecular level fundamental biological questions, such as stem cell differentiation or the discovery and characterization of rare cell types. However, such assays raise challenging statistical and computational questions and require the development of novel methodology and software. Using stem cell differentiation in the mouse olfactory epithelium as a case study, this integrated workflow provides a step-by-step tutorial to the methodology and associated software for the following four main tasks: (1 dimensionality reduction accounting for zero inflation and over dispersion and adjusting for gene and cell-level covariates; (2 cell clustering using resampling-based sequential ensemble clustering; (3 inference of cell lineages and pseudotimes; and (4 differential expression analysis along lineages.

  4. All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways

    Directory of Open Access Journals (Sweden)

    Fang Bo

    2009-07-01

    Full Text Available Abstract Background All-trans retinoic acid (RA is one of the most important morphogens with pleiotropic actions. Its embryonic distribution correlates with neural differentiation in the developing central nervous system. To explore the precise effects of RA on neural differentiation of mouse embryonic stem cells (ESCs, we detected expression of RA nuclear receptors and RA-metabolizing enzymes in mouse ESCs and investigated the roles of RA in adherent monolayer culture. Results Upon addition of RA, cell differentiation was directed rapidly and exclusively into the neural lineage. Conversely, pharmacological interference with RA signaling suppressed this neural differentiation. Inhibition of fibroblast growth factor (FGF signaling did not suppress significantly neural differentiation in RA-treated cultures. Pharmacological interference with extracellular signal-regulated kinase (ERK pathway or activation of Wnt pathway effectively blocked the RA-promoted neural specification. ERK phosphorylation was enhanced in RA-treated cultures at the early stage of differentiation. Conclusion RA can promote neural lineage entry by ESCs in adherent monolayer culture systems. This effect depends on RA signaling and its crosstalk with the ERK and Wnt pathways.

  5. PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes.

    Science.gov (United States)

    Soto-Feliciano, Yadira M; Bartlebaugh, Jordan M E; Liu, Yunpeng; Sánchez-Rivera, Francisco J; Bhutkar, Arjun; Weintraub, Abraham S; Buenrostro, Jason D; Cheng, Christine S; Regev, Aviv; Jacks, Tyler E; Young, Richard A; Hemann, Michael T

    2017-05-15

    Developmental and lineage plasticity have been observed in numerous malignancies and have been correlated with tumor progression and drug resistance. However, little is known about the molecular mechanisms that enable such plasticity to occur. Here, we describe the function of the plant homeodomain finger protein 6 (PHF6) in leukemia and define its role in regulating chromatin accessibility to lineage-specific transcription factors. We show that loss of Phf6 in B-cell leukemia results in systematic changes in gene expression via alteration of the chromatin landscape at the transcriptional start sites of B-cell- and T-cell-specific factors. Additionally, Phf6 KO cells show significant down-regulation of genes involved in the development and function of normal B cells, show up-regulation of genes involved in T-cell signaling, and give rise to mixed-lineage lymphoma in vivo. Engagement of divergent transcriptional programs results in phenotypic plasticity that leads to altered disease presentation in vivo, tolerance of aberrant oncogenic signaling, and differential sensitivity to frontline and targeted therapies. These findings suggest that active maintenance of a precise chromatin landscape is essential for sustaining proper leukemia cell identity and that loss of a single factor (PHF6) can cause focal changes in chromatin accessibility and nucleosome positioning that render cells susceptible to lineage transition. © 2017 Soto-Feliciano et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling

    Science.gov (United States)

    Serafimidis, Ioannis; Rodriguez-Aznar, Eva; Lesche, Mathias; Yoshioka, Kazuaki; Takuwa, Yoh; Dahl, Andreas; Pan, Duojia; Gavalas, Anthony

    2017-01-01

    During development, progenitor expansion, lineage allocation, and implementation of differentiation programs need to be tightly coordinated so that different cell types are generated in the correct numbers for appropriate tissue size and function. Pancreatic dysfunction results in some of the most debilitating and fatal diseases, including pancreatic cancer and diabetes. Several transcription factors regulating pancreas lineage specification have been identified, and Notch signalling has been implicated in lineage allocation, but it remains unclear how these processes are coordinated. Using a combination of genetic approaches, organotypic cultures of embryonic pancreata, and genomics, we found that sphingosine-1-phosphate (S1p), signalling through the G protein coupled receptor (GPCR) S1pr2, plays a key role in pancreas development linking lineage allocation and specification. S1pr2 signalling promotes progenitor survival as well as acinar and endocrine specification. S1pr2-mediated stabilisation of the yes-associated protein (YAP) is essential for endocrine specification, thus linking a regulator of progenitor growth with specification. YAP stabilisation and endocrine cell specification rely on Gαi subunits, revealing an unexpected specificity of selected GPCR intracellular signalling components. Finally, we found that S1pr2 signalling posttranscriptionally attenuates Notch signalling levels, thus regulating lineage allocation. Both S1pr2-mediated YAP stabilisation and Notch attenuation are necessary for the specification of the endocrine lineage. These findings identify S1p signalling as a novel key pathway coordinating cell survival, lineage allocation, and specification and linking these processes by regulating YAP levels and Notch signalling. Understanding lineage allocation and specification in the pancreas will shed light in the origins of pancreatic diseases and may suggest novel therapeutic approaches. PMID:28248965

  7. In vitro cultured progenitors and precursors of cardiac cell lineages from human normal and post-ischemic hearts

    Directory of Open Access Journals (Sweden)

    F Di Meglio

    2009-08-01

    Full Text Available The demonstration of the presence of dividing primitive cells in damaged hearts has sparked increased interest about myocardium regenerative processes. We examined the rate and the differentiation of in vitro cultured resident cardiac primitive cells obtained from pathological and normal human hearts in order to evaluate the activation of progenitors and precursors of cardiac cell lineages in post-ischemic human hearts. The precursors and progenitors of cardiomyocyte, smooth muscle and endothelial lineage were identified by immunocytochemistry and the expression of characteristic markers was studied by western blot and RT-PCR. The amount of proteins characteristic for cardiac cells (a-SA and MHC, VEGFR-2 and FVIII, SMA for the precursors of cardiomyocytes, endothelial and smooth muscle cells, respectively inclines toward an increase in both a-SA and MHC. The increased levels of FVIII and VEGFR2 are statistically significant, suggesting an important re-activation of neoangiogenesis. At the same time, the augmented expression of mRNA for Nkx 2.5, the trascriptional factor for cardiomyocyte differentiation, confirms the persistence of differentiative processes in terminally injured hearts. Our study would appear to confirm the activation of human heart regeneration potential in pathological conditions and the ability of its primitive cells to maintain their proliferative capability in vitro. The cardiac cell isolation method we used could be useful in the future for studying modifications to the microenvironment that positively influence cardiac primitive cell differentiation or inhibit, or retard, the pathological remodeling and functional degradation of the heart.

  8. The influence of TSA and VPA on the in vitro differentiation of bone marrow mesenchymal stem cells into neuronal lineage cells: Gene expression studies.

    Science.gov (United States)

    Fila-Danilow, Anna; Borkowska, Paulina; Paul-Samojedny, Monika; Kowalczyk, Malgorzata; Kowalski, Jan

    2017-03-27

    Epigenetic mechanisms regulate the transcription of genes, which can affect the differentiation of MSCs. The aim of the current work is to determine how the histone deacetylase inhibitors TSA and VPA affect the expression of neuronal lineage genes in a culture of rat MSCs (rMSCs). We analyzed the expression of early neuron marker gene (Tubb3), mature neuron markers genes (Vacht, Th, Htr2a) and the oligodendrocyte progenitor marker gene (GalC). Moreover, changes in the gene expression after three different periods of exposure to TSA and VPA were investigated for the first time. After six days of exposition to TSA and VPA, the expression of Tubb3 and GalC decreased, while the expression of Th increased. The highest increase of VAChT expression was observed after three days of TSA and VPA treatment. A decrease in Htr2a gene expression was observed after TSA treatment and an increase was observed after VPA treatment. We also observed that TSA and VPA inhibited cell proliferation and the formation of neurospheres in the rMSCs culture. The central findings of our study are that TSA and VPA affect the expression of neuronal lineage genes in an rMSCs culture. After exposure to TSA or VPA, the expression of early neuronal gene decreases but equally the expression of mature neuron genes increases. After TSA and VPA treatment ER of the oligodendrocyte progenitor marker decreased. TSA and VPA inhibit cell proliferation and the formation of neurospheres in rMSCs culture.

  9. Comparison of Cytotoxic Activity in Leukemic Lineages Reveals Important Features of β-Hairpin Antimicrobial Peptides.

    Science.gov (United States)

    Buri, Marcus V; Torquato, Heron F Vieira; Barros, Carlos Castilho; Ide, Jaime S; Miranda, Antonio; Paredes-Gamero, Edgar J

    2017-07-01

    Several reports described different modes of cell death triggered by antimicrobial peptides (AMPs) due to direct effects on membrane disruption, and more recently by apoptosis and necrosis-like patterns. Cytotoxic curves of four β-hairpin AMPs (gomesin, protegrin, tachyplesin, and polyphemusin) were obtained from several human leukemic lineages and normal monocytes and Two cell lines were then selected based on their cytotoxic sensitivity. One was sensitive to AMPs (K562) and the other resistant (KG-1) and their effect compared between these lineages. Thus, these lineages were chosen to further investigate biological features related with their cytotoxicities to AMPs. Stimulation with AMPs produced cell death, with activation of caspase-3, in K562 lineage. Increase on the fluidity of plasmatic membrane by reducing cholesterol potentiated cytotoxicity of AMPs in both lineages. Quantification of internal and external gomesin binding to the cellular membrane of both K562 and KG-1 cells showed that more peptide is accumulated inside of K562 cells. Additionally, evaluation of multi-drug resistant pumps activity showed that KG-1 has more activity than K562 lineage. A comparison of intrinsic gene patterns showed great differences between K562 and KG-1, but stimulation with gomesin promoted few changes in gene expression patterns. Differences in internalization process through the plasma membrane, multidrug resistance pumps activity, and gene expression pattern are important features to AMPs regulated cell death. J. Cell. Biochem. 118: 1764-1773, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Mixed lineage kinase 3 is required for matrix metalloproteinase expression and invasion in ovarian cancer cells

    International Nuclear Information System (INIS)

    Zhan, Yu; Abi Saab, Widian F.; Modi, Nidhi; Stewart, Amanda M.; Liu, Jinsong; Chadee, Deborah N.

    2012-01-01

    Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells. Furthermore, mlk3 silencing substantially reduced matrix metalloproteinase (MMP)-1, -2, -9 and -12 gene expression and MMP-2 and -9 activities in SKOV3 and HEY1B ovarian cancer cells. MMP-1, -2, -9 and-12 expression, and MLK3-induced activation of MMP-2 and MMP-9 requires both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activities. In addition, inhibition of activator protein-1 (AP-1) reduced MMP-1, MMP-9 and MMP-12 gene expression. Collectively, these findings establish MLK3 as an important regulator of MMP expression and invasion in ovarian cancer cells. -- Highlights: ► Ovarian cancer cell lines have high levels of total and phosphorylated MLK3. ► MLK3 is required for MMP expression and activity in ovarian cancer cells. ► MLK3 is required for invasion of SKOV3 and HEY1B ovarian cancer cells. ► MLK3-dependent regulation of MMP-2 and MMP-9 activities requires ERK and JNK.

  11. Affinity maturation in an HIV broadly neutralizing B-cell lineage through reorientation of variable domains.

    Science.gov (United States)

    Fera, Daniela; Schmidt, Aaron G; Haynes, Barton F; Gao, Feng; Liao, Hua-Xin; Kepler, Thomas B; Harrison, Stephen C

    2014-07-15

    Rapidly evolving pathogens, such as human immunodeficiency and influenza viruses, escape immune defenses provided by most vaccine-induced antibodies. Proposed strategies to elicit broadly neutralizing antibodies require a deeper understanding of antibody affinity maturation and evolution of the immune response to vaccination or infection. In HIV-infected individuals, viruses and B cells evolve together, creating a virus-antibody "arms race." Analysis of samples from an individual designated CH505 has illustrated the interplay between an antibody lineage, CH103, and autologous viruses at various time points. The CH103 antibodies, relatively broad in their neutralization spectrum, interact with the CD4 binding site of gp120, with a contact dominated by CDRH3. We show by analyzing structures of progenitor and intermediate antibodies and by correlating them with measurements of binding to various gp120s that there was a shift in the relative orientation of the light- and heavy-chain variable domains during evolution of the CH103 lineage. We further show that mutations leading to this conformational shift probably occurred in response to insertions in variable loop 5 (V5) of the HIV envelope. The shift displaced the tips of the light chain away from contact with V5, making room for the inserted residues, which had allowed escape from neutralization by the progenitor antibody. These results, which document the selective mechanism underlying this example of a virus-antibody arms race, illustrate the functional significance of affinity maturation by mutation outside the complementarity determining region surface of the antibody molecule.

  12. TLM-Tracker: software for cell segmentation, tracking and lineage analysis in time-lapse microscopy movies.

    Science.gov (United States)

    Klein, Johannes; Leupold, Stefan; Biegler, Ilona; Biedendieck, Rebekka; Münch, Richard; Jahn, Dieter

    2012-09-01

    Time-lapse imaging in combination with fluorescence microscopy techniques enable the investigation of gene regulatory circuits and uncovered phenomena like culture heterogeneity. In this context, computational image processing for the analysis of single cell behaviour plays an increasing role in systems biology and mathematical modelling approaches. Consequently, we developed a software package with graphical user interface for the analysis of single bacterial cell behaviour. A new software called TLM-Tracker allows for the flexible and user-friendly interpretation for the segmentation, tracking and lineage analysis of microbial cells in time-lapse movies. The software package, including manual, tutorial video and examples, is available as Matlab code or executable binaries at http://www.tlmtracker.tu-bs.de.

  13. Quantifying Selective Pressures Driving Bacterial Evolution Using Lineage Analysis

    Science.gov (United States)

    Lambert, Guillaume; Kussell, Edo

    2015-01-01

    Organisms use a variety of strategies to adapt to their environments and maximize long-term growth potential, but quantitative characterization of the benefits conferred by the use of such strategies, as well as their impact on the whole population's rate of growth, remains challenging. Here, we use a path-integral framework that describes how selection acts on lineages—i.e., the life histories of individuals and their ancestors—to demonstrate that lineage-based measurements can be used to quantify the selective pressures acting on a population. We apply this analysis to Escherichia coli bacteria exposed to cyclical treatments of carbenicillin, an antibiotic that interferes with cell-wall synthesis and affects cells in an age-dependent manner. While the extensive characterization of the life history of thousands of cells is necessary to accurately extract the age-dependent selective pressures caused by carbenicillin, the same measurement can be recapitulated using lineage-based statistics of a single surviving cell. Population-wide evolutionary pressures can be extracted from the properties of the surviving lineages within a population, providing an alternative and efficient procedure to quantify the evolutionary forces acting on a population. Importantly, this approach is not limited to age-dependent selection, and the framework can be generalized to detect signatures of other trait-specific selection using lineage-based measurements. Our results establish a powerful way to study the evolutionary dynamics of life under selection and may be broadly useful in elucidating selective pressures driving the emergence of antibiotic resistance and the evolution of survival strategies in biological systems.

  14. Multiplicity of Buc copies in Atlantic salmon contrasts with loss of the germ cell determinant in primates, rodents and axolotl

    OpenAIRE

    Skugor, Adrijana; Tveiten, Helge; Johnsen, Hanne; Andersen, Øivind

    2016-01-01

    Background The primordial germ cells (PGCs) giving rise to gametes are determined by two different mechanisms in vertebrates. While the germ cell fate in mammals and salamanders is induced by zygotic signals, maternally delivered germ cell determinants specify the PGCs in birds, frogs and teleost fish. Assembly of the germ plasm in the oocyte is organized by the single Buc in zebrafish, named Velo1 in Xenopus, and by Oskar in Drosophila. Secondary loss of oskar in several insect lineages coin...

  15. Lineage fate of ductular reactions in liver injury and carcinogenesis.

    Science.gov (United States)

    Jörs, Simone; Jeliazkova, Petia; Ringelhan, Marc; Thalhammer, Julian; Dürl, Stephanie; Ferrer, Jorge; Sander, Maike; Heikenwalder, Mathias; Schmid, Roland M; Siveke, Jens T; Geisler, Fabian

    2015-06-01

    Ductular reactions (DRs) are observed in virtually all forms of human liver disease; however, the histogenesis and function of DRs in liver injury are not entirely understood. It is widely believed that DRs contain bipotential liver progenitor cells (LPCs) that serve as an emergency cell pool to regenerate both cholangiocytes and hepatocytes and may eventually give rise to hepatocellular carcinoma (HCC). Here, we used a murine model that allows highly efficient and specific lineage labeling of the biliary compartment to analyze the histogenesis of DRs and their potential contribution to liver regeneration and carcinogenesis. In multiple experimental and genetic liver injury models, biliary cells were the predominant precursors of DRs but lacked substantial capacity to produce new hepatocytes, even when liver injuries were prolonged up to 12 months. Genetic modulation of NOTCH and/or WNT/β-catenin signaling within lineage-tagged DRs impaired DR expansion but failed to redirect DRs from biliary differentiation toward the hepatocyte lineage. Further, lineage-labeled DRs did not produce tumors in genetic and chemical HCC mouse models. In summary, we found no evidence in our system to support mouse biliary-derived DRs as an LPC pool to replenish hepatocytes in a quantitatively relevant way in injury or evidence that DRs give rise to HCCs.

  16. Ancestral trees for modeling stem cell lineages genetically rather than functionally: understanding mutation accumulation and distinguishing the restrictive cancer stem cell propagation theory and the unrestricted cell propagation theory of human tumorigenesis.

    Science.gov (United States)

    Shibata, Darryl K; Kern, Scott E

    2008-01-01

    Cancer stem cells either could be rare or common in tumors, constituting the major distinction between the two fundamentally opposed theoretical models of tumor progression: A newer and restrictive stem cell propagation model, in which the stem cells are a small and special minority of the tumor cells, and a standard older model, an unrestricted cell proliferation theory, in which many or most tumor cells are capable of indefinite generations of cell division. Stem cells of tumors are difficult to quantitate using functional assays, and the validity of the most common assays is seriously questioned. Nonetheless, stem cells are an essential component of any tumorigenesis model. Alternative approaches to studying tumor stem cells should be explored. Cell populations can be conceived of as having a genealogy, a relationship of cells to their ancestral lineage, from the zygote to the adult cells or neoplasms. Models using ancestral trees thus offer an anatomic and genetic means to "observe" stem cells independent of artificial conditions. Ancestral trees broaden our attention backward along a lineage, to the zygote stage, and thereby add insight into how the mutations of tumors accumulate. It is possible that a large fraction of mutations in a tumor originate from normal, endogenous, replication errors (nearly all being passenger mutations) occurring prior to the emergence of the first transformed cell. Trees can be constructed from experimental measurements - molecular clocks - of real human tissues and tumors. Detailed analysis of single-cell methylation patterns, heritable yet slightly plastic, now can provide this information in the necessary depth. Trees based on observations of molecular clocks may help us to distinguish between competing theories regarding the proliferative properties among cells of actual human tumors, to observe subtle and difficult phenomena such as the extinction of stem lineages, and to address the origins and rates of mutations in various

  17. Reduced reactivation from dormancy but maintained lineage choice of human mesenchymal stem cells with donor age.

    Directory of Open Access Journals (Sweden)

    Verena Dexheimer

    Full Text Available UNLABELLED: Mesenchymal stem cells (MSC are promising for cell-based regeneration therapies but up to date it is still controversial whether their function is maintained throughout ageing. Aim of this study was to address whether frequency, activation in vitro, replicative function, and in vitro lineage choice of MSC is maintained throughout ageing to answer the question whether MSC-based regeneration strategies should be restricted to younger individuals. MSC from bone marrow aspirates of 28 donors (5-80 years were characterized regarding colony-forming unit-fibroblast (CFU-F numbers, single cell cloning efficiency (SSCE, osteogenic, adipogenic and chondrogenic differentiation capacity in vitro. Alkaline phosphatase (ALP activity, mineralization, Oil Red O content, proteoglycan- and collagen type II deposition were quantified. While CFU-F frequency was maintained, SSCE and early proliferation rate decreased significantly with advanced donor age. MSC with higher proliferation rate before start of induction showed stronger osteogenic, adipogenic and chondrogenic differentiation. MSC with high osteogenic capacity underwent better chondrogenesis and showed a trend to better adipogenesis. Lineage choice was, however, unaltered with age. CONCLUSION: Ageing influenced activation from dormancy and replicative function of MSC in a way that it may be more demanding to mobilize MSC to fast cell growth at advanced age. Since fast proliferation came along with high multilineage capacity, the proliferation status of expanded MSC rather than donor age may provide an argument to restrict MSC-based therapies to certain individuals.

  18. Connexin 32 and connexin 43 are involved in lineage restriction of hepatic progenitor cells to hepatocytes

    Directory of Open Access Journals (Sweden)

    Haiyun Pei

    2017-11-01

    Full Text Available Abstract Background Bi-potential hepatic progenitor cells can give rise to both hepatocytes and cholangiocytes, which is the last phase and critical juncture in terms of sequentially hepatic lineage restriction from any kind of stem cells. If their differentiation can be controlled, it might access to functional hepatocytes to develop pharmaceutical and biotechnology industries as well as cell therapies for end-stage liver diseases. Methods In this study, we investigated the influence of Cx32 and Cx43 on hepatocyte differentiation of WB-F344 cells by in vitro gain and loss of function analyses. An inhibitor of Cx32 was also used to make further clarification. To reveal p38 MAPK pathway is closely related to Cxs, rats with 70% partial hepatectomy were injected intraperitoneally with a p38 inhibitor, SB203580. Besides, the effects of p38 MAPK pathway on differentiation of hepatoblasts isolated from fetal rat livers were evaluated by addition of SB203580 in culture medium. Results In vitro gain and loss of function analyses showed overexpression of Connexin 32 and knockdown of Connexin 43 promoted hepatocytes differentiation from hepatic progenitor cells. In addition, in vitro and ex vivo research revealed inhibition of p38 mitogen-activated protein kinase pathway can improve hepatocytes differentiation correlating with upregulation of Connexin 32 expression and downregulation of Connexin 43 expression. Conclusions Here we demonstrate that Connexins play crucial roles in facilitating differentiation of hepatic progenitors. Our work further implicates that regulators of Connexins and their related pathways might provide new insights to improve lineage restriction of stem cells to mature hepatocytes.

  19. Targeting of Mesenchymal Stromal Cells by Cre-Recombinase Transgenes Commonly Used to Target Osteoblast Lineage Cells.

    Science.gov (United States)

    Zhang, Jingzhu; Link, Daniel C

    2016-11-01

    The targeting specificity of tissue-specific Cre-recombinase transgenes is a key to interpreting phenotypes associated with their use. The Ocn-Cre and Dmp1-Cre transgenes are widely used to target osteoblasts and osteocytes, respectively. Here, we used high-resolution microscopy of bone sections and flow cytometry to carefully define the targeting specificity of these transgenes. These transgenes were crossed with Cxcl12 gfp mice to identify Cxcl12-abundant reticular (CAR) cells, which are a perivascular mesenchymal stromal population implicated in hematopoietic stem/progenitor cell maintenance. We show that in addition to osteoblasts, Ocn-Cre targets a majority of CAR cells and arteriolar pericytes. Surprisingly, Dmp1-Cre also targets a subset of CAR cells, in which expression of osteoblast-lineage genes is enriched. Finally, we introduce a new tissue-specific Cre-recombinase, Tagln-Cre, which efficiently targets osteoblasts, a majority of CAR cells, and both venous sinusoidal and arteriolar pericytes. These data show that Ocn-Cre and Dmp1-Cre target broader stromal cell populations than previously appreciated and may aid in the design of future studies. Moreover, these data highlight the heterogeneity of mesenchymal stromal cells in the bone marrow and provide tools to interrogate this heterogeneity. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  20. Cell lineage mapping of taste bud cells and keratinocytes in the mouse tongue and soft palate.

    Science.gov (United States)

    Okubo, Tadashi; Clark, Cheryl; Hogan, Brigid L M

    2009-02-01

    The epithelium of the mouse tongue and soft palate consists of at least three distinct epithelial cell populations: basal cells, keratinized cells organized into filiform and fungiform papillae, and taste receptor cells present in tight clusters known as taste buds in the fungiform and circumvallate papillae and soft palate. All three cell types develop from the simple epithelium of the embryonic tongue and palate, and are continually replaced in the adult by cell turnover. Previous studies using pulse-chase tritiated thymidine labeling in the adult mouse provided evidence for a high rate of cell turnover in the keratinocytes (5-7 days) and taste buds (10 days). However, little is known about the localization and phenotype of the long-term stem or progenitor cells that give rise to the mature taste bud cells and surrounding keratinocytes in these gustatory tissues. Here, we make use of a tamoxifen-inducible K14-CreER transgene and the ROSA26 LacZ reporter allele to lineage trace the mature keratinocytes and taste bud cells of the early postnatal and adult mouse tongue and soft palate. Our results support the hypothesis that both the pore keratinocytes and receptor cells of the taste bud are derived from a common K14(+)K5(+)Trp63(+)Sox2(+) population of bipotential progenitor cells located outside the taste bud. The results are also compatible with models in which the keratinocytes of the filiform and fungiform papillae are derived from basal progenitor cells localized at the base of these structures.

  1. Chromatin dynamics in Pollen Mother Cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Wenjing eShe

    2015-04-01

    Full Text Available Unlike animals, where the germline is established early during embryogenesis, plants set aside their reproductive lineage late in development in dedicated floral organs. The specification of pollen mother cells (PMCs committed to meiosis takes place in the sporogenous tissue in anther locules and marks the somatic-to-reproductive cell fate transition towards the male reproductive lineage. Here we show that Arabidopsis PMCs differentiation is accompanied by large-scale changes in chromatin organization. This is characterized by significant increase in nuclear volume, chromatin decondensation, reduction in heterochromatin, eviction of linker histones and the H2AZ histone variant. These structural alterations are accompanied by dramatic, quantitative changes in histone modifications levels compared to that of surrounding somatic cells that do not share a sporogenic fate. All these changes are highly reminiscent of those we have formerly described in female megaspore mother cells (MMCs. This indicates that chromatin reprogramming is a common underlying scenario in the somatic-to-reproductive cell fate transition in both male and female lineages.

  2. Towards comprehensive cell lineage reconstructions in complex organisms using light-sheet microscopy.

    Science.gov (United States)

    Amat, Fernando; Keller, Philipp J

    2013-05-01

    Understanding the development of complex multicellular organisms as a function of the underlying cell behavior is one of the most fundamental goals of developmental biology. The ability to quantitatively follow cell dynamics in entire developing embryos is an indispensable step towards such a system-level understanding. In recent years, light-sheet fluorescence microscopy has emerged as a particularly promising strategy for recording the in vivo data required to realize this goal. Using light-sheet fluorescence microscopy, entire complex organisms can be rapidly imaged in three dimensions at sub-cellular resolution, achieving high temporal sampling and excellent signal-to-noise ratio without damaging the living specimen or bleaching fluorescent markers. The resulting datasets allow following individual cells in vertebrate and higher invertebrate embryos over up to several days of development. However, the complexity and size of these multi-terabyte recordings typically preclude comprehensive manual analyses. Thus, new computational approaches are required to automatically segment cell morphologies, accurately track cell identities and systematically analyze cell behavior throughout embryonic development. We review current efforts in light-sheet microscopy and bioimage informatics towards this goal, and argue that comprehensive cell lineage reconstructions are finally within reach for many key model organisms, including fruit fly, zebrafish and mouse. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  3. BRD4 localization to lineage-specific enhancers is associated with a distinct transcription factor repertoire

    OpenAIRE

    Najafova, Zeynab; Tirado-Magallanes, Roberto; Subramaniam, Malayannan; Hossan, Tareq; Schmidt, Geske; Nagarajan, Sankari; Baumgart, Simon J.; Mishra, Vivek?Kumar; Bedi, Upasana; Hesse, Eric; Knapp, Stefan; Hawse, John R.; Johnsen, Steven A.

    2016-01-01

    Proper temporal epigenetic regulation of gene expression is essential for cell fate determination and tissue development. The Bromodomain-containing Protein-4 (BRD4)was previously shown to control the transcription of defined subsets of genes in various cell systems. In this study we examined the role of BRD4 in promoting lineage-specific gene expression and show that BRD4 is essential for osteoblast differentiation. Genome-wide analyses demonstrate that BRD4 is rec...

  4. Replacement of Lost Lgr5-Positive Stem Cells through Plasticity of Their Enterocyte-Lineage Daughters.

    Science.gov (United States)

    Tetteh, Paul W; Basak, Onur; Farin, Henner F; Wiebrands, Kay; Kretzschmar, Kai; Begthel, Harry; van den Born, Maaike; Korving, Jeroen; de Sauvage, Frederic; van Es, Johan H; van Oudenaarden, Alexander; Clevers, Hans

    2016-02-04

    Intestinal crypts display robust regeneration upon injury. The relatively rare secretory precursors can replace lost stem cells, but it is unknown if the abundant enterocyte progenitors that express the Alkaline phosphate intestinal (Alpi) gene also have this capacity. We created an Alpi-IRES-CreERT2 (Alpi(CreER)) knockin allele for lineage tracing. Marked clones consist entirely of enterocytes and are all lost from villus tips within days. Genetic fate-mapping of Alpi(+) cells before or during targeted ablation of Lgr5-expressing stem cells generated numerous long-lived crypt-villus "ribbons," indicative of dedifferentiation of enterocyte precursors into Lgr5(+) stems. By single-cell analysis of dedifferentiating enterocytes, we observed the generation of Paneth-like cells and proliferative stem cells. We conclude that the highly proliferative, short-lived enterocyte precursors serve as a large reservoir of potential stem cells during crypt regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Changes in keratin 8/18 expression in human granulosa cell lineage are associated to cell death/survival events: potential implications for the maintenance of the ovarian reserve.

    Science.gov (United States)

    Gaytan, F; Morales, C; Roa, J; Tena-Sempere, M

    2018-04-01

    Is keratin 8/18 (K8/K18) expression linked to cell death/survival events in the human granulosa cell lineage? A close association exists between changes in K8/K18 expression and cell death/survival events along the human granulosa cell lineage lifespan. In addition to their structural and mechanical functions, K8/K18 play essential roles regulating cell death, survival and differentiation in several non-gonadal epithelial tissues. Transfection of the granulosa-like tumor KGN cells with siRNA to interfere KRT8 and KRT18 expression increases FAS-mediated apoptosis, while an inverse association between K8/K18 expression and cell death has been found in the bovine antral follicles and corpus luteum. Yet, only fragmentary and inconclusive information exists regarding K8/K18 expression in the human ovary. Expression of K8/K18 was assessed by immunohistochemistry at different stages of the granulosa cell lineage, from flattened granulosa cells in primordial follicles to fully luteinized granulosa-lutein cells in the corpus luteum (including corpus luteum of pregnancy). Immunohistochemical detection of K8/K18 was conducted in 40 archival ovarian samples from women aged 17-39 years. K8/K18 expression was analyzed at the different stages of follicle development and corpus luteum lifespan. The proportions of primordial follicles showing all K8/K18-positive, all K8/K18 negative, or a mixture of K8/K18 negative and positive granulosa cells were quantified in 18 ovaries, divided into three age groups: ≤ 25 years (N = 6), 26-30 (N = 6) and 31-36 (N = 6) years. A total number of 1793 primordial, 750 transitional and 140 primary follicles were scored. A close association was found between changes in K8/K18 expression and cell death/cell survival events in the human granulosa cell lineage. Large secondary and early antral follicles (most of them undergoing atresia) and regressing corpora lutea displayed low/absent K8/K18 expression. Conversely, early growing and some large antral

  6. Mesoderm Lineage 3D Tissue Constructs Are Produced at Large-Scale in a 3D Stem Cell Bioprocess.

    Science.gov (United States)

    Cha, Jae Min; Mantalaris, Athanasios; Jung, Sunyoung; Ji, Yurim; Bang, Oh Young; Bae, Hojae

    2017-09-01

    Various studies have presented different approaches to direct pluripotent stem cell differentiation such as applying defined sets of exogenous biochemical signals and genetic/epigenetic modifications. Although differentiation to target lineages can be successfully regulated, such conventional methods are often complicated, laborious, and not cost-effective to be employed to the large-scale production of 3D stem cell-based tissue constructs. A 3D-culture platform that could realize the large-scale production of mesoderm lineage tissue constructs from embryonic stem cells (ESCs) is developed. ESCs are cultured using our previously established 3D-bioprocess platform which is amenable to mass-production of 3D ESC-based tissue constructs. Hepatocarcinoma cell line conditioned medium is introduced to the large-scale 3D culture to provide a specific biomolecular microenvironment to mimic in vivo mesoderm formation process. After 5 days of spontaneous differentiation period, the resulting 3D tissue constructs are composed of multipotent mesodermal progenitor cells verified by gene and molecular expression profiles. Subsequently the optimal time points to trigger terminal differentiation towards cardiomyogenesis or osteogenesis from the mesodermal tissue constructs is found. A simple and affordable 3D ESC-bioprocess that can reach the scalable production of mesoderm origin tissues with significantly improved correspondent tissue properties is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fast and scalable inference of multi-sample cancer lineages.

    KAUST Repository

    Popic, Victoria; Salari, Raheleh; Hajirasouliha, Iman; Kashef-Haghighi, Dorna; West, Robert B; Batzoglou, Serafim

    2015-01-01

    Somatic variants can be used as lineage markers for the phylogenetic reconstruction of cancer evolution. Since somatic phylogenetics is complicated by sample heterogeneity, novel specialized tree-building methods are required for cancer phylogeny reconstruction. We present LICHeE (Lineage Inference for Cancer Heterogeneity and Evolution), a novel method that automates the phylogenetic inference of cancer progression from multiple somatic samples. LICHeE uses variant allele frequencies of somatic single nucleotide variants obtained by deep sequencing to reconstruct multi-sample cell lineage trees and infer the subclonal composition of the samples. LICHeE is open source and available at http://viq854.github.io/lichee .

  8. Fast and scalable inference of multi-sample cancer lineages.

    KAUST Repository

    Popic, Victoria

    2015-05-06

    Somatic variants can be used as lineage markers for the phylogenetic reconstruction of cancer evolution. Since somatic phylogenetics is complicated by sample heterogeneity, novel specialized tree-building methods are required for cancer phylogeny reconstruction. We present LICHeE (Lineage Inference for Cancer Heterogeneity and Evolution), a novel method that automates the phylogenetic inference of cancer progression from multiple somatic samples. LICHeE uses variant allele frequencies of somatic single nucleotide variants obtained by deep sequencing to reconstruct multi-sample cell lineage trees and infer the subclonal composition of the samples. LICHeE is open source and available at http://viq854.github.io/lichee .

  9. 5-Hydroxymethylcytosine Remodeling Precedes Lineage Specification during Differentiation of Human CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Colm E. Nestor

    2016-07-01

    Full Text Available 5-methylcytosine (5mC is converted to 5-hydroxymethylcytosine (5hmC by the TET family of enzymes as part of a recently discovered active DNA de-methylation pathway. 5hmC plays important roles in regulation of gene expression and differentiation and has been implicated in T cell malignancies and autoimmunity. Here, we report early and widespread 5mC/5hmC remodeling during human CD4+ T cell differentiation ex vivo at genes and cell-specific enhancers with known T cell function. We observe similar DNA de-methylation in CD4+ memory T cells in vivo, indicating that early remodeling events persist long term in differentiated cells. Underscoring their important function, 5hmC loci were highly enriched for genetic variants associated with T cell diseases and T-cell-specific chromosomal interactions. Extensive functional validation of 22 risk variants revealed potentially pathogenic mechanisms in diabetes and multiple sclerosis. Our results support 5hmC-mediated DNA de-methylation as a key component of CD4+ T cell biology in humans, with important implications for gene regulation and lineage commitment.

  10. Spatio-temporal re-organization of replication foci accompanies replication domain consolidation during human pluripotent stem cell lineage specification

    Science.gov (United States)

    Wilson, Korey A.; Elefanty, Andrew G.; Stanley, Edouard G.; Gilbert, David M.

    2016-01-01

    ABSTRACT Lineage specification of both mouse and human pluripotent stem cells (PSCs) is accompanied by spatial consolidation of chromosome domains and temporal consolidation of their replication timing. Replication timing and chromatin organization are both established during G1 phase at the timing decision point (TDP). Here, we have developed live cell imaging tools to track spatio-temporal replication domain consolidation during differentiation. First, we demonstrate that the fluorescence ubiquitination cell cycle indicator (Fucci) system is incapable of demarcating G1/S or G2/M cell cycle transitions. Instead, we employ a combination of fluorescent PCNA to monitor S phase progression, cytokinesis to demarcate mitosis, and fluorescent nucleotides to label early and late replication foci and track their 3D organization into sub-nuclear chromatin compartments throughout all cell cycle transitions. We find that, as human PSCs differentiate, the length of S phase devoted to replication of spatially clustered replication foci increases, coincident with global compartmentalization of domains into temporally clustered blocks of chromatin. Importantly, re-localization and anchorage of domains was completed prior to the onset of S phase, even in the context of an abbreviated PSC G1 phase. This approach can also be employed to investigate cell fate transitions in single PSCs, which could be seen to differentiate preferentially from G1 phase. Together, our results establish real-time, live-cell imaging methods for tracking cell cycle transitions during human PSC differentiation that can be applied to study chromosome domain consolidation and other aspects of lineage specification. PMID:27433885

  11. Lineage Selection and the Maintenance of Sex

    Science.gov (United States)

    de Vienne, Damien M.; Giraud, Tatiana; Gouyon, Pierre-Henri

    2013-01-01

    Sex predominates in eukaryotes, despite its short-term disadvantage when compared to asexuality. Myriad models have suggested that short-term advantages of sex may be sufficient to counterbalance its twofold costs. However, despite decades of experimental work seeking such evidence, no evolutionary mechanism has yet achieved broad recognition as explanation for the maintenance of sex. We explore here, through lineage-selection models, the conditions favouring the maintenance of sex. In the first model, we allowed the rate of transition to asexuality to evolve, to determine whether lineage selection favoured species with the strongest constraints preventing the loss of sex. In the second model, we simulated more explicitly the mechanisms underlying the higher extinction rates of asexual lineages than of their sexual counterparts. We linked extinction rates to the ecological and/or genetic features of lineages, thereby providing a formalisation of the only figure included in Darwin's “The origin of species”. Our results reinforce the view that the long-term advantages of sex and lineage selection may provide the most satisfactory explanations for the maintenance of sex in eukaryotes, which is still poorly recognized, and provide figures and a simulation website for training and educational purposes. Short-term benefits may play a role, but it is also essential to take into account the selection of lineages for a thorough understanding of the maintenance of sex. PMID:23825582

  12. Lineage tracing of genome-edited alleles reveals high fidelity axolotl limb regeneration.

    Science.gov (United States)

    Flowers, Grant Parker; Sanor, Lucas D; Crews, Craig M

    2017-09-16

    Salamanders are unparalleled among tetrapods in their ability to regenerate many structures, including entire limbs, and the study of this ability may provide insights into human regenerative therapies. The complex structure of the limb poses challenges to the investigation of the cellular and molecular basis of its regeneration. Using CRISPR/Cas, we genetically labelled unique cell lineages within the developing axolotl embryo and tracked the frequency of each lineage within amputated and fully regenerated limbs. This allowed us, for the first time, to assess the contributions of multiple low frequency cell lineages to the regenerating limb at once. Our comparisons reveal that regenerated limbs are high fidelity replicas of the originals even after repeated amputations.

  13. Differentiation of a medulloblastoma cell line towards an astrocytic lineage using the human T lymphotropic retrovirus-1.

    Science.gov (United States)

    Giraudon, P; Dufay, N; Hardin, H; Reboul, A; Tardy, M; Belin, M F

    1993-02-01

    Constituent cells of medulloblastoma, the most common brain tumor occurring in childhood, resemble the primitive neuroepithelial cells normally found in the developing nervous system. However, mutational events prevent their further differentiation. We used the human T cell lymphotrophic virus type 1 to activate these deregulated immature cells by means of its transactivating protein Tax. Concomitant with viral infection was a decrease in cell proliferation characterized by inhibition of [3H]thymidine incorporation and in the number of cells in the G2/M phase of the cell cycle. Morphological changes suggested that medulloblastoma cells differentiated along the astrocytic lineage. The glial phenotype was confirmed by the induction of the glial fibrillary acidic protein and the glial enzyme glutamine synthetase. A direct viral effect and/or secondary effects to viral infection via paracrine/autocrine pathways could counterbalance the maturational defect in these medulloblastoma cells.

  14. ERK2 suppresses self-renewal capacity of embryonic stem cells, but is not required for multi-lineage commitment.

    Directory of Open Access Journals (Sweden)

    William B Hamilton

    Full Text Available Activation of the FGF-ERK pathway is necessary for naïve mouse embryonic stem (ES cells to exit self-renewal and commit to early differentiated lineages. Here we show that genetic ablation of Erk2, the predominant ERK isozyme expressed in ES cells, results in hyper-phosphorylation of ERK1, but an overall decrease in total ERK activity as judged by substrate phosphorylation and immediate-early gene (IEG induction. Normal induction of this subset of canonical ERK targets, as well as p90RSK phosphorylation, was rescued by transgenic expression of either ERK1 or ERK2 indicating a degree of functional redundancy. In contrast to previously published work, Erk2-null ES cells exhibited no detectable defect in lineage specification to any of the three germ layers when induced to differentiate in either embryoid bodies or in defined neural induction conditions. However, under self-renewing conditions Erk2-null ES cells express increased levels of the pluripotency-associated transcripts, Nanog and Tbx3, a decrease in Nanog-GFP heterogeneity, and exhibit enhanced self-renewal in colony forming assays. Transgenic add-back of ERK2 is capable of restoring normal pluripotent gene expression and self-renewal capacity. We show that ERK2 contributes to the destabilization of ES cell self-renewal by reducing expression of pluripotency genes, such as Nanog, but is not specifically required for the early stages of germ layer specification.

  15. T-cell clones from Th1, Th17 or Th1/17 lineages and their signature cytokines have different capacity to activate endothelial cells or synoviocytes.

    Science.gov (United States)

    Lavocat, Fabien; Maggi, Laura; Annunziato, Francesco; Miossec, Pierre

    2016-12-01

    To compare the direct effect of cytokines on synoviocytes and endothelial cells to the effects of supernatants from Th1, Th17 and Th1/17 clones and the direct cell-cell interactions with the same clones. Th17 and Th1/17 clones were obtained from the CD161+CCR6+ fraction and Th1 clones from the CD161-CCR6- fraction of human CD4+ T-cells. Endothelial cells or synoviocytes were cultured in the presence of either isolated pro-inflammatory cytokines (IL-17 and/or TNF-α) or supernatants from the T-cell clones or co-cultured with T-cell clones themselves. IL-6 and IL-8 expression and production were analyzed. IL-17 and TNF-α induced IL-6 and IL-8 expression, although IL-17 alone had a limited effect on endothelial cells compared to synoviocytes. Supernatants from activated T-helper clones also induced IL-6 and IL-8 expression but with discrepancies between endothelial cells and synoviocytes. Endothelial cells were mostly activated by Th1 clone supernatants whereas synoviocytes were activated by all T-cell subtypes. Finally, cell-cell contact experiments showed a great heterogeneity among cell clones, even from the same lineage. IL-6 expression was mostly induced by contact with Th1 clones both in endothelial and mesenchymal cells whereas IL-8 expression was induced by all T-cell clones whatever their phenotype. We showed that endothelial cells were much more sensitive to Th1 activation whereas synoviocytes were activated by all T-helper lineages. This work highlights the heterogeneity of interactions between T-cells and stromal cells through soluble factors or direct cell contact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Even Cancers Want Commitment: Lineage Identity and Medulloblastoma Formation

    Science.gov (United States)

    Eberhart, Charles G.

    2015-01-01

    In this issue of Cancer Cell, Yang et al. (2008) and Schüller et al. (2008) show that Hedgehog activation in either multipotent neural stem cells or developmentally restricted progenitors causes only medulloblastomas to form. These data suggest that some stem cell-derived tumors must commit to a specific lineage in order to grow. PMID:18691544

  17. ROCK inhibitor primes human induced pluripotent stem cells to selectively differentiate towards mesendodermal lineage via epithelial-mesenchymal transition-like modulation

    Directory of Open Access Journals (Sweden)

    Maricela Maldonado

    2016-09-01

    Full Text Available Robust control of human induced pluripotent stem cell (hIPSC differentiation is essential to realize its patient-tailored therapeutic potential. Here, we demonstrate a novel application of Y-27632, a small molecule Rho-associated protein kinase (ROCK inhibitor, to significantly influence the differentiation of hIPSCs in a lineage-specific manner. The application of Y-27632 to hIPSCs resulted in a decrease in actin bundling and disruption of colony formation in a concentration and time-dependent manner. Such changes in cell and colony morphology were associated with decreased expression of E-cadherin, a cell-cell junctional protein, proportional to the increased exposure to Y-27632. Interestingly, gene and protein expression of pluripotency markers such as NANOG and OCT4 were not downregulated by an exposure to Y-27632 up to 36 h. Simultaneously, epithelial-to-mesenchymal (EMT transition markers were upregulated with an exposure to Y-27632. These EMT-like changes in the cells with longer exposure to Y-27632 resulted in a significant increase in the subsequent differentiation efficiency towards mesendodermal lineage. In contrast, an inhibitory effect was observed when cells were subjected to ectodermal differentiation after prolonged exposure to Y-27632. Collectively, these results present a novel method for priming hIPSCs to modulate their differentiation potential with a simple application of Y-27632.

  18. Myeloperoxidase mRNA detection for lineage determination of leukemic blasts: retrospective analysis.

    Science.gov (United States)

    Crisan, D; Anstett, M J

    1995-07-01

    Myeloperoxidase (MPO) mRNA is an early myeloid marker; its detection in the morphologically and immunophenotypically primitive blasts of acute undifferentiated leukemia (AUL) establishes myeloid lineage and allows reclassification as acute myelogenous leukemia with minimal differentiation (AML-MO). We have previously reported a procedure for MPO mRNA detection by RT-PCR (reverse transcription-polymerase chain reaction) and an adaptation for use of routine hematology smears. This variant procedure allows retrospective analysis of mRNA and is used in the present study to evaluate the lineage of leukemic blasts in seven cases with morphology and cytochemistry consistent with AUL. All hematology smears used in this study were air-dried, unstained or Wright-stained and stored at room temperature for periods varying between 3 days and 2 years. MPO mRNA was detected in six cases, establishing the myeloid lineage of the blasts and the diagnosis of AML-MO. In the remaining case, the blasts were MPO mRNA negative, confirming the diagnosis of AUL. The RT-PCR procedure for retrospective mRNA analysis is useful in the clinical setting, due to its high specificity and sensitivity, speed (less than 24 h), safety (no radioactivity) and convenient use of routine hematology smears; it is particularly attractive in clinical situations when fresh or frozen specimens are no longer available at the time when the need for molecular diagnostics becomes apparent.

  19. Tracking the stochastic fate of cells of the renin lineage after podocyte depletion using multicolor reporters and intravital imaging.

    Directory of Open Access Journals (Sweden)

    Natalya V Kaverina

    Full Text Available Podocyte depletion plays a major role in focal segmental glomerular sclerosis (FSGS. Because cells of the renin lineage (CoRL serve as adult podocyte and parietal epithelial cell (PEC progenitor candidates, we generated Ren1cCre/R26R-ConfettiTG/WT and Ren1dCre/R26R-ConfettiTG/WT mice to determine CoRL clonality during podocyte replacement. Four CoRL reporters (GFP, YFP, RFP, CFP were restricted to cells in the juxtaglomerular compartment (JGC at baseline. Following abrupt podocyte depletion in experimental FSGS, all four CoRL reporters were detected in a subset of glomeruli at day 28, where they co-expressed de novo four podocyte proteins (podocin, nephrin, WT-1 and p57 and two glomerular parietal epithelial cell (PEC proteins (claudin-1, PAX8. To monitor the precise migration of a subset of CoRL over a 2w period following podocyte depletion, intravital multiphoton microscopy was used. Our findings demonstrate direct visual support for the migration of single CoRL from the JGC to the parietal Bowman's capsule, early proximal tubule, mesangium and glomerular tuft. In summary, these results suggest that following podocyte depletion, multi-clonal CoRL migrate to the glomerulus and replace podocyte and PECs in experimental FSGS.

  20. Endometrial Cancer Side-Population Cells Show Prominent Migration and Have a Potential to Differentiate into the Mesenchymal Cell Lineage

    Science.gov (United States)

    Kato, Kiyoko; Takao, Tomoka; Kuboyama, Ayumi; Tanaka, Yoshihiro; Ohgami, Tatsuhiro; Yamaguchi, Shinichiro; Adachi, Sawako; Yoneda, Tomoko; Ueoka, Yousuke; Kato, Keiji; Hayashi, Shinichi; Asanoma, Kazuo; Wake, Norio

    2010-01-01

    Cancer stem-like cell subpopulations, referred to as “side-population” (SP) cells, have been identified in several tumors based on their ability to efflux the fluorescent dye Hoechst 33342. Although SP cells have been identified in the normal human endometrium and endometrial cancer, little is known about their characteristics. In this study, we isolated and characterized the SP cells in human endometrial cancer cells and in rat endometrial cells expressing oncogenic human K-Ras protein. These SP cells showed i) reduction in the expression levels of differentiation markers; ii) long-term proliferative capacity of the cell cultures; iii) self-renewal capacity in vitro; iv) enhancement of migration, lamellipodia, and, uropodia formation; and v) enhanced tumorigenicity. In nude mice, SP cells formed large, invasive tumors, which were composed of both tumor cells and stromal-like cells with enriched extracellular matrix. The expression levels of vimentin, α-smooth muscle actin, and collagen III were enhanced in SP tumors compared with the levels in non-SP tumors. In addition, analysis of microdissected samples and fluorescence in situ hybridization of Hec1-SP-tumors showed that the stromal-like cells with enriched extracellular matrix contained human DNA, confirming that the stromal-like cells were derived from the inoculated cells. Moreober, in a Matrigel assay, SP cells differentiated into α-smooth muscle actin-expressing cells. These findings demonstrate that SP cells have cancer stem-like cell features, including the potential to differentiate into the mesenchymal cell lineage. PMID:20008133

  1. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    International Nuclear Information System (INIS)

    Sawada, Keigo; Takedachi, Masahide; Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki; Lee, Chun Man; Okura, Hanayuki; Matsuyama, Akifumi; Kitamura, Masahiro; Murakami, Shinya

    2015-01-01

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation

  2. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Keigo [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Takedachi, Masahide, E-mail: takedati@dent.osaka-u.ac.jp [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Lee, Chun Man [Medical Center for Translational Research, Osaka University Hospital, Osaka (Japan); Okura, Hanayuki; Matsuyama, Akifumi [Research on Disease Bioresources, Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, Osaka (Japan); Kitamura, Masahiro; Murakami, Shinya [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan)

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.

  3. Defining the Minimal Factors Required for Erythropoiesis through Direct Lineage Conversion

    Directory of Open Access Journals (Sweden)

    Sandra Capellera-Garcia

    2016-06-01

    Full Text Available Erythroid cell commitment and differentiation proceed through activation of a lineage-restricted transcriptional network orchestrated by a group of well characterized genes. However, the minimal set of factors necessary for instructing red blood cell (RBC development remains undefined. We employed a screen for transcription factors allowing direct lineage reprograming from fibroblasts to induced erythroid progenitors/precursors (iEPs. We show that Gata1, Tal1, Lmo2, and c-Myc (GTLM can rapidly convert murine and human fibroblasts directly to iEPs. The transcriptional signature of murine iEPs resembled mainly that of primitive erythroid progenitors in the yolk sac, whereas addition of Klf1 or Myb to the GTLM cocktail resulted in iEPs with a more adult-type globin expression pattern. Our results demonstrate that direct lineage conversion is a suitable platform for defining and studying the core factors inducing the different waves of erythroid development.

  4. Evidence of two distinct functionally specialized fibroblast lineages in breast stroma

    DEFF Research Database (Denmark)

    Morsing, Mikkel; Klitgaard, Marie Christine; Jafari Kermani, Abbas

    2016-01-01

    Background The terminal duct lobular unit (TDLU) is the most dynamic structure in the human breast and the putative site of origin of human breast cancer. Although stromal cells contribute to a specialized microenvironment in many organs, this component remains largely understudied in the human...... conditions followed by analysis of adipogenic and osteogenic differentiation. To test whether the two fibroblast lineages are functionally imprinted by their site of origin, single cell sorted CD271low/MUC1high normal breast luminal epithelial cells are plated on fibroblast feeders for the observation...... fibroblast lineages exist in the normal human breast, of which the lobular fibroblasts have properties in common with mesenchymal stem cells and support epithelial growth and morphogenesis. We propose that lobular fibroblasts constitute a specialized microenvironment for human breast luminal epithelial...

  5. In vitro analysis of the oligodendrocyte lineage in mice during demyelination and remyelination

    International Nuclear Information System (INIS)

    Armstrong, R.; Friedrich, V.L. Jr.; Holmes, K.V.; Dubois-Dalcq, M.

    1990-01-01

    A demyelinating disease induced in C57B1/6N mice by intracranial injection of a coronavirus (murine hepatitis virus strain A59) is followed by functional recovery and efficient CNS myelin repair. To study the biological properties of the cells involved in this repair process, glial cells were isolated and cultured from spinal cords of these young adult mice during demyelination and remyelination. Using three-color immunofluorescence combined with [3H]thymidine autoradiography, we have analyzed the antigenic phenotype and mitotic potential of individual glial cells. We identified oligodendrocytes with an antibody to galactocerebroside, astrocytes with an antibody to glial fibrillary acidic protein, and oligodendrocyte-type 2 astrocyte (O-2A) progenitor cells with the O4 antibody. Cultures from demyelinated tissue differed in several ways from those of age-matched controls: first, the total number of O-2A lineage cells was strikingly increased; second, the O-2A population consisted of a higher proportion of O4-positive astrocytes and cells of mixed oligodendrocyte-astrocyte phenotype; and third, all the cell types within the O-2A lineage showed enhanced proliferation. This proliferation was not further enhanced by adding PDGF, basic fibroblast growth factor (bFGF), or insulin-like growth factor I (IGF-I) to the defined medium. However, bFGF and IGF-I seemed to influence the fate of O-2A lineage cells in cultures of demyelinated tissue. Basic FGF decreased the percentage of cells expressing galactocerebroside. In contrast, IGF-I increased the relative proportion of oligodendrocytes. Thus, O-2A lineage cells from adult mice display greater phenotypic plasticity and enhanced mitotic potential in response to an episode of demyelination. These properties may be linked to the efficient remyelination achieved in this demyelinating disease

  6. β-Catenin–regulated myeloid cell adhesion and migration determine wound healing

    Science.gov (United States)

    Amini-Nik, Saeid; Cambridge, Elizabeth; Yu, Winston; Guo, Anne; Whetstone, Heather; Nadesan, Puviindran; Poon, Raymond; Hinz, Boris; Alman, Benjamin A.

    2014-01-01

    A β-catenin/T cell factor–dependent transcriptional program is critical during cutaneous wound repair for the regulation of scar size; however, the relative contribution of β-catenin activity and function in specific cell types in the granulation tissue during the healing process is unknown. Here, cell lineage tracing revealed that cells in which β-catenin is transcriptionally active express a gene profile that is characteristic of the myeloid lineage. Mice harboring a macrophage-specific deletion of the gene encoding β-catenin exhibited insufficient skin wound healing due to macrophage-specific defects in migration, adhesion to fibroblasts, and ability to produce TGF-β1. In irradiated mice, only macrophages expressing β-catenin were able to rescue wound-healing deficiency. Evaluation of scar tissue collected from patients with hypertrophic and normal scars revealed a correlation between the number of macrophages within the wound, β-catenin levels, and cellularity. Our data indicate that β-catenin regulates myeloid cell motility and adhesion and that β-catenin–mediated macrophage motility contributes to the number of mesenchymal cells and ultimate scar size following cutaneous injury. PMID:24837430

  7. Robust Differentiation of mRNA-Reprogrammed Human Induced Pluripotent Stem Cells Toward a Retinal Lineage.

    Science.gov (United States)

    Sridhar, Akshayalakshmi; Ohlemacher, Sarah K; Langer, Kirstin B; Meyer, Jason S

    2016-04-01

    The derivation of human induced pluripotent stem cells (hiPSCs) from patient-specific sources has allowed for the development of novel approaches to studies of human development and disease. However, traditional methods of generating hiPSCs involve the risks of genomic integration and potential constitutive expression of pluripotency factors and often exhibit low reprogramming efficiencies. The recent description of cellular reprogramming using synthetic mRNA molecules might eliminate these shortcomings; however, the ability of mRNA-reprogrammed hiPSCs to effectively give rise to retinal cell lineages has yet to be demonstrated. Thus, efforts were undertaken to test the ability and efficiency of mRNA-reprogrammed hiPSCs to yield retinal cell types in a directed, stepwise manner. hiPSCs were generated from human fibroblasts via mRNA reprogramming, with parallel cultures of isogenic human fibroblasts reprogrammed via retroviral delivery of reprogramming factors. New lines of mRNA-reprogrammed hiPSCs were established and were subsequently differentiated into a retinal fate using established protocols in a directed, stepwise fashion. The efficiency of retinal differentiation from these lines was compared with retroviral-derived cell lines at various stages of development. On differentiation, mRNA-reprogrammed hiPSCs were capable of robust differentiation to a retinal fate, including the derivation of photoreceptors and retinal ganglion cells, at efficiencies often equal to or greater than their retroviral-derived hiPSC counterparts. Thus, given that hiPSCs derived through mRNA-based reprogramming strategies offer numerous advantages owing to the lack of genomic integration or constitutive expression of pluripotency genes, such methods likely represent a promising new approach for retinal stem cell research, in particular, those for translational applications. In the current report, the ability to derive mRNA-reprogrammed human induced pluripotent stem cells (hi

  8. ROCK inhibitor primes human induced pluripotent stem cells to selectively differentiate towards mesendodermal lineage via epithelial-mesenchymal transition-like modulation.

    Science.gov (United States)

    Maldonado, Maricela; Luu, Rebeccah J; Ramos, Michael E P; Nam, Jin

    2016-09-01

    Robust control of human induced pluripotent stem cell (hIPSC) differentiation is essential to realize its patient-tailored therapeutic potential. Here, we demonstrate a novel application of Y-27632, a small molecule Rho-associated protein kinase (ROCK) inhibitor, to significantly influence the differentiation of hIPSCs in a lineage-specific manner. The application of Y-27632 to hIPSCs resulted in a decrease in actin bundling and disruption of colony formation in a concentration and time-dependent manner. Such changes in cell and colony morphology were associated with decreased expression of E-cadherin, a cell-cell junctional protein, proportional to the increased exposure to Y-27632. Interestingly, gene and protein expression of pluripotency markers such as NANOG and OCT4 were not downregulated by an exposure to Y-27632 up to 36h. Simultaneously, epithelial-to-mesenchymal (EMT) transition markers were upregulated with an exposure to Y-27632. These EMT-like changes in the cells with longer exposure to Y-27632 resulted in a significant increase in the subsequent differentiation efficiency towards mesendodermal lineage. In contrast, an inhibitory effect was observed when cells were subjected to ectodermal differentiation after prolonged exposure to Y-27632. Collectively, these results present a novel method for priming hIPSCs to modulate their differentiation potential with a simple application of Y-27632. Copyright © 2016 Helmholtz Zentrum München. Published by Elsevier B.V. All rights reserved.

  9. Polo-Like Kinase 2 is Dynamically Regulated to Coordinate Proliferation and Early Lineage Specification Downstream of Yes-Associated Protein 1 in Cardiac Progenitor Cells.

    Science.gov (United States)

    Mochizuki, Michika; Lorenz, Vera; Ivanek, Robert; Della Verde, Giacomo; Gaudiello, Emanuele; Marsano, Anna; Pfister, Otmar; Kuster, Gabriela M

    2017-10-24

    Recent studies suggest that adult cardiac progenitor cells (CPCs) can produce new cardiac cells. Such cell formation requires an intricate coordination of progenitor cell proliferation and commitment, but the molecular cues responsible for this regulation in CPCs are ill defined. Extracellular matrix components are important instructors of cell fate. Using laminin and fibronectin, we induced two slightly distinct CPC phenotypes differing in proliferation rate and commitment status and analyzed the early transcriptomic response to CPC adhesion (<2 hours). Ninety-four genes were differentially regulated on laminin versus fibronectin, consisting of mostly downregulated genes that were enriched for Yes-associated protein (YAP) conserved signature and TEA domain family member 1 (TEAD1)-related genes. This early gene regulation was preceded by the rapid cytosolic sequestration and degradation of YAP on laminin. Among the most strongly regulated genes was polo-like kinase 2 ( Plk2 ). Plk2 expression depended on YAP stability and was enhanced in CPCs transfected with a nuclear-targeted mutant YAP. Phenotypically, the early downregulation of Plk2 on laminin was succeeded by lower cell proliferation, enhanced lineage gene expression (24 hours), and facilitated differentiation (3 weeks) compared with fibronectin. Finally, overexpression of Plk2 enhanced CPC proliferation and knockdown of Plk2 induced the expression of lineage genes. Plk2 acts as coordinator of cell proliferation and early lineage commitment in CPCs. The rapid downregulation of Plk2 on YAP inactivation marks a switch towards enhanced commitment and facilitated differentiation. These findings link early gene regulation to cell fate and provide novel insights into how CPC proliferation and differentiation are orchestrated. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  10. Conversion of neurons and glia to external-cell fates in the external sensory organs of Drosophila hamlet mutants by a cousin-cousin cell-type respecification.

    Science.gov (United States)

    Moore, Adrian W; Roegiers, Fabrice; Jan, Lily Y; Jan, Yuh-Nung

    2004-03-15

    The Drosophila external sensory organ forms in a lineage elaborating from a single precursor cell via a stereotypical series of asymmetric divisions. HAMLET transcription factor expression demarcates the lineage branch that generates two internal cell types, the external sensory neuron and thecogen. In HAMLET mutant organs, these internal cells are converted to external cells via an unprecedented cousin-cousin cell-fate respecification event. Conversely, ectopic HAMLET expression in the external cell branch leads to internal cell production. The fate-determining signals NOTCH and PAX2 act at multiple stages of lineage elaboration and HAMLET acts to modulate their activity in a branch-specific manner.

  11. Expanding the Entamoeba Universe: New Hosts Yield Novel Ribosomal Lineages.

    Science.gov (United States)

    Jacob, Alison S; Busby, Eloise J; Levy, Abigail D; Komm, Natasha; Clark, C Graham

    2016-01-01

    Removing the requirement for cell culture has led to a substantial increase in the number of lineages of Entamoeba recognized as distinct. Surveying the range of potential host species for this parasite genus has barely been started and it is clear that additional sampling of the same host in different locations often identifies additional diversity. In this study, using small subunit ribosomal RNA gene sequencing, we identify four new lineages of Entamoeba, including the first report of Entamoeba from an elephant, and extend the host range of some previously described lineages. In addition, examination of microbiome data from a number of host animals suggests that substantial Entamoeba diversity remains to be uncovered. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  12. Exome Sequencing of Bilateral Testicular Germ Cell Tumors Suggests Independent Development Lineages

    Directory of Open Access Journals (Sweden)

    Sigmund Brabrand

    2015-02-01

    Full Text Available Intratubular germ cell neoplasia, the precursor of testicular germ cell tumors (TGCTs, is hypothesized to arise during embryogenesis from developmentally arrested primordial germ cells (PGCs or gonocytes. In early embryonal life, the PGCs migrate from the yolk sac to the dorsal body wall where the cell population separates before colonizing the genital ridges. However, whether the malignant transformation takes place before or after this separation is controversial. We have explored the somatic exome-wide mutational spectra of bilateral TGCT to provide novel insight into the in utero critical time frame of malignant transformation and TGCT pathogenesis. Exome sequencing was performed in five patients with bilateral TGCT (eight tumors, of these three patients in whom both tumors were available (six tumors and two patients each with only one available tumor (two tumors. Selected loci were explored by Sanger sequencing in 71 patients with bilateral TGCT. From the exome-wide mutational spectra, no identical mutations in any of the three bilateral tumor pairs were identified. Exome sequencing of all eight tumors revealed 87 somatic non-synonymous mutations (median 10 per tumor; range 5-21, some in already known cancer genes such as CIITA, NEB, platelet-derived growth factor receptor α (PDGFRA, and WHSC1. SUPT6H was found recurrently mutated in two tumors. We suggest independent development lineages of bilateral TGCT. Thus, malignant transformation into intratubular germ cell neoplasia is likely to occur after the migration of PGCs. We reveal possible drivers of TGCT pathogenesis, such as mutated PDGFRA, potentially with therapeutic implications for TGCT patients.

  13. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression

    Science.gov (United States)

    Ha, Shin-Woo; Jang, Hae Lin; Nam, Ki Tae; Beck, George R.

    2015-01-01

    Hydroxyapatite (HA) is the primary structural component of the skeleton and dentition. Under biological conditions, HA does not occur spontaneously and therefore must be actively synthesized by mineralizing cells such as osteoblasts. The mechanism(s) by which HA is actively synthesized by cells and deposited to create a mineralized matrix are not fully understood and the consequences of mineralization on cell function are even less well understood. HA can be chemically synthesized (HAp) and is therefore currently being investigated as a promising therapeutic biomaterial for use as a functional scaffold and implant coating for skeletal repair and dental applications. Here we investigated the biological effects of nano-HAp (10×100 nm) on the lineage commitment and differentiation of bone forming osteoblasts. Exposure of early stage differentiating osteoblasts resulted in dramatic and sustained changes in gene expression, both increased and decreased, whereas later stage osteoblasts were much less responsive. Analysis of the promoter region one of the most responsive genes, alkaline phosphatase, identified the stimulation of DNA methylation following cell exposure to nano-HAp. Collectively, the results reveal the novel epigenetic regulation of cell function by nano-HAp which has significant implication on lineage determination as well as identifying a novel potential therapeutic use of nanomaterials. PMID:26141836

  14. Genotypic lineages and restriction fragment length polymorphism of canine distemper virus isolates in Thailand.

    Science.gov (United States)

    Radtanakatikanon, Araya; Keawcharoen, Juthatip; Charoenvisal, Na Taya; Poovorawan, Yong; Prompetchara, Eakachai; Yamaguchi, Ryoji; Techangamsuwan, Somporn

    2013-09-27

    Canine distemper virus (CDV) is known to cause multisystemic disease in all families of terrestrial carnivores. Attenuated live vaccines have been used to control CDV in a variety of species for many decades, yet a number of CDV infections in vaccinated dogs are still observed. The aims of this study were to investigate the genetic diversity of CDV lineages based on phosphoprotein (P), hemagglutinin (H) and fusion protein (F) genes and to develop the restriction fragment length polymorphism (RFLP) technique for effective differentiation among individual wild-type and vaccine lineages in Thailand. Four commercial vaccine products, thirteen conjunctival swabs and various tissues from 9 necropsied dogs suspected of having CDV infections were included. Virus isolation was performed using Vero cell expressing canine signaling lymphocyte activation molecules (Vero-DST cells). Reverse-transcription polymerase chain reaction (RT-PCR) on 3 gene regions from the dog derived specimens and the vaccines were carried out, then RFLP analysis upon F-gene amplified fragments was developed. Nucleotide sequence and phylogenetic analysis were compared with other CDV lineages in Genbank. Phylogenetic relationships revealed that CDV field isolates were separated from the vaccine lineage and could be divided into two clusters; one of which belonged to the Asia-1 lineage and another, not related to any previous recognized lineages was proposed as 'Asia-4'. RFLP patterns demonstrating concordance with phylogenetic trees of the distemper virus allowed for differentiation between the Asia-1, Asia-4 and vaccine lineages. Thus, RFLP technique is able to effectively distinguish individual wild-type canine distemper virus from vaccine lineages in Thailand. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. [Distribution of abnormal cell clone with deletion of chromosome 20q in marrow cell lineages and apoptosis cells in myelodysplastic syndrome].

    Science.gov (United States)

    Qin, Ling; Wang, Chun; Qin, You-Wen; Xie, Kuang-Cheng; Yan, Shi-Ke; Gao, Yan-Rong; Wang, Xiao-Rui; Zhao, Chu-Xian

    2008-06-01

    This study was aimed to investigate the distribution of abnormal clone in marrow cell lineages and apoptosis cells in myelodysplastic syndrome (MDS) with deletion of chromosome 20q. Monoclonal antibodies recognizing myeloid precursors (CD15), erythroid precursors (GPA), T cells (CD3(+)CD56(-)CD16(-)), B cells (CD19), NK cells (CD3(-)CD56(+)CD16(+)) were used to sort bone marrow cells in a MDS patient with del (20q) by fluorescence activated cell sorting (FACS). Annexin V-FITC and PI were used to sort bone marrow Annexin V(+)PI(-) and Annexin V(-)PI(-) cells by FACS. The sorted positive cells were detected by interphase dual-color fluorescence in situ hybridization (D-FISH) using a LSI D20S108 probe (Spectrum Orange) and a Telvysion TM 20p probe (Spectrum Green). FACS and FISH analysis were also performed on the samples from 4 cases with normal karyotype. The results showed that the proportions of MDS clone in the myeloid and erythroid precursors were 70.50% and 93.33% respectively, in the RAEB-1 patient with del (20q) and were obviously higher than that in control group (5.39% and 6.17%). The proportions of abnormal clone in T, B and NK cells were 3.23%, 4.32% and 5.77% respectively and were less than that in control group (5.76%, 4.85%, 6.36%). The percentage of apoptotic cells in the bone marrow nucleated cells was 16.09%. The proportions of MDS clone in Annexin V(+)PI(-) and Annexin V(-)PI(-) cells were 32.48% and 70.11%, respectively. It is concluded that most myeloid and erythroid precursors are originated from the abnormal clone in MDS with del (20q). A little part of apoptotic cells are derived from the abnormal clone.

  16. Genome-wide analysis of the human Alu Yb-lineage

    Directory of Open Access Journals (Sweden)

    Carter Anthony B

    2004-03-01

    Full Text Available Abstract The Alu Yb-lineage is a 'young' primarily human-specific group of short interspersed element (SINE subfamilies that have integrated throughout the human genome. In this study, we have computationally screened the draft sequence of the human genome for Alu Yb-lineage subfamily members present on autosomal chromosomes. A total of 1,733 Yb Alu subfamily members have integrated into human autosomes. The average ages of Yb-lineage subfamilies, Yb7, Yb8 and Yb9, are estimated as 4.81, 2.39 and 2.32 million years, respectively. In order to determine the contribution of the Alu Yb-lineage to human genomic diversity, 1,202 loci were analysed using polymerase chain reaction (PCR-based assays, which amplify the genomic regions containing individual Yb-lineage subfamily members. Approximately 20 per cent of the Yb-lineage Alu elements are polymorphic for insertion presence/absence in the human genome. Fewer than 0.5 per cent of the Yb loci also demonstrate insertions at orthologous positions in non-human primate genomes. Genomic sequencing of these unusual loci demonstrates that each of the orthologous loci from non-human primate genomes contains older Y, Sg and Sx Alu family members that have been altered, through various mechanisms, into Yb8 sequences. These data suggest that Alu Yb-lineage subfamily members are largely restricted to the human genome. The high copy number, level of insertion polymorphism and estimated age indicate that members of the Alu Yb elements will be useful in a wide range of genetic analyses.

  17. Metabolic rate determines haematopoietic stem cell self-renewal.

    Science.gov (United States)

    Sastry, P S R K

    2004-01-01

    The number of haematopoietic stem cells (HSCs) per animal is conserved across species. This means the HSCs need to maintain hematopoiesis over a longer period in larger animals. This would result in the requirement of stem cell self-renewal. At present the three existing models are the stochastic model, instructive model and the third more recently proposed is the chiaro-scuro model. It is a well known allometric law that metabolic rate scales to the three quarter power. Larger animals have a lower metabolic rate, compared to smaller animals. Here it is being hypothesized that metabolic rate determines haematopoietic stem cell self-renewal. At lower metabolic rate the stem cells commit for self-renewal, where as at higher metabolic rate they become committed to different lineages. The present hypothesis can explain the salient features of the different models. Recent findings regarding stem cell self-renewal suggest an important role for Wnt proteins and their receptors known as frizzleds, which are an important component of cell signaling pathway. The role of cGMP in the Wnts action provides further justification for the present hypothesis as cGMP is intricately linked to metabolic rate. One can also explain the telomere homeostasis by the present hypothesis. One prediction of the present hypothesis is with reference to the limit of cell divisions known as Hayflick limit, here it is being suggested that this is the result of metabolic rate in laboratory conditions and there can be higher number of cell divisions in vivo if the metabolic rate is lower. Copyright 2004 Elsevier Ltd.

  18. Cord blood-derived macrophage-lineage cells rapidly stimulate osteoblastic maturation in mesenchymal stem cells in a glycoprotein-130 dependent manner.

    Directory of Open Access Journals (Sweden)

    Tania J Fernandes

    Full Text Available In bone, depletion of osteoclasts reduces bone formation in vivo, as does osteal macrophage depletion. How osteoclasts and macrophages promote the action of bone forming osteoblasts is, however, unclear. Since recruitment and differentiation of multi-potential stromal cells/mesenchymal stem cells (MSC generates new active osteoblasts, we investigated whether human osteoclasts and macrophages (generated from cord blood-derived hematopoietic progenitors induce osteoblastic maturation in adipose tissue-derived MSC. When treated with an osteogenic stimulus (ascorbate, dexamethasone and β-glycerophosphate these MSC form matrix-mineralising, alkaline phosphatase-expressing osteoblastic cells. Cord blood-derived progenitors were treated with macrophage colony stimulating factor (M-CSF to form immature proliferating macrophages, or with M-CSF plus receptor activator of NFκB ligand (RANKL to form osteoclasts; culture medium was conditioned for 3 days by these cells to study their production of osteoblastic factors. Both osteoclast- and macrophage-conditioned medium (CM greatly enhanced MSC osteoblastic differentiation in both the presence and absence of osteogenic medium, evident by increased alkaline phosphatase levels within 4 days and increased mineralisation within 14 days. These CM effects were completely ablated by antibodies blocking gp130 or oncostatin M (OSM, and OSM was detectable in both CM. Recombinant OSM very potently stimulated osteoblastic maturation of these MSC and enhanced bone morphogenetic protein-2 (BMP-2 actions on MSC. To determine the influence of macrophage activation on this OSM-dependent activity, CM was collected from macrophage populations treated with M-CSF plus IL-4 (to induce alternative activation or with GM-CSF, IFNγ and LPS to cause classical activation. CM from IL-4 treated macrophages stimulated osteoblastic maturation in MSC, while CM from classically-activated macrophages did not. Thus, macrophage-lineage cells

  19. Exome sequencing of bilateral testicular germ cell tumors suggests independent development lineages.

    Science.gov (United States)

    Brabrand, Sigmund; Johannessen, Bjarne; Axcrona, Ulrika; Kraggerud, Sigrid M; Berg, Kaja G; Bakken, Anne C; Bruun, Jarle; Fosså, Sophie D; Lothe, Ragnhild A; Lehne, Gustav; Skotheim, Rolf I

    2015-02-01

    Intratubular germ cell neoplasia, the precursor of testicular germ cell tumors (TGCTs), is hypothesized to arise during embryogenesis from developmentally arrested primordial germ cells (PGCs) or gonocytes. In early embryonal life, the PGCs migrate from the yolk sac to the dorsal body wall where the cell population separates before colonizing the genital ridges. However, whether the malignant transformation takes place before or after this separation is controversial. We have explored the somatic exome-wide mutational spectra of bilateral TGCT to provide novel insight into the in utero critical time frame of malignant transformation and TGCT pathogenesis. Exome sequencing was performed in five patients with bilateral TGCT (eight tumors), of these three patients in whom both tumors were available (six tumors) and two patients each with only one available tumor (two tumors). Selected loci were explored by Sanger sequencing in 71 patients with bilateral TGCT. From the exome-wide mutational spectra, no identical mutations in any of the three bilateral tumor pairs were identified. Exome sequencing of all eight tumors revealed 87 somatic non-synonymous mutations (median 10 per tumor; range 5-21), some in already known cancer genes such as CIITA, NEB, platelet-derived growth factor receptor α (PDGFRA), and WHSC1. SUPT6H was found recurrently mutated in two tumors. We suggest independent development lineages of bilateral TGCT. Thus, malignant transformation into intratubular germ cell neoplasia is likely to occur after the migration of PGCs. We reveal possible drivers of TGCT pathogenesis, such as mutated PDGFRA, potentially with therapeutic implications for TGCT patients. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  20. Activation of non-canonical Wnt/JNK pathway by Wnt3a is associated with differentiation fate determination of human bone marrow stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Qiu, Weimin; Chen, Li; Kassem, Moustapha

    2011-01-01

    The canonical Wnt signaling pathway can determine human bone marrow stromal (mesenchymal) stem cell (hMSC) differentiation fate into osteoblast or adipocyte lineages. However, its downstream targets in MSC are not well characterized. Thus, using DNA microarrays, we compared global gene expression...

  1. Activated macrophages create lineage-specific microenvironments for pancreatic acinar- and β-cell regeneration in mice.

    Science.gov (United States)

    Criscimanna, Angela; Coudriet, Gina M; Gittes, George K; Piganelli, Jon D; Esni, Farzad

    2014-11-01

    Although the cells that contribute to pancreatic regeneration have been widely studied, little is known about the mediators of this process. During tissue regeneration, infiltrating macrophages debride the site of injury and coordinate the repair response. We investigated the role of macrophages in pancreatic regeneration in mice. We used a saporin-conjugated antibody against CD11b to reduce the number of macrophages in mice following diphtheria toxin receptor-mediated cell ablation of pancreatic cells, and evaluated the effects on pancreatic regeneration. We analyzed expression patterns of infiltrating macrophages after cell-specific injury or from the pancreas of nonobese diabetic mice. We developed an in vitro culture system to study the ability of macrophages to induce cell-specific regeneration. Depletion of macrophages impaired pancreatic regeneration. Macrophage polarization, as assessed by expression of tumor necrosis factor-α, interleukin 6, interleukin 10, and CD206, depended on the type of injury. The signals provided by polarized macrophages promoted lineage-specific generation of acinar or endocrine cells. Macrophage from nonobese diabetic mice failed to provide signals necessary for β-cell generation. Macrophages produce cell type-specific signals required for pancreatic regeneration in mice. Additional study of these processes and signals might lead to new approaches for treating type 1 diabetes or pancreatitis. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  2. Mycobacterium tuberculosis Lineage 4 comprises globally distributed and geographically restricted sublineages

    Science.gov (United States)

    Coscolla, Mireia; Liu, Qingyun; Trauner, Andrej; Fenner, Lukas; Rutaihwa, Liliana; Borrell, Sonia; Luo, Tao; Gao, Qian; Kato-Maeda, Midori; Ballif, Marie; Egger, Matthias; Macedo, Rita; Mardassi, Helmi; Moreno, Milagros; Tudo Vilanova, Griselda; Fyfe, Janet; Globan, Maria; Thomas, Jackson; Jamieson, Frances; Guthrie, Jennifer L.; Asante-Poku, Adwoa; Yeboah-Manu, Dorothy; Wampande, Eddie; Ssengooba, Willy; Joloba, Moses; Henry Boom, W.; Basu, Indira; Bower, James; Saraiva, Margarida; Vaconcellos, Sidra E. G.; Suffys, Philip; Koch, Anastasia; Wilkinson, Robert; Gail-Bekker, Linda; Malla, Bijaya; Ley, Serej D.; Beck, Hans-Peter; de Jong, Bouke C.; Toit, Kadri; Sanchez-Padilla, Elisabeth; Bonnet, Maryline; Gil-Brusola, Ana; Frank, Matthias; Penlap Beng, Veronique N.; Eisenach, Kathleen; Alani, Issam; Wangui Ndung’u, Perpetual; Revathi, Gunturu; Gehre, Florian; Akter, Suriya; Ntoumi, Francine; Stewart-Isherwood, Lynsey; Ntinginya, Nyanda E.; Rachow, Andrea; Hoelscher, Michael; Cirillo, Daniela Maria; Skenders, Girts; Hoffner, Sven; Bakonyte, Daiva; Stakenas, Petras; Diel, Roland; Crudu, Valeriu; Moldovan, Olga; Al-Hajoj, Sahal; Otero, Larissa; Barletta, Francesca; Jane Carter, E.; Diero, Lameck; Supply, Philip; Comas, Iñaki; Niemann, Stefan; Gagneux, Sebastien

    2016-01-01

    Generalist and specialist species differ in the breadth of their ecological niche. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis Lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that Lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that while the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of Lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration. PMID:27798628

  3. TLX activates MASH1 for induction of neuronal lineage commitment of adult hippocampal neuroprogenitors.

    Science.gov (United States)

    Elmi, Muna; Matsumoto, Yoshiki; Zeng, Zhao-jun; Lakshminarasimhan, Pavithra; Yang, Weiwen; Uemura, Akiyoshi; Nishikawa, Shin-ichi; Moshiri, Alicia; Tajima, Nobuyoshi; Agren, Hans; Funa, Keiko

    2010-10-01

    The orphan nuclear receptor TLX has been proposed to act as a repressor of cell cycle inhibitors to maintain the neural stem cells in an undifferentiated state, and prevents commitment into astrocyte lineages. However, little is known about the mechanism of TLX in neuronal lineage commitment and differentiation. A majority of adult rat hippocampus-derived progenitors (AHPs) cultured in the presence of FGF express a high level of TLX and a fraction of these cells also express the proneural gene MASH1. Upon FGF withdrawal, TLX rapidly decreased, while MASH1 was intensely expressed within 1h, decreasing gradually to disappear at 24h. Adenoviral transduction of TLX in AHP cells in the absence of FGF transiently increased cell proliferation, however, later resulted in neuronal differentiation by inducing MASH1, Neurogenin1, DCX, and MAP2ab. Furthermore, TLX directly targets and activates the MASH1 promoter through interaction with Sp1, recruiting co-activators whereas dismissing the co-repressor HDAC4. Conversely, silencing of TLX in AHPs decreased beta-III tubulin and DCX expression and promoted glial differentiation. Our results thus suggest that TLX not only acts as a repressor of cell cycle and glial differentiation but also activates neuronal lineage commitment in AHPs. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Factors Released from Endothelial Cells Exposed to Flow Impact Adhesion, Proliferation, and Fate Choice in the Adult Neural Stem Cell Lineage.

    Science.gov (United States)

    Dumont, Courtney M; Piselli, Jennifer M; Kazi, Nadeem; Bowman, Evan; Li, Guoyun; Linhardt, Robert J; Temple, Sally; Dai, Guohao; Thompson, Deanna M

    2017-08-15

    The microvasculature within the neural stem cell (NSC) niche promotes self-renewal and regulates lineage progression. Previous work identified endothelial-produced soluble factors as key regulators of neural progenitor cell (NPC) fate and proliferation; however, endothelial cells (ECs) are sensitive to local hemodynamics, and the effect of this key physiological process has not been defined. In this study, we evaluated adult mouse NPC response to soluble factors isolated from static or dynamic (flow) EC cultures. Endothelial factors generated under dynamic conditions significantly increased neuronal differentiation, while those released under static conditions stimulated oligodendrocyte differentiation. Flow increases EC release of neurogenic factors and of heparin sulfate glycosaminoglycans that increase their bioactivity, likely underlying the enhanced neuronal differentiation. Additionally, endothelial factors, especially from static conditions, promoted adherent growth. Together, our data suggest that blood flow may impact proliferation, adhesion, and the neuron-glial fate choice of adult NPCs, with implications for diseases and aging that reduce flow.

  5. Pathology of fatal lineage 1 and 2 West Nile virus infections in horses in South Africa

    Directory of Open Access Journals (Sweden)

    June H. Williams

    2014-09-01

    Full Text Available Since 2007, West Nile virus (WNV has been reported in South African horses, causing severe neurological signs. All cases were of lineage 2, except for one case that clustered with lineage 1 viruses. In the present study, gross and microscopic lesions of six South African lineage 2-infected horses and the one lineage 1 case are described. Diagnoses were confirmed by real-time reverse-transcriptase polymerase chain reaction (RT-PCR of central nervous system (CNS tissue and one by RT-PCR of a brain virus isolate. The CNS of all cases was negative by RT-PCR or immunohistochemistry (IHC for African horse sickness (AHS, equine encephalosis virus, equine herpes viruses 1 and 4, other zoonotic flaviviruses, alphaviruses, and shunivirus, and either by immunofluorescence or IHC for rabies. Gross visceral lesions were nonspecific but often mimicked those of AHS. The CNS histopathology of WNV lineage 2 cases resembled the nonsuppurative polioencephalomyelitis reported in the Northern Hemisphere lineage 1 and recent Hungarian lineage 2 cases. Occasional meningitis, focal spinal ventral horn poliomalacia, dorsal and lateral horn poliomyelitis, leucomyelitis, asymmetrical ventral motor spinal neuritis and frequent olfactory region involvement were also seen. Lineage 2 cases displayed marked variations in CNS lesion severity, type and distribution, and suggested various viral entry routes into the CNS, based on findings in experimental mice and hamsters. Lineage 1 lesions were comparable to the milder lineage 2 cases. West Nile virus IHC on CNS sections with marked lesions from all cases elicited only two antigen-positive cells in the olfactory cortex of one case. The presence in the CNS of T-lymphocytes, B-lymphocytes, plasma cells and macrophage-monocytes was confirmed by cluster of differentiation (CD 3, CD20, multiple myeloma oncogene 1 (MUM1 and macrophage (MAC 387 IHC.

  6. Mouse prenatal platelet-forming lineages share a core transcriptional program but divergent dependence on MPL.

    Science.gov (United States)

    Potts, Kathryn S; Sargeant, Tobias J; Dawson, Caleb A; Josefsson, Emma C; Hilton, Douglas J; Alexander, Warren S; Taoudi, Samir

    2015-08-06

    The thrombopoietic environment of the neonate is established during prenatal life; therefore, a comprehensive understanding of platelet-forming cell development during embryogenesis is critical to understanding the etiology of early-onset thrombocytopenia. The recent discovery that the first platelet-forming cells of the conceptus are not megakaryocytes (MKs) but diploid platelet-forming cells (DPFCs) revealed a previously unappreciated complexity in thrombopoiesis. This raises important questions, including the following. When do conventional MKs appear? Do pathogenic genetic lesions of adult MKs affect DPFCs? What role does myeloproliferative leukemia virus (MPL), a key regulator of adult megakaryopoiesis, play in prenatal platelet-forming lineages? We performed a comprehensive study to determine the spatial and temporal appearance of prenatal platelet-forming lineages. We demonstrate that DPFCs originate in the yolk sac and then rapidly migrate to other extra- and intraembryonic tissues. Using gene disruption models of Gata1 and Nfe2, we demonstrate that perturbing essential adult MK genes causes an analogous phenotype in the early embryo before the onset of hematopoietic stem/progenitor cell-driven (definitive) hematopoiesis. Finally, we present the surprising finding that DPFC and MK commitment from their respective precursors is MPL independent in vivo but that completion of MK differentiation and establishment of the prenatal platelet mass is dependent on MPL expression. © 2015 by The American Society of Hematology.

  7. Visualisation of chicken macrophages using transgenic reporter genes: insights into the development of the avian macrophage lineage.

    Science.gov (United States)

    Balic, Adam; Garcia-Morales, Carla; Vervelde, Lonneke; Gilhooley, Hazel; Sherman, Adrian; Garceau, Valerie; Gutowska, Maria W; Burt, David W; Kaiser, Pete; Hume, David A; Sang, Helen M

    2014-08-01

    We have generated the first transgenic chickens in which reporter genes are expressed in a specific immune cell lineage, based upon control elements of the colony stimulating factor 1 receptor (CSF1R) locus. The Fms intronic regulatory element (FIRE) within CSF1R is shown to be highly conserved in amniotes and absolutely required for myeloid-restricted expression of fluorescent reporter genes. As in mammals, CSF1R-reporter genes were specifically expressed at high levels in cells of the macrophage lineage and at a much lower level in granulocytes. The cell lineage specificity of reporter gene expression was confirmed by demonstration of coincident expression with the endogenous CSF1R protein. In transgenic birds, expression of the reporter gene provided a defined marker for macrophage-lineage cells, identifying the earliest stages in the yolk sac, throughout embryonic development and in all adult tissues. The reporter genes permit detailed and dynamic visualisation of embryonic chicken macrophages. Chicken embryonic macrophages are not recruited to incisional wounds, but are able to recognise and phagocytose microbial antigens. © 2014. Published by The Company of Biologists Ltd.

  8. Effect of 17-allylamino-17-demethoxygeldanamycin (17-AAG) on Akt protein expression is more effective in head and neck cancer cell lineages that retain PTEN protein expression.

    Science.gov (United States)

    Pontes, Flávia Sirotheau C; Pontes, Hélder A R; de Souza, Lucas L; de Jesus, Adriana S; Joaquim, Andrea M C; Miyahara, Ligia A N; Fonseca, Felipe P; Pinto Junior, Décio S

    2018-03-01

    The aim of this study was to evaluate the expression of Akt, PTEN, Mdm2 and p53 proteins in three different head and neck squamous cell carcinoma (HNSCC) cell lines (HN6, HN19 and HN30), all of them treated with epidermal growth factor (EGF) and 17-allylamino-17-demethoxygeldanamycin (17-AAG), an inhibitor of Hsp90 protein. Immunofluorescence and western blot were performed in order to analyze the location and quantification, respectively, of proteins under the action 17-AAG and EGF. Treatment with EGF resulted in increased levels of Akt, PTEN and p53 in all cell lineages. The expression of Mdm2 was constant in HN30 and HN6 lineages, while in HN19 showed slightly decreased expression. Under the action 17-AAG, in HN6 and HN19, the expression of PTEN and p53 proteins was suppressed, while Akt and Mdm2 expression was reduced. Finally, in the HN30 cell lineage were absolute absence of expression of Akt, Mdm2 and p53 and decreased expression of PTEN. These data allow us to speculate on the particular utility of 17-AAG for HNSCC treatment through the inhibition of Akt protein expression, especially in the cases that retain the expression of PTEN protein. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. The 3'UTR of nanos2 directs enrichment in the germ cell lineage of the sea urchin.

    Science.gov (United States)

    Oulhen, Nathalie; Yoshida, Takaya; Yajima, Mamiko; Song, Jia L; Sakuma, Tetsushi; Sakamoto, Naoaki; Yamamoto, Takashi; Wessel, Gary M

    2013-05-01

    Nanos is a translational regulator required for the survival and maintenance of primordial germ cells during embryogenesis. Three nanos homologs are present in the genome of the sea urchin Strongylocentrotus purpuratus (Sp), and each nanos mRNA accumulates specifically in the small micromere (sMic) lineage. We found that a highly conserved element in the 3' UTR of nanos2 is sufficient for reporter expression selectively in the sMic lineage: microinjection into a Sp fertilized egg of an RNA that contains the GFP open reading frame followed by Sp nanos2 3'UTR leads to selective reporter enrichment in the small micromeres in blastulae. The same result was seen with nanos2 from the sea urchin Hemicentrotus pulcherrimus (Hp). In both species, the 5'UTR alone is not sufficient for the sMic localization but it always increased the sMic reporter enrichment when present with the 3'UTR. We defined an element conserved between Hp and Sp in the nanos2 3'UTR which is necessary and sufficient for protein enrichment in the sMic, and refer to it as GNARLE (Global Nanos Associated RNA Lability Element). We also found that the nanos2 3'UTR is essential for the selective RNA retention in the small micromeres; GNARLE is required but not sufficient for this process. These results show that a combination of selective RNA retention and translational control mechanisms instills nanos accumulation uniquely in the sMic lineage. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Activation of GSK3β by Sirt2 is required for early lineage commitment of mouse embryonic stem cell.

    Directory of Open Access Journals (Sweden)

    Xiaoxing Si

    Full Text Available Sirt2, a member of the NAD(+-dependent protein deacetylase family, is increasingly recognized as a critical regulator of the cell cycle, cellular necrosis and cytoskeleton organization. However, its role in embryonic stem cells (ESCs remains unclear. Here we demonstrate that Sirt2 is up-regulated during RA (retinoic acid-induced and embryoid body (EB differentiation of mouse ESCs. Using lentivirus-mediated shRNA methods, we found that knockdown of Sirt2 compromises the differentiation of mouse ESCs into ectoderm while promoting mesoderm and endoderm differentiation. Knockdown of Sirt2 expression also leads to the activation of GSK3β through decreased phosphorylation of the serine at position 9 (Ser9 but not tyrosine at position 216 (Tyr216. Moreover, the constitutive activation of GSK3β during EB differentiation mimics the effect of Sirt2 knockdown, while down-regulation of GSK3β rescues the effect of Sirt2 knockdown on differentiation. In contrast to the effect on lineage differentiation, Sirt2 knockdown and GSK3β up-regulation do not change the self-renewal state of mouse ESCs. Overall, our report reveals a new function for Sirt2 in regulating the proper lineage commitment of mouse ESCs.

  11. Defining the cellular lineage hierarchy in the interfollicular epidermis of adult skin.

    Science.gov (United States)

    Sada, Aiko; Jacob, Fadi; Leung, Eva; Wang, Sherry; White, Brian S; Shalloway, David; Tumbar, Tudorita

    2016-06-01

    The interfollicular epidermis regenerates from heterogeneous basal skin cell populations that divide at different rates. It has previously been presumed that infrequently dividing basal cells known as label-retaining cells (LRCs) are stem cells, whereas non-LRCs are short-lived progenitors. Here we employ the H2B-GFP pulse-chase system in adult mouse skin and find that epidermal LRCs and non-LRCs are molecularly distinct and can be differentiated by Dlx1(CreER) and Slc1a3(CreER) genetic marking, respectively. Long-term lineage tracing and mathematical modelling of H2B-GFP dilution data show that LRCs and non-LRCs constitute two distinct stem cell populations with different patterns of proliferation, differentiation and upward cellular transport. During homeostasis, these populations are enriched in spatially distinct skin territories and can preferentially produce unique differentiated lineages. On wounding or selective killing, they can temporarily replenish each other's territory. These two discrete interfollicular stem cell populations are functionally interchangeable and intrinsically well adapted to thrive in distinct skin environments.

  12. Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton.

    Science.gov (United States)

    Long, Fanxin; Chung, Ung-il; Ohba, Shinsuke; McMahon, Jill; Kronenberg, Henry M; McMahon, Andrew P

    2004-03-01

    Indian hedgehog (Ihh) is indispensable for development of the osteoblast lineage in the endochondral skeleton. In order to determine whether Ihh is directly required for osteoblast differentiation, we have genetically manipulated smoothened (Smo), which encodes a transmembrane protein that is essential for transducing all Hedgehog (Hh) signals. Removal of Smo from perichondrial cells by the Cre-LoxP approach prevents formation of a normal bone collar and also abolishes development of the primary spongiosa. Analysis of chimeric embryos composed of wild-type and Smo(n/n) cells indicates that Smo(n/n) cells fail to contribute to osteoblasts in either the bone collar or the primary spongiosa but generate ectopic chondrocytes. In order to assess whether Ihh is sufficient to induce bone formation in vivo, we have analyzed the bone collar in the long bones of embryos in which Ihh was artificially expressed in all chondrocytes by the UAS-GAL4 bigenic system. Although ectopic Ihh does not induce overt ossification along the entire cartilage anlage, it promotes progression of the bone collar toward the epiphysis, suggesting a synergistic effect between ectopic Ihh and endogenous factors such as the bone morphogenetic proteins (BMPs). In keeping with this model, Hh signaling is further found to be required in BMP-induced osteogenesis in cultures of a limb-bud cell line. Taken together, these results demonstrate that Ihh signaling is directly required for the osteoblast lineage in the developing long bones and that Ihh functions in conjunction with other factors such as BMPs to induce osteoblast differentiation. We suggest that Ihh acts in vivo on a potential progenitor cell to promote osteoblast and prevent chondrocyte differentiation.

  13. In vivo and in vitro expression of myeloid antigens on B-lineage acute lymphoblastic leukemia cells.

    Science.gov (United States)

    Hara, J; Kawa-Ha, K; Yumura-Yagi, K; Kurahashi, H; Tawa, A; Ishihara, S; Inoue, M; Murayama, N; Okada, S

    1991-01-01

    The expression of myeloid antigens has been extensively examined using two-color analysis in 43 children with B-lineage acute lymphoblastic leukemia (ALL). On pre-culture cells, CD33 expression was frequently observed in CD19+, CD10- B-precursor ALL, and CD14 was expressed only on the cells from B-precursor ALL expressing CD19, CD10 and CD20, and B-ALL. After 2 or 3 days of culture without TPA, CD13 emerged on the cells from 21 of 29 patients irrespective of the presence or the absence of fetal calf serum in the culture. Of four patients with CD10+ B-precursor ALL, which showed no expression of CD13 after culture, two had T-cell associated antigens. Whereas the addition of TPA to the culture enhanced the expression of CD13 on the cells from acute non-lymphocytic leukemia (ANLL), TPA reduced the expression of this antigen on B-precursor cells. These findings suggest that the regulatory mechanism of CD13 expression may be different between B-precursor ALL and ANLL. Co-culture with cycloheximide mostly abrogated the induction of CD13, suggesting that CD13 expression was mainly dependent on de novo protein synthesis.

  14. Concise classification of the genomic porcine endogenous retroviral gamma1 load to defined lineages.

    Science.gov (United States)

    Klymiuk, Nikolai; Wolf, Eckhard; Aigner, Bernhard

    2008-02-05

    We investigated the infection history of porcine endogenous retroviruses (PERV) gamma1 by analyzing published env and LTR sequences. PERV sequences from various breeds, porcine cell lines and infected human primary cells were included in the study. We identified a considerable number of retroviral lineages indicating multiple independent colonization events of the porcine genome. A recent boost of the proviral load in an isolated pig herd and exclusive occurrence of distinct lineages in single studies indicated the ongoing colonization of the porcine genome with endogenous retroviruses. Retroviral recombination between co-packaged genomes was a general factor for PERV gamma1 diversity which indicated the simultaneous expression of different proviral loci over a period of time. In total, our detailed description of endogenous retroviral lineages is the prerequisite for breeding approaches to minimize the infectious potential of porcine tissues for the subsequent use in xenotransplantation.

  15. Humoral activity of cord blood-derived stem/progenitor cells: implications for stem cell-based adjuvant therapy of neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Edyta Paczkowska

    Full Text Available BACKGROUND: Stem/progenitor cells (SPCs demonstrate neuro-regenerative potential that is dependent upon their humoral activity by producing various trophic factors regulating cell migration, growth, and differentiation. Herein, we compared the expression of neurotrophins (NTs and their receptors in specific umbilical cord blood (UCB SPC populations, including lineage-negative, CD34(+, and CD133(+ cells, with that in unsorted, nucleated cells (NCs. METHODS AND RESULTS: The expression of NTs and their receptors was detected by QRT-PCR, western blotting, and immunofluorescent staining in UCB-derived SPC populations (i.e., NCs vs. lineage-negative, CD34(+, and CD133(+ cells. To better characterize, global gene expression profiles of SPCs were determined using genome-wide RNA microarray technology. Furthermore, the intracellular production of crucial neuro-regenerative NTs (i.e., BDNF and NT-3 was assessed in NCs and lineage-negative cells after incubation for 24, 48, and 72 h in both serum and serum-free conditions. We discovered significantly higher expression of NTs and NT receptors at both the mRNA and protein level in lineage-negative, CD34(+, and CD133(+ cells than in NCs. Global gene expression analysis revealed considerably higher expression of genes associated with the production and secretion of proteins, migration, proliferation, and differentiation in lineage-negative cells than in CD34(+ or CD133(+ cell populations. Notably, after short-term incubation under serum-free conditions, lineage-negative cells and NCs produced significantly higher amounts of BDNF and NT-3 than under steady-state conditions. Finally, conditioned medium (CM from lineage-negative SPCs exerted a beneficial impact on neural cell survival and proliferation. CONCLUSIONS: Collectively, our findings demonstrate that UCB-derived SPCs highly express NTs and their relevant receptors under steady-state conditions, NT expression is greater under stress-related conditions and

  16. Cell-type-specific responses of RT4 neural cell lines to dibutyryl-cAMP: branch determination versus maturation

    International Nuclear Information System (INIS)

    Droms, K.; Sueoka, N.

    1987-01-01

    This report describes the induction of cell-type-specific maturation, by dibutyryl-cAMP and testololactone, of neuronal and glial properties in a family of cell lines derived from a rat peripheral neurotumor, RT4. This maturation allows further understanding of the process of determination because of the close lineage relationship between the cell types of the RT4 family. The RT4 family is characterized by the spontaneous conversion of one of the cell types, RT4-AC (stem-cell type), to any of three derivative cell types, RT4-B, RT4-D, or RT4-E, with a frequency of about 10(-5). The RT4-AC cells express some properties characteristic of both neuronal and glial cells. Of these neural properties expressed by RT4-AC cells, only the neuronal properties are expressed by the RT4-B and RT4-E cells, and only the glial properties are expressed by the RT4-D cells. This in vitro cell-type conversion of RT4-AC to three derivative cell types is a branch point for the coordinate regulation of several properties and seems to resemble determination in vivo. In our standard culture conditions, several other neuronal and glial properties are not expressed by these cell types. However, addition of dibutyryl-cAMP induces expression of additional properties, in a cell-type-specific manner: formation of long cellular processes in the RT4-B8 and RT4-E5 cell lines and expression of high-affinity uptake of gamma-aminobutyric acid, by a glial-cell-specific mechanism, in the RT4-D6-2 cell line. These new properties are maximally expressed 2-3 days after addition of dibutyryl-cAMP

  17. Broad phylogenomic sampling and the sister lineage of land plants.

    Directory of Open Access Journals (Sweden)

    Ruth E Timme

    Full Text Available The tremendous diversity of land plants all descended from a single charophyte green alga that colonized the land somewhere between 430 and 470 million years ago. Six orders of charophyte green algae, in addition to embryophytes, comprise the Streptophyta s.l. Previous studies have focused on reconstructing the phylogeny of organisms tied to this key colonization event, but wildly conflicting results have sparked a contentious debate over which lineage gave rise to land plants. The dominant view has been that 'stoneworts,' or Charales, are the sister lineage, but an alternative hypothesis supports the Zygnematales (often referred to as "pond scum" as the sister lineage. In this paper, we provide a well-supported, 160-nuclear-gene phylogenomic analysis supporting the Zygnematales as the closest living relative to land plants. Our study makes two key contributions to the field: 1 the use of an unbiased method to collect a large set of orthologs from deeply diverging species and 2 the use of these data in determining the sister lineage to land plants. We anticipate this updated phylogeny not only will hugely impact lesson plans in introductory biology courses, but also will provide a solid phylogenetic tree for future green-lineage research, whether it be related to plants or green algae.

  18. High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation

    International Nuclear Information System (INIS)

    Vega, Sebastián L.; Liu, Er; Arvind, Varun; Bushman, Jared; Sung, Hak-Joon; Becker, Matthew L.; Lelièvre, Sophie; Kohn, Joachim; Vidi, Pierre-Alexandre; Moghe, Prabhas V.

    2017-01-01

    Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative “imaging-derived” parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions. - Highlights: • High-content analysis of nuclear shape and organization classify stem and progenitor cells poised for distinct lineages. • Early oncogenic changes in mesenchymal stem cells (MSCs) are also detected with nuclear descriptors. • A new class of cancer-mitigating biomaterials was identified based on image

  19. High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Sebastián L. [Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ (United States); Liu, Er; Arvind, Varun [Department of Biomedical Engineering, Rutgers University, Piscataway, NJ (United States); Bushman, Jared [Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials, Piscataway, NJ (United States); School of Pharmacy, University of Wyoming, Laramie, WY (United States); Sung, Hak-Joon [Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials, Piscataway, NJ (United States); Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (United States); Becker, Matthew L. [Department of Polymer Science and Engineering, University of Akron, Akron, OH (United States); Lelièvre, Sophie [Department of Basic Medical Sciences, Purdue University, West Lafayette, IN (United States); Kohn, Joachim [Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials, Piscataway, NJ (United States); Vidi, Pierre-Alexandre, E-mail: pvidi@wakehealth.edu [Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC (United States); Moghe, Prabhas V., E-mail: moghe@rutgers.edu [Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ (United States); Department of Biomedical Engineering, Rutgers University, Piscataway, NJ (United States)

    2017-02-01

    Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative “imaging-derived” parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions. - Highlights: • High-content analysis of nuclear shape and organization classify stem and progenitor cells poised for distinct lineages. • Early oncogenic changes in mesenchymal stem cells (MSCs) are also detected with nuclear descriptors. • A new class of cancer-mitigating biomaterials was identified based on image

  20. Uncovering the mutation-fixation correlation in short lineages

    Directory of Open Access Journals (Sweden)

    Vallender Eric J

    2007-09-01

    Full Text Available Abstract Background We recently reported a highly unexpected positive correlation between the fixation probability of nonsynonymous mutations (estimated by ω and neutral mutation rate (estimated by Ks in mammalian lineages. However, this positive correlation was observed for lineages with relatively long divergence time such as the human-mouse lineage, and was not found for very short lineages such as the human-chimpanzee lineage. It was previously unclear how to interpret this discrepancy. It may indicate that the positive correlation between ω and Ks in long lineages is a false finding. Alternatively, it may reflect a biologically meaningful difference between various lineages. Finally, the lack of positive correlation in short lineages may be the result of methodological artifacts. Results Here we show that a strong positive correlation can indeed be seen in short lineages when a method was introduced to correct for the inherently high levels of stochastic noise in the use of Ks as an estimator of neutral mutation rate. Thus, the previously noted lack of positive correlation between ω and Ks in short lineages is due to stochastic noise in Ks that makes it a far less reliable estimator of neutral mutation rate in short lineages as compared to long lineages. Conclusion A positive correlation between ω and Ks can be observed in all mammalian lineages for which large amounts of sequence data are available, including very short lineages. It confirms the authenticity of this highly unexpected correlation, and argues that the correction likely applies broadly across all mammals and perhaps even non-mammalian species.

  1. Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity.

    Directory of Open Access Journals (Sweden)

    Martin Stofanko

    2010-11-01

    Full Text Available Leukocyte-like cells called hemocytes have key functions in Drosophila innate immunity. Three hemocyte types occur: plasmatocytes, crystal cells, and lamellocytes. In the absence of qimmune challenge, plasmatocytes are the predominant hemocyte type detected, while crystal cells and lamellocytes are rare. However, upon infestation by parasitic wasps, or in melanotic mutant strains, large numbers of lamellocytes differentiate and encapsulate material recognized as "non-self". Current models speculate that lamellocytes, plasmatocytes and crystal cells are distinct lineages that arise from a common prohemocyte progenitor. We show here that over-expression of the CoREST-interacting transcription factor Chn in plasmatocytes induces lamellocyte differentiation, both in circulation and in lymph glands. Lamellocyte increases are accompanied by the extinction of plasmatocyte markers suggesting that plasmatocytes are transformed into lamellocytes. Consistent with this, timed induction of Chn over-expression induces rapid lamellocyte differentiation within 18 hours. We detect double-positive intermediates between plasmatocytes and lamellocytes, and show that isolated plasmatocytes can be triggered to differentiate into lamellocytes in vitro, either in response to Chn over-expression, or following activation of the JAK/STAT pathway. Finally, we have marked plasmatocytes and show by lineage tracing that these differentiate into lamellocytes in response to the Drosophila parasite model Leptopilina boulardi. Taken together, our data suggest that lamellocytes arise from plasmatocytes and that plasmatocytes may be inherently plastic, possessing the ability to differentiate further into lamellocytes upon appropriate challenge.

  2. Association between Mycobacterium tuberculosis complex phylogenetic lineage and acquired drug resistance.

    Directory of Open Access Journals (Sweden)

    Courtney M Yuen

    Full Text Available BACKGROUND: Development of resistance to antituberculosis drugs during treatment (i.e., acquired resistance can lead to emergence of resistant strains and consequent poor clinical outcomes. However, it is unknown whether Mycobacterium tuberculosis complex species and lineage affects the likelihood of acquired resistance. METHODS: We analyzed data from the U.S. National Tuberculosis Surveillance System and National Tuberculosis Genotyping Service for tuberculosis cases during 2004-2011 with assigned species and lineage and both initial and final drug susceptibility test results. We determined univariate associations between species and lineage of Mycobacterium tuberculosis complex bacteria and acquired resistance to isoniazid, rifamycins, fluoroquinolones, and second-line injectables. We used Poisson regression with backward elimination to generate multivariable models for acquired resistance to isoniazid and rifamycins. RESULTS: M. bovis was independently associated with acquired resistance to isoniazid (adjusted prevalence ratio = 8.46, 95% CI 2.96-24.14 adjusting for HIV status, and with acquired resistance to rifamycins (adjusted prevalence ratio = 4.53, 95% CI 1.29-15.90 adjusting for homelessness, HIV status, initial resistance to isoniazid, site of disease, and administration of therapy. East Asian lineage was associated with acquired resistance to fluoroquinolones (prevalence ratio = 6.10, 95% CI 1.56-23.83. CONCLUSIONS: We found an association between mycobacterial species and lineage and acquired drug resistance using U.S. surveillance data. Prospective clinical studies are needed to determine the clinical significance of these findings, including whether rapid genotyping of isolates at the outset of treatment may benefit patient management.

  3. The 3’UTR of Nanos2 directs enrichment in the germ cell lineage of the sea urchin

    Science.gov (United States)

    Oulhen, Nathalie; Yoshida, Takaya; Yajima, Mamiko; Song, Jia; Sakuma, Tetsushi; Sakamoto, Naoaki; Yamamoto, Takashi; Wessel, Gary M.

    2013-01-01

    Nanos is a translational regulator required for the survival and maintenance of primordial germ cells during embryogenesis. Three nanos homologs are present in the genome of the sea urchin Strongylocentrotus purpuratus (Sp), and each nanos mRNA accumulates specifically in the small micromere (sMic) lineage. We found that a highly conserved element in the 3’ UTR of nanos2 is sufficient for reporter expression selectively in the sMic lineage: microinjection into a Sp fertilized egg of an RNA that contains the GFP open reading frame followed by Sp nanos2 3’UTR leads to selective reporter enrichment in the small micromeres in blastulae. The same result was seen with nanos2 from the sea urchin Hemicentrotus pulcherrimus (Hp). In both species, the 5’UTR alone is not sufficient for the sMic localization but it always increased the sMic reporter enrichment when present with the 3’UTR. We defined an element conserved between Hp and Sp in the nanos2 3’UTR which is necessary and sufficient for protein enrichment in the sMic, and refer to it as GNARLE (Global Nanos Associated RNA Lability Element). We also found that the nanos2 3’UTR is essential for the selective RNA retention in the small micromeres; GNARLE is required but not sufficient for this process. These results show that a combination of selective RNA retention and translational control mechanisms instills nanos accumulation uniquely in the sMic lineage. PMID:23357540

  4. Stem cell plasticity.

    Science.gov (United States)

    Lakshmipathy, Uma; Verfaillie, Catherine

    2005-01-01

    The central dogma in stem cell biology has been that cells isolated from a particular tissue can renew and differentiate into lineages of the tissue it resides in. Several studies have challenged this idea by demonstrating that tissue specific cell have considerable plasticity and can cross-lineage restriction boundary and give rise to cell types of other lineages. However, the lack of a clear definition for plasticity has led to confusion with several reports failing to demonstrate that a single cell can indeed differentiate into multiple lineages at significant levels. Further, differences between results obtained in different labs has cast doubt on some results and several studies still await independent confirmation. In this review, we critically evaluate studies that report stem cell plasticity using three rigid criteria to define stem cell plasticity; differentiation of a single cell into multiple cell lineages, functionality of differentiated cells in vitro and in vivo, robust and persistent engraft of transplanted cells.

  5. Direct lineage reprogramming of mouse fibroblasts to functional midbrain dopaminergic neuronal progenitors

    Directory of Open Access Journals (Sweden)

    Han-Seop Kim

    2014-01-01

    Full Text Available The direct lineage reprogramming of somatic cells to other lineages by defined factors has led to innovative cell-fate-change approaches for providing patient-specific cells. Recent reports have demonstrated that four pluripotency factors (Oct4, Sox2, Klf4, and c-Myc are sufficient to directly reprogram fibroblasts to other specific cells, including induced neural stem cells (iNSCs. Here, we show that mouse fibroblasts can be directly reprogrammed into midbrain dopaminergic neuronal progenitors (DPs by temporal expression of the pluripotency factors and environment containing sonic hedgehog and fibroblast growth factor 8. Within thirteen days, self-renewing and functional induced DPs (iDPs were generated. Interestingly, the inhibition of both Jak and Gsk3β notably enhanced the iDP reprogramming efficiency. We confirmed the functionality of the iDPs by showing that the dopaminergic neurons generated from iDPs express midbrain markers, release dopamine, and show typical electrophysiological profiles. Our results demonstrate that the pluripotency factors-mediated direct reprogramming is an invaluable strategy for supplying functional and proliferating iDPs and may be useful for other neural progenitors required for disease modeling and cell therapies for neurodegenerative disorders.

  6. Conversion of MyoD to a Neurogenic Factor: Binding Site Specificity Determines Lineage

    Directory of Open Access Journals (Sweden)

    Abraham P. Fong

    2015-03-01

    Full Text Available MyoD and NeuroD2, master regulators of myogenesis and neurogenesis, bind to a “shared” E-box sequence (CAGCTG and a “private” sequence (CAGGTG or CAGATG, respectively. To determine whether private-site recognition is sufficient to confer lineage specification, we generated a MyoD mutant with the DNA-binding specificity of NeuroD2. This chimeric mutant gained binding to NeuroD2 private sites but maintained binding to a subset of MyoD-specific sites, activating part of both the muscle and neuronal programs. Sequence analysis revealed an enrichment for PBX/MEIS motifs at the subset of MyoD-specific sites bound by the chimera, and point mutations that prevent MyoD interaction with PBX/MEIS converted the chimera to a pure neurogenic factor. Therefore, redirecting MyoD binding from MyoD private sites to NeuroD2 private sites, despite preserved binding to the MyoD/NeuroD2 shared sites, is sufficient to change MyoD from a master regulator of myogenesis to a master regulator of neurogenesis.

  7. Loss of C/EBP alpha cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage

    DEFF Research Database (Denmark)

    Porse, Bo T; Bryder, David; Theilgaard-Mönch, Kim

    2005-01-01

    dissociate the ability of C/EBP alpha to block cell cycle progression through E2F inhibition from its function as a transcriptional activator impair the in vivo development of the neutrophil granulocyte and adipose lineages. We now show that such mutations increase the capacity of bone marrow (BM) myeloid...... progenitors to proliferate, and predispose mice to a granulocytic myeloproliferative disorder and transformation of the myeloid compartment of the BM. Both of these phenotypes were transplantable into lethally irradiated recipients. BM transformation was characterized by a block in granulocyte differentiation...

  8. TECHNOLOGICAL CHARACTERIZATION AND CLASSIFICATION OF WHEAT LINEAGES CULTIVATED IN THE CERRADO MINEIRO

    Directory of Open Access Journals (Sweden)

    Raul Antônio Viana Madeira

    2015-06-01

    Full Text Available Farmers need highly productive wheat cultivars in order to reach better profitability. However, this alone is not enough, because, in order to serve the mills, the food industry, and more specifically, the bakers, wheat cultivars must present minimum quality requirements that result in final products of superior quality. This study was conducted with the goals of performing the technological characterization of wheat flour five lineages developed for cultivation in the Cerrado Mineiro; compare the flours of these lineages with the wheat flour of two commercial wheat cultivars, and classify the wheat lineages according to current Brazilian legislation. A completely randomized design was conducted with seven treatments and three replicates. Moisture, protein and ashes content, and the rheological characteristics of the flours were determined. The EP066066 lineage as rated was basic wheat. The EP066055, EP064021, EP062043 and EP063065 were rated as bread wheat. Among the studied lineages, the wheat flour from the EP062043 stood from the others, presenting considerable gluten contents, good level of mixing tolerance, good stability and good gluten strength.

  9. Pharmacogenomic identification of small molecules for lineage specific manipulation of subventricular zone germinal activity.

    Directory of Open Access Journals (Sweden)

    Kasum Azim

    2017-03-01

    Full Text Available Strategies for promoting neural regeneration are hindered by the difficulty of manipulating desired neural fates in the brain without complex genetic methods. The subventricular zone (SVZ is the largest germinal zone of the forebrain and is responsible for the lifelong generation of interneuron subtypes and oligodendrocytes. Here, we have performed a bioinformatics analysis of the transcriptome of dorsal and lateral SVZ in early postnatal mice, including neural stem cells (NSCs and their immediate progenies, which generate distinct neural lineages. We identified multiple signaling pathways that trigger distinct downstream transcriptional networks to regulate the diversity of neural cells originating from the SVZ. Next, we used a novel in silico genomic analysis, searchable platform-independent expression database/connectivity map (SPIED/CMAP, to generate a catalogue of small molecules that can be used to manipulate SVZ microdomain-specific lineages. Finally, we demonstrate that compounds identified in this analysis promote the generation of specific cell lineages from NSCs in vivo, during postnatal life and adulthood, as well as in regenerative contexts. This study unravels new strategies for using small bioactive molecules to direct germinal activity in the SVZ, which has therapeutic potential in neurodegenerative diseases.

  10. Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages.

    Science.gov (United States)

    Jinadasa, Rasika N; Bloom, Stephen E; Weiss, Robert S; Duhamel, Gerald E

    2011-07-01

    Cytolethal distending toxin (CDT) is a heterotrimeric AB-type genotoxin produced by several clinically important Gram-negative mucocutaneous bacterial pathogens. Irrespective of the bacterial species of origin, CDT causes characteristic and irreversible cell cycle arrest and apoptosis in a broad range of cultured mammalian cell lineages. The active subunit CdtB has structural homology with the phosphodiesterase family of enzymes including mammalian DNase I, and alone is necessary and sufficient to account for cellular toxicity. Indeed, mammalian cells treated with CDT initiate a DNA damage response similar to that elicited by ionizing radiation-induced DNA double strand breaks resulting in cell cycle arrest and apoptosis. The mechanism of CDT-induced apoptosis remains incompletely understood, but appears to involve both p53-dependent and -independent pathways. While epithelial, endothelial and fibroblast cell lines respond to CDT by undergoing arrest of cell cycle progression resulting in nuclear and cytoplasmic distension that precedes apoptotic cell death, cells of haematopoietic origin display rapid apoptosis following a brief period of cell cycle arrest. In this review, the ecology of pathogens producing CDT, the molecular biology of bacterial CDT and the molecular mechanisms of CDT-induced cytotoxicity are critically appraised. Understanding the contribution of a broadly conserved bacterial genotoxin that blocks progression of the mammalian cell cycle, ultimately causing cell death, should assist with elucidating disease mechanisms for these important pathogens.

  11. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development

    Directory of Open Access Journals (Sweden)

    Bello Bruno C

    2008-02-01

    Full Text Available Abstract Background In the mammalian brain, neural stem cells divide asymmetrically and often amplify the number of progeny they generate via symmetrically dividing intermediate progenitors. Here we investigate whether specific neural stem cell-like neuroblasts in the brain of Drosophila might also amplify neuronal proliferation by generating symmetrically dividing intermediate progenitors. Results Cell lineage-tracing and genetic marker analysis show that remarkably large neuroblast lineages exist in the dorsomedial larval brain of Drosophila. These lineages are generated by brain neuroblasts that divide asymmetrically to self renew but, unlike other brain neuroblasts, do not segregate the differentiating cell fate determinant Prospero to their smaller daughter cells. These daughter cells continue to express neuroblast-specific molecular markers and divide repeatedly to produce neural progeny, demonstrating that they are proliferating intermediate progenitors. The proliferative divisions of these intermediate progenitors have novel cellular and molecular features; they are morphologically symmetrical, but molecularly asymmetrical in that key differentiating cell fate determinants are segregated into only one of the two daughter cells. Conclusion Our findings provide cellular and molecular evidence for a new mode of neurogenesis in the larval brain of Drosophila that involves the amplification of neuroblast proliferation through intermediate progenitors. This type of neurogenesis bears remarkable similarities to neurogenesis in the mammalian brain, where neural stem cells as primary progenitors amplify the number of progeny they generate through generation of secondary progenitors. This suggests that key aspects of neural stem cell biology might be conserved in brain development of insects and mammals.

  12. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage.

    Science.gov (United States)

    Ghylin, Trevor W; Garcia, Sarahi L; Moya, Francisco; Oyserman, Ben O; Schwientek, Patrick; Forest, Katrina T; Mutschler, James; Dwulit-Smith, Jeffrey; Chan, Leong-Keat; Martinez-Garcia, Manuel; Sczyrba, Alexander; Stepanauskas, Ramunas; Grossart, Hans-Peter; Woyke, Tanja; Warnecke, Falk; Malmstrom, Rex; Bertilsson, Stefan; McMahon, Katherine D

    2014-12-01

    Members of the acI lineage of Actinobacteria are the most abundant microorganisms in most freshwater lakes; however, our understanding of the keys to their success and their role in carbon and nutrient cycling in freshwater systems has been hampered by the lack of pure cultures and genomes. We obtained draft genome assemblies from 11 single cells representing three acI tribes (acI-A1, acI-A7, acI-B1) from four temperate lakes in the United States and Europe. Comparative analysis of acI SAGs and other available freshwater bacterial genomes showed that acI has more gene content directed toward carbohydrate acquisition as compared to Polynucleobacter and LD12 Alphaproteobacteria, which seem to specialize more on carboxylic acids. The acI genomes contain actinorhodopsin as well as some genes involved in anaplerotic carbon fixation indicating the capacity to supplement their known heterotrophic lifestyle. Genome-level differences between the acI-A and acI-B clades suggest specialization at the clade level for carbon substrate acquisition. Overall, the acI genomes appear to be highly streamlined versions of Actinobacteria that include some genes allowing it to take advantage of sunlight and N-rich organic compounds such as polyamines, di- and oligopeptides, branched-chain amino acids and cyanophycin. This work significantly expands the known metabolic potential of the cosmopolitan freshwater acI lineage and its ecological and genetic traits.

  13. Lineage Reprogramming of Astroglial Cells from Different Origins into Distinct Neuronal Subtypes

    Directory of Open Access Journals (Sweden)

    Malek Chouchane

    2017-07-01

    Full Text Available Astroglial cells isolated from the rodent postnatal cerebral cortex are particularly susceptible to lineage reprogramming into neurons. However, it remains unknown whether other astroglial populations retain the same potential. Likewise, little is known about the fate of induced neurons (iNs in vivo. In this study we addressed these questions using two different astroglial populations isolated from the postnatal brain reprogrammed either with Neurogenin-2 (Neurog2 or Achaete scute homolog-1 (Ascl1. We show that cerebellum (CerebAstro and cerebral cortex astroglia (CtxAstro generates iNs with distinctive neurochemical and morphological properties. Both astroglial populations contribute iNs to the olfactory bulb following transplantation in the postnatal and adult mouse subventricular zone. However, only CtxAstro transfected with Neurog2 differentiate into pyramidal-like iNs after transplantation in the postnatal cerebral cortex. Altogether, our data indicate that the origin of the astroglial population and transcription factors used for reprogramming, as well as the region of integration, affect the fate of iNs.

  14. Developmental fate and lineage commitment of singled mouse blastomeres.

    Science.gov (United States)

    Lorthongpanich, Chanchao; Doris, Tham Puay Yoke; Limviphuvadh, Vachiranee; Knowles, Barbara B; Solter, Davor

    2012-10-01

    The inside-outside model has been invoked to explain cell-fate specification of the pre-implantation mammalian embryo. Here, we investigate whether cell-cell interaction can influence the fate specification of embryonic blastomeres by sequentially separating the blastomeres in two-cell stage mouse embryos and continuing separation after each cell division throughout pre-implantation development. This procedure eliminates information provided by cell-cell interaction and cell positioning. Gene expression profiles, polarity protein localization and functional tests of these separated blastomeres reveal that cell interactions, through cell position, influence the fate of the blastomere. Blastomeres, in the absence of cell contact and inner-outer positional information, have a unique pattern of gene expression that is characteristic of neither inner cell mass nor trophectoderm, but overall they have a tendency towards a 'trophectoderm-like' gene expression pattern and preferentially contribute to the trophectoderm lineage.

  15. Determining Regulatory Networks Governing the Differentiation of Embryonic Stem Cells to Pancreatic Lineage

    Science.gov (United States)

    Banerjee, Ipsita

    2009-03-01

    Knowledge of pathways governing cellular differentiation to specific phenotype will enable generation of desired cell fates by careful alteration of the governing network by adequate manipulation of the cellular environment. With this aim, we have developed a novel method to reconstruct the underlying regulatory architecture of a differentiating cell population from discrete temporal gene expression data. We utilize an inherent feature of biological networks, that of sparsity, in formulating the network reconstruction problem as a bi-level mixed-integer programming problem. The formulation optimizes the network topology at the upper level and the network connectivity strength at the lower level. The method is first validated by in-silico data, before applying it to the complex system of embryonic stem (ES) cell differentiation. This formulation enables efficient identification of the underlying network topology which could accurately predict steps necessary for directing differentiation to subsequent stages. Concurrent experimental verification demonstrated excellent agreement with model prediction.

  16. Investigational Antibody-Drug Conjugates for Treatment of B-lineage Malignancies.

    Science.gov (United States)

    Herrera, Alex F; Molina, Arturo

    2018-05-10

    Antibody-drug conjugates (ADCs) are tripartite molecules consisting of a monoclonal antibody, a covalent linker, and a cytotoxic payload. ADC development has aimed to target the specificity inherent in antigen-antibody interactions to deliver potent cytotoxins preferentially to tumor cells and maximize antitumor activity and simultaneously minimize off-target toxicity. The earliest ADCs provided disappointing results in the clinic; however, the lessons learned regarding the need for human or humanized antibodies, more stable linkers, and greater potency payloads led to improved ADCs. Three ADCs, gemtuzumab ozogamicin, brentuximab vedotin (BV), and inotuzumab ozogamicin, have been approved for hematologic malignancies. Site-specific conjugation methods have now resulted in a new generation of more uniform, molecularly defined ADCs. These are expected to display improved in vivo properties and have recently entered the clinic. We reviewed investigational ADCs currently in clinical testing for the treatment of B-cell lineage malignancies, including leukemias, lymphomas, and multiple myeloma. The rationales for antigen targeting, data reported to date, current trial status, and preclinical results for several newer ADCs expected to enter first-in-human studies are presented. Owing to the large number of ongoing and reported BV clinical studies, only the studies of BV for diffuse large B-cell lymphoma and those combining BV with checkpoint inhibitors in B-lineage malignancies have been reviewed. With > 40 ongoing clinical trials and 7 investigational ADCs already having advanced to phase II studies, the role of ADCs in the armamentarium for the treatment of B-lineage malignancies continues to be elucidated. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Ju, E-mail: biohjk@knu.ac.kr [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Yoon, Hye-Jin [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Yoon, Kyung-Ae [Department of Orthopedic Surgery, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Gwon, Mi-Ri; Jin Seong, Sook [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Suk, Kyoungho [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Kim, Shin-Yoon [Department of Orthopedic Surgery, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Yoon, Young-Ran, E-mail: yry@knu.ac.kr [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of)

    2015-06-10

    Lipocalin-2 (LCN2) is a member of the lipocalin superfamily and plays a critical role in the regulation of various physiological processes, such as inflammation and obesity. In this study, we report that LCN2 negatively modulates the proliferation and differentiation of osteoclast precursors, resulting in impaired osteoclast formation. The overexpression of LCN2 in bone marrow-derived macrophages or the addition of recombinant LCN2 protein inhibits the formation of multinuclear osteoclasts. LCN2 suppresses macrophage colony-stimulating factor (M-CSF)-induced proliferation of osteoclast precursor cells without affecting their apoptotic cell death. Interestingly, LCN2 decreases the expression of the M-CSF receptor, c-Fms, and subsequently blocks its downstream signaling cascades. In addition, LCN2 inhibits RANKL-induced osteoclast differentiation and attenuates the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important modulators in osteoclastogenesis. Mechanistically, LCN2 inhibits NF-κB signaling pathways, as demonstrated by the suppression of IκBα phosphorylation, nuclear translocation of p65, and NF-κB transcriptional activity. Thus, LCN2 is an anti-osteoclastogenic molecule that exerts its effects by retarding the proliferation and differentiation of osteoclast lineage cells. - Highlights: • LCN2 expression is regulated during osteoclast development. • LCN2 suppresses M-CSF-mediated osteoclast precursor proliferation. • LCN2 inhibits RANKL-induced osteoclast differentiation.

  18. Dual small-molecule targeting of SMAD signaling stimulates human induced pluripotent stem cells toward neural lineages.

    Directory of Open Access Journals (Sweden)

    Methichit Wattanapanitch

    Full Text Available Incurable neurological disorders such as Parkinson's disease (PD, Huntington's disease (HD, and Alzheimer's disease (AD are very common and can be life-threatening because of their progressive disease symptoms with limited treatment options. To provide an alternative renewable cell source for cell-based transplantation and as study models for neurological diseases, we generated induced pluripotent stem cells (iPSCs from human dermal fibroblasts (HDFs and then differentiated them into neural progenitor cells (NPCs and mature neurons by dual SMAD signaling inhibitors. Reprogramming efficiency was improved by supplementing the histone deacethylase inhibitor, valproic acid (VPA, and inhibitor of p160-Rho associated coiled-coil kinase (ROCK, Y-27632, after retroviral transduction. We obtained a number of iPS colonies that shared similar characteristics with human embryonic stem cells in terms of their morphology, cell surface antigens, pluripotency-associated gene and protein expressions as well as their in vitro and in vivo differentiation potentials. After treatment with Noggin and SB431542, inhibitors of the SMAD signaling pathway, HDF-iPSCs demonstrated rapid and efficient differentiation into neural lineages. Six days after neural induction, neuroepithelial cells (NEPCs were observed in the adherent monolayer culture, which had the ability to differentiate further into NPCs and neurons, as characterized by their morphology and the expression of neuron-specific transcripts and proteins. We propose that our study may be applied to generate neurological disease patient-specific iPSCs allowing better understanding of disease pathogenesis and drug sensitivity assays.

  19. Feedback, Lineages and Self-Organizing Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Sameeran Kunche

    2016-03-01

    Full Text Available Feedback regulation of cell lineage progression plays an important role in tissue size homeostasis, but whether such feedback also plays an important role in tissue morphogenesis has yet to be explored. Here we use mathematical modeling to show that a particular feedback architecture in which both positive and negative diffusible signals act on stem and/or progenitor cells leads to the appearance of bistable or bi-modal growth behaviors, ultrasensitivity to external growth cues, local growth-driven budding, self-sustaining elongation, and the triggering of self-organization in the form of lamellar fingers. Such behaviors arise not through regulation of cell cycle speeds, but through the control of stem or progenitor self-renewal. Even though the spatial patterns that arise in this setting are the result of interactions between diffusible factors with antagonistic effects, morphogenesis is not the consequence of Turing-type instabilities.

  20. Feedback, Lineages and Self-Organizing Morphogenesis

    Science.gov (United States)

    Calof, Anne L.; Lowengrub, John S.; Lander, Arthur D.

    2016-01-01

    Feedback regulation of cell lineage progression plays an important role in tissue size homeostasis, but whether such feedback also plays an important role in tissue morphogenesis has yet to be explored. Here we use mathematical modeling to show that a particular feedback architecture in which both positive and negative diffusible signals act on stem and/or progenitor cells leads to the appearance of bistable or bi-modal growth behaviors, ultrasensitivity to external growth cues, local growth-driven budding, self-sustaining elongation, and the triggering of self-organization in the form of lamellar fingers. Such behaviors arise not through regulation of cell cycle speeds, but through the control of stem or progenitor self-renewal. Even though the spatial patterns that arise in this setting are the result of interactions between diffusible factors with antagonistic effects, morphogenesis is not the consequence of Turing-type instabilities. PMID:26989903

  1. Genetic characterization of human T-cell lymphotropic virus type 1 in Mozambique: transcontinental lineages drive the HTLV-1 endemic.

    Directory of Open Access Journals (Sweden)

    Ana Carolina P Vicente

    2011-04-01

    Full Text Available Human T-Cell Lymphotropic Virus Type 1 (HTLV-1 is the etiological agent of adult T-cell leukemia (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. It has been estimated that 10-20 million people are infected worldwide, but no successful treatment is available. Recently, the epidemiology of this virus was addressed in blood donors from Maputo, showing rates from 0.9 to 1.2%. However, the origin and impact of HTLV endemic in this population is unknown.To assess the HTLV-1 molecular epidemiology in Mozambique and to investigate their relationship with HTLV-1 lineages circulating worldwide.Blood donors and HIV patients were screened for HTLV antibodies by using enzyme immunoassay, followed by Western Blot. PCR and sequencing of HTLV-1 LTR region were applied and genetic HTLV-1 subtypes were assigned by the neighbor-joining method. The mean genetic distance of Mozambican HTLV-1 lineages among the genetic clusters were determined. Human mitochondrial (mt DNA analysis was performed and individuals classified in mtDNA haplogroups.LTR HTLV-1 analysis demonstrated that all isolates belong to the Transcontinental subgroup of the Cosmopolitan subtype. Mozambican HTLV-1 sequences had a high inter-strain genetic distance, reflecting in three major clusters. One cluster is associated with the South Africa sequences, one is related with Middle East and India strains and the third is a specific Mozambican cluster. Interestingly, 83.3% of HIV/HTLV-1 co-infection was observed in the Mozambican cluster. The human mtDNA haplotypes revealed that all belong to the African macrohaplogroup L with frequencies representatives of the country.The Mozambican HTLV-1 genetic diversity detected in this study reveals that although the strains belong to the most prevalent and worldwide distributed Transcontinental subgroup of the Cosmopolitan subtype, there is a high HTLV diversity that could be correlated with at least 3 different HTLV-1 introductions

  2. Lineage determination of CD7+ CD5- CD2- and CD7+ CD5+ CD2- lymphoblasts: studies on phenotype, genotype, and gene expression of myeloperoxidase, CD3 epsilon, and CD3 delta.

    Science.gov (United States)

    Yoneda, N; Tatsumi, E; Teshigawara, K; Nagata, S; Nagano, T; Kishimoto, Y; Kimura, T; Yasunaga, K; Yamaguchi, N

    1994-04-01

    The gene expression of myeloperoxidase (MPO), CD3 epsilon, and CD3 delta molecules, the gene rearrangement of T-cell receptor (TCR) delta, gamma, and beta and immunoglobulin heavy (IgH) chain, and the expression of cell-surface antigens were investigated in seven cases of CD7+ CD5- CD2- and four cases of CD7+ CD5+ CD2- acute lymphoblastic leukemia or lymphoblastic lymphoma (ALL/LBL) blasts, which were negative for cytochemical myeloperoxidase (cyMPO). More mature T-lineage blasts were also investigated in a comparative manner. In conclusion, the CD7+ CD5- CD2- blasts included four categories: undifferentiated blasts without lineage commitment, T-lineage blasts, T-/myeloid lineage blasts, and cyMPO-negative myeloblasts. The CD7+ CD5+ CD2- blasts included two categories; T-lineage and T-/myeloid lineage blasts. The 11 cases were of the germ-line gene (G) for TCR beta and IgH. Four cases were G for TCR delta and TCR gamma. The others were of the monoclonally rearranged gene (R) for TCR delta and G for TCR gamma or R for both TCR delta and TCR gamma. The expression or in vitro induction of CD13 and/or CD33 antigens correlated with the immaturity of these neoplastic T cells, since it was observed in all 11 CD7+ CD5- CD2- and CD7+ CD5+ CD2-, and some CD7+ CD5+ CD2+ (CD3- CD4- CD8-) cases, but not in CD3 +/- CD4+ CD8+ or CD3+ CD4+ CD8- cases. CD3 epsilon mRNA, but not CD3 delta mRNA, was detected in two CD7+ CD5- CD2- cases, while mRNA of neither of the two CD3 molecules was detected in the other tested CD7+ CD5- CD2- cases. In contrast, mRNA of both CD3 epsilon and CD3 delta were detected in all CD7+ CD5+ CD2- cases, indicating that CD7+ CD5- CD2- blasts at least belong to T-lineage. The blasts of two CD7+ CD5- CD2- cases with entire germ-line genes and without mRNA of the three molecules (MPO, CD3 epsilon, and CD3 delta) were regarded as being at an undifferentiated stage prior to their commitment to either T- or myeloid-lineage. The co-expression of the genes of MPO

  3. Rapid and specific detection of Asian- and African-lineage Zika viruses.

    Science.gov (United States)

    Chotiwan, Nunya; Brewster, Connie D; Magalhaes, Tereza; Weger-Lucarelli, James; Duggal, Nisha K; Rückert, Claudia; Nguyen, Chilinh; Garcia Luna, Selene M; Fauver, Joseph R; Andre, Barb; Gray, Meg; Black, William C; Kading, Rebekah C; Ebel, Gregory D; Kuan, Guillermina; Balmaseda, Angel; Jaenisch, Thomas; Marques, Ernesto T A; Brault, Aaron C; Harris, Eva; Foy, Brian D; Quackenbush, Sandra L; Perera, Rushika; Rovnak, Joel

    2017-05-03

    Understanding the dynamics of Zika virus transmission and formulating rational strategies for its control require precise diagnostic tools that are also appropriate for resource-poor environments. We have developed a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay that distinguishes Zika viruses of Asian and African lineages. The assay does not detect chikungunya virus or flaviviruses such as dengue, yellow fever, or West Nile viruses. The assay conditions allowed direct detection of Zika virus RNA in cultured infected cells; in mosquitoes; in virus-spiked samples of human blood, plasma, saliva, urine, and semen; and in infected patient serum, plasma, and semen samples without the need for RNA isolation or reverse transcription. The assay offers rapid, specific, sensitive, and inexpensive detection of the Asian-lineage Zika virus strain that is currently circulating in the Western hemisphere, and can also detect the African-lineage Zika virus strain using separate, specific primers. Copyright © 2017, American Association for the Advancement of Science.

  4. Rapid and specific detection of Asian- and African-lineage Zika viruses

    Science.gov (United States)

    Chotiwan, Nunya; Brewster, Connie D.; Magalhaes, Tereza; Weger-Lucarelli, James; Duggal, Nisha K.; Rückert, Claudia; Nguyen, Chilinh; Garcia Luna, Selene M.; Fauver, Joseph R.; Andre, Barb; Gray, Meg; Black, William C.; Kading, Rebekah C.; Ebel, Gregory D.; Kuan, Guillermina; Balmaseda, Angel; Jaenisch, Thomas; Marques, Ernesto T. A.; Brault, Aaron C.; Harris, Eva; Foy, Brian D.; Quackenbush, Sandra L.; Perera, Rushika; Rovnak, Joel

    2017-01-01

    Understanding the dynamics of Zika virus transmission and formulating rational strategies for its control require precise diagnostic tools that are also appropriate for resource-poor environments. We have developed a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay that distinguishes Zika viruses of Asian and African lineages. The assay does not detect chikungunya virus or flaviviruses such as dengue, yellow fever, or West Nile viruses. The assay conditions allowed direct detection of Zika virus RNA in cultured infected cells; in mosquitoes; in virus-spiked samples of human blood, plasma, saliva, urine, and semen; and in infected patient serum, plasma, and semen samples without the need for RNA isolation or reverse transcription. The assay offers rapid, specific, sensitive, and inexpensive detection of the Asian-lineage Zika virus strain that is currently circulating in the Western hemisphere, and can also detect the African-lineage Zika virus strain using separate, specific primers. PMID:28469032

  5. A population of human brain cells expressing phenotypic markers of more than one lineage can be induced in vitro to differentiate into mesenchymal cells

    International Nuclear Information System (INIS)

    Rieske, Piotr; Augelli, Brian J.; Stawski, Robert; Gaughan, John; Azizi, S. Ausim; Krynska, Barbara

    2009-01-01

    Proliferating astrocytic cells from germinal, as well as mature areas of brain parenchyma, have the characteristics of neural stem/progenitor cells and are capable of generating both neurons and glia. We previously reported that primary fetal human brain cells, designated as Normal Human Astrocytes (NHA), expressed, in addition to GFAP, Vimentin and Nestin, low levels of βIII-Tubulin, an early neuronal marker, and differentiated into neurons and astrocytes in vitro. Here, we showed that primary NHA cells co-express low levels of mesenchymal markers Fibronectin and Collagen-1 in culture. These cells transitioned into mesenchymal-like cells when cultured in adherent conditions in serum containing media. The mesenchymal-like derivatives of these cells were characterized based on their morphological changes, high expression of Vimentin and extracellular matrix (ECM) proteins, Collagen-1 and Fibronectin, and decline of neural markers. When incubated in osteogenic and adipogenic induction media, the mesenchymal-like cells differentiated into osteoblasts and adipocytes. Furthermore, NHA cells express markers of neural crest cells, SOX-10 and p75. These data support the idea of ectoderm-derived mesenchymal lineages. These findings suggest that a population of primitive fetal brain cells with neural/neural crest/mesenchymal phenotype, resembles the remarkable phenotypic plasticity of neural crest cells, and differentiates into adipocytes and osteocytes under the influence of environmental factors

  6. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage.

    Science.gov (United States)

    Frid, Maria G; Brunetti, Jacqueline A; Burke, Danielle L; Carpenter, Todd C; Davie, Neil J; Reeves, John T; Roedersheimer, Mark T; van Rooijen, Nico; Stenmark, Kurt R

    2006-02-01

    Vascular remodeling in chronic hypoxic pulmonary hypertension includes marked fibroproliferative changes in the pulmonary artery (PA) adventitia. Although resident PA fibroblasts have long been considered the primary contributors to these processes, we tested the hypothesis that hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage, termed fibrocytes. Using two neonatal animal models (rats and calves) of chronic hypoxic pulmonary hypertension, we demonstrated a dramatic perivascular accumulation of mononuclear cells of a monocyte/macrophage lineage (expressing CD45, CD11b, CD14, CD68, ED1, ED2). Many of these cells produced type I collagen, expressed alpha-smooth muscle actin, and proliferated, thus exhibiting mesenchymal cell characteristics attributed to fibrocytes. The blood-borne origin of these cells was confirmed in experiments wherein circulating monocytes/macrophages of chronically hypoxic rats were in vivo-labeled with DiI fluorochrome via liposome delivery and subsequently identified in the remodeled pulmonary, but not systemic, arterial adventitia. The DiI-labeled cells that appeared in the vessel wall expressed monocyte/macrophage markers and procollagen. Selective depletion of this monocytic cell population, using either clodronate-liposomes or gadolinium chloride, prevented pulmonary adventitial remodeling (ie, production of collagen, fibronectin, and tenascin-C and accumulation of myofibroblasts). We conclude that circulating mesenchymal precursors of a monocyte/macrophage lineage, including fibrocytes, are essential contributors to hypoxia-induced pulmonary vascular remodeling.

  7. Effect of lineage-specific metabolic traits of Lactobacillus reuteri on sourdough microbial ecology.

    Science.gov (United States)

    Lin, Xiaoxi B; Gänzle, Michael G

    2014-09-01

    This study determined the effects of specific metabolic traits of Lactobacillus reuteri on its competitiveness in sourdoughs. The competitiveness of lactobacilli in sourdough generally depends on their growth rate; acid resistance additionally contributes to competitiveness in sourdoughs with long fermentation times. Glycerol metabolism via glycerol dehydratase (gupCDE) accelerates growth by the regeneration of reduced cofactors; glutamate metabolism via glutamate decarboxylase (gadB) increases acid resistance by generating a proton motive force. Glycerol and glutamate metabolisms are lineage-specific traits in L. reuteri; therefore, this study employed glycerol dehydratase-positive sourdough isolates of human-adapted L. reuteri lineage I, glutamate decarboxylase-positive strains of rodent-adapted L. reuteri lineage II, as well as mutants with deletions in gadB or gupCDE. The competitivenesses of the strains were quantified by inoculation of wheat and sorghum sourdoughs with defined strains, followed by propagation of doughs with a 10% inoculum and 12-h or 72-h fermentation cycles. Lineage I L. reuteri strains dominated sourdoughs propagated with 12-h fermentation cycles; lineage II L. reuteri strains dominated sourdoughs propagated with 72-h fermentation cycles. L. reuteri 100-23ΔgadB was outcompeted by its wild-type strain in sourdoughs fermented with 72-h fermentation cycles; L. reuteri FUA3400ΔgupCDE was outcompeted by its wild-type strain in sourdoughs fermented with both 12-h and 72-h fermentation cycles. Competition experiments with isogenic pairs of strains resulted in a constant rate of strain displacement of the less competitive mutant strain. In conclusion, lineage-specific traits of L. reuteri determine the competitiveness of this species in sourdough fermentations. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Totipotent Embryonic Stem Cells Arise in Ground-State Culture Conditions

    DEFF Research Database (Denmark)

    Morgani, Sophie M; Canham, Maurice A; Nichols, Jennifer

    2013-01-01

    Embryonic stem cells (ESCs) are derived from mammalian embryos during the transition from totipotency, when individual blastomeres can make all lineages, to pluripotency, when they are competent to make only embryonic lineages. ESCs maintained with inhibitors of MEK and GSK3 (2i) are thought...... not directly support Nanog-positive epiblast-like ESCs. Thus, 2i and LIF support a totipotent state comparable to early embryonic cells that coexpress embryonic and extraembryonic determinants....

  9. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    Iain C. Macaulay

    2016-02-01

    Full Text Available The transcriptional programs that govern hematopoiesis have been investigated primarily by population-level analysis of hematopoietic stem and progenitor cells, which cannot reveal the continuous nature of the differentiation process. Here we applied single-cell RNA-sequencing to a population of hematopoietic cells in zebrafish as they undergo thrombocyte lineage commitment. By reconstructing their developmental chronology computationally, we were able to place each cell along a continuum from stem cell to mature cell, refining the traditional lineage tree. The progression of cells along this continuum is characterized by a highly coordinated transcriptional program, displaying simultaneous suppression of genes involved in cell proliferation and ribosomal biogenesis as the expression of lineage specific genes increases. Within this program, there is substantial heterogeneity in the expression of the key lineage regulators. Overall, the total number of genes expressed, as well as the total mRNA content of the cell, decreases as the cells undergo lineage commitment.

  10. Lineage specific recombination rates and microevolution in Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Nightingale Kendra K

    2008-10-01

    Full Text Available Abstract Background The bacterium Listeria monocytogenes is a saprotroph as well as an opportunistic human foodborne pathogen, which has previously been shown to consist of at least two widespread lineages (termed lineages I and II and an uncommon lineage (lineage III. While some L. monocytogenes strains show evidence for considerable diversification by homologous recombination, our understanding of the contribution of recombination to L. monocytogenes evolution is still limited. We therefore used STRUCTURE and ClonalFrame, two programs that model the effect of recombination, to make inferences about the population structure and different aspects of the recombination process in L. monocytogenes. Analyses were performed using sequences for seven loci (including the house-keeping genes gap, prs, purM and ribC, the stress response gene sigB, and the virulence genes actA and inlA for 195 L. monocytogenes isolates. Results Sequence analyses with ClonalFrame and the Sawyer's test showed that recombination is more prevalent in lineage II than lineage I and is most frequent in two house-keeping genes (ribC and purM and the two virulence genes (actA and inlA. The relative occurrence of recombination versus point mutation is about six times higher in lineage II than in lineage I, which causes a higher genetic variability in lineage II. Unlike lineage I, lineage II represents a genetically heterogeneous population with a relatively high proportion (30% average of genetic material imported from external sources. Phylograms, constructed with correcting for recombination, as well as Tajima's D data suggest that both lineages I and II have suffered a population bottleneck. Conclusion Our study shows that evolutionary lineages within a single bacterial species can differ considerably in the relative contributions of recombination to genetic diversification. Accounting for recombination in phylogenetic studies is critical, and new evolutionary models that

  11. In Vitro and in Vivo Evaluation of Mutations in the NS Region of Lineage 2 West Nile Virus Associated with Neuroinvasiveness in a Mammalian Model

    Directory of Open Access Journals (Sweden)

    Katalin Szentpáli-Gavallér

    2016-02-01

    Full Text Available West Nile virus (WNV strains may differ significantly in neuroinvasiveness in vertebrate hosts. In contrast to genetic lineage 1 WNVs, molecular determinants of pathogenic lineage 2 strains have not been experimentally confirmed so far. A full-length infectious clone of a neurovirulent WNV lineage 2 strain (578/10; Central Europe was generated and amino acid substitutions that have been shown to attenuate lineage 1 WNVs were introduced into the nonstructural proteins (NS1 (P250L, NS2A (A30P, NS3 (P249H NS4B (P38G, C102S, E249G. The mouse neuroinvasive phenotype of each mutant virus was examined following intraperitoneal inoculation of C57BL/6 mice. Only the NS1-P250L mutation was associated with a significant attenuation of virulence in mice compared to the wild-type. Multiplication kinetics in cell culture revealed significantly lower infectious virus titres for the NS1 mutant compared to the wild-type, as well as significantly lower amounts of positive and negative stranded RNA.

  12. Polyherbal EMSA ERITIN Promotes Erythroid Lineages and Lymphocyte Migration in Irradiated Mice

    Directory of Open Access Journals (Sweden)

    Ibrahim Mansur

    2016-01-01

    Full Text Available Radiotherapy is commonly used to kill malignant cells, but it can significantly deplete hematopoietic and splenic erythroblasts. Radioprotective agents are therefore very important in clinical radiotherapy. We examined the effect of poly-herbal EMSA ERITIN on immunological responses when administered to sublethally irradiated mice with the aim of highlighting promotes erythroid lineages and lymphocytes migration in irradiated mice with the parameter are TER119+CD123+in bone marrow and SDF-1 in bone marrow and spleen organ. Normal BALB/c mice were sublethally irradiated with 600 rad. EMSA ERITIN was administered orally at different doses:(1.04, 3.125 and 9.375 mg/g body weight for 15 days. On day 16 erythroid lineages (TER-119+CD123+ were observed in bone marrow and lymphocytes migration by the production of SDF-1 in spleen and bone marrow. Lymphocytes migration was indicated by the production of SDF-1 in spleen and bone marrow using flow cytometry analysis. EMSA ERITIN increased the generation of erythroid lineage cells marked by TER119+CD123+ and promoted lymphocyte migration by increasing SDF-1 production in bone marrow and spleen. EMSA ERITIN appears to be a powerful medicinal herb with potential as a food supplement to normalize homeostasis and erythropoiesis after radiation.

  13. Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4

    Directory of Open Access Journals (Sweden)

    Leprince Pierre

    2004-09-01

    Full Text Available Abstract Background Spontaneous repair is limited after CNS injury or degeneration because neurogenesis and axonal regrowth rarely occur in the adult brain. As a result, cell transplantation has raised much interest as potential treatment for patients with CNS lesions. Several types of cells have been considered as candidates for such cell transplantation and replacement therapies. Foetal brain tissue has already been shown to have significant effects in patients with Parkinson's disease. Clinical use of the foetal brain tissue is, however, limited by ethical and technical problems as it requires high numbers of grafted foetal cells and immunosuppression. Alternatively, several reports suggested that mesenchymal stem cells, isolated from adult bone marrow, are multipotent cells and could be used in autograft approach for replacement therapies. Results In this study, we addressed the question of the possible influence of mesenchymal stem cells on neural stem cell fate. We have previously reported that adult rat mesenchymal stem cells are able to express nestin in defined culture conditions (in the absence of serum and after 25 cell population doublings and we report here that nestin-positive (but not nestin-negative mesenchymal stem cells are able to favour the astroglial lineage in neural progenitors and stem cells cultivated from embryonic striatum. The increase of the number of GFAP-positive cells is associated with a significant decrease of the number of Tuj1- and O4-positive cells. Using quantitative RT-PCR, we demonstrate that mesenchymal stem cells express LIF, CNTF, BMP2 and BMP4 mRNAs, four cytokines known to play a role in astroglial fate decision. In this model, BMP4 is responsible for the astroglial stimulation and oligodendroglial inhibition, as 1 this cytokine is present in a biologically-active form only in nestin-positive mesenchymal stem cells conditioned medium and 2 anti-BMP4 antibodies inhibit the nestin-positive mesenchymal

  14. Blastema cells derived from New Zealand white rabbit's pinna carry stemness properties as shown by differentiation into insulin producing, neural, and osteogenic lineages representing three embryonic germ layers.

    Science.gov (United States)

    Saeinasab, Morvarid; Matin, Maryam M; Rassouli, Fatemeh B; Bahrami, Ahmad Reza

    2016-05-01

    Stem cells (SCs) are known as undifferentiated cells with self-renewal and differentiation capacities. Regeneration is a phenomenon that occurs in a limited number of animals after injury, during which blastema tissue is formed. It has been hypothesized that upon injury, the dedifferentiation of surrounding tissues leads into the appearance of cells with SC characteristics. In present study, stem-like cells (SLCs) were obtained from regenerating tissue of New Zealand white rabbit's pinna and their stemness properties were examined by their capacity to differentiate toward insulin producing cells (IPCs), as well as neural and osteogenic lineages. Differentiation was induced by culture of SLCs in defined medium, and cell fates were monitored by specific staining, RT-PCR and flow cytometry assays. Our results revealed that dithizone positive cells, which represent IPCs, and islet-like structures appeared 1 week after induction of SLCs, and this observation was confirmed by the elevated expression of Ins, Pax6 and Glut4 at mRNA level. Furthermore, SLCs were able to express neural markers as early as 1 week after retinoic acid treatment. Finally, SLCs were able to differentiate into osteogenic lineage, as confirmed by Alizarin Red S staining and RT-PCR studies. In conclusion, SLCs, which could successfully differentiate into cells derived from all three germ layers, can be considered as a valuable model to study developmental biology and regenerative medicine.

  15. Transcription factor expression uniquely identifies most postembryonic neuronal lineages in the Drosophila thoracic central nervous system.

    Science.gov (United States)

    Lacin, Haluk; Zhu, Yi; Wilson, Beth A; Skeath, James B

    2014-03-01

    Most neurons of the adult Drosophila ventral nerve cord arise from a burst of neurogenesis during the third larval instar stage. Most of this growth occurs in thoracic neuromeres, which contain 25 individually identifiable postembryonic neuronal lineages. Initially, each lineage consists of two hemilineages--'A' (Notch(On)) and 'B' (Notch(Off))--that exhibit distinct axonal trajectories or fates. No reliable method presently exists to identify these lineages or hemilineages unambiguously other than labor-intensive lineage-tracing methods. By combining mosaic analysis with a repressible cell marker (MARCM) analysis with gene expression studies, we constructed a gene expression map that enables the rapid, unambiguous identification of 23 of the 25 postembryonic lineages based on the expression of 15 transcription factors. Pilot genetic studies reveal that these transcription factors regulate the specification and differentiation of postembryonic neurons: for example, Nkx6 is necessary and sufficient to direct axonal pathway selection in lineage 3. The gene expression map thus provides a descriptive foundation for the genetic and molecular dissection of adult-specific neurogenesis and identifies many transcription factors that are likely to regulate the development and differentiation of discrete subsets of postembryonic neurons.

  16. Lineage tracing in the adult mouse corneal epithelium supports the limbal epithelial stem cell hypothesis with intermittent periods of stem cell quiescence

    Directory of Open Access Journals (Sweden)

    Natalie J. Dorà

    2015-11-01

    Full Text Available The limbal epithelial stem cell (LESC hypothesis proposes that LESCs in the corneal limbus maintain the corneal epithelium both during normal homeostasis and wound repair. The alternative corneal epithelial stem cell (CESC hypothesis proposes that LESCs are only involved in wound repair and CESCs in the corneal epithelium itself maintain the corneal epithelium during normal homeostasis. We used tamoxifen-inducible, CreER-loxP lineage tracing to distinguish between these hypotheses. Clones of labelled cells were induced in adult CAGG-CreER;R26R-LacZ reporter mice and their distributions analysed after different chase periods. Short-lived clones, derived from labelled transient amplifying cells, were shed during the chase period and long-lived clones, derived from stem cells, expanded. At 6 weeks, labelled clones appeared at the periphery, extended centripetally as radial stripes and a few reached the centre by 14 weeks. Stripe numbers depended on the age of tamoxifen treatment. Stripes varied in length, some were discontinuous, few reached the centre and almost half had one end at the limbus. Similar stripes extended across the cornea in CAGG-CreER;R26R-mT/mG reporter mice. The distributions of labelled clones are inconsistent with the CESC hypothesis and support the LESC hypothesis if LESCs cycle between phases of activity and quiescence, each lasting several weeks.

  17. Splenomegaly, myeloid lineage expansion and increased osteoclastogenesis in osteogenesis imperfecta murine.

    Science.gov (United States)

    Matthews, Brya G; Roeder, Emilie; Wang, Xi; Aguila, Hector Leonardo; Lee, Sun-Kyeong; Grcevic, Danka; Kalajzic, Ivo

    2017-10-01

    Osteogenesis imperfecta (OI) is a disease caused by defects in type I collagen production that results in brittle bones. While the pathology is mainly caused by defects in the osteoblast lineage, there is also elevated bone resorption by osteoclasts resulting in high bone turnover in severe forms of the disease. Osteoclasts originate from hematopoietic myeloid cells, however changes in hematopoiesis have not been previously documented in OI. In this study, we evaluated hematopoietic lineage distribution and osteoclast progenitor cell frequency in bone marrow, spleen and peripheral blood of osteogenesis imperfecta murine (OIM) mice, a model of severe OI. We found splenomegaly in all ages examined, and expansion of myeloid lineage cells (CD11b + ) in bone marrow and spleen of 7-9week old male OIM animals. OIM spleens also showed an increased frequency of purified osteoclast progenitors. This phenotype is suggestive of chronic inflammation. Isolated osteoclast precursors from both spleen and bone marrow formed osteoclasts more rapidly than wild-type controls. We found that serum TNFα levels were increased in OIM, as was IL1α in OIM females. We targeted inflammation therapeutically by treating growing animals with murine TNFR2:Fc, a compound that blocks TNFα activity. Anti-TNFα treatment marginally decreased spleen mass in OIM females, but failed to reduce bone resorption, or improve bone parameters or fracture rate in OIM animals. We have demonstrated that OIM mice have changes in their hematopoietic system, and form osteoclasts more rapidly even in the absence of OI osteoblast signals, however therapy targeting TNFα did not improve disease parameters. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The diversity of nanos expression in echinoderm embryos supports different mechanisms in germ cell specification.

    Science.gov (United States)

    Fresques, Tara; Swartz, Steven Zachary; Juliano, Celina; Morino, Yoshiaki; Kikuchi, Mani; Akasaka, Koji; Wada, Hiroshi; Yajima, Mamiko; Wessel, Gary M

    2016-07-01

    Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32-128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution. © 2016 Wiley Periodicals, Inc.

  19. Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo.

    Science.gov (United States)

    Taichman, Russell S; Wang, Zhuo; Shiozawa, Yusuke; Jung, Younghun; Song, Junhui; Balduino, Alex; Wang, Jincheng; Patel, Lalit R; Havens, Aaron M; Kucia, Magdalena; Ratajczak, Mariusz Z; Krebsbach, Paul H

    2010-10-01

    A prospective in vivo assay was used to identify cells with potential for multiple lineage differentiation. With this assay, it was first determined that the 5-fluorouracil resistant cells capable of osseous tissue formation in vivo also migrated toward stromal derived factor-1 (SDF-1) in vitro. In parallel, an isolation method based on fluorescence-activated cell sorting was employed to identify a very small cell embryonic-like Lin-/Sca-1+CD45- cell that with as few as 500 cells was capable of forming bone-like structures in vivo. Differential marrow fractionation studies determined that the majority of the Lin-Sca-1+CD45- cells reside in the subendosteal regions of marrow. To determine whether these cells were capable of differentiating into multiple lineages, stromal cells harvested from Col2.3 Delta TK mice were implanted with a gelatin sponge into SCID mice to generate thymidine kinase sensitive ossicles. At 1.5 months, 2,000 green fluorescent protein (GFP)+ Lin-Sca-1+CD45- cells were injected into the ossicles. At harvest, colocalization of GFP-expressing cells with antibodies to the osteoblast-specific marker Runx-2 and the adipocyte marker PPAP gamma were observed. Based on the ability of the noncultured cells to differentiate into multiple mesenchymal lineages in vivo and the ability to generate osseous tissues at low density, we propose that this population fulfills many of the characteristics of mesenchymal stem cells.

  20. There is no fitness but fitness, and the lineage is its bearer

    Science.gov (United States)

    2016-01-01

    Inclusive fitness has been the cornerstone of social evolution theory for more than a half-century and has matured as a mathematical theory in the past 20 years. Yet surprisingly for a theory so central to an entire field, some of its connections to evolutionary theory more broadly remain contentious or underappreciated. In this paper, we aim to emphasize the connection between inclusive fitness and modern evolutionary theory through the following fact: inclusive fitness is simply classical Darwinian fitness, averaged over social, environmental and demographic states that members of a gene lineage experience. Therefore, inclusive fitness is neither a generalization of classical fitness, nor does it belong exclusively to the individual. Rather, the lineage perspective emphasizes that evolutionary success is determined by the effect of selection on all biological and environmental contexts that a lineage may experience. We argue that this understanding of inclusive fitness based on gene lineages provides the most illuminating and accurate picture and avoids pitfalls in interpretation and empirical applications of inclusive fitness theory. PMID:26729925

  1. There is no fitness but fitness, and the lineage is its bearer.

    Science.gov (United States)

    Akçay, Erol; Van Cleve, Jeremy

    2016-02-05

    Inclusive fitness has been the cornerstone of social evolution theory for more than a half-century and has matured as a mathematical theory in the past 20 years. Yet surprisingly for a theory so central to an entire field, some of its connections to evolutionary theory more broadly remain contentious or underappreciated. In this paper, we aim to emphasize the connection between inclusive fitness and modern evolutionary theory through the following fact: inclusive fitness is simply classical Darwinian fitness, averaged over social, environmental and demographic states that members of a gene lineage experience. Therefore, inclusive fitness is neither a generalization of classical fitness, nor does it belong exclusively to the individual. Rather, the lineage perspective emphasizes that evolutionary success is determined by the effect of selection on all biological and environmental contexts that a lineage may experience. We argue that this understanding of inclusive fitness based on gene lineages provides the most illuminating and accurate picture and avoids pitfalls in interpretation and empirical applications of inclusive fitness theory. © 2016 The Author(s).

  2. Lineage and the rights of cloned child in the islamic jurisprudence.

    Science.gov (United States)

    Moeinifar, Mohaddeseh; Ardebeli, Faezeh Azimzadeh

    2012-10-01

    Lineage in the Islamic law is one of the most basic human rights each individual inherits from his family. When modern assisted reproductive technologies appeared in recent decades, the issue of lineage and the child's rights did not encounter serious challenges. But with the advent of these technologies, the issue of the child's lineage resulting from new technologies has become the center of attention. These technologies have a large share in the field of medicine. A new technique known as cloning has entered the realm of science and technology. Considering the possibility of the widespread use of this technique, the subject of cloned child's lineage and his/her rights would be one of the major issues related to this subject. In this paper, the authors have examined the various aspects of the subject and the opinions of theologians in this regard in order to present a best solution to this issue. In fact, the fundamental concern in this paper is to figure out the relationship between the cloned child, the cell donor, the egg donor and the owner of the uterus. In this paper, after considering the concepts of the parentage and identical twins' relationship would be explored and then a detailed analysis of the parental relationship and the Shiite jurisprudence scholars' opinion on these issues would be presented. Finally, the rights of cloned children would be taken into consideration.

  3. DENTAL PULP STEM CELLS AND HUMAN PERIAPICAL CYST MESENCHYMAL STEM CELLS IN BONE TISSUE REGENERATION: COMPARISON OF BASAL AND OSTEOGENIC DIFFERENTIATED GENE EXPRESSION OF A NEWLY DISCOVERED MESENCHYMAL STEM CELL LINEAGE.

    Science.gov (United States)

    Tatullo, M; Falisi, G; Amantea, M; Rastelli, C; Paduano, F; Marrelli, M

    2015-01-01

    Bone regeneration is an interesting field of biomedicine. The most recent studies are aimed to achieve a bone regeneration using mesenchymal stem cells (MSCs) taken from more accessible sites: oral and dental tissues have been widely investigated as a rich accessible source of MSCs. Dental Pulp Stem Cells (DPSCs) and human Periapical Cysts Mesenchymal Stem Cells (hPCy-MSCs) represent the new generation MSCs. The aim of this study is to compare the gene expression of these two innovative cell types to highlight the advantages of their use in bone regeneration. The harvesting, culturing and differentiating of cells isolated from dental pulp as well as from periapical cystic tissue were carried out as described in previously published reports. qRT-PCR analyses were performed on osteogenic genes in undifferentiated and osteogenic differentiated cells of DPSC and hPCy-MSC lineage. Real-time RT-PCR data suggested that both DPSCs and hPCy-MSCs cultured in osteogenic media are able to differentiate into osteoblast/odontoblast-like cells: however, some differences indicated that DPSCs seem to be directed more towards dentinogenesis, while hPCy-MSCs seem to be directed more towards osteogenesis.

  4. The Wnt receptor, Lrp5, is expressed by mouse mammary stem cells and is required to maintain the basal lineage.

    Directory of Open Access Journals (Sweden)

    Nisha M Badders

    2009-08-01

    Full Text Available Ectopic Wnt signaling induces increased stem/progenitor cell activity in the mouse mammary gland, followed by tumor development. The Wnt signaling receptors, Lrp5/6, are uniquely required for canonical Wnt activity. Previous data has shown that the absence of Lrp5 confers resistance to Wnt1-induced tumor development.Here, we show that all basal mammary cells express Lrp5, and co-express Lrp6 in a similar fashion. Though Wnt dependent transcription of key target genes is relatively unchanged in mammary epithelial cell cultures, the absence of Lrp5 specifically depletes adult regenerative stem cell activity (to less than 1%. Stem cell activity can be enriched by >200 fold (over 80% of activity, based on high Lrp5 expression alone. Though Lrp5 null glands have apparent normal function, the basal lineage is relatively reduced (from 42% basal/total epithelial cells to 22% and Lrp5-/- mammary epithelial cells show enhanced expression of senescence-associated markers in vitro, as measured by expression of p16(Ink4a and TA-p63.This is the first single biomarker that has been demonstrated to be functionally involved in stem cell maintenance. Together, these results demonstrate that Wnt signaling through Lrp5 is an important component of normal mammary stem cell function.

  5. Prox1 Inhibits Proliferation and Is Required for Differentiation of the Oligodendrocyte Cell Lineage in the Mouse.

    Directory of Open Access Journals (Sweden)

    Kentaro Kato

    Full Text Available Central nervous system injury induces a regenerative response in ensheathing glial cells comprising cell proliferation, spontaneous axonal remyelination, and limited functional recovery, but the molecular mechanisms are not fully understood. In Drosophila, this involves the genes prospero and Notch controlling the balance between glial proliferation and differentiation, and manipulating their levels in glia can switch the response to injury from prevention to promotion of repair. In the mouse, Notch1 maintains NG2 oligodendrocyte progenitor cells (OPCs in a progenitor state, but what factor may enable oligodendrocyte (OL differentiation and functional remyelination is not understood. Here, we asked whether the mammalian homologue of prospero, Prox1, is involved. Our data show that Prox1 is distributed in NG2+ OPCs and in OLs in primary cultured cells, and in the mouse spinal cord in vivo. siRNA prox1 knockdown in primary OPCs increased cell proliferation, increased NG2+ OPC cell number and decreased CC1+ OL number. Prox1 conditional knockout in the OL cell lineage in mice increased NG2+ OPC cell number, and decreased CC1+ OL number. Lysolecithin-induced demyelination injury caused a reduction in CC1+ OLs in homozygous Prox1-/- conditional knockout mice compared to controls. Remarkably, Prox1-/- conditional knockout mice had smaller lesions than controls. Altogether, these data show that Prox1 is required to inhibit OPC proliferation and for OL differentiation, and could be a relevant component of the regenerative glial response. Therapeutic uses of glia and stem cells to promote regeneration and repair after central nervous system injury would benefit from manipulating Prox1.

  6. Malware Lineage in the Wild

    OpenAIRE

    Haq, Irfan Ul; Chica, Sergio; Caballero, Juan; Jha, Somesh

    2017-01-01

    Malware lineage studies the evolutionary relationships among malware and has important applications for malware analysis. A persistent limitation of prior malware lineage approaches is to consider every input sample a separate malware version. This is problematic since a majority of malware are packed and the packing process produces many polymorphic variants (i.e., executables with different file hash) of the same malware version. Thus, many samples correspond to the same malware version and...

  7. Evidence of ancient DNA reveals the first European lineage in Iron Age Central China.

    Science.gov (United States)

    Xie, C Z; Li, C X; Cui, Y Q; Zhang, Q C; Fu, Y Q; Zhu, H; Zhou, H

    2007-07-07

    Various studies on ancient DNA have attempted to reconstruct population movement in Asia, with much interest focused on determining the arrival of European lineages in ancient East Asia. Here, we discuss our analysis of the mitochondrial DNA of human remains excavated from the Yu Hong tomb in Taiyuan, China, dated 1400 years ago. The burial style of this tomb is characteristic of Central Asia at that time. Our analysis shows that Yu Hong belonged to the haplogroup U5, one of the oldest western Eurasian-specific haplogroups, while his wife can be classified as haplogroup G, the type prevalent in East Asia. Our findings show that this man with European lineage arrived in Taiyuan approximately 1400 years ago, and most probably married a local woman. Haplogroup U5 was the first west Eurasian-specific lineage to be found in the central part of ancient China, and Taiyuan may be the easternmost location of the discovered remains of European lineage in ancient China.

  8. Lineage fusion in Galápagos giant tortoises.

    Science.gov (United States)

    Garrick, Ryan C; Benavides, Edgar; Russello, Michael A; Hyseni, Chaz; Edwards, Danielle L; Gibbs, James P; Tapia, Washington; Ciofi, Claudio; Caccone, Adalgisa

    2014-11-01

    Although many classic radiations on islands are thought to be the result of repeated lineage splitting, the role of past fusion is rarely known because during these events, purebreds are rapidly replaced by a swarm of admixed individuals. Here, we capture lineage fusion in action in a Galápagos giant tortoise species, Chelonoidis becki, from Wolf Volcano (Isabela Island). The long generation time of Galápagos tortoises and dense sampling (841 individuals) of genetic and demographic data were integral in detecting and characterizing this phenomenon. In C. becki, we identified two genetically distinct, morphologically cryptic lineages. Historical reconstructions show that they colonized Wolf Volcano from Santiago Island in two temporally separated events, the first estimated to have occurred ~199 000 years ago. Following arrival of the second wave of colonists, both lineages coexisted for approximately ~53 000 years. Within that time, they began fusing back together, as microsatellite data reveal widespread introgressive hybridization. Interestingly, greater mate selectivity seems to be exhibited by purebred females of one of the lineages. Forward-in-time simulations predict rapid extinction of the early arriving lineage. This study provides a rare example of reticulate evolution in action and underscores the power of population genetics for understanding the past, present and future consequences of evolutionary phenomena associated with lineage fusion. © 2014 John Wiley & Sons Ltd.

  9. A germ cell determinant reveals parallel pathways for germ line development in Caenorhabditis elegans.

    Science.gov (United States)

    Mainpal, Rana; Nance, Jeremy; Yanowitz, Judith L

    2015-10-15

    Despite the central importance of germ cells for transmission of genetic material, our understanding of the molecular programs that control primordial germ cell (PGC) specification and differentiation are limited. Here, we present findings that X chromosome NonDisjunction factor-1 (XND-1), known for its role in regulating meiotic crossover formation, is an early determinant of germ cell fates in Caenorhabditis elegans. xnd-1 mutant embryos display a novel 'one PGC' phenotype as a result of G2 cell cycle arrest of the P4 blastomere. Larvae and adults display smaller germ lines and reduced brood size consistent with a role for XND-1 in germ cell proliferation. Maternal XND-1 proteins are found in the P4 lineage and are exclusively localized to the nucleus in PGCs, Z2 and Z3. Zygotic XND-1 turns on shortly thereafter, at the ∼300-cell stage, making XND-1 the earliest zygotically expressed gene in worm PGCs. Strikingly, a subset of xnd-1 mutants lack germ cells, a phenotype shared with nos-2, a member of the conserved Nanos family of germline determinants. We generated a nos-2 null allele and show that nos-2; xnd-1 double mutants display synthetic sterility. Further removal of nos-1 leads to almost complete sterility, with the vast majority of animals without germ cells. Sterility in xnd-1 mutants is correlated with an increase in transcriptional activation-associated histone modification and aberrant expression of somatic transgenes. Together, these data strongly suggest that xnd-1 defines a new branch for PGC development that functions redundantly with nos-2 and nos-1 to promote germline fates by maintaining transcriptional quiescence and regulating germ cell proliferation. © 2015. Published by The Company of Biologists Ltd.

  10. Contrasting microsatellite diversity in the evolutionary lineages of Phytophthora lateralis.

    Science.gov (United States)

    Vettraino, AnnaMaria; Brasier, Clive M; Webber, Joan F; Hansen, Everett M; Green, Sarah; Robin, Cecile; Tomassini, Alessia; Bruni, Natalia; Vannini, Andrea

    2017-02-01

    Following recent discovery of Phytophthora lateralis on native Chamaecyparis obtusa in Taiwan, four phenotypically distinct lineages were discriminated: the Taiwan J (TWJ) and Taiwan K (TWK) in Taiwan, the Pacific Northwest (PNW) in North America and Europe and the UK in west Scotland. Across the four lineages, we analysed 88 isolates from multiple sites for microsatellite diversity. Twenty-one multilocus genotypes (MLGs) were resolved with high levels of diversity of the TWK and PNW lineages. No alleles were shared between the PNW and the Taiwanese lineages. TWK was heterozygous at three loci, whereas TWJ isolates were homozygous apart from one isolate, which exhibited a unique allele also present in the TWK lineage. PNW lineage was heterozygous at three loci. The evidence suggests its origin may be a yet unknown Asian source. North American and European PNW isolates shared all their alleles and also a dominant MLG, consistent with a previous proposal that this lineage is a recent introduction into Europe from North America. The UK lineage was monomorphic and homozygous at all loci. It shared its alleles with the PNW and the TWJ and TWK lineages, hence a possible origin in a recent hybridisation event between a Taiwan lineage and PNW cannot be ruled out. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  11. Assessment of benzene-induced hematotoxicity using a human-like hematopoietic lineage in NOD/Shi-scid/IL-2Rγnull mice.

    Directory of Open Access Journals (Sweden)

    Masayuki Takahashi

    Full Text Available Despite recent advancements, it is still difficult to evaluate in vivo responses to toxicants in humans. Development of a system that can mimic the in vivo responses of human cells will enable more accurate health risk assessments. A surrogate human hematopoietic lineage can be established in NOD/Shi-scid/IL-2Rγ(null (NOG mice by transplanting human hematopoietic stem/progenitor cells (Hu-NOG mice. Here, we first evaluated the toxic response of human-like hematopoietic lineage in NOG mice to a representative toxic agent, benzene. Flow cytometric analysis showed that benzene caused a significant decrease in the number of human hematopoietic stem/progenitor cells in the bone marrow and the number of human leukocytes in the peripheral blood and hematopoietic organs. Next, we established chimeric mice by transplanting C57BL/6 mouse-derived bone marrow cells into NOG mice (Mo-NOG mice. A comparison of the degree of benzene-induced hematotoxicity in donor-derived hematopoietic lineage cells within Mo-NOG mice indicated that the toxic response of Hu-NOG mice reflected interspecies differences in susceptibilities to benzene. Responses to the toxic effects of benzene were greater in lymphoid cells than in myeloid cells in Mo-NOG and Hu-NOG mice. These findings suggested that Hu-NOG mice may be a powerful in vivo tool for assessing hematotoxicity in humans, while accounting for interspecies differences.

  12. SERPINB2 is a novel TGFβ-responsive lineage fate determinant of human bone marrow stromal cells

    DEFF Research Database (Denmark)

    Elsafadi, Mona; Manikandan, Muthurangan; Atteya, Muhammad

    2017-01-01

    TGF-β1, a multifunctional regulator of cell growth and differentiation, is the most abundant bone matrix growth factor. During differentiation of human bone stromal cells (hBMSCs), which constitute bone marrow osteoblast (OS) and adipocyte (AD) progenitor cells, continuous TGF-β1 (10 ng/ml) treat...

  13. [Identification of the Mycobacterium tuberculosis Beijing lineage in Ecuador].

    Science.gov (United States)

    Jiménez, Patricia; Calvopiña, Karina; Herrera, Diana; Rojas, Carlos; Pérez-Lago, Laura; Grijalva, Marcelo; Guna, Remedios; García-de Viedma, Darío

    2017-06-01

    Mycobacterium tuberculosis Beijing lineage isolates are considered to be especially virulent, transmissible and prone to acquire resistances. Beijing strains have been reported worldwide, but studies in Latin America are still scarce. The only multinational study performed in the region indicated a heterogeneous distribution for this lineage, which was absent in Chile, Colombia and Ecuador, although further studies found the lineage in Chile and Colombia. To search for the presence of the Beijing lineage in Ecuador, the only country in the region where it remains unreported. We obtained a convenience sample (2006-2012) from two hospitals covering different populations. The isolates were genotyped using 24-MIRU-VNTR. Lineages were assigned by comparing their patterns to those in the MIRU-VNTRplus platform. Isolates belonging to the Beijing lineage were confirmed by allele-specific PCR. We identified the first Beijing isolate in Ecuador in an unexpected epidemiological scenario: A patient was infected in the Andean region, in a population with low mobility and far from the borders of the neighboring countries where Beijing strains had been previously reported. This is the first report of the presence of the Beijing lineage in Ecuador in an unusual epidemiological context that deserves special attention.

  14. Evolutionary change in physiological phenotypes along the human lineage.

    Science.gov (United States)

    Vining, Alexander Q; Nunn, Charles L

    2016-01-01

    Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  15. Circulation of influenza B lineages in northern Viet Nam, 2007-2014.

    Science.gov (United States)

    Le, Thi Thanh; Pham, Thu Hang; Pham, Thi Hien; Nguyen, Le Khanh Hang; Nguyen, Co Thach; Hoang, Vu Mai Phuong; Tran, Thu Huong; Nguyen, Vu Son; Ngo, Huong Giang; Le, Quynh Mai

    2015-01-01

    Influenza B viruses circulate throughout Viet Nam, and their activities vary by region. There have been two antigenically distinct lineages of influenza B viruses co-circulating in the past 20 years; however, only one lineage is selected as a component of contemporary trivalent seasonal influenza vaccines. To improve the understanding of circulating influenza B lineages and influenza vaccine mismatches, we report the virus lineages circulating in northern Viet Nam over an eight-year period (2007-2014). Lineages of 331 influenza B viruses were characterized by haemagglutination inhibition assay against standard reference ferret (Yamagata) and sheep (Victoria) antisera. Sequence analysis of the haemagglutinin gene was performed in 64 selected influenza B isolates. The proportion of influenza B lineages changed by year. The Yamagata lineage predominated in 2007, 2008 and 2012; the Victoria lineage predominated in 2009-2014 except 2012. The two lineages showed continuous evolution over time. The Northern Hemisphere's influenza vaccine components were mismatched with the predominant circulating viruses in 2007, 2009 and 2014. The seasonality of influenza B activity is more variable in tropical and subtropical regions than in temperate zones. Our data showed a common co-circulation of both influenza B lineages in northern Viet Nam, and it was difficult to predict which one was the predominant lineage. Quadrivalent influenza vaccines containing both lineages may improve the effectiveness of influenza vaccine programmes in the future.

  16. Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta).

    Science.gov (United States)

    Nakov, Teofil; Beaulieu, Jeremy M; Alverson, Andrew J

    2018-04-06

    Patterns of species richness are commonly linked to life history strategies. In diatoms, an exceptionally diverse lineage of photosynthetic heterokonts important for global photosynthesis and burial of atmospheric carbon, lineages with different locomotory and reproductive traits differ dramatically in species richness, but any potential association between life history strategy and diversification has not been tested in a phylogenetic framework. We constructed a time-calibrated, 11-gene, 1151-taxon phylogeny of diatoms - the most inclusive diatom species tree to date. We used this phylogeny, together with a comprehensive inventory of first-last occurrences of Cenozoic fossil diatoms, to estimate ranges of expected species richness, diversification and its variation through time and across lineages. Diversification rates varied with life history traits. Although anisogamous lineages diversified faster than oogamous ones, this increase was restricted to a nested clade with active motility in the vegetative cells. We propose that the evolution of motility in vegetative cells, following an earlier transition from oogamy to anisogamy, facilitated outcrossing and improved utilization of habitat complexity, ultimately leading to enhanced opportunity for adaptive divergence across a variety of novel habitats. Together, these contributed to a species radiation that gave rise to the majority of present-day diatom diversity. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  17. Clonally Expanding Thymocytes Having Lineage Capability in Gamma-Ray-Induced Mouse Atrophic Thymus

    International Nuclear Information System (INIS)

    Yamamoto, Takashi; Morita, Shin-ichi; Go, Rieka; Obata, Miki; Katsuragi, Yoshinori; Fujita, Yukari; Maeda, Yoshitaka; Yokoyama, Minesuke; Aoyagi, Yutaka; Ichikawa, Hitoshi; Mishima, Yukio; Kominami, Ryo

    2010-01-01

    Purpose: To characterize, in the setting of γ-ray-induced atrophic thymus, probable prelymphoma cells showing clonal growth and changes in signaling, including DNA damage checkpoint. Methods and Materials: A total of 111 and 45 mouse atrophic thymuses at 40 and 80 days, respectively, after γ-irradiation were analyzed with polymerase chain reaction for D-J rearrangements at the TCRβ locus, flow cytometry for cell cycle, and Western blotting for the activation of DNA damage checkpoints. Results: Limited D-J rearrangement patterns distinct from normal thymus were detected at high frequencies (43 of 111 for 40-day thymus and 21 of 45 for 80-day thymus). Those clonally expanded thymocytes mostly consisted of CD4 + CD8 + double-positive cells, indicating the retention of lineage capability. They exhibited pausing at a late G1 phase of cell cycle progression but did not show the activation of DNA damage checkpoints such as γH2AX, Chk1/2, or p53. Of interest is that 17 of the 52 thymuses showing normal D-J rearrangement patterns at 40 days after irradiation showed allelic loss at the Bcl11b tumor suppressor locus, also indicating clonal expansion. Conclusion: The thymocytes of clonal growth detected resemble human chronic myeloid leukemia in possessing self-renewal and lineage capability, and therefore they can be a candidate of the lymphoma-initiating cells.

  18. Cryptic lineage diversity, body size divergence, and sympatry in a species complex of Australian lizards (Gehyra).

    Science.gov (United States)

    Moritz, Craig C; Pratt, Renae C; Bank, Sarah; Bourke, Gayleen; Bragg, Jason G; Doughty, Paul; Keogh, J Scott; Laver, Rebecca J; Potter, Sally; Teasdale, Luisa C; Tedeschi, Leonardo G; Oliver, Paul M

    2018-01-01

    Understanding the joint evolutionary and ecological underpinnings of sympatry among close relatives remains a key challenge in biology. This problem can be addressed through joint phylogenomic and phenotypic analysis of complexes of closely related lineages within, and across, species and hence representing the speciation continuum. For a complex of tropical geckos from northern Australia-Gehyra nana and close relatives-we combine mtDNA phylogeography, exon-capture sequencing, and morphological data to resolve independently evolving lineages and infer their divergence history and patterns of morphological evolution. Gehyra nana is found to include nine divergent lineages and is paraphyletic with four other species from the Kimberley region of north-west Australia. Across these 13 taxa, 12 of which are restricted to rocky habitats, several lineages overlap geographically, including on the diverse Kimberley islands. Morphological evolution is dominated by body size shifts, and both body size and shape have evolved gradually across the group. However, larger body size shifts are observed among overlapping taxa than among closely related parapatric lineages of G. nana, and sympatric lineages are more divergent than expected at random. Whether elevated body size differences among sympatric lineages are due to ecological sorting or character displacement remains to be determined. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  19. Individual blastomeres of 16- and 32-cell mouse embryos are able to develop into foetuses and mice.

    Science.gov (United States)

    Tarkowski, Andrzej K; Suwińska, Aneta; Czołowska, Renata; Ożdżeński, Wacław

    2010-12-15

    Cell and developmental studies have clarified how, by the time of implantation, the mouse embryo forms three primary cell lineages: epiblast (EPI), primitive endoderm (PE), and trophectoderm (TE). However, it still remains unknown when cells allocated to these three lineages become determined in their developmental fate. To address this question, we studied the developmental potential of single blastomeres derived from 16- and 32-cell stage embryos and supported by carrier, tetraploid blastomeres. We were able to generate singletons, identical twins, triplets, and quadruplets from individual inner and outer cells of 16-cell embryos and, sporadically, foetuses from single cells of 32-cell embryos. The use of embryos constitutively expressing GFP as the donors of single diploid blastomeres enabled us to identify their cell progeny in the constructed 2n↔4n blastocysts. We showed that the descendants of donor blastomeres were able to locate themselves in all three first cell lineages, i.e., epiblast, primitive endoderm, and trophectoderm. In addition, the application of Cdx2 and Gata4 markers for trophectoderm and primitive endoderm, respectively, showed that the expression of these two genes in the descendants of donor blastomeres was either down- or up-regulated, depending on the cell lineage they happened to occupy. Thus, our results demonstrate that up to the early blastocysts stage, the destiny of at least some blastomeres, although they have begun to express markers of different lineage, is still labile. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Origins, evolution, and diversification of cleptoparasitic lineages in long-tongued bees.

    Science.gov (United States)

    Litman, Jessica R; Praz, Christophe J; Danforth, Bryan N; Griswold, Terry L; Cardinal, Sophie

    2013-10-01

    The evolution of parasitic behavior may catalyze the exploitation of new ecological niches yet also binds the fate of a parasite to that of its host. It is thus not clear whether evolutionary transitions from free-living organism to parasite lead to increased or decreased rates of diversification. We explore the evolution of brood parasitism in long-tongued bees and find decreased rates of diversification in eight of 10 brood parasitic clades. We propose a pathway for the evolution of brood parasitic strategy and find that a strategy in which a closed host nest cell is parasitized and the host offspring is killed by the adult parasite represents an obligate first step in the appearance of a brood parasitic lineage; this ultimately evolves into a strategy in which an open host cell is parasitized and the host offspring is killed by a specialized larval instar. The transition to parasitizing open nest cells expanded the range of potential hosts for brood parasitic bees and played a fundamental role in the patterns of diversification seen in brood parasitic clades. We address the prevalence of brood parasitic lineages in certain families of bees and examine the evolution of brood parasitism in other groups of organisms. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  1. Rho-associated kinase inhibitors promote the cardiac differentiation of embryonic and induced pluripotent stem cells.

    Science.gov (United States)

    Cheng, Ya-Ting; Yeih, Dong-Feng; Liang, Shu-Man; Chien, Chia-Ying; Yu, Yen-Ling; Ko, Bor-Sheng; Jan, Yee-Jee; Kuo, Cheng-Chin; Sung, Li-Ying; Shyue, Song-Kun; Chen, Ming-Fong; Yet, Shaw-Fang; Wu, Kenneth K; Liou, Jun-Yang

    2015-12-15

    Rho-associated kinase (ROCK) plays an important role in maintaining embryonic stem (ES) cell pluripotency. To determine whether ROCK is involved in ES cell differentiation into cardiac and hematopoietic lineages, we evaluated the effect of ROCK inhibitors, Y-27632 and fasudil on murine ES and induced pluripotent stem (iPS) cell differentiation. Gene expression levels were determined by real-time PCR, Western blot analysis and immunofluorescent confocal microscopy. Cell transplantation of induced differentiated cells were assessed in vivo in a mouse model (three groups, n=8/group) of acute myocardial infarction (MI). The cell engraftment was examined by immunohistochemical staining and the outcome was analyzed by echocardiography. Cells were cultured in hematopoietic differentiation medium in the presence or absence of ROCK inhibitor and colony formation as well as markers of ES, hematopoietic stem cells (HSC) and cells of cardiac lineages were analyzed. ROCK inhibition resulted in a drastic change in colony morphology accompanied by loss of hematopoietic markers (GATA-1, CD41 and β-Major) and expressed markers of cardiac lineages (GATA-4, Isl-1, Tbx-5, Tbx-20, MLC-2a, MLC-2v, α-MHC, cTnI and cTnT) in murine ES and iPS cells. Fasudil-induced cardiac progenitor (Mesp-1 expressing) cells were infused into a murine MI model. They engrafted into the peri-infarct and infarct regions and preserved left ventricular function. These findings provide new insights into the signaling required for ES cell differentiation into hematopoietic as well as cardiac lineages and suggest that ROCK inhibitors are useful in directing iPS cell differentiation into cardiac progenitor cells for cell therapy of cardiovascular diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. The Innate Lymphoid Cell Precursor.

    Science.gov (United States)

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.

  3. Template DNA-strand co-segregation and asymmetric cell division in skeletal muscle stem cells.

    Science.gov (United States)

    Shinin, Vasily; Gayraud-Morel, Barbara; Tajbakhsh, Shahragim

    2009-01-01

    Stem cells are present in all tissues and organs, and are crucial for normal regulated growth. How the pool size of stem cells and their progeny is regulated to establish the tissue prenatally, then maintain it throughout life, is a key question in biology and medicine. The ability to precisely locate stem and progenitors requires defining lineage progression from stem to differentiated cells, assessing the mode of cell expansion and self-renewal and identifying markers to assess the different cell states within the lineage. We have shown that during lineage progression from a quiescent adult muscle satellite cell to a differentiated myofibre, both symmetric and asymmetric divisions take place. Furthermore, we provide evidence that a sub-population of label retaining satellite cells co-segregate template DNA strands to one daughter cell. These findings provide a means of identifying presumed stem and progenitor cells within the lineage. In addition, asymmetric segregation of template DNA and the cytoplasmic protein Numb provides a landmark to define cell behaviour as self-renewal and differentiation decisions are being executed.

  4. Biological and phylogenetic characteristics of yellow fever virus lineages from West Africa.

    Science.gov (United States)

    Stock, Nina K; Laraway, Hewád; Faye, Ousmane; Diallo, Mawlouth; Niedrig, Matthias; Sall, Amadou A

    2013-03-01

    The yellow fever virus (YFV), the first proven human-pathogenic virus, although isolated in 1927, is still a major public health problem, especially in West Africa where it causes outbreaks every year. Nevertheless, little is known about its genetic diversity and evolutionary dynamics, mainly due to a limited number of genomic sequences from wild virus isolates. In this study, we analyzed the phylogenetic relationships of 24 full-length genomes from YFV strains isolated between 1973 and 2005 in a sylvatic context of West Africa, including 14 isolates that had previously not been sequenced. By this, we confirmed genetic variability within one genotype by the identification of various YF lineages circulating in West Africa. Further analyses of the biological properties of these lineages revealed differential growth behavior in human liver and insect cells, correlating with the source of isolation and suggesting host adaptation. For one lineage, repeatedly isolated in a context of vertical transmission, specific characteristics in the growth behavior and unique mutations of the viral genome were observed and deserve further investigation to gain insight into mechanisms involved in YFV emergence and maintenance in nature.

  5. Haemopedia: An Expression Atlas of Murine Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    Carolyn A. de Graaf

    2016-09-01

    Full Text Available Hematopoiesis is a multistage process involving the differentiation of stem and progenitor cells into distinct mature cell lineages. Here we present Haemopedia, an atlas of murine gene-expression data containing 54 hematopoietic cell types, covering all the mature lineages in hematopoiesis. We include rare cell populations such as eosinophils, mast cells, basophils, and megakaryocytes, and a broad collection of progenitor and stem cells. We show that lineage branching and maturation during hematopoiesis can be reconstructed using the expression patterns of small sets of genes. We also have identified genes with enriched expression in each of the mature blood cell lineages, many of which show conserved lineage-enriched expression in human hematopoiesis. We have created an online web portal called Haemosphere to make analyses of Haemopedia and other blood cell transcriptional datasets easier. This resource provides simple tools to interrogate gene-expression-based relationships between hematopoietic cell types and genes of interest.

  6. Ecological and genetic divergence between two lineages of Middle American túngara frogs Physalaemus (= Engystomops pustulosus

    Directory of Open Access Journals (Sweden)

    Ron Santiago R

    2010-05-01

    Full Text Available Abstract Background Uncovering how populations of a species differ genetically and ecologically is important for understanding evolutionary processes. Here we combine population genetic methods (microsatellites with phylogenetic information (mtDNA to define genetic population clusters of the wide-spread Neotropical túngara frog (Physalaemus pustulosus. We measure gene flow and migration within and between population clusters and compare genetic diversity between population clusters. By applying ecological niche modeling we determine whether the two most divergent genetic groups of the túngara frog (1 inhabit different habitats, and (2 are separated geographically by unsuitable habitat across a gap in the distribution. Results Most population structure is captured by dividing all sample localities into two allopatric genetic lineages. The Northern genetic lineage (NW Costa Rica is genetically homogenous while the Southern lineage (SW Costa Rica and Panama is sub-divided into three population clusters by both microsatellite and mtDNA analyses. Gene flow is higher within the Northern lineage than within the Southern lineage, perhaps due to increased landscape heterogeneity in the South. Niche modeling reveals differences in suitable habitat between the Northern and Southern lineages: the Northern lineage inhabits dry/pine-oak forests, while the Southern lineage is confined to tropical moist forests. Both lineages seem to have had little movement across the distribution gap, which persisted during the last glacial maximum. The lack of movement was more pronounced for the Southern lineage than for the Northern lineage. Conclusions This study confirms the finding of previous studies that túngara frogs diverged into two allopatric genetic lineages north and south of the gap in the distribution in central Costa Rica several million years ago. The allopatric distribution is attributed to unsuitable habitat and probably other unknown ecological factors

  7. Transcription factor interplay in T helper cell differentiation

    Science.gov (United States)

    Evans, Catherine M.

    2013-01-01

    The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity. PMID:23878131

  8. Transcription factor interplay in T helper cell differentiation.

    Science.gov (United States)

    Evans, Catherine M; Jenner, Richard G

    2013-11-01

    The differentiation of CD4 helper T cells into specialized effector lineages has provided a powerful model for understanding immune cell differentiation. Distinct lineages have been defined by differential expression of signature cytokines and the lineage-specifying transcription factors necessary and sufficient for their production. The traditional paradigm of differentiation towards Th1 and Th2 subtypes driven by T-bet and GATA3, respectively, has been extended to incorporate additional T cell lineages and transcriptional regulators. Technological advances have expanded our view of these lineage-specifying transcription factors to the whole genome and revealed unexpected interplay between them. From these data, it is becoming clear that lineage specification is more complex and plastic than previous models might have suggested. Here, we present an overview of the different forms of transcription factor interplay that have been identified and how T cell phenotypes arise as a product of this interplay within complex regulatory networks. We also suggest experimental strategies that will provide further insight into the mechanisms that underlie T cell lineage specification and plasticity.

  9. Single-cell RNA-Seq reveals cell heterogeneity and hierarchy within mouse mammary epithelia.

    Science.gov (United States)

    Sun, Heng; Miao, Zhengqiang; Zhang, Xin; Chan, Un In; Su, Sek Man; Guo, Sen; Wong, Chris Koon Ho; Xu, Xiaoling; Deng, Chu-Xia

    2018-04-17

    The mammary gland is very intricately and well organized into distinct tissues, including epithelia, endothelia, adipocytes, and stromal and immune cells. Many mammary gland diseases, such as breast cancer arise from abnormalities in the mammary epithelium, which is mainly composed of two distinct lineages, the basal and luminal cells. Because of the limitation of traditional transcriptome analysis of bulk mammary cells, the hierarchy and heterogeneity of mammary cells within these two lineages remain unclear. To this end, using single-cell RNA-Seq coupled with FACS analysis and principal component analysis, we determined gene expression profiles of mammary epithelial cells of virgin and pregnant mice. These analyses revealed a much higher heterogeneity among the mammary cells than has been previously reported and enabled cell classification into distinct subgroups according to signature gene markers present in each group. We also identified and verified a rare CDH5+ cell subpopulation within a basal cell lineage as quiescent mammary stem cells (MaSCs). Moreover, using pseudo-temporal analysis, we reconstructed the developmental trajectory of mammary epithelia and uncovered distinct changes in gene expression and in biological functions of mammary cells along the developmental process. In conclusion, our work greatly refines the resolution of the cellular hierarchy in developing mammary tissues. The discovery of CDH5+ cells as MaSCs in these tissues may have implications for our understanding of the initiation, development, and pathogenesis of mammary tumors. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  10. WT1 Is Necessary for the Proliferation and Migration of Cells of Renin Lineage Following Kidney Podocyte Depletion

    Directory of Open Access Journals (Sweden)

    Natalya V. Kaverina

    2017-10-01

    Full Text Available Wilms' tumor suppressor 1 (WT1 plays an important role in cell proliferation and mesenchymal-epithelial balance in normal development and disease. Here, we show that following podocyte depletion in three experimental models, and in patients with focal segmental glomerulosclerosis (FSGS and membranous nephropathy, WT1 increased significantly in cells of renin lineage (CoRL. In an animal model of FSGS in RenWt1fl/fl reporter mice with inducible deletion of WT1 in CoRL, CoRL proliferation and migration to the glomerulus was reduced, and glomerular disease was worse compared with wild-type mice. To become podocytes, CoRL undergo mesenchymal-to-epithelial transformation (MET, typified by reduced staining for mesenchymal markers (MYH11, SM22, αSMA and de novo expression of epithelial markers (E-cadherin and cytokeratin18. Evidence for changes in MET markers was barely detected in RenWt1fl/fl mice. Our results show that following podocyte depletion, WT1 plays essential roles in CoRL proliferation and migration toward an adult podocyte fate.

  11. The Aurora A-HP1γ pathway regulates gene expression and mitosis in cells from the sperm lineage.

    Science.gov (United States)

    Leonard, Phoebe H; Grzenda, Adrienne; Mathison, Angela; Morbeck, Dean E; Fredrickson, Jolene R; de Assuncao, Thiago M; Christensen, Trace; Salisbury, Jeffrey; Calvo, Ezequiel; Iovanna, Juan; Coddington, Charles C; Urrutia, Raul; Lomberk, Gwen

    2015-05-29

    HP1γ, a well-known regulator of gene expression, has been recently identified to be a target of Aurora A, a mitotic kinase which is important for both gametogenesis and embryogenesis. The purpose of this study was to define whether the Aurora A-HP1γ pathway supports cell division of gametes and/or early embryos, using western blot, immunofluorescence, immunohistochemistry, electron microscopy, shRNA-based knockdown, site-directed mutagenesis, and Affymetrix-based genome-wide expression profiles. We find that the form of HP1γ phosphorylated by Aurora A, P-Ser83 HP1γ, is a passenger protein, which localizes to the spermatozoa centriole and axoneme. In addition, disruption in this pathway causes centrosomal abnormalities and aberrations in cell division. Expression profiling of male germ cell lines demonstrates that HP1γ phosphorylation is critical for the regulation of mitosis-associated gene expression networks. In female gametes, we observe that P-Ser83-HP1γ is not present in meiotic centrosomes of M2 oocytes, but after syngamy, it becomes detectable during cleavage divisions, coinciding with early embryonic genome activation. These results support the idea that phosphorylation of HP1γ by Aurora A plays a role in the regulation of gene expression and mitotic cell division in cells from the sperm lineage and in early embryos. Combined, this data is relevant to better understanding the function of HP1γ in reproductive biology.

  12. Walking along the Fibroblast Growth Factor 10 Route: A Key Pathway to Understand the Control and Regulation of Epithelial and Mesenchymal Cell-Lineage Formation during Lung Development and Repair after Injury

    Directory of Open Access Journals (Sweden)

    Elie El Agha

    2014-01-01

    Full Text Available Basic research on embryonic lung development offers unique opportunities to make important discoveries that will impact human health. Developmental biologists interested in the molecular control of branching morphogenesis have intensively studied the developing lung, with its complex and seemingly stereotyped ramified structure. However, it is also an organ that is linked to a vast array of clinical problems in humans such as bronchopulmonary dysplasia in premature babies and emphysema, chronic obstructive pulmonary disease, fibrosis, and cancer in adults. Epithelial stem/progenitor cells reside in niches where they interact with specific extracellular matrices as well as with mesenchymal cells; the latter are still poorly characterized. Interactions of epithelial stem/progenitor cells with their microenvironments are usually instructive, controlling quiescence versus activation, proliferation, differentiation, and migration. During the past 18 years, Fgf10 has emerged not only as a marker for the distal lung mesenchyme during early lung development, but also as a key player in branching morphogenesis and a critical component of the niche for epithelial stem cells. In this paper, we will present the current knowledge regarding the lineage tree in the lung, with special emphasis on cell-lineage decisions in the lung mesenchyme and the role of Fgf10 in this context.

  13. Walking along the Fibroblast Growth Factor 10 Route: A Key Pathway to Understand the Control and Regulation of Epithelial and Mesenchymal Cell-Lineage Formation during Lung Development and Repair after Injury.

    Science.gov (United States)

    El Agha, Elie; Bellusci, Saverio

    2014-01-01

    Basic research on embryonic lung development offers unique opportunities to make important discoveries that will impact human health. Developmental biologists interested in the molecular control of branching morphogenesis have intensively studied the developing lung, with its complex and seemingly stereotyped ramified structure. However, it is also an organ that is linked to a vast array of clinical problems in humans such as bronchopulmonary dysplasia in premature babies and emphysema, chronic obstructive pulmonary disease, fibrosis, and cancer in adults. Epithelial stem/progenitor cells reside in niches where they interact with specific extracellular matrices as well as with mesenchymal cells; the latter are still poorly characterized. Interactions of epithelial stem/progenitor cells with their microenvironments are usually instructive, controlling quiescence versus activation, proliferation, differentiation, and migration. During the past 18 years, Fgf10 has emerged not only as a marker for the distal lung mesenchyme during early lung development, but also as a key player in branching morphogenesis and a critical component of the niche for epithelial stem cells. In this paper, we will present the current knowledge regarding the lineage tree in the lung, with special emphasis on cell-lineage decisions in the lung mesenchyme and the role of Fgf10 in this context.

  14. Disruption of Hox9,10,11 function results in cellular level lineage infidelity in the kidney.

    Science.gov (United States)

    Drake, Keri A; Adam, Mike; Mahoney, Robert; Potter, S Steven

    2018-04-20

    Hox genes are important regulators of development. The 39 mammalian Hox genes have considerable functional overlap, greatly confounding their study. In this report, we generated mice with multiple combinations of paralogous and flanking Abd-B Hox gene mutations to investigate functional redundancies in kidney development. The resulting mice developed a number of kidney abnormalities, including hypoplasia, agenesis, and severe cysts, with distinct Hox functions observed in early metanephric kidney formation and nephron progenitor maintenance. Most surprising, however, was that extensive removal of Hox shared function in these kidneys resulted in cellular level lineage infidelity. Strikingly, mutant nephron tubules consisted of intermixed cells with proximal tubule, loop of Henle, and collecting duct identities, with some single cells expressing markers associated with more than one nephron segment. These results indicate that Hox genes are required for proper lineage selection/maintenance and full repression of genes involved in cell fate restriction in the developing kidney.

  15. Role of LRF/Pokemon in lineage fate decisions

    Science.gov (United States)

    Lunardi, Andrea; Guarnerio, Jlenia; Wang, Guocan

    2013-01-01

    In the human genome, 43 different genes are found that encode proteins belonging to the family of the POK (poxvirus and zinc finger and Krüppel)/ZBTB (zinc finger and broad complex, tramtrack, and bric à brac) factors. Generally considered transcriptional repressors, several of these genes play fundamental roles in cell lineage fate decision in various tissues, programming specific tasks throughout the life of the organism. Here, we focus on functions of leukemia/lymphoma-related factor/POK erythroid myeloid ontogenic factor, which is probably one of the most exciting and yet enigmatic members of the POK/ZBTB family. PMID:23396304

  16. Genetically distant American Canine distemper virus lineages have recently caused epizootics with somewhat different characteristics in raccoons living around a large suburban zoo in the USA

    Science.gov (United States)

    Lednicky, John A; Dubach, Jean; Kinsel, Michael J; Meehan, Thomas P; Bocchetta, Maurizio; Hungerford, Laura L; Sarich, Nicolene A; Witecki, Kelley E; Braid, Michael D; Pedrak, Casandra; Houde, Christiane M

    2004-01-01

    Background Mortality rates have differed during distemper outbreaks among free-ranging raccoons (Procyon lotor) living around a large Chicago-area zoo, and appeared higher in year 2001 than in 1998 and 2000. We hypothesized that a more lethal variant of the local Canine distemper virus (CDV) lineage had emerged in 2001, and sought the genetic basis that led to increased virulence. However, a more complex model surfaced during preliminary analyses of CDV genomic sequences in infected tissues and of virus isolated in vitro from the raccoons. Results Phylogenetic analyses of subgenomic CDV fusion (F) -, phosphoprotein (P) -, and complete hemagglutinin (H) – gene sequences indicated that distinct American CDV lineages caused the distemper epizootics. The 1998 outbreak was caused by viruses that are likely from an old CDV lineage that includes CDV Snyder Hill and Lederle, which are CDV strains from the early 1950's. The 2000 and 2001 viruses appear to stem from the lineage of CDV A75/17, which was isolated in the mid 1970's. Only the 2001 viruses formed large syncytia in brain and/or lung tissue, and during primary isolation in-vitro in Vero cells, demonstrating at least one phenotypic property by which they differed from the other viruses. Conclusions Two different American CDV lineages caused the raccoon distemper outbreaks. The 1998 viruses are genetically distant to the 2000/2001 viruses. Since CDV does not cause persistent infections, the cycling of different CDV lineages within the same locale suggests multiple reintroductions of the virus to area raccoons. Our findings establish a precedent for determining whether the perceived differences in mortality rates are actual and attributable in part to inherent differences between CDV strains arising from different CDV lineages. PMID:15507154

  17. Genetically distant American Canine distemper virus lineages have recently caused epizootics with somewhat different characteristics in raccoons living around a large suburban zoo in the USA

    Directory of Open Access Journals (Sweden)

    Lednicky John A

    2004-09-01

    Full Text Available Abstract Background Mortality rates have differed during distemper outbreaks among free-ranging raccoons (Procyon lotor living around a large Chicago-area zoo, and appeared higher in year 2001 than in 1998 and 2000. We hypothesized that a more lethal variant of the local Canine distemper virus (CDV lineage had emerged in 2001, and sought the genetic basis that led to increased virulence. However, a more complex model surfaced during preliminary analyses of CDV genomic sequences in infected tissues and of virus isolated in vitro from the raccoons. Results Phylogenetic analyses of subgenomic CDV fusion (F -, phosphoprotein (P -, and complete hemagglutinin (H – gene sequences indicated that distinct American CDV lineages caused the distemper epizootics. The 1998 outbreak was caused by viruses that are likely from an old CDV lineage that includes CDV Snyder Hill and Lederle, which are CDV strains from the early 1950's. The 2000 and 2001 viruses appear to stem from the lineage of CDV A75/17, which was isolated in the mid 1970's. Only the 2001 viruses formed large syncytia in brain and/or lung tissue, and during primary isolation in-vitro in Vero cells, demonstrating at least one phenotypic property by which they differed from the other viruses. Conclusions Two different American CDV lineages caused the raccoon distemper outbreaks. The 1998 viruses are genetically distant to the 2000/2001 viruses. Since CDV does not cause persistent infections, the cycling of different CDV lineages within the same locale suggests multiple reintroductions of the virus to area raccoons. Our findings establish a precedent for determining whether the perceived differences in mortality rates are actual and attributable in part to inherent differences between CDV strains arising from different CDV lineages.

  18. Ecological Niche Modelling of the Bacillus anthracis A1.a sub-lineage in Kazakhstan

    Science.gov (United States)

    2011-01-01

    Background Bacillus anthracis, the causative agent of anthrax, is a globally distributed zoonotic pathogen that continues to be a veterinary and human health problem in Central Asia. We used a database of anthrax outbreak locations in Kazakhstan and a subset of genotyped isolates to model the geographic distribution and ecological associations of B. anthracis in Kazakhstan. The aims of the study were to test the influence of soil variables on a previous ecological niche based prediction of B. anthracis in Kazakhstan and to determine if a single sub-lineage of B. anthracis occupies a unique ecological niche. Results The addition of soil variables to the previously developed ecological niche model did not appreciably alter the limits of the predicted geographic or ecological distribution of B. anthracis in Kazakhstan. The A1.a experiment predicted the sub-lineage to be present over a larger geographic area than did the outbreak based experiment containing multiple lineages. Within the geographic area predicted to be suitable for B. anthracis by all ten best subset models, the A1.a sub-lineage was associated with a wider range of ecological tolerances than the outbreak-soil experiment. Analysis of rule types showed that logit rules predominate in the outbreak-soil experiment and range rules in the A1.a sub-lineage experiment. Random sub-setting of locality points suggests that models of B. anthracis distribution may be sensitive to sample size. Conclusions Our analysis supports careful consideration of the taxonomic resolution of data used to create ecological niche models. Further investigations into the environmental affinities of individual lineages and sub-lineages of B. anthracis will be useful in understanding the ecology of the disease at large and small scales. With model based predictions serving as approximations of disease risk, these efforts will improve the efficacy of public health interventions for anthrax prevention and control. PMID:22152056

  19. Description, molecular characterisation, diagnostics and life cycle of Plasmodium elongatum (lineage pERIRUB01), the virulent avian malaria parasite.

    Science.gov (United States)

    Palinauskas, Vaidas; Žiegytė, Rita; Iezhova, Tatjana A; Ilgūnas, Mikas; Bernotienė, Rasa; Valkiūnas, Gediminas

    2016-10-01

    Plasmodium elongatum causes severe avian malaria and is distributed worldwide. This parasite is of particular importance due to its ability to develop and cause lethal malaria not only in natural hosts, but also in non-adapted endemic birds such as the brown kiwi and different species of penguins. Information on vectors of this infection is available but is contradictory. PCR-based analysis indicated the possible existence of a cluster of closely related P. elongatum lineages which might differ in their ability to develop in certain mosquitoes and birds. This experimental study provides information about molecular and morphological characterisation of a virulent P. elongatum strain (lineage pERIRUB01) isolated from a naturally infected European robin, Erithacus rubecula. Phylogenetic analysis based on partial cytochrome b gene sequences showed that this parasite lineage is closely related to P. elongatum (lineage pGRW6). Blood stages of both parasite lineages are indistinguishable, indicating that they belong to the same species. Both pathogens develop in experimentally infected canaries, Serinus canaria, causing death of the hosts. In both these lineages, trophozoites and erythrocytic meronts develop in polychromatic erythrocytes and erythroblasts, gametocytes parasitize mature erythrocytes, exoerythrocytic stages develop in cells of the erythrocytic series in bone marrow and are occasionally reported in spleen and liver. Massive infestation of bone marrow cells is the main reason for bird mortality. We report here on syncytium-like remnants of tissue meronts, which slip out of the bone marrow into the peripheral circulation, providing evidence that the syncytia can be a template for PCR amplification. This finding contributes to better understanding positive PCR amplifications in birds when parasitemia is invisible and improved diagnostics of abortive haemosporidian infections. Sporogony of P. elongatum (pERIRUB01) completes the cycle and sporozoites develop in

  20. Diversity rankings among bacterial lineages in soil.

    Science.gov (United States)

    Youssef, Noha H; Elshahed, Mostafa S

    2009-03-01

    We used rarefaction curve analysis and diversity ordering-based approaches to rank the 11 most frequently encountered bacterial lineages in soil according to diversity in 5 previously reported 16S rRNA gene clone libraries derived from agricultural, undisturbed tall grass prairie and forest soils (n=26,140, 28 328, 31 818, 13 001 and 53 533). The Planctomycetes, Firmicutes and the delta-Proteobacteria were consistently ranked among the most diverse lineages in all data sets, whereas the Verrucomicrobia, Gemmatimonadetes and beta-Proteobacteria were consistently ranked among the least diverse. On the other hand, the rankings of alpha-Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes and Chloroflexi varied widely in different soil clone libraries. In general, lineages exhibiting largest differences in diversity rankings also exhibited the largest difference in relative abundance in the data sets examined. Within these lineages, a positive correlation between relative abundance and diversity was observed within the Acidobacteria, Actinobacteria and Chloroflexi, and a negative diversity-abundance correlation was observed within the Bacteroidetes. The ecological and evolutionary implications of these results are discussed.

  1. Direct Reprogramming of Adult Human Somatic Stem Cells Into Functional Neurons Using Sox2, Ascl1, and Neurog2

    Directory of Open Access Journals (Sweden)

    Jessica Alves de Medeiros Araújo

    2018-06-01

    Full Text Available Reprogramming of somatic cells into induced pluripotent stem cells (iPS or directly into cells from a different lineage, including neurons, has revolutionized research in regenerative medicine in recent years. Mesenchymal stem cells are good candidates for lineage reprogramming and autologous transplantation, since they can be easily isolated from accessible sources in adult humans, such as bone marrow and dental tissues. Here, we demonstrate that expression of the transcription factors (TFs SRY (sex determining region Y-box 2 (Sox2, Mammalian achaete-scute homolog 1 (Ascl1, or Neurogenin 2 (Neurog2 is sufficient for reprogramming human umbilical cord mesenchymal stem cells (hUCMSC into induced neurons (iNs. Furthermore, the combination of Sox2/Ascl1 or Sox2/Neurog2 is sufficient to reprogram up to 50% of transfected hUCMSCs into iNs showing electrical properties of mature neurons and establishing synaptic contacts with co-culture primary neurons. Finally, we show evidence supporting the notion that different combinations of TFs (Sox2/Ascl1 and Sox2/Neurog2 may induce multiple and overlapping neuronal phenotypes in lineage-reprogrammed iNs, suggesting that neuronal fate is determined by a combination of signals involving the TFs used for reprogramming but also the internal state of the converted cell. Altogether, the data presented here contribute to the advancement of techniques aiming at obtaining specific neuronal phenotypes from lineage-converted human somatic cells to treat neurological disorders.

  2. [Differences on geographic distribution of rabies virus lineages in China].

    Science.gov (United States)

    Wang, Q; Li, M L; Chen, Y; Wang, B; Tao, X Y; Zhu, W Y

    2018-04-10

    Objective: To study the lineages of rabies virus and the epidemic characteristics in different provincial populations of China, to provide information for the development of control and prevention measures in each respective provinces. Methods: Full length N and G genes and full-genome of epidemic strains of rabies virus collected in China were downloaded from GenBank and combined with newly sequenced strains by our lab. Each strain was classified under six lineages of China rabies by constructing phylogenetic trees based on the N or G sequences. Numbers of strains and lineages in each province were counted and compared. Results: Six lineages (China Ⅰ-Ⅵ) were prevalent in China, with 4 found in Yunnan and Hunan. In 6 provinces, including Henan and Fujian, 3 lineages were found. In 8 provinces, including Shanghai and Jiangxi, 2 lineages were found Only 1 lineage, were found in Beijing, Tianjin and other 12 provinces. the China Ⅰ, was the dominant one in 25 provinces. In recent years, China Ⅲ had been found in wild animals and spread over livestock in Inner Mongolia and Xinjiang areas. Qinghai and Tibet had been influenced by China Ⅳ, which also been found in wild animals of Inner Mongolia and Heilongjiang. Conclusion: There had been obvious differences in lineages and strain numbers of rabies virus identified in different provinces in China.

  3. Child abuse associates with an imbalance of oligodendrocyte-lineage cells in ventromedial prefrontal white matter.

    Science.gov (United States)

    Tanti, A; Kim, J J; Wakid, M; Davoli, M-A; Turecki, G; Mechawar, N

    2017-11-21

    Child abuse (CA) is a major risk factor for depression, and strongly associates with suicidal behavior during adulthood. Neuroimaging studies have reported widespread changes in white matter integrity and brain connectivity in subjects with a history of CA. Although such observations could reflect changes in myelin and oligodendrocyte function, their cellular underpinnings have never been addressed. Using postmortem brain samples from depressed suicides with or without history of CA and matched controls (18 per group), we aimed to characterize the effects of CA on oligodendrocyte-lineage (OL) cells in the ventromedial prefrontal white matter. Using immunoblotting, double-labeling immunofluorescence and stereological estimates of stage-specific markers, we found that CA is associated with increased numbers of mature myelinating oligodendrocytes, accompanied by decreased numbers of more immature OL cells. This was paralleled by an increased expression of transcription factor MASH1, which is involved in the terminal differentiation of the OL, suggesting that CA may trigger an increased maturation, or bias the populations of OL cells toward a more mature phenotype. Some of these effects, which were absent in the brain of depressed suicides with no history of CA, were also found to recover with age, suggesting that changes in the balance of the OL may reflect a transient adaptive mechanism triggered by early-life adversity. In conclusion, our results indicate that CA in depressed suicides is associated with an imbalance of the OL in the ventromedial prefrontal white matter, an effect that could lead to myelin remodeling and long-term connectivity changes within the limbic network.Molecular Psychiatry advance online publication, 21 November 2017; doi:10.1038/mp.2017.231.

  4. Three brown trout Salmo trutta lineages in Corsica described through allozyme variation.

    Science.gov (United States)

    Berrebi, P

    2015-01-01

    The brown trout Salmo trutta is represented by three lineages in Corsica: (1) an ancestral Corsican lineage, (2) a Mediterranean lineage and (3) a recently stocked domestic Atlantic S. trutta lineage (all are interfertile); the main focus of this study was the ancestral Corsican S. trutta, but the other lineages were also considered. A total of 38 samples captured between 1993 and 1998 were analysed, with nearly 1000 individuals considered overall. The Corsican ancestral lineage (Adriatic lineage according to the mitochondrial DNA control region nomenclature, AD) mostly inhabits streams in the southern half of the island; the Mediterranean lineage (ME) is present more in the north, especially in Golu River, but most populations are an admixture of these lineages and the domestic Atlantic S. trutta (AT). Locations where the Corsican ancestral S. trutta is dominant are now protected against stocking and sometimes fishing is also forbidden. The presence of the Corsican S. trutta is unique in France. © 2014 The Fisheries Society of the British Isles.

  5. The rate and potential relevance of new mutations in a colonizing plant lineage.

    Directory of Open Access Journals (Sweden)

    Moises Exposito-Alonso

    2018-02-01

    Full Text Available By following the evolution of populations that are initially genetically homogeneous, much can be learned about core biological principles. For example, it allows for detailed studies of the rate of emergence of de novo mutations and their change in frequency due to drift and selection. Unfortunately, in multicellular organisms with generation times of months or years, it is difficult to set up and carry out such experiments over many generations. An alternative is provided by "natural evolution experiments" that started from colonizations or invasions of new habitats by selfing lineages. With limited or missing gene flow from other lineages, new mutations and their effects can be easily detected. North America has been colonized in historic times by the plant Arabidopsis thaliana, and although multiple intercrossing lineages are found today, many of the individuals belong to a single lineage, HPG1. To determine in this lineage the rate of substitutions-the subset of mutations that survived natural selection and drift-, we have sequenced genomes from plants collected between 1863 and 2006. We identified 73 modern and 27 herbarium specimens that belonged to HPG1. Using the estimated substitution rate, we infer that the last common HPG1 ancestor lived in the early 17th century, when it was most likely introduced by chance from Europe. Mutations in coding regions are depleted in frequency compared to those in other portions of the genome, consistent with purifying selection. Nevertheless, a handful of mutations is found at high frequency in present-day populations. We link these to detectable phenotypic variance in traits of known ecological importance, life history and growth, which could reflect their adaptive value. Our work showcases how, by applying genomics methods to a combination of modern and historic samples from colonizing lineages, we can directly study new mutations and their potential evolutionary relevance.

  6. ADAM10 regulates Notch function in intestinal stem cells of mice.

    Science.gov (United States)

    Tsai, Yu-Hwai; VanDussen, Kelli L; Sawey, Eric T; Wade, Alex W; Kasper, Chelsea; Rakshit, Sabita; Bhatt, Riha G; Stoeck, Alex; Maillard, Ivan; Crawford, Howard C; Samuelson, Linda C; Dempsey, Peter J

    2014-10-01

    A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a cell surface sheddase that regulates physiologic processes, including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types, but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10(f/f) mice) and conditional (Vil-CreER;Adam10(f/f) and Leucine-rich repeat-containing GPCR5 [Lgr5]-CreER;Adam10(f/f) mice) deletion of ADAM10. We performed cell lineage-tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26(NICD)), or mice with intestine-specific disruption of Notch (Rosa26(DN-MAML)), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26(NICD) and Rosa26(DN-MAML) mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage-tracing experiments showed that ADAM10 is required for survival of Lgr5(+) crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. Circulation of influenza B lineages in northern Viet Nam, 2007–2014

    Science.gov (United States)

    Le, Thi Thanh; Pham, Thu Hang; Pham, Thi Hien; Nguyen, Le Khanh Hang; Hoang, Vu Mai Phuong; Tran, Thu Huong; Nguyen, Vu Son; Ngo, Huong Giang

    2015-01-01

    Introduction Influenza B viruses circulate throughout Viet Nam, and their activities vary by region. There have been two antigenically distinct lineages of influenza B viruses co-circulating in the past 20 years; however, only one lineage is selected as a component of contemporary trivalent seasonal influenza vaccines. To improve the understanding of circulating influenza B lineages and influenza vaccine mismatches, we report the virus lineages circulating in northern Viet Nam over an eight-year period (2007–2014). Methods Lineages of 331 influenza B viruses were characterized by haemagglutination inhibition assay against standard reference ferret (Yamagata) and sheep (Victoria) antisera. Sequence analysis of the haemagglutinin gene was performed in 64 selected influenza B isolates. Results The proportion of influenza B lineages changed by year. The Yamagata lineage predominated in 2007, 2008 and 2012; the Victoria lineage predominated in 2009–2014 except 2012. The two lineages showed continuous evolution over time. The Northern Hemisphere’s influenza vaccine components were mismatched with the predominant circulating viruses in 2007, 2009 and 2014. Discussion The seasonality of influenza B activity is more variable in tropical and subtropical regions than in temperate zones. Our data showed a common co-circulation of both influenza B lineages in northern Viet Nam, and it was difficult to predict which one was the predominant lineage. Quadrivalent influenza vaccines containing both lineages may improve the effectiveness of influenza vaccine programmes in the future. PMID:26798557

  8. Colonization of collagen scaffolds by adipocytes derived from mesenchymal stem cells of the common marmoset monkey

    International Nuclear Information System (INIS)

    Bernemann, Inga; Mueller, Thomas; Blasczyk, Rainer; Glasmacher, Birgit; Hofmann, Nicola

    2011-01-01

    Highlights: → Marmoset bone marrow-derived MSCs differentiate in suspension into adipogenic, osteogenic and chondrogenic lineages. → Marmoset MSCs integrate in collagen type I scaffolds and differentiate excellently into adipogenic cells. → Common marmoset monkey is a suitable model for soft tissue engineering in human regenerative medicine. -- Abstract: In regenerative medicine, human cell replacement therapy offers great potential, especially by cell types differentiated from immunologically and ethically unproblematic mesenchymal stem cells (MSCs). In terms of an appropriate carrier material, collagen scaffolds with homogeneous pore size of 65 μm were optimal for cell seeding and cultivating. However, before clinical application and transplantation of MSC-derived cells in scaffolds, the safety and efficiency, but also possible interference in differentiation due to the material must be preclinically tested. The common marmoset monkey (Callithrix jacchus) is a preferable non-human primate animal model for this aim due to its genetic and physiological similarities to the human. Marmoset bone marrow-derived MSCs were successfully isolated, cultured and differentiated in suspension into adipogenic, osteogenic and chondrogenic lineages by defined factors. The differentiation capability could be determined by FACS. Specific marker genes for all three cell types could be detected by RT-PCR. Furthermore, MSCs seeded on collagen I scaffolds differentiated in adipogenic lineage showed after 28 days of differentiation high cell viability and homogenous distribution on the material which was validated by calcein AM and EthD staining. As proof of adipogenic cells, the intracellular lipid vesicles in the cells were stained with Oil Red O. The generation of fat vacuoles was visibly extensive distinguishable and furthermore determined on the molecular level by expression of specific marker genes. The results of the study proved both the differential potential of marmoset

  9. Colonization of collagen scaffolds by adipocytes derived from mesenchymal stem cells of the common marmoset monkey

    Energy Technology Data Exchange (ETDEWEB)

    Bernemann, Inga, E-mail: bernemann@imp.uni-hannover.de [Institute for Multiphase Processes, Leibniz Universitaet Hannover, Hannover (Germany); Mueller, Thomas; Blasczyk, Rainer [Institute for Transfusion Medicine, Hannover Medical School, Hannover (Germany); Glasmacher, Birgit; Hofmann, Nicola [Institute for Multiphase Processes, Leibniz Universitaet Hannover, Hannover (Germany)

    2011-07-29

    Highlights: {yields} Marmoset bone marrow-derived MSCs differentiate in suspension into adipogenic, osteogenic and chondrogenic lineages. {yields} Marmoset MSCs integrate in collagen type I scaffolds and differentiate excellently into adipogenic cells. {yields} Common marmoset monkey is a suitable model for soft tissue engineering in human regenerative medicine. -- Abstract: In regenerative medicine, human cell replacement therapy offers great potential, especially by cell types differentiated from immunologically and ethically unproblematic mesenchymal stem cells (MSCs). In terms of an appropriate carrier material, collagen scaffolds with homogeneous pore size of 65 {mu}m were optimal for cell seeding and cultivating. However, before clinical application and transplantation of MSC-derived cells in scaffolds, the safety and efficiency, but also possible interference in differentiation due to the material must be preclinically tested. The common marmoset monkey (Callithrix jacchus) is a preferable non-human primate animal model for this aim due to its genetic and physiological similarities to the human. Marmoset bone marrow-derived MSCs were successfully isolated, cultured and differentiated in suspension into adipogenic, osteogenic and chondrogenic lineages by defined factors. The differentiation capability could be determined by FACS. Specific marker genes for all three cell types could be detected by RT-PCR. Furthermore, MSCs seeded on collagen I scaffolds differentiated in adipogenic lineage showed after 28 days of differentiation high cell viability and homogenous distribution on the material which was validated by calcein AM and EthD staining. As proof of adipogenic cells, the intracellular lipid vesicles in the cells were stained with Oil Red O. The generation of fat vacuoles was visibly extensive distinguishable and furthermore determined on the molecular level by expression of specific marker genes. The results of the study proved both the differential

  10. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  11. CD4 T-Cell Memory Generation and Maintenance

    Science.gov (United States)

    Gasper, David J.; Tejera, Melba Marie; Suresh, M.

    2014-01-01

    Immunologic memory is the adaptive immune system's powerful ability to remember a previous antigen encounter and react with accelerated vigor upon antigen re-exposure. It provides durable protection against reinfection with pathogens and is the foundation for vaccine-induced immunity. Unlike the relatively restricted immunologic purview of memory B cells and CD8 T cells, the field of CD4 T-cell memory must account for multiple distinct lineages with diverse effector functions, the issue of lineage commitment and plasticity, and the variable distribution of memory cells within each lineage. Here, we discuss the evidence for lineage-specific CD4 T-cell memory and summarize the known factors contributing to memory-cell generation, plasticity, and long-term maintenance. PMID:24940912

  12. Evidence of multiple divergent mitochondrial lineages within the ...

    African Journals Online (AJOL)

    On this basis, the mitochondrial cytochrome c oxidase subunit 1 (COI) was used to reconstruct the phylogeny of Bicoxidens and reveal divergent lineages within the genus. Maximum likelihood and Bayesian inference analyses recovered a paraphyletic Bicoxidens phylogram with divergent lineages present in three species ...

  13. Generation of hematopoietic lineage cells from embryonic like cells

    Directory of Open Access Journals (Sweden)

    Gholam Reza Khamisipour

    2014-10-01

    Full Text Available Background: Epigenetic reprogramming of somatic cells into embryonic stem cells has attracted much attention, because of the potential for stem cell transplantation and compatibility with recipient. However, the therapeutic application of either nuclear transfer or nuclear fusion of somatic cell has been hindered by technical complications as well as ethical objections. Recently, a new method is reported whereby ectopic expression of embryonic specific transcription factors was shown to induce fibroblasts to become embryonic like SCs (induced pluripotent stem cells. A major limitation of this method is the use of potentially harmful genome integrating viruses such as reto- or lentivirus. The main aim of this investigation was generation of human hematopoietic stem cells from induced fibroblasts by safe adenovectors carrying embryonically active genes. Material and Methods: Isolated fibroblasts from foreskin were expanded and recombinant adenoviruses carrying human Sox2, Oct4, Klf4, cMyc genes were added to culture. After formation of embryonic like colonies and cell expansion, they were transferred to embryonic media without bFGF, and embryoid bodies were cultured on stromal and non-stromal differentiation media for 14 days. Results: Expression of CD34 gene and antigenic markers, CD34, CD38 & CD133 in stromal culture showed significant difference with non-differentiation and non-stromal media. Conclusion: These findings show high hematopoietic differentiation rate of Adeno-iPS cells in stromal culture and no need to use growth factors. While, there was no difference between non-differentiation and non-stromal media.

  14. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci

    Directory of Open Access Journals (Sweden)

    Salvatore Loguercio

    2018-03-01

    Full Text Available CCCTC-binding factor (CTCF is largely responsible for the 3D architecture of the genome, in concert with the action of cohesin, through the creation of long-range chromatin loops. Cohesin is hypothesized to be the main driver of these long-range chromatin interactions by the process of loop extrusion. Here, we performed ChIP-seq for CTCF and cohesin in two stages each of T and B cell differentiation and examined the binding pattern in all six antigen receptor (AgR loci in these lymphocyte progenitors and in mature T and B cells, ES cells, and fibroblasts. The four large AgR loci have many bound CTCF sites, most of which are only occupied in lymphocytes, while only the CTCF sites at the end of each locus near the enhancers or J genes tend to be bound in non-lymphoid cells also. However, despite the generalized lymphocyte restriction of CTCF binding in AgR loci, the Igκ locus is the only locus that also shows significant lineage-specificity (T vs. B cells and developmental stage-specificity (pre-B vs. pro-B in CTCF binding. We show that cohesin binding shows greater lineage- and stage-specificity than CTCF at most AgR loci, providing more specificity to the loops. We also show that the culture of pro-B cells in IL7, a common practice to expand the number of cells before ChIP-seq, results in a CTCF-binding pattern resembling pre-B cells, as well as other epigenetic and transcriptional characteristics of pre-B cells. Analysis of the orientation of the CTCF sites show that all sites within the large V portions of the Igh and TCRβ loci have the same orientation. This suggests either a lack of requirement for convergent CTCF sites creating loops, or indicates an absence of any loops between CTCF sites within the V region portion of those loci but only loops to the convergent sites at the D-J-enhancer end of each locus. The V region portions of the Igκ and TCRα/δ loci, by contrast, have CTCF sites in both orientations, providing many options for

  15. Surface Markers for Chondrogenic Determination: A Highlight of Synovium-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Douglas D. Campbell

    2012-11-01

    Full Text Available Cartilage tissue engineering is a promising field in regenerative medicine that can provide substantial relief to people suffering from degenerative cartilage disease. Current research shows the greatest chondrogenic potential for healthy articular cartilage growth with minimal hypertrophic differentiation to be from mesenchymal stem cells (MSCs of synovial origin. These stem cells have the capacity for differentiation into multiple cell lineages related to mesenchymal tissue; however, evidence exists for cell surface markers that specify a greater potential for chondrogenesis than other differentiation fates. This review will examine relevant literature to summarize the chondrogenic differentiation capacities of tested synovium-derived stem cell (SDSC surface markers, along with a discussion about various other markers that may hold potential, yet require further investigation. With this information, a potential clinical benefit exists to develop a screening system for SDSCs that will produce the healthiest articular cartilage possible.

  16. Generation of a Lineage II Powassan Virus (Deer Tick Virus) cDNA Clone: Assessment of Flaviviral Genetic Determinants of Tick and Mosquito Vector Competence.

    Science.gov (United States)

    Kenney, Joan L; Anishchenko, Michael; Hermance, Meghan; Romo, Hannah; Chen, Ching-I; Thangamani, Saravanan; Brault, Aaron C

    2018-05-21

    The Flavivirus genus comprises a diverse group of viruses that utilize a wide range of vertebrate hosts and arthropod vectors. The genus includes viruses that are transmitted solely by mosquitoes or vertebrate hosts as well as viruses that alternate transmission between mosquitoes or ticks and vertebrates. Nevertheless, the viral genetic determinants that dictate these unique flaviviral host and vector specificities have been poorly characterized. In this report, a cDNA clone of a flavivirus that is transmitted between ticks and vertebrates (Powassan lineage II, deer tick virus [DTV]) was generated and chimeric viruses between the mosquito/vertebrate flavivirus, West Nile virus (WNV), were constructed. These chimeric viruses expressed the prM and E genes of either WNV or DTV in the heterologous nonstructural (NS) backbone. Recombinant chimeric viruses rescued from cDNAs were characterized for their capacity to grow in vertebrate and arthropod (mosquito and tick) cells as well as for in vivo vector competence in mosquitoes and ticks. Results demonstrated that the NS elements were insufficient to impart the complete mosquito or tick growth phenotypes of parental viruses; however, these NS genetic elements did contribute to a 100- and 100,000-fold increase in viral growth in vitro in tick and mosquito cells, respectively. Mosquito competence was observed only with parental WNV, while infection and transmission potential by ticks were observed with both DTV and WNV-prME/DTV chimeric viruses. These data indicate that NS genetic elements play a significant, but not exclusive, role for vector usage of mosquito- and tick-borne flaviviruses.

  17. MLL-AF9-mediated immortalization of human hematopoietic cells along different lineages changes during ontogeny.

    NARCIS (Netherlands)

    Horton, S.J.; Jaques, J.; Woolthuis, C.; Dijk, J. van; Mesuraca, M.; Huls, G.A.; Morrone, G.; Vellenga, E.; Schuringa, J.J.

    2013-01-01

    The MLL-AF9 fusion gene is associated with aggressive leukemias of both the myeloid and lymphoid lineage in infants, whereas in adults, this translocation is mainly associated with acute myeloid leukemia. These observations suggest that differences exist between fetal and adult tissues in terms of

  18. Origin, lineage and function of cerebellar glia.

    Science.gov (United States)

    Buffo, Annalisa; Rossi, Ferdinando

    2013-10-01

    The glial cells of the cerebellum, and particularly astrocytes and oligodendrocytes, are characterized by a remarkable phenotypic variety, in which highly peculiar morphological features are associated with specific functional features, unique among the glial cells of the entire CNS. Here, we provide a critical report about the present knowledge of the development of cerebellar glia, including lineage relationships between cerebellar neurons, astrocytes and oligodendrocytes, the origins and the genesis of the repertoire of glial types, and the processes underlying their acquisition of mature morphological and functional traits. In parallel, we describe and discuss some fundamental roles played by specific categories of glial cells during cerebellar development. In particular, we propose that Bergmann glia exerts a crucial scaffolding activity that, together with the organizing function of Purkinje cells, is necessary to achieve the normal pattern of foliation and layering of the cerebellar cortex. Moreover, we discuss some of the functional tasks of cerebellar astrocytes and oligodendrocytes that are distinctive of cerebellar glia throughout the CNS. Notably, we report about the regulation of synaptic signalling in the molecular and granular layer mediated by Bergmann glia and parenchymal astrocytes, and the functional interaction between oligodendrocyte precursor cells and neurons. On the whole, this review provides an extensive overview of the available literature and some novel insights about the origin and differentiation of the variety of cerebellar glial cells and their function in the developing and mature cerebellum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. In vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration

    NARCIS (Netherlands)

    Rinkevich, Y.; Montoro, D.T.; Contreras-Trujillo, H.; Harari-Steinberg, O.; Newman, A.M.; Tsai, J.M.; Lim, X.; van Amerongen, R.; Bowman, A.; Januszyk, M.; Pleniceanu, O.; Nusse, R.; Longaker, M.T.; Weissman, I.L.; Dekel, B.

    2014-01-01

    The mechanism and magnitude by which the mammalian kidney generates and maintains its proximal tubules, distal tubules, and collecting ducts remain controversial. Here, we use long-term in vivo genetic lineage tracing and clonal analysis of individual cells from kidneys undergoing development,

  20. Ecological opportunity and the adaptive diversification of lineages.

    Science.gov (United States)

    Wellborn, Gary A; Langerhans, R Brian

    2015-01-01

    The tenet that ecological opportunity drives adaptive diversification has been central to theories of speciation since Darwin, yet no widely accepted definition or mechanistic framework for the concept currently exists. We propose a definition for ecological opportunity that provides an explicit mechanism for its action. In our formulation, ecological opportunity refers to environmental conditions that both permit the persistence of a lineage within a community, as well as generate divergent natural selection within that lineage. Thus, ecological opportunity arises from two fundamental elements: (1) niche availability, the ability of a population with a phenotype previously absent from a community to persist within that community and (2) niche discordance, the diversifying selection generated by the adaptive mismatch between a population's niche-related traits and the newly encountered ecological conditions. Evolutionary response to ecological opportunity is primarily governed by (1) spatiotemporal structure of ecological opportunity, which influences dynamics of selection and development of reproductive isolation and (2) diversification potential, the biological properties of a lineage that determine its capacity to diversify. Diversification under ecological opportunity proceeds as an increase in niche breadth, development of intraspecific ecotypes, speciation, and additional cycles of diversification that may themselves be triggered by speciation. Extensive ecological opportunity may exist in depauperate communities, but it is unclear whether ecological opportunity abates in species-rich communities. Because ecological opportunity should generally increase during times of rapid and multifarious environmental change, human activities may currently be generating elevated ecological opportunity - but so far little work has directly addressed this topic. Our framework highlights the need for greater synthesis of community ecology and evolutionary biology, unifying

  1. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    International Nuclear Information System (INIS)

    Takegahara, Yuki; Yamanouchi, Keitaro; Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-01-01

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies

  2. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    Energy Technology Data Exchange (ETDEWEB)

    Takegahara, Yuki; Yamanouchi, Keitaro, E-mail: akeita@mail.ecc.u-tokyo.ac.jp; Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.

  3. Bacillus anthracis in China and its relationship to worldwide lineages

    Directory of Open Access Journals (Sweden)

    Schupp James M

    2009-04-01

    Full Text Available Abstract Background The global pattern of distribution of 1033 B. anthracis isolates has previously been defined by a set of 12 conserved canonical single nucleotide polymorphisms (canSNP. These studies reinforced the presence of three major lineages and 12 sub-lineages and sub-groups of this anthrax-causing pathogen. Isolates that form the A lineage (unlike the B and C lineages have become widely dispersed throughout the world and form the basis for the geographical disposition of "modern" anthrax. An archival collection of 191 different B. anthracis isolates from China provides a glimpse into the possible role of Chinese trade and commerce in the spread of certain sub-lineages of this pathogen. Canonical single nucleotide polymorphism (canSNP and multiple locus VNTR analysis (MLVA typing has been used to examine this archival collection of isolates. Results The canSNP study indicates that there are 5 different sub-lineages/sub-groups in China out of 12 previously described world-wide canSNP genotypes. Three of these canSNP genotypes were only found in the western-most province of China, Xinjiang. These genotypes were A.Br.008/009, a sub-group that is spread across most of Europe and Asia; A.Br.Aust 94, a sub-lineage that is present in Europe and India, and A.Br.Vollum, a lineage that is also present in Europe. The remaining two canSNP genotypes are spread across the whole of China and belong to sub-group A.Br.001/002 and the A.Br.Ames sub-lineage, two closely related genotypes. MLVA typing adds resolution to the isolates in each canSNP genotype and diversity indices for the A.Br.008/009 and A.Br.001/002 sub-groups suggest that these represent older and established clades in China. Conclusion B. anthracis isolates were recovered from three canSNP sub-groups (A.Br.008/009, A.Br.Aust94, and A.Br.Vollum in the western most portion of the large Chinese province of Xinjiang. The city of Kashi in this province appears to have served as a crossroads

  4. Discovery of ectosymbiotic Endomicrobium lineages associated with protists in the gut of stolotermitid termites.

    Science.gov (United States)

    Izawa, Kazuki; Kuwahara, Hirokazu; Sugaya, Kaito; Lo, Nathan; Ohkuma, Moriya; Hongoh, Yuichi

    2017-08-01

    The genus Endomicrobium is a dominant bacterial group in the gut of lower termites, and most phylotypes are intracellular symbionts of gut protists. Here we report the discovery of Endomicrobium ectosymbionts of termite gut protists. We found that bristle-like Endomicrobium cells attached to the surface of spirotrichosomid protist cells inhabiting the termite Stolotermes victoriensis. Transmission electron microscopy revealed that a putative Endomicrobium cell likely attached to the protist surface via a protrusion from the tip of the bacterium. A phylotype, sharing 98.9% 16S rRNA sequence identity with the Endomicrobium ectosymbionts of the spirotrichosomid protists, was also found on the cell surface of the protist Trichonympha magna in the gut of the termite Porotermes adamsoni. We propose the novel species 'Candidatus Endomicrobium superficiale' for these bacteria. T. magna simultaneously harboured another Endomicrobium ectosymbiont that shared 93.5-94.2% 16S rRNA sequence identities with 'Ca. Endomicrobium superficiale'. Furthermore, Spirotrichonympha-like protists in P. adamsoni guts were associated with an Endomicrobium phylotype that possibly attached to the host flagella. A phylogenetic analysis suggested that these ectosymbiotic lineages have evolved multiple times from free-living Endomicrobium lineages and are relatively distant from the endosymbionts. Our results provide novel insights into the ecology and evolution of the Endomicrobium. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Deleterious effects on MDAMB-231 breast adenocarcinoma cell lineage submitted to Ho-166 radioactive seeds at very low activity

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, Patricia L.; Campos, Tarcisio P.R., E-mail: campos@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Sarmento, Eduardo V. [Centro de Desenvolvimento de Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Cuperschmid, Ethel M. [Universidade Federal de Minas Gerais (CEMEMOR/UFMG), Belo Horizonte, BR (Brazil). Fac. de Medicina. Centro de Memoria da Medicina

    2011-07-01

    Herein, the deleterious effect of ionizing radiation provided by Ho-166 radioactive seeds at low activity were addressed, based on experimental in vitro assays at the MDA MB231 cell lineage, a breast adenocarcinoma, compared to PBMC - peripheral blood cells. The methodology involves of the MDBMB-231 and PBMC expansion in culture in suitable environment in 30mm well plates and T-25 flasks. Seeds were synthesized with Ho-165 incorporated and characterized previously. Activation was processed at IPR1 reactor at the peripheral table, at 8h exposition. Three groups of seeds were tested: 0,34 mCi, 0,12 mCi activity, and control group. Such seeds were placed on culture and held to a period of 05 half-lives of the radionuclide. The biological responses at these exposure were documented by inverse microscopic photographic in time. Also, MTT essay were performed. A fast response in producing deleterious effects at cancer cell was observed even if for the low activity seeds. Also, a biological response dependent to a radial distance of the seed was observed. At conclusion, viability clonogenic control of MDAMB231 is identified at the exposition to Ho-166 ceramic seeds, even if at low activity of 0,1 to 0,3mCi. (author)

  6. Deleterious effects on MDAMB-231 breast adenocarcinoma cell lineage submitted to Ho-166 radioactive seeds at very low activity

    International Nuclear Information System (INIS)

    Falcao, Patricia L.; Campos, Tarcisio P.R.; Cuperschmid, Ethel M.

    2011-01-01

    Herein, the deleterious effect of ionizing radiation provided by Ho-166 radioactive seeds at low activity were addressed, based on experimental in vitro assays at the MDA MB231 cell lineage, a breast adenocarcinoma, compared to PBMC - peripheral blood cells. The methodology involves of the MDBMB-231 and PBMC expansion in culture in suitable environment in 30mm well plates and T-25 flasks. Seeds were synthesized with Ho-165 incorporated and characterized previously. Activation was processed at IPR1 reactor at the peripheral table, at 8h exposition. Three groups of seeds were tested: 0,34 mCi, 0,12 mCi activity, and control group. Such seeds were placed on culture and held to a period of 05 half-lives of the radionuclide. The biological responses at these exposure were documented by inverse microscopic photographic in time. Also, MTT essay were performed. A fast response in producing deleterious effects at cancer cell was observed even if for the low activity seeds. Also, a biological response dependent to a radial distance of the seed was observed. At conclusion, viability clonogenic control of MDAMB231 is identified at the exposition to Ho-166 ceramic seeds, even if at low activity of 0,1 to 0,3mCi. (author)

  7. The influence of life-history strategy on genetic differentiation and lineage divergence in darters (Percidae: Etheostomatinae).

    Science.gov (United States)

    Fluker, Brook L; Kuhajda, Bernard R; Harris, Phillip M

    2014-11-01

    Recent studies determined that darters with specialized breeding strategies can exhibit deep lineage divergence over fine geographic scales without apparent physical barriers to gene flow. However, the extent to which intrinsic characteristics interact with extrinsic factors to influence population divergence and lineage diversification in darters is not well understood. This study employed comparative phylogeographic and population genetic methods to investigate the influence of life history on gene flow, dispersal ability, and lineage divergence in two sympatric sister darters with differing breeding strategies. Our results revealed highly disparate phylogeographic histories, patterns of genetic structure, and dispersal abilities between the two species suggesting that life history may contribute to lineage diversification in darters, especially by limiting dispersal among large river courses. Both species also showed striking differences in demographic history, indicating that extrinsic factors differentially affected each species during the Pleistocene. Collectively, our results indicate that intrinsic and extrinsic factors have influenced levels of gene flow among populations within both species examined. However, we suggest that life-history strategy may play a more important role in lineage diversification in darters than previously appreciated, a finding that has potentially important implications for understanding diversification of the rich North American freshwater fish fauna. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  8. Is there a role for B lymphocyte chimerism in the monitoring of B-acute lymphoblastic leukemia patients receiving allogeneic stem cell transplantation?

    Directory of Open Access Journals (Sweden)

    Yi-Ning Yang

    2015-03-01

    Full Text Available Objective: To determine the sensitivity and significance of B-cell chimerism for the detection of early engraftment, transplant rejection, and disease relapse. Methods: The dynamic monitoring of lineage-specific cell subtypes (B, T, and NK cells was made in 20 B-cell acute lymphoblastic leukemia (B-ALL patients following allogeneic hematopoietic stem cell transplantation (allo-HSCT. In the early period after allo-HSCT, the latest establishment of B-cell complete chimerism (CC was observed in a majority of patients. Results: The percentage of donor cells of B-cell lineage was lower than the percent of T-cell lineage in most of the mixed chimerism (MC patients. During graft rejection, the frequency of patients with decreasing MC of B-, T- and NK-cell lineage were 5/5, 2/5, and 2/5. When disease relapsed, five patients showed a faster decrease of the donor percent of B-cells than of T- or NK-cells. Only one patient displayed a more rapid decrease in NK-cells than in T- or B-cells. Conclusion: Monitoring of B-cell chimerism after HSCT seems to be valuable for insuring complete engraftment, anticipating graft rejection, and relapse in B-ALL patients. Keywords: B cell acute lymphoblastic leukemia (B-ALL, B-cell, T-cell, Chimerism, Allogeneic hematopoietic stem cell transplantation (allo-HSCT

  9. Possible Northward Introgression of a Tropical Lineage of Rhipicephalus sanguineus Ticks at a Site of Emerging Rocky Mountain Spotted Fever.

    Science.gov (United States)

    Villarreal, Zachary; Stephenson, Nicole; Foley, Janet

    2018-06-01

    Increasing rates of Rocky Mountain spotted fever (RMSF) in the southwestern United States and northern Mexico underscore the importance of studying the ecology of the brown dog tick, Rhipicephalus sanguineus, the vector in that region. This species is reported to comprise distinct tropical and temperate lineages that may differ in vectorial capacity for RMSF and are hypothesized to be limited in their geographical range by climatic conditions. In this study, lineage was determined for ticks from 9 locations in California, Arizona, and Mexico by DNA sequencing of 12S, 16S, and D-loop ribosomal RNA. As expected, sites in northern California and eastern Arizona had temperate-lineage ticks, and phylogenetic analysis revealed considerable genetic variability among these temperate-lineage ticks. However, tropical-lineage ticks extended north from Oaxaca, Mexico were well established along the entire border from San Diego, California to western Arizona, and were found as far north as Lytle Creek near Los Angeles, California (a site where both lineages were detected). Far less genetic variability in the tropical lineage despite the large geographical distances is supportive of a hypothesis of rapid northward expansion. Discovery of the tropical lineage north of the identified climatic limitations suggests that more work is needed to characterize this tick's ecology, vectorial capacity, expansion, possible evolution, and response to climate change.

  10. Oscillatory fluid flow induces the osteogenic lineage commitment of mesenchymal stem cells: The effect of shear stress magnitude, frequency, and duration.

    Science.gov (United States)

    Stavenschi, Elena; Labour, Marie-Noelle; Hoey, David A

    2017-04-11

    A potent regulator of bone anabolism is physical loading. However, it is currently unclear whether physical stimuli such as fluid shear within the marrow cavity is sufficient to directly drive the osteogenic lineage commitment of resident mesenchymal stem cells (MSC). Therefore, the objective of the study is to employ a systematic analysis of oscillatory fluid flow (OFF) parameters predicted to occur in vivo on early MSC osteogenic responses and late stage lineage commitment. MSCs were exposed to OFF of 1Pa, 2Pa and 5Pa magnitudes at frequencies of 0.5Hz, 1Hz and 2Hz for 1h, 2h and 4h of stimulation. Our findings demonstrate that OFF elicits a positive osteogenic response in MSCs in a shear stress magnitude, frequency, and duration dependent manner that is gene specific. Based on the mRNA expression of osteogenic markers Cox2, Runx2 and Opn after short-term fluid flow stimulation, we identified that a regime of 2Pa shear magnitude and 2Hz frequency induces the most robust and reliable upregulation in osteogenic gene expression. Furthermore, long-term mechanical stimulation utilising this regime, elicits a significant increase in collagen and mineral deposition when compared to static control demonstrating that mechanical stimuli predicted within the marrow is sufficient to directly drive osteogenesis. Copyright © 2017. Published by Elsevier Ltd.

  11. Pliocene-Pleistocene lineage diversifications in the Eastern Indigo Snake (Drymarchon couperi) in the Southeastern United States.

    Science.gov (United States)

    Krysko, Kenneth L; Nuñez, Leroy P; Lippi, Catherine A; Smith, Daniel J; Granatosky, Michael C

    2016-05-01

    Indigo Snakes (Drymarchon; with five currently recognized species) occur from northern Argentina, northward to the United States in southern Texas and eastward in disjunct populations in Florida and Georgia. Based on this known allopatry and a difference in supralabial morphology the two United States taxa previously considered as subspecies within D. corais (Boie 1827), the Western Indigo Snake, D. melanurus erebennus (Cope 1860), and Eastern Indigo Snake, D. couperi (Holbrook 1842), are currently recognized as separate species. Drymarchon couperi is a Federally-designated Threatened species by the United States Fish and Wildlife Service under the Endangered Species Act, and currently being incorporated into a translocation program. This, combined with its disjunct distribution makes it a prime candidate for studying speciation and genetic divergence. In this study, we (1) test the hypothesis that D. m. erebennus and D. couperi are distinct lineages by analyzing 2411 base pairs (bp) of two mitochondrial (mtDNA) loci and one single copy nuclear (scnDNA) locus; (2) estimate the timing of speciation using a relaxed phylogenetics method to determine if Milankovitch cycles during the Pleistocene might have had an influence on lineage diversifications; (3) examine historical population demography to determine if identified lineages have undergone population declines, expansions, or remained stable during the most recent Milankovitch cycles; and (4) use this information to assist in an effective and scientifically sound translocation program. Our molecular data support the initial hypothesis that D. melanurus and D. couperi should be recognized as distinct species, but further illustrate that D. couperi is split into two distinct genetic lineages that correspond to historical biogeography and sea level changes in peninsular Florida. These two well-supported genetic lineages (herein termed Atlantic and Gulf lineages) illustrate a common biogeographic distributional break

  12. Formation and action of oxygen activated species in cell cultures

    International Nuclear Information System (INIS)

    Hoffmann, M.E.; Meneghini, R.

    1982-01-01

    The differences of hydrogen peroxide sensibility of mammal cell lineages (man, mouse, chinese hamster) in culture are studied. The cellular survival and the frequency of DNA induced breaks by hydrogen peroxide are analysed. The efficiency of elimination of DNA breaks by cells is determined. The possible relation between the cell capacity of repair and its survival to hydrogen peroxide action is also discussed. (M.A.) [pt

  13. High diversity of genetic lineages and virulence genes in nasal Staphylococcus aureus isolates from donkeys destined to food consumption in Tunisia with predominance of the ruminant associated CC133 lineage

    Directory of Open Access Journals (Sweden)

    Gharsa Haythem

    2012-10-01

    Full Text Available Abstract Background The objective of this study was to determine the genetic lineages and the incidence of antibiotic resistance and virulence determinants of nasal Staphylococcus aureus isolates of healthy donkeys destined to food consumption in Tunisia. Results Nasal swabs of 100 donkeys obtained in a large slaughterhouse in 2010 were inoculated in specific media for S. aureus and methicillin-resistant S. aureus (MRSA recovery. S. aureus was obtained in 50% of the samples, being all of isolates methicillin-susceptible (MSSA. Genetic lineages, toxin gene profile, and antibiotic resistance mechanisms were determined in recovered isolates. Twenty-five different spa-types were detected among the 50 MSSA with 9 novel spa-types. S. aureus isolates were ascribed to agr type I (37 isolates, III (7, II (4, and IV (2. Sixteen different sequence-types (STs were revealed by MLST, with seven new ones. STs belonging to clonal clomplex CC133 were majority. The gene tst was detected in 6 isolates and the gene etb in one isolate. Different combinations of enterotoxin, leukocidin and haemolysin genes were identified among S. aureus isolates. The egc-cluster-like and an incomplete egc-cluster-like were detected. Isolates resistant to penicillin, erythromycin, fusidic acid, streptomycin, ciprofloxacin, clindamycin, tetracycline, or chloramphenicol were found and the genes blaZ, erm(A, erm(C, tet(M, fusC were identified. Conclusions The nares of donkeys frequently harbor MSSA. They could be reservoirs of the ruminant-associated CC133 lineage and of toxin genes encoding TSST-1 and other virulence traits with potential implications in public health. CC133 seems to have a broader host distribution than expected.

  14. Founding Amerindian mitochondrial DNA lineages in ancient Maya from Xcaret, Quintana Roo.

    Science.gov (United States)

    González-Oliver, A; Márquez-Morfín, L; Jiménez, J C; Torre-Blanco, A

    2001-11-01

    Ancient DNA from the bone remains of 25 out of 28 pre-Columbian individuals from the Late Classic-Postclassic Maya site of Xcaret, Quintana Roo, was recovered, and mitochondrial DNA (mtDNA) was amplified by using the polymerase chain reaction. The presence of the four founding Amerindian mtDNA lineages was investigated by restriction analysis and by direct sequencing in selected individuals. The mtDNA lineages A, B, and C were found in this population. Eighty-four percent of the individuals were lineage A, whereas lineages B and C were present at low frequencies, 4% and 8%, respectively. Lineage D was absent from our sample. One individual did not possess any of the four lineages. Six skeletons out of 7 dated from the Late Classic period were haplotype A, whereas 11 skeletons out of 16 dated from the Postclassic period were also haplotype A. The distribution of mtDNA lineages in the Xcaret population contrasts sharply with that found in ancient Maya from Copán, which lack lineages A and B. On the other hand, our results resemble more closely the frequencies of mtDNA lineages found in contemporary Maya from the Yucatán Peninsula and in other Native American contemporary populations of Mesoamerican origin. Copyright 2001 Wiley-Liss, Inc.

  15. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire.

    Science.gov (United States)

    Guo, Guoji; Luc, Sidinh; Marco, Eugenio; Lin, Ta-Wei; Peng, Cong; Kerenyi, Marc A; Beyaz, Semir; Kim, Woojin; Xu, Jian; Das, Partha Pratim; Neff, Tobias; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H

    2013-10-03

    Stem cell differentiation pathways are most often studied at the population level, whereas critical decisions are executed at the level of single cells. We have established a highly multiplexed, quantitative PCR assay to profile in an unbiased manner a panel of all commonly used cell surface markers (280 genes) from individual cells. With this method, we analyzed over 1,500 single cells throughout the mouse hematopoietic system and illustrate its utility for revealing important biological insights. The comprehensive single cell data set permits mapping of the mouse hematopoietic stem cell differentiation hierarchy by computational lineage progression analysis. Further profiling of 180 intracellular regulators enabled construction of a genetic network to assign the earliest differentiation event during hematopoietic lineage specification. Analysis of acute myeloid leukemia elicited by MLL-AF9 uncovered a distinct cellular hierarchy containing two independent self-renewing lineages with different clonal activities. The strategy has broad applicability in other cellular systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Susceptibility testing of fish cell lines for virus isolation

    DEFF Research Database (Denmark)

    Ariel, Ellen; Skall, Helle Frank; Olesen, Niels Jørgen

    2009-01-01

    and laboratories, but also between lineages of the same cell line. To minimise the occurrence of false negatives in a cell culture based surveillance system, we have investigated methods, to select cell lineages that are relatively superior in their susceptibility to a panel of virus isolates. The procedures...... cell lineages, we increased the number of isolates of each virus, propagated stocks in a given cell line and tested all lineages of that line in use in the laboratory. Testing of relative cell line susceptibility between laboratories is carried out annually via the Inter-laboratory Proficiency Test...... sensitivity for surveillance purposes within a cell line and between laboratories.In terms of economic and practical considerations as well as attempting to approach a realistic test system, we suggest the optimal procedure for susceptibility testing of fish cell lines for virus isolation to be a combination...

  17. Stem Cells from Dental Pulp: What Epigenetics Can Do with Your Tooth

    Directory of Open Access Journals (Sweden)

    Beatriz A. Rodas-Junco

    2017-12-01

    Full Text Available Adult stem cells have attracted scientific attention because they are able to self-renew and differentiate into several specialized cell types. In this context, human dental tissue-derived mesenchymal stem cells (hDT-MSCs have emerged as a possible solution for repairing or regenerating damaged tissues. These cells can be isolated from primary teeth that are naturally replaced, third molars, or other dental tissues and exhibit self-renewal, a high proliferative rate and a great multilineage potential. However, the cellular and molecular mechanisms that determine lineage specification are still largely unknown. It is known that a change in cell fate requires the deletion of existing transcriptional programs, followed by the establishment of a new developmental program to give rise to a new cell lineage. Increasing evidence indicates that chromatin structure conformation can influence cell fate. In this way, reversible chemical modifications at the DNA or histone level, and combinations thereof can activate or inactivate cell-type-specific gene sequences, giving rise to an alternative cell fates. On the other hand, miRNAs are starting to emerge as a possible player in establishing particular somatic lineages. In this review, we discuss two new and promising research fields in medicine and biology, epigenetics and stem cells, by summarizing the properties of hDT-MSCs and highlighting the recent findings on epigenetic contributions to the regulation of cellular differentiation.

  18. Comparing the Dictyostelium and Entamoeba genomes reveals an ancient split in the Conosa lineage.

    Directory of Open Access Journals (Sweden)

    Jie Song

    2005-12-01

    Full Text Available The Amoebozoa are a sister clade to the fungi and the animals, but are poorly sampled for completely sequenced genomes. The social amoeba Dictyostelium discoideum and amitochondriate pathogen Entamoeba histolytica are the first Amoebozoa with genomes completely sequenced. Both organisms are classified under the Conosa subphylum. To identify Amoebozoa-specific genomic elements, we compared these two genomes to each other and to other eukaryotic genomes. An expanded phylogenetic tree built from the complete predicted proteomes of 23 eukaryotes places the two amoebae in the same lineage, although the divergence is estimated to be greater than that between animals and fungi, and probably happened shortly after the Amoebozoa split from the opisthokont lineage. Most of the 1,500 orthologous gene families shared between the two amoebae are also shared with plant, animal, and fungal genomes. We found that only 42 gene families are distinct to the amoeba lineage; among these are a large number of proteins that contain repeats of the FNIP domain, and a putative transcription factor essential for proper cell type differentiation in D. discoideum. These Amoebozoa-specific genes may be useful in the design of novel diagnostics and therapies for amoebal pathologies.

  19. Derivation of keratinocytes from chicken embryonic stem cells: Establishment and characterization of differentiated proliferative cell populations

    Directory of Open Access Journals (Sweden)

    Mathilde Couteaudier

    2015-03-01

    Full Text Available A common challenge in avian cell biology is the generation of differentiated cell-lines, especially in the keratinocyte lineage. Only a few avian cell-lines are available and very few of them show an interesting differentiation profile. During the last decade, mammalian embryonic stem cell-lines were shown to differentiate into almost all lineages, including keratinocytes. Although chicken embryonic stem cells had been obtained in the 1990s, few differentiation studies toward the ectodermal lineage were reported. Consequently, we explored the differentiation of chicken embryonic stem cells toward the keratinocyte lineage by using a combination of stromal induction, ascorbic acid, BMP4 and chicken serum. During the induction period, we observed a downregulation of pluripotency markers and an upregulation of epidermal markers. Three homogenous cell populations were derived, which were morphologically similar to chicken primary keratinocytes, displaying intracellular lipid droplets in almost every pavimentous cell. These cells could be serially passaged without alteration of their morphology and showed gene and protein expression profiles of epidermal markers similar to chicken primary keratinocytes. These cells represent an alternative to the isolation of chicken primary keratinocytes, being less cumbersome to handle and reducing the number of experimental animals used for the preparation of primary cells.

  20. Drosophila type II neuroblast lineages keep Prospero levels low to generate large clones that contribute to the adult brain central complex

    Directory of Open Access Journals (Sweden)

    Drummond Michael L

    2010-10-01

    Full Text Available Abstract Tissue homeostasis depends on the ability of stem cells to properly regulate self-renewal versus differentiation. Drosophila neural stem cells (neuroblasts are a model system to study self-renewal and differentiation. Recent work has identified two types of larval neuroblasts that have different self-renewal/differentiation properties. Type I neuroblasts bud off a series of small basal daughter cells (ganglion mother cells that each generate two neurons. Type II neuroblasts bud off small basal daughter cells called intermediate progenitors (INPs, with each INP generating 6 to 12 neurons. Type I neuroblasts and INPs have nuclear Asense and cytoplasmic Prospero, whereas type II neuroblasts lack both these transcription factors. Here we test whether Prospero distinguishes type I/II neuroblast identity or proliferation profile, using several newly characterized Gal4 lines. We misexpress prospero using the 19H09-Gal4 line (expressed in type II neuroblasts but no adjacent type I neuroblasts or 9D11-Gal4 line (expressed in INPs but not type II neuroblasts. We find that differential prospero expression does not distinguish type I and type II neuroblast identities, but Prospero regulates proliferation in both type I and type II neuroblast lineages. In addition, we use 9D11 lineage tracing to show that type II lineages generate both small-field and large-field neurons within the adult central complex, a brain region required for locomotion, flight, and visual pattern memory.

  1. High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny.

    Science.gov (United States)

    Conboy, Michael J; Karasov, Ariela O; Rando, Thomas A

    2007-05-01

    Decades ago, the "immortal strand hypothesis" was proposed as a means by which stem cells might limit acquiring mutations that could give rise to cancer, while continuing to proliferate for the life of an organism. Originally based on observations in embryonic cells, and later studied in terms of stem cell self-renewal, this hypothesis has remained largely unaccepted because of few additional reports, the rarity of the cells displaying template strand segregation, and alternative interpretations of experiments involving single labels or different types of labels to follow template strands. Using sequential pulses of halogenated thymidine analogs (bromodeoxyuridine [BrdU], chlorodeoxyuridine [CldU], and iododeoxyuridine [IdU]), and analyzing stem cell progeny during induced regeneration in vivo, we observed extraordinarily high frequencies of segregation of older and younger template strands during a period of proliferative expansion of muscle stem cells. Furthermore, template strand co-segregation was strongly associated with asymmetric cell divisions yielding daughters with divergent fates. Daughter cells inheriting the older templates retained the more immature phenotype, whereas daughters inheriting the newer templates acquired a more differentiated phenotype. These data provide compelling evidence of template strand co-segregation based on template age and associated with cell fate determination, suggest that template strand age is monitored during stem cell lineage progression, and raise important caveats for the interpretation of label-retaining cells.

  2. High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny.

    Directory of Open Access Journals (Sweden)

    Michael J Conboy

    2007-05-01

    Full Text Available Decades ago, the "immortal strand hypothesis" was proposed as a means by which stem cells might limit acquiring mutations that could give rise to cancer, while continuing to proliferate for the life of an organism. Originally based on observations in embryonic cells, and later studied in terms of stem cell self-renewal, this hypothesis has remained largely unaccepted because of few additional reports, the rarity of the cells displaying template strand segregation, and alternative interpretations of experiments involving single labels or different types of labels to follow template strands. Using sequential pulses of halogenated thymidine analogs (bromodeoxyuridine [BrdU], chlorodeoxyuridine [CldU], and iododeoxyuridine [IdU], and analyzing stem cell progeny during induced regeneration in vivo, we observed extraordinarily high frequencies of segregation of older and younger template strands during a period of proliferative expansion of muscle stem cells. Furthermore, template strand co-segregation was strongly associated with asymmetric cell divisions yielding daughters with divergent fates. Daughter cells inheriting the older templates retained the more immature phenotype, whereas daughters inheriting the newer templates acquired a more differentiated phenotype. These data provide compelling evidence of template strand co-segregation based on template age and associated with cell fate determination, suggest that template strand age is monitored during stem cell lineage progression, and raise important caveats for the interpretation of label-retaining cells.

  3. Epidermal stem cells: location, potential and contribution to cancer.

    Science.gov (United States)

    Ambler, C A; Määttä, A

    2009-01-01

    Epidermal stem cells have been classically characterized as slow-cycling, long-lived cells that reside in discrete niches in the skin. Gene expression studies of niche-resident cells have revealed a number of stem cell markers and regulators, including the Wnt/beta-catenin, Notch, p63, c-Myc and Hedgehog pathways. A new study challenges the traditional developmental paradigm of slow-cycling stem cells and rapid-cycling transit amplifying cells in some epidermal regions, and there is mounting evidence to suggest that multi-lineage epidermal progenitors can be isolated from highly proliferative, non-niche regions. Whether there is a unique microenvironment surrounding these progenitors remains to be determined. Interestingly, cancer stem cells derived from epidermal tumours exist independent of the classic skin stem cell niche, yet also have stem cell properties, including multi-lineage differentiation. This review summarizes recent studies identifying the location and regulators of mouse and human epidermal stem cells and highlights the strategies used to identify cancer stem cells, including expression of normal epidermal stem cell markers, expression of cancer stem cell markers identified in other epidermal tumours and characterization of side-population tumour cells.

  4. Protection of horses from West Nile virus Lineage 2 challenge following immunization with a whole, inactivated WNV lineage 1 vaccine.

    Science.gov (United States)

    Bowen, Richard A; Bosco-Lauth, Angela; Syvrud, Kevin; Thomas, Anne; Meinert, Todd R; Ludlow, Deborah R; Cook, Corey; Salt, Jeremy; Ons, Ellen

    2014-09-22

    Over the last years West Nile virus (WNV) lineage 2 has spread from the African to the European continent. This study was conducted to demonstrate efficacy of an inactivated, lineage 1-based, WNV vaccine (Equip WNV) against intrathecal challenge of horses with a recent isolate of lineage 2 WNV. Twenty horses, sero-negative for WNV, were enrolled and were randomly allocated to one of two treatment groups: an unvaccinated control group (T01, n=10) and a group administered with Equip WNV (T02, n=10). Horses were vaccinated at Day 0 and 21 and were challenged at day 42 with WNV lineage 2, Nea Santa/Greece/2010. Personnel performing clinical observations were blinded to treatment allocation. Sixty percent of the controls had to be euthanized after challenge compared to none of the vaccinates. A significantly lower percentage of the vaccinated animals showed clinical disease (two different clinical observations present on the same day) on six different days of study and the percentage of days with clinical disease was significantly lower in the vaccinated group. A total of 80% of the non-vaccinated horses showed viremia while only one vaccinated animal was positive by virus isolation on a single occasion. Vaccinated animals started to develop antibodies against WNV lineage 2 from day 14 (2 weeks after the first vaccination) and at day 42 (the time of onset of immunity) they had all developed a strong antibody response. Histopathology scores for all unvaccinated animals ranged from mild to very severe in each of the tissues examined (cervical spinal cord, medulla and pons), whereas in vaccinated horses 8 of 10 animals had no lesions and 2 had minimal lesions in one tissue. In conclusion, Equip WNV significantly reduced the number of viremic horses, the duration and severity of clinical signs of disease and mortality following challenge with lineage 2 WNV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Stem cells in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jeong Min [Department of Preventive and Social Dentistry and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Mantalaris, Anathathios, E-mail: yshwang@khu.ac.k [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-12-15

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  6. Stem cells in bone tissue engineering

    International Nuclear Information System (INIS)

    Seong, Jeong Min; Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik; Mantalaris, Anathathios

    2010-01-01

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  7. Association between Mycobacterium tuberculosis lineage and site of disease in Florida, 2009-2015.

    Science.gov (United States)

    Séraphin, Marie Nancy; Doggett, Richard; Johnston, Lori; Zabala, Jose; Gerace, Alexandra M; Lauzardo, Michael

    2017-11-01

    Mycobacterium tuberculosis is characterized into four global lineages with strong geographical restriction. To date one study in the United States has investigated M. tuberculosis lineage association with tuberculosis (TB) disease presentation (extra-pulmonary versus pulmonary). We update this analysis using recent (2009-2015) data from the State of Florida to measure lineage association with pulmonary TB, the infectious form of the disease. M. tuberculosis lineage was assigned based on the spacer oligonucleotide typing (spoligotyping) patterns. TB disease site was defined as exclusively pulmonary or extra-pulmonary. We used ORs to measure the association between M. tuberculosis lineages and pulmonary compared to extra-pulmonary TB. The final multivariable model was adjusted for patient socio-demographics, HIV and diabetes status. We analyzed 3061 cases, 83.4% were infected with a Euro-American lineage, 8.4% Indo-Oceanic and 8.2% East-Asian lineage. The majority of the cases (86.0%) were exclusively pulmonary. Compared to the Indo-Oceanic lineage, infection with a Euro-American (AOR=1.87, 95% CI: 1.21, 2.91) or an East-Asian (AOR=2.11, 95% CI: 1.27, 3.50) lineage favored pulmonary disease compared to extra-pulmonary. In a sub-analysis among pulmonary cases, strain lineage was not associated with sputum smear positive status, indicating that the observed association with pulmonary disease is independent of host contagiousness. As an obligate pathogen, M. tuberculosis' fitness is directly correlated to its transmission potential. In this analysis, we show that M. tuberculosis lineage is associated with pulmonary disease presentation. This association may explain the predominance in a region of certain lineages compared to others. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Lineage divergence and historical gene flow in the Chinese horseshoe bat (Rhinolophus sinicus.

    Directory of Open Access Journals (Sweden)

    Xiuguang Mao

    Full Text Available Closely related taxa living in sympatry provide good opportunities to investigate the origin of barriers to gene flow as well as the extent of reproductive isolation. The only two recognized subspecies of the Chinese rufous horseshoe bat Rhinolophus sinicus are characterized by unusual relative distributions in which R. s. septentrionalis is restricted to a small area within the much wider range of its sister taxon R. s. sinicus. To determine the history of lineage divergence and gene flow between these taxa, we applied phylogenetic, demographic and coalescent analyses to multi-locus datasets. MtDNA gene genealogies and microsatellite-based clustering together revealed three divergent lineages of sinicus, corresponding to Central China, East China and the offshore Hainan Island. However, the central lineage of sinicus showed a closer relationship with septentrionalis than with other lineages of R. s. sinicus, in contrary to morphological data. Paraphyly of sinicus could result from either past asymmetric mtDNA introgression between these two taxa, or could suggest septentrionalis evolved in situ from its more widespread sister subspecies. To test between these hypotheses, we applied coalescent-based phylogenetic reconstruction and Approximate Bayesian Computation (ABC. We found that septentrionalis is likely to be the ancestral taxon and therefore a recent origin of this subspecies can be ruled out. On the other hand, we found a clear signature of asymmetric mtDNA gene flow from septentrionalis into central populations of sinicus yet no nuclear gene flow, thus strongly pointing to historical mtDNA introgression. We suggest that the observed deeply divergent lineages within R. sinicus probably evolved in isolation in separate Pleistocene refugia, although their close phylogeographic correspondence with distinct eco-environmental zones suggests that divergent selection might also have promoted broad patterns of population genetic structure.

  9. A subset of osteoblasts expressing high endogenous levels of PPARgamma switches fate to adipocytes in the rat calvaria cell culture model.

    Directory of Open Access Journals (Sweden)

    Yuji Yoshiko

    2010-07-01

    Full Text Available Understanding fate choice and fate switching between the osteoblast lineage (ObL and adipocyte lineage (AdL is important to understand both the developmental inter-relationships between osteoblasts and adipocytes and the impact of changes in fate allocation between the two lineages in normal aging and certain diseases. The goal of this study was to determine when during lineage progression ObL cells are susceptible to an AdL fate switch by activation of endogenous peroxisome proliferator-activated receptor (PPARgamma.Multiple rat calvaria cells within the ObL developmental hierarchy were isolated by either fractionation on the basis of expression of alkaline phosphatase or retrospective identification of single cell-derived colonies, and treated with BRL-49653 (BRL, a synthetic ligand for PPARgamma. About 30% of the total single cell-derived colonies expressed adipogenic potential (defined cytochemically when BRL was present. Profiling of ObL and AdL markers by qRT-PCR on amplified cRNA from over 160 colonies revealed that BRL-dependent adipogenic potential correlated with endogenous PPARgamma mRNA levels. Unexpectedly, a significant subset of relatively mature ObL cells exhibited osteo-adipogenic bipotentiality. Western blotting and immunocytochemistry confirmed that ObL cells co-expressed multiple mesenchymal lineage determinants (runt-related transcription factor 2 (Runx2, PPARgamma, Sox9 and MyoD which localized in the cytoplasm initially, and only Runx2 translocated to the nucleus during ObL progression. Notably, however, some cells exhibited both PPARgamma and Runx2 nuclear labeling with concomitant upregulation of expression of their target genes with BRL treatment.We conclude that not only immature but a subset of relatively mature ObL cells characterized by relatively high levels of endogenous PPARgamma expression can be switched to the AdL. The fact that some ObL cells maintain capacity for adipogenic fate selection even at relatively

  10. Single cell transcriptome profiling of developing chick retinal cells.

    Science.gov (United States)

    Laboissonniere, Lauren A; Martin, Gregory M; Goetz, Jillian J; Bi, Ran; Pope, Brock; Weinand, Kallie; Ellson, Laura; Fru, Diane; Lee, Miranda; Wester, Andrea K; Liu, Peng; Trimarchi, Jeffrey M

    2017-08-15

    The vertebrate retina is a specialized photosensitive tissue comprised of six neuronal and one glial cell types, each of which develops in prescribed proportions at overlapping timepoints from a common progenitor pool. While each of these cells has a specific function contributing to proper vision in the mature animal, their differential representation in the retina as well as the presence of distinctive cellular subtypes makes identifying the transcriptomic signatures that lead to each retinal cell's fate determination and development challenging. We have analyzed transcriptomes from individual cells isolated from the chick retina throughout retinogenesis. While we focused our efforts on the retinal ganglion cells, our transcriptomes of developing chick cells also contained representation from multiple retinal cell types, including photoreceptors and interneurons at different stages of development. Most interesting was the identification of transcriptomes from individual mixed lineage progenitor cells in the chick as these cells offer a window into the cell fate decision-making process. Taken together, these data sets will enable us to uncover the most critical genes acting in the steps of cell fate determination and early differentiation of various retinal cell types. © 2017 Wiley Periodicals, Inc.

  11. Comparative phylogeography reveals deep lineages and regional evolutionary hotspots in the Mojave and Sonoran Deserts

    Science.gov (United States)

    Wood, Dustin A.; Vandergast, Amy G.; Barr, Kelly R.; Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Fisher, Robert N.

    2013-01-01

    Aim: We explored lineage diversification within desert-dwelling fauna. Our goals were (1) to determine whether phylogenetic lineages and population expansions were consistent with younger Pleistocene climate fluctuation hypotheses or much older events predicted by pre-Pleistocene vicariance hypotheses, (2) to assess concordance in spatial patterns of genetic divergence and diversity among species and (3) to identify regional evolutionary hotspots of divergence and diversity and assess their conservation status. Location: Mojave, Colorado, and Sonoran Deserts, USA. Methods: We analysed previously published gene sequence data for twelve species. We used Bayesian gene tree methods to estimate lineages and divergence times. Within each lineage, we tested for population expansion and age of expansion using coalescent approaches. We mapped interpopulation genetic divergence and intra-population genetic diversity in a GIS to identify hotspots of highest genetic divergence and diversity and to assess whether protected lands overlapped with evolutionary hotspots. Results: In seven of the 12 species, lineage divergence substantially predated the Pleistocene. Historical population expansion was found in eight species, but expansion events postdated the Last Glacial Maximum (LGM) in only four. For all species assessed, six hotspots of high genetic divergence and diversity were concentrated in the Colorado Desert, along the Colorado River and in the Mojave/Sonoran ecotone. At least some proportion of the land within each recovered hotspot was categorized as protected, yet four of the six also overlapped with major areas of human development. Main conclusions: Most of the species studied here diversified into distinct Mojave and Sonoran lineages prior to the LGM – supporting older diversification hypotheses. Several evolutionary hotspots were recovered but are not strategically paired with areas of protected land. Long-term preservation of species-level biodiversity would

  12. Prevalence and lineage diversity of avian haemosporidians from three distinct cerrado habitats in Brazil.

    Directory of Open Access Journals (Sweden)

    Nayara O Belo

    Full Text Available Habitat alteration can disrupt host-parasite interactions and lead to the emergence of new diseases in wild populations. The cerrado habitat of Brazil is being fragmented and degraded rapidly by agriculture and urbanization. We screened 676 wild birds from three habitats (intact cerrado, disturbed cerrado and transition area Amazonian rainforest-cerrado for the presence of haemosporidian parasites (Plasmodium and Haemoproteus to determine whether different habitats were associated with differences in the prevalence and diversity of infectious diseases in natural populations. Twenty one mitochondrial lineages, including 11 from Plasmodium and 10 from Haemoproteus were identified. Neither prevalence nor diversity of infections by Plasmodium spp. or Haemoproteus spp. differed significantly among the three habitats. However, 15 of the parasite lineages had not been previously described and might be restricted to these habitats or to the region. Six haemosporidian lineages previously known from other regions, particularly the Caribbean Basin, comprised 50-80% of the infections in each of the samples, indicating a regional relationship between parasite distribution and abundance.

  13. The Korarchaeota: Archaeal orphans representing an ancestral lineage of life

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, James G.; Kunin, Victor; Anderson, Iain; Barry, Kerrie; Goltsman, Eugene; Lapidus, Alla; Hedlund, Brian; Hugenholtz, Phil; Kyrpides, Nikos; Graham, David; Keller, Martin; Wanner, Gerhard; Richardson, Paul; Stetter, Karl O.

    2007-05-01

    Based on conserved cellular properties, all life on Earth can be grouped into different phyla which belong to the primary domains Bacteria, Archaea, and Eukarya. However, tracing back their evolutionary relationships has been impeded by horizontal gene transfer and gene loss. Within the Archaea, the kingdoms Crenarchaeota and Euryarchaeota exhibit a profound divergence. In order to elucidate the evolution of these two major kingdoms, representatives of more deeply diverged lineages would be required. Based on their environmental small subunit ribosomal (ss RNA) sequences, the Korarchaeota had been originally suggested to have an ancestral relationship to all known Archaea although this assessment has been refuted. Here we describe the cultivation and initial characterization of the first member of the Korarchaeota, highly unusual, ultrathin filamentous cells about 0.16 {micro}m in diameter. A complete genome sequence obtained from enrichment cultures revealed an unprecedented combination of signature genes which were thought to be characteristic of either the Crenarchaeota, Euryarchaeota, or Eukarya. Cell division appears to be mediated through a FtsZ-dependent mechanism which is highly conserved throughout the Bacteria and Euryarchaeota. An rpb8 subunit of the DNA-dependent RNA polymerase was identified which is absent from other Archaea and has been described as a eukaryotic signature gene. In addition, the representative organism possesses a ribosome structure typical for members of the Crenarchaeota. Based on its gene complement, this lineage likely diverged near the separation of the two major kingdoms of Archaea. Further investigations of these unique organisms may shed additional light onto the evolution of extant life.

  14. Evidence for a stem cell hierarchy in the adult human breast

    DEFF Research Database (Denmark)

    Villadsen, René; Fridriksdottir, Agla J; Rønnov-Jessen, Lone

    2007-01-01

    Cellular pathways that contribute to adult human mammary gland architecture and lineages have not been previously described. In this study, we identify a candidate stem cell niche in ducts and zones containing progenitor cells in lobules. Putative stem cells residing in ducts were essentially...... in laminin-rich extracellular matrix gels. Staining for the lineage markers keratins K14 and K19 further revealed multipotent cells in the stem cell zone and three lineage-restricted cell types outside this zone. Multiparameter cell sorting and functional characterization with reference to anatomical sites...

  15. Hidden Lineage Complexity of Glycan-Dependent HIV-1 Broadly Neutralizing Antibodies Uncovered by Digital Panning and Native-Like gp140 Trimer

    Directory of Open Access Journals (Sweden)

    Linling He

    2017-08-01

    Full Text Available Germline precursors and intermediates of broadly neutralizing antibodies (bNAbs are essential to the understanding of humoral response to HIV-1 infection and B-cell lineage vaccine design. Using a native-like gp140 trimer probe, we examined antibody libraries constructed from donor-17, the source of glycan-dependent PGT121-class bNAbs recognizing the N332 supersite on the HIV-1 envelope glycoprotein. To facilitate this analysis, a digital panning method was devised that combines biopanning of phage-displayed antibody libraries, 900 bp long-read next-generation sequencing, and heavy/light (H/L-paired antibodyomics. In addition to single-chain variable fragments resembling the wild-type bNAbs, digital panning identified variants of PGT124 (a member of the PGT121 class with a unique insertion in the heavy chain complementarity-determining region 1, as well as intermediates of PGT124 exhibiting notable affinity for the native-like trimer and broad HIV-1 neutralization. In a competition assay, these bNAb intermediates could effectively compete with mouse sera induced by a scaffolded BG505 gp140.681 trimer for the N332 supersite. Our study thus reveals previously unrecognized lineage complexity of the PGT121-class bNAbs and provides an array of library-derived bNAb intermediates for evaluation of immunogens containing the N332 supersite. Digital panning may prove to be a valuable tool in future studies of bNAb diversity and lineage development.

  16. Hidden Lineage Complexity of Glycan-Dependent HIV-1 Broadly Neutralizing Antibodies Uncovered by Digital Panning and Native-Like gp140 Trimer.

    Science.gov (United States)

    He, Linling; Lin, Xiaohe; de Val, Natalia; Saye-Francisco, Karen L; Mann, Colin J; Augst, Ryan; Morris, Charles D; Azadnia, Parisa; Zhou, Bin; Sok, Devin; Ozorowski, Gabriel; Ward, Andrew B; Burton, Dennis R; Zhu, Jiang

    2017-01-01

    Germline precursors and intermediates of broadly neutralizing antibodies (bNAbs) are essential to the understanding of humoral response to HIV-1 infection and B-cell lineage vaccine design. Using a native-like gp140 trimer probe, we examined antibody libraries constructed from donor-17, the source of glycan-dependent PGT121-class bNAbs recognizing the N332 supersite on the HIV-1 envelope glycoprotein. To facilitate this analysis, a digital panning method was devised that combines biopanning of phage-displayed antibody libraries, 900 bp long-read next-generation sequencing, and heavy/light (H/L)-paired antibodyomics. In addition to single-chain variable fragments resembling the wild-type bNAbs, digital panning identified variants of PGT124 (a member of the PGT121 class) with a unique insertion in the heavy chain complementarity-determining region 1, as well as intermediates of PGT124 exhibiting notable affinity for the native-like trimer and broad HIV-1 neutralization. In a competition assay, these bNAb intermediates could effectively compete with mouse sera induced by a scaffolded BG505 gp140.681 trimer for the N332 supersite. Our study thus reveals previously unrecognized lineage complexity of the PGT121-class bNAbs and provides an array of library-derived bNAb intermediates for evaluation of immunogens containing the N332 supersite. Digital panning may prove to be a valuable tool in future studies of bNAb diversity and lineage development.

  17. mtDNA variation in the Yanomami: evidence for additional New World founding lineages.

    Science.gov (United States)

    Easton, R D; Merriwether, D A; Crews, D E; Ferrell, R E

    1996-07-01

    Native Americans have been classified into four founding haplogroups with as many as seven founding lineages based on mtDNA RFLPs and DNA sequence data. mtDNA analysis was completed for 83 Yanomami from eight villages in the Surucucu and Catrimani Plateau regions of Roraima in northwestern Brazil. Samples were typed for 15 polymorphic mtDNA sites (14 RFLP sites and 1 deletion site), and a subset was sequenced for both hypervariable regions of the mitochondrial D-loop. Substantial mitochondrial diversity was detected among the Yanomami, five of seven accepted founding haplotypes and three others were observed. Of the 83 samples, 4 (4.8%) were lineage B1, 1 (1.2%) was lineage B2, 31 (37.4%) were lineage C1, 29 (34.9%) were lineage C2, 2 (2.4%) were lineage D1, 6 (7.2%) were lineage D2, 7 (8.4%) were a haplotype we designated "X6," and 3 (3.6%) were a haplotype we designated "X7." Sequence analysis found 43 haplotypes in 50 samples. B2, X6, and X7 are previously unrecognized mitochondrial founding lineage types of Native Americans. The widespread distribution of these haplotypes in the New World and Asia provides support for declaring these lineages to be New World founding types.

  18. Cell lineage in vascularized bone transplantation.

    Science.gov (United States)

    Willems, Wouter F; Larsen, Mikko; Friedrich, Patricia F; Bishop, Allen T

    2014-01-01

    The biology behind vascularized bone allotransplantation remains largely unknown. We aim to study cell traffic between donor and recipient following bone auto-, and allografting. Vascularized femoral transplantation was performed with arteriovenous bundle implantation and short-term immunosuppression. Twenty male Piebald Virol Glaxo (PVG; RT1(c) ) rats received isotransplants from female PVG (RT1(c) ) rats and 22 male PVG rats received allografts from female Dark Agouti rats (DA, RT1(a) ), representing a major histocompatibility mismatch. Both groups were randomly analyzed at 4 or 18 weeks. Bone remodeling areas (inner and outer cortical samples) were labeled and laser capture microdissected. Analysis of sex-mismatch genes by real-time reverse transcription-polymerase chain reaction provided the relative Expression Ratio (rER) of donor (female) to recipient (male) cells. The rER was 0.456 ± 0.266 at 4 weeks and 0.749 ± 0.387 at 18 weeks (p = 0.09) in allotransplants. In isotransplants, the rER was 0.412 ± 0.239 and 0.467 ± 0.252 at 4 and 18 weeks, respectively (p = 0.21). At 4 weeks, the rER at the outer cortical area of isotransplants was significantly lower in isotransplants as compared with allotransplants (0.247 ± 0.181 vs. 0.549 ± 0.184, p = 0.007). Cells in the inner and outer cortical bone remodeling areas in isotransplants were mainly donor derived (rER 0.5) at 18 weeks. Applying novel methodology, we describe detailed cell traffic in vascularized bone transplants, elaborating our comprehension on bone transplantation. Copyright © 2013 Wiley Periodicals, Inc.

  19. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    Science.gov (United States)

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Evaluation of customised lineage-specific sets of MIRU-VNTR loci for genotyping Mycobacterium tuberculosis complex isolates in Ghana.

    Science.gov (United States)

    Asante-Poku, Adwoa; Nyaho, Michael Selasi; Borrell, Sonia; Comas, Iñaki; Gagneux, Sebastien; Yeboah-Manu, Dorothy

    2014-01-01

    Different combinations of variable number of tandem repeat (VNTR) loci have been proposed for genotyping Mycobacterium tuberculosis complex (MTBC). Existing VNTR schemes show different discriminatory capacity among the six human MTBC lineages. Here, we evaluated the discriminatory power of a "customized MIRU12" loci format proposed previously by Comas et al. based on the standard 24 loci defined by Supply et al. for VNTR-typing of MTBC in Ghana. One hundred and fifty-eight MTBC isolates classified into Lineage 4 and Lineage 5 were used to compare a customized lineage-specific panel of 12 MIRU-VNTR loci ("customized MIRU-12") to the standard MIRU-15 genotyping scheme. The resolution power of each typing method was determined based on the Hunter-Gaston- Discriminatory Index (HGDI). A minimal set of customized MIRU-VNTR loci for typing Lineages 4 (Euro-American) and 5 (M. africanum West African 1) strains from Ghana was defined based on the cumulative HGDI. Among the 106 Lineage 4 strains, the customized MIRU-12 identified a total of 104 distinct genotypes consisting of 2 clusters of 2 isolates each (clustering rate 1.8%), and 102 unique strains while standard MIRU-15 yielded a total of 105 different genotypes, including 1 cluster of 2 isolates (clustering rate: 0.9%) and 104 singletons. Among, 52 Lineage 5 isolates, customized MIRU-12 genotyping defined 51 patterns with 1 cluster of 2 isolates (clustering rate: 0.9%) and 50 unique strains whereas MIRU-15 classified all 52 strains as unique. Cumulative HGDI values for customized MIRU-12 for Lineages 4 and 5 were 0.98 respectively whilst that of standard MIRU-15 was 0.99. A union of loci from the customised MIRU-12 and standard MIRU-15 revealed a set of customized eight highly discriminatory loci: 4052, 2163B, 40, 4165, 2165, 10,16 and 26 with a cumulative HGDI of 0.99 for genotyping Lineage 4 and 5 strains from Ghana.

  1. Evaluation of customised lineage-specific sets of MIRU-VNTR loci for genotyping Mycobacterium tuberculosis complex isolates in Ghana.

    Directory of Open Access Journals (Sweden)

    Adwoa Asante-Poku

    Full Text Available BACKGROUND: Different combinations of variable number of tandem repeat (VNTR loci have been proposed for genotyping Mycobacterium tuberculosis complex (MTBC. Existing VNTR schemes show different discriminatory capacity among the six human MTBC lineages. Here, we evaluated the discriminatory power of a "customized MIRU12" loci format proposed previously by Comas et al. based on the standard 24 loci defined by Supply et al. for VNTR-typing of MTBC in Ghana. METHOD: One hundred and fifty-eight MTBC isolates classified into Lineage 4 and Lineage 5 were used to compare a customized lineage-specific panel of 12 MIRU-VNTR loci ("customized MIRU-12" to the standard MIRU-15 genotyping scheme. The resolution power of each typing method was determined based on the Hunter-Gaston- Discriminatory Index (HGDI. A minimal set of customized MIRU-VNTR loci for typing Lineages 4 (Euro-American and 5 (M. africanum West African 1 strains from Ghana was defined based on the cumulative HGDI. RESULTS AND CONCLUSION: Among the 106 Lineage 4 strains, the customized MIRU-12 identified a total of 104 distinct genotypes consisting of 2 clusters of 2 isolates each (clustering rate 1.8%, and 102 unique strains while standard MIRU-15 yielded a total of 105 different genotypes, including 1 cluster of 2 isolates (clustering rate: 0.9% and 104 singletons. Among, 52 Lineage 5 isolates, customized MIRU-12 genotyping defined 51 patterns with 1 cluster of 2 isolates (clustering rate: 0.9% and 50 unique strains whereas MIRU-15 classified all 52 strains as unique. Cumulative HGDI values for customized MIRU-12 for Lineages 4 and 5 were 0.98 respectively whilst that of standard MIRU-15 was 0.99. A union of loci from the customised MIRU-12 and standard MIRU-15 revealed a set of customized eight highly discriminatory loci: 4052, 2163B, 40, 4165, 2165, 10,16 and 26 with a cumulative HGDI of 0.99 for genotyping Lineage 4 and 5 strains from Ghana.

  2. Live cell imaging reveals marked variability in myoblast proliferation and fate

    Science.gov (United States)

    2013-01-01

    Background During the process of muscle regeneration, activated stem cells termed satellite cells proliferate, and then differentiate to form new myofibers that restore the injured area. Yet not all satellite cells contribute to muscle repair. Some continue to proliferate, others die, and others become quiescent and are available for regeneration following subsequent injury. The mechanisms that regulate the adoption of different cell fates in a muscle cell precursor population remain unclear. Methods We have used live cell imaging and lineage tracing to study cell fate in the C2 myoblast line. Results Analyzing the behavior of individual myoblasts revealed marked variability in both cell cycle duration and viability, but similarities between cells derived from the same parental lineage. As a consequence, lineage sizes and outcomes differed dramatically, and individual lineages made uneven contributions toward the terminally differentiated population. Thus, the cohort of myoblasts undergoing differentiation at the end of an experiment differed dramatically from the lineages present at the beginning. Treatment with IGF-I increased myoblast number by maintaining viability and by stimulating a fraction of cells to complete one additional cell cycle in differentiation medium, and as a consequence reduced the variability of the terminal population compared with controls. Conclusion Our results reveal that heterogeneity of responses to external cues is an intrinsic property of cultured myoblasts that may be explained in part by parental lineage, and demonstrate the power of live cell imaging for understanding how muscle differentiation is regulated. PMID:23638706

  3. Homologous Recombination between Genetically Divergent Campylobacter fetus Lineages Supports Host-Associated Speciation

    Science.gov (United States)

    Duim, Birgitta; van der Graaf-van Bloois, Linda; Wagenaar, Jaap A; Zomer, Aldert L

    2018-01-01

    Abstract Homologous recombination is a major driver of bacterial speciation. Genetic divergence and host association are important factors influencing homologous recombination. Here, we study these factors for Campylobacter fetus, which shows a distinct intraspecific host dichotomy. Campylobacter fetus subspecies fetus (Cff) and venerealis are associated with mammals, whereas C. fetus subsp. testudinum (Cft) is associated with reptiles. Recombination between these genetically divergent C. fetus lineages is extremely rare. Previously it was impossible to show whether this barrier to recombination was determined by the differential host preferences, by the genetic divergence between both lineages or by other factors influencing recombination, such as restriction-modification, CRISPR/Cas, and transformation systems. Fortuitously, a distinct C. fetus lineage (ST69) was found, which was highly related to mammal-associated C. fetus, yet isolated from a chelonian. The whole genome sequences of two C. fetus ST69 isolates were compared with those of mammal- and reptile-associated C. fetus strains for phylogenetic and recombination analysis. In total, 5.1–5.5% of the core genome of both ST69 isolates showed signs of recombination. Of the predicted recombination regions, 80.4% were most closely related to Cft, 14.3% to Cff, and 5.6% to C. iguaniorum. Recombination from C. fetus ST69 to Cft was also detected, but to a lesser extent and only in chelonian-associated Cft strains. This study shows that despite substantial genetic divergence no absolute barrier to homologous recombination exists between two distinct C. fetus lineages when occurring in the same host type, which provides valuable insights in bacterial speciation and evolution. PMID:29608720

  4. Vsx2 in the zebrafish retina: restricted lineages through derepression

    Directory of Open Access Journals (Sweden)

    Higashijima Shin-ichi

    2009-04-01

    Full Text Available Abstract Background The neurons in the vertebrate retina arise from multipotent retinal progenitor cells (RPCs. It is not clear, however, which progenitors are multipotent or why they are multipotent. Results In this study we show that the homeodomain transcription factor Vsx2 is initially expressed throughout the retinal epithelium, but later it is downregulated in all but a minor population of bipolar cells and all Müller glia. The Vsx2-negative daughters of Vsx2-positive RPCs divide and give rise to all other cell types in the retina. Vsx2 is a repressor whose targets include transcription factors such as Vsx1, which is expressed in the progenitors of distinct non-Vsx2 bipolars, and the basic helix-loop-helix transcription factor Ath5, which restricts the fate of progenitors to retinal ganglion cells, horizontal cells, amacrine cells and photoreceptors fates. Foxn4, expressed in the progenitors of amacrine and horizontal cells, is also negatively regulated by Vsx2. Conclusion Our data thus suggest Vsx2-positive RPCs are fully multipotent retinal progenitors and that when Vsx2 is downregulated, Vsx2-negative progenitors escape Vsx2 repression and so are able to express factors that restrict lineage potential.

  5. Phylogenetic evidence of a new canine distemper virus lineage among domestic dogs in Colombia, South America.

    Science.gov (United States)

    Espinal, Maria A; Díaz, Francisco J; Ruiz-Saenz, Julian

    2014-08-06

    Canine distemper virus (CDV) is a highly contagious viral disease of carnivores affecting both wild and domestic populations. The hemagglutinin gene, encoding for the attachment protein that determines viral tropism, shows high heterogeneity among strains, allowing for the distinction of ten different lineages distributed worldwide according to a geographic pattern. We obtained the sequences of the full-length H gene of 15 wild-type CDV strains circulating in domestic dog populations from the Aburrá Valley, Colombia. A phylogenetic analysis of H gene nucleotide sequences from Colombian CDV viruses along with field isolates from different geographic regions and vaccine strains was performed. Colombian wild-type viruses formed a distinct monophyletic cluster clearly separated from the previously identified wild-type and vaccine lineages, suggesting that a novel genetic variant, quite different from vaccines and other lineages, is circulating among dog populations in the Aburrá Valley. We propose naming this new lineage as "South America 3". This information indicates that there are at least three different CDV lineages circulating in domestic and wild carnivore populations in South America. The first one, renamed Europe/South America 1, circulates in Brazil and Uruguay; the second, South America 2, appears to be restricted to Argentina; and the third, South America 3, which comprises all the strains characterized in this study, may also be circulating in other northern countries of South America. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...... are currently available for isolation of the mesenchymal stem cells based on their physical and immunological characteristics. Because of the ease of their isolation and their extensive differentiation potential, mesenchymal stem cells are among the first stem cell types to be introduced in the clinic. Recent...... studies have demonstrated that the life span of mesenchymal stem cells in vitro can be extended by increasing the levels of telomerase expression in the cells and thus allowing culture of large number of cells needed for therapy. In addition, it has been shown that it is possible to culture the cells...

  7. A dominant lineage of Mycoplasma bovis is associated with an increased number of severe mastitis cases in cattle.

    Science.gov (United States)

    Bürki, Sibylle; Spergser, Joachim; Bodmer, Michèle; Pilo, Paola

    2016-11-30

    Mycoplasma bovis is the most frequent etiologic agent of bovine mycoplasmosis. It causes various diseases in bovines and considerable economic loss due to the lack of effective treatment or preventive measures such as vaccination. In contrast to the US, where M. bovis-mastitis has been reported for a long time, M. bovis infections in Switzerland and Austria were predominantly associated with pneumonia and subclinical mastitis. However, since 2007 the situation has changed with the emergence of severe M. bovis-associated mastitis cases in both countries. In order to evaluate the molecular epidemiology of the bacteria isolated from these infections, recent and old Swiss, along with recent Austrian M. bovis isolates were analyzed by a typing method displaying intermediate resolution of evolutionary relationships among isolates called Multi-Locus Sequence Typing (MLST). The analysis of Swiss and Austrian M. bovis isolates revealed two major lineages. Isolates collected since 2007 in both countries cluster in the lineage I including ST5, ST33, ST34, 36, and ST38-40 (clonal complex 1), while all Swiss isolates recovered before 2007 cluster in the lineage II comprising ST17 and ST35 (clonal complex 5). Further investigations are necessary to understand if lineage I has a higher predilection or virulence toward mammary gland cells than the old lineage or if other factors are involved in the increased number of severe mastitis cases. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Efficient Recombinase-Mediated Cassette Exchange in hPSCs to Study the Hepatocyte Lineage Reveals AAVS1 Locus-Mediated Transgene Inhibition

    Directory of Open Access Journals (Sweden)

    Laura Ordovás

    2015-11-01

    Full Text Available Tools for rapid and efficient transgenesis in “safe harbor” loci in an isogenic context remain important to exploit the possibilities of human pluripotent stem cells (hPSCs. We created hPSC master cell lines suitable for FLPe recombinase-mediated cassette exchange (RMCE in the AAVS1 locus that allow generation of transgenic lines within 15 days with 100% efficiency and without random integrations. Using RMCE, we successfully incorporated several transgenes useful for lineage identification, cell toxicity studies, and gene overexpression to study the hepatocyte lineage. However, we observed unexpected and variable transgene expression inhibition in vitro, due to DNA methylation and other unknown mechanisms, both in undifferentiated hESC and differentiating hepatocytes. Therefore, the AAVS1 locus cannot be considered a universally safe harbor locus for reliable transgene expression in vitro, and using it for transgenesis in hPSC will require careful assessment of the function of individual transgenes.

  9. What's the FOX Got to Do with the KITten? Regulating the Lineage-Specific Transcriptional Landscape in GIST.

    Science.gov (United States)

    Lee, Donna M; Duensing, Anette

    2018-02-01

    Transcriptional regulation of the KIT receptor tyrosine kinase, a master regulator in gastrointestinal stromal tumors (GIST) and their precursors, the interstitial cells of Cajal (ICC), is part of a positive feedback loop involving the transcription factor ETV1. A new study now shows that the forkhead box (FOX) family transcription factor FOXF1 not only is an upstream regulator of ETV1 and hence ICC/GIST lineage-specific gene transcription, but also functions as lineage-specific pioneer factor with an active role in chromatin rearrangement to facilitate ETV1 binding and transcriptional activity. Cancer Discov; 8(2); 146-9. ©2018 AACR See related article by Ran et al., p. 234 . ©2018 American Association for Cancer Research.

  10. Neuroprotective and Antiapoptotic Activity of Lineage-Negative Bone Marrow Cells after Intravitreal Injection in a Mouse Model of Acute Retinal Injury

    Directory of Open Access Journals (Sweden)

    Anna Machalińska

    2015-01-01

    Full Text Available We investigated effects of bone marrow-derived, lineage-negative cell (Lin−BMC transplantation in acute retinal injury. Lin−BMCs were intravitreally injected into murine eyes at 24 h after NaIO3-induced injury. Morphology, function, and expression of apoptosis-related genes, including brain-derived neurotrophic factor (BDNF and its receptor, were assessed in retinas at 7 days, 28 days, and 3 months after transplantation. Moreover, global gene expression at day 7 was analyzed by RNA arrays. We observed that Lin−BMCs integrated into outer retinal layers improving morphological retinal structure and induced molecular changes such as downregulation of proapoptotic caspase-3 gene, a decrease in BAX/BCL-2 gene ratio, and significant elevation of BDNF expression. Furthermore, transplanted Lin−BMCs differentiated locally into cells with a macrophage-like phenotype. Finally, Lin−BMCs treatment was associated with generation of two distinct transcriptomic patterns. The first relates to downregulated genes associated with regulation of neuron cell death and apoptosis, response to oxidative stress/hypoxia and external stimuli, and negative regulation of cell proliferation. The second relates to upregulated genes associated with neurological system processes and sensory perception. Collectively, our data demonstrate that transplanted Lin−BMCs exert neuroprotective function against acute retinal injury and this effect may be associated with their antiapoptotic properties and ability to express neurotrophic factors.

  11. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage.

    Science.gov (United States)

    Merker, Matthias; Blin, Camille; Mona, Stefano; Duforet-Frebourg, Nicolas; Lecher, Sophie; Willery, Eve; Blum, Michael G B; Rüsch-Gerdes, Sabine; Mokrousov, Igor; Aleksic, Eman; Allix-Béguec, Caroline; Antierens, Annick; Augustynowicz-Kopeć, Ewa; Ballif, Marie; Barletta, Francesca; Beck, Hans Peter; Barry, Clifton E; Bonnet, Maryline; Borroni, Emanuele; Campos-Herrero, Isolina; Cirillo, Daniela; Cox, Helen; Crowe, Suzanne; Crudu, Valeriu; Diel, Roland; Drobniewski, Francis; Fauville-Dufaux, Maryse; Gagneux, Sébastien; Ghebremichael, Solomon; Hanekom, Madeleine; Hoffner, Sven; Jiao, Wei-wei; Kalon, Stobdan; Kohl, Thomas A; Kontsevaya, Irina; Lillebæk, Troels; Maeda, Shinji; Nikolayevskyy, Vladyslav; Rasmussen, Michael; Rastogi, Nalin; Samper, Sofia; Sanchez-Padilla, Elisabeth; Savic, Branislava; Shamputa, Isdore Chola; Shen, Adong; Sng, Li-Hwei; Stakenas, Petras; Toit, Kadri; Varaine, Francis; Vukovic, Dragana; Wahl, Céline; Warren, Robin; Supply, Philip; Niemann, Stefan; Wirth, Thierry

    2015-03-01

    Mycobacterium tuberculosis strains of the Beijing lineage are globally distributed and are associated with the massive spread of multidrug-resistant (MDR) tuberculosis in Eurasia. Here we reconstructed the biogeographical structure and evolutionary history of this lineage by genetic analysis of 4,987 isolates from 99 countries and whole-genome sequencing of 110 representative isolates. We show that this lineage initially originated in the Far East, from where it radiated worldwide in several waves. We detected successive increases in population size for this pathogen over the last 200 years, practically coinciding with the Industrial Revolution, the First World War and HIV epidemics. Two MDR clones of this lineage started to spread throughout central Asia and Russia concomitantly with the collapse of the public health system in the former Soviet Union. Mutations identified in genes putatively under positive selection and associated with virulence might have favored the expansion of the most successful branches of the lineage.

  12. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage.

    OpenAIRE

    Merker Matthias; Blin Camille; Mona Stefano; Duforet-Frebourg Nicolas; Lecher Sophie; Willery Eve; Blum Michael G B; Rüsch-Gerdes Sabine; Mokrousov Igor; Aleksic Eman; Allix-Béguec Caroline; Antierens Annick; Augustynowicz-Kopec Ewa; Ballif Marie; Barletta Francesca

    2015-01-01

    International audience; Mycobacterium tuberculosis strains of the Beijing lineage are globally distributed and are associated with the massive spread of multidrug-resistant (MDR) tuberculosis in Eurasia. Here we reconstructed the biogeographical structure and evolutionary history of this lineage by genetic analysis of 4,987 isolates from 99 countries and whole-genome sequencing of 110 representative isolates. We show that this lineage initially originated in the Far East, from where it radiat...

  13. Genetic variation in the Staphylococcus aureus 8325 strain lineage revealed by whole-genome sequencing.

    Directory of Open Access Journals (Sweden)

    Kristoffer T Bæk

    Full Text Available Staphylococcus aureus strains of the 8325 lineage, especially 8325-4 and derivatives lacking prophage, have been used extensively for decades of research. We report herein the results of our deep sequence analysis of strain 8325-4. Assignment of sequence variants compared with the reference strain 8325 (NRS77/PS47 required correction of errors in the 8325 reference genome, and reassessment of variation previously attributed to chemical mutagenesis of the restriction-defective RN4220. Using an extensive strain pedigree analysis, we discovered that 8325-4 contains 16 single nucleotide polymorphisms (SNP arising prior to the construction of RN4220. We identified 5 indels in 8325-4 compared with 8325. Three indels correspond to expected Φ11, 12, 13 excisions, one indel is explained by a sequence assembly artifact, and the final indel (Δ63bp in the spa-sarS intergenic region is common to only a sub-lineage of 8325-4 strains including SH1000. This deletion was found to significantly decrease (75% steady state sarS but not spa transcript levels in post-exponential phase. The sub-lineage 8325-4 was also found to harbor 4 additional SNPs. We also found large sequence variation between 8325, 8325-4 and RN4220 in a cluster of repetitive hypothetical proteins (SA0282 homologs near the Ess secretion cluster. The overall 8325-4 SNP set results in 17 alterations within coding sequences. Remarkably, we discovered that all tested strains of the 8325-4 lineage lack phenol soluble modulin α3 (PSMα3, a virulence determinant implicated in neutrophil chemotaxis, biofilm architecture and surface spreading. Collectively, our results clarify and define the 8325-4 pedigree and reveal clear evidence that mutations existing throughout all branches of this lineage, including the widely used RN6390 and SH1000 strains, could conceivably impact virulence regulation.

  14. Deciphering the Epigenetic Code in Embryonic and Dental Pulp Stem Cells

    Science.gov (United States)

    Bayarsaihan, Dashzeveg

    2016-01-01

    A close cooperation between chromatin states, transcriptional modulation, and epigenetic modifications is required for establishing appropriate regulatory circuits underlying self-renewal and differentiation of adult and embryonic stem cells. A growing body of research has established that the epigenome topology provides a structural framework for engaging genes in the non-random chromosomal interactions to orchestrate complex processes such as cell-matrix interactions, cell adhesion and cell migration during lineage commitment. Over the past few years, the functional dissection of the epigenetic landscape has become increasingly important for understanding gene expression dynamics in stem cells naturally found in most tissues. Adult stem cells of the human dental pulp hold great promise for tissue engineering, particularly in the skeletal and tooth regenerative medicine. It is therefore likely that progress towards pulp regeneration will have a substantial impact on the clinical research. This review summarizes the current state of knowledge regarding epigenetic cues that have evolved to regulate the pluripotent differentiation potential of embryonic stem cells and the lineage determination of developing dental pulp progenitors. PMID:28018144

  15. Cell lineage of timed cohorts of Tbx6-expressing cells in wild-type and Tbx6 mutant embryos

    Directory of Open Access Journals (Sweden)

    Daniel Concepcion

    2017-07-01

    Full Text Available Tbx6 is a T-box transcription factor with multiple roles in embryonic development as evidenced by dramatic effects on mesoderm cell fate determination, left/right axis determination, and somite segmentation in mutant mice. The expression of Tbx6 is restricted to the primitive streak and presomitic mesoderm, but some of the phenotypic features of mutants are not easily explained by this expression pattern. We have used genetically-inducible fate mapping to trace the fate of Tbx6-expressing cells in wild-type and mutant embryos to explain some of the puzzling features of the mutant phenotype. We created an inducible Tbx6-creERT2 transgenic mouse in which cre expression closely recapitulates endogenous Tbx6 expression both temporally and spatially. Using a lacZ-based Cre reporter and timed tamoxifen injections, we followed temporally overlapping cohorts of cells that had expressed Tbx6 and found contributions to virtually all mesodermally-derived embryonic structures as well as the extraembryonic allantois. Contribution to the endothelium of major blood vessels may account for the embryonic death of homozygous mutant embryos. In mutant embryos, Tbx6-creERT2-traced cells contributed to the abnormally segmented anterior somites and formed the characteristic ectopic neural tubes. Retention of cells in the mutant tail bud indicates a deficiency in migratory behavior of the mutant cells and the presence of Tbx6-creERT2-traced cells in the notochord, a node derivative provides a possible explanation for the heterotaxia seen in mutant embryos.

  16. Impact of 5-aza-2'-deoxycytidine and epigallocatechin-3-gallate for induction of human regulatory T cells.

    Science.gov (United States)

    Kehrmann, Jan; Tatura, Roman; Zeschnigk, Michael; Probst-Kepper, Michael; Geffers, Robert; Steinmann, Joerg; Buer, Jan

    2014-07-01

    The epigenetic regulation of transcription factor genes is critical for T-cell lineage specification. A specific methylation pattern within a conserved region of the lineage specifying transcription factor gene FOXP3, the Treg-specific demethylated region (TSDR), is restricted to regulatory T (Treg) cells and is required for stable expression of FOXP3 and suppressive function. We analysed the impact of hypomethylating agents 5-aza-2'-deoxycytidine and epigallocatechin-3-gallate on human CD4(+)  CD25(-) T cells for generating demethylation within FOXP3-TSDR and inducing functional Treg cells. Gene expression, including lineage-specifying transcription factors of the major T-cell lineages and their leading cytokines, functional properties and global transcriptome changes were analysed. The FOXP3-TSDR methylation pattern was determined by using deep amplicon bisulphite sequencing. 5-aza-2'-deoxycytidine induced FOXP3-TSDR hypomethylation and expression of the Treg-cell-specific genes FOXP3 and LRRC32. Proliferation of 5-aza-2'-deoxycytidine-treated cells was reduced, but the cells did not show suppressive function. Hypomethylation was not restricted to FOXP3-TSDR and expression of master transcription factors and leading cytokines of T helper type 1 and type 17 cells were induced. Epigallocatechin-3-gallate induced global DNA hypomethylation to a lesser extent than 5-aza-2'-deoxycitidine, but no relevant hypomethylation within FOXP3-TSDR or expression of Treg-cell-specific genes. Neither of the DNA methyltransferase inhibitors induced fully functional human Treg cells. 5-aza-2'-deoxycitidine-treated cells resembled Treg cells, but they did not suppress proliferation of responder cells, which is an essential capability to be used for Treg cell transfer therapy. Using a recently developed targeted demethylation technology might be a more promising approach for the generation of functional Treg cells. © 2014 John Wiley & Sons Ltd.

  17. Characterisation of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals.

    Science.gov (United States)

    Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R

    2009-01-01

    Using a milk-cell cDNA sequencing approach we characterised milk-protein sequences from two monotreme species, platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus) and found a full set of caseins and casein variants. The genomic organisation of the platypus casein locus is compared with other mammalian genomes, including the marsupial opossum and several eutherians. Physical linkage of casein genes has been seen in the casein loci of all mammalian genomes examined and we confirm that this is also observed in platypus. However, we show that a recent duplication of beta-casein occurred in the monotreme lineage, as opposed to more ancient duplications of alpha-casein in the eutherian lineage, while marsupials possess only single copies of alpha- and beta-caseins. Despite this variability, the close proximity of the main alpha- and beta-casein genes in an inverted tail-tail orientation and the relative orientation of the more distant kappa-casein genes are similar in all mammalian genome sequences so far available. Overall, the conservation of the genomic organisation of the caseins indicates the early, pre-monotreme development of the fundamental role of caseins during lactation. In contrast, the lineage-specific gene duplications that have occurred within the casein locus of monotremes and eutherians but not marsupials, which may have lost part of the ancestral casein locus, emphasises the independent selection on milk provision strategies to the young, most likely linked to different developmental strategies. The monotremes therefore provide insight into the ancestral drivers for lactation and how these have adapted in different lineages.

  18. Highly variable rates of genome rearrangements between hemiascomycetous yeast lineages.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Hemiascomycete yeasts cover an evolutionary span comparable to that of the entire phylum of chordates. Since this group currently contains the largest number of complete genome sequences it presents unique opportunities to understand the evolution of genome organization in eukaryotes. We inferred rates of genome instability on all branches of a phylogenetic tree for 11 species and calculated species-specific rates of genome rearrangements. We characterized all inversion events that occurred within synteny blocks between six representatives of the different lineages. We show that the rates of macro- and microrearrangements of gene order are correlated within individual lineages but are highly variable across different lineages. The most unstable genomes correspond to the pathogenic yeasts Candida albicans and Candida glabrata. Chromosomal maps have been intensively shuffled by numerous interchromosomal rearrangements, even between species that have retained a very high physical fraction of their genomes within small synteny blocks. Despite this intensive reshuffling of gene positions, essential genes, which cluster in low recombination regions in the genome of Saccharomyces cerevisiae, tend to remain syntenic during evolution. This work reveals that the high plasticity of eukaryotic genomes results from rearrangement rates that vary between lineages but also at different evolutionary times of a given lineage.

  19. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    International Nuclear Information System (INIS)

    William Petersen, Ole; Lind Nielsen, Helga; Gudjonsson, Thorarinn; Villadsen, René; Rønnov-Jessen, Lone; Bissell, Mina J

    2001-01-01

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently. It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer different clinical outcomes. The aim of this commentary is to describe some of the inherent complexities in defining cellular phenotypes in the microenvironment of breast cancer and to expand wherever possible on the implications for tumor suppression and progression

  20. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Ole William; Nielsen, Helga Lind; Gudjonsson, Thorarinn; Villadsen, Ren& #233; ; Ronnov-Jessen, Lone; Bissell, Mina J.

    2001-05-12

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently. It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may indeed have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer different clinical outcomes. The aim of this commentary is to describe some of the inherent complexities in defining cellular phenotypes in the microenvironment of breast cancer and to expand wherever possible on the implications for tumor suppression and progression.

  1. Specialization to Extremely Low-Nutrient Soils Limits the Nutritional Adaptability of Plant Lineages.

    Science.gov (United States)

    Verboom, G Anthony; Stock, William D; Cramer, Michael D

    2017-06-01

    Specialization to extreme selective situations promotes the acquisition of traits whose coadaptive integration may compromise evolutionary flexibility and adaptability. We test this idea in the context of the foliar stoichiometry of plants native to the South African Cape. Whereas foliar concentrations of nitrogen, phosphorus (P), potassium (K), calcium, magnesium, and sodium showed strong phylogenetic signal, as did the foliar ratios of these nutrients to P, the same was not true of the corresponding soil values. In addition, although foliar traits were often related to soil values, the coefficients of determination were consistently low. These results identify foliar stoichiometry as having a strong genetic component, with variation in foliar nutrient concentrations, especially [P] and [K], being identified as potentially adaptive. Comparison of stoichiometric variation across 11 similarly aged clades revealed consistently low foliar nutrient concentrations in lineages showing specialization to extremely low-nutrient fynbos heathlands. These lineages also display lower rates of evolution of these traits as well as a reduced tendency for foliar [P] to track soil [P]. Reduced evolutionary lability and adaptability in the nutritional traits of fynbos-specialist lineages may explain the floristic distinctness of the fynbos flora and implies a reduced scope for edaphically driven ecological speciation.

  2. Posttranscriptional (Re)programming of Cell Fate: Examples in Stem Cells, Progenitor, and Differentiated Cells.

    Science.gov (United States)

    Kanellopoulou, Chrysi; Muljo, Stefan A

    2018-01-01

    How a single genome can give rise to many different transcriptomes and thus all the different cell lineages in the human body is a fundamental question in biology. While signaling pathways, transcription factors, and chromatin architecture, to name a few determinants, have been established to play critical roles, recently, there is a growing appreciation of the roles of non-coding RNAs and RNA-binding proteins in controlling cell fates posttranscriptionally. Thus, it is vital that these emerging players are also integrated into models of gene regulatory networks that underlie programs of cellular differentiation. Sometimes, we can leverage knowledge about such posttranscriptional circuits to reprogram patterns of gene expression in meaningful ways. Here, we review three examples from our work.

  3. Unveiling current Guanaco distribution in chile based upon niche structure of phylogeographic lineages: Andean puna to subpolar forests.

    Directory of Open Access Journals (Sweden)

    Benito A González

    Full Text Available Niche description and differentiation at broad geographic scales have been recent major topics in ecology and evolution. Describing the environmental niche structure of sister taxa with known evolutionary trajectories stands out as a useful exercise in understanding niche requirements. Here we model the environmental niche structure and distribution of the recently resolved phylogeography of guanaco (Lama guanicoe lineages on the western slope of the southern Andes. Using a maximum entropy framework, field data, and information on climate, topography, human density, and vegetation cover, we identify differences between the two subspecies (L.g.cacsilensis, L.g.guanicoe and their intermediate-hybrid lineage, that most likely determine the distribution of this species. While aridity seems to be a major factor influencing the distribution at the species-level (annual precipitation <900 mm, we also document important differences in niche specificity for each subspecies, where distribution of Northern lineage is explained mainly by elevation (mean = 3,413 m and precipitation seasonality (mean = 161 mm, hybrid lineage by annual precipitation (mean = 139 mm, and Southern subspecies by annual precipitation (mean = 553 mm, precipitation seasonality (mean = 21 mm and grass cover (mean = 8.2%. Among lineages, we detected low levels of niche overlap: I (Similarity Index = 0.06 and D (Schoener's Similarity Index = 0.01; and higher levels when comparing Northern and Southern subspecies with hybrids lineage ( I = 0.32-0.10 and D = 0.12-0.03, respectively. This suggests that important ecological and/or evolutionary processes are shaping the niche of guanacos in Chile, producing discrepancies when comparing range distribution at the species-level (81,756 km(2 with lineages-level (65,321 km(2. The subspecies-specific description of niche structure is provided here based upon detailed spatial distribution of the lineages of guanacos in Chile. Such description

  4. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella.

    Science.gov (United States)

    Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C; Dehio, Christoph

    2011-02-10

    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens

  5. Lineage analysis of quiescent regenerative stem cells in the adult brain by genetic labelling reveals spatially restricted neurogenic niches in the olfactory bulb.

    Science.gov (United States)

    Giachino, Claudio; Taylor, Verdon

    2009-07-01

    The subventricular zone (SVZ) of the lateral ventricles is the major neurogenic region in the adult mammalian brain, harbouring neural stem cells within defined niches. The identity of these stem cells and the factors regulating their fate are poorly understood. We have genetically mapped a population of Nestin-expressing cells during postnatal development to study their potential and fate in vivo. Taking advantage of the recombination characteristics of a nestin::CreER(T2) allele, we followed a subpopulation of neural stem cells and traced their fate in a largely unrecombined neurogenic niche. Perinatal nestin::CreER(T2)-expressing cells give rise to multiple glial cell types and neurons, as well as to stem cells of the adult SVZ. In the adult SVZ nestin::CreER(T2)-expressing neural stem cells give rise to several neuronal subtypes in the olfactory bulb (OB). We addressed whether the same population of neural stem cells play a role in SVZ regeneration. Following anti-mitotic treatment to eliminate rapidly dividing progenitors, relatively quiescent nestin::CreER(T2)-targeted cells are spared and contribute to SVZ regeneration, generating new proliferating precursors and neuroblasts. Finally, we have identified neurogenic progenitors clustered in ependymal-like niches within the rostral migratory stream (RMS) of the OB. These OB-RMS progenitors generate neuroblasts that, upon transplantation, graft, migrate and differentiate into granule and glomerular neurons. In summary, using conditional lineage tracing we have identified neonatal cells that are the source of neurogenic and regenerative neural stem cells in the adult SVZ and occupy a novel neurogenic niche in the OB.

  6. Deciphering the recent phylogenetic expansion of the originally deeply rooted Mycobacterium tuberculosis lineage 7.

    Science.gov (United States)

    Yimer, Solomon A; Namouchi, Amine; Zegeye, Ephrem Debebe; Holm-Hansen, Carol; Norheim, Gunnstein; Abebe, Markos; Aseffa, Abraham; Tønjum, Tone

    2016-06-30

    A deeply rooted phylogenetic lineage of Mycobacterium tuberculosis (M. tuberculosis) termed lineage 7 was discovered in Ethiopia. Whole genome sequencing of 30 lineage 7 strains from patients in Ethiopia was performed. Intra-lineage genome variation was defined and unique characteristics identified with a focus on genes involved in DNA repair, recombination and replication (3R genes). More than 800 mutations specific to M. tuberculosis lineage 7 strains were identified. The proportion of non-synonymous single nucleotide polymorphisms (nsSNPs) in 3R genes was higher after the recent expansion of M. tuberculosis lineage 7 strain started. The proportion of nsSNPs in genes involved in inorganic ion transport and metabolism was significantly higher before the expansion began. A total of 22346 bp deletions were observed. Lineage 7 strains also exhibited a high number of mutations in genes involved in carbohydrate transport and metabolism, transcription, energy production and conversion. We have identified unique genomic signatures of the lineage 7 strains. The high frequency of nsSNP in 3R genes after the phylogenetic expansion may have contributed to recent variability and adaptation. The abundance of mutations in genes involved in inorganic ion transport and metabolism before the expansion period may indicate an adaptive response of lineage 7 strains to enable survival, potentially under environmental stress exposure. As lineage 7 strains originally were phylogenetically deeply rooted, this may indicate fundamental adaptive genomic pathways affecting the fitness of M. tuberculosis as a species.

  7. Dynamic EBF1 occupancy directs sequential epigenetic and transcriptional events in B-cell programming.

    Science.gov (United States)

    Li, Rui; Cauchy, Pierre; Ramamoorthy, Senthilkumar; Boller, Sören; Chavez, Lukas; Grosschedl, Rudolf

    2018-01-15

    B-cell fate determination requires the action of transcription factors that operate in a regulatory network to activate B-lineage genes and repress lineage-inappropriate genes. However, the dynamics and hierarchy of events in B-cell programming remain obscure. To uncouple the dynamics of transcription factor expression from functional consequences, we generated induction systems in developmentally arrested Ebf1 -/- pre-pro-B cells to allow precise experimental control of EBF1 expression in the genomic context of progenitor cells. Consistent with the described role of EBF1 as a pioneer transcription factor, we show in a time-resolved analysis that EBF1 occupancy coincides with EBF1 expression and precedes the formation of chromatin accessibility. We observed dynamic patterns of EBF1 target gene expression and sequential up-regulation of transcription factors that expand the regulatory network at the pro-B-cell stage. A continuous EBF1 function was found to be required for Cd79a promoter activity and for the maintenance of an accessible chromatin domain that is permissive for binding of other transcription factors. Notably, transient EBF1 occupancy was detected at lineage-inappropriate genes prior to their silencing in pro-B cells. Thus, persistent and transient functions of EBF1 allow for an ordered sequence of epigenetic and transcriptional events in B-cell programming. © 2018 Li et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Photobiomodulation of distinct lineages of human dermal fibroblasts: a rational approach towards the selection of effective light parameters for skin rejuvenation and wound healing

    Science.gov (United States)

    Mignon, Charles; Uzunbajakava, Natallia E.; Raafs, Bianca; Moolenaar, Mitchel; Botchkareva, Natalia V.; Tobin, Desmond J.

    2016-03-01

    Distinct lineages of human dermal fibroblasts play complementary roles in skin rejuvenation and wound healing, which makes them a target of phototherapy. However, knowledge about differential responses of specific cell lineages to different light parameters and moreover the actual molecular targets remain to be unravelled. The goal of this study was to investigate the impact of a range of parameters of light on the metabolic activity, collagen production, and cell migration of distinct lineages of human dermal fibroblasts. A rational approach was used to identify parameters with high therapeutic potential. Fibroblasts exhibited both inhibitory and cytotoxic change when exposed to a high dose of blue and cyan light in tissue culture medium containing photo-reactive species, but were stimulated by high dose red and near infrared light. Cytotoxic effects were eliminated by refreshing the medium after light exposure by removing potential ROS formed by extracellular photo-reactive species. Importantly, distinct lineages of fibroblasts demonstrated opposite responses to low dose blue light treatment when refreshing the medium after exposure. Low dose blue light treatment also significantly increased collagen production by papillary fibroblasts; high dose significantly retarded closure of the scratch wound without signs of cytotoxicity, and this is likely to have involved effects on both cell migration and proliferation. We recommend careful selection of fibroblast subpopulations and their culture conditions, a systematic approach in choosing and translating treatment parameters, and pursuit of fundamental research on identification of photoreceptors and triggered molecular pathways, while seeking effective parameters to address different stages of skin rejuvenation and wound healing.

  9. Evolution of the MAGUK protein gene family in premetazoan lineages

    Directory of Open Access Journals (Sweden)

    Ruiz-Trillo Iñaki

    2010-04-01

    Full Text Available Abstract Background Cell-to-cell communication is a key process in multicellular organisms. In multicellular animals, scaffolding proteins belonging to the family of membrane-associated guanylate kinases (MAGUK are involved in the regulation and formation of cell junctions. These MAGUK proteins were believed to be exclusive to Metazoa. However, a MAGUK gene was recently identified in an EST survey of Capsaspora owczarzaki, an unicellular organism that branches off near the metazoan clade. To further investigate the evolutionary history of MAGUK, we have undertook a broader search for this gene family using available genomic sequences of different opisthokont taxa. Results Our survey and phylogenetic analyses show that MAGUK proteins are present not only in Metazoa, but also in the choanoflagellate Monosiga brevicollis and in the protist Capsaspora owczarzaki. However, MAGUKs are absent from fungi, amoebozoans or any other eukaryote. The repertoire of MAGUKs in Placozoa and eumetazoan taxa (Cnidaria + Bilateria is quite similar, except for one class that is missing in Trichoplax, while Porifera have a simpler MAGUK repertoire. However, Vertebrata have undergone several independent duplications and exhibit two exclusive MAGUK classes. Three different MAGUK types are found in both M. brevicollis and C. owczarzaki: DLG, MPP and MAGI. Furthermore, M. brevicollis has suffered a lineage-specific diversification. Conclusions The diversification of the MAGUK protein gene family occurred, most probably, prior to the divergence between Metazoa+choanoflagellates and the Capsaspora+Ministeria clade. A MAGI-like, a DLG-like, and a MPP-like ancestral genes were already present in the unicellular ancestor of Metazoa, and new gene members have been incorporated through metazoan evolution within two major periods, one before the sponge-eumetazoan split and another within the vertebrate lineage. Moreover, choanoflagellates have suffered an independent MAGUK

  10. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production.

    Science.gov (United States)

    Zhu, Jinfang

    2015-09-01

    Interleukin-4 (IL-4), IL-5 and IL-13, the signature cytokines that are produced during type 2 immune responses, are critical for protective immunity against infections of extracellular parasites and are responsible for asthma and many other allergic inflammatory diseases. Although many immune cell types within the myeloid lineage compartment including basophils, eosinophils and mast cells are capable of producing at least one of these cytokines, the production of these "type 2 immune response-related" cytokines by lymphoid lineages, CD4 T helper 2 (Th2) cells and type 2 innate lymphoid cells (ILC2s) in particular, are the central events during type 2 immune responses. In this review, I will focus on the signaling pathways and key molecules that determine the differentiation of naïve CD4 T cells into Th2 cells, and how the expression of Th2 cytokines, especially IL-4 and IL-13, is regulated in Th2 cells. The similarities and differences in the differentiation of Th2 cells, IL-4-producing T follicular helper (Tfh) cells and ILC2s as well as their relationships will also be discussed. Published by Elsevier Ltd.

  11. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production

    Science.gov (United States)

    Zhu, Jinfang

    2015-01-01

    Interleukin-4 (IL-4), IL-5 and IL-13, the signature cytokines that are produced during type 2 immune responses, are critical for protective immunity against infections of extracellular parasites and are responsible for asthma and many other allergic inflammatory diseases. Although many immune cell types within the myeloid lineage compartment including basophils, eosinophils and mast cells are capable of producing at least one of these cytokines, the production of these “type 2 immune response-related” cytokines by lymphoid lineages, CD4 T helper 2 (Th2) cells and type 2 innate lymphoid cells (ILC2s) in particular, are the central events during type 2 immune responses. In this review, I will focus on the signaling pathways and key molecules that determine the differentiation of naïve CD4 T cells into Th2 cells, and how the expression of Th2 cytokines, especially IL-4 and IL-13, is regulated in Th2 cells. The similarities and differences in the differentiation of Th2 cells, IL-4-producing T follicular helper (Tfh) cells and ILC2s as well as their relationships will also be discussed. PMID:26044597

  12. Two Hemocyte Lineages Exist in Silkworm Larval Hematopoietic Organ

    OpenAIRE

    Nakahara, Yuichi; Kanamori, Yasushi; Kiuchi, Makoto; Kamimura, Manabu

    2010-01-01

    BACKGROUND: Insects have multiple hemocyte morphotypes with different functions as do vertebrates, however, their hematopoietic lineages are largely unexplored with the exception of Drosophila melanogaster. METHODOLOGY/PRINCIPAL FINDINGS: To study the hematopoietic lineage of the silkworm, Bombyx mori, we investigated in vivo and in vitro differentiation of hemocyte precursors in the hematopoietic organ (HPO) into the four mature hemocyte subsets, namely, plasmatocytes, granulocytes, oenocyto...

  13. Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer.

    Science.gov (United States)

    Ge, Yejing; Fuchs, Elaine

    2018-05-01

    Stem cells (SCs) govern tissue homeostasis and wound repair. They reside within niches, the special microenvironments within tissues that control SC lineage outputs. Upon injury or stress, new signals emanating from damaged tissue can divert nearby cells into adopting behaviours that are not part of their homeostatic repertoire. This behaviour, known as SC plasticity, typically resolves as wounds heal. However, in cancer, it can endure. Recent studies have yielded insights into the orchestrators of maintenance and lineage commitment for SCs belonging to three mammalian tissues: the haematopoietic system, the skin epithelium and the intestinal epithelium. We delineate the multifactorial determinants and general principles underlying the remarkable facets of SC plasticity, which lend promise for regenerative medicine and cancer therapeutics.

  14. NKT Cell-TCR Expression Activates Conventional T Cells in Vivo, but Is Largely Dispensable for Mature NKT Cell Biology

    Science.gov (United States)

    Vahl, J. Christoph; Heger, Klaus; Knies, Nathalie; Hein, Marco Y.; Boon, Louis; Yagita, Hideo; Polic, Bojan; Schmidt-Supprian, Marc

    2013-01-01

    Natural killer T (NKT) cell development depends on recognition of self-glycolipids via their semi-invariant Vα14i-TCR. However, to what extent TCR-mediated signals determine identity and function of mature NKT cells remains incompletely understood. To address this issue, we developed a mouse strain allowing conditional Vα14i-TCR expression from within the endogenous Tcrα locus. We demonstrate that naïve T cells are activated upon replacement of their endogenous TCR repertoire with Vα14i-restricted TCRs, but they do not differentiate into NKT cells. On the other hand, induced TCR ablation on mature NKT cells did not affect their lineage identity, homeostasis, or innate rapid cytokine secretion abilities. We therefore propose that peripheral NKT cells become unresponsive to and thus are independent of their autoreactive TCR. PMID:23853545

  15. NKT cell-TCR expression activates conventional T cells in vivo, but is largely dispensable for mature NKT cell biology.

    Directory of Open Access Journals (Sweden)

    J Christoph Vahl

    Full Text Available Natural killer T (NKT cell development depends on recognition of self-glycolipids via their semi-invariant Vα14i-TCR. However, to what extent TCR-mediated signals determine identity and function of mature NKT cells remains incompletely understood. To address this issue, we developed a mouse strain allowing conditional Vα14i-TCR expression from within the endogenous Tcrα locus. We demonstrate that naïve T cells are activated upon replacement of their endogenous TCR repertoire with Vα14i-restricted TCRs, but they do not differentiate into NKT cells. On the other hand, induced TCR ablation on mature NKT cells did not affect their lineage identity, homeostasis, or innate rapid cytokine secretion abilities. We therefore propose that peripheral NKT cells become unresponsive to and thus are independent of their autoreactive TCR.

  16. Regenerant arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes

    KAUST Repository

    Jiang, Caifu

    2011-07-28

    Multicellular organisms can be regenerated from totipotent differentiated somatic cell or nuclear founders [1-3]. Organisms regenerated from clonally related isogenic founders might a priori have been expected to be phenotypically invariant. However, clonal regenerant animals display variant phenotypes caused by defective epigenetic reprogramming of gene expression [2], and clonal regenerant plants exhibit poorly understood heritable phenotypic ("somaclonal") variation [4-7]. Here we show that somaclonal variation in regenerant Arabidopsis lineages is associated with genome-wide elevation in DNA sequence mutation rate. We also show that regenerant mutations comprise a distinctive molecular spectrum of base substitutions, insertions, and deletions that probably results from decreased DNA repair fidelity. Finally, we show that while regenerant base substitutions are a likely major genetic cause of the somaclonal variation of regenerant Arabidopsis lineages, transposon movement is unlikely to contribute substantially to that variation. We conclude that the phenotypic variation of regenerant plants, unlike that of regenerant animals, is substantially due to DNA sequence mutation. 2011 Elsevier Ltd. All rights reserved.

  17. Regenerant arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes

    KAUST Repository

    Jiang, Caifu; Mithani, Aziz; Gan, Xiangchao; Belfield, Eric J.; Klingler, John  P.; Zhu, Jian-Kang; Ragoussis, Jiannis; Mott, Richard; Harberd, Nicholas  P.

    2011-01-01

    Multicellular organisms can be regenerated from totipotent differentiated somatic cell or nuclear founders [1-3]. Organisms regenerated from clonally related isogenic founders might a priori have been expected to be phenotypically invariant. However, clonal regenerant animals display variant phenotypes caused by defective epigenetic reprogramming of gene expression [2], and clonal regenerant plants exhibit poorly understood heritable phenotypic ("somaclonal") variation [4-7]. Here we show that somaclonal variation in regenerant Arabidopsis lineages is associated with genome-wide elevation in DNA sequence mutation rate. We also show that regenerant mutations comprise a distinctive molecular spectrum of base substitutions, insertions, and deletions that probably results from decreased DNA repair fidelity. Finally, we show that while regenerant base substitutions are a likely major genetic cause of the somaclonal variation of regenerant Arabidopsis lineages, transposon movement is unlikely to contribute substantially to that variation. We conclude that the phenotypic variation of regenerant plants, unlike that of regenerant animals, is substantially due to DNA sequence mutation. 2011 Elsevier Ltd. All rights reserved.

  18. Response pattern's of immunoglobulins evaluation in different lineages of mice infected with T. cruzi

    International Nuclear Information System (INIS)

    Silva, Andreia dos Santos

    2006-01-01

    The present work has employed different mice lineages (A/J, C57BL/6, B6AF1, BXA1 and BXA2) that were challenged with different doses of T. cruzi. The objective was to evaluate the pattern of immunoglobulins response presented by resistant and susceptible mice to T. cruzi as well as the lineages developed from the matting between them. So that evaluation was done by using lineages serums' sample, analyzed by ELISA's method. In agreement with the results observed all the lineages presented higher response to IgG2a and IgG2b, if compared with the titles to IgG1. IgG1 immunoglobulins involve a type Th2 pattern response which expressed allergic immunological responses, while IgG2 involves a pattern response Th1 that expresses cellular immunological response. The different lineages used in this research also presented different immunological response pattern by the infection with T. cruzi. Mice of the lineage C57BL/6 are resistant to the infection, while the animals of the lineage A/J are susceptible. The animals of the lineage B6AF1 are more resistant to the infection than their original parental C57BL/6. The immunological response developed by hybrid mice present traces of both susceptible and resistant parental A/J and C57BL/6, respectively. The animals of the lineage BXA1 can be considered resistant to the infection, but they don't present the same control as that presented by those of the lineages B6AF1 and C57BL/6. The animals of the lineage BXA2 can be considered susceptible to the infection, but they can control it for a long period, surviving like this, longer than the animals of the lineage A/J. In addition it was observed that the IgG2b immunoglobulins are very important to the resistance of mice to T. cruzi infection. (author)

  19. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development.

    Science.gov (United States)

    Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A

    2012-12-10

    Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.

  20. Adaptive and Pathogenic Responses to Stress by Stem Cells during Development

    Directory of Open Access Journals (Sweden)

    Daniel A. Rappolee

    2012-12-01

    Full Text Available Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.

  1. Home Bodies and Wanderers: Sympatric Lineages of the Deep-Sea Black Coral Leiopathes glaberrima.

    Directory of Open Access Journals (Sweden)

    Dannise V Ruiz-Ramos

    Full Text Available Colonial corals occur in a wide range of marine benthic habitats from the shallows to the deep ocean, often defining the structure of their local community. The black coral Leiopathes glaberrima is a long-lived foundation species occurring on carbonate outcrops in the Northern Gulf of Mexico (GoM. Multiple color morphs of L. glaberrima grow sympatrically in the region. Morphological, mitochondrial and nuclear ribosomal markers supported the hypothesis that color morphs constituted a single biological species and that colonies, regardless of color, were somewhat genetically differentiated east and west of the Mississippi Canyon. Ten microsatellite loci were used to determine finer-scale population genetic structure and reproductive characteristics. Gene flow was disrupted between and within two nearby (distance = 36.4 km hardground sites and two sympatric microsatellite lineages, which might constitute cryptic species, were recovered. Lineage one was outbred and found in all sampled locations (N = 5 across 765.6 km in the Northern Gulf of Mexico. Lineage two was inbred, reproducing predominantly by fragmentation, and restricted to sites around Viosca Knoll. In these sites the lineages and the color phenotypes occurred in different microhabitats, and models of maximum entropy suggested that depth and slope influence the distribution of the color phenotypes within the Vioska Knolls. We conclude that L. glaberrima is phenotypically plastic with a mixed reproductive strategy in the Northern GoM. Such strategy might enable this long-lived species to balance local recruitment with occasional long-distance dispersal to colonize new sites in an environment where habitat is limited.

  2. Autologous blood cell therapies from pluripotent stem cells

    Science.gov (United States)

    Lengerke, Claudia; Daley, George Q.

    2010-01-01

    Summary The discovery of human embryonic stem cells (hESCs) raised promises for a universal resource for cell based therapies in regenerative medicine. Recently, fast-paced progress has been made towards the generation of pluripotent stem cells (PSCs) amenable for clinical applications, culminating in reprogramming of adult somatic cells to autologous PSCs that can be indefinitely expanded in vitro. However, besides the efficient generation of bona fide, clinically safe PSCs (e.g. without the use of oncoproteins and gene transfer based on viruses inserting randomly into the genome), a major challenge in the field remains how to efficiently differentiate PSCs to specific lineages and how to select for cells that will function normally upon transplantation in adults. In this review, we analyse the in vitro differentiation potential of PSCs to the hematopoietic lineage discussing blood cell types that can be currently obtained, limitations in derivation of adult-type HSCs and prospects for clinical application of PSCs-derived blood cells. PMID:19910091

  3. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    Science.gov (United States)

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin + ) and leukemia stem cell population (CD34 + CD38 - Lin -/low ). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G 0 /G 1 (7μM) and G 2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Dissection of a stem cell hierarchy in the human breast

    DEFF Research Database (Denmark)

    Rubner Fridriksdottir, Agla Jael

    and apoptosis during each menstrual cycle. These changes are most prominent during pregnancy, lactation and involution after breast feeding. These highly dynamic changes are thought to rely on the presence of a breast epithelial stem cell population (reviewed in (Fridriksdottir et al. 2005)). Nevertheless......, cellular pathways that contribute to adult human breast gland architecture and cell lineages have not been described. Here, I identify a candidate stem cell niche in ducts, and zones containing progenitor cells in lobules (Villadsen and Fridriksdottir et al. 2007). Putative stem cells residing in ducts......-rich extracellular matrix gel. Staining for the epithelial lineage markers, cytokeratins K14 and K19, further reveals multipotent cells in the stem cell zone and three lineage- restricted cell types outside this zone. Multiparameter cell sorting and functional characterization with reference to anatomical sites...

  5. CD4+/CD8+ double-positive T cells

    DEFF Research Database (Denmark)

    Overgaard, Nana H; Jung, Ji-Won; Steptoe, Raymond J

    2015-01-01

    CD4(+)/CD8(+) DP thymocytes are a well-described T cell developmental stage within the thymus. However, once differentiated, the CD4(+) lineage or the CD8(+) lineage is generally considered to be fixed. Nevertheless, mature CD4(+)/CD8(+) DP T cells have been described in the blood and peripheral...... cells, CD4(+)/CD8(+) T cell populations, outside of the thymus, have recently been described to express concurrently ThPOK and Runx3. Considerable heterogeneity exists within the CD4(+)/CD8(+) DP T cell pool, and the function of CD4(+)/CD8(+) T cell populations remains controversial, with conflicting...... reports describing cytotoxic or suppressive roles for these cells. In this review, we describe how transcriptional regulation, lineage of origin, heterogeneity of CD4 and CD8 expression, age, species, and specific disease settings influence the functionality of this rarely studied T cell population....

  6. Subcellular Lipid Droplets in Vanilla Leaf Epidermis and Avocado Mesocarp Are Coated with Oleosins of Distinct Phylogenic Lineages1[OPEN

    Science.gov (United States)

    2016-01-01

    Subcellular lipid droplets (LDs) in diverse plant cells and species are coated with stabilizing oleosins of at least five phylogenic lineages and perform different functions. We examined two types of inadequately studied LDs for coated oleosins and their characteristics. The epidermis but not mesophyll of leaves of vanilla (Vanilla planifolia) and most other Asparagales species contained solitary and clustered LDs (avocado (Persea americana) and other Lauraceae species possessed large LDs, which likely function in attracting animals for seed dispersal. They contained transcripts of oleosin of a novel M phylogenic lineage. Each avocado mesocarp fatty cell possessed one to several large LDs (5 to 20 μm) and at their periphery, numerous small LDs (<0.5 μm). Immuno-confocal laser scanning microscopy revealed that oleosin was present mostly on the small LDs. LDs in isolated fractions coalesced rapidly, and the fraction contained oleosin and several other proteins and triacylglycerols as the main lipids. These two new types of oleosin-LDs exemplify the evolutionary plasticity of oleosins-LDs in generating novel functions in diverse cell types and species. PMID:27208281

  7. The Bone Marrow-Derived Stromal Cells

    DEFF Research Database (Denmark)

    Tencerova, Michaela; Kassem, Moustapha

    2016-01-01

    Bone marrow (BM) microenvironment represents an important compartment of bone that regulates bone homeostasis and the balance between bone formation and bone resorption depending on the physiological needs of the organism. Abnormalities of BM microenvironmental dynamics can lead to metabolic bone...... diseases. BM stromal cells (also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell (BMSC)] are multipotent stem cells located within BM stroma and give rise to osteoblasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage commitment to adipocytic lineage...

  8. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture

    International Nuclear Information System (INIS)

    Wei, Yan; Li, Yuan; Chen, Chao; Stoelzel, Katharina; Kaufmann, Andreas M.; Albers, Andreas E.

    2011-01-01

    Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined using reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.

  9. The role of H1 linker histone subtypes in preserving the fidelity of elaboration of mesendodermal and neuroectodermal lineages during embryonic development.

    Directory of Open Access Journals (Sweden)

    Giang D Nguyen

    Full Text Available H1 linker histone proteins are essential for the structural and functional integrity of chromatin and for the fidelity of additional epigenetic modifications. Deletion of H1c, H1d and H1e in mice leads to embryonic lethality by mid-gestation with a broad spectrum of developmental alterations. To elucidate the cellular and molecular mechanisms underlying H1 linker histone developmental functions, we analyzed embryonic stem cells (ESCs depleted of H1c, H1d and H1e subtypes (H1-KO ESCs by utilizing established ESC differentiation paradigms. Our study revealed that although H1-KO ESCs continued to express core pluripotency genes and the embryonic stem cell markers, alkaline phosphatase and SSEA1, they exhibited enhanced cell death during embryoid body formation and during specification of mesendoderm and neuroectoderm. In addition, we demonstrated deregulation in the developmental programs of cardiomyocyte, hepatic and pancreatic lineage elaboration. Moreover, ectopic neurogenesis and cardiomyogenesis occurred during endoderm-derived pancreatic but not hepatic differentiation. Furthermore, neural differentiation paradigms revealed selective impairments in the specification and maturation of glutamatergic and dopaminergic neurons with accelerated maturation of glial lineages. These impairments were associated with deregulation in the expression profiles of pro-neural genes in dorsal and ventral forebrain-derived neural stem cell species. Taken together, these experimental observations suggest that H1 linker histone proteins are critical for the specification, maturation and fidelity of organ-specific cellular lineages derived from the three cardinal germ layers.

  10. Compartmentalized Epidermal Activation of β-Catenin Differentially Affects Lineage Reprogramming and Underlies Tumor Heterogeneity

    Directory of Open Access Journals (Sweden)

    Kai Kretzschmar

    2016-01-01

    Full Text Available Wnt/β-catenin activation in adult epidermis can induce new hair follicle formation and tumor development. We used lineage tracing to uncover the relative contribution of different stem cell populations. LGR6+ and LRIG1+ stem cells contributed to ectopic hair follicles formed in the sebaceous gland upon β-catenin activation, whereas LGR5+ cells did not. Lgr6, but not Lrig1 or Lgr5, was expressed in a subpopulation of interfollicular epidermal cells that were competent to form new hair follicles. Oncogenic β-catenin expression in LGR5+ cells led to formation of pilomatricomas, while LRIG1+ cells formed trichoadenomas and LGR6+ cells formed dermatofibromas. Tumor formation was always accompanied by a local increase in dermal fibroblast density and transient extracellular matrix remodeling. However, each tumor had a distinct stromal signature in terms of immune cell infiltrate and expression of CD26 and CD44. We conclude that compartmentalization of epidermal stem cells underlies different responses to β-catenin and skin tumor heterogeneity.

  11. Nigral dopaminergic neuron replenishment in adult mice through VE-cadherin-expressing neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Abir A Rahman

    2017-01-01

    Full Text Available The function of dopaminergic neurons in the substantia nigra is of central importance to the coordination of movement by the brain's basal ganglia circuitry. This is evidenced by the loss of these neurons, resulting in the cardinal motor deficits associated with Parkinson's disease. In order to fully understand the physiology of these key neurons and develop potential therapies for their loss, it is essential to determine if and how dopaminergic neurons are replenished in the adult brain. Recent work has presented evidence for adult neurogenesis of these neurons by Nestin+/Sox2– neural progenitor cells. We sought to further validate this finding and explore a potential atypical origin for these progenitor cells. Since neural progenitor cells have a proximal association with the vasculature of the brain and subsets of endothelial cells are Nestin+, we hypothesized that dopaminergic neural progenitors might share a common cell lineage. Therefore, we employed a VE-cadherin promoter-driven CREERT2:THlox/THlox transgenic mouse line to ablate the tyrosine hydroxylase gene from endothelial cells in adult animals. After 26 weeks, but not 13 weeks, following the genetic blockade of tyrosine hydroxylase expression in VE-cadherin+ cells, we observed a significant reduction in tyrosine hydroxylase+ neurons in the substantia nigra. The results from this genetic lineage tracing study suggest that dopaminergic neurons are replenished in adult mice by a VE-cadherin+ progenitor cell population potentially arising from an endothelial lineage.

  12. Gamma delta T-cell differentiation and effector function programming, TCR signal strength, when and how much?

    Science.gov (United States)

    Zarin, Payam; Chen, Edward L Y; In, Tracy S H; Anderson, Michele K; Zúñiga-Pflücker, Juan Carlos

    2015-07-01

    γδ T-cells boast an impressive functional repertoire that can paint them as either champions or villains depending on the environmental and immunological cues. Understanding the function of the various effector γδ subsets necessitates tracing the developmental program of these subsets, including the point of lineage bifurcation from αβ T-cells. Here, we review the importance of signals from the T-cell receptor (TCR) in determining αβ versus γδ lineage fate, and further discuss how the molecular components of this pathway may influence the developmental programming of γδ T-cells functional subsets. Additionally, we discuss the role of temporal windows in restricting the development of IL-17 producing γδ T-cell subtypes, and explore whether fetal and adult hematopoietic progenitors maintain the same potential for giving rise to this important subset. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Endogenous Collagen Influences Differentiation of Human Multipotent Mesenchymal Stromal Cells

    NARCIS (Netherlands)

    Fernandes, Hugo; Mentink, Anouk; Bank, Ruud; Stoop, Reinout; van Blitterswijk, Clemens; de Boer, Jan

    Human multipotent mesenchymal stromal cells (hMSCs) are multipotent cells that, in the presence of appropriate stimuli, can differentiate into different lineages such as the osteogenic, chondrogenic, and adipogenic lineages. In the presence of ascorbic acid, MSCs secrete an extracellular matrix

  14. Endogenous Collagen Influences Differentiation of Human Multipotent Mesenchymal Stromal Cells

    NARCIS (Netherlands)

    Fernandes, H.A.M.; Mentink-Leusink, Anouk; Bank, Ruud; Stoop, Reinout; van Blitterswijk, Clemens; de Boer, Jan

    2010-01-01

    Human multipotent mesenchymal stromal cells (hMSCs) are multipotent cells that, in the presence of appropriate stimuli, can differentiate into different lineages such as the osteogenic, chondrogenic, and adipogenic lineages. In the presence of ascorbic acid, MSCs secrete an extracellular matrix

  15. Endogenous collagen influences differentiation of human multipotent mesenchymal stromal cells

    NARCIS (Netherlands)

    Fernandes, H.; Mentink, A.; Bank, R.; Stoop, R.; Blitterswijk, C. van; Boer, J. de

    2010-01-01

    Human multipotent mesenchymal stromal cells (hMSCs) are multipotent cells that, in the presence of appropriate stimuli, can differentiate into different lineages such as the osteogenic, chondrogenic, and adipogenic lineages. In the presence of ascorbic acid, MSCs secrete an extracellular matrix

  16. Contribution of a non-β-cell source to β-cell mass during pregnancy.

    Directory of Open Access Journals (Sweden)

    Chiara Toselli

    Full Text Available β-cell mass in the pancreas increases significantly during pregnancy as an adaptation to maternal insulin resistance. Lineage tracing studies in rodents have presented conflicting evidence on the role of cell duplication in the formation of new β-cells during gestation, while recent human data suggest that new islets are a major contributor to increased β-cell mass in pregnancy. Here, we aim to: 1 determine whether a non-β-cell source contributes to the appearance of new β-cells during pregnancy and 2 investigate whether recapitulation of the embryonic developmental pathway involving high expression of neurogenin 3 (Ngn3 plays a role in the up-regulation of β-cell mass during pregnancy. Using a mouse β-cell lineage-tracing model, which labels insulin-producing β-cells with red fluorescent protein (RFP, we found that the percentage of labeled β-cells dropped from 97% prior to pregnancy to 87% at mid-pregnancy. This suggests contribution of a non-β-cell source to the increase in total β-cell numbers during pregnancy. In addition, we observed a population of hormone-negative, Ngn3-positive cells in islets of both non-pregnant and pregnant mice, and this population dropped from 12% of all islets cells in the non-pregnant mice to 5% by day 8 of pregnancy. Concomitantly, a decrease in expression of Ngn3 and changes in its upstream regulatory network (Sox9 and Hes-1 as well as downstream targets (NeuroD, Nkx2.2, Rfx6 and IA1 were also observed during pregnancy. Our results show that duplication of pre-existing β-cells is not the sole source of new β-cells during pregnancy and that Ngn3 may be involved in this process.

  17. C/EBPα Is Required for Long-Term Self-Renewal and Lineage Priming of Hematopoietic Stem Cells and for the Maintenance of Epigenetic Configurations in Multipotent Progenitors

    DEFF Research Database (Denmark)

    Hasemann, Marie S; Lauridsen, Felicia K B; Waage, Johannes

    2014-01-01

    Transcription factors are key regulators of hematopoietic stem cells (HSCs) and act through their ability to bind DNA and impact on gene transcription. Their functions are interpreted in the complex landscape of chromatin, but current knowledge on how this is achieved is very limited. C...... as a priming factor at the HSC level where it actively promotes myeloid differentiation and counteracts lymphoid lineage choice. Taken together, our results show that C/EBPα is a key regulator of HSC biology, which influences the epigenetic landscape of HSCs in order to balance different cell fate options......./EBPα is an important transcriptional regulator of hematopoiesis, but its potential functions in HSCs have remained elusive. Here we report that C/EBPα serves to protect adult HSCs from apoptosis and to maintain their quiescent state. Consequently, deletion of Cebpa is associated with loss of self-renewal and HSC...

  18. Establishing clonal cell lines with endothelial-like potential from CD9(hi, SSEA-1(- cells in embryonic stem cell-derived embryoid bodies.

    Directory of Open Access Journals (Sweden)

    Qizhou Lian

    Full Text Available BACKGROUND: Differentiation of embryonic stem cells (ESCs into specific cell types with minimal risk of teratoma formation could be efficiently directed by first reducing the differentiation potential of ESCs through the generation of clonal, self-renewing lineage-restricted stem cell lines. Efforts to isolate these stem cells are, however, mired in an impasse where the lack of purified lineage-restricted stem cells has hindered the identification of defining markers for these rare stem cells and, in turn, their isolation. METHODOLOGY/PRINCIPAL FINDINGS: We describe here a method for the isolation of clonal lineage-restricted cell lines with endothelial potential from ESCs through a combination of empirical and rational evidence-based methods. Using an empirical protocol that we have previously developed to generate embryo-derived RoSH lines with endothelial potential, we first generated E-RoSH lines from mouse ESC-derived embryoid bodies (EBs. Despite originating from different mouse strains, RoSH and E- RoSH lines have similar gene expression profiles (r(2 = 0.93 while that between E-RoSH and ESCs was 0.83. In silico gene expression analysis predicted that like RoSH cells, E-RoSH cells have an increased propensity to differentiate into vasculature. Unlike their parental ESCs, E-RoSH cells did not form teratomas and differentiate efficiently into endothelial-like cells in vivo and in vitro. Gene expression and FACS analysis revealed that RoSH and E-RoSH cells are CD9(hi, SSEA-1(- while ESCs are CD9(lo, SSEA-1(+. Isolation of CD9(hi, SSEA-1(- cells that constituted 1%-10% of EB-derived cultures generated an E-RoSH-like culture with an identical E-RoSH-like gene expression profile (r(2 = 0.95 and a propensity to differentiate into endothelial-like cells. CONCLUSIONS: By combining empirical and rational evidence-based methods, we identified definitive selectable surface antigens for the isolation and propagation of lineage-restricted stem cells

  19. Lineage-Specific Expansion of the Chalcone Synthase Gene Family in Rosids.

    Directory of Open Access Journals (Sweden)

    Kattina Zavala

    Full Text Available Rosids are a monophyletic group that includes approximately 70,000 species in 140 families, and they are found in a variety of habitats and life forms. Many important crops such as fruit trees and legumes are rosids. The evolutionary success of this group may have been influenced by their ability to produce flavonoids, secondary metabolites that are synthetized through a branch of the phenylpropanoid pathway where chalcone synthase is a key enzyme. In this work, we studied the evolution of the chalcone synthase gene family in 12 species belonging to the rosid clade. Our results show that the last common ancestor of the rosid clade possessed six chalcone synthase gene lineages that were differentially retained during the evolutionary history of the group. In fact, of the six gene lineages that were present in the last common ancestor, 7 species retained 2 of them, whereas the other 5 only retained one gene lineage. We also show that one of the gene lineages was disproportionately expanded in species that belonged to the order Fabales (soybean, barrel medic and Lotus japonicas. Based on the available literature, we suggest that this gene lineage possesses stress-related biological functions (e.g., response to UV light, pathogen defense. We propose that the observed expansion of this clade was a result of a selective pressure to increase the amount of enzymes involved in the production of phenylpropanoid pathway-derived secondary metabolites, which is consistent with the hypothesis that suggested that lineage-specific expansions fuel plant adaptation.

  20. Role of RHEB in Regulating Differentiation Fate of Mesenchymal Stem Cells for Cartilage and Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Sajjad Ashraf

    2017-04-01

    Full Text Available Advances in mesenchymal stem cells (MSCs and cell replacement therapies are promising approaches to treat cartilage and bone defects since substantial differentiation capacities of MSCs match the demands of tissue regeneration. Our understanding of the dynamic process requiring indispensable differentiation of MSCs remains limited. Herein, we describe the role of RHEB (Ras homolog enriched in brain regulating gene signature for differentiation of human adipose derived mesenchymal stem cells (ASCs into chondrogenic, osteogenic, and adipogenic lineages. RHEB-overexpression increases the proliferation of the ASCs. RHEB enhances the chondrogenic differentiation of ASCs in 3D culture via upregulation of SOX9 with concomitant increase in glycosaminoglycans (GAGs, and type II collagen (COL2. RHEB increases the osteogenesis via upregulation of runt related transcription factor 2 (RUNX2 with an increase in the calcium and phosphate contents. RHEB also increases the expression of osteogenic markers, osteonectin and osteopontin. RHEB knockdown ASCs were incapable of expressing sufficient SRY (Sex determining region Y-box 9 (SOX9 and RUNX2, and therefore had decreased chondrogenic and osteogenic differentiation. RHEB-overexpression impaired ASCs differentiation into adipogenic lineage, through downregulation of CCAAT/enhancer binding protein beta (C/EBPβ. Conversely, RHEB knockdown abolished the negative regulation of adipogenesis. We demonstrate that RHEB is a novel regulator, with a critical role in ASCs lineage determination, and RHEB-modulated ASCs may be useful as a cell therapy for cartilage and bone defect treatments.

  1. Comparison of nucleotide sequences of recent and previous lineages of peste-des-petits-ruminants viruses of sheep and goats in Nigeria

    Directory of Open Access Journals (Sweden)

    Samuel Mantip

    2016-08-01

    Full Text Available Peste-des-petits-ruminants virus (PPRV is a highly contagious, fatal and economically important viral disease of small ruminants that is still endemic and militates against the production of sheep and goats in endemic areas of the world. The aim of this study was to describe the viral strains within the country. This was carried out by collecting tissue and swab samples from sheep and goats in various agro-ecological zones of Nigeria. The phylogeny of archived PPRV strains or isolates and those circulating and causing recent outbreaks was determined by sequencing of the nucleoprotein (N-gene. Twenty tissue and swab samples from apparently healthy and sick sheep and goats were collected randomly from 18 states, namely 3 states in each of the 6 agro-ecological zones visited. A total of 360 samples were collected. A total of 35 samples of 360 (9.7% tested positive by reverse transcriptase–polymerase chain reaction, of which 25 were from oculo-nasal swabs and 10 were from tissue samples. Neighbour-joining phylogenetic analysis using Phylogenetic Analysis Using Parsimony (PAUP identified four different lineages, that is, lineages I, II, III and IV. Interestingly, the Nigerian strains described in this study grouped in two separate major lineages, that is, lineages II and IV. Strains from Sokoto, Oyo, Plateau and Ondo states grouped according to the historical distribution of PPRV together with the Nigerian 75/1 strain of lineage II, while other strains from Sokoto, Oyo, Plateau, Akwa-Ibom, Adamawa, Kaduna, Lagos, Bauchi, Niger and Kano states grouped together with the East African and Asian strains of lineage IV. This finding confirms that both lineage II and IV strains of PPRV are circulating in Nigeria. Previously, only strains of lineage II were found to be present in the country.

  2. Spiralian phylogeny informs the evolution of microscopic lineages.

    Science.gov (United States)

    Laumer, Christopher E; Bekkouche, Nicolas; Kerbl, Alexandra; Goetz, Freya; Neves, Ricardo C; Sørensen, Martin V; Kristensen, Reinhardt M; Hejnol, Andreas; Dunn, Casey W; Giribet, Gonzalo; Worsaae, Katrine

    2015-08-03

    Despite rapid advances in the study of metazoan evolutionary history [1], phylogenomic analyses have so far neglected a number of microscopic lineages that possess a unique combination of characters and are thus informative for our understanding of morphological evolution. Chief among these lineages are the recently described animal groups Micrognathozoa and Loricifera, as well as the two interstitial "Problematica" Diurodrilus and Lobatocerebrum [2]. These genera show a certain resemblance to Annelida in their cuticle and gut [3, 4]; however, both lack primary annelid characters such as segmentation and chaetae [5]. Moreover, they show unique features such as an inverted body-wall musculature or a novel pharyngeal organ. This and their ciliated epidermis have led some to propose relationships with other microscopic spiralians, namely Platyhelminthes, Gastrotricha, and in the case of Diurodrilus, with Micrognathozoa [6, 7]-lineages that are grouped by some analyses into "Platyzoa," a clade whose status remains uncertain [1, 8-11]. Here, we assess the interrelationships among the meiofaunal and macrofaunal members of Spiralia using 402 orthologs mined from genome and transcriptome assemblies of 90 taxa. Lobatocerebrum and Diurodrilus are found to be deeply nested members of Annelida, and unequivocal support is found for Micrognathozoa as the sister group of Rotifera. Analyses using site-heterogeneous substitution models further recover a lophophorate clade and position Loricifera + Priapulida as sister group to the remaining Ecdysozoa. Finally, with several meiofaunal lineages branching off early in the diversification of Spiralia, the emerging concept of a microscopic, acoelomate, direct-developing ancestor of Spiralia is reviewed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Human Kin Investment as a Function of Genetic Relatedness and Lineage

    Directory of Open Access Journals (Sweden)

    Gregory D. Webster

    2004-01-01

    Full Text Available Two independent samples of students were asked to allocate fictional lotteries of varying dollar amounts to their blood relatives. In both studies, a reliable genetic relatedness by lineage interaction emerged, such that the genetic effect was a more positive predictor of percent of money allocated for relatives of a direct lineage (e.g., parents, grandparents than it was for peripheral relatives (e.g., siblings, aunts and uncles. In a third study, this interaction was replicated in an archival analysis of wills. The implications of accounting for differences in relatives' lineages in studies of kin investment are discussed.

  4. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    OpenAIRE

    Kosan, Christian; Godmann, Maren

    2015-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several trans...

  5. Dysregulation of the CD4+ T cells lineage differentiation in dyslipidemic patients and impact of lipoprotein-apheresis treatment: A case study.

    Science.gov (United States)

    Papin, J; Brennand, A; Arbore, G; Hohenstein, B; Kamvissi, V; Kemper, C; Bornstein, S R

    2017-11-01

    Lipoprotein-apheresis (LA) is a therapeutic approach used against severe forms of dyslipidemia in patients who are non-responders or intolerant to pharmacological treatments. However, little is known about the potential pleiotropic effects of LA, particularly regarding the immune system and its regulation. Thus, in an attempt to analyse the potential effects of dyslipidemia and LA on the regulation of CD4 + T cells activation and lineage differentiation, we compared the CD4 + T cells cytokines secretion profiles of dyslipidemic patients before and after LA with the profiles observed in healthy donors. CD4 + T cells were isolated from 5 LA patients and 5 healthy donors and activated with anti-CD3 or anti-CD3 + anti-CD46 antibodies. The supernatants were collected after 36 h incubation and levels of secreted cytokines analysed by flow cytometry. Our results revealed a deep remodelling of CD4 + T cells cytokines secretion patterns in dyslipidemic patients compared to healthy donors, as reflected by a 15 times higher IFN-γ secretion rate after CD3 + CD46 co-activation in dyslipidemic patients after LA compared to healthy subjects and 8 times higher after CD3 activation alone (p = 0.0187 and p = 0.0118 respectively). Moreover, we demonstrated that LA itself also modifies the phenotype and activation pattern of CD4 + T-cells in dyslipidemic patients. These observations could be of fundamental importance in the improvement of LA columns/systems engineering and in developing new therapeutic approaches regarding dyslipidemia and associated pathologies such as atherosclerosis and type 2 diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of Temperature on Growth and Sporulation of US-22, US-23, and US-24 Clonal Lineages of Phytophthora infestans and Implications for Late Blight Epidemiology.

    Science.gov (United States)

    Seidl Johnson, Anna C; Frost, Kenneth E; Rouse, Douglas I; Gevens, Amanda J

    2015-04-01

    Epidemics of late blight, caused by Phytophthora infestans (Mont.) de Bary, have been studied by plant pathologists and regarded with great concern by potato and tomato growers since the Irish potato famine in the 1840s. P. infestans populations have continued to evolve, with unique clonal lineages arising which differ in pathogen fitness and pathogenicity, potentially impacting epidemiology. In 2012 and 2013, the US-23 clonal lineage predominated late blight epidemics in most U.S. potato and tomato production regions, including Wisconsin. This lineage was unknown prior to 2009. For isolates of three recently identified clonal lineages of P. infestans (US-22, US-23, and US-24), sporulation rates were experimentally determined on potato and tomato foliage and the effect of temperature on lesion growth rate on tomato was investigated. The US-22 and US-23 isolates had greater lesion growth rates on tomato than US-24 isolates. Sporulation rates for all isolates were greater on potato than tomato, and the US-23 isolates had greater sporulation rates on both tomato and potato than the US-22 and US-24 isolates. Experimentally determined correlates of fitness were input to the LATEBLIGHT model and epidemics were simulated using archived Wisconsin weather data from four growing seasons (2009 to 2012) to investigate the effect of isolates of these new lineages on late blight epidemiology. The fast lesion growth rates of US-22 and US-23 isolates resulted in severe epidemics in all years tested, particularly in 2011. The greater sporulation rates of P. infestans on potato resulted in simulated epidemics that progressed faster than epidemics simulated for tomato; the high sporulation rates of US-23 isolates resulted in simulated epidemics more severe than simulated epidemics of isolates of the US-22 and US-24 isolates and EC-1 clonal lineages on potato and tomato. Additionally, US-23 isolates consistently caused severe simulated epidemics when lesion growth rate and sporulation

  7. The Three Lineages of the Diploid Hybrid Verticillium longisporum Differ in Virulence and Pathogenicity.

    Science.gov (United States)

    Novakazi, Fluturë; Inderbitzin, Patrik; Sandoya, German; Hayes, Ryan J; von Tiedemann, Andreas; Subbarao, Krishna V

    2015-05-01

    Verticillium longisporum is an economically important vascular pathogen of Brassicaceae crops in different parts of the world. V. longisporum is a diploid hybrid that consists of three different lineages, each of which originated from a separate hybridization event between two different sets of parental species. We used 20 isolates representing the three V. longisporum lineages and the relative V. dahliae, and performed pathogenicity tests on 11 different hosts, including artichoke, cabbage, cauliflower, cotton, eggplant, horseradish, lettuce, linseed, oilseed rape (canola), tomato, and watermelon. V. longisporum was overall more virulent on the Brassicaceae crops than V. dahliae, which was more virulent than V. longisporum across the non-Brassicaceae crops. There were differences in virulence between the three V. longisporum lineages. V. longisporum lineage A1/D1 was the most virulent lineage on oilseed rape, and V. longisporum lineage A1/D2 was the most virulent lineage on cabbage and horseradish. We also found that on the non-Brassicaceae hosts eggplant, tomato, lettuce, and watermelon, V. longisporum was more or equally virulent than V. dahliae. This suggests that V. longisporum may have a wider potential host range than currently appreciated.

  8. FoxA1 as a lineage-specific oncogene in luminal type breast cancer

    International Nuclear Information System (INIS)

    Yamaguchi, Noritaka; Ito, Emi; Azuma, Sakura; Honma, Reiko; Yanagisawa, Yuka; Nishikawa, Akira; Kawamura, Mika; Imai, Jun-ichi

    2008-01-01

    The forkhead transcription factor FoxA1 is thought to be involved in mammary tumorigenesis. However, the precise role of FoxA1 in breast cancer development is controversial. We examined expression of FoxA1 in 35 human breast cancer cell lines and compared it with that of ErbB2, a marker of poor prognosis in breast cancer. We found that FoxA1 is expressed at high levels in all ErbB2-positive cell lines and a subset of ErbB2-negative cell lines. Down-regulation of FoxA1 by RNA interference significantly suppressed proliferation of ErbB2-negative and FoxA1-positive breast cancer cell lines. Down-regulation of FoxA1 also enhanced the toxic effect of Herceptin on ErbB2-positive cell lines through induction of apoptosis. Taken together with previous data that FoxA1 is a marker of luminal cells in mammary gland, our present results suggest that FoxA1 plays an important role as a lineage-specific oncogene in proliferation of cancer cells derived from mammary luminal cells

  9. Evolution of two distinct phylogenetic lineages of the emerging human pathogen Mycobacterium ulcerans

    Directory of Open Access Journals (Sweden)

    Portaels Francoise

    2007-09-01

    Full Text Available Abstract Background Comparative genomics has greatly improved our understanding of the evolution of pathogenic mycobacteria such as Mycobacterium tuberculosis. Here we have used data from a genome microarray analysis to explore insertion-deletion (InDel polymorphism among a diverse strain collection of Mycobacterium ulcerans, the causative agent of the devastating skin disease, Buruli ulcer. Detailed analysis of large sequence polymorphisms in twelve regions of difference (RDs, comprising irreversible genetic markers, enabled us to refine the phylogenetic succession within M. ulcerans, to define features of a hypothetical M. ulcerans most recent common ancestor and to confirm its origin from Mycobacterium marinum. Results M. ulcerans has evolved into five InDel haplotypes that separate into two distinct lineages: (i the "classical" lineage including the most pathogenic genotypes – those that come from Africa, Australia and South East Asia; and (ii an "ancestral" M. ulcerans lineage comprising strains from Asia (China/Japan, South America and Mexico. The ancestral lineage is genetically closer to the progenitor M. marinum in both RD composition and DNA sequence identity, whereas the classical lineage has undergone major genomic rearrangements. Conclusion Results of the InDel analysis are in complete accord with recent multi-locus sequence analysis and indicate that M. ulcerans has passed through at least two major evolutionary bottlenecks since divergence from M. marinum. The classical lineage shows more pronounced reductive evolution than the ancestral lineage, suggesting that there may be differences in the ecology between the two lineages. These findings improve the understanding of the adaptive evolution and virulence of M. ulcerans and pathogenic mycobacteria in general and will facilitate the development of new tools for improved diagnostics and molecular epidemiology.

  10. Evidence of two distinct phylogenetic lineages of dog rabies virus circulating in Cambodia.

    Science.gov (United States)

    Mey, Channa; Metlin, Artem; Duong, Veasna; Ong, Sivuth; In, Sotheary; Horwood, Paul F; Reynes, Jean-Marc; Bourhy, Hervé; Tarantola, Arnaud; Buchy, Philippe

    2016-03-01

    This first extensive retrospective study of the molecular epidemiology of dog rabies in Cambodia included 149 rabies virus (RABV) entire nucleoprotein sequences obtained from 1998-2011. The sequences were analyzed in conjunction with RABVs from other Asian countries. Phylogenetic reconstruction confirmed the South-East Asian phylogenetic clade comprising viruses from Cambodia, Vietnam, Thailand, Laos and Myanmar. The present study represents the first attempt to classify the phylogenetic lineages inside this clade, resulting in the confirmation that all the Cambodian viruses belonged to the South-East Asian (SEA) clade. Three distinct phylogenetic lineages in the region were established with the majority of viruses from Cambodia closely related to viruses from Thailand, Laos and Vietnam, forming the geographically widespread phylogenetic lineage SEA1. A South-East Asian lineage SEA2 comprised two viruses from Cambodia was identified, which shared a common ancestor with RABVs originating from Laos. Viruses from Myanmar formed separate phylogenetic lineages within the major SEA clade. Bayesian molecular clock analysis suggested that the time to most recent common ancestor (TMRCA) of all Cambodian RABVs dated to around 1950. The TMRCA of the Cambodian SEA1 lineage was around 1964 and that of the SEA2 lineage was around 1953. The results identified three phylogenetically distinct and geographically separated lineages inside the earlier identified major SEA clade, covering at least five countries in the region. A greater understanding of the molecular epidemiology of rabies in South-East Asia is an important step to monitor progress on the efforts to control canine rabies in the region. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Spatiotemporal dynamics of DENV-2 Asian-American genotype lineages in the Americas.

    Directory of Open Access Journals (Sweden)

    Daiana Mir

    Full Text Available The Asian/American (AS/AM genotype of dengue virus type 2 (DENV-2 has been evolving in the Americas over the last 30 years, leading to several waves of dengue epidemics and to the emergence of different viral lineages in the region. In this study, we investigate the spatiotemporal dissemination pattern of the DENV-2 lineages at a regional level. We applied phylogenetic and phylogeographic analytical methods to a comprehensive data set of 582 DENV-2 E gene sequences of the AS/AM genotype isolated from 29 different American countries over a period of 30 years (1983 to 2012. Our study reveals that genetic diversity of DENV-2 AS/AM genotype circulating in the Americas mainly resulted from one single founder event and can be organized in at least four major lineages (I to IV, which emerged in the Caribbean region at the early 1980s and then spread and die out with different dynamics. Lineages I and II dominate the epidemics in the Caribbean region during the 1980s and early 1990 s, lineage III becomes the prevalent DENV-2 one in the Caribbean and South America during the 1990 s, whereas lineage IV dominates the epidemics in South and Central America during the 2000s. Suriname and Guyana seem to represent important entry points for DENV-2 from the Lesser Antilles to South America, whereas Venezuela, Brazil and Nicaragua were pointed as the main secondary hubs of dissemination to other mainland countries. Our study also indicates that DENV-2 AS/AM genotype was disseminated within South America following two main routes. The first route hits Venezuela and the western side of the Andes, while the second route mainly hits Brazil and the eastern side of the Andes. The phenomenon of DENV-2 lineage replacement across successive epidemic outbreaks was a common characteristic in all American countries, although the timing of lineage replacements greatly vary across locations.

  12. Identification of transcript regulatory patterns in cell differentiation.

    Science.gov (United States)

    Gusnanto, Arief; Gosling, John Paul; Pope, Christopher

    2017-10-15

    Studying transcript regulatory patterns in cell differentiation is critical in understanding its complex nature of the formation and function of different cell types. This is done usually by measuring gene expression at different stages of the cell differentiation. However, if the gene expression data available are only from the mature cells, we have some challenges in identifying transcript regulatory patterns that govern the cell differentiation. We propose to exploit the information of the lineage of cell differentiation in terms of correlation structure between cell types. We assume that two different cell types that are close in the lineage will exhibit many common genes that are co-expressed relative to those that are far in the lineage. Current analysis methods tend to ignore this correlation by testing for differential expression assuming some sort of independence between cell types. We employ a Bayesian approach to estimate the posterior distribution of the mean of expression in each cell type, by taking into account the cell formation path in the lineage. This enables us to infer genes that are specific in each cell type, indicating the genes are involved in directing the cell differentiation to that particular cell type. We illustrate the method using gene expression data from a study of haematopoiesis. R codes to perform the analysis are available in http://www1.maths.leeds.ac.uk/∼arief/R/CellDiff/. a.gusnanto@leeds.ac.uk. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Cryptic lineage differentiation among Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the northwest Indian Ocean.

    Science.gov (United States)

    Gray, H W I; Nishida, S; Welch, A J; Moura, A E; Tanabe, S; Kiani, M S; Culloch, R; Möller, L; Natoli, A; Ponnampalam, L S; Minton, G; Gore, M; Collins, T; Willson, A; Baldwin, R; Hoelzel, A R

    2018-05-01

    Phylogeography can provide insight into the potential for speciation and identify geographic regions and evolutionary processes associated with species richness and evolutionary endemism. In the marine environment, highly mobile species sometimes show structured patterns of diversity, but the processes isolating populations and promoting differentiation are often unclear. The Delphinidae (oceanic dolphins) are a striking case in point and, in particular, bottlenose dolphins (Tursiops spp.). Understanding the radiation of species in this genus is likely to provide broader inference about the processes that determine patterns of biogeography and speciation, because both fine-scale structure over a range of kilometers and relative panmixia over an oceanic range are known for Tursiops populations. In our study, novel Tursiops spp. sequences from the northwest Indian Ocean (including mitogenomes and two nuDNA loci) are included in a worldwide Tursiops spp. phylogeographic analysis. We discover a new 'aduncus' type lineage in the Arabian Sea (off India, Pakistan and Oman) that diverged from the Australasian lineage ∼261 Ka. Effective management of coastal dolphins in the region will need to consider this new lineage as an evolutionarily significant unit. We propose that the establishment of this lineage could have been in response to climate change during the Pleistocene and show data supporting hypotheses for multiple divergence events, including vicariance across the Indo-Pacific barrier and in the northwest Indian Ocean. These data provide valuable transferable inference on the potential mechanisms for population and species differentiation across this geographic range. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Direct Differentiation of Human Pluripotent Stem Cells into Haploid Spermatogenic Cells

    Directory of Open Access Journals (Sweden)

    Charles A. Easley, IV

    2012-09-01

    Full Text Available Human embryonic stem cells (hESCs and induced pluripotent stem cells (hiPSCs have been shown to differentiate into primordial germ cells (PGCs but not into spermatogonia, haploid spermatocytes, or spermatids. Here, we show that hESCs and hiPSCs differentiate directly into advanced male germ cell lineages, including postmeiotic, spermatid-like cells, in vitro without genetic manipulation. Furthermore, our procedure mirrors spermatogenesis in vivo by differentiating PSCs into UTF1-, PLZF-, and CDH1-positive spermatogonia-like cells; HIWI- and HILI-positive spermatocyte-like cells; and haploid cells expressing acrosin, transition protein 1, and protamine 1 (proteins that are uniquely found in spermatids and/or sperm. These spermatids show uniparental genomic imprints similar to those of human sperm on two loci: H19 and IGF2. These results demonstrate that male PSCs have the ability to differentiate directly into advanced germ cell lineages and may represent a novel strategy for studying spermatogenesis in vitro.

  15. Amazonian Amphibian Diversity Is Primarily Derived from Late Miocene Andean Lineages

    Science.gov (United States)

    Santos, Juan C; Coloma, Luis A; Summers, Kyle; Caldwell, Janalee P; Ree, Richard; Cannatella, David C

    2009-01-01

    The Neotropics contains half of remaining rainforests and Earth's largest reservoir of amphibian biodiversity. However, determinants of Neotropical biodiversity (i.e., vicariance, dispersals, extinctions, and radiations) earlier than the Quaternary are largely unstudied. Using a novel method of ancestral area reconstruction and relaxed Bayesian clock analyses, we reconstructed the biogeography of the poison frog clade (Dendrobatidae). We rejected an Amazonian center-of-origin in favor of a complex connectivity model expanding over the Neotropics. We inferred 14 dispersals into and 18 out of Amazonia to adjacent regions; the Andes were the major source of dispersals into Amazonia. We found three episodes of lineage dispersal with two interleaved periods of vicariant events between South and Central America. During the late Miocene, Amazonian, and Central American-Chocoan lineages significantly increased their diversity compared to the Andean and Guianan-Venezuelan-Brazilian Shield counterparts. Significant percentage of dendrobatid diversity in Amazonia and Chocó resulted from repeated immigrations, with radiations at Venezuelan Highlands, and Guiana Shield have undergone extended in situ diversification at near constant rate since the Oligocene. The effects of Miocene paleogeographic events on Neotropical diversification dynamics provided the framework under which Quaternary patterns of endemism evolved. PMID:19278298

  16. Little Divergence Among Mitochondrial Lineages of Prochilodus (Teleostei, Characiformes

    Directory of Open Access Journals (Sweden)

    Bruno F. Melo

    2018-04-01

    Full Text Available Evidence that migration prevents population structure among Neotropical characiform fishes has been reported recently but the effects upon species diversification remain unclear. Migratory species of Prochilodus have complex species boundaries and intrincate taxonomy representing a good model to address such questions. Here, we analyzed 147 specimens through barcode sequences covering all species of Prochilodus across a broad geographic area of South America. Species delimitation and population genetic methods revealed very little genetic divergence among mitochondrial lineages suggesting that extensive gene flow resulted likely from the highly migratory behavior, natural hybridization or recent radiation prevent accumulation of genetic disparity among lineages. Our results clearly delimit eight genetic lineages in which four of them contain a single species and four contain more than one morphologically problematic taxon including a trans-Andean species pair and species of the P. nigricans group. Information about biogeographic distribution of haplotypes presented here might contribute to further research on the population genetics and taxonomy of Prochilodus.

  17. Genome-wide RNAi Screen Identifies Networks Involved in Intestinal Stem Cell Regulation in Drosophila

    Directory of Open Access Journals (Sweden)

    Xiankun Zeng

    2015-02-01

    Full Text Available The intestinal epithelium is the most rapidly self-renewing tissue in adult animals and maintained by intestinal stem cells (ISCs in both Drosophila and mammals. To comprehensively identify genes and pathways that regulate ISC fates, we performed a genome-wide transgenic RNAi screen in adult Drosophila intestine and identified 405 genes that regulate ISC maintenance and lineage-specific differentiation. By integrating these genes into publicly available interaction databases, we further developed functional networks that regulate ISC self-renewal, ISC proliferation, ISC maintenance of diploid status, ISC survival, ISC-to-enterocyte (EC lineage differentiation, and ISC-to-enteroendocrine (EE lineage differentiation. By comparing regulators among ISCs, female germline stem cells, and neural stem cells, we found that factors related to basic stem cell cellular processes are commonly required in all stem cells, and stem-cell-specific, niche-related signals are required only in the unique stem cell type. Our findings provide valuable insights into stem cell maintenance and lineage-specific differentiation.

  18. Parallel Evolution of a Type IV Secretion System in Radiating Lineages of the Host-Restricted Bacterial Pathogen Bartonella

    Science.gov (United States)

    Engel, Philipp; Salzburger, Walter; Liesch, Marius; Chang, Chao-Chin; Maruyama, Soichi; Lanz, Christa; Calteau, Alexandra; Lajus, Aurélie; Médigue, Claudine; Schuster, Stephan C.; Dehio, Christoph

    2011-01-01

    Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS), and thereby translocated Bartonella effector proteins (Beps), evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial pathogens

  19. Parallel evolution of a type IV secretion system in radiating lineages of the host-restricted bacterial pathogen Bartonella.

    Directory of Open Access Journals (Sweden)

    Philipp Engel

    2011-02-01

    Full Text Available Adaptive radiation is the rapid origination of multiple species from a single ancestor as the result of concurrent adaptation to disparate environments. This fundamental evolutionary process is considered to be responsible for the genesis of a great portion of the diversity of life. Bacteria have evolved enormous biological diversity by exploiting an exceptional range of environments, yet diversification of bacteria via adaptive radiation has been documented in a few cases only and the underlying molecular mechanisms are largely unknown. Here we show a compelling example of adaptive radiation in pathogenic bacteria and reveal their genetic basis. Our evolutionary genomic analyses of the α-proteobacterial genus Bartonella uncover two parallel adaptive radiations within these host-restricted mammalian pathogens. We identify a horizontally-acquired protein secretion system, which has evolved to target specific bacterial effector proteins into host cells as the evolutionary key innovation triggering these parallel adaptive radiations. We show that the functional versatility and adaptive potential of the VirB type IV secretion system (T4SS, and thereby translocated Bartonella effector proteins (Beps, evolved in parallel in the two lineages prior to their radiations. Independent chromosomal fixation of the virB operon and consecutive rounds of lineage-specific bep gene duplications followed by their functional diversification characterize these parallel evolutionary trajectories. Whereas most Beps maintained their ancestral domain constitution, strikingly, a novel type of effector protein emerged convergently in both lineages. This resulted in similar arrays of host cell-targeted effector proteins in the two lineages of Bartonella as the basis of their independent radiation. The parallel molecular evolution of the VirB/Bep system displays a striking example of a key innovation involved in independent adaptive processes and the emergence of bacterial

  20. A single origin of the photosynthetic organelle in different Paulinella lineages

    Directory of Open Access Journals (Sweden)

    Ishida Ken-ichiro

    2009-05-01

    that they all share a common photosynthetic ancestor. The strain M0880/a is most closely related to Japanese isolates (Kanazawa-1, -2, and Kaga, whereas FK01 groups closely with a Kawaguchi isolate. Conclusion Our results indicate that Paulinella chromatophora comprises at least two distinct evolutionary lineages and likely encompasses a broader taxonomic diversity than previously thought. The finding of a single plastid origin for both lineages shows these taxa to be valuable models for studying post-endosymbiotic cell and genome evolution.

  1. Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing.

    Science.gov (United States)

    Rodriguez-Menocal, Luis; Shareef, Shahjahan; Salgado, Marcela; Shabbir, Arsalan; Van Badiavas, Evangelos

    2015-03-13

    Recent evidence has shown that bone marrow cells play critical roles during the inflammatory, proliferative and remodeling phases of cutaneous wound healing. Among the bone marrow cells delivered to wounds are stem cells, which can differentiate into multiple tissue-forming cell lineages to effect, healing. Gaining insight into which lineages are most important in accelerating wound healing would be quite valuable in designing therapeutic approaches for difficult to heal wounds. In this report we compared the effect of different bone marrow preparations on established in vitro wound healing assays. The preparations examined were whole bone marrow (WBM), whole bone marrow (long term initiating/hematopoietic based) cultured cells (BMC), and bone marrow derived mesenchymal stem cells (BM-MSC). We also applied these bone marrow preparations in two murine models of radiation induced delayed wound healing to determine which had a greater effect on healing. Angiogenesis assays demonstrated that tube formation was stimulated by both WBM and BMC, with WBM having the greatest effect. Scratch wound assays showed higher fibroblast migration at 24, 48, and 72 hours in presence of WBM as compared to BM-MSC. WBM also appeared to stimulate a greater healing response than BMC and BM-MSC in a radiation induced delayed wound healing animal model. These studies promise to help elucidate the role of stem cells during repair of chronic wounds and reveal which cells present in bone marrow might contribute most to the wound healing process.

  2. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice

    International Nuclear Information System (INIS)

    Fujimura, Juri; Ogawa, Rei; Mizuno, Hiroshi; Fukunaga, Yoshitaka; Suzuki, Hidenori

    2005-01-01

    Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders

  3. Major genomic mitochondrial lineages delineate early human expansions

    Directory of Open Access Journals (Sweden)

    Flores Carlos

    2001-08-01

    Full Text Available Abstract Background The phylogeographic distribution of human mitochondrial DNA variations allows a genetic approach to the study of modern Homo sapiens dispersals throughout the world from a female perspective. As a new contribution to this study we have phylogenetically analysed complete mitochondrial DNA(mtDNA sequences from 42 human lineages, representing major clades with known geographic assignation. Results We show the relative relationships among the 42 lineages and present more accurate temporal calibrations than have been previously possible to give new perspectives as how modern humans spread in the Old World. Conclusions The first detectable expansion occurred around 59,000–69,000 years ago from Africa, independently colonizing western Asia and India and, following this southern route, swiftly reaching east Asia. Within Africa, this expansion did not replace but mixed with older lineages detectable today only in Africa. Around 39,000–52,000 years ago, the western Asian branch spread radially, bringing Caucasians to North Africa and Europe, also reaching India, and expanding to north and east Asia. More recent migrations have entangled but not completely erased these primitive footprints of modern human expansions.

  4. Y-chromosome lineages in native South American population.

    Science.gov (United States)

    Blanco-Verea, A; Jaime, J C; Brión, M; Carracedo, A

    2010-04-01

    The present work tries to investigate the population structure and variation of the Amerindian indigenous populations living in Argentina. A total of 134 individuals from three ethnic groups (Kolla, Mapuche and Diaguitas) living in four different regions were collected and analysed for 26 Y-SNPs and 11 Y-STRs. Intra-population variability was analysed, looking for population substructure and neighbour populations were considered for genetic comparative analysis, in order to estimate the contribution of the Amerindian and the European pool, to the current population. We observe a high frequency of R1b1 and Q1a3a* Y-chromosome haplogroups, in the ethnic groups Mapuche, Diaguita and Kolla, characteristic of European and Native American populations, respectively. When we compare our native Argentinean population with other from the South America we also observe that frequency values for Amerindian lineages are relatively lower in our population. These results show a clear Amerindian genetic component but we observe a predominant European influence too, suggesting that typically European male lineages have given rise to the displacement of genuinely Amerindian male lineages in our South American population. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  5. Nanotopographical Control of Stem Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Laura E. McNamara

    2010-01-01

    Full Text Available Stem cells have the capacity to differentiate into various lineages, and the ability to reliably direct stem cell fate determination would have tremendous potential for basic research and clinical therapy. Nanotopography provides a useful tool for guiding differentiation, as the features are more durable than surface chemistry and can be modified in size and shape to suit the desired application. In this paper, nanotopography is examined as a means to guide differentiation, and its application is described in the context of different subsets of stem cells, with a particular focus on skeletal (mesenchymal stem cells. To address the mechanistic basis underlying the topographical effects on stem cells, the likely contributions of indirect (biochemical signal-mediated and direct (force-mediated mechanotransduction are discussed. Data from proteomic research is also outlined in relation to topography-mediated fate determination, as this approach provides insight into the global molecular changes at the level of the functional effectors.

  6. Haematopoietic stem and progenitor cells from human pluripotent stem cells

    Science.gov (United States)

    Sugimura, Ryohichi; Jha, Deepak Kumar; Han, Areum; Soria-Valles, Clara; da Rocha, Edroaldo Lummertz; Lu, Yi-Fen; Goettel, Jeremy A.; Serrao, Erik; Rowe, R. Grant; Malleshaiah, Mohan; Wong, Irene; Sousa, Patricia; Zhu, Ted N.; Ditadi, Andrea; Keller, Gordon; Engelman, Alan N.; Snapper, Scott B.; Doulatov, Sergei; Daley, George Q.

    2018-01-01

    A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders. PMID:28514439

  7. Regulation of the number of cell division rounds by tissue-specific transcription factors and Cdk inhibitor during ascidian embryogenesis.

    Directory of Open Access Journals (Sweden)

    Mami Kuwajima

    Full Text Available Mechanisms that regulate the number of cell division rounds during embryogenesis have remained largely elusive. To investigate this issue, we used the ascidian, which develops into a tadpole larva with a small number of cells. The embryonic cells divide 11.45 times on average from fertilization to hatching. The number of cell division rounds varies depending on embryonic lineages. Notochord and muscle consist of large postmitotic cells and stop dividing early in developing embryos. Here we show that conversion of mesenchyme to muscle cell fates by inhibition of inductive FGF signaling or mis-expression of a muscle-specific key transcription factor for muscle differentiation, Tbx6, changed the number of cell divisions in accordance with the altered fate. Tbx6 likely activates a putative mechanism to halt cell division at a specific stage. However, precocious expression of Tbx6 has no effect on progression of the developmental clock itself. Zygotic expression of a cyclin-dependent kinase inhibitor, CKI-b, is initiated in muscle and then in notochord precursors. CKI-b is possibly downstream of tissue-specific key transcription factors of notochord and muscle. In the two distinct muscle lineages, postmitotic muscle cells are generated after 9 and 8 rounds of cell division depending on lineage, but the final cell divisions occur at a similar developmental stage. CKI-b gene expression starts simultaneously in both muscle lineages at the 110-cell stage, suggesting that CKI-b protein accumulation halts cell division at a similar stage. The difference in the number of cell divisions would be due to the cumulative difference in cell cycle length. These results suggest that muscle cells do not count the number of cell division rounds, and that accumulation of CKI-b protein triggered by tissue-specific key transcription factors after cell fate determination might act as a kind of timer that measures elapsed time before cell division termination.

  8. Hematopoietic cell phosphatase is recruited to CD22 following B cell antigen receptor ligation

    NARCIS (Netherlands)

    Lankester, A. C.; van Schijndel, G. M.; van Lier, R. A.

    1995-01-01

    Hematopoietic cell phosphatase is a nonreceptor protein tyrosine phosphatase that is preferentially expressed in hematopoietic cell lineages. Motheaten mice, which are devoid of (functional) hematopoietic cell phosphatase, have severe disturbances in the regulation of B cell activation and

  9. Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types.

    Science.gov (United States)

    Loh, Kyle M; Chen, Angela; Koh, Pang Wei; Deng, Tianda Z; Sinha, Rahul; Tsai, Jonathan M; Barkal, Amira A; Shen, Kimberle Y; Jain, Rajan; Morganti, Rachel M; Shyh-Chang, Ng; Fernhoff, Nathaniel B; George, Benson M; Wernig, Gerlinde; Salomon, Rachel E A; Chen, Zhenghao; Vogel, Hannes; Epstein, Jonathan A; Kundaje, Anshul; Talbot, William S; Beachy, Philip A; Ang, Lay Teng; Weissman, Irving L

    2016-07-14

    Stem-cell differentiation to desired lineages requires navigating alternating developmental paths that often lead to unwanted cell types. Hence, comprehensive developmental roadmaps are crucial to channel stem-cell differentiation toward desired fates. To this end, here, we map bifurcating lineage choices leading from pluripotency to 12 human mesodermal lineages, including bone, muscle, and heart. We defined the extrinsic signals controlling each binary lineage decision, enabling us to logically block differentiation toward unwanted fates and rapidly steer pluripotent stem cells toward 80%-99% pure human mesodermal lineages at most branchpoints. This strategy enabled the generation of human bone and heart progenitors that could engraft in respective in vivo models. Mapping stepwise chromatin and single-cell gene expression changes in mesoderm development uncovered somite segmentation, a previously unobservable human embryonic event transiently marked by HOPX expression. Collectively, this roadmap enables navigation of mesodermal development to produce transplantable human tissue progenitors and uncover developmental processes. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis

    Science.gov (United States)

    Newman, Peter; Galenano-Niño, Jorge Luis; Graney, Pamela; Razal, Joselito M.; Minett, Andrew I.; Ribas, João; Ovalle-Robles, Raquel; Biro, Maté; Zreiqat, Hala

    2016-12-01

    The topography of a biomaterial regulates cellular interactions and determine stem cell fate. A complete understanding of how topographical properties affect cell behavior will allow the rational design of material surfaces that elicit specified biological functions once placed in the body. To this end, we fabricate substrates with aligned or randomly organized fibrous nanostructured topographies. Culturing adipose-derived stem cells (ASCs), we explore the dynamic relationship between the alignment of topography, cell shape and cell differentiation to osteogenic and myogenic lineages. We show aligned topographies differentiate cells towards a satellite cell muscle progenitor state - a distinct cell myogenic lineage responsible for postnatal growth and repair of muscle. We analyze cell shape between the different topographies, using fluorescent time-lapse imaging over 21 days. In contrast to previous work, this allows the direct measurement of cell shape at a given time rather than defining the morphology of the underlying topography and neglecting cell shape. We report quantitative metrics of the time-based morphological behaviors of cell shape in response to differing topographies. This analysis offers insights into the relationship between topography, cell shape and cell differentiation. Cells differentiating towards a myogenic fate on aligned topographies adopt a characteristic elongated shape as well as the alignment of cells.

  11. Fshb-iCre mice are efficient and specific Cre deleters for the gonadotrope lineage.

    Science.gov (United States)

    Wang, Huizhen; Hastings, Richard; Miller, William L; Kumar, T Rajendra

    2016-01-05

    Genetic analysis of development and function of the gonadotrope cell lineage within mouse anterior pituitary has been greatly facilitated by at least three currently available Cre strains in which Cre was either knocked into the Gnrhr locus or expressed as a transgene from Cga and Lhb promoters. However, in each case there are some limitations including CRE expression in thyrotropes within pituitary or ectopic expression outside of pituitary, for example in some populations of neurons or gonads. Hence, these Cre strains often pose problems with regard to undesirable deletion of alleles in non-gonadotrope cells, fertility and germline transmission of mutant alleles. Here, we describe generation and characterization of a new Fshb-iCre deleter strain using 4.7 kb of ovine Fshb promoter regulatory sequences driving iCre expression exclusively in the gonadotrope lineage within anterior pituitary. Fshb-iCre mice develop normally, display no ectopic CRE expression in gonads and are fertile. When crossed onto a loxP recombination-mediated red to green color switch reporter mouse genetic background, in vivo CRE recombinase activity is detectable in gonadotropes at more than 95% efficiency and the GFP-tagged gonadotropes readily purified by fluorescence activated cell sorting. We demonstrate the applicability of this Fshb-iCre deleter strain in a mouse model in which Dicer is efficiently and selectively deleted in gonadotropes. We further show that loss of DICER-dependent miRNAs in gonadotropes leads to profound suppression of gonadotropins resulting in male and female infertility. Thus, Fshb-iCre mice serve as a new genetic tool to efficiently manipulate gonadotrope-specific gene expression in vivo. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. A snapshot of genetic lineages of Mycobacterium tuberculosis in Ireland over a two-year period, 2010 and 2011.

    LENUS (Irish Health Repository)

    Fitzgibbon, M M

    2013-01-01

    Mycobacterial interspersed repetitive-unit-variable-number tandem repeat typing alone was used to investigate the genetic lineages among 361 Mycobacterium tuberculosis strains circulating in Ireland over a two-year period, 2010 and 2011. The majority of isolates, 63% (229\\/361), belonged to lineage 4 (Euro-American), while lineages 1 (Indo-Oceanic), 2 (East-Asian) and 3 (East-African–Indian) represented 12% of isolates each (42\\/361, 45\\/361, and 45\\/361, respectively). Sub-lineages Beijing (lineage 2), East-African–Indian (lineage 1) and Delhi\\/central-Asian (lineage 3) predominated among foreign-born cases, while a higher proportion of Euro-American lineages were identified among cases born in Ireland. Eighteen molecular clusters involving 63 tuberculosis (TB) cases were identified across four sub-lineages of lineage 4. While the mean cluster size was 3.5 TB cases, the largest cluster (involving 12 Irish-born cases) was identified in the Latin American–Mediterranean sub-lineage. Clustering of isolates was higher among Irish-born TB cases (47 of 63 clustered cases), whereas only one cluster (3\\/63) involved solely foreign-born individuals. Four multidrug-resistant cases identified during this period represented lineages 2 and 4. This study provides the first insight into the structure of the M. tuberculosis population in Ireland.

  13. Pipeline for Tracking Neural Progenitor Cells

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Dahl, Anders Lindbjerg; Holm, Peter

    2012-01-01

    Automated methods for neural stem cell lineage construction become increasingly important due to the large amount of data produced from time lapse imagery of in vitro cell growth experiments. Segmentation algorithms with the ability to adapt to the problem at hand and robust tracking methods play...... a key role in constructing these lineages. We present here a tracking pipeline based on learning a dictionary of discriminative image patches for segmentation and a graph formulation of the cell matching problem incorporating topology changes and acknowledging the fact that segmentation errors do occur...

  14. involvement of multiple cell lineages in atherogenesis

    African Journals Online (AJOL)

    2017-07-12

    Jul 12, 2017 ... Elucidation of all ... molecular mechanisms which underly this .... intima. Monocyte chemoattractant protein-1 ... cell interaction, release of microparticles, pro – ..... Monocytes and macrophages dynamics during atherogenesis.

  15. In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold.

    Science.gov (United States)

    Xie, Lin; Zhang, Nan; Marsano, Anna; Vunjak-Novakovic, Gordana; Zhang, Yanru; Lopez, Mandi J

    2013-12-01

    Directed differentiation of adult multipotent stromal cells (MSC) is critical for effective treatment strategies. This study was designed to evaluate the capability of equine MSC from bone marrow (BMSC) and adipose tissue (ASC) on a type I collagen (COLI) scaffold to undergo chondrogenic, osteogenic and adipogenic differentiation and form extracellular matrix (ECM) in vitro. Following determination of surface antigen expression, MSC were loaded into scaffolds in a perfusion bioreactor and loading efficiency was quantified. Cell-scaffold constructs were assessed after loading and 7, 14 and 21 days of culture in stromal or induction medium. Cell number was determined with DNA content, cell viability and spatial uniformity with confocal laser microscopy and cell phenotype and matrix production with light and scanning electron microscopy and mRNA levels. The MSC were positive for CD29 (>90 %), CD44 (>99 %), and CD105 (>60 %). Loading efficiencies were >70 %. The ASC and BMSC cell numbers on scaffolds were affected by culture in induction medium differently. Viable cells remained uniformly distributed in scaffolds for up to 21 days and could be directed to differentiate or to maintain an MSC phenotype. Micro- and ultrastructure showed lineage-specific cell and ECM changes. Lineage-specific mRNA levels differed between ASC and BMSC with induction and changed with time. Based on these results, equine ASC and BMSC differentiate into chondrogenic, osteogenic and adipogenic lineages and form ECM similarly on COLI scaffolds. The collected data supports the potential for equine MSC-COLI constructs to support diverse equine tissue formation for controlled biological studies.

  16. Clonal analysis of Notch1-expressing cells reveals the existence of unipotent stem cells that retain long-term plasticity in the embryonic mammary gland.

    Science.gov (United States)

    Lilja, Anna M; Rodilla, Veronica; Huyghe, Mathilde; Hannezo, Edouard; Landragin, Camille; Renaud, Olivier; Leroy, Olivier; Rulands, Steffen; Simons, Benjamin D; Fre, Silvia

    2018-06-01

    Recent lineage tracing studies have revealed that mammary gland homeostasis relies on unipotent stem cells. However, whether and when lineage restriction occurs during embryonic mammary development, and which signals orchestrate cell fate specification, remain unknown. Using a combination of in vivo clonal analysis with whole mount immunofluorescence and mathematical modelling of clonal dynamics, we found that embryonic multipotent mammary cells become lineage-restricted surprisingly early in development, with evidence for unipotency as early as E12.5 and no statistically discernable bipotency after E15.5. To gain insights into the mechanisms governing the switch from multipotency to unipotency, we used gain-of-function Notch1 mice and demonstrated that Notch activation cell autonomously dictates luminal cell fate specification to both embryonic and basally committed mammary cells. These functional studies have important implications for understanding the signals underlying cell plasticity and serve to clarify how reactivation of embryonic programs in adult cells can lead to cancer.

  17. Mito-nuclear discord in six congeneric lineages of Holarctic ducks (genus Anas).

    Science.gov (United States)

    Peters, Jeffrey L; Winker, Kevin; Millam, Kendra C; Lavretsky, Philip; Kulikova, Irina; Wilson, Robert E; Zhuravlev, Yuri N; McCracken, Kevin G

    2014-06-01

    Many species have Holarctic distributions that extend across Europe, Asia and North America. Most genetics research on these species has examined only mitochondrial (mt) DNA, which has revealed wide variance in divergence between Old World (OW) and New World (NW) populations, ranging from shallow, unstructured genealogies to deeply divergent lineages. In this study, we sequenced 20 nuclear introns to test for concordant patterns of OW-NW differentiation between mtDNA and nuclear (nu) DNA for six lineages of Holarctic ducks (genus Anas). Genetic differentiation for both marker types varied widely among these lineages (idiosyncratic population histories), but mtDNA and nuDNA divergence within lineages was not significantly correlated. Moreover, compared with the association between mtDNA and nuDNA divergence observed among different species, OW-NW nuDNA differentiation was generally lower than mtDNA divergence, at least for lineages with deeply divergent mtDNA. Furthermore, coalescent estimates indicated significantly higher rates of gene flow for nuDNA than mtDNA for four of the six lineages. Thus, Holarctic ducks show prominent mito-nuclear discord between OW and NW populations, and we reject differences in sorting rates as the sole cause of the within-species discord. Male-mediated intercontinental gene flow is likely a leading contributor to this discord, although selection could also cause increased mtDNA divergence relative to weak nuDNA differentiation. The population genetics of these ducks contribute to growing evidence that mtDNA can be an unreliable indicator of stage of speciation and that more holistic approaches are needed for species delimitation. © 2014 John Wiley & Sons Ltd.

  18. Is the diversification of Mediterranean Basin plant lineages coupled to karyotypic changes?

    Science.gov (United States)

    Escudero, M; Balao, F; Martín-Bravo, S; Valente, L; Valcárcel, V

    2018-01-01

    The Mediterranean Basin region, home to 25,000 plant species, is included in the worldwide list of hotspots of biodiversity. Despite the indisputably important role of chromosome transitions in plant evolution and diversification, no reference study to date has dealt with the possible relationship between chromosome evolution and lineage diversification in the Mediterranean Basin. Here we study patterns of diversification, patterns of chromosome number transition (either polyploidy or dysploidy) and the relationship between the two for 14 Mediterranean Basin angiosperm lineages using previously published phylogenies. We found a mixed pattern, with half of the lineages displaying a change in chromosome transition rates after the onset of the Mediterranean climate (six increases, one decrease) and the other half (six) experiencing constant rates of chromosome transitions through time. We have also found a heterogeneous pattern regarding diversification rates, with lineages exhibiting moderate (five phylogenies) or low (six) initial diversification rates that either increased (six) or declined (five) through time. Our results reveal no clear link between diversification rates and chromosome number transition rates. By promoting the formation of new habitats and driving the extinction of many species, the Mediterranean onset and the posterior Quaternary climatic oscillations could have been key for the establishment of new chromosomal variants in some plant phylogenies but not in others. While the biodiversity of the Mediterranean Basin may be partly influenced by the chromosomal diversity of its lineages, this study concludes that lineage diversification in the region is largely decoupled from karyotypic evolution. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Virulence, sporulation, and elicitin production in three clonal lineages of Phytophthora ramorum

    Science.gov (United States)

    Phytophthora ramorum populations are clonal and consist of three lineages. Recent studies have shown that the clonal lineages may have varying degrees of aggressiveness on some host species, such as Quercus rubra. In this study, we examined virulence, sporulation and elicitin production of five P. ...

  20. Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo.

    Science.gov (United States)

    Havens, Aaron M; Sun, Hongli; Shiozawa, Yusuke; Jung, Younghun; Wang, Jingcheng; Mishra, Anjali; Jiang, Yajuan; O'Neill, David W; Krebsbach, Paul H; Rodgerson, Denis O; Taichman, Russell S

    2014-04-01

    The purpose of this study was to determine the lineage progression of human and murine very small embryonic-like (HuVSEL or MuVSEL) cells in vitro and in vivo. In vitro, HuVSEL and MuVSEL cells differentiated into cells of all three embryonic germ layers. HuVSEL cells produced robust mineralized tissue of human origin compared with controls in calvarial defects. Immunohistochemistry demonstrated that the HuVSEL cells gave rise to neurons, adipocytes, chondrocytes, and osteoblasts within the calvarial defects. MuVSEL cells were also able to differentiate into similar lineages. First round serial transplants of MuVSEL cells into irradiated osseous sites demonstrated that ∼60% of the cells maintained their VSEL cell phenotype while other cells differentiated into multiple tissues at 3 months. Secondary transplants did not identify donor VSEL cells, suggesting limited self renewal but did demonstrate VSEL cell derivatives in situ for up to 1 year. At no point were teratomas identified. These studies show that VSEL cells produce multiple cellular structures in vivo and in vitro and lay the foundation for future cell-based regenerative therapies for osseous, neural, and connective tissue disorders.

  1. Optimizing and accelerating the assignation of lineages in Mycobacterium tuberculosis using novel alternative single-tube assays.

    Directory of Open Access Journals (Sweden)

    María Carcelén

    Full Text Available The assignation of lineages in Mycobacterium tuberculosis (MTB provides valuable information for evolutionary and phylogeographic studies and makes for more accurate knowledge of the distribution of this pathogen worldwide. Differences in virulence have also been found for certain lineages. MTB isolates were initially assigned to lineages based on data obtained from genotyping techniques, such as spoligotyping or MIRU-VNTR analysis, some of which are more suitable for molecular epidemiology studies. However, since these methods are subject to a certain degree of homoplasy, other criteria have been chosen to assign lineages. These are based on targeting robust and specific SNPs for each lineage. Here, we propose two newly designed multiplex targeting methods-both of which are single-tube tests-to optimize the assignation of the six main lineages in MTB. The first method is based on ASO-PCR and offers an inexpensive and easy-to-implement assay for laboratories with limited resources. The other, which is based on SNaPshot, enables more refined standardized assignation of lineages for laboratories with better resources. Both methods performed well when assigning lineages from cultured isolates from a control panel, a test panel, and a problem panel from an unrelated population, Mexico, which included isolates in which standard genotyping was not able to classify lineages. Both tests were also able to assign lineages from stored isolates, without the need for subculture or purification of DNA, and even directly from clinical specimens with a medium-high bacilli burden. Our assays could broaden the contexts where information on lineages can be acquired, thus enabling us to quickly update data from retrospective collections and to merge data with those obtained at the time of diagnosis of a new TB case.

  2. Blastema from rabbit ear contains progenitor cells comparable to marrow derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2012-09-01

    Full Text Available Rabbits have the capacity to regenerate holes in their ears by forming a blastema, a tissue that is made up of a group of undifferentiated cells. The purpose of the present study was to isolate and characterize blastema progenitor cells and compare them with marrow mesenchymal stem cells (MSCs. Five New Zealand white male rabbits were used in the present study. A 2-mm hole was created in the animal ears. After 4 days, the blastema ring formed in the periphery of the hole was removed and cultivated. The cells were expanded through several subcultures and compared with the MSCs derived from the marrow of same animal in terms of in vitro differentiation capacity, growth kinetics and culture requirements for optimal proliferation. The primary cultures from both cells tended to be heterogeneous. Fibroblastic cells became progressively dominant with advancing passages. Similar to MSCs blastema passaged-3 cells succeeded to differentiate into bone, cartilage and adipose cell lineages. Even lineage specific genes tended to express in higher level in blastema cells compared to MSCs (p < 0.05. Moreover blastema cells appeared more proliferative; producing more colonies (p < 0.05. While blastema cells showed extensive proliferation in 15% fetal bovine serum (FBS, MSCs displayed higher expansion rate at 10% FBS. In conclusion, blastema from rabbit ear contains a population of fibroblastic cells much similar in characteristic to bone marrow mesenchymal stem cells. However, the two cells were different in the level of lineage-specific gene expression, the growth curve characteristics and the culture requirements.

  3. Unveiling current Guanaco distribution in chile based upon niche structure of phylogeographic lineages: Andean puna to subpolar forests.

    Science.gov (United States)

    González, Benito A; Samaniego, Horacio; Marín, Juan Carlos; Estades, Cristián F

    2013-01-01

    Niche description and differentiation at broad geographic scales have been recent major topics in ecology and evolution. Describing the environmental niche structure of sister taxa with known evolutionary trajectories stands out as a useful exercise in understanding niche requirements. Here we model the environmental niche structure and distribution of the recently resolved phylogeography of guanaco (Lama guanicoe) lineages on the western slope of the southern Andes. Using a maximum entropy framework, field data, and information on climate, topography, human density, and vegetation cover, we identify differences between the two subspecies (L.g.cacsilensis, L.g.guanicoe) and their intermediate-hybrid lineage, that most likely determine the distribution of this species. While aridity seems to be a major factor influencing the distribution at the species-level (annual precipitation ecological and/or evolutionary processes are shaping the niche of guanacos in Chile, producing discrepancies when comparing range distribution at the species-level (81,756 km(2)) with lineages-level (65,321 km(2)). The subspecies-specific description of niche structure is provided here based upon detailed spatial distribution of the lineages of guanacos in Chile. Such description provides a scientific tool to further develop large scale plans for habitat conservation and preservation of intraspecific genetic variability for this far ranging South American camelid, which inhabits a diversity of ecoregion types from Andean puna to subpolar forests.

  4. Tightly congruent bursts of lineage and phenotypic diversification identified in a continental ant radiation.

    Science.gov (United States)

    Price, Shauna L; Etienne, Rampal S; Powell, Scott

    2016-04-01

    Adaptive diversification is thought to be shaped by ecological opportunity. A prediction of this ecological process of diversification is that it should result in congruent bursts of lineage and phenotypic diversification, but few studies have found this expected association. Here, we study the relationship between rates of lineage diversification and body size evolution in the turtle ants, a diverse Neotropical clade. Using a near complete, time-calibrated phylogeny we investigated lineage diversification dynamics and body size disparity through model fitting analyses and estimation of per-lineage rates of cladogenesis and phenotypic evolution. We identify an exceptionally high degree of congruence between the high rates of lineage and body size diversification in a young clade undergoing renewed diversification in the ecologically distinct Chacoan biogeographical region of South America. It is likely that the region presented turtle ants with novel ecological opportunity, which facilitated a nested burst of diversification and phenotypic evolution within the group. Our results provide a compelling quantitative example of tight congruence between rates of lineage and phenotypic diversification, meeting the key predicted pattern of adaptive diversification shaped by ecological opportunity. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  5. LCGbase: A Comprehensive Database for Lineage-Based Co-regulated Genes.

    Science.gov (United States)

    Wang, Dapeng; Zhang, Yubin; Fan, Zhonghua; Liu, Guiming; Yu, Jun

    2012-01-01

    Animal genes of different lineages, such as vertebrates and arthropods, are well-organized and blended into dynamic chromosomal structures that represent a primary regulatory mechanism for body development and cellular differentiation. The majority of genes in a genome are actually clustered, which are evolutionarily stable to different extents and biologically meaningful when evaluated among genomes within and across lineages. Until now, many questions concerning gene organization, such as what is the minimal number of genes in a cluster and what is the driving force leading to gene co-regulation, remain to be addressed. Here, we provide a user-friendly database-LCGbase (a comprehensive database for lineage-based co-regulated genes)-hosting information on evolutionary dynamics of gene clustering and ordering within animal kingdoms in two different lineages: vertebrates and arthropods. The database is constructed on a web-based Linux-Apache-MySQL-PHP framework and effective interactive user-inquiry service. Compared to other gene annotation databases with similar purposes, our database has three comprehensible advantages. First, our database is inclusive, including all high-quality genome assemblies of vertebrates and representative arthropod species. Second, it is human-centric since we map all gene clusters from other genomes in an order of lineage-ranks (such as primates, mammals, warm-blooded, and reptiles) onto human genome and start the database from well-defined gene pairs (a minimal cluster where the two adjacent genes are oriented as co-directional, convergent, and divergent pairs) to large gene clusters. Furthermore, users can search for any adjacent genes and their detailed annotations. Third, the database provides flexible parameter definitions, such as the distance of transcription start sites between two adjacent genes, which is extendable to genes that flanking the cluster across species. We also provide useful tools for sequence alignment, gene

  6. Peripheral T-Cell Lymphoma with Aberrant Expression of CD19, CD20, and CD79a: Case Report and Literature Review

    Science.gov (United States)

    Matnani, Rahul G.; Stewart, Rachel L.; Pulliam, Joseph; Jennings, Chester D.; Kesler, Melissa

    2013-01-01

    A case of lymphoma of T-cell derivation with aberrant expression of three B-cell lineage markers (CD19, CD20, and CD79a), which was diagnosed on a left axillary excision, is described. Immunohistochemical studies and flow cytometry analysis demonstrated neoplastic cells expressing CD3, CD19, CD20, and CD79a with absence of CD4, CD8, CD10, CD30, CD34, CD56, CD68, TDT, MPO, PAX-5, and surface immunoglobulin. Gene rearrangement studies performed on paraffin blocks demonstrated monoclonal T-cell receptor gamma chain rearrangement with no evidence of clonal heavy chain rearrangement. The neoplastic cells were negative for Epstein-Barr virus (EBV) or Human Herpes Virus 8 (HHV-8). At the time of diagnosis, the PET scan demonstrated hypermetabolic neoplastic cells involving the left axilla, bilateral internal jugular areas, mediastinum, right hilum, bilateral lungs, and spleen. However, bone marrow biopsy performed for hemolytic anemia revealed normocellular bone marrow with trilineage maturation. The patient had no evidence of immunodeficiency or infection with EBV or HHV-8. This is the first reported case of a mature T-cell lymphoma with aberrant expression of three B-cell lineage markers. The current report also highlights the need for molecular gene rearrangement studies to determine the precise lineage of ambiguous neoplastic clones. PMID:24066244

  7. Peripheral T-Cell Lymphoma with Aberrant Expression of CD19, CD20, and CD79a: Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Rahul G. Matnani

    2013-01-01

    Full Text Available A case of lymphoma of T-cell derivation with aberrant expression of three B-cell lineage markers (CD19, CD20, and CD79a, which was diagnosed on a left axillary excision, is described. Immunohistochemical studies and flow cytometry analysis demonstrated neoplastic cells expressing CD3, CD19, CD20, and CD79a with absence of CD4, CD8, CD10, CD30, CD34, CD56, CD68, TDT, MPO, PAX-5, and surface immunoglobulin. Gene rearrangement studies performed on paraffin blocks demonstrated monoclonal T-cell receptor gamma chain rearrangement with no evidence of clonal heavy chain rearrangement. The neoplastic cells were negative for Epstein-Barr virus (EBV or Human Herpes Virus 8 (HHV-8. At the time of diagnosis, the PET scan demonstrated hypermetabolic neoplastic cells involving the left axilla, bilateral internal jugular areas, mediastinum, right hilum, bilateral lungs, and spleen. However, bone marrow biopsy performed for hemolytic anemia revealed normocellular bone marrow with trilineage maturation. The patient had no evidence of immunodeficiency or infection with EBV or HHV-8. This is the first reported case of a mature T-cell lymphoma with aberrant expression of three B-cell lineage markers. The current report also highlights the need for molecular gene rearrangement studies to determine the precise lineage of ambiguous neoplastic clones.

  8. Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury.

    Science.gov (United States)

    Llorens-Bobadilla, Enric; Zhao, Sheng; Baser, Avni; Saiz-Castro, Gonzalo; Zwadlo, Klara; Martin-Villalba, Ana

    2015-09-03

    Heterogeneous pools of adult neural stem cells (NSCs) contribute to brain maintenance and regeneration after injury. The balance of NSC activation and quiescence, as well as the induction of lineage-specific transcription factors, may contribute to diversity of neuronal and glial fates. To identify molecular hallmarks governing these characteristics, we performed single-cell sequencing of an unbiased pool of adult subventricular zone NSCs. This analysis identified a discrete, dormant NSC subpopulation that already expresses distinct combinations of lineage-specific transcription factors during homeostasis. Dormant NSCs enter a primed-quiescent state before activation, which is accompanied by downregulation of glycolytic metabolism, Notch, and BMP signaling and a concomitant upregulation of lineage-specific transcription factors and protein synthesis. In response to brain ischemia, interferon gamma signaling induces dormant NSC subpopulations to enter the primed-quiescent state. This study unveils general principles underlying NSC activation and lineage priming and opens potential avenues for regenerative medicine in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson's disease therapy

    Science.gov (United States)

    Yoo, Junsang; Lee, Euiyeon; Kim, Hee Young; Youn, Dong-Ho; Jung, Junghyun; Kim, Hongwon; Chang, Yujung; Lee, Wonwoong; Shin, Jaein; Baek, Soonbong; Jang, Wonhee; Jun, Won; Kim, Soochan; Hong, Jongki; Park, Hi-Joon; Lengner, Christopher J.; Moh, Sang Hyun; Kwon, Youngeun; Kim, Jongpil

    2017-10-01

    Electromagnetic fields (EMF) are physical energy fields generated by electrically charged objects, and specific ranges of EMF can influence numerous biological processes, which include the control of cell fate and plasticity. In this study, we show that electromagnetized gold nanoparticles (AuNPs) in the presence of specific EMF conditions facilitate an efficient direct lineage reprogramming to induced dopamine neurons in vitro and in vivo. Remarkably, electromagnetic stimulation leads to a specific activation of the histone acetyltransferase Brd2, which results in histone H3K27 acetylation and a robust activation of neuron-specific genes. In vivo dopaminergic neuron reprogramming by EMF stimulation of AuNPs efficiently and non-invasively alleviated symptoms in mouse Parkinson's disease models. This study provides a proof of principle for EMF-based in vivo lineage conversion as a potentially viable and safe therapeutic strategy for the treatment of neurodegenerative disorders.

  10. Langerhans cell sarcoma following marginal zone lymphoma: expanding the knowledge on mature B cell plasticity.

    Science.gov (United States)

    Ambrosio, Maria Raffaella; De Falco, Giulia; Rocca, Bruno Jim; Barone, Aurora; Amato, Teresa; Bellan, Cristiana; Lazzi, Stefano; Leoncini, Lorenzo

    2015-10-01

    The concept of unidirectional differentiation of the haematopoietic stem cell has been challenged after recent findings that human B cell progenitors and even mature B cells can be reprogrammed into histiocytic/dendritic cells by altering expression of lineage-associated transcription factors. The conversion of mature B cell lymphomas to Langerhans cell neoplasms is not well documented. Three previous reports have described clonally related follicular lymphoma and Langerhans cell tumours, whereas no case has been published of clonally related marginal zone lymphoma and Langerhans cell sarcoma. We describe the case of a 77-year-old patient who developed a Langerhans cell sarcoma and 6 years later a nodal marginal zone lymphoma. Mutation status examination showed 100 % gene identity to the germline sequence, suggesting direct trans-differentiation or dedifferentiation of the nodal marginal zone lymphoma to the Langerhans cell sarcoma rather than a common progenitor. We found inactivation of paired box 5 (PAX-5) in the lymphoma cells by methylation, along with duplication of part of the long arm of chromosomes 16 and 17 in the sarcoma cells. The absence of PAX-5 could have triggered B cells to differentiate into macrophages and dendritic cells. On the other hand, chromosomal imbalances might have activated genes involved in myeloid lineage maturation, transcription activation and oncogenesis. We hypothesize that this occurred because of previous therapies for nodal marginal zone lymphoma. Better understanding of this phenomenon may help in unravelling the molecular interplay between transcription factors during haematopoietic lineage commitment and may expand the spectrum of clonally related mature B cell neoplasms and Langerhans cell tumours.

  11. Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia.

    Science.gov (United States)

    Cao, Fang; Townsend, Elizabeth C; Karatas, Hacer; Xu, Jing; Li, Li; Lee, Shirley; Liu, Liu; Chen, Yong; Ouillette, Peter; Zhu, Jidong; Hess, Jay L; Atadja, Peter; Lei, Ming; Qin, Zhaohui S; Malek, Sami; Wang, Shaomeng; Dou, Yali

    2014-01-23

    Here we report a comprehensive characterization of our recently developed inhibitor MM-401 that targets the MLL1 H3K4 methyltransferase activity. MM-401 is able to specifically inhibit MLL1 activity by blocking MLL1-WDR5 interaction and thus the complex assembly. This targeting strategy does not affect other mixed-lineage leukemia (MLL) family histone methyltransferases (HMTs), revealing a unique regulatory feature for the MLL1 complex. Using MM-401 and its enantiomer control MM-NC-401, we show that inhibiting MLL1 methyltransferase activity specifically blocks proliferation of MLL cells by inducing cell-cycle arrest, apoptosis, and myeloid differentiation without general toxicity to normal bone marrow cells or non-MLL cells. More importantly, transcriptome analyses show that MM-401 induces changes in gene expression similar to those of MLL1 deletion, supporting a predominant role of MLL1 activity in regulating MLL1-dependent leukemia transcription program. We envision broad applications for MM-401 in basic and translational research. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Hain Torsten

    2012-04-01

    Full Text Available Abstract Background Listeria monocytogenes is a food-borne pathogen that causes infections with a high-mortality rate and has served as an invaluable model for intracellular parasitism. Here, we report complete genome sequences for two L. monocytogenes strains belonging to serotype 4a (L99 and 4b (CLIP80459, and transcriptomes of representative strains from lineages I, II, and III, thereby permitting in-depth comparison of genome- and transcriptome -based data from three lineages of L. monocytogenes. Lineage III, represented by the 4a L99 genome is known to contain strains less virulent for humans. Results The genome analysis of the weakly pathogenic L99 serotype 4a provides extensive evidence of virulence gene decay, including loss of several important surface proteins. The 4b CLIP80459 genome, unlike the previously sequenced 4b F2365 genome harbours an intact inlB invasion gene. These lineage I strains are characterized by the lack of prophage genes, as they share only a single prophage locus with other L. monocytogenes genomes 1/2a EGD-e and 4a L99. Comparative transcriptome analysis during intracellular growth uncovered adaptive expression level differences in lineages I, II and III of Listeria, notable amongst which was a strong intracellular induction of flagellar genes in strain 4a L99 compared to the other lineages. Furthermore, extensive differences between strains are manifest at levels of metabolic flux control and phosphorylated sugar uptake. Intriguingly, prophage gene expression was found to be a hallmark of intracellular gene expression. Deletion mutants in the single shared prophage locus of lineage II strain EGD-e 1/2a, the lma operon, revealed severe attenuation of virulence in a murine infection model. Conclusion Comparative genomics and transcriptome analysis of L. monocytogenes strains from three lineages implicate prophage genes in intracellular adaptation and indicate that gene loss and decay may have led to the emergence

  13. Discrete functions of mTOR signaling in iNKT cell development and NKT17 fate decision

    OpenAIRE

    Wei, Jun; Yang, Kai; Chi, Hongbo

    2014-01-01

    Invariant natural killer T (iNKT) cells have been recently classified into NKT1, NKT2 and NKT17 lineages with distinct transcription factor and cytokine profiles, but mechanisms underlying such fate decisions remain elusive. Here, we report crucial roles of mTOR signaling especially mTORC2 in iNKT cell development and fate determination of NKT17 cells. Loss of Rictor, an obligatory component of mTORC2, decreased thymic and peripheral iNKT cells, associated with defective survival. Strikingly,...

  14. Dlx proteins position the neural plate border and determine adjacent cell fates.

    Science.gov (United States)

    Woda, Juliana M; Pastagia, Julie; Mercola, Mark; Artinger, Kristin Bruk

    2003-01-01

    The lateral border of the neural plate is a major source of signals that induce primary neurons, neural crest cells and cranial placodes as well as provide patterning cues to mesodermal structures such as somites and heart. Whereas secreted BMP, FGF and Wnt proteins influence the differentiation of neural and non-neural ectoderm, we show here that members of the Dlx family of transcription factors position the border between neural and non-neural ectoderm and are required for the specification of adjacent cell fates. Inhibition of endogenous Dlx activity in Xenopus embryos with an EnR-Dlx homeodomain fusion protein expands the neural plate into non-neural ectoderm tissue whereas ectopic activation of Dlx target genes inhibits neural plate differentiation. Importantly, the stereotypic pattern of border cell fates in the adjacent ectoderm is re-established only under conditions where the expanded neural plate abuts Dlx-positive non-neural ectoderm. Experiments in which presumptive neural plate was grafted to ventral ectoderm reiterate induction of neural crest and placodal lineages and also demonstrate that Dlx activity is required in non-neural ectoderm for the production of signals needed for induction of these cells. We propose that Dlx proteins regulate intercellular signaling across the interface between neural and non-neural ectoderm that is critical for inducing and patterning adjacent cell fates.

  15. New Lineage of Lassa Virus, Togo, 2016

    Science.gov (United States)

    Whitmer, Shannon L.M.; Strecker, Thomas; Cadar, Daniel; Dienes, Hans-Peter; Faber, Kelly; Patel, Ketan; Brown, Shelley M.; Davis, William G.; Klena, John D.; Rollin, Pierre E.; Schmidt-Chanasit, Jonas; Fichet-Calvet, Elisabeth; Noack, Bernd; Emmerich, Petra; Rieger, Toni; Wolff, Svenja; Fehling, Sarah Katharina; Eickmann, Markus; Mengel, Jan Philipp; Schultze, Tilman; Hain, Torsten; Ampofo, William; Bonney, Kofi; Aryeequaye, Juliana Naa Dedei; Ribner, Bruce; Varkey, Jay B.; Mehta, Aneesh K.; Lyon, G. Marshall; Kann, Gerrit; De Leuw, Philipp; Schuettfort, Gundolf; Stephan, Christoph; Wieland, Ulrike; Fries, Jochen W.U.; Kochanek, Matthias; Kraft, Colleen S.; Wolf, Timo; Nichol, Stuart T.; Becker, Stephan; Ströher, Ute

    2018-01-01

    We describe a strain of Lassa virus representing a putative new lineage that was isolated from a cluster of human infections with an epidemiologic link to Togo. This finding extends the known range of Lassa virus to Togo. PMID:29460758

  16. Hierarchical clustering of gene expression patterns in the Eomes + lineage of excitatory neurons during early neocortical development

    Directory of Open Access Journals (Sweden)

    Cameron David A

    2012-08-01

    Full Text Available Abstract Background Cortical neurons display dynamic patterns of gene expression during the coincident processes of differentiation and migration through the developing cerebrum. To identify genes selectively expressed by the Eomes + (Tbr2 lineage of excitatory cortical neurons, GFP-expressing cells from Tg(Eomes::eGFP Gsat embryos were isolated to > 99% purity and profiled. Results We report the identification, validation and spatial grouping of genes selectively expressed within the Eomes + cortical excitatory neuron lineage during early cortical development. In these neurons 475 genes were expressed ≥ 3-fold, and 534 genes ≤ 3-fold, compared to the reference population of neuronal precursors. Of the up-regulated genes, 328 were represented at the Genepaint in situ hybridization database and 317 (97% were validated as having spatial expression patterns consistent with the lineage of differentiating excitatory neurons. A novel approach for quantifying in situ hybridization patterns (QISP across the cerebral wall was developed that allowed the hierarchical clustering of genes into putative co-regulated groups. Forty four candidate genes were identified that show spatial expression with Intermediate Precursor Cells, 49 candidate genes show spatial expression with Multipolar Neurons, while the remaining 224 genes achieved peak expression in the developing cortical plate. Conclusions This analysis of differentiating excitatory neurons revealed the expression patterns of 37 transcription factors, many chemotropic signaling molecules (including the Semaphorin, Netrin and Slit signaling pathways, and unexpected evidence for non-canonical neurotransmitter signaling and changes in mechanisms of glucose metabolism. Over half of the 317 identified genes are associated with neuronal disease making these findings a valuable resource for studies of neurological development and disease.

  17. Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents.

    Science.gov (United States)

    Anderson, Rika E; Sogin, Mitchell L; Baross, John A

    2015-01-01

    Environmental gradients generate countless ecological niches in deep-sea hydrothermal vent systems, which foster diverse microbial communities. The majority of distinct microbial lineages in these communities occur in very low abundance. However, the ecological role and distribution of rare and abundant lineages, particularly in deep, hot subsurface environments, remain unclear. Here, we use 16S rRNA tag sequencing to describe biogeographic patterning and microbial community structure of both rare and abundant archaea and bacteria in hydrothermal vent systems. We show that while rare archaeal lineages and almost all bacterial lineages displayed geographically restricted community structuring patterns, the abundant lineages of archaeal communities displayed a much more cosmopolitan distribution. Finally, analysis of one high-volume, high-temperature fluid sample representative of the deep hot biosphere described a unique microbial community that differed from microbial populations in diffuse flow fluid or sulfide samples, yet the rare thermophilic archaeal groups showed similarities to those that occur in sulfides. These results suggest that while most archaeal and bacterial lineages in vents are rare and display a highly regional distribution, a small percentage of lineages, particularly within the archaeal domain, are successful at widespread dispersal and colonization. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Notch signaling activation in human embryonic stem cells is required for embryonic but not trophoblastic lineage commitment

    OpenAIRE

    Yu, Xiaobing; Zou, Jizhong; Ye, Zhaohui; Hammond, Holly; Chen, Guibin; Tokunaga, Akinori; Mali, Prashant; Li, Yue-Ming; Civin, Curt; Gaiano, Nicholas; Cheng, Linzhao

    2008-01-01

    The Notch signaling pathway plays important roles in cell fate determination during embryonic development and adult life. In this study, we focus on the role of Notch signaling in governing cell fate choices in human embryonic stem (hES) cells. Using genetic and pharmacological approaches, we achieved both blockade and conditional activation of Notch signaling in several hES cell lines. We report here that activation of Notch signaling is required for undifferentiated hES cells to form the pr...

  19. Three reciprocally monophyletic mtDNA lineages elucidate the taxonomic status of Grant's gazelles

    DEFF Research Database (Denmark)

    Lorenzen, Eline Deidre; Arctander, Peter; Siegismund, Hans Redlef

    2008-01-01

    are discussed in reference to the four currently recognised subspecies. We suggest Grant's gazelles be raised to the superspecies Nanger (granti) comprising three taxonomic units corresponding to the three mtDNA lineages. There was no evidence of gene flow between the notata and granti lineages, despite...... their geographic proximity, suggesting reproductive isolation. These constitute evolutionary significant units within the adaptive evolutionary framework. Due to its restricted geographic distribution and genetic and morphological distinctiveness, we suggest the petersii lineage be raised to the species Nanger...

  20. Gene expression heterogeneities in embryonic stem cell populations

    DEFF Research Database (Denmark)

    Martinez Arias, Alfonso; Brickman, Joshua M

    2011-01-01

    Stem and progenitor cells are populations of cells that retain the capacity to populate specific lineages and to transit this capacity through cell division. However, attempts to define markers for stem cells have met with limited success. Here we consider whether this limited success reflects...... an intrinsic requirement for heterogeneity with stem cell populations. We focus on Embryonic Stem (ES) cells, in vitro derived cell lines from the early embryo that are considered both pluripotent (able to generate all the lineages of the future embryo) and indefinitely self renewing. We examine the relevance...... of recently reported heterogeneities in ES cells and whether these heterogeneities themselves are inherent requirements of functional potency and self renewal....