WorldWideScience

Sample records for cell glucose metabolism

  1. Glucose starvation is required for insulin stimulation of glucose uptake and metabolism in cultured microvascular endothelial cells

    International Nuclear Information System (INIS)

    In the present study we determined the uptake and disposition of glucose in serum-deprived rabbit coronary microvessel endothelial (RCME) cells. RCME cells exhibited stereospecific hexose uptake inhibited by cytochalasin B. Pretreatment of the RCME cells with potassium cyanide or 2,4-dinitrophenol inhibited 2-deoxyglucose uptake but not 3-O-methylglucose transport. A major proportion (30-60%) of the 2-deoxyglucose present in the RCME cells was not phosphorylated. These two observations suggested that the rate-limiting step in the uptake of 2-deoxyglucose was not transport but rather the phosphorylation of 2-deoxyglucose to 2-deoxyglucose 6-phosphate. When glucose-deprived cells were incubated 2 hr with [U-14C]glucose the disposition of the label was as follows: glycogen 60%, acid-soluble fraction 30%, and lipid less than 5%. In contrast glucose-fed cells exhibited lower overall glucose incorporation, and a slightly different disposition: glycogen 45%, acid-soluble fraction 50%, and lipid 5%. Glucose-deprived RCME cells also exhibited greater basal levels of 2-deoxyglucose uptake compared to glucose-fed cells. RCME cells incubated in the absence of glucose and serum for 16 hr exhibited dose-dependent insulin stimulation of hexose uptake and subsequent metabolism to macromolecules (i.e., glycogen and the acid-soluble fraction). Significant effects of insulin were observed with concentrations as low as 2 x 10(-10) M, well within the physiological range. In contrast, cells preincubated in serum-free culture medium containing 5.5 mM glucose did not exhibit insulin-enhanced hexose uptake or glucose metabolism (even at doses as high as 10(-7) M). These studies indicate that the effects of insulin on rabbit coronary microvascular endothelial cell glucose uptake and metabolism require both serum and glucose deprivation

  2. Effects of turtle oil on insulin sensitivity and glucose metabolism in insulin resistant cell model

    International Nuclear Information System (INIS)

    To evaluate the effects of turtle oil on insulin sensitivity and glucose metabolism in an insulin-resistant (IR) cell model which was established by the way of high concentration of insulin induction with HepG2 cell in vitro culture. The IR cells were treated by turtle oil, the glucose consumption and 3H-D-glucose incorporation rate in IR cells were detected by the way of glucose oxidase and 3H-D-glucose incorporation assay respectively. The state of cell proliferation was tested by MTT method. The results showed that the incorporation rate of 3H-D-glucose in IR cells was significantly lower than that in the control cells(P3H-D-glucose incorporation rate in either IR cells or control cells was increased with the increase of insulin concentration. Moreover, the 3H-D-glucose incorporation rate of IR cells increased slower than that of control cells. The MTT assay showed that turtle oil can promote the proliferation of IR cell and control cell. The glucose uptake and glucose consumption in IR cell which treated with turtle oil was significantly increase than that in the control cells (P<0.05). Turtle oil can improve the insulin sensitivity and glucose metabolism in the IR cell model. (authors)

  3. Glycated albumin suppresses glucose-induced insulin secretion by impairing glucose metabolism in rat pancreatic ?-cells

    Directory of Open Access Journals (Sweden)

    Muto Takashi

    2011-04-01

    Full Text Available Abstract Background Glycated albumin (GA is an Amadori product used as a marker of hyperglycemia. In this study, we investigated the effect of GA on insulin secretion from pancreatic ? cells. Methods Islets were collected from male Wistar rats by collagenase digestion. Insulin secretion in the presence of non-glycated human albumin (HA and GA was measured under three different glucose concentrations, 3 mM (G3, 7 mM (G7, and 15 mM (G15, with various stimulators. Insulin secretion was measured with antagonists of inducible nitric oxide synthetase (iNOS, and the expression of iNOS-mRNA was investigated by real-time PCR. Results Insulin secretion in the presence of HA and GA was 20.9 ± 3.9 and 21.6 ± 5.5 ?U/3 islets/h for G3 (P = 0.920, and 154 ± 9.3 and 126.1 ± 7.3 ?U/3 islets/h (P = 0.046, for G15, respectively. High extracellular potassium and 10 mM tolbutamide abrogated the inhibition of insulin secretion by GA. Glyceraldehyde, dihydroxyacetone, methylpyruvate, GLP-1, and forskolin, an activator of adenylate cyclase, did not abrogate the inhibition. Real-time PCR showed that GA did not induce iNOS-mRNA expression. Furthermore, an inhibitor of nitric oxide synthetase, aminoguanidine, and NG-nitro-L-arginine methyl ester did not abrogate the inhibition of insulin secretion. Conclusion GA suppresses glucose-induced insulin secretion from rat pancreatic ?-cells through impairment of intracellular glucose metabolism.

  4. Glucose consumption of inflammatory cells masks metabolic deficits in the brain.

    Science.gov (United States)

    Backes, Heiko; Walberer, Maureen; Ladwig, Anne; Rueger, Maria A; Neumaier, Bernd; Endepols, Heike; Hoehn, Mathias; Fink, Gereon R; Schroeter, Michael; Graf, Rudolf

    2016-03-01

    Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism. PMID:26747749

  5. Glucose consumption of inflammatory cells masks metabolic deficits in the brain

    Science.gov (United States)

    Backes, Heiko; Walberer, Maureen; Ladwig, Anne; Rueger, Maria A.; Neumaier, Bernd; Endepols, Heike; Hoehn, Mathias; Fink, Gereon R.; Schroeter, Michael; Graf, Rudolf

    2016-01-01

    Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism. PMID:26747749

  6. Energizing eukaryotic cell-free protein synthesis with glucose metabolism.

    Science.gov (United States)

    Anderson, Mark J; Stark, Jessica C; Hodgman, C Eric; Jewett, Michael C

    2015-07-01

    Eukaryotic cell-free protein synthesis (CFPS) is limited by the dependence on costly high-energy phosphate compounds and exogenous enzymes to power protein synthesis (e.g., creatine phosphate and creatine kinase, CrP/CrK). Here, we report the ability to use glucose as a secondary energy substrate to regenerate ATP in a Saccharomyces cerevisiae crude extract CFPS platform. We observed synthesis of 3.64±0.35 ?g mL(-1) active luciferase in batch reactions with 16 mM glucose and 25 mM phosphate, resulting in a 16% increase in relative protein yield (?g protein/$ reagents) compared to the CrP/CrK system. Our demonstration provides the foundation for development of cost-effective eukaryotic CFPS platforms. PMID:26054976

  7. GRP78 enhances the glutamine metabolism to support cell survival from glucose deficiency by modulating the ?-catenin signaling

    OpenAIRE

    Li, Zongwei; Wang, Yingying; Wu, Haili; Zhang, Lichao; Yang, Peng; Li, Zhuoyu

    2014-01-01

    To support the high rates of proliferation, cancer cells undergo the metabolic reprogramming: aerobic glycolysis and glutamine addiction. Though glucose regulated protein 78 (GRP78) is a glucose-sensing protein and frequently highly expressed in tumor cells, its roles in glucose and glutamine metabolic regulation remain poorly unknown. We report here that glucose deficiency-induced GRP78 enhances ?-catenin signaling and consequently promotes its downstream c-Myc-mediated glutamine metabolism ...

  8. Glucose metabolism is altered after loss of L cells and ?-cells but not influenced by loss of K cells

    DEFF Research Database (Denmark)

    Pedersen, J; Ugleholdt, Randi Kjærsgaard

    2013-01-01

    The enteroendocrine K and L cells are responsible for secretion of glucose-dependent insulinotropic polypeptide (GIP) and glucagon like-peptide 1 (GLP-1), whereas pancreatic ?-cells are responsible for secretion of glucagon. In rodents and humans, dysregulation of the secretion of GIP, GLP-1, and glucagon is associated with impaired regulation of metabolism. This study evaluates the consequences of acute removal of Gip- or Gcg-expressing cells on glucose metabolism. Generation of the two diphtheria toxin receptor cellular knockout mice, TgN(GIP.DTR) and TgN(GCG.DTR), allowed us to study effects of acute ablation of K and L cells and ?-cells. Diphtheria toxin administration reduced the expression of Gip and content of GIP in the proximal jejunum in TgN(GIP.DTR) and expression of Gcg and content of proglucagon-derived peptides in both proximal jejunum and terminal ileum as well as content of glucagon in pancreas in TgN(GCG.DTR) compared with wild-type mice. GIP response to oral glucose was attenuated following K cell loss, but oral and intraperitoneal glucose tolerances were unaffected. Intraperitoneal glucose tolerance was impaired following combined L cell and ?-cell loss and normal following ?-cell loss. Oral glucose tolerance was improved following L cell and ?-cell loss and supernormal following ?-cell loss. We present two mouse models that allow studies of the effects of K cell or L cell and ?-cell loss as well as isolated ?-cell loss. Our findings show that intraperitoneal glucose tolerance is dependent on an intact L cell mass and underscore the diabetogenic effects of ?-cell signaling. Furthermore, the results suggest that K cells are less involved in acute regulation of mouse glucose metabolism than L cells and ?-cells.

  9. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate

    International Nuclear Information System (INIS)

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy[3H]glucose convert this glucose analogue to 2-deoxy[3H]glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O2 and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system

  10. Ptpmt1 induced by HIF-2α regulates the proliferation and glucose metabolism in erythroleukemia cells.

    Science.gov (United States)

    Xu, Qin-Qin; Xiao, Feng-Jun; Sun, Hui-Yan; Shi, Xue-Feng; Wang, Hua; Yang, Yue-Feng; Li, Yu-Xiang; Wang, Li-Sheng; Ge, Ri-Li

    2016-03-18

    Hypoxia provokes metabolism misbalance, mitochondrial dysfunction and oxidative stress in both human and animal cells. However, the mechanisms which hypoxia causes mitochondrial dysfunction and energy metabolism misbalance still remain unclear. In this study, we presented evidence that mitochondrial phosphatase Ptpmt1 is a hypoxia response molecule that regulates cell proliferation, survival and glucose metabolism in human erythroleukemia TF-1 cells. Exposure to hypoxia or DFO treatment results in upregulation of HIF1-α, HIF-2α and Ptpmt1. Only inhibition of HIF-2α by shRNA transduction reduces Ptpmt1 expression in TF-1 cells under hypoxia. Ptpmt1 inhibitor suppresses the growth and induces apoptosis of TF-1 cells. Furthermore, we demonstrated that Ptpmt1 inhibition reduces the Glut1 and Glut3 expression and decreases the glucose consumption in TF-1 cells. In additional, Ptpmt1 knockdown also results in the mitochondrial dysfunction determined by JC1 staining. These results delineate a key role for HIF-2α-induced Ptpmt1 upregulation in proliferation, survival and glucose metabolism of erythroleukemia cells. It is indicated that Ptpmt1 plays important roles in hypoxia-induced cell metabolism and mitochondrial dysfunction. PMID:26898802

  11. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism

    OpenAIRE

    Fendt, Sarah-Maria; Bell, Eric L.; Keibler, Mark A.; Davidson, Shawn M; Wirth, Gregory J.; Fiske, Brian; Mayers, Jared R.; Schwab, Matthias; Bellinger, Gary; Csibi, Alfredo; Patnaik, Akash; Jose Blouin, Marie; Cantley, Lewis C.; Guarente, Leonard; Blenis, John

    2013-01-01

    Metformin inhibits cancer cell proliferation and epidemiology studies suggest an association with increased survival in cancer patients taking metformin, however, the mechanism by which metformin improves cancer outcomes remains controversial. To explore how metformin might directly affect cancer cells, we analyzed how metformin altered the metabolism of prostate cancer cells and tumors. We found that metformin decreased glucose oxidation and increased dependency on reductive glutamine metabo...

  12. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species

    Science.gov (United States)

    Lee, Mi Jin; Lee, Seung Jun; Yun, Su Jin; Jang, Ji-Young; Kang, Hangoo; Kim, Kyongmin; Choi, In-Hong; Park, Sun

    2016-01-01

    The silver nanoparticle (AgNP) is a candidate for anticancer therapy because of its effects on cell survival and signaling. Although numerous reports are available regarding their effect on cell death, the effect of AgNPs on metabolism is not well understood. In this study, we investigated the effect of AgNPs on glucose metabolism in hepatoma cell lines. Lactate release from both HepG2 and Huh7 cells was reduced with 5 nm AgNPs as early as 1 hour after treatment, when cell death did not occur. Treatment with 5 nm AgNPs decreased glucose consumption in HepG2 cells but not in Huh7 cells. Treatment with 5 nm AgNPs reduced nuclear factor erythroid 2-like 2 expression in both cell types without affecting its activation at the early time points after AgNPs’ treatment. Increased reactive oxygen species (ROS) production was detected 1 hour after 5 nm AgNPs’ treatment, and lactate release was restored in the presence of an ROS scavenger. Our results suggest that 5 nm AgNPs affect glucose metabolism by producing ROS. PMID:26730190

  13. Glucagon-insulin interaction on fat cell metabolism using c14 glucose

    International Nuclear Information System (INIS)

    Glucagon is known to stimulate the lipolysis in isolated fat cells from young rats, but not in fat cells from old heavy rate (Manganiello 1972). Insulin is known to counteract the lipolytic effect and to stimulate the synthesis of fatty acids from glucose. However, little is known about the interaction between the two hormones on the glucose metabolism. Experiments based on the use of various inhibitors of lipolysis have however, clearly shown that glucagon can also stimulate the entry and overall oxidation of glucose by mechanism which is distinct from its lipolysis stimulating mechanism (M. Blecher et al. 1969). Fat cells from old heavy rats are known to be less responsive to both the lipogenic action of insulin and the lipolytic action of glucagon than fat cells from young lean rats (E.G. Hansen, Nielsen and Gliemann, 1974). The aim of the present study was to see how glucagon affects glucose metabolism in fat cells, and whether this effect was dependent on the lipolytic action of glucagon

  14. Retinoblastoma Protein Knockdown Favors Oxidative Metabolism and Glucose and Fatty Acid Disposal in Muscle Cells.

    Science.gov (United States)

    Petrov, Petar D; Ribot, Joan; López-Mejía, Isabel C; Fajas, Lluís; Palou, Andreu; Bonet, M Luisa

    2016-03-01

    Deficiency in the retinoblastoma protein (Rb) favors leanness and a healthy metabolic profile in mice largely attributed to activation of oxidative metabolism in white and brown adipose tissues. Less is known about Rb modulation of skeletal muscle metabolism. This was studied here by transiently knocking down Rb expression in differentiated C2C12 myotubes using small interfering RNAs. Compared with control cells transfected with non-targeting RNAs, myotubes silenced for Rb (by 80-90%) had increased expression of genes related to fatty acid uptake and oxidation such as Cd36 and Cpt1b (by 61% and 42%, respectively), increased Mitofusin 2 protein content (?2.5-fold increase), increased mitochondrial to nuclear DNA ratio (by 48%), increased oxygen consumption (by 65%) and decreased intracellular lipid accumulation. Rb silenced myotubes also displayed up-regulated levels of glucose transporter type 4 expression (?5-fold increase), increased basal glucose uptake, and enhanced insulin-induced Akt phosphorylation. Interestingly, exercise in mice led to increased Rb phosphorylation (inactivation) in skeletal muscle as evidenced by immunohistochemistry analysis. In conclusion, the silencing of Rb enhances mitochondrial oxidative metabolism and fatty acid and glucose disposal in skeletal myotubes, and changes in Rb status may contribute to muscle physiological adaptation to exercise. J. Cell. Physiol. 231: 708-718, 2016. © 2015 Wiley Periodicals, Inc. PMID:26241807

  15. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Lee MJ

    2015-12-01

    Full Text Available Mi Jin Lee,1 Seung Jun Lee,1,2,* Su Jin Yun,1,2,* Ji-Young Jang,3 Hangoo Kang,3 Kyongmin Kim,1,2 In-Hong Choi,3,4 Sun Park1,2 1Department of Microbiology, Ajou University School of Medicine, 2Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, 3Department of Microbiology, The Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea; 4Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea *These authors contributed equally to this work Abstract: The silver nanoparticle (AgNP is a candidate for anticancer therapy because of its effects on cell survival and signaling. Although numerous reports are available regarding their effect on cell death, the effect of AgNPs on metabolism is not well understood. In this study, we investigated the effect of AgNPs on glucose metabolism in hepatoma cell lines. Lactate release from both HepG2 and Huh7 cells was reduced with 5 nm AgNPs as early as 1 hour after treatment, when cell death did not occur. Treatment with 5 nm AgNPs decreased glucose consumption in HepG2 cells but not in Huh7 cells. Treatment with 5 nm AgNPs reduced nuclear factor erythroid 2-like 2 expression in both cell types without affecting its activation at the early time points after AgNPs’ treatment. Increased reactive oxygen species (ROS production was detected 1 hour after 5 nm AgNPs’ treatment, and lactate release was restored in the presence of an ROS scavenger. Our results suggest that 5 nm AgNPs affect glucose metabolism by producing ROS. Keywords: metal nanoparticles, carbohydrate metabolism, lactic acid, cytotoxicity 

  16. Interactions between the metabolism of L-leucine and D-glucose in the pancreatic ?-cells

    International Nuclear Information System (INIS)

    ?-cell-rich pancreatic islets microdissected from obese-hyperglycemic mice were used to study interactions between the metabolism of L-leucine and D-glucose. L-leucine reduced the islet content of aspartic acid whereas D-glucose, when added to L-leucine-incubated islets, increased the contents of aspartic acid and ?-aminobutyric acid (GABA). D-glucose also increased the incorporation of L-leucine carbon into aspartic acid, GABA and glutamic acid, suggesting stimulation of a malate shuttle mechanism. When expressed per mole of the individual amino acids, the incorporation of L-leucine carbon into GABA was 2.5 - 4 times higher than into glutamic acid indicating intracellular compartmentation of the latter amino acid. Both L-leucine and D-leucine stimulated 14CO2 production from 14C-labelled D-glucose. L-leucine did not affect 3H2O production from tritiated D-glucose. The present data do not indicate a role of other amino acids or D-glucose in L-leucine-stimulated insulin release. (orig.)

  17. JC Virus T-Antigen Regulates Glucose Metabolic Pathways in Brain Tumor Cells

    Science.gov (United States)

    Noch, Evan; Sariyer, Ilker Kudret; Gordon, Jennifer; Khalili, Kamel

    2012-01-01

    Recent studies have reported the detection of the human neurotropic virus, JCV, in a significant population of brain tumors, including medulloblastomas. Accordingly, expression of the JCV early protein, T-antigen, which has transforming activity in cell culture and in transgenic mice, results in the development of a broad range of tumors of neural crest and glial origin. Evidently, the association of T-antigen with a range of tumor-suppressor proteins, including p53 and pRb, and signaling molecules, such as ?-catenin and IRS-1, plays a role in the oncogenic function of JCV T-antigen. We demonstrate that T-antigen expression is suppressed by glucose deprivation in medulloblastoma cells and in glioblastoma xenografts that both endogenously express T-antigen. Mechanistic studies indicate that glucose deprivation-mediated suppression of T-antigen is partly influenced by 5?-activated AMP kinase (AMPK), an important sensor of the AMP/ATP ratio in cells. In addition, glucose deprivation-induced cell cycle arrest in the G1 phase is blocked with AMPK inhibition, which also prevents T-antigen downregulation. Furthermore, T-antigen prevents G1 arrest and sustains cells in the G2 phase during glucose deprivation. On a functional level, T-antigen downregulation is partially dependent on reactive oxygen species (ROS) production during glucose deprivation, and T-antigen prevents ROS induction, loss of ATP production, and cytotoxicity induced by glucose deprivation. Additionally, we have found that T-antigen is downregulated by the glycolytic inhibitor, 2-deoxy-D-glucose (2-DG), and the pentose phosphate inhibitors, 6-aminonicotinamide and oxythiamine, and that T-antigen modulates expression of the glycolytic enzyme, hexokinase 2 (HK2), and the pentose phosphate enzyme, transaldolase-1 (TALDO1), indicating a potential link between T-antigen and metabolic regulation. These studies point to the possible involvement of JCV T-antigen in medulloblastoma proliferation and the metabolic phenotype and may enhance our understanding of the role of viral proteins in glycolytic tumor metabolism, thus providing useful targets for the treatment of virus-induced tumors. PMID:22496891

  18. Return of the glucoreceptor: Glucose activates the glucose-sensing receptor T1R3 and facilitates metabolism in pancreatic ?-cells.

    Science.gov (United States)

    Kojima, Itaru; Nakagawa, Yuko; Ohtsu, Yoshiaki; Hamano, Kunihisa; Medina, Johan; Nagasawa, Masahiro

    2015-05-01

    Subunits of the sweet taste receptor, namely T1R2 and T1R3, are expressed in mouse pancreatic islets. Quantitatively, the expression of messenger ribonucleic acid for T1R2 is much lower than that of T1R3, and immunoreactive T1R2 is in fact undetectable. Presumably, a homodimer of T1R3 could function as a signaling receptor. Activation of this receptor by adding an artificial sweetener, sucralose, leads to an increase in intracellular adenosine triphosphate ([ATP]c). This increase in [ATP]c is observed in the absence of ambient glucose. Sucralose also augments elevation of [ATP]c induced by methylsuccinate, a substrate for mitochondria. Consequently, activation of T1R3 promotes metabolism in mitochondria and increases [ATP]c. 3-O-Methylglucose, a non-metabolizable analog of glucose, also increases [ATP]c. Conversely, knockdown of T1R3 attenuates elevation of [ATP]c induced by glucose. Hence, glucose promotes its own metabolism by activating T1R3 and augmenting ATP production. Collectively, a homodimer of T1R3 functions as a cell surface glucose-sensing receptor and participates in the action of glucose on insulin secretion. The glucose-sensing receptor T1R3 might be the putative glucoreceptor proposed decades ago by Niki et al. The glucose-sensing receptor is involved in the action of glucose and modulates glucose metabolism in pancreatic ?-cells. PMID:25969708

  19. Metabolic labeling with (14C)-glucose of bloodstream and cell culture trypanosoma cruzi trypomastigotes:

    International Nuclear Information System (INIS)

    Trypomastigote forms of Trypanosoma cruzi from infected mouse blood and from cell culture were metabolically labeled by incubation with D-(14C)-glucose. Analysis by polyacrylamide gel electrophoresis of lysates from parasites of two strains (RA and CA1) showed a significantly different pattern. The difference was mainly quantitative when the blood and cell culture trypomastigotes of the RA strain were compared. Analysis of the culture medium by paper electrophoresis showed an anionic exometabolite only in the blood forms of both strains. (Author)

  20. Glucose metabolism is altered after loss of L cells and ?-cells but not influenced by loss of K cells

    DEFF Research Database (Denmark)

    Pedersen, J; Ugleholdt, Randi Kjærsgaard; Jørgensen, Signe Marie; Windeløv, Johanne Agerlin; Grunddal, Kaare Villum; Schwartz, T W; Füchtbauer, Ernst-Martin; Poulsen, S S; Holst, P J; Holst, J J

    2013-01-01

    glucagon in pancreas in TgN(GCG.DTR) compared with wild-type mice. GIP response to oral glucose was attenuated following K cell loss, but oral and intraperitoneal glucose tolerances were unaffected. Intraperitoneal glucose tolerance was impaired following combined L cell and ?-cell loss and normal...... following ?-cell loss. Oral glucose tolerance was improved following L cell and ?-cell loss and supernormal following ?-cell loss. We present two mouse models that allow studies of the effects of K cell or L cell and ?-cell loss as well as isolated ?-cell loss. Our findings show that intraperitoneal glucose...

  1. Osteocalcin, energy and glucose metabolism

    Directory of Open Access Journals (Sweden)

    Leila C. B. Zanatta

    2014-07-01

    Full Text Available Osteocalcin is a bone matrix protein that has been associated with several hormonal actions on energy and glucose metabolism. Animal and experimental models have shown that osteocalcin is released into the bloodstream and exerts biological effects on pancreatic beta cells and adipose tissue. Undercarboxylated osteocalcin is the hormonally active isoform and stimulates insulin secretion and enhances insulin sensitivity in adipose tissue and muscle. Insulin and leptin, in turn, act on bone tissue, modulating the osteocalcin secretion, in a traditional feedback mechanism that places the skeleton as a true endocrine organ. Further studies are required to elucidate the role of osteocalcin in the regulation of glucose and energy metabolism in humans and its potential therapeutic implications in diabetes, obesity and metabolic syndrome.

  2. Metabolic amplification of insulin secretion by glucose is independent of ?-cell microtubules.

    Science.gov (United States)

    Mourad, Nizar I; Nenquin, Myriam; Henquin, Jean-Claude

    2011-03-01

    Glucose-induced insulin secretion (IS) by ?-cells is controlled by two pathways. The triggering pathway involves ATP-sensitive potassium (K(ATP)) channel-dependent depolarization, Ca(2+) influx, and rise in the cytosolic Ca(2+) concentration ([Ca(2+)](c)), which triggers exocytosis of insulin granules. The metabolic amplifying pathway augments IS without further increasing [Ca(2+)](c). After exclusion of the contribution of actin microfilaments, we here tested whether amplification implicates microtubule-dependent granule mobilization. Mouse islets were treated with nocodazole or taxol, which completely depolymerized and polymerized tubulin. They were then perifused to measure [Ca(2+)](c) and IS. Metabolic amplification was studied during imposed steady elevation of [Ca(2+)](c) by tolbutamide or KCl or by comparing [Ca(2+)](c) and IS responses to glucose and tolbutamide. Nocodazole did not alter [Ca(2+)](c) or IS changes induced by the three secretagogues, whereas taxol caused a small inhibition of IS that is partly ascribed to a decrease in [Ca(2+)](c). When [Ca(2+)](c) was elevated and controlled by KCl or tolbutamide, the amplifying action of glucose was unaffected by microtubule disruption or stabilization. Both phases of IS were larger in response to glucose than tolbutamide, although triggering [Ca(2+)](c) was lower. This difference, due to amplification, persisted in nocodazole- or taxol-treated islets, even when IS was augmented fourfold by microfilament disruption with cytochalasin B or latrunculin B. In conclusion, metabolic amplification rapidly augments first and second phases of IS independently of insulin granule translocation along microtubules. We therefore extend our previous proposal that it does not implicate the cytoskeleton but corresponds to acceleration of the priming process conferring release competence to insulin granules. PMID:21178111

  3. Effects of SH-reagents of different molecular size upon glucose metabolism in isolated rat fat cells

    International Nuclear Information System (INIS)

    To study the role of membrane SH-groups in glucose transport of isolated rat fat cells we compared the effects of a small organic mercurial reagent p-CMB with those of a large p-CMB-derivative - p-CMB-Dextran, MW approximately 10,000 -. It could be shown that both compounds were of almost identical reactivity on fat cell homogenate metabolism. When applied to intact fat cells uncoupled p-CMB showed an 1) insulin-like enhancement of 14C incorporation from (U-14C) glucose into CO2 and triglyceride, 2) inhibition of the insulin-stimulatory effect on these parameters and 3) inhibition of basal glucose uptake dependent on the concentrations used. Identical concentrations of p-CMB-Dextran, however, failed to influence basal glucose uptake as well as the insulin mediated increase in glucose metabolism. (orig.)

  4. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolado-Carrancio, A. [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain); Riancho, J.A. [Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, RETICEF, Santander (Spain); Sainz, J. [Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC-University of Cantabria, Santander (Spain); Rodríguez-Rey, J.C., E-mail: rodriguj@unican.es [Department of Molecular Biology, University of Cantabria, IDIVAL, Santander (Spain)

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  5. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    International Nuclear Information System (INIS)

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity

  6. Glucose metabolism determines resistance of cancer cells to bioenergetic crisis after cytochrome-c release.

    LENUS (Irish Health Repository)

    Huber, Heinrich J

    2011-03-01

    Many anticancer drugs activate caspases via the mitochondrial apoptosis pathway. Activation of this pathway triggers a concomitant bioenergetic crisis caused by the release of cytochrome-c (cyt-c). Cancer cells are able to evade these processes by altering metabolic and caspase activation pathways. In this study, we provide the first integrated system study of mitochondrial bioenergetics and apoptosis signalling and examine the role of mitochondrial cyt-c release in these events. In accordance with single-cell experiments, our model showed that loss of cyt-c decreased mitochondrial respiration by 95% and depolarised mitochondrial membrane potential ΔΨ(m) from -142 to -88 mV, with active caspase-3 potentiating this decrease. ATP synthase was reversed under such conditions, consuming ATP and stabilising ΔΨ(m). However, the direction and level of ATP synthase activity showed significant heterogeneity in individual cancer cells, which the model explained by variations in (i) accessible cyt-c after release and (ii) the cell\\'s glycolytic capacity. Our results provide a quantitative and mechanistic explanation for the protective role of enhanced glucose utilisation for cancer cells to avert the otherwise lethal bioenergetic crisis associated with apoptosis initiation.

  7. TRIM24 links glucose metabolism with transformation of human mammary epithelial cells.

    Science.gov (United States)

    Pathiraja, T N; Thakkar, K N; Jiang, S; Stratton, S; Liu, Z; Gagea, M; Shi, X; Shah, P K; Phan, L; Lee, M-H; Andersen, J; Stampfer, M; Barton, M C

    2015-05-28

    Tripartite motif 24 protein (TRIM24) is a plant homeodomain/bromodomain histone reader, recently associated with poor overall survival of breast-cancer patients. At a molecular level, TRIM24 is a negative regulator of p53 levels and a co-activator of estrogen receptor. However, the role of TRIM24 in breast tumorigenesis remains largely unknown. We used an isogenic human mammary epithelial cell (HMEC) culture model, derived from reduction mammoplasty tissue, and found that ectopic expression of TRIM24 in immortalized HMECs (TRIM24 iHMECs) greatly increased cellular proliferation and induced malignant transformation. Subcutaneous injection of TRIM24 iHMECs in nude mice led to growth of intermediate to high-grade tumors in 60-70% of mice. Molecular analysis of TRIM24 iHMECs revealed a glycolytic and tricarboxylic acid cycle gene signature, alongside increased glucose uptake and activated aerobic glycolysis. Collectively, these results identify a role for TRIM24 in breast tumorigenesis through reprogramming of glucose metabolism in HMECs, further supporting TRIM24 as a viable therapeutic target in breast cancer. PMID:25065590

  8. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Liliana, E-mail: lilianam87@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Araújo, Isabel, E-mail: isa.araujo013@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Costa, Tito, E-mail: tito.fmup16@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Correia-Branco, Ana, E-mail: ana.clmc.branco@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Faria, Ana, E-mail: anafaria@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Chemistry Investigation Centre (CIQ), Faculty of Sciences of University of Porto, Rua Campo Alegre, 4169-007 Porto (Portugal); Faculty of Nutrition and Food Sciences of University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Martel, Fátima, E-mail: fmartel@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Keating, Elisa, E-mail: keating@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal)

    2013-07-15

    In this study we characterized {sup 3}H-2-deoxy-D-glucose ({sup 3}H -DG) uptake by the estrogen receptor (ER)-positive MCF7 and the ER-negative MDA-MB-231 human breast cancer cell lines and investigated the effect of quercetin (QUE) and epigallocatechin gallate (EGCG) upon {sup 3}H-DG uptake, glucose metabolism and cell viability and proliferation. In both MCF7 and MDA-MB-231 cells {sup 3}H-DG uptake was (a) time-dependent, (b) saturable with similar capacity (V{sub max}) and affinity (K{sub m}), (c) potently inhibited by cytochalasin B, an inhibitor of the facilitative glucose transporters (GLUT), (d) sodium-independent and (e) slightly insulin-stimulated. This suggests that {sup 3}H-DG uptake by both cell types is mediated by members of the GLUT family, including the insulin-responsive GLUT4 or GLUT12, while being independent of the sodium-dependent glucose transporter (SGLT1). QUE and EGCG markedly and concentration-dependently inhibited {sup 3}H-DG uptake by MCF7 and by MDA-MB-231 cells, and both compounds blocked lactate production by MCF7 cells. Additionally, a 4 h-treatment with QUE or EGCG decreased MCF7 cell viability and proliferation, an effect that was more potent when glucose was available in the extracellular medium. Our results implicate QUE and EGCG as metabolic antagonists in breast cancer cells, independently of estrogen signalling, and suggest that these flavonoids could serve as therapeutic agents/adjuvants even for ER-negative breast tumors. -- Highlights: • Glucose uptake by MCF7 and MDA-MB-231 cells is mainly mediated by GLUT1. • QUE and EGCG inhibit cellular glucose uptake thus abolishing the Warburg effect. • This process induces cytotoxicity and proliferation arrest in MCF7 cells. • The flavonoids’ effects are independent of estrogen receptor signalling.

  9. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism

    International Nuclear Information System (INIS)

    In this study we characterized 3H-2-deoxy-D-glucose (3H -DG) uptake by the estrogen receptor (ER)-positive MCF7 and the ER-negative MDA-MB-231 human breast cancer cell lines and investigated the effect of quercetin (QUE) and epigallocatechin gallate (EGCG) upon 3H-DG uptake, glucose metabolism and cell viability and proliferation. In both MCF7 and MDA-MB-231 cells 3H-DG uptake was (a) time-dependent, (b) saturable with similar capacity (Vmax) and affinity (Km), (c) potently inhibited by cytochalasin B, an inhibitor of the facilitative glucose transporters (GLUT), (d) sodium-independent and (e) slightly insulin-stimulated. This suggests that 3H-DG uptake by both cell types is mediated by members of the GLUT family, including the insulin-responsive GLUT4 or GLUT12, while being independent of the sodium-dependent glucose transporter (SGLT1). QUE and EGCG markedly and concentration-dependently inhibited 3H-DG uptake by MCF7 and by MDA-MB-231 cells, and both compounds blocked lactate production by MCF7 cells. Additionally, a 4 h-treatment with QUE or EGCG decreased MCF7 cell viability and proliferation, an effect that was more potent when glucose was available in the extracellular medium. Our results implicate QUE and EGCG as metabolic antagonists in breast cancer cells, independently of estrogen signalling, and suggest that these flavonoids could serve as therapeutic agents/adjuvants even for ER-negative breast tumors. -- Highlights: • Glucose uptake by MCF7 and MDA-MB-231 cells is mainly mediated by GLUT1. • QUE and EGCG inhibit cellular glucose uptake thus abolishing the Warburg effect. • This process induces cytotoxicity and proliferation arrest in MCF7 cells. • The flavonoids’ effects are independent of estrogen receptor signalling

  10. Formaldehyde Metabolism and Formaldehyde-induced Alterations in Glucose and Glutathione Metabolism of Cultured Brain Cells

    OpenAIRE

    Tulpule, Ketki

    2013-01-01

    Formaldehyde is an environmental pollutant that is also generated in the body during normal metabolic processes. Interestingly, several pathological conditions are associated with an increase in formaldehyde-generating enzymes in the body. The level of formaldehyde in the brain is elevated with increasing age and in neurodegenerative conditions which may contribute to lowered cognitive functions. Although the neurotoxic potential of formaldehyde is well established, the molecular mechanisms i...

  11. Mayaro virus infection alters glucose metabolism in cultured cells through activation of the enzyme 6-phosphofructo 1-kinase.

    Science.gov (United States)

    El-Bacha, Tatiana; Menezes, Maíra M T; Azevedo e Silva, Melissa C; Sola-Penna, Mauro; Da Poian, Andrea T

    2004-11-01

    Although it is well established that cellular transformation with tumor virus leads to changes on glucose metabolism, the effects of cell infection by non-transforming virus are far to be completely elucidated. In this study, we report the first evidence that cultured Vero cells infected with the alphavirus Mayaro show several alterations on glucose metabolism. Infected cells presented a two fold increase on glucose consumption, accompanied by an increment in lactate production. This increase in glycolytic flux was also demonstrated by a significant increase on the activity of 6-phosphofructo 1-kinase, one of the regulatory enzymes of glycolysis. Analysis of the kinetic parameters revealed that the regulation of 6-phosphofructo 1-kinase is altered in infected cells, presenting an increase in Vmax along with a decrease in Km for fructose-6-phosphate. Another fact contributing to an increase in enzyme activity was the decrease in ATP levels observed in infected cells. Additionally, the levels of fructose 2,6-bisphosphate, a potent activator of this enzyme, was significantly reduced in infected cells. These observations suggest that the increase in PFK activity may be a compensatory cellular response to the viral-induced metabolic alterations that could lead to an impairment of the glycolytic flux and energy production. PMID:15646042

  12. Glucose metabolism in ischemic myocardium

    International Nuclear Information System (INIS)

    We determined the myocardial metabolic rate for glucose (MMRGlc) in the ischemic or infarcted myocardium using 18-F-fluorodeoxyglucose (18-FDG) with positron emission tomography (PET), and studied energy metabolism in the ischemic myocardium. In some cases, we compared glucose metabolism images by 18-FDG with myocardial blood flow images using 15-oxygen water. Two normal subjects, seven patients with myocardial infarction and four patients with angina pectoris were studied. Coronary angiography was performed within two weeks before or after the PET study to detect ischemic areas. PET studies were performed for patients who did not eat for 5 to 6 hours after breakfast. Cannulation was performed in the pedal artery to measure free fatty acid, blood sugar, and insulin. After recording the transmission scan for subsequent correction of photon attenuation, blood pool images were recorded for two min. after the inhalation of carbon monoxide (oxygen-15) which labeled the red blood cells in vivo. After 20 min., oxygen-15 water (15 to 20 mCi) was injected for dynamic scans, and flow images were obtained. Thirty min. after this procedure, 18-FDG (5 to 6 mCi) was injected, and 60 min later, a static scan was performed and glucose metabolism images were obtained. Arterial blood sampling for the time activity curve of the tracer was performed at the same time. According to the method of Phelps et al, MMRGlc was calculated in each of the region of interest (ROI) which was located in the left ventricular wall. MMRGlc obtained from each ROI was 0 to 17 mg/100 ml/min. In normal subjects MMRGlc was 0.4 to 7.3 mg/100 ml/min. In patients with myocardial infarction, it ranged from 3 to 5 mg/100 ml/min in the infarcted lesion. In patients with angina pectoris and subendocardial infarction, MMRGlc was 7 to 17 mg/100 ml/min in the ischemic lesion. In this lesion, myocardial blood flow was relatively low by oxygen-15 imagings (so-called mismatch). (J.P.N.)

  13. Procyanidin effects on an impaired glucose metabolism: a further insight into procyanidin signalling in adipose cells

    OpenAIRE

    Montagut Pino, Gemma

    2009-01-01

    ANGLÈS A grape-seed derived procyanidins extract (GSPE) was reported to mimic some of the physiological effects of insulin. However, GSPE showed some divergences when compared to insulin action, which suggests that procyanidins could be useful on a state of impaired insulin action. Therefore, the main purpose of this thesis was to understand how dietary procyanidins modulate glucose metabolism, mainly in adipose tissue and under an insulin resistant condition.Results show that a treatment of ...

  14. Dysregulation of Dicer1 in Beta Cells Impairs Islet Architecture and Glucose Metabolism

    OpenAIRE

    Mandelbaum, Amitai D.; Tal Melkman-Zehavi; Roni Oren; Sharon Kredo-Russo; Tomer Nir; Yuval Dor; Eran Hornstein

    2012-01-01

    microRNAs (miRNAs) play important roles in pancreas development and in regulation of insulin expression in the adult. Here we show that loss of miRNAs activity in beta-cells during embryonic development results in lower beta-cell mass and in impaired glucose tolerance. Dicer1-null cells initially constitute a significant portion of the total beta-cell population. However, during postnatal development, Dicer1-null cells are depleted. Furthermore, wild-type beta cells are repopulating the islet...

  15. Potent humanin analog increases glucose-stimulated insulin secretion through enhanced metabolism in the ? cell

    OpenAIRE

    Kuliawat, Regina; Klein, Laura; Gong, Zhenwei; Nicoletta-Gentile, Marianna; NEMKAL, ANJANA; Cui, Lingguang; Bastie, Claire; Su, Kai; Huffman, Derek; Surana, Manju; Barzilai, Nir; Fleischer, Norman; Muzumdar, Radhika

    2013-01-01

    Humanin (HN) is a 24-aa polypeptide that offers protection from Alzheimer's disease and myocardial infarction, increases insulin sensitivity, improves survival of ? cells, and delays onset of diabetes. Here we examined the acute effects of HN on insulin secretion and potential mechanisms through which they are mediated. Effects of a potent HN analog, HNGF6A, on glucose-stimulated insulin secretion (GSIS) were assessed in vivo and in isolated pancreatic islets and cultured murine ? cell line (...

  16. Sepsis does not alter red blood cell glucose metabolism or Na+ concentration: A 2H-, 23Na-NMR study

    International Nuclear Information System (INIS)

    The effects of sepsis on intracellular Na+ concentration ([Na+]i) and glucose metabolism were examined in rat red blood cells (RBCs) by using 23Na- and 2H-nuclear magnetic resonance (NMR) spectroscopy. Sepsis was induced in 15 halothane-anesthetized female Sprague-Dawley rats by using the cecal ligation and perforation technique; 14 control rats underwent cecal manipulation without ligation. The animals were fasted for 36 h, but allowed free access to water. At 36 h postsurgery, RBCs were examined by 23Na-NMR by using dysprosium tripolyphosphate as a chemical shift reagent. Human RBCs from 17 critically ill nonseptic patients and from 7 patients who were diagnosed as septic were also examined for [Na+]i. Five rat RBC specimens had [Na+]i determined by both 23Na-NMR and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). For glucose metabolism studies, RBCs from septic and control rats were suspended in modified Krebs-Henseleit buffer containing [6,6-2H2]glucose and examined by 2H-NMR. No significant differences in [Na+]i or glucose utilization were found in RBCs from control or septic rats. There were no differences in [Na+]i in the two groups of patients. The [Na+]i determined by NMR spectroscopy agreed closely with measurements using ICP-AES and establish that 100% of the [Na+]i of the RBC is visible by NMR. Glucose measurements determined by 2H-NMR correlated closely (correlation coefficient = 0.93) with enzymatic analysis. These studies showed no evidence that sepsis disturbed RBC membrane function or metabolism

  17. Study on the insulin resistance and β-cell function in individuals with normal and those with abnormal glucose metabolism

    International Nuclear Information System (INIS)

    Objective: To study the insulin resistance and β-cell function in individuals with normal glucose tolerance (NGT) and those with glucose metabolism dysfunction. Methods: Insulin resistance and β-cell function were studied with oral glucose tolerance test and the following parameters: 2h insulin/2h plasma glucose (2hIns/2hPG), insulin resistance index (IRI), insulin sensitivity index (ISI) and 30 min net increment of insulin/30min net increment of glucose (AI30/AG30) were examined in 44 individuals with NGT, 45 subjects with impaired glucose tolerance (IGT), 66 recently diagnosed diabetics and 175 well-established diabetics. Results: The insulin resistance index (IRI) increased progressively from that in NGT individuals to that in recently diabetics (20 ± 1. 5→3.1 ± 1.6→4.1 ± 1.8), while the 2hIns/2hPG, ΔI30/ΔG30 and ISI decreased progressively with significant differences between those in successive groups (P30/ΔG30 and ISI kept decreasing (values in patients with disease history less than 3 yrs vs those in patients with disease over 3yrs: 2.9 ± 3.2 vs 2.4 + 2.3, 30.2 + 1.1 vs 23.4 ± 2.3, P30/ΔG30 were significantly correlated with ISI (F =96.3, 58.4 and 47.5 respectively). For principal component analysis display, the cumulative contribution rate of four parameters (2hIns/2hPG, ISI, ΔI30/ΔG30 and 2h C-peptide) exceeded 85% (86.5%). Conclusion: As the dysfunction of glucose metabolism proceeded from IGT to well established diabetes, the IR increased first with decrease of β-cell secretion followed. The parameters 2hIns/2hPG, ISI, 2h C-peptide ΔI30/ΔG30 were especially useful for the investigation . (authors)

  18. Glucosamine metabolism of herpes simplex virus infected cells. Inhibition of glycosylation by tunicamycin and 2-deoxy-D-glucose

    International Nuclear Information System (INIS)

    The formation of glucosamine-containing cell surface glycoproteins of herpes simplex virus (HSV) infected BMK cells was studied. Tunicamycin (TM) and 2-deoxy-D-glucose (DG) were used as inhibitors. With both inhibitors the multiplication of HSV was inhibited. DG markedly reduced cellular uptake of radioactively labelled glucosamine while TM interfered with the processing of glucosamine into TCA-insoluble material. Gel filtration chromatography on Sephadex G50 gel of cell surface material released by trypsin and further prepared by digestion with pronase indicated that TM and DG reduced the apparent high molecular weights of virus induced surface glycoproteins. In presence of DG the accumulation of a class of glucosamine-containing heterosaccharides (MW less than 3000) not present on DG-free HSV infected cells was observed. IN TM treated cells virtually all surface heterosaccharides with molecular weights exceeding 3000 and containing glucosamine disappeared. Moreover, a component compatible with a lipid-linked oligosaccharide present in DG treated cells was not observed in HSV infected TM treated cells. The results exemplifies some different steps in glucosamine metabolism of virus-induced cell surface glycoproteins differently affected by tunicamycin and 2-deoxy-D-glucose. (author)

  19. The acute effects of low-dose TNF-? on glucose metabolism and ?-cell function in humans

    DEFF Research Database (Denmark)

    Ibfelt, Tobias; Fischer, Christian P

    2014-01-01

    Type 2 diabetes is characterized by increased insulin resistance and impaired insulin secretion. Type 2 diabetes is also associated with low-grade inflammation and increased levels of proinflammatory cytokines such as TNF-?. TNF-? has been shown to impair peripheral insulin signaling in vitro and in vivo. However, it is unclear whether TNF-? may also affect endogenous glucose production (EGP) during fasting and glucose-stimulated insulin secretion (GSIS) in vivo. We hypothesized that low-dose TNF- ? would increase EGP and attenuate GSIS. Recombinant human TNF-? or placebo was infused in healthy, nondiabetic young men (n = 10) during a 4-hour basal period followed by an intravenous glucose tolerance test (IVGTT). TNF-? lowered insulin levels by 12% during the basal period (P < 0.05). In response to the IVGTT, insulin levels increased markedly in both trials, but there was no difference between trials. Compared to placebo, TNF-? did not affect EGP during the basal period. Our results indicate that TNF-? acutelylowers basal plasma insulin levels but does not impair GSIS. The mechanisms behind this are unknown but we suggest that it may be due to TNF-? increasing clearance of insulin from plasma without impairing beta-cell function or hepatic insulin sensitivity.

  20. The effect of Fe2O3 and ZnO nanoparticles on cytotoxicity and glucose metabolism in lung epithelial cells.

    Science.gov (United States)

    Lai, Xiaofeng; Wei, Yifang; Zhao, Hu; Chen, Suning; Bu, Xin; Lu, Fan; Qu, Dingding; Yao, Libo; Zheng, Jianyong; Zhang, Jian

    2015-06-01

    Metallic nanoparticles (NPs) have potential applications in industry and medicine, but they also have the potential to cause many chronic pulmonary diseases. Mechanisms for their cytotoxicity, glucose and energy metabolism responses need to be fully explained in lung epithelial cells after treatment with metallic nanoparticles. In our study, two different metallic nanoparticles (Fe2 O3 and ZnO) and two cell-based assays (BEAS-2B and A549 cell lines) were used. Our findings demonstrate that ZnO nanoparticles, but not Fe2 O3 nanoparticles, induce cell cycle arrest, cell apoptosis, reactive oxygen species (ROS) production, mitochondrial dysfunction and glucose metabolism perturbation, which are responsible for cytotoxicity. These results also suggest that the glucose metabolism and bioenergetics had a great potential in evaluating the cytotoxicity and thus were very helpful in understanding their underlying molecular mechanisms. PMID:25727528

  1. Glucose Dependency of the Metabolic Pathway of HEK 293 Cells Measured by a Flow-through Type pH/CO2 Sensor System Using ISFETs

    Science.gov (United States)

    Yamada, Akira; Mohri, Satoshi; Nakamura, Michihiro; Naruse, Keiji

    Our group previously reported the application of a flow-through type pH/CO2 sensor system designed to evaluate the metabolic activity of cultured cells. The sensor system consists of two ion-sensitive field effect transistors (ISFETs), an ISFET to measure the total pH change and an ISFET enclosed within a gas-permeable silicone tube to measure the pH change attributable to CO2. In that study, we used the system to quantitatively analyze metabolic switching induced by glucose concentration changes in three cultured cell types (bovine arterial endothelium cell (BAEC), human umbilical vein endothelium cell (HUVEC), and rat cardiomuscle cell (RCMC)), and to measure the production rates of total carbonate and free lactic acid in the cultured cells. In every cell type examined, a decrease in the glucose concentration led to an increase in total carbonate, a product of cellular respiration, and a decrease of free lactic acid, a product of glycolysis. There were very significant differences among the cell types, however, in the glucose concentrations at the metabolic switching points. We postulated that the cell has a unique switching point on the metabolic pathway from glycolysis to respiration. In this paper we use our sensor system to evaluate the metabolic switching of human embryonic kidney 293 cells triggered by glucose concentration changes. The superior metabolic pathway switched from glycolysis to respiration when the glucose concentration decreased to about 2 mM. This result was very similar to that obtained in our earlier experiments on HUVECs, but far different from our results on the other two cells types, BAECs and RCMCs. This sensor system will be useful for analyzing cellular metabolism for many applications and will yield novel information on different cell types.

  2. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani

    2015-01-01

    Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylationrelated product quality. In this work, different fed-batch processes with two chemically defined proprietary media and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards energy and recombinant product, respectively. Accumulation of by-products such as NH4+ and lactate as a consequence of unbalanced nutrient supply to cell activities inhibits cell growth. The levels of Leu and Arg in the culture, which relate to cell growth and IgG productivity, need to be well controlled. Amino acids with the highest consumption rates correlate with the most abundant amino acids present in the produced IgG, and thus require sufficient availability during culture. Case-by-case analysis is necessary for understanding the effect of media and process optimization on glycosylation. We found that in certain cases the presence of Man5 glycan can be linked to limitation of UDP-GlcNAc biosynthesis as a result of insufficient extracellular Gln. However, under different culture conditions, high Man5 levels can also result from low a-1,3-mannosyl-glycoprotein 2-ß-N-acetylglucosaminyltransferase (GnTI) and UDPGlcNAc transporter activities, which may be attributed to high level of NH4+ in the cell culture. Furthermore, galactosylation of the mAb Fc glycans was found to be limited by UDP-Gal biosynthesis, whichwas observed to be both cell line and cultivation condition-dependent. Extracellular glucose and glutamine concentrations and uptake rates were positively correlated with intracellular UDP-Gal availability. All these findings are important for optimization of fed-batch culture for improving IgG production and directing glycosylation quality.

  3. Sex steroids and glucose metabolism

    Directory of Open Access Journals (Sweden)

    Carolyn A Allan

    2014-04-01

    Full Text Available Testosterone levels are lower in men with metabolic syndrome and type 2 diabetes mellitus (T2DM and also predict the onset of these adverse metabolic states. Body composition (body mass index, waist circumference is an important mediator of this relationship. Sex hormone binding globulin is also inversely associated with insulin resistance and T2DM but the data regarding estrogen are inconsistent. Clinical models of androgen deficiency including Klinefelter's syndrome and androgen deprivation therapy in the treatment of advanced prostate cancer confirm the association between androgens and glucose status. Experimental manipulation of the insulin/glucose milieu and suppression of endogenous testicular function suggests the relationship between androgens and insulin sensitivity is bidirectional. Androgen therapy in men without diabetes is not able to differentiate the effect on insulin resistance from that on fat mass, in particular visceral adiposity. Similarly, several small clinical studies have examined the efficacy of exogenous testosterone in men with T2DM, however, the role of androgens, independent of body composition, in modifying insulin resistance is uncertain.

  4. Metabolic pathways for glucose in astrocytes.

    Science.gov (United States)

    Wiesinger, H; Hamprecht, B; Dringen, R

    1997-09-01

    Cultured astroglial cells are able to utilize the monosaccharides glucose, mannose, or fructose as well as the sugar alcohol sorbitol as energy fuel. Astroglial uptake of the aldoses is carrier-mediated, whereas a non-saturable transport mechanism is operating for fructose and sorbitol. The first metabolic step for all sugars, including fructose being generated by enzymatic oxidation of sorbitol, is phosphorylation by hexokinase. Besides glucose only mannose may serve as substrate for build-up of astroglial glycogen. Whereas glycogen synthase appears to be present in astrocytes as well as neurons, the exclusive localization of glycogen phosphorylase in astrocytes and ependymal cells of central nervous tissue correlates well with the occurrence of glycogen in these cells. The identification of lactic acid rather than glucose as degradation product of astroglial glycogen appears to render the presence of glucose-6-phosphatase in cultured astrocytes an enigma. The colocalization of pyruvate carboxylase, phosphenolpyruvate carboxykinase and fructose-1,6-bisphosphatase points to astrocytes as being the gluconeogenic cell type of the CNS. PMID:9298844

  5. Novel molecular mechanisms of antitumor action of dichloroacetate against T cell lymphoma: Implication of altered glucose metabolism, pH homeostasis and cell survival regulation.

    Science.gov (United States)

    Kumar, Ajay; Kant, Shiva; Singh, Sukh Mahendra

    2012-07-30

    Pyruvate dehydrogenase kinase (PDK) inhibits pyruvate dehydrogenase (PDH) activity and thus promotes energetic switch from mitochondrial glucose oxidation to cytoplasmic glycolysis in cancerous cells (a phenomenon known as the 'Warburg effect') for their energy need, which facilitates the cancer progression by resisting induction of apoptosis and promoting tumor metastasis. Thus, in the present investigation, we explored the molecular mechanisms of the tumoricidal action of dichloroacetate (DCA), a pyruvate dehydrogenase kinase inhibitor, on cells of a murine T cell lymphoma, designated as Dalton's lymphoma (DL). In vitro treatment of tumor cells with DCA inhibited their survival accompanied by a modulation of the biophysical composition of tumor-conditioned medium with respect to pH, glucose and lactate. DCA treatment also altered expression of HIF1-? and pH regulators: VATPase and MCT1 and production of cytokines: IL-10, IL-6 and IFN-?. Moreover, we also observed an alteration in the expression of other apoptosis and cell survival regulatory molecules: PUMA, GLUT1, Bcl2, p53, CAD, caspase-3 and HSP70. The study discusses the role of novel molecular mechanisms underlying DCA-dependent inhibition of tumor cell survival. This study shows for the first time that DCA-dependent alteration of tumor cell survival involves altered pH homeostasis and glucose metabolism. Thus, these findings will provide a new insight for therapeutic applications of DCA as a novel antineoplastic agent against T cell lymphoma. PMID:22705712

  6. Repressing malic enzyme 1 redirects glucose metabolism, unbalances the redox state, and attenuates migratory and invasive abilities in nasopharyngeal carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Chao-Nan Qian

    2012-11-01

    Full Text Available A large amount of nicotinamide adenine dinucleotide phosphate (NADPH is required for fatty acid synthesis and maintenance of the redox state in cancer cells. Malic enzyme 1(ME1-dependent NADPH production is one of the three pathways that contribute to the formation of the cytosolic NADPH pool. ME1 is generally considered to be overexpressed in cancer cells to meet the high demand for increased de novo fatty acid synthesis. In the present study, we found that glucose induced higher ME1 activity and that repressing ME1 had a profound impact on glucose metabolism of nasopharyngeal carcinoma(NPC cells. High incorporation of glucose and an enhancement of the pentose phosphate pathway were observed in ME1-repressed cells. However, there were no obvious changes in the other two pathways for glucose metabolism: glycolysis and oxidative phosphorylation. Interestingly, NADPH was decreased under low-glucose condition in ME1-repressed cells relative to wild-type cells, whereas no significant difference was observed under high-glucose condition. ME1-repressed cells had significantly decreased tolerance to low-glucose condition. Moreover, NADPH produced by ME1 was not only important for fatty acid synthesis but also essential for maintenance of the intracellular redox state and the protection of cells from oxidative stress. Furthermore, diminished migration and invasion were observed in ME1-repressed cells due to a reduced level of Snail protein. Collectively, these results suggest an essential role for ME1 in the production of cytosolic NADPH and maintenance of migratory and invasive abilities of NPC cells.

  7. AMPK, a metabolic sensor, is involved in isoeugenol-induced glucose uptake in muscle cells

    Science.gov (United States)

    Kim, Nami; Lee, Jung Ok; Lee, Hye Jeong; Lee, Yong Woo; Kim, Hyung Ip; Kim, Su Jin; Park, Sun Hwa; Lee, Chul Su; Ryoo, Sun Woo; Hwang, Geum-Sook; Kim, Hyeon Soo

    2016-01-01

    Isoeugenol exerts various beneficial effects on human health. However, the mechanisms underlying these effects are poorly understood. In this study, we observed that isoeugenol activated AMP-activated protein kinase (AMPK) and increased glucose uptake in rat L6 myotubes. Isoeugenol-induced increase in intracellular calcium concentration and glucose uptake was inhibited by STO-609, an inhibitor of calcium/calmodulin-dependent protein kinase kinase (CaMKK). Isoeugenol also increased the phosphorylation of protein kinase C-? (PKC?). Chelation of calcium with BAPTA-AM blocked isoeugenol-induced AMPK phosphorylation and glucose uptake. Isoeugenol stimulated p38MAPK phosphorylation that was inhibited after pretreatment with compound C, an AMPK inhibitor. Isoeugenol also increased glucose transporter type 4 (GLUT4) expression and its translocation to the plasma membrane. GLUT4 translocation was not observed after the inhibition of AMPK and CaMKK. In addition, isoeugenol activated the Akt substrate 160 (AS160) pathway, which is downstream of the p38MAPK pathway. Knockdown of the gene encoding AS160 inhibited isoeugenol-induced glucose uptake. Together, these results indicate that isoeugenol exerts beneficial health effects by activating the AMPK/p38MAPK/AS160 pathways in skeletal muscle. PMID:26585419

  8. The Acute Effects of Low-Dose TNF-? on Glucose Metabolism and ?-Cell Function in Humans

    DEFF Research Database (Denmark)

    Ibfelt, Tobias; Fischer, Christian Philip; Plomgaard, Peter; van Hall, Gerrit; Pedersen, Bente Klarlund

    2014-01-01

    in vivo. However, it is unclear whether TNF-? may also affect endogenous glucose production (EGP) during fasting and glucose-stimulated insulin secretion (GSIS) in vivo. We hypothesized that low-dose TNF- ? would increase EGP and attenuate GSIS. Recombinant human TNF-? or placebo was infused in...... healthy, nondiabetic young men (n = 10) during a 4-hour basal period followed by an intravenous glucose tolerance test (IVGTT). TNF-? lowered insulin levels by 12% during the basal period (P < 0.05). In response to the IVGTT, insulin levels increased markedly in both trials, but there was no difference...... between trials. Compared to placebo, TNF-? did not affect EGP during the basal period. Our results indicate that TNF-? acutely lowers basal plasma insulin levels but does not impair GSIS. The mechanisms behind this are unknown but we suggest that it may be due to TNF-? increasing clearance of insulin from...

  9. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Jasmin; Loranger, Anne; Gilbert, Stéphane [Centre de recherche en cancérologie de l' Université Laval and Centre de recherche du CHUQ (L' Hôtel-Dieu de Québec), 9 McMahon, Québec, Qc, Canada G1R 2J6 (Canada); Faure, Robert [Département de Pédiatrie, Université Laval and Centre de recherche du CHUQ (Centre Mère-Enfant), Québec, Qc, Canada G1V 4G2 (Canada); Marceau, Normand, E-mail: normand.marceau@crhdq.ulaval.ca [Centre de recherche en cancérologie de l' Université Laval and Centre de recherche du CHUQ (L' Hôtel-Dieu de Québec), 9 McMahon, Québec, Qc, Canada G1R 2J6 (Canada)

    2013-02-15

    As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cells versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling.

  10. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling

    International Nuclear Information System (INIS)

    As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cells versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling

  11. Detection of Transketolase in Bone Marrow—Derived Insulin-Producing Cells: Benfotiamine Enhances Insulin Synthesis and Glucose Metabolism

    OpenAIRE

    Oh, Seh-Hoon; Witek, Rafal P; Bae, Si-Hyun; Darwiche, Houda; Jung, Youngmi; PI, LIYA; Brown, Alicia; Petersen, Bryon E

    2009-01-01

    Adult bone marrow (BM)-derived insulin-producing cells (IPCs) are capable of regulating blood glucose levels in chemically induced hyperglycemic mice. Using cell transplantation therapy, fully functional BM-derived IPCs help to mediate treatment of diabetes mellitus. Here, we demonstrate the detection of the pentose phosphate pathway enzyme, transketolase (TK), in BM-derived IPCs cultured under high-glucose conditions. Benfotiamine, a known activator of TK, was not shown to affect the prolife...

  12. Pioglitazone Acutely Reduces Insulin Secretion and Causes Metabolic Deceleration of the Pancreatic ?-Cell at Submaximal Glucose Concentrations

    OpenAIRE

    Lamontagne, Julien; Pepin, Émilie; Peyot, Marie-Line; Joly, Érik; Ruderman, Neil B.; Poitout, Vincent; Madiraju, S.R. Murthy; Nolan, Christopher J; Prentki, Marc

    2009-01-01

    Thiazolidinediones (TZDs) have beneficial effects on glucose homeostasis via enhancement of insulin sensitivity and preservation of ?-cell function. How TZDs preserve ?-cells is uncertain, but it might involve direct effects via both peroxisome proliferator-activated receptor-?-dependent and -independent pathways. To gain insight into the independent pathway(s), we assessed the effects of short-term (?90 min) exposure to pioglitazone (Pio) (10 to 50 ?M) on glucose-induced insulin secretion (G...

  13. Glucose metabolism in diabetic blood vessels

    International Nuclear Information System (INIS)

    Since glycolysis appears to be coupled to active ion transport in vascular smooth muscle, alterations in glucose metabolism may contribute to cellular dysfunction and angiopathy in diabetes. Uptake and utilization of glucose were studied in perfused blood vessels in which pulsatile flow and perfusion pressure were similar to those measured directly in vivo. Thoracic aortae isolated from 8-wk alloxan diabetic (D) and nondiabetic control rabbits were cannulated, tethered, and perfused with oxygenated buffer containing 7 or 25 mM glucose and tracer amounts of glucose-U-14 C. Norepinephrine (NE) (10-6 M) and/or insulin (I) (150 ?U/ml) and albumin (0.2%) were added. NE-induced tension development increased glucose uptake 39% and 14CO2 and lactate production 2.3-fold. With 7 mM glucose, marked decreases in glucose uptake (74%), 14CO2 (68%), lactate (30%), total tissue glycogen (75%), and tissue phospholipids (70%) were observed in D. Addition of I or elevation of exogenous glucose to 25 mM normalized glucose uptake, but had differential effects on the pattern of substrate utilization. Thus, in D, there was a marked depression of vascular glucose metabolism that was partially reversed by addition of low concentrations of insulin or D levels of glucose

  14. Cancer-specific interruption of glucose metabolism by resveratrol is mediated through inhibition of Akt/GLUT1 axis in ovarian cancer cells.

    Science.gov (United States)

    Gwak, HyeRan; Haegeman, Guy; Tsang, Benjamin K; Song, Yong Sang

    2015-12-01

    The metabolic phenotype of cancer is considered an ideal target for anticancer therapy. In ovarian cancer, glucose transporter 1 (GLUT1) is overexpressed and positron emission tomography (PET) using [18(F)] fluorodeoxyglucose (FDG), as a metabolic tumor parameter, has been found to be an effective diagnostic tool. In this study, we have characterized the selective cytotoxicity of resveratrol (RSV) in ovarian cancer cells through glucose metabolism regulation via GLUT1 modulation. We have demonstrated that, in contrast to primary normal ovarian epithelial cells, RSV selectively inhibited glucose uptake and induced apoptosis irrespective of p53 status in vitro. RSV had no affect on GLUT1 mRNA and protein expressions but interrupted intracellular GLUT1 trafficking to the plasma membrane. Suppressed plasma membrane GLUT1 localization in ovarian cancer was found to be associated with the inhibition of Akt activity by RSV, as confirmed by the action of the Akt inhibitors (LY294002 and Akt inhibitor IV), as well as overexpression of a constitutive active form of Akt. Taken together, these findings suggested that RSV induced apoptosis in ovarian cancer cells by impairing glucose uptake, a process involving Akt-regulated plasma membrane GLUT1 trafficking. PMID:25307508

  15. Hepatic glucose sensing is required to preserve ? cell glucose competence.

    Science.gov (United States)

    Seyer, Pascal; Vallois, David; Poitry-Yamate, Carole; Schütz, Frédéric; Metref, Salima; Tarussio, David; Maechler, Pierre; Staels, Bart; Lanz, Bernard; Grueter, Rolf; Decaris, Julie; Turner, Scott; da Costa, Anabela; Preitner, Frédéric; Minehira, Kaori; Foretz, Marc; Thorens, Bernard

    2013-04-01

    Liver glucose metabolism plays a central role in glucose homeostasis and may also regulate feeding and energy expenditure. Here we assessed the impact of glucose transporter 2 (Glut2) gene inactivation in adult mouse liver (LG2KO mice). Loss of Glut2 suppressed hepatic glucose uptake but not glucose output. In the fasted state, expression of carbohydrate-responsive element-binding protein (ChREBP) and its glycolytic and lipogenic target genes was abnormally elevated. Feeding, energy expenditure, and insulin sensitivity were identical in LG2KO and control mice. Glucose tolerance was initially normal after Glut2 inactivation, but LG2KO mice exhibited progressive impairment of glucose-stimulated insulin secretion even though ? cell mass and insulin content remained normal. Liver transcript profiling revealed a coordinated downregulation of cholesterol biosynthesis genes in LG2KO mice that was associated with reduced hepatic cholesterol in fasted mice and reduced bile acids (BAs) in feces, with a similar trend in plasma. We showed that chronic BAs or farnesoid X receptor (FXR) agonist treatment of primary islets increases glucose-stimulated insulin secretion, an effect not seen in islets from Fxr(-/-) mice. Collectively, our data show that glucose sensing by the liver controls ? cell glucose competence and suggest BAs as a potential mechanistic link. PMID:23549084

  16. Glucose metabolism of lactobacillus divergens

    International Nuclear Information System (INIS)

    The aim of this study was to compile an optimal growth and selective medium for Lactobacillus divergens and to determine the pathway by which it metabolised glucose. The optimum growth temperature is 25oC which is lower than that of most other lactobacilli. Citrate stimulates growth up to a concentration of 1% while acetate inhibits the organism at neutral pH, but it stimulates growth at pH 8.5 up to a concentration of 0.8%. MRS medium was therefore modified in order to obtain maximum growth of the organism. The acetate was omitted, sucrose was substituted for glucose and the pH was adjusted to 8.5. Sucrose was used, since a neutral pH is obtained after sterilisation of glucose in alkaline (pH ? 7.5) solution due to the degradation of glucose by the Maillard reaction. Various inhibitors and dyes were tested in order to formulate a selective medium. In the present study differently labelled glucose precursors were fermented by L. divergens and the fermentation products isolated by HPLC. The concentrations of acetate and formate were determined by comparison to a standard while the concentration of lactate and glucose was determined by enzymic assay. The radioactivity was determined by liquid scintillation counting and the positional labelling in lactate and acetate by chemical degradation. Fermentation of D-[U-14C]-glucose was included to correct for endogenous product dilution

  17. PTEN deficiency and mutant p53 confer glucose-addiction to thyroid cancer cells: impact of glucose depletion on cell proliferation, cell survival, autophagy and cell migration

    OpenAIRE

    Morani, Federica; Phadngam, Suratchanee; Follo, Carlo; Titone, Rossella; Thongrakard, Visa; GALETTO, Alessandra; Alabiso, Oscar; Isidoro, Ciro

    2014-01-01

    Proliferating cancer cells oxidize glucose through the glycolytic pathway. Since this metabolism is less profitable in terms of ATP production, cancer cells consume large quantity of glucose, and those that experience insufficient blood supply become glucose-addicted. We have analyzed the response to glucose depletion in WRO and FTC133 follicular thyroid cancer cells, which differ in the expression of two key regulators of the glucose metabolism. WRO cells, which express wild type p53 and PTE...

  18. Glucose Metabolism in Mentally Retarded Children

    International Nuclear Information System (INIS)

    Glucose metabolism has been studied in normal, mentally retarded and hypothyroid children who exhibited subnormal I.Q. in spite of an adequate thyroxine dose. Two parameters, the breath and the blood, were examined. Continuous breath analysis following intravenous glucose-U-14C was carried out to examine its end product 14CO2. Blood was analysed half-hourly for the specific activity of glucose in this pool. Data are presented in terms of stable carbon dioxide expiration rate, the maximum specific activity of carbon dioxide attained, the glucose pool of the body and its turnover rate. (author)

  19. Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: A role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ajay; Kant, Shiva; Singh, Sukh Mahendra, E-mail: sukhmahendrasingh@yahoo.com

    2013-11-15

    Targeting of tumor metabolism is emerging as a novel therapeutic strategy against cancer. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been shown to exert a potent tumoricidal action against a variety of tumor cells. The main mode of its antineoplastic action implicates a shift of glycolysis to oxidative metabolism of glucose, leading to generation of cytotoxic reactive oxygen intermediates. However, the effect of DCA on tumor microenvironment, which in turn regulates tumor cell survival; remains speculative to a large extent. It is also unclear if DCA can exert any modulatory effect on the process of hematopoiesis, which is in a compromised state in tumor-bearing hosts undergoing chemotherapy. In view of these lacunas, the present study was undertaken to investigate the so far unexplored aspects with respect to the molecular mechanisms of DCA-dependent tumor growth retardation and chemosensitization. BALB/c mice were transplanted with Dalton's lymphoma (DL) cells, a T cell lymphoma of spontaneous origin, followed by administration of DCA with or without cisplatin. DCA-dependent tumor regression and chemosensitization to cisplatin was found to be associated with altered repertoire of key cell survival regulatory molecules, modulated glucose metabolism, accompanying reconstituted tumor microenvironment with respect to pH homeostasis, cytokine balance and alternatively activated TAM. Moreover, DCA administration also led to an alteration in the MDR phenotype of tumor cells and myelopoietic differentiation of macrophages. The findings of this study shed a new light with respect to some of the novel mechanisms underlying the antitumor action of DCA and thus may have immense clinical applications. - Highlights: • DCA modulates tumor progression and chemoresistance. • DCA alters molecules regulating cell survival, glucose metabolism and MDR. • DCA reconstitutes biophysical and cellular composition of tumor microenvironment. • DCA augments BMC cellularity, differentiation and repolarization of macrophages.

  20. Effect of 2-deoxy-D-glucose on DNA double strand break repair, cell survival and energy metabolism in euoxic Ehrlich ascites tumour cells

    International Nuclear Information System (INIS)

    Effects of 2-deoxy-D-glucose (2-DG) on DNA double strand break (dsb) repair, cell survival and on the energy metabolism were investigated in exponentially growing Ehrlich ascites tumour (EAT) cells. Cells in suspension were exposed to 40 Gy of X-rays and allowed to repair (up to 4h) with or without 2-DG at 37oC. DNA dsb rejoining was measured by means of clamped homogeneous electric field (CHEF), a pulsed field gel electrophoresis technique. The fraction of activity released (FAR) during electrophoresis (DNA associated 14C-thymidine) was used as a parameter to determine the number of dsb present in the DNA. Biphasic kinetics for dsb repair were observed. The presence of 2-DG significantly inhibited the slow component of dsb repair. The presence of 2-DG also enhanced radiation-induced cell killing. ATP content of cells was measured by a bioluminescence method. ATP content in exponentially growing cells was about 4 pg per cell. The level of ATP was reduced by 50% in presence of 2-DG (C2-DG/CG = 1.0). (author)

  1. In vitro expansion of U87-MG human glioblastoma cells under hypoxic conditions affects glucose metabolism and subsequent in vivo growth.

    Science.gov (United States)

    Lemaire, L; Franconi, F; Siegler, B; Legendre, C; Garcion, E

    2015-09-01

    Hypoxia is a characteristic feature of solid tumors leading to the over expression of hypoxia-inducible factor (HIF)-1? protein and therefore to a specific cellular behavior. However, even though the oxygen tension in tumors is low (<5 %), most of the cell lines used in cancer studies are grown under 21 % oxygen tension. This work focuses on the impact of oxygen conditions during in vitro cell culture on glucose metabolism using 1-(13)C-glucose. Growing U87-MG glioma cells under hypoxic conditions leads to a two- to threefold reduction of labeled glutamine and an accumulation of fructose. However, under both hypoxic and normoxic conditions, glucose is used for de novo synthesis of pyrimidine since the (13)C label is found both in the uracil and ribose moieties. Labeling of the ribose ring demonstrates that U87-MG glioma cells use the reversible branch of the non-oxidative pentose phosphate pathway. Interestingly, stereotactic implantation of U87-MG cells grown under normoxia or mild hypoxia within the striatum of nude mice led to differential growth; the cells grown under hypoxia retaining an imprint of the oxygen adaptation as their development is then slowed down. PMID:25934335

  2. HDL and glucose metabolism: current evidence and therapeutic potential

    Science.gov (United States)

    Siebel, Andrew L.; Heywood, Sarah Elizabeth; Kingwell, Bronwyn A.

    2015-01-01

    High-density lipoprotein (HDL) and its principal apolipoprotein A-I (ApoA-I) have now been convincingly shown to influence glucose metabolism through multiple mechanisms. The key clinically relevant observations are that both acute HDL elevation via short-term reconstituted HDL (rHDL) infusion and chronically raising HDL via a cholesteryl ester transfer protein (CETP) inhibitor reduce blood glucose in individuals with type 2 diabetes mellitus (T2DM). HDL may mediate effects on glucose metabolism through actions in multiple organs (e.g., pancreas, skeletal muscle, heart, adipose, liver, brain) by three distinct mechanisms: (i) Insulin secretion from pancreatic beta cells, (ii) Insulin-independent glucose uptake, (iii) Insulin sensitivity. The molecular mechanisms appear to involve both direct HDL signaling actions as well as effects secondary to lipid removal from cells. The implications of glucoregulatory mechanisms linked to HDL extend from glycemic control to potential anti-ischemic actions via increased tissue glucose uptake and utilization. Such effects not only have implications for the prevention and management of diabetes, but also for ischemic vascular diseases including angina pectoris, intermittent claudication, cerebral ischemia and even some forms of dementia. This review will discuss the growing evidence for a role of HDL in glucose metabolism and outline related potential for HDL therapies. PMID:26582989

  3. Deletion of Cyclophilin D Impairs ?-Oxidation and Promotes Glucose Metabolism.

    Science.gov (United States)

    Tavecchio, Michele; Lisanti, Sofia; Bennett, Michael J; Languino, Lucia R; Altieri, Dario C

    2015-01-01

    Cyclophilin D (CypD) is a mitochondrial matrix protein implicated in cell death, but a potential role in bioenergetics is not understood. Here, we show that loss or depletion of CypD in cell lines and mice induces defects in mitochondrial bioenergetics due to impaired fatty acid ?-oxidation. In turn, CypD loss triggers a global compensatory shift towards glycolysis, with transcriptional upregulation of effectors of glucose metabolism, increased glucose consumption and higher ATP production. In vivo, the glycolytic shift secondary to CypD deletion is associated with expansion of insulin-producing ?-cells, mild hyperinsulinemia, improved glucose tolerance, and resistance to high fat diet-induced liver damage and weight gain. Therefore, CypD is a novel regulator of mitochondrial bioenergetics, and unexpectedly controls glucose homeostasis, in vivo. PMID:26515038

  4. Mulberry anthocyanin extract regulates glucose metabolism by promotion of glycogen synthesis and reduction of gluconeogenesis in human HepG2 cells.

    Science.gov (United States)

    Yan, Fujie; Zhang, Ji; Zhang, Lingxia; Zheng, Xiaodong

    2016-01-20

    Mulberry has been demonstrated to possess important biological activities such as antioxidation and antiinflammation. However, research on the ability of mulberry for diabetes improvement mainly focuses on the leaves and less on the fruit. This study showed that a mulberry anthocyanin extract (MAE) had a significant effect on increasing the glucose consumption in HepG2 cells. The MAE enhanced the glycogen content and suppressed levels of glucose production. The enzyme activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were decreased in HepG2 cells after MAE treatment due to PPAR? coactivator 1? (PGC-1?) and forkhead box protein O1 (FOXO1) inhibition. Moreover, the phosphorylation of protein kinase B (AKT) and glycogen synthase kinase-3? (GSK-3?) was increased by the MAE, leading to an expression enhancement of glycogen synthase 2 (GYS2). And this effect was blocked by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. In summary, our results suggested that the MAE regulates glucose metabolism by activating the PI3K/AKT pathway that relates to glycogen synthesis as well as through the inhibition of key molecules that promote gluconeogenesis. PMID:26467565

  5. Single Cell "Glucose Nanosensor" Verifies Elevated Glucose Levels in Individual Cancer Cells.

    Science.gov (United States)

    Nascimento, Raphael A S; Özel, R?fat Emrah; Mak, Wai Han; Mulato, Marcelo; Singaram, Bakthan; Pourmand, Nader

    2016-02-10

    Because the transition from oxidative phosphorylation to anaerobic glycolytic metabolism is a hallmark of cancer progression, approaches to identify single living cancer cells by their unique glucose metabolic signature would be useful. Here, we present nanopipettes specifically developed to measure glucose levels in single cells with temporal and spatial resolution, and we use this technology to verify the hypothesis that individual cancer cells can indeed display higher intracellular glucose levels. The nanopipettes were functionalized as glucose nanosensors by immobilizing glucose oxidase (GOx) covalently to the tip so that the interaction of glucose with GOx resulted in a catalytic oxidation of ?-d-glucose to d-gluconic acid, which was measured as a change in impedance due to drop in pH of the medium at the nanopipette tip. Calibration studies showed a direct relationship between impedance changes at the tip and glucose concentration in solution. The glucose nanosensor quantified single cell intracellular glucose levels in human fibroblasts and the metastatic breast cancer lines MDA-MB-231 and MCF7 and revealed that the cancer cells expressed reproducible and reliable increases in glucose levels compared to the nonmalignant cells. Nanopipettes allow repeated sampling of the same cell, as cells remain viable during and after measurements. Therefore, nanopipette-based glucose sensors provide an approach to compare changes in glucose levels with changes in proliferative or metastatic state. The platform has great promise for mechanistic investigations, as a diagnostic tool to distinguish cancer cells from nonmalignant cells in heterogeneous tissue biopsies, as well as a tool for monitoring cancer progression in situ. PMID:26752097

  6. Glucose metabolism in gastric cancer: The cutting-edge

    OpenAIRE

    Yuan, Lian-Wen; Yamashita, Hiroharu; Seto, Yasuyuki

    2016-01-01

    Glucose metabolism in gastric cancer cells differs from that of normal epithelial cells. Upregulated aerobic glycolysis (Warburg effect) in gastric cancer meeting the demands of cell proliferation is associated with genetic mutations, epigenetic modification and proteomic alteration. Understanding the mechanisms of aerobic glycolysis may contribute to our knowledge of gastric carcinogenesis. Metabolomic studies offer novel, convenient and practical tools in the search for new biomarkers for e...

  7. Glucose availability and glycolytic metabolism dictate glycosphingolipid levels†

    Science.gov (United States)

    Stathem, Morgan; Marimuthu, Subathra; O'Neal, Julie; Rathmell, Jeffrey C.; Chesney, Jason A.; Beverly, Levi J.; Siskind, Leah J.

    2014-01-01

    Cancer therapeutics has seen an emergence and re-emergence of two metabolic fields in recent years, those of bioactive sphingolipids and glycolytic metabolism. Anaerobic glycolysis and its implications in cancer have been at the forefront of cancer research for over 90 years. More recently, the role of sphingolipids in cancer cell metabolism has gained recognition, notably ceramide's essential role in programmed cell death and the role of the glucosylceramide synthase (GCS) in chemotherapeutic resistance. Despite this knowledge, a direct link between these two fields has yet to be definitively drawn. Herein, we show that in a model of highly glycolytic cells, generation of the glycosphingolipid (GSL) glucosylceramide (GlcCer) by GCS was elevated in response to increased glucose availability, while glucose deprivation diminished GSL levels. This effect was likely substrate dependent, independent of both GCS levels and activity. Conversely, leukemia cells with elevated GSLs showed a significant change in GCS activity, but no change in glucose uptake or GCS expression. In a leukemia cell line with elevated GlcCer, treatment with inhibitors of glycolysis or the pentose phosphate pathway (PPP) significantly decreased GlcCer levels. When combined with pre-clinical inhibitor ABT-263, this effect was augmented and production of pro-apoptotic sphingolipid ceramide increased. Taken together, we have shown that there exists a definitive link between glucose metabolism and GSL production, laying the groundwork for connecting two distinct yet essential metabolic fields in cancer research. Furthermore, we have proposed a novel combination therapeutic option targeting two metabolic vulnerabilities for the treatment of leukemia. PMID:25145677

  8. Correlation of hypoxic cell fraction with glucose metabolic rate in gliomas with 18F-Fluoromisonidazole (FMISO) and 18F- Fluorodeoxyglucose (FDG) positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Full text: FDG-PET studies of brain tumours to measure tumour activity are well established, with regions of higher grade tumour utilising more glucose compared to lower grade tumour tissue and normal tissue. FDG uptake in tumour cells may reflect anaerobic glycolysis, but this has not been proven in- vivo. FMISO is a novel positron-emitting compound that has been shown to selectively identify hypoxic but viable tissue, which may contribute to chemoradiotherapy resistance in tumour cells. Studies correlating measurements of regional hypoxia and glucose activity within brain tumours prior to therapy may help gain further insight into the relationship between hypoxic tumour tissue and resistance to chemoradiotherapy. Three patients with newly diagnosed primary brain tumours have been prospectively studied with FMISO-PET, FDG-PET and MRI, prior to surgery. Each patient presented with a suspected primary brain glioma on MRI, which were all confirmed to be high grade glioma on subsequent histology at surgery FMISO-PET, FDG-PET and MRI images of all patients were co-registered to precisely identify the areas of metabolic activity within tumour and surrounding cortical tissue. All gliomas demonstrated areas of FMISO uptake, which corresponded to areas of maximal FDG uptake, indicating a correlation between hypoxic areas within tumour with areas of increased glucose metabolic activity. This supports the hypothesis that hypoxic areas within tumour tissue may be associated with increased FDG uptake, although whether hypoxia itself increases FDG uptake remains controversial. These correlative studies characterising areas of hypoxia and glucose activity should hopefully assist in future therapeutic manipulations to improve the outcome from treatment of primary brain tumours

  9. Circadian control of glucose metabolism

    OpenAIRE

    Kalsbeek, A.; la Fleur, Susanne; Fliers, Eric

    2014-01-01

    The incidence of obesity and type 2 diabetes mellitus (T2DM) has risen to epidemic proportions. The pathophysiology of T2DM is complex and involves insulin resistance, pancreatic ?-cell dysfunction and visceral adiposity. It has been known for decades that a disruption of biological rhythms (which happens the most profoundly with shift work) increases the risk of developing obesity and T2DM. Recent evidence from basal studies has further sparked interest in the involvement of daily rhythms (a...

  10. [Major risk factors of glucose metabolism abnormalities].

    Science.gov (United States)

    Misnikova, I V; Dreval', A V; Barsukov, I A; Dzebisashvili, T G

    2011-01-01

    Using the data of population base study of adult residents of 2 districts of Moscow Region (2638 persons), prevalence is studied and influence on occurrence of glucose metabolism abnormalities of major risk factors is estimated. Influence of risk factors was estimated with Cox regression analyses. High prevalence undiagnosed glucose metabolism abnormalities among persons (24,9%) is taped; it is established that relative risk of diabetes mellitus type 2 significantly raised at persons is more than 50 years of age independently of BMI, at the same time first-degree obesity increased relative risk of diabetes mellitus type 2 in 4,3 times and third-degree obesity--in 9,0 times independently of age. PMID:22232886

  11. Cerebral glucose metabolism in Parkinson's disease

    International Nuclear Information System (INIS)

    Local cerebral glucose utilization was measured in patients with predominantly unilateral Parkinson's disease using sup(18)F-2-fluoro-deoxyglucose and positron emission tomography. Preliminary results indicate the presence of asymmetric metabolic rates in the inferior basal ganglia. The structure comprising the largest portion of basal ganglia at this level is globus pallidus. These findings are consistent with metabolic studies on animals with unilateral nigrostriatal lesions in which pallidal hypermetabolism on the lesioned side has been demonstrated. Increased pallidal activity is likely secondary to a loss of inhibitory dopaminergic input to the striatum from substantia nigra

  12. Systemic chemotherapy decreases brain glucose metabolism

    OpenAIRE

    Horky, Laura L; Gerbaudo, Victor H; Zaitsev, Alexander; Plesniak, Wen; Hainer, Jon; Govindarajulu, Usha; Kikinis, Ron; Dietrich, Jörg

    2014-01-01

    Objective: Cancer patients may experience neurologic adverse effects, such as alterations in neurocognitive function, as a consequence of chemotherapy. The mechanisms underlying such neurotoxic syndromes remain poorly understood. We here describe the temporal and regional effects of systemically administered platinum-based chemotherapy on glucose metabolism in the brain of cancer patients. Methods: Using sequential FDG-PET/CT imaging prior to and after administration of chemotherapy, we retro...

  13. Brain glucose metabolism in thalamic syndrome.

    OpenAIRE

    Laterre, Emile-Christian; De Volder, Anne; Goffinet, André

    1988-01-01

    Regional brain glucose metabolism was studied in a case of postischaemic thalamic syndrome. Despite a normal density of the thalamus on MRI and CT images, a 17% relative hypometabolism was found in the posterior thalamus on the affected side. This observation of functional anomalies in the posterior thalamic complex in case of thalamic syndrome is compatible with a deregulated processing of pain-related information at this level.

  14. Hepatic glucose sensing is required to preserve ? cell glucose competence

    OpenAIRE

    Seyer, Pascal; Vallois, David; Poitry-Yamate, Carole; Schutz, Frédéric; Metref, Salima; Tarussio, David; Maechler, Pierre; Staels, Bart; Lanz, Bernard; Grueter, Rolf; Decaris, Julie; Turner, Scott; da Costa, Anabela; Preitner, Frédéric; Minehira, Kaori

    2013-01-01

    Liver glucose metabolism plays a central role in glucose homeostasis and may also regulate feeding and energy expenditure. Here we assessed the impact of glucose transporter 2 (Glut2) gene inactivation in adult mouse liver (LG2KO mice). Loss of Glut2 suppressed hepatic glucose uptake but not glucose output. In the fasted state, expression of carbohydrate-responsive element-binding protein (ChREBP) and its glycolytic and lipogenic target genes was abnormally elevated. Feeding, energy expenditu...

  15. Association among heterogeneity of intratumoral anti-CD20 antibody distribution, glucose metabolism and therapeutic response in radioimmunotherapy for B-cell lymphoma

    International Nuclear Information System (INIS)

    Full text of publication follows. Aim: in Zevalin therapy for CD20 positive low-grade lymphoma, heterogeneity of intratumoral anti-CD20 antibody distribution as well as status of lesional glucose metabolism prior to therapy may affect tumor response. The aim of this study was to evaluate association of heterogeneity of intratumoral In-111 Zevalin (In-Zevalin), accumulation of F-18 FDG (FDG), and therapeutic response in patients receiving Zevalin therapy. Methods: 16 patients with CD20 positive B-cell non-Hodgkin's lymphoma who underwent Y-90 Zevalin therapy after imaging with In-Zevalin SPECT/CT and FDG PET/CT were enrolled. Patients received In-Zevalin, followed by SPECT/CT scanning at 48 hours after administration. SUVmax of FDG of lesions was measured on PET/CT while lesion accumulation of In-Zevalin as %ID/g and SUVmax of In-Zevalin (In-Zevalin SUVmax) was measured on SPECT/CT. To evaluate heterogeneity of anti-CD20 antibody distribution, skewness and kurtosis of voxel distribution were calculated by placing there-dimensional volumes of interest (3-D VOIs) on SPECT/CT images. As another intratumoral heterogeneity index, cumulative SUVmax-volume histograms describing percentage of total tumor volume above thresholds of In-Zevalin SUVmax (AUC-CSH) were calculated by placing 3-D VOIs. All lesions (n=42) were classified into responders and non-responders lesion-by-lesion on pre- and post-therapeutic CT images. Results: by lesion-based analysis, a positive correlation was observed between FDG SUVmax and accumulation of In-Zevalin. Accumulation of In-Zevalin was 0.0022 ± 0.0009 and 0.0024 ± 0.0008 %ID/g (n.s.), and 2.74 ± 1.43 and 3.29 ± 1.47 SUVmax (n.s.) for responders and non-responders, respectively. In contrast, voxel distribution of In-Zevalin demonstrated skewness of 0.58 ± 0.16 and 0.73 ± 0.24 (p<0.05), kurtosis of 2.39 ± 0.32 and 2.78 ± 0.53 (p<0.02), and AUC-CSH of 0.37 ± 0.04 and 0.34 ± 0.05 (p<0.05) for responders and non-responders. Conclusions: pre-therapeutic glucose metabolism was predictive of tumor response; higher glucose metabolism corresponded to poorer tumor response. There was a positive correlation between glucose metabolism and anti-CD20 antibody distribution, and heterogeneity rather than the absolute levels of anti-CD20 antibody correlated well with tumor response. (authors)

  16. No correlation between glucose metabolism and apparent diffusion coefficient in diffuse large B-cell lymphoma: A PET/CT and DW-MRI study

    International Nuclear Information System (INIS)

    Purpose: Both positron emission tomography/computed tomography (PET/CT) and diffusion-weighted magnetic resonance imaging (DW-MRI) are oncologic feasible techniques for evaluating the malignancy of tumors. Standardized uptake value (SUV) is a marker of tumor glucose metabolism detected by PET/CT. Apparent diffusion coefficient (ADC) measured by DWI can provide information about tissue cellularity. The aim of the study was to evaluate the correlation between SUV and ADC in untreated diffuse large B-cell lymphoma (DLBCL). Materials and methods: Fifteen pre-therapy patients with histologically proven DLBCL underwent PET/CT and DWI examinations within two days. Tumor glucose metabolism was evaluated by the maximum and mean SUV (SUVmax and SUVmean) on the PET/CT images. The mean ADC value was measured directly on the parametric ADC maps. Results: In total, 28 lymphoma lesions with best match PET/CT and DWI were identified and evaluated. The mean SUVmax and SUVmean were 16.8 and 11.1, respectively; the mean ADC was 0.74 x 10-3 mm2/s. There was no correlation between the mean ADC and the SUVmax or SUVmean. Conclusion: SUV determined from PET/CT and ADC value measured from DWI are different indices for the diagnosis of tumor malignancy, they may provide complimentary functional information of tumor tissue.

  17. No correlation between glucose metabolism and apparent diffusion coefficient in diffuse large B-cell lymphoma: A PET/CT and DW-MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xingchen, E-mail: Xingchen.Wu@uta.fi [Department of Oncology, Tampere University Hospital, Tampere (Finland); Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere (Finland); Korkola, Pasi [Medical Imaging Centre, Department of Nuclear Medicine, Tampere University Hospital, Tampere (Finland); Pertovaara, Hannu [Department of Oncology, Tampere University Hospital, Tampere (Finland); Eskola, Hannu [Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere (Finland); Department of Biomedical Engineering, Tampere University of Technology, Tampere (Finland); Jaervenpaeae, Ritva [Medical Imaging Centre, Department of Radiology, Tampere University Hospital, Tampere (Finland); Kellokumpu-Lehtinen, Pirkko-Liisa [Department of Oncology, Tampere University Hospital, Tampere (Finland); Medical School, University of Tampere (Finland)

    2011-08-15

    Purpose: Both positron emission tomography/computed tomography (PET/CT) and diffusion-weighted magnetic resonance imaging (DW-MRI) are oncologic feasible techniques for evaluating the malignancy of tumors. Standardized uptake value (SUV) is a marker of tumor glucose metabolism detected by PET/CT. Apparent diffusion coefficient (ADC) measured by DWI can provide information about tissue cellularity. The aim of the study was to evaluate the correlation between SUV and ADC in untreated diffuse large B-cell lymphoma (DLBCL). Materials and methods: Fifteen pre-therapy patients with histologically proven DLBCL underwent PET/CT and DWI examinations within two days. Tumor glucose metabolism was evaluated by the maximum and mean SUV (SUV{sub max} and SUV{sub mean}) on the PET/CT images. The mean ADC value was measured directly on the parametric ADC maps. Results: In total, 28 lymphoma lesions with best match PET/CT and DWI were identified and evaluated. The mean SUV{sub max} and SUV{sub mean} were 16.8 and 11.1, respectively; the mean ADC was 0.74 x 10{sup -3} mm{sup 2}/s. There was no correlation between the mean ADC and the SUV{sub max} or SUV{sub mean}. Conclusion: SUV determined from PET/CT and ADC value measured from DWI are different indices for the diagnosis of tumor malignancy, they may provide complimentary functional information of tumor tissue.

  18. Brain Glucose Metabolism Controls Hepatic Glucose and Lipid Production

    OpenAIRE

    Lam, Tony K. T.

    2007-01-01

    Brain glucose-sensing mechanisms are implicated in the regulation of feeding behavior and hypoglycemic-induced hormonal counter-regulation. This commentary discusses recent findings indicating that the brain senses glucose to regulate both hepatic glucose and lipid production.

  19. High Passage MIN6 Cells Have Impaired Insulin Secretion with Impaired Glucose and Lipid Oxidation

    OpenAIRE

    Cheng, Kim; Delghingaro-Augusto, Viviane; Nolan, Christopher J; Turner, Nigel; Hallahan, Nicole; Andrikopoulos, Sofianos; Gunton, Jenny E.

    2012-01-01

    Type 2 diabetes is a metabolic disorder characterized by the inability of beta-cells to secrete enough insulin to maintain glucose homeostasis. MIN6 cells secrete insulin in response to glucose and other secretagogues, but high passage (HP) MIN6 cells lose their ability to secrete insulin in response to glucose. We hypothesized that metabolism of glucose and lipids were defective in HP MIN6 cells causing impaired glucose stimulated insulin secretion (GSIS). HP MIN6 cells had no first phase an...

  20. Sweet Talk: Regulating Glucose Metabolism in Toxoplasma.

    Science.gov (United States)

    Guggisberg, Ann M; Odom, Audrey R

    2015-08-12

    Toxoplasma gondii, the causative agent of toxoplasmosis, is an intracellular parasite that demonstrates a remarkable ability to adapt to nutrient availability. In this issue of Cell Host & Microbe, Blume et al. (2015) describe the unique role of a gluconeogenic enzyme in regulation of glucose catabolism in T. gondii. PMID:26269950

  1. Glucose metabolism by lymphocytes, macrophages, and tumor cells from Walker 256 tumor-bearing rats supplemented with fish oil for one generation.

    Science.gov (United States)

    Aikawa, Júlia; Moretto, Karla D; Denes, Francilene; Yamazaki, Ricardo K; Freitas, Fábio A P; Hirabara, Sandro M; Tchaikovski, Osvaldo; Kaelher, Marcos de A; Brito, Gleysson A P; Curi, Rui; Fernandes, Luiz C

    2008-12-01

    Here we investigated the effect of lifelong supplementation of the diet with coconut fat (CO, rich in saturated fatty acids) or fish oil (FO, rich in n-3 polyunsaturated fatty acids) on tumor growth and lactate production from glucose in Walker 256 tumor cells, peritoneal macrophages, spleen, and gut-associated lymphocytes. Female Wistar rats were supplemented with CO or FO prior to mating and then throughout pregnancy and gestation and then the male offspring were supplemented from weaning until 90 days of age. Then they were inoculated subcutaneously with Walker 256 tumor cells. Tumor weight at 14 days in control rats (those fed standard chow) and CO supplemented was approximately 30 g. Supplementation of the diet with FO significantly reduced tumor growth by 76%. Lactate production (nmol h(-1) mg(-1) protein) from glucose by Walker 256 cells in the group fed regular chow (W) was 381.8 +/- 14.9. Supplementation with coconut fat (WCO) caused a significant reduction in lactate production by 1.6-fold and with fish oil (WFO) by 3.8-fold. Spleen lymphocytes obtained from W and WCO groups had markedly increased lactate production (553 +/- 70 and 635 +/- 150) when compared to non-tumor-bearing rats ( approximately 260 +/- 30). FO supplementation reduced significantly the lactate production (297 +/- 50). Gut-associated lymphocytes obtained from W and WCO groups increased lactate production markedly (280 +/- 31 and 276 +/- 25) when compared to non-tumor-bearing rats ( approximately 90 +/- 18). FO supplementation reduced significantly the lactate production (168 +/- 14). Lactate production by peritoneal macrophages was increased by tumor burden but there was no difference between the groups fed the various diets. Lifelong consumption of FO protects against tumor growth and modifies glucose metabolism in Walker tumor cells and lymphocytes but not in macrophages. PMID:18946876

  2. Drug-induced disorders of glucose metabolism. Mechanisms and management.

    Science.gov (United States)

    Chan, J C; Cockram, C S; Critchley, J A

    1996-08-01

    Glucose homeostasis is maintained by a balance between the release and action of insulin, and the counterregulatory responses mediated principally by glucagon, catecholamines, growth hormone and cortisol. Hence, the effects of a drug on glucose metabolism may be mediated by any of these agents singly or in combination. Host factors, such as inherent glucoregulatory mechanisms, concurrent diseases, organ function and concomitant medications also increase the risk of drug-induced disturbances of glucose homeostasis in susceptible individuals. By far the most important agents causing hypoglycaemia are insulin and the sulphonylureas. Alcohol (ethanol), over-zealous glycaemic control, hypoglycaemic unawareness, detective counterregulation especially in insulin-dependent diabetes mellitus (IDDM), and renal and liver impairment are all important predisposing factors. Although antihyperglycaemic agents such as metformin and alpha-glucosidase inhibitors do not cause hypoglycaemia alone, they may enhance the hypoglycaemic effects of potent hypoglycaemic agents such as insulin and sulphonylureas. On the other hand, the potential hypoglycaemic effects of ACE inhibitors, alpha-blockers, lipid-lowering agents and recombinant human insulin-like growth factor demonstrated in experimental settings, are of potential therapeutic interest. Iatrogenic hypoglycaemia and intensive insulin treatment are associated with hypoglycaemic unawareness which may be obviated by meticulous avoidance of hypoglycaemia. Effective patient education remains an important preventive measure. Oral glucose is used to treat mild hypoglycaemic episodes while more severe episodes are treated by intravenous glucose or glucagon. Nasal glucagon and theophylline are other experimental measures to improve recovery from hypoglycaemia. In refractory hypoglycaemia due to hyperinsulinaemia such as during sulphonylurea overdosage or quinine treatment, the long-acting somatostatin, octreotide, may suppress insulin release and restore euglycaemia. Diuretics, beta-blockers, sympathomimetics, corticosteroids and sex hormones are commonly prescribed drugs which may have adverse effects on carbohydrate metabolism especially in patients with diabetes mellitus or those who are at risk of developing glucose intolerance. Pentamidine was frequently associated with dysglycaemia due to its pancreatic beta-cell cytotoxic effects but is now used less often to treat Pneumocystis carinii pneumonia in immunosuppressed patients. Despite the large number of anecdotal reports of drug-induced disturbances of glucose metabolism, many of the so-called adverse drug reactions were either idiosyncratic or coincidental. Nevertheless, they emphasise the complex nature of glucose homeostasis and its potential interactions with drugs, host factors and disease states. An understanding of these relationships may allow more critical interpretation of these clinical observations, better prediction of drug induced adverse effects on carbohydrate metabolism and the implementation of more rational therapy. Hence, the hypoglycaemic effects of a drug may be turned to a therapeutic advantage in patients with glucose intolerance. Similarly, the hyperglycaemic effect of a drug may help to treat refractory hypoglycaemia. PMID:8884164

  3. Uric acid as a modulator of glucose and lipid metabolism.

    Science.gov (United States)

    Lima, William Gustavo; Martins-Santos, Maria Emília Soares; Chaves, Valéria Ernestânia

    2015-09-01

    In humans, uric acid is the final oxidation product of purine catabolism. The serum uric acid level is based on the balance between the absorption, production and excretion of purine. Uric acid is similarly produced in the liver, adipose tissue and muscle and is primarily excreted through the urinary tract. Several factors, including a high-fructose diet and the use of xenobiotics and alcohol, contribute to hyperuricaemia. Hyperuricaemia belongs to a cluster of metabolic and haemodynamic abnormalities, called metabolic syndrome, characterised by abdominal obesity, glucose intolerance, insulin resistance, dyslipidaemia and hypertension. Hyperuricaemia reduction in the Pound mouse or fructose-fed rats, as well as hyperuricaemia induction by uricase inhibition in rodents and studies using cell culture have suggested that uric acid plays an important role in the development of metabolic syndrome. These studies have shown that high uric acid levels regulate the oxidative stress, inflammation and enzymes associated with glucose and lipid metabolism, suggesting a mechanism for the impairment of metabolic homeostasis. Humans lacking uricase, the enzyme responsible for uric acid degradation, are susceptible to these effects. In this review, we summarise the current knowledge of the effects of uric acid on the regulation of metabolism, primarily focusing on liver, adipose tissue and skeletal muscle. PMID:26133655

  4. Effects of Glucose on Differentiation and Fat Metabolism of Chicken Preadipocytes

    Directory of Open Access Journals (Sweden)

    Zhao Taotao

    2012-01-01

    Full Text Available The present study was carried out to illustrate the effect of glucose on chicken (Gallus gallus preadipocyte differentiation and fat metabolism. Adipocyte differentiation was initiated by maintaining confluent cells in a glucose-free medium supplemented with different concentrations of glucose. Upon exposure to high concentrations of glucose (25 mmol L-1, Peroxisome Proliferator-Activated Receptor ? (PPAR? and CCAAT/Enhancer-Binding Protein ? (C/EBP? as adipocyte differentiation markers were significantly increased compared with control cells. The morphology of the glucose-treated cells changed from fibroblast-like to polygonal and cells treated with moderate concentrations of glucose (15 mmol L-1 accumulated the most number of cytoplasmic lipid droplets as estimated by Oil red O staining. Compared with control cells varying concentrations of glucose affected the mRNA expression and protein levels for Fatty Acid Synthesis (FAS and Adipose Triglyceride Lipase (ATGL, the master regulators of fat metabolism. Moreover, the mRNA expression levels and protein contents of fatty acid transporters in glucose-treated cells were higher than in untreated cells. These results indicated that glucose is essential material for chick adipocytes differentiation. Moreover, overhigh concentrations of glucose maybe stimulate lipolysis in the cells.

  5. Parameters of glucose metabolism and the aging brain

    DEFF Research Database (Denmark)

    Akintola, Abimbola A; van den Berg, Annette; Altmann-Schneider, Irmhild; Jansen, Steffy W; van Buchem, Mark A; Slagboom, P Eline; Westendorp, Rudi G; van Heemst, Diana; van der Grond, Jeroen

    2015-01-01

    Given the concurrent, escalating epidemic of diabetes mellitus and neurodegenerative diseases, two age-related disorders, we aimed to understand the relation between parameters of glucose metabolism and indices of pathology in the aging brain. From the Leiden Longevity Study, 132 participants (mean age 66 years) underwent a 2-h oral glucose tolerance test to assess glucose tolerance (fasted and area under the curve (AUC) glucose), insulin sensitivity (fasted and AUC insulin and homeostatic model...

  6. Decaffeinated Coffee and Glucose Metabolism in Young Men

    OpenAIRE

    Greenberg, James A; Owen, David R; Geliebter, Allan

    2009-01-01

    OBJECTIVE The epidemiological association between coffee drinking and decreased risk of type 2 diabetes is strong. However, caffeinated coffee acutely impairs glucose metabolism. We assessed acute effects of decaffeinated coffee on glucose and insulin levels. RESEARCH DESIGN AND METHODS This was a randomized, cross-over, placebo-controlled trial of the effects of decaffeinated coffee, caffeinated coffee, and caffeine on glucose, insulin, and glucose-dependent insulinotropic polypeptide (GIP) ...

  7. Glucose Metabolism during Liver Transplantation in Dogs

    OpenAIRE

    DeWolf, Andre M.; Kang, Yoo G.; Todo, Satoru; Kam, Igal; Francavilla, Antonio J.; POLIMENO, LORENZO; Lynch, Steve; Starzl, Thomas E.

    1987-01-01

    Arterial and hepatic venous blood levels of glucose were studied in 12 dogs during orthotopic liver transplantation performed under ketamine anesthesia without exogenous glucose administration. During the early part of surgery, arterial blood glucose levels were stable: 161 ± 12 mg/dl (mean ± SEM) after laparotomy and 183 ± 16 Mg/dl 5 min before the anhepatic stage. During the anhepatic stage, arterial blood glucose levels decreased progressively to 135 ± 9 and 88 ± 8 mg/dl, 5 min in the anhe...

  8. In Vivo Correlation of Glucose Metabolism, Cell Density and Microcirculatory Parameters in Patients with Head and Neck Cancer: Initial Results Using Simultaneous PET/MRI

    Science.gov (United States)

    Kubiessa, Klaus; Boehm, Andreas; Barthel, Henryk; Kluge, Regine; Kahn, Thomas; Sabri, Osama; Stumpp, Patrick

    2015-01-01

    Objective To demonstrate the feasibility of simultaneous acquisition of 18F-FDG-PET, diffusion-weighted imaging (DWI) and T1-weighted dynamic contrast-enhanced MRI (T1w-DCE) in an integrated simultaneous PET/MRI in patients with head and neck squamous cell cancer (HNSCC) and to investigate possible correlations between these parameters. Methods 17 patients that had given informed consent (15 male, 2 female) with biopsy-proven HNSCC underwent simultaneous 18F-FDG-PET/MRI including DWI and T1w-DCE. SUVmax, SUVmean, ADCmean, ADCmin and Ktrans, kep and ve were measured for each tumour and correlated using Spearman’s ?. Results Significant correlations were observed between SUVmean and Ktrans (? = 0.43; p ? 0.05); SUVmean and kep (? = 0.44; p ? 0.05); Ktrans and kep (? = 0.53; p ? 0.05); and between kep and ve (? = -0.74; p ? 0.01). There was a trend towards statistical significance when correlating SUVmax and ADCmin (? = -0.35; p = 0.08); SUVmax and Ktrans (? = 0.37; p = 0.07); SUVmax and kep (? = 0.39; p = 0.06); and ADCmean and ve (? = 0.4; p = 0.06). Conclusion Simultaneous 18F-FDG-PET/MRI including DWI and T1w-DCE in patients with HNSCC is feasible and allows depiction of complex interactions between glucose metabolism, microcirculatory parameters and cellular density. PMID:26270054

  9. Resistin: regulation of food intake, glucose homeostasis and lipid metabolism.

    Science.gov (United States)

    Nogueiras, Ruben; Novelle, Marta G; Vazquez, María Jesús; Lopez, Miguel; Dieguez, Carlos

    2010-01-01

    Resistin has been identified as a hormone secreted by adipocytes that is under hormonal and nutritional control. This hormone has been suggested to be the link between obesity and type 2 diabetes. In rodents, resistin is mainly located and secreted from adipocytes, even though its expression was also found in several other tissues. However, in humans resistin is expressed primarily by macrophages and seems to be involved in the recruitment of other immune cells and the secretion of pro-inflammatory factors, although its role in insulin resistance cannot be ruled out. In addition to its role in glucose metabolism, resistin has been also involved in the control of hypothalamic and peripheral lipid metabolism and in the regulation of food intake. In this short review, we will summarize the most relevant findings of this hormone in rodents. PMID:19955766

  10. Glucose metabolism in pregnant sheep when placental growth is restricted

    International Nuclear Information System (INIS)

    The effect of restricting placental growth on glucose metabolism in pregnant sheep in late gestation was determined by primed constant infusions of D-[U-14C]- and D-[2-3H]glucose and antipyrine into fetuses of six control sheep and six sheep from which endometrial caruncles had been removed before pregnancy (caruncle sheep). In the latter, placental and fetal weights were reduced, as was the concentration of glucose in fetal arterial blood. Fetal glucose turnover in caruncle sheep was only 52-59% of that in controls, largely because of lower umbilical loss of glucose back to the placenta (38-39% of control) and lower fetal glucose utilization (61-74% of control). However, fetal glucose utilization on a weight-specific basis was similar in control and caruncle sheep. Significant endogenous glucose production occurred in control and caruncle fetal sheep. Maternal glucose production and partition of glucose between the gravid uterus and other maternal tissues were similar in control and caruncle sheep. In conclusion, when placental and fetal growth are restricted, fetal glucose utilization is maintained by reduced loss of glucose back to the placenta and mother and by maintaining endogenous glucose production

  11. Regional glucose metabolism using PETT in normal and psychiatric populations

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, J.D.; Wolf, A.P.; Volkow, N.

    1982-01-01

    The metabolism of /sup 18/F-2-deoxy-2-fluoro-D-glucose (/sup 18/FDG) in 150 subjects including normals, schizophrenics, senile dementias, and primary affective disorders was studied. Some of the data analyzed to date are discussed.

  12. Regional glucose metabolism using PETT in normal and psychiatric populations

    International Nuclear Information System (INIS)

    The metabolism of 18F-2-deoxy-2-fluoro-D-glucose (18FDG) in 150 subjects including normals, schizophrenics, senile dementias, and primary affective disorders was studied. Some of the data analyzed to date are discussed

  13. Exenatide Regulates Cerebral Glucose Metabolism in Brain Areas Associated With Glucose Homeostasis and Reward System.

    Science.gov (United States)

    Daniele, Giuseppe; Iozzo, Patricia; Molina-Carrion, Marjorie; Lancaster, Jack; Ciociaro, Demetrio; Cersosimo, Eugenio; Tripathy, Devjit; Triplitt, Curtis; Fox, Peter; Musi, Nicolas; DeFronzo, Ralph; Gastaldelli, Amalia

    2015-10-01

    Glucagon-like peptide 1 receptors (GLP-1Rs) have been found in the brain, but whether GLP-1R agonists (GLP-1RAs) influence brain glucose metabolism is currently unknown. The study aim was to evaluate the effects of a single injection of the GLP-1RA exenatide on cerebral and peripheral glucose metabolism in response to a glucose load. In 15 male subjects with HbA1c of 5.7 ± 0.1%, fasting glucose of 114 ± 3 mg/dL, and 2-h glucose of 177 ± 11 mg/dL, exenatide (5 ?g) or placebo was injected in double-blind, randomized fashion subcutaneously 30 min before an oral glucose tolerance test (OGTT). The cerebral glucose metabolic rate (CMRglu) was measured by positron emission tomography after an injection of [(18)F]2-fluoro-2-deoxy-d-glucose before the OGTT, and the rate of glucose absorption (RaO) and disposal was assessed using stable isotope tracers. Exenatide reduced RaO0-60 min (4.6 ± 1.4 vs. 13.1 ± 1.7 ?mol/min ? kg) and decreased the rise in mean glucose0-60 min (107 ± 6 vs. 138 ± 8 mg/dL) and insulin0-60 min (17.3 ± 3.1 vs. 24.7 ± 3.8 mU/L). Exenatide increased CMRglu in areas of the brain related to glucose homeostasis, appetite, and food reward, despite lower plasma insulin concentrations, but reduced glucose uptake in the hypothalamus. Decreased RaO0-60 min after exenatide was inversely correlated to CMRglu. In conclusion, these results demonstrate, for the first time in man, a major effect of a GLP-1RA on regulation of brain glucose metabolism in the absorptive state. PMID:26116695

  14. Mechanism of Insulin-resistant Glucose Transport Activity in the Enlarged Adipose Cell of the Aged, Obese Rat: RELATIVE DEPLETION OF INTRACELLULAR GLUCOSE TRANSPORT SYSTEMS

    OpenAIRE

    Hissin, Paul J.; Foley, James E; Wardzala, Lawrence J.; Karnieli, Eddy; Simpson, Ian A.; Salans, Lester B.; Cushman, Samuel W.

    1982-01-01

    The effects of increasing cell size on glucose transport activity and metabolism and on the concentrations of glucose transport systems in both the plasma and low density microsomal membranes in isolated adipose cells from the aging rat model of obesity have been examined. Glucose transport activity was assessed by measuring l-arabinose transport and the concentration of glucose transport systems estimated by measuring specific d-glucose-inhibitable cytochalasin B-binding. Basal glucose trans...

  15. Molecular regulators of glucose and lipid metabolism in skeletal muscle

    OpenAIRE

    Kulkarni, Sameer S

    2012-01-01

    Skeletal muscle is a primary site of insulin action and insulin-stimulated glucose transport and occupies a center stage in maintaining whole body glucose and lipid homeostasis. Another key feature of a healthy skeletal muscle is its ability to switch between utilization of lipids and glucose as fuel in response to feeding or fasting respectively. This metabolic flexibility is impaired in skeletal muscle from insulin resistant and type 2 diabetic patients. Key molecules such as AMP Kinase [AM...

  16. Abnormal glucose metabolism in patients treated with antipsychotics.

    OpenAIRE

    SCHEEN, André; De Hert, M. A.

    2007-01-01

    Second-generation (atypical) antipsychotic medications are of great benefit to a wide variety of people with psychiatric disorders, especially patients with schizophrenia. However, one constellation of adverse effects is an increased risk of obesity, diabetes, and metabolic syndrome. Increasing numbers of reports concerning impaired glucose tolerance, diabetes, and ketoacidosis have raised concerns about a possible association between abnormal glucose metabolism and treatment with atypical an...

  17. A link between sleep loss, glucose metabolism and adipokines

    OpenAIRE

    H.G. Padilha; C.A. Crispim; I.Z. Zimberg; D.A. De-Souza; WATERHOUSE, J; S Tufik; M.T de-Mello

    2011-01-01

    The present review evaluates the role of sleep and its alteration in triggering problems of glucose metabolism and the possible involvement of adipokines in this process. A reduction in the amount of time spent sleeping has become an endemic condition in modern society, and a search of the current literature has found important associations between sleep loss and alterations of nutritional and metabolic contexts. Studies suggest that sleep loss is associated with problems in glucose metabolis...

  18. Degranulation effect of ferric nitrilotriacetate (Fe3+-NTA on the pancreatic islet beta-cells: its acute toxic effect on glucose metabolism.

    Directory of Open Access Journals (Sweden)

    Yamanoi,Yasuhiro

    1984-10-01

    Full Text Available A single injection of ferric nitrilotriacetate (Fe3+-NTA caused a transitory increase in plasma immunoreactive insulin (IRI and plasma immunoreactive glucagon (IRG in rats. They reached maximum levels at 2 days after injection and returned to the normal range at 10 days. At 2 days after Fe3+-NTA injection, blood glucose level was normal but the glucose tolerance test (GTT was impaired. There was a further increase in plasma IRI level and IRG level was suppressed after glucose loading. At 10 days after Fe3+-NTA injection, glucose tolerance was normal and IRI also returned to the normal range. No degenerative changes were found on H.E.-stained rat pancreatic tissue sections after Fe3+-NTA injection. Histochemical staining, however, showed a reduction in beta-granules and heavy metals (Timm's granules from islet cells in the central area of the rat pancreatic islet 1 to 3 days after injection of Fe3+-NTA. The fading remained in some islets even at 10 days after injection, but by then the beta-granule distribution was restored in most islet cells. The results indicate a single Fe3+-NTA injection induced transitory instability of the pancreatic islet beta-cell granules and the glucose intolerance with a hyperresponse of IRI.

  19. Effects of MDMA on blood glucose levels and brain glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Montenegro, M.L.; Vaquero, J.J.; Garcia-Barreno, P.; Desco, M. [Hospital General Universitario Gregorio Maranon, Laboratorio de Imagen, Medicina Experimental, Madrid (Spain); Arango, C. [Hospital General Gregorio Maranon, Departamento de Psiquiatria, Madrid (Spain); Ricaurte, G. [Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD (United States)

    2007-06-15

    This study was designed to assess changes in glucose metabolism in rats administered single or repeated doses of MDMA. Two different experiments were performed: (1) A single-dose study with four groups receiving 20 mg/kg, 40 mg/kg, saline or heat, and (2) a repeated-dose study with two groups receiving three doses, at intervals of 2 h, of 5 mg/kg or saline. Rats were imaged using a dedicated small-animal PET scanner 1 h after single-dose administration or 7 days after repeated doses. Glucose metabolism was measured in 12 cerebral regions of interest. Rectal temperature and blood glucose were monitored. Peak body temperature was reached 1 h after MDMA administration. Blood glucose levels decreased significantly after MDMA administration. In the single-dose experiment, brain glucose metabolism showed hyperactivation in cerebellum and hypo-activation in the hippocampus, amygdala and auditory cortex. In the repeated-dose experiment, brain glucose metabolism did not show any significant change at day 7. These results are the first to indicate that MDMA has the potential to produce significant hypoglycaemia. In addition, they show that MDMA alters glucose metabolism in components of the motor, limbic and somatosensory systems acutely but not on a long-term basis. (orig.)

  20. Effects of MDMA on blood glucose levels and brain glucose metabolism

    International Nuclear Information System (INIS)

    This study was designed to assess changes in glucose metabolism in rats administered single or repeated doses of MDMA. Two different experiments were performed: (1) A single-dose study with four groups receiving 20 mg/kg, 40 mg/kg, saline or heat, and (2) a repeated-dose study with two groups receiving three doses, at intervals of 2 h, of 5 mg/kg or saline. Rats were imaged using a dedicated small-animal PET scanner 1 h after single-dose administration or 7 days after repeated doses. Glucose metabolism was measured in 12 cerebral regions of interest. Rectal temperature and blood glucose were monitored. Peak body temperature was reached 1 h after MDMA administration. Blood glucose levels decreased significantly after MDMA administration. In the single-dose experiment, brain glucose metabolism showed hyperactivation in cerebellum and hypo-activation in the hippocampus, amygdala and auditory cortex. In the repeated-dose experiment, brain glucose metabolism did not show any significant change at day 7. These results are the first to indicate that MDMA has the potential to produce significant hypoglycaemia. In addition, they show that MDMA alters glucose metabolism in components of the motor, limbic and somatosensory systems acutely but not on a long-term basis. (orig.)

  1. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    DEFF Research Database (Denmark)

    Dalgaard, Louise Torp

    2012-01-01

    Uncoupling Protein 2 (UCP2) is expressed in the pancreatic ?-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for...... was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase...

  2. Adult glucose metabolism in extremely birthweight-discordant monozygotic twins

    DEFF Research Database (Denmark)

    Nielsen, Morten Frost Munk; Petersen, I; Brixen, K; Beck-Nielsen, H; Holst, Jens Juul; Christiansen, L; Højlund, K; Christensen, Kaare

    2012-01-01

    AIMS/HYPOTHESIS: Low birthweight (BW) is associated with increased risk of type 2 diabetes. We compared glucose metabolism in adult BW-discordant monozygotic (MZ) twins, thereby controlling for genetic factors and rearing environment. METHODS: Among 77,885 twins in the Danish Twin Registry, 155 of the most BW-discordant MZ twin pairs (median BW difference 0.5 kg) were assessed using a 2 h oral glucose tolerance test with sampling of plasma (p-)glucose, insulin, C-peptide, glucose-dependent insul...

  3. Effects of central gastrin-releasing peptide on glucose metabolism.

    Science.gov (United States)

    Jha, Pawan Kumar; Foppen, Ewout; Challet, Etienne; Kalsbeek, Andries

    2015-11-01

    Gastrin-releasing peptide (GRP) mediated signals in the central nervous system (CNS) influence many functions associated with energy metabolism. The purpose of the present study was to investigate the central effect of GRP on glucose metabolism in the male rat. Intracerebroventricular (icv) administration of GRP caused an immediate hyperglycaemia which was sustained till the end of the infusion. The rise in plasma glucose levels was accompanied by an increase in endogenous glucose production (EGP), as well as increases in plasma glucagon and insulin concentrations. Furthermore, no differences in plasma corticosterone levels were noted between control and GRP treated rats. These results demonstrate that central GRP increases plasma glucose levels, probably by stimulating pancreatic glucagon release and concomitantly or subsequently endogenous glucose production. PMID:26358150

  4. Utilization of dietary glucose in the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Alemany Marià

    2011-10-01

    Full Text Available Abstract This review is focused on the fate of dietary glucose under conditions of chronically high energy (largely fat intake, evolving into the metabolic syndrome. We are adapted to carbohydrate-rich diets similar to those of our ancestors. Glucose is the main energy staple, but fats are our main energy reserves. Starvation drastically reduces glucose availability, forcing the body to shift to fatty acids as main energy substrate, sparing glucose and amino acids. We are not prepared for excess dietary energy, our main defenses being decreased food intake and increased energy expenditure, largely enhanced metabolic activity and thermogenesis. High lipid availability is a powerful factor decreasing glucose and amino acid oxidation. Present-day diets are often hyperenergetic, high on lipids, with abundant protein and limited amounts of starchy carbohydrates. Dietary lipids favor their metabolic processing, saving glucose, which additionally spares amino acids. The glucose excess elicits hyperinsulinemia, which may derive, in the end, into insulin resistance. The available systems of energy disposal could not cope with the excess of substrates, since they are geared for saving not for spendthrift, which results in an unbearable overload of the storage mechanisms. Adipose tissue is the last energy sink, it has to store the energy that cannot be used otherwise. However, adipose tissue growth also has limits, and the excess of energy induces inflammation, helped by the ineffective intervention of the immune system. However, even under this acute situation, the excess of glucose remains, favoring its final conversion to fat. The sum of inflammatory signals and deranged substrate handling induce most of the metabolic syndrome traits: insulin resistance, obesity, diabetes, liver steatosis, hyperlipidemia and their compounded combined effects. Thus, a maintained excess of energy in the diet may result in difficulties in the disposal of glucose, eliciting inflammation and the development of the metabolic syndrome

  5. Aerobic glucose metabolism of Saccharomyces kluyveri: Growth, metabolite production, and quantification of metabolic fluxes

    DEFF Research Database (Denmark)

    Møller, Kasper; Christensen, B.; Förster, Jochen; Piskur, Jure; Nielsen, Jens; Olsson, Lisbeth

    2002-01-01

    constant specific rate of 0.12 g ethyl acetate per g dry weight per hour. The aerobic glucose metabolism in S. kluyveri was found to be less fermentative than in S. cerevisiae, as illustrated by the comparably low yield of ethanol on glucose (0.08 +/- 0.02 g/g), and high yield of biomass on glucose (0.......29 +/- 0.01 g/g). The glucose metabolism of S. kluyveri was further characterized by the new and powerful techniques of metabolic network analysis. Flux distributions in the central carbon metabolism were estimated for respiro-fermentative growth in aerobic batch cultivation on glucose and respiratory...... previously been observed in S. cerevisiae at the same growth conditions, where the tricarboxylic acid cycle operates as two branches. This indicates that the respiratory system was not significantly repressed in S. kluyveri during batch cultivation on glucose....

  6. Regional cerebral glucose metabolism in patients with alcoholic Korsakoff's syndrome

    International Nuclear Information System (INIS)

    Seven alcoholic male subjects diagnosed as having Korsakoff's syndrome and eight age-matched male normal volunteers were studied with /sup 18/F 2-fluoro-2-deoxy-D-glucose (2/sup 18/FDG). All subjects were examined at rest with eyes covered in a quiet, darkened room. Serial plasma samples were obtained following injection of 4 to 5 mCi of 2/sup 18/FDG. Tomographic slices spaced at 10mm axial increments were obtained (in-plane resolution = 1.75 cm, axial resolution = 1.78 cm). Four planes were selected from each subject, and a total of 46 regions of interest were sampled and glucose metabolic rates for each region calculated. The mean glucose metalbolic rate for the 46 regions in the Korsakoff subjects was significantly lower than that in the normal controls (5.17 +- .43 versus 6.6 +- 1.31). A Q-component analysis, which examined each subject's regional rates relative to his mean rate, revealed two distinct patterns in the Korsakoff group. Glucose metabolism was significantly reduced in 37 of the 46 regions sampled. Reduced cerebral glucose metabolism in a nondemented group of subjects has not previously been reported. The reduction in cortical metabolism may be the result of damage to sub-cortical projecting systems. The differing patterns of cerebral metabolism in Korsakoff's syndrome suggests subgroups with differing neuropathology. Regions implicated in memory function, medial temporal, thalamic and medial prefrontal were among the regions reduced in metabolism

  7. Brain glucose metabolism in an animal model of depression.

    Science.gov (United States)

    Detka, J; Kurek, A; Kucharczyk, M; G?ombik, K; Basta-Kaim, A; Kubera, M; Laso?, W; Budziszewska, B

    2015-06-01

    An increasing number of data support the involvement of disturbances in glucose metabolism in the pathogenesis of depression. We previously reported that glucose and glycogen concentrations in brain structures important for depression are higher in a prenatal stress model of depression when compared with control animals. A marked rise in the concentrations of these carbohydrates and glucose transporters were evident in prenatally stressed animals subjected to acute stress and glucose loading in adulthood. To determine whether elevated levels of brain glucose are associated with a change in its metabolism in this model, we assessed key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase), products of glycolysis, i.e., pyruvate and lactate, and two selected enzymes of the tricarboxylic acid cycle (pyruvate dehydrogenase and ?-ketoglutarate dehydrogenase) in the hippocampus and frontal cortex. Additionally, we assessed glucose-6-phosphate dehydrogenase activity, a key enzyme in the pentose phosphate pathway (PPP). Prenatal stress increased the levels of phosphofructokinase, an important glycolytic enzyme, in the hippocampus and frontal cortex. However, prenatal stress had no effect on hexokinase or pyruvate kinase levels. The lactate concentration was elevated in prenatally stressed rats in the frontal cortex, and pyruvate levels remained unchanged. Among the tricarboxylic acid cycle enzymes, prenatal stress decreased the level of pyruvate dehydrogenase in the hippocampus, but it had no effect on ?-ketoglutarate dehydrogenase. Like in the case of glucose and its transporters, also in the present study, differences in markers of glucose metabolism between control animals and those subjected to prenatal stress were not observed under basal conditions but in rats subjected to acute stress and glucose load in adulthood. Glucose-6-phosphate dehydrogenase activity was not reduced by prenatal stress but was found to be even higher in animals exposed to all experimental conditions, i.e., prenatal stress, acute stress, and glucose administration. Our data indicate that glycolysis is increased and the Krebs cycle is decreased in the brain of a prenatal stress animal model of depression. PMID:25819664

  8. Cerebral glucose metabolism in Wernicke's, Broca's, and conduction aphasia

    International Nuclear Information System (INIS)

    Cerebral glucose metabolism was evaluated in patients with either Wernicke's (N = 7), Broca's (N = 11), or conduction (N = 10) aphasia using 18F-2-fluoro-2-deoxy-D-glucose with positron emission tomography. The three aphasic syndromes differed in the degree of left-to-right frontal metabolic asymmetry, with Broca's aphasia showing severe asymmetry and Wernicke's aphasia mild-to-moderate metabolic asymmetry, while patients with conduction aphasia were metabolically symmetric. On the other hand, the three syndromes showed the same degree of metabolic decline in the left temporal region. The parietal region appeared to separate conduction aphasia from both Broca's and Wernicke's aphasias. Common aphasic features in the three syndromes appear to be due to common changes in the temporal region, while unique features were associated with frontal and parietal metabolic differences

  9. Muscle glucose metabolism following exercise in the rat

    DEFF Research Database (Denmark)

    Richter, Erik; Garetto, L P; Goodman, M N; Ruderman, N B

    1982-01-01

    Muscle glycogen stores are depleted during exercise and are rapidly repleted during the recovery period. To investigate the mechanism for this phenomenon, untrained male rats were run for 45 min on a motor-driven treadmill and the ability of their muscles to utilize glucose was then assessed during...... in glucose utilization enhanced by prior exercise appeared to be glucose transport across the cell membrane, as in neither control nor exercised rats did free glucose accumulate in the muscle cell. Following exercise, the ability of insulin to stimulate the release of lactate into the perfusate was....... Prior exercise did not enhance the ability of insulin to convert glycogen synthase from its glucose-6-phosphate-dependent (D) to its glucose-6-phosphate-independent (1) form. On the other hand, following exercise, insulin prevented a marked decrease in muscle glucose-6-phosphate, which could have...

  10. Metabolism of tritiated D-glucose in rat erythrocytes

    International Nuclear Information System (INIS)

    The metabolism of D-[U-14C]glucose, D-[1-14C]glucose, D-[6-14C]glucose, D-[1-3H]glucose, D-[2-3H]glucose, D-[3-3H]glucose, D-[3,4-3H]glucose, D-[5-3H]glucose, and D-[6-3H]glucose was examined in rat erythrocytes. There was a fair agreement between the rate of 3HOH production from either D-[3-3H]glucose and D-[5-3H]glucose, the decrease in the 2,3-diphosphoglycerate pool, its fractional turnover rate, the production of 14C-labeled lactate from D-[U-14C]glucose, and the total lactate output. The generation of both 3HOH and tritiated acidic metabolites from D-[3,4-3H]glucose indicated incomplete detritiation of the C4 during interconversion of fructose-1,6-bisphosphate and triose phosphates. Erythrocytes unexpectedly generated 3HOH from D-[6-3H]glucose, a phenomenon possibly attributable to the detritiation of [3-3H]pyruvate in the reaction catalyzed by glutamate pyruvate transaminase. The production of 3HOH from D-[2-3H]glucose was lower than that from D-[5-3H]glucose, suggesting enzyme-to-enzyme tunneling of glycolytic intermediates in the hexokinase/phosphoglucoisomerase/phosphofructokinase sequence. The production of 3HOH from D-[1-3H]glucose largely exceeded that of 14CO2 from D-[1-14C]glucose, a situation tentatively ascribed to the generation of 3HOH in the phosphomannoisomerase reaction. It is further speculated that the adjustment in specific radioactivity of D-[1-3H]glucose-6-phosphate cannot simultaneously match the vastly different degrees of isotopic discrimination in velocity at the levels of the reactions catalyzed by either glucose-6-phosphate dehydrogenase or phosphoglucoisomerase. The interpretation of the present findings thus raises a number of questions, which are proposed as a scope for further investigations

  11. Enhanced muscle glucose metabolism after exercise

    DEFF Research Database (Denmark)

    Richter, Erik; Garetto, L P; Goodman, M N; Ruderman, N B

    Studies in the rat suggest that after voluntary exercise there are two phases of glycogen repletion in skeletal muscle (preceding study). In phase I glucose utilization and glycogen synthesis are enhanced both in the presence and absence of insulin, whereas in phase II only the increase in the...... the stimulated leg closely mimicked that observed previously after voluntary exercise on a treadmill. With no insulin added to the perfusate, glucose incorporation into glycogen was markedly enhanced in muscles that were glycogen depleted as were the uptake of 2-deoxyglucose and 3-O......-methylglucose. Likewise, the stimulation of these processes by insulin was enhanced and continued to be so 2 h later when the muscles of the stimulated leg had substantially repleted their glycogen stores. The results suggest that the increases in insulin-mediated glucose utilization and glycogen synthesis in muscle...

  12. A link between sleep loss, glucose metabolism and adipokines.

    Science.gov (United States)

    Padilha, H G; Crispim, C A; Zimberg, I Z; De-Souza, D A; Waterhouse, J; Tufik, S; de-Mello, M T

    2011-10-01

    The present review evaluates the role of sleep and its alteration in triggering problems of glucose metabolism and the possible involvement of adipokines in this process. A reduction in the amount of time spent sleeping has become an endemic condition in modern society, and a search of the current literature has found important associations between sleep loss and alterations of nutritional and metabolic contexts. Studies suggest that sleep loss is associated with problems in glucose metabolism and a higher risk for the development of insulin resistance and type 2 diabetes mellitus. The mechanism involved may be associated with the decreased efficacy of regulation of the hypothalamus-pituitary-adrenal axis by negative feedback mechanisms in sleep-deprivation conditions. In addition, changes in the circadian pattern of growth hormone (GH) secretion might also contribute to the alterations in glucose regulation observed during sleep loss. On the other hand, sleep deprivation stress affects adipokines - increasing tumor necrosis factor-? (TNF-?) and interleukin-6 (IL-6) and decreasing leptin and adiponectin -, thus establishing a possible association between sleep-debt, adipokines and glucose metabolism. Thus, a modified release of adipokines resulting from sleep deprivation could lead to a chronic sub-inflammatory state that could play a central role in the development of insulin resistance and type 2 diabetes mellitus. Further studies are necessary to investigate the role of sleep loss in adipokine release and its relationship with glucose metabolism. PMID:21881808

  13. A link between sleep loss, glucose metabolism and adipokines

    Directory of Open Access Journals (Sweden)

    H.G. Padilha

    2011-10-01

    Full Text Available The present review evaluates the role of sleep and its alteration in triggering problems of glucose metabolism and the possible involvement of adipokines in this process. A reduction in the amount of time spent sleeping has become an endemic condition in modern society, and a search of the current literature has found important associations between sleep loss and alterations of nutritional and metabolic contexts. Studies suggest that sleep loss is associated with problems in glucose metabolism and a higher risk for the development of insulin resistance and type 2 diabetes mellitus. The mechanism involved may be associated with the decreased efficacy of regulation of the hypothalamus-pituitary-adrenal axis by negative feedback mechanisms in sleep-deprivation conditions. In addition, changes in the circadian pattern of growth hormone (GH secretion might also contribute to the alterations in glucose regulation observed during sleep loss. On the other hand, sleep deprivation stress affects adipokines - increasing tumor necrosis factor-? (TNF-? and interleukin-6 (IL-6 and decreasing leptin and adiponectin -, thus establishing a possible association between sleep-debt, adipokines and glucose metabolism. Thus, a modified release of adipokines resulting from sleep deprivation could lead to a chronic sub-inflammatory state that could play a central role in the development of insulin resistance and type 2 diabetes mellitus. Further studies are necessary to investigate the role of sleep loss in adipokine release and its relationship with glucose metabolism.

  14. A link between sleep loss, glucose metabolism and adipokines

    Scientific Electronic Library Online (English)

    H.G., Padilha; C.A., Crispim; I.Z., Zimberg; D.A., De-Souza; J., Waterhouse; S., Tufik; M.T, de-Mello.

    2011-10-01

    Full Text Available The present review evaluates the role of sleep and its alteration in triggering problems of glucose metabolism and the possible involvement of adipokines in this process. A reduction in the amount of time spent sleeping has become an endemic condition in modern society, and a search of the current l [...] iterature has found important associations between sleep loss and alterations of nutritional and metabolic contexts. Studies suggest that sleep loss is associated with problems in glucose metabolism and a higher risk for the development of insulin resistance and type 2 diabetes mellitus. The mechanism involved may be associated with the decreased efficacy of regulation of the hypothalamus-pituitary-adrenal axis by negative feedback mechanisms in sleep-deprivation conditions. In addition, changes in the circadian pattern of growth hormone (GH) secretion might also contribute to the alterations in glucose regulation observed during sleep loss. On the other hand, sleep deprivation stress affects adipokines - increasing tumor necrosis factor-? (TNF-?) and interleukin-6 (IL-6) and decreasing leptin and adiponectin -, thus establishing a possible association between sleep-debt, adipokines and glucose metabolism. Thus, a modified release of adipokines resulting from sleep deprivation could lead to a chronic sub-inflammatory state that could play a central role in the development of insulin resistance and type 2 diabetes mellitus. Further studies are necessary to investigate the role of sleep loss in adipokine release and its relationship with glucose metabolism.

  15. Glucose, pyruvate, and acetate metabolism by developing soybean seeds

    International Nuclear Information System (INIS)

    Developing soybean cotyledons were incubated with glucose-14C, pyruvate-14C, and acetate-14C. Glucose was metabolized by both the Embden-Meyerhof-parnas pathway and the pentose phosphate pathway. Developing soybean cotyledons also have the capacity to synthesize sucrose since 14C was found in fructose and sucrose from glucose incubations. Complete analysis showed that the carbons from glucose were directed into CO2, lipid, and solids. Pyruvate was metabolised to a C-2 unit which is presumably acetyl CoA. After conversion to the C-2 unit, the carbons of pyruvate were metabolized in the same manner as acetate. Both pyruvate and acetate carbons were directed predominately into lipids. (auth.)

  16. Quantitative analysis of drug effects at the whole-body level: a case study for glucose metabolism in malaria patients.

    Science.gov (United States)

    Snoep, Jacky L; Green, Kathleen; Eicher, Johann; Palm, Daniel C; Penkler, Gerald; du Toit, Francois; Walters, Nicolas; Burger, Robert; Westerhoff, Hans V; van Niekerk, David D

    2015-12-01

    We propose a hierarchical modelling approach to construct models for disease states at the whole-body level. Such models can simulate effects of drug-induced inhibition of reaction steps on the whole-body physiology. We illustrate the approach for glucose metabolism in malaria patients, by merging two detailed kinetic models for glucose metabolism in the parasite Plasmodium falciparum and the human red blood cell with a coarse-grained model for whole-body glucose metabolism. In addition we use a genome-scale metabolic model for the parasite to predict amino acid production profiles by the malaria parasite that can be used as a complex biomarker. PMID:26614654

  17. Oxygen- and Glucose-Dependent Regulation of Central Carbon Metabolism in Pichia anomala

    OpenAIRE

    Fredlund, Elisabeth; Blank, Lars M.; Schnürer, Johan; Sauer, Uwe; Passoth, Volkmar

    2004-01-01

    We investigated the regulation of the central aerobic and hypoxic metabolism of the biocontrol and non-Saccharomyces wine yeast Pichia anomala. In aerobic batch culture, P. anomala grows in the respiratory mode with a high biomass yield (0.59 g [dry weight] of cells g of glucose?1) and marginal ethanol, glycerol, acetate, and ethyl acetate production. Oxygen limitation, but not glucose pulse, induced fermentation with substantial ethanol production and 10-fold-increased ethyl acetate producti...

  18. Abnormalities of glucose metabolism in spontaneously hypertensive rats

    Scientific Electronic Library Online (English)

    L.M.F.B., Gouveia; I.C., Kettelhut; M.C., Foss.

    2000-11-01

    Full Text Available Abnormalities in glucose metabolism and insulin action are frequently detected in patients with essential hypertension. Spontaneously hypertensive rats (SHR) have been used as an experimental model to understand this pathological condition. The objective of the present study was to assess glucose me [...] tabolism and insulin action in SHR and Wistar rats under fed and fasting conditions. Peripheral glucose utilization was estimated by kinetic studies with [6-³H]-glucose and gluconeogenetic activity was measured during continuous [14C]-bicarbonate infusion. Plasma glucose levels were higher in the SHR group. Plasma insulin levels in the fed state were higher in the SHR group (99.8 ± 6.5 µM) than in the control group (70.4 ± 3.6 µM). Muscle glycogen content was reduced in SHR compared to control under the various experimental conditions. Peripheral glucose utilization was slightly lower in the SHR group in the fed state (8.72 ± 0.55 vs 9.52 ± 0.80 mg kg-1 min-1 in controls). Serum free fatty acid levels, hepatic glycogen levels, hepatic phosphoenolpyruvate carboxykinase activity and gluconeogenetic activity were similar in the two groups. The presence of hyperglycemia and hyperinsulinemia and the slightly reduced peripheral glucose utilization suggest the presence of resistance to the action of insulin in peripheral tissues of SHR. Hepatic gluconeogenesis does not seem to contribute to the metabolic alterations detected in these animals.

  19. Antilipolytic drug boosts glucose metabolism in prostate cancer

    DEFF Research Database (Denmark)

    Andersen, Kim Francis; Divilov, Vadim; Koziorowski, Jacek; Pillarsetty, NagaVaraKishore; Lewis, Jason S

    2013-01-01

    The antilipolytic drug Acipimox reduces free fatty acid (FFA) levels in the blood stream. We examined the effect of reduced FFAs on glucose metabolism in androgen-dependent (CWR22Rv1) and androgen-independent (PC3) prostate cancer (PCa) xenografts.......The antilipolytic drug Acipimox reduces free fatty acid (FFA) levels in the blood stream. We examined the effect of reduced FFAs on glucose metabolism in androgen-dependent (CWR22Rv1) and androgen-independent (PC3) prostate cancer (PCa) xenografts....

  20. Glucose-induced remodeling of intermediary and energy metabolism in procyclic Trypanosoma brucei.

    Science.gov (United States)

    Coustou, Virginie; Biran, Marc; Breton, Marc; Guegan, Fabien; Rivière, Loïc; Plazolles, Nicolas; Nolan, Derek; Barrett, Michael P; Franconi, Jean-Michel; Bringaud, Frédéric

    2008-06-13

    The procyclic form of Trypanosoma brucei is a parasitic protozoan that normally dwells in the midgut of its insect vector. In vitro, this parasite prefers d-glucose to l -proline as a carbon source, although this amino acid is the main carbon source available in its natural habitat. Here, we investigated how l -proline is metabolized in glucose-rich and glucose-depleted conditions. Analysis of the excreted end products of (13)C-enriched l -proline metabolism showed that the amino acid is converted into succinate or l -alanine depending on the presence or absence of d-glucose, respectively. The fact that the pathway of l -proline metabolism was truncated in glucose-rich conditions was confirmed by the analysis of 13 separate RNA interference-harboring or knock-out cell lines affecting different steps of this pathway. For instance, RNA interference studies revealed the loss of succinate dehydrogenase activity to be conditionally lethal only in the absence of d-glucose, confirming that in glucose-depleted conditions, l -proline needs to be converted beyond succinate. In addition, depletion of the F(0)/F(1)-ATP synthase activity by RNA interference led to cell death in glucose-depleted medium, but not in glucose-rich medium. This implies that, in the presence of d-glucose, the importance of the F(0)/F(1)-ATP synthase is diminished and ATP is produced by substrate level phosphorylation. We conclude that trypanosomes develop an elaborate adaptation of their energy production pathways in response to carbon source availability. PMID:18430732

  1. A distinct metabolic signature predicts development of fasting plasma glucose

    Directory of Open Access Journals (Sweden)

    Hische Manuela

    2012-02-01

    Full Text Available Abstract Background High blood glucose and diabetes are amongst the conditions causing the greatest losses in years of healthy life worldwide. Therefore, numerous studies aim to identify reliable risk markers for development of impaired glucose metabolism and type 2 diabetes. However, the molecular basis of impaired glucose metabolism is so far insufficiently understood. The development of so called 'omics' approaches in the recent years promises to identify molecular markers and to further understand the molecular basis of impaired glucose metabolism and type 2 diabetes. Although univariate statistical approaches are often applied, we demonstrate here that the application of multivariate statistical approaches is highly recommended to fully capture the complexity of data gained using high-throughput methods. Methods We took blood plasma samples from 172 subjects who participated in the prospective Metabolic Syndrome Berlin Potsdam follow-up study (MESY-BEPO Follow-up. We analysed these samples using Gas Chromatography coupled with Mass Spectrometry (GC-MS, and measured 286 metabolites. Furthermore, fasting glucose levels were measured using standard methods at baseline, and after an average of six years. We did correlation analysis and built linear regression models as well as Random Forest regression models to identify metabolites that predict the development of fasting glucose in our cohort. Results We found a metabolic pattern consisting of nine metabolites that predicted fasting glucose development with an accuracy of 0.47 in tenfold cross-validation using Random Forest regression. We also showed that adding established risk markers did not improve the model accuracy. However, external validation is eventually desirable. Although not all metabolites belonging to the final pattern are identified yet, the pattern directs attention to amino acid metabolism, energy metabolism and redox homeostasis. Conclusions We demonstrate that metabolites identified using a high-throughput method (GC-MS perform well in predicting the development of fasting plasma glucose over several years. Notably, not single, but a complex pattern of metabolites propels the prediction and therefore reflects the complexity of the underlying molecular mechanisms. This result could only be captured by application of multivariate statistical approaches. Therefore, we highly recommend the usage of statistical methods that seize the complexity of the information given by high-throughput methods.

  2. Cerebral glucose metabolic abnormality in patients with congenital scoliosis

    OpenAIRE

    Park, Weon Wook; Suh, Kuen Tak; KIM, JEUNG IL; Ku, Ja Gyung; Lee, Hong Seok; Kim, Seong-Jang; Kim, In-Ju; Kim, Yong-Ki; Lee, Jung Sub

    2008-01-01

    A possible association between congenital scoliosis and low mental status has been recognized, but there are no reports describing the mental status or cerebral metabolism in patients with congenital scoliosis in detail. We investigated the mental status using a mini-mental status exam as well as the cerebral glucose metabolism using F-18 fluorodeoxyglucose brain positron emission tomography in 12 patients with congenital scoliosis and compared them with those of 14 age-matched patients with ...

  3. Effects of Pollen Typhae total flavone on glucose and lipid metabolism in 3T3-L1 adipocytes

    OpenAIRE

    Yan-ming HE; Wang, Wen-Jian

    2006-01-01

    Objective: To observe the effects of Pollen Typhae total flavone (PTF) on glucose and lipid metabolism in 3T3-L1 adipocytes. Methods: The content of glucose which disappeared from the culture medium after incubation with drugs for 24 hours was determined as glucose consumption of the cells. The activity of cells was detected by XTT method. The transport of glucose was observed by 3H-glucose uptake method. The efflux of free fatty acid (FFA) from adipocytes was observed by the concentration of...

  4. Gastric emptying, glucose metabolism and gut hormones

    DEFF Research Database (Denmark)

    Vermeulen, Mechteld A R; Richir, Milan C; Garretsen, Martijn K; van Schie, Annelies; Ghatei, Mohammed A; Holst, Jens Juul; Heijboer, Annemieke C; Uitdehaag, Bernard M J; Diamant, Michaela; Eekhoff, E Marelise W; van Leeuwen, Paul A M; Ligthart-Melis, Gerdien C

    2011-01-01

    To study the gastric-emptying rate and gut hormonal response of two carbohydrate-rich beverages. A specifically designed carbohydrate-rich beverage is currently used to support the surgical patient metabolically. Fruit-based beverages may also promote recovery, due to natural antioxidant and carb...

  5. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, R.F.; Lear, J.L. (UCLA School of Medicine (USA))

    1989-12-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered ({sup 18}F)fluorodeoxyglucose (FDG) and ({sup 14}C)-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the {sup 14}C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the {sup 14}C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.

  6. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose.

    Science.gov (United States)

    Ackermann, R F; Lear, J L

    1989-12-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered [18F]fluorodeoxyglucose (FDG) and [14C]-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the 14C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the 14C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum. PMID:2584274

  7. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    International Nuclear Information System (INIS)

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered [18F]fluorodeoxyglucose (FDG) and [14C]-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the 14C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the 14C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum

  8. Gastric emptying, glucose metabolism and gut hormones

    DEFF Research Database (Denmark)

    Vermeulen, Mechteld A R; Richir, Milan C; Garretsen, Martijn K; van Schie, Annelies; Ghatei, Mohammed A; Holst, Jens Juul; Heijboer, Annemieke C; Uitdehaag, Bernard M J; Diamant, Michaela; Eekhoff, E Marelise W; van Leeuwen, Paul A M; Ligthart-Melis, Gerdien C

    2011-01-01

    To study the gastric-emptying rate and gut hormonal response of two carbohydrate-rich beverages. A specifically designed carbohydrate-rich beverage is currently used to support the surgical patient metabolically. Fruit-based beverages may also promote recovery, due to natural antioxidant and carbohydrate content. However, gastric emptying of fluids is influenced by its nutrient composition; hence, safety of preoperative carbohydrate loading should be confirmed. Because gut hormones link carbohyd...

  9. Snail modulates cell metabolism in MDCK cells

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Misako, E-mail: haraguci@m3.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Indo, Hiroko P. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Iwasaki, Yasumasa [Health Care Center, Kochi University, Kochi 780-8520 (Japan); Iwashita, Yoichiro [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Fukushige, Tomoko [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Majima, Hideyuki J. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Izumo, Kimiko; Horiuchi, Masahisa [Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Kanekura, Takuro [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Furukawa, Tatsuhiko [Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Ozawa, Masayuki [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)

    2013-03-22

    Highlights: ? MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ? MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ? TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ? MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ? MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of key enzymes. This results in enhanced glucose dependency and leads to cell death under low-glucose conditions. On the other hand, the reduced requirements for oxygen and nutrients from the surrounding environment, might confer the resistance to cell death induced by hypoxia and malnutrition.

  10. Glucose metabolism in sheep fed grass supplemented with gliricidia sepium

    International Nuclear Information System (INIS)

    The limiting factor on improving ruminant production for most of the available feed in developing countries are low in quality. Therefore high fibre diet must be supplemented by high nutritive feed such as leguminous trees that much available in those regions. Gliricidia sepium was one of very potential candidates. Glucose as a major energy source in fed animals required precursor in form of propionate and amino acids from diet. Those precursors might be supplied by these legume leaves. The aim of this research was to investigate the glucose metabolism in the sheep fed grass supplemented by Gliricidia sepium. Fifteens sheep (18 months old) were used in the experiment. These are were divided into three groups that fed by experimental diet of Mitchell grass (MG group), Gliricidia (GS group), and MG supplemented with GS (MGGS group). D-[U-14C]glucose infusate was infused continuously through the left jugular venous catheter of each animal to measure glucose metabolism in those sheeps measurements were done on feed utilisation and glucose metabolism. The results indicated that there was an improvement in efficiency of feed utilisation in the MGGS group as reflected by lower feed conversion ratio by the group. Plasma glucose concentration profile per unit of OM intake were similar for GS and MGGS groups, but higher than that in the MG group (P<0.01). Glucose entry rate (GER) increased in MG group through GS to the MGGS group, while N retention accordingly was increased. It can be concluded that the utilisation of GS by the ruminant animal could be improved by feeding it with a low quality feed at a ratio of 40:60 (GS:Low quality feed) to achieve an NI:DOMI ratio of 0.03 - 0.04. This improvement would be manifested in increasing DOMI, with subsequent increase in GER or net protein deposition as might be expressed in positive N retention. (author)

  11. Enhanced muscle glucose metabolism after exercise in the rat

    DEFF Research Database (Denmark)

    Garetto, L P; Richter, Erik; Goodman, M N; Ruderman, N B

    Thirty minutes after a treadmill run, glucose utilization and glycogen synthesis in perfused rat skeletal muscle are enhanced due to an increase in insulin sensitivity (Richter et al., J. Clin. Invest. 69: 785-793, 1982). The exercise used in these studies was of moderate intensity, and muscle...... was evident. The data suggest that the restoration of muscle glycogen after exercise occurs in two phases. In phase I, muscle glycogen is depleted and insulin-stimulated glucose utilization and glucose utilization in the absence of added insulin may both be enhanced. In phase II glycogen levels have...... glycogen was substantially repleted at the time (30 min postexercise) that glucose metabolism was examined. When rats were run at twice the previous rate (36 m/min), muscle glycogen was still substantially diminished 30 min after the run. At this time the previously noted increase in insulin sensitivity...

  12. Cerebral glucose metabolism in the course of subacute sclerosing panencephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Huber, M.; Herholz, K.; Pawlik, G.; Szelies, B.; Juergens, R.H.; Heiss, W.D.

    1989-01-01

    Regional cerebral glucose metabolism was studied in a 15-year-old boy with subacute sclerosing panencephalitis before and after therapy with human interferon beta, using positron emission tomography of fluorine 18-2-fluoro-2-deoxyglucose. At first examination, metabolism was symmetrically decreased in the thalamus, cerebellum, and all cortical areas except prerolandic motor cortex, but increased in lentiform nucleus. A computed tomographic scan was normal. Six months later, bilateral focal necrosis centered in the previously hypermetabolic putamen was demonstrated by computed tomography and magnetic resonance imaging. The caudate nucleus and the superoposterior part of the putamen were spared, still showing increased metabolism. Corresponding with some clinical improvement, cortical glucose consumption rates had returned to a normal level.

  13. Cerebral glucose metabolism in the course of subacute sclerosing panencephalitis

    International Nuclear Information System (INIS)

    Regional cerebral glucose metabolism was studied in a 15-year-old boy with subacute sclerosing panencephalitis before and after therapy with human interferon beta, using positron emission tomography of fluorine 18-2-fluoro-2-deoxyglucose. At first examination, metabolism was symmetrically decreased in the thalamus, cerebellum, and all cortical areas except prerolandic motor cortex, but increased in lentiform nucleus. A computed tomographic scan was normal. Six months later, bilateral focal necrosis centered in the previously hypermetabolic putamen was demonstrated by computed tomography and magnetic resonance imaging. The caudate nucleus and the superoposterior part of the putamen were spared, still showing increased metabolism. Corresponding with some clinical improvement, cortical glucose consumption rates had returned to a normal level

  14. Transcriptional Regulation of Glucose Sensors in Pancreatic ?-Cells and Liver: An Update

    Directory of Open Access Journals (Sweden)

    Jin-Sik Bae

    2010-05-01

    Full Text Available Pancreatic ?-cells and the liver play a key role in glucose homeostasis. After a meal or in a state of hyperglycemia, glucose is transported into the ?-cells or hepatocytes where it is metabolized. In the ?-cells, glucose is metabolized to increase the ATP:ADP ratio, resulting in the secretion of insulin stored in the vesicle. In the hepatocytes, glucose is metabolized to CO2, fatty acids or stored as glycogen. In these cells, solute carrier family 2 (SLC2A2 and glucokinase play a key role in sensing and uptaking glucose. Dysfunction of these proteins results in the hyperglycemia which is one of the characteristics of type 2 diabetes mellitus (T2DM. Thus, studies on the molecular mechanisms of their transcriptional regulations are important in understanding pathogenesis and combating T2DM. In this paper, we will review a recent update on the progress of gene regulation of glucose sensors in the liver and ?-cells.

  15. Glucose Metabolism in Critically Ill Patients

    DEFF Research Database (Denmark)

    Nielsen, Signe Tellerup; Krogh-Madsen, Rikke; Møller, Kirsten

    2015-01-01

    Critical illness afflicts millions of people worldwide and is associated with a high risk of organ failure and death or an adverse outcome with persistent physical or cognitive deficits. Spontaneous hyperglycemia is common in critically ill patients and is associated with an adverse outcome compa...... characteristics and are, among other things, both characterized by different grades of systemic inflammation and insulin resistance. The GLP-1 might be a potential new treatment target in critically ill patients with stress-induced hyperglycemia......., stimulates insulin secretion and inhibits glucagon release both in healthy individuals and in patients with type 2 diabetes (T2DM). Compared to insulin, GLP-1 appears to be associated with a lower risk of severe hypoglycemia, probably because the magnitude of its insulinotropic action is dependent on blood...... glucose (BG). This is taken advantage of in the treatment of patients with T2DM, for whom GLP-1 analogs have been introduced during the recent years. Infusion of GLP-1 also lowers the BG level in critically ill patients without causing severe hypoglycemia. The T2DM and critical illness share similar...

  16. Bace1 activity impairs neuronal glucose metabolism: rescue by beta-hydroxybutyrate and lipoic acid

    Directory of Open Access Journals (Sweden)

    Michael Lawrence James Ashford

    2015-10-01

    Full Text Available Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer’s disease (AD pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP cleaving enzyme 1 (BACE1, responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y cell line, whether increased BACE1 activity is responsible for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a protease-dead mutant BACE1, protein in SH-SY5Y cells reduced glucose oxidation and the basal oxygen consumption rate, which was associated with a compensatory increase in glycolysis. Increased BACE1 activity had no effect on the mitochondrial electron transfer process but was found to diminish substrate delivery to the mitochondria by inhibition of key mitochondrial decarboxylation reaction enzymes. This BACE1 activity-dependent deficit in glucose oxidation was alleviated by the presence of beta hydroxybutyrate or ?-lipoic acid. Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose oxidation in a human neuronal cell line through impairments in the activity of specific tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1 inhibitors, may be an effective therapeutic strategy in the early-stage management or treatment of AD.

  17. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets.

    Science.gov (United States)

    Dalgaard, Louise T

    2012-01-01

    Uncoupling Protein 2 (UCP2) is expressed in the pancreatic ?-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2-/- and GK+/- islets compared with GK+/- islets and UCP2 deficiency improved glucose tolerance of GK+/- mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/- mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients. PMID:22177951

  18. Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Nehlin, Jan O; Just, Marlene; Rustan, Arild C; Gaster, Michael

    2011-01-01

    Adult stem cells are known to have a finite replication potential. Muscle biopsy-derived human satellite cells (SCs) were grown at different passages and differentiated to human myotubes in culture to analyze the functional state of various carbohydrate and lipid metabolic pathways. As the...... proliferative potential of myoblasts decreased dramatically with passage number, a number of cellular functions were altered: the capacity of myoblasts to fuse and differentiate into myotubes was reduced, and metabolic processes in myotubes such as glucose uptake, glycogen synthesis, glucose oxidation and fatty...... acid ?-oxidation became gradually impaired. Upon insulin stimulation, glucose uptake and glycogen synthesis increased but as the cellular proliferative capacity became gradually exhausted, the response dropped concomitantly. Palmitic acid incorporation into lipids in myotubes decreased with passage...

  19. Glucose Metabolism in Sheep Fed Grass Supplemented with Gliricidia Sepium

    Directory of Open Access Journals (Sweden)

    Y. Widiawati

    2014-12-01

    Full Text Available The limiting factor on improving ruminant production for most of the available feed in developing countries are low in quality. Therefore high fibre diet must be supplemented by high nutritivefeed such as leguminous trees that much available in those regions. Gliricidia sepium was one of very potential candidates. Glucose as a major energy source in fed animals required precursor in form of propionat and amino acids from diet. Those precursors might be supplied by these legume leaves. The aim of this research was to investigate the glucose metabolism in the sheep fed grass supplemented by Gliricidia sepium. Fifteen sheeps (18 months old were used in the experiment. Theseare were divided into three groups that fed by experimental diet of Mitchell grass (MG group, Gliricidia(GS group, and MG supplemented with GS (MGGS group. D-[U-14C]glucoseinfusate was infused continuously through the left jugular venous catheter of each animal to measure glucose metabolism in those sheeps. The measurements were done on feed utilisation and glucose metabolism. The results indicated that there was an improvement in efficiency of feed utilisation in the MGGS group as reflected by lower feed conversion ratio by the group. Plasma glucose concentration profile per unit of OM intake were similar for GS and MGGS groups, but higher than that in the MG group (P<0.01. Glucose entry rate (GER increased in MG group through GS to the MGGS group, while N retention accordingly was increased. It can be concluded that theutilization of GS by the ruminant animal could be improved by feeding it with a low quality feed at a ratio of 40:60 (GS:Low quality feed to achieve an NI:DOMI ratio of 0.03 - 0.04. This improvement would be manifested in increasing DOMI, with subsequent increase in GER or net protein deposition as might be expressed in positive N retention.

  20. Thyroid hormone’s role in regulating brain glucose metabolism and potentially modulating hippocampal cognitive processes

    OpenAIRE

    Jahagirdar, V; McNay, EC

    2012-01-01

    Cognitive performance is dependent on adequate glucose supply to the brain. Insulin, which regulates systemic glucose metabolism, has been recently shown both to regulate hippocampal metabolism and to be a mandatory component of hippocampally-mediated cognitive performance. Thyroid hormones (TH) regulate systemic glucose metabolism and may also be involved in regulation of brain glucose metabolism. Here we review potential mechanisms for such regulation. Importantly, TH imbalance is often enc...

  1. Thyroid hormone induced oxygen consumption and glucose-uptake in human mononuclear cells

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E

    1989-01-01

    Cellular oxygen consumption and glucose metabolism were examined in human mononuclear blood cells. The cellular oxygen consumption and glucose uptake were dependent on the number of cells, the temperature and the duration of incubation. Stimulation of the cells by T4 and T3 led to a dose dependent...

  2. Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia.

    OpenAIRE

    Takahashi, S.; Driscoll, B F; Law, M J; Sokoloff, L.

    1995-01-01

    Effects of increasing extracellular K+ or intracellular Na+ concentrations on glucose metabolism in cultures of rat astroglia and neurons were examined. Cells were incubated in bicarbonate buffer, pH 7.2, containing 2 mM glucose, tracer amounts of [14C]deoxyglucose ([14C]dGlc), and 5.4, 28, or 56 mM KCl for 10, 15, or 30 min, and then for 5 min in [14C]dGlc-free buffer to allow efflux of unmetabolized [14C]dGlc. Cells were then digested and assayed for labeled products, which were shown to co...

  3. Glucose availability and glycolytic metabolism dictate glycosphingolipid levels†

    OpenAIRE

    Stathem, Morgan; Marimuthu, Subathra; O'Neal, Julie; Rathmell, Jeffrey C.; Chesney, Jason A.; Beverly, Levi J.; Siskind, Leah J.

    2015-01-01

    Cancer therapeutics has seen an emergence and re-emergence of two metabolic fields in recent years, those of bioactive sphingolipids and glycolytic metabolism. Anaerobic glycolysis and its implications in cancer have been at the forefront of cancer research for over 90 years. More recently, the role of sphingolipids in cancer cell metabolism has gained recognition, notably ceramide's essential role in programmed cell death and the role of the glucosylceramide synthase (GCS) in chemotherapeuti...

  4. Cerebral metabolism of glucose in benign hereditary chorea

    International Nuclear Information System (INIS)

    Benign hereditary chorea (BHC) is an autosomal dominant disorder characterized by chorea of early onset with little or no progression. There is marked clinical variability in this disease with some subjects having onset in infancy and others with onset in early adulthood. In contrast to Huntington's disease (HD), there is no dementia. Computed tomography is normal in all subjects with no evidence of caudate nucleus atrophy. We present the results of positron emission tomography using 18F-2-fluorodeoxyglucose on three patients with this disorder from two families. Cerebral glucose metabolism in one patient was decreased in the caudate nucleus, as previously reported in HD. The other two persons from a second family showed a relative decrease in metabolic rates of glucose in the caudate when compared with the thalamus. It appears that caudate hypometabolism is not specific for HD. These findings suggest that the caudate nucleus may play a significant role in the pathophysiology of some persons with BHC

  5. Gut microbiota may have influence on glucose and lipid metabolism.

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian Hallundbæk; Nielsen, Morten Frost

    2013-01-01

    New gene sequencing-based techniques and the large worldwide sequencing capacity have introduced a new era within the field of gut microbiota. Animal and human studies have shown that obesity and type 2 diabetes are associated with changes in the composition of the gut microbiota and that prebiotics, antibiotics or faecal transplantation can alter glucose and lipid metabolism. This paper summarizes the latest research regarding the association between gut microbiota, diabetes and obesity and some of the mechanisms by which gut bacteria may influence host metabolism.

  6. Gut microbiota may have influence on glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian Hallundbæk; Nielsen, Morten Frost; Tvede, Michael; Hansen, Torben; Pedersen, Oluf Borbye; Holst, Jens Juul; Vilsbøll, Tina; Knop, Filip Krag

    2013-01-01

    New gene sequencing-based techniques and the large worldwide sequencing capacity have introduced a new era within the field of gut microbiota. Animal and human studies have shown that obesity and type 2 diabetes are associated with changes in the composition of the gut microbiota and that...... prebiotics, antibiotics or faecal transplantation can alter glucose and lipid metabolism. This paper summarizes the latest research regarding the association between gut microbiota, diabetes and obesity and some of the mechanisms by which gut bacteria may influence host metabolism....

  7. Glucose metabolism in rats submitted to skeletal muscle denervation

    Directory of Open Access Journals (Sweden)

    Wilton Marlindo Santana Nunes

    2005-07-01

    Full Text Available This study analyzed the local and systemic effects of immobilization by denervation of the skeletal muscle on glucose metabolism. The rats were submitted to section of the right paw sciatic nerve. A reduction was observed in glucose uptake by the isolated soleus muscle of the denervated paw after 3 and 7 days, but not after 28 days in relation to the control animals. There was no difference after 3 and 7 days in glucose uptake by the soleus muscle of the opposite intact paw in relation to the control. There was increased glucose uptake in the same paw 28 days after denervation. The rate of glucose removal in response to exogenous insulin after 28 days of denervation was significantly higher than in control animals and those observed after 3 and 7 days of denervation. These results suggest that immobilization by denervation interfered not only in glucose metabolism in the skeletal muscle involved but also in other tissues.O estudo analisou os efeitos locais e sistêmicos da imobilização por desnervação do músculo esquelético sobre o metabolismo glicidico. Ratos foram submetidos à secção do nervo ciático da pata direita. Observou-se redução da captação de glicose pelo músculo sóleo isolado da pata desnervada após 3 e 7 mas não após 28 dias em relação a animais controle. Não houve diferença após 3 e 7 dias na captação de glicose pelo músculo sóleo da pata contralateral intacta em relação ao controle. Houve aumento da captação de glicose nesta mesma pata 28 dias após a desnervação. A taxa de remoção da glicose em resposta à insulina exógena após 28 dias de desnervação foi significantemente superior à do controle e àquelas observadas após 3 e 7 dias da desnervação. Esses resultados sugerem que a imobilização por desnervação interfere não só no metabolismo da glicose no músculo esquelético envolvido como também em outros tecidos.

  8. Heterogeneous cerebral glucose metabolism in normal pressure hydrocephalus.

    OpenAIRE

    Tedeschi, E; Hasselbalch, S.G.; Waldemar, G.; Juhler, M; Høgh, P; Holm, S (Søren); Garde, L; Knudsen, L.L.; Klinken, L.; Gjerris, F.

    1995-01-01

    The regional cerebral metabolic rate for glucose (rCMRglu) has never been investigated in large consecutive groups of patients with normal pressure hydrocephalus (NPH), a potentially treatable form of dementia with an unpredictable outcome after shunt surgery. Using PET and 18F-2-fluorodeoxyglucose, rCMRglu was studied in 18 patients who fulfilled hydrodynamic criteria for NPH and in whom a biopsy of the frontal cortex was obtained. When compared with an age matched group of 11 healthy subjec...

  9. Molecular mechanism of hepatitis C virus-induced glucose metabolic disorders

    Directory of Open Access Journals (Sweden)

    IkuoShoji

    2012-01-01

    Full Text Available Hepatitis C virus (HCV infection causes not only intrahepatic diseases but also extrahepatic manifestations, including metabolic disorders. Chronic HCV infection is often associated with type 2 diabetes. However, the precise mechanism underlying this association is still unclear. Glucose is transported into hepatocytes via glucose transporter 2 (GLUT2. Hepatocytes play a crucial role in maintaining plasma glucose homeostasis via the gluconeogenic and glycolytic pathways. We have been investigating the molecular mechanism of HCV-related type 2 diabetes using HCV RNA replicon cells and HCV J6/JFH1 system. We found that HCV replication down-regulates cell surface expression of GLUT2 at the transcriptional level. We also found that HCV infection promotes hepatic gluconeogenesis in HCV J6/JFH1-infected Huh-7.5 cells. HCV infection transcriptionally up-regulated the genes for PEPCK and G6Pase, the rate-limiting enzymes for hepatic gluconeogenesis. Gene expression of PEPCK and G6Pase was regulated by the transcription factor forkhead box O1 (FoxO1 in HCV-infected cells. Phosphorylation of FoxO1 at Ser319 was markedly diminished in HCV-infected cells, resulting in increased nuclear accumulation of FoxO1. HCV NS5A protein was directly linked with the FoxO1-dependent increased gluconeogenesis. This paper will discuss the current model of HCV-induced glucose metabolic disorders.

  10. Acute Alcohol Intoxication Decreases Glucose Metabolism but Increases Acetate Uptake in the Human Brain

    OpenAIRE

    Volkow, Nora. D.; Kim, Sung Won; WANG, GENE-JACK; Alexoff, David; Logan, Jean; Muench, Lisa; Shea, Colleen; Telang, Frank; Fowler, Joanna S; Wong, Christopher; Benveniste, Helene; Tomasi, Dardo

    2012-01-01

    Alcohol intoxication results in marked reductions in brain glucose metabolism, which we hypothesized reflect not just its GABAergic enhancing effects but also metabolism of acetate as an alternative brain energy source. To test this hypothesis we separately assessed the effects of alcohol intoxication on brain glucose and acetate metabolism using Positron Emission Tomography (PET). We found that alcohol intoxication significantly decreased whole brain glucose metabolism (measured with FDG) wi...

  11. Interaction between Glucose and Lipid Metabolism: More than Diabetic Dyslipidemia.

    Science.gov (United States)

    Parhofer, Klaus G

    2015-10-01

    Glucose and lipid metabolism are linked to each other in many ways. The most important clinical manifestation of this interaction is diabetic dyslipidemia, characterized by elevated triglycerides, low high density lipoprotein cholesterol (HDL-C), and predominance of small-dense LDL particles. However, in the last decade we have learned that the interaction is much more complex. Hypertriglyceridemia and low HDL-C cannot only be the consequence but also the cause of a disturbed glucose metabolism. Furthermore, it is now well established that statins are associated with a small but significant increase in the risk for new onset diabetes. The underlying mechanisms are not completely understood but modulation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG CoA)-reductase may play a central role as genetic data indicate that mutations resulting in lower HMG CoA-reductase activity are also associated with obesity, higher glucose concentrations and diabetes. Very interestingly, this statin induced increased risk for new onset type 2 diabetes is not detectable in subjects with familial hypercholesterolemia. Furthermore, patients with familial hypercholesterolemia seem to have a lower risk for type 2 diabetes, a phenomenon which seems to be dose-dependent (the higher the low density lipoprotein cholesterol, the lower the risk). Whether there is also an interaction between lipoprotein(a) and diabetes is still a matter of debate. PMID:26566492

  12. Interaction between Glucose and Lipid Metabolism: More than Diabetic Dyslipidemia

    Science.gov (United States)

    2015-01-01

    Glucose and lipid metabolism are linked to each other in many ways. The most important clinical manifestation of this interaction is diabetic dyslipidemia, characterized by elevated triglycerides, low high density lipoprotein cholesterol (HDL-C), and predominance of small-dense LDL particles. However, in the last decade we have learned that the interaction is much more complex. Hypertriglyceridemia and low HDL-C cannot only be the consequence but also the cause of a disturbed glucose metabolism. Furthermore, it is now well established that statins are associated with a small but significant increase in the risk for new onset diabetes. The underlying mechanisms are not completely understood but modulation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG CoA)-reductase may play a central role as genetic data indicate that mutations resulting in lower HMG CoA-reductase activity are also associated with obesity, higher glucose concentrations and diabetes. Very interestingly, this statin induced increased risk for new onset type 2 diabetes is not detectable in subjects with familial hypercholesterolemia. Furthermore, patients with familial hypercholesterolemia seem to have a lower risk for type 2 diabetes, a phenomenon which seems to be dose-dependent (the higher the low density lipoprotein cholesterol, the lower the risk). Whether there is also an interaction between lipoprotein(a) and diabetes is still a matter of debate.

  13. 2-Deoxy-2-fluoro-d-glucose metabolism in Arabidopsis thaliana.

    Science.gov (United States)

    Fatangare, Amol; Paetz, Christian; Saluz, Hanspeter; Svatoš, Aleš

    2015-01-01

    2-Deoxy-2-fluoro-d-glucose (FDG) is glucose analog routinely used in clinical and animal radiotracer studies to trace glucose uptake but it has rarely been used in plants. Previous studies analyzed FDG translocation and distribution pattern in plants and proposed that FDG could be used as a tracer for photoassimilates in plants. Elucidating FDG metabolism in plants is a crucial aspect for establishing its application as a radiotracer in plant imaging. Here, we describe the metabolic fate of FDG in the model plant species Arabidopsis thaliana. We fed FDG to leaf tissue and analyzed leaf extracts using MS and NMR. On the basis of exact mono-isotopic masses, MS/MS fragmentation, and NMR data, we identified 2-deoxy-2-fluoro-gluconic acid, FDG-6-phosphate, 2-deoxy-2-fluoro-maltose, and uridine-diphosphate-FDG as four major end products of FDG metabolism. Glycolysis and starch degradation seemed to be the important pathways for FDG metabolism. We showed that FDG metabolism in plants is considerably different than animal cells and goes beyond FDG-phosphate as previously presumed. PMID:26579178

  14. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    Energy Technology Data Exchange (ETDEWEB)

    Dalgaard, Louise T., E-mail: ltd@ruc.dk [Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (United States); Department of Science, Systems and Models, Roskilde University (Denmark)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. Black-Right-Pointing-Pointer UCP2 mRNA up-regulation by glucose is dependent on glucokinase. Black-Right-Pointing-Pointer Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. Black-Right-Pointing-Pointer This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic {beta}-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2-/- and GK+/- islets compared with GK+/- islets and UCP2 deficiency improved glucose tolerance of GK+/- mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/- mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.

  15. Regional cerebral glucose metabolism in patients with Parkinson's disease with or without dementia

    International Nuclear Information System (INIS)

    By means of positron emission tomography, the cerebral glucose metabolism in 5 patients with Parkinson's disease with dementia was compared with that in 9 patients without dementia, and that in 5 normal volunteers. The metabolic rates for glucose were measured by placing one hundred regions of interest. In the demented patients, cerebral glucose metabolism was diffusely decreased compared with that of the non-demented patients and the normal controls. The most significant decrease in glucose metabolism was observed in the angular gyrus (49.7% of the normal controls). The glucose metabolism in the cingulate, pre- and postcentral, occipital and subcortical regions was relatively spared (62.1 to 85.5% of the normal controls). In the patients without dementia, the glucose metabolism in each region was not significantly different from that in the normal controls. These results suggest that diffuse glucose hypometabolism in the cerebral cortex may correlate with that of patients with Parkinson's disease with dementia. (author)

  16. Regulation of ?-cell glucose transporter gene expression

    International Nuclear Information System (INIS)

    It has been postulated that a glucose transporter of ? cells (GLUT-2) may be important in glucose-stimulated insulin secretion. To determine whether this transporter is constitutively expressed or regulated, the authors subjected conscious unrestrained Wistar rats to perturbations in glucose homeostasis and quantitated ?-cell GLUT-2 mRNA by in situ hybridization. After 3 hr of hypoglycemia, GLUT-2 and proinsulin mRNA signal densities were reduced by 25% of the level in control rats. After 4 days, GLUT-2 and proinsulin mRNA densities were reduced by 85% and 65%, respectively. After 12 days of hypoglycemia, the Km for 3-O-methyl-D-glucose transport in isolated rat islets, normally 18-20 mM, was 2.5 mM. This provides functional evidence of a profound reduction of high Km glucose transporter in ? cells. In contrast, GLUT-2 was only slightly reduced by hypoglycemia in liver. To determine the effect of prolonged hyperglycemia, they also infused animals with 50% (wt/vol) glucose for 5 days. Hyperglycemic clamping increased GLUT-2 mRNA by 46% whereas proinsulin mRNA doubled. They conclude that GLUT-2 expression in ? cells, but not liver, is subject to regulation by certain perturbations in blood glucose homeostasis

  17. Postprandial gut hormone responses and glucose metabolism in cholecystectomized patients

    DEFF Research Database (Denmark)

    Sonne, David P; Hare, Kristine J; Martens, Pernille; Rehfeld, Jens F; Holst, Jens Juul; Vilsbøll, Tina; Knop, Filip K

    2013-01-01

    Preclinical studies suggest that gallbladder emptying, via bile acid-induced activation of the G protein-coupled receptor TGR5 in intestinal L cells, may play a significant role in the secretion of the incretin hormone glucagon-like peptide-1 (GLP-1) and, hence, postprandial glucose homeostasis. We...

  18. Effect of abomasal glucose infusion on splanchnic and whole-body glucose metabolism in periparturient dairy cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Kristensen, Niels Bastian

    2009-01-01

    Six periparturient Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the hepatic portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic and whole-body glucose metabolism.......Six periparturient Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the hepatic portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic and whole-body glucose metabolism....

  19. Cerebral glucose metabolic abnormality in patients with congenital scoliosis

    Energy Technology Data Exchange (ETDEWEB)

    Nam, H. Y.; Seo, G. T.; Lee, J. S.; Kim, S. C.; Kim, I. J.; Kim, Y. K.; Jeon, S. M. [Pusan National University Hospital, Pusan (Korea, Republic of)

    2007-07-01

    A possible association between congenital scoliosis and low mental status has been recognized, but there are no reports describing the mental status or cerebral metabolism in patients with congenital scoliosis in detail. We investigated the mental status using a mini-mental status exam as well as the cerebral glucose metabolism using F-18 fluorodeoxyglucose brain positron emission tomography in 12 patients with congenital scoliosis and compared them with those of 14 age-matched patients with adolescent idiopathic scoliosis. The mean mini-mental status exam score in the congenital scoliosis group was significantly lower than that in the adolescent idiopathic scoliosis group. Group analysis found that various brain areas of patients with congenital scoliosis showed glucose hypometabolisms in the left prefrontal cortex (Brodmann area 10), right orbitofrontal cortex (Brodmann area 11), left dorsolateral prefrontal cortex (Brodmann area 9), left anterior cingulate gyrus (Brodmann area 24) and pulvinar of the left thalamus. From this study, we could find the metabolic abnormalities of brain in patients with congenital scoliosis and suggest the possible role of voxel-based analysis of brain fluorodeoxyglucose positron emission tomography.

  20. Cerebral glucose metabolic abnormality in patients with congenital scoliosis

    International Nuclear Information System (INIS)

    A possible association between congenital scoliosis and low mental status has been recognized, but there are no reports describing the mental status or cerebral metabolism in patients with congenital scoliosis in detail. We investigated the mental status using a mini-mental status exam as well as the cerebral glucose metabolism using F-18 fluorodeoxyglucose brain positron emission tomography in 12 patients with congenital scoliosis and compared them with those of 14 age-matched patients with adolescent idiopathic scoliosis. The mean mini-mental status exam score in the congenital scoliosis group was significantly lower than that in the adolescent idiopathic scoliosis group. Group analysis found that various brain areas of patients with congenital scoliosis showed glucose hypometabolisms in the left prefrontal cortex (Brodmann area 10), right orbitofrontal cortex (Brodmann area 11), left dorsolateral prefrontal cortex (Brodmann area 9), left anterior cingulate gyrus (Brodmann area 24) and pulvinar of the left thalamus. From this study, we could find the metabolic abnormalities of brain in patients with congenital scoliosis and suggest the possible role of voxel-based analysis of brain fluorodeoxyglucose positron emission tomography

  1. Effect of pioglitazone on glucose metabolism and luteinizing hormone secretion in women with polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Glintborg, Dorte; Hermann, Anne Pernille; Andersen, Marianne; Hagen, Claus; Beck-Nielsen, Henning; Veldhuis, Johannes D.; Henriksen, Jan Erik

    2006-01-01

    OBJECTIVE: To thoroughly examine the mechanisms for insulin resistance in polycystic ovary syndrome (PCOS) and to evaluate the effects of pioglitazone treatment on insulin resistance, beta-cell function, LH secretion, and glucose metabolism. DESIGN: Randomized, blinded, placebo-controlled study. SETTING: Outpatient clinic, at a university hospital in Denmark. PATIENT(S): Thirty obese women with PCOS and 14 weight-matched healthy females. INTERVENTION(S): Sixteen weeks of blinded treatment with p...

  2. Regional cerebral glucose metabolism in frontotemporal lobar degeneration

    International Nuclear Information System (INIS)

    Purpose: Frontotemporal lobar degeneration (FTLD) is the third most common cause of dementia, following Alzheimer's disease and Lewy body disease. Four prototypic neuro behavioral syndromes can be produced by FTLD: frontotemporal dementia (FTD), frontotemporal dementia with motor neuron disease (MND), semantic dementia (SD), and progressive aphasia (PA). We investigated patterns of metabolic impairment in patients with FTLD presented with four different clinical syndromes. Methods: We analyzed glucose metabolic patterns on FDG PET images obtained from 34 patients with a clinical diagnosis of FTLD (19 FTD, 6 MND, 6 SD, and 3 PA, according to a consensus criteria for clinical syndromes associated with FTLD) and 7 age-matched healthy controls using SPM99. Results: Patients with FTD had metabolic deficit in the left frontal cortex and bilateral anterior temporal cortex. Hypometabolism in the bilateral pre-motor area was shown in patients with MND. Patients with SD had metabolic deficit in the left posterior temporal cortex including Wernicke's area, while hypometabolism in the bilateral inferior frontal gyrus including Broca's area and left angular gyrus was seen in patients with PA. These metabolic patterns were well correlated with clinical and neuropsychological features of FTLD syndromes. Conclusion: These data provide a biochemical basis of clinical classification of FTLD. FDG PET may help evaluate and classify patients with FTLD

  3. GSM mobile phone radiation suppresses brain glucose metabolism

    OpenAIRE

    Kwon, Myoung Soo; Vorobyev, Victor; Kännälä, Sami; Laine, Matti; Rinne, Juha O.; Toivonen, Tommi; Johansson, Jarkko; Teräs, Mika; Lindholm, Harri; Alanko, Tommi; Hämäläinen, Heikki

    2011-01-01

    We investigated the effects of mobile phone radiation on cerebral glucose metabolism using high-resolution positron emission tomography (PET) with the 18F-deoxyglucose (FDG) tracer. A long half-life (109?minutes) of the 18F isotope allowed a long, natural exposure condition outside the PET scanner. Thirteen young right-handed male subjects were exposed to a pulse-modulated 902.4?MHz Global System for Mobile Communications signal for 33?minutes, while performing a simple visual vigilance task....

  4. Ketones and brain development: Implications for correcting deteriorating brain glucose metabolism during aging

    OpenAIRE

    Nugent Scott; Courchesne-Loyer Alexandre; St-Pierre Valerie; Vandenberghe Camille; Castellano Christian-Alexandre; Cunnane Stephen C.

    2016-01-01

    Brain energy metabolism in Alzheimer’s disease (AD) is characterized mainly by temporo-parietal glucose hypometabolism. This pattern has been widely viewed as a consequence of the disease, i.e. deteriorating neuronal function leading to lower demand for glucose. This review will address deteriorating glucose metabolism as a problem specific to glucose and one that precedes AD. Hence, ketones and medium chain fatty acids (MCFA) c...

  5. Predicting glucose intolerance with normal fasting plasma glucose by the components of the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Pei Dee

    2007-01-01

    Full Text Available Background: Surprisingly, it is estimated that about half of type 2 diabetics remain undetected. The possible causes may be partly attributable to people with normal fasting plasma glucose (FPG but abnormal postprandial hyperglycemia. We attempted to develop an effective predictive model by using the metabolic syndrome (MeS components as parameters to identify such persons. Subjects and Methods: All participants received a standard 75-g oral glucose tolerance test, which showed that 106 had normal glucose tolerance, 61 had impaired glucose tolerance, and 6 had diabetes-on-isolated postchallenge hyperglycemia. We tested five models, which included various MeS components. Model 0: FPG; Model 1 (clinical history model: family history (FH, FPG, age and sex; Model 2 (MeS model: Model 1 plus triglycerides, high-density lipoprotein cholesterol, body mass index, systolic blood pressure and diastolic blood pressure; Model 3: Model 2 plus fasting plasma insulin (FPI; Model 4: Model 3 plus homeostasis model assessment of insulin resistance. A receiver-operating characteristic (ROC curve was used to determine the predictive discrimination of these models. Results: The area under the ROC curve of the Model 0 was significantly larger than the area under the diagonal reference line. All the other 4 models had a larger area under the ROC curve than Model 0. Considering the simplicity and lower cost of Model 2, it would be the best model to use. Nevertheless, Model 3 had the largest area under the ROC curve. Conclusion: We demonstrated that Model 2 and 3 have a significantly better predictive discrimination to identify persons with normal FPG at high risk for glucose intolerance.

  6. Predicting glucose intolerance with normal fasting plasma glucose by the components of the metabolic syndrome

    International Nuclear Information System (INIS)

    Surprisingly it is estimated that about half of type 2 diabetics remain undetected. The possible causes may be partly attributable to people with normal fasting plasma glucose (FPG) but abnormal postprandial hyperglycemia. We attempted to develop an effective predictive model by using the metabolic syndrome (MeS) components as parameters to identify such persons. All participants received a standard 75 gm oral glucose tolerance test which showed that 106 had normal glucose tolerance, 61 had impaired glucose tolerance and 6 had diabetes on isolated postchallenge hyperglycemia. We tested five models which included various MeS components. Model 0: FPG; Model 1 (Clinical history model): family history (FH), FPG, age and sex; Model 2 (MeS model): Model 1 plus triglycerides, high-density lipoprotein cholesterol, body mass index, systolic blood pressure and diastolic blood pressure; Model 3: Model 2 plus fasting plasma insulin (FPI); Model 4: Model 3 plus homeostasis model assessment of insulin resistance. A receiver-operating characteristic (ROC) curve was used to determine the predictive discrimination of these models. The area under the ROC curve of the Model 0 was significantly larger than the area under the diagonal reference line. All the other 4 models had a larger area under the ROC curve than Model 0. Considering the simplicity and lower cost of Model 2, it would be the best model to use. Nevertheless, Model 3 had the largest area under the ROC curve. We demonstrated that Model 2 and 3 have a significantly better predictive discrimination to identify persons with normal FPG at high risk for glucose intolerance. (author)

  7. Glucose: an Energy Currency and Structural Precursor in Articular Cartilage and Bone with Emerging Roles as an Extracellular Signalling Molecule and Metabolic Regulator

    Directory of Open Access Journals (Sweden)

    AliMobasheri

    2012-12-01

    Full Text Available In the musculoskeletal system glucose serves as an essential source of energy for the development, growth and maintenance of bone and articular cartilage. It is particularly needed for skeletal morphogenesis during embryonic growth and foetal development. Glucose is vital for osteogenesis and chondrogenesis, and is used as a precursor for the synthesis of glycosaminoglycans, glycoproteins and glycolipids. Glucose sensors are present in tissues and organs that carry out bulk glucose fluxes (i.e. intestine, kidney and liver. The beta cells of the pancreatic islets of Langerhans respond to changes in glucose concentration by varying the rate of insulin synthesis and secretion. Neuronal cells in the hypothalamus are also capable of sensing extracellular glucose. Glucosensing neurons use glucose as a signalling molecule to alter their action potential frequency in response to variations in ambient glucose levels. Skeletal muscle and adipose tissue can respond to changes in circulating glucose but much less is known about glucosensing in bone and cartilage. Recent research suggests that bone cells can influence (and be influenced by systemic glucose metabolism. This focused review article discusses what we know about glucose transport and metabolism in bone and cartilage and highlights recent studies that have linked glucose metabolism, insulin signalling and osteocalcin activity in bone and cartilage. These new findings in bone cells raise important questions about nutrient sensing, uptake, storage and processing mechanisms and how they might contribute to overall energy homeostasis in health and disease. The role of glucose in modulating anabolic and catabolic gene expression in normal and osteoarthritic chondrocytes is also discussed. In summary, cartilage and bone cells are sensitive to extracellular glucose and adjust their gene expression and metabolism in response to varying extracellular glucose concentrations.

  8. [Metabolism of labeled exogenous glucose in fiber flax tissues].

    Science.gov (United States)

    Chikov, V I; Avvakumova, N Iu; Bakirova, G G; Khamidullina, L A

    2005-01-01

    A labeled glucose solution was introduced into cut fiber flax plants (45-50 cm high) using a special unit under a pressure of 0.1 atm for 30 min, 1, and 2 h. The highest quantities of labeled carbon were revealed in the woody tissue. Sucrose made up a considerable proportion in low molecular weight products of [ [2-14C]-glucose transformation (23.5%). Metabolism of labeled glucose in the leaves exposed to sunlight yielded a set of metabolites similar to products of 14CO2 photoassimilation. In the shade, the pattern of 14C distribution in labeled compounds of the water/alcohol soluble fraction remained similar in mature leaves, while in juvenile leaves, 14C content decreased in sucrose and increased in organic and amino acids. In the shade, the incorporation of 14C into starch and hot water soluble polysaccharides increased at the expense of the acetone fraction (lipids and pigments), water/salt soluble proteins, and cellulose. Low light conditions increased the radioactivity ratio of sparingly soluble (KOH and Triton X-100 soluble) proteins to albumins and globulins. We propose that the synthesis of components of the photosynthetic apparatus in juvenile leaves is directly powered by photosynthesis and the photosynthesis of glucose and the polymers compete for ATP energy. Appearance of sucrose in the woody tissue is due to its release from the phloem to the stem apoplast and the radial transfer to the xylem, where it is transported to the upper shoot with the transpiration flow. PMID:16004260

  9. The Glucose Transporter Glut1 is Selectively Essential for CD4 T Cell Activation and Effector Function

    OpenAIRE

    MacIntyre, Andrew N.; Gerriets, Valerie A.; Nichols, Amanda G.; Michalek, Ryan D.; Rudolph, Michael C.; DeOliveira, Divino; ANDERSON, STEVEN M.; ABEL, E. DALE; Chen, Benny J; Hale, Laura P.; Rathmell, Jeffrey C.

    2014-01-01

    CD4 T cell activation leads to rapid proliferation and differentiation into effector (Teff) or regulatory (Treg) cells that mediate or control immunity. While Teff and Treg prefer distinct glycolytic or oxidative metabolic programs in vitro, requirements and mechanisms that control T cell glucose uptake and metabolism in vivo are poorly understood. Despite expression of multiple glucose transporters, Glut1-deficiency selectively impaired metabolism and function of thymocytes and Teff. Resting...

  10. Non-invasive in-cell determination of free cytosolic [NAD+]/[NADH] ratios using hyperpolarized glucose show large variations in metabolic phenotypes

    DEFF Research Database (Denmark)

    Christensen, Caspar Elo; Karlsson, Magnus; Winther, Jakob R.; Jensen, Pernille Rose; Lerche, Mathilde H.

    2014-01-01

    death and oxidative stress. It has been suggested that changes in the ratio of free cytosolic [NAD+]/[NADH] reflects metabolic alterations leading to, or correlating with, pathological states. We have designed an isotopically labelled metabolic bioprobe of free cytosolic [NAD+]/[NADH] by combining a...

  11. Decreased cerebral glucose metabolism associated with mental deterioration in multi-infarct dementia

    International Nuclear Information System (INIS)

    Cerebral glucose metabolism of 18 patients with multi-infarct dementia (MID) and 10 age-matched normal subjects were examined with positron emission tomography and the 18-F-fluoro-deoxy-glucose technique. MID patients had significantly lower glucose metabolsim in all the grey matter regions measured and were also characterized by more individuality in metabolic pattern. MID patients were also evaluated as to intelligence quotient (IQ). A positive correlation between IQ as shown by the Tanaka-Binet test and glucose metabolism for the entire grey matter was found. The clinical applicability of this test for predicting cerebral metabolism is discussed. (orig.)

  12. Effect of naproxen on glucose metabolism and tolbutamide kinetics and dynamics in maturity onset diabetics.

    OpenAIRE

    Whiting, B.; Williams, R. L.; Lorenzi, M.; Varady, J C; Robins, D S

    1981-01-01

    1 The influence of the nonsteroidal anti-inflammatory drug naproxen on glucose metabolism and on tolbutamide pharmacokinetics and pharmacodynamics has been studied in ten maturity-onset diabetics. 2 Comparison of both plasma glucose decay curves and insulin responses during an intravenous glucose tolerance test before and after eight 12 hourly doses of naproxen revealed that naproxen had no significant influence on fasting glucose levels or on rates of glucose elimination. 3 When the subjects...

  13. A comprehensive metabolic profile of cultured astrocytes using isotopic transient metabolic flux analysis and 13C-labeled glucose

    Directory of Open Access Journals (Sweden)

    Ursula Sonnewald

    2011-09-01

    Full Text Available Metabolic models have been used to elucidate important aspects of brain metabolism in recent years. This work applies for the first time the concept of isotopic transient 13C metabolic flux analysis (MFA to estimate intracellular fluxes of cultured astrocytes. This methodology comprehensively explores the information provided by 13C labeling time-courses of intracellular metabolites after administration of a 13C labeled substrate. Cells were incubated with medium containing [1-13C]glucose for 24 h and samples of cell supernatant and extracts collected at different time-points were then analyzed by mass spectrometry and/or HPLC. Metabolic fluxes were estimated by fitting a carbon labeling network model to isotopomer profiles experimentally determined. Both the fast isotopic equilibrium of glycolytic metabolite pools and the slow labeling dynamics of TCA cycle intermediates are described well by the model. The large pools of glutamate and aspartate which are linked to the TCA cycle via reversible aminotransferase reactions are likely to be responsible for the observed delay in equilibration of TCA cycle intermediates. Furthermore, it was estimated that 11% of the glucose taken up by astrocytes was diverted to the pentose phosphate pathway. In addition, considerable fluxes through pyruvate carboxylase (PC (PC/pyruvate dehydrogenase (PDH ratio = 0.5, malic enzyme (5% of the total pyruvate production and catabolism of branched-chained amino acids (contributing with ~40% to total acetyl-CoA produced confirmed the significance of these pathways to astrocytic metabolism. Consistent with the need of maintaining cytosolic redox potential, the fluxes through the malate-aspartate shuttle and the PDH pathway were comparable. Finally, the estimated glutamate/?-ketoglutarate exchange rate (~0.7 µmol.mg prot-1.h-1 was similar to the TCA cycle flux. In conclusion, this work demonstrates the potential of isotopic transient MFA for a comprehensive analysis of energy metabolism.

  14. Epithelial and Mesenchymal Tumor Compartments Exhibit In Vivo Complementary Patterns of Vascular Perfusion and Glucose Metabolism1

    OpenAIRE

    Galie, Mirco; Farace, Paolo; Nanni, Cristina; Spinelli, Antonello; Nicolato, Elena; Boschi, Federico; Magnani, Paolo; Trespidi, Silvia; Ambrosini, Valentina; Fanti, Stefano; Merigo, Flavia; Osculati, Francesco; Marzola, Pasquina; Sbarbati, Andrea

    2007-01-01

    Glucose transport and consumption are increased in tumors, and this is considered a diagnostic index of malignancy. However, there is recent evidence that carcinoma-associated stromal cells are capable of aerobic metabolism with low glucose consumption, at least partly because of their efficient vascular supply. In the present study, using dynamic contrast-enhanced magnetic resonance imaging and [F-18]fluorodeoxyglucose (FDG) positron emission tomography (PET), we mapped in vivo the vascular ...

  15. Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine

    DEFF Research Database (Denmark)

    Leke, Renata; Bak, Lasse Kristoffer; Anker, Malene; Melø, Torun M; Sørensen, Michael; Keiding, Susanne; Vilstrup, Hendrik; Ott, Peter; Portela, Luis V; Sonnewald, Ursula; Schousboe, Arne; Waagepetersen, Helle S

    2011-01-01

    . Moreover, it has been suggested that cerebral tricarboxylic acid (TCA) cycle metabolism is inhibited and glycolysis enhanced during hyperammonemia. The aim of this study was to characterize the ammonia-detoxifying mechanisms as well as the effects of ammonia on energy-generating metabolic pathways in a...... mouse neuronal-astrocytic co-culture model of the GABAergic system. We found that 5 mM ammonium chloride affected energy metabolism by increasing the neuronal TCA cycle activity and switching the astrocytic TCA cycle toward synthesis of substrate for glutamine synthesis. Furthermore, ammonia exposure...

  16. A review of cancer cachexia and abnormal glucose metabolism in humans with cancer.

    Science.gov (United States)

    Tayek, J A

    1992-08-01

    In 1919, glucose intolerance became the earliest recognized metabolic abnormality in cancer patients. Prior to the development of severe malnutrition, colon, gastric, sarcoma, endometrial, prostate, localized head, neck, and lung cancer patients had many of the metabolic abnormalities of type II (noninsulin dependent) diabetes mellitus. These metabolic abnormalities include glucose intolerance, an increase in both hepatic glucose production (HGP) and glucose recycling, and insulin resistance. In a study of over 600 cancer patients, a diabetic pattern of glucose tolerance test was noted in over one-third of the patients. An increased rate of HGP, commonly seen in diabetics, has been noted in almost all types of cancer patients studied to date. Etiology of the increased glucose production in the cancer patient is not known, but abnormalities in the counter regulatory hormones, especially growth hormone, may contribute to the development of abnormal glucose metabolism. A second possible stimulus for the increase in HGP could be the glucose needs of the tumor. Abnormally high glucose utilization rates in small amounts of tumor tissue have recently been described. This suggests that small tumors may have large needs for glucose calories. An increase in anaerobic glycolysis in the tumor tissue can increase lactate production in the tumor-bearing human, thus supplying substrate to the liver to increase glucose production rates. In this paper, the nature of abnormal glucose metabolism in cancer patients is described. PMID:1506607

  17. Breast cancer-secreted miR-122 reprograms glucose metabolism in pre-metastatic niche to promote metastasis

    Science.gov (United States)

    Fong, Miranda Y.; Zhou, Weiying; Liu, Liang; Alontaga, Aileen Y.; Chandra, Manasa; Ashby, Jonathan; Chow, Amy; O’Connor, Sean Timothy Francis; Li, Shasha; Chin, Andrew R.; Somlo, George; Palomares, Melanie; Li, Zhuo; Tremblay, Jacob R.; Tsuyada, Akihiro; Sun, Guoqiang; Reid, Michael A.; Wu, Xiwei; Swiderski, Piotr; Ren, Xiubao; Shi, Yanhong; Kong, Mei; Zhong, Wenwan; Chen, Yuan; Wang, Shizhen Emily

    2015-01-01

    Reprogrammed glucose metabolism as a result of increased glycolysis and glucose uptake is a hallmark of cancer. Here we show that cancer cells can suppress glucose uptake by non-tumour cells in the pre-metastatic niche, by secreting vesicles that carry high levels of the miR-122 microRNA. High miR-122 levels in the circulation have been associated with metastasis in breast cancer patients and we show that cancer-cell-secreted miR-122 facilitates metastasis by increasing nutrient availability in the pre-metastatic niche. Mechanistically cancer-cell-derived miR-122 suppresses glucose uptake by niche cells in vitro and in vivo by downregulating the glycolytic enzyme pyruvate kinase (PKM). In vivo inhibition of miR-122 restores glucose uptake in distant organs, including brain and lungs, and decreases the incidence of metastasis. These results demonstrate that by modifying glucose utilization by recipient pre-metastatic niche cells, cancer-derived extracellular miR-122 is able to reprogram systemic energy metabolism to facilitate disease progression. PMID:25621950

  18. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis.

    Science.gov (United States)

    Fong, Miranda Y; Zhou, Weiying; Liu, Liang; Alontaga, Aileen Y; Chandra, Manasa; Ashby, Jonathan; Chow, Amy; O'Connor, Sean Timothy Francis; Li, Shasha; Chin, Andrew R; Somlo, George; Palomares, Melanie; Li, Zhuo; Tremblay, Jacob R; Tsuyada, Akihiro; Sun, Guoqiang; Reid, Michael A; Wu, Xiwei; Swiderski, Piotr; Ren, Xiubao; Shi, Yanhong; Kong, Mei; Zhong, Wenwan; Chen, Yuan; Wang, Shizhen Emily

    2015-02-01

    Reprogrammed glucose metabolism as a result of increased glycolysis and glucose uptake is a hallmark of cancer. Here we show that cancer cells can suppress glucose uptake by non-tumour cells in the premetastatic niche, by secreting vesicles that carry high levels of the miR-122 microRNA. High miR-122 levels in the circulation have been associated with metastasis in breast cancer patients, and we show that cancer-cell-secreted miR-122 facilitates metastasis by increasing nutrient availability in the premetastatic niche. Mechanistically, cancer-cell-derived miR-122 suppresses glucose uptake by niche cells in vitro and in vivo by downregulating the glycolytic enzyme pyruvate kinase. In vivo inhibition of miR-122 restores glucose uptake in distant organs, including brain and lungs, and decreases the incidence of metastasis. These results demonstrate that, by modifying glucose utilization by recipient premetastatic niche cells, cancer-derived extracellular miR-122 is able to reprogram systemic energy metabolism to facilitate disease progression. PMID:25621950

  19. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures

    Directory of Open Access Journals (Sweden)

    Jordà Joel

    2012-05-01

    Full Text Available Abstract Background The methylotrophic yeast Pichia pastoris has emerged as one of the most promising yeast hosts for the production of heterologous proteins. Mixed feeds of methanol and a multicarbon source instead of methanol as sole carbon source have been shown to improve product productivities and alleviate metabolic burden derived from protein production. Nevertheless, systematic quantitative studies on the relationships between the central metabolism and recombinant protein production in P. pastoris are still rather limited, particularly when growing this yeast on mixed carbon sources, thus hampering future metabolic network engineering strategies for improved protein production. Results The metabolic flux distribution in the central metabolism of P. pastoris growing on a mixed feed of glucose and methanol was analyzed by Metabolic Flux Analysis (MFA using 13C-NMR-derived constraints. For this purpose, we defined new flux ratios for methanol assimilation pathways in P. pastoris cells growing on glucose:methanol mixtures. By using this experimental approach, the metabolic burden caused by the overexpression and secretion of a Rhizopus oryzae lipase (Rol in P. pastoris was further analyzed. This protein has been previously shown to trigger the unfolded protein response in P. pastoris. A series of 13C-tracer experiments were performed on aerobic chemostat cultivations with a control and two different Rol producing strains growing at a dilution rate of 0.09 h?1 using a glucose:methanol 80:20 (w/w mix as carbon source. The MFA performed in this study reveals a significant redistristribution of carbon fluxes in the central carbon metabolism when comparing the two recombinant strains vs the control strain, reflected in increased glycolytic, TCA cycle and NADH regeneration fluxes, as well as higher methanol dissimilation rates. Conclusions Overall, a further 13C-based MFA development to characterise the central metabolism of methylotrophic yeasts when growing on mixed methanol:multicarbon sources has been implemented, thus providing a new tool for the investigation of the relationships between central metabolism and protein production. Specifically, the study points at a limited but significant impact of the conformational stress associated to secretion of recombinant proteins on the central metabolism, occurring even at modest production levels.

  20. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.

    Science.gov (United States)

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  1. Statins Impair Glucose Uptake in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Agata Malenda

    2012-04-01

    Full Text Available Statins, HMG-CoA reductase inhibitors, are used in the prevention and treatment of cardiovascular diseases owing to their lipid-lowering effects. Previous studies revealed that, by modulating membrane cholesterol content, statins could induce conformational changes in cluster of differentiation 20 (CD20 tetraspanin. The aim of the presented study was to investigate the influence of statins on glucose transporter 1 (GLUT1-mediated glucose uptake in tumor cells. We observed a significant concentration- and time-dependent decrease in glucose analogs' uptake in several tumor cell lines incubated with statins. This effect was reversible with restitution of cholesterol synthesis pathway with mevalonic acid as well as with supplementation of plasma membrane with exogenous cholesterol. Statins did not change overall GLUT1 expression at neither transcriptional nor protein levels. An exploratory clinical trial revealed that statin treatment decreased glucose uptake in peripheral blood leukocytes and lowered 18F-fluorodeoxyglucose (18F-FDG uptake by tumor masses in a mantle cell lymphoma patient. A bioinformatics analysis was used to predict the structure of human GLUT1 and to identify putative cholesterol-binding motifs in its juxtamembrane fragment. Altogether, the influence of statins on glucose uptake seems to be of clinical significance. By inhibiting 18F-FDG uptake, statins can negatively affect the sensitivity of positron emission tomography, a diagnostic procedure frequently used in oncology.

  2. Effects of Pollen Typhae total flavone on glucose and lipid metabolism in 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Yan-Ming HE

    2006-11-01

    Full Text Available Objective: To observe the effects of Pollen Typhae total flavone (PTF on glucose and lipid metabolism in 3T3-L1 adipocytes. Methods: The content of glucose which disappeared from the culture medium after incubation with drugs for 24 hours was determined as glucose consumption of the cells. The activity of cells was detected by XTT method. The transport of glucose was observed by 3H-glucose uptake method. The efflux of free fatty acid (FFA from adipocytes was observed by the concentration of FFA in the culture medium. Results: The glucose concentration in culture medium was significantly decreased with a concentration-dependent effect, when PTF concentrations were from 0.025 g/L to 0.4 g/L. The toxic effect on cells appeared while PTF concentration was 0.4 g/L, and the MTT value decreased. PTF also significantly increased glucose transportation in the 3T3-L1 adipocytes as rosiglitazone (ROS did. At the same time, FFA concentration in culture medium was significantly decreased as compared to the normal control group, while ROS-treated group did not show any difference. Conclusion: PTF can increase insulin sensitivity by increasing glucose transportation and consumption in the 3T3-L1 adipocytes as well as decreasing the FFA efflux from the cells.

  3. Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage

    International Nuclear Information System (INIS)

    Tumour hypoxia and elevated glycolysis (Warburg effect) predict poor prognosis. Each parameter is assessable separately with positron emission tomography, but they are linked through anaerobic glycolysis (Pasteur effect). Here, we compare the oxygenation-dependent retention of fluoroazomycin arabinoside ([18F]FAZA), a promising but not well-characterised hypoxia-specific tracer, and fluorodeoxyglucose ([18F]FDG) in four carcinoma cell lines. Cells seeded on coverslips were positioned in modified Petri dishes that allow physically separated cells to share the same tracer-containing medium pool. Following oxic, hypoxic or anoxic tracer incubation, coverslips were analysed for radioactivity ([18F]FDG+[18F]FAZA) or re-incubated in tracer-free oxygenated medium and then measured ([18F]FAZA). Next, we tested the reliability of [18F]FDG as a relative measure of glucose metabolic rate. Finally, from two cell lines, xenografts were established in mice, and the tracer distribution between hypoxic and well-oxygenated areas were deduced from tissue sections. Three hours of anoxia strongly stimulated [18F]FAZA retention with anoxic-to-oxic uptake ratios typically above 30. Three out of four cell lines displayed similar selectivity of [18F]FDG versus glucose, but oxic uptake and anoxic-to-oxic uptake ratio of [18F]FDG varied considerably. Although less pronounced, [18F]FAZA also showed superior in vivo hypoxia specificity compared with [18F]FDG. [18F]FAZA displays excellent in vitro characteristics for hypoxia imaging including modest cell-to-cell line variability and no binding in oxic cells. In contrast, the usability of [18F]FDG as a surrogate marker for hypoxia is questionable due to large variations in baseline (oxic) glucose metabolism and magnitudes of the Pasteur effects. (orig.)

  4. Reciprocal effects of 2-fluoro-2-deoxy-D-glucose and glucose on their metabolism in Saccharomyces cerevisiae studied by multi-nuclear NMR spectroscopy

    International Nuclear Information System (INIS)

    The effects of various concentrations of 2-fluoro-2-deoxy-D-glucose (FDG) on the aerobic metabolism of glucose and the reciprocal effect of glucose on the metabolism of FDG in glucose-grown repressed Saccharomyces cerevisiae cells were studied at 30 deg C in a standard pyrophosphate medium containing 5 x 107 cells/ml by 1H-, 19F-, 31P-NMR and biochemical techniques. The glucose consumption rate is reduced by about 57% and 71% in the presence of 5 mM FDG and 10 mM FDG respectively. Under the same conditions, the ethanol production rate also decreases about 54% and 68%, respectively. When FDG is the unique carbon source, the ?- and ?-anomers of 2-fluoro-2-deoxy-D-glucose-6-phosphate (FDG6P) and a much smaller quantity of 2-fluoro-2-deoxy-gluconic acid (FDGA) were observed. The quantities of ? and ?-FDG6P reach their maximum values within 1 h of incubation and then decrease continuously. In contrast, Glc favors the consumption of FDG and the synthesis of FDG6P and uridine-5'-diphosphate fluoro-deoxy-glucose (UDP-FDG). In the presence of GLC, FDG6P reaches a plateau after 1 h or 2 h of incubation while UDP-FDG increases regularly with time. Apart from trehalose, no other disaccharide such as fluoro-dideoxy-trehalose (FDG-FDG) or fluoro-deoxy-trehalose (FDG-Glc) were observed. Thus, in contrast to UDP-Glc, UDP-DG, Glc6P and DG6P, UDP-FDG and FDG6P are not good substrates for trehalose-6-P synthetase. The effect of DG and FDG on the cell growth in standard nutrient media was also investigated at 37 deg C. The cell growth was found to be completely inhibited upon addition of 1 mM FDG and only slowed down in the presence of 1 mM DG. In the latter case, the doubling time ? is about 3 h instead of 1 h 25' in the absence of DG and FDG. The reciprocal effects of FDG and Glc on their metabolism, the toxicity of FDG and the blockage level of enzymes induced by FDG are discussed in comparison with 2-deoxy-D-glucose (DG) and Glc. The above results clearly show that the metabolism and the toxicity of a drug strongly depend on the physiological state of cells. (authors). 17 refs., 6 figs., 1 scheme

  5. Detoxification of Ammonia in Mouse Cortical GABAergic Cell Cultures Increases Neuronal Oxidative Metabolism and Reveals an Emerging Role for Release of Glucose-Derived Alanine

    DEFF Research Database (Denmark)

    Leke, Renata; Bak, Lasse K

    2011-01-01

    Cerebral hyperammonemia is believed to play a pivotal role in the development of hepatic encephalopathy (HE), a debilitating condition arising due to acute or chronic liver disease. In the brain, ammonia is thought to be detoxified via the activity of glutamine synthetase, an astrocytic enzyme. Moreover, it has been suggested that cerebral tricarboxylic acid (TCA) cycle metabolism is inhibited and glycolysis enhanced during hyperammonemia. The aim of this study was to characterize the ammonia-detoxifying mechanisms as well as the effects of ammonia on energy-generating metabolic pathways in a mouse neuronal-astrocytic co-culture model of the GABAergic system. We found that 5 mM ammonium chloride affected energy metabolism by increasing the neuronal TCA cycle activity and switching the astrocytic TCA cycle toward synthesis of substrate for glutamine synthesis. Furthermore, ammonia exposure enhanced the synthesis and release of alanine. Collectively, our results demonstrate that (1) formation of glutamine is seminal for detoxification of ammonia; (2) neuronal oxidative metabolism is increased in the presence of ammonia; and (3) synthesis and release of alanine is likely to be important for ammonia detoxification as a supplement to formation of glutamine.

  6. The measurement of the nigrostriatal dopaminergic function and glucose metabolism in patients with movement disorders

    International Nuclear Information System (INIS)

    The nigrostriatal dopaminergic function and glucose metabolism were evaluated in 34 patients with various movement disorders by using positron emission tomography with 18F-Dopa and 18F-FDG respectively. The 18F-Dopa uptake in the striatum (the caudate head and the putamen) decreased in patients with Parkinson's disease but was relatively unaffected in the caudate. The cerebral glucose metabolism was normal in patients with Parkinson's disease. The 18F-Dopa uptake in the striatum also decreased in cases of atypical parkinsonism and in cases of progressive supranuclear palsy, but there was no difference in the uptake between the caudate and the putamen. The glucose metabolism decreased in the cerebral hemisphere including the striatum; this finding was also different from those of Parkinson's disease. A normal 18F-Dopa uptake in the striatum with a markedly decreased striatal glucose metabolism and a mildly decreased cortical glucose metabolism was observed in cases of Huntington's disease and Wilson's disease. The 18F-Dopa uptake in the striatum increased and the glucose metabolism was normal in cases of idiopathic dystonia. Various patterns of 18F-Dopa uptake and glucose metabolism were thus observed in the various movement disorders. These results suggest that the measurements of the 18F-Dopa uptake and the cerebral glucose metabolism would be useful for the evaluation of the striatal function in various movement disorders. (author)

  7. Impaired glucose metabolism in HIV-infected pregnant women: a retrospective analysis.

    LENUS (Irish Health Repository)

    Moore, Rebecca

    2015-05-20

    Metabolic complications including diabetes mellitus have been increasingly recognised in HIV-infected individuals since the introduction of antiretroviral therapy, particularly protease inhibitors (PIs). Pregnancy is also a risk factor for impaired glucose metabolism, and previous studies have given conflicting results regarding the contribution of PIs to impaired glucose tolerance (IGT) and gestational diabetes mellitus (GDM) in pregnant HIV-infected women.

  8. Acclimation of metabolism to light in Arabidopsis thaliana: the glucose 6-phosphate/phosphate translocator GPT2 directs metabolic acclimation.

    Science.gov (United States)

    Dyson, Beth C; Allwood, J William; Feil, Regina; Xu, Yun; Miller, Matthew; Bowsher, Caroline G; Goodacre, Royston; Lunn, John E; Johnson, Giles N

    2015-07-01

    Mature leaves of plants transferred from low to high light typically increase their photosynthetic capacity. In Arabidopsis thaliana, this dynamic acclimation requires expression of GPT2, a glucose 6-phosphate/phosphate translocator. Here, we examine the impact of GPT2 on leaf metabolism and photosynthesis. Plants of wild type and of a GPT2 knockout (gpt2.2) grown under low light achieved the same photosynthetic rate despite having different metabolic and transcriptomic strategies. Immediately upon transfer to high light, gpt2.2 plants showed a higher rate of photosynthesis than wild-type plants (35%); however, over subsequent days, wild-type plants acclimated photosynthetic capacity, increasing the photosynthesis rate by 100% after 7 d. Wild-type plants accumulated more starch than gpt2.2 plants throughout acclimation. We suggest that GPT2 activity results in the net import of glucose 6-phosphate from cytosol to chloroplast, increasing starch synthesis. There was clear acclimation of metabolism, with short-term changes typically being reversed as plants acclimated. Distinct responses to light were observed in wild-type and gpt2.2 leaves. Significantly higher levels of sugar phosphates were observed in gpt2.2. We suggest that GPT2 alters the distribution of metabolites between compartments and that this plays an essential role in allowing the cell to interpret environmental signals. PMID:25474495

  9. 2-Deoxy-2-fluoro-d-glucose metabolism in Arabidopsis thaliana

    OpenAIRE

    Fatangare, Amol; Paetz, Christian; Saluz, Hanspeter; Svatoš, Aleš

    2015-01-01

    2-Deoxy-2-fluoro-d-glucose (FDG) is glucose analog routinely used in clinical and animal radiotracer studies to trace glucose uptake but it has rarely been used in plants. Previous studies analyzed FDG translocation and distribution pattern in plants and proposed that FDG could be used as a tracer for photoassimilates in plants. Elucidating FDG metabolism in plants is a crucial aspect for establishing its application as a radiotracer in plant imaging. Here, we describe the metabolic fate of F...

  10. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution

    OpenAIRE

    Liu, Jianguo; Qunhui WANG; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-01-01

    The 13C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden–Meyerhof–Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After s...

  11. Thyroid volume in patients with glucose metabolism disorders

    Directory of Open Access Journals (Sweden)

    Ayse Ocak Duran

    2014-11-01

    Full Text Available Objective Thyroid volume and the prevalence of thyroid nodules are higher in patients with insulin resistance. A relationship between thyroid volume and glucose metabolism disorders (GMD has not as yet been clarified. The present retrospective study aimed to investigate the association between GMD and thyroid volume. Subjects and methods: We investigated the data of 2,630 patients who were evaluated for thyroid biopsy in our hospital. The study population included 602 patients with GMD, 554 patients with diabetes mellitus (DM and 1,474 patients with normal glucose metabolism as a control group. We obtained the levels of serum thyroid stimulating hormone (TSH and the thyroid volumes of those patients retrospectively. Results The median ages for the control group, GMD group and DM group were 55 (15?91 years, 60 (27?97 years, and 65 (27?91 years respectively and there was a statistically significant difference between the groups with regard to age and gender (p<0.001. Levels of TSH were similar in all groups. The median total thyroid volumes for patients with DM and GMD were significantly higher than that of the control group [22.5 (3?202 mL, 20.2 (4?190 mL, and 19.2 (3?168 mL respectively, p?0.001 for all parameters]. Also the median total thyroid volume for patients with DM was significantly higher than that of the GMD group (p<0.001. According to the correlation analysis, thyroid volume was significantly correlated with age (r=0.92, p<0.001 and TSH (r=0.435, p<0.001. Age, gender, TSH levels, GMD and DM diagnosis were independently correlated with thyroid volume. Conclusion The thyroid gland is one of the target tissues of metabolic disorders. We reported a positive correlation between GMD/type 2 DM and thyroid volume. Further controlled, prospective, randomized studies on this subject are required to gain more information.

  12. Metabolic alterations in renal cell carcinoma.

    Science.gov (United States)

    Massari, Francesco; Ciccarese, Chiara; Santoni, Matteo; Brunelli, Matteo; Piva, Francesco; Modena, Alessandra; Bimbatti, Davide; Fantinel, Emanuela; Santini, Daniele; Cheng, Liang; Cascinu, Stefano; Montironi, Rodolfo; Tortora, Giampaolo

    2015-11-01

    Renal cell carcinoma (RCC) is a metabolic disease, being characterized by the dysregulation of metabolic pathways involved in oxygen sensing (VHL/HIF pathway alterations and the subsequent up-regulation of HIF-responsive genes such as VEGF, PDGF, EGF, and glucose transporters GLUT1 and GLUT4, which justify the RCC reliance on aerobic glycolysis), energy sensing (fumarate hydratase-deficient, succinate dehydrogenase-deficient RCC, mutations of HGF/MET pathway resulting in the metabolic Warburg shift marked by RCC increased dependence on aerobic glycolysis and the pentose phosphate shunt, augmented lipogenesis, and reduced AMPK and Krebs cycle activity) and/or nutrient sensing cascade (deregulation of AMPK-TSC1/2-mTOR and PI3K-Akt-mTOR pathways). We analyzed the key metabolic abnormalities underlying RCC carcinogenesis, highlighting those altered pathways that may represent potential targets for the development of more effective therapeutic strategies. PMID:26169313

  13. Compartmentalized acyl-CoA metabolism in skeletal muscle regulates systemic glucose homeostasis

    DEFF Research Database (Denmark)

    Li, Lei O; Grevengoed, Trisha J; Paul, David S; Ilkayeva, Olga; Koves, Timothy R; Pascual, Florencia; Newgard, Christopher B; Muoio, Deborah M; Coleman, Rosalind A

    2015-01-01

    The impaired capacity of skeletal muscle to switch between the oxidation of fatty acid (FA) and glucose is linked to disordered metabolic homeostasis. To understand how muscle FA oxidation affects systemic glucose, we studied mice with a skeletal muscle-specific deficiency of long-chain acyl......, indicating that acyl-CoAs synthesized by other ACSL isoforms were not available for ?-oxidation. This compartmentalization of acyl-CoAs resulted in both an excessive glucose requirement and severely compromised systemic glucose homeostasis....

  14. Insulin regulation of renal glucose metabolism in conscious dogs.

    OpenAIRE

    Cersosimo, E; Judd, R L; Miles, J M

    1994-01-01

    Previous studies indicating that postabsorptive renal glucose production is negligible used the net balance technique, which cannot partition simultaneous renal glucose production and glucose uptake. 10 d after surgical placement of sampling catheters in the left renal vein and femoral artery and a nonobstructive infusion catheter in the left renal artery of dogs, systemic and renal glucose and glycerol kinetics were measured with peripheral infusions of [3-3H]glucose and [2-14C]glycerol. Aft...

  15. Decreased Insulin Receptors but Normal Glucose Metabolism in Duchenne Muscular Dystrophy

    Science.gov (United States)

    de Pirro, Roberto; Lauro, Renato; Testa, Ivano; Ferretti, Ginofabrizio; de Martinis, Carlo; Dellantonio, Renzo

    1982-04-01

    Compared to matched controls, 17 patients with Duchenne muscular dystrophy showed decreased insulin binding to monocytes due to decreased receptor concentration. These patients showed no signs of altered glucose metabolism and retrospective analysis of the clinical records of a further 56 such patients revealed no modification in carbohydrate metabolism. These data suggest that reduced insulin receptor number does not produce overt modifications of glucose metabolism in Duchenne muscular dystrophy.

  16. Cerebral glucose metabolism in adults with neurofibromatosis type 1.

    Science.gov (United States)

    Apostolova, Ivayla; Derlin, Thorsten; Salamon, Johannes; Amthauer, Holger; Granström, Sofia; Brenner, Winfried; Mautner, Victor-Felix; Buchert, Ralph

    2015-11-01

    Previous studies with positron emission tomography (PET) and the glucose analog F-18-fluorodeoxyglucose (FDG) in patients with neurofibromatosis type 1 (NF1) suggest reduced cerebral glucose metabolism in NF1 specifically in the thalamus. The latter is distinguished by extensive neural circuitry connections which makes thalamic hypoactivity in NF1 an interesting finding. Yet it is not very well confirmed, since previous studies were limited by small sample size and/or poorly matched control groups. Primary aim of the present study therefore was to compare brain FDG PET between a large sample of NF1 patients and a well-matched control group. Secondary aim was to test for an NF1-associated FDG effect in the amygdala, as increased blood flow in the amygdala has recently been detected in a mouse model of NF1. Fifty adult NF1 patients and 50 gender- and age-matched control subjects were included retrospectively. Voxel-wise comparison of brain FDG uptake was performed using the statistical parametric mapping (SPM8). Additional region-of-interest (ROI) analysis was performed using standard ROI templates. Voxel-based testing revealed a single 11.2ml cluster of reduced FDG uptake in the thalamus of NF1 patients. There was no further significant cluster throughout the whole brain including the amygdala, neither hypo nor hyper. ROI-analysis confirmed reduction of thalamic FDG uptake in the NF1 group (pbrain activity specifically in thalamus. There is no indication of abnormal brain activity in the amygdala in humans with NF1. PMID:26335059

  17. Effects of sodium benzoate, a widely used food preservative, on glucose homeostasis and metabolic profiles in humans.

    Science.gov (United States)

    Lennerz, Belinda S; Vafai, Scott B; Delaney, Nigel F; Clish, Clary B; Deik, Amy A; Pierce, Kerry A; Ludwig, David S; Mootha, Vamsi K

    2015-01-01

    Sodium benzoate is a widely used preservative found in many foods and soft drinks. It is metabolized within mitochondria to produce hippurate, which is then cleared by the kidneys. We previously reported that ingestion of sodium benzoate at the generally regarded as safe (GRAS) dose leads to a robust excursion in the plasma hippurate level [1]. Since previous reports demonstrated adverse effects of benzoate and hippurate on glucose homeostasis in cells and in animal models, we hypothesized that benzoate might represent a widespread and underappreciated diabetogenic dietary exposure in humans. Here, we evaluated whether acute exposure to GRAS levels of sodium benzoate alters insulin and glucose homeostasis through a randomized, controlled, cross-over study of 14 overweight subjects. Serial blood samples were collected following an oral glucose challenge, in the presence or absence of sodium benzoate. Outcome measurements included glucose, insulin, glucagon, as well as temporal mass spectrometry-based metabolic profiles. We did not find a statistically significant effect of an acute oral exposure to sodium benzoate on glucose homeostasis. Of the 146 metabolites targeted, four changed significantly in response to benzoate, including the expected rise in benzoate and hippurate. In addition, anthranilic acid, a tryptophan metabolite, exhibited a robust rise, while acetylglycine dropped. Although our study shows that GRAS doses of benzoate do not have an acute, adverse effect on glucose homeostasis, future studies will be necessary to explore the metabolic impact of chronic benzoate exposure. PMID:25497115

  18. Vitamin C inhibits leptin secretion and some glucose/lipid metabolic pathways in primary rat adipocytes

    OpenAIRE

    Garcia-Garcia, D.F. (D. F.); Campion, J. (Javier); Milagro, F.I. (Fermín I.); Boque, N. (N.); M. J. Moreno-Aliaga; Martinez, J. A.

    2010-01-01

    Antioxidant-based treatments are emerging as an interesting approach to possibly counteract obesity fat accumulation complications, since this is accompanied by an increased systemic oxidative stress. The aim of this study was to analyze specific metabolic effects of vitamin C (VC) on epididymal primary rat adipocytes. Cells were isolated and incubated for 72 h in culture medium, in the absence or presence of 1.6 nM insulin, within a range of VC concentrations (5-1000 microM). Glucose- and li...

  19. Effects of coumestrol on lipid and glucose metabolism as a farnesoid X receptor ligand

    International Nuclear Information System (INIS)

    In the course of an effort to identify novel agonists of the farnesoid X receptor (FXR), coumestrol was determined to be one such ligand. Reporter and in vitro coactivator interaction assays revealed that coumestrol bound and activated FXR. Treatment of Hep G2 cells with coumestrol stimulated the expression of FXR target genes, thereby regulating the expression of target genes of the liver X receptor and hepatocyte nuclear factor-4?. Through these actions, coumestrol is expected to exert beneficial effects on lipid and glucose metabolism

  20. Weight Loss After Bariatric Surgery Reverses Insulin-Induced Increases in Brain Glucose Metabolism of the Morbidly Obese

    OpenAIRE

    Tuulari, Jetro J.; Karlsson, Henry K.; Hirvonen, Jussi; Hannukainen, Jarna C.; Bucci, Marco; Helmiö, Mika; Ovaska, Jari; Soinio, Minna; Salminen, Paulina; Savisto, Nina; Nummenmaa, Lauri; Nuutila, Pirjo

    2013-01-01

    Obesity and insulin resistance are associated with altered brain glucose metabolism. Here, we studied brain glucose metabolism in 22 morbidly obese patients before and 6 months after bariatric surgery. Seven healthy subjects served as control subjects. Brain glucose metabolism was measured twice per imaging session: with and without insulin stimulation (hyperinsulinemic-euglycemic clamp) using [18F]fluorodeoxyglucose scanning. We found that during fasting, brain glucose metabolism was not dif...

  1. Nanomolar Caffeic Acid Decreases Glucose Uptake and the Effects of High Glucose in Endothelial Cells

    Science.gov (United States)

    Natarelli, Lucia; Ranaldi, Giulia; Leoni, Guido; Roselli, Marianna; Guantario, Barbara; Comitato, Raffaella; Ambra, Roberto; Cimino, Francesco; Speciale, Antonio; Virgili, Fabio; Canali, Raffaella

    2015-01-01

    Epidemiological studies suggest that moderate and prolonged consumption of coffee is associated with a reduced risk of developing type 2 diabetes but the molecular mechanisms underlying this effect are not known. In this study, we report the effects of physiological concentrations of caffeic acid, easily achievable by normal dietary habits, in endothelial cells cultured in 25 mM of glucose (high glucose, HG). In HG, the presence of 10 nM caffeic acid was associated with a decrease of glucose uptake but not to changes of GLUT-1 membrane localization or mRNA levels. Moreover, caffeic acid countered HG-induced loss of barrier integrity, reducing actin rearrangement and FITC-dextran passage. The decreased flux of glucose associated to caffeic acid affected HG induced apoptosis by down-regulating the expression of initiator (caspase 8 and 9) and effector caspases (caspase 7 and 3) and by increasing the levels of phosphorylated Bcl-2. We also observed that caffeic acid in HG condition was associated to a reduction of p65 subunit nuclear levels with respect to HG alone. NF-?B activation has been shown to lead to apoptosis in HG treated cells and the analysis of the expression of a panel of about 90 genes related to NF-?B signaling pathway revealed that caffeic acid significantly influenced gene expression changes induced by HG. In conclusion, our results suggest that caffeic acid, decreasing the metabolic stress induced by HG, allows the activation of survival mechanisms mediated by a different modulation of NF-?B-related signaling pathways and to the activation of anti-apoptotic proteins. PMID:26544184

  2. Relationship between regional brain glucose metabolism and temperament factor of personality

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Lee, Eun Ju; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Temperament factor of personality has been considered to have correlation with activity in a specific central monoaminergic system. In an attempt to explore neuronal substrate of biogenetic personality traits, we examined the relationship between regional brain glucose metabolism and temperament factor of personality. Twenty right-handed healthy subjects (age, 24{+-}4 yr: 10 females and 10 males) were studied with FDG PET. Their temperaments were assessed using the Temperament and Character Inventory (TCI), which consisted of four temperament factors (harm avoidance (HA), novelty seeking (NS), reward dependence (RD), persistency) and three personality factors. The relationship between regional glucose metabolism and each temperament score was tested using SPM99 (P < 0.005, uncorrected). NS score was negatively correlated with glucose metabolism in the frontal areas, insula, and superior temporal gyrus mainly in the right hemisphere. Positive correlation between NS score and glucose metabolism was observed in the left superior temporal gyrus. HA score showed negative correlation with glucose metabolism in the middle and orbitofrontal gyri as well as in the parahippocampal gyrus. RD score was positively correlated with glucose metabolism in the left middle frontal gyrus and negative correlated in the posterior cingulate gyrus and caudate nucleus. We identified the relationship between regional brain glucose metabolism and temperamental personality trait. Each temperament factor had a relation with functions of specific brain areas. These results help understand biological background of personality and specific feedback circuits associated with each temperament factor.

  3. Relationship between regional brain glucose metabolism and temperament factor of personality

    International Nuclear Information System (INIS)

    Temperament factor of personality has been considered to have correlation with activity in a specific central monoaminergic system. In an attempt to explore neuronal substrate of biogenetic personality traits, we examined the relationship between regional brain glucose metabolism and temperament factor of personality. Twenty right-handed healthy subjects (age, 24±4 yr: 10 females and 10 males) were studied with FDG PET. Their temperaments were assessed using the Temperament and Character Inventory (TCI), which consisted of four temperament factors (harm avoidance (HA), novelty seeking (NS), reward dependence (RD), persistency) and three personality factors. The relationship between regional glucose metabolism and each temperament score was tested using SPM99 (P < 0.005, uncorrected). NS score was negatively correlated with glucose metabolism in the frontal areas, insula, and superior temporal gyrus mainly in the right hemisphere. Positive correlation between NS score and glucose metabolism was observed in the left superior temporal gyrus. HA score showed negative correlation with glucose metabolism in the middle and orbitofrontal gyri as well as in the parahippocampal gyrus. RD score was positively correlated with glucose metabolism in the left middle frontal gyrus and negative correlated in the posterior cingulate gyrus and caudate nucleus. We identified the relationship between regional brain glucose metabolism and temperamental personality trait. Each temperament factor had a relation with functions of specific brain areas. These results help understand biological background of personality and specific feedback circuits associated with each temperament factor

  4. Determination of optimal glucose concentration for microcalorimetric metabolic evaluation of equine spermatozoa

    Scientific Electronic Library Online (English)

    André Belico de, Vasconcelos; Patrícia Castanheira de, Souza; Fabiana Cristina, Varago; Monique de Albuquerque, Lagares; Marcelo Matos, Santoro.

    2009-10-01

    Full Text Available O microcalorímetro de condução pode ser usado para avaliar as taxas metabólicas do espermatozóide eqüino. Dois ejaculados de quatro garanhões foram avaliados quanto à motilidade progressiva pela microscopia, viabilidade espermática (eosina 3%), integridade funcional da membrana (teste hiposmótico) e [...] produção de calor (microcalorimetria). Concentrações ótimas de glicose e de células espermáticas foram determinadas, para mensurar o calor liberado resultante do metabolismo espermático em relação à capacidade de detecção do calor pelo microcalorímetro. Não foi observada diferença da motilidade, viabilidade e integridade funcional de membrana espermática quando adicionada glicose nas três concentrações estudadas. No entanto a avaliação por microcalorimetria ressaltou um maior fluxo de calor a uma concentração de 6 mM de glicose e uma concentração espermática de 10(8) espermatozóides/mL. Portanto, a técnica de microcalorimetria oferece informações adicionais sobre o metabolismo tornando-se uma ferramenta importante no estudo do processo de preservação do sêmen eqüino. Abstract in english The heat conduction microcalorimeter can be used to evaluate the metabolic rates of the sperm cell. Two ejaculates of four stallions were cooled to +5ºC and checked for sperm motility (bright field microscopy), viability (eosin 3%), functional membrane integrity (hyposmotic swelling test), and heat [...] production (microcalorimetry). Glucose and sperm cell concentrations were determined in order to measure the heat outputs resulting from sperm metabolism. Sperm viability, membrane integrity and sperm motility did not differ among the different glucose concentrations tested. Nevertheless, the highest heat output detected by the microcalorimeter was obtained with 6 mM glucose and 10(8) spermatozoa/mL. Since conduction microcalorimetry offered additional information on equine sperm metabolism, it could be used as a method to study equine semen preservation.

  5. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyama, I.; Dauth, G.W.; Gilman, S.; Frey, K.A.; Penney, J.B. Jr.

    1988-12-01

    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated.

  6. Thalamic, brainstem, and cerebellar glucose metabolism in the hemiplegic monkey

    International Nuclear Information System (INIS)

    Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a contralateral hemiplegia that resolves partially with time. During the phase of dense hemiplegia, local cerebral metabolic rate for glucose (1CMRG1c) is decreased significantly in most of the thalamic nuclei ipsilateral to the ablation, and there are slight contralateral decreases. The lCMRGlc is reduced bilaterally in most of the brainstem nuclei and bilaterally in the deep cerebellar nuclei, but only in the contralateral cerebellar cortex. During the phase of partial motor recovery, lCMRGlc is incompletely restored in many of the thalamic nuclei ipsilateral to the ablation and completely restored in the contralateral nuclei. In the brainstem and deep cerebellar nuclei, poor to moderate recovery occurs bilaterally. Moderate recovery occurs in the contralateral cerebellar cortex. The findings demonstrate that a unilateral cerebral cortical lesion strongly affects lCMRGlc in the thalamus ipsilaterally and in the cerebellar cortex contralaterally, but in the brainstem bilaterally. Partial recovery of lCMRGlc accompanies the progressive motor recovery. The structures affected include those with direct, and also those with indirect, connections to the areas ablated

  7. Glucose metabolism and kinetics of phosphorus removal by the fermentative bacterium Microlunatus phosphovorus.

    Science.gov (United States)

    Santos, M M; Lemos, P C; Reis, M A; Santos, H

    1999-09-01

    Phosphorus and carbon metabolism in Microlunatus phosphovorus was investigated by using a batch reactor to study the kinetics of uptake and release of extracellular compounds, in combination with (31)P and (13)C nuclear magnetic resonance (NMR) to characterize intracellular pools and to trace the fate of carbon substrates through the anaerobic and aerobic cycles. The organism was subjected to repetitive anaerobic and aerobic cycles to induce phosphorus release and uptake in a sequential batch reactor; an ultrafiltration membrane module was required since cell suspensions did not sediment. M. phosphovorus fermented glucose to acetate via an Embden-Meyerhof pathway but was unable to grow under anaerobic conditions. A remarkable time shift was observed between the uptake of glucose and excretion of acetate, resulting in an intracellular accumulation of acetate. The acetate produced was oxidized in the subsequent aerobic stage. Very high phosphorus release and uptake rates were measured, 3.34 mmol g of cell(-1) h(-1) and 1.56 mmol g of cell(-1) h(-1), respectively, values only comparable with those determined in activated sludge. In the aerobic period, growth was strictly dependent on the availability of external phosphate. Natural abundance (13)C NMR showed the presence of reserves of glutamate and trehalose in cell suspensions. Unexpectedly, [1-(13)C]glucose was not significantly channeled to the synthesis of internal reserves in the anaerobic phase, and acetate was not during the aerobic stage, although the glutamate pool became labeled via the exchange with intermediates of the tricarboxylic acid cycle at the level of glutamate dehydrogenase. The intracellular pool of glutamate increased under anaerobic conditions and decreased during the aerobic period. The contribution of M. phosphovorus for phosphorus removal in wastewater treatment plants is discussed on the basis of the metabolic features disclosed by this study. PMID:10473396

  8. Glucose-Sensing Receptor T1R3: A New Signaling Receptor Activated by Glucose in Pancreatic ?-Cells.

    Science.gov (United States)

    Kojima, Itaru; Nakagawa, Yuko; Hamano, Kunihisa; Medina, Johan; Li, Longfei; Nagasawa, Masahiro

    2015-01-01

    Subunits of the sweet taste receptors T1R2 and T1R3 are expressed in pancreatic ?-cells. Compared with T1R3, mRNA expression of T1R2 is considerably lower. At the protein level, expression of T1R2 is undetectable in ?-cells. Accordingly, a major component of the sweet taste-sensing receptor in ?-cells may be a homodimer of T1R3 rather than a heterodimer of T1R2/T1R3. Inhibition of this receptor by gurmarin or deletion of the T1R3 gene attenuates glucose-induced insulin secretion from ?-cells. Hence the T1R3 homodimer functions as a glucose-sensing receptor (GSR) in pancreatic ?-cells. When GSR is activated by the T1R3 agonist sucralose, elevation of intracellular ATP concentration ([ATP]i) is observed. Sucralose increases [ATP]i even in the absence of ambient glucose, indicating that sucralose increases [ATP]i not simply by activating glucokinase, a rate-limiting enzyme in the glycolytic pathway. In addition, sucralose augments elevation of [ATP]i induced by methylsuccinate, suggesting that sucralose activates mitochondrial metabolism. Nonmetabolizable 3-O-methylglucose also increases [ATP]i and knockdown of T1R3 attenuates elevation of [ATP]i induced by high concentration of glucose. Collectively, these results indicate that the T1R3 homodimer functions as a GSR; this receptor is involved in glucose-induced insulin secretion by activating glucose metabolism probably in mitochondria. PMID:25947913

  9. INPP4B-mediated tumor resistance is associated with modulation of glucose metabolism via hexokinase 2 regulation in laryngeal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Min, Joong Won [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Kwang Il [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Hyun-Ah; Kim, Eun-Kyu; Noh, Woo Chul [Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Jeon, Hong Bae [Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul (Korea, Republic of); Cho, Dong-Hyung [Graduate School of East-West Medical Science, Kyung Hee University, Gyeonggi-do (Korea, Republic of); Oh, Jeong Su [Department of Genetic Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Park, In-Chul; Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Jae-Sung, E-mail: jaesung@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2013-10-11

    Highlights: •HIF-1α-regulated INPP4B enhances glycolysis. •INPP4B regulates aerobic glycolysis by inducing HK2 via Akt-mTOR pathway. •Blockage of INPP4B and HK2 sensitizes radioresistant laryngeal cancer cells to radiation and anticancer drug. •INPP4B is associated with HK2 in human laryngeal cancer tissues. -- Abstract: Inositol polyphosphate 4-phosphatase type II (INPP4B) was recently identified as a tumor resistance factor in laryngeal cancer cells. Herein, we show that INPP4B-mediated resistance is associated with increased glycolytic phenotype. INPP4B expression was induced by hypoxia and irradiation. Intriguingly, overexpression of INPP4B enhanced aerobic glycolysis. Of the glycolysis-regulatory genes, hexokinase 2 (HK2) was mainly regulated by INPP4B and this regulation was mediated through the Akt-mTOR pathway. Notably, codepletion of INPP4B and HK2 markedly sensitized radioresistant laryngeal cancer cells to irradiation or anticancer drug. Moreover, INPP4B was significantly associated with HK2 in human laryngeal cancer tissues. Therefore, these results suggest that INPP4B modulates aerobic glycolysis via HK2 regulation in radioresistant laryngeal cancer cells.

  10. AICAR administration affects glucose metabolism by upregulating the novel glucose transporter, GLUT8, in equine skeletal muscle.

    Science.gov (United States)

    de Laat, M A; Robinson, M A; Gruntmeir, K J; Liu, Y; Soma, L R; Lacombe, V A

    2015-09-01

    Equine metabolic syndrome is characterized by obesity and insulin resistance (IR). Currently, there is no effective pharmacological treatment for this insidious disease. Glucose uptake is mediated by a family of glucose transporters (GLUT), and is regulated by insulin-dependent and -independent pathways, including 5-AMP-activated protein kinase (AMPK). Importantly, the activation of AMPK, by 5-aminoimidazole-4-carboxamide-1-D-ribofuranoside (AICAR) stimulates glucose uptake in both healthy and diabetic humans. However, whether AICAR promotes glucose uptake in horses has not been established. It is hypothesized that AICAR administration would enhance glucose transport in equine skeletal muscle through AMPK activation. In this study, the effect of an intravenous AICAR infusion on blood glucose and insulin concentrations, as well as on GLUT expression and AMPK activation in equine skeletal muscle (quantified by Western blotting) was examined. Upon administration, plasma AICAR rapidly reached peak concentration. Treatment with AICAR resulted in a decrease (P?equine muscle glucose transport. In addition, the data suggest that AMPK activation enhances pancreatic insulin secretion. Collectively, the findings suggest that AICAR acutely promotes muscle glucose uptake in healthy horses and thus its therapeutic potential for managing IR requires investigation. PMID:26116041

  11. Profiling sulfation/epimerization pattern of full-length heparan sulfate by NMR following cell culture 13C-glucose metabolic labeling.

    Science.gov (United States)

    Pegeot, Mathieu; Sadir, Rabia; Eriksson, Inger; Kjellen, Lena; Simorre, Jean-Pierre; Gans, Pierre; Lortat-Jacob, Hugues

    2015-02-01

    Through its ability to interact with proteins, heparan sulfate (HS) fulfills a large variety of functions. Protein binding depends on the level of HS sulfation and epimerization which are cell specific and dynamically regulated. Characterization of this molecule, however, has been restricted to oligosaccharide fragments available in large amount for structural investigation or to sulfate distribution through compositional analysis. Here we developed a (1)H-(13)C 2D NMR-based approach, directly performed on HS isolated from (13)C-labeled cells. By integrating the peak volumes measured at different chemical shifts, this non-destructive analysis allows us to determine both the sulfation and the iduronic/glucuronic profiles of the polysaccharide. Applied to wild-type and N-deacetylase/N-sulfotransferase-deficient fibroblasts as well as to epithelial cells differentiation, it also gives insights into the functional relationships existing between HS biosynthetic enzymes. This approach should be of significant interest to better understand HS changes that occur through physiologic regulations or during pathological development. PMID:25335974

  12. The concentration of phosphatidylethanolamine in mitochondria can modulate ATP production and glucose metabolism in mice.

    Science.gov (United States)

    van der Veen, Jelske N; Lingrell, Susanne; da Silva, Robin P; Jacobs, René L; Vance, Dennis E

    2014-08-01

    Phosphatidylethanolamine (PE) N-methyltransferase (PEMT) catalyzes the synthesis of phosphatidylcholine (PC) in the liver. Mice lacking PEMT are protected against diet-induced obesity and insulin resistance. We investigated the role of PEMT in hepatic carbohydrate metabolism in chow-fed mice. A pyruvate tolerance test revealed that PEMT deficiency greatly attenuated gluconeogenesis. The reduction in glucose production was specific for pyruvate; glucose production from glycerol was unaffected. Mitochondrial PC levels were lower and PE levels were higher in livers from Pemt(-/-) compared with Pemt(+/+) mice, resulting in a 33% reduction of the PC-to-PE ratio. Mitochondria from Pemt(-/-) mice were also smaller and more elongated. Activities of cytochrome c oxidase and succinate reductase were increased in mitochondria of Pemt(-/-) mice. Accordingly, ATP levels in hepatocytes from Pemt(-/-) mice were double that in Pemt(+/+) hepatocytes. We observed a strong correlation between mitochondrial PC-to-PE ratio and cellular ATP levels in hepatoma cells that expressed various amounts of PEMT. Moreover, mitochondrial respiration was increased in cells lacking PEMT. In the absence of PEMT, changes in mitochondrial phospholipids caused a shift of pyruvate toward decarboxylation and energy production away from the carboxylation pathway that leads to glucose production. PMID:24677714

  13. Cerebrospinal fluid ionic regulation, cerebral blood flow, and glucose use during chronic metabolic alkalosis

    Energy Technology Data Exchange (ETDEWEB)

    Schroeck, H.K.; Kuschinsky, W. (Univ. of Bonn (Germany, F.R.))

    1989-10-01

    Chronic metabolic alkalosis was induced in rats by combining a low K+ diet with a 0.2 M NaHCO3 solution as drinking fluid for either 15 or 27 days. Local cerebral blood flow and local cerebral glucose utilization were measured in 31 different structures of the brain in conscious animals by means of the iodo-(14C)antipyrine and 2-(14C)deoxy-D-glucose method. The treatment induced moderate (15 days, base excess (BE) 16 mM) to severe (27 days, BE 25 mM) hypochloremic metabolic alkalosis and K+ depletion. During moderate metabolic alkalosis no change in cerebral glucose utilization and blood flow was detectable in most brain structures when compared with controls. Cerebrospinal fluid (CSF) K+ and H+ concentrations were significantly decreased. During severe hypochloremic alkalosis, cerebral blood flow was decreased by 19% and cerebral glucose utilization by 24% when compared with the control values. The decrease in cerebral blood flow during severe metabolic alkalosis is attributed mainly to the decreased cerebral metabolism and to a lesser extent to a further decrease of the CSF H+ concentration. CSF K+ concentration was not further decreased. The results show an unaltered cerebral blood flow and glucose utilization together with a decrease in CSF H+ and K+ concentrations at moderate metabolic alkalosis and a decrease in cerebral blood flow and glucose utilization together with a further decreased CSF H+ concentration at severe metabolic alkalosis.

  14. Glucose homeostasis and the enteroinsular axis in the horse: a possible role in equine metabolic syndrome.

    Science.gov (United States)

    de Graaf-Roelfsema, Ellen

    2014-01-01

    One of the principal components of equine metabolic syndrome (EMS) is hyperinsulinaemia combined with insulin resistance. It has long been known that hyperinsulinaemia occurs after the development of insulin resistance. But it is also known that hyperinsulinaemia itself can induce insulin resistance and obesity and might play a key role in the development of metabolic syndrome. This review focuses on the physiology of glucose and insulin metabolism and the pathophysiological mechanisms in glucose homeostasis in the horse (compared with what is already known in humans) in order to gain insight into the pathophysiological principles underlying EMS. The review summarizes new insights on the oral uptake of glucose by the gut and the enteroinsular axis, the role of diet in incretin hormone and postprandial insulin responses, the handling of glucose by the liver, muscle and fat tissue, and the production and secretion of insulin by the pancreas under healthy and disrupted glucose homeostatic conditions in horses. PMID:24287206

  15. Significance of insulin for glucose metabolism in skeletal muscle during contractions

    DEFF Research Database (Denmark)

    Hespel, P; Vergauwen, Lieven; Vandenberghe, K; Richter, Erik

    Glucose uptake rate in active skeletal muscles is markedly increased during exercise. This increase reflects a multifactorial process involving both local and systemic mechanisms that cooperate to stimulate glucose extraction and glucose delivery to the muscle cells. Increased glucose extraction is...... effected primarily via mechanisms exerted within the muscle cell related to the contractile activity per se. Yet contractions become a more potent stimulus of muscle glucose uptake as the plasma insulin level is increased. In addition, enhanced glucose delivery to muscle, which during exercise is...... essentially effected via increased blood flow, significantly contributes to stimulate glucose uptake. Again, however, increased glucose delivery appears to be a more potent stimulus of muscle glucose uptake as the circulating insulin level is increased. Furthermore, contractions and elevated flow prove to be...

  16. Glucose and fatty acid metabolism in normal and diabetic rabbit cerebral microvessels

    International Nuclear Information System (INIS)

    Rabbit cerebral microvessels were used to study fatty acid metabolism and its utilization relative to glucose. Microvessels were incubated with either [6-14C]glucose or [1-14C]oleic acid and the incorporation of radioactivity into 14CO2, lactate, triglyceride, cholesterol ester, and phospholipid was determined. The inclusion of 5.5 mM glucose in the incubation mixture reduced oleate oxidation by 50% and increased esterification into both phospholipid and triglyceride. Glucose oxidation to CO2 was reduced by oleate addition, whereas lactate production was unaffected. 2'-Tetradecylglycidic acid, an inhibitor of carnitine acyltransferase I, blocked oleic acid oxidation in the presence and absence of glucose. It did not effect fatty acid esterification when glucose was absent and eliminated the inhibition of oleate on glucose oxidation. Glucose oxidation to 14CO2 was markedly suppressed in microvessels from alloxan-treated diabetic rabbits but lactate formation was unchanged. Fatty acid oxidation to CO2 and incorporation into triglyceride, phospholipid, and cholesterol ester remained unchanged in the diabetic state. The experiments show that both fatty acid and glucose can be used as a fuel source by the cerebral microvessels, and the interactions found between fatty acid and glucose metabolism are similar to the fatty acid-glucose cycle, described previously

  17. Demographic and metabolic characteristics of individuals with progressive glucose tolerance

    Scientific Electronic Library Online (English)

    A.L., Mendes; M.L., Santos; C.R., Padovani; W.P., Pimenta.

    2009-03-01

    Full Text Available We evaluated changes in glucose tolerance of 17 progressors and 62 non-progressors for 9 years to improve our understanding of the pathogenesis of type 2 diabetes mellitus. Changes in anthropometric measurements and responses to an oral glucose tolerance test (OGTT) were analyzed. We identified 14 p [...] airs of individuals, one from each group, who were initially normal glucose tolerant and were matched for gender, age, weight, and girth. We compared initial plasma glucose and insulin curves (from OGTT), insulin secretion (first and second phases) and insulin sensitivity indices (from hyperglycemic clamp assay) for both groups. In the normal glucose tolerant phase, progressors presented: 1) a higher OGTT blood glucose response with hyperglycemia in the second hour and a similar insulin response vs non-progressors; 2) a reduced first-phase insulin secretion (2.0 ± 0.3 vs 2.3 ± 0.3 pmol/L; P

  18. Splanchnic bed metabolism of glucose in preterm neonates

    OpenAIRE

    Schoor, S.R. van der; Stoll, B.; Wattimena, D.L.; Büller, H A; Tibboel, D; Burrin, D.G.; Goudoever, J.B. van

    2004-01-01

    BACKGROUND: Glucose is a major oxidative substrate for intestinal energy generation in neonatal animals; however, few data in preterm infants are available. Early administration of enteral nutrition, including glucose, may be an effective strategy to support intestinal adaptation to extrauterine life in preterm neonates. OBJECTIVE: The purpose of the present study was to quantify the first-pass uptake and oxidation of glucose by the splanc...

  19. Changes in serum metabolic hormone levels after glucose infusion during lactation cycles in Holstein cows

    Directory of Open Access Journals (Sweden)

    Aliasghar Chalmeh

    2015-02-01

    Full Text Available Negative energy balance can impair the metabolism of high producing dairy cows and supplying the glucose, as an energy source; can prevent the metabolic disorders in these animals. Hence, we hypothesized that bolus intravenous glucose administration may change the concentrations of metabolic hormones in order to prevent and control of metabolic dysfunctions of dairy cows. Twenty five multiparous Holstein dairy cows were divided to 5 equal groups containing early, mid and late lactations, far-off and close-up dry periods. All cows were received dextrose 50% intravenously at 500 mg/kg, 10 mL/kg/h. Blood samples were collected from all animals prior to and 1, 2, 3 and 4 after dextrose 50% infusion and sera were separated to determine glucose, triiodothyronine (T3, thyroxine (T4, serum free T3 (fT3, free T4 (fT4, cortisol and insulin like growth factor-1 (IGF-1. The decreasing pattern of T3 concentration was detected in all studied animals following intravenous glucose infusion (P<0.05. The significant increasing pattern of T4 levels was seen in early and mid lactation cows after glucose administration (P<0.05. The significant decreasing pattern of IGF-1 was detected in mid and late lactations and far-off dry groups (P<0.05. There were no significant alterations in fT3, fT4 and cortisol concentrations following glucose infusion in all experimental groups. In conclusion, bolus intravenous glucose infusion could influence the metabolic hormones in high producing Holstein dairy cows. Alterations of metabolic hormones following bolus intravenous glucose administration indicated that glucose is an important direct controller of metabolic interactions and responses in dairy cows during different physiological states.

  20. Trophic relationships between Saccharomyces cerevisiae and Lactobacillus plantarum and their metabolism of glucose and citrate

    OpenAIRE

    María C. Veiga; Kennes, Christian; Dubourguier, H.C.; Touzel, J.P.; Albagnac, G.; Naveau, H; Nyns, E.J.

    1991-01-01

    Glucose and citrate are two major carbon sources in fruits or fruit juices such as orange juice. Their metabolism and the microorganisms involved in their degradation were studied by inoculating with an aliquot of fermented orange juice a synthetic model medium containing glucose and citrate. At pH 3.6, their degradation led, first, to the formation of ethanol due to the activity of yeasts fermenting glucose and, eventually, to the formation of acetate resulting from the activity of lactobaci...

  1. Metabolic and Endocrine Profiles in Response to Systemic Infusion of Fructose and Glucose in Rhesus Macaques

    OpenAIRE

    Sean H. Adams; Stanhope, Kimber L; Grant, Ryan W.; Cummings, Bethany P.; Havel, Peter J

    2008-01-01

    Diurnal patterns of circulating leptin concentrations are attenuated after consumption of fructose-sweetened beverages compared with glucose-sweetened beverages, likely a result of limited postprandial glucose and insulin excursions after fructose. Differences in postprandial exposure of adipose tissue to peripheral circulating fructose and glucose or in adipocyte metabolism of the two sugars may also be involved. Thus, we compared plasma leptin concentrations after 6-h iv infusions of saline...

  2. Halofuginone inhibits colorectal cancer growth through suppression of Akt/mTORC1 signaling and glucose metabolism

    Science.gov (United States)

    Chen, Guo-Qing; Tang, Cheng-Fang; Shi, Xiao-Ke; Lin, Cheng-Yuan; Fatima, Sarwat; Pan, Xiao-Hua; Yang, Da-Jian; Zhang, Ge; Lu, Ai-Ping; Lin, Shu-Hai; Bian, Zhao-Xiang

    2015-01-01

    The Akt/mTORC1 pathway plays a central role in the activation of Warburg effect in cancer. Here, we present for the first time that halofuginone (HF) treatment inhibits colorectal cancer (CRC) growth both in vitro and in vivo through regulation of Akt/mTORC1 signaling pathway. Halofuginone treatment of human CRC cells inhibited cell proliferation, induced the generation of reactive oxygen species and apoptosis. As expected, reduced level of NADPH was also observed, at least in part due to inactivation of glucose-6-phosphate dehydrogenase in pentose phosphate pathway upon HF treatment. Given these findings, we further investigated metabolic regulation of HF through Akt/mTORC1-mediated aerobic glycolysis and found that HF downregulated Akt/mTORC1 signaling pathway. Moreover, metabolomics delineated the slower rates in both glycolytic flux and glucose-derived tricarboxylic acid cycle flux. Meanwhile, both glucose transporter GLUT1 and hexokinase-2 in glycolysis were suppressed in CRC cells upon HF treatment, to support our notion that HF regulates Akt/mTORC1 signaling pathway to dampen glucose uptake and glycolysis in CRC cells. Furthermore, HF retarded tumor growth in nude mice inoculated with HCT116 cells, showing the anticancer activity of HF through metabolic regulation of Akt/mTORC1 in CRC. PMID:26160839

  3. Effects of dehydroepiandrosterone (DHEA) on glucose metabolism in isolated hepatocytes from Zucker rats

    Energy Technology Data Exchange (ETDEWEB)

    Finan, A.; Cleary, M.P.

    1986-03-05

    DHEA has been shown to competitively inhibit the pentose phosphate shunt (PPS) enzyme glucose-6-phosphate dehydrogenase (G6PD) when added in vitro to supernatants or homogenates prepared from mammalian tissues. However, no consistent effect on G6PD activity has been determined in tissue removed from DHEA-treated rats. To explore the effects of DHEA on PPS, glucose utilization was measured in hepatocytes from lean and obese male Zucker rats (8 wks of age) following 1 wk of DHEA treatment (0.6% in diet). Incubation of isolated hepatocytes from treated lean Zucker rats with either (1-/sup 14/C) glucose or (6-/sup 14/C) glucose resulted in significant decreases in CO/sub 2/ production and total glucose utilization. DHEA-lean rats also had lowered fat pad weights. In obese rats, there was no effect of 1 wk of treatment on either glucose metabolism or fat pad weight. The calculated percent contribution of the PPS to glucose metabolism in hepatocytes was not changed for either DHEA-lean or obese rats when compared to control rats. In conclusion, 1 wk of DHEA treatment lowered overall glucose metabolism in hepatocytes of lean Zucker rats, but did not selectively affect the PPS. The lack of an effect of short-term treatment in obese rats may be due to differences in their metabolism or storage/release of DHEA in tissues in comparison to lean rats.

  4. Effects of dehydroepiandrosterone (DHEA) on glucose metabolism in isolated hepatocytes from Zucker rats

    International Nuclear Information System (INIS)

    DHEA has been shown to competitively inhibit the pentose phosphate shunt (PPS) enzyme glucose-6-phosphate dehydrogenase (G6PD) when added in vitro to supernatants or homogenates prepared from mammalian tissues. However, no consistent effect on G6PD activity has been determined in tissue removed from DHEA-treated rats. To explore the effects of DHEA on PPS, glucose utilization was measured in hepatocytes from lean and obese male Zucker rats (8 wks of age) following 1 wk of DHEA treatment (0.6% in diet). Incubation of isolated hepatocytes from treated lean Zucker rats with either [1-14C] glucose or [6-14C] glucose resulted in significant decreases in CO2 production and total glucose utilization. DHEA-lean rats also had lowered fat pad weights. In obese rats, there was no effect of 1 wk of treatment on either glucose metabolism or fat pad weight. The calculated percent contribution of the PPS to glucose metabolism in hepatocytes was not changed for either DHEA-lean or obese rats when compared to control rats. In conclusion, 1 wk of DHEA treatment lowered overall glucose metabolism in hepatocytes of lean Zucker rats, but did not selectively affect the PPS. The lack of an effect of short-term treatment in obese rats may be due to differences in their metabolism or storage/release of DHEA in tissues in comparison to lean rats

  5. A Novel 3D Liver Organoid System for Elucidation of Hepatic Glucose Metabolism

    OpenAIRE

    Lu, Yanhua; Zhang, Guoliang; Chong SHEN; Uygun, Korkut; Yarmush, Martin L; Meng, Qin

    2011-01-01

    Hepatic glucose metabolism is a key player in diseases such as obesity and diabetes as well as in antihyperglycemic drugs screening. Hepatocytes culture in two-dimensional configurations is limited in vitro model for hepatocytes to function properly, while truly practical platforms to perform three-dimensional (3D) culture are unavailable. In this work, we present a practical organoid culture method of hepatocytes for elucidation of glucose metabolism under nominal and stress conditions. Empl...

  6. Comparative Metabolic Flux Analysis of Lysine-Producing Corynebacterium glutamicum Cultured on Glucose or Fructose

    OpenAIRE

    Kiefer, Patrick; Heinzle, Elmar; Zelder, Oskar; Wittmann, Christoph

    2004-01-01

    A comprehensive approach to 13C tracer studies, labeling measurements by gas chromatography-mass spectrometry, metabolite balancing, and isotopomer modeling, was applied for comparative metabolic network analysis of lysine-producing Corynebacterium glutamicum on glucose or fructose. Significantly reduced yields of lysine and biomass and enhanced formation of dihydroxyacetone, glycerol, and lactate in comparison to those for glucose resulted on fructose. Metabolic flux analysis revealed drasti...

  7. Covarying alterations in A? deposition, glucose metabolism, and gray matter volume in cognitively normal elderly

    OpenAIRE

    Oh, Hwamee; Habeck, Christian; Madison, Cindee; Jagust, William

    2012-01-01

    ?-amyloid (A?), a feature of Alzheimer’s disease (AD) pathology, may precede reduced glucose metabolism and gray matter volume and cognitive decline in AD patients. Accumulation of A?, however, has been also reported in cognitively intact older people, although it remains unresolved whether and how A? deposition, glucose metabolism, and gray matter volume relate to one another in cognitively normal elderly. Fifty-two cognitively normal older adults underwent Pittsburgh Compound B positron emi...

  8. Convergence role of transcriptional coactivator p300 and apparent modification on HMCs metabolic memory induced by high glucose

    Directory of Open Access Journals (Sweden)

    Hong SU

    2013-03-01

    Full Text Available Objective ?To investigate the protein expression of transcriptional coactivator p300, acetylated histone H3 (Ac-H3 and Ac-H4 in human renal mesangial cell (HMCs as imitative "metabolic memory" in vitro, and explore the potential role of convergence point of p300. Methods ?The HMCs were divided into the following groups: ? High glucose metabolic memory model: normal glucose group (NG, 5.5mmol/L D-glucose×2d, high glucose group (HG, 25mmol/L D-glucose×2d, memory groups (M1, M2, M3, 25mmol/L D-glucose×2days + 5.5mmol/L D-glucose×3d, 6d or 9d, persisting normal glucose group (NG, 5.5mmol/L D-glucose×9d. ? Advanced glycation end products memory model: normal glucose group (NG, 5.5mmol/ L D-glucose×2d, NG+AGEs group (AGEs, 5.5mmol/L D-glucose+250µg/ml AGEs×2d; AGEs memory group (AGEs-M, 5.5mmol/L D-glucose + 250µg/ml AGEs×2d + 5.5mmol/L D-glucose×3d; BSA control group (NG+BSA, 5.5mmol/L D-glucose + 250µg/ml BSA×2d. ? H2O2 was used to simulate oxidative stress memory model: normal glucose group (NG, 5.5mmol/L D-glucose×2d, NG+H2O2 group (H2O2, 5.5mmol/L D-glucose +100µmol/L H2O2×30min; H2O2 memory group [(5.5mmol/ L D-glucose + 100µmol/L H2O2×30min + 5.5mmol/L D-glucose×3d]; normal glucose control group (NG3, 5.5mmol/L D-glucose×3d. ? Transfection with PKC?2 memory model: normal glucose group (NG, 5.5mmol/L D-glucose×2d; high glucose group (HG, 25mmol/L D-glucose×2d; memory group (M, 25mmol/L D-glucose×2d + 5.5mmol/L D-glucose×3d; Ad5-null memory group (HN, 25mmol/L D-glucose + Ad5-null×2d + 5.5mmol/L D-glucose×3d; PKC?2 memory group (PO, 25mmol/L D-glucose + Ad5-PKC?2×2d + 5.5mmol/L D-glucose×3d; inhibitor of PKC?2 memory group (PI, 25mmol/L D-glucose×2d + 10µmol/L CGP53353 + 5.5mmol/L D-glucose×3d. The expression of intracellular reactive oxygen species (ROS was detected by fluorescence microscope and fluorescence microplate reader. The expression levels of p300, Ac-H3, Ac-H4 and PKC?2 proteins were determined by Western blotting. Results ?The expression levels of p300, Ac-H3 and Ac-H4 protein in HG group increased, being 2.15, 1.93 and 1.87 fold of those in group NG (P<0.05, accompanying with the up-regulation of PKC?2 protein and ROS levels in HG group. The p300, Ac-H3, Ac-H4, PKC?2 protein expression and ROS levels in M1, M2, M3 group were higher than those in NG group, and was 1.75, 1.49, 1.47, 1.98 and 1.48 fold higher in M3 group than in NG group. The protein expressions of p300, Ac-H3 and Ac-H4 in AGEs group were increased by 1.73, 1.08 and 1.05 folds, and in AGE-M group increased by 1.47, 0.95 and 1.03 folds of that in control group (P<0.05. The protein expression levels of p300, Ac-H3 and Ac-H4 in H2O2 group increased by 1.03, 0.85 and 0.79 folds of those in control group (P<0.05. However, no significantly difference in these indices was found between H2O2-M and control groups. The protein expression levels of p300, Ac-H3 and Ac-H4 in PO group increased more obviously by 1.25, 1.06 and 1.10 folds of those in M group (P<0.05. However, the elective PKC?2 inhibitor CGP53353 could lower those indices significantly. Conclusion ?Persistent activation of transcriptional coactivator p300 and apparent modification may be normalized in HMCs. p300 may be the convergent point of glucose-induced metabolic "memory" stimulations.

  9. Glucose metabolism: focus on gut microbiota, the endocannabinoid system and beyond.

    Science.gov (United States)

    Cani, P D; Geurts, L; Matamoros, S; Plovier, H; Duparc, T

    2014-09-01

    The gut microbiota is now considered as a key factor in the regulation of numerous metabolic pathways. Growing evidence suggests that cross-talk between gut bacteria and host is achieved through specific metabolites (such as short-chain fatty acids) and molecular patterns of microbial membranes (lipopolysaccharides) that activate host cell receptors (such as toll-like receptors and G-protein-coupled receptors). The endocannabinoid (eCB) system is an important target in the context of obesity, type 2 diabetes (T2D) and inflammation. It has been demonstrated that eCB system activity is involved in the control of glucose and energy metabolism, and can be tuned up or down by specific gut microbes (for example, Akkermansia muciniphila). Numerous studies have also shown that the composition of the gut microbiota differs between obese and/or T2D individuals and those who are lean and non-diabetic. Although some shared taxa are often cited, there is still no clear consensus on the precise microbial composition that triggers metabolic disorders, and causality between specific microbes and the development of such diseases is yet to be proven in humans. Nevertheless, gastric bypass is most likely the most efficient procedure for reducing body weight and treating T2D. Interestingly, several reports have shown that the gut microbiota is profoundly affected by the procedure. It has been suggested that the consistent postoperative increase in certain bacterial groups such as Proteobacteria, Bacteroidetes and Verrucomicrobia (A. muciniphila) may explain its beneficial impact in gnotobiotic mice. Taken together, these data suggest that specific gut microbes modulate important host biological systems that contribute to the control of energy homoeostasis, glucose metabolism and inflammation in obesity and T2D. PMID:24631413

  10. Glucose Metabolism Gene Expression Patterns and Tumor Uptake of 18F-Fluorodeoxyglucose After Radiation Treatment

    International Nuclear Information System (INIS)

    Purpose: To investigate whether radiation treatment influences the expression of glucose metabolism genes and compromises the potential use of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) as a tool to monitor the early response of head and neck cancer xenografts to radiation therapy (RT). Methods and Materials: Low passage head and neck squamous cancer cells (UT14) were injected to the flanks of female nu/nu mice to generate xenografts. After tumors reached a size of 500 mm3 they were treated with either sham RT or 15 Gy in 1 fraction. At different time points, days 3, 9, and 16 for controls and days 4, 7, 12, 21, 30, and 40 after irradiation, 2 to 3 mice were assessed with dynamic FDG-PET acquisition over 2 hours. Immediately after the FDG-PET the tumors were harvested for global gene expression analysis and immunohistochemical evaluation of GLUT1 and HK2. Different analytic parameters were used to process the dynamic PET data. Results: Radiation had no effect on key genes involved in FDG uptake and metabolism but did alter other genes in the HIF1α and glucose transport–related pathways. In contrast to the lack of effect on gene expression, changes in the protein expression patterns of the key genes GLUT1/SLC2A1 and HK2 were observed after radiation treatment. The changes in GLUT1 protein expression showed some correlation with dynamic FDG-PET parameters, such as the kinetic index. Conclusion: 18F-fluorodeoxyglucose positron emission tomography changes after RT would seem to represent an altered metabolic state and not a direct effect on the key genes regulating FDG uptake and metabolism

  11. The impact of sleep disorders on glucose metabolism: endocrine and molecular mechanisms.

    Science.gov (United States)

    Briançon-Marjollet, Anne; Weiszenstein, Martin; Henri, Marion; Thomas, Amandine; Godin-Ribuot, Diane; Polak, Jan

    2015-01-01

    Modern lifestyle has profoundly modified human sleep habits. Sleep duration has shortened over recent decades from 8 to 6.5 hours resulting in chronic sleep deprivation. Additionally, irregular sleep, shift work and travelling across time zones lead to disruption of circadian rhythms and asynchrony between the master hypothalamic clock and pacemakers in peripheral tissues. Furthermore, obstructive sleep apnea syndrome (OSA), which affects 4 - 15% of the population, is not only characterized by impaired sleep architecture but also by repetitive hemoglobin desaturations during sleep. Epidemiological studies have identified impaired sleep as an independent risk factor for all cause of-, as well as for cardiovascular, mortality/morbidity. More recently, sleep abnormalities were causally linked to impairments in glucose homeostasis, metabolic syndrome and Type 2 Diabetes Mellitus (T2DM). This review summarized current knowledge on the metabolic alterations associated with the most prevalent sleep disturbances, i.e. short sleep duration, shift work and OSA. We have focused on various endocrine and molecular mechanisms underlying the associations between inadequate sleep quality, quantity and timing with impaired glucose tolerance, insulin resistance and pancreatic ?-cell dysfunction. Of these mechanisms, the role of the hypothalamic-pituitary-adrenal axis, circadian pacemakers in peripheral tissues, adipose tissue metabolism, sympathetic nervous system activation, oxidative stress and whole-body inflammation are discussed. Additionally, the impact of intermittent hypoxia and sleep fragmentation (key components of OSA) on intracellular signaling and metabolism in muscle, liver, fat and pancreas are also examined. In summary, this review provides endocrine and molecular explanations for the associations between common sleep disturbances and the pathogenesis of T2DM. PMID:25834642

  12. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Swedo, S.E.; Schapiro, M.B.; Grady, C.L.; Cheslow, D.L.; Leonard, H.L.; Kumar, A.; Friedland, R.; Rapoport, S.I.; Rapoport, J.L.

    1989-06-01

    The cerebral metabolic rate for glucose was studied in 18 adults with childhood-onset obsessive-compulsive disorder (OCD) and in age- and sex-matched controls using positron emission tomography and fludeoxyglucose F 18. Both groups were scanned during rest, with reduced auditory and visual stimulation. The group with OCD showed an increased glucose metabolism in the left orbital frontal, right sensorimotor, and bilateral prefrontal and anterior cingulate regions as compared with controls. Ratios of regional activity to mean cortical gray matter metabolism were increased for the right prefrontal and left anterior cingulate regions in the group with OCD as a whole. Correlations between glucose metabolism and clinical assessment measures showed a significant relationship between metabolic activity and both state and trait measurements of OCD and anxiety as well as the response to clomipramine hydrochloride therapy. These results are consistent with the suggestion that OCD may result from a functional disturbance in the frontal-limbic-basal ganglia system.

  13. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    The cerebral metabolic rate for glucose was studied in 18 adults with childhood-onset obsessive-compulsive disorder (OCD) and in age- and sex-matched controls using positron emission tomography and fludeoxyglucose F 18. Both groups were scanned during rest, with reduced auditory and visual stimulation. The group with OCD showed an increased glucose metabolism in the left orbital frontal, right sensorimotor, and bilateral prefrontal and anterior cingulate regions as compared with controls. Ratios of regional activity to mean cortical gray matter metabolism were increased for the right prefrontal and left anterior cingulate regions in the group with OCD as a whole. Correlations between glucose metabolism and clinical assessment measures showed a significant relationship between metabolic activity and both state and trait measurements of OCD and anxiety as well as the response to clomipramine hydrochloride therapy. These results are consistent with the suggestion that OCD may result from a functional disturbance in the frontal-limbic-basal ganglia system

  14. Roles of microRNA on cancer cell metabolism

    Directory of Open Access Journals (Sweden)

    Chen Bing

    2012-11-01

    Full Text Available Abstract Advanced studies of microRNAs (miRNAs have revealed their manifold biological functions, including control of cell proliferation, cell cycle and cell death. However, it seems that their roles as key regulators of metabolism have drawn more and more attention in the recent years. Cancer cells display increased metabolic autonomy in comparison to non-transformed cells, taking up nutrients and metabolizing them in pathways that support growth and proliferation. MiRNAs regulate cell metabolic processes through complicated mechanisms, including directly targeting key enzymes or transporters of metabolic processes and regulating transcription factors, oncogenes / tumor suppressors as well as multiple oncogenic signaling pathways. MiRNAs like miR-375, miR-143, miR-14 and miR-29b participate in controlling cancer cell metabolism by regulating the expression of genes whose protein products either directly regulate metabolic machinery or indirectly modulate the expression of metabolic enzymes, serving as master regulators, which will hopefully lead to a new therapeutic strategy for malignant cancer. This review focuses on miRNA regulations of cancer cell metabolism,including glucose uptake, glycolysis, tricarboxylic acid cycle and insulin production, lipid metabolism and amino acid biogenesis, as well as several oncogenic signaling pathways. Furthermore, the challenges of miRNA-based strategies for cancer diagnosis, prognosis and therapeutics have been discussed.

  15. Local cerebral blood flow and glucose metabolism during seizure in spontaneously epileptic El mice

    International Nuclear Information System (INIS)

    Local cerebral blood flow and glucose metabolism were examined in spontaneously epileptic El mice using autoradiography with 125I-IMP and 14C-DG in the interictal phase and during seizure. El (+) mice that developed generalized tonic-clonic convulsions and El (-) mice that received no stimulation and had no history of epileptic seizures were examined. The seizure non-susceptible, maternal strain ddY mice were used as control. Uptake ratios for IMP and DG in mouse brain were calculated using the autoradiographic density. In the interictal phase, the pattern of local cerebral blood flow of El (+) mice was similar to that of ddY and El (-) mice, and glucose metabolism in the hippocampus was higher in El (+) mice than in El (-) and ddY mice, but flow and metabolism were nearly matched. During seizure, no significant changed blood flow and increased glucose metabolism in the hippocampus, the epileptic focus, and no markedly changed blood flow and depressed glucose metabolism in other brain regions were observed and considered to be flow-metabolism uncoupling. These observations have never been reported in clinical or experimental studies of epilepsy. Seizures did not cause large regional differences in cerebral blood flow. Therefore, only glucose metabolism is useful for detection of the focus of secondary generalized seizures in El mice, and appeared possibly to be related to the pathophysiology of secondary generalized epilepsy in El mice. (author)

  16. Comparison of clinical types of Wilson's disease and glucose metabolism in extrapyramidal motor brain regions.

    Science.gov (United States)

    Hermann, W; Barthel, H; Hesse, S; Grahmann, F; Kühn, H-J; Wagner, A; Villmann, T

    2002-07-01

    In Wilson's disease a disturbed glucose metabolism especially in striatal and cerebellar areas has been reported. This is correlated with the severity of extrapyramidal motor symptoms (EPS). These findings are only based on a small number of patients. Up to now it is unknown whether EPS are caused by various patterns of disturbed basal ganglia glucose metabolism. We investigated 37 patients and 9 normal volunteers to characterize the disturbed glucose metabolism in Wilson's disease more precisely. The glucose metabolism was determined in 5 cerebellar and cerebral areas (putamen, caput nuclei caudati, cerebellum, midbrain and thalamic area) by using (18)F-Fluorodesoxyglucose-Positron-Emission-Tomography ( [(18)F]FDG-PET). The database was evaluated by a cluster analysis. Additionally, the severity extrapyramidal motor symptoms were judged by a clinical score system. Three characteristic patterns of glucose metabolism in basal ganglia were obtained. Two of them may be assigned to patients with neurological symptoms whereas the third cluster corresponds to most patients without EPS or normal volunteers. The clusters can be identified by characteristic consumption rates in this 5 brain areas. The severity of EPS can not clearly be assigned to one of the clusters with disturbed glucose metabolism. However, the most severe cases are characterized by the lowest consumption in the striatal area. When there is marked improvement of EPS impaired glucose consumption reveals a persistent brain lesion. Finally, the neurological symptoms in Wilson's disease are caused by (at least) two different patterns of disturbed glucose metabolism in basal ganglia and cerebellum. The severity of EPS seems to be determined by a disturbed consumption in the striatal area. PMID:12140675

  17. The progression from a lower to a higher invasive stage of bladder cancer is associated with severe alterations in glucose and pyruvate metabolism

    International Nuclear Information System (INIS)

    Cancer cells present a particular metabolic behavior. We hypothesized that the progression of bladder cancer could be accompanied by changes in cells glycolytic profile. We studied two human bladder cancer cells, RT4 and TCCSUP, in which the latter represents a more invasive stage. The levels of glucose, pyruvate, alanine and lactate in the extracellular media were measured by Proton Nuclear Magnetic Resonance. The protein expression levels of glucose transporters 1 (GLUT1) and 3 (GLUT3), monocarboxylate transporter 4 (MCT4), phosphofructokinase-1 (PFK1), glutamic-pyruvate transaminase (GPT) and lactate dehydrogenase (LDH) were determined. Our data showed that glucose consumption and GLUT3 levels were similar in both cell lines, but TCCSUP cells displayed lower levels of GLUT1 and PFK expression. An increase in pyruvate consumption, concordant with the higher levels of lactate and alanine production, was also detected in TCCSUP cells. Moreover, TCCSUP cells presented lower protein expression levels of GPT and LDH. These results illustrate that bladder cancer progression is associated with alterations in cells glycolytic profile, namely the switch from glucose to pyruvate consumption in the more aggressive stage. This may be useful to develop new therapies and to identify biomarkers for cancer progression. - Highlights: • Metabolic phenotype of less and high invasive bladder cancer cells was studied. • Bladder cancer progression involves alterations in cells glycolytic profile. • More invasive bladder cancer cells switch from glucose to pyruvate consumption. • Our results may help to identify metabolic biomarkers of bladder cancer progression

  18. Investigation of 18F-2-deoxyglucose for the measure of myocardial glucose metabolism

    International Nuclear Information System (INIS)

    18F labeled 2-deoxyglucose (18FDG) was studied as a glucose analog. Myocardial uptake and retention, blood clearance, species (dog, monkey, man) dependence and effect of diet on uptake were investigated. Normal myocardial uptake of 18FDG was 3 to 4% in dog and monkey and 1 to 4% of injected dose in man compared to brain uptake of 2% in dog, 5 to 6% in monkey and 4 to 8% in man. The metabolic rate (MR) for glucose in non-fasting (glycolytic state) was 2.8 times greater than in fasting (ketogenic state). Human subjects showed higher myocardial uptake after a normal meal than after meal containing mostly free fatty acids (FFA). Blood clearance was rapid with initial clearance t1/2 of 0.2 to 0.3 min followed by a t1/2 of 8.4 +- 1.2 min in dog and 11.6 +- 1.1 min in man. A small third component had a t1/2 of 59 +- 10 min and 88 +- 4 min in dog and man, respectively. High image contrast ratios between heart and blood (dog 3.5/1; man 14/1), heart and lung (dog 9/1; man 20/1), heart and liver (dog 15/1; man 10/1) were found with the ECAT positron tomograph. 18FDG was found to be rapidly taken up by the myocardium without any significant tissue clearance over a 4 hour period. 18FDG is transported, phosphorylated to 18FDG-6-PO4 and trapped in myocardial cells in the same manner as has been found for brain and exhibits excellent imaging properties. Determination of glucose and FFA MR in vivo with ECT provides a method for investigation and assessment of changing aerobic and anaerobic metabolic rates in ischemic heart disease in man

  19. Brain glucose metabolism in adults with ataxia-telangiectasia and their asymptomatic relatives

    OpenAIRE

    Volkow, Nora. D.; Tomasi, Dardo; WANG, GENE-JACK; Studentsova, Yana; Margus, Brad; Crawford, Thomas O

    2014-01-01

    Ataxia-Telangiectasia (A-T) is a recessive multi-system disorder with prominent cerebellar degeneration. Volkow et al. use PET to reveal widespread changes in brain glucose metabolism in patients with A-T, in addition to the anticipated reduction in cerebellar metabolism. Hyperactivity in the globus pallidus is indicative of basal ganglia involvement in the disorder.

  20. The direct effect of incretin hormones on glucose and glycerol metabolism and hemodynamics

    DEFF Research Database (Denmark)

    Karstoft, Kristian; Mortensen, Stefan

    2015-01-01

    The objective of this study was to assess the insulin-independent effects of incretin hormones on glucose and glycerol metabolism and hemodynamics under eu- and hyperglycemic conditions. Young, healthy males (n=10) underwent three trials in a randomized, controlled, cross-over study. Each trial consisted of a 2-stage (eu- and hyperglycemia) pancreatic clamp (using somatostatin to prevent endogenous insulin secretion). Glucose and lipid metabolism were measured via infusion of stable glucose and glycerol isotopic tracers. Hemodynamic variables (femoral, brachial and common carotid artery blood flow; and flow-mediated dilation [FMD] of brachial artery) were also measured. The three trials differed by the following additional infusions: (I) Saline (control; CON); (II) GLP-1 (0.5 pmol/kg/min); and (III) GIP (1.5 pmol/kg/min). No between-trial differences in glucose infusion rates (GIR), glucose or glycerol kinetics were seen during euglycemia, whereas hyperglycemia resulted in increased GIR and glucose rate of disappearance (Rd) during GLP-1 compared to CON and GIP (P<0.01 for all). However, when normalized to insulin levels, no differences between trials were seen for GIR or glucose Rd. Besides a higher femoral blood flow during hyperglycemia in GIP (vs. CON and GLP-1, P<0.001), no between-trial differences were seen for the hemodynamic variables. In conclusion, GLP-1 and GIP have no direct effect on whole body glucose metabolism or hemodynamics during euglycemia. On contrary, during hyperglycemia, GIP increases femoral artery blood flow with no effect on glucose metabolism, whereas GLP-1 increases glucose disposal, potentially, however, due to increased insulin levels.

  1. d-Glucose and d-mannose-based metabolic probes. Part 3: Synthesis of specifically deuterated d-glucose, d-mannose, and 2-deoxy-d-glucose

    OpenAIRE

    Fokt, Izabela; Skora, Stanislaw; Conrad, Charles; Madden, Timothy; Emmett, Mark; Priebe, Waldemar

    2012-01-01

    Altered carbohydrate metabolism in cancer cells was first noted by Otto Warburg more than 80 years ago. Upregulation of genes controlling the glycolytic pathway under normoxia, known as the Warburg effect, clearly differentiates malignant from non-malignant cells. The resurgence of interest in cancer metabolism aims at a better understanding of the metabolic differences between malignant and non-malignant cells and the creation of novel therapeutic and diagnostic agents exploiting these diffe...

  2. Glutamate Acts as a Key Signal Linking Glucose Metabolism to Incretin/cAMP Action to Amplify Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Ghupurjan Gheni

    2014-10-01

    Full Text Available Incretins, hormones released by the gut after meal ingestion, are essential for maintaining systemic glucose homeostasis by stimulating insulin secretion. The effect of incretins on insulin secretion occurs only at elevated glucose concentrations and is mediated by cAMP signaling, but the mechanism linking glucose metabolism and cAMP action in insulin secretion is unknown. We show here, using a metabolomics-based approach, that cytosolic glutamate derived from the malate-aspartate shuttle upon glucose stimulation underlies the stimulatory effect of incretins and that glutamate uptake into insulin granules mediated by cAMP/PKA signaling amplifies insulin release. Glutamate production is diminished in an incretin-unresponsive, insulin-secreting ? cell line and pancreatic islets of animal models of human diabetes and obesity. Conversely, a membrane-permeable glutamate precursor restores amplification of insulin secretion in these models. Thus, cytosolic glutamate represents the elusive link between glucose metabolism and cAMP action in incretin-induced insulin secretion.

  3. Polychlorinated biphenyl exposure and glucose metabolism in Danish children aged 9 years

    DEFF Research Database (Denmark)

    Jensen, Tina K; Timmermann, Clara Amalie Gade

    2014-01-01

    Context: Human exposure to polychlorinated biphenyls (PCBs) has been associated to type 2 diabetes in adults. Objectives: To determine whether concurrent serum PCB concentration was associated with markers of glucose metabolism in healthy children. Design: Cross-sectional study. Settings and participants: A total of 771 healthy Danish third grade school children aged 8-10 years in the municipality of Odense were recruited in 1997 through a two-stage cluster sampling from 25 different schools stratified according to location and socioeconomic character; 509 (9.7±0.8 years, 53% girls) had adequate amounts available for PCB and analyses. Main outcome measures: Fasting plasma glucose and serum insulin were measured and a homeostasis assessment model of insulin resistance (HOMA-IR) and ?-cell function (HOMA-B) calculated. Serum PCB congeners and other persistent compounds were measured and ?PCB calculated. Results: PCBs were present in serum at low concentrations, median 0.19? g/g lipid (interquartile range, IQR: 0.12-0.31). After adjustment for putative confounding factors, the second, third, fourth and fifth quintiles of total PCB were significantly inversely associated with serum insulin (-14.6%, -21.7%, -18.9%, -23.1%, p-trend<0.01), compared to the first quintile, but not with plasma glucose (p=0.45). HOMA-IR and HOMA-B were affected in the same direction due to the declining insulin levels with increasing PCB exposure. Similar results were found for individual PCB congeners, for ?HCB and pp-DDE. Conclusion: A strong inverse association between serum insulin and PCB exposure was found while fasting plasma glucose remained within the expected narrow range. Our findings suggest that PCB may not exert effect through decreased peripheral insulin sensitivity, as seen in obese and low fit children, but rather through a toxicity to ?-cells. It remains to be shown if lower HOMA-B is caused by destruction of ?-cell reducing peripheral insulin resistance and thereby increase fasting plasma glucose as previously found.

  4. Cerebral glucose metabolism in Wernicke's, Broca's, and conduction aphasia

    Energy Technology Data Exchange (ETDEWEB)

    Metter, E.J.; Kempler, D.; Jackson, C.; Hanson, W.R.; Mazziotta, J.C.; Phelps, M.E.

    1989-01-01

    Cerebral glucose metabolism was evaluated in patients with either Wernicke's (N = 7), Broca's (N = 11), or conduction (N = 10) aphasia using /sup 18/F-2-fluoro-2-deoxy-D-glucose with positron emission tomography. The three aphasic syndromes differed in the degree of left-to-right frontal metabolic asymmetry, with Broca's aphasia showing severe asymmetry and Wernicke's aphasia mild-to-moderate metabolic asymmetry, while patients with conduction aphasia were metabolically symmetric. On the other hand, the three syndromes showed the same degree of metabolic decline in the left temporal region. The parietal region appeared to separate conduction aphasia from both Broca's and Wernicke's aphasias. Common aphasic features in the three syndromes appear to be due to common changes in the temporal region, while unique features were associated with frontal and parietal metabolic differences.

  5. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  6. Program for PET image alignment: Effects on calculated differences in cerebral metabolic rates for glucose

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, R.L.; London, E.D.; Links, J.M.; Cascella, N.G. (NIDA Addiction Research Center, Baltimore, MD (USA))

    1990-12-01

    A program was developed to align positron emission tomography images from multiple studies on the same subject. The program allowed alignment of two images with a fineness of one-tenth the width of a pixel. The indications and effects of misalignment were assessed in eight subjects from a placebo-controlled double-blind crossover study on the effects of cocaine on regional cerebral metabolic rates for glucose. Visual examination of a difference image provided a sensitive and accurate tool for assessing image alignment. Image alignment within 2.8 mm was essential to reduce variability of measured cerebral metabolic rates for glucose. Misalignment by this amount introduced errors on the order of 20% in the computed metabolic rate for glucose. These errors propagate to the difference between metabolic rates for a subject measured in basal versus perturbed states.

  7. Program for PET image alignment: Effects on calculated differences in cerebral metabolic rates for glucose

    International Nuclear Information System (INIS)

    A program was developed to align positron emission tomography images from multiple studies on the same subject. The program allowed alignment of two images with a fineness of one-tenth the width of a pixel. The indications and effects of misalignment were assessed in eight subjects from a placebo-controlled double-blind crossover study on the effects of cocaine on regional cerebral metabolic rates for glucose. Visual examination of a difference image provided a sensitive and accurate tool for assessing image alignment. Image alignment within 2.8 mm was essential to reduce variability of measured cerebral metabolic rates for glucose. Misalignment by this amount introduced errors on the order of 20% in the computed metabolic rate for glucose. These errors propagate to the difference between metabolic rates for a subject measured in basal versus perturbed states

  8. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    International Nuclear Information System (INIS)

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions

  9. ?-aminoisobutyric acid attenuates hepatic endoplasmic reticulum stress and glucose/lipid metabolic disturbance in mice with type 2 diabetes.

    Science.gov (United States)

    Shi, Chang-Xiang; Zhao, Ming-Xia; Shu, Xiao-Dong; Xiong, Xiao-Qing; Wang, Jue-Jin; Gao, Xing-Ya; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2016-01-01

    ?-aminoisobutyric acid (BAIBA) is a nature thymine catabolite, and contributes to exercise-induced protection from metabolic diseases. Here we show the therapeutical effects of BAIBA on hepatic endoplasmic reticulum (ER) stress and glucose/lipid metabolic disturbance in diabetes. Type 2 diabetes was induced by combined streptozotocin (STZ) and high-fat diet (HFD) in mice. Oral administration of BAIBA for 4 weeks reduced blood glucose and lipids levels, hepatic key enzymes of gluconeogenesis and lipogenesis expressions, attenuated hepatic insulin resistance and lipid accumulation, and improved insulin signaling in type 2 diabetic mice. BAIBA reduced hepatic ER stress and apoptosis in type 2 diabetic mice. Furthermore, BAIBA alleviated ER stress in human hepatocellular carcinoma (HepG2) cells with glucosamine-induced insulin resistance. Hepatic AMPK phosphorylation was reduced in STZ/HFD mice and glucosamine-treated HepG2 cells, which were restored by BAIBA treatment. The suppressive effects of BAIBA on glucosamine-induced ER stress were reversed by knockdown of AMPK with siRNA. In addition, BAIBA prevented thapsigargin- or tunicamycin-induced ER stress, and tunicamycin-induced apoptosis in HepG2 cells. These results indicate that BAIBA attenuates hepatic ER stress, apoptosis and glucose/lipid metabolic disturbance in mice with type 2 diabetes. AMPK signaling is involved to the role of BAIBA in attenuating ER stress. PMID:26907958

  10. ?-aminoisobutyric acid attenuates hepatic endoplasmic reticulum stress and glucose/lipid metabolic disturbance in mice with type 2 diabetes

    Science.gov (United States)

    Shi, Chang-Xiang; Zhao, Ming-Xia; Shu, Xiao-Dong; Xiong, Xiao-Qing; Wang, Jue-Jin; Gao, Xing-Ya; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2016-01-01

    ?-aminoisobutyric acid (BAIBA) is a nature thymine catabolite, and contributes to exercise-induced protection from metabolic diseases. Here we show the therapeutical effects of BAIBA on hepatic endoplasmic reticulum (ER) stress and glucose/lipid metabolic disturbance in diabetes. Type 2 diabetes was induced by combined streptozotocin (STZ) and high-fat diet (HFD) in mice. Oral administration of BAIBA for 4 weeks reduced blood glucose and lipids levels, hepatic key enzymes of gluconeogenesis and lipogenesis expressions, attenuated hepatic insulin resistance and lipid accumulation, and improved insulin signaling in type 2 diabetic mice. BAIBA reduced hepatic ER stress and apoptosis in type 2 diabetic mice. Furthermore, BAIBA alleviated ER stress in human hepatocellular carcinoma (HepG2) cells with glucosamine-induced insulin resistance. Hepatic AMPK phosphorylation was reduced in STZ/HFD mice and glucosamine-treated HepG2 cells, which were restored by BAIBA treatment. The suppressive effects of BAIBA on glucosamine-induced ER stress were reversed by knockdown of AMPK with siRNA. In addition, BAIBA prevented thapsigargin- or tunicamycin-induced ER stress, and tunicamycin–induced apoptosis in HepG2 cells. These results indicate that BAIBA attenuates hepatic ER stress, apoptosis and glucose/lipid metabolic disturbance in mice with type 2 diabetes. AMPK signaling is involved to the role of BAIBA in attenuating ER stress. PMID:26907958

  11. Osteocalcin, energy and glucose metabolism / Osteocalcina, metabolismo energético e da glicose

    Scientific Electronic Library Online (English)

    Leila C. B., Zanatta; Cesar L., Boguszewski; Victoria Z. C., Borba; Carolina A. M., Kulak.

    2014-07-01

    Full Text Available A osteocalcina é uma proteína da matriz óssea que tem sido implicada com várias ações hormonais relacionadas à homeostase de glicose e ao metabolismo energético. Modelos animais e experimentais têm demonstrado que a osteocalcina é liberada do osso para a circulação sanguínea e age nas células betapa [...] ncreáticas e no tecido adiposo. A osteocalcina decarboxilada é a isoforma hormonalmente ativa e estimula a secreção e sensibilidade à insulina no tecido adiposo e muscular. A insulina e a leptina, por sua vez, atuam no tecido ósseo modulando a secreção da osteocalcina, formando uma alça de retroalimentação tradicional em que o esqueleto torna-se um órgão endócrino. Novos estudos ainda são necessários para elucidar o papel da osteocalcina na regulação glicêmica e no metabolismo energético em humanos, com potenciais implicações terapêuticas no tratamento de diabetes, obesidade e síndrome metabólica. Abstract in english Osteocalcin is a bone matrix protein that has been associated with several hormonal actions on energy and glucose metabolism. Animal and experimental models have shown that osteocalcin is released into the bloodstream and exerts biological effects on pancreatic beta cells and adipose tissue. Underca [...] rboxylated osteocalcin is the hormonally active isoform and stimulates insulin secretion and enhances insulin sensitivity in adipose tissue and muscle. Insulin and leptin, in turn, act on bone tissue, modulating the osteocalcin secretion, in a traditional feedback mechanism that places the skeleton as a true endocrine organ. Further studies are required to elucidate the role of osteocalcin in the regulation of glucose and energy metabolism in humans and its potential therapeutic implications in diabetes, obesity and metabolic syndrome.

  12. A randomized trial comparing the effect of weight loss and exercise training on insulin sensitivity and glucose metabolism in coronary artery disease

    DEFF Research Database (Denmark)

    Pedersen, Lene Rørholm; Olsen, Rasmus Huan; Jürs, Anders; Anholm, Christian; Fenger, Mogens; Haugaard, Steen Bendix; Prescott, Eva

    2015-01-01

    AIM: The majority of patients with coronary artery disease (CAD) exhibit abnormal glucose metabolism, which is associated with mortality even at non-diabetic glucose levels. This trial aims to compare the effects of a considerable weight loss and exercise with limited weight loss on glucose...... metabolism in prediabetic, CAD patients. METHODS AND RESULTS: Seventy non-diabetic participants with CAD, BMI 28-40kg/m(2), age 45-75 years were randomized to 12weeks' aerobic interval training (AIT) at 90% peak heart rate three times weekly or a low energy diet (LED, 800-1000kcal/day) for 8-10 weeks...... followed by 2-4 weeks' weight maintenance diet. Glucose tolerance, insulin action, ?-cell function and suppression of lipolysis were assessed using a 3-h oral glucose tolerance test. ISI-composite and ISI-HOMA (=1/HOMA-IR) were calculated as surrogate measures of whole-body and hepatic insulin sensitivity...

  13. Increased glucose metabolism and glycerolipid formation by fatty acids and GPR40 receptor signaling underlies the fatty acid potentiation of insulin secretion.

    Science.gov (United States)

    El-Azzouny, Mahmoud; Evans, Charles R; Treutelaar, Mary K; Kennedy, Robert T; Burant, Charles F

    2014-05-01

    Acute fatty acid (FA) exposure potentiates glucose-stimulated insulin secretion in ? cells through metabolic and receptor-mediated effects. We assessed the effect of fatty acids on the dynamics of the metabolome in INS-1 cells following exposure to [U-(13)C]glucose to assess flux through metabolic pathways. Metabolite profiling showed a fatty acid-induced increase in long chain acyl-CoAs that were rapidly esterified with glucose-derived glycerol-3-phosphate to form lysophosphatidic acid, mono- and diacylglycerols, and other glycerolipids, some implicated in augmenting insulin secretion. Glucose utilization and glycolytic flux increased, along with a reduction in the NADH/NAD(+) ratio, presumably by an increase in conversion of dihydroxyacetone phosphate to glycerol-3-phosphate. The fatty acid-induced increase in glycolysis also resulted in increases in tricarboxylic cycle flux and oxygen consumption. Inhibition of fatty acid activation of FFAR1/GPR40 by an antagonist decreased glycerolipid formation, attenuated fatty acid increases in glucose oxidation, and increased mitochondrial FA flux, as evidenced by increased acylcarnitine levels. Conversely, FFAR1/GPR40 activation in the presence of low FA increased flux into glycerolipids and enhanced glucose oxidation. These results suggest that, by remodeling glucose and lipid metabolism, fatty acid significantly increases the formation of both lipid- and TCA cycle-derived intermediates that augment insulin secretion, increasing our understanding of mechanisms underlying ? cell insulin secretion. PMID:24675078

  14. Lactisole inhibits the glucose-sensing receptor T1R3 expressed in mouse pancreatic ?-cells.

    Science.gov (United States)

    Hamano, Kunihisa; Nakagawa, Yuko; Ohtsu, Yoshiaki; Li, Longfei; Medina, Johan; Tanaka, Yuji; Masuda, Katsuyoshi; Komatsu, Mitsuhisa; Kojima, Itaru

    2015-07-01

    Glucose activates the glucose-sensing receptor T1R3 and facilitates its own metabolism in pancreatic ?-cells. An inhibitor of this receptor would be helpful in elucidating the physiological function of the glucose-sensing receptor. The present study was conducted to examine whether or not lactisole can be used as an inhibitor of the glucose-sensing receptor. In MIN6 cells, in a dose-dependent manner, lactisole inhibited insulin secretion induced by sweeteners, acesulfame-K, sucralose and glycyrrhizin. The IC50 was ?4?mmol/l. Lactisole attenuated the elevation of cytoplasmic Ca2+ concentration ([Ca2+]c) evoked by sucralose and acesulfame-K but did not affect the elevation of intracellular cAMP concentration ([cAMP]c) induced by these sweeteners. Lactisole also inhibited the action of glucose in MIN6 cells. Thus, lactisole significantly reduced elevations of intracellular [NADH] and intracellular [ATP] induced by glucose, and also inhibited glucose-induced insulin secretion. To further examine the effect of lactisole on T1R3, we prepared HEK293 cells stably expressing mouse T1R3. In these cells, sucralose elevated both [Ca2+]c and [cAMP]c. Lactisole attenuated the sucralose-induced increase in [Ca2+]c but did not affect the elevation of [cAMP]c. Finally, lactisole inhibited insulin secretion induced by a high concentration of glucose in mouse islets. These results indicate that the mouse glucose-sensing receptor was inhibited by lactisole. Lactisole may be useful in assessing the role of the glucose-sensing receptor in mouse pancreatic ?-cells. PMID:25994004

  15. Linking neuronal brain activity to the glucose metabolism

    OpenAIRE

    Göbel, Britta; Oltmanns, Kerstin M.; Chung, Matthias

    2013-01-01

    Abstract Background Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying...

  16. Glucose metabolism in different regions of the rat brain under hypokinetic stress influence

    Science.gov (United States)

    Konitzer, K.; Voigt, S.

    1980-01-01

    Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.

  17. Towards dynamic metabolic flux analysis in CHO cell cultures.

    Science.gov (United States)

    Ahn, Woo Suk; Antoniewicz, Maciek R

    2012-01-01

    Chinese hamster ovary (CHO) cells are the most widely used mammalian cell line for biopharmaceutical production, with a total global market approaching $100 billion per year. In the pharmaceutical industry CHO cells are grown in fed-batch culture, where cellular metabolism is characterized by high glucose and glutamine uptake rates combined with high rates of ammonium and lactate secretion. The metabolism of CHO cells changes dramatically during a fed-batch culture as the cells adapt to a changing environment and transition from exponential growth phase to stationary phase. Thus far, it has been challenging to study metabolic flux dynamics in CHO cell cultures using conventional metabolic flux analysis techniques that were developed for systems at metabolic steady state. In this paper we review progress on flux analysis in CHO cells and techniques for dynamic metabolic flux analysis. Application of these new tools may allow identification of intracellular metabolic bottlenecks at specific stages in CHO cell cultures and eventually lead to novel strategies for improving CHO cell metabolism and optimizing biopharmaceutical process performance. PMID:22102428

  18. Neuronal LRP1 regulates glucose metabolism and insulin signaling in the brain.

    Science.gov (United States)

    Liu, Chia-Chen; Hu, Jin; Tsai, Chih-Wei; Yue, Mei; Melrose, Heather L; Kanekiyo, Takahisa; Bu, Guojun

    2015-04-01

    Alzheimer's disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-? (A?) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes during the early stage of AD and likely triggers or exacerbates AD pathology. However, the mechanisms linking disturbed insulin signaling/glucose metabolism and AD pathogenesis remain unclear. The low-density lipoprotein receptor-related protein 1 (LRP1), a major apolipoprotein E receptor, plays critical roles in lipoprotein metabolism, synaptic maintenance, and clearance of A? in the brain. Here, we demonstrate that LRP1 interacts with the insulin receptor ? in the brain and regulates insulin signaling and glucose uptake. LRP1 deficiency in neurons leads to impaired insulin signaling as well as reduced levels of glucose transporters GLUT3 and GLUT4. Consequently, glucose uptake is reduced. By using an in vivo microdialysis technique sampling brain glucose concentration in freely moving mice, we further show that LRP1 deficiency in conditional knock-out mice resulted in glucose intolerance in the brain. We also found that hyperglycemia suppresses LRP1 expression, which further exacerbates insulin resistance, glucose intolerance, and AD pathology. As loss of LRP1 expression is seen in AD brains, our study provides novel insights into insulin resistance in AD. Our work also establishes new targets that can be explored for AD prevention or therapy. PMID:25855193

  19. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    International Nuclear Information System (INIS)

    Research highlights: ? A new mutant of PQQ-GDH designed for glucose biosensors application. ? First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. ? Position N428 is a key point to increase the enzyme activity. ? Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.

  20. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Durand, Fabien [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Stines-Chaumeil, Claire [Universite de Bordeaux, CNRS, Institut de Biochimie et de Genetique Cellulaires, 1 rue Camille Saint Saens, 33077 Bordeaux Cedex (France); Flexer, Victoria [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Andre, Isabelle [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); CNRS, UMR5504, F-31400 Toulouse (France); INRA, UMR 792 Ingenierie des Systemes Biologiques et des Procedes, F-31400 Toulouse (France); Mano, Nicolas, E-mail: mano@crpp-bordeaux.cnrs.fr [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France)

    2010-11-26

    Research highlights: {yields} A new mutant of PQQ-GDH designed for glucose biosensors application. {yields} First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. {yields} Position N428 is a key point to increase the enzyme activity. {yields} Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.

  1. Effect of glucocorticoid therapy upon glucose metabolism in COPD patients with acute exacerbation

    International Nuclear Information System (INIS)

    Objective: To study the effect of glucocorticoids therapy upon glucose metabolism in COPD patients with acute exacerbation. Methods: Plasma glucose and insulin levels in COPD patients after intravenous administration of 10 mg dexamethasone daily for 5 days were determined oral with glucose tolerance test (OGTT) and insulin release test (IRT). Results: 1) The levels of basal plasma glucose and insulin were significantly higher in severe hypoxemic group than those in moderate hypoxemic group (p 2 (r = -0.5242, p < 0.05). 2) The levels of plasma glucose in intermediate and severe hypoxemic groups were remarkable higher (p < 0.05) than those in mild group. The two peak times of glucose curve were observed at one and two hour after oral glucose load. 3) After the administration of glucocorticoids, at half an hour and one hour plasma glucose levels were significantly higher than those before, the peak time of glucose levels appeared earlier and the insulin release levels were higher than they were before therapy (p < 0.05). Conclusion: COPD patients with acute exacerbation complicated with hypoxemia had problems of impaired glucose tolerance. The administration of glucocorticoids made the impairment worse

  2. Adverse Effect of High Glucose Concentration on Stem Cell Therapy

    Directory of Open Access Journals (Sweden)

    Najmaldin Saki

    2013-07-01

    Full Text Available Stem cell therapy could have great potential for the treatment of a wide variety of diseases. Stem cells might have the ability to differentiate into a widespread cell types, and to repopulate and revitalize the damaged cells with healthy tissue, and improve its performance. We provide here the evidence supporting the critical use of stem cell as a treatment in disease conditions existing with high glucose complaint such as diabetes. The reduction of glucose stimulated cell proliferation and high glucose enhanced apoptosis in rat model, which may be a problem in therapeutic strategies based on ex vivo expansion of stem cell, and may also propagate the development of osteoporosis in high glucose complaint such as diabetes. This leads to the hypothesis that, high glucose could be more deleterious to stem cell therapy that may be due to the aggravation of oxidative stress triggered by high glucose. These findings may help to understand the possible reasons associated with high glucose induced detrimental effects on stem cells as well as provide novel therapeutic strategies for preventing the adverse effects of glucose on the development and progression of stem cells in patients with diabetes.

  3. Cerebral glucose metabolism change in patients with complex regional pain syndrome. A PET study

    International Nuclear Information System (INIS)

    The aim of this study was to examine abnormalities of the central nervous system in patients with chronic pain who were diagnosed with complex regional pain syndrome (CRPS). Brain activity was assessed using 18F-fluorodeoxyglucose positron emission tomography. The data collected from 18 patients were compared with data obtained from 13 normal age-matched controls. Our results showed that glucose metabolism was bilaterally increased in the secondary somatosensory cortex, mid-anterior cingulated cortex (ACC) or posterior cingulated cortex (PCC) (or both), parietal cortex, posterior parietal cortex (PPC), and cerebellum as well as in the right posterior insula and right thalamus in our patients. In contrast, glucose metabolism was reduced contralaterally in the dorsal prefrontal cortex and primary motor cortex. Glucose metabolism was bilaterally elevated in the mid-ACC/PCC and the PPC, which correlated with pain duration. These data suggested that glucose metabolism in the brains of patients with CRPS changes dramatically at each location. In particular, glucose metabolism was increased in the areas concerned with somatosensory perception, possibly due to continuous painful stimulation. (author)

  4. Effect of two organophosphorus insecticides on the growth, respiration and (14C)-glucose metabolism of Azobacter chroococcum Beij

    International Nuclear Information System (INIS)

    The two organophosphorus insecticides, commonly applied to soil, viz., disulfoton (0,0-diethyl S-2-ethyl thio ethyl phosphorodithioate) and fensulfothion (0,0-diethyl 0-4-methyl sulphinyl phenyl phosphorothioate) did not affect the in vitro growth of Azotobacter chroococcum Beij., the free-living, nitrogen fixing soil bacterium, at 2 ppm (lower level), while the normal dose (5 ppm) and the higher level (10 ppm) suppressed the growth. Respiration of the organism (glucose oxidation) was adversely affected by the insecticides in the growth medium and the inhibition increased with the concentration of the chemical. Both the insecticides suppressed the assimilation of (14C)-glucose in the cold-TCA soluble, hot-TCA soluble fractions and insoluble residue of the cells whereas the 14C-incorporation in the alcohol soluble and alcohol-ether soluble fractions was enhanced indicating that the insecticides considerably altered the glucose metabolism of the bacterium. (author)

  5. Correlation of regional glucose metabolism with gender, health status, and aging as determined by PET-FDG technique

    International Nuclear Information System (INIS)

    The present study presents the findings in a series of 85 volunteers who participated in a protocol to evaluate the effects of aging and dementia on brain glucose metabolism. Positron emission tomography permits noninvasive assessment of both whole brain and regional glucose metabolism and other biochemical functions. Absolute regional and whole brain glucose metabolism can be determined by using the fluorine deoxyglucose (FDG) method. (author). 3 refs

  6. Responses of the Central Metabolism in Escherichia coli to Phosphoglucose Isomerase and Glucose-6-Phosphate Dehydrogenase Knockouts†

    OpenAIRE

    Hua, Qiang; Yang, Chen; BABA, Tomoya; Mori, Hirotada; Shimizu, Kazuyuki

    2003-01-01

    The responses of Escherichia coli central carbon metabolism to knockout mutations in phosphoglucose isomerase and glucose-6-phosphate (G6P) dehydrogenase genes were investigated by using glucose- and ammonia-limited chemostats. The metabolic network structures and intracellular carbon fluxes in the wild type and in the knockout mutants were characterized by using the complementary methods of flux ratio analysis and metabolic flux analysis based on [U-13C]glucose labeling and two-dimensional n...

  7. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    International Nuclear Information System (INIS)

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased ?2-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone metabolic effects are only slightly exacerbated in geriatric rats

  8. 14C-glucose binding assay of the glucose transporter binding sites in muscular cell membrane

    International Nuclear Information System (INIS)

    A method of determining the binding sites of glucose transporter in rat muscular cell membrane was introduced. The crude products of cell membrane form the skeletal muscle of control and insulin treated rats were prepared, and then fractionated in sucrose gradient. Both plasma membrane and microsome membrane were incubated with D-[U-14C] glucose respectively for the measurement of radioactivity and Scatchard plot analysis. It was found that the binding sites of glucose transporter in plasma membrane and intracellular membrane were 5.6 nmol 14C-glucose/mg protein and 8.7 nmol 14C-glucose-mg protein respectively at basic state. Insulin treatment in experimental groups caused approximately 146% increase in plasma membrane fraction and 88% decrease in intracellular membrane fraction. Moreover, the kinetic data of Scatchard plot curve were similar to those of the [3H]-cytochalasin B binding assay. D-[U-14C] glucose binding assay of glucose transporter binding sites in muscular cell membrane is simple, easy and practicable. The D-[U-14C] glucose is commercially available

  9. Glucose Deprivation Regulates KATP Channel Trafficking via AMP-Activated Protein Kinase in Pancreatic β-Cells

    OpenAIRE

    Lim, Ajin; Park, Sun-Hyun; Sohn, Jong-Woo; Jeon, Ju-Hong; Park, Jae-Hyung; Song, Dae-Kyu; Lee, Suk-Ho; Ho, Won-Kyung

    2009-01-01

    OBJECTIVE AMP-activated protein kinase (AMPK) and the ATP-sensitive K+ (KATP) channel are metabolic sensors that become activated during metabolic stress. AMPK is an important regulator of metabolism, whereas the KATP channel is a regulator of cellular excitability. Cross talk between these systems is poorly understood. RESEARCH DESIGN AND METHODS Rat pancreatic β-cells or INS-1 cells were pretreated for 2 h at various concentrations of glucose. Maximum KATP conductance (Gmax) was monitored b...

  10. Bradykinin enhances membrane electrical activity of pancreatic beta cells in the presence of low glucose concentrations

    Directory of Open Access Journals (Sweden)

    Moura A.S.

    2000-01-01

    Full Text Available In most of cells bradykinin (BK induces intracellular calcium mobilization. In pancreatic beta cells intracellular calcium is a major signal for insulin secretion. In these cells, glucose metabolism yields intracellular ATP which blocks membrane potassium channels. The membrane depolarizes, voltage-dependent Ca2+ channels are activated and the intracellular calcium load allows insulin secretion. Repolarization occurs due to activation of the Ca2+-dependent K+ channel. The insulin secretion depends on the integrity of this oscillatory process (bursts. Therefore, we decided to determine whether BK (100 nM induces bursts in the presence of a non-stimulatory glucose concentration (5.6 mM. During continuous membrane voltage recording, our results showed that bursts were obtained with 11 mM glucose, blocked with 5.6 mM glucose and recovered with 5.6 mM glucose plus 100 nM BK. Thus, the stimulatory process obtained in the presence of BK and of a non-stimulatory concentration of glucose in the present study suggests that BK may facilitate the action of glucose on beta cell secretion.

  11. The Coupling of Cerebral Metabolic Rate of Glucose and Cerebral Blood Flow In Vivo

    DEFF Research Database (Denmark)

    Hasselbalch, Steen; Paulson, Olaf Bjarne

    The energy supplied to the brain by metabolic substrate is largely utilized for maintaining synaptic transmission. In this regulation cerebral blood flow and glucose consumption is tightly coupled as well in the resting condition as during activation. Quantification of cerebral blood flow and...... metabolism was originally performed using the Kety-Schmidt method and this method still represent the gold standard by which subsequent methods have been evaluated. However, in its classical setting, the method overestimates cerebral blood flow. Studies of metabolic changes during activation must take this...... into account, and subsequent methods for measurement of regional glucose metabolism must be corrected accordingly in order to allow reliable quantitative comparisons of metabolite changes in activation studies. For studies of regional metabolic changes during activation quantification poses further...

  12. Time course of regional myocardial glucose metabolism after transient ischemia assessed by positron emission tomography

    International Nuclear Information System (INIS)

    The purpose of this study was to examine the significance of glucose metabolism in ischemic canine myocardium after reperfusion. Transient ischemia was induced by 90 or 180 minutes occlusion of the left anterior descending coronary artery. Twelve hours and 4 weeks after reperfusion, myocardial blood flow (MBF) and glucose metabolism were assessed (with H215O and 18F-FDG, respectively) by positron emission tomography (PET) under the fasting state, and the metabolic findings were compared with the histologic examination. Glucose metabolism in ischemic regions was inversely related to the amount of tissue necrosis 12 hours and 4 weeks after reperfusion (r=-0.89 and r=-0.82, respectively). The perfusion-metabolism mismatch pattern was seen in the area with less than 10 percent necrosis 12 hours after reperfusion, but this pattern disappeared after 4 weeks. The area with 10 to 50 percent necrosis showed the mismatch pattern until 4 weeks after reperfusion, and in the area with more than 50 percent necrosis, perfusion-metabolism concordantly decreased. Thus, metabolic index assessed early after reperfusion by PET identified myocardial viability, and the perfusion-metabolism mismatch pattern sustained in relation to the degree of ischemic injury. Since some regions estimated to be irreversible by PET were viable by the histologic examination, PET study might underestimate the myocardial viability. (author)

  13. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis.

    Science.gov (United States)

    Nargund, Shilpa; Qiu, Jinshu; Goudar, Chetan T

    2015-01-01

    (13)C-metabolic flux analysis was used to understand copper deficiency-related restructuring of energy metabolism, which leads to excessive lactate production in recombinant protein-producing CHO cells. Stationary-phase labeling experiments with U-(13)C glucose were conducted on CHO cells grown under high and limiting copper in 3 L fed-batch bioreactors. The resultant labeling patterns of soluble metabolites were measured by GC-MS and used to estimate metabolic fluxes in the central carbon metabolism pathways using OpenFlux. Fluxes were evaluated 300 times from stoichiometrically feasible random guess values and their confidence intervals calculated by Monte Carlo simulations. Results from metabolic flux analysis exhibited significant carbon redistribution throughout the metabolic network in cells under Cu deficiency. Specifically, glycolytic fluxes increased (25%-79% relative to glucose uptake) whereas fluxes through the TCA and pentose phosphate pathway (PPP) were lower (15%-23% and 74%, respectively) compared with the Cu-containing condition. Furthermore, under Cu deficiency, 33% of the flux entering TCA via the pyruvate node was redirected to lactate and malate production. Based on these results, we hypothesize that Cu deficiency disrupts the electron transport chain causing ATP deficiency, redox imbalance, and oxidative stress, which in turn drive copper-deficient CHO cells to produce energy via aerobic glycolysis, which is associated with excessive lactate production, rather than the more efficient route of oxidative phosphorylation. PMID:26097228

  14. Profiling the control of hepatic glucose and lipid metabolism for evaluating novel strategies of insulin delivery

    OpenAIRE

    Soares, Ana Francisca Leal Silva

    2011-01-01

    Diabetes mellitus (DM) is a metabolic disorder that results from a dysfunction of insulin secretion (type 1) and/or sensitivity (type 2). Type 1 and in many cases type 2 diabetic patients require daily insulin injections to control blood glucose levels and retard the appearance of diabetes-related complications. The liver plays a central role in the context of whole-body glucose homoeostasis and fuel management in general. Under physiological conditions, insulin is released by the pancr...

  15. Oxidative stress in the etiology of age-associated decline in glucose metabolism.

    Science.gov (United States)

    Salmon, Adam B

    2012-01-01

    One of the most common pathologies in aging humans is the development of glucose metabolism dysfunction. The high incidence of metabolic dysfunction, in particular type 2 diabetes mellitus, is a significant health and economic burden on the aging population. However, the mechanisms that regulate this age-related physiological decline, and thus potential preventative treatments, remain elusive. Even after accounting for age-related changes in adiposity, lean mass, blood lipids, etc., aging is an independent factor for reduced glucose tolerance and increased insulin resistance. Oxidative stress has been shown to have significant detrimental impacts on the regulation of glucose homeostasis in vitro and in vivo. Furthermore, oxidative stress has been shown to be modulated by age and diet in several model systems. This review provides an overview of these data and addresses whether increases in oxidative stress with aging may be a primary determinant of age-related metabolic dysfunction. PMID:24764512

  16. Compartmentalized acyl-CoA metabolism in skeletal muscle regulates systemic glucose homeostasis

    DEFF Research Database (Denmark)

    Li, Lei O; Grevengoed, Trisha J

    2015-01-01

    The impaired capacity of skeletal muscle to switch between the oxidation of fatty acid (FA) and glucose is linked to disordered metabolic homeostasis. To understand how muscle FA oxidation affects systemic glucose, we studied mice with a skeletal muscle-specific deficiency of long-chain acyl-CoA synthetase (ACSL)1. ACSL1 deficiency caused a 91% loss of ACSL-specific activity and a 60-85% decrease in muscle FA oxidation. Acsl1(M-/-) mice were more insulin sensitive, and, during an overnight fast, their respiratory exchange ratio was higher, indicating greater glucose use. During endurance exercise, Acsl1(M-/-) mice ran only 48% as far as controls. At the time that Acsl1(M-/-) mice were exhausted but control mice continued to run, liver and muscle glycogen and triacylglycerol stores were similar in both genotypes; however, plasma glucose concentrations in Acsl1(M-/-) mice were ?40 mg/dL, whereas glucose concentrations in controls were ?90 mg/dL. Excess use of glucose and the likely use of amino acids for fuel within muscle depleted glucose reserves and diminished substrate availability for hepatic gluconeogenesis. Surprisingly, the content of muscle acyl-CoA at exhaustion was markedly elevated, indicating that acyl-CoAs synthesized by other ACSL isoforms were not available for ?-oxidation. This compartmentalization of acyl-CoAs resulted in both an excessive glucose requirement and severely compromised systemic glucose homeostasis.

  17. Sex-Specific Differences in Lipid and Glucose Metabolism

    OpenAIRE

    Varlamov, Oleg; Bethea, Cynthia L.; Roberts, Charles T

    2015-01-01

    Energy metabolism in humans is tuned to distinct sex-specific functions that potentially reflect the unique requirements in females for gestation and lactation, whereas male metabolism may represent a default state. These differences are the consequence of the action of sex chromosomes and sex-specific hormones, including estrogens and progesterone in females and androgens in males. In humans, sex-specific specialization is associated with distinct body-fat distribution and energy substrate-u...

  18. Glucose metabolism during fasting is altered in experimental porphobilinogen deaminase deficiency.

    Science.gov (United States)

    Collantes, María; Serrano-Mendioroz, Irantzu; Benito, Marina; Molinet-Dronda, Francisco; Delgado, Mercedes; Vinaixa, María; Sampedro, Ana; Enríquez de Salamanca, Rafael; Prieto, Elena; Pozo, Miguel A; Peñuelas, Iván; Corrales, Fernando J; Barajas, Miguel; Fontanellas, Antonio

    2016-04-01

    Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria, AIP) is characterized by neurovisceral attacks when hepatic heme synthesis is activated by endogenous or environmental factors including fasting. While the molecular mechanisms underlying the nutritional regulation of hepatic heme synthesis have been described, glucose homeostasis during fasting is poorly understood in porphyria. Our study aimed to analyse glucose homeostasis and hepatic carbohydrate metabolism during fasting in PBGD-deficient mice. To determine the contribution of hepatic PBGD deficiency to carbohydrate metabolism, AIP mice injected with a PBGD-liver gene delivery vector were included. After a 14 h fasting period, serum and liver metabolomics analyses showed that wild-type mice stimulated hepatic glycogen degradation to maintain glucose homeostasis while AIP livers activated gluconeogenesis and ketogenesis due to their inability to use stored glycogen. The serum of fasted AIP mice showed increased concentrations of insulin and reduced glucagon levels. Specific over-expression of the PBGD protein in the liver tended to normalize circulating insulin and glucagon levels, stimulated hepatic glycogen catabolism and blocked ketone body production. Reduced glucose uptake was observed in the primary somatosensorial brain cortex of fasted AIP mice, which could be reversed by PBGD-liver gene delivery. In conclusion, AIP mice showed a different response to fasting as measured by altered carbohydrate metabolism in the liver and modified glucose consumption in the brain cortex. Glucose homeostasis in fasted AIP mice was efficiently normalized after restoration of PBGD gene expression in the liver. PMID:26908609

  19. Ketones and brain development: Implications for correcting deteriorating brain glucose metabolism during aging

    Directory of Open Access Journals (Sweden)

    Nugent Scott

    2016-01-01

    Full Text Available Brain energy metabolism in Alzheimer’s disease (AD is characterized mainly by temporo-parietal glucose hypometabolism. This pattern has been widely viewed as a consequence of the disease, i.e. deteriorating neuronal function leading to lower demand for glucose. This review will address deteriorating glucose metabolism as a problem specific to glucose and one that precedes AD. Hence, ketones and medium chain fatty acids (MCFA could be an alternative source of energy for the aging brain that could compensate for low brain glucose uptake. MCFA in the form of dietary medium chain triglycerides (MCT have a long history in clinical nutrition and are widely regarded as safe by government regulatory agencies. The importance of ketones in meeting the high energy and anabolic requirements of the infant brain suggest they may be able to contribute in the same way in the aging brain. Clinical studies suggest that ketogenesis from MCT may be able to bypass the increasing risk of insufficient glucose uptake or metabolism in the aging brain sufficiently to have positive effects on cognition.

  20. Metabolism of glucose in brain of patients with Parkinson's disease

    International Nuclear Information System (INIS)

    We examined 11C accumulation by positron emission computed tomography in the region of interest (ROI) in the brain of 8 patients with Parkinson's disease and 5 normal controls when administered with 11C-glucose (per os). 11C-glucose was prepared from 11CO2 by photosynthesis. 1) No significant difference was observed in the 11C accumulation in the striatum and cerebral cortex (frontal cortex, temporal cortex and occipital cortex) in 4 patients with Parkinson's disease between continuous medication and 7--10 day interruption of medication. 2) No difference was observed in the 11C accumulation in the striatum and cerebral cortex between 8 patients with Parkinson's disease and 5 normal controls. (author)

  1. Modification of intracellular glucose metabolism in human skin fibroblast preincubated with p-chlorophenoxyisobutyrate.

    OpenAIRE

    Nishide, T; Shirai, K; Y. Saito; Yoshida, S

    1987-01-01

    1. The effect of p-chlorophenoxyisobutyrate (CPIB) on glucose metabolism human skin fibroblasts was examined. 2. CPIB increased the incorporation of 2-deoxy-D-[U-14C]glucose into skin fibroblasts. 3. CPIB decreased [14C]CO2 production from D-[U-14C]glucose but did not affect pyruvate dehydrogenase activity. 4. CPIB reduced fatty acid oxidation activity and cholesterol synthesis but increased triglyceride synthesis. 5. These effects of CPIB were observed both in the presence and in the absence...

  2. Disturbed postprandial glucose metabolism and gut hormone responses in non-diabetic patients with psoriasis

    DEFF Research Database (Denmark)

    GyldenlØve, M; VilsbØll, T

    2015-01-01

    Patients with psoriasis have increased risk of developing type 2 diabetes.(1-4) Though the aetiology is not fully understood, overrepresentation of traditional diabetes risk factors, shared genetics, and chronic inflammation likely explain some of the increased susceptibility. Glucose metabolism in patients with psoriasis has only been sparsely investigated. Previous studies are based on fasting blood samples analysed for glucose and insulin or various forms of glucose and/or insulin challenges.(5-11) The results are generally difficult to compare due to methodological differences and limitations in study design, e.g. lack of control groups or broad inclusion criteria. This article is protected by copyright. All rights reserved.

  3. ATF4 mediates necrosis induced by glucose deprivation and apoptosis induced by 2-deoxyglucose in the same cells.

    Science.gov (United States)

    León-Annicchiarico, Clara Lucía; Ramírez-Peinado, Silvia; Domínguez-Villanueva, Dídac; Gonsberg, Anika; Lampidis, Theodore J; Muñoz-Pinedo, Cristina

    2015-09-01

    Altered metabolism is a hallmark of cancer that opens new therapeutic possibilities. 2-deoxyglucose (2-DG) is a non-metabolizable glucose analog tested in clinical trials and is frequently used in experimental settings to mimic glucose starvation. However, in the present study, conducted in a rhabdomyosarcoma cell line, we find that 2-DG induces classical nuclear apoptotic morphology and caspase-dependent cell death, whereas glucose deprivation drives cells toward necrotic cell death. Necrosis induced by glucose deprivation did not resemble necroptosis or ferroptosis and was not prevented by antioxidants. Both stimuli promote endoplasmic reticulum stress. Moreover, the transcription factor ATF4 is found to mediate both the apoptosis induced by 2-DG and the glycosylation inhibitor tunicamycin, as well as the necrosis provoked by glucose withdrawal. Several hexoses partially prevented glucose deprivation-induced necrosis in rhabdomyosarcoma, although only mannose prevented apoptosis induced by 2-DG. In both cases, a reduction of cell death was associated with decreased levels of ATF4. Our results confirm previous data indicating the differential effects of these two forms with respect to inhibiting glucose metabolism, and they place endoplasmic reticulum stress as the critical mediator of glucose starvation-induced cell death. PMID:26172539

  4. Glucose-deprivation increases thyroid cancer cells sensitivity to metformin.

    Science.gov (United States)

    Bikas, Athanasios; Jensen, Kirk; Patel, Aneeta; Costello, John; McDaniel, Dennis; Klubo-Gwiezdzinska, Joanna; Larin, Olexander; Hoperia, Victoria; Burman, Kenneth D; Boyle, Lisa; Wartofsky, Leonard; Vasko, Vasyl

    2015-12-01

    Metformin inhibits thyroid cancer cell growth. We sought to determine if variable glucose concentrations in medium alter the anti-cancer efficacy of metformin. Thyroid cancer cells (FTC133 and BCPAP) were cultured in high-glucose (20?mM) and low-glucose (5?mM) medium before treatment with metformin. Cell viability and apoptosis assays were performed. Expression of glycolytic genes was examined by real-time PCR, western blot, and immunostaining. Metformin inhibited cellular proliferation in high-glucose medium and induced cell death in low-glucose medium. In low-, but not in high-glucose medium, metformin induced endoplasmic reticulum stress, autophagy, and oncosis. At micromolar concentrations, metformin induced phosphorylation of AMP-activated protein kinase and blocked p-pS6 in low-glucose medium. Metformin increased the rate of glucose consumption from the medium and prompted medium acidification. Medium supplementation with glucose reversed metformin-inducible morphological changes. Treatment with an inhibitor of glycolysis (2-deoxy-d-glucose (2-DG)) increased thyroid cancer cell sensitivity to metformin. The combination of 2-DG with metformin led to cell death. Thyroid cancer cell lines were characterized by over-expression of glycolytic genes, and metformin decreased the protein level of pyruvate kinase muscle 2 (PKM2). PKM2 expression was detected in recurrent thyroid cancer tissue samples. In conclusion, we have demonstrated that the glucose concentration in the cellular milieu is a factor modulating metformin's anti-cancer activity. These data suggest that the combination of metformin with inhibitors of glycolysis could represent a new strategy for the treatment of thyroid cancer. PMID:26362676

  5. Metabolism of D-glucose in a wall-less mutant of Neurospora crassa examined by 13C and 31P nuclear magnetic resonances: effects of insulin

    International Nuclear Information System (INIS)

    13C NMR and 31P NMR have been used to investigate the metabolism of glucose by a wall-less strain of Neurospora crassa (slime), grown in a supplemented nutritionally defined medium and harvested in the early stationary stage of growth. With D-[1-13C]- or D-[6-13C]glucose as substrates, the major metabolic products identified from 13C NMR spectra were [2-13C]ethanol, [3-13C]alanine, and C1- and C6-labeled trehalose. Several observations suggested the existence of a substantial hexose monophosphate (HMP) shunt: (i) a 70% greater yield of ethanol from C6- than from C1-labeled glucose; (ii) C1-labeled glucose yielded 19% C6-labeled trehalose, while C6-labeled glucose yielded only 4% C1-labeled trehalose; (iii) a substantial transfer of 13C from C2-labeled glucose to the C2-position of ethanol. 31P NMR spectra showed millimolar levels of intracellular inorganic phosphate (Pi), phosphodiesters, and diphosphates including sugar diphosphates and polyphosphate. Addition of glucose resulted in a decrease in cytoplasmic Pi and an increase in sugar monophosphates, which continued for at least 30 min. Phosphate resonances corresponding to metabolic intermediates of both the glycolytic and HMP pathways were identified in cell extracts. Addition of insulin (100 nM) with the glucose had the following effects relative to glucose alone: (i) a 24% increase (P less than 0.01) in the rate of ethanol production; (ii) a 38% increase (P less than 0.05) in the rate of alanine production; (iii) a 27% increase (P less than 0.05) in the rate of glucose disappearance. Insulin thus increases the rates of production of ethanol and alanine in these cells, in addition to increasing production of CO2 and glycogen, as previously shown. (author)

  6. Metabolism of D-glucose in a wall-less mutant of Neurospora crassa examined by 13C and 31P nuclear magnetic resonances: effects of insulin

    International Nuclear Information System (INIS)

    13C NMR and 31P NMR have been used to investigate the metabolism of glucose by a wall-less strain of Neurospora crassa (slime), grown in a supplemented nutritionally defined medium and harvested in the early stationary stage of growth. With D-[1-13C]- or D-[6-13C]glucose as substrates, the major metabolic products identified from 13C NMR spectra were [2-13C]ethanol, [3-13C]alanine, and C1- and C6-labeled trehalose. Several observations suggested the existence of a substantial hexose monophosphate (HMP) shunt: (i) a 70% greater yield of ethanol from C6- than from C1-labeled glucose; (ii) C1-labeled glucose yielded 19% C6-labeled trehalose, while C6-labeled glucose yielded only 4% C1-labeled trehalose; (iii) a substantial transfer of 13C from C2-labeled glucose to the C2-position of ethanol. 31P NMR spectra showed millimolar levels of intracellular inorganic phosphate (P/sub i/), phosphodiesters, and diphosphates including sugar diphosphates and polyphosphate. Addition of glucose resulted in a decrease in cytoplasmic P/sub i/ and an increase in sugar monophosphates, which continued for at least 30 min. Phosphate resonances corresponding to metabolic intermediates of both the glycolytic and HMP pathways were identified in cell extracts. Addition of insulin (100 nM) with the glucose had the following effects relative to glucose alone: (i) a 24% increase in the rate of ethanol production; (ii) a 38% increase in the rate of alanine production; (iii) a 27% increase in the rate of glucose disappearance. Insulin thus increases the rates of production of ethanol and alanine in these cells, in addition to increasing production of CO2 and glycogen, as previously shown

  7. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr. (Univ. of California, Irvine (USA)); Gillin, J.C. (Univ. of California, San Diego (USA))

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.

  8. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    International Nuclear Information System (INIS)

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep

  9. Glucose-starved cells do not engage in prosurvival autophagy.

    Science.gov (United States)

    Ramírez-Peinado, Silvia; León-Annicchiarico, Clara Lucía; Galindo-Moreno, Javier; Iurlaro, Raffaella; Caro-Maldonado, Alfredo; Prehn, Jochen H M; Ryan, Kevin M; Muñoz-Pinedo, Cristina

    2013-10-18

    In response to nutrient shortage or organelle damage, cells undergo macroautophagy. Starvation of glucose, an essential nutrient, is thought to promote autophagy in mammalian cells. We thus aimed to determine the role of autophagy in cell death induced by glucose deprivation. Glucose withdrawal induces cell death that can occur by apoptosis (in Bax, Bak-deficient mouse embryonic fibroblasts or HeLa cells) or by necrosis (in Rh4 rhabdomyosarcoma cells). Inhibition of autophagy by chemical or genetic means by using 3-methyladenine, chloroquine, a dominant negative form of ATG4B or silencing Beclin-1, Atg7, or p62 indicated that macroautophagy does not protect cells undergoing necrosis or apoptosis upon glucose deprivation. Moreover, glucose deprivation did not induce autophagic flux in any of the four cell lines analyzed, even though mTOR was inhibited. Indeed, glucose deprivation inhibited basal autophagic flux. In contrast, the glycolytic inhibitor 2-deoxyglucose induced prosurvival autophagy. Further analyses indicated that in the absence of glucose, autophagic flux induced by other stimuli is inhibited. These data suggest that the role of autophagy in response to nutrient starvation should be reconsidered. PMID:24014036

  10. A Combined Proteomics and Metabolomics Profiling of Gastric Cardia Cancer Reveals Characteristic Dysregulations in Glucose Metabolism*

    OpenAIRE

    Cai, Zhen; Zhao, Jiang-Sha; LI, JING-JING; Peng, Dan-Ni; Xiao-yan WANG; Chen, Tian-Lu; Qiu, Yun-Ping; Chen, Ping-Ping; Li, Wen-jie; Xu, Li-Yan; Li, En-Ming; Tam, Jason P. M.; Qi, Robert Z; JIA, WEI; Xie, Dong De

    2010-01-01

    Gastric cardia cancer (GCC), which occurs at the gastric-esophageal boundary, is one of the most malignant tumors. Despite its high mortality and morbidity, the molecular mechanism of initiation and progression of this disease is largely unknown. In this study, using proteomics and metabolomics approaches, we found that the level of several enzymes and their related metabolic intermediates involved in glucose metabolism were deregulated in GCC. Among these enzymes, two subunits controlling py...

  11. Oxidative stress in the etiology of age-associated decline in glucose metabolism

    OpenAIRE

    Salmon, Adam B.

    2012-01-01

    One of the most common pathologies in aging humans is the development of glucose metabolism dysfunction. The high incidence of metabolic dysfunction, in particular type 2 diabetes mellitus, is a significant health and economic burden on the aging population. However, the mechanisms that regulate this age-related physiological decline, and thus potential preventative treatments, remain elusive. Even after accounting for age-related changes in adiposity, lean mass, blood lipids, etc., aging is ...

  12. The continuous infusion of acylated ghrelin enhances growth hormone secretion and worsens glucose metabolism in humans

    OpenAIRE

    GHIGO, Ezio; MUCCIOLI, Giampiero; Broglio, Fabio; Granata, Riccarda

    2008-01-01

    CONTEXT: Acylated ghrelin (AG) has been discovered as a natural ligand of the GH secretagogue receptor type 1a and is now recognized as an important orexigenic factor. Besides stimulation of GH secretion and appetite, it exerts other central and peripheral actions including modulation of insulin secretion, glucose and lipid metabolism. OBJECTIVE: To define the effects of the continuous iv infusion of AG in humans with particular attention to metabolic parameters. MATERIALS AND METHODS: We stu...

  13. [{sup 18}F]-2-fluoro-2-deoxyglucose transport kinetics as a function of extracellular glucose concentration in malignant glioma, fibroblast and macrophage cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, Robert C.; Freeman, Scott D.; Charlop, Aaron W.; Wiseman, Robert W.; Adamsen, Tom C.H.; Krohn, Kenneth A.; Spence, Alexander M. E-mail: aspence@u.washington.edu

    2004-01-01

    FDG-PET is used to measure the metabolic rate of glucose. Transport and phosphorylation determine the amount of hexose analog that is phosphorylated and trapped. Competition occurs for both events, such that extracellular glucose concentration affects the FDG image. This study investigated the effect of glucose concentration on the rate of FDG accumulation in three cell lines. The results show that extracellular glucose concentration has a greater impact on the rate of FDG accumulation than the relative abundance of GLUT transporter subtypes.

  14. [18F]-2-fluoro-2-deoxyglucose transport kinetics as a function of extracellular glucose concentration in malignant glioma, fibroblast and macrophage cells in vitro

    International Nuclear Information System (INIS)

    FDG-PET is used to measure the metabolic rate of glucose. Transport and phosphorylation determine the amount of hexose analog that is phosphorylated and trapped. Competition occurs for both events, such that extracellular glucose concentration affects the FDG image. This study investigated the effect of glucose concentration on the rate of FDG accumulation in three cell lines. The results show that extracellular glucose concentration has a greater impact on the rate of FDG accumulation than the relative abundance of GLUT transporter subtypes

  15. Increased T cell glucose uptake reflects acute rejection in lung grafts.

    Science.gov (United States)

    Chen, D L; Wang, X; Yamamoto, S; Carpenter, D; Engle, J T; Li, W; Lin, X; Kreisel, D; Krupnick, A S; Huang, H J; Gelman, A E

    2013-10-01

    Although T cells are required for acute lung rejection, other graft-infiltrating cells such as neutrophils accumulate in allografts and are also high glucose utilizers. Positron emission tomography (PET) with the glucose probe [(18)F]fluorodeoxyglucose ([(18)F]FDG) has been employed to image solid organ acute rejection, but the sources of glucose utilization remain undefined. Using a mouse model of orthotopic lung transplantation, we analyzed glucose probe uptake in the grafts of syngeneic and allogeneic recipients with or without immunosuppression treatment. Pulmonary microPET scans demonstrated significantly higher [(18)F]FDG uptake in rejecting allografts when compared to transplanted lungs of either immunosuppressed or syngeneic recipients. [(18)F]FDG uptake was also markedly attenuated following T cell depletion therapy in lung recipients with ongoing acute rejection. Flow cytometric analysis using the fluorescent deoxyglucose analog 2-NBDG revealed that T cells, and in particular CD8(+) T cells, were the largest glucose utilizers in acutely rejecting lung grafts followed by neutrophils and antigen-presenting cells. These data indicate that imaging modalities tailored toward assessing T cell metabolism may be useful in identifying acute rejection in lung recipients. PMID:23927673

  16. Regional cerebral glucose metabolism in patients with alcoholic Korsakoff's syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, R.M.; Parker, E.S.; Clark, C.M.; Martin, P.R.; George, D.T.; Weingartner, H.; Sokoloff, L.; Ebert, M.H.; Mishkin, M.

    1985-05-01

    Seven alcoholic male subjects diagnosed as having Korsakoff's syndrome and eight age-matched male normal volunteers were studied with /sup 18/F 2-fluoro-2-deoxy-D-glucose (2/sup 18/FDG). All subjects were examined at rest with eyes covered in a quiet, darkened room. Serial plasma samples were obtained following injection of 4 to 5 mCi of 2/sup 18/FDG. Tomographic slices spaced at 10mm axial increments were obtained (in-plane resolution = 1.75 cm, axial resolution = 1.78 cm). Four planes were selected from each subject, and a total of 46 regions of interest were sampled and glucose metabolic rates for each region calculated. The mean glucose metalbolic rate for the 46 regions in the Korsakoff subjects was significantly lower than that in the normal controls (5.17 +- .43 versus 6.6 +- 1.31). A Q-component analysis, which examined each subject's regional rates relative to his mean rate, revealed two distinct patterns in the Korsakoff group. Glucose metabolism was significantly reduced in 37 of the 46 regions sampled. Reduced cerebral glucose metabolism in a nondemented group of subjects has not previously been reported. The reduction in cortical metabolism may be the result of damage to sub-cortical projecting systems. The differing patterns of cerebral metabolism in Korsakoff's syndrome suggests subgroups with differing neuropathology. Regions implicated in memory function, medial temporal, thalamic and medial prefrontal were among the regions reduced in metabolism.

  17. Intersections between mitochondrial sirtuin signaling and tumor cell metabolism.

    Science.gov (United States)

    Gonzalez Herrera, Karina N; Lee, Jaewon; Haigis, Marcia C

    2015-01-01

    Cancer cells use glucose and glutamine to facilitate cell growth and proliferation, a process coined "metabolic reprograming" - an emerging hallmark of cancer. Inside the cell, these nutrients synergize to produce metabolic building blocks, such as nucleic acids, lipids and proteins, as well as energy (ATP), glutathione and reducing equivalents (NADPH), required for survival, growth and proliferation. Intense research aimed at understanding the underlying cause of the metabolic rewiring has revealed that established oncogenes and tumor suppressors involved in signaling alter cellular metabolism to contribute to the transition from a normal quiescent cell to a rapidly proliferating cancer cell. Likewise, bona fide metabolic sensors are emerging as regulators of tumorigenesis. This review will focus on one such family of sensors, sirtuins, which utilize NAD(+) as a cofactor to catalyze deacetylation, deacylation and ADP-ribosylation of their protein substrates. In this review, we will enumerate how cancer cell metabolism is different from a normal quiescent cell and highlight the emerging role of mitochondrial sirtuin signaling in the regulation of tumor metabolism. PMID:25898275

  18. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose beneath 1 mM in patients with severe traumatic brain injury.

    OpenAIRE

    Meierhans, R; Bechir, M.; Ludwig, S.; Sommerfeld, J.; Brandi, G; Haberthur, C; Stocker, R; Stover, J F

    2010-01-01

    ABSTRACT: INTRODUCTION: The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. METHODS: In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 mul/ min, collecting samples at 60 minute intervals. Occult metab...

  19. Regulatory role of leptin in glucose and lipid metabolism in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Yasuhiko Minokoshi

    2012-01-01

    Full Text Available Leptin is a hormone secreted by adipocytes that plays a pivotal role in regulation of food intake, energy expenditure, and neuroendocrine function. Several lines of evidences indicate that independent of the anorexic effect, leptin regulates glucose and lipid metabolism in peripheral tissues in rodents and humans. It has been shown that leptin improves the diabetes phenotype in lipodystrophic patients and rodents. Moreover, leptin suppresses the development of severe, progressive impairment of glucose metabolism in insulin-deficient diabetes in rodents. We found that leptin increases glucose uptake and fatty acid oxidation in skeletal muscle in rats and mice in vivo. Leptin increases glucose uptake in skeletal muscle via the hypothalamic-sympathetic nervous system axis and ?-adrenergic mechanism, while leptin stimulates fatty acid oxidation in muscle via AMP-activated protein kinase (AMPK. Leptin-induced fatty acid oxidation results in the decrease of lipid accumulation in muscle, which can lead to functional impairments called as "lipotoxicity." Activation of AMPK occurs by direct action of leptin on muscle and through the medial hypothalamus-sympathetic nervous system and ?-adrenergic mechanism. Thus, leptin plays an important role in the regulation of glucose and fatty acid metabolism in skeletal muscle.

  20. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    Science.gov (United States)

    Mikkelsen, Kristian H.; Frost, Morten; Bahl, Martin I.; Licht, Tine R.; Jensen, Ulrich S.; Rosenberg, Jacob; Pedersen, Oluf; Hansen, Torben; Rehfeld, Jens F.; Holst, Jens J.; Vilsbøll, Tina; Knop, Filip K.

    2015-01-01

    Objective The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans. Methods Meal tests with measurements of postprandial glucose tolerance and postprandial release of insulin and gut hormones were performed before, immediately after and 6 weeks after a 4-day, broad-spectrum, per oral antibiotic cocktail (vancomycin 500 mg, gentamycin 40 mg and meropenem 500 mg once-daily) in a group of 12 lean and glucose tolerant males. Faecal samples were collected for culture-based assessment of changes in gut microbiota composition. Results Acute and dramatic reductions in the abundance of a representative set of gut bacteria was seen immediately following the antibiotic course, but no changes in postprandial glucose tolerance, insulin secretion or plasma lipid concentrations were found. Apart from an acute and reversible increase in peptide YY secretion, no changes were observed in postprandial gut hormone release. Conclusion As evaluated by selective cultivation of gut bacteria, a broad-spectrum 4-day antibiotics course with vancomycin, gentamycin and meropenem induced shifts in gut microbiota composition that had no clinically relevant short or long-term effects on metabolic variables in healthy glucose-tolerant males. Trial Registration clinicaltrials.gov NCT01633762 PMID:26562532

  1. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock

    DEFF Research Database (Denmark)

    Dyar, Kenneth A.; Ciciliot, Stefano

    2014-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-stimulated glucose uptake with reduced protein levels of GLUT4, the insulin-dependent glucose transporter, and TBC1D1, a Rab-GTPase involved in GLUT4 translocation. Pyruvate dehydrogenase (PDH) activity was also reduced due to altered expression of circadian genes Pdk4 and Pdp1, coding for PDH kinase and phosphatase, respectively. PDH inhibition leads to reduced glucose oxidation and diversion of glycolytic intermediates to alternative metabolic pathways, as revealed by metabolome analysis. The impaired glucose metabolism induced by muscle-specific Bmal1 knockout suggests that a major physiological role of the muscle clock is to prepare for the transition from the rest/fasting phase to the active/feeding phase, when glucose becomes the predominant fuel for skeletal muscle. © 2013 The Authors.

  2. Obesity, metabolic syndrome, impaired fasting glucose, and microvascular dysfunction: a principal component analysis approach

    Directory of Open Access Journals (Sweden)

    Panazzolo Diogo G

    2012-11-01

    Full Text Available Abstract Background We aimed to evaluate the multivariate association between functional microvascular variables and clinical-laboratorial-anthropometrical measurements. Methods Data from 189 female subjects (34.0±15.5 years, 30.5±7.1 kg/m2, who were non-smokers, non-regular drug users, without a history of diabetes and/or hypertension, were analyzed by principal component analysis (PCA. PCA is a classical multivariate exploratory tool because it highlights common variation between variables allowing inferences about possible biological meaning of associations between them, without pre-establishing cause-effect relationships. In total, 15 variables were used for PCA: body mass index (BMI, waist circumference, systolic and diastolic blood pressure (BP, fasting plasma glucose, levels of total cholesterol, high-density lipoprotein cholesterol (HDL-c, low-density lipoprotein cholesterol (LDL-c, triglycerides (TG, insulin, C-reactive protein (CRP, and functional microvascular variables measured by nailfold videocapillaroscopy. Nailfold videocapillaroscopy was used for direct visualization of nutritive capillaries, assessing functional capillary density, red blood cell velocity (RBCV at rest and peak after 1 min of arterial occlusion (RBCVmax, and the time taken to reach RBCVmax (TRBCVmax. Results A total of 35% of subjects had metabolic syndrome, 77% were overweight/obese, and 9.5% had impaired fasting glucose. PCA was able to recognize that functional microvascular variables and clinical-laboratorial-anthropometrical measurements had a similar variation. The first five principal components explained most of the intrinsic variation of the data. For example, principal component 1 was associated with BMI, waist circumference, systolic BP, diastolic BP, insulin, TG, CRP, and TRBCVmax varying in the same way. Principal component 1 also showed a strong association among HDL-c, RBCV, and RBCVmax, but in the opposite way. Principal component 3 was associated only with microvascular variables in the same way (functional capillary density, RBCV and RBCVmax. Fasting plasma glucose appeared to be related to principal component 4 and did not show any association with microvascular reactivity. Conclusions In non-diabetic female subjects, a multivariate scenario of associations between classic clinical variables strictly related to obesity and metabolic syndrome suggests a significant relationship between these diseases and microvascular reactivity.

  3. Metabolic responses to prolonged consumption of glucose- and fructose-sweetened beverages are not associated with postprandial or 24-hour glucose and insulin excursions

    Science.gov (United States)

    It has been proposed that the adverse metabolic effects of chronic consumption of sugar-sweetened beverages which contain both glucose and fructose are a consequence of increased circulating glucose and insulin excursions, i.e dietary glycemic index (GI). Objective: We determined if the greater adv...

  4. Transcriptome profiling of brown adipose tissue during cold exposure reveals extensive regulation of glucose metabolism.

    Science.gov (United States)

    Hao, Qin; Yadav, Rachita; Basse, Astrid L; Petersen, Sidsel; Sonne, Si B; Rasmussen, Simon; Zhu, Qianhua; Lu, Zhike; Wang, Jun; Audouze, Karine; Gupta, Ramneek; Madsen, Lise; Kristiansen, Karsten; Hansen, Jacob B

    2015-03-01

    We applied digital gene expression profiling to determine the transcriptome of brown and white adipose tissues (BAT and WAT, respectively) during cold exposure. Male C57BL/6J mice were exposed to cold for 2 or 4 days. A notable induction of genes related to glucose uptake, glycolysis, glycogen metabolism, and the pentose phosphate pathway was observed in BAT from cold-exposed animals. In addition, glycerol-3-phosphate dehydrogenase 1 expression was induced in BAT from cold-challenged mice, suggesting increased synthesis of glycerol from glucose. Similarly, expression of lactate dehydrogenases was induced by cold in BAT. Pyruvate dehydrogenase kinase 2 (Pdk2) and Pdk4 were expressed at significantly higher levels in BAT than in WAT, and Pdk2 was induced in BAT by cold. Of notice, only a subset of the changes detected in BAT was observed in WAT. Based on changes in gene expression during cold exposure, we propose a model for the intermediary glucose metabolism in activated BAT: 1) fluxes through glycolysis and the pentose phosphate pathway are induced, the latter providing reducing equivalents for de novo fatty acid synthesis; 2) glycerol synthesis from glucose is increased, facilitating triacylglycerol synthesis/fatty acid re-esterification; 3) glycogen turnover and lactate production are increased; and 4) entry of glucose carbon into the tricarboxylic acid cycle is restricted by PDK2 and PDK4. In summary, our results demonstrate extensive and diverse gene expression changes related to glucose handling in activated BAT. PMID:25516548

  5. The regulation of cerebral glucose uptake and metabolism in normal and diabetic man

    International Nuclear Information System (INIS)

    The effects of changes in serum insulin and glucose on brain glucose metabolism using PET technology were investigated. Eight normal, right-handed, male subjects were studied on three separate occasions at least one week apart. In each subject a PET scan was performed under three different metabolic circumstances: basal conditions after an overnight fast, euglycemic clamp, and hypoglycemic clamp in which the plasma glucose was maintained at 55 mg/dl. Exogenous insulin was infused at the same rate in the euglycemic and hypoglycemic clamp studies. In the latter study, the concomitant glucose infusion rate was reduced to allow the plasma glucose concentration to fall to the desired level of mild hypoglycemia. During each study, dynamic positron emission tomography was used to characterize cerebral uptake and distribution of the Fluorine-18 2-deoxyglucose radiotracer as a function of time. Analysis of the brain uptake curve and tracer input function provided rate constants for transport and phosphorylation in accord with a 3 compartmental model (Sokoloff, 1979). Dynamic scans were performed on each study occasion allowing individual rate constants to be studied. In addition to the brain uptake curves, plasma glucose, F-18 2DG levels and counterregulatory hormone values were determined from frequent arterialized venous blood samples

  6. Transcriptome profiling of brown adipose tissue during cold exposure reveals extensive regulation of glucose metabolism

    DEFF Research Database (Denmark)

    Hao, Qin; Yadav, Rachita

    2015-01-01

    We applied digital gene expression profiling to determine the transcriptome of brown and white adipose tissues (BAT and WAT, respectively) during cold exposure. Male C57BL/6J mice were exposed to cold for 2 or 4 days. A notable induction of genes related to glucose uptake, glycolysis, glycogen metabolism, and the pentose phosphate pathway was observed in BAT from cold-exposed animals. In addition, glycerol-3-phosphate dehydrogenase 1 expression was induced in BAT from cold-challenged mice, suggesting increased synthesis of glycerol from glucose. Similarly, expression of lactate dehydrogenases was induced by cold in BAT. Pyruvate dehydrogenase kinase 2 (Pdk2) and Pdk4 were expressed at significantly higher levels in BAT than in WAT, and Pdk2 was induced in BAT by cold. Of notice, only a subset of the changes detected in BAT was observed in WAT. Based on changes in gene expression during cold exposure, we propose a model for the intermediary glucose metabolism in activated BAT: 1) fluxes through glycolysis and the pentose phosphate pathway are induced, the latter providing reducing equivalents for de novo fatty acid synthesis; 2) glycerol synthesis from glucose is increased, facilitating triacylglycerol synthesis/fatty acid re-esterification; 3) glycogen turnover and lactate production are increased; and 4) entry of glucose carbon into the tricarboxylic acid cycle is restricted by PDK2 and PDK4. In summary, our results demonstrate extensive and diverse gene expression changes related to glucose handling in activated BAT.

  7. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients

    DEFF Research Database (Denmark)

    Stender, Johan; Kupers, Ron; Rodell, Anders; Thibaut, Aurore; Chatelle, Camille; Bruno, Marie-Aurélie; Gejl, Michael; Bernard, Claire; Hustinx, Roland; Laureys, Steven; Gjedde, Albert

    2014-01-01

    The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these...

  8. High Glucose Induces Mitochondrial Morphology and Metabolic Changes in Retinal Pericytes

    OpenAIRE

    Trudeau, Kyle; Molina, Anthony J. A.; Roy, Sayon

    2011-01-01

    This was an investigation of whether mitochondrial dysfunction plays a role in pericyte loss, a prominent lesion of diabetic retinopathy. The findings indicate that in a high-glucose condition, mitochondria of retinal pericytes display significant fragmentation, metabolic dysfunction, and reduced extracellular acidification. These altered mitochondrial characteristics could play a role in the accelerated apoptosis associated with the retinal pericytes in diabetic retinopathy.

  9. Oolong tea does not improve glucose metabolism in non-diabetic adults

    Science.gov (United States)

    Studies of the influence of tea on glucose metabolism have produced inconsistent results, possibly due to lack of dietary control and/or unclear characterization of tea products. Therefore, a double-blind crossover study was conducted in which healthy males (n=19) consumed each of three oolong tea ...

  10. A new insulin-glucose metabolic model of type 1 diabetes mellitus: An in silico study.

    Science.gov (United States)

    Fang, Qiang; Yu, Lei; Li, Peng

    2015-06-01

    Diabetes mellitus is a serious metabolic disease that threatens people's health. The artificial pancreas system (APS) has been generally considered as the ultimate cure of type 1 diabetes mellitus (T1DM). The simulation model of insulin-glucose metabolism is an essential part of an APS as it processes the measured glucose level and generates control signal to the insulin infusion system. This paper presents a new insulin-glucose metabolic model using model reduction methods applied to the popular but complex Cobelli's model. The performances of three different model reduction methods, namely Padé approximation, Routh approximation and system identification, are compared. The results of in silico simulation based on 30 virtual patients of three groups for adults, adolescents, and children show that the approximation error between this new model and the original Cobelli's model is so small that can be neglected. It can be concluded that the proposed simplified model can describe the insulin-glucose metabolism process rather accurately as well as can be easily implemented and integrated into an APS to make the APS technology more mature and closer to clinical use. The FPGA implementation, testing and further simplification possibility will be explored in the next stage of research. PMID:25896293

  11. PET-imaging of cerebral glucose metabolism during sleep and dreaming

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) of (18F)-2-fluoro-2-deoxyglucose (FDG) affording non-invasive repeatable quantification of local cerebral glucose utilization was employed to determine possible differential effects of sleep, with and without dreaming, on regional brain metabolism of normal volunteers also measured during wakefulness. (author). 7 refs.; 1 tab

  12. Brain Size and Cerebral Glucose Metabolic Rate in Nonspecific Retardation and Down Syndrome.

    Science.gov (United States)

    Haier, Richard J.; And Others

    1995-01-01

    Brain size and cerebral glucose metabolic rate were determined for 10 individuals with mild mental retardation (MR), 7 individuals with Down syndrome (DS), and 10 matched controls. MR and DS groups both had brain volumes of about 80% compared to controls, with variance greatest within the MR group. (SLD)

  13. Effects of 5-thio-d-glucose on hexose transport and metabolism

    International Nuclear Information System (INIS)

    Using the everted sac technique, the mouse small intestine was found to transport 5-thio-D-glucose (5TG) against a concentration gradient, by a sodium- and energy-dependent, phloridzin- and ouabain-sensitive mechanism. At incubation periods of one hour, 5TG inhibited 3-O-methyl-D-glucose (3MG) and D-galactose transport while enhancing net transport of D-glucose. Addition of 5TG and D-glucose produced a dose-related increase in mucosal tissue water D-glucose concentration with a concomitant decrease in L-lactate production. These results suggest that 5TG decreased intestinal utilization of D-glucose via anaerobic glycolysis to partially account for the increased net transport of D-glucose. However, when incubation periods were less than 45 minutes duration, 5TG inhibited net D-glucose transport without affecting L-lactate production. A time- and dose-dependent inhibition of 14CO2 production from [1-14C] or [6-14C] D-glucose by 5TG was observed in everted rings of mouse intestine. The 14CO2 produced from [6-14C]-D-glucose was not markedly inhibited until incubations were 45 minutes or longer. This study demonstrated that 5TG inhibits D-glucose utilization in the mouse small intestine, which may contribute to the diabetogenic effect observed in vivo. Addition of 5TG stimulated 14CO2 production from [1-14C] and [6-14C] D-glucose in Ehrlich-Lettre (EL) ascites cells, while failing to affect 14CO2 production from the tumor bearing mouse (TBM) intestine at any dose employed. When tumor bearing mice were treated with 5TG, stimulation of the HMS occurred in the tumor cells, while variable effects were demonstrated on the HMS of the TBM intestine

  14. 14C-carbaril metabolism in soils modified by organic matter oxidation and addition of glucose

    International Nuclear Information System (INIS)

    Carbaril behaviour is studied in samples of Brunizen and Dark Red Latosol soils from Parana, using radiometric techniques, with the objective of determining the role of oxidation fo its organic components, and enrichment with glucose, in the metabolism of the insecticide. Lots of autoclaved soils, oxidized and with no previous treatment, with and without glucose addition, are incubated with 14C-carbaril and analysed during eight weeks. Its was noted that, as a result of oxidation both soils showed a marked improvement in the metabolism of the agrochemical while addition of glucose exerted litlle influence on the degrading processes. Three metabolites were detected with R sub(f) 0.23, 0.40 and 0.70. (Author)

  15. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian H; Frost, Morten; Bahl, Martin Iain; Licht, Tine Rask; Jensen, Ulrich S.; Rosenberg, Jacob; Pedersen, Oluf; Hansen, Torben; Rehfeld, Jens F.; Holst, Jens J.; Vilsbøll, Tina; Knop, Filip K.

    2015-01-01

    The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans. Meal tests...... with measurements of postprandial glucose tolerance and postprandial release of insulin and gut hormones were performed before, immediately after and 6 weeks after a 4-day, broad-spectrum, per oral antibiotic cocktail (vancomycin 500 mg, gentamycin 40 mg and meropenem 500 mg once-daily) in a group of...... 12 lean and glucose tolerant males. Faecal samples were collected for culture-based assessment of changes in gut microbiota composition. Acute and dramatic reductions in the abundance of a representative set of gut bacteria was seen immediately following the antibiotic course, but no changes in...

  16. Lactate and glucose concomitant consumption as a self-regulated pH detoxification mechanism in HEK293 cell cultures.

    Science.gov (United States)

    Liste-Calleja, Leticia; Lecina, Martí; Lopez-Repullo, Jonatan; Albiol, Joan; Solà, Carles; Cairó, Jordi Joan

    2015-12-01

    One of the most important limitations of mammalian cell-based processes is the secretion and accumulation of lactate as a by-product of their metabolism. Among the cell lines commonly used in industrial bioprocesses, HEK293 has been gaining importance over the last years. Up recently, HEK293 cells were known to consume lactate in late stages of cell culture usually when glucose and/or glutamine were depleted from media. Remarkably, in both scenarios, no significant cell growth was reported. However, we have observed a different metabolic behavior regarding lactate production and consumption in HEK293 cultures. HEK293 cells were able to co-metabolize glucose and lactate simultaneously, even in exponentially growing cell cultures. Our deep study of the effects of environmental conditions on lactate metabolism revealed that pH was the key to trigger the metabolic shift from lactate production to lactate and glucose concomitant consumption. Remarkably, this shift could be triggered at will when pH was set at 6.8. Even more interesting was the fact that lowering pH to 6.6 and supplementing media with exogenous lactate resulted in co-consumption of glucose and lactate from the beginning of cell culture, without affecting cell growth or protein productivity. On the contrary, cell growth was clearly hampered at this low pH if extracellular lactate was lacking. From our results, we hypothesize that HEK293 cells metabolize extracellular lactate as a strategy for pH detoxification, by means of co-transporting extracellular protons together with lactate into the cytosol. This novel hypothesis for unraveling lactate metabolism in HEK293 cells could open a door to re-direct genetic engineering strategies in order to obtain more efficient cell lines and also to further develop animal cell technology applications. PMID:26272090

  17. Glucose metabolism in small subcortical structures in Parkinson's disease

    DEFF Research Database (Denmark)

    Borghammer, Per; Hansen, Søren B; Eggers, Carsten; Chakravarty, Mallar; Vang, Kim; Aanerud, Joel; Hilker, Rüdiger; Heiss, Wolf-Dieter; Rodell, Anders; Munk, Ole Lajord; Keator, David; Gjedde, Albert

    2012-01-01

    Evidence from experimental animal models of Parkinson's disease (PD) suggests a characteristic pattern of metabolic perturbation in discrete, very small basal ganglia structures. These structures are generally too small to allow valid investigation by conventional positron emission tomography (PET) cameras. However, the high-resolution research tomograph (HRRT) PET system has a resolution of 2 mm, sufficient for the investigation of important structures such as the pallidum and thalamic subnucle...

  18. Glucose allostasis

    DEFF Research Database (Denmark)

    Stumvoll, Michael; Tataranni, P Antonio; Stefan, Norbert; Vozarova, Barbora; Bogardus, Clifton; de Courten, Barbora

    2003-01-01

    In many organisms, normoglycemia is achieved by a tight coupling of nutrient-stimulated insulin secretion in the pancreatic beta-cell (acute insulin response [AIR]) and the metabolic action of insulin to stimulate glucose disposal (insulin action [M]). It is widely accepted that in healthy individuals with normal glucose tolerance, normoglycemia can always be maintained by compensatorily increasing AIR in response to decreasing M (and vice versa). This has been mathematically described by the hy...

  19. Recovery of glucose metabolism in reperfused canine myocardium demonstrated by positron-CT (PCT)

    Energy Technology Data Exchange (ETDEWEB)

    Schwaiger, M.; Sochor, H.; Parodi, O.; Grover, M.; Hansen, H.W.; Selin, C.; Schelbert, H.R.

    1984-01-01

    The authors previously examined with PCT in chronic dogs the long term metabolic recovery during reperfusion after a 3 hr ischemic insult. Increased regional glucose utilization at 24 hrs of R accurately identified reversible tissue injury documented by late improvement in segmental function by ultrasonic crystals. To define the early metabolic events after a 3 hr LAD balloon occlusion, regional blood flow and glucose utilization was studied in 8 dogs with PCT, N-13 ammonia (NA) and F-18 deoxyglucose (FDG) at 2 hrs and at 24 hrs after R. The dogs were then thoracotomized and MBF by microspheres, arterio-venous differences for glucose, lactate and O/sub 2/ across the reperfused segment (LAD vein) and the left ventricle (coronary sinus) measured. Immediately after reperfusion, MBF and FDG uptake were 27 +- 24% and 21 +- 48% lower in the reperfused territory (RT) than in control myocardium (C). At 24 hrs, MBF by microspheres was and 22 +- 25% lower and FDG uptake 175 +- 73% higher in RT than in C. In the RT, consumption of glucose (by Fick method) was 202 +- 107% higher, of lactate 96 +- 85% lower and of O/sub 2/ 42 +- 26% lower than in the entire LV. PCT measured FDG uptake correlated with glucose consumption (r=0.94) and confirmed that the segmentally increased FDG uptake at 24 hrs reflected increased glucose utilization that, as indicated by the reduced lactate consumption, was partly anaerobic. The authors conclude that initially after R, glucose metabolism is depressed but increases above C within 24 hrs, a time course that now can be determined noninvasively with PCT and is useful for predicting functional recovery.

  20. A new application of electrical impedance spectroscopy for measuring glucose metabolism: a phantom study

    Science.gov (United States)

    Dhurjaty, Sreeram; Qiu, Yuchen; Tan, Maxine; Liu, Hong; Zheng, Bin

    2015-03-01

    Glucose metabolism relates to biochemical processes in living organisms and plays an important role in diabetes and cancer-metastasis. Although many methods are available for measuring glucose metabolism-activities, from simple blood tests to positron emission tomography, currently there is no robust and affordable device that enables monitoring of glucose levels in real-time. In this study we tested feasibility of applying a unique resonance-frequency based electronic impedance spectroscopy (REIS) device that has been, recently developed to measure and monitor glucose metabolism levels using a phantom study. In this new testing model, a multi-frequency electrical signal sequence is applied and scanned through the subject. When the positive reactance of an inductor inside the device cancels out the negative reactance of the capacitance of the subject, the electrical impedance reaches a minimum value and this frequency is defined as the resonance frequency. The REIS system has a 24-bit analog-to-digital signal convertor and a frequency-resolution of 100Hz. In the experiment, two probes are placed inside a 100cc container initially filled with distilled water. As we gradually added liquid-glucose in increments of 1cc (250mg), we measured resonance frequencies and minimum electrical signal values (where A/D was normalized to a full scale of 1V). The results showed that resonance frequencies monotonously decreased from 243kHz to 178kHz, while the minimum voltages increased from 405mV to 793mV as the added amount of glucose increased from 0 to 5cc. The study demonstrated the feasibility of applying this new REIS technology to measure and/or monitor glucose levels in real-time in future.

  1. Glucose and maltose metabolism in MIG1-disrupted and MAL-constitutive strains of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Klein, Christopher; Olsson, Lisbeth; Rønnow, B; Mikkelsen, Jørn Dalgaard; Nielsen, Jens Bredal

    1997-01-01

    The alleviation of glucose control of maltose metabolism brought about by MIG1 disruption was compared to that by MAL overexpression in a haploid Saccharomyces cerevisiae strain. The sugar consumption profiles during cultivation of the wild type, single transformants and a double transformant in a...... mixed glucose-maltose medium revealed that the MAL-constitutive strains were more alleviated than the single MIG1-disrupted transformant. While all transformants exhibited higher maximum specific growth rates (0.24-0.25 h(-1)) in glucose-maltose mixtures than the wild type strain (0.20 h(-1)), the MAL......-constitutive transformants grew even faster (0.27-0.30 h(-1)) in pure glucose medium than the wild type strain (0.24 h(-1))....

  2. Glucose metabolism in the antibiotic producing actinomycete Nonomuraea sp ATCC 39727

    DEFF Research Database (Denmark)

    Gunnarsson, Nina; Bruheim, Per; Nielsen, Jens

    2004-01-01

    The actinomycete Nonomuraea sp. ATCC 39727, producer of the glycopeptide A40926 that is used as precursor for the novel antibiotic dalbavancin, has an unusual carbon metabolism. Glucose is primarily metabolized via the Entner-Doudoroff (ED) pathway, although the energetically more favorable Embden...... - Meyerhof - Parnas (EMP) pathway is present in this organism. Moreover, Nonomuraea utilizes a PPi-dependent phosphofructokinase, an enzyme that has been connected with anaerobic metabolism in eukaryotes and higher plants, but recently has been recognized in several actinomycetes. In order to study its...

  3. Clinical significance of determination of serum leptin, insulin levels and blood sugar in pregnant women with glucose metabolism disturbances

    International Nuclear Information System (INIS)

    Objective: To investigate the changes of serum leptin, insulin levels and blood sugar contents in pregnant women with gestational glucose metabolism disturbances. Methods: Fasting and 3h after oral 50g glucose serum levels of leptin were measured with RIA in 36 pregnant women with glucose metabolism disturbances (gestational diabetes mellitus or gestational impaired glucose tolerance) and 34 controls. Also, fasting serum insulin levels (with CLIA) and blood sugar contents 1h after oral 50 glucose (with glucose oxidase method) were determined in all these subjects. Results: 1. Serum levels of leptin in pregnant women with glucose metabolism disturbances were 14.9 ± 4.3 ?g/L (vs controls 9.8 ± 1.7 ?g/L, P<0.01). 2. The serum levels of insulin and 1 h post - 50g glucose blood sugar contents in pregnant women with glucose metabolism disturbances were 12.9±4.3mU/L and 11.0±1.4mmol/L respectively, which were both significantly positively correlated with the serum leptin levels (r=0.835, r=0.758 respectively) (vs levels in controls: 8.45±3.0mU/L and 7.84±1.3mmol/L). Conclusion: Elevation of fasting serum levels of leptin was demonstrated in pregnant women with glucose metabolism disturbances and the level of leptin was positively correlated with that of insulin and blood sugar. (authors)

  4. Response to dexamethasone is glucose-sensitive in multiple myeloma cell lines

    Directory of Open Access Journals (Sweden)

    Turturro Francesco

    2011-09-01

    Full Text Available Abstract Background Hyperglycemia is among the major side effects of dexamethasone (DEX. Glucose or glucocorticoid (GC regulates the expression of thioredoxin-interacting protein (TXNIP that controls the production of reactive oxygen species (ROS through the modulation of thioredoxin (TRX activity. Methods Multiple myeloma (MM cells were grown in 5 or 20 mM/L glucose with or without 25 ?M DEX. Semiquantitative reverse transcription-PCR (RT-PCR was used to assess TXNIP RNA expression in response to glucose and DEX. ROS were detected by 5-6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA. TRX activity was assayed by the insulin disulfide-reducing assay. Proliferation was evaluated using CellTiter96 reagent with 490-nm absorbtion and used to calculate the DEX IC50 in 20 mM/L glucose using the Chou's dose effect equation. Results TXNIP RNA level responded to glucose or DEX with the same order of magnitude ARH77 > NCIH929 > U266B1 in these cells. MC/CAR cells were resistant to the regulation. ROS level increased concurrently with reduced TRX activity. Surprisingly glucose increased TRX activity in MC/CAR cells keeping ROS level low. DEX and glucose were lacking the expected additive effect on TXNIP RNA regulation when used concurrently in sensitive cells. ROS level was significantly lower when DEX was used in conditions of hyperglycemia in ARH77/NCIH9292 cells but not in U266B1 cells. Dex-IC50 increased 10-fold when the dose response effect of DEX was evaluated with glucose in ARH && and MC/Car cells Conclusions Our study shows for the first time that glucose or DEX regulates important components of ROS production through TXNIP modulation or direct interference with TRX activity in MM cells. We show that glucose modulates the activity of DEX through ROS regualtion in MM cells. A better understanding of these pathways may help in improving the efficacy and reducing the toxicity of DEX, a drug still highly used in the treatment of MM. Our study also set the ground to study the relevance of the metabolic milieu in affecting drug response and toxicity in diabetic versus non-diabetic patients with MM.

  5. Effect of breakfast skipping on diurnal variation of energy metabolism and blood glucose.

    Science.gov (United States)

    Kobayashi, Fumi; Ogata, Hitomi; Omi, Naomi; Nagasaka, Shoichiro; Yamaguchi, Sachiko; Hibi, Masanobu; Tokuyama, Kumpei

    2014-01-01

    Epidemiological studies suggest an association between breakfast skipping and body weight gain, insulin resistance or type 2 diabetes. Time when meal is consumed affects postprandial increase in energy expenditure and blood glucose, and breakfast skipping may reduce 24 h energy expenditure and elevate blood glucose level. The present study evaluated the effect of breakfast skipping on diurnal variation of energy metabolism and blood glucose. The skipped breakfast was compensated by following big meals at lunch and supper. In a randomized repeated-measure design with or without breakfast, eight males stayed twice in a room-size respiratory chamber. Blood glucose was recorded with a continuous glucose monitoring system. Breakfast skipping did not affect 24 h energy expenditure, fat oxidation and thermic effect of food, but increased overall 24 h average of blood glucose (83 ± 3 vs 89 ± 2 mg/dl, P breakfast skipping. These observations suggest that changes in glucose homeostasis precede that of energy balance, in the potential sequence caused by breakfast skipping, if this dietary habit has any effect on energy balance.: PMID:24847666

  6. Similarities of cerebral glucose metabolism in Alzheimer's and Parkinsonian dementia

    International Nuclear Information System (INIS)

    In the dementia of probable Alzheimer's Disease (AD), there is a decrease in the metabolic ratio of parietal cortex/caudate-thalamus which relates measures in the most and in the least severely affected locations. Since some demented patients with Parkinson's Disease (PDD) are known to share pathological and neurochemical features with AD patients, the authors evaluated if the distribution of cerebral hypometabolism in PDD and AD were the same. Local cerebral metabolic rates were determined using the FDG method and positron tomography in subjects with AD (N=23), and PDD (N=7), multiple infarct dementia (MID)(N=6), and controls (N=10). In MID, the mean par/caudthal ratio was normal (0.79 +- 0.9, N=6). In AD and PDD patients, this ratio correlated negatively with both the severity (r=-0.624, rho=0.001) and duration (r=-0.657, rho=0.001) of dementia. The ratio was markedly decreased in subjects with mild to severe dementia (0.46 +- 0.09, N=21) and with dementia duration greater than two years (0.44 +- 0.08, N=18), but the ratio was also significantly decreased in patients with less advanced disease, i.e., when dementia was only questionable (0.64 +- 0.14, N=9) (t=2.27, rho<0.037) and when duration was two years or less (0.62 +- 0.13, N=12)(t=2.88, rho<0.009). This similarity of hypometabolism in AD and PDD is additional evidence that a common mechanism may operate in both disorders. The par/caud-thal metabolic ratio may be an index useful in the differential diagnosis of early dementia

  7. Oral cancer cells may rewire alternative metabolic pathways to survive from siRNA silencing of metabolic enzymes

    International Nuclear Information System (INIS)

    Cancer cells may undergo metabolic adaptations that support their growth as well as drug resistance properties. The purpose of this study is to test if oral cancer cells can overcome the metabolic defects introduced by using small interfering RNA (siRNA) to knock down their expression of important metabolic enzymes. UM1 and UM2 oral cancer cells were transfected with siRNA to transketolase (TKT) or siRNA to adenylate kinase (AK2), and Western blotting was used to confirm the knockdown. Cellular uptake of glucose and glutamine and production of lactate were compared between the cancer cells with either TKT or AK2 knockdown and those transfected with control siRNA. Statistical analysis was performed with student T-test. Despite the defect in the pentose phosphate pathway caused by siRNA knockdown of TKT, the survived UM1 or UM2 cells utilized more glucose and glutamine and secreted a significantly higher amount of lactate than the cells transferred with control siRNA. We also demonstrated that siRNA knockdown of AK2 constrained the proliferation of UM1 and UM2 cells but similarly led to an increased uptake of glucose/glutamine and production of lactate by the UM1 or UM2 cells survived from siRNA silencing of AK2. Our results indicate that the metabolic defects introduced by siRNA silencing of metabolic enzymes TKT or AK2 may be compensated by alternative feedback metabolic mechanisms, suggesting that cancer cells may overcome single defective pathways through secondary metabolic network adaptations. The highly robust nature of oral cancer cell metabolism implies that a systematic medical approach targeting multiple metabolic pathways may be needed to accomplish the continued improvement of cancer treatment

  8. Deoxyglucose method for the estimation of local myocardial glucose metabolism with positron computed tomography

    International Nuclear Information System (INIS)

    The deoxyglucose method originally developed for measurements of the local cerebral metabolic rate for glucose has been investigated in terms of its application to studies of the heart with positron computed tomography (PCT) and FDG. Studies were performed in dogs to measure the tissue kinetics of FDG with PCT and by direct arterial-venous sampling. The operational equation developed in our laboratory as an extension of the Sokoloff model was used to analyze the data. The FDG method accurately predicted the true MMRGlc even when the glucose metabolic rate was normal but myocardial blood flow (MBF) was elevated 5 times the control value or when metabolism was reduced to 10% of normal and MBF increased 5 times normal. Improvements in PCT resolution are required to improve the accuracy of the estimates of the rate constants and the MMRGlc

  9. Cerebral oxygen and glucose metabolism and blood flow in mitochondrial encephalomyopathy: a PET study

    International Nuclear Information System (INIS)

    Cerebral blood flow (CBF), oxygen metabolism (CMRO2), and glucose metabolism (CMRGlc) were measured using positron emission tomography in five patients diagnosed as having mitochondrial encephalomyopathy. The molar ratio between the oxygen and glucose consumptions was reduced diffusely, as CMRO2 was markedly decreased and CMRGlc was slightly reduced. The CBF showed less changes. The CBF increase on hypercapnia was smaller than normal, though this was not significant. CBF with hypocapnia demonstrated a significant reduction compared with the normal. These results suggest that oxidative metabolism is impaired and anaerobic glycolysis relatively stimulated, due to a primary defect of mitochondrial function, and that mild lactic acidosis occurs in brain tissue because of impaired utilisation of pyruvate in the TCA cycle. As these findings appear to indicate directly a characteristic of this disease, such measurements may be a useful tool for assessment of the pathophysiology and for diagnosis of mitochondrial encephalomyopathy. (orig.). With 1 fig., 4 tabs

  10. Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Cerebral blood flow, cerebral oxygen metabolic rate and cerebral glucose metabolic rate were measured with positron emission tomography (PET) in four patients with progressive supranuclear palsy (PSP). Decreased blood flow and hypometabolism of oxygen and glucose were found in both subcortical and cortical regions, particularly in the striatum including the head of the caudate nucleus and the frontal cortex. The coupling between blood flow and metabolism was preserved even in the regions which showed decreased blood flow and hypometabolism. These findings indicated the hypofunction, as revealed by decreased blood flow and hypometablolism on PET, both in the striatum and the frontal cortex, and which may underlie the pathophysiological mechanism of motor and mental disturbance in PSP. (author)

  11. The roles of lipid and glucose metabolism in modulation of ?-amyloid, tau, and neurodegeneration in the pathogenesis of Alzheimer disease

    Science.gov (United States)

    Sato, Naoyuki; Morishita, Ryuichi

    2015-01-01

    Diabetes is a risk factor for Alzheimer disease (AD). Apolipoprotein E (ApoE) and several genes related to AD have recently been identified by genome-wide association studies (GWAS) as being closely linked to lipid metabolism. Lipid metabolism and glucose-energy metabolism are closely related. Here, we review the emerging evidence regarding the roles of lipid and glucose metabolism in the modulation of ?-amyloid, tau, and neurodegeneration during the pathogenesis of AD. Disruption of homeostasis of lipid and glucose metabolism affects production and clearance of ?-amyloid and tau phosphorylation, and induces neurodegeneration. A more integrated understanding of the interactions among lipid, glucose, and protein metabolism is required to elucidate the pathogenesis of AD and to develop next-generation therapeutic options.

  12. Ovarian tumor-initiating cells display a flexible metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Angela S. [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Roberts, Paul C. [Biomedical Science and Pathobiology, Virginia Tech, Blacksburg, VA (United States); Frisard, Madlyn I. [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Hulver, Matthew W., E-mail: hulvermw@vt.edu [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Schmelz, Eva M., E-mail: eschmelz@vt.edu [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States)

    2014-10-15

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L{sub FFLv} (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth.

  13. Ovarian tumor-initiating cells display a flexible metabolism

    International Nuclear Information System (INIS)

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-LFFLv (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth

  14. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    Energy Technology Data Exchange (ETDEWEB)

    Bass, V. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Gordon, C.J.; Jarema, K.A.; MacPhail, R.C. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Cascio, W.E. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Phillips, P.M. [Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Ledbetter, A.D.; Schladweiler, M.C. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Andrews, D. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Miller, D. [Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC (United States); Doerfler, D.L. [Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, U.P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone metabolic effects are only slightly exacerbated in geriatric rats.

  15. Factor analysis of regional cerebral glucose metabolic rates in healthy men

    International Nuclear Information System (INIS)

    Cerebral glucose utilization measured with fluorine-18-fluoro-2-deoxy-D-glucose is characterized by considerable variability both among different persons and for the same person examined on different occasions. The goal of this study was to explore whether some regions of the brain were more variable than others with respect to glucose utilization and whether there was a pattern in their covariance. The global and regional cerebral utilization of glucose was measured in 12 healthy young volunteers on 3 or 4 occasions. In all, 24 regions were examined. The interrelation of the glucose utilization rates of the brain regions was investigated by factor analysis of the metabolic rates. Some 70% of the total variance was attributable to only 1 factor, while 80% of the total variance could be attributed to 2 factors. Regions making up the first factor were the frontal and temporal cortex, cingulate gyrus, caudate nucleus, thalamus and putamen. These regions are functionally related to the limbic system. Regions of the second factor were the parietal cortex, occipital cortex and cerebellum, regions more clearly related to sensory and motor functions. The 2-factor pattern was highly reproducible, being found with different algorithms for factor extraction and rotation. Under resting conditions, the variance of cerebral metabolism seems to be primarily related to regions which are closely involved with the limbic system. Cortical regions involved primarily in motor and sensory functions have less influence on the variance. (orig.)

  16. Factor analysis of regional cerebral glucose metabolic rates in healthy men

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, Z.; Camargo, E.E.; Sostre, S.; Shafique, I.; Sadzot, B.; Links, J.M.; Dannals, R.F.; Wagner, H.N. Jr. (Johns Hopkins Medical Institutions, Baltimore, MA (United States). Div. of Nuclear Medicine Johns Hopkins Medical Institutions, Baltimore, MA (United States). Div. of Radiation Health Sciences)

    1992-07-01

    Cerebral glucose utilization measured with fluorine-18-fluoro-2-deoxy-D-glucose is characterized by considerable variability both among different persons and for the same person examined on different occasions. The goal of this study was to explore whether some regions of the brain were more variable than others with respect to glucose utilization and whether there was a pattern in their covariance. The global and regional cerebral utilization of glucose was measured in 12 healthy young volunteers on 3 or 4 occasions. In all, 24 regions were examined. The interrelation of the glucose utilization rates of the brain regions was investigated by factor analysis of the metabolic rates. Some 70% of the total variance was attributable to only 1 factor, while 80% of the total variance could be attributed to 2 factors. Regions making up the first factor were the frontal and temporal cortex, cingulate gyrus, caudate nucleus, thalamus and putamen. These regions are functionally related to the limbic system. Regions of the second factor were the parietal cortex, occipital cortex and cerebellum, regions more clearly related to sensory and motor functions. The 2-factor pattern was highly reproducible, being found with different algorithms for factor extraction and rotation. Under resting conditions, the variance of cerebral metabolism seems to be primarily related to regions which are closely involved with the limbic system. Cortical regions involved primarily in motor and sensory functions have less influence on the variance. (orig.).

  17. Effect of enoxacin, felbinac, and sparfloxacin on fatty acid metabolism and glucose concentrations in rat tissues.

    Science.gov (United States)

    Kasuya, Fumiyo; Miwa, Yasushi; Kazumi, Maya; Inoue, Hiroyuki; Ohta, Hiroyuki

    2011-05-01

    Multiple changes in metabolic levels could be useful for understanding physiological toxicity. To explore further risk factors for the convulsions induced by the interaction of nonsteroidal anti-inflammatory and new quinolone antimicrobial drugs, the effect of sparfloxacin, enoxacin, and felbinac on fatty acid metabolism and glucose concentrations in the liver, brain, and blood of rats was investigated. The levels of long-chain acyl-CoAs (C(18:1) and C(20:4)) in the liver and brain were decreased at the onset of convulsions induced by the coadministration of enoxacin with felbinac. Then, glucose concentrations in the liver and blood were decreased, whereas they were increased in a dose-dependant manner in the brain. However, the formation of acyl-CoAs and glucose levels in the liver, brain, and blood was not significantly influenced by enoxacin, felbinac, and sparfloxacin alone, respectively. The disturbance of both fatty acid metabolism and glucose levels might be associated with the increased susceptibility to convulsions, which may contribute to further understanding of the toxic effects associated with these drugs. PMID:21633127

  18. Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in Drosophila melanogaster.

    Science.gov (United States)

    Wagner, Anika E; Piegholdt, Stefanie; Rabe, Doerte; Baenas, Nieves; Schloesser, Anke; Eggersdorfer, Manfred; Stocker, Achim; Rimbach, Gerald

    2015-10-13

    In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1?, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of ?-amylase and ?-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of ?-amylase and to a greater extent into ?-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies. PMID:26375250

  19. Fructose Alters Intermediary Metabolism of Glucose in Human Adipocytes and Diverts Glucose to Serine Oxidation in the One–Carbon Cycle Energy Producing Pathway

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi Varma

    2015-06-01

    Full Text Available Increased consumption of sugar and fructose as sweeteners has resulted in the utilization of fructose as an alternative metabolic fuel that may compete with glucose and alter its metabolism. To explore this, human Simpson-Golabi-Behmel Syndrome (SGBS preadipocytes were differentiated to adipocytes in the presence of 0, 1, 2.5, 5 or 10 mM of fructose added to a medium containing 5 mM of glucose representing the normal blood glucose concentration. Targeted tracer [1,2-13C2]-d-glucose fate association approach was employed to examine the influence of fructose on the intermediary metabolism of glucose. Increasing concentrations of fructose robustly increased the oxidation of [1,2-13C2]-d-glucose to 13CO2 (p < 0.000001. However, glucose-derived 13CO2 negatively correlated with 13C labeled glutamate, 13C palmitate, and M+1 labeled lactate. These are strong markers of limited tricarboxylic acid (TCA cycle, fatty acid synthesis, pentose cycle fluxes, substrate turnover and NAD+/NADP+ or ATP production from glucose via complete oxidation, indicating diminished mitochondrial energy metabolism. Contrarily, a positive correlation was observed between glucose-derived 13CO2 formed and 13C oleate and doses of fructose which indicate the elongation and desaturation of palmitate to oleate for storage. Collectively, these results suggest that fructose preferentially drives glucose through serine oxidation glycine cleavage (SOGC pathway one-carbon cycle for NAD+/NADP+ production that is utilized in fructose-induced lipogenesis and storage in adipocytes.

  20. Metabolic engineering of CHO cells to alter lactate metabolism during fed-batch cultures.

    Science.gov (United States)

    Toussaint, Cécile; Henry, Olivier; Durocher, Yves

    2016-01-10

    Recombinant yeast pyruvate carboxylase (PYC2) expression was previously shown to be an effective metabolic engineering strategy for reducing lactate formation in a number of relevant mammalian cell lines, but, in the case of CHO cells, did not consistently lead to significant improvement in terms of cell growth, product titer and energy metabolism efficiency. In the present study, we report on the establishment of a PYC2-expressing CHO cell line producing a monoclonal antibody and displaying a significantly altered lactate metabolism compared to its parental line. All clones exhibiting strong PYC2 expression were shown to experience a significant and systematic metabolic shift toward lactate consumption, as well as a prolonged exponential growth phase leading to an increased maximum cell concentration and volumetric product titer. Of salient interest, PYC2-expressing CHO cells were shown to maintain a highly efficient metabolism in fed-batch cultures, even when exposed to high glucose levels, thereby alleviating the need of controlling nutrient at low levels and the potential negative impact of such strategy on product glycosylation. In bioreactor operated in fed-batch mode, the higher maximum cell density achieved with the PYC2 clone led to a net gain (20%) in final volumetric productivity. PMID:26603123

  1. Plasma antioxidants and brain glucose metabolism in elderly subjects with cognitive complaints

    International Nuclear Information System (INIS)

    The role of oxidative stress is increasingly recognized in cognitive disorders of the elderly, notably Alzheimer's disease (AD). In these subjects brain18F-FDG PET is regarded as a reliable biomarker of neurodegeneration. We hypothesized that oxidative stress could play a role in impairing brain glucose utilization in elderly subjects with increasing severity of cognitive disturbance. The study group comprised 85 subjects with cognitive disturbance of increasing degrees of severity including 23 subjects with subjective cognitive impairment (SCI), 28 patients with mild cognitive impairment and 34 patients with mild AD. In all subjects brain FDG PET was performed and plasma activities of extracellular superoxide dismutase (eSOD), catalase and glutathione peroxidase were measured. Voxel-based analysis (SPM8) was used to compare FDG PET between groups and to evaluate correlations between plasma antioxidants and glucose metabolism in the whole group of subjects, correcting for age and Mini-Mental State Examination score. Brain glucose metabolism progressively decreased in the bilateral posterior temporoparietal and cingulate cortices across the three groups, from SCI to mild AD. eSOD activity was positively correlated with glucose metabolism in a large area of the left temporal lobe including the superior, middle and inferior temporal gyri and the fusiform gyrus. These results suggest a role of oxidative stress in the impairment of glucose utilization in the left temporal lobe structures in elderly patients with cognitive abnormalities, including AD and conditions predisposing to AD. Further studies exploring the oxidative stress-energy metabolism axis are considered worthwhile in larger groups of these patients in order to identify pivotal pathophysiological mechanisms and innovative therapeutic opportunities. (orig.)

  2. Plasma antioxidants and brain glucose metabolism in elderly subjects with cognitive complaints

    Energy Technology Data Exchange (ETDEWEB)

    Picco, Agnese; Ferrara, Michela; Arnaldi, Dario; Brugnolo, Andrea; Nobili, Flavio [University of Genoa and IRCCS San Martino-IST, Clinical Neurology, Department of Neuroscience (DINOGMI), Largo P. Daneo, 3, 16132, Genoa (Italy); Polidori, M.C. [University of Cologne, Institute of Geriatrics, Cologne (Germany); Cecchetti, Roberta; Baglioni, Mauro; Bastiani, Patrizia; Mecocci, Patrizia [University of Perugia, Institute of Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, Perugia (Italy); Morbelli, Silvia; Bossert, Irene [University of Genoa and IRCCS San Martino-IST, Nuclear Medicine, Department of Health Science (DISSAL), Genoa (Italy); Fiorucci, Giuliana; Dottorini, Massimo Eugenio [Nuclear Medicine, S. M. della Misericordia Hospital, Perugia (Italy)

    2014-04-15

    The role of oxidative stress is increasingly recognized in cognitive disorders of the elderly, notably Alzheimer's disease (AD). In these subjects brain{sup 18}F-FDG PET is regarded as a reliable biomarker of neurodegeneration. We hypothesized that oxidative stress could play a role in impairing brain glucose utilization in elderly subjects with increasing severity of cognitive disturbance. The study group comprised 85 subjects with cognitive disturbance of increasing degrees of severity including 23 subjects with subjective cognitive impairment (SCI), 28 patients with mild cognitive impairment and 34 patients with mild AD. In all subjects brain FDG PET was performed and plasma activities of extracellular superoxide dismutase (eSOD), catalase and glutathione peroxidase were measured. Voxel-based analysis (SPM8) was used to compare FDG PET between groups and to evaluate correlations between plasma antioxidants and glucose metabolism in the whole group of subjects, correcting for age and Mini-Mental State Examination score. Brain glucose metabolism progressively decreased in the bilateral posterior temporoparietal and cingulate cortices across the three groups, from SCI to mild AD. eSOD activity was positively correlated with glucose metabolism in a large area of the left temporal lobe including the superior, middle and inferior temporal gyri and the fusiform gyrus. These results suggest a role of oxidative stress in the impairment of glucose utilization in the left temporal lobe structures in elderly patients with cognitive abnormalities, including AD and conditions predisposing to AD. Further studies exploring the oxidative stress-energy metabolism axis are considered worthwhile in larger groups of these patients in order to identify pivotal pathophysiological mechanisms and innovative therapeutic opportunities. (orig.)

  3. Nighttime Administration of Nicotine Improves Hepatic Glucose Metabolism via the Hypothalamic Orexin System in Mice.

    Science.gov (United States)

    Tsuneki, Hiroshi; Nagata, Takashi; Fujita, Mikio; Kon, Kanta; Wu, Naizhen; Takatsuki, Mayumi; Yamaguchi, Kaoru; Wada, Tsutomu; Nishijo, Hisao; Yanagisawa, Masashi; Sakurai, Takeshi; Sasaoka, Toshiyasu

    2016-01-01

    Nicotine is known to affect the metabolism of glucose; however, the underlying mechanism remains unclear. Therefore, we here investigated whether nicotine promoted the central regulation of glucose metabolism, which is closely linked to the circadian system. The oral intake of nicotine in drinking water, which mainly occurred during the nighttime active period, enhanced daily hypothalamic prepro-orexin gene expression and reduced hyperglycemia in type 2 diabetic db/db mice without affecting body weight, body fat content, and serum levels of insulin. Nicotine administered at the active period appears to be responsible for the effect on blood glucose, because nighttime but not daytime injections of nicotine lowered blood glucose levels in db/db mice. The chronic oral treatment with nicotine suppressed the mRNA levels of glucose-6-phosphatase, the rate-limiting enzyme of gluconeogenesis, in the liver of db/db and wild-type control mice. In the pyruvate tolerance test to evaluate hepatic gluconeogenic activity, the oral nicotine treatment moderately suppressed glucose elevations in normal mice and mice lacking dopamine receptors, whereas this effect was abolished in orexin-deficient mice and hepatic parasympathectomized mice. Under high-fat diet conditions, the oral intake of nicotine lowered blood glucose levels at the daytime resting period in wild-type, but not orexin-deficient, mice. These results indicated that the chronic daily administration of nicotine suppressed hepatic gluconeogenesis via the hypothalamic orexin-parasympathetic nervous system. Thus, the results of the present study may provide an insight into novel chronotherapy for type 2 diabetes that targets the central cholinergic and orexinergic systems. PMID:26492471

  4. Effect of abomasal glucose infusion on splanchnic amino acid metabolism in periparturient dairy cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Kristensen, Niels Bastian

    2009-01-01

    Six Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic AA metabolism. The experimental design was a split plot, with cow as the whole...... plot, treatment as the whole-plot factor and days in milk (DIM) as the subplot factor. Cows were assigned to 1 of 2 treatments: control or infusion of 1,500 g/d of glucose into the abomasum from the day of calving to 29 DIM....

  5. Effect of abomasal glucose infusion on splanchnic amino acid metabolism in periparturient dairy cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Kristensen, Niels Bastian

    2009-01-01

    Six Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic AA metabolism. The experimental design was a split plot, with cow as the whole plot, treatment as the whole-plot factor and days in milk (DIM) as the subplot factor. Cows were assigned to 1 of 2 treatments: control or infusion of 1,500 g/d of glucose into the abomasum from the d...

  6. Compartmentalized acyl-CoA metabolism in skeletal muscle regulates systemic glucose homeostasis

    DEFF Research Database (Denmark)

    Li, Lei O; Grevengoed, Trisha J; Paul, David S; Ilkayeva, Olga; Koves, Timothy R; Pascual, Florencia; Newgard, Christopher B; Muoio, Deborah M; Coleman, Rosalind A

    2015-01-01

    The impaired capacity of skeletal muscle to switch between the oxidation of fatty acid (FA) and glucose is linked to disordered metabolic homeostasis. To understand how muscle FA oxidation affects systemic glucose, we studied mice with a skeletal muscle-specific deficiency of long-chain acyl-CoA synthetase (ACSL)1. ACSL1 deficiency caused a 91% loss of ACSL-specific activity and a 60-85% decrease in muscle FA oxidation. Acsl1(M-/-) mice were more insulin sensitive, and, during an overnight fast,...

  7. Hormone and glucose metabolic effects of compound cyproterone acetate in women with polycystic ovarian syndrome

    International Nuclear Information System (INIS)

    To investigate the clinical efficacy of compound cyproterone acetate(CPY) in the treatment of polycystic ovarian syndrome(PCOS) and study hormone and glucose metabolic effects, thirty-five PCOS patients were treated by compound cyproterone acetate for 3 cycles. The serum LH, FSH and T levels, fasting glucose and fasting insulin were determined before and after 3 cycle's treatment. The results showed that 34 patients had regular menses during CPY therapy. The hirsute and acne score decreased significantly(P0.05). The results indicate that the compound cyproterone acetate had anti-androgenic effects on PCOS patients and improved their endocrine function and clinical syndrome. (authors)

  8. Differential influence of arterial blood glucose on cerebral metabolism following severe traumatic brain injury

    OpenAIRE

    Holbein, M; Béchir, M; Ludwig, S.; Sommerfeld, J.; Cottini, S R; Keel, M.; Stocker, R; Stover, J F

    2009-01-01

    INTRODUCTION: Maintaining arterial blood glucose within tight limits is beneficial in critically ill patients. Upper and lower limits of detrimental blood glucose levels must be determined. METHODS: In 69 patients with severe traumatic brain injury (TBI), cerebral metabolism was monitored by assessing changes in arterial and jugular venous blood at normocarbia (partial arterial pressure of carbon dioxide (paCO2) 4.4 to 5.6 kPa), normoxia (partial arterial pressure of oxygen (paO2) 9 to 20 kPa...

  9. Generalized decrease in brain glucose metabolism during fasting in humans studied by PET

    International Nuclear Information System (INIS)

    In prolonged fasting, the brain derives a large portion of its oxidative energy from the ketone bodies, beta-hydroxybutyrate and acetoacetate, thereby reducing whole body glucose consumption. Energy substrate utilization differs regionally in the brain of fasting rat, but comparable information has hitherto been unavailable in humans. We used positron emission tomography (PET) to study regional brain glucose and oxygen metabolism, blood flow, and blood volume in four obese subjects before and after a 3-wk total fast. Whole brain glucose utilization fell to 54% of control (postabsorptive) values (P less than 0.002). The whole brain rate constant for glucose tracer phosphorylation fell to 51% of control values (P less than 0.002). Both parameters decreased uniformly throughout the brain. The 2-fluoro-2-deoxy-D-glucose lumped constant decreased from a control value of 0.57 to 0.43 (P less than 0.01). Regional blood-brain barrier transfer coefficients for glucose tracer, regional oxygen utilization, blood flow, and blood volume were unchanged

  10. Glucose metabolite glyoxal induces senescence in telomerase-immortalized human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Larsen, Simon Asbjørn; Kassem, Moustapha; Rattan, Suresh

    2012-01-01

    Background Various by-products of the cellular metabolism, such as reactive carbonyl species (RCS) are potentially harmful to cells and tissues, and play a role in many physiological and pathological processes. Among various RCS is the highly reactive dicarbonyl glyoxal (GO), which is a natural physiological metabolite produced by the auto-oxidation of glucose, and can form covalent adducts known as advanced glycation endproducts (AGE). We have previously reported that GO accelerates ageing and ...

  11. Protective Pleiotropic Effect of Flavonoids on NAD+ Levels in Endothelial Cells Exposed to High Glucose

    OpenAIRE

    Boesten, Daniëlle M. P. H. J.; von Ungern-Sternberg, Saskia N. I.; Gertjan J. M. den Hartog; Aalt Bast

    2015-01-01

    NAD+ is important for oxidative metabolism by serving as an electron transporter. Hyperglycemia decreases NAD+ levels by activation of the polyol pathway and by overactivation of poly(ADP-ribose)-polymerase (PARP). We examined the protective role of three structurally related flavonoids (rutin, quercetin, and flavone) during high glucose conditions in an in vitro model using human umbilical vein endothelial cells (HUVECs). Additionally we assessed the ability of these flavonoids to inhibit al...

  12. Metabolic profiling of hematopoietic stem and progenitor cells during proliferation and differentiation into red blood cells.

    Science.gov (United States)

    Daud, Hasbullah; Browne, Susan; Al-Majmaie, Rasoul; Murphy, William; Al-Rubeai, Mohamed

    2016-01-25

    An understanding of the metabolic profile of cell proliferation and differentiation should support the optimization of culture conditions for hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and maturation into red blood cells. We have evaluated the key metabolic parameters during each phase of HSPC culture for red blood cell production in serum-supplemented (SS) and serum-free (SF) conditions. A simultaneous decrease in growth rate, total protein content, cell size, and the percentage of cells in the S/G2 phase of cell cycle, as well as an increase in the percentage of cells with a CD71(-)/GpA(+) surface marker profile, indicates HSPC differentiation into red blood cells. Compared with proliferating HSPCs, differentiating HSPCs showed significantly lower glucose and glutamine consumption rates, lactate and ammonia production rates, and amino acid consumption and production rates in both SS and SF conditions. Furthermore, extracellular acidification was associated with late proliferation phase, suggesting a reduced cellular metabolic rate during the transition from proliferation to differentiation. Under both SS and SF conditions, cells demonstrated a high metabolic rate with a mixed metabolism of both glycolysis and oxidative phosphorylation (OXPHOS) in early and late proliferation, an increased dependence on OXPHOS activity during differentiation, and a shift to glycolytic metabolism only during maturation phase. These changes indicate that cell metabolism may have an important impact on the ability of HSPCs to proliferate and differentiate into red blood cells. PMID:26013297

  13. Induction of a metabolic switch in insect cells by substrate-limited fed batch cultures.

    Science.gov (United States)

    Ohman, L; Ljunggren, J; Häggström, L

    1995-11-01

    Insect cell metabolism was studied in substrate-limited fed batch cultures of Spodoptera frugiperda (Sf-9) cells. Results from a glucose-limited culture, a glutamine-limited culture, a culture limited in both glucose and glutamine, and a batch culture were compared. A stringent relation between glucose excess and alanine formation was found. In contrast, glucose limitation induced ammonium formation, while, at the same time, alanine formation was completely suppressed. Simultaneous glucose and glucosamine limitation suppressed both alanine and ammonium formation. Although the metabolism was influenced by substrate limitation, the specific growth rate was similar in all cultures. Alanine formation must involve incorporation of free ammonium, if ammonium formation is mediated by glutaminase and glutamate dehydrogenase, as our data suggest. On the basis of the results, two possible pathways for the formation of alanine in the intermediary metabolism are suggested. The cellular yield on glucose was increased 6.6 times during glucose limitation, independently of the cellular yield on glutamine, which was increased 50-100 times during glutamine limitation. The results indicate that alanine overflow metabolism is energetically wasteful and that glutamine is a dispensable amino acid for cultured Sf-9 cells. Preliminary data confirm that glutamine can be synthesized by the cells themselves in amounts sufficient to support growth. PMID:8590651

  14. [Investigation of a compound, compatibility of Rhodiola crenulata, Cordyceps militaris, and Rheum palmatum, on metabolic syndrome treatment. V--Mechanisms on improving glucose metabolic disorders].

    Science.gov (United States)

    Wang, Li; Zhang, Xiao-Lin; Li, Mo-Han; Tian, Jin-Ying; Zhang, Pei-Cheng; Ye, Fei

    2013-06-01

    To investigate the mechanisms of a compound (FF16), compatibility of Rhodiola crenulata, Cordyceps militaris, and Rheum palmatum, on glucose metabolic disorders, the IRF mice charactered with insulin resistance and glucose metabolic disorders induced by high-fat diet in C57BL/6J mice were randomly divided into 3 groups; IRF, rosiglitazone (Rosi) and FF16. The glucose metabolism was evaluated by fasting blood glucose (FBG) levels and intraperitoneal glucose tolerance test (IPGTT). The insulin sensitivity was estimated by insulin tolerance test (ITT), fasting serum insulin levels and the index of HOMA-IR. The expressions of Akt and its phosphorylation levels, GSK3beta and its phosphorylation levels in liver were detected by Western Blot. The results showed that FF16 significantly improved the glucose metabolic disorders through reducing FBG by 15.1%, decreasing AUC values in glucose tolerance tests by 22.3%. FF16 significantly improved the insulin sensitivity through decreasing AUC values in insulin tolerance tests by 22.1%, reducing the levels of serum insulin by 42.9% and of HOMA-IR by 49.5%, comparing with model control, respectively. After the treatment with FF16, the levels of p-Akt and p-GSK3beta were increased by 116.4% and 24.9%, respectively, in the liver of IRF mice. In conclusion, compound FF16 could improve glucose metabolic disorders in IRF mice through enhancing the glyconeogenesis. PMID:24066594

  15. Imaging the time-integrated cerebral metabolic activity with subcellular resolution through nanometer-scale detection of biosynthetic products deriving from (13)C-glucose.

    Science.gov (United States)

    Takado, Yuhei; Knott, Graham; Humbel, Bruno M; Masoodi, Mojgan; Escrig, Stéphane; Meibom, Anders; Comment, Arnaud

    2015-11-01

    Glucose is the primary source of energy for the brain but also an important source of building blocks for proteins, lipids, and nucleic acids. Little is known about the use of glucose for biosynthesis in tissues at the cellular level. We demonstrate that local cerebral metabolic activity can be mapped in mouse brain tissue by quantitatively imaging the biosynthetic products deriving from [U-(13)C]glucose metabolism using a combination of in situ electron microscopy and secondary ion mass-spectroscopy (NanoSIMS). Images of the (13)C-label incorporated into cerebral ultrastructure with ca. 100nm resolution allowed us to determine the timescale on which the metabolic products of glucose are incorporated into different cells, their sub-compartments and organelles. These were mapped in astrocytes and neurons in the different layers of the motor cortex. We see evidence for high metabolic activity in neurons via the nucleus (13)C enrichment. We observe that in all the major cell compartments, such as e.g. nucleus and Golgi apparatus, neurons incorporate substantially higher concentrations of (13)C-label than astrocytes. PMID:26409162

  16. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress.

    Science.gov (United States)

    Zaugg, Kathrin; Yao, Yi; Reilly, Patrick T; Kannan, Karuppiah; Kiarash, Reza; Mason, Jacqueline; Huang, Ping; Sawyer, Suzanne K; Fuerth, Benjamin; Faubert, Brandon; Kalliomäki, Tuula; Elia, Andrew; Luo, Xunyi; Nadeem, Vincent; Bungard, David; Yalavarthi, Sireesha; Growney, Joseph D; Wakeham, Andrew; Moolani, Yasmin; Silvester, Jennifer; Ten, Annick You; Bakker, Walbert; Tsuchihara, Katsuya; Berger, Shelley L; Hill, Richard P; Jones, Russell G; Tsao, Ming; Robinson, Murray O; Thompson, Craig B; Pan, Guohua; Mak, Tak W

    2011-05-15

    Tumor cells gain a survival/growth advantage by adapting their metabolism to respond to environmental stress, a process known as metabolic transformation. The best-known aspect of metabolic transformation is the Warburg effect, whereby cancer cells up-regulate glycolysis under aerobic conditions. However, other mechanisms mediating metabolic transformation remain undefined. Here we report that carnitine palmitoyltransferase 1C (CPT1C), a brain-specific metabolic enzyme, may participate in metabolic transformation. CPT1C expression correlates inversely with mammalian target of rapamycin (mTOR) pathway activation, contributes to rapamycin resistance in murine primary tumors, and is frequently up-regulated in human lung tumors. Tumor cells constitutively expressing CPT1C show increased fatty acid (FA) oxidation, ATP production, and resistance to glucose deprivation or hypoxia. Conversely, cancer cells lacking CPT1C produce less ATP and are more sensitive to metabolic stress. CPT1C depletion via siRNA suppresses xenograft tumor growth and metformin responsiveness in vivo. CPT1C can be induced by hypoxia or glucose deprivation and is regulated by AMPK?. Cpt1c-deficient murine embryonic stem (ES) cells show sensitivity to hypoxia and glucose deprivation and altered FA homeostasis. Our results indicate that cells can use a novel mechanism involving CPT1C and FA metabolism to protect against metabolic stress. CPT1C may thus be a new therapeutic target for the treatment of hypoxic tumors. PMID:21576264

  17. Epigenetic Regulation of Glucose Transporters in Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Due to their inherently hypoxic environment, cancer cells often resort to glycolysis, or the anaerobic breakdown of glucose to form ATP to provide for their energy needs, known as the Warburg effect. At the same time, overexpression of the insulin receptor in non-small cell lung cancer (NSCLC) is associated with an increased risk of metastasis and decreased survival. The uptake of glucose into cells is carried out via glucose transporters or GLUTs. Of these, GLUT-4 is essential for insulin-stimulated glucose uptake. Following treatment with the epigenetic targeting agents histone deacetylase inhibitors (HDACi), GLUT-3 and GLUT-4 expression were found to be induced in NSCLC cell lines, with minimal responses in transformed normal human bronchial epithelial cells (HBECs). Similar results for GLUT-4 were observed in cells derived from liver, muscle, kidney and pre-adipocytes. Bioinformatic analysis of the promoter for GLUT-4 indicates that it may also be regulated by several chromatin binding factors or complexes including CTCF, SP1 and SMYD3. Chromatin immunoprecipitation studies demonstrate that the promoter for GLUT-4 is dynamically remodeled in response to HDACi. Overall, these results may have value within the clinical setting as (a) it may be possible to use this to enhance fluorodeoxyglucose (18F) positron emission tomography (FDG-PET) imaging sensitivity; (b) it may be possible to target NSCLC through the use of HDACi and insulin mediated uptake of the metabolic targeting drugs such as 2-deoxyglucose (2-DG); or (c) enhance or sensitize NSCLC to chemotherapy

  18. Further studies of the influence of apolipoprotein B alleles on glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Bentzen, Joan; Poulsen, Pernille; Vaag, Allan; Fenger, Mogens

    2003-01-01

    The effect of five genetic polymorphisms in the apolipoprotein B gene on parameters of lipid and glucose metabolism was assessed in 564 Danish mono- and dizygotic twins. Genotypes in apolipoprotein B T71I (ApaLI RFLP), A591V (AluI RFLP), L2712P (MvaI RFLP), R3611Q (MspI RFLP), and E4154K (Eco...... on the insulin-to-glucose ratio (p = 0.04), and E4154K (EcoRI RFLP) influenced HOMAbeta (p = 0.04). Significant interactions were observed between genotype in T71I (ApaLI RFLP), A591V (AluI RFLP), R3611Q (MspI RFLP), and E4154K (EcoRI RFLP) and glucose tolerance on lipid-related parameters (0.03 < p...

  19. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography

    Science.gov (United States)

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey; Wang, Lihong V.

    2012-07-01

    With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose.

  20. Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices

    OpenAIRE

    Zebda, A.; Cosnier, S.; J.-P. Alcaraz; M. Holzinger; Le Goff, A.; C. Gondran; Boucher, F; Giroud, F.; Gorgy, K.; H. Lamraoui; Cinquin, P.

    2013-01-01

    We describe the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal's body fluids to act as the sole power source for electronic devices. This GBFC is based on carbon nanotube/enzyme electrodes, which utilize glucose oxidase for glucose oxidation and laccase for dioxygen reduction. The GBFC, implanted in the abdominal cavity of a rat, produces an average open-circuit voltage of 0.57 V. This implanted GBFC delivered a power output of 38.7 μW...

  1. Glucose Oxidation Is Critical for CD4+ T Cell Activation in a Mouse Model of Systemic Lupus Erythematosus.

    Science.gov (United States)

    Yin, Yiming; Choi, Seung-Chul; Xu, Zhiwei; Zeumer, Leilani; Kanda, Nathalie; Croker, Byron P; Morel, Laurence

    2016-01-01

    We have previously shown that CD4(+) T cells from B6.Sle1Sle2.Sle3 lupus mice and patients present a high cellular metabolism, and a treatment combining 2-deoxy-d-glucose, which inhibits glucose metabolism, and metformin, which inhibits oxygen consumption, normalized lupus T cell functions in vitro and reverted disease in mice. We obtained similar results with B6.lpr mice, another model of lupus, and showed that a continuous treatment is required to maintain the beneficial effect of metabolic inhibitors. Further, we investigated the relative roles of glucose oxidation and pyruvate reduction into lactate in this process. Treatments of B6.Sle1Sle2.Sle3 mice with either 2-deoxy-d-glucose or metformin were sufficient to prevent autoimmune activation, whereas their combination was necessary to reverse the process. Treatment of B6.Sle1Sle2.Sle3 mice with dichloroacetate, an inhibitor of lactate production, failed to effectively prevent or reverse autoimmune pathology. In vitro, CD4(+) T cell activation upregulated the expression of genes that favor oxidative phosphorylation. Blocking glucose oxidation inhibited both IFN-? and IL-17 production, which could not be achieved by blocking pyruvate reduction. Overall, our data show that targeting glucose oxidation is required to prevent or reverse lupus development in mice, which cannot be achieved by simply targeting the pyruvate-lactate conversion. PMID:26608911

  2. Melphalan metabolism in cultured cells

    International Nuclear Information System (INIS)

    Procedures are presented for the adaptation of reversed-phase-HPLC methods to accomplish separation and isolation of the cancer therapeutic drug melphalan (L-phenylalanine mustard) and its metabolic products from whole cells. Five major degradation products of melphalan were observed following its hydrolysis in phosphate buffer in vitro. The two most polar of these products (or modifications of them) were also found in the cytosol of Chinese hamster CHO cells. The amounts of these two polar products (shown not to be mono- or dihydroxymelphalan) were significantly changed by the pretreatment of cells with ZnC12, one being increased in amount while the other was reduced to an insignificant level. In ZnC12-treated cells, there was also an increased binding of melphalan (or its derivatives) to one protein fraction resolved by gel filtration-HPLC. These observations suggest that changes in polar melphalan products, and perhaps their interaction with a protein, may by involved in the reduction of melphalan cytotoxicity observed in ZnC12-treated cells. While ZnC12 is also known to increase the level of glutathione in cells, no significant amounts of glutathione-melphalan derivatives of the type formed non-enzymatically in vitro could be detected in ZnC12-treated or untreated cells. Formation of derivatives of melphalan with glutathione catabolic products in ZnC12-treated cells has not yet been eliminated, however. 17 refs., 5 figs., 1 tab

  3. Effect of antibiotics on gut microbiota, glucose metabolism and bodyweight regulation - a review of the literature

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian Hallundbaek; Allin, Kristine Højgaard; Knop, Filip Krag

    2016-01-01

    between exposure to antibiotics and development of obesity and type 2 diabetes. Here we review human studies examining effects of antibiotics on bodyweight regulation and glucose metabolism and discuss whether the observed findings may relate to alterations in the composition and function of the gut......Gut bacteria are involved in a number of host metabolic processes and have been implicated in the development of obesity and type 2 diabetes in humans. Use of antibiotics changes the composition of the gut microbiota and there is accumulating evidence from observational studies for an association...

  4. Glucose metabolism in the antibiotic producing actinomycete Nonomuraea sp ATCC 39727

    DEFF Research Database (Denmark)

    Gunnarsson, Nina; Bruheim, Per

    2004-01-01

    The actinomycete Nonomuraea sp. ATCC 39727, producer of the glycopeptide A40926 that is used as precursor for the novel antibiotic dalbavancin, has an unusual carbon metabolism. Glucose is primarily metabolized via the Entner-Doudoroff (ED) pathway, although the energetically more favorable Embden - Meyerhof - Parnas (EMP) pathway is present in this organism. Moreover, Nonomuraea utilizes a PPi-dependent phosphofructokinase, an enzyme that has been connected with anaerobic metabolism in eukaryotes and higher plants, but recently has been recognized in several actinomycetes. In order to study its primary carbon metabolism in further detail, Nonomuraea was cultivated with [1-C-13] glucose as the only carbon source and the C-13-labeling patterns of proteinogenic amino acids were determined by GC-MS analysis. Through this method, the fluxes in the central carbon metabolism during balanced growth were estimated. Moreover, a shift in the label incorporation pattern was observed in connection with phosphate limitation and increased antibiotic productivity in Nonomuraea. The shift indicated an increased flux through the EMP pathway at the expense of the flux through the ED pathway, a suggestion that was supported by alterations in intracellular metabolite levels during phosphate limitation. In contrast, expression levels of genes encoding enzymes in the ED and EMP pathways were not affected by phosphate limitation.

  5. A palatable hyperlipidic diet causes obesity and affects brain glucose metabolism in rats

    Directory of Open Access Journals (Sweden)

    Motoyama Caio SM

    2011-09-01

    Full Text Available Abstract Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H or the alternation of chow (C and an H diet (CH regimen induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age.

  6. Hexachlorobenzene impairs glucose metabolism in a rat model of porphyria cutanea tarda: a mechanistic approach

    Energy Technology Data Exchange (ETDEWEB)

    Mazzetti, Marta Blanca; Taira, Maria Cristina; Lelli, Sandra Marcela; Viale, Leonor Carmen San Martin de [Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428BGA, Ciudad Autonoma Buenos Aires (Argentina); Dascal, Eduardo; Basabe, Juan Carlos [Centro de Investigaciones Endocrinologicas (CEDIE). Hospital de Ninos, Dr. Ricardo Gutierrez, C1425EDF, Ciudad Autonoma Buenos Aires (Argentina)

    2004-01-01

    Hexachlobenzene (HCB), one of the most persistent environmental pollutants, induces porphyria cutanea tarda (PCT). The aim of this work was to analyze the effect of HCB on some aspects of glucose metabolism, particularly those related to its neosynthesis in vivo. For this purpose, a time-course study on gluconeogenic enzymes, pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G-6-Pase) and on pyruvate kinase (PK), a glycolytic enzyme, was carried out. Plasma glucose and insulin levels, hepatic glycogen, tryptophan contents, and the pancreatic insulin secretion pattern stimulated by glucose were investigated. Oxidative stress and heme pathway parameters were also evaluated. HCB treatment decreased PC, PEPCK, and G-6-Pase activities. The effect was observed at an early time point and grew as the treatment progressed. Loss of 60, 56, and 37%, respectively, was noted at the end of the treatment when a considerable amount of porphyrins had accumulated in the liver as a result of drastic blockage of uroporphyrinogen decarboxylase (URO-D) (95% inhibition). The plasma glucose level was reduced (one-third loss), while storage of hepatic glucose was stimulated in a time-dependent way by HCB treatment. A decay in the normal plasma insulin level was observed as fungicide intoxication progressed (twice to four times lower). However, normal insulin secretion of perifused pancreatic Langerhans islets stimulated by glucose during the 3rd and 6th weeks of treatment did not prove to be significantly affected. HCB promoted a time-dependent increase in urinary chemiluminiscence (fourfold) and hepatic malondialdehide (MDA) content (fivefold), while the liver tryptophan level was only raised at the longest intoxication times. These results would suggest that HCB treatment does not cause a primary alteration in the mechanism of pancreatic insulin secretion and that the changes induced by the fungicide on insulin levels would be an adaptative response of the organism to stimulate gluconeogenesis. They showed for the first time that HCB causes impairment of the gluconeogenic pathway. Therefore, the reduced levels of glucose would thus be the consequence of decreased gluconeogenesis, enhanced glucose storage, and unaffected glycolysis. The impairment of gluconeogenesis (especially for PEPCK) and the related variation in glucose levels caused by HCB treatment could be a consequence of the oxidative stress produced by the fungicide. Tryptophan adds its effect to this decrease in the higher phases of HCB intoxication, where its levels overcome the control values possibly owing to the drastic decline of URO-D. This derangement of carbohydrates leads porphyric hepatocytes to have lower levels of free glucose. These results contribute to our understanding of the protective and modulatory effect that diets rich in carbohydrates have in hepatic porphyria disease. (orig.)

  7. Decreased regional cerebral glucose metabolism in the prefrontal regions in adults' with internet game addiction

    International Nuclear Information System (INIS)

    Internet Game Addiction (IGA) is known to be associated with poor decision-making and diminished impulse control; however, the underlying neural substrates of IGA have not been identified. To investigate the neural substrates of IGA, we compared regional cerebral glucose metabolism between adults with and without IGA, primarily in the prefrontal brain regions, which have been implicated in inhibitory control. We studied 10 right-handed participants (5 controls: male, 23.8±0.75 y, 5 IGAs: male, 22.6±2.42 y) with FDG PET. A standardized questionnaire was used to assess the severity of IGA. Before scanning, all subjects carried out a computerized version of the Iowa Gambling Task (IGT) and the Balloon Analogue Risk Task (BART), as measures of behavioral inhibitory control. Statistical Parametric Mapping 2 (SPM2) was used to analyze differences in regional brain glucose metabolism between adults with and without IGA. Consistent with our predictions, compared to controls, significant reductions in FDG uptake in individuals with IGA were found in the bilateral orbitofrontal gyrus (BA 11, 47), bilateral inferior frontal gyrus (BA 44, 48), cingulate cortex (BA 24), and bilateral supplementary motor area (SMA) (BA 6); whereas increases were found in the bilateral hippocampus. Correlation analyses within the IGA group further showed that the level of glucose metabolism in the right orbitofrontal gyrus was marginally positively correlated with task scores in BART. Our results showed that IGA is associated with reduced glucose metabolism in the prefrontal regions involved in inhibitory control. This finding highlights dysfunctional inhibitory brain systems in individuals with IGA and offers implications for the development for therapeutic paradigms for IGA

  8. Aerobic and anaerobic metabolism of Listeria monocytogenes in defined glucose medium.

    OpenAIRE

    Romick, T L; Fleming, H P; McFeeters, R F

    1996-01-01

    A defined medium with glucose as the carbon source was used to quantitatively determine the metabolic end products produced by Listeria monocytogenes under aerobic and anaerobic conditions. Of 10 strains tested, all produced acetoin under aerobic conditions but not anaerobic conditions. Percent carbon recoveries of end products, typified by strain F5069, were as follows: lactate, 28%; acetate, 23%; and acetoin, 26% for aerobic growth and lactate, 79%; acetate, 2%; formate, 5.4%; ethanol, 7.8%...

  9. Effects of Treatment for Tobacco Dependence on Resting Cerebral Glucose Metabolism

    OpenAIRE

    Costello, Matthew R.; Mandelkern, Mark A; Shoptaw, Stephen; Shulenberger, Stephanie; Baker, Stephanie K; Abrams, Anna L.; Xia, Catherine; London, Edythe D; Brody, Arthur L.

    2009-01-01

    While bupropion HCl and practical group counseling (PGC) are commonly used treatments for tobacco dependence, the effects of these treatments on brain function are not well established. For this study, 54 tobacco-dependent cigarette smokers underwent resting 18F-fluorodeoxyglucose–positron emission tomography (FDG–PET) scanning before and after 8 weeks of treatment with bupropion HCl, PGC, or pill placebo. Using Statistical Parametric Mapping (SPM 2), changes in cerebral glucose metabolism fr...

  10. Effect of 11?-hydroxysteroid dehydrogenase-1 inhibition on hepatic glucose metabolism in the conscious dog

    OpenAIRE

    Edgerton, Dale S.; Basu, Rita; Ramnanan, Christopher J.; Farmer, Tiffany D.; Neal, Doss; Scott, Melanie; Jacobson, Peer; Rizza, Robert A; Cherrington, Alan D.

    2010-01-01

    Inactive cortisone is converted to active cortisol within the liver by 11?-hydroxysteroid dehydrogenase-1 (11?-HSD1), and impaired regulation of this process may be related to increased hepatic glucose production (HGP) in individuals with type 2 diabetes. The primary aim of this study was to investigate the effect of acute 11?-HSD1 inhibition on HGP and fat metabolism during insulin deficiency. Sixteen conscious, 42-h-fasted, lean, healthy dogs were studied. Somatostatin was infused to create...

  11. Effect of phenolic acids on glucose and organic acid metabolism by lactic acid bacteria from wine

    OpenAIRE

    Campos, Francisco M.; Figueiredo, Ana R.; Hogg, Tim A.; Couto, Jose? A.

    2009-01-01

    The influence of phenolic (p-coumaric, caffeic, ferulic, gallic and protocatechuic) acids on glucose and organic acid metabolism by two strains of wine lactic acid bacteria (Oenococcus oeni VF and Lactobacillus hilgardii 5) was investigated. Cultures were grown in modified MRS medium supplemented with different phenolic acids. Cellular growth was monitored and metabolite concentrations were determined by HPLC-RI. Despite the strong inhibitory effect of most tested phenolic acids o...

  12. Transcriptome profiling of brown adipose tissue during cold exposure reveals extensive regulation of glucose metabolism

    DEFF Research Database (Denmark)

    Hao, Qin; Yadav, Rachita; Basse, Astrid L.; Petersen, Sidsel; Sonne, Si B.; Rasmussen, Simon; Zhu, Qianhua; Lu, Zhike; Wang, Jun; Audouze, Karine Marie Laure; Gupta, Ramneek; Madsen, Lise; Kristiansen, Karsten; Hansen, Jacob B.

    2015-01-01

    We applied digital gene expression profiling to determine the transcriptome of brown and white adipose tissues (BAT and WAT, respectively) during cold exposure. Male C57BL/6J mice were exposed to cold for 2 or 4 days. A notable induction of genes related to glucose uptake, glycolysis, glycogen metabolism, and the pentose phosphate pathway was observed in BAT from cold-exposed animals. In addition, glycerol-3-phosphate dehydrogenase 1 expression was induced in BAT from cold-challenged mice, sugge...

  13. Polychlorinated Biphenyl Exposure and Glucose Metabolism in 9-Year-Old Danish Children

    DEFF Research Database (Denmark)

    Jensen, Tina K.; Timmermann, Amalie G.; Rossing, Laura I.; Ried-Larsen, Mathias; Grontved, Anders; Andersen, Lars B.; Dalgaard, Christine; Hansen, Oluf Kristian Højbjerg; Scheike, Thomas; Nielsen, Flemming; Grandjean, Philippe

    2014-01-01

    Context: Human exposure to polychlorinated biphenyls (PCBs) has been associated to type 2 diabetes in adults. Objectives: To determine whether concurrent serum PCB concentration was associated with markers of glucose metabolism in healthy children. Design: Cross-sectional study. Settings and participants: A total of 771 healthy Danish third grade school children aged 8-10 years in the municipality of Odense were recruited in 1997 through a two-stage cluster sampling from 25 different schools str...

  14. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella

    DEFF Research Database (Denmark)

    Kovatcheva-Datchary, Petia; Nilsson, Anne; Akrami, Rozita; Lee, Ying Shiuan; De Vadder, Filipe; Arora, Tulika; Hallen, Anna; Martens, Eric; Björck, Inger; Bäckhed, Gert Fredrik

    2015-01-01

    The gut microbiota plays an important role in human health by interacting with host diet, but there is substantial inter-individual variation in the response to diet. Here we compared the gut microbiota composition of healthy subjects who exhibited improved glucose metabolism following 3-day consumption of barley kernel-based bread (BKB) with those who responded least to this dietary intervention. The Prevotella/Bacteroides ratio was higher in responders than non-responders after BKB. Metagenomi...

  15. Maternal family history of Alzheimer's disease predisposes to reduced brain glucose metabolism

    OpenAIRE

    Mosconi, Lisa; Brys, Miroslaw; Switalski, Remigiusz; Mistur, Rachel; Glodzik, Lidia; Pirraglia, Elizabeth; Tsui, Wai; de Santi, Susan; Mony J. de Leon

    2007-01-01

    Having a parent affected with late-onset Alzheimer's disease (AD) is a risk factor for developing AD among cognitively normal subjects. We examined whether cognitively normal subjects with a parental family history of AD show cerebral metabolic rate of glucose (CMRglc) reductions consistent with AD as compared with those without a family history and whether there are parent gender effects. Forty-nine 50- to 80-year-old normal subjects were examined who received clinical, neuropsychological, a...

  16. Plasma Polyunsaturated Fatty Acids and Regional Cerebral Glucose Metabolism in Major Depression

    OpenAIRE

    Sublette, M. Elizabeth; Milak, Matthew S.; Hibbeln, Joseph. R.; Freed, Peter J.; Oquendo, Maria A.; Malone, Kevin M; Parsey, Ramin V.; Mann, J. John

    2009-01-01

    Deficiencies in polyunsaturated essential fatty acids (PUFA) are implicated in mood disorders, although mechanisms of action and regional specificity in the brain are unknown. We hypothesized that plasma phospholipid PUFA levels are correlated with regionally specific relative cerebral metabolic rates of glucose (rCMRglu). 29 medication-free depressed subjects were studied using [18F]-fluoro-2-deoxyglucose positron emission tomography. Docosahexaenoic acid (22:6n-3), arachidonic acid (20:4n-6...

  17. Enhancement of energy production by black ginger extract containing polymethoxy flavonoids in myocytes through improving glucose, lactic acid and lipid metabolism.

    Science.gov (United States)

    Toda, Kazuya; Takeda, Shogo; Hitoe, Shoketsu; Nakamura, Seikou; Matsuda, Hisashi; Shimoda, Hiroshi

    2016-04-01

    Enhancement of muscular energy production is thought to improve locomotive functions and prevent metabolic syndromes including diabetes and lipidemia. Black ginger (Kaempferia parviflora) has been cultivated for traditional medicine in Thailand. Recent studies have shown that black ginger extract (KPE) activated brown adipocytes and lipolysis in white adipose tissue, which may cure obesity-related dysfunction of lipid metabolism. However, the effect of KPE on glucose and lipid utilization in muscle cells has not been examined yet. Hence, we evaluated the effect of KPE and its constituents on energy metabolism in pre-differentiated (p) and differentiated (d) C2C12 myoblasts. KPE (0.1-10 μg/ml) was added to pC2C12 cells in the differentiation process for a week or used to treat dC2C12 cells for 24 h. After culturing, parameters of glucose and lipid metabolism and mitochondrial biogenesis were assessed. In terms of the results, KPE enhanced the uptake of 2-deoxyglucose and lactic acid as well as the mRNA expression of glucose transporter (GLUT) 4 and monocarboxylate transporter (MCT) 1 in both types of cells. The expression of peroxisome proliferator-activated receptor γ coactivator (PGC)-1α was enhanced in pC2C12 cells. In addition, KPE enhanced the production of ATP and mitochondrial biogenesis. Polymethoxy flavonoids in KPE including 5-hydroxy-7-methoxyflavone, 5-hydroxy-3,7,4'-trimethoxyflavone and 5,7-dimethoxyflavone enhanced the expression of GLUT4 and PGC-1α. Moreover, KPE and 5,7-dimethoxyflavone enhanced the phosphorylation of 5'AMP-activated protein kinase (AMPK). In conclusion, KPE and its polymethoxy flavonoids were found to enhance energy metabolism in myocytes. KPE may improve the dysfunction of muscle metabolism that leads to metabolic syndrome and locomotive dysfunction. PMID:26581843

  18. Changes in glucose metabolism and gene expression after transfer of anti-angiogenic genes in rat hepatoma

    International Nuclear Information System (INIS)

    Human troponin I (TROP), the soluble receptor for vascular endothelial growth factor (sFLT) and angiostatin (ASTAT) are potent inhibitors of endothelial cell proliferation, angiogenesis and tumour growth in vivo. Transfer of these genes into tumours may induce changes not only in perfusion, but also more general ones such as changes in metabolism. The aim of this study was to assess these reactions using FDG-PET and high-throughput methods such as gene profiling. We established Morris hepatoma (MH3924A) cell lines expressing TROP, sFLT or ASTAT and quantified 18F-fluorodeoxyglucose (18FDG) uptake by dynamic positron emission tomography (PET) after tumour inoculation in ACI rats. Furthermore, expression of glucose transporter-1 and -3 (GLUT-1 and GLUT-3) as well as hexokinase-1 and -2 were investigated by RT-PCR and immunohistomorphometry. In addition, gene array analyses were performed. 18FDG uptake, vascular fraction and distribution volume were significantly higher in all genetically modified tumours. Immunohistomorphometry showed an increased percentage of hexokinase-1 and -2 as well as GLUT-1 and -3 immunoreactive (ir) cells. Using gene arrays and comparing all three groups of genetically modified tumours, we found upregulated expression of 36 genes related to apoptosis, signal transduction, stress or metabolism. TROP-, sFLT- or ASTAT-expressing MH3924A tumours show enhanced influx of 18FDG, which seems to be caused by several factors: enhanced exchange of nutrients between blood and tumour, increased amounts of glucose transporters and hexokinases, and increased expression of genes related to apoptosis, matrix and stress, which induce an increased demand for glucose. (orig.)

  19. Pyruvate kinase isoenzyme M2 is a glycolytic sensor differentially regulating cell proliferation, cell size and apoptotic cell death dependent on glucose supply

    Energy Technology Data Exchange (ETDEWEB)

    Spoden, Gilles A. [Department of Cell Metabolism and Differentiation, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, Rennweg 10, 6020 Innsbruck (Austria); Tumorvirology Research Group, Tyrolean Cancer Research Institute, Medical University Innsbruck, Innrain 66, 6020 Innsbruck (Austria); Rostek, Ursula; Lechner, Stefan; Mitterberger, Maria [Department of Cell Metabolism and Differentiation, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, Rennweg 10, 6020 Innsbruck (Austria); Mazurek, Sybille [Department for Biochemistry and Endocrinology, Veterinary Faculty, University of Giessen, 35392 Giessen (Germany); ScheBo Biotech AG, Netanyastrasse 3, 35394 Giessen (Germany); Zwerschke, Werner, E-mail: werner.zwerschke@oeaw.ac.at [Department of Cell Metabolism and Differentiation, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, Rennweg 10, 6020 Innsbruck (Austria); Tumorvirology Research Group, Tyrolean Cancer Research Institute, Medical University Innsbruck, Innrain 66, 6020 Innsbruck (Austria)

    2009-10-01

    The glycolytic key regulator pyruvate kinase M2 (M2-PK or PKM2) can switch between a highly active tetrameric and an inactive dimeric form. The transition between the two conformations regulates the glycolytic flux in tumor cells. We developed specific M2-PK-binding peptide aptamers which inhibit M2-PK, but not the 96% homologous M1-PK isoenzyme. In this study we demonstrate that, at normal blood glucose concentrations, peptide aptamer-mediated inhibition of M2-PK induces a significant decrease of the population doubling (PDL rate) and cell proliferation rate as well as an increase in cell size, whereas under glucose restriction an increase in PDL and cell proliferation rates but a decrease in cell size was observed. Moreover, M2-PK inhibition rescues cells from glucose starvation-induced apoptotic cell death by increasing the metabolic activity. These findings suggest that M2-PK is a metabolic sensor which regulates cell proliferation, cell growth and apoptotic cell death in a glucose supply-dependent manner.

  20. Influence of free fatty acids on glucose uptake in prostate cancer cells

    International Nuclear Information System (INIS)

    Introduction: The study focuses on the interaction between glucose and free fatty acids (FFA) in malignant human prostate cancer cell lines by an in vitro observation of uptake of fluoro-2-deoxy-D-glucose (FDG) and acetate. Methods: Human prostate cancer cell lines (PC3, CWR22Rv1, LNCaP, and DU145) were incubated for 2 h and 24 h in glucose-containing (5.5 mM) Dulbecco’s Modified Eagle’s Medium (DMEM) with varying concentrations of the free fatty acid palmitate (0–1.0 mM). Then the cells were incubated with [18 F]-FDG (1 ?Ci/mL; 0.037 MBq/mL) in DMEM either in presence or absence of glucose and in presence of varying concentrations of palmitate for 1 h. Standardized procedures regarding cell counting and measuring for 18 F radioactivity were applied. Cell uptake studies with 14C-1-acetate under the same conditions were performed on PC3 cells. Results: In glucose containing media there was significantly increased FDG uptake after 24 h incubation in all cell lines, except DU145, when upper physiological levels of palmitate were added. A 4-fold increase of FDG uptake in PC3 cells (15.11% vs. 3.94%/106 cells) was observed in media with 1.0 mM palmitate compared to media with no palmitate. The same tendency was observed in PC3 and CWR22Rv1 cells after 2 h incubation. In glucose-free media no significant differences in FDG uptake after 24 h incubation were observed. The significant differences after 2 h incubation all pointed in the direction of increased FDG uptake when palmitate was added. Acetate uptake in PC3 cells was significantly lower when palmitate was added in glucose-free DMEM. No clear tendency when comparing FDG or acetate uptake in the same media at different time points of incubation was observed. Conclusions: Our results indicate a FFA dependent metabolic boost/switch of glucose uptake in PCa, with patterns reflecting the true heterogeneity of the disease

  1. Effect of essential fatty acids on glucose-induced cytotoxicity to retinal vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Shen Junhui

    2012-07-01

    Full Text Available Abstract Background Diabetic retinopathy is a major complication of dysregulated hyperglycemia. Retinal vascular endothelial cell dysfunction is an early event in the pathogenesis of diabetic retinopathy. Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by docosahexaenoic acid (DHA, 22:6 ?-3 and eicosapentaenoic acid (EPA, 20:5 ?-3. The influence of dietary omega-3 PUFA on brain zinc metabolism has been previously implied. Zn2+ is essential for the activity of ?6 desaturase as a co-factor that, in turn, converts essential fatty acids to their respective long chain metabolites. Whether essential fatty acids (EFAs ?-linolenic acid and linoleic acid have similar beneficial effect remains poorly understood. Methods RF/6A cells were treated with different concentrations of high glucose, ?-linolenic acid and linoleic acid and Zn2+. The alterations in mitochondrial succinate dehydrogenase enzyme activity, cell membrane fluidity, reactive oxygen species generation, SOD enzyme and vascular endothelial growth factor (VEGF secretion were evaluated. Results Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by both linoleic acid (LA and ?-linolenic acid (ALA, while the saturated fatty acid, palmitic acid was ineffective. A dose–response study with ALA showed that the activity of the mitochondrial succinate dehydrogenase enzyme was suppressed at all concentrations of glucose tested to a significant degree. High glucose enhanced fluorescence polarization and microviscocity reverted to normal by treatment with Zn2+ and ALA. ALA was more potent that Zn2+. Increased level of high glucose caused slightly increased ROS generation that correlated with corresponding decrease in SOD activity. ALA suppressed ROS generation to a significant degree in a dose dependent fashion and raised SOD activity significantly. ALA suppressed high-glucose-induced VEGF secretion by RF/6A cells. Conclusions These results suggest that EFAs such as ALA and LA may have beneficial action in the prevention of high glucose-induced cellular damage.

  2. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella.

    Science.gov (United States)

    Kovatcheva-Datchary, Petia; Nilsson, Anne; Akrami, Rozita; Lee, Ying Shiuan; De Vadder, Filipe; Arora, Tulika; Hallen, Anna; Martens, Eric; Björck, Inger; Bäckhed, Fredrik

    2015-12-01

    The gut microbiota plays an important role in human health by interacting with host diet, but there is substantial inter-individual variation in the response to diet. Here we compared the gut microbiota composition of healthy subjects who exhibited improved glucose metabolism following 3-day consumption of barley kernel-based bread (BKB) with those who responded least to this dietary intervention. The Prevotella/Bacteroides ratio was higher in responders than non-responders after BKB. Metagenomic analysis showed that the gut microbiota of responders was enriched in Prevotella copri and had increased potential to ferment complex polysaccharides after BKB. Finally, germ-free mice transplanted with microbiota from responder human donors exhibited improved glucose metabolism and increased abundance of Prevotella and liver glycogen content compared with germ-free mice that received non-responder microbiota. Our findings indicate that Prevotella plays a role in the BKB-induced improvement in glucose metabolism observed in certain individuals, potentially by promoting increased glycogen storage. PMID:26552345

  3. Metabolic measurements in cell culture and tissue constructs

    Science.gov (United States)

    Rolfe, P.

    2008-10-01

    This paper concerns the study and use of biological cells in which there is a need for sensors and assemblies for the measurement of a diverse range of physical and chemical variables. In this field cell culture is used for basic research and for applications such as protein and drug synthesis, and in cell, tissue and organ engineering. Metabolic processes are fundamental to cell behaviour and must therefore be monitored reliably. Basic metabolic studies measure the transport of oxygen, glucose, carbon dioxide, lactic acid to, from, or within cells, whilst more advanced research requires examination of energy storage and utilisation. Assemblies are designed to incorporate bioreactor functions for cell culture together with appropriate sensing devices. Oxygen consumption by populations of cells is achieved in a flowthrough assembly that incorporates O2 micro-sensors based on either amperometry or fluorescence. Measurements in single cell are possible with intra-cellular fluorophores acting as biosensors together with optical stimulation and detection. Near infra-red spectroscopy (NIRS) is used for analysis within culture fluid, for example for estimation of glucose levels, as well as within cell populations, for example to study the respiratory enzymes.Â#

  4. The role of hepatic mitochondria in the regulation of glucose metabolism in BHE rats

    International Nuclear Information System (INIS)

    The interacting effects of dietary fat source and thyroxine treatment on the hepatic mitochondrial function and glucose metabolism were studied. In the first study, three different sources of dietary fatty acids and thyroxine treatment were used to investigate the hepatic mitochondrial thermotropic behavior in two strains of rat. The NIDDM BHE and Sprague-Dawley rats were used. Feeding coconut oil increased serum T4 levels and T4 treatment increased serum T3 levels in the BHE rats. In the mitochondria from BHE rats fed coconut oil and treated with T4, the transition temperature disappeared due to a decoupling of succinate supported respiration. This was not observed in the Sprague-Dawley rats. In the second study, two different sources of dietary fat and T4 treatment were used to investigate hepatic mitochondrial function. Coconut oil feeding increased Ca++Mg++ATPase and Mg++ATPase. T4 treatment had potentiated this effect. T4 increased the malate-aspartate shuttle and ?-glycerophosphate shuttle activities. In the third study, the glucose turnover rate from D-[14C-U]/[6-3H]-glucose and gluconeogeneis from L-[14C-U]-alanine was examined. Dietary fat or T4 did not affect the glucose mass. T4 increased the irreversible fractional glucose turnover rate

  5. Identifying Metabolic Syndrome in African American Children Using Fasting HOMA-IR in Place of Glucose

    Directory of Open Access Journals (Sweden)

    Sushma Sharma, PhD

    2011-05-01

    Full Text Available IntroductionMetabolic syndrome (MetS is increasing among young people. We compared the use of homeostasis model assessment of insulin resistance (HOMA-IR with the use of fasting blood glucose to identify MetS in African American children.MethodsWe performed a cross-sectional analysis of data from a sample of 105 children (45 boys, 60 girls aged 9 to 13 years with body mass indexes at or above the 85th percentile for age and sex. Waist circumference, blood pressure, and fasting levels of blood glucose, insulin, triglycerides, and high-density lipoprotein cholesterol were measured.ResultsWe found that HOMA-IR is a stronger indicator of MetS in children than blood glucose. Using HOMA-IR as 1 of the 5 components, we found a 38% prevalence of MetS in this sample of African American children and the proportion of false negatives decreased from 94% with blood glucose alone to 13% with HOMA-IR. The prevalence of MetS was higher in obese than overweight children and higher among girls than boys.ConclusionUsing HOMA-IR was preferred to fasting blood glucose because insulin resistance was more significantly interrelated with the other 4 MetS components.

  6. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    International Nuclear Information System (INIS)

    The metabolism of glucose in brains during sustained hypoglycemia was studied. [U-14C]Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia

  7. Effects of gastric bypass surgery on glucose absorption and metabolism during a mixed meal in glucose-tolerant individuals

    DEFF Research Database (Denmark)

    Jacobsen, Siv H; Bojsen-Møller, Kirstine N; Dirksen, Carsten; Jørgensen, Nils B; Clausen, Trine R; Wulff, Birgitte S; Kristiansen, Viggo B; Worm, Dorte; Hansen, Dorte L; Holst, Jens Juul; van Hall, Gerrit; Madsbad, Sten

    2013-01-01

    AIMS/HYPOTHESIS: Roux-en-Y gastric bypass surgery (RYGB) improves glucose tolerance in patients with type 2 diabetes, but also changes the glucose profile in response to a meal in glucose-tolerant individuals. We hypothesised that the driving force for the changed postprandial glucose profiles af...

  8. Changes of regional cerebral glucose metabolism in normal aging process : A study with FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Joon Kee; Kim, Sang Eun; Lee, Kyung Han; Choi, Yong; Choe, Yearn Seong; Kim, Byung Tae [Sungkyunkwan Univ., School of Medicine, Seoul (Korea, Republic of)

    2001-08-01

    Normal aging results in detectable changes in the brain structure and function. We evaluated the changes of regional cerebral glucose metabolism in the normal aging process with FDG PET. Brain PET images were obtained in 44 healthy volunteers (age range 20-69'y'; M:F = 29:15) who had no history of neuropsychiatric disorders. On 6 representative transaxial images, ROls were drawn in the cortical and subcortical areas. Regional FDG uptake was normalized using whole brain uptake to adjust for the injection dose and correct for nonspecific declines of glucose metabolism affecting all brain areas equally. In the prefrontal, temporoparietal and primary sensorimotor cortex, the normalized FDG uptake (NFU) reached a peak In subjects in their 30s. The NFU in the prefrontal and primary sensorimotor cortex declined with age after 30s at a rate of 3.15%/decade and 1.93%/decade, respectively. However, the NFU in the lernporoparietal cortex did not change significantly with age after 30s. The anterior (prefrontal) posterior (temporoparietal) gradient peaked in subjects in their 30s and declined with age the reafter at a rate of 35%/decade. The NFU in the caudate nucleus was decreased with age after 20s at a rate of 2.39%/decade. In the primary visual cortex, putamen, and thalamus, the NFU values did not change significantly throughout the ages covered. These patterns were not significantly different between right and left cerebral hemispheres. Of interest was that the NFU in the left cerebellar cortex was increased with age after 20s at a rate of 2.86%/decade. These data demonstrate regional variation of the age-related changes in the cerebral glucose metabolism, with the most prominent age-related decline of metabolism in the prefrontal cortex. The increase in the cerebellar metabolism with age might reflect a process of neuronal plasticity associated with aging.

  9. Changes of regional cerebral glucose metabolism in normal aging process : A study with FDG PET

    International Nuclear Information System (INIS)

    Normal aging results in detectable changes in the brain structure and function. We evaluated the changes of regional cerebral glucose metabolism in the normal aging process with FDG PET. Brain PET images were obtained in 44 healthy volunteers (age range 20-69'y'; M:F = 29:15) who had no history of neuropsychiatric disorders. On 6 representative transaxial images, ROls were drawn in the cortical and subcortical areas. Regional FDG uptake was normalized using whole brain uptake to adjust for the injection dose and correct for nonspecific declines of glucose metabolism affecting all brain areas equally. In the prefrontal, temporoparietal and primary sensorimotor cortex, the normalized FDG uptake (NFU) reached a peak In subjects in their 30s. The NFU in the prefrontal and primary sensorimotor cortex declined with age after 30s at a rate of 3.15%/decade and 1.93%/decade, respectively. However, the NFU in the lernporoparietal cortex did not change significantly with age after 30s. The anterior (prefrontal) posterior (temporoparietal) gradient peaked in subjects in their 30s and declined with age the reafter at a rate of 35%/decade. The NFU in the caudate nucleus was decreased with age after 20s at a rate of 2.39%/decade. In the primary visual cortex, putamen, and thalamus, the NFU values did not change significantly throughout the ages covered. These patterns were not significantly different between right and left cerebral hemispheres. Of interest was that the NFU in the left cerebellar cortex was increased with age after 20s at a rate of 2.86%/decade. These data demonstrate regional variation of the age-related changes in the cerebral glucose metabolism, with the most prominent age-related decline of metabolism in the prefrontal cortex. The increase in the cerebellar metabolism with age might reflect a process of neuronal plasticity associated with aging

  10. Effects of Cooling and Supplemental Bovine Somatotropin on Milk Production relating to Body Glucose Metabolism and Utilization of Glucose by the Mammary Gland in Crossbred Holstein Cattle

    Directory of Open Access Journals (Sweden)

    Siravit Sitprija

    2010-01-01

    Full Text Available Problem statement: The low milk yield and shorter persistency of lactation of dairy cattle is the major problem for the dairy practices in the tropics. High environmental temperatures and rapid decline of plasma growth hormone level can influence milk production. Regulation of the milk yield of animals is mainly based on the mechanisms governing the quantity of glucose extracted by the mammary gland for lactose biosynthetic pathways. The mechanism(s underlying the effects of cooling and supplemental bovine somatotropin on milk production relating to body glucose metabolism and intracellular metabolism of glucose in the mammary gland of crossbred Holstein cattle in the tropics have not been investigated to date. Approach: Ten crossbred 87.5% Holstein cows were divided into two groups of five animals each. Animals were housed in Normal Shade barn (NS as non-cooled cows and cows in the second group were housed in barn which was equipped with a two Misty-Fan cooling system (MF as cooled cows. Supplementation of recombinant bovine Somatotropin (rbST (POSILAC, 500 mg per cow were performed in both groups to study body glucose metabolism and the utilization of glucose in the mammary gland using a continuous infusion of [3-3H] glucose and [U- 14C] glucose as markers in early, mid and late stages of lactation. Results: Milk yield significantly increased in both groups during supplemental rbST with a high level of mammary blood flow. Body glucose turnover rates were not significant different between cooled and non-cooled cows whether supplemental rbST or not. The glucose taken up by the mammary gland of both non-cooled and cooled cows increased flux through the lactose synthesis and the pentose cycle pathway with significant increases in NADPH formation for fatty acid synthesis during rbST supplementation. The utilization of glucose carbon incorporation into milk appeared to increase in milk lactose and milk triacylglycerol but not for milk citrate during supplemental rbST in both non-cooled and cooled cows in early and mid lactation. Conclusion: The present study demonstrated that local changes for biosynthetic capacity within the mammary gland would be a factor in identification of the utilization of substrates in the rate of decline in milk yield. The proportion of glucose was metabolized less for lactose synthesis, but metabolized more via the Embden-Meyerhof pathway and the tricarboxylic acid cycle as lactation advanced to late lactation in both cooled and non-cooled cows whether supplemental rbST or not.

  11. Effects of acupuncture on the citrate and glucose metabolism in the liver under various types of stress

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Y.Y.; Seto, K.; Saito, H.; Kawakami, M.

    A study was made of the effect of acupuncture on citrate and glucose metabolism in the liver in terms of incorporation of /sup 14/C-1, 5-citric acid and /sup 14/C-u-glucose in some metabolites. The effect of acupuncture on citrate metabolism in the liver under control conditions was such as to increase production of G and reduce that of KB, FC and FFA. No effect of acupuncture on glucose metabolism in the liver under such conditions was observed. Both citrate and glucose metabolism were affected to a marked extent by immobilization stress or exposure to heat or cold. The deleterious effect of these types of stress was less prominent in animals receiving acupuncture at the Tsu-San-Li locus than in those treated otherwise or receiving no treatment.

  12. Effects of acupuncture on the citrate and glucose metabolism in the liver under various types of stress

    International Nuclear Information System (INIS)

    A study was made of the effect of acupuncture on citrate and glucose metabolism in the liver in terms of incorporation of 14C-1, 5-citric acid and 14C-u-glucose in some metabolites. The effect of acupuncture on citrate metabolism in the liver under control conditions was such as to increase production of G and reduce that of KB, FC and FFA. No effect of acupuncture on glucose metabolism in the liver under such conditions was observed. Both citrate and glucose metabolism were affected to a marked extent by immobilization stress or exposure to heat or cold. The deleterious effect of these types of stress was less prominent in animals receiving acupuncture at the Tsu-San-Li locus than in those treated otherwise or receiving no treatment

  13. Effect of Chromium Supplementation on Glucose Metabolism and Lipids: A Systematic Review with Meta-Analysis of Randomized Controlled Trials

    Science.gov (United States)

    Objective. A systematic review of the effect of chromium supplementation on glucose metabolism and lipid levels. Research Design and Methods. Literature search conducted in MEDLINE and Commonwealth Agricultural Bureau. Eligible studies were English language randomized controlled trials of chromium ...

  14. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: Acetate metabolism in tumor cells

    International Nuclear Information System (INIS)

    To reveal the metabolic fate of acetate in neoplasms that may characterize the accumulation patterns of [1-11C]acetate in tumors depicted by positron emission tomography. Four tumor cell lines (LS174T, RPMI2650, A2780, and A375) and fibroblasts in growing and resting states were used. In uptake experiments, cells were incubated with[1-14C]acetate for 40 min. [14C]CO2 was measured in the tight-air chamber, and the metabolites in cells were identified by thin layer chromatography and paper chromatography. The glucose metabolic rate of each cell line was measured with [2,6-3H]2-deoxy-glucose (DG), and the growth activity of each cell line was estimated by measuring the incorporation of [3H]methyl thymidine into DNA. Compared with resting fibroblasts, all four tumor cell lines showed higher accumulation of 14C activity from [1-14C]acetate. These tumor-to-normal ratios of [1-14C]acetate were larger than those of DG. Tumor cells incorporated 14C activity into the lipid-soluble fraction, mostly of phosphatidylcholine and neutral lipids, more prominently than did fibroblasts. The lipid-soluble fraction of 14C accumulation in cells showed a positive correlation with growth activity, whereas the water-soluble and CO2 fractions did not. These findings suggest that the high tumor-to-normal ratio of [1-14C]acetate is mainly due to the enhanced lipid synthesis, which reflects the high growth activity of neoplasms. This in vitro study suggests that [1-11C]acetate is appropriate for estimating the growth activity of tumor cells

  15. Calcium Co-regulates Oxidative Metabolism and ATP Synthase-dependent Respiration in Pancreatic Beta Cells

    Science.gov (United States)

    De Marchi, Umberto; Thevenet, Jonathan; Hermant, Aurelie; Dioum, Elhadji; Wiederkehr, Andreas

    2014-01-01

    Mitochondrial energy metabolism is essential for glucose-induced calcium signaling and, therefore, insulin granule exocytosis in pancreatic beta cells. Calcium signals are sensed by mitochondria acting in concert with mitochondrial substrates for the full activation of the organelle. Here we have studied glucose-induced calcium signaling and energy metabolism in INS-1E insulinoma cells and human islet beta cells. In insulin secreting cells a surprisingly large fraction of total respiration under resting conditions is ATP synthase-independent. We observe that ATP synthase-dependent respiration is markedly increased after glucose stimulation. Glucose also causes a very rapid elevation of oxidative metabolism as was followed by NAD(P)H autofluorescence. However, neither the rate of the glucose-induced increase nor the new steady-state NAD(P)H levels are significantly affected by calcium. Our findings challenge the current view, which has focused mainly on calcium-sensitive dehydrogenases as the target for the activation of mitochondrial energy metabolism. We propose a model of tight calcium-dependent regulation of oxidative metabolism and ATP synthase-dependent respiration in beta cell mitochondria. Coordinated activation of matrix dehydrogenases and respiratory chain activity by calcium allows the respiratory rate to change severalfold with only small or no alterations of the NAD(P)H/NAD(P)+ ratio. PMID:24554722

  16. The renin-angiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome.

    Science.gov (United States)

    Putnam, Kelly; Shoemaker, Robin; Yiannikouris, Frederique; Cassis, Lisa A

    2012-03-15

    The renin-angiotensin system (RAS) is an important therapeutic target in the treatment of hypertension. Obesity has emerged as a primary contributor to essential hypertension in the United States and clusters with other metabolic disorders (hyperglycemia, hypertension, high triglycerides, low HDL cholesterol) defined within the metabolic syndrome. In addition to hypertension, RAS blockade may also serve as an effective treatment strategy to control impaired glucose and insulin tolerance and dyslipidemias in patients with the metabolic syndrome. Hyperglycemia, insulin resistance, and/or specific cholesterol metabolites have been demonstrated to activate components required for the synthesis [angiotensinogen, renin, angiotensin-converting enzyme (ACE)], degradation (ACE2), or responsiveness (angiotensin II type 1 receptors, Mas receptors) to angiotensin peptides in cell types (e.g., pancreatic islet cells, adipocytes, macrophages) that mediate specific disorders of the metabolic syndrome. An activated local RAS in these cell types may contribute to dysregulated function by promoting oxidative stress, apoptosis, and inflammation. This review will discuss data demonstrating the regulation of components of the RAS by cholesterol and its metabolites, glucose, and/or insulin in cell types implicated in disorders of the metabolic syndrome. In addition, we discuss data supporting a role for an activated local RAS in dyslipidemias and glucose intolerance/insulin resistance and the development of hypertension in the metabolic syndrome. Identification of an activated RAS as a common thread contributing to several disorders of the metabolic syndrome makes the use of angiotensin receptor blockers and ACE inhibitors an intriguing and novel option for multisymptom treatment. PMID:22227126

  17. Impaired glucose metabolism and exercise capacity with muscle-specific glycogen synthase 1 (gys1 deletion in adult mice

    Directory of Open Access Journals (Sweden)

    Chrysovalantou E. Xirouchaki

    2016-03-01

    In brief: This study demonstrates why the body prioritises muscle glycogen storage over liver glycogen storage despite the critical role of the liver in supplying glucose to the brain in the fasting state and shows that glycogen deficiency results in impaired glucose metabolism and reduced exercise capacity.

  18. Metabolic regulation of fatty acid esterification and effects of conjugated linoleic acid on glucose homeostasis in pig hepatocytes

    OpenAIRE

    Conde Aguilera, Jose Alberto; Lachica, M.; Nieto, R; Fernández-Fígares, I.

    2012-01-01

    Conjugated linoleic acids (CLAs) are geometric and positional isomers of linoleic acid (LA) that promote growth, alter glucose metabolism and decrease body fat in growing animals, although the mechanisms are poorly understood. A study was conducted to elucidate the effects of CLA on glucose metabolism, triglyceride (TG) synthesis and IGF-1 synthesis in primary culture of porcine hepatocytes. In addition, hormonal regulation of TG and IGF-1 synthesis was addressed. Hepatocytes were isolated fr...

  19. Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Hu C

    2015-03-01

    Full Text Available Chenxia Hu,1 Martin Niestroj,2,3 Daniel Yuan,4 Steven Chang,5 Jie Chen5,6 1Faculty of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China; 2Canadian Light Source, Saskatoon, SK, Canada; 3Physics Department, Bonn University, Bonn, Germany; 4Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA; 5Faculty of Engineering, University of Alberta, Edmonton, AB, Canada; 6Canadian National Research Council/National Institute for Nanotechnology, Edmonton, AB, Canada Abstract: Cancer ranks among the leading causes of human mortality. Cancer becomes intractable when it spreads from the primary tumor site to various organs (such as bone, lung, liver, and then brain. Unlike solid tumor cells, cancer stem cells and metastatic cancer cells grow in a non-attached (suspension form when moving from their source to other locations in the body. Due to the non-attached growth nature, metastasis is often first detected in the circulatory systems, for instance in a lymph node near the primary tumor. Cancer research over the past several decades has primarily focused on treating solid tumors, but targeted therapy to treat cancer stem cells and cancer metastasis has yet to be developed. Because cancers undergo faster metabolism and consume more glucose than normal cells, glucose was chosen in this study as a reagent to target cancer cells. In particular, by covalently binding gold nanoparticles (GNPs with thio-PEG (polyethylene glycol and thio-glucose, the resulting functionalized GNPs (Glu-GNPs were created for targeted treatment of cancer metastasis and cancer stem cells. Suspension cancer cell THP-1 (human monocytic cell line derived from acute monocytic leukemia patients was selected because it has properties similar to cancer stem cells and has been used as a metastatic cancer cell model for in vitro studies. To take advantage of cancer cells’ elevated glucose consumption over normal cells, different starvation periods were screened in order to achieve optimal treatment effects. Cancer cells were then fed using Glu-GNPs followed by X-ray irradiation treatment. For comparison, solid tumor MCF-7 cells (breast cancer cell line were studied as well. Our irradiation experimental results show that Glu-GNPs are better irradiation sensitizers to treat THP-1 cells than MCF-7 cells, or Glu-GNPs enhance the cancer killing of THP-1 cells 20% more than X-ray irradiation alone and GNP treatment alone. This finding can help oncologists to design therapeutic strategies to target cancer stem cells and cancer metastasis. Keywords: glucose capped gold nanoparticles, cancer metastasis, cancer stem cells, irradiation therapy, targeted treatment, suspension cancer cells

  20. AMPK Protects Leukemia-Initiating Cells in Myeloid Leukemias from Metabolic Stress in the Bone Marrow.

    Science.gov (United States)

    Saito, Yusuke; Chapple, Richard H; Lin, Angelique; Kitano, Ayumi; Nakada, Daisuke

    2015-11-01

    How cancer cells adapt to metabolically adverse conditions in patients and strive to proliferate is a fundamental question in cancer biology. Here we show that AMP-activated protein kinase (AMPK), a metabolic checkpoint kinase, confers metabolic stress resistance to leukemia-initiating cells (LICs) and promotes leukemogenesis. Upon dietary restriction, MLL-AF9-induced murine acute myeloid leukemia (AML) activated AMPK and maintained leukemogenic potential. AMPK deletion significantly delayed leukemogenesis and depleted LICs by reducing the expression of glucose transporter 1 (Glut1), compromising glucose flux, and increasing oxidative stress and DNA damage. LICs were particularly dependent on AMPK to suppress oxidative stress in the hypoglycemic bone marrow environment. Strikingly, AMPK inhibition synergized with physiological metabolic stress caused by dietary restriction and profoundly suppressed leukemogenesis. Our results indicate that AMPK protects LICs from metabolic stress and that combining AMPK inhibition with physiological metabolic stress potently suppresses AML by inducing oxidative stress and DNA damage. PMID:26440282

  1. Exercise, GLUT4, and Skeletal Muscle Glucose Uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hargreaves, Mark

    2013-01-01

    Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT...

  2. Investigation of (/sup 18/F)2-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, M.E.; Hoffman, E.J.; Selin, C.; Huang, S.C.; Robinson, G.; MacDonald, N.; Schelbert, H.; Kuhl, D.E.

    1978-12-01

    Fluorine-18-labeled 2-deoxyglucose (FDG) was studied as a glucose analog for the measure of myocardial glucose metabolism. Myocardial uptake and retention, blood clearance, species dependence (dog, monkey, man), and effect of diet on uptake were investigated. Normal myocardial uptake of FDG was 3 to 4% of injected dose in dog and monkey, and 1 to 4% in man, compared with brain uptakes of 1.5 to 3% in dog, 5 to 6% in monkey, and 4 to 8% in man. The myocardial metabolic rate (MR) for glucose in the nonfasting (glycolytic) state was 2.8 times that in the fasting (ketogenic) state. Human subjects showed higher myocardial uptake after a normal meal than after a meal containing mostly free fatty acids (FFA). Blood clearance was rapid with initial clearance t/sub 1/2/ of 0.2 to 0.3 min, followed by a t/sub 1/2/ of 8.4 +- 1.2 min in dog and 11.6 +- 1.1 min in man. A small third component had half-times of 59 +- 10 min and 88 +- 4 min in dog and man, respectively. With the ECAT positron tomograph, high image-contrast ratios were found between heart and blood (dog 3.5/1, man 14/1), heart and lung (dog 9/1, man 20/1), and heart and liver (dog 15/1, man 10/1). The FDG was taken up rapidly by the myocardium without any significant tissue clearance over a 4-hr period. The FDG exhibited excellent imaging properties. Average counting rates of 12K, 20K, and 40K c/min-mCi injected are obtained in human subjects with high, medium, and low resolutions of the ECAT tomograph. Determination of glucose and FFA MR in vivo with EACT provides a method for investigation and assessment of changing aerobic and anaerobic metabolic rates in ischemic heart disease in man.

  3. Investigation of [18F]2-fluoro-2-deoxyglucose for the measure of myocardial glucose metabolism

    International Nuclear Information System (INIS)

    Fluorine-18-labeled 2-deoxyglucose (FDG) was studied as a glucose analog for the measure of myocardial glucose metabolism. Myocardial uptake and retention, blood clearance, species dependence (dog, monkey, man), and effect of diet on uptake were investigated. Normal myocardial uptake of FDG was 3 to 4% of injected dose in dog and monkey, and 1 to 4% in man, compared with brain uptakes of 1.5 to 3% in dog, 5 to 6% in monkey, and 4 to 8% in man. The myocardial metabolic rate (MR) for glucose in the nonfasting (glycolytic) state was 2.8 times that in the fasting (ketogenic) state. Human subjects showed higher myocardial uptake after a normal meal than after a meal containing mostly free fatty acids (FFA). Blood clearance was rapid with initial clearance t/sub 1/2/ of 0.2 to 0.3 min, followed by a t/sub 1/2/ of 8.4 +- 1.2 min in dog and 11.6 +- 1.1 min in man. A small third component had half-times of 59 +- 10 min and 88 +- 4 min in dog and man, respectively. With the ECAT positron tomograph, high image-contrast ratios were found between heart and blood (dog 3.5/1, man 14/1), heart and lung (dog 9/1, man 20/1), and heart and liver (dog 15/1, man 10/1). The FDG was taken up rapidly by the myocardium without any significant tissue clearance over a 4-hr period. The FDG exhibited excellent imaging properties. Average counting rates of 12K, 20K, and 40K c/min-mCi injected are obtained in human subjects with high, medium, and low resolutions of the ECAT tomograph. Determination of glucose and FFA MR in vivo with EACT provides a method for investigation and assessment of changing aerobic and anaerobic metabolic rates in ischemic heart disease in man

  4. Dose-dependent effect of 2-deoxy-D-glucose on glycoprotein mannosylation in cancer cells.

    Science.gov (United States)

    Ahadova, Aysel; Gebert, Johannes; von Knebel Doeberitz, Magnus; Kopitz, Juergen; Kloor, Matthias

    2015-03-01

    High glucose consumption due to Warburg effect is one of the metabolic hallmarks of cancer. Consequently, glucose antimetabolites, such as 2-deoxy-glucose (2DG), can induce substantial growth inhibition of cancer cells. However, the inhibition of metabolic pathways is not the sole effect of 2DG on cancer cells. As mannose-mimetic molecule, 2DG is believed to interfere with normal glycosylation of proteins in cells. Here, we address how 2DG influences protein glycosylation in cancer cells and discuss possible implications of the consequences of this influence. In detail, six colorectal cancer cell lines were examined for alterations of protein glycosylation by measuring monosaccharide incorporation into cellular glycoproteins and cell surface glycosylation by lectin FACS. A significant increase in mannose incorporation was observed on treatment with 2DG (1 mM for 48 h), which was also reflected by an increased binding of the mannose-binding lectin Concanavalin A in FACS analysis. This phenomenon, which could be reversed by external addition of mannose, was not caused by 2DG-mediated mannosidase inhibition, as shown by pulse-chase experiments, arguing in favor of the hypothesis that 2DG directly influenced the incorporation of mannose. Increased mannose content was generally observed in cellular glycoproteins, including glycoproteins isolated from the plasma membrane fraction. Our results indicate that 2DG at low doses, which have only a limited metabolism-related effect on glycosylation, induces a strong increase in mannose incorporation into cellular glycoproteins. On the other hand, higher 2DG concentrations (10 and 20 mM) led to a significant decrease of absolute mannose incorporation accompanied by a dramatically reduced protein synthesis rate. 2DG-induced alterations of glycosylation may represent a novel mechanism potentially explaining the varied effects of 2DG on cancer cells. Moreover, 2DG treatment may open a path toward novel diagnostic and cancer therapeutic approaches, which specifically target altered glycoantigen structures induced by 2DG. PMID:25854316

  5. Metabolic regulation and maximal reaction optimization in the central metabolism of a yeast cell

    Science.gov (United States)

    Kasbawati, Gunawan, A. Y.; Hertadi, R.; Sidarto, K. A.

    2015-03-01

    Regulation of fluxes in a metabolic system aims to enhance the production rates of biotechnologically important compounds. Regulation is held via modification the cellular activities of a metabolic system. In this study, we present a metabolic analysis of ethanol fermentation process of a yeast cell in terms of continuous culture scheme. The metabolic regulation is based on the kinetic formulation in combination with metabolic control analysis to indicate the key enzymes which can be modified to enhance ethanol production. The model is used to calculate the intracellular fluxes in the central metabolism of the yeast cell. Optimal control is then applied to the kinetic model to find the optimal regulation for the fermentation system. The sensitivity results show that there are external and internal control parameters which are adjusted in enhancing ethanol production. As an external control parameter, glucose supply should be chosen in appropriate way such that the optimal ethanol production can be achieved. For the internal control parameter, we find three enzymes as regulation targets namely acetaldehyde dehydrogenase, pyruvate decarboxylase, and alcohol dehydrogenase which reside in the acetaldehyde branch. Among the three enzymes, however, only acetaldehyde dehydrogenase has a significant effect to obtain optimal ethanol production efficiently.

  6. Glucose Metabolism Gene Expression Patterns and Tumor Uptake of {sup 18}F-Fluorodeoxyglucose After Radiation Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, George D., E-mail: george.wilson@beaumont.edu [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Beaumont BioBank, William Beaumont Hospital, Royal Oak, Michigan (United States); Thibodeau, Bryan J.; Fortier, Laura E.; Pruetz, Barbara L. [Beaumont BioBank, William Beaumont Hospital, Royal Oak, Michigan (United States); Galoforo, Sandra; Baschnagel, Andrew M.; Chunta, John [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Oliver Wong, Ching Yee [Department of Diagnostic Radiology and Molecular Imaging Medicine, William Beaumont Hospital, Royal Oak, Michigan (United States); Yan, Di; Marples, Brian [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Huang, Jiayi [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States)

    2014-11-01

    Purpose: To investigate whether radiation treatment influences the expression of glucose metabolism genes and compromises the potential use of {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) as a tool to monitor the early response of head and neck cancer xenografts to radiation therapy (RT). Methods and Materials: Low passage head and neck squamous cancer cells (UT14) were injected to the flanks of female nu/nu mice to generate xenografts. After tumors reached a size of 500 mm{sup 3} they were treated with either sham RT or 15 Gy in 1 fraction. At different time points, days 3, 9, and 16 for controls and days 4, 7, 12, 21, 30, and 40 after irradiation, 2 to 3 mice were assessed with dynamic FDG-PET acquisition over 2 hours. Immediately after the FDG-PET the tumors were harvested for global gene expression analysis and immunohistochemical evaluation of GLUT1 and HK2. Different analytic parameters were used to process the dynamic PET data. Results: Radiation had no effect on key genes involved in FDG uptake and metabolism but did alter other genes in the HIF1? and glucose transport–related pathways. In contrast to the lack of effect on gene expression, changes in the protein expression patterns of the key genes GLUT1/SLC2A1 and HK2 were observed after radiation treatment. The changes in GLUT1 protein expression showed some correlation with dynamic FDG-PET parameters, such as the kinetic index. Conclusion: {sup 18}F-fluorodeoxyglucose positron emission tomography changes after RT would seem to represent an altered metabolic state and not a direct effect on the key genes regulating FDG uptake and metabolism.

  7. The loss of Sirt1 in mouse pancreatic beta cells impairs insulin secretion by disrupting glucose sensing

    DEFF Research Database (Denmark)

    Luu, L; Dai, F F

    2013-01-01

    Sirtuin 1 (SIRT1) has emerged as a key metabolic regulator of glucose homeostasis and insulin secretion. Enhanced SIRT1 activity has been shown to be protective against diabetes, although the mechanisms remain largely unknown. The aim of this study was to determine how SIRT1 regulates insulin secretion in the pancreatic beta cell.

  8. Glucose transporter 3 is a rab11-dependent trafficking cargo and its transport to the cell surface is reduced in neurons of CAG140 Huntington’s disease mice

    OpenAIRE

    McClory, Hollis; Williams, Dana; Sapp, Ellen; Gatune, Leah W; Ping WANG; DiFiglia, Marian; Li, Xueyi

    2014-01-01

    Huntington’s disease (HD) disturbs glucose metabolism in the brain by poorly understood mechanisms. HD neurons have defective glucose uptake, which is attenuated upon enhancing rab11 activity. Rab11 regulates numerous receptors and transporters trafficking onto cell surfaces; its diminished activity in HD cells affects the recycling of transferrin receptor and neuronal glutamate/cysteine transporter EAAC1. Glucose transporter 3 (Glut3) handles most glucose uptake in neurons. Here we investiga...

  9. Effects of orexin A on glucose metabolism in human hepatocellular carcinoma in vitro via PI3K/Akt/mTOR-dependent and -independent mechanism.

    Science.gov (United States)

    Liu, Yuanyuan; Zhao, Yuyan; Guo, Lei

    2016-01-15

    Orexins are hypothalamic neuropeptides that regulate food intake, energy homeostasis, reward system and sleep/wakefulness states. The purpose of this study was to investigate the effects of orexin A on glucose metabolism in human hepatocellular carcinoma cell line, Hep3B, and determine the possible mechanisms. Hep3B cells were incubated with different concentrations of orexin A (10(-9)-10(-7) M) in vitro in the presence or absence of the orexin receptor 1 (OX1R) inhibitor (SB334867), Akt inhibitor (PF-04691502) and mammalian target of rapamycin (mTOR) inhibitor (temsirolimus). Subsequently, OX1R protein expression, glucose transporter 1 (GLUT1) expression, glucose uptake, the mRNA expression of lactate dehydrogenase (LDHA), pyruvate dehydrogenase kinase 1 (PDK1) and pyruvate dehydrogenase B (PDHB), lactate generation and mitochondrial pyruvate dehydrogenase (PDH) enzyme activity were measured. The activity of phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling was also determined. OX1R was expressed in hepatoma tissues and Hep3B cells. Stimulation of the Hep3B cells with orexin A resulted in a dose-dependent increase of GLUT1 expression and glucose uptake, which was associated with the activation of PI3K/Akt/mTOR pathway. Further, orexin A increased PDHB expression and PDH enzyme activity, decreased LDHA, PDK1 mRNA levels and lactate generation independent of PI3K/Akt/mTOR pathway. Our results demonstrated that orexin A directed the cellular metabolism towards mitochondrial glucose oxidation rather than glycolysis. These findings provide functional evidence of the metabolic actions of orexin A in hepatocellular carcinoma cells. PMID:26549689

  10. The level of menadione redox-cycling in pancreatic ?-cells is proportional to the glucose concentration: role of NADH and consequences for insulin secretion

    OpenAIRE

    Heart, Emma; Palo, Meridith; Womack, Trayce; Smith, Peter J.S.; Gray, Joshua P.

    2011-01-01

    Pancreatic ?-cells release insulin in response to elevation of glucose from basal (4-7 mM) to stimulatory (8-16 mM) levels. Metabolism of glucose by the ?-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H2O2), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H2O2 inhibit insulin secretion. Menadione, which produces H2O2 via redox cycling mechanism in a dose-depe...

  11. Regional cerebral glucose metabolism in frontotemporal dementia: a study with FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S. S.; Jeong, J.; Kang, S. J.; Na, D. L.; Choe, Y. S.; Lee, K. H.; Choi, Y.; Kim, B. T.; Kim, S. E. [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    Frontotemporal dementia (FTD) is a common cause of presenile dementia. We investigated the regional cerebral glucose metabolic impairments in patients with FTD using FDG PET. We analysed the regional metabolic patterns on FDG PET images obtained from 30 patients with FTD and age- and sex-matched 15 patients with Alzheimers disease (AD) and 11 healthy subjects using SPM99. We also compared the inter-hemispheric metabolic asymmetry among the three groups by counting the total metabolic activity of each hemisphere and computing asymmetry index (AL) between hemispheres. The hypometabolic brain regions in FTD patients compared with healthy controls were as follows: superior middle and medial frontal lobules, superior and middle temporal lobules, anterior and posterior cingulate gyri, uncus, insula, lateral globus pallidus and thalamus. The regions with decreased metabolism in FTD patients compared with AD patients were as follows: superior, inferior and medial frontal lobules, anterior cingulate gyrus, and caudate nucleus. Twenty-five (83%) out of the 30 FTD patients had AI values that was beyond the 95% confidence interval of the AI values obtained from healthy controls; 10 patients had hypometabolism more severe on the right and 15 patients had the opposite pattern. In comparison, 10 (67%) out of the 15 AD patients had asymmetric metabolism. Our SPM analysis of FDG PET revealed additional areas of decreased metabolism in FTD patients compared with prior studies using the ROI method, involving frontal, temporal, cingulate gyrus, corpus callosum, uncus, insula, and some subcortical areas. The inter-hemispheric metabolic asymmetry was common in FTD patients, which can be another metabolic feature that helps differentiate FTD from AD.

  12. Regional cerebral glucose metabolism in frontotemporal dementia: a study with FDG PET

    International Nuclear Information System (INIS)

    Frontotemporal dementia (FTD) is a common cause of presenile dementia. We investigated the regional cerebral glucose metabolic impairments in patients with FTD using FDG PET. We analysed the regional metabolic patterns on FDG PET images obtained from 30 patients with FTD and age- and sex-matched 15 patients with Alzheimers disease (AD) and 11 healthy subjects using SPM99. We also compared the inter-hemispheric metabolic asymmetry among the three groups by counting the total metabolic activity of each hemisphere and computing asymmetry index (AL) between hemispheres. The hypometabolic brain regions in FTD patients compared with healthy controls were as follows: superior middle and medial frontal lobules, superior and middle temporal lobules, anterior and posterior cingulate gyri, uncus, insula, lateral globus pallidus and thalamus. The regions with decreased metabolism in FTD patients compared with AD patients were as follows: superior, inferior and medial frontal lobules, anterior cingulate gyrus, and caudate nucleus. Twenty-five (83%) out of the 30 FTD patients had AI values that was beyond the 95% confidence interval of the AI values obtained from healthy controls; 10 patients had hypometabolism more severe on the right and 15 patients had the opposite pattern. In comparison, 10 (67%) out of the 15 AD patients had asymmetric metabolism. Our SPM analysis of FDG PET revealed additional areas of decreased metabolism in FTD patients compared with prior studies using the ROI method, involving frontal, temporal, cingulate gyrus, corpus callosum, uncus, insula, and some subcortical areas. The inter-hemispheric metabolic asymmetry was common in FTD patients, which can be another metabolic feature that helps differentiate FTD from AD

  13. Associations between Ultrasound Measures of Abdominal Fat Distribution and Indices of Glucose Metabolism in a Population at High Risk of Type 2 Diabetes: The ADDITION-PRO Study

    DEFF Research Database (Denmark)

    Philipsen, Annelotte; JØrgensen, Marit E

    2015-01-01

    AIMS: Visceral adipose tissue measured by CT or MRI is strongly associated with an adverse metabolic risk profile. We assessed whether similar associations can be found with ultrasonography, by quantifying the strength of the relationship between different measures of obesity and indices of glucose metabolism in a population at high risk of type 2 diabetes. METHODS: A cross-sectional analysis of 1342 participants of the ADDITION-PRO study. We measured visceral adipose tissue and subcutaneous adipose tissue with ultrasonography, anthropometrics and body fat percentage by bioelectrical impedance. Indices of glucose metabolism were derived from a three point oral glucose tolerance test. Linear regression of obesity measures on indices of glucose metabolism was performed. RESULTS: Mean age was 66.2 years, BMI 26.9kg/m2, subcutaneous adipose tissue 2.5cm and visceral adipose tissue 8.0cm. All measures of obesity were positively associated with indicators of glycaemia and inversely associated with indicators of insulin sensitivity. Associations were of equivalent magnitude except for subcutaneous adipose tissue and the visceral/subcutaneous adipose tissue ratio, which showed weaker associations. One standard deviation difference in BMI, visceral adipose tissue, waist circumference, waist/height ratio and body fat percentage corresponded approximately to 0.2mmol/l higher fasting glucose, 0.7mmol/l higher 2-hr glucose, 0.06-0.1% higher HbA1c, 30 % lower HOMA index of insulin sensitivity, 20% lower Gutt's index of insulin sensitivity, and 100 unit higher Stumvoll's index of beta-cell function. After adjustment for waist circumference visceral adipose tissue was still significantly associated with glucose intolerance and insulin resistance, whereas there was a trend towards inverse or no associations with subcutaneous adipose tissue. After adjustment, a 1cm increase in visceral adipose tissue was associated with ~5% lower insulin sensitivity (p?0.0004) and ~0.18mmol/l higher 2-hr glucose (p?0.001). CONCLUSION: Visceral and subcutaneous adipose tissue assessed by ultrasonography are significantly associated with glucose metabolism, even after adjustment for other measures of obesity.

  14. Fad24 causes hyperplasia in adipose tissue and improves glucose metabolism.

    Science.gov (United States)

    Johmura, Yoshikazu; Watanabe, Kayoko; Kishimoto, Keishi; Ueda, Takashi; Shimada, Shoichi; Osada, Shigehiro; Nishizuka, Makoto; Imagawa, Masayoshi

    2009-10-01

    We have previously reported that a novel gene, factor for adipocyte differentiation (fad) 24, promotes adipogenesis in vitro. To examine the role of fad24 in adipogenesis in vivo and the development of obesity, transgenic mice overexpressing fad24 were generated using mouse fad24 cDNA under the control of a chicken beta-actin promoter and cytomegalovirus enhancer. The comparison of the ability of fibroblasts from fad24 transgenic embryos to differentiate into adipocytes with that of fibroblasts from wild-type embryos revealed that fad24 overexpression promotes adipogenesis in embryonic fibroblasts. The weight and histology of white adipose tissues, and serum adipocytokine levels were compared between fad24 transgenic mice and wild-type mice, and we found that fad24 overexpression increased the number of smaller adipocytes, caused hyperplasia rather than hypertrophy in white adipose tissue and increased the serum adiponectin level in mice fed both normal chow and a high-fat diet. Glucose and insulin tolerance tests indicated that the activity for glucose metabolism is improved in fad24 transgenic mice fed normal chow in comparison with that in wild-type mice. Our findings suggest that fad24 is a positive regulator of adipogenesis in vivo. Moreover, the increase in the number of smaller adipocytes caused by the overexpression of fad24 appears to enhance glucose metabolic activity, perhaps by increasing the serum adiponectin level. PMID:19801824

  15. The Effects of Blood Sugar (Glucose Metabolism on the Sleep and Memory in Ahwaz Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Alireza Heideri

    2008-01-01

    Full Text Available This study was aimed to examine the effects of blood sugar (glucose metabolism on the sleep and memory in diabetic patients from Ahwaz metropolitan. The sample subsumed 90 diabetic patients from Ahwaz metropolitan whom were selected via two procedures: a systematic random sampling and incidental sampling procedure (within reach clients. The patients were allocated to three groups (two experimental and one control groups; the medical treatment or medicine therapy group (Hospitals clients, diet therapy group and the control group (from Diabetic Patients Association of Khouzastan Province registered patient members. The experimental groups` blood sugar (glucose metabolisms (the independent variable were manipulated by insulin treatment (insulin injection in medical therapy group and in diet therapy group through diet treatment training. Kimkarad Visual Memory Test, Immediate Auditory Memory Test and Groningen Sleep Quality Scale were implemented to collect data. Based on Multivariate Analysis of Variance (MANOVA as applied statistical method the outcome results revealed that: devious management of the blood glucose level through insulin injection and diet therapy improved sleep and audile and visual short term memory, mid term and long term memories in diabetic patients.

  16. Metabolic signatures linked to macrophage polarization: from glucose metabolism to oxidative phosphorylation.

    Science.gov (United States)

    Boscá, Lisardo; González-Ramos, Silvia; Prieto, Patricia; Fernández-Velasco, María; Mojena, Marina; Martín-Sanz, Paloma; Alemany, Susana

    2015-08-01

    Macrophages are present in a large variety of locations, playing distinct functions that are determined by its developmental origin and by the nature of the activators of the microenvironment. Macrophage activation can be classified as pro-inflammatory (M1 polarization) or anti-inflammatory-pro-resolution-deactivation (M2), these profiles coexisting in the course of the immune response and playing a relevant functional role in the onset of inflammation (Figure 1). Several groups have analysed the metabolic aspects associated with macrophage activation to answer the question about what changes in the regulation of energy metabolism and biosynthesis of anabolic precursors accompany the different types of polarization and to what extent they are necessary for the expression of the activation phenotypes. The interest of these studies is to regulate macrophage function by altering their metabolic activity in a 'therapeutic way'. PMID:26551722

  17. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study

    International Nuclear Information System (INIS)

    Regional glucose metabolic rate constants and blood-to-brain transport of rubidium were estimated using positron emission tomography in an adolescent patient with a brain tumor, before and after chemotherapy with intravenous high-dose methotrexate. Widespread depression of cerebral glucose metabolism was apparent 24 hours after drug administration, which may reflect reduced glucose phosphorylation, and the influx rate constant for 82Rb was increased, indicating a drug-induced alteration in blood-brain barrier function. Associated changes in neuropsychological performance, electroencephalogram, and plasma amino acid concentration were identified in the absence of evidence of systemic methotrexate toxicity, suggesting primary methotrexate neurotoxicity

  18. Reduced cerebral glucose metabolism and increased brain capillary permeability following high-dose methotrexate chemotherapy: a positron emission tomographic study

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, P.C.; Dhawan, V.; Strother, S.C.; Sidtis, J.J.; Evans, A.C.; Allen, J.C.; Rottenberg, D.A.

    1987-01-01

    Regional glucose metabolic rate constants and blood-to-brain transport of rubidium were estimated using positron emission tomography in an adolescent patient with a brain tumor, before and after chemotherapy with intravenous high-dose methotrexate. Widespread depression of cerebral glucose metabolism was apparent 24 hours after drug administration, which may reflect reduced glucose phosphorylation, and the influx rate constant for /sup 82/Rb was increased, indicating a drug-induced alteration in blood-brain barrier function. Associated changes in neuropsychological performance, electroencephalogram, and plasma amino acid concentration were identified in the absence of evidence of systemic methotrexate toxicity, suggesting primary methotrexate neurotoxicity.

  19. The Effect of Exercise on Glucose Metabolism in Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Tuba Tulay Koca

    2015-09-01

    Full Text Available Diabetes mellitus is one of the major causes of disability and death due to the complications accompanying this disease. The incidence of type 2 diabetes mellitus and insulin resistance has increased worldwide during the last decades, despite the development of effective drug therapy and improved clinical diagnoses. Recent epidemiological studies indicate that individuals who maintain a physically active lifestyle are much less likely to develop impaired glucose tolerance and diabetes mellitus. Additional to protective effect of physical activity for individuals at highest risk of developing diabetes mellitus, physical activity has positive impacts on fasting glucose, insulin sensitivity and blood glucose level for patients with overt diabetes. The essential mechanism of exercises is enhancing sensitivity of insulin on pheripheral tissues (especially skeletal muscle. With exercise training significant improvements in glucose metabolism is observed in many of these studies. Especially, the improvements in insulin sensitivity with exercise training observed better in high magnitude of aerobic exercises. Also adaptation of patients is very high to combined type exercises. However worldwide standardization of these training programmes in many of the studies is lacking and current practice in daily life is unsatisfactory. [Archives Medical Review Journal 2015; 24(3.000: 306-316

  20. Double-injection FDG method to measure cerebral glucose metabolism twice in a single procedure

    International Nuclear Information System (INIS)

    [18F]fluorodeoxyglucose (FDG) and positron emission tomography (PET) may be used to examine changes in cerebral glucose metabolism in two physiological conditions. We proposed and evaluated a double injection-single session FDG method with biological constraints for this purpose. Simulated brain time-radioactivity curves (TACs) generated by using a plasma TAC from an actual study and physiological combinations of input values in a kinetic model were analyzed to evaluate the accuracy of the proposed method. The reproducibility of the estimated values obtained by this method was tested in five normal volunteers who were studied with a dynamic PET scan and two injections of FDG in a single session while fasting. The simulation study showed that the estimated values obtained by the proposed method agreed well with the input values. In the human study, plasma glucose levels were 5.3±0.2 and 5.0±0.2 mM in the first and second measurements, respectively. The difference between the plasma glucose measurements was small but statistically significant (p*1 or rCMRglc, there were small deviations in K* (less than 10%) and LC (less than 5%) with a statistical significance (p* and LC seemed to relate to the difference in the plasma glucose level. The double-injection FDG method with biological constrains can be used to estimate rCMRglc and LC sequentially in a single PET scanning session. (author)

  1. Evaluation of Chios mastic gum on lipid and glucose metabolism in diabetic mice.

    Science.gov (United States)

    Georgiadis, Ioannis; Karatzas, Theodore; Korou, Laskarina-Maria; Agrogiannis, George; Vlachos, Ioannis S; Pantopoulou, Alkisti; Tzanetakou, Irene P; Katsilambros, Nikolaos; Perrea, Despina N

    2014-03-01

    Chios mastic gum (MG), a resin produced from Pistacia lentiscus var. Chia, is reported to possess beneficial cardiovascular and hepatoprotective properties. This study investigated the effect of crude Chios MG on metabolic parameters in diabetic mice. Streptozotocin-induced diabetic 12-week-old male C57bl/6 mice were assigned to three groups: NC (n=9) control; LdM (n=9) animals receiving low dose mastic for 8 weeks (20?mg/kg body weight [BW]); and HdM (n=9) animals receiving high dose mastic (500?mg/kg BW) for the same period. Serum lipid and glucose levels were determined at baseline, at 4 and 8 weeks. Serum total protein, adiponectin, and resistin levels were also measured at the end of the experiment. Histopathological examination for liver, kidney, aorta, and heart lesions was performed. After 4 weeks, MG administration resulted in decreased serum glucose and triglyceride levels in both LdM and HdM, whereas BW levels were reduced in LdM group compared with controls. At the end of the experiment, LdM presented significantly lower serum glucose, cholesterol, low-density lipoprotein cholesterol, and triglyceride levels and improved high-density lipoprotein cholesterol levels compared with control group. HdM group had ameliorated serum triglyceride levels. Hepatic steatosis observed in control group was partially reversed in LdM and HdM groups. MG administered in low dosages improves glucose and lipid disturbances in diabetic mice while alleviating hepatic damage. PMID:24404977

  2. Effect of guar gum on glucose and lipid metabolism in white sea bream Diplodus sargus.

    Science.gov (United States)

    Enes, P; Pousão-Ferreira, P; Salmerón, C; Capilla, E; Navarro, I; Gutiérrez, J; Oliva-Teles, A

    2013-04-01

    The aim of this study was to assess the role of soluble non-starch polysaccharide (guar gum) on white sea bream Diplodus sargus, glucose and lipid metabolism. A control diet was formulated to contain 40 % crude protein, 14 % crude lipids and 35 % pregelatinized maize starch, and three other diets were formulated similar to the control diet except for guar gum, which was included at 4 % (diet GG4), 8 % (diet GG8) or 12 % (diet GG12). Diets were fed to the fish for 9 weeks on a pair-feeding scheme. Guar gum had no effect on growth performance, feed efficiency, glycaemia, cholesterolaemia and plasma triacylglyceride levels. Hepatic glucokinase and pyruvate kinase activities, liver glycogen content and liver insulin-like growth factor-I gene expression were not affected by dietary guar gum, while fructose-1,6-bisphosphatase activity was lower in fish fed guar gum-supplemented diets. Hepatic glucose-6-phosphate dehydrogenase activity was higher in fish fed diets GG4 and GG8 than in the control group. Overall, data suggest that in contrast to mammals guar gum had no effect on white sea bream glucose utilization and in lowering plasma cholesterol and triacylglyceride levels. However, it seems to contribute to lower endogenous glucose production. PMID:22763699

  3. [Effects of tibolone on lipid and glucose metabolism as well as insulin secretion in postmenopausal women].

    Science.gov (United States)

    Villanueva, L A; Ortega, R; Morimoto, S; Villanueva, S; Arranz, C

    1999-10-01

    Tibolone is a synthetic steroid with progestogenic, androgenic and estrogenic properties. In postmenopausal women it has been shown that improves climateric complaints and prevents osteoporosis, without impact on endometrial thickness and uterine fibroids volume. Tibolone administration decreases cholesterol and triglycerides. Although, the effects of hormonal replacement on insulin sensitivity and glucose metabolism has not been well established. The effect of tibolone 2.5 mg/day for 3 months was investigated in 10 healthy postmenopausal women. The results show that tibolone decreases tryglicerides and cholesterol levels along with an increase in fasting insulin levels. The oral glucose tolerance test was unaffected. This study suggests that tibolone reduces markers of cardiovascular disease. PMID:10582394

  4. Metabolism of 14C-1 labelled glucose in the rat. A radiation protection approach

    International Nuclear Information System (INIS)

    The metabolism of 14C-1 labelled glucose was studied in the rat during 620 d. The results concerning (1) elimination by the exhalated air, urine and feces, (2) activity uptakes in 25 tissues or organes, (3) cumulated activity from the 4th to the 627 d are presented and discussed. About 50% of the activity is eliminated as CO2 in the 24 first hours, the remaining is eliminated more slowly. Some tissues such as bone and spinal cord have especially long retention half-lives. Consequently the dose delivered to these tissues is higher by a factor 10. In man, the dose should be generally around 10-4 rem per ?Ci of C-1 glucose administered

  5. Study on the effect of valproate (VPA) on glucose metabolism in pediatric patients with epilepsy

    International Nuclear Information System (INIS)

    Objective: To study the effect on glucose metabolism in pediatric patients with epilepsy under valproate treatment. Methods: Fasting serum glucose (with oxidase method) and insulin (with RIA) levels, insulin resistance index, body weight, BMI were examined in (1) 65 pediatric patients with epilepsy before valproate treatment (2) 65 patients after 3 months' valproate treatment (3) 65 patients after 6 months' treatment and (4) 65 controls. Results: In the patients after 3 months' treatment, the body weight, BMI, fasting insulin levels were significantly higher than those in patients before treatment (P 0.05). The calculated HOMA did not change much throughout the whole study. The proportion of patients with increased appetite after 6 months' treatment was 47 /65 (vs 20 /65 before treatment, P < 0.05). Conclusion: The increase of body weight and BMI asually observed during valproate treatment is mainly due to increased appetite with limited increase of fasting insulin level. Insulin resistance was not found in present study. (authors)

  6. Study of regional cerebral metabolic rate of glucose with positron emission computed tomography in Alzheimer's disease

    International Nuclear Information System (INIS)

    Using positron emission computed tomography with F-18 fluoro-D-deoxyglucose, regional cerebral metabolic rate of glucose (rCMRglc) was measured in 8 patients with Alzheimer's disease and 3 healthy volunteers. A decreased rCMRglc was observed in the widespread cortex and basal ganglia of the cerebrum, but not observed in white matter, thalamus, and cerebellum. There was no bilateral difference. rCMRglc was the lowest in the parietal lobe, followed by the temporal lobe and the curvature of the frontal lobe. A decrease in rCMRglu was relatively mild in the inner part of the frontal lobe, primary sensory and motor area of the cerebral cortex, and cerebral basilar ganglia. Alzheimer's disease proved to be characterized by severe glucose metabolic disorder in the association area of the bilateral cerebral cortices. The degree of metabolic disorder was correlated with the degree of dementia in the outer part of the left frontal lobe and the curvature of the cerebral cortex. (Namekawa, K.)

  7. Effect of triiodothyronine and insulin on glucose metabolism in tissue explants and isolated adipocytes from lean and obese Zucker rats

    International Nuclear Information System (INIS)

    Glucose metabolism in adipocytes from 6 week old lean and obese Zucker rats were sensitive to direct and chronic treatment with insulin and triidothyronine (T3). Insulin had a large stimulatory effect on glucose metabolism in acutely isolated adipocytes. This effect was greater in the lean than in the obese. Fatty acid, CO2, and glycerol-glyceride formation from radiolabeled glucose was elevated in the obese over the leans. Pretreatment of isolated adipocytes with pharmacological concentrations of T3 for 30 minutes prior to the measurement of glucose metabolism had a greater effect on lean than obese adipocytes. The presence of insulin was required to observe the acute effects of T3. A 2-hour exposure to physiological levels of T3 in the presence of insulin in both lean and obese adipocytes decreased lipogenesis. In the absence of insulin, a 2 hour pretreatment with physiological levels of T3 in tissue from a euthyroid animal produced increased lipogenesis

  8. Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain

    DEFF Research Database (Denmark)

    Zhang, Yiming; Liu, Guodong

    2015-01-01

    Background: A Saccharomyces cerevisiae strain carrying deletions in all three pyruvate decarboxylase (PDC) genes (also called Pdc negative yeast) represents a non-ethanol producing platform strain for the production of pyruvate derived biochemicals. However, it cannot grow on glucose as the sole carbon source, and requires supplementation of C2 compounds to the medium in order to meet the requirement for cytosolic acetyl-CoA for biosynthesis of fatty acids and ergosterol. Results: In this study, a Pdc negative strain was adaptively evolved for improved growth in glucose medium via serial transfer, resulting in three independently evolved strains, which were able to grow in minimal medium containing glucose as the sole carbon source at the maximum specific rates of 0.138, 0.148, 0.141 h-1, respectively. Several genetic changes were identified in the evolved Pdc negative strains by genomic DNA sequencing. Among these genetic changes, 4 genes were found to carry point mutations in at least two of the evolved strains: MTH1 encoding a negative regulator of the glucose-sensing signal transduction pathway, HXT2 encoding a hexose transporter, CIT1 encoding a mitochondrial citrate synthase, and RPD3 encoding a histone deacetylase. Reverse engineering of the non-evolved Pdc negative strain through introduction of the MTH181D allele restored its growth on glucose at a maximum specific rate of 0.053 h-1 in minimal medium with 2% glucose, and the CIT1 deletion in the reverse engineered strain further increased the maximum specific growth rate to 0.069 h-1. Conclusions: In this study, possible evolving mechanisms of Pdc negative strains on glucose were investigated by genome sequencing and reverse engineering. The non-synonymous mutations in MTH1 alleviated the glucose repression by repressing expression of several hexose transporter genes. The non-synonymous mutations in HXT2 and CIT1 may function in the presence of mutated MTH1 alleles and could be related to an altered central carbon metabolism in order to ensure productionof cytosolic acetyl-CoA in the Pdc negative strain.

  9. The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5° and 35°C

    Science.gov (United States)

    Welch, S. A.; Ullman, W. J.

    1999-10-01

    The rate of Si release from dissolving bytownite feldspar in abiotic batch reactors increased as temperatures increased from 5° to 35°C. Metabolically inert subsurface bacteria (bacteria in solution with no organic substrate) had no apparent effect on dissolution rates over this temperature range. When glucose was added to the microbial cultures, the bacteria responded by producing gluconic acid, which catalyzed the dissolution reaction by both proton- and ligand-promoted mechanisms. The metabolic production, excretion, and consumption of gluconic acid in the course of glucose oxidation, and therefore, the degree of microbial enhancement of mineral dissolution, depend on temperature. There was little accumulation of gluconic acid and therefore, no significant enhancement of mineral dissolution rates at 35°C compared to the abiotic controls. At 20°C, gluconate accumulated in the experimental solutions only at the beginning of the experiment and led to a twofold increase in dissolved Si release compared to the controls, primarily by the ligand-promoted dissolution mechanism. There was significant accumulation of gluconic acid in the 5°C experiment, which is reflected in a significant reduction in pH, leading to 20-fold increase in Si release, primarily attributable to the proton-promoted dissolution mechanism. These results indicate that bacteria and microbial metabolism can affect mineral dissolution rates in organic-rich, nutrient-poor environments; the impact of microbial metabolism on aluminum silicate dissolution rates may be greater at lower rather than at higher temperatures due to the metabolic accumulation of dissolution-enhancing protons and ligands in solution.

  10. GLUCOSE METABOLISM AND INSULIN SENSITIVITY WERE UNAFFECTED BY DIETARY FRUCTOSE INTAKE (AND GLYCEMIC INDEX) IN OBESE AND LEAN ADOLESCENTS

    Science.gov (United States)

    There is growing concern that the increased consumption of fructose has detrimental effects on carbohydrate metabolism in adolescents. This study was designed to determine whether a high dietary fructose intake consumed over the short term adversely affects glucose metabolism, insulin secretion or ...

  11. Bifurcate effects of glucose on caspase-independent cell death during hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Aki, Toshihiko, E-mail: aki.legm@tmd.ac.jp [Section of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Nara, Akina; Funakoshi, Takeshi; Uemura, Koichi [Section of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan)

    2010-06-04

    We investigated the effect of glucose on hypoxic death of rat cardiomyocyte-derived H9c2 cells and found that there is an optimal glucose concentration for protection against hypoxic cell death. Hypoxic cell death in the absence of glucose is accompanied by rapid ATP depletion, release of apoptosis-inducing factor from mitochondria, and nuclear chromatin condensation, all of which are inhibited by glucose in a dose-dependent manner. In contrast, excessive glucose also induces hypoxic cell death that is not accompanied by these events, suggesting a change in the mode of cell death between hypoxic cells with and without glucose supplementation.

  12. Bifurcate effects of glucose on caspase-independent cell death during hypoxia

    International Nuclear Information System (INIS)

    We investigated the effect of glucose on hypoxic death of rat cardiomyocyte-derived H9c2 cells and found that there is an optimal glucose concentration for protection against hypoxic cell death. Hypoxic cell death in the absence of glucose is accompanied by rapid ATP depletion, release of apoptosis-inducing factor from mitochondria, and nuclear chromatin condensation, all of which are inhibited by glucose in a dose-dependent manner. In contrast, excessive glucose also induces hypoxic cell death that is not accompanied by these events, suggesting a change in the mode of cell death between hypoxic cells with and without glucose supplementation.

  13. Simultaneous measurement of blood flow and glucose metabolism by autoradiographic techniques

    International Nuclear Information System (INIS)

    A double tracer autoradiographic technique using 131I-iodo-antipyrine and 14C-deoxyglucose is presented for the simultaneous measurement of blood flow and cerebral glucose utilization in the same animal. 131I is a gamma emitting isotope with a half life of 8.06 days and can be detected with adequate resolution on standard autoradiographic films. Autoradiograms are made before and after decay of 131I; the time interval between the 2 exposures and the concentration of the 2 tracers is adjusted to avoid significant cross-contamination. In this way, 2 film exposures are obtained which can be processed quantitatively like single tracer autoradiograms. The validity of the method for the investigation of local coupling of flow and metabolism was tested under various physiological and pathophysiological conditions. Coupling was tight in barbiturate-anesthetized healthy animals, but not under halothane anesthesia where uncoupling occurred in various subcortical structures. Focal seizures induced by topical application of penicillin on the cortical surface led to a coupled increase of metabolism and flow in thalamic relay nuclei but not at the site of penicillin administration where increased glucose utilization was not accompanied by similar increase in blood flow. Both coupled and uncoupled increases in local glucose utilization were observed in spreading depression and in circumscribed areas of experimental brain tumors. The results obtained demonstrate that double tracer autoradiography allows allows the very precise local assessment of cerebral blood flow and glucose utilization, and, therefore, is particularly suited to the study of regional coupling processes under various experimental conditions

  14. Analysis of metabolism of 6FDG: a PET glucose transport tracer

    Energy Technology Data Exchange (ETDEWEB)

    Muzic, Raymond F., E-mail: raymond.muzic@case.edu [Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 (United States); Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States); Chandramouli, Visvanathan [Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 (United States); Huang, Hsuan-Ming [Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States); Wu Chunying; Wang Yanming [Department of Radiology, Case Western Reserve University, Cleveland, OH 44106 (United States); Ismail-Beigi, Faramarz [Department of Medicine, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2011-07-15

    Introduction: We are developing {sup 18}F-labeled 6-fluoro-6-deoxy-D-glucose ([{sup 18}F]6FDG) as a tracer of glucose transport. As part of this process it is important to characterize and quantify putative metabolites. In contrast to the ubiquitous positron emission tomography (PET) tracer {sup 18}F-labeled 2-fluoro-2-deoxy-D-glucose ([{sup 18}F]2FDG) which is phosphorylated and trapped intracellularly, the substitution of fluorine for a hydroxyl group at carbon-6 in [{sup 18}F]6FDG should prevent its phosphorylation. Consequently, [{sup 18}F]6FDG has the potential to trace the transport step of glucose metabolism without the confounding effects of phosphorylation and subsequent steps of metabolism. Herein the focus is to determine whether, and the degree to which, [{sup 18}F]6FDG remains unchanged following intravenous injection. Methods: Biodistribution studies were performed using 6FDG labeled with {sup 18}F or with the longer-lived radionuclides {sup 3}H and {sup 14}C. Tissues were harvested at 1, 6, and 24 h following intravenous administration and radioactivity was extracted from the tissues and analyzed using a combination of ion exchange columns, high-performance liquid chromatography, and chemical reactivity. Results: At the 1 h time-point, the vast majority of radioactivity in the liver, brain, heart, skeletal muscle, and blood was identified as 6FDG. At the 6-h and 24-h time points, there was evidence of a minor amount of radioactive material that appeared to be 6-fluoro-6-deoxy-D-sorbitol and possibly 6-fluoro-6-deoxy-D-gluconic acid. Conclusion: On the time scale typical of PET imaging studies radioactive metabolites of [{sup 18}F]6FDG are negligible.

  15. Heme oxygenase 1 improves glucoses metabolism and kidney histological alterations in diabetic rats

    Directory of Open Access Journals (Sweden)

    Ptilovanciv Ellen ON

    2013-01-01

    Full Text Available Abstract One important concern in the treatment of diabetes is the maintenance of glycemic levels and the prevention of diabetic nephropathy. Inducible heme oxygenase 1 (HO-1 is a rate-limiting enzyme thought to have antioxidant and cytoprotective roles. The goal of the present study was to analyze the effect of HO-1 induction in chronically hyperglycemic rats. The hyperglycemic rats were divided into two groups: one group, called STZ, was given a single injection of streptozotocin; and the other group was given a single streptozotocin injection as well as daily injections of hemin, an HO-1 inducer, over 60?days (STZ?+?HEME. A group of normoglycemic, untreated rats was used as the control (CTL. Body weight, diuresis, serum glucose levels, microalbuminuria, creatinine clearance rate, urea levels, sodium excretion, and lipid peroxidation were analyzed. Histological alterations and immunohistochemistry for HO-1 and inducible nitric oxide synthase (iNOS were assessed. After 60?days, the STZ group exhibited an increase in blood glucose, diuresis, urea, microalbuminuria, and sodium excretion. There was no weight gain, and there was a decrease in creatinine clearance in comparison to the CTL group. In the STZ?+?HEME group there was an improvement in the metabolic parameters and kidney function, a decrease in blood glucose, serum urea, and microalbuminuria, and an increase of creatinine clearance, in comparison to the STZ group. There was glomerulosclerosis, collagen deposition in the STZ rats and increase in iNOS and HO-1 expression. In the STZ?+?HEME group, the glomerulosclerosis and fibrosis was prevented and there was an increase in the expression of HO-1, but decrease in iNOS expression and lipid peroxidation. In conclusion, our data suggest that chronic induction of HO-1 reduces hyperglycemia, improves glucose metabolism and, at least in part, protects the renal tissue from hyperglycemic injury, possibly through the antioxidant activity of HO-1.

  16. Dyrk1A induces pancreatic ? cell mass expansion and improves glucose tolerance

    Science.gov (United States)

    Rachdi, Latif; Kariyawasam, Dulanjalee; Aïello, Virginie; Herault, Yann; Janel, Nathalie; Delabar, Jean-Maurice; Polak, Michel; Scharfmann, Raphaël

    2014-01-01

    Type 2 diabetes is caused by a limited capacity of insulin-producing pancreatic ? cells to increase their mass and function in response to insulin resistance. The signaling pathways that positively regulate functional ? cell mass have not been fully elucidated. DYRK1A (also called minibrain/MNB) is a member of the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) family. A significant amount of data implicates DYRK1A in brain growth and Down syndrome, and recent data indicate that Dyrk1A haploinsufficient mice have a low functional ? cell mass. Here we ask whether Dyrk1A upregulation could be a way to increase functional ? cell mass.     We used mice overexpressing Dyrk1A under the control of its own regulatory sequences (mBACTgDyrk1A). These mice exhibit decreased glucose levels and hyperinsulinemia in the fasting state. Improved glucose tolerance is observed in these mice as early as 4 weeks of age. Upregulation of Dyrk1A in ? cells induces expansion of ? cell mass through increased proliferation and cell size. Importantly, mBACTgDyrk1A mice are protected against high-fat-diet-induced ? cell failure through increase in ? cell mass and insulin sensitivity. These studies show the crucial role of the DYRK1A pathway in the regulation of ? cell mass and carbohydrate metabolism in vivo. Activating the DYRK1A pathway could thus represent an innovative way to increase functional ? cell mass. PMID:24870561

  17. Response of lactate metabolism in brain glucosensing areas of rainbow trout (Oncorhynchus mykiss) to changes in glucose levels.

    Science.gov (United States)

    Otero-Rodiño, Cristina; Librán-Pérez, Marta; Velasco, Cristina; Álvarez-Otero, Rosa; López-Patiño, Marcos A; Míguez, Jesús M; Soengas, José L

    2015-12-01

    There is no evidence in fish brain demonstrating the existence of changes in lactate metabolism in response to alterations in glucose levels. We induced in rainbow trout through intraperitoneal (IP) treatments, hypoglycaemic or hyperglycaemic changes to assess the response of parameters involved in lactate metabolism in glucosensing areas like hypothalamus and hindbrain. To distinguish those effects from those induced by peripheral changes in the levels of metabolites or hormones, we also carried out intracerebroventricular (ICV) treatments with 2-deoxy-D-glucose (2-DG, a non-metabolizable glucose analogue thus inducing local glucopenia) or glucose. Finally, we also incubated hypothalamus and hindbrain in vitro in the presence of increased glucose concentrations. The changes in glucose availability were in general correlated to changes in the amount of lactate in both areas. However, when we assessed in these areas the response of parameters related to lactate metabolism, the results obtained were contradictory. The increase in glucose levels did not produce in general the expected changes in those pathways with only a minor increase in their capacity of lactate production. The decrease in glucose levels was, however, more clearly related to a decreased capacity of the pathways involved in the production and use of lactate, and this was especially evident after ICV treatment with 2-DG in both areas. In conclusion, the present results while addressing the existence of changes in lactate metabolism after inducing changes in glucose levels in brain glucosensing areas only partially support the possible existence of an astrocyte-neuron lactate shuttle in hypothalamus and hindbrain of rainbow trout relating glucose availability to lactate production and use. PMID:26424703

  18. D-(U-11C)glucose uptake and metabolism in the brain of insulin-dependent diabetic subjects

    Energy Technology Data Exchange (ETDEWEB)

    Gutniak, M.; Blomqvist, G.; Widen, L.; Stone-Elander, S.; Hamberger, B.; Grill, V. (Karolinska Hospital and Institute, Stockholm (Sweden))

    1990-05-01

    We used D-(U-11C)glucose to evaluate transport and metabolism of glucose in the brain in eight nondiabetic and six insulin-dependent diabetes mellitus (IDDM) subjects. IDDM subjects were treated by continuous subcutaneous insulin infusion. Blood glucose was regulated by a Biostator-controlled glucose infusion during a constant insulin infusion. D-(U-11C)-glucose was injected for positron emission tomography studies during normoglycemia as well as during moderate hypoglycemia (arterial plasma glucose 2.74 +/- 0.14 in nondiabetic and 2.80 +/- 0.26 mmol/l (means +/- SE) in IDDM subjects). Levels of free insulin were constant and similar in both groups. The tracer data were analyzed using a three-compartment model with a fixed correction for 11CO2 egression. During normoglycemia the influx rate constant (k1) and blood-brain glucose flux did not differ between the two groups. During hypoglycemia k1 increased significantly and similarly in both groups (from 0.061 +/- 0.007 to 0.090 +/- 0.006 in nondiabetic and from 0.061 +/- 0.006 to 0.093 +/- 0.013 ml.g-1.min-1 in IDDM subjects). During normoglycemia the tracer-calculated metabolism of glucose was higher in the whole brain in the nondiabetic than in the diabetic subjects (22.0 +/- 1.9 vs. 15.6 +/- 1.1 mumol.100 g-1.min-1, P less than 0.01). During hypoglycemia tracer-calculated metabolism was decreased by 40% in nondiabetic subjects and by 28% in diabetic subjects. The results indicate that uptake of glucose is normal, but some aspect of glucose metabolism is abnormal in a group of well-controlled IDDM subjects.

  19. Dihydroartemisinin Inhibits Glucose Uptake and Cooperates with Glycolysis Inhibitor to Induce Apoptosis in Non-Small Cell Lung Carcinoma Cells

    Science.gov (United States)

    Gao, Jing; Luo, Xian-yang; Liu, Yu; Li, Ning; Li, Chun-lei; Chen, Yu-qiang; Yu, Xiu-yi; Jiang, Jie

    2015-01-01

    Despite recent advances in the therapy of non-small cell lung cancer (NSCLC), the chemotherapy efficacy against NSCLC is still unsatisfactory. Previous studies show the herbal antimalarial drug dihydroartemisinin (DHA) displays cytotoxic to multiple human tumors. Here, we showed that DHA decreased cell viability and colony formation, induced apoptosis in A549 and PC-9 cells. Additionally, we first revealed DHA inhibited glucose uptake in NSCLC cells. Moreover, glycolytic metabolism was attenuated by DHA, including inhibition of ATP and lactate production. Consequently, we demonstrated that the phosphorylated forms of both S6 ribosomal protein and mechanistic target of rapamycin (mTOR), and GLUT1 levels were abrogated by DHA treatment in NSCLC cells. Furthermore, the upregulation of mTOR activation by high expressed Rheb increased the level of glycolytic metabolism and cell viability inhibited by DHA. These results suggested that DHA-suppressed glycolytic metabolism might be associated with mTOR activation and GLUT1 expression. Besides, we showed GLUT1 overexpression significantly attenuated DHA-triggered NSCLC cells apoptosis. Notably, DHA synergized with 2-Deoxy-D-glucose (2DG, a glycolysis inhibitor) to reduce cell viability and increase cell apoptosis in A549 and PC-9 cells. However, the combination of the two compounds displayed minimal toxicity to WI-38 cells, a normal lung fibroblast cell line. More importantly, 2DG synergistically potentiated DHA-induced activation of caspase-9, -8 and -3, as well as the levels of both cytochrome c and AIF of cytoplasm. However, 2DG failed to increase the reactive oxygen species (ROS) levels elicited by DHA. Overall, the data shown above indicated DHA plus 2DG induced apoptosis was involved in both extrinsic and intrinsic apoptosis pathways in NSCLC cells. PMID:25799586

  20. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals.

    Science.gov (United States)

    Kumar Jha, Pawan; Challet, Etienne; Kalsbeek, Andries

    2015-12-15

    Most aspects of energy metabolism display clear variations during day and night. This daily rhythmicity of metabolic functions, including hormone release, is governed by a circadian system that consists of the master clock in the suprachiasmatic nuclei of the hypothalamus (SCN) and many secondary clocks in the brain and peripheral organs. The SCN control peripheral timing via the autonomic and neuroendocrine system, as well as via behavioral outputs. The sleep-wake cycle, the feeding/fasting rhythm and most hormonal rhythms, including that of leptin, ghrelin and glucocorticoids, usually show an opposite phase (relative to the light-dark cycle) in diurnal and nocturnal species. By contrast, the SCN clock is most active at the same astronomical times in these two categories of mammals. Moreover, in both species, pineal melatonin is secreted only at night. In this review we describe the current knowledge on the regulation of glucose and lipid metabolism by central and peripheral clock mechanisms. Most experimental knowledge comes from studies in nocturnal laboratory rodents. Nevertheless, we will also mention some relevant findings in diurnal mammals, including humans. It will become clear that as a consequence of the tight connections between the circadian clock system and energy metabolism, circadian clock impairments (e.g., mutations or knock-out of clock genes) and circadian clock misalignments (such as during shift work and chronic jet-lag) have an adverse effect on energy metabolism, that may trigger or enhancing obese and diabetic symptoms. PMID:25662277

  1. Myocardial glucose metabolism in patients with hypertrophic cardiomyopathy. Assessment by F-18-FDG PET study

    International Nuclear Information System (INIS)

    In an investigation of myocardial metabolic abnormalities in hypertrophic myocardium, the myocardial glucose metabolism was evaluated with F-18-fluorodeoxyglucose (FDG) positron emission tomography (PET) in 32 patients with hypertrophic cardiomyopathy, and the results were compared with those in 9 patients with hypertensive heart disease. F-18-FDG PET study was performed in the fasting and glucose-loading states. The myocardial regional %dose uptake was calculated quantitatively. The average regional %dose uptake in the fasting state in the patients with asymmetric septal hypertrophy and dilated-phase hypertrophic cardiomyopathy was significantly higher than that in the patients with hypertensive heart disease (0.75±0.34%, 0.65±0.25%, and 0.43±0.22%/100 g myocardium, respectively). In contrast, the average %dose uptake in the glucose-loading state in the patients with asymmetric septal hypertrophy and dilated-phase hypertrophic cardiomyopathy was not significantly different from that in patients with hypertensive heart disease (1.17±0.49%, 0.80±0.44% and 0.99±0.45%, respectively). The patients with apical hypertrophy had also low %dose uptake in the fasting state (0.38±0.21%) as in the hypertensive heart disease patients, so that the characteristics of asymmetric septal hypertrophy and dilated-phase hypertrophic cardiomyopathy are considered to be high FDG uptake throughout the myocardium in the fasting state. Patients with apical hypertrophy are considered to belong to other disease categories metabolically. F-18-FDG PET study is useful in the evaluation of the pathophysiologic diagnosis of patients with hypertrophic cardiomyopathy. (author)

  2. Glucose Metabolism in the Insula and Cingulate is affected by Systemic Inflammation in Humans

    Science.gov (United States)

    Hannestad, Jonas; Subramanyam, Kalyani; DellaGioia, Nicole; Planeta-Wilson, Beata; Weinzimmer, David; Pittman, Brian; Carson, Richard E.

    2013-01-01

    Depression is associated with systemic inflammation, and endotoxin administration, which causes systemic inflammation, elicits mild depressive symptoms, such as fatigue and reduced interest. The neural correlates of depressive symptoms that result from systemic inflammation are poorly defined. The aim of this study was to use FDG-PET to identify brain regions involved in the response to endotoxin administration in humans. Methods Nine healthy subjects received double-blind endotoxin (0.8 ng/kg) and placebo on different days. FDG-PET was used to measure differences in the cerebral metabolic rate of glucose in regions of interest: insula, cingulate, and amygdala. Serum levels of tumor necrosis factor-alpha and interleukin-6 were used to gauge the systemic inflammatory response, and depressive symptoms were measured with the Montgomery-Åsberg Depression Rating Scale (MADRS) and other scales. Results Endotoxin administration was associated with an increase in MADRS score, increased fatigue, reduced social interest, increased levels of inflammatory cytokines, higher normalized glucose metabolism (NGM) in the insula and, at a trend level, lower NGM in the cingulate. Secondary analyses of insula and cingulate subregions indicated that these changes were driven by the right anterior insula and the right anterior cingulate. There was a negative correlation between peak cytokine levels and change in social interest, and between peak cytokine levels and change in insula NGM. There was a positive correlation between the change in NGM in the insula and change in social interest. Conclusion Systemic inflammation in humans causes an increase in depressive symptoms and concurrent changes in glucose metabolism in the insula and cingulate, brain regions that are involved in interoception, positive emotionality, and motivation. PMID:22414635

  3. Metabolic Pathway Alterations that Support Cell Proliferation

    OpenAIRE

    Vander Heiden, Matthew G.; Lunt, S. Y.; Dayton, Talya Lucia; Fiske, Brian Prescott; Israelsen, W. J.; Mattaini, Katherine Ruth; Vokes, N. I.; Stephanopoulos, G; Cantley, L. C.; Metallo, C. M.; Locasale, J. W.

    2012-01-01

    Proliferating cells adapt metabolism to support the conversion of available nutrients into biomass. How cell metabolism is regulated to balance the production of ATP, metabolite building blocks, and reducing equivalents remains uncertain. Proliferative metabolism often involves an increased rate of glycolysis. A key regulated step in glycolysis is catalyzed by pyruvate kinase to convert phosphoenolpyruvate (PEP) to pyruvate. Surprisingly, there is strong selection for expression of the less a...

  4. Advances in improving mammalian cells metabolism for recombinant protein production

    Scientific Electronic Library Online (English)

    Claudia, Altamirano; Julio, Berrios; Mauricio, Vergara; Silvana, Becerra.

    2013-05-15

    Full Text Available Background: The production of recombinant proteins for therapeutic use represents a great impact on the biotechnology industry. In this context, established mammalian cell lines, especially CHO cells, have become a standard system for the production of such proteins. Their ability to properly config [...] ure and excrete proteins in functional form is an enormous advantage which should be contrasted with their inherent technological limitations. These cell systems exhibit a metabolic behaviour associated with elevated cell proliferation which involves a high consumption of glucose and glutamine, resulting in the rapid depletion of these nutrients in the medium and the accumulation of ammonium and lactate. Both phenomena contribute to the limitation of cell growth, the triggering of apoptotic processes and the loss of quality of the recombinant protein. Results: In this review, the use of alternative substrates and genetic modifications (host cell engineering) are analyzed as tools to overcome those limitations. In general, the results obtained are promising. However, metabolic and physiological phenomena involved in CHO cells are still barely understood. Thus, most of publications are focused on specific modifications rather than giving a systemic perspective. Conclusions: A deeper insight in the integrated understanding of metabolism and cell mechanisms is required in order to define complementary strategies at these two levels, so providing effective means to control nutrients consumption, reduce by-products and increase process productivity.

  5. Glucose repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kayikci, Omur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective...

  6. Effect of x irradiation on the biochemical maturation of rat cerebellum: Metabolism of [14C]glucose and [14C]acetate

    International Nuclear Information System (INIS)

    The effect was studied of selective x-irradiation of the cerebellum (100 R daily in the first 10 days after birth) on the maturation of glucose metabolism and the development of metabolic compartmentation, in 10-, 16-, and 23-day-old rats by using, respectively, [2-14C]glucose and [1-14C] acetate (40 ? Ci/100 g body weight each) as precursors. At day 10 significant changes, in comparison with the unirradiated controls, were observed: aspartate and ?-aminobutyrate, respectively, contained 36 percent and 64 percent more and glutamine 42 percent less glucose-carbon combined in amino acids; the glutamine/glutamate specific radioactivity ratio (RSA) was 25 percent less, and the conversion of both glucose and acetate carbons into acid-insoluble constituents was markedly reduced. However, in the postirradiation period both the conversion of glucose carbon into amino acids, and the RSA of glutamine after the administration of [14C]acetate increased in a more or less normal fashion, although certain quantitative differences were noted. It seems, therefore, that the normal progress of biochemical differentiation was only affected to a small degree by the irradiation of the cerebellum, although the treatment interfered severely with cell proliferation. (U.S.)

  7. Targeting Adipose Tissue Lipid Metabolism to Improve Glucose Metabolism in Cardiometabolic Disease

    OpenAIRE

    Jocken, Johan W. E.; Goossens, Gijs H.; Blaak, Ellen E

    2014-01-01

    With Type 2 diabetes mellitus and cardiovascular disease prevalence on the rise, there is a growing need for improved strategies to prevent or treat obesity and insulin resistance, both of which are major risk factors for these chronic diseases. Impairments in adipose tissue lipid metabolism seem to play a critical role in these disorders. In the classical picture of intracellular lipid breakdown, cytosolic lipolysis was proposed as the sole mechanism for triacylglycerol hydrolysis in adipocy...

  8. Mitochondrial metabolism sets the maximal limit of fuel-stimulated insulin secretion in a model pancreatic beta cell: a survey of four fuel secretagogues

    OpenAIRE

    Antinozzi, Peter; Ishihara, Hisamitsu; Newgard, Christopher B; Wollheim, Claes

    2002-01-01

    The precise metabolic steps that couple glucose catabolism to insulin secretion in the pancreatic beta cell are incompletely understood. ATP generated from glycolytic metabolism in the cytosol, from mitochondrial metabolism, and/or from the hydrogen shuttles operating between cytosolic and mitochondrial compartments has been implicated as an important coupling factor. To identify the importance of each of these metabolic pathways, we have compared the fates of four fuel secretagogues (glucose...

  9. GLUCOSE METABOLITE PATTERNS AS MARKERS OF FUNCTIONAL DIFFERENTIATION IN FRESHLY ISOLATED AND CULTURED MOUSE MAMMARY EPITHELIAL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Emerman, J.T.; Bartley, J.C.; Bissell, M.J.

    1980-06-01

    In the mammary gland of nonruminant animals, glucose is utilized in a characteristic and unique way during lactation. We have measured the incorporation of glucose carbon from [U-{sup 14}C] glucose into intermediary metabolites and metabolic products in mammary epithelial cells from virgin, pregnant, and lactating mice and demonstrate that glucose metabolite patterns can be used to recognize stages of differentiated function. For these cells, the rates of synthesis of glycogen and lactose, the ratio of lactate to alanine, and the ratio of citrate to malate were important parameters in identifying the degree of expression of differentiation. We further show that these patterns can be used as markers to determine the differentiated state of cultured mammary epithelial cells. Cells maintained on plastic substrates lose their distinctive glucose metabolite patterns while those on floating collagen gels do not. Cells from pregnant mice have a pattern similar to freshly isolated cells from pregnant mice. The pattern of cells from lactating mice is different from that of the cells of origin, and resembles that of the cells from pregnant mice. Our findings suggest that the floating collagen gels under the culture conditions used in these experiments provide an environment for the functional expression of the pregnant state, while additional factors are needed for the expression of the lactating state.

  10. Targeting Adipose Tissue Lipid Metabolism to Improve Glucose Metabolism in Cardiometabolic Disease

    Directory of Open Access Journals (Sweden)

    Johan W.E. Jocken

    2014-10-01

    Full Text Available With Type 2 diabetes mellitus and cardiovascular disease prevalence on the rise, there is a growing need for improved strategies to prevent or treat obesity and insulin resistance, both of which are major risk factors for these chronic diseases. Impairments in adipose tissue lipid metabolism seem to play a critical role in these disorders. In the classical picture of intracellular lipid breakdown, cytosolic lipolysis was proposed as the sole mechanism for triacylglycerol hydrolysis in adipocytes. Recent evidence suggests involvement of several hormones, membrane receptors, and intracellular signalling cascades, which has added complexity to the regulation of cytosolic lipolysis. Interestingly, a specific form of autophagy, called lipophagy, has been implicated as alternative lipolytic pathway. Defective regulation of cytosolic lipolysis and lipophagy might have substantial effects on lipid metabolism, thereby contributing to adipose tissue dysfunction, insulin resistance, and related cardiometabolic (cMet diseases. This review will discuss recent advances in our understanding of classical lipolysis and lipophagy in adipocyte lipid metabolism under normal and pathological conditions. Furthermore, the question of whether modulation of adipocyte lipolysis and lipophagy might be a potential therapeutic target to combat cMet disorders will be addressed.

  11. Co-ordination of hepatic and adipose tissue lipid metabolism after oral glucose

    DEFF Research Database (Denmark)

    Bülow, J; Simonsen, L; Wiggins, D; Humphreys, S M; Frayn, K N; Powell, D; Gibbons, G F

    1999-01-01

    NEFA was significantly lower than that for output of VLDL, implying depletion of hepatic TAG stores during the experiment. In the hyperinsulinemic clamp experiments, there was on average suppression of splanchnic VLDL-TAG output although between-person variability was marked. This suppression could be...... explained by a very low supply of NEFA during the clamp. We conclude that there is an integrated pattern of metabolism in splanchnic and adipose tissues in the postabsorptive and post-glucose states. Flux of NEFA from adipose tissue drives splanchnic NEFA uptake. Splanchnic VLDL-TAG secretion appears to be...

  12. Primary prevention of diabetes mellitus: correction of early disorders of glucose metabolism in cardiology practice

    Directory of Open Access Journals (Sweden)

    M.N. Mamedov

    2012-01-01

    Full Text Available Early glucose metabolism disorders (GMD are of interest in development of effective approaches to prevention of type 2 diabetes mellitus (DM. Data of international clinical trials shows that early GMD are an independent risk factor for cardiovascular disease. The possibilities of GMD prevention and early treatment are discussed. Antihyperglycemic medications classification, their mode of action and efficacy are presented from evidence-based medicine point of view. This data confirms that successful DM primary prevention at early stage of GMD reduces the risk of cardiovascular complications.

  13. Identifying Metabolic Syndrome in African American Children Using Fasting HOMA-IR in Place of Glucose

    OpenAIRE

    Sushma Sharma, PhD; Robert H. Lustig, MD; Sharon E. Fleming, PhD

    2011-01-01

    IntroductionMetabolic syndrome (MetS) is increasing among young people. We compared the use of homeostasis model assessment of insulin resistance (HOMA-IR) with the use of fasting blood glucose to identify MetS in African American children.MethodsWe performed a cross-sectional analysis of data from a sample of 105 children (45 boys, 60 girls) aged 9 to 13 years with body mass indexes at or above the 85th percentile for age and sex. Waist circumference, blood pressure, and fasting levels of bl...

  14. Interactions of glucagon and free fatty acids with insulin in control of glucose metabolism

    International Nuclear Information System (INIS)

    To study the interactions of physiological glucagon and free fatty acids (FFA) concentrations with insulin in the control of glucose metabolism, we determined in normal subjects the response of endogenous glucose production (EGP) and glucose utilization (Rd) to a progressive and moderate increase of insulinemia in the presence of glucagon and FFA levels either decreased (somatostatin [SRIF] and insulin infusion, C test) or maintained to normal postabsorptive values isolated (SRIF + insulin + glucagon infusion, G test; SRIF + insulin + Intralipid infusion, IL test) or in association (SRIF + insulin + glucagon + Intralipid infusion, IL + G test). Compared with the C test, maintenance of glucagon level had only small and inconsistent effects on glucose Rd, but induced a shift to the right of the dose-response curve to insulin of EGP (apparent ED50: C test, 10.9 mU.L-1; G test, 15.2 mU.L-1). Intralipid infusion resulted, whether glucagon was substituted or not, in a near total suppression of the insulin-induced increase of glucose Rd (Rd at the end of the tests: C test, 6.13 +/- 0.85 mg.kg-1.min-1; G test, 7.29 +/- 0.87 mg.kg-1.min-1; IL test, 3.30 +/- 0.65 mg.kg-1.min-1; IL + G test, 3.57 +/- 0.42 mg.kg-1.min-1). In the absence of glucagon, substitution Intralipid infusion also antagonized the action of insulin on EGP. However, this effect was no longer apparent when glucagon was replaced (dose-response curve to insulin of EGP during the G and the IL + G test were comparable)

  15. Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose.

    OpenAIRE

    BERRONE, ELENA; UBERTALLI APE, Alessandro; BELTRAMO, ELENA; PORTA, Massimo; SOLIMINE, Carmela

    2006-01-01

    Hyperglycemia is a causal factor in the development of the vascular complications of diabetes. One of the biochemical mechanisms activated by excess glucose is the polyol pathway, the key enzyme of which, aldose reductase, transforms d-glucose into d-sorbitol, leading to imbalances of intracellular homeostasis. We aimed at verifying the effects of thiamine and benfotiamine on the polyol pathway, transketolase activity, and intracellular glucose in endothelial cells and pericytes under high am...

  16. Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes

    OpenAIRE

    Higashi Richard M; Jankowski Kacper; Kucia Magda; Fan Teresa WM; Ratajczak Janina; Ratajczak Marius Z; Lane Andrew N

    2008-01-01

    Abstract Background The functional status of a cell is expressed in its metabolic activity. We have applied stable isotope tracing methods to determine the differences in metabolic pathways in proliferating Rhabdomysarcoma cells (Rh30) and human primary myocytes in culture. Uniformly 13C-labeled glucose was used as a source molecule to follow the incorporation of 13C into more than 40 marker metabolites using NMR and GC-MS. These include metabolites that report on the activity of glycolysis, ...

  17. A radical explanation for glucose-induced ? cell dysfunction

    OpenAIRE

    Brownlee, Michael

    2003-01-01

    The development of type 2 diabetes requires impaired ? cell function. Hyperglycemia itself causes further decreases in glucose-stimulated insulin secretion. A new study demonstrates that hyperglycemia-induced mitochondrial superoxide production activates uncoupling protein 2, which decreases the ATP/ADP ratio and thus reduces the insulin-secretory response. These data suggest that pharmacologic inhibition of mitochondrial superoxide overproduction in ? cells exposed to hyperglycemia could pre...

  18. Src Inhibition Blocks c-Myc Translation and Glucose Metabolism to Prevent the Development of Breast Cancer.

    Science.gov (United States)

    Jain, Shalini; Wang, Xiao; Chang, Chia-Chi; Ibarra-Drendall, Catherine; Wang, Hai; Zhang, Qingling; Brady, Samuel W; Li, Ping; Zhao, Hong; Dobbs, Jessica; Kyrish, Matt; Tkaczyk, Tomasz S; Ambrose, Adrian; Sistrunk, Christopher; Arun, Banu K; Richards-Kortum, Rebecca; Jia, Wei; Seewaldt, Victoria L; Yu, Dihua

    2015-11-15

    Preventing breast cancer will require the development of targeted strategies that can effectively block disease progression. Tamoxifen and aromatase inhibitors are effective in addressing estrogen receptor-positive (ER(+)) breast cancer development, but estrogen receptor-negative (ER(-)) breast cancer remains an unmet challenge due to gaps in pathobiologic understanding. In this study, we used reverse-phase protein array to identify activation of Src kinase as an early signaling alteration in premalignant breast lesions of women who did not respond to tamoxifen, a widely used ER antagonist for hormonal therapy of breast cancer. Src kinase blockade with the small-molecule inhibitor saracatinib prevented the disorganized three-dimensional growth of ER(-) mammary epithelial cells in vitro and delayed the development of premalignant lesions and tumors in vivo in mouse models developing HER2(+) and ER(-) mammary tumors, extending tumor-free and overall survival. Mechanistic investigations revealed that Src blockade reduced glucose metabolism as a result of an inhibition in ERK1/2-MNK1-eIF4E-mediated cap-dependent translation of c-Myc and transcription of the glucose transporter GLUT1, thereby limiting energy available for cell growth. Taken together, our results provide a sound rationale to target Src pathways in premalignant breast lesions to limit the development of breast cancers. Cancer Res; 75(22); 4863-75. ©2015 AACR. PMID:26383165

  19. DLK1 regulates whole body glucose metabolism: A negative feedback regulation of the osteocalcin-insulin loop

    DEFF Research Database (Denmark)

    Abdallah, Basem; Ditzel, Nicholas

    2015-01-01

    The endocrine role of the skeleton in regulating energy metabolism is supported by a feed forward loop between circulating osteoblasts (OBs)-derived undercaboxylated osteocalcin (Glu-OCN) and pancreatic ?-cell-insulin; in turn insulin favors osteocalcin bioactivity. These data suggest the existence of a negative regulation of this cross-talk between osteocalcin and insulin. Recently, we have identified DLK1 (Delta like-1), as an endocrine regulator of bone turnover. Since, DLK1 is co-localized with insulin in pancreatic ?-cells, we examined the role of DLK1 in insulin signalling in OB and energy metabolism. Here, we show that Glu-OCN specifically stimulated Dlk1 expression by the pancreas. Conversely, Dlk1 deficient (Dlk1-/-) mice exhibited increased in circulating Glu-OCN levels and increased insulin sensitivity, whereas mice overexpressing Dlk1 in OB displayed reduced insulin secretion and sensitivity due to impaired insulin signaling in OB and lowered Glu-OCN serum levels. Furthermore, Dlk1-/- mice treatedwith Glu-OC experience significantly lowered blood glucose levels compared to Glu-OCN-treated wild type mice. Our data suggest that Glu-OCN-controlled production of DLK1 by pancreatic ? cells acts as a negative feedback mechanism to counteract the stimulatory effects of insulin on osteoblast production of Glu-OCN, a potential mechanism preventing OCN-induced hypoglycemia.

  20. DLK1 regulates whole body glucose metabolism : A negative feedback regulation of the osteocalcin-insulin loop

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Ditzel, Nicholas

    2015-01-01

    The endocrine role of the skeleton in regulating energy metabolism is supported by a feed forward loop between circulating osteoblasts (OBs)-derived undercaboxylated osteocalcin (Glu-OCN) and pancreatic ?-cell-insulin; in turn insulin favors osteocalcin bioactivity. These data suggest the existence of a negative regulation of this cross-talk between osteocalcin and insulin. Recently, we have identified DLK1 (Delta like-1), as an endocrine regulator of bone turnover. Since, DLK1 is co-localized with insulin in pancreatic ?-cells, we examined the role of DLK1 in insulin signalling in OB and energy metabolism. Here, we show that Glu-OCN specifically stimulated Dlk1 expression by the pancreas. Conversely, Dlk1 deficient (Dlk1(-/-)) mice exhibited increased in circulating Glu-OCN levels and increased insulin sensitivity, whereas mice overexpressing Dlk1 in OB displayed reduced insulin secretion and sensitivity due to impaired insulin signaling in OB and lowered Glu-OCN serum levels. Furthermore, Dlk1(-/-) mice treated with Glu-OC experience significantly lowered blood glucose levels compared to Glu-OCN-treated wild type mice. Our data suggest that Glu-OCN-controlled production of DLK1 by pancreatic ? cells acts as a negative feedback mechanism to counteract the stimulatory effects of insulin on osteoblast production of Glu-OCN, a potential mechanism preventing OCN-induced hypoglycemia.

  1. Glucose metabolism of fetal rat brain in utero, measured with labeled deoxyglucose

    International Nuclear Information System (INIS)

    Mammals have low cerebral metabolic rates immediately after birth and, by inference, also before birth. In this study, we extended the deoxyglucose method to the fetal rat brain in utero. Rate constants for deoxyglucose transfer across the maternal placental and fetal blood-brain barriers, and lumped constant, have not been reported. Therefore, we applied a new method of determining the lumped constant regionally to the fetal rat brain in utero. The lumped constant averaged 0.55 ± 0.15 relative to the maternal circulation. On this basis, we determined the glucose metabolic rate of the fetal rat brain to be one third of the corresponding maternal value, or 19 ± 2 ?mol hg-1 min-1. (author)

  2. Glucose sensing in the pancreatic beta cell: a computational systems analysis

    Directory of Open Access Journals (Sweden)

    Philipson Louis H

    2010-05-01

    Full Text Available Abstract Background Pancreatic beta-cells respond to rising blood glucose by increasing oxidative metabolism, leading to an increased ATP/ADP ratio in the cytoplasm. This leads to a closure of KATP channels, depolarization of the plasma membrane, influx of calcium and the eventual secretion of insulin. Such mechanism suggests that beta-cell metabolism should have a functional regulation specific to secretion, as opposed to coupling to contraction. The goal of this work is to uncover contributions of the cytoplasmic and mitochondrial processes in this secretory coupling mechanism using mathematical modeling in a systems biology approach. Methods We describe a mathematical model of beta-cell sensitivity to glucose. The cytoplasmic part of the model includes equations describing glucokinase, glycolysis, pyruvate reduction, NADH and ATP production and consumption. The mitochondrial part begins with production of NADH, which is regulated by pyruvate dehydrogenase. NADH is used in the electron transport chain to establish a proton motive force, driving the F1F0 ATPase. Redox shuttles and mitochondrial Ca2+ handling were also modeled. Results The model correctly predicts changes in the ATP/ADP ratio, Ca2+ and other metabolic parameters in response to changes in substrate delivery at steady-state and during cytoplasmic Ca2+ oscillations. Our analysis of the model simulations suggests that the mitochondrial membrane potential should be relatively lower in beta cells compared with other cell types to permit precise mitochondrial regulation of the cytoplasmic ATP/ADP ratio. This key difference may follow from a relative reduction in respiratory activity. The model demonstrates how activity of lactate dehydrogenase, uncoupling proteins and the redox shuttles can regulate beta-cell function in concert; that independent oscillations of cytoplasmic Ca2+ can lead to slow coupled metabolic oscillations; and that the relatively low production rate of reactive oxygen species in beta-cells under physiological conditions is a consequence of the relatively decreased mitochondrial membrane potential. Conclusion This comprehensive model predicts a special role for mitochondrial control mechanisms in insulin secretion and ROS generation in the beta cell. The model can be used for testing and generating control hypotheses and will help to provide a more complete understanding of beta-cell glucose-sensing central to the physiology and pathology of pancreatic ?-cells.

  3. Real-time monitoring of lactate extrusion and glucose consumption of cultured cells using a lab-on-valve system.

    Science.gov (United States)

    Schulz, Craig M; Scampavia, Louis; Ruzicka, Jaromir

    2002-12-01

    Microsequential injection (microST) provides microfluidic operations that are ideally suited for cellular function studies and as a means of validating targets for drug discovery. MicroSI carried out within the lab-on-valve (LOV) manifold, is an ideal platform for spectroscopic studies on living cells that are grown on microcarrier beads and kept thermostated while their metabolism is probed in real-time. In this paper a microbioreactor is integrated into the LOV manifold allowing measurement of cellular lactate extrusion and glucose consumption rates of a cell culture that is automatically renewed prior to each measurement. Glucose consumption and lactate extrusion are monitored using NAD-linked enzymatic assays. The microSI-LOV setup has demonstrated a linear analysis range of 0.05-1.00 mM for lactate and 0.1-5.6 mM for glucose. These assays were conducted in a serial fashion requiring 3 microL of cellular perfusate and 10 s for glucose determination and 30 s for the lactate assay. Overall waste generated per lactate/glucose assay is < 200 microL. This work was performed using two different transfected hepatocyte cell lines, which adhere to Cytopore microcarrier beads. This novel approach to metabolic screening allows for the rapid evaluation of the effects of dosing cells with chemical agents. PMID:12537364

  4. Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles.

    Science.gov (United States)

    Hu, Chenxia; Niestroj, Martin; Yuan, Daniel; Chang, Steven; Chen, Jie

    2015-01-01

    Cancer ranks among the leading causes of human mortality. Cancer becomes intractable when it spreads from the primary tumor site to various organs (such as bone, lung, liver, and then brain). Unlike solid tumor cells, cancer stem cells and metastatic cancer cells grow in a non-attached (suspension) form when moving from their source to other locations in the body. Due to the non-attached growth nature, metastasis is often first detected in the circulatory systems, for instance in a lymph node near the primary tumor. Cancer research over the past several decades has primarily focused on treating solid tumors, but targeted therapy to treat cancer stem cells and cancer metastasis has yet to be developed. Because cancers undergo faster metabolism and consume more glucose than normal cells, glucose was chosen in this study as a reagent to target cancer cells. In particular, by covalently binding gold nanoparticles (GNPs) with thio-PEG (polyethylene glycol) and thio-glucose, the resulting functionalized GNPs (Glu-GNPs) were created for targeted treatment of cancer metastasis and cancer stem cells. Suspension cancer cell THP-1 (human monocytic cell line derived from acute monocytic leukemia patients) was selected because it has properties similar to cancer stem cells and has been used as a metastatic cancer cell model for in vitro studies. To take advantage of cancer cells' elevated glucose consumption over normal cells, different starvation periods were screened in order to achieve optimal treatment effects. Cancer cells were then fed using Glu-GNPs followed by X-ray irradiation treatment. For comparison, solid tumor MCF-7 cells (breast cancer cell line) were studied as well. Our irradiation experimental results show that Glu-GNPs are better irradiation sensitizers to treat THP-1 cells than MCF-7 cells, or Glu-GNPs enhance the cancer killing of THP-1 cells 20% more than X-ray irradiation alone and GNP treatment alone. This finding can help oncologists to design therapeutic strategies to target cancer stem cells and cancer metastasis. PMID:25844037

  5. Study of cerebral metabolism of glucose in normal human brain correlated with age

    International Nuclear Information System (INIS)

    Full text: The objective was to determine whether cerebral metabolism in various regions of the brain differs with advancing age by using 18F-FDG PET instrument and SPM software. Materials and Methods We reviewed clinical information of 295 healthy normal samples who were examined by a whole body GE Discovery LS PET-CT instrument in our center from Aug. 2004 to Dec. 2005.They (with the age ranging from 21 to 88; mean age+/-SD: 49.77+/-13.51) were selected with: (i)absence of clear focal brain lesions (epilepsy.cerebrovascular diseases etc);(ii) absence of metabolic diseases, such as hyperthyroidism, hypothyroidism and diabetes;(iii) absence of psychiatric disorders and abuse of drugs and alcohol. They were sub grouped into six groups with the interval of 10 years old starting from 21, and the gender, educational background and serum glucose were matched. All subgroups were compared to the control group of 31-40 years old (84 samples; mean age+/-SD: 37.15+/-2.63). All samples were injected with 18F-FDG (5.55MBq/kg), 45-60 minutes later, their brains were scanned for 10min. Pixel-by-pixel t-statistic analysis was applied to all brain images using the Statistical parametric mapping (SPM2) .The hypometabolic areas (p < 0. 01 or p<0.001, uncorrected) were identified in the Stereotaxic coordinate human brain atlas and three-dimensional localized by MNI Space utility (MSU) software. Results:Relative hypometabolic brain areas detected are mainly in the cortical structures such as bilateral prefrontal cortex, superior temporal gyrus(BA22), parietal cortex (inferior parietal lobule and precuneus(BA40, insula(BA13)), parahippocampal gyrus and amygdala (p<0.01).It is especially apparent in the prefrontal cortex (BA9)and sensory-motor cortex(BA5, 7) (p<0.001), while basal ganglia and cerebellum remained metabolically unchanged with advancing age. Conclusions Regional cerebral metabolism of glucose shows a descent tendency with aging, especially in the prefrontal cortex (BA9)and sensory-motor cortex(BA5, 7).In spite of the cerebral atrophy of aging, these relative hypometabolic brain areas are considered to be correlated with structural and functional cerebral changes and cognitive dysfunction such as verbal and spatial working memory deficit in the process of normal brain aging. The study of cerebral metabolism of glucose in normal human brains can be used for reference and instruction in future clinical studies and in normal brain aging. (author)

  6. Selection of Metastatic Breast Cancer Cells Based on Adaptability of Their Metabolic State

    OpenAIRE

    Singh, Balraj; Tai, Karen; Madan, Simran; Raythatha, Milan R.; Cady, Amanda M.; Braunlin, Megan; Irving, LaTashia R.; Bajaj, Ankur; LUCCI, ANTHONY

    2012-01-01

    A small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.g., glucose and glutamine, we hypothesized that the adaptable cancer cells that drive malignancy must possess an adaptable metabolic state and that such cells could be identified using ...

  7. Relationship between salivary cortisol levels and regional cerebral glucose metabolism in nondemented elderly subjects

    International Nuclear Information System (INIS)

    Cortisol is a primary stress hormone for flight-or-fight response in human. Increased levels of cortisol have been associated with memory and learning impairments. However, little is known about the role of cortisol on brain/cognitive functions in older adults. We compared regional cerebral glucose metabolism between elderly subjects with high and low cortisol levels using FDG PET. Salivary cortisol levels were measured four times during a day, and an average of the four measurements was used as the standard cortisol level for the analyses. From a population of 120 nondemented elderly subjects, 19 (mean age, 70.1±4.9 y: 2 males and 17 females) were identified as the high (> mean + 1 SD of the total population) cortisol subjects (mean cortisol, 0.69±0.09 ? g/dL), while 14 (mean age, 67.2±4.5 y: all females) as the low (< mean 1 SD) cortisol (mean cortisol, 0.27±0.03 ? g/dL). A voxel-wise comparison of FDG PET images from the high and low cortisol subjects was performed using SPM99. When compared with the low cortisol group, the high cortisol group had significant hypometabolism in the right middle temporal gyrus, left precuneus, right parahippocampal gyrus, right inferior temporal and superior temporal gyri (P < 0.01 uncorrected, k = 100). There was no significant increase of glucose metabolism in the high cortisol group compared with the low cortisol group (P < 0.01 uncorrected, k = 100). The high cortisol elderly subjects had hypometabolism in the parahippocampal and temporal gyri and precuneus, regions involved in memory and other cognitive functions. This may represent the preclinical metabolic correlates of forthcoming cognitive dysfunction associated with stress in the elderly. Longitudinal studies of brain metabolism and cognitive function are warranted

  8. Relationship between salivary cortisol levels and regional cerebral glucose metabolism in nondemented elderly subjects

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Young Bin; Cho, Sang Soo; Lee, Sung Ha; Chey, Jean Yung; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2004-07-01

    Cortisol is a primary stress hormone for flight-or-fight response in human. Increased levels of cortisol have been associated with memory and learning impairments. However, little is known about the role of cortisol on brain/cognitive functions in older adults. We compared regional cerebral glucose metabolism between elderly subjects with high and low cortisol levels using FDG PET. Salivary cortisol levels were measured four times during a day, and an average of the four measurements was used as the standard cortisol level for the analyses. From a population of 120 nondemented elderly subjects, 19 (mean age, 70.1{+-}4.9 y: 2 males and 17 females) were identified as the high (> mean + 1 SD of the total population) cortisol subjects (mean cortisol, 0.69{+-}0.09 {mu} g/dL), while 14 (mean age, 67.2{+-}4.5 y: all females) as the low (< mean 1 SD) cortisol (mean cortisol, 0.27{+-}0.03 {mu} g/dL). A voxel-wise comparison of FDG PET images from the high and low cortisol subjects was performed using SPM99. When compared with the low cortisol group, the high cortisol group had significant hypometabolism in the right middle temporal gyrus, left precuneus, right parahippocampal gyrus, right inferior temporal and superior temporal gyri (P < 0.01 uncorrected, k = 100). There was no significant increase of glucose metabolism in the high cortisol group compared with the low cortisol group (P < 0.01 uncorrected, k = 100). The high cortisol elderly subjects had hypometabolism in the parahippocampal and temporal gyri and precuneus, regions involved in memory and other cognitive functions. This may represent the preclinical metabolic correlates of forthcoming cognitive dysfunction associated with stress in the elderly. Longitudinal studies of brain metabolism and cognitive function are warranted.

  9. Uptake and metabolism of sugars by suspension-cultured catharanthus roseus cells

    Energy Technology Data Exchange (ETDEWEB)

    Ashihara, Hiroshi; Sagishima, Kyoko; Kubota, Kaoru (Ochanomizu Univ., Tokyo (Japan))

    1989-04-01

    The Uptake and metabolism of sugars by suspension-cultured Catharanthus roseus cells were investigated. Substantially all the sucrose in the culture medium was hydrolyzed to glucose and fructose before being taken up by the cells. The activity of invertase bound to cell walls, determined in situ, was high at the early stage of culture. Glucose was more easily taken up by the cells than was fructose. Tracer experiments using (U-{sup 14}C)glucose and (U-{sup 14}C)fructose indicated that glucose is a better precursor for respiration than fructose, while fructose is preferentially utilized for the synthesis of sucrose, especially in the early phase of cell growth. These results suggest that fructose is utilized for the synthesis of sucrose via the reaction catalyzed by sucrose synthase, prior to the phosphorylation by hexokinase or fructokinase.

  10. Uptake and metabolism of sugars by suspension-cultured catharanthus roseus cells

    International Nuclear Information System (INIS)

    The Uptake and metabolism of sugars by suspension-cultured Catharanthus roseus cells were investigated. Substantially all the sucrose in the culture medium was hydrolyzed to glucose and fructose before being taken up by the cells. The activity of invertase bound to cell walls, determined in situ, was high at the early stage of culture. Glucose was more easily taken up by the cells than was fructose. Tracer experiments using [U-14C]glucose and [U-14C]fructose indicated that glucose is a better precursor for respiration than fructose, while fructose is preferentially utilized for the synthesis of sucrose, especially in the early phase of cell growth. These results suggest that fructose is utilized for the synthesis of sucrose via the reaction catalyzed by sucrose synthase, prior to the phosphorylation by hexokinase or fructokinase

  11. Adenylosuccinate Is an Insulin Secretagogue Derived from Glucose-Induced Purine Metabolism.

    Science.gov (United States)

    Gooding, Jessica R; Jensen, Mette V; Dai, Xiaoqing; Wenner, Brett R; Lu, Danhong; Arumugam, Ramamani; Ferdaoussi, Mourad; MacDonald, Patrick E; Newgard, Christopher B

    2015-10-01

    Pancreatic islet failure, involving loss of glucose-stimulated insulin secretion (GSIS) from islet ? cells, heralds the onset of type 2 diabetes (T2D). To search for mediators of GSIS, we performed metabolomics profiling of the insulinoma cell line 832/13 and uncovered significant glucose-induced changes in purine pathway intermediates, including a decrease in inosine monophosphate (IMP) and an increase in adenylosuccinate (S-AMP), suggesting a regulatory role for the enzyme that links the two metabolites, adenylosuccinate synthase (ADSS). Inhibition of ADSS or a more proximal enzyme in the S-AMP biosynthesis pathway, adenylosuccinate lyase, lowers S-AMP levels and impairs GSIS. Addition of S-AMP to the interior of patch-clamped human ? cells amplifies exocytosis, an effect dependent upon expression of sentrin/SUMO-specific protease 1 (SENP1). S-AMP also overcomes the defect in glucose-induced exocytosis in ? cells from a human donor with T2D. S-AMP is, thus, an insulin secretagogue capable of reversing ? cell dysfunction in T2D. PMID:26411681

  12. Adenylosuccinate Is an Insulin Secretagogue Derived from Glucose-Induced Purine Metabolism

    Directory of Open Access Journals (Sweden)

    Jessica R. Gooding

    2015-10-01

    Full Text Available Pancreatic islet failure, involving loss of glucose-stimulated insulin secretion (GSIS from islet ? cells, heralds the onset of type 2 diabetes (T2D. To search for mediators of GSIS, we performed metabolomics profiling of the insulinoma cell line 832/13 and uncovered significant glucose-induced changes in purine pathway intermediates, including a decrease in inosine monophosphate (IMP and an increase in adenylosuccinate (S-AMP, suggesting a regulatory role for the enzyme that links the two metabolites, adenylosuccinate synthase (ADSS. Inhibition of ADSS or a more proximal enzyme in the S-AMP biosynthesis pathway, adenylosuccinate lyase, lowers S-AMP levels and impairs GSIS. Addition of S-AMP to the interior of patch-clamped human ? cells amplifies exocytosis, an effect dependent upon expression of sentrin/SUMO-specific protease 1 (SENP1. S-AMP also overcomes the defect in glucose-induced exocytosis in ? cells from a human donor with T2D. S-AMP is, thus, an insulin secretagogue capable of reversing ? cell dysfunction in T2D.

  13. Quantitative autoradiography of 14C-D-glucose metabolism of normal and traumatized rat brain using micro-absorption photometry

    International Nuclear Information System (INIS)

    It could be shown using 14C-glucose as energy-providing substrate for brain tissue metabolism that for bolus type application a retarded and even channelling of the substrate into the metabolic process takes place. The presence of tracer in the tissue was established using autoradiography. A linear correlation between the amount of tissue-incorporated 14C section thickness and exposure time could be established by means of densitometric measurement of brain sections of various thicknesses, by applying various 14C-activities and by different exposure times. From these correlations direct conclusions may be made regarding the specific activity of the tissue provided that exposure time and section thickness of the sample are known. Comparative studies between cortex and narrow and between traumatized and non-traumatized brain tissue show that the rate of metabolism in brain cortex is markedly higher than in the marrow and that 14C-incorporation is higher in traumatized tissue than in non-traumatized tissue. Whilst the difference in rate of metabolism between brain cortex and marrow can be clearly related to the differing cell count/unit surface area for cortex and marrow, the different energy conversion rates for functionally damaged and normal brain tissue is a specific characteristic of injury. Apart from the fact that an increased 14C-deposition is in no way indicative of an increased metabolic activity, the possibility of quantifying 14C-tissue content provides a basis for estimating therapeutic effects e.g. in the treatment of trauma-caused brain edema. (orig.)

  14. Trace glucose and lipid metabolism in high androgen and high-fat diet induced polycystic ovary syndrome rats

    Directory of Open Access Journals (Sweden)

    Zhai Hua-Ling

    2012-01-01

    Full Text Available Abstract Background There is a high prevalence of diabetes mellitus (DM and dyslipidemia in women with polycystic ovary syndrome (PCOS. The purpose of this study was to investigate the role of different metabolic pathways in the development of diabetes mellitus in high-androgen female mice fed with a high-fat diet. Methods Female Sprague-Dawley rats were divided into 3 groups: the control group(C, n = 10; the andronate-treated group (Andronate, n = 10 (treated with andronate, 1 mg/100 g body weight/day for 8 weeks; and the andronate-treated and high-fat diet group (Andronate+HFD, n = 10. The rate of glucose appearance (Ra of glucose, gluconeogenesis (GNG, and the rate of glycerol appearance (Ra of glycerol were assessed with a stable isotope tracer. The serum sex hormone levels, insulin levels, glucose concentration, and the lipid profile were also measured. Results Compared with control group, both andronate-treated groups exhibited obesity with higher insulin concentrations (P P Conclusions Andronate with HFD rat model showed ovarian and metabolic features of PCOS, significant increase in glucose Ra, GNG, and lipid profiles, as well as normal blood glucose levels. Therefore, aberrant IR, increased glucose Ra, GNG, and lipid metabolism may represent the early-stage of glucose and lipid kinetics disorder, thereby might be used as potential early-stage treatment targets for PCOS.

  15. Effect of aspirin and prostaglandins on the carbohydrate metabolism in albino rats.: glucose oxidation through different pathways and glycolytic enzymes

    International Nuclear Information System (INIS)

    The effect of chronic and acute doses of aspirin and prostaglandins F2? and E2 individually on the oxidation of glucose through Embden Meyerhof-TCA cycle and pentose phosphate pathways and some key glycolytic enzymes of liver were studied in male albino rats. Studies were extended to find the combined effect of PGF2? and E2 with an acute dose of aspirin. There was increased utilisation of both 1-14C glucose and 6-14C glucose on aspirin treatment. However, the metabolism through the EM-TCA pathway was more pronounced as shown by a reduced ratio of 14CO2 from 1-14C and 6-14C glucose. Two hepatic key glycolytic enzymes viz. hexokinase and pyruvate kinase were increased due to aspirin treatment. Withdrawal of aspirin corrected the above impaired carbohydrate metabolism in liver. Prostaglandin F2? also caused a reduction in the utilisation of 1-14C glucose, while PGE2 recorded an increase in the utilisation of both 1-14C and 6-14C glucose when compared to controls, indicating that different members of prostaglandins could affect metabolisms and differently. Administration of the PGs and aspirin together showed an increase in the utilisation of 6-14C glucose. (auth.)

  16. Role of the fission yeast cell integrity MAPK pathway in response to glucose limitation

    Directory of Open Access Journals (Sweden)

    Madrid Marisa

    2013-02-01

    Full Text Available Abstract Background Glucose is a signaling molecule which regulates multiple events in eukaryotic organisms and the most preferred carbon source in the fission yeast Schizosaccharomyces pombe. The ability of this yeast to grow in the absence of glucose becomes strongly limited due to lack of enzymes of the glyoxylate cycle that support diauxic growth. The stress-activated protein kinase (SAPK pathway and its effectors, Sty1 MAPK and transcription factor Atf1, play a critical role in the adaptation of fission yeast to grow on alternative non-fermentable carbon sources by inducing the expression of fbp1+ gene, coding for the gluconeogenic enzyme fructose-1,6-bisphosphatase. The cell integrity Pmk1 pathway is another MAPK cascade that regulates various processes in fission yeast, including cell wall construction, cytokinesis, and ionic homeostasis. Pmk1 pathway also becomes strongly activated in response to glucose deprivation but its role during glucose exhaustion and ensuing adaptation to respiratory metabolism is currently unknown. Results We found that Pmk1 activation in the absence of glucose takes place only after complete depletion of this carbon source and that such activation is not related to an endogenous oxidative stress. Notably, Pmk1 MAPK activation relies on de novo protein synthesis, is independent on known upstream activators of the pathway like Rho2 GTPase, and involves PKC ortholog Pck2. Also, the Glucose/cAMP pathway is required operative for full activation of the Pmk1 signaling cascade. Mutants lacking Pmk1 displayed a partial growth defect in respiratory media which was not observed in the presence of glucose. This phenotype was accompanied by a decreased and delayed expression of transcription factor Atf1 and target genes fbp1+ and pyp2+. Intriguingly, the kinetics of Sty1 activation in Pmk1-less cells was clearly altered during growth adaptation to non-fermentable carbon sources. Conclusions Unknown upstream elements mediate Pck2-dependent signal transduction of glucose withdrawal to the cell integrity MAPK pathway. This signaling cascade reinforces the adaptive response of fission yeast to such nutritional stress by enhancing the activity of the SAPK pathway.

  17. 11C-2-deoxy-D-glucose: Synthesis and preliminary comparison with 11C-D-glucose as a tracer for cerebral energy metabolism in PET studies

    International Nuclear Information System (INIS)

    11C-2-Deoxy-D-glucose has been prepared by the reaction of 11C-hydrogen cyanide with a stable precursor, 1-deoxy-2,3:4,5-di-O-isopropylidine-1-iodo-D-arabitol, thereby avoiding the synthesis of starting material immediately prior to labeling. Fast, efficient, and reproducible solvent change from dimethyl sulfoxide to ether by flash chromatography enabled the use of diisobutylaluminium hydride in the reduction of the intermediate nitrile. Hydrolysis of the imine-aluminum complex with sulfuric acid, removal of the isopropylidine protecting groups with formic acid, and HPLC purifiction with an Aminex HPX-87P column yielded 11C-2-deoxy-D-glucose in an aqueous solution, sterile, pyrogen-free, and ready for use in human studies. The radiochemical yield was proportional20% after a synthesis time of 50 min. The 11C-2-deoxy-D-glucose thus obtained is presently being compared with photosynthetically prepared 11C-D-glucose in PET studies of cerebral metabolism. A preliminary report of the regional cerebral metabolic rate of glucose obtained with the two tracers in a healthy subject with visual stimulation is presented. (orig.)

  18. Loss of function of PTEN alters the relationship between glucose concentration and cell proliferation, increases glycolysis, and sensitizes cells to 2-deoxyglucose.

    Science.gov (United States)

    Blouin, Marie-José; Zhao, Yunhua; Zakikhani, Mahvash; Algire, Carolyn; Piura, Esther; Pollak, Michael

    2010-03-28

    PTEN loss of function enhances proliferation, but effects on cellular energy metabolism are less well characterized. We used an inducible PTEN expression vector in a PTEN-null glioma cell line to examine this issue. While proliferation of PTEN-positive cells was insensitive to increases in glucose concentration beyond 2.5mM, PTEN-null cells significantly increased proliferation with increasing glucose concentration across the normal physiologic range to approximately 10mM, coinciding with a shift to glycolysis and "glucose addiction". This demonstrates that the impact of loss of function of PTEN is modified by glucose concentration, and may be relevant to epidemiologic results linking hyperglycemia to cancer risk and cancer mortality. PMID:19744772

  19. The RabGAP TBC1D1 plays a central role in exercise-regulated glucose metabolism in skeletal muscle

    DEFF Research Database (Denmark)

    Stöckli, Jacqueline; Meoli, C