WorldWideScience

Sample records for cell function altered

  1. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti

  2. Altered Natural Killer Cell Function in HIV-Exposed Uninfected Infants

    Directory of Open Access Journals (Sweden)

    Christiana Smith

    2017-04-01

    Full Text Available ObjectivesHIV-exposed uninfected (HEU infants have higher rates of severe and fatal infections compared with HIV-unexposed (HUU infants, likely due to immune perturbations. We hypothesized that alterations in natural killer (NK cell activity might occur in HEU infants and predispose them to severe infections.DesignCase–control study using cryopreserved peripheral blood mononuclear cells (PBMCs at birth and 6 months from HEU infants enrolled from 2002 to 2009 and HUU infants enrolled from 2011 to 2013.MethodsNK cell phenotype and function were assessed by flow cytometry after 20-h incubation with and without K562 cells.ResultsThe proportion of NK cells among PBMCs was lower at birth in 12 HEU vs. 22 HUU (1.68 vs. 10.30%, p < 0.0001 and at 6 months in 52 HEU vs. 72 HUU (3.09 vs. 4.65%, p = 0.0005. At birth, HEU NK cells demonstrated increased killing of K562 target cells (p < 0.0001 and increased expression of CD107a (21.65 vs. 12.70%, p = 0.047, but these differences resolved by 6 months. Stimulated HEU NK cells produced less interferon (IFNγ at birth (0.77 vs. 2.64%, p = 0.008 and at 6 months (4.12 vs. 8.39%, p = 0.001, and showed reduced perforin staining at 6 months (66.95 vs. 77.30%, p = 0.0008. Analysis of cell culture supernatants indicated that lower NK cell activity in HEU was associated with reduced interleukin (IL-12, IL-15, and IL-18. Addition of recombinant human IL-12 to stimulated HEU PBMCs restored IFNγ production to that seen in stimulated HUU cultures.ConclusionNK cell proportion, phenotype, and function are altered in HEU infants. NK cell cytotoxicity and degranulation are increased in HEU at birth, but HEU NK cells have reduced IFNγ and perforin production, suggesting an adequate initial response, but decreased functional reserve. NK cell function improved with addition of exogenous IL-12, implicating impaired production of IL-12 by accessory cells. Alterations in NK cell and accessory

  3. Phenotypic and Functional Alterations of Hematopoietic Stem and Progenitor Cells in an In Vitro Leukemia-Induced Microenvironment

    Directory of Open Access Journals (Sweden)

    Jean-Paul Vernot

    2017-02-01

    Full Text Available An understanding of the cell interactions occurring in the leukemic microenvironment and their functional consequences for the different cell players has therapeutic relevance. By co-culturing mesenchymal stem cells (MSC with the REH acute lymphocytic leukemia (ALL cell line, we have established an in vitro leukemic niche for the functional evaluation of hematopoietic stem/progenitor cells (HSPC, CD34+ cells. We showed that the normal homeostatic control exerted by the MSC over the HSPC is considerably lost in this leukemic microenvironment: HSPC increased their proliferation rate and adhesion to MSC. The adhesion molecules CD54 and CD44 were consequently upregulated in HSPC from the leukemic niche. Consequently, with this adhesive phenotype, HSPC showed less Stromal derived factor-1 (SDF-1-directed migration. Interestingly, multipotency was severely affected with an important reduction in the absolute count and the percentage of primitive progenitor colonies. It was possible to simulate most of these HSPC alterations by incubation of MSC with a REH-conditioned medium, suggesting that REH soluble factors and their effect on MSC are important for the observed changes. Of note, these HSPC alterations were reproduced when primary leukemic cells from an ALL type B (ALL-B patient were used to set up the leukemic niche. These results suggest that a general response is induced in the leukemic niche to the detriment of HSPC function and in favor of leukemic cell support. This in vitro leukemic niche could be a valuable tool for the understanding of the molecular events responsible for HSPC functional failure and a useful scenario for therapeutic evaluation.

  4. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells.

    Science.gov (United States)

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K

    2017-10-01

    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts.

    Science.gov (United States)

    Krishnamachary, Balaji; Stasinopoulos, Ioannis; Kakkad, Samata; Penet, Marie-France; Jacob, Desmond; Wildes, Flonne; Mironchik, Yelena; Pathak, Arvind P; Solaiyappan, Meiyappan; Bhujwalla, Zaver M

    2017-03-14

    Cyclooxygenase-2 (COX-2) is a critically important mediator of inflammation that significantly influences tumor angiogenesis, invasion, and metastasis. We investigated the role of COX-2 expressed by triple negative breast cancer cells in altering the structure and function of the extracellular matrix (ECM). COX-2 downregulation effects on ECM structure and function were investigated using magnetic resonance imaging (MRI) and second harmonic generation (SHG) microscopy of tumors derived from triple negative MDA-MB-231 breast cancer cells, and a derived clone stably expressing a short hairpin (shRNA) molecule downregulating COX-2. MRI of albumin-GdDTPA was used to characterize macromolecular fluid transport in vivo and SHG microscopy was used to quantify collagen 1 (Col1) fiber morphology. COX-2 downregulation decreased Col1 fiber density and altered macromolecular fluid transport. Immunohistochemistry identified significantly fewer activated cancer associated fibroblasts (CAFs) in low COX-2 expressing tumors. Metastatic lung nodules established by COX-2 downregulated cells were infrequent, smaller, and contained fewer Col1 fibers.COX-2 overexpression studies were performed with tumors derived from triple negative SUM-149 breast cancer cells lentivirally transduced to overexpress COX-2. SHG microscopy identified significantly higher Col1 fiber density in COX-2 overexpressing tumors with an increase of CAFs. These data expand upon the roles of COX-2 in shaping the structure and function of the ECM in primary and metastatic tumors, and identify the potential role of COX-2 in modifying the number of CAFs in tumors that may have contributed to the altered ECM.

  6. Multiplexed quantitative high content screening reveals that cigarette smoke condensate induces changes in cell structure and function through alterations in cell signaling pathways in human bronchial cells

    International Nuclear Information System (INIS)

    Carter, Charleata A.; Hamm, Jonathan T.

    2009-01-01

    Human bronchial cells are one of the first cell types exposed to environmental toxins. Toxins often activate nuclear factor-κB (NF-κB) and protein kinase C (PKC). We evaluated the hypothesis that cigarette smoke condensate (CSC), the particulate fraction of cigarette smoke, activates PKC-α and NF-κB, and concomitantly disrupts the F-actin cytoskeleton, induces apoptosis and alters cell function in BEAS-2B human bronchial epithelial cells. Compared to controls, exposure of BEAS-2B cells to doses of 30 μg/ml CSC significantly activated PKC-α, while CSC doses above 20 μg/ml CSC significantly activated NF-κB. As NF-κB was activated, cell number decreased. CSC treatment of BEAS-2B cells induced a decrease in cell size and an increase in cell surface extensions including filopodia and lamellipodia. CSC treatment of BEAS-2B cells induced F-actin rearrangement such that stress fibers were no longer prominent at the cell periphery and throughout the cells, but relocalized to perinuclear regions. Concurrently, CSC induced an increase in the focal adhesion protein vinculin at the cell periphery. CSC doses above 30 μg/ml induced a significant increase in apoptosis in BEAS-2B cells evidenced by an increase in activated caspase 3, an increase in mitochondrial mass and a decrease in mitochondrial membrane potential. As caspase 3 increased, cell number decreased. CSC doses above 30 μg/ml also induced significant concurrent changes in cell function including decreased cell spreading and motility. CSC initiates a signaling cascade in human bronchial epithelial cells involving PKC-α, NF-κB and caspase 3, and consequently decreases cell spreading and motility. These CSC-induced alterations in cell structure likely prevent cells from performing their normal function thereby contributing to smoke-induced diseases.

  7. Cigarette smoke alters the secretome of lung epithelial cells.

    Science.gov (United States)

    Mossina, Alessandra; Lukas, Christina; Merl-Pham, Juliane; Uhl, Franziska E; Mutze, Kathrin; Schamberger, Andrea; Staab-Weijnitz, Claudia; Jia, Jie; Yildirim, Ali Ö; Königshoff, Melanie; Hauck, Stefanie M; Eickelberg, Oliver; Meiners, Silke

    2017-01-01

    Cigarette smoke is the most relevant risk factor for the development of lung cancer and chronic obstructive pulmonary disease. Many of its more than 4500 chemicals are highly reactive, thereby altering protein structure and function. Here, we used subcellular fractionation coupled to label-free quantitative MS to globally assess alterations in the proteome of different compartments of lung epithelial cells upon exposure to cigarette smoke extract. Proteomic profiling of the human alveolar derived cell line A549 revealed the most pronounced changes within the cellular secretome with preferential downregulation of proteins involved in wound healing and extracellular matrix organization. In particular, secretion of secreted protein acidic and rich in cysteine, a matricellular protein that functions in tissue response to injury, was consistently diminished by cigarette smoke extract in various pulmonary epithelial cell lines and primary cells of human and mouse origin as well as in mouse ex vivo lung tissue cultures. Our study reveals a previously unrecognized acute response of lung epithelial cells to cigarette smoke that includes altered secretion of proteins involved in extracellular matrix organization and wound healing. This may contribute to sustained alterations in tissue remodeling as observed in lung cancer and chronic obstructive pulmonary disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

    NARCIS (Netherlands)

    Ingólfsson, Helgi I; Thakur, Pratima; Herold, Karl F; Hobart, E Ashley; Ramsey, Nicole B; Periole, Xavier; de Jong, Djurre H; Zwama, Martijn; Yilmaz, Duygu; Hall, Katherine; Maretzky, Thorsten; Hemmings, Hugh C; Blobel, Carl; Marrink, Siewert J; Kocer, Armagan; Sack, Jon T; Andersen, Olaf S

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous

  9. Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

    NARCIS (Netherlands)

    Ingólfsson, Helgi I; Thakur, Pratima; Herold, Karl F; Hobart, E Ashley; Ramsey, Nicole B; Periole, Xavier; de Jong, Djurre H; Zwama, Martijn; Yilmaz, Duygu; Hall, Katherine; Maretzky, Thorsten; Hemmings, Hugh C; Blobel, Carl; Marrink, Siewert J; Kocer, Armagan; Sack, Jon T; Andersen, Olaf S

    2014-01-01

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous

  10. Morphologic and functional alterations induced by low doses of mercuric chloride in the kidney OK cell line: ultrastructural evidence for an apoptotic mechanism of damage

    International Nuclear Information System (INIS)

    Carranza-Rosales, Pilar; Said-Fernandez, Salvador; Sepulveda-Saavedra, Julio; Cruz-Vega, Delia E.; Gandolfi, A. Jay

    2005-01-01

    Mercury produces acute renal failure in experimental animal models, but the mechanism of tubular injury has not completely been clarified. There is an increased interest in the role of apoptosis in the pathogenesis of renal diseases that result primarily from injury to renal tubular epithelial cells. However, detailed studies of morpho-functional alterations induced by mercuric chloride in kidney cell lines are scarce. This work characterizes these alterations in OK cell cultures. Morphological alterations were profiled using light microscopy, transmission electron microscopy, and confocal microscopy, as well as mitochondrial functional assays in the cells exposed to low concentrations of HgCl 2 . At concentrations of 1 and 10 μM of HgCl 2 there were no morphological or ultrastructural alterations, but the mitochondrial function (MTT assay) and intracellular ATP content was increased, especially at longer incubation times (6 and 9 h). At 15 μM HgCl 2 , both the mitochondrial activity and the endogenous ATP decreased significantly. At this concentration the OK cells rounded up, had increased number of cytoplasmic vacuoles, and detached from the cell monolayer. At 15 μM HgCl 2 ultrastructural changes were characterized by dispersion of the ribosomes, dilatation of the cisterns of the rough endoplasmic reticulum, increase of number of cytoplasmic vacuoles, chromatin condensation, invaginations of the nuclear envelope, presence of cytoplasmic inclusion bodies, and alterations in the size and morphology of mitochondria. At 15 μM HgCl 2 apoptotic signs included membrane blebbing, chromatin condensation, mitochondrial alterations, apoptotic bodies, and nuclear envelope rupture. Using confocal microscopy and the mitochondrial specific dye MitoTracker Red, it was possible to establish qualitative changes induced by mercury on the mitochondrial membrane potential after incubation of the cells for 6 and 9 h with 15 μM HgCl 2 . This effect was not observed at short times

  11. Phenotypic and Functional Alterations in Circulating Memory CD8 T Cells with Time after Primary Infection.

    Directory of Open Access Journals (Sweden)

    Matthew D Martin

    2015-10-01

    Full Text Available Memory CD8 T cells confer increased protection to immune hosts upon secondary viral, bacterial, and parasitic infections. The level of protection provided depends on the numbers, quality (functional ability, and location of memory CD8 T cells present at the time of infection. While primary memory CD8 T cells can be maintained for the life of the host, the full extent of phenotypic and functional changes that occur over time after initial antigen encounter remains poorly characterized. Here we show that critical properties of circulating primary memory CD8 T cells, including location, phenotype, cytokine production, maintenance, secondary proliferation, secondary memory generation potential, and mitochondrial function change with time after infection. Interestingly, phenotypic and functional alterations in the memory population are not due solely to shifts in the ratio of effector (CD62Llo and central memory (CD62Lhi cells, but also occur within defined CD62Lhi memory CD8 T cell subsets. CD62Lhi memory cells retain the ability to efficiently produce cytokines with time after infection. However, while it is was not formally tested whether changes in CD62Lhi memory CD8 T cells over time occur in a cell intrinsic manner or are due to selective death and/or survival, the gene expression profiles of CD62Lhi memory CD8 T cells change, phenotypic heterogeneity decreases, and mitochondrial function and proliferative capacity in either a lymphopenic environment or in response to antigen re-encounter increase with time. Importantly, and in accordance with their enhanced proliferative and metabolic capabilities, protection provided against chronic LCMV clone-13 infection increases over time for both circulating memory CD8 T cell populations and for CD62Lhi memory cells. Taken together, the data in this study reveal that memory CD8 T cells continue to change with time after infection and suggest that the outcome of vaccination strategies designed to elicit

  12. Alteration of Multiple Cell Membrane Functions in L-6 Myoblasts by T-2 Toxin: An Important Mechanism of Action.

    Science.gov (United States)

    1986-06-04

    menbrane functions. All are in a range that would in turn be expected to alter other cell functions. Intracellular LEH was reduced 10 min after T-2... Plasma amino F-id changes in guinea pigs injected with T-2 rnycotoxin. Fed. Proc. 42, 625. 20 1111" ll p J IIIý f%𔃻 11 IC IA 114 WEAVER, G.A., MW1•Z, H.J

  13. Phytochemicals perturb membranes and promiscuously alter protein function.

    Science.gov (United States)

    Ingólfsson, Helgi I; Thakur, Pratima; Herold, Karl F; Hobart, E Ashley; Ramsey, Nicole B; Periole, Xavier; de Jong, Djurre H; Zwama, Martijn; Yilmaz, Duygu; Hall, Katherine; Maretzky, Thorsten; Hemmings, Hugh C; Blobel, Carl; Marrink, Siewert J; Koçer, Armağan; Sack, Jon T; Andersen, Olaf S

    2014-08-15

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding.

  14. Cat retinal ganglion cell receptive-field alterations after 6-hydroxydopamine induced dopaminergic amacrine cell lesions

    International Nuclear Information System (INIS)

    Maguire, G.W.; Smith, E.L. III

    1985-01-01

    Optic tract single-unit recordings were used to study ganglion cell response functions of the intact cat eye after 6-hydroxydopamine (6-OHDA) lesioning of the dopaminergic amacrine cell (AC) population of the inner retina. The impairment of the dopaminergic AC was verified by high pressure-liquid chromatography with electrochemical detection of endogenous dopamine content and by [ 3 H]dopamine high-affinity uptake; the dopaminergic ACs of the treated eyes demonstrated reduced endogenous dopamine content and reduced [ 3 H]dopamine uptake compared with that of their matched controls. Normal appearing [ 3 H]GABA and [ 3 H]-glycine uptake in the treated retinas suggests the absence of any nonspecific action of the 6-OHDA on the neural retina. The impairment of the dopaminergic AC population was found to alter a number of response properties in off-center ganglion cells, but this impairment had only a modest effect on the on-center cells. An abnormally high proportion of the off-center ganglion cells in the 6-OHDA treated eyes possessed nonlinear, Y-type receptive fields. These cells also possessed shift-responses of greater than normal amplitude, altered intensity-response functions, reduced maintained activities, and more transient center responses. Of the on-center type cells, only the Y-type on-center cells were affected by 6-OHDA, possessing higher than normal maintained activities and altered intensity-response functions. The on-center X-cells were unaffected by 6-OHDA treatment. The dopaminergic AC of the photopically adapted cat retina therefore modulates a number of ganglion cell response properties and within the limits of this study is most prominent in off-center ganglion cell circuitry

  15. Genetic deletion of Mst1 alters T cell function and protects against autoimmunity.

    Directory of Open Access Journals (Sweden)

    Konstantin V Salojin

    Full Text Available Mammalian sterile 20-like kinase 1 (Mst1 is a MAPK kinase kinase kinase which is involved in a wide range of cellular responses, including apoptosis, lymphocyte adhesion and trafficking. The contribution of Mst1 to Ag-specific immune responses and autoimmunity has not been well defined. In this study, we provide evidence for the essential role of Mst1 in T cell differentiation and autoimmunity, using both genetic and pharmacologic approaches. Absence of Mst1 in mice reduced T cell proliferation and IL-2 production in vitro, blocked cell cycle progression, and elevated activation-induced cell death in Th1 cells. Mst1 deficiency led to a CD4+ T cell development path that was biased toward Th2 and immunoregulatory cytokine production with suppressed Th1 responses. In addition, Mst1-/- B cells showed decreased stimulation to B cell mitogens in vitro and deficient Ag-specific Ig production in vivo. Consistent with altered lymphocyte function, deletion of Mst1 reduced the severity of experimental autoimmune encephalomyelitis (EAE and protected against collagen-induced arthritis development. Mst1-/- CD4+ T cells displayed an intrinsic defect in their ability to respond to encephalitogenic antigens and deletion of Mst1 in the CD4+ T cell compartment was sufficient to alleviate CNS inflammation during EAE. These findings have prompted the discovery of novel compounds that are potent inhibitors of Mst1 and exhibit desirable pharmacokinetic properties. In conclusion, this report implicates Mst1 as a critical regulator of adaptive immune responses, Th1/Th2-dependent cytokine production, and as a potential therapeutic target for immune disorders.

  16. Ochratoxim A alters cell adhesion and gap junction intercellular communication in MDCK cells

    International Nuclear Information System (INIS)

    Mally, Angela; Decker, Martina; Bekteshi, Michaela; Dekant, Wolfgang

    2006-01-01

    Ochratoxin A (OTA) is one of the most potent renal carcinogens studied to date, but the mechanism of tumor formation by ochratoxin A remains largely unknown. Cell adhesion and cell-cell communication participate in the regulation of signaling pathways involved in cell proliferation and growth control and it is therefore not surprising that modulation of cell-cell signaling has been implicated in cancer development. Several nephrotoxicants and renal carcinogens have been shown to alter cell-cell signaling by interference with gap junction intercell communication (GJIC) and/or cell adhesion, and the aim of this study was to determine if disruption of cell-cell interactions occurs in kidney epithelial cells in response to OTA treatment. MDCK cells were treated with OTA (0-50 μM) for up to 24 h and gap junction function was analyzed using the scrape-load/dye transfer assay. In addition, expression and intracellular localization of Cx43, E-cadherin and β-catenin were determined by immunoblot and immunofluorescence analysis. A clear decrease in the distance of dye transfer was evident following treatment with OTA at concentrations/incubation times which did not affect cell viability. Consistent with the functional inhibition of GJIC, treatment with OTA resulted in a dose-dependent decrease in Cx43 expression. In contrast to Cx43, OTA did not alter total amount of the adherens junction proteins E-cadherin and β-catenin. Moreover, Western blot analysis of Triton X-100 soluble and insoluble protein fractions did not indicate translocation of cell adhesion molecules from the membrane to the cytoplasm. However, a ∼78 kDa fragment of β-catenin was detected in the detergent soluble fraction, indicating proteolytic cleavage of β-catenin. Immunofluorescence analysis also revealed changes in the pattern of both β-catenin and E-cadherin labeling, suggesting that OTA may alter cell-adhesion. Taken together, these data support the hypothesis that disruption of cell-cell

  17. Genetic alterations in head and neck squamous cell carcinomas

    Directory of Open Access Journals (Sweden)

    Nagai M.A.

    1999-01-01

    Full Text Available The genetic alterations observed in head and neck cancer are mainly due to oncogene activation (gain of function mutations and tumor suppressor gene inactivation (loss of function mutations, leading to deregulation of cell proliferation and death. These genetic alterations include gene amplification and overexpression of oncogenes such as myc, erbB-2, EGFR and cyclinD1 and mutations, deletions and hypermethylation leading to p16 and TP53 tumor suppressor gene inactivation. In addition, loss of heterozygosity in several chromosomal regions is frequently observed, suggesting that other tumor suppressor genes not yet identified could be involved in the tumorigenic process of head and neck cancers. The exact temporal sequence of the genetic alterations during head and neck squamous cell carcinoma (HNSCC development and progression has not yet been defined and their diagnostic or prognostic significance is controversial. Advances in the understanding of the molecular basis of head and neck cancer should help in the identification of new markers that could be used for the diagnosis, prognosis and treatment of the disease.

  18. Small molecule alteration of RNA sequence in cells and animals.

    Science.gov (United States)

    Guan, Lirui; Luo, Yiling; Ja, William W; Disney, Matthew D

    2017-10-18

    RNA regulation and maintenance are critical for proper cell function. Small molecules that specifically alter RNA sequence would be exceptionally useful as probes of RNA structure and function or as potential therapeutics. Here, we demonstrate a photochemical approach for altering the trinucleotide expanded repeat causative of myotonic muscular dystrophy type 1 (DM1), r(CUG) exp . The small molecule, 2H-4-Ru, binds to r(CUG) exp and converts guanosine residues to 8-oxo-7,8-dihydroguanosine upon photochemical irradiation. We demonstrate targeted modification upon irradiation in cell culture and in Drosophila larvae provided a diet containing 2H-4-Ru. Our results highlight a general chemical biology approach for altering RNA sequence in vivo by using small molecules and photochemistry. Furthermore, these studies show that addition of 8-oxo-G lesions into RNA 3' untranslated regions does not affect its steady state levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Dynamic alterations of hepatocellular function by on-demand elasticity and roughness modulation.

    Science.gov (United States)

    Uto, K; Aoyagi, T; DeForest, C A; Ebara, M

    2018-05-01

    Temperature-responsive cell culture substrates reported here can be dynamically programmed to induce bulk softening and surface roughness changes in the presence of living cells. Alterations in hepatocellular function following temporally controlled substrate softening depend on the extent of stiff mechanical priming prior to user-induced material transition.

  20. GABA FUNCTION IS ALTERED FOLLOWING DEVELOPMENTAL HYPOTHYROIDISM: NEUROANATOMICAL AND NEUROPHYSIOLOGICAL EVIDENCE.

    Science.gov (United States)

    Thyroid hormone deficiency during development produces changes in the structure of neurons and glial cells and alters synaptic function in the hippocampus. GABAergic interneurons comprise the bulk of local inhibitory neuronal circuitry and a subpopulation of these interneurons ...

  1. Alteration of T cell function in healthy persons with a history of thymic x irradiation

    International Nuclear Information System (INIS)

    Rieger, C.H.L.; Kraft, S.C.; Rothberg, R.M.

    1975-01-01

    The possible late effects of x irradiation to the infantile thymus were investigated by studying immune functions in 12 healthy persons with a history of thymic x irradiation and healthy control subjects. No differences were found in serum immunoglobulin values, humoral antibody levels, lymphocyte counts, and lymphocyte reactivity to phytohemagglutinin, vaccinia virus, purified protein derivative (PPD), and allogeneic cells. The irradiation group exhibited cellular hyperresponsiveness to streptokinase-streptodornase (SK-SD). In contrast, mean skin and in vitro lymphocyte responses to Candida albicans were depressed in the patients with thymic irradiation. A dissociation of these two Candida responses was found in only 1 of 14 healthy control subjects but in 7 of 12 irradiated individuals. While thymic irradiation did not result in impaired immunologic defenses leading to clinical disease, it caused alterations in T cell responses similar to those reported in patients with chronic mucocutaneous candidiasis

  2. Alteration of T cell function in healthy persons with a history of thymic x irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rieger, C.H.L.; Kraft, S.C.; Rothberg, R.M.

    1975-10-01

    The possible late effects of x irradiation to the infantile thymus were investigated by studying immune functions in 12 healthy persons with a history of thymic x irradiation and healthy control subjects. No differences were found in serum immunoglobulin values, humoral antibody levels, lymphocyte counts, and lymphocyte reactivity to phytohemagglutinin, vaccinia virus, purified protein derivative (PPD), and allogeneic cells. The irradiation group exhibited cellular hyperresponsiveness to streptokinase-streptodornase (SK-SD). In contrast, mean skin and in vitro lymphocyte responses to Candida albicans were depressed in the patients with thymic irradiation. A dissociation of these two Candida responses was found in only 1 of 14 healthy control subjects but in 7 of 12 irradiated individuals. While thymic irradiation did not result in impaired immunologic defenses leading to clinical disease, it caused alterations in T cell responses similar to those reported in patients with chronic mucocutaneous candidiasis.

  3. Altered decorin leads to disrupted endothelial cell function: a possible mechanism in the pathogenesis of fetal growth restriction?

    Science.gov (United States)

    Chui, A; Murthi, P; Gunatillake, T; Brennecke, S P; Ignjatovic, V; Monagle, P T; Whitelock, J M; Said, J M

    2014-08-01

    Fetal growth restriction (FGR) is a key cause of adverse pregnancy outcome where maternal and fetal factors are identified as contributing to this condition. Idiopathic FGR is associated with altered vascular endothelial cell functions. Decorin (DCN) has important roles in the regulation of endothelial cell functions in vascular environments. DCN expression is reduced in FGR. The objectives were to determine the functional consequences of reduced DCN in a human microvascular endothelial cell line model (HMVEC), and to determine downstream targets of DCN and their expression in primary placental microvascular endothelial cells (PLECs) from control and FGR-affected placentae. Short-interference RNA was used to reduce DCN expression in HMVECs and the effect on proliferation, angiogenesis and thrombin generation was determined. A Growth Factor PCR Array was used to identify downstream targets of DCN. The expression of target genes in control and FGR PLECs was performed. DCN reduction decreased proliferation and angiogenesis but increased thrombin generation with no effect on apoptosis. The array identified three targets of DCN: FGF17, IL18 and MSTN. Validation of target genes confirmed decreased expression of VEGFA, MMP9, EGFR1, IGFR1 and PLGF in HMVECs and PLECs from control and FGR pregnancies. Reduction of DCN in vascular endothelial cells leads to disrupted cell functions. The targets of DCN include genes that play important roles in angiogenesis and cellular growth. Therefore, differential expression of these may contribute to the pathogenesis of FGR and disease states in other microvascular circulations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Altered B cell homeostasis and Toll-like receptor 9-driven response in patients affected by autoimmune polyglandular syndrome Type 1: Altered B cell phenotype and dysregulation of the B cell function in APECED patients.

    Science.gov (United States)

    Perri, Valentina; Gianchecchi, Elena; Scarpa, Riccardo; Valenzise, Mariella; Rosado, Maria Manuela; Giorda, Ezio; Crinò, Antonino; Cappa, Marco; Barollo, Susi; Garelli, Silvia; Betterle, Corrado; Fierabracci, Alessandra

    2017-02-01

    APECED is a T-cell mediated disease with increased frequencies of CD8+ effector and reduction of FoxP3+ T regulatory cells. Antibodies against affected organs and neutralizing to cytokines are found in the peripheral blood. The contribution of B cells to multiorgan autoimmunity in Aire-/- mice was reported opening perspectives on the utility of anti-B cell therapy. We aimed to analyse the B cell phenotype of APECED patients compared to age-matched controls. FACS analysis was conducted on PBMC in basal conditions and following CpG stimulation. Total B and switched memory (SM) B cells were reduced while IgM memory were increased in patients. In those having more than 15 years from the first clinical manifestation the defect included also mature and transitional B cells; total memory B cells were increased, while SM were unaffected. In patients with shorter disease duration, total B cells were unaltered while SM and IgM memory behaved as in the total group. A defective B cell proliferation was detected after 4day-stimulation. In conclusion APECED patients show, in addition to a significant alteration of the B cell phenotype, a dysregulation of the B cell function involving peripheral innate immune mechanisms particularly those with longer disease duration. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  6. Altered development of NKT cells, γδ T cells, CD8 T cells and NK cells in a PLZF deficient patient.

    Directory of Open Access Journals (Sweden)

    Maggie Eidson

    Full Text Available In mice, the transcription factor, PLZF, controls the development of effector functions in invariant NKT cells and a subset of NKT cell-like, γδ T cells. Here, we show that in human lymphocytes, in addition to invariant NKT cells, PLZF was also expressed in a large percentage of CD8+ and CD4+ T cells. Furthermore, PLZF was also found to be expressed in all γδ T cells and in all NK cells. Importantly, we show that in a donor lacking functional PLZF, all of these various lymphocyte populations were altered. Therefore, in contrast to mice, PLZF appears to control the development and/or function of a wide variety of human lymphocytes that represent more than 10% of the total PBMCs. Interestingly, the PLZF-expressing CD8+ T cell population was found to be expanded in the peripheral blood of patients with metastatic melanoma but was greatly diminished in patients with autoimmune disease.

  7. Altered effector function of peripheral cytotoxic cells in COPD

    Directory of Open Access Journals (Sweden)

    Corne Jonathan M

    2009-06-01

    Full Text Available Abstract Background There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3- cells and NKT-like (CD56+CD3+ cells. Methods Peripheral blood mononuclear cells (PBMCs were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3- and NKT-like (CD56+CD3+ cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies. Results The proportion of peripheral blood NKT-like (CD56+CD3+ cells in smokers with COPD (COPD subjects was significantly lower (0.6% than in healthy smokers (smokers (2.8%, p +CD3- cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p +CD3+ cells (16.7% vs 52.4% specific lysis, p +CD3- and NKT-like (CD56+CD3+ cells from smokers and HNS. Conclusion In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3- and NKT-like (CD56+CD3+ cells in COPD subjects are reduced and that their cytotoxic effector function is defective.

  8. Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Kwok Yeung Tsang

    2007-03-01

    Full Text Available In protein folding and secretion disorders, activation of endoplasmic reticulum (ER stress signaling (ERSS protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del, misfolded alpha1(X chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia.

  9. Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Catriona, E-mail: catriona.kelly@qub.ac.uk [SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine (United Kingdom); Flatt, Peter R.; McClenaghan, Neville H. [SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine (United Kingdom)

    2010-08-20

    Research highlights: {yields} TGP52 cells display enhanced functionality in pseudoislet form. {yields} Somatostatin content was reduced, but secretion increased in high glucose conditions. {yields} Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.

  10. Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells

    International Nuclear Information System (INIS)

    Kelly, Catriona; Flatt, Peter R.; McClenaghan, Neville H.

    2010-01-01

    Research highlights: → TGP52 cells display enhanced functionality in pseudoislet form. → Somatostatin content was reduced, but secretion increased in high glucose conditions. → Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.

  11. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    Directory of Open Access Journals (Sweden)

    Mohammad F. Islam

    2012-05-01

    Full Text Available With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics.

  12. B-cell subset alterations and correlated factors in HIV-1 infection.

    Science.gov (United States)

    Pensieroso, Simone; Galli, Laura; Nozza, Silvia; Ruffin, Nicolas; Castagna, Antonella; Tambussi, Giuseppe; Hejdeman, Bo; Misciagna, Donatella; Riva, Agostino; Malnati, Mauro; Chiodi, Francesca; Scarlatti, Gabriella

    2013-05-15

    During HIV-1 infection, the development, phenotype, and functionality of B cells are impaired. Transitional B cells and aberrant B-cell populations arise in blood, whereas a declined percentage of resting memory B cells is detected. Our study aimed at pinpointing the demographic, immunological, and viral factors driving these pathological findings, and the role of antiretroviral therapy in reverting these alterations. B-cell phenotype and correlating factors were evaluated. Variations in B-cell subsets were evaluated by flow cytometry in HIV-1-infected individuals naive to therapy, elite controllers, and patients treated with antiretroviral drugs (virological control or failure). Multivariable analysis was performed to identify variables independently associated with the B-cell alterations. Significant differences were observed among patients' groups in relation to all B-cell subsets. Resting memory B cells were preserved in patients naive to therapy and elite controllers, but reduced in treated patients. Individuals naive to therapy and experiencing multidrug failure, as well as elite controllers, had significantly higher levels of activated memory B cells compared to healthy controls. In the multivariate analysis, plasma viral load and nadir CD4 T cells independently correlated with major B-cell alterations. Coinfection with hepatitis C but not hepatitis B virus also showed an impact on specific B-cell subsets. Successful protracted antiretroviral treatment led to normalization of all B-cell subsets with exception of resting memory B cells. Our results indicate that viremia and nadir CD4 T cells are important prognostic markers of B-cell perturbations and provide evidence that resting memory B-cell depletion during chronic infection is not reverted upon successful antiretroviral therapy.

  13. Advanced glycation endproducts alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress.

    Science.gov (United States)

    Chen, Jianfei; Song, Minbao; Yu, Shiyong; Gao, Pan; Yu, Yang; Wang, Hong; Huang, Lan

    2010-02-01

    Endothelial progenitor cells (EPCs) play an important role in preventing atherosclerosis. The factors that regulate the function of EPCs are not completely clear. Increased formation of advanced glycation endproducts (AGEs) is generally regarded as one of the main mechanisms responsible for vascular damage in patients with diabetes and atherosclerosis. AGEs lead to the generation of reactive oxygen species (ROS) and part of the regenerative capacity of EPCs seems to be due to their low baseline ROS levels and reduced sensitivity to ROS-induced cell apoptosis. Therefore, we tested the hypothesis that AGEs can alter functions and promote apoptosis in EPCs through overpress cell oxidant stress. EPCs, isolated from bone marrow, were cultured in the absence or presence of AGEs (50, 100, and 200 microg/ml). A modified Boyden's chamber was used to assess the migration of EPCs and the number of recultured EPCs was counted to measure the adhesiveness function. MTT assay was used to determine the proliferation function. ROS were analyzed using the ROS assay kit. A spectrophotometer was used to assess superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity, and PCR was used to test mRNA expression of SOD and GSH-PX. SiRNA was used to block receptor for advanced glycation endproducts (RAGEs) expression. Apoptosis was evaluated by Annexin V immunostaining and TUNEL staining. Co-culturing with AGEs increases ROS production, decreases anti-oxidant defenses, overpresses oxidant stress, inhibits the proliferation, migration, and adhesion of EPCs, and induces EPCs apoptosis. In addition, these effects were attenuated during block RAGE protein expression by siRNA. AGEs may serve to impair EPCs functions through RAGE-mediate oxidant stress, and promote EPCs sensitivity toward oxidative-stress-mediated apoptosis, which indicates a new pathophysiological mechanism of disturbed vascular adaptation in atherosclerosis and suggests that lower levels of AGEs might improve the

  14. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function......). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents...

  15. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    ). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially......Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents...

  16. Persistent Inflammation Alters the Function of the Endogenous Brain Stem Cell Compartment

    OpenAIRE

    Pluchino, Stefano; Muzio, Luca; Alfaro-Cervello, Clara; Salani, Giuliana; Porcheri, Cristina; Brambilla, Elena; Cavasinni, Francesca; Bergamaschi, Andrea; Garcia-Verdugo, Jose Manuel; Comi, Giancarlo; Martino, Gianvito; Imitola, Jaime; Deleidi, Michela; Khoury, Samia Joseph

    2008-01-01

    Endogenous neural stem/precursor cells (NPCs) are considered a functional reservoir for promoting tissue homeostasis and repair after injury, therefore regenerative strategies that mobilize these cells have recently been proposed. Despite evidence of increased neurogenesis upon acute inflammatory insults (e.g. ischaemic stroke), the plasticity of the endogenous brain stem cell compartment in chronic CNS inflammatory disorders remains poorly characterized. Here we show that persistent brain in...

  17. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID.

    Science.gov (United States)

    Sauer, Aisha V; Brigida, Immacolata; Carriglio, Nicola; Hernandez, Raisa Jofra; Scaramuzza, Samantha; Clavenna, Daniela; Sanvito, Francesca; Poliani, Pietro L; Gagliani, Nicola; Carlucci, Filippo; Tabucchi, Antonella; Roncarolo, Maria Grazia; Traggiai, Elisabetta; Villa, Anna; Aiuti, Alessandro

    2012-02-09

    Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)-mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA-treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA(-/-) Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA-treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA-treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID.

  18. Inhibition of the alpha-ketoglutarate dehydrogenase complex alters mitochondrial function and cellular calcium regulation.

    Science.gov (United States)

    Huang, Hsueh-Meei; Zhang, Hui; Xu, Hui; Gibson, Gary E

    2003-01-20

    Mitochondrial dysfunction occurs in many neurodegenerative diseases. The alpha-ketoglutarate dehydrogenase complex (KGDHC) catalyzes a key and arguably rate-limiting step of the tricarboxylic acid cycle (TCA). A reduction in the activity of the KGDHC occurs in brains and cells of patients with many of these disorders and may underlie the abnormal mitochondrial function. Abnormalities in calcium homeostasis also occur in fibroblasts from Alzheimer's disease (AD) patients and in cells bearing mutations that lead to AD. Thus, the present studies test whether the reduction of KGDHC activity can lead to the alterations in mitochondrial function and calcium homeostasis. alpha-Keto-beta-methyl-n-valeric acid (KMV) inhibits KGDHC activity in living N2a cells in a dose- and time-dependent manner. Surprisingly, concentration of KMV that inhibit in situ KGDHC by 80% does not alter the mitochondrial membrane potential (MMP). However, similar concentrations of KMV induce the release of cytochrome c from mitochondria into the cytosol, reduce basal [Ca(2+)](i) by 23% (Pcalcium release from the endoplasmic reticulum (ER) by 46% (P<0.005). This result suggests that diminished KGDHC activities do not lead to the Ca(2+) abnormalities in fibroblasts from AD patients or cells bearing PS-1 mutations. The increased release of cytochrome c with diminished KGDHC activities will be expected to activate other pathways including cell death cascades. Reductions in this key mitochondrial enzyme will likely make the cells more vulnerable to metabolic insults that promote cell death.

  19. Characterizing genomic alterations in cancer by complementary functional associations.

    Science.gov (United States)

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes.

  20. Altered Mycobacterium tuberculosis Cell Wall Metabolism and Physiology Associated With RpoB Mutation H526D

    Directory of Open Access Journals (Sweden)

    Victoria L. Campodónico

    2018-03-01

    Full Text Available Background:Mycobacterium tuberculosis (Mtb rpoB mutations are associated with global metabolic remodeling. However, the net effects of rpoB mutations on Mtb physiology, metabolism and function are not completely understood. Based on previous work, we hypothesized that changes in the expression of cell wall molecules in Mtb mutant RpoB 526D lead to changes in cell wall permeability and to altered resistance to environmental stresses and drugs.Methods: The phenotypes of a fully drug-susceptible clinical strain of Mtb and its paired rifampin-monoresistant, RpoB H526D mutant progeny strain were compared.Results: The rpoB mutant showed altered colony morphology, bacillary length and cell wall thickness, which were associated with increased cell wall permeability and susceptibility to the cell wall detergent sodium dodecyl sulfate (SDS after exposure to nutrient starvation. Relative to the isogenic rifampin-susceptible strain, the RpoB H526D mutant showed altered bacterial cellular metabolic activity and an eightfold increase in susceptibility to the cell-wall acting drug vancomycin.Conclusion: Our data suggest that RpoB mutation H526D is associated with altered cell wall physiology and resistance to cell wall-related stress. These findings are expected to contribute to an improved understanding of the pathogenesis of drug-resistant M. tuberculosis infections.

  1. Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses.

    Science.gov (United States)

    Webb, Tonya J; Carey, Gregory B; East, James E; Sun, Wenji; Bollino, Dominique R; Kimball, Amy S; Brutkiewicz, Randy R

    2016-08-01

    Natural killer T (NKT) cells play a critical role in the host's innate immune response. CD1d-mediated presentation of glycolipid antigens to NKT cells has been established; however, the mechanisms by which NKT cells recognize infected or cancerous cells remain unclear. 5(')-AMP activated protein kinase (AMPK) is a master regulator of lipogenic pathways. We hypothesized that activation of AMPK during infection and malignancy could alter the repertoire of antigens presented by CD1d and serve as a danger signal to NKT cells. In this study, we examined the effect of alterations in metabolism on CD1d-mediated antigen presentation to NKT cells and found that an infection with lymphocytic choriomeningitis virus rapidly increased CD1d-mediated antigen presentation. Hypoxia inducible factors (HIF) enhance T-cell effector functions during infection, therefore antigen presenting cells pretreated with pharmacological agents that inhibit glycolysis, induce HIF and activate AMPK were assessed for their ability to induce NKT-cell responses. Pretreatment with 2-deoxyglucose, cobalt chloride, AICAR and metformin significantly enhanced CD1d-mediated NKT-cell activation. In addition, NKT cells preferentially respond to malignant B cells and B-cell lymphomas express HIF-1α. These data suggest that targeting cellular metabolism may serve as a novel means of inducing innate immune responses. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Multiple lupus-associated ITGAM variants alter Mac-1 functions on neutrophils.

    Science.gov (United States)

    Zhou, Yebin; Wu, Jianming; Kucik, Dennis F; White, Nathan B; Redden, David T; Szalai, Alexander J; Bullard, Daniel C; Edberg, Jeffrey C

    2013-11-01

    Multiple studies have demonstrated that single-nucleotide polymorphisms (SNPs) in the ITGAM locus (including the nonsynonymous SNPs rs1143679, rs1143678, and rs1143683) are associated with systemic lupus erythematosus (SLE). ITGAM encodes the protein CD11b, a subunit of the β2 integrin Mac-1. The purpose of this study was to determine the effects of ITGAM genetic variation on the biologic functions of neutrophil Mac-1. Neutrophils from ITGAM-genotyped and -sequenced healthy donors were isolated for functional studies. The phagocytic capacity of neutrophil ITGAM variants was probed with complement-coated erythrocytes, serum-treated zymosan, heat-treated zymosan, and IgG-coated erythrocytes. The adhesion capacity of ITGAM variants, in adhering to either purified intercellular adhesion molecule 1 or tumor necrosis factor α-stimulated endothelial cells, was assessed in a flow chamber. Expression levels of total CD11b and activation of CD11b were assessed by flow cytometry. Mac-1-mediated neutrophil phagocytosis, determined in cultures with 2 different complement-coated particles, was significantly reduced in individuals with nonsynonymous variant alleles of ITGAM. This reduction in phagocytosis was related to variation at either rs1143679 (in the β-propeller region) or rs1143678/rs1143683 (highly linked SNPs in the cytoplasmic/calf-1 regions). Phagocytosis mediated by Fcγ receptors was also significantly reduced in donors with variant ITGAM alleles. Similarly, firm adhesion of neutrophils was significantly reduced in individuals with variant ITGAM alleles. These functional alterations were not attributable to differences in total receptor expression or activation. The nonsynonymous ITGAM variants rs1143679 and rs1143678/rs113683 contribute to altered Mac-1 function on neutrophils. These results underscore the need to consider multiple nonsynonymous SNPs when assessing the functional consequences of ITGAM variation on immune cell processes and the risk of SLE

  3. Ultrastructural alterations in hypoxic EMT-6/RO cells treated with misonidazole

    International Nuclear Information System (INIS)

    Wilbur, D.C.; Mulcahy, R.T.

    1984-01-01

    Ultrastructural alterations in hypoxic EMT-6 tumor cells were quantitatively analyzed as a function of time in the presence and absence of 1.0mM MISO. Control and MISO-treated monolayer cultures were maintained in hypoxic chambers at 37 0 C. At intervals after initiation of hypoxia, the cells were fixed and prepared for electron microscopy. The major ultrastructural alterations observed in untreated and MISO-treated hypoxic cells included mitochondrial swelling and accumulation of cytoplasmic lipid vacuoles. Mean mitochondrial area and relative cytoplasmic area occupied by lipid vacuoles were determined morphometrically. Mitochondrial damage was also scored qualitatively based on distortions in configuration. In the absence of MISO both parameters of mitochondrial injury increased over a period of two hours, after which little further change was noted. A progressive increase in lipid vacuolization was also seen. In the presence of MISO, mitochondrial swelling and lipid vacuole formation were significantly increased. The proportion of irreversibly damaged mitochondria was markedly enhanced. MISO treatment also accelerated the expression of these changes. The accelerated expression of hypoxic-related injury in MISO treated cells suggests that cytotoxicity is related to accentuation of hypoxic injury, perhaps by inhibition of glycolysis

  4. STAMP alters the growth of transformed and ovarian cancer cells

    International Nuclear Information System (INIS)

    He, Yuanzheng; Blackford, John A Jr; Kohn, Elise C; Simons, S Stoney Jr

    2010-01-01

    Steroid receptors play major roles in the development, differentiation, and homeostasis of normal and malignant tissue. STAMP is a novel coregulator that not only enhances the ability of p160 coactivator family members TIF2 and SRC-1 to increase gene induction by many of the classical steroid receptors but also modulates the potency (or EC 50 ) of agonists and the partial agonist activity of antisteroids. These modulatory activities of STAMP are not limited to gene induction but are also observed for receptor-mediated gene repression. However, a physiological role for STAMP remains unclear. The growth rate of HEK293 cells stably transfected with STAMP plasmid and overexpressing STAMP protein is found to be decreased. We therefore asked whether different STAMP levels might also contribute to the abnormal growth rates of cancer cells. Panels of different stage human cancers were screened for altered levels of STAMP mRNA. Those cancers with the greatest apparent changes in STAMP mRNA were pursued in cultured cancer cell lines. Higher levels of STAMP are shown to have the physiologically relevant function of reducing the growth of HEK293 cells but, unexpectedly, in a steroid-independent manner. STAMP expression was examined in eight human cancer panels. More extensive studies of ovarian cancers suggested the presence of higher levels of STAMP mRNA. Lowering STAMP mRNA levels with siRNAs alters the proliferation of several ovarian cancer tissue culture lines in a cell line-specific manner. This cell line-specific effect of STAMP is not unique and is also seen for the conventional effects of STAMP on glucocorticoid receptor-regulated gene transactivation. This study indicates that a physiological function of STAMP in several settings is to modify cell growth rates in a manner that can be independent of steroid hormones. Studies with eleven tissue culture cell lines of ovarian cancer revealed a cell line-dependent effect of reduced STAMP mRNA on cell growth rates. This

  5. Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression.

    Science.gov (United States)

    Bougdour, Alexandre; Durandau, Eric; Brenier-Pinchart, Marie-Pierre; Ortet, Philippe; Barakat, Mohamed; Kieffer, Sylvie; Curt-Varesano, Aurélie; Curt-Bertini, Rose-Laurence; Bastien, Olivier; Coute, Yohann; Pelloux, Hervé; Hakimi, Mohamed-Ali

    2013-04-17

    After invading host cells, Toxoplasma gondii multiplies within a parasitophorous vacuole (PV) that is maintained by parasite proteins secreted from organelles called dense granules. Most dense granule proteins remain within the PV, and few are known to access the host cell cytosol. We identify GRA16 as a dense granule protein that is exported through the PV membrane and reaches the host cell nucleus, where it positively modulates genes involved in cell-cycle progression and the p53 tumor suppressor pathway. GRA16 binds two host enzymes, the deubiquitinase HAUSP and PP2A phosphatase, which exert several functions, including regulation of p53 and the cell cycle. GRA16 alters p53 levels in a HAUSP-dependent manner and induces nuclear translocation of the PP2A holoenzyme. Additionally, certain GRA16-deficient strains exhibit attenuated virulence, indicating the importance of these host alterations in pathogenesis. Therefore, GRA16 represents a potentially emerging subfamily of exported dense granule proteins that modulate host function. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions.

    Science.gov (United States)

    Kinder, Michelle; Greenplate, Allison R; Strohl, William R; Jordan, Robert E; Brezski, Randall J

    2015-01-01

    Cytotoxic therapeutic monoclonal antibodies (mAbs) often mediate target cell-killing by eliciting immune effector functions via Fc region interactions with cellular and humoral components of the immune system. Key functions include antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC). However, there has been increased appreciation that along with cell-killing functions, the induction of antibody-dependent cytokine release (ADCR) can also influence disease microenvironments and therapeutic outcomes. Historically, most Fc engineering approaches have been aimed toward modulating ADCC, ADCP, or CDC. In the present study, we describe an Fc engineering approach that, while not resulting in impaired ADCC or ADCP, profoundly affects ADCR. As such, when peripheral blood mononuclear cells are used as effector cells against mAb-opsonized tumor cells, the described mAb variants elicit a similar profile and quantity of cytokines as IgG1. In contrast, although the variants elicit similar levels of tumor cell-killing as IgG1 with macrophage effector cells, the variants do not elicit macrophage-mediated ADCR against mAb-opsonized tumor cells. This study demonstrates that Fc engineering approaches can be employed to uncouple macrophage-mediated phagocytic and subsequent cell-killing functions from cytokine release.

  7. Diethylstilbestrol alters positive and negative selection of T cells in the thymus and modulates T-cell repertoire in the periphery

    International Nuclear Information System (INIS)

    Brown, Nicole; Nagarkatti, Mitzi; Nagarkatti, Prakash S.

    2006-01-01

    Prenatal exposure to diethylstilbestrol (DES) is known to cause altered immune functions and increased susceptibility to autoimmune disease in humans. In the current study, we investigated the effects of DES on T-cell differentiation in the thymus using the HY-TCR transgenic (Tg) mouse model in which the female mice exhibit positive selection of T cells bearing the Tg TCR, while the male mice show negative selection of such T cells. In female HY-TCR-Tg mice, exposure to DES showed more pronounced decrease in thymic cellularity when compared to male mice. Additionally, female mice also showed a significant decrease in the proportion of double-positive (DP) T cells in the thymus and HY-TCR-specific CD8 + T cells in the periphery. Male mice exhibiting negative selection also showed decreased thymic cellularity following DES exposure. Moreover, the male mice showed increased proportion of double-negative (DN) T cells in the thymus and decreased proportion of CD8 + T cells. The density of expression of HY-TCR on CD8 + cells was increased following DES exposure in both females and males. Finally, the proliferative response of thymocytes to mitogens and peripheral lymph node T cells to male H-Y antigen was significantly altered in female and male mice following DES treatment. Taken together, these data suggest that DES alters T-cell differentiation in the thymus by interfering with positive and negative selection processes, which in turn modulates the T-cell repertoire in the periphery

  8. Diethylstilbestrol alters positive and negative selection of T cells in the thymus and modulates T-cell repertoire in the periphery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicole [Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298 (United States); Nagarkatti, Mitzi [Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298 (United States); Nagarkatti, Prakash S [Department of Pharmacology and Toxicology, PO Box 980613, Virginia Commonwealth University Medical Center, Richmond, VA 23298-0613 (United States)

    2006-04-15

    Prenatal exposure to diethylstilbestrol (DES) is known to cause altered immune functions and increased susceptibility to autoimmune disease in humans. In the current study, we investigated the effects of DES on T-cell differentiation in the thymus using the HY-TCR transgenic (Tg) mouse model in which the female mice exhibit positive selection of T cells bearing the Tg TCR, while the male mice show negative selection of such T cells. In female HY-TCR-Tg mice, exposure to DES showed more pronounced decrease in thymic cellularity when compared to male mice. Additionally, female mice also showed a significant decrease in the proportion of double-positive (DP) T cells in the thymus and HY-TCR-specific CD8{sup +} T cells in the periphery. Male mice exhibiting negative selection also showed decreased thymic cellularity following DES exposure. Moreover, the male mice showed increased proportion of double-negative (DN) T cells in the thymus and decreased proportion of CD8{sup +} T cells. The density of expression of HY-TCR on CD8{sup +} cells was increased following DES exposure in both females and males. Finally, the proliferative response of thymocytes to mitogens and peripheral lymph node T cells to male H-Y antigen was significantly altered in female and male mice following DES treatment. Taken together, these data suggest that DES alters T-cell differentiation in the thymus by interfering with positive and negative selection processes, which in turn modulates the T-cell repertoire in the periphery.

  9. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID

    Science.gov (United States)

    Sauer, Aisha V.; Brigida, Immacolata; Carriglio, Nicola; Jofra Hernandez, Raisa; Scaramuzza, Samantha; Clavenna, Daniela; Sanvito, Francesca; Poliani, Pietro L.; Gagliani, Nicola; Carlucci, Filippo; Tabucchi, Antonella; Roncarolo, Maria Grazia; Traggiai, Elisabetta; Villa, Anna

    2012-01-01

    Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)–mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA–treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA−/− Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA–treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA–treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID. Trials were registered at www.clinicaltrials.gov as NCT00598481/NCT00599781. PMID:22184407

  10. Impact of genomic damage and ageing on stem cell function

    Science.gov (United States)

    Behrens, Axel; van Deursen, Jan M.; Rudolph, K. Lenhard; Schumacher, Björn

    2014-01-01

    Impairment of stem cell function contributes to the progressive deterioration of tissue maintenance and repair with ageing. Evidence is mounting that age-dependent accumulation of DNA damage in both stem cells and cells that comprise the stem cell microenvironment are partly responsible for stem cell dysfunction with ageing. Here, we review the impact of the various types of DNA damage that accumulate with ageing on stem cell functionality, as well as the development of cancer. We discuss DNA-damage-induced cell intrinsic and extrinsic alterations that influence these processes, and review recent advances in understanding systemic adjustments to DNA damage and how they affect stem cells. PMID:24576896

  11. The parietal cell gastric H, K-ATPase also functions as the Na, K-ATPase and Ca-ATPase in altered states.

    Science.gov (United States)

    Ray, Tushar

    2013-01-01

    This article offers an explanation for the apparent lack of Na, K-ATPase activity in parietal cells although ouabain has been known to inhibit gastric acid secretion since 1962. The gastric H, K-ATPase (proton-pump) seems to be acting in altered states, thus behaving like a Na, K-ATPase (Na-pump) and/or Ca-ATPase (Ca-pump) depending on cellular needs.  This conclusion is based on the following findings. First, parietal cell fractions do not exhibit Na, K-ATPase activity at pH 7.0 but do at pH 8.5. Second, the apical plasma membrane (APM) fraction exhibits a (Ca or Mg)-ATPase activity with negligible H, K-ATPase activity. However, when assayed with Mg alone in presence of the 80 k Da cytosolic proton-pump activator (HAF), the APM fraction reveals remarkably high H, K-ATPase activity, suggesting the observed low affinity of Ca (or Mg)-ATPase is an altered state of the latter. Third, calcium (between 1 and 4 µM) shows both stimulation and inhibition of the HAF-stimulated H, K-ATPase depending on its concentration, revealing a close interaction between the  proton-pump activator and local Ca concentration in gastric H, K-ATPase function. Such interactions suggest that Ca is acting as a terminal member of the intracellular signaling system for the HAF-regulated proton-pump. It appears that during resting state, the HAF-associated H, K-ATPase remains inhibited by Ca (>1 µM) and, prior to resumption of acid secretion the gastric H, K-ATPase acts temporarily as a Ca-pump for removing excess Ca from its immediate environment. This conclusion is consistent with the recent reports of immunochemical co-localization of the gastric H, K-ATPase and Ca-ATPase by superimposition in parietal cells, and a transitory efflux of Ca immediately preceding the onset of acid secretion. These new perspectives on proton-pump function would open new avenues for a fuller understanding of the intracellular regulation of the ubiquitous Na-pump.

  12. Altered lipid homeostasis in Sertoli cells stressed by mild hyperthermia.

    Directory of Open Access Journals (Sweden)

    Ana S Vallés

    Full Text Available Spermatogenesis is known to be vulnerable to temperature. Exposures of rat testis to moderate hyperthermia result in loss of germ cells with survival of Sertoli cells (SC. Because SC provide structural and metabolic support to germ cells, our aim was to test the hypothesis that these exposures affect SC functions, thus contributing to germ cell damage. In vivo, regularly repeated exposures (one of 15 min per day, once a day during 5 days of rat testes to 43 °C led to accumulation of neutral lipids. This SC-specific lipid function took 1-2 weeks after the last of these exposures to be maximal. In cultured SC, similar daily exposures for 15 min to 43 °C resulted in significant increase in triacylglycerol levels and accumulation of lipid droplets. After incubations with [3H]arachidonate, the labeling of cardiolipin decreased more than that of other lipid classes. Another specifically mitochondrial lipid metabolic function, fatty acid oxidation, also declined. These lipid changes suggested that temperature affects SC mitochondrial physiology, which was confirmed by significantly increased degrees of membrane depolarization and ROS production. This concurred with reduced expression of two SC-specific proteins, transferrin, and Wilms' Tumor 1 protein, markers of SC secretion and differentiation functions, respectively, and with an intense SC cytoskeletal perturbation, evident by loss of microtubule network (α-tubulin and microfilament (f-actin organization. Albeit temporary and potentially reversible, hyperthermia-induced SC structural and metabolic alterations may be long-lasting and/or extensive enough to respond for the decreased survival of the germ cells they normally foster.

  13. Mutant p53 transfection of astrocytic cells results in altered cell cycle control, radiation sensitivity, and tumorigenicity

    International Nuclear Information System (INIS)

    Kanady, Kirk E.; Mei Su; Proulx, Gary; Malkin, David M.; Pardo, Francisco S.

    1995-01-01

    Introduction: Alterations in the p53 tumor suppressor gene are one of the most frequent genetic alterations in malignant gliomas. An understanding of the molecular genetic events leading to glial tumor progression would aid in designing therapeutic vectors for controlling these challenging tumor types. We investigated whether mutations in coding exons of the p53 gene result in functional changes altering cell cycle 'checkpoint' control and the intrinsic radiation sensitivity of glial cells. Methods: An astrocytic cell line was derived from a low grade astrocytoma and characterized to be of human karyotype and GFAP positivity. Additionally, the cellular population has never formed tumors in immune-deficient mice. At early passage ( 2 as parameters. Cell kinetic analyses after 2, 5, and 10 Gy of ionizing radiation were conducted using propidium iodide FACS analyses. Results: Overall levels of p53 expression were increased 5-10 fold in the transfected cellular populations. Astrocytic cellular populations transfected with mutant p53 revealed a statistically significant increase in levels of resistance to ionizing radiation in vitro (2-tailed test, SF2, MID). Astrocytic cellular populations transfected with mutant p53, unlike the parental cells, were tumorigenic in SCID mice. Cell kinetic analyses indicated that the untransfected cell line demonstrated dose dependent G1 and G2 arrests. Following transfection, however, the resultant cellular population demonstrated a predominant G2 arrest. Conclusions: Astrocytic cellular populations derived from low grade astrocytomas, are relatively radiation sensitive, non-tumorigenic, and have intact cell cycle ''checkpoints.'' Cellular populations resulting upon transfection of parental cells with a dominant negative p53 mutation, are relatively radiation resistant, when compared to both parental and mock-transfected cells. Transfected cells demonstrate abnormalities of cell cycle control at the G1/S checkpoint, increases in levels

  14. Radiation-induced motility alterations in medulloblastoma cells

    International Nuclear Information System (INIS)

    Rieken, Stefan; Rieber, Juliane; Brons, Stephan

    2015-01-01

    Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metalloproteinase concentrations within cell culture supernatants were investigated by enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using Student's t-test. Both photon and carbon ion irradiation significantly reduced chemotactic medulloblastoma cell transmigration through 8-μm pore size membranes, while simultaneously increasing adherence to fibronectin- and collagen I- and IV-coated surfaces. Correspondingly, both photon and carbon ion irradiation downregulate soluble MMP9 concentrations, while upregulating cell surface expression of proadhesive extracellular matrix protein-binding integrin α 5 . The observed phenotype of radiation-altered motility is more pronounced following carbon ion than photon irradiation. Both photon and (even more so) carbon ion irradiation are effective in inhibiting medulloblastoma cell migration through downregulation of matrix metalloproteinase 9 and upregulation of proadhesive cell surface integrin α 5 , which lead to increased cell adherence to extracellular matrix proteins. (author)

  15. Telmisartan enhances mitochondrial activity and alters cellular functions in human coronary artery endothelial cells via AMP-activated protein kinase pathway.

    Science.gov (United States)

    Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao

    2015-04-01

    Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Altered resting brain function and structure in professional badminton players.

    Science.gov (United States)

    Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi

    2012-01-01

    Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.

  17. Altered Natural Killer Cell Subsets in Seropositive Arthralgia and Early Rheumatoid Arthritis Are Associated with Autoantibody Status

    NARCIS (Netherlands)

    Chalan, Paulina; Bijzet, Johan; Kroesen, Bart-Jan; Boots, Annemieke M. H.; Brouwer, Elisabeth

    Objective. The role of natural killer (NK) cells in the immunopathogenesis of rheumatoid arthritis (RA) is unclear. Therefore, numerical and functional alterations of CD56(dim) and CD56(bright) NK cells in the early stages of RA development were studied. Methods. Whole blood samples from newly

  18. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  19. Novel immunomodulatory effects of adiponectin on dendritic cell functions.

    Science.gov (United States)

    Tsang, Julia Yuen Shan; Li, Daxu; Ho, Derek; Peng, Jiao; Xu, Aimin; Lamb, Jonathan; Chen, Yan; Tam, Paul Kwong Hang

    2011-05-01

    Adiponectin (ADN) is an adipocytokine with anti-inflammatory properties. Although it has been reported that ADN can inhibit the immunostimulatory function of monocytes and macrophages, little is known of its effect on dendritic cells (DC). Recent data suggest that ADN can regulate immune responses. DCs are uniquely specialised antigen presenting cells that play a central role in the initiation of immunity and tolerance. In this study, we have investigated the immuno- modulatory effects of ADN on DC functions. We found that ADN has only moderate effect on the differentiation of murine bone marrow (BM) derived DCs but altered the phenotype of DCs. The expression of major histocompatibilty complex class II (MHCII), CD80 and CD86 on ADN conditioned DCs (ADN-DCs) was lower than that on untreated cells. The production of IL-12p40 was also suppressed in ADN-DCs. Interestingly, ADN treated DCs showed an increase in the expression of the inhibitory molecule, programmed death-1 ligand (PDL-1) compared to untreated cells. In vitro co-culture of ADN-DCs with allogeneic T cells led to a decrease in T cell proliferation and reduction of IL-2 production. Concomitant with that, a higher percentage of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) was detected in co-cultures of T cells and ADN-DCs. Blocking PD-1/PDL-1 pathway could partially restore T cell function. These findings suggest that the immunomodulatory effect of ADN on immune responses could be at least partially be mediated by its ability to alter DC function. The PD-1/PDL-1 pathway and the enhancement of Treg expansion are implicated in the immunomodulatory mechanisms. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Generation of functional eyes from pluripotent cells.

    Directory of Open Access Journals (Sweden)

    Andrea S Viczian

    2009-08-01

    Full Text Available Pluripotent cells such as embryonic stem (ES and induced pluripotent stem (iPS cells are the starting point from which to generate organ specific cell types. For example, converting pluripotent cells to retinal cells could provide an opportunity to treat retinal injuries and degenerations. In this study, we used an in vivo strategy to determine if functional retinas could be generated from a defined population of pluripotent Xenopus laevis cells. Animal pole cells isolated from blastula stage embryos are pluripotent. Untreated, these cells formed only epidermis, when transplanted to either the flank or eye field. In contrast, misexpression of seven transcription factors induced the formation of retinal cell types. Induced retinal cells were committed to a retinal lineage as they formed eyes when transplanted to the flanks of developing embryos. When the endogenous eye field was replaced with induced retinal cells, they formed eyes that were molecularly, anatomically, and electrophysiologically similar to normal eyes. Importantly, induced eyes could guide a vision-based behavior. These results suggest the fate of pluripotent cells may be purposely altered to generate multipotent retinal progenitor cells, which differentiate into functional retinal cell classes and form a neural circuitry sufficient for vision.

  1. Senescence-Induced Alterations of Laminin Chain Expression Modulate Tumorigenicity of Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Cynthia C.T. Sprenger

    2008-12-01

    Full Text Available Prostate cancer is an age-associated epithelial cancer, and as such, it contributes significantly to the mortality of the elderly. Senescence is one possible mechanism by which the body defends itself against various epithelial cancers. Senescent cells alter the microenvironment, in part, through changes to the extracellular matrix. Laminins (LMs are extracellular proteins important to both the structure and function of the microenvironment. Overexpression of the senescence-associated gene mac25 in human prostate cancer cells resulted in increased mRNA levels of the LM α4 and β2 chains compared to empty vector control cells. The purpose of this study was to examine the effects of these senescence-induced LM chains on tumorigenicity of prostate cancer cells. We created stable M12 human prostate cancer lines overexpressing either the LM α4 or β2 chain or both chains. Increased expression of either the LM α4 or β2 chain resulted in increased in vitro migration and in vivo tumorigenicity of those cells, whereas high expression of both chains led to decreased in vitro proliferation and in vivo tumorigenicity compared to M12 control cells. This study demonstrates that senescent prostate epithelial cells can alter the microenvironment and that these changes modulate progression of prostate cancer.

  2. Pancreatic Beta-Cell Purification by Altering FAD and NAD(PH Metabolism

    Directory of Open Access Journals (Sweden)

    P. de Vos

    2008-07-01

    Full Text Available Isolation of primary beta cells from other cells within in the pancreatic islets is of importance for many fields of islet research. However, up to now, no satisfactory method has been developed that gained high numbers of viable beta cells, without considerable alpha-cell contamination. In this study, we investigated whether rat beta cells can be isolated from nonbeta endocrine cells by manipulating the flavin adenine dinucleotide (FAD and nicotinamide-adenine dinucleotide phosphate (NAD(PH autofluorescence. Beta cells were isolated from dispersed islets by flow cytometry, based on their high FAD and NAD(PH fluorescence. To improve beta cell yield and purity, the cellular FAD and NAD(PH contents were altered by preincubation in culture media containing varying amounts of D-glucose and amino acids. Manipulation of the cellular FAD and NAD(PH fluorescence improves beta cell yield and purity after sorting. This method is also a fast and reliable method to measure beta cell functional viability. A conceivable application is assessing beta cell viability before transplantation.

  3. Theoretical cell alteration model in the context of carcinogenesis

    International Nuclear Information System (INIS)

    Walsh, P.J.

    1976-01-01

    A model incorporating cell survival and alteration is used to discuss the general nature of cellular response to a toxic agent. Cell division and repair are discussed as regards their influence on dose-response relationships to bone-seeking radionuclides. The application of the model in its present form to specific biologic end points depends on the assumption that such end points are the result of some initial alteration

  4. Morphological and functional alterations in adult boar epididymis: Effects of prenatal and postnatal administration of flutamide

    Directory of Open Access Journals (Sweden)

    Chojnacka Katarzyna

    2011-02-01

    Full Text Available Abstract Background The dynamic cross-talk between epididymal cells is hormonally regulated and, in part, through direct cell-to-cell interactions. To date, no information is available regarding possible impact of anti-androgens on the proteins involved in the gap junctional communication within the boar epididymis. Thus, a question arised whether prenatal or postnatal exposure to an anti-androgen flutamide alters the expression of gap junction protein - connexin43 (Cx43 and androgen receptor (AR expression in the caput, corpus and cauda epididymis and leads to delayed effects on morphology and function of adult pig epididymis. Methods First two experimental groups received flutamide prenatally on gestational days 20-28 and 80-88 (GD20 and GD80 and further two groups were exposed to flutamide postanatally on days 2-10 and 90-98 after birth (PD2 and PD90. Epididymides were collected from adult boars. Routine histology was performed using hematoxylin-eosin staining. The expression of Cx43 and AR were analyzed using immunohistochemistry and Western blotting. Both analyses were supported by quantitative approaches to demonstrate the variations of the expression levels following the treatment. Apoptotic cells were identified using TUNEL assay. Results Histological examination revealed differences in epididymal morphology of flutamide-exposed boars when compared to controls. Scarce spermatic content were seen within the corpus and cauda lumina of GD20, PD2 and PD90 groups. Concomitantly, frequency of epididymal cell apoptosis was significantly higher (p p p p Conclusions The region-specific alterations in the epididymis morphology and scarce spermatic content within the lumina of the corpus and cauda indicate that flutamide can induce delayed effects on the epididymal function of the adult boar by decrease in AR protein levels that results in altered androgen signaling. This may cause disturbances in androgen-dependent processes including Cx43

  5. Quantitative analysis of nanoscale intranuclear structural alterations in hippocampal cells in chronic alcoholism via transmission electron microscopy imaging.

    Science.gov (United States)

    Sahay, Peeyush; Shukla, Pradeep K; Ghimire, Hemendra M; Almabadi, Huda M; Tripathi, Vibha; Mohanty, Samarendra K; Rao, Radhakrishna; Pradhan, Prabhakar

    2017-03-01

    Chronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging. The results, which were obtained at length scales ranging from ~30 to 200 nm, show that 10-12 week-old mice fed a Lieber-DeCarli liquid (alcoholic) diet had a higher degree of structural alteration than control mice fed a normal diet without alcohol. The degree of structural alteration became significantly distinguishable at a sample length of ~100 nm, which is the typical length scale of the building blocks of cells, such as DNA, RNA, proteins and lipids. Interestingly, different degrees of structural alteration at such length scales suggest possible structural rearrangement of chromatin inside the nuclei in chronic alcoholism.

  6. Curcumin Modulates Pancreatic Adenocarcinoma Cell-Derived Exosomal Function

    Science.gov (United States)

    Osterman, Carlos J. Diaz; Lynch, James C.; Leaf, Patrick; Gonda, Amber; Ferguson Bennit, Heather R.; Griffiths, Duncan; Wall, Nathan R.

    2015-01-01

    Pancreatic cancer has the highest mortality rates of all cancer types. One potential explanation for the aggressiveness of this disease is that cancer cells have been found to communicate with one another using membrane-bound vesicles known as exosomes. These exosomes carry pro-survival molecules and increase the proliferation, survival, and metastatic potential of recipient cells, suggesting that tumor-derived exosomes are powerful drivers of tumor progression. Thus, to successfully address and eradicate pancreatic cancer, it is imperative to develop therapeutic strategies that neutralize cancer cells and exosomes simultaneously. Curcumin, a turmeric root derivative, has been shown to have potent anti-cancer and anti-inflammatory effects in vitro and in vivo. Recent studies have suggested that exosomal curcumin exerts anti-inflammatory properties on recipient cells. However, curcumin’s effects on exosomal pro-tumor function have yet to be determined. We hypothesize that curcumin will alter the pro-survival role of exosomes from pancreatic cancer cells toward a pro-death role, resulting in reduced cell viability of recipient pancreatic cancer cells. The main objective of this study was to determine the functional alterations of exosomes released by pancreatic cancer cells exposed to curcumin compared to exosomes from untreated pancreatic cancer cells. We demonstrate, using an in vitro cell culture model involving pancreatic adenocarcinoma cell lines PANC-1 and MIA PaCa-2, that curcumin is incorporated into exosomes isolated from curcumin-treated pancreatic cancer cells as observed by spectral studies and fluorescence microscopy. Furthermore, curcumin is delivered to recipient pancreatic cancer cells via exosomes, promoting cytotoxicity as demonstrated by Hoffman modulation contrast microscopy as well as AlamarBlue and Trypan blue exclusion assays. Collectively, these data suggest that the efficacy of curcumin may be enhanced in pancreatic cancer cells through

  7. Violent Video Games Alter Brain Function in Young Men

    Science.gov (United States)

    ... feed News from the RSNA Annual Meeting Violent Video Games Alter Brain Function in Young Men At A ... functional MRI, researchers have found that playing violent video games for one week causes changes in brain function. ...

  8. Programming Cell Adhesion for On-Chip Sequential Boolean Logic Functions.

    Science.gov (United States)

    Qu, Xiangmeng; Wang, Shaopeng; Ge, Zhilei; Wang, Jianbang; Yao, Guangbao; Li, Jiang; Zuo, Xiaolei; Shi, Jiye; Song, Shiping; Wang, Lihua; Li, Li; Pei, Hao; Fan, Chunhai

    2017-08-02

    Programmable remodelling of cell surfaces enables high-precision regulation of cell behavior. In this work, we developed in vitro constructed DNA-based chemical reaction networks (CRNs) to program on-chip cell adhesion. We found that the RGD-functionalized DNA CRNs are entirely noninvasive when interfaced with the fluidic mosaic membrane of living cells. DNA toehold with different lengths could tunably alter the release kinetics of cells, which shows rapid release in minutes with the use of a 6-base toehold. We further demonstrated the realization of Boolean logic functions by using DNA strand displacement reactions, which include multi-input and sequential cell logic gates (AND, OR, XOR, and AND-OR). This study provides a highly generic tool for self-organization of biological systems.

  9. Early Effects of Altered Gravity Environments on Plant Cell Growth and Cell Proliferation: Characterization of Morphofunctional Nucleolar Types in an Arabidopsis Cell Culture System

    Energy Technology Data Exchange (ETDEWEB)

    Manzano, Ana I.; Herranz, Raúl; Manzano, Aránzazu [Centro de Investigaciones Biológicas (CSIC), Madrid (Spain); Loon, Jack J. W. A. van [Department of Oral and Maxillofacial Surgery/Oral Pathology, Dutch Experiment Support Center, VU University Medical Center, Amsterdam (Netherlands); Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam (Netherlands); ESA-ESTEC, TEC-MMG, Noordwijk (Netherlands); Medina, F. Javier, E-mail: fjmedina@cib.csic.es [Centro de Investigaciones Biológicas (CSIC), Madrid (Spain)

    2016-02-05

    Changes in the cell growth rate of an in vitro cellular system in Arabidopsis thaliana induced by short exposure to an altered gravity environment have been estimated by a novel approach. The method consisted of defining three structural nucleolar types which are easy and reliable indicators of the ribosome biogenesis activity and, consequently, of protein biosynthesis, a parameter strictly correlated to cell growth in this cellular system. The relative abundance of each nucleolar type was statistically assessed in different conditions of gravity. Samples exposed to simulated microgravity for 200 min showed a significant decrease in nucleolar activity compared to 1g controls, whereas samples exposed to hypergravity (2g) for the same period showed nucleolar activity slightly increased. These effects could be considered as an early cellular response to the environmental alteration, given the short duration of the treatment. The functional significance of the structural data was validated by a combination of several different well-known parameters, using microscopical, flow cytometry, qPCR, and proteomic approaches, which showed that the decreased cell growth rate was decoupled from an increased cell proliferation rate under simulated microgravity, and the opposite trend was observed under hypergravity. Actually, not all parameters tested showed the same quantitative changes, indicating that the response to the environmental alteration is time-dependent. These results are in agreement with previous observations in root meristematic cells and they show the ability of plant cells to produce a response to gravity changes, independently of their integration into plant organs.

  10. Senescence-Induced Alterations of Laminin Chain Expression Modulate Tumorigenicity of Prostate Cancer Cells1

    Science.gov (United States)

    Sprenger, Cynthia C T; Drivdahl, Rolf H; Woodke, Lillie B; Eyman, Daniel; Reed, May J; Carter, William G; Plymate, Stephen R

    2008-01-01

    Prostate cancer is an age-associated epithelial cancer, and as such, it contributes significantly to the mortality of the elderly. Senescence is one possible mechanism by which the body defends itself against various epithelial cancers. Senescent cells alter the microenvironment, in part, through changes to the extracellular matrix. Laminins (LMs) are extracellular proteins important to both the structure and function of the microenvironment. Overexpression of the senescence-associated gene mac25 in human prostate cancer cells resulted in increased mRNA levels of the LM α4 and β2 chains compared to empty vector control cells. The purpose of this study was to examine the effects of these senescence-induced LM chains on tumorigenicity of prostate cancer cells. We created stable M12 human prostate cancer lines overexpressing either the LM α4 or β2 chain or both chains. Increased expression of either the LM α4 or β2 chain resulted in increased in vitro migration and in vivo tumorigenicity of those cells, whereas high expression of both chains led to decreased in vitro proliferation and in vivo tumorigenicity compared to M12 control cells. This study demonstrates that senescent prostate epithelial cells can alter the microenvironment and that these changes modulate progression of prostate cancer. PMID:19048114

  11. Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall.

    Science.gov (United States)

    Amsbury, Sam; Hunt, Lee; Elhaddad, Nagat; Baillie, Alice; Lundgren, Marjorie; Verhertbruggen, Yves; Scheller, Henrik V; Knox, J Paul; Fleming, Andrew J; Gray, Julie E

    2016-11-07

    Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape [1]. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils [2], our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins. We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO 2 , substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Sexual function 1-year after allogeneic hematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Noerskov, K. H.; Schjødt, I.; Syrjala, K. L.

    2016-01-01

    Treatment with allogeneic hematopoietic stem cell transplantation (HSCT) is associated with short and long-term toxicities that can result in alterations in sexual functioning. The aims of this prospective evaluation were to determine: (1) associations between HSCT and increased sexual dysfunction...

  13. Alteration of cell cycle progression by Sindbis virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ruirong; Saito, Kengo [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Isegawa, Naohisa [Laboratory Animal Center, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan); Shirasawa, Hiroshi, E-mail: sirasawa@faculty.chiba-u.jp [Department of Molecular Virology, Graduate School of Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670 (Japan)

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  14. Alteration of cell cycle progression by Sindbis virus infection

    International Nuclear Information System (INIS)

    Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa; Shirasawa, Hiroshi

    2015-01-01

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G 1 phase preferred to proliferate during S/G 2 phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G 1 phase than in cells infected during S/G 2 phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases

  15. Undersulfation of proteoglycans and proteins alter C6 glioma cells proliferation, adhesion and extracellular matrix organization.

    Science.gov (United States)

    Mendes de Aguiar, Claudia B N; Garcez, Ricardo Castilho; Alvarez-Silva, Marcio; Trentin, Andréa Gonçalves

    2002-11-01

    Proteoglycans are considered to be important molecule in cell-microenvironment interactions. They are overexpressed in neoplastic cells modifying their growth and migration in hosts. In this work we verified that undersulfation of proteoglycans and other sulfated molecules, induced by sodium chlorate treatment, inhibited C6 glioma cells proliferation in a dose-dependent way. This effect was restored by the addition of exogenous heparin. We could not detect significant cell mortality in our culture condition. The treatment also impaired in a dose-dependent manner, C6 cell adhesion to extracellular matrix (ECM) proteins (collagen IV, laminin and fibronectin). In addition, sodium chlorate treatment altered C6 glioma cell morphology, from the fibroblast-like to a more rounded one. This effect was accompanied by increased synthesis of fibronectin and alterations in its extracellular network organization. However, we could not observe modifications on laminin organization and synthesis. The results suggest an important connection between sulfation degree with important tumor functions, such as proliferation and adhesion. We suggest that proteoglycans may modulate the glioma microenvironment network during tumor cell progression and invasion.

  16. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration

    International Nuclear Information System (INIS)

    Rousseau, Matthieu; Gaugler, Marie-Hélène; Rodallec, Audrey; Bonnaud, Stéphanie; Paris, François; Corre, Isabelle

    2011-01-01

    Highlights: ► We explore the role of RhoA in endothelial cell response to ionizing radiation. ► RhoA is rapidly activated by single high-dose of radiation. ► Radiation leads to RhoA/ROCK-dependent actin cytoskeleton remodeling. ► Radiation-induced apoptosis does not require the RhoA/ROCK pathway. ► Radiation-induced alteration of endothelial adhesion and migration requires RhoA/ROCK. -- Abstract: Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial functions linked to actin cytoskeleton.

  17. Physiological alterations in UV-irradiated cells: liquid holding recovery

    International Nuclear Information System (INIS)

    Aragao, B.R.

    1980-01-01

    The biochemical and physiological alterations that occur in ultraviolet irradiated cells, during liquid holding have been studied. Incubation in buffer acts not to interfer directly with the mechanic repairs but by promoting metabolic alterations that would block some irreversible and lethal physiological responses. (L.M.J.) [pt

  18. In Vitro Expansion of Bone Marrow Derived Mesenchymal Stem Cells Alters DNA Double Strand Break Repair of Etoposide Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Ian Hare

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs are of interest for use in diverse cellular therapies. Ex vivo expansion of MSCs intended for transplantation must result in generation of cells that maintain fidelity of critical functions. Previous investigations have identified genetic and phenotypic alterations of MSCs with in vitro passage, but little is known regarding how culturing influences the ability of MSCs to repair double strand DNA breaks (DSBs, the most severe of DNA lesions. To investigate the response to DSB stress with passage in vitro, primary human MSCs were exposed to etoposide (VP16 at various passages with subsequent evaluation of cellular damage responses and DNA repair. Passage number did not affect susceptibility to VP16 or the incidence and repair kinetics of DSBs. Nonhomologous end joining (NHEJ transcripts showed little alteration with VP16 exposure or passage; however, homologous recombination (HR transcripts were reduced following VP16 exposure with this decrease amplified as MSCs were passaged in vitro. Functional evaluations of NHEJ and HR showed that MSCs were unable to activate NHEJ repair following VP16 stress in cells after successive passage. These results indicate that ex vivo expansion of MSCs alters their ability to perform DSB repair, a necessary function for cells intended for transplantation.

  19. In Vitro Expansion of Bone Marrow Derived Mesenchymal Stem Cells Alters DNA Double Strand Break Repair of Etoposide Induced DNA Damage.

    Science.gov (United States)

    Hare, Ian; Gencheva, Marieta; Evans, Rebecca; Fortney, James; Piktel, Debbie; Vos, Jeffrey A; Howell, David; Gibson, Laura F

    2016-01-01

    Mesenchymal stem cells (MSCs) are of interest for use in diverse cellular therapies. Ex vivo expansion of MSCs intended for transplantation must result in generation of cells that maintain fidelity of critical functions. Previous investigations have identified genetic and phenotypic alterations of MSCs with in vitro passage, but little is known regarding how culturing influences the ability of MSCs to repair double strand DNA breaks (DSBs), the most severe of DNA lesions. To investigate the response to DSB stress with passage in vitro, primary human MSCs were exposed to etoposide (VP16) at various passages with subsequent evaluation of cellular damage responses and DNA repair. Passage number did not affect susceptibility to VP16 or the incidence and repair kinetics of DSBs. Nonhomologous end joining (NHEJ) transcripts showed little alteration with VP16 exposure or passage; however, homologous recombination (HR) transcripts were reduced following VP16 exposure with this decrease amplified as MSCs were passaged in vitro. Functional evaluations of NHEJ and HR showed that MSCs were unable to activate NHEJ repair following VP16 stress in cells after successive passage. These results indicate that ex vivo expansion of MSCs alters their ability to perform DSB repair, a necessary function for cells intended for transplantation.

  20. Alteration of Lymphocyte Phenotype and Function in Sickle Cell Anemia: Implications for Vaccine Responses

    Science.gov (United States)

    Balandya, Emmanuel; Reynolds, Teri; Obaro, Stephen; Makani, Julie

    2016-01-01

    Individuals with sickle cell anemia (SCA) have increased susceptibility to infections, secondary to impairment of immune function. Besides the described dysfunction in innate immunity, including impaired opsonization and phagocytosis of bacteria, evidence of dysfunction of T and B lymphocytes in SCA has also been reported. This includes reduction in the proportion of circulating CD4+ and CD8+ T cells, reduction of CD4+ helper : CD8+ suppressor T cell ratio, aberrant activation and dysfunction of regulatory T cells (Treg), skewing of CD4+ T cells towards Th2 response and loss of IgM-secreting CD27+IgMhighIgDlow memory B cells. These changes occur on the background of immune activation characterized by predominance of memory CD4+ T cell phenotypes, increased Th17 signaling and elevated levels of C-reactive protein and pro-inflammatory cytokines IL-6 and TNF-α, which may affect the immunogenicity and protective efficacy of vaccines available to prevent infections in SCA. Thus, in order to optimize the use of vaccines in SCA, a thorough understanding of T and B lymphocyte functions and vaccine reactivity among individuals with SCA is needed. Studies should be encouraged of different SCA populations, including sub-Saharan Africa where the burden of SCA is highest. This article summarizes our current understanding of lymphocyte biology in SCA, and highlights areas that warrant future research. PMID:27237467

  1. Mechanistic Framework for Establishment, Maintenance, and Alteration of Cell Polarity in Plants

    Directory of Open Access Journals (Sweden)

    Pankaj Dhonukshe

    2012-01-01

    Full Text Available Cell polarity establishment, maintenance, and alteration are central to the developmental and response programs of nearly all organisms and are often implicated in abnormalities ranging from patterning defects to cancer. By residing at the distinct plasma membrane domains polar cargoes mark the identities of those domains, and execute localized functions. Polar cargoes are recruited to the specialized membrane domains by directional secretion and/or directional endocytic recycling. In plants, auxin efflux carrier PIN proteins display polar localizations in various cell types and play major roles in directional cell-to-cell transport of signaling molecule auxin that is vital for plant patterning and response programs. Recent advanced microscopy studies applied to single cells in intact plants reveal subcellular PIN dynamics. They uncover the PIN polarity generation mechanism and identified important roles of AGC kinases for polar PIN localization. AGC kinase family members PINOID, WAG1, and WAG2, belonging to the AGC-3 subclass predominantly influence the polar localization of PINs. The emerging mechanism for AGC-3 kinases action suggests that kinases phosphorylate PINs mainly at the plasma membrane after initial symmetric PIN secretion for eventual PIN internalization and PIN sorting into distinct ARF-GEF-regulated polar recycling pathways. Thus phosphorylation status directs PIN translocation to different cell sides. Based on these findings a mechanistic framework evolves that suggests existence of cell side-specific recycling pathways in plants and implicates AGC3 kinases for differential PIN recruitment among them for eventual PIN polarity establishment, maintenance, and alteration.

  2. Chronic Alcohol Ingestion Worsens Survival and Alters Gut Epithelial Apoptosis and Cd8+ T Cell Function after Pseudomonas Aeruginosa Pneumonia-Induced Sepsis.

    Science.gov (United States)

    Klingensmith, Nathan J; Fay, Katherine T; Lyons, John D; Chen, Ching-Wen; Otani, Shunsuke; Liang, Zhe; Chihade, Deena B; Burd, Eileen M; Ford, Mandy L; Coopersmith, Craig M

    2018-04-16

    Mortality is higher in septic patients with a history of alcohol use disorder than in septic patients without a history of chronic alcohol usage. We have previously described a model of chronic alcohol ingestion followed by sepsis from cecal ligation and puncture in which alcohol-fed septic mice have higher mortality than water-fed septic mice, associated with altered gut integrity and increased production of TNF and IFNγ by splenic CD4 T cells without alterations in CD8 T cell function. The purpose of this study was to determine whether this represents a common host response to the combination of alcohol and sepsis by creating a new model in which mice with chronic alcohol ingestion were subjected to a different model of sepsis. C57Bl/6 mice were randomized to receive either alcohol or water for 12 weeks and then subjected to Pseudomonas aeruginosa pneumonia. Mice were sacrificed either 24 hours after the onset of sepsis or followed for survival. Alcohol-fed septic mice had significantly higher 7-day mortality than water-fed septic mice (96% vs 58%). This was associated with a 5-fold increase in intestinal apoptosis in alcohol-fed septic animals, accompanied by an increase in the pro-apoptotic protein Bax. Serum IL-6 levels were higher and IL-2 levels were lower in alcohol-fed septic mice. In contrast, CD8 T cell frequency was lower in alcohol-fed mice than water-fed septic mice, associated with increased production of IFNγ and TNF in stimulated splenocytes. No significant differences were noted in CD4 T cells, lung injury or bacteremia. Mice with chronic alcohol ingestion thus have increased mortality regardless of their septic insult, associated with changes in both the gut and the immune system.

  3. Glucose metabolism regulates T cell activation, differentiation and functions

    Directory of Open Access Journals (Sweden)

    Clovis Steve Palmer

    2015-01-01

    Full Text Available The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The Warburg effect originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  4. Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells.

    Science.gov (United States)

    Nandakumar, Vivek; Hansen, Nanna; Glenn, Honor L; Han, Jessica H; Helland, Stephanie; Hernandez, Kathryn; Senechal, Patti; Johnson, Roger H; Bussey, Kimberly J; Meldrum, Deirdre R

    2016-08-09

    The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an 'epigenetic' drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated the impact of vorinostat on human esophageal epithelial cell lines derived from normal, metaplastic (pre-cancerous), and malignant tissue. Using a combination of novel optical computed tomography (CT)-based quantitative 3D absorption microscopy and conventional confocal fluorescence microscopy, we show that subjecting malignant cells to vorinostat preferentially alters their 3D nuclear architecture relative to non-cancerous cells. Optical CT (cell CT) imaging of fixed single cells showed that drug-treated cancer cells exhibit significant alterations in nuclear morphometry. Confocal microscopy revealed that vorinostat caused changes in the distribution of H3K9ac-marked euchromatin and H3K9me3-marked constitutive heterochromatin. Additionally, 3D immuno-FISH showed that drug-induced expression of the DNA repair gene MGMT was accompanied by spatial relocation toward the center of the nucleus in the nuclei of metaplastic but not in non-neoplastic cells. Our data suggest that vorinostat's differential modulation of 3D nuclear architecture in normal and abnormal cells could play a functional role in its anti-cancer action.

  5. Altered morphologies and functions of the olfactory bulb and hippocampus induced by miR-30c

    Directory of Open Access Journals (Sweden)

    Tingting eSun

    2016-05-01

    Full Text Available Adult neurogenesis is considered to contribute to a certain degree of plasticity for the brain. However, the effects of adult-born neurons on the brain are still largely unknown. Here, we specifically altered the expression of miR-30c in the subventricular zone (SVZ and dentate gyrus (DG by stereotaxic injection with their respective up-and down-regulated lentiviruses. Results showed an increased level of miR-30c enhanced adult neurogenesis by prompting cell-cycles of stem cells, whereas down-regulated miR-30c led to the opposite results. When these effects of miR-30c lasted for three months, we detected significant morphological changes in the olfactory bulb (OB and lineage alteration in the hippocampus. Tests of olfactory sensitivity and associative and spatial memory showed that a certain amount of adult-born neurons are essential for the normal functions of the OB and hippocampus, but there also exist redundant newborn neurons that do not further improve the functioning of these areas. Our study revealed the interactions between miRNA, adult neurogenesis, brain morphology and function, and this provides a novel insight into understanding the role of newborn neurons in the adult brain.

  6. Data on environmentally relevant level of aflatoxin B1-induced human dendritic cells' functional alteration

    Directory of Open Access Journals (Sweden)

    Jalil Mehrzad

    2018-06-01

    Full Text Available We assessed the effects of naturally occurring levels of AFB1 on the expression of key immune molecules and function of human monocyte-derived dendritic cells (MDDCs by cell culture, RT-qPCR, and flow cytometry. Data here revealed that an environmentally relevant level of AFB1 led to remarkably weakened key functional capacity of DCs, up-regulation of key transcripts and DCs apoptosis, down-regulation of key phagocytic element, CD64, and creation of pseudolicensing direction of DCs. Flow cytometry data confirmed a damage towards DCs, i.e., increased apoptosis. The detailed data and their mechanistic effects and the outcome are available in this research article (Mehrzad et al., 2018 [1]. The impaired phagocytosis capacity with triggered pseudolicensing direction of MDDCs caused by AFB1 and dysregulation of the key functional genes could provide a mechanistic explanation for the observed in vivo immunotoxicity associated with this mycotoxin. Keywords: AFB1, Apoptosis, AFB1-detoxifying genes, Dendritic cells, Flow cytometry, Functional genes, Immunnoderegulation, Phagocytosis, RT-qPCR

  7. Comparison of the Functional microRNA Expression in Immune Cell Subsets of Neonates and Adults

    Science.gov (United States)

    Yu, Hong-Ren; Hsu, Te-Yao; Huang, Hsin-Chun; Kuo, Ho-Chang; Li, Sung-Chou; Yang, Kuender D.; Hsieh, Kai-Sheng

    2016-01-01

    Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs) are reported to involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte subpopulations is important for understanding immune system regulation. In order to explore the unique miRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells, and myeloid dendritic cells) from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced interleukin (IL)-6 and TNF-α production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-α production. With this functional approach, we provide intact differential miRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies. PMID:28066425

  8. Comparison of the functional microRNA expression in immune cell subsets of neonates and adults

    Directory of Open Access Journals (Sweden)

    Hong-Ren Yu

    2016-12-01

    Full Text Available Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs are reported involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte sub-populations is important for understanding immune system regulation. In order to explore the unique microRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells (pDCs, and myeloid dendritic cells (mDCs from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced IL-6 and TNF-alpha production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-alpha production. With this functional approach, we provide intact differential microRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies.

  9. Effects of interleukins 2 and 12 on TBT-induced alterations of MAP kinases p38 and p44/42 in human natural killer cells.

    Science.gov (United States)

    Aluoch, Aloice O; Whalen, Margaret M

    2006-01-01

    NK cells are lymphocytes in the non-adaptive immune system that protect the body against intracellular pathogens and eliminate tumor cells. Tributyltin (TBT) is a toxic chemical that has been detected in human foods as well as in human blood. The role of TBT in immunosuppression has been described, including inhibition of the human NK-cell cytotoxic function. Previous studies indicated that exposure of NK cells to TBT for 1 h induced progressive and irreversible inhibition of cytotoxic function. However, it was found that if NK cells were incubated in TBT-free media with either IL-2 or IL-12, loss of cytotoxic function was prevented/reversed within 24 h. Molecular studies established that loss of cytotoxic function is accompanied by alteration of MAP kinases (MAPKs) p38 and p44/42 phosphorylation. This study examined whether interleukin-mediated recovery of cytotoxicity involved reversal of tributyltin-altered p38 and p44/42 phosphorylation. The results indicated that there was no substantial IL-2 prevention/reversal of the TBT-induced alteration of phosphorylation of either p38 or p44/42 after either a 24 or 48 h recovery period. Additionally, IL-12 caused no substantial prevention/reversal of the TBT-induced alteration of phosphorylation of the MAPKs seen after either 24 or 48 h. These data suggest that IL-2 and/or IL-12-mediated recovery of NK cytotoxic function is not a result of prevention/reversal of TBT-induced phosphorylation of p38 and p44/42 MAPKs at the 24 or 48 h time points. Copyright 2005 John Wiley & Sons, Ltd.

  10. Alterations of proteins in MDCK cells during acute potassium deficiency.

    Science.gov (United States)

    Peerapen, Paleerath; Ausakunpipat, Nardtaya; Chanchaem, Prangwalai; Thongboonkerd, Visith

    2016-06-01

    Chronic K(+) deficiency can cause hypokalemic nephropathy associated with metabolic alkalosis, polyuria, tubular dilatation, and tubulointerstitial injury. However, effects of acute K(+) deficiency on the kidney remained unclear. This study aimed to explore such effects by evaluating changes in levels of proteins in renal tubular cells during acute K(+) deficiency. MDCK cells were cultivated in normal K(+) (NK) (K(+)=5.3 mM), low K(+) (LK) (K(+)=2.5 mM), or K(+) depleted (KD) (K(+)=0 mM) medium for 24 h and then harvested. Cellular proteins were resolved by two-dimensional gel electrophoresis (2-DE) and visualized by SYPRO Ruby staining (5 gels per group). Spot matching and quantitative intensity analysis revealed a total 48 protein spots that had significantly differential levels among the three groups. Among these, 46 and 30 protein spots had differential levels in KD group compared to NK and LK groups, respectively. Comparison between LK and NK groups revealed only 10 protein spots that were differentially expressed. All of these differentially expressed proteins were successfully identified by Q-TOF MS and/or MS/MS analyses. The altered levels of heat shock protein 90 (HSP90), ezrin, lamin A/C, tubulin, chaperonin-containing TCP1 (CCT1), and calpain 1 were confirmed by Western blot analysis. Global protein network analysis showed three main functional networks, including 1) cell growth and proliferation, 2) cell morphology, cellular assembly and organization, and 3) protein folding in which the altered proteins were involved. Further investigations on these networks may lead to better understanding of pathogenic mechanisms of low K(+)-induced renal injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Streptozotocin alters glucose transport, connexin expression and endoplasmic reticulum functions in neurons and astrocytes.

    Science.gov (United States)

    Biswas, Joyshree; Gupta, Sonam; Verma, Dinesh Kumar; Singh, Sarika

    2017-07-25

    The study was undertaken to explore the cell-specific streptozotocin (STZ)-induced mechanistic alterations. STZ-induced rodent model is a well-established experimental model of Alzheimer's disease (AD) and in our previous studies we have established it as an in vitro screening model of AD by employing N2A neuronal cells. Therefore, STZ was selected in the present study to understand the STZ-induced cell-specific alterations by utilizing neuronal N2A and astrocytes C6 cells. Both neuronal and astrocyte cells were treated with STZ at 10, 50, 100 and 1000μM concentrations for 48h. STZ exposure caused significant decline in cellular viability and augmented cytotoxicity of cells involving astrocytes activation. STZ treatment also disrupted the energy metabolism by altered glucose uptake and its transport in both cells as reflected with decreased expression of glucose transporters (GLUT) 1/3. The consequent decrease in ATP level and decreased mitochondrial membrane potential was also observed in both the cells. STZ caused increased intracellular calcium which could cause the initiation of endoplasmic reticulum (ER) stress. Significant upregulation of ER stress-related markers were observed in both cells after STZ treatment. The cellular communication of astrocytes and neurons was altered as reflected by increased expression of connexin 43 along with DNA fragmentation. STZ-induced apoptotic death was evaluated by elevated expression of caspase-3 and PI/Hoechst staining of cells. In conclusion, study showed that STZ exert alike biochemical alterations, ER stress and cellular apoptosis in both neuronal and astrocyte cells. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Centrosome structure and function is altered by chloral hydrate and diazepam during the first reproductive cell cycles in sea urchin eggs

    Science.gov (United States)

    Schatten, H.; Chakrabarti, A.

    1998-01-01

    This paper explores the mode of action of the tranquillizers chloral hydrate and diazepam during fertilization and mitosis of the first reproductive cell cycles in sea urchin eggs. Most striking effects of these drugs are the alteration of centrosomal material and the abnormal microtubule configurations during exposure and after recovery from the drugs. This finding is utilized to study the mechanisms of centrosome compaction and decompaction and the dynamic configurational changes of centrosomal material and its interactions with microtubules. When 0.1% chloral hydrate or 350-750 microM diazepam is applied at specific phases during the first cell cycle of sea urchin eggs, expanded centrosomal material compacts at distinct regions and super-compacts into dense spheres while microtubules disassemble. When eggs are treated before pronuclear fusion, centrosomal material aggregates around each of the two pronuclei while microtubules disappear. Upon recovery, atypical asters oftentimes with multiple foci are formed from centrosomal material surrounding the pronuclei which indicates that the drugs have affected centrosomal material and prevent it from functioning normally. Electron microscopy and immunofluorescence studies with antibodies that routinely stain centrosomes in sea urchin eggs (4D2; and Ah-6) depict centrosomal material that is altered when compared to control cells. This centrosomal material is not able to reform normal microtubule patterns upon recovery but will form multiple asters around the two pronuclei. When cells are treated with 0.1% chloral hydrate or 350-750 microM diazepam during mitosis, the bipolar centrosomal material becomes compacted and aggregates into multiple dense spheres while spindle and polar microtubules disassemble. With increased incubation time, the smaller dense centrosome particles aggregate into bigger and fewer spheres. Upon recovery, unusual irregular microtubule configurations are formed from centrosomes that have lost their

  13. Altered phenotypic and functional characteristics of CD3+CD56+ NKT-like cells in human gastric cancer.

    Science.gov (United States)

    Peng, Liu-Sheng; Mao, Fang-Yuan; Zhao, Yong-Liang; Wang, Ting-Ting; Chen, Na; Zhang, Jin-Yu; Cheng, Ping; Li, Wen-Hua; Lv, Yi-Pin; Teng, Yong-Sheng; Guo, Gang; Luo, Ping; Chen, Weisan; Zou, Quan-Ming; Zhuang, Yuan

    2016-08-23

    CD3+CD56+ natural killer T (NKT)-like cells are a group of CD3+ T cells sharing characteristics of NK and T cells and constitute a major component of host anti-tumor immune response in human cancer. However, the nature, function and clinical relevance of CD3+CD56+ NKT-like cells in human gastric cancer (GC) remain unclear. In this study, we showed that the frequencies of CD3+CD56+NKT-like cells in GC tumors were significantly decreased and low levels of tumor-infiltrating CD3+CD56+ NKT-like cells were positively correlated with poor survival and disease progression. Most CD3+CD56+NKT-like cells in GC tumors were CD45RA-CD27+/- central/effector-memory cells with decreased activity and lower expression levels of CD69, NKG2D and DNAM-1 than those in non-tumor tissues. We further observed that tumor-infiltrating CD3+CD56+ NKT-like cells had impaired effector function as shown by decreased IFN-γ, TNF-α, granzyme B and Ki-67 expression. Moreover, in vitro studies showed that soluble factors released from GC tumors could induce the functional impairment of CD3+CD56+ NKT-like cells. Collectively, our data indicate that decreased tumor-infiltrating CD3+CD56+ NKT-like cells with impaired effector function are associated with tumor progression and poor survival of GC patients, which may contribute to immune escape of GC.

  14. Triazole fungicide tebuconazole disrupts human placental trophoblast cell functions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jinghua [Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058 (China); Zhang, Jianyun [Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Li, Feixue [Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Liu, Jing, E-mail: jliue@zju.edu.cn [Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058 (China); Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-05-05

    Highlights: • Tebuconazole (TEB) inhibited the proliferation of human placental trophoblasts. • TEB changed cell cycle distribution of G1 and G2 phases of trophoblasts. • TEB induced apoptosis of trophoblasts via mitochondrial pathway. • TEB decreased the invasive and migratory capacities of trophoblasts. • TEB altered the mRNA levels of key regulatory genes in trophoblasts - Abstract: Triazole fungicides are one of the top ten classes of current-use pesticides. Although exposure to triazole fungicides is associated with reproductive toxicity in mammals, limited information is available regarding the effects of triazole fungicides on human placental trophoblast function. Tebuconazole (TEB) is a common triazole fungicide that has been extensively used for fungi control. In this work, we showed that TEB could reduce cell viability, disturb normal cell cycle distribution and induce apoptosis of human placental trophoblast cell line HTR-8/SVneo (HTR-8). Bcl-2 protein expression decreased and the level of Bax protein increased after TEB treatment in HTR-8 cells. The results demonstrated that this fungicide induced apoptosis of trophoblast cells via mitochondrial pathway. Importantly, we found that the invasive and migratory capacities of HTR-8 cells decreased significantly after TEB administration. TEB altered the expression of key regulatory genes involved in the modulation of trophoblast functions. Taken together, TEB suppressed human trophoblast invasion and migration through affecting the expression of protease, hormones, angiogenic factors, growth factors and cytokines. As the invasive and migratory abilities of trophoblast are essential for successful placentation and fetus development, our findings suggest a potential risk of triazole fungicides to human pregnancy.

  15. Triazole fungicide tebuconazole disrupts human placental trophoblast cell functions

    International Nuclear Information System (INIS)

    Zhou, Jinghua; Zhang, Jianyun; Li, Feixue; Liu, Jing

    2016-01-01

    Highlights: • Tebuconazole (TEB) inhibited the proliferation of human placental trophoblasts. • TEB changed cell cycle distribution of G1 and G2 phases of trophoblasts. • TEB induced apoptosis of trophoblasts via mitochondrial pathway. • TEB decreased the invasive and migratory capacities of trophoblasts. • TEB altered the mRNA levels of key regulatory genes in trophoblasts - Abstract: Triazole fungicides are one of the top ten classes of current-use pesticides. Although exposure to triazole fungicides is associated with reproductive toxicity in mammals, limited information is available regarding the effects of triazole fungicides on human placental trophoblast function. Tebuconazole (TEB) is a common triazole fungicide that has been extensively used for fungi control. In this work, we showed that TEB could reduce cell viability, disturb normal cell cycle distribution and induce apoptosis of human placental trophoblast cell line HTR-8/SVneo (HTR-8). Bcl-2 protein expression decreased and the level of Bax protein increased after TEB treatment in HTR-8 cells. The results demonstrated that this fungicide induced apoptosis of trophoblast cells via mitochondrial pathway. Importantly, we found that the invasive and migratory capacities of HTR-8 cells decreased significantly after TEB administration. TEB altered the expression of key regulatory genes involved in the modulation of trophoblast functions. Taken together, TEB suppressed human trophoblast invasion and migration through affecting the expression of protease, hormones, angiogenic factors, growth factors and cytokines. As the invasive and migratory abilities of trophoblast are essential for successful placentation and fetus development, our findings suggest a potential risk of triazole fungicides to human pregnancy.

  16. When "altering brain function" becomes "mind control".

    Science.gov (United States)

    Koivuniemi, Andrew; Otto, Kevin

    2014-01-01

    Functional neurosurgery has seen a resurgence of interest in surgical treatments for psychiatric illness. Deep brain stimulation (DBS) technology is the preferred tool in the current wave of clinical experiments because it allows clinicians to directly alter the functions of targeted brain regions, in a reversible manner, with the intent of correcting diseases of the mind, such as depression, addiction, anorexia nervosa, dementia, and obsessive compulsive disorder. These promising treatments raise a critical philosophical and humanitarian question. "Under what conditions does 'altering brain function' qualify as 'mind control'?" In order to answer this question one needs a definition of mind control. To this end, we reviewed the relevant philosophical, ethical, and neurosurgical literature in order to create a set of criteria for what constitutes mind control in the context of DBS. We also outline clinical implications of these criteria. Finally, we demonstrate the relevance of the proposed criteria by focusing especially on serendipitous treatments involving DBS, i.e., cases in which an unintended therapeutic benefit occurred. These cases highlight the importance of gaining the consent of the subject for the new therapy in order to avoid committing an act of mind control.

  17. B cell subset distribution is altered in patients with severe periodontitis.

    Science.gov (United States)

    Demoersman, Julien; Pochard, Pierre; Framery, Camille; Simon, Quentin; Boisramé, Sylvie; Soueidan, Assem; Pers, Jacques-Olivier

    2018-01-01

    Several studies have recently highlighted the implication of B cells in physiopathogenesis of periodontal disease by showing that a B cell deficiency leads to improved periodontal parameters. However, the detailed profiles of circulating B cell subsets have not yet been investigated in patients with severe periodontitis (SP). We hypothesised that an abnormal distribution of B cell subsets could be detected in the blood of patients with severe periodontal lesions, as already reported for patients with chronic inflammatory diseases as systemic autoimmune diseases. Fifteen subjects with SP and 13 subjects without periodontitis, according to the definition proposed by the CDC periodontal disease surveillance work group, were enrolled in this pilot observational study. Two flow cytometry panels were designed to analyse the circulating B and B1 cell subset distribution in association with the RANKL expression. A significantly higher percentage of CD27+ memory B cells was observed in patients with SP. Among these CD27+ B cells, the proportion of the switched memory subset was significantly higher. At the same time, human B1 cells, which were previously associated with a regulatory function (CD20+CD69-CD43+CD27+CD11b+), decreased in SP patients. The RANKL expression increased in every B cell subset from the SP patients and was significantly greater in activated B cells than in the subjects without periodontitis. These preliminary results demonstrate the altered distribution of B cells in the context of severe periodontitis. Further investigations with a larger cohort of patients can elucidate if the analysis of the B cell compartment distribution can reflect the periodontal disease activity and be a reliable marker for its prognosis (clinical trial registration number: NCT02833285, B cell functions in periodontitis).

  18. B cell subset distribution is altered in patients with severe periodontitis

    Science.gov (United States)

    Demoersman, Julien; Pochard, Pierre; Framery, Camille; Simon, Quentin; Boisramé, Sylvie; Soueidan, Assem

    2018-01-01

    Several studies have recently highlighted the implication of B cells in physiopathogenesis of periodontal disease by showing that a B cell deficiency leads to improved periodontal parameters. However, the detailed profiles of circulating B cell subsets have not yet been investigated in patients with severe periodontitis (SP). We hypothesised that an abnormal distribution of B cell subsets could be detected in the blood of patients with severe periodontal lesions, as already reported for patients with chronic inflammatory diseases as systemic autoimmune diseases. Fifteen subjects with SP and 13 subjects without periodontitis, according to the definition proposed by the CDC periodontal disease surveillance work group, were enrolled in this pilot observational study. Two flow cytometry panels were designed to analyse the circulating B and B1 cell subset distribution in association with the RANKL expression. A significantly higher percentage of CD27+ memory B cells was observed in patients with SP. Among these CD27+ B cells, the proportion of the switched memory subset was significantly higher. At the same time, human B1 cells, which were previously associated with a regulatory function (CD20+CD69-CD43+CD27+CD11b+), decreased in SP patients. The RANKL expression increased in every B cell subset from the SP patients and was significantly greater in activated B cells than in the subjects without periodontitis. These preliminary results demonstrate the altered distribution of B cells in the context of severe periodontitis. Further investigations with a larger cohort of patients can elucidate if the analysis of the B cell compartment distribution can reflect the periodontal disease activity and be a reliable marker for its prognosis (clinical trial registration number: NCT02833285, B cell functions in periodontitis). PMID:29447240

  19. HDL-S1P: cardiovascular functions, disease-associated alterations, and therapeutic applications.

    Science.gov (United States)

    Levkau, Bodo

    2015-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid contained in High-density lipoproteins (HDL) and has drawn considerable attention in the lipoprotein field as numerous studies have demonstrated its contribution to several functions inherent to HDL. Some of them are partly and some entirely due to the S1P contained in HDL (HDL-S1P). Despite the presence of over 1000 different lipids in HDL, S1P stands out as it possesses its own cell surface receptors through which it exercises key physiological functions. Most of the S1P in human plasma is associated with HDL, and the amount of HDL-S1P influences the quality and quantity of HDL-dependent functions. The main binding partner of S1P in HDL is apolipoprotein M but others may also exist particularly under conditions of acute S1P elevations. HDL not only exercise functions through their S1P content but have also an impact on genuine S1P signaling by influencing S1P bioactivity and receptor presentation. HDL-S1P content is altered in human diseases such as atherosclerosis, coronary artery disease, myocardial infarction, renal insufficiency and diabetes mellitus. Low HDL-S1P has also been linked to impaired HDL functions associated with these disorders. Although the pathophysiological and molecular reasons for such disease-associated shifts in HDL-S1P are little understood, there have been successful approaches to circumvent their adverse implications by pharmacologically increasing HDL-S1P as means to improve HDL function. This mini-review will cover the current understanding of the contribution of HDL-S1P to physiological HDL function, its alteration in disease and ways for its restoration to correct HDL dysfunction.

  20. Proteinase-Activated Receptor 1 (PAR1 regulates leukemic stem cell functions.

    Directory of Open Access Journals (Sweden)

    Nicole Bäumer

    Full Text Available External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1-/- hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1-/- leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance.

  1. Proteinase-Activated Receptor 1 (PAR1) regulates leukemic stem cell functions.

    Science.gov (United States)

    Bäumer, Nicole; Krause, Annika; Köhler, Gabriele; Lettermann, Stephanie; Evers, Georg; Hascher, Antje; Bäumer, Sebastian; Berdel, Wolfgang E; Müller-Tidow, Carsten; Tickenbrock, Lara

    2014-01-01

    External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1-/- hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1-/- leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance.

  2. Versatile functional roles of horizontal cells in the retinal circuit.

    Science.gov (United States)

    Chaya, Taro; Matsumoto, Akihiro; Sugita, Yuko; Watanabe, Satoshi; Kuwahara, Ryusuke; Tachibana, Masao; Furukawa, Takahisa

    2017-07-17

    In the retinal circuit, environmental light signals are converted into electrical signals that can be decoded properly by the brain. At the first synapse of the visual system, information flow from photoreceptors to bipolar cells is modulated by horizontal cells (HCs), however, their functional contribution to retinal output and individual visual function is not fully understood. In the current study, we investigated functional roles for HCs in retinal ganglion cell (RGC) response properties and optokinetic responses by establishing a HC-depleted mouse line. We observed that HC depletion impairs the antagonistic center-surround receptive field formation of RGCs, supporting a previously reported HC function revealed by pharmacological approaches. In addition, we found that HC loss reduces both the ON and OFF response diversities of RGCs, impairs adjustment of the sensitivity to ambient light at the retinal output level, and alters spatial frequency tuning at an individual level. Taken together, our current study suggests multiple functional aspects of HCs crucial for visual processing.

  3. Network analysis of genomic alteration profiles reveals co-altered functional modules and driver genes for glioblastoma.

    Science.gov (United States)

    Gu, Yunyan; Wang, Hongwei; Qin, Yao; Zhang, Yujing; Zhao, Wenyuan; Qi, Lishuang; Zhang, Yuannv; Wang, Chenguang; Guo, Zheng

    2013-03-01

    The heterogeneity of genetic alterations in human cancer genomes presents a major challenge to advancing our understanding of cancer mechanisms and identifying cancer driver genes. To tackle this heterogeneity problem, many approaches have been proposed to investigate genetic alterations and predict driver genes at the individual pathway level. However, most of these approaches ignore the correlation of alteration events between pathways and miss many genes with rare alterations collectively contributing to carcinogenesis. Here, we devise a network-based approach to capture the cooperative functional modules hidden in genome-wide somatic mutation and copy number alteration profiles of glioblastoma (GBM) from The Cancer Genome Atlas (TCGA), where a module is a set of altered genes with dense interactions in the protein interaction network. We identify 7 pairs of significantly co-altered modules that involve the main pathways known to be altered in GBM (TP53, RB and RTK signaling pathways) and highlight the striking co-occurring alterations among these GBM pathways. By taking into account the non-random correlation of gene alterations, the property of co-alteration could distinguish oncogenic modules that contain driver genes involved in the progression of GBM. The collaboration among cancer pathways suggests that the redundant models and aggravating models could shed new light on the potential mechanisms during carcinogenesis and provide new indications for the design of cancer therapeutic strategies.

  4. Altered structure-function relations of semantic processing in youths with high-functioning autism: a combined diffusion and functional MRI study.

    Science.gov (United States)

    Lo, Yu-Chun; Chou, Tai-Li; Fan, Li-Ying; Gau, Susan Shur-Fen; Chiu, Yen-Nan; Tseng, Wen-Yih Isaac

    2013-12-01

    Deficits in language and communication are among the core symptoms of autism, a common neurodevelopmental disorder with long-term impairment. Despite the striking nature of the autistic language impairment, knowledge about its corresponding alterations in the brain is still evolving. We hypothesized that the dual stream language network is altered in autism, and that this alteration could be revealed by changes in the relationships between microstructural integrity and functional activation. The study recruited 20 right-handed male youths with autism and 20 carefully matched individually, typically developing (TD) youths. Microstructural integrity of the left dorsal and left ventral pathways responsible for language processing and the functional activation of the connected brain regions were investigated by using diffusion spectrum imaging and functional magnetic resonance imaging of a semantic task, respectively. Youths with autism had significantly poorer language function, and lower functional activation in left dorsal and left ventral regions of the language network, compared with TD youths. The TD group showed a significant correlation of the functional activation of the left dorsal region with microstructural integrity of the left ventral pathway, whereas the autism group showed a significant correlation of the functional activation of the left ventral region with microstructural integrity of the left dorsal pathway, and moreover verbal comprehension index was correlated with microstructural integrity of the left ventral pathway. These altered structure-function relationships in autism suggest possible involvement of the dual pathways in supporting deficient semantic processing. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  5. Impaired APP activity and altered Tau splicing in embryonic stem cell-derived astrocytes obtained from an APPsw transgenic minipig

    Directory of Open Access Journals (Sweden)

    Vanessa J. Hall

    2015-10-01

    Full Text Available Animal models of familial juvenile onset of Alzheimer's disease (AD often fail to produce diverse pathological features of the disease by modification of single gene mutations that are responsible for the disease. They can hence be poor models for testing and development of novel drugs. Here, we analyze in vitro-produced stem cells and their derivatives from a large mammalian model of the disease created by overexpression of a single mutant human gene (APPsw. We produced hemizygous and homozygous radial glial-like cells following culture and differentiation of embryonic stem cells (ESCs isolated from embryos obtained from mated hemizygous minipigs. These cells were confirmed to co-express varying neural markers, including NES, GFAP and BLBP, typical of type one radial glial cells (RGs from the subgranular zone. These cells had altered expression of CCND1 and NOTCH1 and decreased expression of several ribosomal RNA genes. We found that these cells were able to differentiate into astrocytes upon directed differentiation. The astrocytes produced had decreased α- and β-secretase activity, increased γ-secretase activity and altered splicing of tau. This indicates novel aspects of early onset mechanisms related to cell renewal and function in familial AD astrocytes. These outcomes also highlight that radial glia could be a potentially useful population of cells for drug discovery, and that altered APP expression and altered tau phosphorylation can be detected in an in vitro model of the disease. Finally, it might be possible to use large mammal models to model familial AD by insertion of only a single mutation.

  6. Prevention of Synaptic Alterations and Neurotoxic Effects of PAMAM Dendrimers by Surface Functionalization

    Directory of Open Access Journals (Sweden)

    Felipe Vidal

    2017-12-01

    Full Text Available One of the most studied nanocarriers for drug delivery are polyamidoamine (PAMAM dendrimers. However, the alterations produced by PAMAM dendrimers in neuronal function have not been thoroughly investigated, and important aspects such as effects on synaptic transmission remain unexplored. We focused on the neuronal activity disruption induced by dendrimers and the possibility to prevent these effects by surface chemical modifications. Therefore, we studied the effects of fourth generation PAMAM with unmodified positively charged surface (G4 in hippocampal neurons, and compared the results with dendrimers functionalized in 25% of their surface groups with folate (PFO25 and polyethylene glycol (PPEG25. G4 dendrimers significantly reduced cell viability at 1 µM, which was attenuated by both chemical modifications, PPEG25 being the less cytotoxic. Patch clamp recordings demonstrated that G4 induced a 7.5-fold increment in capacitive currents as a measure of membrane permeability. Moreover, treatment with this dendrimer increased intracellular Ca2+ by 8-fold with a complete disruption of transients pattern, having as consequence that G4 treatment increased the synaptic vesicle release and frequency of synaptic events by 2.4- and 3-fold, respectively. PFO25 and PPEG25 treatments did not alter membrane permeability, total Ca2+ intake, synaptic vesicle release or synaptic activity frequency. These results demonstrate that cationic G4 dendrimers have neurotoxic effects and induce alterations in normal synaptic activity, which are generated by the augmentation of membrane permeability and a subsequent intracellular Ca2+ increase. Interestingly, these toxic effects and synaptic alterations are prevented by the modification of 25% of PAMAM surface with either folate or polyethylene glycol.

  7. Functional characterization of E- and P-cadherin in invasive breast cancer cells

    International Nuclear Information System (INIS)

    Sarrió, David; Palacios, José; Hergueta-Redondo, Marta; Gómez-López, Gonzalo; Cano, Amparo; Moreno-Bueno, Gema

    2009-01-01

    Alterations in the cadherin-catenin adhesion complexes are involved in tumor initiation, progression and metastasis. However, the functional implication of distinct cadherin types in breast cancer biology is still poorly understood. To compare the functional role of E-cadherin and P-cadherin in invasive breast cancer, we stably transfected these molecules into the MDA-MB-231 cell line, and investigated their effects on motility, invasion and gene expression regulation. Expression of either E- and P-cadherin significantly increased cell aggregation and induced a switch from fibroblastic to epithelial morphology. Although expression of these cadherins did not completely reverse the mesenchymal phenotype of MDA-MB-231 cells, both E- and P-cadherin decreased fibroblast-like migration and invasion through extracellular matrix in a similar way. Moreover, microarray gene expression analysis of MDA-MB-231 cells after expression of E- and P-cadherins revealed that these molecules can activate signaling pathways leading to significant changes in gene expression. Although the expression patterns induced by E- and P-cadherin showed more similarities than differences, 40 genes were differentially modified by the expression of either cadherin type. E- and P-cadherin have similar functional consequences on the phenotype and invasive behavior of MDA-MB-231 cells. Moreover, we demonstrate for the first time that these cadherins can induce both common and specific gene expression programs on invasive breast cancer cells. Importantly, these identified genes are potential targets for future studies on the functional consequences of altered cadherin expression in human breast cancer

  8. Functional characterization of E- and P-cadherin in invasive breast cancer cells

    Directory of Open Access Journals (Sweden)

    Cano Amparo

    2009-03-01

    Full Text Available Abstract Background Alterations in the cadherin-catenin adhesion complexes are involved in tumor initiation, progression and metastasis. However, the functional implication of distinct cadherin types in breast cancer biology is still poorly understood. Methods To compare the functional role of E-cadherin and P-cadherin in invasive breast cancer, we stably transfected these molecules into the MDA-MB-231 cell line, and investigated their effects on motility, invasion and gene expression regulation. Results Expression of either E- and P-cadherin significantly increased cell aggregation and induced a switch from fibroblastic to epithelial morphology. Although expression of these cadherins did not completely reverse the mesenchymal phenotype of MDA-MB-231 cells, both E- and P-cadherin decreased fibroblast-like migration and invasion through extracellular matrix in a similar way. Moreover, microarray gene expression analysis of MDA-MB-231 cells after expression of E- and P-cadherins revealed that these molecules can activate signaling pathways leading to significant changes in gene expression. Although the expression patterns induced by E- and P-cadherin showed more similarities than differences, 40 genes were differentially modified by the expression of either cadherin type. Conclusion E- and P-cadherin have similar functional consequences on the phenotype and invasive behavior of MDA-MB-231 cells. Moreover, we demonstrate for the first time that these cadherins can induce both common and specific gene expression programs on invasive breast cancer cells. Importantly, these identified genes are potential targets for future studies on the functional consequences of altered cadherin expression in human breast cancer.

  9. Altered epigenetic regulation of homeobox genes in human oral squamous cell carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkiewicz, Katarzyna M.; Gudas, Lorraine J., E-mail: ljgudas@med.cornell.edu

    2014-01-01

    To gain insight into oral squamous cell carcinogenesis, we performed deep sequencing (RNAseq) of non-tumorigenic human OKF6-TERT1R and tumorigenic SCC-9 cells. Numerous homeobox genes are differentially expressed between OKF6-TERT1R and SCC-9 cells. Data from Oncomine, a cancer microarray database, also show that homeobox (HOX) genes are dysregulated in oral SCC patients. The activity of Polycomb repressive complexes (PRC), which causes epigenetic modifications, and retinoic acid (RA) signaling can control HOX gene transcription. HOXB7, HOXC10, HOXC13, and HOXD8 transcripts are higher in SCC-9 than in OKF6-TERT1R cells; using ChIP (chromatin immunoprecipitation) we detected PRC2 protein SUZ12 and the epigenetic H3K27me3 mark on histone H3 at these genes in OKF6-TERT1R, but not in SCC-9 cells. In contrast, IRX1, IRX4, SIX2 and TSHZ3 transcripts are lower in SCC-9 than in OKF6-TERT1R cells. We detected SUZ12 and the H3K27me3 mark at these genes in SCC-9, but not in OKF6-TERT1R cells. SUZ12 depletion increased HOXB7, HOXC10, HOXC13, and HOXD8 transcript levels and decreased the proliferation of OKF6-TERT1R cells. Transcriptional responses to RA are attenuated in SCC-9 versus OKF6-TERT1R cells. SUZ12 and H3K27me3 levels were not altered by RA at these HOX genes in SCC-9 and OKF6-TERT1R cells. We conclude that altered activity of PRC2 is associated with dysregulation of homeobox gene expression in human SCC cells, and that this dysregulation potentially plays a role in the neoplastic transformation of oral keratinocytes. - Highlights: • RNAseq elucidates differences between non-tumorigenic and tumorigenic oral keratinocytes. • Changes in HOX mRNA in SCC-9 vs. OKF6-TERT1R cells are a result of altered epigenetic regulation. • RNAseq shows that retinoic acid (RA) influences gene expression in both OKF6-TERT1R and SCC-9 cells.

  10. Altered epigenetic regulation of homeobox genes in human oral squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    Marcinkiewicz, Katarzyna M.; Gudas, Lorraine J.

    2014-01-01

    To gain insight into oral squamous cell carcinogenesis, we performed deep sequencing (RNAseq) of non-tumorigenic human OKF6-TERT1R and tumorigenic SCC-9 cells. Numerous homeobox genes are differentially expressed between OKF6-TERT1R and SCC-9 cells. Data from Oncomine, a cancer microarray database, also show that homeobox (HOX) genes are dysregulated in oral SCC patients. The activity of Polycomb repressive complexes (PRC), which causes epigenetic modifications, and retinoic acid (RA) signaling can control HOX gene transcription. HOXB7, HOXC10, HOXC13, and HOXD8 transcripts are higher in SCC-9 than in OKF6-TERT1R cells; using ChIP (chromatin immunoprecipitation) we detected PRC2 protein SUZ12 and the epigenetic H3K27me3 mark on histone H3 at these genes in OKF6-TERT1R, but not in SCC-9 cells. In contrast, IRX1, IRX4, SIX2 and TSHZ3 transcripts are lower in SCC-9 than in OKF6-TERT1R cells. We detected SUZ12 and the H3K27me3 mark at these genes in SCC-9, but not in OKF6-TERT1R cells. SUZ12 depletion increased HOXB7, HOXC10, HOXC13, and HOXD8 transcript levels and decreased the proliferation of OKF6-TERT1R cells. Transcriptional responses to RA are attenuated in SCC-9 versus OKF6-TERT1R cells. SUZ12 and H3K27me3 levels were not altered by RA at these HOX genes in SCC-9 and OKF6-TERT1R cells. We conclude that altered activity of PRC2 is associated with dysregulation of homeobox gene expression in human SCC cells, and that this dysregulation potentially plays a role in the neoplastic transformation of oral keratinocytes. - Highlights: • RNAseq elucidates differences between non-tumorigenic and tumorigenic oral keratinocytes. • Changes in HOX mRNA in SCC-9 vs. OKF6-TERT1R cells are a result of altered epigenetic regulation. • RNAseq shows that retinoic acid (RA) influences gene expression in both OKF6-TERT1R and SCC-9 cells

  11. Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells

    Science.gov (United States)

    Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer

  12. Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation.

    Science.gov (United States)

    Manzoni, Claudia; Mamais, Adamantios; Dihanich, Sybille; McGoldrick, Phillip; Devine, Michael J; Zerle, Julia; Kara, Eleanna; Taanman, Jan-Willem; Healy, Daniel G; Marti-Masso, Jose-Felix; Schapira, Anthony H; Plun-Favreau, Helene; Tooze, Sharon; Hardy, John; Bandopadhyay, Rina; Lewis, Patrick A

    2013-11-29

    LRRK2 is one of the most important genetic contributors to Parkinson's disease (PD). Point mutations in this gene cause an autosomal dominant form of PD, but to date no cellular phenotype has been consistently linked with mutations in each of the functional domains (ROC, COR and Kinase) of the protein product of this gene. In this study, primary fibroblasts from individuals carrying pathogenic mutations in the three central domains of LRRK2 were assessed for alterations in the autophagy/lysosomal pathway using a combination of biochemical and cellular approaches. Mutations in all three domains resulted in alterations in markers for autophagy/lysosomal function compared to wild type cells. These data highlight the autophagy and lysosomal pathways as read outs for pathogenic LRRK2 function and as a marker for disease, and provide insight into the mechanisms linking LRRK2 function and mutations. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Alterations in Helicobacter pylori triggered by contact with gastric epithelial cells

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Johnson

    2012-02-01

    Full Text Available Helicobacter pylori lives within the mucus layer of the human stomach, in close proximity to gastric epithelial cells. While a great deal is known about the effects of H. pylori on human cells and the specific bacterial products that mediate these effects, relatively little work has been done to investigate alterations in H. pylori that may be triggered by bacterial contact with human cells. In this review, we discuss the spectrum of changes in bacterial physiology and morphology that occur when H. pylori is in contact with gastric epithelial cells. Several studies have reported that cell contact causes alterations in H. pylori gene transcription. In addition, H. pylori contact with gastric epithelial cells promotes the formation of pilus-like structures at the bacteria-host cell interface. The formation of these structures requires multiple genes in the cag pathogenicity island, and these structures are proposed to have an important role in the type IV secretion system-dependent process through which CagA enters host cells. Finally, H. pylori contact with epithelial cells can promote bacterial replication and the formation of microcolonies, phenomena that are facilitated by the acquisition of iron and other nutrients from infected cells. In summary, the gastric epithelial cell surface represents an important niche for H. pylori, and upon entry into this niche, the bacteria alter their behavior in a manner that optimizes bacterial proliferation and persistent colonization of the host.

  14. Eavesdropping on altered cell-to-cell signaling in cancer by secretome profiling.

    Science.gov (United States)

    Klinke, David J

    2016-01-01

    In the past decade, cumulative clinical experiences with molecular targeted therapies and immunotherapies for cancer have promoted a shift in our conceptual understanding of cancer. This view shifted from viewing solid tumors as a homogeneous mass of malignant cells to viewing tumors as heterogeneous structures that are dynamically shaped by intercellular interactions among the variety of stromal, immune, and malignant cells present within the tumor microenvironment. As in any dynamic system, identifying how cells communicate to maintain homeostasis and how this communication is altered during oncogenesis are key hurdles for developing therapies to restore normal tissue homeostasis. Here, I discuss tissues as dynamic systems, using the mammary gland as an example, and the evolutionary concepts applied to oncogenesis. Drawing from these concepts, I present 2 competing hypotheses for how intercellular communication might be altered during oncogenesis. As an initial test of these competing hypotheses, a recent secretome comparison between normal human mammary and HER2+ breast cancer cell lines suggested that the particular proteins secreted by the malignant cells reflect a convergent evolutionary path associated with oncogenesis in a specific anatomical niche, despite arising in different individuals. Overall, this study illustrates the emerging power of secretome proteomics to probe, in an unbiased way, how intercellular communication changes during oncogenesis.

  15. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    Directory of Open Access Journals (Sweden)

    Abbas Jafari

    2017-02-01

    Full Text Available Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis.

  16. Phosphorylation states of cell cycle and DNA repair proteins can be altered by the nsSNPs

    International Nuclear Information System (INIS)

    Savas, Sevtap; Ozcelik, Hilmi

    2005-01-01

    Phosphorylation is a reversible post-translational modification that affects the intrinsic properties of proteins, such as structure and function. Non-synonymous single nucleotide polymorphisms (nsSNPs) result in the substitution of the encoded amino acids and thus are likely to alter the phosphorylation motifs in the proteins. In this study, we used the web-based NetPhos tool to predict candidate nsSNPs that either introduce or remove putative phosphorylation sites in proteins that act in DNA repair and cell cycle pathways. Our results demonstrated that a total of 15 nsSNPs (16.9%) were likely to alter the putative phosphorylation patterns of 14 proteins. Three of these SNPs (CDKN1A-S31R, OGG1-S326C, and XRCC3-T241M) have already found to be associated with altered cancer risk. We believe that this set of nsSNPs constitutes an excellent resource for further molecular and genetic analyses. The novel systematic approach used in this study will accelerate the understanding of how naturally occurring human SNPs may alter protein function through the modification of phosphorylation mechanisms and contribute to disease susceptibility

  17. Methamidophos alters sperm function and DNA at different stages of spermatogenesis in mice

    International Nuclear Information System (INIS)

    Urióstegui-Acosta, Mayrut; Hernández-Ochoa, Isabel; Sánchez-Gutiérrez, Manuel; Piña-Guzmán, Belem; Rafael-Vázquez, Leticia; Solís-Heredia, M.J.; Martínez-Aguilar, Gerardo; Quintanilla-Vega, Betzabet

    2014-01-01

    Methamidophos (MET) is a highly toxic organophosphate (OP) pesticide that is widely used in developing countries. MET has male reproductive effects, including decreased fertility. We evaluated MET effects on sperm quality, fertilization and DNA integrity, exploring the sensitivity of different stages of spermatogenesis. Adult male mice received MET (3.75 or 5 mg/kg-bw/ip/day/4 days) and were euthanized 1, 28 or 45 days post-treatment (dpt) to evaluate MET's effects on epididymal maturation, meiosis or mitosis, respectively. Spermatozoa were obtained from the cauda epididymis–vas deferens and were evaluated for sperm quality, acrosome reaction (AR; Coomassie staining), mitochondrial membrane potential (by JC-1), DNA damage (comet assay), oxidative damage (malondialdehyde (MDA) production), in vitro fertilization and protein phosphorylation (immunodetection), and erythrocyte acetylcholinesterase (AChE) activity. At 1-dpt, MET inhibited AChE (43–57%) and increased abnormal cells (6%). While at 28- and 45-dpt, sperm motility and viability were significantly reduced with an increasing MET dose, and abnormal morphology increased at 5 mg/kg/day/4 days. MDA and mitochondrial activity were not affected at any dose or time. DNA damage (OTM and %DNA) was observed at 5 mg/kg/day/4 days in a time-dependent manner, whereas both parameters were altered in cells from mice exposed to 3.75 mg/kg/day/4 days only at 28-dpt. Depending on the time of collection, initial-, spontaneous- and induced-AR were altered at 5 mg/kg/day/4 days, and the fertilization capacity also decreased. Sperm phosphorylation (at serine and tyrosine residues) was observed at all time points. Data suggest that meiosis and mitosis are the more sensitive stages of spermatogenesis for MET reproductive toxicity compared to epididymal maturation. - Highlights: • Methamidophos alters sperm cell function at different stages of spermatogenesis. • Testicular stages of spermatogenesis are more sensitive to

  18. Methamidophos alters sperm function and DNA at different stages of spermatogenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Urióstegui-Acosta, Mayrut; Hernández-Ochoa, Isabel [Departamento de Toxicología, CINVESTAV-IPN, D.F. (Mexico); Sánchez-Gutiérrez, Manuel [Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Hidalgo (Mexico); Piña-Guzmán, Belem [Instituto Politécnico Nacional-UPIBI, D.F. (Mexico); Rafael-Vázquez, Leticia; Solís-Heredia, M.J.; Martínez-Aguilar, Gerardo [Departamento de Toxicología, CINVESTAV-IPN, D.F. (Mexico); Quintanilla-Vega, Betzabet, E-mail: mquintan@cinvestav.mx [Departamento de Toxicología, CINVESTAV-IPN, D.F. (Mexico)

    2014-09-15

    Methamidophos (MET) is a highly toxic organophosphate (OP) pesticide that is widely used in developing countries. MET has male reproductive effects, including decreased fertility. We evaluated MET effects on sperm quality, fertilization and DNA integrity, exploring the sensitivity of different stages of spermatogenesis. Adult male mice received MET (3.75 or 5 mg/kg-bw/ip/day/4 days) and were euthanized 1, 28 or 45 days post-treatment (dpt) to evaluate MET's effects on epididymal maturation, meiosis or mitosis, respectively. Spermatozoa were obtained from the cauda epididymis–vas deferens and were evaluated for sperm quality, acrosome reaction (AR; Coomassie staining), mitochondrial membrane potential (by JC-1), DNA damage (comet assay), oxidative damage (malondialdehyde (MDA) production), in vitro fertilization and protein phosphorylation (immunodetection), and erythrocyte acetylcholinesterase (AChE) activity. At 1-dpt, MET inhibited AChE (43–57%) and increased abnormal cells (6%). While at 28- and 45-dpt, sperm motility and viability were significantly reduced with an increasing MET dose, and abnormal morphology increased at 5 mg/kg/day/4 days. MDA and mitochondrial activity were not affected at any dose or time. DNA damage (OTM and %DNA) was observed at 5 mg/kg/day/4 days in a time-dependent manner, whereas both parameters were altered in cells from mice exposed to 3.75 mg/kg/day/4 days only at 28-dpt. Depending on the time of collection, initial-, spontaneous- and induced-AR were altered at 5 mg/kg/day/4 days, and the fertilization capacity also decreased. Sperm phosphorylation (at serine and tyrosine residues) was observed at all time points. Data suggest that meiosis and mitosis are the more sensitive stages of spermatogenesis for MET reproductive toxicity compared to epididymal maturation. - Highlights: • Methamidophos alters sperm cell function at different stages of spermatogenesis. • Testicular stages of spermatogenesis are more sensitive to

  19. PCBs Alter Dopamine Mediated Function in Aging Workers

    Science.gov (United States)

    2011-01-01

    PCBs Alter Dopamine Mediated Function in Aging Workers 5a. CONTRACT NUMBER 5b. GRANT NUMBER DAMD17-02-1-0173 5c. PROGRAM ELEMENT...hypothesized that occupational exposure to polychlorinated biphenyls (PCBs) reduces dopamine (DA) terminal densities in the basal ganglia. We found...motor function in women compared to similarly aged men with similar bone lead levels. These latter findings are the first to demonstrate a sexual

  20. Effects of lead intoxication on intercellular junctions and biochemical alterations of the renal proximal tubule cells.

    Science.gov (United States)

    Navarro-Moreno, L G; Quintanar-Escorza, M A; González, S; Mondragón, R; Cerbón-Solorzáno, J; Valdés, J; Calderón-Salinas, J V

    2009-10-01

    Lead intoxication is a worldwide health problem which frequently affects the kidney. In this work, we studied the effects of chronic lead intoxication (500 ppm of Pb in drinking water during seven months) on the structure, function and biochemical properties of rat proximal tubule cells. Lead-exposed animals showed increased lead concentration in kidney, reduction of calcium and amino acids uptake, oxidative damage and glucosuria, proteinuria, hematuria and reduced urinary pH. These biochemical and physiological alterations were related to striking morphological modifications in the structure of tubule epithelial cells and in the morphology of their mitochondria, nuclei, lysosomes, basal and apical membranes. Interestingly, in addition to the nuclei, inclusion bodies were found in the cytoplasm and in mitochondria. The epithelial cell structure modifications included an early loss of the apical microvillae, followed by a decrement of the luminal space and the respective apposition and proximity of apical membranes, resulting in the formation of atypical intercellular contacts and adhesion structures. Similar but less marked alterations were observed in subacute lead intoxication as well. Our work contributes in the understanding of the physiopathology of lead intoxication on the structure of renal tubular epithelial cell-cell contacts in vivo.

  1. Prenatal stress alters amygdala functional connectivity in preterm neonates.

    Science.gov (United States)

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Sze, Gordon; Sinha, Rajita; Constable, R Todd; Ment, Laura R

    2016-01-01

    Exposure to prenatal and early-life stress results in alterations in neural connectivity and an increased risk for neuropsychiatric disorders. In particular, alterations in amygdala connectivity have emerged as a common effect across several recent studies. However, the impact of prenatal stress exposure on the functional organization of the amygdala has yet to be explored in the prematurely-born, a population at high risk for neuropsychiatric disorders. We test the hypothesis that preterm birth and prenatal exposure to maternal stress alter functional connectivity of the amygdala using two independent cohorts. The first cohort is used to establish the effects of preterm birth and consists of 12 very preterm neonates and 25 term controls, all without prenatal stress exposure. The second is analyzed to establish the effects of prenatal stress exposure and consists of 16 extremely preterm neonates with prenatal stress exposure and 10 extremely preterm neonates with no known prenatal stress exposure. Standard resting-state functional magnetic resonance imaging and seed connectivity methods are used. When compared to term controls, very preterm neonates show significantly reduced connectivity between the amygdala and the thalamus, the hypothalamus, the brainstem, and the insula (p amygdala and the thalamus, the hypothalamus, and the peristriate cortex (p amygdala connectivity associated with preterm birth. Functional connectivity from the amygdala to other subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these decreases.

  2. Overexpression of neurofilament H disrupts normal cell structure and function

    Science.gov (United States)

    Szebenyi, Gyorgyi; Smith, George M.; Li, Ping; Brady, Scott T.

    2002-01-01

    Studying exogenously expressed tagged proteins in live cells has become a standard technique for evaluating protein distribution and function. Typically, expression levels of experimentally introduced proteins are not regulated, and high levels are often preferred to facilitate detection. However, overexpression of many proteins leads to mislocalization and pathologies. Therefore, for normative studies, moderate levels of expression may be more suitable. To understand better the dynamics of intermediate filament formation, transport, and stability in a healthy, living cell, we inserted neurofilament heavy chain (NFH)-green fluorescent protein (GFP) fusion constructs in adenoviral vectors with tetracycline (tet)-regulated promoters. This system allows for turning on or off the synthesis of NFH-GFP at a selected time, for a defined period, in a dose-dependent manner. We used this inducible system for live cell imaging of changes in filament structure and cell shape, motility, and transport associated with increasing NFH-GFP expression. Cells with low to intermediate levels of NFH-GFP were structurally and functionally similar to neighboring, nonexpressing cells. In contrast, overexpression led to pathological alterations in both filament organization and cell function. Copyright 2002 Wiley-Liss, Inc.

  3. Connectomics and neuroticism : an altered functional network organization

    NARCIS (Netherlands)

    Servaas, Michelle N; Geerligs, Linda; Renken, Remco J; Marsman, Jan-Bernard; Ormel, Johan; Riese, Harriëtte; Aleman, André

    The personality trait neuroticism is a potent risk marker for psychopathology. Although the neurobiological basis remains unclear, studies have suggested that alterations in connectivity may underlie it. Therefore, the aim of the current study was to shed more light on the functional network

  4. Abnormal red cell structure and function in neuroacanthocytosis.

    Directory of Open Access Journals (Sweden)

    Judith C A Cluitmans

    Full Text Available Panthothenate kinase-associated neurodegeneration (PKAN belongs to a group of hereditary neurodegenerative disorders known as neuroacanthocytosis (NA. This genetically heterogeneous group of diseases is characterized by degeneration of neurons in the basal ganglia and by the presence of deformed red blood cells with thorny protrusions, acanthocytes, in the circulation.The goal of our study is to elucidate the molecular mechanisms underlying this aberrant red cell morphology and the corresponding functional consequences. This could shed light on the etiology of the neurodegeneration.We performed a qualitative and semi-quantitative morphological, immunofluorescent, biochemical and functional analysis of the red cells of several patients with PKAN and, for the first time, of the red cells of their family members.We show that the blood of patients with PKAN contains not only variable numbers of acanthocytes, but also a wide range of other misshapen red cells. Immunofluorescent and immunoblot analyses suggest an altered membrane organization, rather than quantitative changes in protein expression. Strikingly, these changes are not limited to the red blood cells of PKAN patients, but are also present in the red cells of heterozygous carriers without neurological problems. Furthermore, changes are not only present in acanthocytes, but also in other red cells, including discocytes. The patients' cells, however, are more fragile, as observed in a spleen-mimicking device.These morphological, molecular and functional characteristics of red cells in patients with PKAN and their family members offer new tools for diagnosis and present a window into the pathophysiology of neuroacanthocytosis.

  5. Parasite-altered feeding behavior in insects: integrating functional and mechanistic research frontiers.

    Science.gov (United States)

    Bernardo, Melissa A; Singer, Michael S

    2017-08-15

    Research on parasite-altered feeding behavior in insects is contributing to an emerging literature that considers possible adaptive consequences of altered feeding behavior for the host or the parasite. Several recent ecoimmunological studies show that insects can adaptively alter their foraging behavior in response to parasitism. Another body of recent work shows that infection by parasites can change the behavior of insect hosts to benefit the parasite; manipulations of host feeding behavior may be part of this phenomenon. Here, we address both the functional and the underlying physiological frontiers of parasite-altered feeding behavior in order to spur research that better integrates the two. Functional categories of parasite-altered behavior that are adaptive for the host include prophylaxis, therapy and compensation, while host manipulation is adaptive for the parasite. To better understand and distinguish prophylaxis, therapy and compensation, further study of physiological feedbacks affecting host sensory systems is especially needed. For host manipulation in particular, research on mechanisms by which parasites control host feedbacks will be important to integrate with functional approaches. We see this integration as critical to advancing the field of parasite-altered feeding behavior, which may be common in insects and consequential for human and environmental health. © 2017. Published by The Company of Biologists Ltd.

  6. Chronic radiation-induced leukemogenesis: alterations of hematopoietic progenitor repair functions during preclinical phases

    International Nuclear Information System (INIS)

    Seed, T.M.; Kaspar, L.V.; Grdina, D.J.; Frazier, M.E.

    1987-01-01

    Chronic exposure to low daily doses of whole-body gamma irradiation elicits a high incidence of myeloid leukemia (ML) and related myeloproliferative diseases (MPD) in beagles. Previously, the authors identified and partially characterized a four-phase sequence of evolving MPD as a consequence of chronic radiation exposure. With a focus on preclinical alterations in granulocyte/monocyte-committed stem cells, they have identified two critical events in the process: (i) an early event, involving the coupling of acquired radioresistance of the stem cell with renewed proliferative capacity; and (ii) a late event, involving acquired autocrine functions and associated change in stem cell clonality. In terms of the early event, repair-associated parameters are currently being examined on the cellular level by both split-dose and low dose-rate-type assays with survival enhancement used as the measured end point. On the molecular level, these parameters are examined by microfluorometric alkaline elution assays with DNA damage and repair used as end points

  7. Altering β-cell number through stable alteration of miR-21 and miR-34a expression

    DEFF Research Database (Denmark)

    Backe, Marie Balslev; Novotny, Guy Wayne; Christensen, Dan Ploug

    2014-01-01

    RNAs, miR-21 and miR-34a, may be involved in mediating cytokine-induced β-cell dysfunction. Therefore, manipulation of miR-21 and miR-34a levels may potentially be beneficial to β cells. To study the effect of long-term alterations of miR-21 or miR-34a levels upon net β-cell number, we stably overexpressed...

  8. Simulated Microgravity Alters Actin Cytoskeleton and Integrin-Mediated Focal Adhesions of Cultured Human Mesenchymal Stromal Cells

    Science.gov (United States)

    Gershovich, P. M.; Gershovic, J. G.; Buravkova, L. B.

    2008-06-01

    Cytoskeletal alterations occur in several cell types including lymphocytes, glial cells, and osteoblasts, during spaceflight and under simulated microgravity (SMG) (3, 4). One potential mechanism for cytoskeletal gravisensitivity is disruption of extracellular matrix (ECM) and integrin interactions. Focal adhesions are specialized sites of cell-matrix interaction composed of integrins and the diversity of focal adhesion-associated cytoplasmic proteins including vinculin, talin, α-actinin, and actin filaments (4, 5). Integrins produce signals essential for proper cellular function, survival and differentiation. Therefore, we investigated the effects of SMG on F-actin cytoskeleton structure, vinculin focal adhesions, expression of some integrin subtypes and cellular adhesion molecules (CAMs) in mesenchymal stem cells derived from human bone marrow (hMSCs). Simulated microgravity was produced by 3D-clinostat (Dutch Space, Netherlands). Staining of actin fibers with TRITC-phalloidin showed reorganization even after 30 minutes of simulated microgravity. The increasing of cells number with abnormal F-actin was observed after subsequent terms of 3D-clinorotation (6, 24, 48, 120 hours). Randomization of gravity vector altered dimensional structure of stress fibers and resulted in remodeling of actin fibers inside the cells. In addition, we observed vinculin redistribution inside the cells after 6 hours and prolonged terms of clinorotation. Tubulin fibers in a contrast with F-actin and vinculin didn't show any reorganization even after long 3Dclinorotation (120 hours). The expression of integrin α2 increased 1,5-6-fold in clinorotated hMSCs. Also we observed decrease in number of VCAM-1-positive cells and changes in expression of ICAM-1. Taken together, our findings indicate that SMG leads to microfilament and adhesion alterations of hMSCs most probably associated with involvement of some integrin subtypes.

  9. Secretory activity and cell cycle alteration of alveolar type II cells in the early and late phase after irradiation

    International Nuclear Information System (INIS)

    Willner, Jochen; Vordermark, Dirk; Schmidt, Michael; Gassel, Andreamaria; Flentje, Michael; Wirtz, Hubert

    2003-01-01

    Purpose: Type II cells and the surfactant system have been proposed to play a central role in pathogenesis of radiation pneumonitis. We analyzed the secretory function and proliferation parameters of alveolar type II cells in the early (until 24 h) and late phase (1-5 weeks) after irradiation (RT) in vitro and in vivo. Methods and Materials: Type II cells were isolated from rats according to the method of Dobbs. Stimulation of secretion was induced with terbutaline, adenosine triphosphate (ATP), and 12-O-tetradecanoylphorbol-13-acetate (TPA) for a 2-h period. Determination of secretion was performed using 3 H-labeled phosphatidylcholine. For the early-phase analysis, freshly isolated and adherent type II cells were irradiated in vitro with 9-21 Gy (stepwise increase of 3 Gy). Secretion stimulation was initiated 1, 6, 24, and 48 h after RT. For late-phase analysis, type II cells were isolated 1-5 weeks after 18 Gy whole lung or sham RT. Each experiment was repeated at least fivefold. Flow cytometry was used to determine cell cycle distribution and proliferating cell nuclear antigen index. Results: During the early-phase (in vitro) analysis, we found a normal stimulation of surfactant secretion in irradiated, as well as unirradiated, cells. No change in basal secretion and no dose effect were seen. During the late phase, 1-5 weeks after whole lung RT, we observed enhanced secretory activity for all secretagogues and a small increase in basal secretion in Weeks 3 and 4 (pneumonitis phase) compared with controls. The total number of isolated type II cells, as well as the rate of viable cells, decreased after the second post-RT week. Cell cycle alterations suggesting an irreversible G 2 /M block occurred in the second post-RT week and did not resolve during the observation period. The proliferating cell nuclear antigen index of type II cells from irradiated rats did not differ from that of controls. Conclusion: In contrast to literature data, we observed no direct

  10. Altered Morphology and Function of the Lacrimal Functional Unit in Protein Kinase Cα Knockout Mice

    Science.gov (United States)

    Chen, Zhuo; Li, Zhijie; Basti, Surendra; Farley, William J.

    2010-01-01

    Purpose. Protein kinase C (PKC) α plays a major role in the parasympathetic neural stimulation of lacrimal gland (LG) secretion. It also has been reported to have antiapoptotic properties and to promote cell survival. Therefore, the hypothesis for the present study was that PKCα knockout (−/−) mice have impaired ocular surface–lacrimal gland signaling, rendering them susceptible to desiccating stress and impaired corneal epithelial wound healing. In this study, the lacrimal function unit (LFU) and the stressed wound-healing response were examined in PKCα−/− mice. Methods. In PKCα+/+ control mice and PKCα−/− mice, tear production, osmolarity, and clearance rate were evaluated before and after experimental desiccating stress. Histology and immunofluorescent staining of PKC and epidermal growth factor were performed in tissues of the LFU. Cornified envelope (CE) precursor protein expression and cell proliferation were evaluated. The time course of healing and degree of neutrophil infiltration was evaluated after corneal epithelial wounding. Results. Compared with the PKCα+/+ mice, the PKCα−/− mice were noted to have significantly increased lacrimal gland weight, with enlarged, carbohydrate-rich, PAS-positive acinar cells; increased corneal epithelia permeability, with reduced CE expression; and larger conjunctival epithelial goblet cells. The PKCα−/− mice showed more rapid corneal epithelial healing, with less neutrophil infiltration and fewer proliferating cells than did the PKCα+/+ mice. Conclusions. The PKCα−/− mice showed lower tear production, which appeared to be caused by impaired secretion by the LG and conjunctival goblet cells. Despite their altered tear dynamics, the PKCα−/− mice demonstrated more rapid corneal epithelial wound healing, perhaps due to decreased neutrophil infiltration. PMID:20505191

  11. Complete depletion of primordial germ cells in an All-female fish leads to Sex-biased gene expression alteration and sterile All-male occurrence.

    Science.gov (United States)

    Liu, Wei; Li, Shi-Zhu; Li, Zhi; Wang, Yang; Li, Xi-Yin; Zhong, Jian-Xiang; Zhang, Xiao-Juan; Zhang, Jun; Zhou, Li; Gui, Jian-Fang

    2015-11-18

    Gynogenesis is one of unisexual reproduction modes in vertebrates, and produces all-female individuals with identical genetic background. In sexual reproduction vertebrates, the roles of primordial germ cells on sexual dimorphism and gonadal differentiation have been largely studied, and two distinct functional models have been proposed. However, the role of primordial germ cells remains unknown in unisexual animals, and it is also unclear whether the functional models in sexual reproduction animals are common in unisexual animals. To solve these puzzles, we attempt to utilize the gynogenetic superiority of polyploid Carassius gibelio to create a complete germ cell-depleted gonad model by a similar morpholino-mediated knockdown approach used in other examined sexual reproduction fishes. Through the germ cell-depleted gonad model, we have performed comprehensive and comparative transcriptome analysis, and revealed a complete alteration of sex-biased gene expression. Moreover, the expression alteration leads to up-regulation of testis-biased genes and down-regulation of ovary-biased genes, and results in the occurrence of sterile all-males with testis-like gonads and secondary sex characteristics in the germ cell-depleted gynogenetic Carassius gibelio. Our current results have demonstrated that unisexual gynogenetic embryos remain keeping male sex determination information in the genome, and the complete depletion of primordial germ cells in the all-female fish leads to sex-biased gene expression alteration and sterile all-male occurrence.

  12. Myostatin induces mitochondrial metabolic alteration and typical apoptosis in cancer cells

    Science.gov (United States)

    Liu, Y; Cheng, H; Zhou, Y; Zhu, Y; Bian, R; Chen, Y; Li, C; Ma, Q; Zheng, Q; Zhang, Y; Jin, H; Wang, X; Chen, Q; Zhu, D

    2013-01-01

    Myostatin, a member of the transforming growth factor-β superfamily, regulates the glucose metabolism of muscle cells, while dysregulated myostatin activity is associated with a number of metabolic disorders, including muscle cachexia, obesity and type II diabetes. We observed that myostatin induced significant mitochondrial metabolic alterations and prolonged exposure of myostatin induced mitochondria-dependent apoptosis in cancer cells addicted to glycolysis. To address the underlying mechanism, we found that the protein levels of Hexokinase II (HKII) and voltage-dependent anion channel 1 (VDAC1), two key regulators of glucose metabolisms as well as metabolic stress-induced apoptosis, were negatively correlated. In particular, VDAC1 was dramatically upregulated in cells that are sensitive to myostatin treatment whereas HKII was downregulated and dissociated from mitochondria. Myostatin promoted the translocation of Bax from cytosol to mitochondria, and knockdown of VDAC1 inhibited myostatin-induced Bax translocation and apoptosis. These apoptotic changes can be partially rescued by repletion of ATP, or by ectopic expression of HKII, suggesting that perturbation of mitochondrial metabolism is causally linked with subsequent apoptosis. Our findings reveal novel function of myostatin in regulating mitochondrial metabolism and apoptosis in cancer cells. PMID:23412387

  13. Radiation-induced alterations of histone post-translational modification levels in lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Maroschik, Belinda; Gürtler, Anne; Krämer, Anne; Rößler, Ute; Gomolka, Maria; Hornhardt, Sabine; Mörtl, Simone; Friedl, Anna A

    2014-01-01

    Radiation-induced alterations in posttranslational histone modifications (PTMs) may affect the cellular response to radiation damage in the DNA. If not reverted appropriately, altered PTM patterns may cause long-term alterations in gene expression regulation and thus lead to cancer. It is therefore important to characterize radiation-induced alterations in PTM patterns and the factors affecting them. A lymphoblastoid cell line established from a normal donor was used to screen for alterations in methylation levels at H3K4, H3K9, H3K27, and H4K20, as well as acetylation at H3K9, H3K56, H4K5, and H4K16, by quantitative Western Blot analysis at 15 min, 1 h and 24 h after irradiation with 2 Gy and 10 Gy. The variability of alterations in acetylation marks was in addition investigated in a panel of lymphoblastoid cell lines with differing radiosensitivity established from lung cancer patients. The screening procedure demonstrated consistent hypomethylation at H3K4me3 and hypoacetylation at all acetylation marks tested. In the panel of lymphoblastoid cell lines, however, a high degree of inter-individual variability became apparent. Radiosensitive cell lines showed more pronounced and longer lasting H4K16 hypoacetylation than radioresistant lines, which correlates with higher levels of residual γ-H2AX foci after 24 h. So far, the factors affecting extent and duration of radiation-induced histone alterations are poorly defined. The present work hints at a high degree of inter-individual variability and a potential correlation of DNA damage repair capacity and alterations in PTM levels

  14. Effect of continuous low-dose γ-irradiation on rat Sertoli cell function

    International Nuclear Information System (INIS)

    Kamtchouing, P.; Papadopoulos, V.; Drosdowsky, M.A.; Carreau, S.; Pinon-Lataillade, G.; Maas, J.; Guillaumin, J.M.; Bardos, P.; Perreau, C.; Hochereau de Reviers, M.T.

    1988-01-01

    Continuous low-dose γ-irradiation of mature rats induced a progressive degeneration of the germ cells. Blood FSH increased by 127, 176 and 214%, respectively, after 55, 70 and 85 days of treatment when compared to FSH levels in control rats (8.50 ± 0.60 ng/ml); conversely, serum LH and testosterone levels were unchanged. The Sertoli cell function was affected by the treatment from 70 days on, as attested by androgen binding protein (ABP) and transferrin secretions which diminished 35-40%. Serum ABP levels were not altered, whatever the duration of irradiation, even though epididymal ABP contents (as well as concentrations) diminished 34-60% when compared to those of the controls. Moreover, in purified Leydig cells, LH-stimulated intracellular cAMP levels, which were decreased by seminiferous tubule medium (STM) from control rats, were enhanced in presence of STM from treated animals. Testosterone output was stimulated 9-fold in presence of oLH and further increased (46-76%) from stages XIV-V by STM prepared from control and irradiated rats, respectively. After 85 days the STM effects on both cAMP and testosterone syntheses were zero. These results demonstrate a probable alteration of Sertoli cell function after irradiation, but also a role of the germ cells in the regulation of the synthesis of ABP, transferrin and Sertoli cell paracrine factors

  15. Cell phone use and parotid salivary gland alterations: no molecular evidence.

    Science.gov (United States)

    de Souza, Fabrício T A; Correia-Silva, Jeane F; Ferreira, Efigênia F; Siqueira, Elisa C; Duarte, Alessandra P; Gomez, Marcus Vinícius; Gomez, Ricardo S; Gomes, Carolina C

    2014-07-01

    The association between cell phone use and the development of parotid tumors is controversial. Because there is unequivocal evidence that the microenvironment is important for tumor formation, we investigated in the parotid glands whether cell phone use alters the expression of gene products related to cellular stress. We used the saliva produced by the parotid glands of 62 individuals to assess molecular alterations compatible with cellular stress, comparing the saliva from the gland exposed to cell phone radiation (ipsilateral) to the saliva from the opposite, unexposed parotid gland (contralateral) of each individual. We compared salivary flow, total protein concentration, p53, p21, reactive oxygen species (ROS), and salivary levels of glutathione (GSH), heat shock proteins 27 and 70, and IgA between the ipsilateral and contralateral parotids. No difference was found for any of these parameters, even when grouping individuals by period of cell phone use in years or by monthly average calls in minutes. We provide molecular evidence that the exposure of parotid glands to cell phone use does not alter parotid salivary flow, protein concentration, or levels of proteins of genes that are directly or indirectly affected by heat-induced cellular stress. ©2014 American Association for Cancer Research.

  16. Clerics urge ban on altering germline cells.

    Science.gov (United States)

    Norman, C

    1983-06-24

    A resolution calling for a ban on genetic engineering of human reproductive cells has been signed by leaders of almost every major church group in the United States. Some of the religious leaders, while not certain that a total moratorium should be placed on altering germline cells, signed the statement in order to stimulate public debate on the issue. Legislation has recently been introduced in Congress to set up a committee to monitor genetic engineering and its human applications, but author Jeremy Rifkin, the impetus behind the church leaders' resolution, argues that such tampering threatens the gene pool and should be banned altogether.

  17. Androgen action via testicular arteriole smooth muscle cells is important for Leydig cell function, vasomotion and testicular fluid dynamics.

    Directory of Open Access Journals (Sweden)

    Michelle Welsh

    2010-10-01

    Full Text Available Regulation of blood flow through the testicular microvasculature by vasomotion is thought to be important for normal testis function as it regulates interstitial fluid (IF dynamics which is an important intra-testicular transport medium. Androgens control vasomotion, but how they exert these effects remains unclear. One possibility is by signalling via androgen receptors (AR expressed in testicular arteriole smooth muscle cells. To investigate this and determine the overall importance of this mechanism in testis function, we generated a blood vessel smooth muscle cell-specific AR knockout mouse (SMARKO. Gross reproductive development was normal in SMARKO mice but testis weight was reduced in adulthood compared to control littermates; this reduction was not due to any changes in germ cell volume or to deficits in testosterone, LH or FSH concentrations and did not cause infertility. However, seminiferous tubule lumen volume was reduced in adult SMARKO males while interstitial volume was increased, perhaps indicating altered fluid dynamics; this was associated with compensated Leydig cell failure. Vasomotion was impaired in adult SMARKO males, though overall testis blood flow was normal and there was an increase in the overall blood vessel volume per testis in adult SMARKOs. In conclusion, these results indicate that ablating arteriole smooth muscle AR does not grossly alter spermatogenesis or affect male fertility but does subtly impair Leydig cell function and testicular fluid exchange, possibly by locally regulating microvascular blood flow within the testis.

  18. Microfluidics as a functional tool for cell mechanics.

    Science.gov (United States)

    Vanapalli, Siva A; Duits, Michel H G; Mugele, Frieder

    2009-01-05

    Living cells are a fascinating demonstration of nature's most intricate and well-coordinated micromechanical objects. They crawl, spread, contract, and relax-thus performing a multitude of complex mechanical functions. Alternatively, they also respond to physical and chemical cues that lead to remodeling of the cytoskeleton. To understand this intricate coupling between mechanical properties, mechanical function and force-induced biochemical signaling requires tools that are capable of both controlling and manipulating the cell microenvironment and measuring the resulting mechanical response. In this review, the power of microfluidics as a functional tool for research in cell mechanics is highlighted. In particular, current literature is discussed to show that microfluidics powered by soft lithographic techniques offers the following capabilities that are of significance for understanding the mechanical behavior of cells: (i) Microfluidics enables the creation of in vitro models of physiological environments in which cell mechanics can be probed. (ii) Microfluidics is an excellent means to deliver physical cues that affect cell mechanics, such as cell shape, fluid flow, substrate topography, and stiffness. (iii) Microfluidics can also expose cells to chemical cues, such as growth factors and drugs, which alter their mechanical behavior. Moreover, these chemical cues can be delivered either at the whole cell or subcellular level. (iv) Microfluidic devices offer the possibility of measuring the intrinsic mechanical properties of cells in a high throughput fashion. (v) Finally, microfluidic methods provide exquisite control over drop size, generation, and manipulation. As a result, droplets are being increasingly used to control the physicochemical environment of cells and as biomimetic analogs of living cells. These powerful attributes of microfluidics should further stimulate novel means of investigating the link between physicochemical cues and the biomechanical

  19. Can a Proper T-Cell Development Occur in an Altered Thymic Epithelium? Lessons From EphB-Deficient Thymi

    Directory of Open Access Journals (Sweden)

    Juan José Muñoz

    2018-04-01

    Full Text Available For a long time, the effects of distinct Eph tyrosine kinase receptors and their ligands, ephrins on the structure, immunophenotype, and development of thymus and their main cell components, thymocytes (T and thymic epithelial cells (TECs, have been studied. In recent years, the thymic phenotype of mutant mice deficient in several Ephs and ephrins B has been determined. Remarkably, thymic stroma in these animals exhibits important defects that appear early in ontogeny but little alterations in the proportions of distinct lymphoid cell populations. In the present manuscript, we summarize and extend these results discussing possible mechanisms governing phenotypical and functional thymocyte maturation in an absence of the critical T–TEC interactions, concluding that some signaling mediated by key molecules, such as MHCII, CD80, β5t, Aire, etc. could be sufficient to enable a proper maturation of thymocytes, independently of morphological alterations affecting thymic epithelium.

  20. Laminin-332 alters connexin profile, dye coupling and intercellular Ca2+ waves in ciliated tracheal epithelial cells

    Directory of Open Access Journals (Sweden)

    Olsen Colin E

    2006-08-01

    Full Text Available Abstract Background Tracheal epithelial cells are anchored to a dynamic basement membrane that contains a variety of extracellular matrix proteins including collagens and laminins. During development, wound repair and disease of the airway epithelium, significant changes in extracellular matrix proteins may directly affect cell migration, differentiation and events mediated by intercellular communication. We hypothesized that alterations in cell matrix, specifically type I collagen and laminin α3β3γ2 (LM-332 proteins within the matrix, directly affect intercellular communication in ciliated rabbit tracheal epithelial cells (RTEC. Methods Functional coupling of RTEC was monitored by microinjection of the negatively charged fluorescent dyes, Lucifer Yellow and Alexa 350, into ciliated RTEC grown on either a LM-332/collagen or collagen matrix. Coupling of physiologically significant molecules was evaluated by the mechanism and extent of propagated intercellular Ca2+ waves. Expression of connexin (Cx mRNA and proteins were assayed by reverse transcriptase – polymerase chain reaction and immunocytochemistry, respectively. Results When compared to RTEC grown on collagen alone, RTEC grown on LM-332/collagen displayed a significant increase in dye transfer. Although mechanical stimulation of RTEC grown on either LM-332/collagen or collagen alone resulted in intercellular Ca2+ waves, the mechanism of transfer was dependent on matrix: RTEC grown on LM-332/collagen propagated Ca2+waves via extracellular purinergic signaling whereas RTEC grown on collagen used gap junctions. Comparison of RTEC grown on collagen or LM-332/collagen matrices revealed a reorganization of Cx26, Cx43 and Cx46 proteins. Conclusion Alterations in airway basement membrane proteins such as LM-332 can induce connexin reorganizations and result in altered cellular communication mechanisms that could contribute to airway tissue function.

  1. Altered morphology and function of the lacrimal functional unit in protein kinase C{alpha} knockout mice.

    Science.gov (United States)

    Chen, Zhuo; Li, Zhijie; Basti, Surendra; Farley, William J; Pflugfelder, Stephen C

    2010-11-01

    Protein kinase C (PKC) α plays a major role in the parasympathetic neural stimulation of lacrimal gland (LG) secretion. It also has been reported to have antiapoptotic properties and to promote cell survival. Therefore, the hypothesis for the present study was that PKCα knockout ((-/-)) mice have impaired ocular surface-lacrimal gland signaling, rendering them susceptible to desiccating stress and impaired corneal epithelial wound healing. In this study, the lacrimal function unit (LFU) and the stressed wound-healing response were examined in PKCα(-/-) mice. In PKCα(+/+) control mice and PKCα(-/-) mice, tear production, osmolarity, and clearance rate were evaluated before and after experimental desiccating stress. Histology and immunofluorescent staining of PKC and epidermal growth factor were performed in tissues of the LFU. Cornified envelope (CE) precursor protein expression and cell proliferation were evaluated. The time course of healing and degree of neutrophil infiltration was evaluated after corneal epithelial wounding. Compared with the PKCα(+/+) mice, the PKCα(-/-) mice were noted to have significantly increased lacrimal gland weight, with enlarged, carbohydrate-rich, PAS-positive acinar cells; increased corneal epithelia permeability, with reduced CE expression; and larger conjunctival epithelial goblet cells. The PKCα(-/-) mice showed more rapid corneal epithelial healing, with less neutrophil infiltration and fewer proliferating cells than did the PKCα(+/+) mice. The PKCα(-/-) mice showed lower tear production, which appeared to be caused by impaired secretion by the LG and conjunctival goblet cells. Despite their altered tear dynamics, the PKCα(-/-) mice demonstrated more rapid corneal epithelial wound healing, perhaps due to decreased neutrophil infiltration.

  2. Oestradiol and progesterone differentially alter cytoskeletal protein expression and flame cell morphology in Taenia crassiceps.

    Science.gov (United States)

    Ambrosio, Javier R; Ostoa-Saloma, Pedro; Palacios-Arreola, M Isabel; Ruíz-Rosado, Azucena; Sánchez-Orellana, Pedro L; Reynoso-Ducoing, Olivia; Nava-Castro, Karen E; Martínez-Velázquez, Nancy; Escobedo, Galileo; Ibarra-Coronado, Elizabeth G; Valverde-Islas, Laura; Morales-Montor, Jorge

    2014-09-01

    We examined the effects of oestradiol (E2) and progesterone (P4) on cytoskeletal protein expression in the helminth Taenia crassiceps - specifically actin, tubulin and myosin. These proteins assemble into flame cells, which constitute the parasite excretory system. Total protein extracts were obtained from E2- and P4-treated T. crassiceps cysticerci and untreated controls, and analysed by one- and two-dimensional protein electrophoresis, flow cytometry, immunofluorescence and videomicroscopy. Exposure of T. crassiceps cysticerci to E2 and P4 induced differential protein expression patterns compared with untreated controls. Changes in actin, tubulin and myosin expression were confirmed by flow cytometry of parasite cells and immunofluorescence. In addition, parasite morphology was altered in response to E2 and P4 versus controls. Flame cells were primarily affected at the level of the ciliary tuft, in association with the changes in actin, tubulin and myosin. We conclude that oestradiol and progesterone act directly on T. crassiceps cysticerci, altering actin, tubulin and myosin expression and thus affecting the assembly and function of flame cells. Our results increase our understanding of several aspects of the molecular crosstalk between host and parasite, which might be useful in designing anthelmintic drugs that exclusively impair parasitic proteins which mediate cell signaling and pathogenic reproduction and establishment. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  3. Xyloglucan Deficiency Disrupts Microtubule Stability and Cellulose Biosynthesis in Arabidopsis, Altering Cell Growth and Morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen; Cosgrove, Daniel J.; Anderson, Charles T.

    2015-11-02

    Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis.

  4. Proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma alter tight junction structure and function in the rat parotid gland Par-C10 cell line.

    Science.gov (United States)

    Baker, Olga J; Camden, Jean M; Redman, Robert S; Jones, Jonathan E; Seye, Cheikh I; Erb, Laurie; Weisman, Gary A

    2008-11-01

    Sjögren's syndrome (SS) is an autoimmune disorder characterized by inflammation and dysfunction of salivary glands, resulting in impaired secretory function. The production of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) is elevated in exocrine glands of patients with SS, although little is known about the effects of these cytokines on salivary epithelial cell functions necessary for saliva secretion, including tight junction (TJ) integrity and the establishment of transepithelial ion gradients. The present study demonstrates that chronic exposure of polarized rat parotid gland (Par-C10) epithelial cell monolayers to TNF-alpha and IFN-gamma decreases transepithelial resistance (TER) and anion secretion, as measured by changes in short-circuit current (I(sc)) induced by carbachol, a muscarinic cholinergic receptor agonist, or UTP, a P2Y(2) nucleotide receptor agonist. In contrast, TNF-alpha and IFN-gamma had no effect on agonist-induced increases in the intracellular calcium concentration [Ca(2+)](i) in Par-C10 cells. Furthermore, treatment of Par-C10 cell monolayers with TNF-alpha and IFN-gamma increased paracellular permeability to normally impermeant proteins, altered cell and TJ morphology, and downregulated the expression of the TJ protein, claudin-1, but not other TJ proteins expressed in Par-C10 cells. The decreases in TER, agonist-induced transepithelial anion secretion, and claudin-1 expression caused by TNF-alpha, but not IFN-gamma, were reversible by incubation of Par-C10 cell monolayers with cytokine-free medium for 24 h, indicating that IFN-gamma causes irreversible inhibition of cellular activities associated with fluid secretion in salivary glands. Our results suggest that cytokine production is an important contributor to secretory dysfunction in SS by disrupting TJ integrity of salivary epithelium.

  5. Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects

    DEFF Research Database (Denmark)

    Gliemann, Lasse; Rytter, Nicolai; Lindskrog, Mads

    2017-01-01

    Endothelial mechanotransduction is important for vascular function but alterations and activation of vascular mechanosensory proteins have not been investigated in humans. In endothelial cell culture, simple sugars effectively impair mechanosensor proteins. To study mechanosensor- and vascular...... by ultrasound doppler. A muscle biopsy was obtained from the thigh muscle before and after acute passive leg movement, to asses the protein amount and phosphorylation status of mechanosensory proteins and NADPH oxidase. The sucrose intervention led to a reduced flow response to passive movement (by 17 ± 2...... %) and to 12 watts of active exercise (by 9 ± 1 %), indicating impaired vascular function. Reduced flow response to passive and active exercise was paralleled by a significant upregulation of Platelet endothelial cell adhesion molecule (PECAM-1), endothelial nitric oxide synthase, NADPH oxidase and the Rho...

  6. Diesel exhaust particle exposure in vitro alters monocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Nazia Chaudhuri

    Full Text Available Air pollution by diesel exhaust particles is associated with elevated mortality and increased hospital admissions in individuals with respiratory diseases such as asthma and chronic obstructive pulmonary disease. During active inflammation monocytes are recruited to the airways and can replace resident alveolar macrophages. We therefore investigated whether chronic fourteen day exposure to low concentrations of diesel exhaust particles can alter the phenotype and function of monocytes from healthy individuals and those with chronic obstructive pulmonary disease. Monocytes were purified from the blood of healthy individuals and people with a diagnosis of chronic obstructive pulmonary disease. Monocyte-derived macrophages were generated in the presence or absence of diesel exhaust particles and their phenotypes studied through investigation of their lifespan, cytokine generation in response to Toll like receptor agonists and heat killed bacteria, and expression of surface markers. Chronic fourteen day exposure of monocyte-derived macrophages to concentrations of diesel exhaust particles >10 µg/ml caused mitochondrial and lysosomal dysfunction, and a gradual loss of cells over time both in healthy and chronic obstructive pulmonary disease individuals. Chronic exposure to lower concentrations of diesel exhaust particles impaired CXCL8 cytokine responses to lipopolysaccharide and heat killed E. coli, and this phenotype was associated with a reduction in CD14 and CD11b expression. Chronic diesel exhaust particle exposure may therefore alter both numbers and function of lung macrophages differentiating from locally recruited monocytes in the lungs of healthy people and patients with chronic obstructive pulmonary disease.

  7. Fyn kinase genetic ablation causes structural abnormalities in mature retina and defective Müller cell function.

    Science.gov (United States)

    Chavez-Solano, Marbella; Ibarra-Sanchez, Alfredo; Treviño, Mario; Gonzalez-Espinosa, Claudia; Lamas, Monica

    2016-04-01

    Fyn kinase is widely expressed in neuronal and glial cells of the brain, where it exerts multiple functional roles that affect fundamental physiological processes. The aim of our study was to investigate the, so far unknown, functional role of Fyn in the retina. We report that Fyn is expressed, in vivo, in a subpopulation of Müller glia. We used a mouse model of Fyn genetic ablation and Müller-enriched primary cultures to demonstrate that Fyn deficiency induces morphological alterations in the mature retina, a reduction in the thickness of the outer and inner nuclear layers and alterations in postnatal Müller cell physiology. These include shortening of Müller cell processes, a decrease in cell proliferation, inactivation of the Akt signal transduction pathway, a reduced number of focal adhesions points and decreased adhesion of these cells to the ECM. As abnormalities in Müller cell physiology have been previously associated to a compromised retinal function we evaluated behavioral responses to visual stimulation. Our results associate Fyn deficiency with impaired visual optokinetic responses under scotopic and photopic light conditions. Our study reveals novel roles for Fyn kinase in retinal morphology and Müller cell physiology and suggests that Fyn is required for optimal visual processing. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Heat Shock Protein 47: A Novel Biomarker of Phenotypically Altered Collagen-Producing Cells

    International Nuclear Information System (INIS)

    Taguchi, Takashi; Nazneen, Arifa; Al-Shihri, Abdulmonem A.; Turkistani, Khadijah A.; Razzaque, Mohammed S.

    2011-01-01

    Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that helps the molecular maturation of various types of collagens. A close association between increased expression of HSP47 and the excessive accumulation of collagens is found in various human and experimental fibrotic diseases. Increased levels of HSP47 in fibrotic diseases are thought to assist in the increased assembly of procollagen, and thereby contribute to the excessive deposition of collagens in fibrotic areas. Currently, there is not a good universal histological marker to identify collagen-producing cells. Identifying phenotypically altered collagen-producing cells is essential for the development of cell-based therapies to reduce the progression of fibrotic diseases. Since HSP47 has a single substrate, which is collagen, the HSP47 cellular expression provides a novel universal biomarker to identify phenotypically altered collagen-producing cells during wound healing and fibrosis. In this brief article, we explained why HSP47 could be used as a universal marker for identifying phenotypically altered collagen-producing cells

  9. Long-term artificial sweetener acesulfame potassium treatment alters neurometabolic functions in C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Wei-na Cong

    Full Text Available With the prevalence of obesity, artificial, non-nutritive sweeteners have been widely used as dietary supplements that provide sweet taste without excessive caloric load. In order to better understand the overall actions of artificial sweeteners, especially when they are chronically used, we investigated the peripheral and central nervous system effects of protracted exposure to a widely used artificial sweetener, acesulfame K (ACK. We found that extended ACK exposure (40 weeks in normal C57BL/6J mice demonstrated a moderate and limited influence on metabolic homeostasis, including altering fasting insulin and leptin levels, pancreatic islet size and lipid levels, without affecting insulin sensitivity and bodyweight. Interestingly, impaired cognitive memory functions (evaluated by Morris Water Maze and Novel Objective Preference tests were found in ACK-treated C57BL/6J mice, while no differences in motor function and anxiety levels were detected. The generation of an ACK-induced neurological phenotype was associated with metabolic dysregulation (glycolysis inhibition and functional ATP depletion and neurosynaptic abnormalities (dysregulation of TrkB-mediated BDNF and Akt/Erk-mediated cell growth/survival pathway in hippocampal neurons. Our data suggest that chronic use of ACK could affect cognitive functions, potentially via altering neuro-metabolic functions in male C57BL/6J mice.

  10. ALTERED EXPRESSION OF SURFACE RECEPTORS AT EA.HY926 ENDOTHELIAL CELL LINE INDUCED WITH PLACENTAL SECRETORY FACTORS

    Directory of Open Access Journals (Sweden)

    O. I. Stepanova

    2012-01-01

    Full Text Available Abstract. Placental cell populations produce a great variety of angiogenic factors and cytokines than control angiogenesis in placenta. Functional regulation of endothelial cells proceeds via modulation of endothelial cell receptors for endogenous angiogenic and apoptotic signals. Endothelial phenotype alteration during normal pregnancy and in cases of preclampsia is not well understood. The goal of this investigation was to evaluate altered expression of angiogenic and cytokine receptors at EA.hy926 endothelial cells under the influence of placental tissue supernatants. Normal placental tissue supernatants from 1st and 3rd trimesters, and pre-eclamptic placental tissue supernatants (3rd trimester stimulated angiogenic and cytokine receptors expression by the cultured endothelial cells, as compared with their background expression. Tissue supernatants from placental samples of 3rd trimester caused a decreased expression of angiogenic and cytokine receptors by endothelial cells, thus reflecting maturation of placental vascular system at these terms. Supernatants from preeclamptic placental tissue induced an increase of CD119 expression, in comparison with normal placental supernatants from the 3rd trimester. This finding suggests that IFNγ may be a factor of endothelial activation in pre-eclampsia. The study was supported by grants ГК №02.740.11.0711, НШ-3594.2010.7., and МД-150.2011.7.

  11. Age-related alteration in the composition of immunocompetent blood cells in atomic bomb survivors

    International Nuclear Information System (INIS)

    Kusunoki, Yoichiro; Akiyama, Mitoshi; Kyoizumi, Seishi; Bloom, E.T.; Makinodan, Takashi; California Univ., Los Angeles

    1988-01-01

    1328 survivors of Hiroshima were studied for alterations in the number of blood lymphocytes belonging to T-cell subpopulations, CD19 antigen-positive B cells and Leu 7 and CD16 antigen-positive lymphocytes. With increasing age, significant decreasing trends in the numbers of some lymphocytes in T-cell subpopulations and of B-cells were seen. The number of blood lymphocytes positive for CD5 antigen was significantly lower in those exposed to radiation (> 1Gy) in the older age group (more than 30 years at the time of bombing) and a similar tendency for decreases in the numbers of CD4, CD8, and CD19 antigen-positive cells was observed, but differences were not significant. The results suggest aging of the T-cell related immune system is accelerated in the irradiated people of advanced age, explained by the age-related decrease in thymic function in those subjects. The number of Leu 7 or CD19 antigen-positive cells was found to be increased significantly in the older age group compared to the younger, although there was little dose dependence. (U.K.)

  12. Langerhans cell homeostasis and activation is altered in hyperplastic human papillomavirus type 16 E7 expressing epidermis.

    Directory of Open Access Journals (Sweden)

    Nor Malia Abd Warif

    Full Text Available It has previously been shown that expression of human papillomavirus type 16 (HPV E7 in epidermis causes hyperplasia and chronic inflammation, characteristics of pre-malignant lesions. Importantly, E7-expressing epidermis is strongly immune suppressed and is not rejected when transplanted onto immune competent mice. Professional antigen presenting cells are considered essential for initiation of the adaptive immune response that results in graft rejection. Langerhans cells (LC are the only antigen presenting cells located in normal epidermis and altered phenotype and function of these cells may contribute to the immune suppressive microenvironment. Here, we show that LC are atypically activated as a direct result of E7 expression in the epidermis, and independent of the presence of lymphocytes. The number of LC was significantly increased and the LC are functionally impaired, both in migration and in antigen uptake. However when the LC were extracted from K14E7 skin and matured in vitro they were functionally competent to present and cross-present antigen, and to activate T cells. The ability of the LC to present and cross-present antigen following maturation supports retention of full functional capacity when removed from the hyperplastic skin microenvironment. As such, opportunities are afforded for the development of therapies to restore normal LC function in hyperplastic skin.

  13. Cell proliferation alterations in Chlorella cells under stress conditions

    International Nuclear Information System (INIS)

    Rioboo, Carmen; O'Connor, Jose Enrique; Prado, Raquel; Herrero, Concepcion; Cid, Angeles

    2009-01-01

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  14. Cell proliferation alterations in Chlorella cells under stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rioboo, Carmen [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); O' Connor, Jose Enrique [Laboratorio de Citomica, Unidad Mixta de Investigacion CIPF-UVEG, Centro de Investigacion Principe Felipe, Avda. Autopista del Saler, 16, 46013 Valencia (Spain); Prado, Raquel; Herrero, Concepcion [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); Cid, Angeles, E-mail: cid@udc.es [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain)

    2009-09-14

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  15. Altered T cell memory and effector cell development in chronic lymphatic filarial infection that is independent of persistent parasite antigen.

    Directory of Open Access Journals (Sweden)

    Cathy Steel

    2011-04-01

    Full Text Available Chronic lymphatic filarial (LF infection is associated with suppression of parasite-specific T cell responses that persist even following elimination of infection. While several mechanisms have been implicated in mediating this T cell specific downregulation, a role for alterations in the homeostasis of T effector and memory cell populations has not been explored. Using multiparameter flow cytometry, we investigated the role of persistent filarial infection on the maintenance of T cell memory in patients from the filarial-endemic Cook Islands. Compared to filarial-uninfected endemic normals (EN, microfilaria (mf positive infected patients (Inf had a reduced CD4 central memory (T(CM compartment. In addition, Inf patients tended to have more effector memory cells (T(EM and fewer effector cells (T(EFF than did ENs giving significantly smaller T(EFF:T(EM ratios. These contracted T(CM and T(EFF populations were still evident in patients previously mf+ who had cleared their infection (CLInf. Moreover, the density of IL-7Rα, necessary for T memory cell maintenance (but decreased in T effector cells, was significantly higher on memory cells of Inf and CLInf patients, although there was no evidence for decreased IL-7 or increased soluble IL7-Rα, both possible mechanisms for signaling defects in memory cells. However, effector cells that were present in Inf and CLInf patients had lower percentages of HLA-DR suggesting impaired function. These changes in T cell populations appear to reflect chronicity of infection, as filarial-infected children, despite the presence of active infection, did not show alterations in the frequencies of these T cell phenotypes. These data indicate that filarial-infected patients have contracted T(CM compartments and a defect in effector cell development, defects that persist even following clearance of infection. The fact that these global changes in memory and effector cell compartments do not yet occur in infected children

  16. On the Action of General Anesthetics on Cellular Function: Barbiturate Alters the Exocytosis of Catecholamines in a Model Cell System.

    Science.gov (United States)

    Ye, Daixin; Ewing, Andrew

    2018-01-22

    General anesthetics are essential in many areas, however, the cellular mechanisms of anesthetic-induced amnesia and unconsciousness are incompletely understood. Exocytosis is the main mechanism of signal transduction and neuronal communication through the release of chemical transmitters from vesicles to the extracellular environment. Here, we use disk electrodes placed on top of PC12 cells to show that treatment with barbiturate induces fewer molecules released during exocytosis and changes the event dynamics perhaps by inducing a less stable fusion pore that is prone to close faster during partial exocytosis. Larger events are essentially abolished. However, use of intracellular vesicle impact electrochemical cytometry using a nano-tip electrode inserted into a cell shows that the distribution of vesicle transmitter content does not change after barbiturate treatment. This indicates that barbiturate selectively alters the pore size of larger events or perhaps differentially between types of vesicles. Alteration of exocytosis in this manner could be linked to the effects of general anesthetics on memory loss. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. N-Acetylglucosamine Functions in Cell Signaling

    Directory of Open Access Journals (Sweden)

    James B. Konopka

    2012-01-01

    Full Text Available The amino sugar N-acetylglucosamine (GlcNAc is well known for the important structural roles that it plays at the cell surface. It is a key component of bacterial cell wall peptidoglycan, fungal cell wall chitin, and the extracellular matrix of animal cells. Interestingly, recent studies have also identified new roles for GlcNAc in cell signaling. For example, GlcNAc stimulates the human fungal pathogen Candida albicans to undergo changes in morphogenesis and expression of virulence genes. Pathogenic E. coli responds to GlcNAc by altering the expression of fimbriae and CURLI fibers that promote biofilm formation and GlcNAc stimulates soil bacteria to undergo changes in morphogenesis and production of antibiotics. Studies with animal cells have revealed that GlcNAc influences cell signaling through the posttranslational modification of proteins by glycosylation. O-linked attachment of GlcNAc to Ser and Thr residues regulates a variety of intracellular proteins, including transcription factors such as NFκB, c-myc, and p53. In addition, the specificity of Notch family receptors for different ligands is altered by GlcNAc attachment to fucose residues in the extracellular domain. GlcNAc also impacts signal transduction by altering the degree of branching of N-linked glycans, which influences cell surface signaling proteins. These emerging roles of GlcNAc as an activator and mediator of cellular signaling in fungi, animals, and bacteria will be the focus of this paper.

  18. Altered expression of glycosaminoglycans in metastatic 13762NF rat mammary adenocarcinoma cells

    International Nuclear Information System (INIS)

    Steck, P.A.; Cheong, P.H.; Nakajima, M.; Yung, W.K.A.; Moser, R.P.; Nicolson, G.L.

    1987-01-01

    A difference in the expression and metabolism of [ 35 S]sulfated glycosaminoglycans between rat mammary tumor cells derived from a primary tumor and those from its metastatic lesions has been observed. Cells from the primary tumor possessed about equal quantities of chondroitin sulfate and heparan sulfate on their cell surfaces but released fourfold more chondroitin sulfate than heparan sulfate into their medium. In contrast, cells from distal metastatic lesions expressed approximately 5 times more heparan sulfate than chondroitin sulfate in both medium and cell surface fractions. This was observed to be the result of differential synthesis of the glycosaminoglycans and not of major structural alterations of the individual glycosaminoglycans. The degree of sulfation and size of heparan sulfate were similar for all cells examined. However, chondroitin sulfate, observed to be only chondroitin 4-sulfate, from the metastases-derived cells had a smaller average molecular weight on gel filtration chromatography and showed a decreased quantity of sulfated disaccharides upon degradation with chondroitin ABC lyase compared to the primary tumor derived cells. Major qualitative or quantitative alterations were not observed for hyaluronic acid among the various 13762NF cells. The metabolism of newly synthesized sulfated glycosaminoglycans was also different between cells from primary tumor and metastases. A pulse-chase kinetics study demonstrated that both heparan sulfate and chondroitin sulfate were degraded by the metastases-derived cells, whereas the primary tumor derived cells degraded only heparan sulfate and degraded it at a slower rate. These results suggested that altered glycosaminoglycan expression and metabolism may be associated with the metastatic process in 13762NF rat mammary tumor cells

  19. Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells

    International Nuclear Information System (INIS)

    Kyoizumi, Seishi; Akiyama, Mitoshi; Hirai, Yuko; Kusunoki; Yoichiro; Tanabe, Kazumi; Umeki, Shigeko; Nakamura, Nori; Yamakido, Michio; Hamamoto, Kazuko.

    1990-04-01

    The T-cell receptor CD3 (TCR/CD3) complex plays a central role in antigen recognition and activation of mature T cells, and therefore abnormalities in the expression of the complex should induce unresponsiveness of T cells to antigen stimulus. Using flow cytometry, we detected and enumerated variant cells with loss or alteration of surface TCR/CD3 expression among human mature CD4 + T cells. The presence of variant CD4 + T cells was demonstrated by isolating and cloning them from peripheral blood, and their abnormalities can be accounted for by alterations in TCR expression such as defects of protein expression and partial protein deletion. The variant frequency in peripheral blood increased with aging in normal donors and was highly elevated in patients with ataxia telangiectasia, an autosomal recessive inherited disease with defective DNA repair and variable T-cell immunodeficiency. These findings suggest that such alterations in TCR expression are induced by somatic mutagenesis of TCR genes and can be important factors related to age-dependent and genetic disease-associated T-cell dysfunction. (author)

  20. Thermo-responsive cell culture carrier: Effects on macrophage functionality and detachment efficiency.

    Science.gov (United States)

    Rennert, Knut; Nitschke, Mirko; Wallert, Maria; Keune, Natalie; Raasch, Martin; Lorkowski, Stefan; Mosig, Alexander S

    2017-01-01

    Harvesting cultivated macrophages for tissue engineering purposes by enzymatic digestion of cell adhesion molecules can potentially result in unintended activation, altered function, or behavior of these cells. Thermo-responsive polymer is a promising tool that allows for gentle macrophage detachment without artificial activation prior to subculture within engineered tissue constructs. We therefore characterized different species of thermo-responsive polymers for their suitability as cell substrate and to mediate gentle macrophage detachment by temperature shift. Primary human monocyte- and THP-1-derived macrophages were cultured on thermo-responsive polymers and characterized for phagocytosis and cytokine secretion in response to lipopolysaccharide stimulation. We found that both cell types differentially respond in dependence of culture and stimulation on thermo-responsive polymers. In contrast to THP-1 macrophages, primary monocyte-derived macrophages showed no signs of impaired viability, artificial activation, or altered functionality due to culture on thermo-responsive polymers compared to conventional cell culture. Our study demonstrates that along with commercially available UpCell carriers, two other thermo-responsive polymers based on poly(vinyl methyl ether) blends are attractive candidates for differentiation and gentle detachment of primary monocyte-derived macrophages. In summary, we observed similar functionality and viability of primary monocyte-derived macrophages cultured on thermo-responsive polymers compared to standard cell culture surfaces. While this first generation of custom-made thermo-responsive polymers does not yet outperform standard culture approaches, our results are very promising and provide the basis for exploiting the unique advantages offered by custom-made thermo-responsive polymers to further improve macrophage culture and recovery in the future, including the covalent binding of signaling molecules and the reduction of

  1. Altered functional connectivity of interoception in illness anxiety disorder.

    Science.gov (United States)

    Grossi, Dario; Longarzo, Mariachiara; Quarantelli, Mario; Salvatore, Elena; Cavaliere, Carlo; De Luca, Paolofabrizio; Trojano, Luigi; Aiello, Marco

    2017-01-01

    Interoception collects all information coming from the body and is sustained by several brain areas such as insula and cingulate cortex. Here, we used resting-state functional magnetic resonance imaging to investigate functional connectivity (FC) of networks implied in interoception in patients with Illness anxiety disorders (IADs). We observed significantly reduced FC between the left extrastriate body area (EBA) and the paracentral lobule compared to healthy controls. Moreover, the correlation analysis between behavioural questionnaires and ROI to ROI FC showed that higher levels of illness anxiety were related to hyper-connectivity between EBA and amygdala and hippocampus. Scores on a questionnaire for interoceptive awareness were significantly correlated with higher FC between right hippocampus and nucleus accumbens bilaterally, and with higher connectivity between left anterior cingulate cortex (ACC) and left orbitofrontal cortex (OFC). Last, patients showed increased interoceptive awareness, measured by Self-Awareness Questionnaire (SAQ), and reduced capability in recognizing emotions, indicating inverse correlation between interoception and emotional awareness. Taken together our results suggested that, in absence of structural and micro-structural changes, patients with IADs show functional alteration in the neural network involved in the self-body representation; such functional alteration might be the target of possible treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Ultrastructural and some functional changes in tumor cells treated with stabilized iron oxide nanoparticles.

    Science.gov (United States)

    Yurchenko, O V; Todor, I N; Khayetsky, I K; Tregubova, N A; Lukianova, N Yu; Chekhun, V F

    2010-12-01

    To study the ultrastructure and some functional indexes of tumor cells treated with stabilized iron nanoparticles in vitro. 3-[4,5dimethylthiazol-2-1]-2,5-diphenyltetrazolium bromide (MTT)-test, electron microscopy, polarography with applying of closed Clark's electrode. It was shown that cultivation of cells with stabilized Fe(3)O(4) leads to intracellular accumulation of ferromagnetic nanoparticles. The most active ferromagnetic uptake by cells has been observed after 24 and 48 h of incubation. The presence of ferromagnetic in cells led to altered mitochondrial structure that caused the decrease of oxygen uptake rate in the cells of all studied lines. Ferromagnetic released from the majority of cells via exocytosis or clasmacytosis after a certain period of time. The number of dead cells or cells with severe damage was moderate, so cytotoxic action of stabilized iron oxide nanoparticles was minimal toward the studied cell lines. the presence of ferromagnetic nanoparticles in culture medium led to alterations in mitochondria ultrastructural organization and decrease of oxygen uptake by mitochondria in sensitive and anticancer-drugs resistant cells.

  3. miR-155, identified as anti-metastatic by global miRNA profiling of a metastasis model, inhibits cancer cell extravasation and colonization in vivo and causes significant signaling alterations

    DEFF Research Database (Denmark)

    Gravgaard, Karina Hedelund; Terp, Mikkel G; Lund, Rikke R

    2015-01-01

    To gain insight into miRNA regulation in metastasis formation, we used a metastasis cell line model that allows investigation of extravasation and colonization of circulating cancer cells to lungs in mice. Using global miRNA profiling, 28 miRNAs were found to exhibit significantly altered...... proliferation or apoptosis in established lung tumors. To identify proteins regulated by miR-155 and thus delineate its function in our cell model, we compared the proteome of xenograft tumors derived from miR-155-overexpressing CL16 cells and CL16 control cells using mass spectrometry-based proteomics. >4......,000 proteins were identified, of which 92 were consistently differentially expressed. Network analysis revealed that the altered proteins were associated with cellular functions such as movement, growth and survival as well as cell-to-cell signaling and interaction. Downregulation of the three metastasis...

  4. Altered Expression of Wnt Signaling Pathway Components in Osteogenesis of Mesenchymal Stem Cells in Osteoarthritis Patients.

    Science.gov (United States)

    Tornero-Esteban, Pilar; Peralta-Sastre, Ascensión; Herranz, Eva; Rodríguez-Rodríguez, Luis; Mucientes, Arkaitz; Abásolo, Lydia; Marco, Fernando; Fernández-Gutiérrez, Benjamín; Lamas, José Ramón

    2015-01-01

    Osteoarthritis (OA) is characterized by altered homeostasis of joint cartilage and bone, whose functional properties rely on chondrocytes and osteoblasts, belonging to mesenchymal stem cells (MSCs). WNT signaling acts as a hub integrating and crosstalking with other signaling pathways leading to the regulation of MSC functions. The aim of this study was to evaluate the existence of a differential signaling between Healthy and OA-MSCs during osteogenesis. MSCs of seven OA patients and six healthy controls were isolated, characterised and expanded. During in vitro osteogenesis, cells were recovered at days 1, 10 and 21. RNA and protein content was obtained. Expression of WNT pathway genes was evaluated using RT-qPCR. Functional studies were also performed to study the MSC osteogenic commitment and functional and post-traslational status of β-catenin and several receptor tyrosine kinases. Several genes were downregulated in OA-MSCs during osteogenesis in vitro. These included soluble Wnts, inhibitors, receptors, co-receptors, several kinases and transcription factors. Basal levels of β-catenin were higher in OA-MSCs, but calcium deposition and expression of osteogenic genes was similar between Healthy and OA-MSCs. Interestingly an increased phosphorylation of p44/42 MAPK (ERK1/2) signaling node was present in OA-MSCs. Our results point to the existence in OA-MSCs of alterations in expression of Wnt pathway components during in vitro osteogenesis that are partially compensated by post-translational mechanisms modulating the function of other pathways. We also point the relevance of other signaling pathways in OA pathophysiology suggesting their role in the maintenance of joint homeostasis through modulation of MSC osteogenic potential.

  5. N-(3-oxododecanoyl)-l-homoserine lactone modulates mitochondrial function and suppresses proliferation in intestinal goblet cells.

    Science.gov (United States)

    Tao, Shiyu; Niu, Liqiong; Cai, Liuping; Geng, Yali; Hua, Canfeng; Ni, Yingdong; Zhao, Ruqian

    2018-05-15

    The quorum-sensing molecule N‑(3‑oxododecanoyl)‑l‑homoserine lactone (C12-HSL), produced by the Gram negative human pathogenic bacterium Pseudomonas aeruginosa, modulates mammalian cell behavior. Our previous findings suggested that C12-HSL rapidly decreases viability and induces apoptosis in LS174T goblet cells. In this study, the effects of 100 μM C12-HSL on mitochondrial function and cell proliferation in LS174T cells treated for 4 h were evaluated by real-time PCR, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The results showed that the activities of mitochondrial respiratory chain complexes IV and V were significantly increased (P cells after C12-HSL treatment, with elevated intracellular ATP generation (P cell cycle arrest upon C12-HSL treatment. Apoptosis and cell proliferation related genes showed markedly altered expression levels (P cells after C12-HSL treatment. Moreover, the paraoxonase 2 (PON2) inhibitor TQ416 (1 μM) remarkably reversed the above C12-HSL associated effects in LS174T cells. These findings indicated that C12-HSL alters mitochondrial energy production and function, and inhibits cell proliferation in LS174T cells, with PON2 involvement. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. TCDD alters medial epithelial cell differentiation during palatogenesis

    International Nuclear Information System (INIS)

    Abbott, B.D.; Birnbaum, L.S.

    1989-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widely distributed, persistent environmental contaminant that is teratogenic in mice, where it induces hydronephrosis and cleft palate. The incidence of clefting has been shown to be dose dependent after exposure on either gestation Day (GD) 10 or 12, although the embryo is more susceptible on GD 12. TCDD-exposed palatal shelves meet but do not fuse, and programmed cell death of the medial epithelial cells is inhibited. The mechanism of action through which TCDD alters the program of medial cell development has not been examined in earlier studies, and it is not known whether the mechanism is the same regardless of the dose or developmental stage of exposure. In this study, C57BL/6N mice, a strain sensitive to TCDD, were dosed orally on GD 10 or 12 with 0, 6, 12, 24, or 30 micrograms/kg body wt, in 10 ml corn oil/kg. Embryonic palatal shelves were examined on GD 14, 15, or 16. The degree of palatal closure, epithelial surface morphology, and cellular ultrastructure, the incorporation of [3H]TdR, the expression of EGF receptors, and the binding of 125I-EGF were assessed. After exposure on GD 10 or 12, TCDD altered the differentiation pathway of the medial epithelial cells. The palatal shelves were of normal size and overall morphology, but fusion of the medial epithelia of the opposing shelves did not occur. TCDD prevented programmed cell death of the medial peridermal cells. The expression of EGF receptors by medial cells continued through Day 16 and the receptors were able to bind ligand. The medial cells differentiated into a stratified, squamous, keratinizing epithelium. The shift in phenotype to an oral-like epithelium occurred after exposure on either GD 10 or 12. At the lower dose (6 micrograms/kg), fewer cleft palates were produced, but those shelves which did respond had a fully expressed shift in differentiation

  7. PGE2 suppresses intestinal T cell function in thermal injury: a cause of enhanced bacterial translocation.

    Science.gov (United States)

    Choudhry, M A; Fazal, N; Namak, S Y; Haque, F; Ravindranath, T; Sayeed, M M

    2001-09-01

    Increased gut bacterial translocation in burn and trauma patients has been demonstrated in a number of previous studies, however, the mechanism for such an increased gut bacterial translocation in injured patients remains poorly understood. Utilizing a rat model of burn injury, in the present study we examined the role of intestinal immune defense by analyzing the T cell functions. We investigated if intestinal T cells dysfunction contributes to bacterial translocation after burn injury. Also our study determined if burn-mediated alterations in intestinal T cell functions are related to enhanced release of PGE2. Finally, we examined whether or not burn-related alterations in intestinal T cell function are due to inappropriate activation of signaling molecule P59fyn, which is required for T cell activation and proliferation. The results presented here showed an increase in gut bacterial accumulation in mesenteric lymph nodes after thermal injury. This was accompanied by a decrease in the intestinal T cell proliferative responses. Furthermore, the treatments of burn-injured animals with PGE2 synthesis blocker (indomethacin or NS398) prevented both the decrease in intestinal T cell proliferation and enhanced bacterial translocation. Finally, our data suggested that the inhibition of intestinal T cell proliferation could result via PGE2-mediated down-regulation of the T cell activation-signaling molecule P59fyn. These findings support a role of T cell-mediated immune defense against bacterial translocation in burn injury.

  8. lck-Driven Cre Expression Alters T Cell Development in the Thymus and the Frequencies and Functions of Peripheral T Cell Subsets.

    Science.gov (United States)

    Carow, Berit; Gao, Yu; Coquet, Jonathan; Reilly, Marie; Rottenberg, Martin E

    2016-09-15

    Conditional gene targeting using the bacteriophage-derived Cre recombinase is widely applied for functional gene studies in mice. Mice transgenic for Cre under the control of the lck gene promoter are used to study the role of loxP-targeted genes in T cell development and function. In this article, we show a striking 65% reduction in cellularity, preferential development of γδ versus αβ T cells, and increased expression of IL-7R in the thymus of mice expressing Cre under the proximal lck promoter (lck-cre(+) mice). The transition from CD4/CD8 double-negative to double-positive cells was blocked, and lck-cre(+) double-positive cells were more prone to apoptosis and showed higher levels of Cre expression. Importantly, numbers of naive T cells were reduced in spleens and lymph nodes of lck-cre(+) mice. In contrast, frequencies of γδ T cells, CD44(+)CD62L(-) effector T cells, and Foxp3(+) regulatory T cells were elevated, as was the frequency of IFN-γ-secreting CD4(+) and CD8(+) T cells. A literature survey of 332 articles that used lck-cre(+) mice for deletion of floxed genes indicated that results are statistically influenced by the control used (lck-cre(+) or lck-cre(-)), more frequently resembling the lck-cre(+) phenotype described in this article if lck-cre(-) controls were used. Altogether, care should be taken when interpreting published results and to properly control targeted gene deletions using the lck-cre(+) strain. Copyright © 2016 by The American Association of Immunologists, Inc.

  9. Cigarette smoke alters the invariant natural killer T cell function and may inhibit anti-tumor responses.

    LENUS (Irish Health Repository)

    Hogan, Andrew E

    2011-09-01

    Invariant natural killer T (iNKT) cells are a minor subset of human T cells which express the invariant T cell receptor Vα24 Jα18 and recognize glycolipids presented on CD1d. Invariant NKT cells are important immune regulators and can initiate anti-tumor responses through early potent cytokine production. Studies show that iNKT cells are defective in certain cancers. Cigarette smoke contains many carcinogens and is implicated directly and indirectly in many cancers. We investigated the effects of cigarette smoke on the circulating iNKT cell number and function. We found that the iNKT cell frequency is significantly reduced in cigarette smoking subjects. Invariant NKT cells exposed to cigarette smoke extract (CSE) showed significant defects in cytokine production and the ability to kill target cells. CSE inhibits the upregulation of CD107 but not CD69 or CD56 on iNKT cells. These findings suggest that CSE has a specific effect on iNKT cell anti-tumor responses, which may contribute to the role of smoking in the development of cancer.

  10. Altered nutrition during hot droughts will impair forest functions in the future

    Science.gov (United States)

    Grossiord, C.; Gessler, A.; Reed, S.; Dickman, L. T.; Collins, A.; Schönbeck, L.; Sevanto, S.; Vilagrosa, A.; McDowell, N. G.

    2017-12-01

    Rising greenhouse gas emissions will increase atmospheric temperature globally and alter hydrological cycles resulting in more extreme and recurrent droughts in the coming century. Nutrition is a key component affecting the vulnerability of forests to extreme climate. Models typically assume that global warming will enhance nitrogen cycling in terrestrial ecosystems and lead to improved plant functions. Drought on the other hand is expected to weaken the same processes, leading to a clear conflict and inability to predict how nutrition and plant functions will be impacted by a simultaneously warming and drying climate. We used a unique setup consisting of long-term manipulation of climate on mature trees to examine how individual vs. combined warming and drought would alter soil N cycling and tree functions. The site consists of the longest record of tree responses to experimental warming and precipitation reduction in natural conditions.Changes in soil nitrogen cycling (e.g. microbial activity, nitrification and ammonification rates, N concentration) occurred in response to the treatments. In addition, temperature rise and precipitation reduction altered the ability of trees to take up nitrogen and modified nitrogen allocation patterns between aboveground and belowground compartments. Although no additive effect of warming and drying were found for the two studied species, contrasting responses to warming and droughts were observed between the two functional types. Overall, our results show that higher temperature and reduced precipitation will alter the nutrition of forest ecosystems in the future with potentially large consequences for forest functions, structure and biodiversity.

  11. Overexpression of microRNA miR-30a or miR-191 in A549 lung cancer or BEAS-2B normal lung cell lines does not alter phenotype.

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Patnaik

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are small, noncoding RNAs (ribonucleic acids that regulate translation. Several miRNAs have been shown to be altered in whole cancer tissue compared to normal tissue when quantified by microarray. Based on previous such evidence of differential expression, we chose to study the functional significance of miRNAs miR-30a and -191 alterations in human lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: The functional significance of miRNAs miR-30a and -191 was studied by creating stable transfectants of the lung adenocarcinoma cell line A549 and the immortalized bronchial epithelial cell line BEAS-2B with modest overexpression of miR-30a or -191 using a lentiviral system. When compared to the corresponding controls, both cell lines overexpressing miR-30a or -191 do not demonstrate any significant changes in cell cycle distribution, cell proliferation, adherent colony formation, soft agar colony formation, xenograft formation in a subcutaneous SCID mouse model, and drug sensitivity to doxorubicin and cisplatin. There is a modest increase in cell migration in cell lines overexpressing miR-30a compared to their controls. CONCLUSIONS/SIGNIFICANCE: Overexpression of miR-30a or -191 does not lead to an alteration in cell cycle, proliferation, xenograft formation, and chemosensitivity of A549 and BEAS-2B cell lines. Using microarray data from whole tumors to select specific miRNAs for functional study may be a suboptimal strategy.

  12. Alteration of human umbilical vein endothelial cell gene expression in different biomechanical environments.

    Science.gov (United States)

    Shoajei, Shahrokh; Tafazzoli-Shahdpour, Mohammad; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin

    2014-05-01

    Biomechanical environments affect the function of cells. In this study we analysed the effects of five mechanical stimuli on the gene expression of human umbilical vein endothelial cells (HUVECs) in mRNA level using real-time PCR. The following loading regimes were applied on HUVECs for 48 h: intermittent (0-5 dyn/cm(2) , 1 Hz) and uniform (5 dyn/cm(2) ) shear stresses concomitant by 10% intermittent equiaxial stretch (1 Hz), uniform shear stress alone (5 dyn/cm(2) ), and intermittent uniaxial and equiaxial stretches (10%, 1 Hz). A new bioreactor was made to apply uniform/cyclic shear and tensile loadings. Three endothelial suggestive specific genes (vascular endothelial growth factor receptor-2 (VEGFR-2, also known as FLK-1), von Willebrand Factor (vWF) and vascular endothelial-cadherin (VE-cadherin)), and two smooth muscle genes (α-smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain (SMMHC)) were chosen for assessment of alteration in gene expression of endothelial cells and transdifferentiation toward smooth cells following load applications. Shear stress alone enhanced the endothelial gene expression significantly, while stretching alone was identified as a transdifferentiating factor. Cyclic equiaxial stretch contributed less to elevation of smooth muscle genes compared to uniaxial stretch. Cyclic shear stress in comparison to uniform shear stress concurrent with cyclic stretch was more influential on promotion of endothelial genes expression. Influence of different mechanical stimuli on gene expression may open a wider horizon to regulate functions of cell for tissue engineering purposes. © 2013 International Federation for Cell Biology.

  13. Alterations in adaptive immunity persist during long-duration spaceflight

    Science.gov (United States)

    Crucian, Brian; Stowe, Raymond P; Mehta, Satish; Quiriarte, Heather; Pierson, Duane; Sams, Clarence

    2015-01-01

    Background: It is currently unknown whether immune system alterations persist during long-duration spaceflight. In this study various adaptive immune parameters were assessed in astronauts at three intervals during 6-month spaceflight on board the International Space Station (ISS). AIMS: To assess phenotypic and functional immune system alterations in astronauts participating in 6-month orbital spaceflight. Methods: Blood was collected before, during, and after flight from 23 astronauts participating in 6-month ISS expeditions. In-flight samples were returned to Earth within 48 h of collection for immediate analysis. Assays included peripheral leukocyte distribution, T-cell function, virus-specific immunity, and mitogen-stimulated cytokine production profiles. Results: Redistribution of leukocyte subsets occurred during flight, including an elevated white blood cell (WBC) count and alterations in CD8+ T-cell maturation. A reduction in general T-cell function (both CD4+ and CD8+) persisted for the duration of the 6-month spaceflights, with differential responses between mitogens suggesting an activation threshold shift. The percentage of CD4+ T cells capable of producing IL-2 was depressed after landing. Significant reductions in mitogen-stimulated production of IFNγ, IL-10, IL-5, TNFα, and IL-6 persisted during spaceflight. Following lipopolysaccharide (LPS) stimulation, production of IL-10 was reduced, whereas IL-8 production was increased during flight. Conclusions: The data indicated that immune alterations persist during long-duration spaceflight. This phenomenon, in the absence of appropriate countermeasures, has the potential to increase specific clinical risks for crewmembers during exploration-class deep space missions. PMID:28725716

  14. Ureaplasma parvum infection alters filamin a dynamics in host cells

    Directory of Open Access Journals (Sweden)

    Brown Mary B

    2011-04-01

    Full Text Available Abstract Background Ureaplasmas are among the most common bacteria isolated from the human urogenital tract. Ureaplasmas can produce asymptomatic infections or disease characterized by an exaggerated inflammatory response. Most investigations have focused on elucidating the pathogenic potential of Ureaplasma species, but little attention has been paid to understanding the mechanisms by which these organisms are capable of establishing asymptomatic infection. Methods We employed differential proteome profiling of bladder tissues from rats experimentally infected with U. parvum in order to identify host cell processes perturbed by colonization with the microbe. Tissues were grouped into four categories: sham inoculated controls, animals that spontaneously cleared infection, asymptomatic urinary tract infection (UTI, and complicated UTI. One protein that was perturbed by infection (filamin A was used to further elucidate the mechanism of U. parvum-induced disruption in human benign prostate cells (BPH-1. BPH-1 cells were evaluated by confocal microscopy, immunoblotting and ELISA. Results Bladder tissue from animals actively colonized with U. parvum displayed significant alterations in actin binding proteins (profilin 1, vinculin, α actinin, and filamin A that regulate both actin polymerization and cell cytoskeletal function pertaining to focal adhesion formation and signal transduction (Fisher's exact test, P U. parvum perturbed the regulation of filamin A. Specifically, infected BPH-1 cells exhibited a significant increase in filamin A phosphorylated at serine2152 (P ≤ 0.01, which correlated with impaired proteolysis of the protein and its normal intracellular distribution. Conclusion Filamin A dynamics were perturbed in both models of infection. Phosphorylation of filamin A occurs in response to various cell signaling cascades that regulate cell motility, differentiation, apoptosis and inflammation. Thus, this phenomenon may be a useful

  15. Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target

    Directory of Open Access Journals (Sweden)

    Yutaka eKoyama

    2015-07-01

    Full Text Available Astrocytes play an essential role in supporting brain functions in physiological and pathological states. Modulation of their pathophysiological responses have beneficial actions on nerve tissue injured by brain insults and neurodegenerative diseases, therefore astrocytes are recognized as promising targets for neuroprotective drugs. Recent investigations have identified several astrocytic mechanisms for modulating synaptic transmission and neural plasticity. These include altered expression of transporters for neurotransmitters, release of gliotransmitters and neurotrophic factors, and intercellular communication through gap junctions. Investigation of patients with mental disorders shows morphological and functional alterations in astrocytes. According to these observations, manipulation of astrocytic function by gene mutation and pharmacological tools reproduce mental disorder-like behavior in experimental animals. Some drugs clinically used for mental disorders affect astrocyte function. As experimental evidence shows their role in the pathogenesis of mental disorders, astrocytes have gained much attention as drug targets for mental disorders. In this article, I review functional alterations of astrocytes in several mental disorders including schizophrenia, mood disorder, drug dependence, and neurodevelopmental disorders. The pharmacological significance of astrocytes in mental disorders is also discussed.

  16. Downregulation of CD147 expression alters cytoskeleton architecture and inhibits gelatinase production and SAPK pathway in human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Weng Yuan-Yuan

    2008-10-01

    Full Text Available Abstract Background CD147 plays a critical role in the invasive and metastatic activity of hepatocellular carcinoma (HCC cells by stimulating the surrounding fibroblasts to express matrix metalloproteinases (MMPs. Tumor cells adhesion to extracellular matrix (ECM proteins is the first step to the tumor metastasis. MMPs degrade the ECM to promote tumor metastasis. The aim of this study is to investigate the effects of small interfering RNA (siRNA against CD147 (si-CD147 on hepatocellular carcinoma cells' (SMMC-7721 architecture and functions. Methods Flow cytometry and western blot assays were employed to detect the transfection efficiency of si-CD147. Confocal microscopy was used to determine the effects of si-CD147 on SMMC-7721 cells' cytoskeleton. Invasion assay, gelatin zymography and cell adhesion assay were employed to investigate the effects of si-CD147 on SMMC-7721 cells' invasion, gelatinase production and cell adhesive abilities. Western blot assay was utilized to detect the effects of si-CD147 on focal adhesion kinase (FAK, vinculiln and mitogen-activated protein kinase (MAPK expression in SMMC-7721 cells. Results Downregulation of CD147 gene induced the alteration of SMMC-7721 cell cytoskeleton including actin, microtubule and vimentin filaments, and inhibited gelatinase production and expression, cells invasion, FAK and vinculin expression. si-CD147 also blocked SMMC-7721 cells adhesion to collagen IV and phosphorylation level of SAPK/JNKs. SAPK/JNKs inhibitor SP600125 inhibited gelatinase production and expression. Conclusion CD147 is required for normal tumor cell architecture and cell invasion. Downregulation of CD147 affects HCC cell structure and function. Moreover, the alteration of cell behavior may be related to SAPK/JNK Pathway. siRNA against CD147 may be a possible new approach for HCC gene therapy.

  17. Prior mucosal exposure to heterologous cells alters the pathogenesis of cell-associated mucosal feline immunodeficiency virus challenge

    Directory of Open Access Journals (Sweden)

    Leavell Sarah

    2010-05-01

    Full Text Available Abstract Background Several lines of research suggest that exposure to cellular material can alter the susceptibility to infection by HIV-1. Because sexual contact often includes exposure to cellular material, we hypothesized that repeated mucosal exposure to heterologous cells would induce an immune response that would alter the susceptibility to mucosal infection. Using the feline immunodeficiency virus (FIV model of HIV-1 mucosal transmission, the cervicovaginal mucosa was exposed once weekly for 12 weeks to 5,000 heterologous cells or media (control and then cats were vaginally challenged with cell-associated or cell-free FIV. Results Exposure to heterologous cells decreased the percentage of lymphocytes in the mucosal and systemic lymph nodes (LN expressing L-selectin as well as the percentage of CD4+ CD25+ T cells. These shifts were associated with enhanced ex-vivo proliferative responses to heterologous cells. Following mucosal challenge with cell-associated, but not cell-free, FIV, proviral burden was reduced by 64% in cats previously exposed to heterologous cells as compared to media exposed controls. Conclusions The pathogenesis and/or the threshold for mucosal infection by infected cells (but not cell-free virus can be modulated by mucosal exposure to uninfected heterologous cells.

  18. Dynamic gene expression response to altered gravity in human T cells.

    Science.gov (United States)

    Thiel, Cora S; Hauschild, Swantje; Huge, Andreas; Tauber, Svantje; Lauber, Beatrice A; Polzer, Jennifer; Paulsen, Katrin; Lier, Hartwin; Engelmann, Frank; Schmitz, Burkhard; Schütte, Andreas; Layer, Liliana E; Ullrich, Oliver

    2017-07-12

    We investigated the dynamics of immediate and initial gene expression response to different gravitational environments in human Jurkat T lymphocytic cells and compared expression profiles to identify potential gravity-regulated genes and adaptation processes. We used the Affymetrix GeneChip® Human Transcriptome Array 2.0 containing 44,699 protein coding genes and 22,829 non-protein coding genes and performed the experiments during a parabolic flight and a suborbital ballistic rocket mission to cross-validate gravity-regulated gene expression through independent research platforms and different sets of control experiments to exclude other factors than alteration of gravity. We found that gene expression in human T cells rapidly responded to altered gravity in the time frame of 20 s and 5 min. The initial response to microgravity involved mostly regulatory RNAs. We identified three gravity-regulated genes which could be cross-validated in both completely independent experiment missions: ATP6V1A/D, a vacuolar H + -ATPase (V-ATPase) responsible for acidification during bone resorption, IGHD3-3/IGHD3-10, diversity genes of the immunoglobulin heavy-chain locus participating in V(D)J recombination, and LINC00837, a long intergenic non-protein coding RNA. Due to the extensive and rapid alteration of gene expression associated with regulatory RNAs, we conclude that human cells are equipped with a robust and efficient adaptation potential when challenged with altered gravitational environments.

  19. Exercise alters resting state functional connectivity of motor circuits in Parkinsonian rats

    Science.gov (United States)

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I.; Holschneider, Daniel P.

    2014-01-01

    Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson’s disease subjects, including disconnection of the dorsolateral striatum. Exercise in lesioned rats resulted in: (a) normalization of many of the lesion-induced alterations in rsFC, including reintegration of the dorsolateral striatum into the motor network; (b) emergence of the ventrolateral striatum as a new broadly connected network hub; (c) increased rsFC among the motor cortex, motor thalamus, basal ganglia, and cerebellum. Our results showed for the first time that long-term exercise training partially reversed lesion-induced alterations in rsFC of the motor circuits, and in addition enhanced functional connectivity in specific motor pathways in the Parkinsonian rats, which could underlie recovery in motor functions observed in these rats. PMID:25219465

  20. Long acting β2-agonist and corticosteroid restore airway glandular cell function altered by bacterial supernatant

    Directory of Open Access Journals (Sweden)

    Nawrocki-Raby Béatrice

    2010-01-01

    Full Text Available Abstract Background Staphylococcus aureus releases virulence factors (VF that may impair the innate protective functions of airway cells. The aim of this study was to determine whether a long-acting β2 adrenergic receptor agonist (salmeterol hydroxynaphthoate, Sal combined with a corticosteroid (fluticasone propionate, FP was able to regulate ion content and cytokine expression by airway glandular cells after exposure to S. aureus supernatant. Methods A human airway glandular cell line was incubated with S. aureus supernatant for 1 h and then treated with the combination Sal/FP for 4 h. The expression of actin and CFTR proteins was analyzed by immunofluorescence. Videomicroscopy was used to evaluate chloride secretion and X-ray microanalysis to measure the intracellular ion and water content. The pro-inflammatory cytokine expression was assessed by RT-PCR and ELISA. Results When the cells were incubated with S. aureus supernatant and then with Sal/FP, the cellular localisation of CFTR was apical compared to the cytoplasmic localisation in cells incubated with S. aureus supernatant alone. The incubation of airway epithelial cells with S. aureus supernatant reduced by 66% the chloride efflux that was fully restored by Sal/FP treatment. We also observed that Sal/FP treatment induced the restoration of ion (Cl and S and water content within the intracellular secretory granules of airway glandular cells and reduced the bacterial supernatant-dependent increase of pro-inflammatory cytokines IL8 and TNFα. Conclusions Our results demonstrate that treatment with the combination of a corticosteroid and a long-acting β2 adrenergic receptor agonist after bacterial infection restores the airway glandular cell function. Abnormal mucus induced by defective ion transport during pulmonary infection could benefit from treatment with a combination of β2 adrenergic receptor agonist and glucocorticoid.

  1. Maternal Inflammation Contributes to Brain Overgrowth and Autism-Associated Behaviors through Altered Redox Signaling in Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Janel E. Le Belle

    2014-11-01

    Full Text Available A period of mild brain overgrowth with an unknown etiology has been identified as one of the most common phenotypes in autism. Here, we test the hypothesis that maternal inflammation during critical periods of embryonic development can cause brain overgrowth and autism-associated behaviors as a result of altered neural stem cell function. Pregnant mice treated with low-dose lipopolysaccharide at embryonic day 9 had offspring with brain overgrowth, with a more pronounced effect in PTEN heterozygotes. Exposure to maternal inflammation also enhanced NADPH oxidase (NOX-PI3K pathway signaling, stimulated the hyperproliferation of neural stem and progenitor cells, increased forebrain microglia, and produced abnormal autism-associated behaviors in affected pups. Our evidence supports the idea that a prenatal neuroinflammatory dysregulation in neural stem cell redox signaling can act in concert with underlying genetic susceptibilities to affect cellular responses to environmentally altered cellular levels of reactive oxygen species.

  2. Activation of p44/42 in Human Natural Killer Cells Decreases Cell-surface Protein Expression: Relationship to Tributyltin-induced alterations of protein expression

    Science.gov (United States)

    Dudimah, Fred D.; Abraha, Abraham; Wang, Xiaofei; Whalen, Margaret M.

    2010-01-01

    Tributyltin (TBT) activates the mitogen activated protein kinase (MAPK), p44/42 in human natural killer (NK) cells. TBT also reduces NK cytotoxic function and decreases the expression of several NK-cell proteins. To understand the role that p44/42 activation plays in TBT-induced loss of NK cell function, we have investigated how selective activation of p44/42 by phorbol 12-myristate 13-acetate (PMA) affects NK cells. Previously we showed that PMA caused losses of lytic function similar to those seen with TBT exposures. Here we examined activation of p44/42 in the regulation of NK-cell protein expression and how this regulation may explain the protein expression changes seen with TBT exposures. NK cells exposed to PMA were examined for levels of cell-surface proteins, granzyme mRNA, and perforin mRNA expression. The expression of CD11a, CD16, CD18, and CD56 were reduced, perforin mRNA levels were unchanged and granzyme mRNA levels were increased. To verify that activation of p44/42 was responsible for the alterations seen in CD11a, CD16, CD18, and CD56 with PMA, NK cells were treated with the p44/42 pathway inhibitor (PD98059) prior to PMA exposures. In the presence of PD98059, PMA caused no decreases in the expression of the cell-surface proteins. Results of these studies indicate that the activation of p44/42 may lead to the loss of NK cell cytotoxic function by decreasing the expression of CD11a, CD16, CD18, and CD56. Further, activation of p44/42 appears to be at least in part responsible for the TBT-induced decreases in expression of CD16, CD18, and CD56. PMID:20883105

  3. Alteration in neonatal nutrition causes perturbations in hypothalamic neural circuits controlling reproductive function.

    Science.gov (United States)

    Caron, Emilie; Ciofi, Philippe; Prevot, Vincent; Bouret, Sebastien G

    2012-08-15

    It is increasingly accepted that alterations of the early life environment may have lasting impacts on physiological functions. In particular, epidemiological and animal studies have indicated that changes in growth and nutrition during childhood and adolescence can impair reproductive function. However, the precise biological mechanisms that underlie these programming effects of neonatal nutrition on reproduction are still poorly understood. Here, we used a mouse model of divergent litter size to investigate the effects of early postnatal overnutrition and undernutrition on the maturation of hypothalamic circuits involved in reproductive function. Neonatally undernourished females display attenuated postnatal growth associated with delayed puberty and defective development of axonal projections from the arcuate nucleus to the preoptic region. These alterations persist into adulthood and specifically affect the organization of neural projections containing kisspeptin, a key neuropeptide involved in pubertal activation and fertility. Neonatal overfeeding also perturbs the development of neural projections from the arcuate nucleus to the preoptic region, but it does not result in alterations in kisspeptin projections. These studies indicate that alterations in the early nutritional environment cause lasting and deleterious effects on the organization of neural circuits involved in the control of reproduction, and that these changes are associated with lifelong functional perturbations.

  4. Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation.

    Science.gov (United States)

    Hegazy, Ahmed N; West, Nathaniel R; Stubbington, Michael J T; Wendt, Emily; Suijker, Kim I M; Datsi, Angeliki; This, Sebastien; Danne, Camille; Campion, Suzanne; Duncan, Sylvia H; Owens, Benjamin M J; Uhlig, Holm H; McMichael, Andrew; Bergthaler, Andreas; Teichmann, Sarah A; Keshav, Satish; Powrie, Fiona

    2017-11-01

    Interactions between commensal microbes and the immune system are tightly regulated and maintain intestinal homeostasis, but little is known about these interactions in humans. We investigated responses of human CD4 + T cells to the intestinal microbiota. We measured the abundance of T cells in circulation and intestinal tissues that respond to intestinal microbes and determined their clonal diversity. We also assessed their functional phenotypes and effects on intestinal resident cell populations, and studied alterations in microbe-reactive T cells in patients with chronic intestinal inflammation. We collected samples of peripheral blood mononuclear cells and intestinal tissues from healthy individuals (controls, n = 13-30) and patients with inflammatory bowel diseases (n = 119; 59 with ulcerative colitis and 60 with Crohn's disease). We used 2 independent assays (CD154 detection and carboxy-fluorescein succinimidyl ester dilution assays) and 9 intestinal bacterial species (Escherichia coli, Lactobacillus acidophilus, Bifidobacterium animalis subsp lactis, Faecalibacterium prausnitzii, Bacteroides vulgatus, Roseburia intestinalis, Ruminococcus obeum, Salmonella typhimurium, and Clostridium difficile) to quantify, expand, and characterize microbe-reactive CD4 + T cells. We sequenced T-cell receptor Vβ genes in expanded microbe-reactive T-cell lines to determine their clonal diversity. We examined the effects of microbe-reactive CD4 + T cells on intestinal stromal and epithelial cell lines. Cytokines, chemokines, and gene expression patterns were measured by flow cytometry and quantitative polymerase chain reaction. Circulating and gut-resident CD4 + T cells from controls responded to bacteria at frequencies of 40-4000 per million for each bacterial species tested. Microbiota-reactive CD4 + T cells were mainly of a memory phenotype, present in peripheral blood mononuclear cells and intestinal tissue, and had a diverse T-cell receptor Vβ repertoire. These

  5. Ethane dimethanesulfonate (EDS) perturbs epididymal epithelial cell function in vitro

    International Nuclear Information System (INIS)

    Klinefelter, G.

    1990-01-01

    The formation of sperm granulomas in the epididymis following exposure to EDS, a Leydig cell toxicant, was reported by Cooper and Jackson in 1970. Recent work suggests that EDS may effect the epididymis directly. An in vitro system was developed to determine the nature of any direct effect. The caput epididymis from adult rats was dissected free of connective tissue and small pieces of the tissue were enzymatically digested until plaques of epididymal epithelial cells were obtained. Plaques were cultured on an extracellular matrix gelled on top of a semipermeable filter creating dual-compartment environments. The epithelial cells maintained typical morphology and protein secretion in this culture system for several days. Beginning on day 3, EDS (1 mM) was added to the basal compartment, with or without 35 S-methionine. After 24 hours, 35 S-labelled culture medium was taken from the apical compartment and analyzed by SDS-PAGE and fluorography. EDS caused decreased secretion of several proteins, including a 39 Kd molecule. Interestingly, a 39 Kd protein was also shown to disappear from sperm taken from the caput epididymidis following in vivo exposure to EDS. Unlabelled cultures were fixed and processed for light microscopy. No alterations in morphological integrity were observed. Thus, epididymal epithelial cell function is directly altered by EDS exposure

  6. Immune Checkpoint Function of CD85j in CD8 T Cell Differentiation and Aging

    Directory of Open Access Journals (Sweden)

    Claire E. Gustafson

    2017-06-01

    Full Text Available Aging is associated with an increased susceptibility to infection and a failure to control latent viruses thought to be driven, at least in part, by alterations in CD8 T cell function. The aging T cell repertoire is characterized by an accumulation of effector CD8 T cells, many of which express the negative regulatory receptor CD85j. To define the biological significance of CD85j expression on CD8 T cells and to address the question whether presence of CD85j in older individuals is beneficial or detrimental for immune function, we examined the specific attributes of CD8 T cells expressing CD85j as well as the functional role of CD85j in antigen-specific CD8 T cell responses during immune aging. Here, we show that CD85j is mainly expressed by terminally differentiated effector (TEMRAs CD8 T cells, which increase with age, in cytomegalovirus (CMV infection and in males. CD85j+ CMV-specific cells demonstrate clonal expansion. However, TCR diversity is similar between CD85j+ and CD85j− compartments, suggesting that CD85j does not directly impact the repertoire of antigen-specific cells. Further phenotypic and functional analyses revealed that CD85j identifies a specific subset of CMV-responsive CD8 T cells that coexpress a marker of senescence (CD57 but retain polyfunctional cytokine production and expression of cytotoxic mediators. Blocking CD85j binding enhanced proliferation of CMV-specific CD8 T cells upon antigen stimulation but did not alter polyfunctional cytokine production. Taken together, these data demonstrate that CD85j characterizes a population of “senescent,” but not exhausted antigen-specific effector CD8 T cells and indicates that CD85j is an important checkpoint regulator controlling expansion of virus-specific T cells during aging. Inhibition of CD85j activity may be a mechanism to promote stronger CD8 T cell effector responses during immune aging.

  7. Stratification of clear cell renal cell carcinoma (ccRCC) genomes by gene-directed copy number alteration (CNA) analysis.

    Science.gov (United States)

    Thiesen, H-J; Steinbeck, F; Maruschke, M; Koczan, D; Ziems, B; Hakenberg, O W

    2017-01-01

    Tumorigenic processes are understood to be driven by epi-/genetic and genomic alterations from single point mutations to chromosomal alterations such as insertions and deletions of nucleotides up to gains and losses of large chromosomal fragments including products of chromosomal rearrangements e.g. fusion genes and proteins. Overall comparisons of copy number alterations (CNAs) presented in 48 clear cell renal cell carcinoma (ccRCC) genomes resulted in ratios of gene losses versus gene gains between 26 ccRCC Fuhrman malignancy grades G1 (ratio 1.25) and 20 G3 (ratio 0.58). Gene losses and gains of 15762 CNA genes were mapped to 795 chromosomal cytoband loci including 280 KEGG pathways. CNAs were classified according to their contribution to Fuhrman tumour gradings G1 and G3. Gene gains and losses turned out to be highly structured processes in ccRCC genomes enabling the subclassification and stratification of ccRCC tumours in a genome-wide manner. CNAs of ccRCC seem to start with common tumour related gene losses flanked by CNAs specifying Fuhrman grade G1 losses and CNA gains favouring grade G3 tumours. The appearance of recurrent CNA signatures implies the presence of causal mechanisms most likely implicated in the pathogenesis and disease-outcome of ccRCC tumours distinguishing lower from higher malignant tumours. The diagnostic quality of initial 201 genes (108 genes supporting G1 and 93 genes G3 phenotypes) has been successfully validated on published Swiss data (GSE19949) leading to a restricted CNA gene set of 171 CNA genes of which 85 genes favour Fuhrman grade G1 and 86 genes Fuhrman grade G3. Regarding these gene sets overall survival decreased with the number of G3 related gene losses plus G3 related gene gains. CNA gene sets presented define an entry to a gene-directed and pathway-related functional understanding of ongoing copy number alterations within and between individual ccRCC tumours leading to CNA genes of prognostic and predictive value.

  8. Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses.

    Science.gov (United States)

    Lau, Colleen M; Nish, Simone A; Yogev, Nir; Waisman, Ari; Reiner, Steven L; Reizis, Boris

    2016-03-07

    A common genetic alteration in acute myeloid leukemia is the internal tandem duplication (ITD) in FLT3, the receptor for cytokine FLT3 ligand (FLT3L). Constitutively active FLT3-ITD promotes the expansion of transformed progenitors, but also has pleiotropic effects on hematopoiesis. We analyzed the effect of FLT3-ITD on dendritic cells (DCs), which express FLT3 and can be expanded by FLT3L administration. Pre-leukemic mice with the Flt3(ITD) knock-in allele manifested an expansion of classical DCs (cDCs) and plasmacytoid DCs. The expansion originated in DC progenitors, was cell intrinsic, and was further enhanced in Flt3(ITD/ITD) mice. The mutation caused the down-regulation of Flt3 on the surface of DCs and reduced their responsiveness to Flt3L. Both canonical Batf3-dependent CD8(+) cDCs and noncanonical CD8(+) cDCs were expanded and showed specific alterations in their expression profiles. Flt3(ITD) mice showed enhanced capacity to support T cell proliferation, including a cell-extrinsic expansion of regulatory T (T reg) cells. Accordingly, these mice restricted alloreactive T cell responses during graft-versus-host reaction, but failed to control autoimmunity without T reg cells. Thus, the FLT3-ITD mutation directly affects DC development, indirectly modulating T cell homeostasis and supporting T reg cell expansion. We hypothesize that this effect of FLT3-ITD might subvert immunosurveillance and promote leukemogenesis in a cell-extrinsic manner. © 2016 Lau et al.

  9. Comparative study of cell alterations in oral lichen planus and epidermoid carcinoma of the mouth mucosa.

    Science.gov (United States)

    Sousa, Fernando Augusto Cervantes Garcia de; Paradella, Thaís Cachuté; Brandão, Adriana Aigotti Haberbeck; Rosa, Luiz Eduardo Blumer

    2009-01-01

    Currently, much is discussed regarding the pre-malignant nature of mouth mucosa lichen planus. The present study aims at analyzing the alterations found in the epithelial cells present in the oral cavity lichen planus, comparing them to those found in epidermoid carcinoma. Histological cross-sections of oral lichen planus and epidermoid carcinoma, dyed by hematoxylineosin, were analyzed through light microscopy. The most frequently found alterations in oral lichen planus were: an increase in the nucleus/cytoplasm relation (93.33%), nucleus membrane thickness (86.67%) and bi-nucleus or multinucleous (86.67%). The Student t test (alpha=5%) revealed a statistically significant difference between the average number of cell alterations in oral lichen planus (5.87+/-1.57) and in epidermoid carcinoma (7.60+/-1.81). As to the types of alterations, the chi-squared test also revealed statistically significant differences among the lesions assessed in relation to the following cell alterations: nuclear excess chromatism, atypical mitoses, cellular pleomorphism and abnormal cell differentiation (poral lichen planus, the results obtained in this study show that the alterations present in oral lichen planus differ considerably from those seen in epidermoid carcinoma, thus showing how distinct these two diseases are.

  10. Heterogeneity of functional properties of Clone 66 murine breast cancer cells expressing various stem cell phenotypes.

    Science.gov (United States)

    Mukhopadhyay, Partha; Farrell, Tracy; Sharma, Gayatri; McGuire, Timothy R; O'Kane, Barbara; Sharp, J Graham

    2013-01-01

    Breast cancer grows, metastasizes and relapses from rare, therapy resistant cells with a stem cell phenotype (cancer stem cells/CSCs). However, there is a lack of studies comparing the functions of CSCs isolated using different phenotypes in order to determine if CSCs are homogeneous or heterogeneous. Cells with various stem cell phenotypes were isolated by sorting from Clone 66 murine breast cancer cells that grow orthotopically in immune intact syngeneic mice. These populations were compared by in vitro functional assays for proliferation, growth, sphere and colony formation; and in vivo limiting dilution analysis of tumorigenesis. The proportion of cells expressing CD44(high)CD24(low/neg), side population (SP) cells, ALDH1(+), CD49f(high), CD133(high), and CD34(high) differed, suggesting heterogeneity. Differences in frequency and size of tumor spheres from these populations were observed. Higher rates of proliferation of non-SP, ALDH1(+), CD34(low), and CD49f(high) suggested properties of transit amplifying cells. Colony formation was higher from ALDH1(-) and non-SP cells than ALDH1(+) and SP cells suggesting a progenitor phenotype. The frequency of clonal colonies that grew in agar varied and was differentially altered by the presence of Matrigel™. In vivo, fewer cells with a stem cell phenotype were needed for tumor formation than "non-stem" cells. Fewer SP cells were needed to form tumors than ALDH1(+) cells suggesting further heterogeneities of cells with stem phenotypes. Different levels of cytokines/chemokines were produced by Clone 66 with RANTES being the highest. Whether the heterogeneity reflects soluble factor production remains to be determined. These data demonstrate that Clone 66 murine breast cancer cells that express stem cell phenotypes are heterogeneous and exhibit different functional properties, and this may also be the case for human breast cancer stem cells.

  11. Supporting women with advanced breast cancer: the impact of altered functional status on their social roles.

    Science.gov (United States)

    Chen, Bai Qi Peggy; Parmar, Monica P; Gartshore, Kimberley

    2014-01-01

    Despite early detection of breast cancer and the progress of treatment modalities, metastasis-specific symptoms continue to impact women's functional status and daily living. The aim of this study was to explore the experience of altered functional status and social roles of women with advanced breast cancer. Using qualitative descriptive methodology, semi-structured interviews were conducted with 10 women diagnosed with advanced breast cancer and altered functional status attending a tertiary care cancer centre. Results illustrated the adaptive experience of women living with their illness as they reshaped their social roles to fit with their altered functional status and advanced disease. These findings highlight the opportunity for supportive care nursing interventions to facilitate the behavioural and cognitive transitions that are experienced by women with advanced breast cancer and altered functional status. These results may have implications for women with other advanced chronic diseases, though more research is required.

  12. Structural and functional alterations of catalase induced by acriflavine, a compound causing apoptosis and necrosis.

    Science.gov (United States)

    Attar, Farnoosh; Khavari-Nejad, Sarah; Keyhani, Jacqueline; Keyhani, Ezzatollah

    2009-08-01

    Acriflavine is an antiseptic agent causing both apoptosis and necrosis in yeast. In this work, its effect on the structure and function of catalase, a vital enzyme actively involved in protection against oxidative stress, was investigated. In vitro kinetic studies showed that acriflavine inhibited the enzymatic activity in a competitive manner. The residual activity detectable after preincubation of catalase (1.5 nmol/L) with various concentrations of acriflavine went from 50% to 20% of the control value as the acriflavine concentration increased from 30 to 90 micromol/L. Correlatively with the decrease in activity, alterations in the enzyme's conformation were observed as indicated by fluorescence spectroscopy, circular dichroism spectroscopy, and electronic absorption spectroscopy. The enzyme's intrinsic fluorescence obtained upon excitation at either 297 nm (tryptophan residues) or 280 nm (tyrosine and tryptophan residues) decreased as a function of acriflavine concentration. Circular dichroism studies showed alterations of the protein structure by acriflavine with up to 13% decrease in alpha helix, 16% increase in beta-sheet content, 17% increase in random coil, and 4% increase in beta turns. Spectrophotometric studies showed a blueshift and modifications in the chromicity of catalase at 405 nm, corresponding to an absorbance band due to the enzyme's prosthetic group. Thus, acriflavine induced in vitro a profound change in the structure of catalase so that the enzyme could no longer function. Our results showed that acriflavine, a compound producing apoptosis and necrosis, can have a direct effect on vital functions in cells by disabling key enzymes.

  13. Chromosome alterations in the X-ray-induced transformants of cultured mouse cell line

    International Nuclear Information System (INIS)

    Kodama, Seiji; Komatsu, Kenshi; Okumura, Yutaka; Sasaki, M.S.

    1989-01-01

    Mouse m5S cells were subjected to soft X-ray irradiation. Twenty-four transformants were separated as indicators of focus formation. Two clones, cl.4103 and cl.6310, were chosen for the analysis of chromosome alterations in transformants. A parent strain, m5S/1M, served as the control. Anchorage independence (AG) was not detected in the control strain, irrespective of culture conditions and population doubling number (PDN). In the case of transformants, the frequency of AG was increased with increasing PDN for cl.4103, and was constant for cl.6310, irrespective of PDN. Karyotype of m5S/1M was 42, X, -Y, +der (6) t(6;13), t(8;8), +8, +15. In addition, -13, der(10) and -der(6)t(6;13), der(5), +mar occurred as karyotype alterations for cl.4103 and cl. 6310, respectively. The present experiment indicated that chromosome alterations secondary to primary alterations occur in a high frequency in the transforming process of X-ray irradiated cells, and that the secondary chromosome alterations result in selective proliferation of transformed clones. (Namekawa, K)

  14. Altered cortical hubs in functional brain networks in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Ma, Xujing; Zhang, Jiuquan; Zhang, Youxue; Chen, Heng; Li, Rong; Wang, Jian; Chen, Huafu

    2015-11-01

    Cortical hubs are highly connected nodes in functional brain networks that play vital roles in the efficient transfer of information across brain regions. Although altered functional connectivity has been found in amyotrophic lateral sclerosis (ALS), the changing pattern in functional network hubs in ALS remains unknown. In this study, we applied a voxel-wise method to investigate the changing pattern of cortical hubs in ALS. Through resting-state fMRI, we constructed whole-brain voxel-wise functional networks by measuring the temporal correlations of each pair of brain voxels and identified hubs using the graph theory method. Specifically, a functional connectivity strength (FCS) map was derived from the data on 20 patients with ALS and 20 healthy controls. The brain regions with high FCS values were regarded as functional network hubs. Functional hubs were found mainly in the bilateral precuneus, parietal cortex, medial prefrontal cortex, and in several visual regions and temporal areas in both groups. Within the hub regions, the ALS patients exhibited higher FCS in the prefrontal cortex compared with the healthy controls. The FCS value in the significantly abnormal hub regions was correlated with clinical variables. Results indicated the presence of altered cortical hubs in the ALS patients and could therefore shed light on the pathophysiology mechanisms underlying ALS.

  15. Environmentally induced epigenetic transgenerational inheritance of altered Sertoli cell transcriptome and epigenome: molecular etiology of male infertility.

    Directory of Open Access Journals (Sweden)

    Carlos Guerrero-Bosagna

    Full Text Available Environmental toxicants have been shown to induce the epigenetic transgenerational inheritance of adult onset disease, including testis disease and male infertility. The current study was designed to determine the impact of an altered sperm epigenome on the subsequent development of an adult somatic cell (Sertoli cell that influences the onset of a specific disease (male infertility. A gestating female rat (F0 generation was exposed to the agriculture fungicide vinclozolin during gonadal sex determination and then the subsequent F3 generation progeny used for the isolation of Sertoli cells and assessment of testis disease. As previously observed, enhanced spermatogenic cell apoptosis was observed. The Sertoli cells provide the physical and nutritional support for the spermatogenic cells. Over 400 genes were differentially expressed in the F3 generation control versus vinclozolin lineage Sertoli cells. A number of specific cellular pathways were identified to be transgenerationally altered. One of the key metabolic processes affected was pyruvate/lactate production that is directly linked to spermatogenic cell viability. The Sertoli cell epigenome was also altered with over 100 promoter differential DNA methylation regions (DMR modified. The genomic features and overlap with the sperm DMR were investigated. Observations demonstrate that the transgenerational sperm epigenetic alterations subsequently alters the development of a specific somatic cell (Sertoli cell epigenome and transcriptome that correlates with adult onset disease (male infertility. The environmentally induced epigenetic transgenerational inheritance of testis disease appears to be a component of the molecular etiology of male infertility.

  16. Altered ganglioside GD3 in HeLa cells might influence the cytotoxic abilities of NK cells

    OpenAIRE

    Lee, Wen-Chi; Lee, Wen-Ling; Shyong, Wen-Yuann; Yang, Lin-Wei; Ko, Min-Chun; Yeh, Chang-Ching; Edmond Hsieh, Shie-Liang; Wang, Peng-Hui

    2012-01-01

    Objective: Previously, we found that altered sialidases in HeLa cells in a natural killer-HeLa (NK-HeLa) coculture system contributed to the decreased cytotoxic ability of NK cells. However, changes that occur in the glycosylation of the HeLa cells in the NK-HeLa coculture system remain unknown. Materials and Methods: An NK-HeLa coculture system was used to examine the changes that occur in the gangliosides of HeLa cells. Results: GD3 expression in HeLa cells was significantly increased...

  17. Adhesion defective BHK cell mutant has cell surface heparan sulfate proteoglycan of altered properties

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, R; Woods, A

    1988-01-01

    In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin......-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased...... sulfation, reduced affinity for fibronectin and decreased half-life on the cell surface when compared to the normal counterpart. Our conclusions based on this data are that these altered properties may, in part, account for the adhesion defect in the ricin-resistant mutant. Whether this results from...

  18. Cytological and oncogene alterations in radiation-transformed Syrian hamster embryo cells

    International Nuclear Information System (INIS)

    Trutschler, K.; Hieber, L.; Kellerer, A.M.

    1991-01-01

    Syrian hamster embryo (SHE) cells were neoplastically transformed by different types of ionizing radiation (γ-rays, α-particles or carbon ions). Transformed and tumor cell lines (derived from nude mice tumors) were analysed for alterations of the oncogenes c-Ha-ras and c-myc, i.e. RFLPs, gene amplifications, activation by point mutation, gene expression, and for cytological changes. In addition, the chromosome number and the numbers of micronuclei per cell have been determined in a series of cell lines. (author)

  19. Alteration and reorganization of functional networks: a new perspective in brain injury study

    Directory of Open Access Journals (Sweden)

    Nazareth P. Castellanos

    2011-09-01

    Full Text Available Plasticity is the mechanism underlying brain’s potential capability to compensate injury. Recently several studies have shown that functional connections among brain areas are severely altered by brain injury and plasticity leading to a reorganization of the networks. This new approach studies the impact of brain injury by means of alteration of functional interactions. The concept of functional connectivity refers to the statistical interdependencies between physiological time series simultaneously recorded in various brain areas and it could be an essential tool for brain function studies, being its deviation from healthy reference an indicator for damage. In this article, we review studies investigating functional connectivity changes after brain injury and subsequent recovery, providing an accessible introduction to common mathematical methods to infer functional connectivity, exploring their capabilities, future perspectives and clinical uses in brain injury studies.

  20. Effects of topographical and mechanical property alterations induced by oxygen plasma modification on stem cell behavior.

    Science.gov (United States)

    Yang, Yong; Kulangara, Karina; Lam, Ruby T S; Dharmawan, Rena; Leong, Kam W

    2012-10-23

    Polymeric substrates intended for cell culture and tissue engineering are often surface-modified to facilitate cell attachment of most anchorage-dependent cell types. The modification alters the surface chemistry and possibly topography. However, scant attention has been paid to other surface property alterations. In studying oxygen plasma treatment of polydimethylsiloxane (PDMS), we show that oxygen plasma treatment alters the surface chemistry and, consequently, the topography and elasticity of PDMS at the nanoscale level. The elasticity factor has the predominant effect, compared with the chemical and topographical factors, on cell adhesions of human mesenchymal stem cells (hMSCs). The enhanced focal adhesions favor cell spreading and osteogenesis of hMSCs. Given the prevalent use of PDMS in biomedical device construction and cell culture experiments, this study highlights the importance of understanding how oxygen plasma treatment would impact subsequent cell-substrate interactions. It helps explain inconsistency in the literature and guides preparation of PDMS-based biomedical devices in the future.

  1. HIV Latency Reversing Agents have diverse effects on Natural Killer Cell Function

    Directory of Open Access Journals (Sweden)

    Carolina Garrido

    2016-09-01

    Full Text Available In an effort to clear persistent HIV infection, and achieve a durable therapy-free remission of HIV disease, extensive pre-clinical studies and early pilot clinical trials are underway to develop and test agents that can reverse latent HIV infection and present viral antigen to the immune system for clearance. It is therefore critical to understand the impact of latency reversing agents (LRAs on the function of immune effectors needed to clear infected cells. We assessed the impact of LRAs on the function of natural killer (NK cells, the main effector cells of the innate immune system. We studied the effects of three histone deacetylase inhibitors (SAHA or vorinostat, romidepsin and panobinostat and two protein kinase C (PKC agonists (prostratin and ingenol on the antiviral activity, cytotoxicity, cytokine secretion, phenotype and viability of primary NK cells. We found that ex vivo exposure to vorinostat had minimal impact on all parameters assessed, while panobinostat caused a decrease in NK cell viability, antiviral activity and cytotoxicity. Prostratin caused NK cell activation and interestingly, improved antiviral activity. Overall, we found that LRAs can alter the function and fate of NK cells, and these effects must be carefully considered as strategies are developed to clear persistent HIV infection.

  2. Altered Function and Expression of ABC Transporters at the Blood–Brain Barrier and Increased Brain Distribution of Phenobarbital in Acute Liver Failure Mice

    Directory of Open Access Journals (Sweden)

    Li Liu

    2018-03-01

    Full Text Available This study investigated alterations in the function and expression of P-glycoprotein (P-GP, breast cancer resistance protein (BCRP, and multidrug resistance-associated protein 2 (MRP2 at the blood–brain barrier (BBB of acute liver failure (ALF mice and its clinical significance. ALF mice were developed using intraperitoneal injection of thioacetamide. P-GP, BCRP, and MRP2 functions were determined by measuring the ratios of brain-to-plasma concentration of rhodamine 123, prazosin, and dinitrophenyl-S-glutathione, respectively. The mRNA and proteins expression levels of P-GP, BCRP, and MRP2 were evaluated with quantitative real-time PCR and western blot, respectively. MDCK-MDR1 and HCMEC/D3 cells were used to document the effects of the abnormally altered components in serum of ALF mice on the function and expression of P-GP. The clinical significance of alteration in P-GP function and expression was investigated by determining the distribution of the P-GP substrate phenobarbital (60 mg/kg, intravenous administration in the brain and loss of righting reflex (LORR induced by the drug (100 mg/kg. The results showed that ALF significantly downregulated the function and expression of both P-GP and BCRP, but increased the function and expression of MRP2 in the brain of mice. Cell study showed that increased chenodeoxycholic acid may be a reason behind the downregulated P-GP function and expression. Compared with control mice, ALF mice showed a significantly higher brain concentration of phenobarbital and higher brain-to-plasma concentration ratios. In accordance, ALF mice showed a significantly larger duration of LORR and shorter latency time of LORR by phenobarbital, inferring the enhanced pharmacological effect of phenobarbital on the central nervous system (CNS. In conclusion, the function and expression of P-GP and BCRP decreased, while the function and expression of MRP2 increased in the brain of ALF mice. The attenuated function and expression

  3. Dissociation and Alterations in Brain Function and Structure: Implications for Borderline Personality Disorder.

    Science.gov (United States)

    Krause-Utz, Annegret; Frost, Rachel; Winter, Dorina; Elzinga, Bernet M

    2017-01-01

    Dissociation involves disruptions of usually integrated functions of consciousness, perception, memory, identity, and affect (e.g., depersonalization, derealization, numbing, amnesia, and analgesia). While the precise neurobiological underpinnings of dissociation remain elusive, neuroimaging studies in disorders, characterized by high dissociation (e.g., depersonalization/derealization disorder (DDD), dissociative identity disorder (DID), dissociative subtype of posttraumatic stress disorder (D-PTSD)), have provided valuable insight into brain alterations possibly underlying dissociation. Neuroimaging studies in borderline personality disorder (BPD), investigating links between altered brain function/structure and dissociation, are still relatively rare. In this article, we provide an overview of neurobiological models of dissociation, primarily based on research in DDD, DID, and D-PTSD. Based on this background, we review recent neuroimaging studies on associations between dissociation and altered brain function and structure in BPD. These studies are discussed in the context of earlier findings regarding methodological differences and limitations and concerning possible implications for future research and the clinical setting.

  4. Evolutionary cell biology: functional insight from "endless forms most beautiful".

    Science.gov (United States)

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B

    2015-12-15

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. © 2015 Richardson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Kiyomitsu, E-mail: nemoto@u-shizuoka-ken.ac.jp [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Ikeda, Ayaka; Yoshida, Chiaki; Kimura, Junko; Mori, Junki [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Fujiwara, Hironori [Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yokosuka, Akihito; Mimaki, Yoshihiro [Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392 (Japan); Ohizumi, Yasushi [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Laboratory of Kampo Medicines, Yokohama College of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066 (Japan); Degawa, Masakuni [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan)

    2013-02-15

    Highlights: ► Nobiletin-mediated alterations of gene expression were examined with DNA microarrays. ► Three organ-derived cell lines were treated with 100 μM nobiletin for 24 h. ► In all cell lines, 3 endoplasmic reticulum stress-responsive genes were up-regulated. ► Some cell cycle-regulating and oxidative stress-promoting genes were down-regulated. ► These alterations may contribute to nobiletin-mediated biological effects. -- Abstract: Nobiletin, a polymethoxylated flavonoid that is highly contained in the peels of citrus fruits, exerts a wide variety of beneficial effects, including anti-proliferative effects in cancer cells, repressive effects in hyperlipidemia and hyperglycemia, and ameliorative effects in dementia at in vitro and in vivo levels. In the present study, to further understand the mechanisms of these actions of nobiletin, the nobiletin-mediated alterations of gene expression in three organ-derived cell lines – 3Y1 rat fibroblasts, HuH-7 human hepatocarcinoma cells, and SK-N-SH human neuroblastoma cells – were first examined with DNA microarrays. In all three cell lines, treatments with nobiletin (100 μM) for 24 h resulted in more than 200% increases in the expression levels of five genes, including the endoplasmic reticulum stress-responsive genes Ddit3, Trib3, and Asns, and in less than 50% decreases in the expression levels of seven genes, including the cell cycle-regulating genes Ccna2, Ccne2, and E2f8 and the oxidative stress-promoting gene Txnip. It was also confirmed that in each nobiletin-treated cell line, the levels of the DDIT3 (DNA-damage-inducible transcript 3, also known as CHOP and GADD153) and ASNS (asparagine synthetase) proteins were increased, while the level of the TXNIP (thioredoxin-interacting protein, also known as VDUP1 and TBP-2) protein was decreased. All these findings suggest that nobiletin exerts a wide variety of biological effects, at least partly, through induction of endoplasmic reticulum stress and

  6. Modulation of antigen presenting cell functions during chronic HPV infection

    Directory of Open Access Journals (Sweden)

    Abate Assefa Bashaw

    2017-12-01

    Full Text Available High-risk human papillomaviruses (HR-HPV infect basal keratinocytes, where in some individuals they evade host immune responses and persist. Persistent HR-HPV infection of the cervix causes precancerous neoplasia that can eventuate in cervical cancer. Dendritic cells (DCs are efficient in priming/cross-priming antigen-specific T cells and generating antiviral and antitumor cytotoxic CD8+ T cells. However, HR-HPV have adopted various immunosuppressive strategies, with modulation of DC function crucial to escape from the host adaptive immune response. HPV E6 and E7 oncoproteins alter recruitment and localization of epidermal DCs, while soluble regulatory factors derived from HPV-induced hyperplastic epithelium change DC development and influence initiation of specific cellular immune responses. This review focuses on current evidence for HR-HPV manipulation of antigen presentation in dendritic cells and escape from host immunity.

  7. Doxycycline Impairs Mitochondrial Function and Protects Human Glioma Cells from Hypoxia-Induced Cell Death: Implications of Using Tet-Inducible Systems.

    Science.gov (United States)

    Luger, Anna-Luisa; Sauer, Benedikt; Lorenz, Nadja I; Engel, Anna L; Braun, Yannick; Voss, Martin; Harter, Patrick N; Steinbach, Joachim P; Ronellenfitsch, Michael W

    2018-05-17

    Inducible gene expression is an important tool in molecular biology research to study protein function. Most frequently, the antibiotic doxycycline is used for regulation of so-called tetracycline (Tet)-inducible systems. In contrast to stable gene overexpression, these systems allow investigation of acute and reversible effects of cellular protein induction. Recent reports have already called for caution when using Tet-inducible systems as the employed antibiotics can disturb mitochondrial function and alter cellular metabolism by interfering with mitochondrial translation. Reprogramming of energy metabolism has lately been recognized as an important emerging hallmark of cancer and is a central focus of cancer research. Therefore, the scope of this study was to systematically analyze dose-dependent metabolic effects of doxycycline on a panel of glioma cell lines with concomitant monitoring of gene expression from Tet-inducible systems. We report that doxycycline doses commonly used with inducible expression systems (0.01⁻1 µg/mL) substantially alter cellular metabolism: Mitochondrial protein synthesis was inhibited accompanied by reduced oxygen and increased glucose consumption. Furthermore, doxycycline protected human glioma cells from hypoxia-induced cell death. An impairment of cell growth was only detectable with higher doxycycline doses (10 µg/mL). Our findings describe settings where doxycycline exerts effects on eukaryotic cellular metabolism, limiting the employment of Tet-inducible systems.

  8. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production

    Energy Technology Data Exchange (ETDEWEB)

    Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.; Dohnalkova, Alice; Hu, Dehong; Lemke, Rachelle A.; Piotrowski, Jeff S.; Orr, Galya; Noguera, Daniel R.; Donohue, Timothy J.

    2017-05-23

    ABSTRACT

    Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their total lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals.

    IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase

  9. Proteome analysis demonstrates profound alterations in human dendritic cell nature by TX527, an analogue of vitamin D

    DEFF Research Database (Denmark)

    Ferreira, G. B.; van Etten, E.; Lage, K.

    2009-01-01

    Structural analogues of vitamin D have been put forward as therapeutic agents able to exploit the immunomodulatory effects of vitamin D, without its undesired calcemic side effects. We have demonstrated that TX527 affects dendritic cell (DC) maturation in vitro, resulting in the generation...... of a tolerogenic cell. In the present study, we aimed to explore the global protein changes induced by the analogue in immature DC (iDC) and mature human DC and to correlate them with alterations in DC morphology and function. Human CD14(+) monocytes were differentiated toward iDC or mature DCs, in the presence...

  10. Nonlinear optical microscopy reveals invading endothelial cells anisotropically alter three-dimensional collagen matrices

    International Nuclear Information System (INIS)

    Lee, P.-F.; Yeh, Alvin T.; Bayless, Kayla J.

    2009-01-01

    The interactions between endothelial cells (ECs) and the extracellular matrix (ECM) are fundamental in mediating various steps of angiogenesis, including cell adhesion, migration and sprout formation. Here, we used a noninvasive and non-destructive nonlinear optical microscopy (NLOM) technique to optically image endothelial sprouting morphogenesis in three-dimensional (3D) collagen matrices. We simultaneously captured signals from collagen fibers and endothelial cells using second harmonic generation (SHG) and two-photon excited fluorescence (TPF), respectively. Dynamic 3D imaging revealed EC interactions with collagen fibers along with quantifiable alterations in collagen matrix density elicited by EC movement through and morphogenesis within the matrix. Specifically, we observed increased collagen density in the area between bifurcation points of sprouting structures and anisotropic increases in collagen density around the perimeter of lumenal structures, but not advancing sprout tips. Proteinase inhibition studies revealed membrane-associated matrix metalloproteinase were utilized for sprout advancement and lumen expansion. Rho-associated kinase (p160ROCK) inhibition demonstrated that the generation of cell tension increased collagen matrix alterations. This study followed sprouting ECs within a 3D matrix and revealed that the advancing structures recognize and significantly alter their extracellular environment at the periphery of lumens as they progress

  11. Pseudomonas aeruginosa lipopolysaccharide induces CF-like alteration of protein secretion by human tracheal gland cells.

    Science.gov (United States)

    Kammouni, W; Figarella, C; Baeza, N; Marchand, S; Merten, M D

    1997-12-18

    Human tracheal gland (HTG) serous cells are now believed to play a major role in the physiopathology of cystic fibrosis. Because of the persistent inflammation and the specific infection by Pseudomonas aeruginosa in the lung, we looked for the action of the lipopolysaccharide (LPS) of this bacteria on human tracheal gland cells in culture by studying the secretion of the secretory leukocyte proteinase inhibitor (SLPI) which is a specific serous secretory marker of these cells. Treatment with Pseudomonas aeruginosa LPS resulted in a significant dose-dependent increase in the basal production of SLPI (+ 250 +/- 25%) whilst the SLPI transcript mRNA levels remained unchanged. This LPS-induced increase in secretion was inhibited by glucocorticoides. Furthermore, LPS treatment of HTG cells induces a loss of responsiveness to carbachol and isoproterenol but not to adenosine triphosphate. These findings indicate that HTG cells treated by Pseudomonas aeruginosa LPS have the same behavior as those previously observed with CF-HTG cells. Exploration by using reverse transcriptase polymerase chain reaction amplification showed that LPS downregulated cystic fibrosis transmembrane conductance regulator (CFTR) mRNA expression in HTG cells indicative of a link between CFTR function and consequent CF-like alteration in protein secretory process.

  12. Altered resting-state whole-brain functional networks of neonates with intrauterine growth restriction.

    Science.gov (United States)

    Batalle, Dafnis; Muñoz-Moreno, Emma; Tornador, Cristian; Bargallo, Nuria; Deco, Gustavo; Eixarch, Elisenda; Gratacos, Eduard

    2016-04-01

    The feasibility to use functional MRI (fMRI) during natural sleep to assess low-frequency basal brain activity fluctuations in human neonates has been demonstrated, although its potential to characterise pathologies of prenatal origin has not yet been exploited. In the present study, we used intrauterine growth restriction (IUGR) as a model of altered neurodevelopment due to prenatal condition to show the suitability of brain networks to characterise functional brain organisation at neonatal age. Particularly, we analysed resting-state fMRI signal of 20 neonates with IUGR and 13 controls, obtaining whole-brain functional networks based on correlations of blood oxygen level-dependent (BOLD) signal in 90 grey matter regions of an anatomical atlas (AAL). Characterisation of the networks obtained with graph theoretical features showed increased network infrastructure and raw efficiencies but reduced efficiency after normalisation, demonstrating hyper-connected but sub-optimally organised IUGR functional brain networks. Significant association of network features with neurobehavioral scores was also found. Further assessment of spatiotemporal dynamics displayed alterations into features associated to frontal, cingulate and lingual cortices. These findings show the capacity of functional brain networks to characterise brain reorganisation from an early age, and their potential to develop biomarkers of altered neurodevelopment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function

    Science.gov (United States)

    Nilsson, Göran E.; Dixson, Danielle L.; Domenici, Paolo; McCormick, Mark I.; Sørensen, Christina; Watson, Sue-Ann; Munday, Philip L.

    2012-03-01

    Predicted future CO2 levels have been found to alter sensory responses and behaviour of marine fishes. Changes include increased boldness and activity, loss of behavioural lateralization, altered auditory preferences and impaired olfactory function. Impaired olfactory function makes larval fish attracted to odours they normally avoid, including ones from predators and unfavourable habitats. These behavioural alterations have significant effects on mortality that may have far-reaching implications for population replenishment, community structure and ecosystem function. However, the underlying mechanism linking high CO2 to these diverse responses has been unknown. Here we show that abnormal olfactory preferences and loss of behavioural lateralization exhibited by two species of larval coral reef fish exposed to high CO2 can be rapidly and effectively reversed by treatment with an antagonist of the GABA-A receptor. GABA-A is a major neurotransmitter receptor in the vertebrate brain. Thus, our results indicate that high CO2 interferes with neurotransmitter function, a hitherto unrecognized threat to marine populations and ecosystems. Given the ubiquity and conserved function of GABA-A receptors, we predict that rising CO2 levels could cause sensory and behavioural impairment in a wide range of marine species, especially those that tightly control their acid-base balance through regulatory changes in HCO3- and Cl- levels.

  14. Toxicity of drinking water disinfection byproducts: cell cycle alterations induced by the monohaloacetonitriles.

    Science.gov (United States)

    Komaki, Yukako; Mariñas, Benito J; Plewa, Michael J

    2014-10-07

    Haloacetonitriles (HANs) are a chemical class of drinking water disinfection byproducts (DBPs) that form from reactions between disinfectants and nitrogen-containing precursors, the latter more prevalent in water sources impacted by algae bloom and municipal wastewater effluent discharge. HANs, previously demonstrated to be genotoxic, were investigated for their effects on the mammalian cell cycle. Treating Chinese hamster ovary (CHO) cells with monoHANs followed by the release from the chemical treatment resulted in the accumulation of abnormally high DNA content in cells over time (hyperploid). The potency for the cell cycle alteration followed the order: iodoacetonitrile (IAN) > bromoacetonitrile (BAN) ≫ chloroacetonitrile (CAN). Exposure to 6 μM IAN, 12 μM BAN and 900 μM CAN after 26 h post-treatment incubation resulted in DNA repair; however, subsequent cell cycle alteration effects were observed. Cell proliferation of HAN-treated cells was suppressed for as long as 43 to 52 h. Enlarged cell size was observed after 52 h post-treatment incubation without the induction of cytotoxicity. The HAN-mediated cell cycle alteration was mitosis- and proliferation-dependent, which suggests that HAN treatment induced mitosis override, and that HAN-treated cells proceeded into S phase and directly into the next cell cycle. Cells with multiples genomes would result in aneuploidy (state of abnormal chromosome number and DNA content) at the next mitosis since extra centrosomes could compromise the assembly of bipolar spindles. There is accumulating evidence of a transient tetraploid state proceeding to aneuploidy in cancer progression. Biological self-defense systems to ensure genomic stability and to eliminate tetraploid cells exist in eukaryotic cells. A key tumor suppressor gene, p53, is oftentimes mutated in various types of human cancer. It is possible that HAN disruption of the normal cell cycle and the generation of aberrant cells with an abnormal number of

  15. Extracellular matrix collagen alters cell proliferation and cell cycle progression of human uterine leiomyoma smooth muscle cells.

    Science.gov (United States)

    Koohestani, Faezeh; Braundmeier, Andrea G; Mahdian, Arash; Seo, Jane; Bi, JiaJia; Nowak, Romana A

    2013-01-01

    Uterine leiomyomas (ULs) are benign tumors occurring in the majority of reproductive aged women. Despite the high prevalence of these tumors, little is known about their etiology. A hallmark of ULs is the excessive deposition of extracellular matrix (ECM), primarily collagens. Collagens are known to modulate cell behavior and function singularly or through interactions with integrins and growth factor-mediated mitogenic pathways. To better understand the pathogenesis of ULs and the role of ECM collagens in their growth, we investigated the interaction of leiomyoma smooth muscle cells (LSMCs) with two different forms of collagen, non-polymerized collagen (monomeric) and polymerized collagen (fibrillar), in the absence or presence of platelet-derived growth factor (PDGF), an abundant growth factor in ULs. Primary cultures of human LSMCS from symptomatic patients were grown on these two different collagen matrices and their morphology, cytoskeletal organization, cellular proliferation, and signaling pathways were evaluated. Our results showed that LSMCs had distinct morphologies on the different collagen matrices and their basal as well as PDGF-stimulated proliferation varied on these matrices. These differences in proliferation were accompanied by changes in cell cycle progression and p21, an inhibitory cell cycle protein. In addition we found alterations in the phosphorylation of focal adhesion kinase, cytoskeletal reorganization, and activation of the mitogen activated protein kinase (MAPK) signaling pathway. In conclusion, our results demonstrate a direct effect of ECM on the proliferation of LSMCs through interplay between the collagen matrix and the PDGF-stimulated MAPK pathway. In addition, these findings will pave the way for identifying novel therapeutic approaches for ULs that target ECM proteins and their signaling pathways in ULs.

  16. Frequency-Dependent Altered Functional Connections of Default Mode Network in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Youjun Li

    2017-08-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder associated with the progressive dysfunction of cognitive ability. Previous research has indicated that the default mode network (DMN is closely related to cognition and is impaired in Alzheimer’s disease. Because recent studies have shown that different frequency bands represent specific physiological functions, DMN functional connectivity studies of the different frequency bands based on resting state fMRI (RS-fMRI data may provide new insight into AD pathophysiology. In this study, we explored the functional connectivity based on well-defined DMN regions of interest (ROIs from the five frequency bands: slow-5 (0.01–0.027 Hz, slow-4 (0.027–0.073 Hz, slow-3 (0.073–0.198 Hz, slow-2 (0.198–0.25 Hzs and standard low-frequency oscillations (LFO (0.01–0.08 Hz. We found that the altered functional connectivity patterns are mainly in the frequency band of slow-5 and slow-4 and that the decreased connections are long distance, but some relatively short connections are increased. In addition, the altered functional connections of the DMN in AD are frequency dependent and differ between the slow-5 and slow-4 bands. Mini-Mental State Examination scores were significantly correlated with the altered functional connectivity patterns in the slow-5 and slow-4 bands. These results indicate that frequency-dependent functional connectivity changes might provide potential biomarkers for AD pathophysiology.

  17. PKC-theta in regulatory and effector T-cell functions

    Directory of Open Access Journals (Sweden)

    Vedran eBrezar

    2015-10-01

    Full Text Available One of the major goals in immunology research is to understand the regulatory mechanisms that underpin the rapid switch on/off of robust and efficient effector (Teff or regulatory (Tregs T-cell responses. Understanding the molecular mechanisms underlying the regulation of such responses is critical for the development of effective therapies. T-cell activation involves the engagement of T-cell receptor and co-stimulatory signals, but the subsequent recruitment of serine/threonine-specific protein Kinase C-theta (PKC-θ to the immunological synapse is instrumental for the formation of signalling complexes, that ultimately lead to a transcriptional network in T cells. Recent studies demonstrated that major differences between Teffs and Tregs occurred at the immunological synapse where its formation induces altered signalling pathways in Tregs. These pathways are characterized by reduced recruitment of PKC-θ, suggesting that PKC-θ inhibits Tregs suppressive function in a negative feedback loop. As the balance of Teffs and Tregs has been shown to be central in several diseases, it was not surprising that some studies revealed that PKC-θ plays a major role in the regulation of this balance.This review will examine recent knowledge on the role of PKC-θ in T-cell transcriptional responses and how this protein can impact on the function of both Tregs and Teffs.

  18. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells.

    Science.gov (United States)

    Witek, Rafal P; Yang, Liu; Liu, Renshui; Jung, Youngmi; Omenetti, Alessia; Syn, Wing-Kin; Choi, Steve S; Cheong, Yeiwon; Fearing, Caitlin M; Agboola, Kolade M; Chen, Wei; Diehl, Anna Mae

    2009-01-01

    Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes, and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). MF-HSC and cholangiocytes were exposed to platelet-derived growth factor to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy and immunoblots, and applied to Hh-reporter-containing cells. Microparticles were obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, an Hh signaling inhibitor. Effects on SEC gene expression were evaluated by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Platelet-derived growth factor-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically-active Hh ligands. BDL increased release of Hh-containing exosome-enriched microparticles into plasma and bile. Transmission electron microscopy and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy.

  19. Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions.

    Science.gov (United States)

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-09-04

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g., DNA hypermethylation) are essential to maintain this drug-resistant phenotype. Thus, altered lipid synthesis may be linked to epigenetic mechanisms of drug resistance. We hypothesize that reversing DNA hypermethylation in resistant cells with an epigenetic drug could alter lipid synthesis, changing the cell membrane's biophysical properties to facilitate drug delivery to overcome drug resistance. Herein we show that treating drug-resistant breast cancer cells (MCF-7/ADR) with the epigenetic drug 5-aza-2'-deoxycytidine (decitabine) significantly alters cell lipid composition and biophysical properties, causing the resistant cells to acquire biophysical characteristics similar to those of sensitive cell (MCF-7) lipids. Following decitabine treatment, resistant cells demonstrated increased sphingomyelinase activity, resulting in a decreased sphingomyelin level that influenced lipid domain structures, increased membrane fluidity, and reduced P-glycoprotein expression. Changes in the biophysical characteristics of resistant cell lipids facilitated doxorubicin transport and restored endocytic function for drug delivery with a lipid-encapsulated form of doxorubicin, enhancing the drug efficacy. In conclusion, we have established a new mechanism for efficacy of an epigenetic drug, mediated through changes in lipid composition and biophysical properties, in reversing cancer drug resistance.

  20. Genetic alterations in B-cell non-Hodgkin's lymphoma

    Directory of Open Access Journals (Sweden)

    Magić Zvonko

    2005-01-01

    Full Text Available Background. Although the patients with diagnosed B-NHL are classified into the same disease stage on the basis of clinical, histopathological, and immunological parameters, they respond significantly different to the applied treatment. This points out the possibility that within the same group of lymphoma there are different diseases at molecular level. For that reason many studies deal with the detection of gene alterations in lymphomas to provide a better framework for diagnosis and treatment of these hematological malignancies. Aim. To define genetic alterations in the B-NHL with highest possibilities for diagnostic purposes and molecular detection of MRD. Methods. Formalin fixed and paraffin embedded lymph node tissues from 45 patients were examined by different PCR techniques for the presence of IgH and TCR γ gene rearrangement; K-ras and H-ras mutations; c-myc amplification and bcl-2 translocation. There were 34 cases of B-cell non-Hodgkin’s lymphoma (B-NHL, 5 cases of T-cell non-Hodgkin’s lymphoma (T-NHL and 6 cases of chronic lymphadenitis (CL. The mononuclear cell fraction of the peripheral blood of 12 patients with B-NHL was analyzed for the presence of monoclonality at the time of diagnosis and in 3 to 6 months time intervals after an autologous bone marrow transplantation (BMT. Results. The monoclonality of B-lymphocytes, as evidenced by DNA fragment length homogeneity, was detected in 88 % (30/34 of B-NHL, but never in CL, T-NHL, or in normal PBL. Bcl-2 translocation was detected in 7/31 (22.6% B-NHL specimens, c-myc amplification 9/31 (29%, all were more than doubled, K-ras mutations in 1/31 (3.23% and H-ras mutations in 2/31 (6.45% of the examined B-NHL samples. In the case of LC and normal PBL, however, these gene alterations were not detected. All the patients (12 with B-NHL had dominant clone of B-lymphocyte in the peripheral blood at the time of diagnosis while only in 2 of 12 patients MRD was detected 3 or 6 months after

  1. Altered epidermal growth factor-like sequences provide evidence for a role of Notch as a receptor in cell fate decisions.

    Science.gov (United States)

    Heitzler, P; Simpson, P

    1993-03-01

    In Drosophila each neural precursor is chosen from a group of cells through cell interactions mediated by Notch and Delta which may function as receptor and ligand (signal), respectively, in a lateral signalling pathway. The cells of a group are equipotential and express both Notch and Delta. Hyperactive mutant Notch molecules, (Abruptex), probably have an enhanced affinity for the ligand. When adjacent to wild-type cells, cells bearing the Abruptex proteins are unable to produce the signal. It is suggested that in addition to the binding of Notch molecules on one cell to the Delta molecules of opposing cells, the Notch and Delta proteins on the surface of the same cell may interact. Binding between a cell's own Notch and Delta molecules would alter the availability of these proteins to interact with their counterparts on adjacent cells.

  2. Cyclic adenosine monophosphate levels and the function of skin microvascular endothelial cells.

    Science.gov (United States)

    Tuder, R M; Karasek, M A; Bensch, K G

    1990-02-01

    The maintenance of the normal epithelioid morphology of human dermal microvascular endothelial cells (MEC) grown in vitro depends strongly on the presence of factors that increase intracellular levels of cyclic AMP. Complete removal of dibutyryl cAMP and isobutylmethylxanthine (IMX) from the growth medium results in a progressive transition from an epithelioid to a spindle-shaped cell line. This transition cannot be reversed by the readdition of dibutyryl cAMP and IMX to the growth medium or by addition of agonists that increase cAMP levels. Spindle-shaped MEC lose the ability to express Factor VIII rAG and DR antigens and to bind peripheral blood mononuclear leukocyte (PBML). Ultrastructural analyses of transitional cells and spindle-shaped cells show decreased numbers of Weibel-Palade bodies in transitional cells and their complete absence in spindle-shaped cells. Interferon-gamma alters several functional properties of both epithelioid and spindle-shaped cells. In the absence of dibutyryl cAMP it accelerates the transition from epithelial to spindle-shaped cells, whereas in the presence of cyclic AMP interferon-gamma increases the binding of PBMLs to both epithelioid and spindle-shaped MEC and the endocytic activity of the endothelial cells. These results suggest that cyclic AMP is an important second messenger in the maintenance of several key functions of microvascular endothelial cells. Factors that influence the levels of this messenger in vivo can be expected to influence the angiogenic and immunologic functions of the microvasculature.

  3. The healthy donor profile of immunoregulatory soluble mediators is altered by stem cell mobilization and apheresis.

    Science.gov (United States)

    Melve, Guro Kristin; Ersvaer, Elisabeth; Paulsen Rye, Kristin; Bushra Ahmed, Aymen; Kristoffersen, Einar K; Hervig, Tor; Reikvam, Håkon; Hatfield, Kimberley Joanne; Bruserud, Øystein

    2018-05-01

    Peripheral blood stem cells from healthy donors mobilized by granulocyte colony-stimulating factor (G-CSF) and thereafter harvested by leukapheresis are commonly used for allogeneic stem cell transplantation. Plasma levels of 38 soluble mediators (cytokines, soluble adhesion molecules, proteases, protease inhibitors) were analyzed in samples derived from healthy stem cell donors before G-CSF treatment and after 4 days, both immediately before and after leukapheresis. Donors could be classified into two main subsets based on their plasma mediator profile before G-CSF treatment. Seventeen of 36 detectable mediators were significantly altered by G-CSF; generally an increase in mediator levels was seen, including pro-inflammatory cytokines, soluble adhesion molecules and proteases. Several leukocyte- and platelet-released mediators were increased during apheresis. Both plasma and graft mediator profiles were thus altered and showed correlations to graft concentrations of leukocytes and platelets; these concentrations were influenced by the apheresis device used. Finally, the mediator profile of the allotransplant recipients was altered by graft infusion, and based on their day +1 post-transplantation plasma profile our recipients could be divided into two major subsets that differed in overall survival. G-CSF alters the short-term plasma mediator profile of healthy stem cell donors. These effects together with the leukocyte and platelet levels in the graft determine the mediator profile of the stem cell grafts. Graft infusion also alters the systemic mediator profile of the recipients, but further studies are required to clarify whether such graft-induced alterations have a prognostic impact. Copyright © 2018. Published by Elsevier Inc.

  4. Altered Long- and Short-Range Functional Connectivity in Patients with Betel Quid Dependence: A Resting-State Functional MRI Study

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2016-12-01

    Full Text Available Objective: Addiction is a chronic relapsing brain disease. Brain structural abnormalities may constitute an abnormal neural network that underlies the risk of drug dependence. We hypothesized that individuals with Betel Quid Dependence (BQD have functional connectivity alterations that can be described by long- and short-range functional connectivity density(FCD maps. Methods: We tested this hypothesis using functional magnetic resonance imaging (fMRI data from subjects of the Han ethnic group in Hainan, China. Here, we examined BQD individuals (n = 33 and age-, sex-, and education-matched healthy controls (HCs (n = 32 in a rs-fMRI study to observe FCD alterations associated with the severity of BQD. Results: Compared with HCs, long-range FCD was decreased in the right anterior cingulate cortex (ACC and increased in the left cerebellum posterior lobe (CPL and bilateral inferior parietal lobule (IPL in the BQD group. Short-range FCD was reduced in the right ACC and left dorsolateral prefrontal cortex (dlPFC, and increased in the left CPL. The short-range FCD alteration in the right ACC displayed a negative correlation with the Betel Quid Dependence Scale (BQDS (r=-0.432, P=0.012, and the long-range FCD alteration of left IPL showed a positive correlation with the duration of BQD(r=0.519, P=0.002 in BQD individuals. Conclusions: fMRI revealed differences in long- and short- range FCD in BQD individuals, and these alterations might be due to BQ chewing, BQ dependency, or risk factors for developing BQD.

  5. Proteomic analysis of mitochondria in respiratory epithelial cells infected with human respiratory syncytial virus and functional implications for virus and cell biology.

    Science.gov (United States)

    Munday, Diane C; Howell, Gareth; Barr, John N; Hiscox, Julian A

    2015-03-01

    The aim of this study was to quantitatively characterise the mitochondrial proteome of airway epithelial cells infected with human respiratory syncytial virus (HRSV), a major cause of paediatric illness. Quantitative proteomics, underpinned by stable isotope labelling with amino acids in cell culture, coupled to LC-MS/MS, was applied to mitochondrial fractions prepared from HRSV-infected and mock-infected cells 12 and 24 h post-infection. Datasets were analysed using ingenuity pathway analysis, and the results were validated and characterised using bioimaging, targeted inhibition and gene depletion. The data quantitatively indicated that antiviral signalling proteins converged on mitochondria during HRSV infection. The mitochondrial receptor protein Tom70 was found to act in an antiviral manner, while its chaperone, Hsp90, was confirmed to be a positive viral factor. Proteins associated with different organelles were also co-enriched in the mitochondrial fractions from HRSV-infected cells, suggesting that alterations in organelle dynamics and membrane associations occur during virus infection. Protein and pathway-specific alterations occur to the mitochondrial proteome in a spatial and temporal manner during HRSV infection, suggesting that this organelle may have altered functions. These could be targeted as part of potential therapeutic strategies to disrupt virus biology. © 2014 Royal Pharmaceutical Society.

  6. Vaccination targeting human HER3 alters the phenotype of infiltrating T cells and responses to immune checkpoint inhibition.

    Science.gov (United States)

    Osada, Takuya; Morse, Michael A; Hobeika, Amy; Diniz, Marcio A; Gwin, William R; Hartman, Zachary; Wei, Junping; Guo, Hongtao; Yang, Xiao-Yi; Liu, Cong-Xiao; Kaneko, Kensuke; Broadwater, Gloria; Lyerly, H Kim

    2017-01-01

    Expression of human epidermal growth factor family member 3 (HER3), a critical heterodimerization partner with EGFR and HER2, promotes more aggressive biology in breast and other epithelial malignancies. As such, inhibiting HER3 could have broad applicability to the treatment of EGFR- and HER2-driven tumors. Although lack of a functional kinase domain limits the use of receptor tyrosine kinase inhibitors, HER3 contains antigenic targets for T cells and antibodies. Using novel human HER3 transgenic mouse models of breast cancer, we demonstrate that immunization with recombinant adenoviral vectors encoding full length human HER3 (Ad-HER3-FL) induces HER3-specific T cells and antibodies, alters the T cell infiltrate in tumors, and influences responses to immune checkpoint inhibitions. Both preventative and therapeutic Ad-HER3-FL immunization delayed tumor growth but were associated with both intratumoral PD-1 expressing CD8 + T cells and regulatory CD4 + T cell infiltrates. Immune checkpoint inhibition with either anti-PD-1 or anti-PD-L1 antibodies increased intratumoral CD8 + T cell infiltration and eliminated tumor following preventive vaccination with Ad-HER3-FL vaccine. The combination of dual PD-1/PD-L1 and CTLA4 blockade slowed the growth of tumor in response to Ad-HER3-FL in the therapeutic model. We conclude that HER3-targeting vaccines activate HER3-specific T cells and induce anti-HER3 specific antibodies, which alters the intratumoral T cell infiltrate and responses to immune checkpoint inhibition.

  7. Hypoxia and hypoxia-inducible factors as regulators of T cell development, differentiation, and function

    Science.gov (United States)

    McNamee, Eóin N.; Johnson, Darlynn Korns; Homann, Dirk

    2014-01-01

    Oxygen is a molecule that is central to cellular respiration and viability, yet there are multiple physiologic and pathological contexts in which cells experience conditions of insufficient oxygen availability, a state known as hypoxia. Given the metabolic challenges of a low oxygen environment, hypoxia elicits a range of adaptive responses at the cellular, tissue, and systemic level to promote continued survival and function. Within this context, T lymphocytes are a highly migratory cell type of the adaptive immune system that frequently encounters a wide range of oxygen tensions in both health and disease. It is now clear that oxygen availability regulates T cell differentiation and function, a response orchestrated in large part by the hypoxia-inducible factor transcription factors. Here, we discuss the physiologic scope of hypoxia and hypoxic signaling, the contribution of these pathways in regulating T cell biology, and current gaps in our understanding. Finally, we discuss how emerging therapies that modulate the hypoxic response may offer new modalities to alter T cell function and the outcome of acute and chronic pathologies. PMID:22961658

  8. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells.

    Science.gov (United States)

    Geyh, S; Oz, S; Cadeddu, R-P; Fröbel, J; Brückner, B; Kündgen, A; Fenk, R; Bruns, I; Zilkens, C; Hermsen, D; Gattermann, N; Kobbe, G; Germing, U; Lyko, F; Haas, R; Schroeder, T

    2013-09-01

    Ineffective hematopoiesis is a major characteristic of myelodysplastic syndromes (MDS) causing relevant morbidity and mortality. Mesenchymal stromal cells (MSC) have been shown to physiologically support hematopoiesis, but their contribution to the pathogenesis of MDS remains elusive. We show that MSC from patients across all MDS subtypes (n=106) exhibit significantly reduced growth and proliferative capacities accompanied by premature replicative senescence. Osteogenic differentiation was significantly reduced in MDS-derived MSC, indicated by cytochemical stainings and reduced expressions of Osterix and Osteocalcin. This was associated with specific methylation patterns that clearly separated MDS-MSC from healthy controls and showed a strong enrichment for biological processes associated with cellular phenotypes and transcriptional regulation. Furthermore, in MDS-MSC, we detected altered expression of key molecules involved in the interaction with hematopoietic stem and progenitor cells (HSPC), in particular Osteopontin, Jagged1, Kit-ligand and Angiopoietin as well as several chemokines. Functionally, this translated into a significantly diminished ability of MDS-derived MSC to support CD34+ HSPC in long-term culture-initiating cell assays associated with a reduced cell cycle activity. Taken together, our comprehensive analysis shows that MSC from all MDS subtypes are structurally, epigenetically and functionally altered, which leads to impaired stromal support and seems to contribute to deficient hematopoiesis in MDS.

  9. Inactivation of the Ecs ABC transporter of Staphylococcus aureus attenuates virulence by altering composition and function of bacterial wall.

    Directory of Open Access Journals (Sweden)

    Ing-Marie Jonsson

    2010-12-01

    Full Text Available Ecs is an ATP-binding cassette (ABC transporter present in aerobic and facultative anaerobic gram-positive Firmicutes. Inactivation of Bacillus subtilis Ecs causes pleiotropic changes in the bacterial phenotype including inhibition of intramembrane proteolysis. The molecule(s transported by Ecs is (are still unknown.In this study we mutated the ecsAB operon in two Staphylococcus aureus strains, Newman and LS-1. Phenotypic and functional characterization of these Ecs deficient mutants revealed a defect in growth, increased autolysis and lysostaphin sensitivity, altered composition of cell wall proteins including the precursor form of staphylokinase and an altered bacterial surface texture. DNA microarray analysis indicated that the Ecs deficiency changed expression of the virulence factor regulator protein Rot accompanied by differential expression of membrane transport proteins, particularly ABC transporters and phosphate-specific transport systems, protein A, adhesins and capsular polysaccharide biosynthesis proteins. Virulence of the ecs mutants was studied in a mouse model of hematogenous S. aureus infection. Mice inoculated with the ecs mutant strains developed markedly milder infections than those inoculated with the wild-type strains and had consequently lower mortality, less weight loss, milder arthritis and decreased persistence of staphylococci in the kidneys. The ecs mutants had higher susceptibility to ribosomal antibiotics and plant alkaloids chelerythrine and sanguinarine.Our results show that Ecs is essential for staphylococcal virulence and antimicrobial resistance probably since the transport function of Ecs is essential for the normal structure and function of the cell wall. Thus targeting Ecs may be a new approach in combating staphylococcal infection.

  10. Inactivation of the Ecs ABC transporter of Staphylococcus aureus attenuates virulence by altering composition and function of bacterial wall.

    Science.gov (United States)

    Jonsson, Ing-Marie; Juuti, Jarmo T; François, Patrice; AlMajidi, Rana; Pietiäinen, Milla; Girard, Myriam; Lindholm, Catharina; Saller, Manfred J; Driessen, Arnold J M; Kuusela, Pentti; Bokarewa, Maria; Schrenzel, Jacques; Kontinen, Vesa P

    2010-12-02

    Ecs is an ATP-binding cassette (ABC) transporter present in aerobic and facultative anaerobic gram-positive Firmicutes. Inactivation of Bacillus subtilis Ecs causes pleiotropic changes in the bacterial phenotype including inhibition of intramembrane proteolysis. The molecule(s) transported by Ecs is (are) still unknown. In this study we mutated the ecsAB operon in two Staphylococcus aureus strains, Newman and LS-1. Phenotypic and functional characterization of these Ecs deficient mutants revealed a defect in growth, increased autolysis and lysostaphin sensitivity, altered composition of cell wall proteins including the precursor form of staphylokinase and an altered bacterial surface texture. DNA microarray analysis indicated that the Ecs deficiency changed expression of the virulence factor regulator protein Rot accompanied by differential expression of membrane transport proteins, particularly ABC transporters and phosphate-specific transport systems, protein A, adhesins and capsular polysaccharide biosynthesis proteins. Virulence of the ecs mutants was studied in a mouse model of hematogenous S. aureus infection. Mice inoculated with the ecs mutant strains developed markedly milder infections than those inoculated with the wild-type strains and had consequently lower mortality, less weight loss, milder arthritis and decreased persistence of staphylococci in the kidneys. The ecs mutants had higher susceptibility to ribosomal antibiotics and plant alkaloids chelerythrine and sanguinarine. Our results show that Ecs is essential for staphylococcal virulence and antimicrobial resistance probably since the transport function of Ecs is essential for the normal structure and function of the cell wall. Thus targeting Ecs may be a new approach in combating staphylococcal infection.

  11. Radiation-induced alterations in murine lymphocyte homing patterns. I. Radiolabeling studies

    International Nuclear Information System (INIS)

    Crouse, D.A.; Feldbush, T.L.; Evans, T.C.

    1976-01-01

    In vitro x-irradiation of 51 Cr-labeled spleen, lymph node, bone marrow, or thymus cells was found to alter their subsequent in vivo distribution significantly in syngeneic BDF 1 mice. Irradiated cells demonstrated an increased distribution to the liver and a significantly lower retention in the lungs. Cells going to the lymph nodes or Peyer's patches showed a significant exposure-dependent decrease in homing following irradiation. Irradiated lymph node cells homed in greater numbers to the spleen and bone marrow, while irradiated cells from other sources showed no preferential distribution to the same tissues. Sampling host tissues at various times after irradiation and injection did not demonstrate any return to normal patterns of distribution. The alterations in lymphocyte homing observed after in vitro irradiation appear to be due to the elimination of a selective population of lymphocytes or membrane alterations of viable cells, and the detection of these homing changes is in turn dependent upon the relative numbers of various lymphoid subpopulations which are obtained from different cell sources. Radiation-induced alterations in the normal homing patterns of lymphoid cells may thus be of considerable importance in the evaluation of subsequent functional assays in recipient animals

  12. Visual function alterations in essential tremor: A case report

    Directory of Open Access Journals (Sweden)

    David P. Piñero

    2015-09-01

    Full Text Available Our purpose is to report alterations in contrast sensitivity function (CSF and in the magno, parvo and koniocellular visual pathways by means of a multichannel perimeter in case of an essential tremor (ET. A complete evaluation of the visual function was performed in a 69-year old patient, including the analysis of the chromatic discrimination by the Fansworth–Munsell 100 hue test, the measurement of the CSF by the CSV-1000E test, and the detection of potential alteration patterns in the magno, parvo and koniocellular visual pathways by means of a multichannel perimeter. Visual acuity and intraocular pressure (IOP were within the ranges of normality in both eyes. No abnormalities were detected in the fundoscopic examination and in the optical coherence tomography (OCT exam. The results of the color vision examination were also within the ranges of normality. A significant decrease in the achromatic CSFs for right eye (RE and left eye (LE was detected for all spatial frequencies. The statistical global values provided by the multichannel perimeter confirms that there were significant absolute sensitivity losses compared to the normal pattern in RE. In the LE, only a statistically significant decrease in sensitivity was detected for the blue-yellow (BY channel. The pattern standard deviation (PSD values obtained in our patient indicated that there were significant localized losses compared to the normality pattern in the achromatic channel of the RE and in the red-green (RG channel of the LE. Some color vision alterations may be present in ET that cannot be detected with conventional color vision tests, such as the FM 100 Hue.

  13. Androgens Exert a Cysticidal Effect upon Taenia crassiceps by Disrupting Flame Cell Morphology and Function

    Science.gov (United States)

    Ambrosio, Javier R.; Valverde-Islas, Laura; Nava-Castro, Karen E.; Palacios- Arreola, M. Isabel; Ostoa-Saloma, Pedro; Reynoso-Ducoing, Olivia; Escobedo, Galileo; Ruíz-Rosado, Azucena; Dominguez-Ramírez, Lenin; Morales-Montor, Jorge

    2015-01-01

    The effects of testosterone (T4) and dihydrotestosterone (DHT) on the survival of the helminth cestode parasite Taenia crassiceps, as well as their effects on actin, tubulin and myosin expression and their assembly into the excretory system of flame cells are described in this paper. In vitro evaluations on parasite viability, flow cytometry, confocal microscopy, video-microscopy of live flame cells, and docking experiments of androgens interacting with actin, tubulin, and myosin were conducted. Our results show that T4 and DHT reduce T. crassiceps viability in a dose- and time-dependent fashion, reaching 90% of mortality at the highest dose used (40 ng/ml) and time exposed (10 days) in culture. Androgen treatment does not induce differences in the specific expression pattern of actin, tubulin, and myosin isoforms as compared with control parasites. Confocal microscopy demonstrated a strong disruption of the parasite tegument, with reduced assembly, shape, and motion of flame cells. Docking experiments show that androgens are capable of affecting parasite survival and flame cell morphology by directly interacting with actin, tubulin and myosin without altering their protein expression pattern. We show that both T4 and DHT are able to bind actin, tubulin, and myosin affecting their assembly and causing parasite intoxication due to impairment of flame cell function. Live flame cell video microscopy showing a reduced motion as well changes in the shape of flame cells are also shown. In summary, T4 and DHT directly act on T. crassiceps cysticerci through altering parasite survival as well as the assembly and function of flame cells. PMID:26076446

  14. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells

    International Nuclear Information System (INIS)

    Bustos, Rodrigo I.; Jensen, Erik L.; Ruiz, Lina M.; Rivera, Salvador; Ruiz, Sebastián; Simon, Felipe; Riedel, Claudia; Ferrick, David; Elorza, Alvaro A.

    2013-01-01

    Highlights: •In copper deficiency, cell proliferation is not affected. In turn, cell differentiation is impaired. •Enlarged mitochondria are due to up-regulation of MNF2 and OPA1. •Mitochondria turn off respiratory chain and ROS production. •Energy metabolism switch from mitochondria to glycolysis. -- Abstract: Copper is essential in cell physiology, participating in numerous enzyme reactions. In mitochondria, copper is a cofactor for respiratory complex IV, the cytochrome c oxidase. Low copper content is associated with anemia and the appearance of enlarged mitochondria in erythropoietic cells. These findings suggest a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis, which has not been explored so far. Here, we describe that bathocuproine disulfonate-induced copper deficiency does not alter erythropoietic cell proliferation nor induce apoptosis. However it does impair erythroid differentiation, which is associated with a metabolic switch between the two main energy-generating pathways. That is, from mitochondrial function to glycolysis. Switching off mitochondria implies a reduction in oxygen consumption and ROS generation along with an increase in mitochondrial membrane potential. Mitochondrial fusion proteins MFN2 and OPA1 were up-regulated along with the ability of mitochondria to fuse. Morphometric analysis of mitochondria did not show changes in total mitochondrial biomass but rather bigger mitochondria because of increased fusion. Similar results were also obtained with human CD34+, which were induced to differentiate into red blood cells. In all, we have shown that adequate copper levels are important for maintaining proper mitochondrial function and for erythroid differentiation where the energy metabolic switch plus the up-regulation of fusion proteins define an adaptive response to copper deprivation to keep cells alive

  15. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells

    Energy Technology Data Exchange (ETDEWEB)

    Bustos, Rodrigo I.; Jensen, Erik L.; Ruiz, Lina M.; Rivera, Salvador; Ruiz, Sebastián [Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago (Chile); Simon, Felipe; Riedel, Claudia [Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago (Chile); Millennium Institute of Immunology and Immunotherapy, Santiago (Chile); Ferrick, David [Seahorse Bioscience, Billerica, MA (United States); Elorza, Alvaro A., E-mail: aelorza@unab.cl [Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago (Chile); Millennium Institute of Immunology and Immunotherapy, Santiago (Chile)

    2013-08-02

    Highlights: •In copper deficiency, cell proliferation is not affected. In turn, cell differentiation is impaired. •Enlarged mitochondria are due to up-regulation of MNF2 and OPA1. •Mitochondria turn off respiratory chain and ROS production. •Energy metabolism switch from mitochondria to glycolysis. -- Abstract: Copper is essential in cell physiology, participating in numerous enzyme reactions. In mitochondria, copper is a cofactor for respiratory complex IV, the cytochrome c oxidase. Low copper content is associated with anemia and the appearance of enlarged mitochondria in erythropoietic cells. These findings suggest a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis, which has not been explored so far. Here, we describe that bathocuproine disulfonate-induced copper deficiency does not alter erythropoietic cell proliferation nor induce apoptosis. However it does impair erythroid differentiation, which is associated with a metabolic switch between the two main energy-generating pathways. That is, from mitochondrial function to glycolysis. Switching off mitochondria implies a reduction in oxygen consumption and ROS generation along with an increase in mitochondrial membrane potential. Mitochondrial fusion proteins MFN2 and OPA1 were up-regulated along with the ability of mitochondria to fuse. Morphometric analysis of mitochondria did not show changes in total mitochondrial biomass but rather bigger mitochondria because of increased fusion. Similar results were also obtained with human CD34+, which were induced to differentiate into red blood cells. In all, we have shown that adequate copper levels are important for maintaining proper mitochondrial function and for erythroid differentiation where the energy metabolic switch plus the up-regulation of fusion proteins define an adaptive response to copper deprivation to keep cells alive.

  16. Alteration of split renal function during Captopril treatment

    International Nuclear Information System (INIS)

    Aburano, Tamio; Takayama, Teruhiko; Nakajima, Kenichi; Tonami, Norihisa; Hisada, Kinichi; Yasuhara, Shuichirou; Miyamori, Isamu; Takeda, Ryoyu

    1987-01-01

    Two different methods to evaluate the alteration of split renal function following continued Captopril treatment were studied in a total of 21 patients with hypertension. Eight patients with renovascular hypertension (five with unilateral renal artery stenosis and three with bilateral renal artery stenoses), three patients with diabetic nephropathy, one patient with primary aldosteronism, and nine patients with essential hypertension were included. The studies were performed the day prior to receiving Captopril (baseline), and 6th or 7th day following continued Captopril treatment (37.5 mg or 75 mg/day). Split effective renal plasma flow (ERPF) and glomerular filtration rate (GFR) after injections of I-131 hippuran and Tc-99m DTPA were measured using kidney counting corrected for depth and dose, described by Schlegel and Gates. In the patients with renovascular hypertension, split GFR in the stenotic kidney was significantly decreased 6th or 7th day following continued Captopril treatment compared to a baseline value. And split ERPF in the stenotic kidney was slightly increased although significant increase of split ERPF was not shown. In the patients with diabetic nephropathy, primary aldosteronism or essential hypertension, on the other hand, split GFR was not changed and split ERPF was slightly increased. These findings suggest that the Captopril induced alterations of split renal function may be of importance for the diagnosis of renovascular hypertension. For this purpose, split GFR determination is more useful than split ERPF determination. (author)

  17. Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity

    Directory of Open Access Journals (Sweden)

    Thiel Cora S

    2012-01-01

    Full Text Available Abstract In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space.

  18. Phenobarbital Induces Alterations in the Proteome of Hepatocytes and Mesenchymal Cells of Rat Livers

    Science.gov (United States)

    Klepeisz, Philip; Sagmeister, Sandra; Haudek-Prinz, Verena; Pichlbauer, Melanie; Grasl-Kraupp, Bettina; Gerner, Christopher

    2013-01-01

    Preceding studies on the mode of action of non-genotoxic hepatocarcinogens (NGCs) have concentrated on alterations induced in hepatocytes (HCs). A potential role of non-parenchymal liver cells (NPCs) in NGC-driven hepatocarcinogenesis has been largely neglected so far. The aim of this study is to characterize NGC-induced alterations in the proteome profiles of HCs as well as NPCs. We chose the prototypic NGC phenobarbital (PB) which was applied to male rats for a period of 14 days. The livers of PB-treated rats were perfused by collagenase and the cell suspensions obtained were subjected to density gradient centrifugation to separate HCs from NPCs. In addition, HCs and NPC isolated from untreated animals were treated with PB in vitro. Proteome profiling was done by CHIP-HPLC and ion trap mass spectrometry. Proteome analyses of the in vivo experiments showed many of the PB effects previously described in HCs by other methods, e.g. induction of phase I and phase II drug metabolising enzymes. In NPCs proteins related to inflammation and immune regulation such as PAI-1 and S100-A10, ADP-ribosyl cyclase 1 and to cell migration such as kinesin-1 heavy chain, myosin regulatory light chain RLC-A and dihydropyrimidinase-related protein 1 were found to be induced, indicating major PB effects on these cells. Remarkably, in vitro treatment of HCs and NPCs with PB hardly reproduced the proteome alterations observed in vivo, indicating differences of NGC induced responses of cells at culture conditions compared to the intact organism. To conclude, the present study clearly demonstrated that PB induces proteome alterations not only in HCs but also in NPCs. Thus, any profound molecular understanding on the mode of action of NGCs has to consider effects on cells of the hepatic mesenchyme. PMID:24204595

  19. Phenobarbital induces alterations in the proteome of hepatocytes and mesenchymal cells of rat livers.

    Directory of Open Access Journals (Sweden)

    Philip Klepeisz

    Full Text Available Preceding studies on the mode of action of non-genotoxic hepatocarcinogens (NGCs have concentrated on alterations induced in hepatocytes (HCs. A potential role of non-parenchymal liver cells (NPCs in NGC-driven hepatocarcinogenesis has been largely neglected so far. The aim of this study is to characterize NGC-induced alterations in the proteome profiles of HCs as well as NPCs. We chose the prototypic NGC phenobarbital (PB which was applied to male rats for a period of 14 days. The livers of PB-treated rats were perfused by collagenase and the cell suspensions obtained were subjected to density gradient centrifugation to separate HCs from NPCs. In addition, HCs and NPC isolated from untreated animals were treated with PB in vitro. Proteome profiling was done by CHIP-HPLC and ion trap mass spectrometry. Proteome analyses of the in vivo experiments showed many of the PB effects previously described in HCs by other methods, e.g. induction of phase I and phase II drug metabolising enzymes. In NPCs proteins related to inflammation and immune regulation such as PAI-1 and S100-A10, ADP-ribosyl cyclase 1 and to cell migration such as kinesin-1 heavy chain, myosin regulatory light chain RLC-A and dihydropyrimidinase-related protein 1 were found to be induced, indicating major PB effects on these cells. Remarkably, in vitro treatment of HCs and NPCs with PB hardly reproduced the proteome alterations observed in vivo, indicating differences of NGC induced responses of cells at culture conditions compared to the intact organism. To conclude, the present study clearly demonstrated that PB induces proteome alterations not only in HCs but also in NPCs. Thus, any profound molecular understanding on the mode of action of NGCs has to consider effects on cells of the hepatic mesenchyme.

  20. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.

    Science.gov (United States)

    Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D

    2015-03-01

    Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The brain functional connectome is robustly altered by lack of sleep.

    Science.gov (United States)

    Kaufmann, Tobias; Elvsåshagen, Torbjørn; Alnæs, Dag; Zak, Nathalia; Pedersen, Per Ø; Norbom, Linn B; Quraishi, Sophia H; Tagliazucchi, Enzo; Laufs, Helmut; Bjørnerud, Atle; Malt, Ulrik F; Andreassen, Ole A; Roussos, Evangelos; Duff, Eugene P; Smith, Stephen M; Groote, Inge R; Westlye, Lars T

    2016-02-15

    Sleep is a universal phenomenon necessary for maintaining homeostasis and function across a range of organs. Lack of sleep has severe health-related consequences affecting whole-body functioning, yet no other organ is as severely affected as the brain. The neurophysiological mechanisms underlying these deficits are poorly understood. Here, we characterize the dynamic changes in brain connectivity profiles inflicted by sleep deprivation and how they deviate from regular daily variability. To this end, we obtained functional magnetic resonance imaging data from 60 young, adult male participants, scanned in the morning and evening of the same day and again the following morning. 41 participants underwent total sleep deprivation before the third scan, whereas the remainder had another night of regular sleep. Sleep deprivation strongly altered the connectivity of several resting-state networks, including dorsal attention, default mode, and hippocampal networks. Multivariate classification based on connectivity profiles predicted deprivation state with high accuracy, corroborating the robustness of the findings on an individual level. Finally, correlation analysis suggested that morning-to-evening connectivity changes were reverted by sleep (control group)-a pattern which did not occur after deprivation. We conclude that both, a day of waking and a night of sleep deprivation dynamically alter the brain functional connectome. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Alpha-ketoglutarate and N-acetyl cysteine protect PC12 cells from cyanide-induced cytotoxicity and altered energy metabolism.

    Science.gov (United States)

    Satpute, R M; Hariharakrishnan, J; Bhattacharya, R

    2008-01-01

    Cyanide is a rapidly acting neurotoxin that inhibits cellular respiration and energy metabolism leading to histotoxic hypoxia. This results in the dissipation of mitochondrial membrane potential (MMP) accompanied by decreased cellular ATP content which in turn is responsible for increased levels of intracellular calcium ions ([Ca(2+)](i)) and total lactic acid content of the cells. Rat pheochromocytoma (PC12) cells possess much of the biochemical machinery associated with synaptic neurons. In the present study, we evaluated the cytoprotective effects of alpha-ketoglutarate (A-KG) and N-acetylcysteine (NAC) against cyanide-induced cytotoxicity and altered energy metabolism in PC12 cells. Cyanide-antagonism by A-KG is attributed to cyanohydrin formation whereas NAC is known for its antioxidant properties. Data on leakage of intracellular lactate dehydrogenase and mitochondrial function (MTT assay) revealed that simultaneous treatment of A-KG (0.5 mM) and NAC (0.25 mM) significantly prevented the cytotoxicity of cyanide. Also, cellular ATP content was found to improve, followed by restoration of MMP, intracellular calcium [Ca(2+)](i) and lactic acid levels. Treatment with A-KG and NAC also attenuated the levels of peroxides generated by cyanide. The study indicates that combined administration of A-KG and NAC protected the cyanide-challenged PC12 cells by resolving the altered energy metabolism. The results have implications in the development of new treatment regimen for cyanide poisoning.

  3. α Cell Function and Gene Expression Are Compromised in Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Marcela Brissova

    2018-03-01

    Full Text Available Many patients with type 1 diabetes (T1D have residual β cells producing small amounts of C-peptide long after disease onset but develop an inadequate glucagon response to hypoglycemia following T1D diagnosis. The features of these residual β cells and α cells in the islet endocrine compartment are largely unknown, due to the difficulty of comprehensive investigation. By studying the T1D pancreas and isolated islets, we show that remnant β cells appeared to maintain several aspects of regulated insulin secretion. However, the function of T1D α cells was markedly reduced, and these cells had alterations in transcription factors constituting α and β cell identity. In the native pancreas and after placing the T1D islets into a non-autoimmune, normoglycemic in vivo environment, there was no evidence of α-to-β cell conversion. These results suggest an explanation for the disordered T1D counterregulatory glucagon response to hypoglycemia.

  4. Altered brain rhythms and functional network disruptions involved in patients with generalized fixation-off epilepsy

    OpenAIRE

    Solana Sánchez, Ana Beatriz; Hernández Tamames, J.A.; Molina, E.; Martínez, K.; Pineda Pardo, José Ángel; Bruña Fernandez, Ricardo; Toledano, Rafael; San Antonio-Arce, Victoria; Garcia Morales, Irene; Gil Nagel, Antonio; Alfayate, E.; Álvarez Linera, Juan; Pozo Guerrero, Francisco del

    2012-01-01

    Fixation-off sensitivity (FOS) denotes the forms of epilepsy elicited by elimination of fixation. FOS-IGE patients are rare cases [1]. In a previous work [2] we showed that two FOS-IGE patients had different altered EEG rhythms when closing eyes; only beta band was altered in patient 1 while theta, alpha and beta were altered in patient 2. In the present work, we explain the relationship between the altered brain rhythms in these patients and the disruption in functional brain net...

  5. Heat shock gene expression and cytoskeletal alterations in mouse neuroblastoma cells

    NARCIS (Netherlands)

    Bergen en Henegouwen, P.M.P. van; Linnemans, W.A.M.

    The cytoskeleton of neuroblastoma cells, clone Neuro 2A, is altered by two stress conditions: heat shock and arsenite treatment. Microtubules are reorganized, intermediate filaments are aggregated around the nucleus, and the number of stress fibers is reduced. Since both stress modalities induce

  6. Connectomics and neuroticism: an altered functional network organization.

    Science.gov (United States)

    Servaas, Michelle N; Geerligs, Linda; Renken, Remco J; Marsman, Jan-Bernard C; Ormel, Johan; Riese, Harriëtte; Aleman, André

    2015-01-01

    The personality trait neuroticism is a potent risk marker for psychopathology. Although the neurobiological basis remains unclear, studies have suggested that alterations in connectivity may underlie it. Therefore, the aim of the current study was to shed more light on the functional network organization in neuroticism. To this end, we applied graph theory on resting-state functional magnetic resonance imaging (fMRI) data in 120 women selected based on their neuroticism score. Binary and weighted brain-wide graphs were constructed to examine changes in the functional network structure and functional connectivity strength. Furthermore, graphs were partitioned into modules to specifically investigate connectivity within and between functional subnetworks related to emotion processing and cognitive control. Subsequently, complex network measures (ie, efficiency and modularity) were calculated on the brain-wide graphs and modules, and correlated with neuroticism scores. Compared with low neurotic individuals, high neurotic individuals exhibited a whole-brain network structure resembling more that of a random network and had overall weaker functional connections. Furthermore, in these high neurotic individuals, functional subnetworks could be delineated less clearly and the majority of these subnetworks showed lower efficiency, while the affective subnetwork showed higher efficiency. In addition, the cingulo-operculum subnetwork demonstrated more ties with other functional subnetworks in association with neuroticism. In conclusion, the 'neurotic brain' has a less than optimal functional network organization and shows signs of functional disconnectivity. Moreover, in high compared with low neurotic individuals, emotion and salience subnetworks have a more prominent role in the information exchange, while sensory(-motor) and cognitive control subnetworks have a less prominent role.

  7. Phenobarbital alters hepatic Mrp2 function by direct and indirect interactions

    NARCIS (Netherlands)

    Patel, NJ; Zamek-Gliszczynski, MJ; Zhang, PJ; Han, YH; Jansen, PLM; Meier, PJ; Stieger, B; Brouwer, KLR

    Phenobarbital (PB) treatment impairs the biliary excretion of some organic anions. One mechanism may involve direct competition for biliary excretion by PB and/or a PB metabolite. Alternatively, PB may alter the expression and/or function of hepatic organic anion transport proteins. The role of

  8. Phenobarbital alters hepatic Mrp2 function by direct and indirect interactions

    NARCIS (Netherlands)

    Patel, Nita J.; Zamek-Gliszczynski, Maciej J.; Zhang, Peijin; Han, Yong-Hae; Jansen, Peter L. M.; Meier, Peter J.; Stieger, Bruno; Brouwer, Kim L. R.

    2003-01-01

    Phenobarbital (PB) treatment impairs the biliary excretion of some organic anions. One mechanism may involve direct competition for biliary excretion by PB and/or a PB metabolite. Alternatively, PB may alter the expression and/or function of hepatic organic anion transport proteins. The role of

  9. Functional Task Test: 1. Sensorimotor changes Associated with Postflight Alterations in Astronaut Functional Task Performance

    Science.gov (United States)

    Bloomberg, J. J.; Arzeno, N. H.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Platts, S. H.; Peters, B. T.; hide

    2011-01-01

    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. This presentation will focus on the sensorimotor contributions to postflight functional performance.

  10. Extinction order and altered community structure rapidly disrupt ecosystem functioning.

    Science.gov (United States)

    Larsen, Trond H; Williams, Neal M; Kremen, Claire

    2005-05-01

    By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences.

  11. Time-sequential observation of spindle and phragmoplast orientation in BY-2 cells with altered cortical actin microfilament patterning.

    Science.gov (United States)

    Kojo, Kei H; Yasuhara, Hiroki; Hasezawa, Seiichiro

    2014-01-01

    Precise division plane determination is essential for plant development. At metaphase, a dense actin microfilament meshwork appears on both sides of the cell center, forming a characteristic cortical actin microfilament twin peak pattern in BY-2 cells. We previously reported a strong correlation between altered cortical actin microfilament patterning and an oblique mitotic spindle orientation, implying that these actin microfilament twin peaks play a role in the regulation of mitotic spindle orientation. In the present study, time-sequential observation was used to reveal the progression from oblique phragmoplast to oblique cell plate orientation in cells with altered cortical actin microfilament patterning. In contrast to cells with normal actin microfilament twin peaks, oblique phragmoplast reorientation was rarely observed in cells with altered cortical actin microfilament patterning. These results support the important roles of cortical actin microfilament patterning in division plane orientation.

  12. Cell volume change through water efflux impacts cell stiffness and stem cell fate

    NARCIS (Netherlands)

    Guo, Ming; Pegoraro, Adrian F.; Mao, Angelo; Zhou, Enhua H.; Arany, Praveen R.; Han, Yulong; Burnette, Dylan T.; Jensen, Mikkel H.; Kasza, Karen E.; Moore, Jeffrey R.; Mackintosh, Frederick C.; Fredberg, Jeffrey J.; Mooney, David J.; Lippincott-Schwartz, Jennifer; Weitz, David A.

    2017-01-01

    Cells alter their mechanical properties in response to their local microenvironment; this plays a role in determining cell function and can even influence stem cell fate. Here, we identify a robust and unified relationship between cell stiffness and cell volume. As a cell spreads on a substrate, its

  13. Cell surface glycan alterations in epithelial mesenchymal transition process of Huh7 hepatocellular carcinoma cell.

    Directory of Open Access Journals (Sweden)

    Shan Li

    Full Text Available BACKGROUND AND OBJECTIVE: Due to recurrence and metastasis, the mortality of Hepatocellular carcinoma (HCC is high. It is well known that the epithelial mesenchymal transition (EMT and glycan of cell surface glycoproteins play pivotal roles in tumor metastasis. The goal of this study was to identify HCC metastasis related differential glycan pattern and their enzymatic basis using a HGF induced EMT model. METHODOLOGY: HGF was used to induce HCC EMT model. Lectin microarray was used to detect the expression of cell surface glycan and the difference was validated by lectin blot and fluorescence cell lectin-immunochemistry. The mRNA expression levels of glycotransferases were determined by qRT-PCR. RESULTS: After HGF treatment, the Huh7 cell lost epithelial characteristics and obtained mesenchymal markers. These changes demonstrated that HGF could induce a typical cell model of EMT. Lectin microarray analysis identified a decreased affinity in seven lectins ACL, BPL, JAC, MPL, PHA-E, SNA, and SBA to the glycan of cell surface glycoproteins. This implied that glycan containing T/Tn-antigen, NA2 and bisecting GlcNAc, Siaα2-6Gal/GalNAc, terminal α or βGalNAc structures were reduced. The binding ability of thirteen lectins, AAL, LCA, LTL, ConA, NML, NPL, DBA, HAL, PTL II, WFL, ECL, GSL II and PHA-L to glycan were elevated, and a definite indication that glycan containing terminal αFuc and ± Sia-Le, core fucose, α-man, gal-β(α GalNAc, β1,6 GlcNAc branching and tetraantennary complex oligosaccharides structures were increased. These results were further validated by lectin blot and fluorescence cell lectin-immunochemistry. Furthermore, the mRNA expression level of Mgat3 decreased while that of Mgat5, FucT8 and β3GalT5 increased. Therefore, cell surface glycan alterations in the EMT process may coincide with the expression of glycosyltransferase. CONCLUSIONS: The findings of this study systematically clarify the alterations of cell surface

  14. Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects.

    Science.gov (United States)

    Gliemann, Lasse; Rytter, Nicolai; Lindskrog, Mads; Slingsby, Martina H Lundberg; Åkerström, Thorbjörn; Sylow, Lykke; Richter, Erik A; Hellsten, Ylva

    2017-08-15

    Mechanotransduction in endothelial cells is a central mechanism in the regulation of vascular tone and vascular remodelling Mechanotransduction and vascular function may be affected by high sugar levels in plasma because of a resulting increase in oxidative stress and increased levels of advanced glycation end-products (AGE). In healthy young subjects, 2 weeks of daily supplementation with 3 × 75 g of sucrose was found to reduce blood flow in response to passive lower leg movement and in response to 12 W of knee extensor exercise. This vascular impairment was paralleled by up-regulation of platelet endothelial cell adhesion molecule (PECAM)-1, endothelial nitric oxide synthase, NADPH oxidase and Rho family GTPase Rac1 protein expression, an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. There were no measurable changes in AGE levels. The findings of the present study demonstrate that daily high sucrose intake markedly affects mechanotransduction proteins and has a detrimental effect on vascular function. Endothelial mechanotransduction is important for vascular function but alterations and activation of vascular mechanosensory proteins have not been investigated in humans. In endothelial cell culture, simple sugars effectively impair mechanosensor proteins. To study mechanosensor- and vascular function in humans, 12 young healthy male subjects supplemented their diet with 3 × 75 g sucrose day -1 for 14 days in a randomized cross-over design. Before and after the intervention period, the hyperaemic response to passive lower leg movement and active knee extensor exercise was determined by ultrasound doppler. A muscle biopsy was obtained from the thigh muscle before and after acute passive leg movement to allow assessment of protein amounts and the phosphorylation status of mechanosensory proteins and NADPH oxidase. The sucrose intervention led to a reduced flow

  15. Stable alterations of CD44 isoform expression in prostate cancer cells decrease invasion and growth and alter ligand binding and chemosensitivity

    International Nuclear Information System (INIS)

    Yang, Kui; Tang, Yaqiong; Habermehl, Gabriel K; Iczkowski, Kenneth A

    2010-01-01

    Dysregulated CD44 expression characterizes most human cancers, including prostate cancer (PCa). PCa loses expression of CD44 standard (CD44s) that is present in benign epithelium, and overexpresses the novel splice variant isoform, CD44v7-10. Using retroviral gene delivery to PC-3M PCa cells, we expressed luciferase-only, enforced CD44s re-expression as a fusion protein with luciferase at its C-terminus or as a protein separate from luciferase, or knocked down CD44v7-10 by RNAi. Invasion, migration, proliferation, soft agar colony formation, adhesion, Docetaxel sensitivity, and xenograft growth assays were carried out. Expression responses of merlin, a CD44 binding partner, and growth-permissive phospho-merlin, were assessed by western blot. Compared to luciferase-only PC-3M cells, all three treatments reduced invasion and migration. Growth and soft agar colony formation were reduced only by re-expression of CD44s as a separate or fusion protein but not CD44v7-10 RNAi. Hyaluronan and osteopontin binding were greatly strengthened by CD44s expression as a separate protein, but not a fusion protein. CD44v7-10 RNAi in PC-3M cells caused marked sensitization to Docetaxel; the two CD44s re-expression approaches caused minimal sensitization. In limited numbers of mouse subcutaneous xenografts, all three alterations produced only nonsignificant trends toward slower growth compared with luciferase-only controls. The expression of CD44s as a separate protein, but not a fusion protein, caused emergence of a strongly-expressed, hypophosphorylated species of phospho-merlin. Stable re-expression of CD44s reduces PCa growth and invasion in vitro, and possibly in vivo, suggesting CD44 alterations have potential as gene therapy. When the C-terminus of CD44s is fused to another protein, most phenotypic effects are lessened, particularly hyaluronan adhesion. Finally, CD44v7-10, although it was not functionally significant for growth, may be a target for chemosensitization

  16. Alterations induced in Escherichia Coli cells by gamma radiation

    International Nuclear Information System (INIS)

    Kappke, J.; Schelin, H.R.; Paschuk, S.A.; Denyak, V.; Silva, E.R. da; Jesus, E.F.O. de; Lopes, R.T.; Carlin, N.; Toledo, E.S.

    2007-01-01

    Modifications occurred in Escherichia coli cells exposed to gamma radiation ( 60 Co source) were investigated. The irradiations were done at the LIN-COPPE laboratory of the UFRJ and the analysis at the Biology Department of the UTFPR. The E. coli cells were irradiated with 30, 60, 90, 120, 150, 180, 210, 240, 300, 480, 600 e 750 Gy doses. The samples were analyzed with Gram-stain, biochemical tests in EPM, MIO and Lysine Broth, Simmons Cytrate Medium and Rhamnose Broth, antibiogram and isolation of auxotrophic mutants. It was observed that for the received doses the E. coli did not show morphological alterations in the tests. Some E. Coli cells showed to be able to deaminade the L-tryptophan or they changed their sensibility for amoxillin and cephaloonine after the irradiation. The existence of aauxotrophic mutants after irradiation was also verified. (author)

  17. Structural and Functional Alterations in Neocortical Circuits after Mild Traumatic Brain Injury

    Science.gov (United States)

    Vascak, Michal

    National concern over traumatic brain injury (TBI) is growing rapidly. Recent focus is on mild TBI (mTBI), which is the most prevalent injury level in both civilian and military demographics. A preeminent sequelae of mTBI is cognitive network disruption. Advanced neuroimaging of mTBI victims supports this premise, revealing alterations in activation and structure-function of excitatory and inhibitory neuronal systems, which are essential for network processing. However, clinical neuroimaging cannot resolve the cellular and molecular substrates underlying such changes. Therefore, to understand the full scope of mTBI-induced alterations it is necessary to study cortical networks on the microscopic level, where neurons form local networks that are the fundamental computational modules supporting cognition. Recently, in a well-controlled animal model of mTBI, we demonstrated in the excitatory pyramidal neuron system, isolated diffuse axonal injury (DAI), in concert with electrophysiological abnormalities in nearby intact (non-DAI) neurons. These findings were consistent with altered axon initial segment (AIS) intrinsic activity functionally associated with structural plasticity, and/or disturbances in extrinsic systems related to parvalbumin (PV)-expressing interneurons that form GABAergic synapses along the pyramidal neuron perisomatic/AIS domains. The AIS and perisomatic GABAergic synapses are domains critical for regulating neuronal activity and E-I balance. In this dissertation, we focus on the neocortical excitatory pyramidal neuron/inhibitory PV+ interneuron local network following mTBI. Our central hypothesis is that mTBI disrupts neuronal network structure and function causing imbalance of excitatory and inhibitory systems. To address this hypothesis we exploited transgenic and cre/lox mouse models of mTBI, employing approaches that couple state-of-the-art bioimaging with electrophysiology to determine the structuralfunctional alterations of excitatory and

  18. Comparison of altered expression of histocompatibility antigens with altered immune function in murine spleen cells treated with ultraviolet radiation and/or TPA

    International Nuclear Information System (INIS)

    Pretell, J.O.; Cone, R.E.

    1985-01-01

    Previous studies in our laboratory demonstrated that several treatments that inhibited the ability of cells to stimulate the mixed lymphocyte reaction (MLR) also blocked the shedding of histocompatibility antigens and Ia antigens from murine spleen cells. In the present studies, one of these treatments, ultraviolet radiation (UV), was shown to cause an initial loss in the density of H-2K, IA, and IE antigens prior to the block in shedding observed after culture of these cells. Further analysis revealed that the UV-induced loss of antigens could be prevented by the presence of colchicine during irradiation. Biosynthetic analyses revealed the IA antigen synthesis was also inhibited in the UV-irradiated cells. Examination of the effects of a second agent, 12-0-tetradecanoylphorbol-13-acetate (TPA) on the turnover of histocompatibility antigens revealed that the biosynthesis and shedding of these antigens were accelerated by this agent. However, addition of TPA to UV-irradiated cells did not result in a reversal of the UV-induced block in biosynthesis of IA antigens. Results of immune function assays correlated with the biochemical studies: UV-irradiation inhibited the generation of the MLR, but TPA enhanced this reaction, and addition of TPA to mixed lymphocyte cultures with UV-irradiated stimulators did not reverse the UV-induced inhibition. These results suggest that, although the turnover of histocompatibility antigens may be affected by TPA and UV in an antagonistic fashion, additional factors other than the expression of histocompatibility antigens are operating in the inhibition of stimulation of an MLR by UV radiation or its enhancement by TPA

  19. Alteration of rod and cone function in children with Usher syndrome.

    Science.gov (United States)

    Malm, Eva; Ponjavic, Vesna; Möller, Claes; Kimberling, William J; Stone, Edwin S; Andréasson, Sten

    2011-01-01

    To evaluate the retinal function, with emphasis on phenotype and rate of progression, in infants and children with different genotypes of Usher syndrome. Fourteen children (2-10 years of age) with retinitis pigmentosa and hearing impairment were examined with full-field electroretinography (ERG) during general anesthesia, ophthalmologic examination, and genetic analysis. Five children were repeatedly examined (follow-up 5-10 years) with full-field ERG under local anesthesia and in 2 children multifocal ERG and optical coherence tomography (OCT) were performed. These results were compared to full-field ERG data from 58 children without retinal eye disorder. Six children were genotyped as Usher 1B, 2A, and 3A. Full-field ERG demonstrated early alterations corresponding to a rod-cone dystrophy in all children. A remaining rod function could be verified in the majority of the children up to 4 years of age. After 4 years of age, there was a further deterioration of the rod function; the progress was severe in Usher types 1 and 2 and moderate in Usher type 3. In all children, the cone function was moderately reduced, in a few cases almost normal. The results from the 58 children without retinal disorder confirm that full-field ERG during general anesthesia is reliable. Multifocal ERG confirmed a preserved central cone function and in OCT there were discrete structural alterations. Full-field ERG during general anesthesia in children with Usher syndrome demonstrates variable phenotypes and different degrees in rate of progression during childhood.

  20. Parallel Alterations of Functional Connectivity during Execution and Imagination after Motor Imagery Learning

    Science.gov (United States)

    Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li

    2012-01-01

    Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that

  1. Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells

    International Nuclear Information System (INIS)

    Kucerova, Lucia; Skolekova, Svetlana; Matuskova, Miroslava; Bohac, Martin; Kozovska, Zuzana

    2013-01-01

    Mesenchymal stromal cells (MSCs) represent heterogeneous cell population suitable for cell therapies in regenerative medicine. MSCs can also substantially affect tumor biology due to their ability to be recruited to the tumor stroma and interact with malignant cells via direct contacts and paracrine signaling. The aim of our study was to characterize molecular changes dictated by adipose tissue-derived mesenchymal stromal cells (AT-MSCs) and the effects on drug responses in human breast cancer cells SKBR3. The tumor cells were either directly cocultured with AT-MSCs or exposed to MSCs-conditioned medium (MSC-CM). Changes in cell biology were evaluated by kinetic live cell imaging, fluorescent microscopy, scratch wound assay, expression analysis, cytokine secretion profiling, ATP-based viability and apoptosis assays. The efficiency of cytotoxic treatment in the presence of AT-MSCs or MSCs-CM was analyzed. The AT-MSCs altered tumor cell morphology, induced epithelial-to-mesenchymal transition, increased mammosphere formation, cell confluence and migration of SKBR3. These features were attributed to molecular changes induced by MSCs-secreted cytokines and chemokines in breast cancer cells. AT-MSCs significantly inhibited the proliferation of SKBR3 cells in direct cocultures which was shown to be dependent on the SDF-1α/CXCR4 signaling axis. MSC-CM-exposed SKBR3 or SKBR3 in direct coculture with AT-MSCs exhibited increased chemosensitivity and induction of apoptosis in response to doxorubicin and 5-fluorouracil. Our work further highlights the multi-level nature of tumor-stromal cell interplay and demonstrates the capability of AT-MSCs and MSC-secreted factors to alter the anti-tumor drug responses

  2. Influence of sterilization methods on cell behavior and functionality of osteoblasts cultured on TiO2 nanotubes

    International Nuclear Information System (INIS)

    Oh, Seunghan; Brammer, Karla S.; Moon, Kyung-Suk; Bae, Ji-Myung; Jin, Sungho

    2011-01-01

    We investigated the adhesion, proliferation and osteogenic functionality of osteoblasts cultured on titanium dioxide (TiO 2 ) nanotubes in response to different sterilization methods (dry autoclaving vs. wet autoclaving). We prepared various sizes (30-100 nm diameter) of TiO 2 nanotubes on titanium substrates by anodization, sterilized nanotubes by different conditions, and seeded osteoblast cells onto the nanotube surfaces with two different cell seeding densities (10,000 vs. 50,000 cells/well in 12-culture well). The result of this study indicates that the adhesion, proliferation and alkaline phosphatase activity of osteoblasts cultured on only the larger 70 and 100 nm TiO 2 nanotube arrays were dramatically changed by the different sterilization conditions at a low cell seeding density. However, with a higher cell seeding density (50,000 cells/well in 12-cell culture well), the results revealed no significant difference among altered nanotube geometry, 30-100 nm diameters, nor sterilization methods. Next, it was revealed that the nanofeatures of proteins adhered on nanotubular TiO 2 morphology are altered by the sterilization method. It was determined that this protein adhesion effect, in combination with the cell density of osteoblasts seeded onto such TiO 2 nanotube surfaces, has profound effects on cell behavior. This study clearly shows that these are some of the important in vitro culture factors that need to be taken into consideration, as well as TiO 2 nanotube diameters which play an important role in the improvement of cell behavior and functionality.

  3. Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics

    NARCIS (Netherlands)

    Baert, Yoni; Braye, Aude; Struijk, Robin B.; van Pelt, Ans M. M.; Goossens, Ellen

    2015-01-01

    To assess whether testicular cell dynamics are altered during long-term culture after testicular tissue cryopreservation. Experimental basic science study. Reproductive biology laboratory. Testicular tissue with normal spermatogenesis was obtained from six donors. None. Detection and comparison of

  4. Mast Cell Function

    Science.gov (United States)

    da Silva, Elaine Zayas Marcelino; Jamur, Maria Célia

    2014-01-01

    Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role. PMID:25062998

  5. Variations in Glycogen Synthesis in Human Pluripotent Stem Cells with Altered Pluripotent States

    Science.gov (United States)

    Chen, Richard J.; Zhang, Guofeng; Garfield, Susan H.; Shi, Yi-Jun; Chen, Kevin G.; Robey, Pamela G.; Leapman, Richard D.

    2015-01-01

    Human pluripotent stem cells (hPSCs) represent very promising resources for cell-based regenerative medicine. It is essential to determine the biological implications of some fundamental physiological processes (such as glycogen metabolism) in these stem cells. In this report, we employ electron, immunofluorescence microscopy, and biochemical methods to study glycogen synthesis in hPSCs. Our results indicate that there is a high level of glycogen synthesis (0.28 to 0.62 μg/μg proteins) in undifferentiated human embryonic stem cells (hESCs) compared with the glycogen levels (0 to 0.25 μg/μg proteins) reported in human cancer cell lines. Moreover, we found that glycogen synthesis was regulated by bone morphogenetic protein 4 (BMP-4) and the glycogen synthase kinase 3 (GSK-3) pathway. Our observation of glycogen bodies and sustained expression of the pluripotent factor Oct-4 mediated by the potent GSK-3 inhibitor CHIR-99021 reveals an altered pluripotent state in hPSC culture. We further confirmed glycogen variations under different naïve pluripotent cell growth conditions based on the addition of the GSK-3 inhibitor BIO. Our data suggest that primed hPSCs treated with naïve growth conditions acquire altered pluripotent states, similar to those naïve-like hPSCs, with increased glycogen synthesis. Furthermore, we found that suppression of phosphorylated glycogen synthase was an underlying mechanism responsible for altered glycogen synthesis. Thus, our novel findings regarding the dynamic changes in glycogen metabolism provide new markers to assess the energetic and various pluripotent states in hPSCs. The components of glycogen metabolic pathways offer new assays to delineate previously unrecognized properties of hPSCs under different growth conditions. PMID:26565809

  6. High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells.

    Science.gov (United States)

    Fu, J; Tay, S S W; Ling, E A; Dheen, S T

    2006-05-01

    Maternal diabetes induces neural tube defects during embryogenesis. Since the neural tube is derived from neural stem cells (NSCs), it is hypothesised that in diabetic pregnancy neural tube defects result from altered expression of developmental control genes, leading to abnormal proliferation and cell-fate choice of NSCs. Cell viability, proliferation index and apoptosis of NSCs and differentiated cells from mice exposed to physiological or high glucose concentration medium were examined by a tetrazolium salt assay, 5-bromo-2'-deoxyuridine incorporation, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling and immunocytochemistry. Expression of developmental genes, including sonic hedgehog (Shh), bone morphogenetic protein 4 (Bmp4), neurogenin 1/2 (Neurog1/2), achaete-scute complex-like 1 (Ascl1), oligodendrocyte transcription factor 1 (Olig1), oligodendrocyte lineage transcription factor 2 (Olig2), hairy and enhancer of split 1/5 (Hes1/5) and delta-like 1 (Dll1), was analysed by real-time RT-PCR. Proliferation index and neuronal specification in the forebrain of embryos at embryonic day 11.5 were examined histologically. High glucose decreased the proliferation of NSCs and differentiated cells. The incidence of apoptosis was increased in NSCs treated with high glucose, but not in the differentiated cells. High glucose also accelerated neuronal and glial differentiation from NSCs. The decreased proliferation index and early differentiation of neurons were evident in the telencephalon of embryos derived from diabetic mice. Exposure to high glucose altered the mRNA expression levels of Shh, Bmp4, Neurog1/2, Ascl1, Hes1, Dll1 and Olig1 in NSCs and Shh, Dll1, Neurog1/2 and Hes5 in differentiated cells. The changes in proliferation and differentiation of NSCs exposed to high glucose are associated with altered expression of genes that are involved in cell-cycle progression and cell-fate specification during neurulation. These changes may form the

  7. Functional analysis of human hematopoietic stem cell gene expression using zebrafish.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Although several reports have characterized the hematopoietic stem cell (HSC transcriptome, the roles of HSC-specific genes in hematopoiesis remain elusive. To identify candidate regulators of HSC fate decisions, we compared the transcriptome of human umbilical cord blood and bone marrow (CD34+(CD33-(CD38-Rho(lo(c-kit+ cells, enriched for hematopoietic stem/progenitor cells with (CD34+(CD33-(CD38-Rho(hi cells, enriched in committed progenitors. We identified 277 differentially expressed transcripts conserved in these ontogenically distinct cell sources. We next performed a morpholino antisense oligonucleotide (MO-based functional screen in zebrafish to determine the hematopoietic function of 61 genes that had no previously known function in HSC biology and for which a likely zebrafish ortholog could be identified. MO knock down of 14/61 (23% of the differentially expressed transcripts resulted in hematopoietic defects in developing zebrafish embryos, as demonstrated by altered levels of circulating blood cells at 30 and 48 h postfertilization and subsequently confirmed by quantitative RT-PCR for erythroid-specific hbae1 and myeloid-specific lcp1 transcripts. Recapitulating the knockdown phenotype using a second MO of independent sequence, absence of the phenotype using a mismatched MO sequence, and rescue of the phenotype by cDNA-based overexpression of the targeted transcript for zebrafish spry4 confirmed the specificity of MO targeting in this system. Further characterization of the spry4-deficient zebrafish embryos demonstrated that hematopoietic defects were not due to more widespread defects in the mesodermal development, and therefore represented primary defects in HSC specification, proliferation, and/or differentiation. Overall, this high-throughput screen for the functional validation of differentially expressed genes using a zebrafish model of hematopoiesis represents a major step toward obtaining meaningful information from global

  8. Multifunctional Ebselen drug functions through the activation of DNA damage response and alterations in nuclear proteins.

    Science.gov (United States)

    Azad, Gajendra K; Balkrishna, Shah Jaimin; Sathish, Narayanan; Kumar, Sangit; Tomar, Raghuvir S

    2012-01-15

    Several studies have demonstrated that Ebselen is an anti-inflammatory and anti-oxidative agent. Contrary to this, studies have also shown a high degree of cellular toxicity associated with Ebselen usage, the underlying mechanism of which remains less understood. In this study we have attempted to identify a possible molecular mechanism behind the above by investigating the effects of Ebselen on Saccharomyces cerevisiae. Significant growth arrest was documented in yeast cells exposed to Ebselen similar to that seen in presence of DNA damaging agents (including methyl methane sulfonate [MMS] and hydroxy urea [HU]). Furthermore, mutations in specific lysine residues in the histone H3 tail (H3 K56R) resulted in increased sensitivity of yeast cells to Ebselen presumably due to alterations in post-translational modifications of histone proteins towards regulating replication and DNA damage repair. Our findings suggest that Ebselen functions through activation of DNA damage response, alterations in histone modifications, activation of checkpoint kinase pathway and derepression of ribonucleotide reductases (DNA repair genes) which to the best of our knowledge is being reported for the first time. Interestingly subsequent to Ebselen exposure there were changes in global yeast protein expression and specific histone modifications, identification of which is expected to reveal a fundamental cellular mechanism underlying the action of Ebselen. Taken together these observations will help to redesign Ebselen-based therapy in clinical trials. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Minglong; Xie, Bing; Yin, Xuntao; Wang, Jian [Third Military Medical University, Department of Radiology, Southwest Hospital, 30 Gaotanyan Street, Shapingba District, Chongqing (China); Yang, Hong; Wang, Hao [Third Military Medical University, Ophthalmology Research Center, Southwest Eye Hospital/Southwest Hospital, Chongqing (China); Yu, Longhua [Third Military Medical University, Department of Radiology, Southwest Hospital, 30 Gaotanyan Street, Shapingba District, Chongqing (China); 401st Hospital of PLA, Department of Radiology, Qingdao (China); He, Sheng [University of Minnesota Twin Cities, Department of Psychology, Minneapolis, MN (United States)

    2017-05-15

    Altered brain functional connectivity has been reported in patients with amblyopia by recent neuroimaging studies. However, relatively little is known about the alterations in interhemispheric functional connectivity in amblyopia. The present study aimed to investigate the functional connectivity patterns between homotopic regions across hemispheres in patients with anisometropic and strabismic amblyopia under resting state. Nineteen monocular anisometropic amblyopia (AA), 18 strabismic amblyopia (SA), and 20 normal-sight controls (NC) were enrolled in this study. After a comprehensive ophthalmologic examination, resting-state fMRI scanning was performed in all participants. The pattern of the interhemispheric functional connectivity was measured with the voxel-mirrored homotopic connectivity (VMHC) approach. VMHC values differences within and between three groups were compared, and correlations between VMHC values and each the clinical variable were also analyzed. Altered VMHC was observed in AA and SA patients in lingual gyrus and fusiform gyrus compared with NC subjects. The altered VMHC of lingual gyrus showed a pattern of AA > SA > NC, while the altered VMHC of fusiform gyrus showed a pattern of AA > NC > SA. Moreover, the VMHC values of lingual gyrus were positively correlated with the stereoacuity both in AA and SA patients, and the VMHC values of fusiform gyrus were positively correlated with the amount of anisometropia just in AA patients. These findings suggest that interhemispheric functional coordination between several homotopic visual-related brain regions is impaired both in AA and SA patients under resting state and revealed the similarities and differences in interhemispheric functional connectivity between the anisometropic and strabismic amblyopia. (orig.)

  10. Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study

    International Nuclear Information System (INIS)

    Liang, Minglong; Xie, Bing; Yin, Xuntao; Wang, Jian; Yang, Hong; Wang, Hao; Yu, Longhua; He, Sheng

    2017-01-01

    Altered brain functional connectivity has been reported in patients with amblyopia by recent neuroimaging studies. However, relatively little is known about the alterations in interhemispheric functional connectivity in amblyopia. The present study aimed to investigate the functional connectivity patterns between homotopic regions across hemispheres in patients with anisometropic and strabismic amblyopia under resting state. Nineteen monocular anisometropic amblyopia (AA), 18 strabismic amblyopia (SA), and 20 normal-sight controls (NC) were enrolled in this study. After a comprehensive ophthalmologic examination, resting-state fMRI scanning was performed in all participants. The pattern of the interhemispheric functional connectivity was measured with the voxel-mirrored homotopic connectivity (VMHC) approach. VMHC values differences within and between three groups were compared, and correlations between VMHC values and each the clinical variable were also analyzed. Altered VMHC was observed in AA and SA patients in lingual gyrus and fusiform gyrus compared with NC subjects. The altered VMHC of lingual gyrus showed a pattern of AA > SA > NC, while the altered VMHC of fusiform gyrus showed a pattern of AA > NC > SA. Moreover, the VMHC values of lingual gyrus were positively correlated with the stereoacuity both in AA and SA patients, and the VMHC values of fusiform gyrus were positively correlated with the amount of anisometropia just in AA patients. These findings suggest that interhemispheric functional coordination between several homotopic visual-related brain regions is impaired both in AA and SA patients under resting state and revealed the similarities and differences in interhemispheric functional connectivity between the anisometropic and strabismic amblyopia. (orig.)

  11. Independence of protein kinase C-delta activity from activation loop phosphorylation: structural basis and altered functions in cells.

    Science.gov (United States)

    Liu, Yin; Belkina, Natalya V; Graham, Caroline; Shaw, Stephen

    2006-04-28

    Activation loop phosphorylation plays critical regulatory roles for many kinases. Unlike other protein kinase Cs (PKC), PKC-delta does not require phosphorylation of its activation loop (Thr-507) for in vitro activity. We investigated the structural basis for this unusual capacity and its relevance to PKC-delta function in intact cells. Mutational analysis demonstrated that activity without Thr-507 phosphorylation depends on 20 residues N-terminal to the kinase domain and a pair of phenylalanines (Phe-500/Phe-527) unique to PKC-delta in/near the activation loop. Molecular modeling demonstrated that these elements stabilize the activation loop by forming a hydrophobic chain of interactions from the C-lobe to activation loop to N-terminal (helical) extension. In cells PKC-delta mediates both apoptosis and transcription regulation. We found that the T507A mutant of the PKC-delta kinase domain resembled the corresponding wild type in mediating apoptosis in transfected HEK293T cells. But the T507A mutant was completely defective in AP-1 and NF-kappaB reporter assays. A novel assay in which the kinase domain of PKC-delta and its substrate (a fusion protein of PKC substrate peptide with green fluorescent protein) were co-targeted to lipid rafts revealed a major substrate-selective defect of the T507A mutant in phosphorylating the substrate in cells. In vitro analysis showed strong product inhibition on the T507A mutant with particular substrates whose characteristics suggest it contributes to the substrate selective defect of the PKC-delta T507A mutant in cells. Thus, activation loop phosphorylation of PKC-delta may regulate its function in cells in a novel way.

  12. Casticin induced apoptotic cell death and altered associated gene expression in human colon cancer colo 205 cells.

    Science.gov (United States)

    Shang, Hung-Sheng; Liu, Jia-You; Lu, Hsu-Feng; Chiang, Han-Sun; Lin, Chia-Hain; Chen, Ann; Lin, Yuh-Feng; Chung, Jing-Gung

    2017-08-01

    Casticin, a polymethoxyflavone, derived from natural plant Fructus Viticis exhibits biological activities including anti-cancer characteristics. The anti-cancer and alter gene expression of casticin on human colon cancer cells and the underlying mechanisms were investigated. Flow cytometric assay was used to measure viable cell, cell cycle and sub-G1 phase, reactive oxygen species (ROS) and Ca 2+ productions, level of mitochondria membrane potential (ΔΨ m ) and caspase activity. Western blotting assay was used to detect expression of protein level associated with cell death. Casticin induced cell morphological changes, decreased cell viability and induced G2/M phase arrest in colo 205 cells. Casticin increased ROS production but decreased the levels of ΔΨ m , and Ca 2+ , increased caspase-3, -8, and -9 activities. The cDNA microarray indicated that some of the cell cycle associated genes were down-regulated such as cyclin-dependent kinase inhibitor 1A (CDKN1A) (p21, Cip1) and p21 protein (Cdc42/Rac)-activated kinase 3 (PAK3). TNF receptor-associated protein 1 (TRAP1), CREB1 (cAMP responsive element binding protein 1) and cyclin-dependent kinase inhibitor 1B (CDKN1B) (p27, Kip1) genes were increased but matrix metallopeptidase 2 (MMP-2), toll-like receptor 4 (TLR4), PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, bet), and CaMK4 (calcium/calmodulin-dependent protein kinase IV) genes were inhibited. Results suggest that casticin induced cell apoptosis via the activation of the caspase- and/or mitochondria-dependent signaling cascade, the accumulation of ROS and altered associated gene expressions in colo 205 human colon cancer cells. © 2016 Wiley Periodicals, Inc.

  13. Alterations of the cytoskeleton in human cells in space proved by life-cell imaging

    Science.gov (United States)

    Corydon, Thomas J.; Kopp, Sascha; Wehland, Markus; Braun, Markus; Schütte, Andreas; Mayer, Tobias; Hülsing, Thomas; Oltmann, Hergen; Schmitz, Burkhard; Hemmersbach, Ruth; Grimm, Daniela

    2016-01-01

    Microgravity induces changes in the cytoskeleton. This might have an impact on cells and organs of humans in space. Unfortunately, studies of cytoskeletal changes in microgravity reported so far are obligatorily based on the analysis of fixed cells exposed to microgravity during a parabolic flight campaign (PFC). This study focuses on the development of a compact fluorescence microscope (FLUMIAS) for fast live-cell imaging under real microgravity. It demonstrates the application of the instrument for on-board analysis of cytoskeletal changes in FTC-133 cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin during the 24th DLR PFC and TEXUS 52 rocket mission. Although vibration is an inevitable part of parabolic flight maneuvers, we successfully for the first time report life-cell cytoskeleton imaging during microgravity, and gene expression analysis after the 31st parabola showing a clear up-regulation of cytoskeletal genes. Notably, during the rocket flight the FLUMIAS microscope reveals significant alterations of the cytoskeleton related to microgravity. Our findings clearly demonstrate the applicability of the FLUMIAS microscope for life-cell imaging during microgravity, rendering it an important technological advance in live-cell imaging when dissecting protein localization. PMID:26818711

  14. Functional and biochemical responses of cultured heart cells to angiotensin II

    International Nuclear Information System (INIS)

    Allen, I.; Gaa, S.; Rogers, T.B.

    1986-01-01

    The authors have utilized a cultured neonatal rat heart myocyte system to study the molecular mechanisms involved in the stimulation of heart cells by angiotensin II (AII). The intact cultured cells, and membranes from these cells, have specific, high affinity receptors for 125 I-AII and for an AII antagonist, 125 I-Sar 1 ,Leu 8 -AII. Binding affinity was in the nanomolar range and was inhibited by guanine nucleotides. Functional studies on intact, beating cells revealed a maximal increase in contractile frequency of 50%, observed at 5 nM AII, with half maximal effects noted at around 1 nM. These responses were reversible and specific as the antagonist, Sar 1 , Ala 8 -AII, inhibited AII-induced chronotropic stimulation. AII (100 nM) had no effect on basal adenylate cyclase activity (20 pmoles cAMP/mg prot/min at 2.5mM Mg 2+ ) in cell membranes. Further, in membranes where cyclase activity was stimulated with isoproterenol (290 pmoles cAMP/mg prot/min at 2.5mM Mg 2+ ), addition of AII had no effect. The cyclase-inhibitory muscarinic agonist, carbachol, also failed to reduce isoproterenol-stimulated activity. In preliminary work with the intact cells, AII again did not alter basal cAMP levels (3-10 pmoles cAMP/mg prot). However, the hormone increased isoproterenol-stimulated cAMP levels by almost 50%. These cells are an excellent system for correlating AII receptor binding with functional and biochemical responses

  15. Beta-cell function is associated with metabolic syndrome in Mexican subjects

    Directory of Open Access Journals (Sweden)

    Pérez-Fuentes

    2010-08-01

    subjects in the control group (n = 254 was 35.7 ± 11.5 years and 42.0 ± 10.7 years for subjects in the metabolic syndrome group (n = 190. Subjects at metabolic balance without metabolic syndrome showed decreased IS, increased insulin resistance (IR, and altered β-cell function. Individuals with metabolic syndrome showed a high prevalence (P ≤ 0.05 of family history of type 2 diabetes (T2D. This group also showed a significant metabolic imbalance with glucose and insulin levels and lipid profile outside the ranges considered safe to prevent the development of cardiovascular disease and T2D.Conclusion: The main finding in this study was the detection of altered β-cell function, decreased IS, an increased IR in subjects at metabolic balance, and the progressive deterioration of β-cell function and IS in subjects with metabolic syndrome as the number of features of metabolic syndrome increases.Keywords: insulin sensitivity, insulin resistance, family history of type 2 diabetes mellitus, metabolic syndrome, b-cell function

  16. Detailed Functional and Proteomic Characterization of Fludarabine Resistance in Mantle Cell Lymphoma Cells.

    Directory of Open Access Journals (Sweden)

    Lucie Lorkova

    Full Text Available Mantle cell lymphoma (MCL is a chronically relapsing aggressive type of B-cell non-Hodgkin lymphoma considered incurable by currently used treatment approaches. Fludarabine is a purine analog clinically still widely used in the therapy of relapsed MCL. Molecular mechanisms of fludarabine resistance have not, however, been studied in the setting of MCL so far. We therefore derived fludarabine-resistant MCL cells (Mino/FR and performed their detailed functional and proteomic characterization compared to the original fludarabine sensitive cells (Mino. We demonstrated that Mino/FR were highly cross-resistant to other antinucleosides (cytarabine, cladribine, gemcitabine and to an inhibitor of Bruton tyrosine kinase (BTK ibrutinib. Sensitivity to other types of anti-lymphoma agents was altered only mildly (methotrexate, doxorubicin, bortezomib or remained unaffacted (cisplatin, bendamustine. The detailed proteomic analysis of Mino/FR compared to Mino cells unveiled over 300 differentially expressed proteins. Mino/FR were characterized by the marked downregulation of deoxycytidine kinase (dCK and BTK (thus explaining the observed crossresistance to antinucleosides and ibrutinib, but also by the upregulation of several enzymes of de novo nucleotide synthesis, as well as the up-regulation of the numerous proteins of DNA repair and replication. The significant upregulation of the key antiapoptotic protein Bcl-2 in Mino/FR cells was associated with the markedly increased sensitivity of the fludarabine-resistant MCL cells to Bcl-2-specific inhibitor ABT199 compared to fludarabine-sensitive cells. Our data thus demonstrate that a detailed molecular analysis of drug-resistant tumor cells can indeed open a way to personalized therapy of resistant malignancies.

  17. SEC23B is required for pancreatic acinar cell function in adult mice

    Science.gov (United States)

    Khoriaty, Rami; Vogel, Nancy; Hoenerhoff, Mark J.; Sans, M. Dolors; Zhu, Guojing; Everett, Lesley; Nelson, Bradley; Durairaj, Haritha; McKnight, Brooke; Zhang, Bin; Ernst, Stephen A.; Ginsburg, David; Williams, John A.

    2017-01-01

    Mice with germline absence of SEC23B die perinatally, exhibiting massive pancreatic degeneration. We generated mice with tamoxifen-inducible, pancreatic acinar cell–specific Sec23b deletion. Inactivation of Sec23b exclusively in the pancreatic acinar cells of adult mice results in decreased overall pancreatic weights from pancreatic cell loss (decreased pancreatic DNA, RNA, and total protein content), as well as degeneration of exocrine cells, decreased zymogen granules, and alterations in the endoplasmic reticulum (ER), ranging from vesicular ER to markedly expanded cisternae with accumulation of moderate-density content or intracisternal granules. Acinar Sec23b deletion results in induction of ER stress and increased apoptosis in the pancreas, potentially explaining the loss of pancreatic cells and decreased pancreatic weight. These findings demonstrate that SEC23B is required for normal function of pancreatic acinar cells in adult mice. PMID:28539403

  18. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells

    International Nuclear Information System (INIS)

    Desai, Amar; Webb, Bryan; Gerson, Stanton L.

    2014-01-01

    Background: Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. Materials and methods: A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. Results: A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. Conclusions: CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs

  19. Alterations in cardiomyocyte function after pulmonary treatment with stainless steel welding fume in rats.

    Science.gov (United States)

    Popstojanov, Risto; Antonini, James M; Salmen, Rebecca; Ye, Morgan; Zheng, Wen; Castranova, Vincent; Fekedulegn, Desta B; Kan, Hong

    2014-01-01

    Welding fume is composed of a complex of different metal particulates. Pulmonary exposure to different welding fumes may exert a negative impact on cardiac function, although the underlying mechanisms remain unclear. To explore the effect of welding fumes on cardiac function, Sprague-Dawley rats were exposed by intratracheal instillation to 2 mg/rat of manual metal arc hard surfacing welding fume (MMA-HS) once per week for 7 wk. Control rats received saline. Cardiomyocytes were isolated enzymatically at d 1 and 7 postexposure. Intracellular calcium ([Ca(2+)]i) transients (fluorescence ratio) were measured on the stage of an inverted phase-contrast microscope using a myocyte calcium imaging/cell length system. Phosphorylation levels of cardiac troponin I (cTnI) were determined by Western blot. The levels of nonspecific inflammatory marker C-reactive protein (CRP) and proinflammatory cytokine interleukin-6 (IL-6) in serum were measured by enzyme-linked immunosorbent assay (ELISA). Contraction of isolated cardiomyocytes was significantly reduced at d 1 and d 7 postexposure. Intracellular calcium levels were decreased in response to extracellular calcium stimulation at d 7 postexposure. Changes of intracellular calcium levels after isoprenaline hydrochloride (ISO) stimulation were not markedly different between groups at either time point. Phosphorylation levels of cTnI in the left ventricle were significantly lower at d 1 postexposure. The serum levels of CRP were not markedly different between groups at either time point. Serum levels of IL-6 were not detectable in both groups. Cardiomyocyte alterations observed after welding fume treatment were mainly due to alterations in intracellular calcium handling and phosphorylation levels of cTnI.

  20. Alterations in renal morphology and function after ESWL therapy: evaluation with dynamic contrast-enhanced MRI

    International Nuclear Information System (INIS)

    Krestin, G.P.; Fischbach, R.; Vorreuther, R.; Schulthess, G.K. von

    1993-01-01

    Contrast-enhanced gradient-echo MRI was used to evaluate morphological and functional alterations in the kidneys after extracorporeal shock wave lithotripsy (ESWL). Dynamic MRI with a temporal resolution of 10 s per image was performed by repeated imaging in the coronal plane after administration of gadolinium-DTPA (0.1 mmol/kg) before and after ESWL for renal calculi in 25 patients. Before ESWL 22 patients had normally functioning kidneys, characterised by a marked decrease in signal intensity in the renal medulla 30-40 s after the onset of cortical perfusion. After ESWL 8 patients had functional abnormalities: in 2 cases the medullary signal decrease was disturbed throughout the whole organ, while 6 kidneys demonstrated regional loss of concentrating ability in the medulla. Morphological alterations (oedema with blurred contours and loss of corticomedullary differentiation; parenchymal haemorrhage and haemorrhage in a cortical cyst; subcapsular, perirenal and pararenal haematoma) were detected in 9 cases. Haemorrhage was encountered more often after administration of more than 2500 shock waves; however, no such correlation was seen in the kidneys with functional disturbances following ESWL therapy. MRI proved to be a sensitive method for the assessment of morphological and functional alterations after ESWL, but longer follow-up studies are required to identify the clinical impact of these early changes. (orig.)

  1. Alterations in renal morphology and function after ESWL therapy: evaluation with dynamic contrast-enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Krestin, G.P. [Dept. of Medical Radiology, University Hospital Zurich (Switzerland); Fischbach, R. [Dept. of Radiology, Univ. of Cologne (Germany); Vorreuther, R. [Dept. of Urology, Univ. of Cologne (Germany); Schulthess, G.K. von [Dept. of Medical Radiology, University Hospital Zurich (Switzerland)

    1993-06-01

    Contrast-enhanced gradient-echo MRI was used to evaluate morphological and functional alterations in the kidneys after extracorporeal shock wave lithotripsy (ESWL). Dynamic MRI with a temporal resolution of 10 s per image was performed by repeated imaging in the coronal plane after administration of gadolinium-DTPA (0.1 mmol/kg) before and after ESWL for renal calculi in 25 patients. Before ESWL 22 patients had normally functioning kidneys, characterised by a marked decrease in signal intensity in the renal medulla 30-40 s after the onset of cortical perfusion. After ESWL 8 patients had functional abnormalities: in 2 cases the medullary signal decrease was disturbed throughout the whole organ, while 6 kidneys demonstrated regional loss of concentrating ability in the medulla. Morphological alterations (oedema with blurred contours and loss of corticomedullary differentiation; parenchymal haemorrhage and haemorrhage in a cortical cyst; subcapsular, perirenal and pararenal haematoma) were detected in 9 cases. Haemorrhage was encountered more often after administration of more than 2500 shock waves; however, no such correlation was seen in the kidneys with functional disturbances following ESWL therapy. MRI proved to be a sensitive method for the assessment of morphological and functional alterations after ESWL, but longer follow-up studies are required to identify the clinical impact of these early changes. (orig.)

  2. Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function.

    Directory of Open Access Journals (Sweden)

    Joanne K Gardner

    Full Text Available Dendritic cells (DCs play an important role in the generation of anti-cancer immune responses, however there is evidence that DCs in cancer patients are dysfunctional. Lipid accumulation driven by tumor-derived factors has recently been shown to contribute to DC dysfunction in several human cancers, but has not yet been examined in mesothelioma. This study investigated if mesothelioma tumor cells and/or their secreted factors promote increases in DC lipid content and modulate DC function. Human monocyte-derived DCs (MoDCs were exposed to human mesothelioma tumor cells and tumor-derived factors in the presence or absence of lipoproteins. The data showed that immature MoDCs exposed to mesothelioma cells or factors contained increased lipid levels relative to control DCs. Lipid accumulation was associated with reduced antigen processing ability (measured using a DQ OVA assay, upregulation of the co-stimulatory molecule, CD86, and production of the tolerogenic cytokine, IL-10. Increases in DC lipid content were further enhanced by co-exposure to mesothelioma-derived factors and triglyceride-rich lipoproteins, but not low-density lipoproteins. In vivo studies using a murine mesothelioma model showed that the lipid content of tumor-infiltrating CD4+ CD8α- DCs, CD4- CD8α- DCs DCs and plasmacytoid DCs increased with tumor progression. Moreover, increasing tumor burden was associated with reduced proliferation of tumor-antigen-specific CD8+ T cells in tumor-draining lymph nodes. This study shows that mesothelioma promotes DC lipid acquisition, which is associated with altered activation status and reduced capacity to process and present antigens, which may impair the ability of DCs to generate effective anti mesothelioma T cell responses.

  3. Microcystin-LR and Cylindrospermopsin Induced Alterations in Chromatin Organization of Plant Cells

    Science.gov (United States)

    Máthé, Csaba; M-Hamvas, Márta; Vasas, Gábor

    2013-01-01

    Cyanobacteria produce metabolites with diverse bioactivities, structures and pharmacological properties. The effects of microcystins (MCYs), a family of peptide type protein-phosphatase inhibitors and cylindrospermopsin (CYN), an alkaloid type of protein synthesis blocker will be discussed in this review. We are focusing mainly on cyanotoxin-induced changes of chromatin organization and their possible cellular mechanisms. The particularities of plant cells explain the importance of such studies. Preprophase bands (PPBs) are premitotic cytoskeletal structures important in the determination of plant cell division plane. Phragmoplasts are cytoskeletal structures involved in plant cytokinesis. Both cyanotoxins induce the formation of multipolar spindles and disrupted phragmoplasts, leading to abnormal sister chromatid segregation during mitosis. Thus, MCY and CYN are probably inducing alterations of chromosome number. MCY induces programmed cell death: chromatin condensation, nucleus fragmentation, necrosis, alterations of nuclease and protease enzyme activities and patterns. The above effects may be related to elevated reactive oxygen species (ROS) and/or disfunctioning of microtubule associated proteins. Specific effects: MCY-LR induces histone H3 hyperphosphorylation leading to incomplete chromatid segregation and the formation of micronuclei. CYN induces the formation of split or double PPB directly related to protein synthesis inhibition. Cyanotoxins are powerful tools in the study of plant cell organization. PMID:24084787

  4. Microcystin-LR and Cylindrospermopsin Induced Alterations in Chromatin Organization of Plant Cells

    Directory of Open Access Journals (Sweden)

    Gábor Vasas

    2013-09-01

    Full Text Available Cyanobacteria produce metabolites with diverse bioactivities, structures and pharmacological properties. The effects of microcystins (MCYs, a family of peptide type protein-phosphatase inhibitors and cylindrospermopsin (CYN, an alkaloid type of protein synthesis blocker will be discussed in this review. We are focusing mainly on cyanotoxin-induced changes of chromatin organization and their possible cellular mechanisms. The particularities of plant cells explain the importance of such studies. Preprophase bands (PPBs are premitotic cytoskeletal structures important in the determination of plant cell division plane. Phragmoplasts are cytoskeletal structures involved in plant cytokinesis. Both cyanotoxins induce the formation of multipolar spindles and disrupted phragmoplasts, leading to abnormal sister chromatid segregation during mitosis. Thus, MCY and CYN are probably inducing alterations of chromosome number. MCY induces programmed cell death: chromatin condensation, nucleus fragmentation, necrosis, alterations of nuclease and protease enzyme activities and patterns. The above effects may be related to elevated reactive oxygen species (ROS and/or disfunctioning of microtubule associated proteins. Specific effects: MCY-LR induces histone H3 hyperphosphorylation leading to incomplete chromatid segregation and the formation of micronuclei. CYN induces the formation of split or double PPB directly related to protein synthesis inhibition. Cyanotoxins are powerful tools in the study of plant cell organization.

  5. Epigenetic alterations differ in phenotypically distinct human neuroblastoma cell lines

    International Nuclear Information System (INIS)

    Yang, Qiwei; Tian, Yufeng; Ostler, Kelly R; Chlenski, Alexandre; Guerrero, Lisa J; Salwen, Helen R; Godley, Lucy A; Cohn, Susan L

    2010-01-01

    Epigenetic aberrations and a CpG island methylator phenotype have been shown to be associated with poor outcomes in children with neuroblastoma (NB). Seven cancer related genes (THBS-1, CASP8, HIN-1, TIG-1, BLU, SPARC, and HIC-1) that have been shown to have epigenetic changes in adult cancers and play important roles in the regulation of angiogenesis, tumor growth, and apoptosis were analyzed to investigate the role epigenetic alterations play in determining NB phenotype. Two NB cell lines (tumorigenic LA1-55n and non-tumorigenic LA1-5s) that differ in their ability to form colonies in soft agar and tumors in nude mice were used. Quantitative RNA expression analyses were performed on seven genes in LA1-5s, LA1-55n and 5-Aza-dC treated LA1-55n NB cell lines. The methylation status around THBS-1, HIN-1, TIG-1 and CASP8 promoters was examined using methylation specific PCR. Chromatin immunoprecipitation assay was used to examine histone modifications along the THBS-1 promoter. Luciferase assay was used to determine THBS-1 promoter activity. Cell proliferation assay was used to examine the effect of 5-Aza-dC on NB cell growth. The soft agar assay was used to determine the tumorigenicity. Promoter methylation values for THBS-1, HIN-1, TIG-1, and CASP8 were higher in LA1-55n cells compared to LA1-5s cells. Consistent with the promoter methylation status, lower levels of gene expression were detected in the LA1-55n cells. Histone marks associated with repressive chromatin states (H3K9Me3, H3K27Me3, and H3K4Me3) were identified in the THBS-1 promoter region in the LA1-55n cells, but not the LA1-5s cells. In contrast, the three histone codes associated with an active chromatin state (acetyl H3, acetyl H4, and H3K4Me3) were present in the THBS-1 promoter region in LA1-5s cells, but not the LA1-55n cells, suggesting that an accessible chromatin structure is important for THBS-1 expression. We also show that 5-Aza-dC treatment of LA1-55n cells alters the DNA methylation

  6. Mutations in the nucleotide binding pocket of MreB can alter cell curvature and polar morphology in Caulobacter.

    Science.gov (United States)

    Dye, Natalie A; Pincus, Zachary; Fisher, Isabelle C; Shapiro, Lucy; Theriot, Julie A

    2011-07-01

    The maintenance of cell shape in Caulobacter crescentus requires the essential gene mreB, which encodes a member of the actin superfamily and the target of the antibiotic, A22. We isolated 35 unique A22-resistant Caulobacter strains with single amino acid substitutions near the nucleotide binding site of MreB. Mutations that alter cell curvature and mislocalize the intermediate filament crescentin cluster on the back surface of MreB's structure. Another subset have variable cell widths, with wide cell bodies and actively growing thin extensions of the cell poles that concentrate fluorescent MreB. We found that the extent to which MreB localization is perturbed is linearly correlated with the development of pointed cell poles and variable cell widths. Further, we find that a mutation to glycine of two conserved aspartic acid residues that are important for nucleotide hydrolysis in other members of the actin superfamily abolishes robust midcell recruitment of MreB but supports a normal rate of growth. These mutant strains provide novel insight into how MreB's protein structure, subcellular localization, and activity contribute to its function in bacterial cell shape. © 2011 Blackwell Publishing Ltd.

  7. Regulation of T cell differentiation and function by EZH2

    Directory of Open Access Journals (Sweden)

    THEODOROS KARANTANOS

    2016-05-01

    Full Text Available The enhancer of zeste homologue 2 (EZH2, one of the polycomb group (PcG proteins, is the catalytic subunit of Polycomb-repressive complex 2 (PRC2 and induces the trimethylation of the histone H3 lysine 27 (H3K27me3 promoting epigenetic gene silencing. EZH2 contains a SET domain promoting the methyltransferase activity while the three other protein components of PRC2, namely EED, SUZ12 and RpAp46/48 induce compaction of the chromatin permitting EZH2 enzymatic activity. Numerous studies highlight the role of this evolutionary conserved protein as a master regulator of differentiation in humans involved in the repression of the homeotic (Hox gene and the inactivation of X-chromosome. Through its effects in the epigenetic regulation of critical genes, EZH2 has been strongly linked to cell cycle progression, stem cell pluripotency and cancer biology. Most recently, EZH2 has been associated with hematopoietic stem cell proliferation and differentiation, thymopoiesis and lymphopoiesis. Several studies have evaluated the role of EZH2 in the regulation of T cell differentiation and plasticity as well as its implications in the development of autoimmune diseases and graft versus host disease (GvHD. In this review we will briefly summarize the current knowledge regarding the role of EZH2 in the regulation of T cell differentiation, effector function and homing in the tumor microenvironment and we will discuss possible therapeutic targeting of EZH2 in order to alter T cell immune functions.

  8. Molecular biologic study about the non-small cell lung carcinoma (2) : p53 gene alteration in non-small cell lung carcinoma

    International Nuclear Information System (INIS)

    Park, Jong Ho; Zo, Jae Ill; Paik, Hee Jong; Kim, Mi Hee

    1996-12-01

    The main purpose of this research was to identify of the p53 and 3p gene alteration in non-small cell lung cancer patients residing in Korea. Furthermore, we analyzed the relationship between the p53 and 3p gene alterations and the clinicopathologic results of lung cancer patients. And we have investigated the role of PCR-LOH in analyzing tumor samples for LOH of defined chromosomal loci. We have used the 40 samples obtained from the lung cancer patients who were diagnosed and operated curatively at Korea Cancer Center Hospital. We have isolated the high molecular weight. DNA from the tumors and normal tissues. And we have amplified the DNA with PCR method and used the microsatellite assay method to detect the altered p53 and 3p gene. The conclusions were as follow: 1) The 3p gene alteration was observed in 9/39 (23.1%) and p53 gene alteration was observed in 15/40 (37.5%) of resected non-small cell lung cancer. 2) There was no correlations between the 3p or p53 gene alterations and prognosis of patients, but further study is necessary. 3) PCR-LOH is a very useful tool for analyzing small amount of tumor samples for loss of heterozygosity of defined chromosomal loci. (author). 10 refs

  9. Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Mathieu Barbier

    Full Text Available Platelet adhesion to the brain microvasculature has been associated with cerebral malaria (CM in humans, suggesting that platelets play a role in the pathogenesis of this syndrome. In vitro co-cultures have shown that platelets can act as a bridge between Plasmodium falciparum-infected red blood cells (pRBC and human brain microvascular endothelial cells (HBEC and potentiate HBEC apoptosis. Using cDNA microarray technology, we analyzed transcriptional changes of HBEC in response to platelets in the presence or the absence of tumor necrosis factor (TNF and pRBC, which have been reported to alter gene expression in endothelial cells. Using a rigorous statistical approach with multiple test corrections, we showed a significant effect of platelets on gene expression in HBEC. We also detected a strong effect of TNF, whereas there was no transcriptional change induced specifically by pRBC. Nevertheless, a global ANOVA and a two-way ANOVA suggested that pRBC acted in interaction with platelets and TNF to alter gene expression in HBEC. The expression of selected genes was validated by RT-qPCR. The analysis of gene functional annotation indicated that platelets induce the expression of genes involved in inflammation and apoptosis, such as genes involved in chemokine-, TREM1-, cytokine-, IL10-, TGFβ-, death-receptor-, and apoptosis-signaling. Overall, our results support the hypothesis that platelets play a pathogenic role in CM.

  10. 7DHC-induced changes of Kv1.3 operation contributes to modified T cell function in Smith-Lemli-Opitz syndrome.

    Science.gov (United States)

    Balajthy, András; Somodi, Sándor; Pethő, Zoltán; Péter, Mária; Varga, Zoltán; Szabó, Gabriella P; Paragh, György; Vígh, László; Panyi, György; Hajdu, Péter

    2016-08-01

    In vitro manipulation of membrane sterol level affects the regulation of ion channels and consequently certain cellular functions; however, a comprehensive study that confirms the pathophysiological significance of these results is missing. The malfunction of 7-dehydrocholesterol (7DHC) reductase in Smith-Lemli-Opitz syndrome (SLOS) leads to the elevation of the 7-dehydrocholesterol level in the plasma membrane. T lymphocytes were isolated from SLOS patients to assess the effect of the in vivo altered membrane sterol composition on the operation of the voltage-gated Kv1.3 channel and the ion channel-dependent mitogenic responses. We found that the kinetic and equilibrium parameters of Kv1.3 activation changed in SLOS cells. Identical changes in Kv1.3 operation were observed when control/healthy T cells were loaded with 7DHC. Removal of the putative sterol binding sites on Kv1.3 resulted in a phenotype that was not influenced by the elevation in membrane sterol level. Functional assays exhibited impaired activation and proliferation rate of T cells probably partially due to the modified Kv1.3 operation. We concluded that the altered membrane sterol composition hindered the operation of Kv1.3 as well as the ion channel-controlled T cell functions.

  11. Altered Interhemispheric Functional Coordination in Chronic Tinnitus Patients

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chen

    2015-01-01

    Full Text Available Purpose. Recent studies suggest that tinnitus may be due in part to aberrant callosal structure and interhemispheric interaction. To explore this hypothesis we use a novel method, voxel-mirrored homotopic connectivity (VMHC, to examine the resting-state interhemispheric functional connectivity and its relationships with clinical characteristics in chronic tinnitus patients. Materials and Methods. Twenty-eight chronic tinnitus patients with normal hearing thresholds and 30 age-, sex-, education-, and hearing threshold-matched healthy controls were included in this study and underwent the resting-state fMRI scanning. We computed the VMHC to analyze the interhemispheric functional coordination between homotopic points of the brain in both groups. Results. Compared to the controls, tinnitus patients showed significantly increased VMHC in the middle temporal gyrus, middle frontal gyrus, and superior occipital gyrus. In tinnitus patients, a positive correlation was found between tinnitus duration and VMHC of the uncus. Moreover, correlations between VMHC changes and tinnitus distress were observed in the transverse temporal gyrus, superior temporal pole, precentral gyrus, and calcarine cortex. Conclusions. These results show altered interhemispheric functional connectivity linked with specific tinnitus characteristics in chronic tinnitus patients, which may be implicated in the neuropathophysiology of tinnitus.

  12. Combined M-FISH and CGH analysis allows comprehensive description of genetic alterations in neuroblastoma cell lines.

    Science.gov (United States)

    Van Roy, N; Van Limbergen, H; Vandesompele, J; Van Gele, M; Poppe, B; Salwen, H; Laureys, G; Manoel, N; De Paepe, A; Speleman, F

    2001-10-01

    Cancer cell lines are essential gene discovery tools and have often served as models in genetic and functional studies of particular tumor types. One of the future challenges is comparison and interpretation of gene expression data with the available knowledge on the genomic abnormalities in these cell lines. In this context, accurate description of these genomic abnormalities is required. Here, we show that a combination of M-FISH with banding analysis, standard FISH, and CGH allowed a detailed description of the genetic alterations in 16 neuroblastoma cell lines. In total, 14 cryptic chromosome rearrangements were detected, including a balanced t(2;4)(p24.3;q34.3) translocation in cell line NBL-S, with the 2p24 breakpoint located at about 40 kb from MYCN. The chromosomal origin of 22 marker chromosomes and 41 cytogenetically undefined translocated segments was determined. Chromosome arm 2 short arm translocations were observed in six cell lines (38%) with and five (31%) without MYCN amplification, leading to partial chromosome arm 2p gain in all but one cell line and loss of material in the various partner chromosomes, including 1p and 11q. These 2p gains were often masked in the GGH profiles due to MYCN amplification. The commonly overrepresented region was chromosome segment 2pter-2p22, which contains the MYCN gene, and five out of eleven 2p breakpoints clustered to the interface of chromosome bands 2p16 and 2p21. In neuroblastoma cell line SJNB-12, with double minutes (dmins) but no MYCN amplification, the dmins were shown to be derived from 16q22-q23 sequences. The ATBF1 gene, an AT-binding transcription factor involved in normal neurogenesis and located at 16q22.2, was shown to be present in the amplicon. This is the first report describing the possible implication of ATBF1 in neuroblastoma cells. We conclude that a combined approach of M-FISH, cytogenetics, and CGH allowed a more complete and accurate description of the genetic alterations occurring in the

  13. Ethylbenzene-induced hearing loss, neurobehavioral function, and neurotransmitter alterations in petrochemical workers.

    Science.gov (United States)

    Zhang, Ming; Wang, Yanrang; Wang, Qian; Yang, Deyi; Zhang, Jingshu; Wang, Fengshan; Gu, Qing

    2013-09-01

    To estimate hearing loss, neurobehavioral function, and neurotransmitter alteration induced by ethylbenzene in petrochemical workers. From two petrochemical plants, 246 and 307 workers exposed to both ethylbenzene and noise were recruited-290 workers exposed to noise only from a power station plant and 327 office personnel as control group, respectively. Hearing and neurobehavioral functions were evaluated. Serum neurotransmitters were also determined. The prevalence of hearing loss was much higher in petrochemical groups than that in power station and control groups (P workers (P hearing loss, neurobehavioral function impairment, and imbalance of neurotransmitters.

  14. Species-Specific Effects on Ecosystem Functioning Can Be Altered by Interspecific Interactions.

    Science.gov (United States)

    Clare, David S; Spencer, Matthew; Robinson, Leonie A; Frid, Christopher L J

    2016-01-01

    Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions) and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions) but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive) or antagonistic (negative) depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed.

  15. Species-Specific Effects on Ecosystem Functioning Can Be Altered by Interspecific Interactions.

    Directory of Open Access Journals (Sweden)

    David S Clare

    Full Text Available Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive or antagonistic (negative depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed.

  16. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction.

    Science.gov (United States)

    Ngkelo, Anta; Richart, Adèle; Kirk, Jonathan A; Bonnin, Philippe; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Le Gall, Sylvain; Renault, Nisa; Guerin, Coralie; Ranek, Mark J; Kervadec, Anaïs; Danelli, Luca; Gautier, Gregory; Blank, Ulrich; Launay, Pierre; Camerer, Eric; Bruneval, Patrick; Menasche, Philippe; Heymes, Christophe; Luche, Elodie; Casteilla, Louis; Cousin, Béatrice; Rodewald, Hans-Reimer; Kass, David A; Silvestre, Jean-Sébastien

    2016-06-27

    Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit-independent MC-deficient (Cpa3(Cre/+)) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca(2+) desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force-Ca(2+) interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. ©2016 Ngkelo et al.

  17. The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells.

    Science.gov (United States)

    Pourgholaminejad, Arash; Aghdami, Nasser; Baharvand, Hossein; Moazzeni, Seyed Mohammad

    2016-09-01

    Mesenchymal stem cells (MSCs), as cells with potential clinical utilities, have demonstrated preferential incorporation into inflammation sites. Immunophenotype and immunomodulatory functions of MSCs could alter by inflamed-microenvironments due to the local pro-inflammatory cytokine milieu. A major cellular mediator with specific function in promoting inflammation and pathogenicity of autoimmunity are IL-17-producing T helper 17 (Th17) cells that polarize in inflamed sites in the presence of pro-inflammatory cytokines such as Interleukin-1β (IL-1β), IL-6 and IL-23. Since MSCs are promising candidate for cell-based therapeutic strategies in inflammatory and autoimmune diseases, Th17 cell polarizing factors may alter MSCs phenotype and function. In this study, human bone-marrow-derived MSCs (BM-MSC) and adipose tissue-derived MSCs (AD-MSC) were cultured with or without IL-1β, IL-6 and IL-23 as pro-inflammatory cytokines. The surface markers and their differentiation capacity were measured in cytokine-untreated and cytokine-treated MSCs. MSCs-mediated immunomodulation was analyzed by their regulatory effects on mixed lymphocyte reaction (MLR) and the level of IL-10, TGF-β, IL-4, IFN-γ and TNF-α production as immunomodulatory cytokines. Pro-inflammatory cytokines showed no effect on MSCs morphology, immunophenotype and co-stimulatory molecules except up-regulation of CD45. Adipogenic and osteogenic differentiation capacity increased in CD45+ MSCs. Moreover, cytokine-treated MSCs preserved the suppressive ability of allogeneic T cell proliferation and produced higher level of TGF-β and lower level of IL-4. We concluded pro-inflammatory cytokines up-regulate the efficacy of MSCs in cell-based therapy of degenerative, inflammatory and autoimmune disorders. Copyright © 2016. Published by Elsevier Ltd.

  18. Functions of Müller cell-derived vascular endothelial growthfactor in diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Müller cells are macroglia and play many essentialroles as supporting cells in the retina. To respond topathological changes in diabetic retinopathy (DR), amajor complication in the eye of diabetic patients,retinal Müller glia produce a high level of vascularendothelial growth factor (VEGF or VEGF-A). As VEGFis expressed by multiple retinal cell-types and Müllerglia comprise only a small portion of cells in the retina,it has been a great challenge to reveal the function ofVEGF or other globally expressed proteins produced byMüller cells. With the development of conditional genetargeting tools, it is now possible to dissect the functionof Müller cell-derived VEGF in vivo . By using conditionalgene targeting approach, we demonstrate that Müllerglia are a major source of retinal VEGF in diabetic miceand Müller cell-derived VEGF plays a significant role inthe alteration of protein expression and peroxynitration,which leads to retinal inflammation, neovascularization,vascular leakage, and vascular lesion, key pathologicalchanges in DR. Therefore, Müller glia are a potentialcellular target for the treatment of DR, a leading causeof blindness.

  19. Impact of ultraviolet-B radiation on planktonic fish larvae: Alteration of the osmoregulatory function

    Energy Technology Data Exchange (ETDEWEB)

    Sucre, Elliott, E-mail: elliott.sucre@univ-montp2.fr [AEO Team (Adaptation Ecophysiologique et Ontogenese), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc092, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France); Vidussi, Francesca [RESEAUX Team (Reseaux Planctoniques et Changement Environnemental), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc093, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France); Mostajir, Behzad [RESEAUX Team (Reseaux Planctoniques et Changement Environnemental), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc093, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France); Centre d' ecologie marine experimentale MEDIMEER (Mediterranean centre for Marine Ecosystem Experimental Research), Universite Montpellier 2-CNRS (UMS 3301), Station Mediterraneenne de l' Environnement Littoral, MEDIMEER, 2 Rue des Chantiers, 34200 Sete (France); Charmantier, Guy; Lorin-Nebel, Catherine [AEO Team (Adaptation Ecophysiologique et Ontogenese), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc092, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France)

    2012-03-15

    Coastal marine ecosystems are submitted to variations of several abiotic and biotic parameters, some of them related to global change. Among them the ultraviolet-B (UV-B) radiation (UVBR: 280-320 nm) may strongly impact planktonic fish larvae. The consequences of an increase of UVBR on the osmoregulatory function of Dicentrarchus labrax larvae have been investigated in this study. In young larvae of D. labrax, as in other teleosts, osmoregulation depends on tegumentary ion transporting cells, or ionocytes, mainly located on the skin of the trunk and of the yolk sac. As early D. labrax larvae passively drift in the top water column, ionocytes are exposed to solar radiation. The effect of UVBR on larval osmoregulation in seawater was evaluated through nanoosmometric measurements of the blood osmolality after exposure to different UV-B treatments. A loss of osmoregulatory capability occured in larvae after 2 days of low (50 {mu}W cm{sup -2}: 4 h L/20 h D) and medium (80 {mu}W cm{sup -2}: 4 h L/20 h D) UVBR exposure. Compared to control larvae kept in the darkness, a significant increase in blood osmolality, abnormal behavior and high mortalities were detected in larvae exposed to UVBR from 2 days on. At the cellular level, an important decrease in abundance of tegumentary ionocytes and mucous cells was observed after 2 days of exposure to UVBR. In the ionocytes, two major osmoeffectors were immunolocalized, the Na{sup +}/K{sup +}-ATPase and the Na{sup +}/K{sup +}/2Cl{sup -} cotransporter. Compared to controls, the fluorescent immunostaining was lower in UVBR-exposed larvae. We hypothesize that the impaired osmoregulation in UVBR-exposed larvae originates from the lower number of tegumentary ionocytes and mucous cells. This alteration of the osmoregulatory function could negatively impact the survival of young larvae at the surface water exposed to UVBR.

  20. Profiling of altered metabolomic states in Nicotiana tabacum cells induced by priming agents

    CSIR Research Space (South Africa)

    Mhlongo, MI

    2016-10-01

    Full Text Available tabacum cells. Identified biomarkers were then compared to responses induced by three phytohormones—abscisic acid, methyljasmonate, and salicylic acid. Altered metabolomes were studied using a metabolite fingerprinting approach based on liquid...

  1. The parietal cell gastric H, K-ATPase also functions as the Na, K-ATPase and Ca-ATPase in altered states [v2; ref status: indexed, http://f1000r.es/1tc

    Directory of Open Access Journals (Sweden)

    Tushar Ray

    2013-09-01

    Full Text Available This article offers an explanation for the apparent lack of Na, K-ATPase activity in parietal cells although ouabain has been known to inhibit gastric acid secretion since 1962. The gastric H, K-ATPase (proton-pump seems to be acting in altered states, thus behaving like a Na, K-ATPase (Na-pump and/or Ca-ATPase (Ca-pump depending on cellular needs.  This conclusion is based on the following findings. First, parietal cell fractions do not exhibit Na, K-ATPase activity at pH 7.0 but do at pH 8.5. Second, the apical plasma membrane (APM fraction exhibits a (Ca or Mg-ATPase activity with negligible H, K-ATPase activity. However, when assayed with Mg alone in presence of the 80 k Da cytosolic proton-pump activator (HAF, the APM fraction reveals remarkably high H, K-ATPase activity, suggesting the observed low affinity of Ca (or Mg-ATPase is an altered state of the latter. Third, calcium (between 1 and 4 µM shows both stimulation and inhibition of the HAF-stimulated H, K-ATPase depending on its concentration, revealing a close interaction between the  proton-pump activator and local Ca concentration in gastric H, K-ATPase function. Such interactions suggest that Ca is acting as a terminal member of the intracellular signaling system for the HAF-regulated proton-pump. It appears that during resting state, the HAF-associated H, K-ATPase remains inhibited by Ca (>1 µM and, prior to resumption of acid secretion the gastric H, K-ATPase acts temporarily as a Ca-pump for removing excess Ca from its immediate environment. This conclusion is consistent with the recent reports of immunochemical co-localization of the gastric H, K-ATPase and Ca-ATPase by superimposition in parietal cells, and a transitory efflux of Ca immediately preceding the onset of acid secretion. These new perspectives on proton-pump function would open new avenues for a fuller understanding of the intracellular regulation of the ubiquitous Na-pump.

  2. Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening

    DEFF Research Database (Denmark)

    Orfila, C.; Huisman, M.M.H.; Willats, William George Tycho

    2002-01-01

    The Cnr (Colourless non-ripening) tomato (Lycopersicon esculentum Mill.) mutant has an aberrant fruit-ripening phenotype in which fruit do not soften and have reduced cell adhesion between pericarp cells. Cell walls from Cnr fruit were analysed in order to assess the possible contribution of pectic...... polysaccharides to the non-softening and altered cell adhesion phenotype. Cell wall material (CWM) and solubilised fractions of mature green and red ripe fruit were analysed by chemical, enzymatic and immunochemical techniques. No major differences in CWM sugar composition were detected although differences were...... that was chelator-soluble was 50% less in Cnr cell walls at both the mature green and red ripe stages. Chelator-soluble material from ripe-stage Cnr was more susceptible to endo-polygalacturonase degradation than the corresponding material from wild-type fruit. In addition, cell walls from Cnr fruit contained...

  3. Prenatal cadmium exposure alters postnatal immune cell development and function

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B., E-mail: jbarnett@hsc.wvu.edu

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can

  4. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity

    International Nuclear Information System (INIS)

    Roy, Kanaklata; Wang, Lilin; Makrigiorgos, G. Mike; Price, Brendan D.

    2006-01-01

    Glioblastomas are among the malignancies most resistant to radiation therapy. In contrast, cells lacking the ATM protein are highly sensitive to ionizing radiation. The relationship between ATM protein expression and radiosensitivity in 3 glioma cell lines was examined. T98G cells exhibited normal levels of ATM protein, whereas U118 and U87 cells had significantly lower levels of ATM and increased (>2-fold) sensitivity to ionizing radiation compared to T98G cells. The ATM promoter was methylated in U87 cells. Demethylation by azacytidine treatment increased ATM protein levels in the U87 cells and decreased their radiosensitivity. In contrast, the ATM promoter in U118 cells was not methylated. Further, expression of exogenous ATM did not significantly alter the radiosensitivity of U118 cells. ATM expression is therefore heterogeneous in the glioma cells examined. In conclusion, methylation of the ATM promoter may account for the variable radiosensitivity and heterogeneous ATM expression in a fraction of glioma cells

  5. Transforming growth factor-β2 induces morphological alteration of human corneal endothelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2014-10-01

    Full Text Available AIM:To investigate the morphological altering effect of transforming growth factor-β2 (TGF-β2 on untransfected human corneal endothelial cells (HCECs in vitro.METHODS: After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology, cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy, immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2 (9 μg/L altered HCE cell morphology after treatment for 36h, increased the mean optical density (P<0.01 and the length of F-actin, reduced the mean optical density (P<0.01 of the collagen type IV in extracellular matrix (ECM and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72h. CONCLUTION:TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.

  6. Prognostic and predictive value of VHL gene alteration in renal cell carcinoma: a meta-analysis and review.

    Science.gov (United States)

    Kim, Bum Jun; Kim, Jung Han; Kim, Hyeong Su; Zang, Dae Young

    2017-02-21

    The von Hippel-Lindau (VHL) gene is often inactivated in sporadic renal cell carcinoma (RCC) by mutation or promoter hypermethylation. The prognostic or predictive value of VHL gene alteration is not well established. We conducted this meta-analysis to evaluate the association between the VHL alteration and clinical outcomes in patients with RCC. We searched PUBMED, MEDLINE and EMBASE for articles including following terms in their titles, abstracts, or keywords: 'kidney or renal', 'carcinoma or cancer or neoplasm or malignancy', 'von Hippel-Lindau or VHL', 'alteration or mutation or methylation', and 'prognostic or predictive'. There were six studies fulfilling inclusion criteria and a total of 633 patients with clear cell RCC were included in the study: 244 patients who received anti-vascular endothelial growth factor (VEGF) therapy in the predictive value analysis and 419 in the prognostic value analysis. Out of 663 patients, 410 (61.8%) had VHL alteration. The meta-analysis showed no association between the VHL gene alteration and overall response rate (relative risk = 1.47 [95% CI, 0.81-2.67], P = 0.20) or progression free survival (hazard ratio = 1.02 [95% CI, 0.72-1.44], P = 0.91) in patients with RCC who received VEGF-targeted therapy. There was also no correlation between the VHL alteration and overall survival (HR = 0.80 [95% CI, 0.56-1.14], P = 0.21). In conclusion, this meta-analysis indicates that VHL gene alteration has no prognostic or predictive value in patients with clear cell RCC.

  7. Alteration of long-distance functional connectivity and network topology in patients with supratentorial gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Kim, Ho Sung; Kim, Sang Joon; Shim, Woo Hyun [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Songpa-Gu, Seoul (Korea, Republic of); Kim, Jeong Hoon [University of Ulsan College of Medicine, Department of Neurosurgery, Asan Medical Center, Seoul (Korea, Republic of)

    2016-03-15

    The need for information regarding functional alterations in patients with brain gliomas is increasing, but little is known about the functional consequences of focal brain tumors throughout the entire brain. Using resting-state functional MR imaging (rs-fMRI), this study assessed functional connectivity in patients with supratentorial brain gliomas with possible alterations in long-distance connectivity and network topology. Data from 36 patients with supratentorial brain gliomas and 12 healthy subjects were acquired using rs-fMRI. The functional connectivity matrix (FCM) was created using 32 pairs of cortical seeds on Talairach coordinates in each individual subject. Local and distant connectivity were calculated using z-scores in the individual patient's FCM, and the averaged FCM of patients was compared with that of healthy subjects. Weighted network analysis was performed by calculating local efficiency, global efficiency, clustering coefficient, and small-world topology, and compared between patients and healthy controls. When comparing the averaged FCM of patients with that of healthy controls, the patients showed decreased long-distance, inter-hemispheric connectivity (0.32 ± 0.16 in patients vs. 0. 42 ± 0.15 in healthy controls, p = 0.04). In network analysis, patients showed increased local efficiency (p < 0.05), but global efficiency, clustering coefficient, and small-world topology were relatively preserved compared to healthy subjects. Patients with supratentorial brain gliomas showed decreased long-distance connectivity while increased local efficiency and preserved small-world topology. The results of this small case series may provide a better understanding of the alterations of functional connectivity in patients with brain gliomas across the whole brain scale. (orig.)

  8. Bilingualism alters brain functional connectivity between "control" regions and "language" regions: Evidence from bimodal bilinguals.

    Science.gov (United States)

    Li, Le; Abutalebi, Jubin; Zou, Lijuan; Yan, Xin; Liu, Lanfang; Feng, Xiaoxia; Wang, Ruiming; Guo, Taomei; Ding, Guosheng

    2015-05-01

    Previous neuroimaging studies have revealed that bilingualism induces both structural and functional neuroplasticity in the dorsal anterior cingulate cortex (dACC) and the left caudate nucleus (LCN), both of which are associated with cognitive control. Since these "control" regions should work together with other language regions during language processing, we hypothesized that bilingualism may also alter the functional interaction between the dACC/LCN and language regions. Here we tested this hypothesis by exploring the functional connectivity (FC) in bimodal bilinguals and monolinguals using functional MRI when they either performed a picture naming task with spoken language or were in resting state. We found that for bimodal bilinguals who use spoken and sign languages, the FC of the dACC with regions involved in spoken language (e.g. the left superior temporal gyrus) was stronger in performing the task, but weaker in the resting state as compared to monolinguals. For the LCN, its intrinsic FC with sign language regions including the left inferior temporo-occipital part and right inferior and superior parietal lobules was increased in the bilinguals. These results demonstrate that bilingual experience may alter the brain functional interaction between "control" regions and "language" regions. For different control regions, the FC alters in different ways. The findings also deepen our understanding of the functional roles of the dACC and LCN in language processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Functional and morphological alterations of the stomach in case of irradiation of the para-aortic area

    Energy Technology Data Exchange (ETDEWEB)

    Beyer-Enke, S.A.; Gladisch, R.; Heine, M.; Georgi, M.

    1987-12-01

    Six assays were conducted in order to determine some functional and morphological parameters of the gastric mucosa in patients who underwent Co/sup 60/ irradiations of the para-aortic area. Slight as well as marked morphological alterations were observed whereas the functional alterations were found to be marked in all cases. Basal gastric secretion and serum gastrin level showed a continous reduction, however, in case of severe gastritis the stimulated secretion was increased. A possible correlation with increased tissue histamine levels is discussed.

  10. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C.; Meer, Berend van; Ward-van Oostwaard, Dorien [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); Passier, Robert [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); MIRA, University of Twente (Netherlands); Tertoolen, Leon G.J.; Mummery, Christine L. [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); Casini, Simona, E-mail: s.casini@amc.uva.nl [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands)

    2015-11-27

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation. - Highlights: • Dexamethasone accelerates Ca{sup 2+} transient decay in hESC-CMs. • Dexamethasone enhances SERCA and NCX function in hESC-CMs. • Dexamethasone increases force of contraction and sarcomere length in hESC-CMs. • Dexamethasone does not alter I{sub Ca,L} and action potential characteristics in hESC-CMs.

  11. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure

    International Nuclear Information System (INIS)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C.; Meer, Berend van; Ward-van Oostwaard, Dorien; Passier, Robert; Tertoolen, Leon G.J.; Mummery, Christine L.; Casini, Simona

    2015-01-01

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation. - Highlights: • Dexamethasone accelerates Ca"2"+ transient decay in hESC-CMs. • Dexamethasone enhances SERCA and NCX function in hESC-CMs. • Dexamethasone increases force of contraction and sarcomere length in hESC-CMs. • Dexamethasone does not alter I_C_a_,_L and action potential characteristics in hESC-CMs.

  12. Neurogenic transdifferentiation of human adipose-derived stem cells? A critical protocol reevaluation with special emphasis on cell proliferation and cell cycle alterations.

    Science.gov (United States)

    Kompisch, Kai Michael; Lange, Claudia; Steinemann, Doris; Skawran, Britta; Schlegelberger, Brigitte; Müller, Reinhard; Schumacher, Udo

    2010-11-01

    Adipose-derived stem cells (ASCs) are reported to display multilineage differentiation potential, including neuroectodermal pathways. The aim of the present study was to critically re-evaluate the potential neurogenic (trans-)differentiation capacity of ASCs using a neurogenic induction protocol based on the combination of isobutylmethylxanthine (IBMX), indomethacin and insulin. ASCs isolated from lipo-aspirate samples of five healthy female donors were characterized and potential neurogenic (trans-)differentiation was assessed by means of immunohistochemistry and gene expression analyses. Cell proliferation and cell cycle alterations were studied, and the expression of CREB/ATF transcription factors was analyzed. ASCs expressed CD59, CD90 and CD105, and were tested negative for CD34 and CD45. Under neurogenic induction, ASCs adopted a characteristic morphology comparable to neur(on)al progenitors and expressed musashi1, β-III-tubulin and nestin. Gene expression analyses revealed an increased expression of β-III-tubulin, GFAP, vimentin and BDNF, as well as SOX4 in induced ASCs. Cell proliferation was significantly reduced under neurogenic induction; cell cycle analyses showed a G2-cell cycle arrest accompanied by differential expression of key regulators of cell cycle progression. Differential expression of CREB/ATF transcription factors could be observed on neurogenic induction, pointing to a decisive role of the cAMP-CREB/ATF system. Our findings may point to a potential neurogenic (trans-)differentiation of ASCs into early neur(on)al progenitors, but do not present definite evidence for it. Especially, the adoption of a neural progenitor cell-like morphology must not automatically be misinterpreted as a specific characteristic of a respective (trans-)differentiation process, as this may as well be caused by alterations of cell cycle progression.

  13. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Viitanen, Matti; Sundström, Erik; Baumann, Marc; Poyhonen, Minna; Tikka, Saara; Behbahani, Homira

    2013-01-01

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ m ) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology. -- Highlights: ► CADASIL is an inherited disease of cerebral vascular cells. ► Mitochondrial dysfunction has been implicated in the pathogenesis of CADASIL. ► Lower proliferation rates in CADASIL VSMC. ► Increased irregular and abnormal mitochondria and lower mitochondrial membrane potential in CADASIL VSMCs. ► Reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs.

  14. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Viitanen, Matti [Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden); Department of Geriatrics, Turku City Hospital and University of Turku, Turku (Finland); Sundström, Erik [Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden); Baumann, Marc [Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki (Finland); Poyhonen, Minna [Department of Clinical Genetics, Helsinki University Hospital, HUSLAB, Helsinki (Finland); Tikka, Saara [Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki (Finland); Behbahani, Homira, E-mail: homira.behbahani@ki.se [Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden); Karolinska Institutet Alzheimer' s Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden)

    2013-02-01

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ{sub m}) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology. -- Highlights: ► CADASIL is an inherited disease of cerebral vascular cells. ► Mitochondrial dysfunction has been implicated in the pathogenesis of CADASIL. ► Lower proliferation rates in CADASIL VSMC. ► Increased irregular and abnormal mitochondria and lower mitochondrial membrane potential in CADASIL VSMCs. ► Reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs.

  15. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND

    Science.gov (United States)

    Gaskill, Peter J.; Calderon, Tina M.; Coley, Jacqueline S.; Berman, Joan W.

    2013-01-01

    Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70% of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers. PMID:23456305

  16. Non-concomitant cortical structural and functional alterations in sensorimotor areas following incomplete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Yu Pan

    2017-01-01

    Full Text Available Brain plasticity, including anatomical changes and functional reorganization, is the physiological basis of functional recovery after spinal cord injury (SCI. The correlation between brain anatomical changes and functional reorganization after SCI is unclear. This study aimed to explore whether alterations of cortical structure and network function are concomitant in sensorimotor areas after incomplete SCI. Eighteen patients with incomplete SCI (mean age 40.94 ± 14.10 years old; male:female, 7:11 and 18 healthy subjects (37.33 ± 11.79 years old; male:female, 7:11 were studied by resting state functional magnetic resonance imaging. Gray matter volume (GMV and functional connectivity were used to evaluate cortical structure and network function, respectively. There was no significant alteration of GMV in sensorimotor areas in patients with incomplete SCI compared with healthy subjects. Intra-hemispheric functional connectivity between left primary somatosensory cortex (BA1 and left primary motor cortex (BA4, and left BA1 and left somatosensory association cortex (BA5 was decreased, as well as inter-hemispheric functional connectivity between left BA1 and right BA4, left BA1 and right BA5, and left BA4 and right BA5 in patients with SCI. Functional connectivity between both BA4 areas was also decreased. The decreased functional connectivity between the left BA1 and the right BA4 positively correlated with American Spinal Injury Association sensory score in SCI patients. The results indicate that alterations of cortical anatomical structure and network functional connectivity in sensorimotor areas were non-concomitant in patients with incomplete SCI, indicating the network functional changes in sensorimotor areas may not be dependent on anatomic structure. The strength of functional connectivity within sensorimotor areas could serve as a potential imaging biomarker for assessment and prediction of sensory function in patients with incomplete SCI

  17. Proteome alteration induced by hTERT transfection of human fibroblast cells.

    Science.gov (United States)

    Mazzucchelli, Gabriel D; Gabelica, Valérie; Smargiasso, Nicolas; Fléron, Maximilien; Ashimwe, Wilson; Rosu, Frédéric; De Pauw-Gillet, Marie-Claire; Riou, Jean-François; De Pauw, Edwin

    2008-04-17

    Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT) gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38). Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV) and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis) analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation. 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis. We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest that telomerase expression enhances natural cell repair

  18. Proteome alteration induced by hTERT transfection of human fibroblast cells

    Directory of Open Access Journals (Sweden)

    Riou Jean-François

    2008-04-01

    Full Text Available Abstract Background Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38. Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation. Results 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis. Conclusion We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest

  19. Dihydroartemisinin inhibits the human erythroid cell differentiation by altering the cell cycle

    International Nuclear Information System (INIS)

    Finaurini, Sara; Basilico, Nicoletta; Corbett, Yolanda; D’Alessandro, Sarah; Parapini, Silvia; Olliaro, Piero; Haynes, Richard K.; Taramelli, Donatella

    2012-01-01

    Artemisinin derivatives such as dihydroartemisinin (DHA) induce significant depletion of early embryonic erythroblasts in animal models. We have reported previously that DHA specifically targets pro-erythroblasts and basophilic erythroblasts, when human CD34+ stem cells are differentiated toward the erythroid lineage, indicating that a window of susceptibility to artemisinins may exist also in human developmental erythropoiesis during pregnancy. To better investigate the toxicity of artemisinin derivatives, the structure–activity relationship was evaluated against the K562 leukaemia cell line, used as a model for differentiating early human erythroblasts. All artemisinins derivatives, except deoxyartemisinin, inhibited both spontaneous and induced erythroid differentiation, confirming that the peroxide bridge is responsible for the erythro-toxicity. On the contrary, cell growth was markedly reduced by DHA, artemisone and artesunate but not by artemisinin, 10-deoxoartemisinin or deoxy-artemisinin. The substituent at position C-10 is responsible only for the anti-proliferative effect, since 10-deoxoartemisinin did not reduce cell growth but arrested the differentiation of K562 cells. In particular, the results showed that DHA resulted the most potent and rapidly acting compound of the drug family, causing (i) the decreased expression of GpA surface receptors and the down regulation the γ-globin gene; (ii) the alteration of S phase of cell cycle and (iii) the induction of programmed cell death of early erythroblasts in a dose dependent manner within 24 h. In conclusion, these findings confirm that the active metabolite DHA is responsible for the erythro-toxicity of most of artemisinins used in therapy. Thus, as long as no further clinical data are available, current WHO recommendations of avoiding malaria treatment with artemisinins during the first trimester of pregnancy remain valid.

  20. Hematological alterations in protein malnutrition.

    Science.gov (United States)

    Santos, Ed W; Oliveira, Dalila C; Silva, Graziela B; Tsujita, Maristela; Beltran, Jackeline O; Hastreiter, Araceli; Fock, Ricardo A; Borelli, Primavera

    2017-11-01

    Protein malnutrition is one of the most serious nutritional problems worldwide, affecting 794 million people and costing up to $3.5 trillion annually in the global economy. Protein malnutrition primarily affects children, the elderly, and hospitalized patients. Different degrees of protein deficiency lead to a broad spectrum of signs and symptoms of protein malnutrition, especially in organs in which the hematopoietic system is characterized by a high rate of protein turnover and, consequently, a high rate of protein renewal and cellular proliferation. Here, the current scientific information about protein malnutrition and its effects on the hematopoietic process is reviewed. The production of hematopoietic cells is described, with special attention given to the hematopoietic microenvironment and the development of stem cells. Advances in the study of hematopoiesis in protein malnutrition are also summarized. Studies of protein malnutrition in vitro, in animal models, and in humans demonstrate several alterations that impair hematopoiesis, such as structural changes in the extracellular matrix, the hematopoietic stem cell niche, the spleen, the thymus, and bone marrow stromal cells; changes in mesenchymal and hematopoietic stem cells; increased autophagy; G0/G1 cell-cycle arrest of progenitor hematopoietic cells; and functional alterations in leukocytes. Structural and cellular changes of the hematopoietic microenvironment in protein malnutrition contribute to bone marrow atrophy and nonestablishment of hematopoietic stem cells, resulting in impaired homeostasis and an impaired immune response. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Cell Adhesion Molecule CD166/ALCAM Functions Within the Crypt to Orchestrate Murine Intestinal Stem Cell HomeostasisSummary

    Directory of Open Access Journals (Sweden)

    Nicholas R. Smith

    2017-05-01

    Full Text Available Background & Aims: Intestinal epithelial homeostasis is maintained by active-cycling and slow-cycling stem cells confined within an instructive crypt-based niche. Exquisite regulating of these stem cell populations along the proliferation-to-differentiation axis maintains a homeostatic balance to prevent hyperproliferation and cancer. Although recent studies focus on how secreted ligands from mesenchymal and epithelial populations regulate intestinal stem cells (ISCs, it remains unclear what role cell adhesion plays in shaping the regulatory niche. Previously we have shown that the cell adhesion molecule and cancer stem cell marker, CD166/ALCAM (activated leukocyte cell adhesion molecule, is highly expressed by both active-cycling Lgr5+ ISCs and adjacent Paneth cells within the crypt base, supporting the hypothesis that CD166 functions to mediate ISC maintenance and signal coordination. Methods: Here we tested this hypothesis by analyzing a CD166–/– mouse combined with immunohistochemical, flow cytometry, gene expression, and enteroid culture. Results: We found that animals lacking CD166 expression harbored fewer active-cycling Lgr5+ ISCs. Homeostasis was maintained by expansion of the transit-amplifying compartment and not by slow-cycling Bmi1+ ISC stimulation. Loss of active-cycling ISCs was coupled with deregulated Paneth cell homeostasis, manifested as increased numbers of immature Paneth progenitors due to decreased terminal differentiation, linked to defective Wnt signaling. CD166–/– Paneth cells expressed reduced Wnt3 ligand expression and depleted nuclear β-catenin. Conclusions: These data support a function for CD166 as an important cell adhesion molecule that shapes the signaling microenvironment by mediating ISC–niche cell interactions. Furthermore, loss of CD166 expression results in decreased ISC and Paneth cell homeostasis and an altered Wnt microenvironment. Keywords: Intestinal Stem Cell, Homeostasis

  2. [The value of double contrast arthrotomography combined with cinematography in the diagnosis of functional and structural TMJ alterations].

    Science.gov (United States)

    Engelke, W; Grossniklaus, B; Sailer, H F

    1991-01-01

    Double contrast arthrotomography combined with cinematography as a diagnostic instrument establishing functional and structural TMJ alterations is evaluated for its diagnostic value and reliability within the chain of diagnostic measures applied. In 131 patients double-contrast arthrotomography was followed by a comprehensive history of joint problems, and verification of the clinical findings as well as the arthrographic diagnosis and the post-arthrographic TMJ alterations. Our interest was focussed, among others, on the question whether arthrography alone would have any therapeutic effect or produce an alteration in TMJ function.

  3. Calcipotriol inhibits the proliferation of hyperproliferative CD29 positive keratinocytes in psoriatic epidermis in the absence of an effect on the function and number of antigen-presenting cells

    DEFF Research Database (Denmark)

    Jensen, A.M.; Llado, Minna Fyhn Lykke; Skov, L.

    1998-01-01

    The aim of this study was to elucidate some of the possible mechanisms of action of the vitamin D analogue calcipotriol in vivo. Calcipotriol is finding increasing use in the treatment of psoriasis, but the primary target cell in vivo has not yet been identified. We treated psoriatic patients...... psoriatic and normal skin, calcipotriol treatment did not alter the capacity of epidermal antigen-presenting cells to stimulate the proliferation of autologous T cells, either in the absence or in the presence of exogenous antigen. Epidermal cell suspensions were analysed further by staining...... for infiltrating leucocytes (CD45+) and Langerhans cells (CD1a+). Flow cytometric analysis showed that calcipotriol did not alter the number of CD45+ cells or Langerhans cells in psoriatic skin. These results indicate that calcipotriol does not alter either the number of the function of epidermal antigen...

  4. Altered functional connectivity of amygdala underlying the neuromechanism of migraine pathogenesis.

    Science.gov (United States)

    Chen, Zhiye; Chen, Xiaoyan; Liu, Mengqi; Dong, Zhao; Ma, Lin; Yu, Shengyuan

    2017-12-01

    The amygdala is a large grey matter complex in the limbic system, and it may contribute in the neurolimbic pain network in migraine. However, the detailed neuromechanism remained to be elucidated. The objective of this study is to investigate the amygdala structural and functional changes in migraine and to elucidate the mechanism of neurolimbic pain-modulating in the migraine pathogenesis. Conventional MRI, 3D structure images and resting state functional MRI were performed in 18 normal controls (NC), 18 patients with episodic migraine (EM), and 16 patients with chronic migraine (CM). The amygdala volume was measured using FreeSurfer software and the functional connectivity (FC) of bilateral amygdala was computed over the whole brain. Analysis of covariance was performed on the individual FC maps among groups. The increased FC of left amygdala was observed in EM compared with NC, and the decreased of right amygdala was revealed in CM compared with NC. The increased FC of bilateral amygdala was observed in CM compared with EM. The correlation analysis showed a negative correlation between the score of sleep quality (0, normal; 1, mild sleep disturbance; 2, moderate sleep disturbance; 3, serious sleep disturbance) and the increased FC strength of left amygdala in EM compared with NC, and a positive correlation between the score of sleep quality and the increased FC strength of left amygdala in CM compared with EM, and other clinical variables showed no significant correlation with altered FC of amygdala. The altered functional connectivity of amygdala demonstrated that neurolimbic pain network contribute in the EM pathogenesis and CM chronicization.

  5. Secretion of interferon gamma from human immune cells is altered by exposure to tributyltin and dibutyltin.

    Science.gov (United States)

    Lawrence, Shanieek; Reid, Jacqueline; Whalen, Margaret

    2015-05-01

    Tributyltin (TBT) and dibutyltin (DBT) are widespread environmental contaminants found in food, beverages, and human blood samples. Both of these butyltins (BTs) interfere with the ability of human natural killer (NK) cells to lyse target cells and alter secretion of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) from human immune cells in vitro. The capacity of BTs to interfere with secretion of other pro-inflammatory cytokines has not been examined. Interferon gamma (IFNγ) is a modulator of adaptive and innate immune responses, playing an important role in overall immune competence. This study shows that both TBT and DBT alter secretion of IFNγ from human immune cells. Peripheral blood cell preparations that were increasingly reconstituted were used to determine if exposures to either TBT or DBT affected IFNγ secretion and how the makeup of the cell preparation influenced that effect. IFNγ secretion was examined after 24 h, 48 h, and 6 day exposures to TBT (200 - 2.5 nM) and DBT (5 - 0.05 µM) in highly enriched human NK cells, a monocyte-depleted preparation of PBMCs, and monocyte-containing PBMCs. Both BTs altered IFNγ secretion from immune cells at most of the conditions tested (either increasing or decreasing secretion). However, there was significant variability among donors as to the concentrations and time points that showed changes as well as the baseline secretion of IFNγ. The majority of donors showed an increase in IFNγ secretion in response to at least one concentration of TBT or DBT at a minimum of one length of exposure. © 2013 Wiley Periodicals, Inc.

  6. Altered functional brain connectivity in patients with visually induced dizziness

    Directory of Open Access Journals (Sweden)

    Angelique Van Ombergen

    2017-01-01

    Conclusions: We found alterations in the visual and vestibular cortical network in VID patients that could underlie the typical VID symptoms such as a worsening of their vestibular symptoms when being exposed to challenging visual stimuli. These preliminary findings provide the first insights into the underlying functional brain connectivity in VID patients. Future studies should extend these findings by employing larger sample sizes, by investigating specific task-based paradigms in these patients and by exploring the implications for treatment.

  7. Perfusion deficits and functional connectivity alterations in patients with post-traumatic stress disorder

    Science.gov (United States)

    Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing

    2016-03-01

    To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.

  8. Loss of Asxl1 Alters Self-Renewal and Cell Fate of Bone Marrow Stromal Cell, Leading to Bohring-Opitz-like Syndrome in Mice

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2016-06-01

    Full Text Available De novo ASXL1 mutations are found in patients with Bohring-Opitz syndrome, a disease with severe developmental defects and early childhood mortality. The underlying pathologic mechanisms remain largely unknown. Using Asxl1-targeted murine models, we found that Asxl1 global loss as well as conditional deletion in osteoblasts and their progenitors led to significant bone loss and a markedly decreased number of bone marrow stromal cells (BMSCs compared with wild-type littermates. Asxl1−/− BMSCs displayed impaired self-renewal and skewed differentiation, away from osteoblasts and favoring adipocytes. RNA-sequencing analysis revealed altered expression of genes involved in cell proliferation, skeletal development, and morphogenesis. Furthermore, gene set enrichment analysis showed decreased expression of stem cell self-renewal gene signature, suggesting a role of Asxl1 in regulating the stemness of BMSCs. Importantly, re-introduction of Asxl1 normalized NANOG and OCT4 expression and restored the self-renewal capacity of Asxl1−/− BMSCs. Our study unveils a pivotal role of ASXL1 in the maintenance of BMSC functions and skeletal development.

  9. Altered Mucin and Glycoprotein Expression in Dry Eye Disease.

    Science.gov (United States)

    Stephens, Denise N; McNamara, Nancy A

    2015-09-01

    Mucins are among the many important constituents of a healthy tear film. Mucins secreted and/or associated with conjunctival goblet cells, ocular mucosal epithelial cells, and the lacrimal gland must work together to create a stable tear film. Although many studies have explored the mechanism(s) whereby mucins maintain and protect the ocular surface, the effects of dry eye on the structure and function of ocular mucins are unclear. Here, we summarize current findings regarding ocular mucins and how they are altered in dry eye. We performed a literature review of studies exploring the expression of mucins produced and/or associated with tissues that comprise the lacrimal functional unit and how they are altered in dry eye. We also summarize new insights on the immune-mediated effects of aqueous tear deficiency on ocular surface mucins that we discovered using a mouse model of dry eye. Although consistent decreases in MUC5AC and altered expression of membrane-bound mucins have been noted in both Sjögren and non-Sjögren dry eye, many reports of altered mucins in dry eye are contradictory. Mechanistic studies, including our own, suggest that changes in the glycosylation of mucins rather than the proteins themselves may occur as the direct result of local inflammation induced by proinflammatory mediators, such as interleukin-1. Altered expression of ocular mucins in dry eye varies considerably from study to study, likely attributed to inherent difficulties in analyzing small-volume tear samples, as well as differences in tear collection methods and disease severity in dry eye cohorts. To better define the functional role of ocular mucin glycosylation in the pathogenesis of dry eye disease, we propose genomic and proteomic studies along with biological pathway analysis to reveal novel avenues for exploration.

  10. Alteration in adenylate cyclase response to aminergic stimulation following neonatal x-irradiation

    International Nuclear Information System (INIS)

    Chronister, R.B.; Palmer, G.C.; Gerbrandt, L.

    1980-01-01

    X-irradiation of the rat neonatal hippocampus produces severe alterations in the architectonic features of the mature hippocampus. The most prominent alteration is a marked depletion of the granule cells of the dentate gyrus, with a subsequent realignment of CA 4 cells. The present data also show that norepinephrine (NE), dopamine and histamine stimulation of adenylate cyclase activity is severely attenuated in the hippocampi of irradiated animals. This failure suggests that the NE fibers of irradiated subjects, although normal in content of NE, are not functional in some of their NE-effector actions

  11. Heterozygosity for the Mood Disorder-Associated Variant Gln460Arg Alters P2X7 Receptor Function and Sleep Quality.

    Science.gov (United States)

    Metzger, Michael W; Walser, Sandra M; Dedic, Nina; Aprile-Garcia, Fernando; Jakubcakova, Vladimira; Adamczyk, Marek; Webb, Katharine J; Uhr, Manfred; Refojo, Damian; Schmidt, Mathias V; Friess, Elisabeth; Steiger, Axel; Kimura, Mayumi; Chen, Alon; Holsboer, Florian; Arzt, Eduardo; Wurst, Wolfgang; Deussing, Jan M

    2017-11-29

    A single nucleotide polymorphism substitution from glutamine (Gln, Q) to arginine (Arg, R) at codon 460 of the purinergic P2X7 receptor (P2X7R) has repeatedly been associated with mood disorders. The P2X7R-Gln460Arg variant per se is not compromised in its function. However, heterologous expression of P2X7R-Gln460Arg together with wild-type P2X7R has recently been demonstrated to impair receptor function. Here we show that this also applies to humanized mice coexpressing both human P2X7R variants. Primary hippocampal cells derived from heterozygous mice showed an attenuated calcium uptake upon agonist stimulation. While humanized mice were unaffected in their behavioral repertoire under basal housing conditions, mice that harbor both P2X7R variants showed alterations in their sleep quality resembling signs of a prodromal disease stage. Also healthy heterozygous human subjects showed mild changes in sleep parameters. These results indicate that heterozygosity for the wild-type P2X7R and its mood disorder-associated variant P2X7R-Gln460Arg represents a genetic risk factor, which is potentially able to convey susceptibility to mood disorders. SIGNIFICANCE STATEMENT Depression and bipolar disorder are the most common mood disorders. The P2X7 receptor (P2X7R) regulates many cellular functions. Its polymorphic variant Gln460Arg has repeatedly been associated with mood disorders. Genetically engineered mice, with human P2X7R, revealed that heterozygous mice (i.e., they coexpress the disease-associated Gln460Arg variant together with its normal version) have impaired receptor function and showed sleep disturbances. Human participants with the heterozygote genotype also had subtle alterations in their sleep profile. Our findings suggest that altered P2X7R function in heterozygote individuals disturbs sleep and might increase the risk for developing mood disorders. Copyright © 2017 the authors 0270-6474/17/3711688-13$15.00/0.

  12. Prolonged Intake of Dietary Lipids Alters Membrane Structure and T Cell Responses in LDLr-/- Mice.

    Science.gov (United States)

    Pollock, Abigail H; Tedla, Nicodemus; Hancock, Sarah E; Cornely, Rhea; Mitchell, Todd W; Yang, Zhengmin; Kockx, Maaike; Parton, Robert G; Rossy, Jérémie; Gaus, Katharina

    2016-05-15

    Although it is recognized that lipids and membrane organization in T cells affect signaling and T cell activation, to what extent dietary lipids alter T cell responsiveness in the absence of obesity and inflammation is not known. In this study, we fed low-density lipoprotein receptor knockout mice a Western high-fat diet for 1 or 9 wk and examined T cell responses in vivo along with T cell lipid composition, membrane order, and activation ex vivo. Our data showed that high levels of circulating lipids for a prolonged period elevated CD4(+) and CD8(+) T cell proliferation and resulted in an increased proportion of CD4(+) central-memory T cells within the draining lymph nodes following induction of contact hypersensitivity. In addition, the 9-wk Western high-fat diet elevated the total phospholipid content and monounsaturated fatty acid level, but decreased saturated phosphatidylcholine and sphingomyelin within the T cells. The altered lipid composition in the circulation, and of T cells, was also reflected by enhanced membrane order at the activation site of ex vivo activated T cells that corresponded to increased IL-2 mRNA levels. In conclusion, dietary lipids can modulate T cell lipid composition and responses in lipoprotein receptor knockout mice even in the absence of excess weight gain and a proinflammatory environment. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. Fanca deficiency reduces A/T transitions in somatic hypermutation and alters class switch recombination junctions in mouse B cells.

    Science.gov (United States)

    Nguyen, Thuy Vy; Riou, Lydia; Aoufouchi, Saïd; Rosselli, Filippo

    2014-06-02

    Fanconi anemia is a rare genetic disorder that can lead to bone marrow failure, congenital abnormalities, and increased risk for leukemia and cancer. Cells with loss-of-function mutations in the FANC pathway are characterized by chromosome fragility, altered mutability, and abnormal regulation of the nonhomologous end-joining (NHEJ) pathway. Somatic hypermutation (SHM) and immunoglobulin (Ig) class switch recombination (CSR) enable B cells to produce high-affinity antibodies of various isotypes. Both processes are initiated after the generation of dG:dU mismatches by activation-induced cytidine deaminase. Whereas SHM involves an error-prone repair process that introduces novel point mutations into the Ig gene, the mismatches generated during CSR are processed to create double-stranded breaks (DSBs) in DNA, which are then repaired by the NHEJ pathway. As several lines of evidence suggest a possible role for the FANC pathway in SHM and CSR, we analyzed both processes in B cells derived from Fanca(-/-) mice. Here we show that Fanca is required for the induction of transition mutations at A/T residues during SHM and that despite globally normal CSR function in splenic B cells, Fanca is required during CSR to stabilize duplexes between pairs of short microhomology regions, thereby impeding short-range recombination downstream of DSB formation. © 2014 Nguyen et al.

  14. Apoptosis-Inducing-Factor-Dependent Mitochondrial Function Is Required for T Cell but Not B Cell Function.

    Science.gov (United States)

    Milasta, Sandra; Dillon, Christopher P; Sturm, Oliver E; Verbist, Katherine C; Brewer, Taylor L; Quarato, Giovanni; Brown, Scott A; Frase, Sharon; Janke, Laura J; Perry, S Scott; Thomas, Paul G; Green, Douglas R

    2016-01-19

    The role of apoptosis inducing factor (AIF) in promoting cell death versus survival remains controversial. We report that the loss of AIF in fibroblasts led to mitochondrial electron transport chain defects and loss of proliferation that could be restored by ectopic expression of the yeast NADH dehydrogenase Ndi1. Aif-deficiency in T cells led to decreased peripheral T cell numbers and defective homeostatic proliferation, but thymic T cell development was unaffected. In contrast, Aif-deficient B cells developed and functioned normally. The difference in the dependency of T cells versus B cells on AIF for function and survival correlated with their metabolic requirements. Ectopic Ndi1 expression rescued homeostatic proliferation of Aif-deficient T cells. Despite its reported roles in cell death, fibroblasts, thymocytes and B cells lacking AIF underwent normal death. These studies suggest that the primary role of AIF relates to complex I function, with differential effects on T and B cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Electroencephalographic power and coherence analyses suggest altered brain function in abstinent male heroin-dependent patients

    NARCIS (Netherlands)

    Franken, Ingmar H. A.; Stam, Cornelis J.; Hendriks, Vincent M.; van den Brink, Wim

    2004-01-01

    Previous studies have shown that drug abuse is associated with altered brain function. However, studies of heroin abuse-related brain dysfunctions are scarce. Electroencephalographic ( EEG) power and coherence analyses are two important tools for examining the effects of drugs on brain function. In

  16. Diet-Induced Obesity Is Associated with an Impaired NK Cell Function and an Increased Colon Cancer Incidence

    Directory of Open Access Journals (Sweden)

    Ina Bähr

    2017-01-01

    Full Text Available Obesity is associated with an increased colon cancer incidence, but underlying mechanisms remained unclear. Previous studies showed altered Natural killer (NK cell functions in obese individuals. Therefore, we studied the impact of an impaired NK cell functionality on the increased colon cancer risk in obesity. In vitro investigations demonstrated a decreased IFN-γ secretion and cytotoxicity of human NK cells against colon tumor cells after NK cell preincubation with the adipokine leptin. In addition, leptin incubation decreased the expression of activating NK cell receptors. In animal studies, colon cancer growth was induced by injection of azoxymethane (AOM in normal weight and diet-induced obese rats. Body weight and visceral fat mass were increased in obese animals compared to normal weight rats. AOM-treated obese rats showed an increased quantity, size, and weight of colon tumors compared to the normal weight tumor group. Immunohistochemical analyses demonstrated a decreased number of NK cells in spleen and liver in obesity. Additionally, the expression levels of activating NK cell receptors were lower in spleen and liver of obese rats. The results show for the first time that the decreased number and impaired NK cell function may be one cause for the higher colon cancer risk in obesity.

  17. Epigenetic regulation of hematopoietic stem cell aging

    International Nuclear Information System (INIS)

    Beerman, Isabel; Rossi, Derrick J.

    2014-01-01

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging

  18. Epigenetic regulation of hematopoietic stem cell aging

    Energy Technology Data Exchange (ETDEWEB)

    Beerman, Isabel, E-mail: isabel.beerman@childrens.harvard.edu [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States); Rossi, Derrick J. [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States)

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  19. Alteration of functional state of peripheral blood erythrocytes in women of different age groups at dislipidemia conditions.

    Science.gov (United States)

    Ratiani, L; Intskirveli, N; Ormotsadze, G; Sanikidze, T

    2011-12-01

    The aim of the study was identification of statistically reliable correlations and the cause-effect relationships between viability of red blood cells and dislipidema parametres and/or metabolic disorders, induced by age related alterations of estrogen content, in women of different ages (reproductive, menopausal) On the basis of the analysis of research results we can conclude that in the different age groups of women with atherosclerosis-induced cardiovascular diseases revealed estrogen-related dependence between Tg-s and HDL content, functional status of phereperial blood erytrotcites and severity of dislipidemia. The aterogenic index Tg/HD proved to be sensitive marker of dislipidemia in reproductive aging women, but does't reflect disorders of lipid metabolism in postmenosal women. It was proved the existence of reliable corelation between red blood cells dysfunction indicator, spherulation quality, and atherogenic index Tg/HDL highlights; however, the correlation coefficient is 2 times higher in the reproductive age as in menopause. Spherulation quality of red blood cells at low HDL content showd fast growth rate in reproductive-aged women, and was unsensetive to HDL content in postmenopasal women. It was concluded that age-related lack of estrogens in postmenopausal women indirectly contributes to decrease protection of red blood cells against oxidative damage, reduces their deformabelity and disturbances the rheological properties. So, Spherulation quality of red blood cells may be used as a diagnostic marker of severity of atherosclerosis.

  20. Effects of chemically modified nanostructured PLGA on functioning of lung and breast cancer cells

    Directory of Open Access Journals (Sweden)

    Zhang L

    2013-05-01

    Full Text Available Lijuan Zhang,1 Thomas J Webster21Department of Chemistry, 2School of Engineering, Brown University, Providence, RI, USABackground: The aim of this study was to investigate the effects of poly-lactic-co-glycolic acid (PLGA nanotopographies with alginate or chitosan protein preadsorption on the functioning of healthy and cancerous lung and breast cells, including adhesion, proliferation, apoptosis, and release of vascular endothelial growth factor (VEGF, which promotes tumor angiogenesis and secretion.Methods: We used a well established cast-mold technique to create nanoscale surface features on PLGA. Some of the nanomodified PLGA films were then exposed to alginate and chitosan. Surface roughness and the presence of protein was confirmed by atomic force microscopy. Surface energy was quantified by contact angle measurement.Results: Nanostructured PLGA surfaces with 23 nm features decreased synthesis of VEGF in both lung and breast cancer cells compared with conventional PLGA. Preadsorbing alginate further decreased cancer cell function, with nanostructured PLGA preadsorbed with alginate achieving the greatest decrease in synthesis of VEGF in both lung and breast cancer cells. In contrast, compared with nonmodified smooth PLGA, healthy cell functions were either not altered (ie, breast or were enhanced (ie, lung by use of nanostructured features and alginate or chitosan protein preadsorption.Conclusion: Using this technique, we developed surface nanometric roughness and modification of surface chemistry that could selectively decrease breast and lung cancer cell functioning without the need for chemotherapeutics. This technique requires further study in a wide range of anticancer and regenerative medicine applications.Keywords: breast, lung, cancer, nanotechnology, alginate, chitosan

  1. Epstein-Barr virus (EBV) LMP2A alters normal transcriptional regulation following B-cell receptor activation

    International Nuclear Information System (INIS)

    Portis, Toni; Longnecker, Richard

    2004-01-01

    The latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV) is an important mediator of viral latency in infected B-lymphocytes. LMP2A inhibits B-cell receptor (BCR) signaling in vitro and allows for the survival of BCR-negative B cells in vivo. In this study, we compared gene transcription in BCR-activated B cells from non-transgenic and LMP2A Tg6 transgenic mice. We found that the transcriptional induction and down-regulation of many genes that normally occurs in B cells following BCR activation did not occur in B cells from LMP2A Tg6 transgenic mice. Furthermore, LMP2A induced the expression of various transcription factors and genes associated with DNA/RNA metabolism, which may allow for the altered transcriptional regulation observed in BCR-activated B cells from LMP2A Tg6 mice. These results suggest that LMP2A may inhibit the downstream effects of BCR signaling by directly or indirectly altering gene transcription to ensure EBV persistence in infected B cells

  2. A GCH1 haplotype confers sex-specific susceptibility to pain crises and altered endothelial function in adults with sickle cell anemia

    Science.gov (United States)

    Belfer, Inna; Youngblood, Victoria; Darbari, Deepika S.; Wang, Zhengyuan; Diaw, Lena; Freeman, Lita; Desai, Krupa; Dizon, Michael; Allen, Darlene; Cunnington, Colin; Channon, Keith M.; Milton, Jacqueline; Hartley, Stephen W.; Nolan, Vikki; Kato, Gregory J.; Steinberg, Martin H.; Goldman, David; Taylor, James G.

    2014-01-01

    GTP cyclohydrolase (GCH1) is rate limiting for tetrahydrobiopterin (BH4) synthesis, where BH4 is a cofactor for nitric oxide (NO) synthases and aromatic hydroxylases. GCH1 polymorphisms are implicated in the pathophysiology of pain, but have not been investigated in African populations. We examined GCH1 and pain in sickle cell anemia where GCH1 rs8007267 was a risk factor for pain crises in discovery (n = 228; odds ratio [OR] 2.26; P = 0.009) and replication (n = 513; OR 2.23; P = 0.004) cohorts. In vitro, cells from sickle cell anemia subjects homozygous for the risk allele produced higher BH4. In vivo physiological studies of traits likely to be modulated by GCH1 showed rs8007267 is associated with altered endothelial dependent blood flow in females with SCA (8.42% of variation; P = 0.002). The GCH1 pain association is attributable to an African haplotype with where its sickle cell anemia pain association is limited to females (OR 2.69; 95% CI 1.21–5.94; P = 0.01) and has the opposite directional association described in Europeans independent of global admixture. The presence of a GCH1 haplotype with high BH4 in populations of African ancestry could explain the association of rs8007267 with sickle cell anemia pain crises. The vascular effects of GCH1 and BH4 may also have broader implications for cardiovascular disease in populations of African ancestry. PMID:24136375

  3. Arsenic-induced alterations in the contact hypersensitivity response in Balb/c mice

    International Nuclear Information System (INIS)

    Patterson, Rachel; Vega, Libia; Trouba, Kevin; Bortner, Carl; Germolec, Dori

    2004-01-01

    Previous studies in our laboratory indicate that arsenic alters secretion of growth promoting and inflammatory cytokines in the skin that can regulate the migration and maturation of Langerhans cells (LC) during allergic contact dermatitis. Therefore, we hypothesized that arsenic may modulate hypersensitivity responses to cutaneous sensitizing agents by altering cytokine production, LC migration, and T-cell proliferation. To investigate this hypothesis, we examined the induction and elicitation phases of dermal sensitization. Mice exposed to 50 mg/l arsenic in the drinking water for 4 weeks demonstrated a reduction in lymph node cell (LNC) proliferation and ear swelling following sensitization with 2,4-dinitrofluorobenzene (DNFB), compared to control mice. LC and T-cell populations in the draining lymph nodes of DNFB-sensitized mice were evaluated by fluorescence-activated cell sorting; activated LC were reduced in cervical lymph nodes, suggesting that LC migration may be altered following arsenic exposure. Lymphocytes from arsenic-treated animals sensitized with fluorescein isothiocyanate (FITC) exhibited reduced proliferative responses following T-cell mitogen stimulation in vitro; however, lymphocyte proliferation from nonsensitized, arsenic-treated mice was comparable to controls. Arsenic exposure also reduced the number of thioglycollate-induced peritoneal macrophages and circulating neutrophils. These studies demonstrate that repeated, prolonged exposure to nontoxic concentrations of sodium arsenite alters immune cell populations and results in functional changes in immune responses, specifically attenuation of contact hypersensitivity

  4. Altered thalamic functional connectivity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Liang, Peipeng; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Jia, Xiuqin [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong, Huiqing; Ye, Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shi, Fu-Dong [Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Butzkueven, Helmut [Department of Medicine, University of Melbourne, Parkville 3010 (Australia); Li, Kuncheng, E-mail: kunchengli55@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2015-04-15

    Highlights: •We demonstrated decreased connectivity between thalamus and cortical regions in MS. •Increased intra- and inter-thalamic connectivity was also observed in MS. •The increased functional connectivity is attenuated by increasing disease duration. -- Abstract: Objective: To compare thalamic functional connectivity (FC) in patients with multiple sclerosis (MS) and healthy controls (HC), and correlate these connectivity measures with other MRI and clinical variables. Methods: We employed resting-state functional MRI (fMRI) to examine changes in thalamic connectivity by comparing thirty-five patients with MS and 35 age- and sex-matched HC. Thalamic FC was investigated by correlating low frequency fMRI signal fluctuations in thalamic voxels with voxels in all other brain regions. Additionally thalamic volume fraction (TF), T2 lesion volume (T2LV), EDSS and disease duration were recorded and correlated with the FC changes. Results: MS patients were found to have a significantly lower TF than HC in bilateral thalami. Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra- and inter-thalamic FC was observed in the MS group compared to HC. These FC alterations were not correlated with T2LV, thalamic volume or lesions. In the MS group, however, there was a negative correlation between disease duration and inter-thalamic connectivity (r = −0.59, p < 0.001). Conclusion: We demonstrated decreased FC between thalamus and several cortical regions, while increased intra- and inter-thalamic connectivity in MS patients. These complex functional changes reflect impairments and/or adaptations that are independent of T2LV, thalamic volume or presence of thalamic lesions. The negative correlation between disease duration and inter-thalamic connectivity could indicate an adaptive role of thalamus that is

  5. Danazol alters mitochondria metabolism of fibrocystic breast Mcf10A cells.

    Science.gov (United States)

    Irgebay, Zhazira; Yeszhan, Banu; Sen, Bhaswati; Tuleukhanov, Sultan; Brooks, Ari D; Sensenig, Richard; Orynbayeva, Zulfiya

    2017-10-01

    Fibrocystic Breast Disease (FBD) or Fibrocystic change (FC) affects about 60% of women at some time during their life. Although usually benign, it is often associated with pain and tenderness (mastalgia). The synthetic steroid danazol has been shown to be effective in reducing the pain associated with FBD, but the cellular and molecular mechanisms for its action have not been elucidated. We investigated the hypothesis that danazol acts by affecting energy metabolism. Effects of danazol on Mcf10A cells homeostasis, including mechanisms of oxidative phosphorylation, cytosolic calcium signaling and oxidative stress, were assessed by high-resolution respirometry and flow cytometry. In addition to fast physiological responses the associated genomic modulations were evaluated by Affimetrix microarray analysis. The alterations of mitochondria membrane potential and respiratory activity, downregulation of energy metabolism transcripts result in suppression of energy homeostasis and arrest of Mcf10A cells growth. The data obtained in this study impacts the recognition of direct control of mitochondria by cellular mechanisms associated with altered energy metabolism genes governing the breast tissue susceptibility and response to medication by danazol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Altered structural and functional thalamocortical networks in secondarily generalized extratemporal lobe seizures

    Directory of Open Access Journals (Sweden)

    Syu-Jyun Peng

    2017-01-01

    Full Text Available Structural and functional abnormalities in the thalamocortical network in primary generalized epilepsies or mesial temporal lobe epilepsy have recently been identified by voxel-wise analyses of neuroimaging. However, evidence is needed regarding the profiles of the thalamocortical network in patients with secondarily generalized seizures from focal neocortical sources. We used high-resolution T1-weighted, diffusion-tensor and resting-state functional MR imaging (rs-fMRI to examine 16 patients with secondarily generalized extratemporal lobe seizures and 16 healthy controls. All the patients were medically effective and MRI-negative. Using whole brain voxel-based morphometry (VBM to compare the patients with the normal controls, we observed significantly decreased gray matter (GM density in the thalamus and 3 frontal gyri and significantly reduced white matter (WM fractional anisotropy (FA in the bilateral anterior corona radiata of the patients. Alterations in the thalamocortical functional connectivity with different cortices were identified by the rs-fMRI analysis seeding of the whole thalamus. The prefrontal gyri with the greatest functional connectivity were also traced by seeding a sub-thalamic region that is demarcated in an atlas, in which the thalamic parcellation is based on the WM connectivity to the cortices. This sub-thalamic region anatomically contains the mediodorsal thalamic nucleus where, concordantly, there was a significant decrease in thalamic GM density in the VBM study. In contrast to the negative correlation between the disease duration and reduced thalamic densities and subcortical FA values, the strength of the functional thalamocortical connectivity had a paradoxical correlation. Our results conclusively indicate that generalized seizures with a focal cortical source are associated with structural and functional alterations in the thalamocortical network.

  7. Altered Ca fluxes and contractile state during pH changes in cultured heart cells

    International Nuclear Information System (INIS)

    Kim, D.; Smith, T.W.

    1987-01-01

    The authors studied mechanisms underlying changes in myocardial contractile state produced by intracellular (pH/sub i/) or extracellular (pH 0 ) changes in pH using cultured chick embryo ventricular cells. A change in pH 0 of HEPES-buffered medium from 7.4 to 6.0 or to 8.8 changed the amplitude of cell motion by -85 or +60%, and 45 Ca uptake at 10 s by -29 or +22%, respectively. The pH 0 induced change in Ca uptake was not sensitive to nifedipine but was Na gradient dependent. Changes in pH/sub i/ produced by NH 4 Cl or preincubation in media at pH values ranging from 6.0 to 8.8 failed to alter significantly 45 Ca uptake or efflux. However, larger changes in pH/sub i/ were associated with altered Ca uptake. Changes in pH 0 from 7.5 to 6.0 or to 8.8 were associated with initial changes in 45 Ca efflux by +17 or -18%, respectively, and these effects were not Na dependent. Exposure of cells to 20 mM NH 4 Cl produced intracellular alkalinization and a positive inotropic effect, whereas subsequent removal of NH 4 Cl caused intracellular acidification and a negative inotropic effect. There was, however, a lack of close temporal relationships between pH/sub i/ and contractile state. These results indicated that pH 0 -induced changes in contractile state in cultured heart cells are closely correlated with altered transarcolemmal Ca movements and presumably are due to these Ca flux changes

  8. Altered Connexin 43 and Connexin 45 protein expression in the heart as a function of social and environmental stress in the prairie vole.

    Science.gov (United States)

    Grippo, Angela J; Moffitt, Julia A; Henry, Matthew K; Firkins, Rachel; Senkler, Jonathan; McNeal, Neal; Wardwell, Joshua; Scotti, Melissa-Ann L; Dotson, Ashley; Schultz, Rachel

    2015-01-01

    Exposure to social and environmental stressors may influence behavior as well as autonomic and cardiovascular regulation, potentially leading to depressive disorders and cardiac dysfunction including elevated sympathetic drive, reduced parasympathetic function, and ventricular arrhythmias. The cellular mechanisms that underlie these interactions are not well understood. One mechanism may involve alterations in the expression of Connexin43 (Cx43) and Connexin45 (Cx45), gap junction proteins in the heart that play an important role in ensuring efficient cell-to-cell coupling and the maintenance of cardiac rhythmicity. The present study investigated the hypothesis that long-term social isolation, combined with mild environmental stressors, would produce both depressive behaviors and altered Cx43 and Cx45 expression in the left ventricle of prairie voles - a socially monogamous rodent model. Adult, female prairie voles were exposed to either social isolation (n = 22) or control (paired, n = 23) conditions (4 weeks), alone or in combination with chronic mild stress (CMS) (1 week). Social isolation, versus paired control conditions, produced significantly (p Social isolation (alone) reduced (p social and environmental stress in the prairie vole.

  9. Differential downstream functions of protein kinase Ceta and -theta in EL4 mouse thymoma cells.

    Science.gov (United States)

    Resnick, M S; Kang, B S; Luu, D; Wickham, J T; Sando, J J; Hahn, C S

    1998-10-16

    Sensitive EL4 mouse thymoma cells (s-EL4) respond to phorbol esters with growth inhibition, adherence to substrate, and production of cytokines including interleukin 2. Since these cells express several of the phorbol ester-sensitive protein kinase C (PKC) isozymes, the function of each isozyme remains unclear. Previous studies demonstrated that s-EL4 cells expressed substantially more PKCeta and PKCtheta than did EL4 cells resistant to phorbol esters (r-EL4). To examine potential roles for PKCeta and PKCtheta in EL4 cells, wild type and constitutively active versions of the isozymes were transiently expressed using a Sindbis virus system. Expression of constitutively active PKCeta, but not PKCtheta, in s- and r-EL4 cells altered cell morphology and cytoskeletal structure in a manner similar to that of phorbol ester treatment, suggesting a role for PKCeta in cytoskeletal organization. Prolonged treatment of s-EL4 cells with phorbol esters results in inhibition of cell cycling along with a decreased expression of most of the PKC isozymes, including PKCtheta. Introduction of virally expressed PKCtheta, but not PKCeta, overcame the inhibitory effects of the prolonged phorbol ester treatment on cell cycle progression, suggesting a possible involvement of PKCtheta in cell cycle regulation. These results support differential functions for PKCeta and PKCtheta in T cell activation.

  10. Genetic and epigenetic alterations of the reduced folate carrier in untreated diffuse large B-cell lymphoma

    DEFF Research Database (Denmark)

    Kastrup, I.B.; Worm, J.; Ralfkiaer, E.

    2008-01-01

    The reduced folate carrier (RFC) is a transmembrane protein that mediates cellular uptake of reduced folates and antifolate drugs, including methotrexate (MTX). Acquired alterations of the RFC gene have been associated with resistance to MTX in cancer cell lines and primary osteosarcomas. Here, w...... with adverse outcome. In DLBCL, genetic and epigenetic alterations of RFC were detected at diagnosis in the absence of a selective MTX pressure, suggesting that these alterations may possibly contribute to the development of lymphoma Udgivelsesdato: 2008/1...

  11. Alterations in the nuclear proteome of HIV-1 infected T-cells

    International Nuclear Information System (INIS)

    DeBoer, Jason; Jagadish, Teena; Haverland, Nicole A.; Madson, Christian J.; Ciborowski, Pawel; Belshan, Michael

    2014-01-01

    Virus infection of a cell involves the appropriation of host factors and the innate defensive response of the cell. The identification of proteins critical for virus replication may lead to the development of novel, cell-based inhibitors. In this study we mapped the changes in T-cell nuclei during human immunodeficiency virus type 1 (HIV-1) at 20 hpi. Using a stringent data threshold, a total of 13 and 38 unique proteins were identified in infected and uninfected cells, respectively, across all biological replicates. An additional 15 proteins were found to be differentially regulated between infected and control nuclei. STRING analysis identified four clusters of protein–protein interactions in the data set related to nuclear architecture, RNA regulation, cell division, and cell homeostasis. Immunoblot analysis confirmed the differential expression of several proteins in both C8166-45 and Jurkat E6-1 T-cells. These data provide a map of the response in host cell nuclei upon HIV-1 infection. - Highlights: • We identify changes in the expression of nuclear proteins during HIV-1 infection. • 163 nuclear proteins were found differentially regulated during HIV-1 infection. • Bioinformatic analysis identified several nuclear pathways altered by HIV infection. • Candidate factors were validated in two independent cell lines

  12. Alterations in the nuclear proteome of HIV-1 infected T-cells

    Energy Technology Data Exchange (ETDEWEB)

    DeBoer, Jason [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Jagadish, Teena; Haverland, Nicole A. [Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 (United States); Madson, Christian J. [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); Ciborowski, Pawel [Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 (United States); The Nebraska Center for Virology, University of Nebraska, Lincoln 68583 (United States); Belshan, Michael, E-mail: michaelbelshan@creighton.edu [Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178 (United States); The Nebraska Center for Virology, University of Nebraska, Lincoln 68583 (United States)

    2014-11-15

    Virus infection of a cell involves the appropriation of host factors and the innate defensive response of the cell. The identification of proteins critical for virus replication may lead to the development of novel, cell-based inhibitors. In this study we mapped the changes in T-cell nuclei during human immunodeficiency virus type 1 (HIV-1) at 20 hpi. Using a stringent data threshold, a total of 13 and 38 unique proteins were identified in infected and uninfected cells, respectively, across all biological replicates. An additional 15 proteins were found to be differentially regulated between infected and control nuclei. STRING analysis identified four clusters of protein–protein interactions in the data set related to nuclear architecture, RNA regulation, cell division, and cell homeostasis. Immunoblot analysis confirmed the differential expression of several proteins in both C8166-45 and Jurkat E6-1 T-cells. These data provide a map of the response in host cell nuclei upon HIV-1 infection. - Highlights: • We identify changes in the expression of nuclear proteins during HIV-1 infection. • 163 nuclear proteins were found differentially regulated during HIV-1 infection. • Bioinformatic analysis identified several nuclear pathways altered by HIV infection. • Candidate factors were validated in two independent cell lines.

  13. Alteration of Fatty-Acid-Metabolizing Enzymes Affects Mitochondrial Form and Function in Hereditary Spastic Paraplegia

    Science.gov (United States)

    Tesson, Christelle; Nawara, Magdalena; Salih, Mustafa A.M.; Rossignol, Rodrigue; Zaki, Maha S.; Al Balwi, Mohammed; Schule, Rebecca; Mignot, Cyril; Obre, Emilie; Bouhouche, Ahmed; Santorelli, Filippo M.; Durand, Christelle M.; Oteyza, Andrés Caballero; El-Hachimi, Khalid H.; Al Drees, Abdulmajeed; Bouslam, Naima; Lamari, Foudil; Elmalik, Salah A.; Kabiraj, Mohammad M.; Seidahmed, Mohammed Z.; Esteves, Typhaine; Gaussen, Marion; Monin, Marie-Lorraine; Gyapay, Gabor; Lechner, Doris; Gonzalez, Michael; Depienne, Christel; Mochel, Fanny; Lavie, Julie; Schols, Ludger; Lacombe, Didier; Yahyaoui, Mohamed; Al Abdulkareem, Ibrahim; Zuchner, Stephan; Yamashita, Atsushi; Benomar, Ali; Goizet, Cyril; Durr, Alexandra; Gleeson, Joseph G.; Darios, Frederic; Brice, Alexis; Stevanin, Giovanni

    2012-01-01

    Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function. PMID:23176821

  14. Pivotal roles of Fezf2 in differentiation of cone OFF bipolar cells and functional maturation of cone ON bipolar cells in retina.

    Science.gov (United States)

    Suzuki-Kerr, Haruna; Iwagawa, Toshiro; Sagara, Hiroshi; Mizota, Atsushi; Suzuki, Yutaka; Watanabe, Sumiko

    2018-06-01

    During development of the retina, common retinal progenitor cells give rise to six classes of neurons that subsequently further diversify into more than 55 subtypes of neuronal subtypes. Here, we have investigated the expression and function of Fezf2, Fez zinc finger family of protein, in the developing mouse retina. Expression of Fezf2 transcripts was strongly observed in the embryonic retinal progenitors at E14.5 and declined quickly in subsequent development of retina. Then, in postnatal stage at around day 8, Fezf2 was transiently expressed then declined again. Loss-of-function analysis using retinas from mice in which Fezf2 coding region was substituted with β-galactosidase showed that Fezf2 is expressed in a subset of cone OFF bipolar cells and required for their differentiation. Using electroretinogram, we found that Fezf2 knockout retina exhibited significantly reduced photopic b-wave, suggesting functional abnormality of cone ON bipolar cells. Furthermore, reduced expression of synaptic protein Trpm1 and structural alteration of ON bipolar cell invagination, both of which affected cone photoreceptor terminal synaptic activity, was identified by transmission electron microscopy and immunohistochemistry, respectively. Taken together, our results show that Fezf2 is indispensable in differentiation of bipolar precursors into cone OFF bipolar cells and in functional maturation of cone ON bipolar cells during development of mouse retina. These results contribute to our understanding of how diversity of neuronal subtypes and hence specificity of neuronal connections are established in the retina by intrinsic cues. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Social Behavior in Medulloblastoma: Functional Analysis of Tumor-Supporting Glial Cells

    Science.gov (United States)

    2015-10-01

    the manuscript with inputs from all authors. All authors reviewed the manuscript. Acknowledgements We thank Chris Doe, David Rowitch, and Praveen...201–208. Goodrich, L.V., Milenković, L., Higgins , K.M., and Scott, M.P. (1997). Altered Neural Cell Fates and Medulloblastoma in Mouse patched...Genes & Development 27, 98–115. Goodrich, L.V., Milenković, L., Higgins , K.M., and Scott, M.P. (1997). Altered Neural Cell Fates and Medulloblastoma in

  16. Differential signal pathway activation and 5-HT function: the role of gut enterochromaffin cells as oxygen sensors.

    Science.gov (United States)

    Haugen, Martin; Dammen, Rikard; Svejda, Bernhard; Gustafsson, Bjorn I; Pfragner, Roswitha; Modlin, Irvin; Kidd, Mark

    2012-11-15

    The chemomechanosensory function of the gut enterochromaffin (EC) cell enables it to respond to dietary agents and mechanical stretch. We hypothesized that the EC cell, which also sensed alterations in luminal or mucosal oxygen level, was physiologically sensitive to fluctuations in O(2). Given that low oxygen levels induce 5-HT production and secretion through a hypoxia inducible factor 1α (HIF-1α)-dependent pathway, we also hypothesized that increasing O(2) would reduce 5-HT production and secretion. Isolated normal EC cells as well as the well-characterized EC cell model KRJ-I were used to examine HIF signaling (luciferase-assays), hypoxia transcriptional response element (HRE)-mediated transcription (PCR), signaling pathways (Western blot), and 5-HT release (ELISA) during exposure to different oxygen levels. Normal EC cells and KRJ-I cells express HIF-1α, and transient transfection with Renilla luciferase under HRE control identified a hypoxia-mediated pathway in these cells. PCR confirmed activation of HIF-downstream targets, GLUT1, IGF2, and VEGF under reduced O(2) levels (0.5%). Reducing O(2) also elevated 5-HT secretion (2-3.2-fold) as well as protein levels of HIF-1α (1.7-3-fold). Increasing O(2) to 100% inhibited HRE-mediated signaling, transcription, reduced 5-HT secretion, and significantly lowered HIF-1α levels (∼75% of control). NF-κB signaling was also elevated during hypoxia (1.2-1.6-fold), but no significant changes were noted in PKA/cAMP. We concluded that gut EC cells are oxygen responsive, and alterations in O(2) levels differentially activate HIF-1α and tryptophan hydroxylase 1, as well as NF-κB signaling. This results in alterations in 5-HT production and secretion and identifies that the chemomechanosensory role of EC cells extends to oxygen sensing.

  17. Herbicide effects on freshwater benthic diatoms: Induction of nucleus alterations and silica cell wall abnormalities

    International Nuclear Information System (INIS)

    Debenest, T.; Silvestre, J.; Coste, M.; Delmas, F.; Pinelli, E.

    2008-01-01

    Benthic diatoms are well known bio-indicators of river pollution by nutrients (nitrogen and phosphorus). Biological indexes, based on diatom sensitivity for non-toxic pollution, have been developed to assess the water quality. Nevertheless, they are not reliable tools to detect pollution by pesticides. Many authors have suggested that toxic agents, like pesticides, induce abnormalities of the diatom cell wall (frustule). High abnormal frustule abundances have been reported in natural diatom communities sampled in streams contaminated by pesticides. However, no direct link was found between the abundances of abnormal frustules in these communities and the pesticide concentrations in stream water. In the present study, a freshwater benthic diatom community, isolated from natural biofilm and cultured under controlled conditions, was treated with a known genotoxic herbicide, maleic hydrazide (MH). Cells were exposed to three concentrations of MH (5 x 10 -6 , 10 -6 , 10 -7 M) for 6 h followed by a 24 h-recovery time. After MH treatments, nucleus alterations were observed: abnormal nucleus location, micronucleus, multinuclear cell or disruption of the nuclear membrane. A dose-dependent increase of nuclear alterations was observed. The difference between the control (9.65 nuclear alterations per 1000 cells observed (9.65 per mille ), S.D. = 4.23) and the highest concentrations (29.40 per mille , S.D. = 8.49 for 10 -6 M and 35.96 per mille , S.D. = 3.71 for 5 x 10 -6 M) was statistically significant (Tukey test, P -6 and 5 x 10 -6 M; Tukey test, P < 0.05). These two parameters tended to increase together (Pearson correlation = 0.702, P < 0.05). The results suggest that the induction of abnormal frustules could be associated with the genotoxic effects of MH. The alterations observed could be related to the effects of MH on the synthesis of the proteins involved in frustule formation or in the regulation of the cytoskeleton of the diatom cells

  18. Paraquat and Maneb Exposure Alters Rat Neural Stem Cell Proliferation by Inducing Oxidative Stress: New Insights on Pesticide-Induced Neurodevelopmental Toxicity.

    Science.gov (United States)

    Colle, Dirleise; Farina, Marcelo; Ceccatelli, Sandra; Raciti, Marilena

    2018-06-01

    Pesticide exposure has been linked to the pathogenesis of neurodevelopmental and neurodegenerative disorders including autism spectrum disorders, attention deficit/hyperactivity, and Parkinson's disease (PD). Developmental exposure to pesticides, even at low concentrations not harmful for the adult brain, can lead to neuronal loss and functional deficits. It has been shown that prenatal or early postnatal exposure to the herbicide paraquat (PQ) and the fungicide maneb (MB), alone or in combination, causes permanent toxicity in the nigrostriatal dopamine system, supporting the idea that early exposure to these pesticides may contribute to the pathophysiology of PD. However, the mechanisms mediating PQ and MB developmental neurotoxicity are not yet understood. Therefore, we investigated the neurotoxic effect of low concentrations of PQ and MB in primary cultures of rat embryonic neural stem cells (NSCs), with particular focus on cell proliferation and oxidative stress. Exposure to PQ alone or in combination with MB (PQ + MB) led to a significant decrease in cell proliferation, while the cell death rate was not affected. Consistently, PQ + MB exposure altered the expression of major genes regulating the cell cycle, namely cyclin D1, cyclin D2, Rb1, and p19. Moreover, PQ and PQ + MB exposures increased the reactive oxygen species (ROS) production that could be neutralized upon N-acetylcysteine (NAC) treatment. Notably, in the presence of NAC, Rb1 expression was normalized and a normal cell proliferation pattern could be restored. These findings suggest that exposure to PQ + MB impairs NSCs proliferation by mechanisms involving alterations in the redox state.

  19. Chronic unpredictable stress alters gene expression in rat single dentate granule cells

    NARCIS (Netherlands)

    Qin, Y.J.; Karst, H.; Joëls, M.

    2004-01-01

    The rat adrenal hormone corticosterone binds to low and high affinity receptors, discretely localized in brain, including the dentate gyrus. Differential activation of the two receptor types under physiological conditions alters gene expression and functional characteristics of hippocampal neurones.

  20. Exploring patterns of alteration in Alzheimer’s disease brain networks: a combined structural and functional connectomics analysis

    Directory of Open Access Journals (Sweden)

    Fulvia Palesi

    2016-09-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder characterized by a severe derangement of cognitive functions, primarily memory, in elderly subjects. As far as the functional impairment is concerned, growing evidence supports the disconnection syndrome hypothesis. Recent investigations using fMRI have revealed a generalized alteration of resting state networks in patients affected by AD and mild cognitive impairment (MCI. However, it was unclear whether the changes in functional connectivity were accompanied by corresponding structural network changes. In this work, we have developed a novel structural/functional connectomic approach: resting state fMRI was used to identify the functional cortical network nodes and diffusion MRI to reconstruct the fiber tracts to give a weight to internodal subcortical connections. Then, local and global efficiency were determined for different networks, exploring specific alterations of integration and segregation patterns in AD and MCI patients compared to healthy controls (HC. In the default mode network (DMN, that was the most affected, axonal loss and reduced axonal integrity appeared to compromise both local and global efficiency along posterior-anterior connections. In the basal ganglia network (BGN, disruption of white matter integrity implied that main alterations occurred in local microstructure. In the anterior insular network (AIN, neuronal loss probably subtended a compromised communication with the insular cortex. Cognitive performance, evaluated by neuropsychological examinations, revealed a dependency on integration and segregation of brain networks. These findings are indicative of the fact that cognitive deficits in AD could be associated not only with cortical alterations (revealed by fMRI but also with subcortical alterations (revealed by diffusion MRI that extend beyond the areas primarily damaged by neurodegeneration, towards the support of an emerging concept of AD as a

  1. Genomic alterations during p53-dependent apoptosis induced by γ-irradiation of Molt-4 leukemia cells.

    Directory of Open Access Journals (Sweden)

    Rouba Hage-Sleiman

    Full Text Available Molt-4 leukemia cells undergo p53-dependent apoptosis accompanied by accumulation of de novo ceramide after 14 hours of γ-irradiation. In order to identify the potential mediators involved in ceramide accumulation and the cell death response, differentially expressed genes were identified by Affymetrix Microarray Analysis. Molt-4-LXSN cells, expressing wild type p53, and p53-deficient Molt-4-E6 cells were irradiated and harvested at 3 and 8 hours post-irradiation. Human genome U133 plus 2.0 array containing >47,000 transcripts was used for gene expression profiling. From over 10,000 probes, 281 and 12 probes were differentially expressed in Molt-4-LXSN and Molt-4-E6 cells, respectively. Data analysis revealed 63 (upregulated and 20 (downregulated genes (>2 fold in Molt-4-LXSN at 3 hours and 140 (upregulated and 21 (downregulated at 8 hours post-irradiation. In Molt-4-E6 cells, 5 (upregulated genes each were found at 3 hours and 8 hours, respectively. In Molt-4-LXSN cells, a significant fraction of the genes with altered expression at 3 hours were found to be involved in apoptosis signaling pathway (BCL2L11, p53 pathway (PMAIP1, CDKN1A and FAS and oxidative stress response (FDXR, CROT and JUN. Similarly, at 8 hours the genes with altered expression were involved in the apoptosis signaling pathway (BAX, BIK and JUN, p53 pathway (BAX, CDKN1A and FAS, oxidative stress response (FDXR and CROT and p53 pathway feedback loops 2 (MDM2 and CDKN1A. A global molecular and biological interaction map analysis showed an association of these altered genes with apoptosis, senescence, DNA damage, oxidative stress, cell cycle arrest and caspase activation. In a targeted study, activation of apoptosis correlated with changes in gene expression of some of the above genes and revealed sequential activation of both intrinsic and extrinsic apoptotic pathways that precede ceramide accumulation and subsequent execution of apoptosis. One or more of these altered genes

  2. Melanogenesis stimulation in B16-F10 melanoma cells induces cell cycle alterations, increased ROS levels and a differential expression of proteins as revealed by proteomic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Elizabeth S.; Kawahara, Rebeca [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil); Kadowaki, Marina K. [Universidade Estadual do Oeste do Parana, Cascavel, PR (Brazil); Amstalden, Hudson G.; Noleto, Guilhermina R.; Cadena, Silvia Maria S.C.; Winnischofer, Sheila M.B. [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil); Martinez, Glaucia R., E-mail: grmartinez@ufpr.br [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil)

    2012-09-10

    Considering that stimulation of melanogenesis may lead to alterations of cellular responses, besides melanin production, our main goal was to study the cellular effects of melanogenesis stimulation of B16-F10 melanoma cells. Our results show increased levels of the reactive oxygen species after 15 h of melanogenesis stimulation. Following 48 h of melanogenesis stimulation, proliferation was inhibited (by induction of cell cycle arrest in the G1 phase) and the expression levels of p21 mRNA were increased. In addition, melanogenesis stimulation did not induce cellular senescence. Proteomic analysis demonstrated the involvement of proteins from other pathways besides those related to the cell cycle, including protein disulfide isomerase A3, heat-shock protein 70, and fructose biphosphate aldolase A (all up-regulated), and lactate dehydrogenase (down-regulated). In RT-qPCR experiments, the levels of pyruvate kinase M2 mRNA dropped, whereas the levels of ATP synthase (beta-F1) mRNA increased. These data indicate that melanogenesis stimulation of B16-F10 cells leads to alterations in metabolism and cell cycle progression that may contribute to an induction of cell quiescence, which may provide a mechanism of resistance against cellular injury promoted by melanin synthesis. -- Highlights: Black-Right-Pointing-Pointer Melanogenesis stimulation by L-tyrosine+NH{sub 4}Cl in B16-F10 melanoma cells increases ROS levels. Black-Right-Pointing-Pointer Melanogenesis inhibits cell proliferation, and induced cell cycle arrest in the G1 phase. Black-Right-Pointing-Pointer Proteomic analysis showed alterations in proteins of the cell cycle and glucose metabolism. Black-Right-Pointing-Pointer RT-qPCR analysis confirmed alterations of metabolic targets after melanogenesis stimulation.

  3. Alterations of proliferation and differentiation of hippocampal cells in prenatally stressed rats.

    Science.gov (United States)

    Sun, Hongli; Su, Qian; Zhang, Huifang; Liu, Weimin; Zhang, Huiping; Ding, Ding; Zhu, Zhongliang; Li, Hui

    2015-06-01

    To clarify the alterations of proliferation and differentiation of hippocampal cells in prenatally stressed rats. We investigated the impact of prenatal restraint stress on the hipocampal cell proliferation in the progeny with 5-bromo-2'-deoxyuridine (BrdU), which is a marker of proliferating cells and their progeny. In addition, we observed the differentiation of neural stem cells (NSCs) with double labeling of BrdU/neurofilament (NF), BrdU/glial fibrillary acidic protein (GFAP) in the hipocampus. Prenatal stress (PS) increased cell proliferation in the dentate gyrus (DG) only in female and neuron differentiation of newly divided cells in the DG and CA4 in both male and female. Moreover, the NF and GFAP-positive cells, but not the BrdU-positive cells, BrdU/NF and BrdU/GFAP-positive cells, were found frequently in the CA3 and CA1 in the offspring of each group. These results possibly suggest a compensatory adaptive response to neuronal damage or loss in hippocampus induced by PS. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  4. Regulation of satellite cell function in sarcopenia

    Directory of Open Access Journals (Sweden)

    Stephen E Alway

    2014-09-01

    Full Text Available The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell function that is impacted by the environment (niche of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia, and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration. While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function.

  5. Regulation of Satellite Cell Function in Sarcopenia

    Science.gov (United States)

    Alway, Stephen E.; Myers, Matthew J.; Mohamed, Junaith S.

    2014-01-01

    The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell) function that is impacted by the environment (niche) of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse, or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins, and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration). While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function. PMID:25295003

  6. Transcriptional Repressor HIC1 Contributes to Suppressive Function of Human Induced Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Ubaid Ullah

    2018-02-01

    Full Text Available Regulatory T (Treg cells are critical in regulating the immune response. In vitro induced Treg (iTreg cells have significant potential in clinical medicine. However, applying iTreg cells as therapeutics is complicated by the poor stability of human iTreg cells and their variable suppressive activity. Therefore, it is important to understand the molecular mechanisms of human iTreg cell specification. We identified hypermethylated in cancer 1 (HIC1 as a transcription factor upregulated early during the differentiation of human iTreg cells. Although FOXP3 expression was unaffected, HIC1 deficiency led to a considerable loss of suppression by iTreg cells with a concomitant increase in the expression of effector T cell associated genes. SNPs linked to several immune-mediated disorders were enriched around HIC1 binding sites, and in vitro binding assays indicated that these SNPs may alter the binding of HIC1. Our results suggest that HIC1 is an important contributor to iTreg cell development and function.

  7. Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain.

    Science.gov (United States)

    Pilaz, Louis-Jan; McMahon, John J; Miller, Emily E; Lennox, Ashley L; Suzuki, Aussie; Salmon, Edward; Silver, Debra L

    2016-01-06

    Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Convergent Findings of Altered Functional and Structural Brain Connectivity in Individuals with High Functioning Autism: A Multimodal MRI Study.

    Directory of Open Access Journals (Sweden)

    Sophia Mueller

    Full Text Available Brain tissue changes in autism spectrum disorders seem to be rather subtle and widespread than anatomically distinct. Therefore a multimodal, whole brain imaging technique appears to be an appropriate approach to investigate whether alterations in white and gray matter integrity relate to consistent changes in functional resting state connectivity in individuals with high functioning autism (HFA. We applied diffusion tensor imaging (DTI, voxel-based morphometry (VBM and resting state functional connectivity magnetic resonance imaging (fcMRI to assess differences in brain structure and function between 12 individuals with HFA (mean age 35.5, SD 11.4, 9 male and 12 healthy controls (mean age 33.3, SD 9.0, 8 male. Psychological measures of empathy and emotionality were obtained and correlated with the most significant DTI, VBM and fcMRI findings. We found three regions of convergent structural and functional differences between HFA participants and controls. The right temporo-parietal junction area and the left frontal lobe showed decreased fractional anisotropy (FA values along with decreased functional connectivity and a trend towards decreased gray matter volume. The bilateral superior temporal gyrus displayed significantly decreased functional connectivity that was accompanied by the strongest trend of gray matter volume decrease in the temporal lobe of HFA individuals. FA decrease in the right temporo-parietal region was correlated with psychological measurements of decreased emotionality. In conclusion, our results indicate common sites of structural and functional alterations in higher order association cortex areas and may therefore provide multimodal imaging support to the long-standing hypothesis of autism as a disorder of impaired higher-order multisensory integration.

  9. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Quanwen Liu

    2016-01-01

    Full Text Available In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment.

  10. Antibiotic-Induced Changes to the Host Metabolic Environment Inhibit Drug Efficacy and Alter Immune Function

    DEFF Research Database (Denmark)

    Yang, Jason H.; Bhargava, Prerna; McCloskey, Douglas

    2017-01-01

    Bactericidal antibiotics alter microbial metabolism as part of their lethality and can damage mitochondria in mammalian cells. In addition, antibiotic susceptibility is sensitive to extracellular metabolites, but it remains unknown whether metabolites present at an infection site can affect eithe...

  11. Altered expression pattern of molecular factors involved in colonic smooth muscle functions: an immunohistochemical study in patients with diverticular disease.

    Science.gov (United States)

    Mattii, Letizia; Ippolito, Chiara; Segnani, Cristina; Battolla, Barbara; Colucci, Rocchina; Dolfi, Amelio; Bassotti, Gabrio; Blandizzi, Corrado; Bernardini, Nunzia

    2013-01-01

    The pathogenesis of diverticular disease (DD) is thought to result from complex interactions among dietary habits, genetic factors and coexistence of other bowel abnormalities. These conditions lead to alterations in colonic pressure and motility, facilitating the formation of diverticula. Although electrophysiological studies on smooth muscle cells (SMCs) have investigated colonic motor dysfunctions, scarce attention has been paid to their molecular abnormalities, and data on SMCs in DD are lacking. Accordingly, the main purpose of this study was to evaluate the expression patterns of molecular factors involved in the contractile functions of SMCs in the tunica muscularis of colonic specimens from patients with DD. By means of immunohistochemistry and image analysis, we examined the expression of Cx26 and Cx43, which are prominent components of gap junctions in human colonic SMCs, as well as pS368-Cx43, PKCps, RhoA and αSMA, all known to regulate the functions of gap junctions and the contractile activity of SMCs. The immunohistochemical analysis revealed significant abnormalities in DD samples, concerning both the expression and distribution patterns of most of the investigated molecular factors. This study demonstrates, for the first time, that an altered pattern of factors involved in SMC contractility is present at level of the tunica muscularis of DD patients. Moreover, considering that our analysis was conducted on colonic tissues not directly affected by diverticular lesions or inflammatory reactions, it is conceivable that these molecular alterations may precede and predispose to the formation of diverticula, rather than being mere consequences of the disease.

  12. Membrane-type-3 matrix metalloproteinase (MT3-MMP functions as a matrix composition-dependent effector of melanoma cell invasion.

    Directory of Open Access Journals (Sweden)

    Olga Tatti

    Full Text Available In primary human melanoma, the membrane-type matrix metalloproteinase, MT3-MMP, is overexpressed in the most aggressive nodular-type tumors. Unlike MT1-MMP and MT2-MMP, which promote cell invasion through basement membranes and collagen type I-rich tissues, the function of MT3-MMP in tumor progression remains unclear. Here, we demonstrate that MT3-MMP inhibits MT1-MMP-driven melanoma cell invasion in three-dimensional collagen, while yielding an altered, yet MT1-MMP-dependent, form of expansive growth behavior that phenocopies the formation of nodular cell colonies. In melanoma cell lines originating from advanced primary or metastatic lesions, endogenous MT3-MMP expression was associated with limited collagen-invasive potential. In the cell lines with highest MT3-MMP expression relative to MT1-MMP, collagen-invasive activity was increased following stable MT3-MMP gene silencing. Consistently, MT3-MMP overexpression in cells derived from less advanced superficially spreading melanoma lesions, or in the MT3-MMP knockdown cells, reduced MT1-MMP-dependent collagen invasion. Rather than altering MT1-MMP transcription, MT3-MMP interacted with MT1-MMP in membrane complexes and reduced its cell surface expression. By contrast, as a potent fibrinolytic enzyme, MT3-MMP induced efficient invasion of the cells in fibrin, a provisional matrix component frequently found at tumor-host tissue interfaces and perivascular spaces of melanoma. Since MT3-MMP was significantly upregulated in biopsies of human melanoma metastases, these results identify MT3-MMP as a matrix-dependent modifier of the invasive tumor cell functions during melanoma progression.

  13. Altered blood-brain barrier transport in neuro-inflammatory disorders.

    Science.gov (United States)

    Schenk, Geert J; de Vries, Helga E

    2016-06-01

    During neurodegenerative and neuroinflammatory disorders of the central nervous system (CNS), such as Alzheimer's disease (AD) and multiple sclerosis (MS), the protective function of the blood-brain barrier (BBB) may be severely impaired. The general neuro-inflammatory response, ranging from activation of glial cells to immune cell infiltration that is frequently associated with such brain diseases may underlie the loss of the integrity and function of the BBB. Consequentially, the delivery and disposition of drugs to the brain will be altered and may influence the treatment efficiency of such diseases. Altered BBB transport of drugs into the CNS during diseases may be the result of changes in both specific transport and non-specific transport pathways. Potential alterations in transport routes like adsorptive mediated endocytosis and receptor-mediated endocytosis may affect drug delivery to the brain. As such, drugs that normally are unable to traverse the BBB may reach their target in the diseased brain due to increased permeability. In contrast, the delivery of (targeted) drugs could be hampered during inflammatory conditions due to disturbed transport mechanisms. Therefore, the inventory of the neuro-inflammatory status of the neurovasculature (or recovery thereof) is of utmost importance in choosing and designing an adequate drug targeting strategy under disease conditions. Within this review we will briefly discuss how the function of the BBB can be affected during disease and how this may influence the delivery of drugs into the diseased CNS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Β-amyloid 1-42 oligomers impair function of human embryonic stem cell-derived forebrain cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Linn Wicklund

    Full Text Available Cognitive impairment in Alzheimer's disease (AD patients is associated with a decline in the levels of growth factors, impairment of axonal transport and marked degeneration of basal forebrain cholinergic neurons (BFCNs. Neurogenesis persists in the adult human brain, and the stimulation of regenerative processes in the CNS is an attractive prospect for neuroreplacement therapy in neurodegenerative diseases such as AD. Currently, it is still not clear how the pathophysiological environment in the AD brain affects stem cell biology. Previous studies investigating the effects of the β-amyloid (Aβ peptide on neurogenesis have been inconclusive, since both neurogenic and neurotoxic effects on progenitor cell populations have been reported. In this study, we treated pluripotent human embryonic stem (hES cells with nerve growth factor (NGF as well as with fibrillar and oligomeric Aβ1-40 and Aβ1-42 (nM-µM concentrations and thereafter studied the differentiation in vitro during 28-35 days. The process applied real time quantitative PCR, immunocytochemistry as well as functional studies of intracellular calcium signaling. Treatment with NGF promoted the differentiation into functionally mature BFCNs. In comparison to untreated cells, oligomeric Aβ1-40 increased the number of functional neurons, whereas oligomeric Aβ1-42 suppressed the number of functional neurons. Interestingly, oligomeric Aβ exposure did not influence the number of hES cell-derived neurons compared with untreated cells, while in contrast fibrillar Aβ1-40 and Aβ1-42 induced gliogenesis. These findings indicate that Aβ1-42 oligomers may impair the function of stem cell-derived neurons. We propose that it may be possible for future AD therapies to promote the maturation of functional stem cell-derived neurons by altering the brain microenvironment with trophic support and by targeting different aggregation forms of Aβ.

  15. Moderate perinatal thyroid hormone insufficiency alters visual system function in adult rats.

    Science.gov (United States)

    Boyes, William K; Degn, Laura; George, Barbara Jane; Gilbert, Mary E

    2018-04-21

    Thyroid hormone (TH) is critical for many aspects of neurodevelopment and can be disrupted by a variety of environmental contaminants. Sensory systems, including audition and vision are vulnerable to TH insufficiencies, but little data are available on visual system development at less than severe levels of TH deprivation. The goal of the current experiments was to explore dose-response relations between graded levels of TH insufficiency during development and the visual function of adult offspring. Pregnant Long Evans rats received 0 or 3 ppm (Experiment 1), or 0, 1, 2, or 3 ppm (Experiment 2) of propylthiouracil (PTU), an inhibitor of thyroid hormone synthesis, in drinking water from gestation day (GD) 6 to postnatal day (PN) 21. Treatment with PTU caused dose-related reductions of serum T4, with recovery on termination of exposure, and euthyroidism by the time of visual function testing. Tests of retinal (electroretinograms; ERGs) and visual cortex (visual evoked potentials; VEPs) function were assessed in adult offspring. Dark-adapted ERG a-waves, reflecting rod photoreceptors, were increased in amplitude by PTU. Light-adapted green flicker ERGs, reflecting M-cone photoreceptors, were reduced by PTU exposure. UV-flicker ERGs, reflecting S-cones, were not altered. Pattern-elicited VEPs were significantly reduced by 2 and 3 ppm PTU across a range of stimulus contrast values. The slope of VEP amplitude-log contrast functions was reduced by PTU, suggesting impaired visual contrast gain. Visual contrast gain primarily reflects function of visual cortex, and is responsible for adjusting sensitivity of perceptual mechanisms in response to changing visual scenes. The results indicate that moderate levels of pre-and post-natal TH insufficiency led to alterations in visual function of adult rats, including both retinal and visual cortex sites of dysfunction. Copyright © 2018. Published by Elsevier B.V.

  16. Long-duration transcutaneous electric acupoint stimulation alters small-world brain functional networks.

    Science.gov (United States)

    Zhang, Yue; Jiang, Yin; Glielmi, Christopher B; Li, Longchuan; Hu, Xiaoping; Wang, Xiaoying; Han, Jisheng; Zhang, Jue; Cui, Cailian; Fang, Jing

    2013-09-01

    Acupuncture, which is recognized as an alternative and complementary treatment in Western medicine, has long shown efficiencies in chronic pain relief, drug addiction treatment, stroke rehabilitation and other clinical practices. The neural mechanism underlying acupuncture, however, is still unclear. Many studies have focused on the sustained effects of acupuncture on healthy subjects, yet there are very few on the topological organization of functional networks in the whole brain in response to long-duration acupuncture (longer than 20 min). This paper presents a novel study on the effects of long-duration transcutaneous electric acupoint stimulation (TEAS) on the small-world properties of brain functional networks. Functional magnetic resonance imaging was used to construct brain functional networks of 18 healthy subjects (9 males and 9 females) during the resting state. All subjects received both TEAS and minimal TEAS (MTEAS) and were scanned before and after each stimulation. An altered functional network was found with lower local efficiency and no significant change in global efficiency for healthy subjects after TEAS, while no significant difference was observed after MTEAS. The experiments also showed that the nodal efficiencies in several paralimbic/limbic regions were altered by TEAS, and those in middle frontal gyrus and other regions by MTEAS. To remove the psychological effects and the baseline, we compared the difference between diffTEAS (difference between after and before TEAS) and diffMTEAS (difference between after and before MTEAS). The results showed that the local efficiency was decreased and that the nodal efficiencies in frontal gyrus, orbitofrontal cortex, anterior cingulate gyrus and hippocampus gyrus were changed. Based on those observations, we conclude that long-duration TEAS may modulate the short-range connections of brain functional networks and also the limbic system. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Membrane elastic properties and cell function.

    Directory of Open Access Journals (Sweden)

    Bruno Pontes

    Full Text Available Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.

  18. Altered Neural Activity Associated with Mindfulness during Nociception: A Systematic Review of Functional MRI

    Directory of Open Access Journals (Sweden)

    Elena Bilevicius

    2016-04-01

    Full Text Available Objective: To assess the neural activity associated with mindfulness-based alterations of pain perception. Methods: The Cochrane Central, EMBASE, Ovid Medline, PsycINFO, Scopus, and Web of Science databases were searched on 2 February 2016. Titles, abstracts, and full-text articles were independently screened by two reviewers. Data were independently extracted from records that included topics of functional neuroimaging, pain, and mindfulness interventions. Results: The literature search produced 946 total records, of which five met the inclusion criteria. Records reported pain in terms of anticipation (n = 2, unpleasantness (n = 5, and intensity (n = 5, and how mindfulness conditions altered the neural activity during noxious stimulation accordingly. Conclusions: Although the studies were inconsistent in relating pain components to neural activity, in general, mindfulness was able to reduce pain anticipation and unpleasantness ratings, as well as alter the corresponding neural activity. The major neural underpinnings of mindfulness-based pain reduction consisted of altered activity in the anterior cingulate cortex, insula, and dorsolateral prefrontal cortex.

  19. Altered Neural Activity Associated with Mindfulness during Nociception: A Systematic Review of Functional MRI.

    Science.gov (United States)

    Bilevicius, Elena; Kolesar, Tiffany A; Kornelsen, Jennifer

    2016-04-19

    To assess the neural activity associated with mindfulness-based alterations of pain perception. The Cochrane Central, EMBASE, Ovid Medline, PsycINFO, Scopus, and Web of Science databases were searched on 2 February 2016. Titles, abstracts, and full-text articles were independently screened by two reviewers. Data were independently extracted from records that included topics of functional neuroimaging, pain, and mindfulness interventions. The literature search produced 946 total records, of which five met the inclusion criteria. Records reported pain in terms of anticipation (n = 2), unpleasantness (n = 5), and intensity (n = 5), and how mindfulness conditions altered the neural activity during noxious stimulation accordingly. Although the studies were inconsistent in relating pain components to neural activity, in general, mindfulness was able to reduce pain anticipation and unpleasantness ratings, as well as alter the corresponding neural activity. The major neural underpinnings of mindfulness-based pain reduction consisted of altered activity in the anterior cingulate cortex, insula, and dorsolateral prefrontal cortex.

  20. Expression and function of β-adrenergic receptors in human hematopoietic cell lines

    International Nuclear Information System (INIS)

    Maeki, T.; Andersson, L.C.; Kontula, K.K.

    1992-01-01

    We investigated the expression and functional characteristics of β-adrenoceptors in a panel of 10 phenotypically different human hematopoietic cell lines. A binding assay with [ 125 I]iodocyanopindolol as the ligand revealed that cell lines of myelomonocytic or histiocytic derivation (HL-60, ML-2, RC-2A, U-937) expressed high numbers of β-adrenoceptors. An intermediate density of receptors was found in a non-T, non-B cell leukemia line (Nall-1), whereas T-cell (JM, CCRF-CEM), B-cell (Raji) or erythroleukemic cell lines (K-562, HEL) displayed minimala or undetectable binding of the radioligand. Isoprenaline-stimulated cAMP production by the cells correlated to their extent of β-adrenoceptor expression. Southern blot hybridization analysis of genomic DNA from the cell lines with a 32 P-labelled β 2 -adrenoceptor cDNA probe revealed no evidence for major rearrangement or amplification of the receptor gene. Incubation with isoprenaline in vitro suppressed the proliferation of the receptor-rich RC-2A cells but did not affect the growth rate of the receptor-deficient K-562 cells. Treatment with propranolol slightly enhanced the proliferation of the RC-2A cells but did not markedly alter the growth rate of two other cell lines, regardless of their β-adrenoceptor status. These findings indicate a regulatory influence by the sympathoadrenergic system on selected cells of the myelomonocytic lineage. (au)

  1. The effects of osmotic stress on the structure and function of the cell nucleus.

    Science.gov (United States)

    Finan, John D; Guilak, Farshid

    2010-02-15

    Osmotic stress is a potent regulator of the normal function of cells that are exposed to osmotically active environments under physiologic or pathologic conditions. The ability of cells to alter gene expression and metabolic activity in response to changes in the osmotic environment provides an additional regulatory mechanism for a diverse array of tissues and organs in the human body. In addition to the activation of various osmotically- or volume-activated ion channels, osmotic stress may also act on the genome via a direct biophysical pathway. Changes in extracellular osmolality alter cell volume, and therefore, the concentration of intracellular macromolecules. In turn, intracellular macromolecule concentration is a key physical parameter affecting the spatial organization and pressurization of the nucleus. Hyper-osmotic stress shrinks the nucleus and causes it to assume a convoluted shape, whereas hypo-osmotic stress swells the nucleus to a size that is limited by stretch of the nuclear lamina and induces a smooth, round shape of the nucleus. These behaviors are consistent with a model of the nucleus as a charged core/shell structure pressurized by uneven partition of macromolecules between the nucleoplasm and the cytoplasm. These osmotically-induced alterations in the internal structure and arrangement of chromatin, as well as potential changes in the nuclear membrane and pores are hypothesized to influence gene transcription and/or nucleocytoplasmic transport. A further understanding of the biophysical and biochemical mechanisms involved in these processes would have important ramifications for a range of fields including differentiation, migration, mechanotransduction, DNA repair, and tumorigenesis. (c) 2009 Wiley-Liss, Inc.

  2. Altered global gene expression profiles in human gastrointestinal epithelial Caco2 cells exposed to nanosilver

    Directory of Open Access Journals (Sweden)

    Saura C. Sahu

    Full Text Available Extensive consumer exposure to food- and cosmetics-related consumer products containing nanosilver is of public safety concern. Therefore, there is a need for suitable in vitro models and sensitive predictive rapid screening methods to assess their toxicity. Toxicogenomic profile showing subtle changes in gene expressions following nanosilver exposure is a sensitive toxicological endpoint for this purpose. We evaluated the Caco2 cells and global gene expression profiles as tools for predictive rapid toxicity screening of nanosilver. We evaluated and compared the gene expression profiles of Caco-2 cells exposed to 20 nm and 50 nm nanosilver at a concentration 2.5 μg/ml. The global gene expression analysis of Caco2 cells exposed to 20 nm nanosilver showed that a total of 93 genes were altered at 4 h exposure, out of which 90 genes were up-regulated and 3 genes were down-regulated. The 24 h exposure of 20 nm silver altered 15 genes in Caco2 cells, out of which 14 were up-regulated and one was down-regulated. The most pronounced changes in gene expression were detected at 4 h. The greater size (50 nm nanosilver at 4 h exposure altered more genes by more different pathways than the smaller (20 nm one. Metallothioneins and heat shock proteins were highly up-regulated as a result of exposure to both the nanosilvers. The cellular pathways affected by the nanosilver exposure is likely to lead to increased toxicity. The results of our study presented here suggest that the toxicogenomic characterization of Caco2 cells is a valuable in vitro tool for assessing toxicity of nanomaterials such as nanosilver. Keywords: Nanosilver, Silver nanoparticles, Nanoparticles, Toxicogenomics, DNA microarray, Global gene expression profiles, Caco2 cells

  3. Altered Network Oscillations and Functional Connectivity Dynamics in Children Born Very Preterm.

    Science.gov (United States)

    Moiseev, Alexander; Doesburg, Sam M; Herdman, Anthony T; Ribary, Urs; Grunau, Ruth E

    2015-09-01

    Structural brain connections develop atypically in very preterm children, and altered functional connectivity is also evident in fMRI studies. Such alterations in brain network connectivity are associated with cognitive difficulties in this population. Little is known, however, about electrophysiological interactions among specific brain networks in children born very preterm. In the present study, we recorded magnetoencephalography while very preterm children and full-term controls performed a visual short-term memory task. Regions expressing task-dependent activity changes were identified using beamformer analysis, and inter-regional phase synchrony was calculated. Very preterm children expressed altered regional recruitment in distributed networks of brain areas, across standard physiological frequency ranges including the theta, alpha, beta and gamma bands. Reduced oscillatory synchrony was observed among task-activated brain regions in very preterm children, particularly for connections involving areas critical for executive abilities, including middle frontal gyrus. These findings suggest that inability to recruit neurophysiological activity and interactions in distributed networks including frontal regions may contribute to difficulties in cognitive development in children born very preterm.

  4. Relationship of Soluble RAGE with Insulin Resistance and Beta Cell Function during Development of Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Subrata Kumar Biswas

    2015-01-01

    Full Text Available This study examined whether circulating levels of soluble receptor for advanced glycation end products (sRAGE alter in prediabetes and correlate with insulin resistance (IR and beta cell function in prediabetes and newly diagnosed type 2 diabetes mellitus (T2DM. Subjects without previous history of diabetes were recruited and grouped as control, prediabetes, and newly diagnosed T2DM. The control subjects (n=40 and people with prediabetes (n=52 and diabetes (n=66 were similar in terms of age, sex, BMI, systolic and diastolic BP, and fasting insulin level. HOMA-IR was found significantly higher in people with diabetes than control subjects (p<0.001 and people with prediabetes (p=0.005; and HOMA-%B was found significantly deteriorated in people with diabetes (p<0.001 compared to control subjects and people with prediabetes. However, serum sRAGE levels did not show any significant alteration in people with prediabetes compared to control subjects. Moreover, univariate and multivariate analyses did not identify any significant correlation and statistical association of sRAGE with HOMA-IR and HOMA-%B in people with prediabetes and newly diagnosed T2DM. Our data suggest that serum sRAGE levels do not alter in people with prediabetes compared to control subjects and do not correlate or associate with IR and beta cell function during development of T2DM.

  5. Alcohol and cannabinoids differentially affect HIV infection and function of human monocyte-derived dendritic cells (MDDC

    Directory of Open Access Journals (Sweden)

    Marisela eAgudelo

    2015-12-01

    Full Text Available During human immunodeficiency virus (HIV infection, alcohol has been known to induce inflammation while cannabinoids have been shown to have an anti-inflammatory role. For instance cannabinoids have been shown to reduce susceptibility to HIV-1 infection and attenuate HIV replication in macrophages. Recently, we demonstrated that alcohol induces cannabinoid receptors and regulates cytokine production by monocyte-derived dendritic cells (MDDC. However, the ability of alcohol and cannabinoids to alter MDDC function during HIV infection has not been clearly elucidated yet. In order to study the potential impact of alcohol and cannabinoids on differentiated MDDC infected with HIV, monocytes were cultured for 7 days with GM-CSF and IL-4, differentiated MDDC were infected with HIV-1Ba-L and treated with EtOH (0.1 and 0.2%, THC (5 and 10 uM, or JWH-015 (5 and 10 uM for 4-7 days. HIV infection of MDDC was confirmed by p24 and Long Terminal Repeats (LTR estimation. MDDC endocytosis assay and cytokine array profiles were measured to investigate the effects of HIV and substances of abuse on MDDC function. Our results show the HIV+EtOH treated MDDC had the highest levels of p24 production and expression when compared with the HIV positive controls and the cannabinoid treated cells. Although both cannabinoids, THC and JWH-015 had lower levels of p24 production and expression, the HIV+JWH-015 treated MDDC had the lowest levels of p24 when compared to the HIV+THC treated cells. In addition, MDDC endocytic function and cytokine production were also differentially altered after alcohol and cannabinoid treatments. Our results show a differential effect of alcohol and cannabinoids, which may provide insights into the divergent inflammatory role of alcohol and cannabinoids to modulate MDDC function in the context of HIV infection.

  6. V(D)J recombination process and the Pre-B to immature B-cells transition are altered in Fanca-/- mice.

    Science.gov (United States)

    Nguyen, Thuy Vy; Pawlikowska, Patrycja; Firlej, Virginie; Rosselli, Filippo; Aoufouchi, Saïd

    2016-11-24

    B-lymphocytes in the bone marrow (BM) must generate a functional B-cell receptor and overcome the negative selection induced by reactivity with autoantigens. Two rounds of DNA recombination are required for the production of functional immunoglobulin heavy (Ig-HCs) and light (LCs) chains necessary for the continuation of B-lymphocyte development in the BM. Both rounds depend on the joint action of recombination activating gene-1 (RAG-1) and RAG-2 endonucleases with the DNA non-homologous end-joining pathway. Loss of the FANC gene leads to the chromosome breakage and cancer predisposition syndrome Fanconi anemia. Because the FANC proteins are involved in certain aspects of the recombination process, we sought to determine the impact of the FANC pathway on the Ig diversification process using Fanca -/- mice. In this work we demonstrated that Fanca -/- animals have a mild B-cell differentiation defect characterized by a specific alteration of the IgM - to IgM + transition of the B220 low B-cell population. Pre-B cells from Fanca -/- mice show evidence of impaired kLC rearrangement at the level of the Vk-Jk junction. Furthermore, Fanca -/- mice showed a skewed Vκ gene usage during formation of the LCs Vk-Jk junctions. Therefore, the Fanca protein appears as a yet unidentified factor involved in the primary diversification of Ig.

  7. Carcinogenesis: alterations in reciprocal interactions of normal functional structure of biologic systems.

    Science.gov (United States)

    Davydyan, Garri

    2015-12-01

    The evolution of biologic systems (BS) includes functional mechanisms that in some conditions may lead to the development of cancer. Using mathematical group theory and matrix analysis, previously, it was shown that normally functioning BS are steady functional structures regulated by three basis regulatory components: reciprocal links (RL), negative feedback (NFB) and positive feedback (PFB). Together, they form an integrative unit maintaining system's autonomy and functional stability. It is proposed that phylogenetic development of different species is implemented by the splitting of "rudimentary" characters into two relatively independent functional parts that become encoded in chromosomes. The functional correlate of splitting mechanisms is RL. Inversion of phylogenetic mechanisms during ontogenetic development leads cell differentiation until cells reach mature states. Deterioration of reciprocal structure in the genome during ontogenesis gives rise of pathological conditions characterized by unsteadiness of the system. Uncontrollable cell proliferation and invasive cell growth are the leading features of the functional outcomes of malfunctioning systems. The regulatory element responsible for these changes is RL. In matrix language, pathological regulation is represented by matrices having positive values of diagonal elements ( TrA  > 0) and also positive values of matrix determinant ( detA  > 0). Regulatory structures of that kind can be obtained if the negative entry of the matrix corresponding to RL is replaced with the positive one. To describe not only normal but also pathological states of BS, a unit matrix should be added to the basis matrices representing RL, NFB and PFB. A mathematical structure corresponding to the set of these four basis functional patterns (matrices) is a split quaternion (coquaternion). The structure and specific role of basis elements comprising four-dimensional linear space of split quaternions help to understand what

  8. Altering adsorbed proteins or cellular gene expression in bone-metastatic cancer cells affects PTHrP and Gli2 without altering cell growth

    Directory of Open Access Journals (Sweden)

    Jonathan M. Page

    2015-09-01

    Full Text Available The contents of this data in brief are related to the article titled “Matrix Rigidity Regulates the Transition of Tumor Cells to a Bone-Destructive Phenotype through Integrin β3 and TGF-β Receptor Type II”. In this DIB we will present our supplemental data investigating Integrin expression, attachment of cells to various adhesion molecules, and changes in gene expression in multiple cancer cell lines. Since the interactions of Integrins with adsorbed matrix proteins are thought to affect the ability of cancer cells to interact with their underlying substrates, we examined the expression of Integrin β1, β3, and β5 in response to matrix rigidity. We found that only Iβ3 increased with increasing substrate modulus. While it was shown that fibronectin greatly affects the expression of tumor-produced factors associated with bone destruction (parathyroid hormone-related protein, PTHrP, and Gli2, poly-l-lysine, vitronectin and type I collagen were also analyzed as potential matrix proteins. Each of the proteins was independently adsorbed on both rigid and compliant polyurethane films which were subsequently used to culture cancer cells. Poly-l-lysine, vitronectin and type I collagen all had negligible effects on PTHrP or Gli2 expression, but fibronectin was shown to have a dose dependent effect. Finally, altering the expression of Iβ3 demonstrated that it is required for tumor cells to respond to the rigidity of the matrix, but does not affect other cell growth or viability. Together these data support the data presented in our manuscript to show that the rigidity of bone drives Integrinβ3/TGF-β crosstalk, leading to increased expression of Gli2 and PTHrP.

  9. Altered intrinsic functional brain architecture in female patients with bulimia nervosa.

    Science.gov (United States)

    Wang, Li; Kong, Qing-Mei; Li, Ke; Li, Xue-Ni; Zeng, Ya-Wei; Chen, Chao; Qian, Ying; Feng, Shi-Jie; Li, Ji-Tao; Su, Yun'Ai; Correll, Christoph U; Mitchell, Philip B; Yan, Chao-Gan; Zhang, Da-Rong; Si, Tian-Mei

    2017-11-01

    Bulimia nervosa is a severe psychiatric syndrome with uncertain pathogenesis. Neural systems involved in sensorimotor and visual processing, reward and impulsive control may contribute to the binge eating and purging behaviours characterizing bulimia nervosa. However, little is known about the alterations of functional organization of whole brain networks in individuals with this disorder. We used resting-state functional MRI and graph theory to characterize functional brain networks of unmedicated women with bulimia nervosa and healthy women. We included 44 unmedicated women with bulimia nervosa and 44 healthy women in our analyses. Women with bulimia nervosa showed increased clustering coefficient and path length compared with control women. The nodal strength in patients with the disorder was higher in the sensorimotor and visual regions as well as the precuneus, but lower in several subcortical regions, such as the hippocampus, parahippocampal gyrus and orbitofrontal cortex. Patients also showed hyperconnectivity primarily involving sensorimotor and unimodal visual association regions, but hypoconnectivity involving subcortical (striatum, thalamus), limbic (amygdala, hippocampus) and paralimbic (orbitofrontal cortex, parahippocampal gyrus) regions. The topological aberrations correlated significantly with scores of bulimia and drive for thinness and with body mass index. We reruited patients with only acute bulimia nervosa, so it is unclear whether the topological abnormalities comprise vulnerability markers for the disorder developing or the changes associated with illness state. Our findings show altered intrinsic functional brain architecture, specifically abnormal global and local efficiency, as well as nodal- and network-level connectivity across sensorimotor, visual, subcortical and limbic systems in women with bulimia nervosa, suggesting that it is a disorder of dysfunctional integration among large-scale distributed brain regions. These abnormalities

  10. Loss of Asxl1 Alters Self-Renewal and Cell Fate of Bone Marrow Stromal Cell, Leading to Bohring-Opitz-like Syndrome in Mice.

    Science.gov (United States)

    Zhang, Peng; Xing, Caihong; Rhodes, Steven D; He, Yongzheng; Deng, Kai; Li, Zhaomin; He, Fuhong; Zhu, Caiying; Nguyen, Lihn; Zhou, Yuan; Chen, Shi; Mohammad, Khalid S; Guise, Theresa A; Abdel-Wahab, Omar; Xu, Mingjiang; Wang, Qian-Fei; Yang, Feng-Chun

    2016-06-14

    De novo ASXL1 mutations are found in patients with Bohring-Opitz syndrome, a disease with severe developmental defects and early childhood mortality. The underlying pathologic mechanisms remain largely unknown. Using Asxl1-targeted murine models, we found that Asxl1 global loss as well as conditional deletion in osteoblasts and their progenitors led to significant bone loss and a markedly decreased number of bone marrow stromal cells (BMSCs) compared with wild-type littermates. Asxl1(-/-) BMSCs displayed impaired self-renewal and skewed differentiation, away from osteoblasts and favoring adipocytes. RNA-sequencing analysis revealed altered expression of genes involved in cell proliferation, skeletal development, and morphogenesis. Furthermore, gene set enrichment analysis showed decreased expression of stem cell self-renewal gene signature, suggesting a role of Asxl1 in regulating the stemness of BMSCs. Importantly, re-introduction of Asxl1 normalized NANOG and OCT4 expression and restored the self-renewal capacity of Asxl1(-/-) BMSCs. Our study unveils a pivotal role of ASXL1 in the maintenance of BMSC functions and skeletal development. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways

    International Nuclear Information System (INIS)

    Laxmanan, Sreenivas; Robertson, Stuart W.; Wang Enfeng; Lau, Julie S.; Briscoe, David M.; Mukhopadhyay, Debabrata

    2005-01-01

    Vascular endothelial growth factor (VEGF) is an angiogenic cytokine that plays an important role in tumor growth and progression. Recent evidence suggests an alternate, albeit indirect, role of VEGF on host immune response to tumors. VEGF appears to diminish host immunity by altering the function of major antigen-presenting cells such as dendritic cells (DCs) [D.I. Gabrilovich, T. Ishida, S. Nadaf, J.E. Ohm, D.P. Carbone, Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function, Clin. Cancer Res. 5 (1999) 2963-2970, D. Gabrilovich, T. Ishida, T. Oyama, S. Ran, V. Kravtsov, S. Nadaf, D.P. Carbone, Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo, Blood 92 (1998) 4150-4166, T. Oyama, S. Ran, T. Ishida, S. Nadaf, L. Kerr, D.P. Carbone, D.I. Gabrilovich, Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells, J. Immunol. 160 (1998) 1224-1232.]. DCs are prime initiators of host immunity as they are known to activate both primary as well as secondary immune responses [J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque, Y.J. Liu, B. Pulendran, K. Palucka, Immunobiology of dendritic cells, Ann. Rev. Immunol. 18 (2000) 767-811.]. However, the exact nature of how VEGF suppresses DC function is not fully clear. In this report, we show that DCs cultured in the presence of VEGF are less potent in stimulating antigen-specific T-cells. Furthermore, by using DCs derived from Id1 -/- mice that are defective in Flt-1 signaling, we demonstrated that the inhibitory function of VEGF on DC function is most likely mediated by Flt-1. Thus, the role of VEGF in downregulating host immunity may highlight a unique role of VEGF in the pathogenesis of cancer

  12. Alteration in cell surface properties of Burkholderia spp. during surfactant-aided biodegradation of petroleum hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Sagarika; Mukherji, Suparna [Indian Institute of Technology Bombay, Mumbai (India). Centre for Environmental Science and Engineering (CESE)

    2012-04-15

    Chemical surfactants may impact microbial cell surface properties, i.e., cell surface hydrophobicity (CSH) and cell surface charge, and may thus affect the uptake of components from non-aqueous phase liquids (NAPLs). This work explored the impact of Triton X-100, Igepal CA 630, and Tween 80 (at twice the critical micelle concentration, CMC) on the cell surface characteristics of Burkholderia cultures, Burkholderia cepacia (ES1, aliphatic degrader) and Burkholderia multivorans (NG1, aromatic degrader), when grown on a six-component model NAPL. In the presence of Triton X-100, NAPL biodegradation was enhanced from 21% to 60% in B. cepacia and from 18% to 53% in B. multivorans. CSH based on water contact angle (50-52 ) was in the same range for both strains while zeta potential at neutral pH was -38 and -31 mV for B. cepacia and B. multivorans, respectively. In the presence of Triton X-100, their CSH increased to greater than 75 and the zeta potential decreased. This induced a change in the mode of uptake and initiated aliphatic hydrocarbon degradation by B. multivorans and increased the rate of aliphatic hydrocarbon degradation in B. cepacia. Igepal CA 630 and Tween 80 also altered the cell surface properties. For B. cepacia grown in the presence of Triton X-100 at two and five times its CMC, CSH increased significantly in the log growth phase. Growth in the presence of the chemical surfactants also affected the abundance of chemical functional groups on the cell surface. Cell surface changes had maximum impact on NAPL degradation in the presence of emulsifying surfactants, Triton X-100 and Igepal CA630.

  13. Inhibitors Alter the Stochasticity of Regulatory Proteins to Force Cells to Switch to the Other State in the Bistable System.

    Science.gov (United States)

    Jhang, Wun-Sin; Lo, Shih-Chiang; Yeh, Chen-Chao; Shu, Che-Chi

    2017-06-30

    The cellular behaviors under the control of genetic circuits are subject to stochastic fluctuations, or noise. The stochasticity in gene regulation, far from a nuisance, has been gradually appreciated for its unusual function in cellular activities. In this work, with Chemical Master Equation (CME), we discovered that the addition of inhibitors altered the stochasticity of regulatory proteins. For a bistable system of a mutually inhibitory network, such a change of noise led to the migration of cells in the bimodal distribution. We proposed that the consumption of regulatory protein caused by the addition of inhibitor is not the only reason for pushing cells to the specific state; the change of the intracellular stochasticity is also the main cause for the redistribution. For the level of the inhibitor capable of driving 99% of cells, if there is no consumption of regulatory protein, 88% of cells were guided to the specific state. It implied that cells were pushed, by the inhibitor, to the specific state due to the change of stochasticity.

  14. Anti-tachycardia therapy can improve altered cardiac adrenergic function in tachycardia-induced cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Ohkusu, Yasuo; Takahashi, Nobukazu; Ishikawa, Toshiyuki [Yokohama City Univ. (Japan). School of Medicine] [and others

    2002-11-01

    We investigated whether anti-tachycardia therapy might improve the altered cardiac adrenergic and systolic function in tachycardia-induced cardiomyopathy (TC) in contrast to dilated cardiomyopathy (DCM). The subjects were 23 patients with heart failure, consisting of 8 patients with TC (43.6{+-}10.0 yrs) and 15 with DCM (45.3{+-}8.2 yrs). TC was determined as impairment of left ventricular function secondary to chronic or very frequent arrhythmia during more than 10% of the day. All patients were receiving anti-tachycardia treatment. Cardiac {sup 123}I-MIBG uptake was assessed as the heart/mediastinum activity ratio (H/M) before and after treatment. Left ventricular ejection fraction (LVEF) was also assessed. In the baseline study, H/M and LVEF showed no difference between TC and DCM (2.21{+-}0.44 vs. 2.10{+-}0.42, 35.3{+-}13.1 vs. 36.0{+-}10.9%, respectively). After treatment, the degree of change in H/M and LVEF differed significantly (0.41{+-}0.34 vs. 0.08{+-}0.20, 20.5{+-}14.4 vs. -2.1{+-}9.6%, p<0.01). In TC, heart failure improved after a shorter duration of treatment (p<0.05). In conclusion, anti-tachycardia therapy can improve altered cardiac adrenergic function and systolic function in patients with TC over a shorter period than in those with DCM. (author)

  15. Adolescent social defeat alters markers of adult dopaminergic function.

    Science.gov (United States)

    Novick, Andrew M; Forster, Gina L; Tejani-Butt, Shanaz M; Watt, Michael J

    2011-08-10

    Stressful experiences during adolescence can alter the trajectory of neural development and contribute to psychiatric disorders in adulthood. We previously demonstrated that adolescent male rats exposed to repeated social defeat stress show changes in mesocorticolimbic dopamine content both at baseline and in response to amphetamine when tested in adulthood. In the present study we examined whether markers of adult dopamine function are also compromised by adolescent experience of social defeat. Given that the dopamine transporter as well as dopamine D1 receptors act as regulators of psychostimulant action, are stress sensitive and undergo changes during adolescence, quantitative autoradiography was used to measure [(3)H]-GBR12935 binding to the dopamine transporter and [(3)H]-SCH23390 binding to dopamine D1 receptors, respectively. Our results indicate that social defeat during adolescence led to higher dopamine transporter binding in the infralimbic region of the medial prefrontal cortex and higher dopamine D1 receptor binding in the caudate putamen, while other brain regions analyzed were comparable to controls. Thus it appears that social defeat during adolescence causes specific changes to the adult dopamine system, which may contribute to behavioral alterations and increased drug seeking. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Physiological and Functional Alterations after Spaceflight and Bed Rest.

    Science.gov (United States)

    Mulavara, Ajitkumar P; Peters, Brian T; Miller, Chris A; Kofman, Igor S; Reschke, Millard F; Taylor, Laura C; Lawrence, Emily L; Wood, Scott J; Laurie, Steven S; Lee, Stuart M C; Buxton, Roxanne E; May-Phillips, Tiffany R; Stenger, Michael B; Ploutz-Snyder, Lori L; Ryder, Jeffrey W; Feiveson, Alan H; Bloomberg, Jacob J

    2018-04-03

    Exposure to microgravity causes alterations in multiple physiological systems, potentially impacting the ability of astronauts to perform critical mission tasks. The goal of this study was to determine the effects of spaceflight on functional task performance and to identify the key physiological factors contributing to their deficits. A test battery comprised of 7 functional tests and 15 physiological measures was used to investigate the sensorimotor, cardiovascular and neuromuscular adaptations to spaceflight. Astronauts were tested before and after 6-month spaceflights. Subjects were also tested before and after 70 days of 6° head-down bed rest, a spaceflight analog, to examine the role of axial body unloading on the spaceflight results. These subjects included Control and Exercise groups to examine the effects of exercise during bed rest. Spaceflight subjects showed the greatest decrement in performance during functional tasks that required the greatest demand for dynamic control of postural equilibrium which was paralleled by similar decrements in sensorimotor tests that assessed postural and dynamic gait control. Other changes included reduced lower limb muscle performance and increased heart rate to maintain blood pressure. Exercise performed during bed rest prevented detrimental change in neuromuscular and cardiovascular function, however, both bed rest groups experienced functional and balance deficits similar to spaceflight subjects. Bed rest data indicates that body support unloading experienced during spaceflight contributes to postflight postural control dysfunction. Further, the bed rest results in the Exercise group of subjects confirm that resistance and aerobic exercises performed during spaceflight can play an integral role in maintaining neuromuscular and cardiovascular function, which can help in reducing decrements in functional performance. These results indicate that a countermeasure to mitigate postflight postural control dysfunction is

  17. Administration of imatinib mesylate in rats impairs the neonatal development of intramuscular interstitial cells in bladder and results in altered contractile properties.

    Science.gov (United States)

    Gevaert, Thomas; Hutchings, Graham; Everaerts, Wouter; Prenen, Hans; Roskams, Tania; Nilius, Bernd; De Ridder, Dirk

    2014-04-01

    The KIT receptor is considered as a reliable marker for a subpopulation of interstitial cells (IC), and by persistent neonatal inhibition of KIT we have investigated the role of this receptor in the development of IC-networks in bladder and we have observed the functional consequences of this inhibition. Newborn rat pups were treated daily with the KIT inhibitor imatinib mesylate (IM). After 7 days animals were sacrificed and bladder samples were dissected for morphological and functional studies. Morphological research consisted of immunohistochemistry with IC specific antigens (KIT and vimentin) and electron microscopy. The functional studies were based on isolated bladder strips in organ baths, in which spontaneous bladder contractility and the response to a non-subtype selective muscarinic agonist was evaluated. Suburothelial and intramuscular IC were found and characterized in neonatal rat bladder. IM-treatment induced a significant decrease in numbers of IC based on specific immunohistochemical markers, and electron microscopy revealed evidence of IC cell injury. These morphological alterations were observed on intramuscular IC only and not on IC in the suburothelium. Isolated muscle strips from IM-treated animals had a lower contractile frequency and an altered response to muscarinic agonists. The present study shows the presence of regional subpopulations of IC in neonatal rat bladder, provides evidence for a dependence on KIT of the development of intramuscular IC and supports the hypothesis that a poor development of networks of intramuscular IC might have repercussions on spontaneous and muscarinic-induced bladder contractility. © 2013 Wiley Periodicals, Inc.

  18. Activated NKT cells imprint NK-cell differentiation, functionality and education.

    Science.gov (United States)

    Riese, Peggy; Trittel, Stephanie; May, Tobias; Cicin-Sain, Luka; Chambers, Benedict J; Guzmán, Carlos A

    2015-06-01

    NK cells represent a vital component of the innate immune system. The recent discoveries demonstrating that the functionality of NK cells depends on their differentiation and education status underscore their potential as targets for immune intervention. However, to exploit their full potential, a detailed understanding of the cellular interactions involved in these processes is required. In this regard, the cross-talk between NKT cells and NK cells needs to be better understood. Our results provide strong evidence for NKT cell-induced effects on key biological features of NK cells. NKT-cell activation results in the generation of highly active CD27(high) NK cells with improved functionality. In this context, degranulation activity and IFNγ production were mainly detected in the educated subset. In a mCMV infection model, we also demonstrated that NKT-cell stimulation induced the generation of highly functional educated and uneducated NK cells, crucial players in viral control. Thus, our findings reveal new fundamental aspects of the NKT-NK cell axis that provide important hints for the manipulation of NK cells in clinical settings. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Epigallocatechin Gallate-Mediated Alteration of the MicroRNA Expression Profile in 5α-Dihydrotestosterone-Treated Human Dermal Papilla Cells.

    Science.gov (United States)

    Shin, Shanghun; Kim, Karam; Lee, Myung Joo; Lee, Jeongju; Choi, Sungjin; Kim, Kyung-Suk; Ko, Jung-Min; Han, Hyunjoo; Kim, Su Young; Youn, Hae Jeong; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan; Cha, Hwa Jun

    2016-06-01

    Dihydrotestosterone (DHT) induces androgenic alopecia by shortening the hair follicle growth phase, resulting in hair loss. We previously demonstrated how changes in the microRNA (miRNA) expression profile influenced DHT-mediated cell death, cell cycle arrest, cell viability, the generation of reactive oxygen species (ROS), and senescence. Protective effects against DHT have not, however, been elucidated at the genome level. We showed that epigallocatechin gallate (EGCG), a major component of green tea, protects DHT-induced cell death by regulating the cellular miRNA expression profile. We used a miRNA microarray to identify miRNA expression levels in human dermal papilla cells (DPCs). We investigated whether the miRNA expression influenced the protective effects of EGCG against DHT-induced cell death, growth arrest, intracellular ROS levels, and senescence. EGCG protected against the effects of DHT by altering the miRNA expression profile in human DPCs. In addition, EGCG attenuated DHT-mediated cell death and growth arrest and decreased intracellular ROS levels and senescence. A bioinformatics analysis elucidated the relationship between the altered miRNA expression and EGCG-mediated protective effects against DHT. Overall, our results suggest that EGCG ameliorates the negative effects of DHT by altering the miRNA expression profile in human DPCs.

  20. Ptpn11 Deletion in CD4+ Cells Does Not Affect T Cell Development and Functions but Causes Cartilage Tumors in a T Cell-Independent Manner.

    Science.gov (United States)

    Miah, S M Shahjahan; Jayasuriya, Chathuraka T; Salter, Alexander I; Reilly, Emma C; Fugere, Céline; Yang, Wentian; Chen, Qian; Brossay, Laurent

    2017-01-01

    The ubiquitously expressed tyrosine phosphatase Src homology region 2 domain-containing phosphatase-2 (SHP-2, encoded by Ptpn11 ) is required for constitutive cellular processes including proliferation, differentiation, and the regulation of immune responses. During development and maturation, subsets of T cells express a variety of inhibitory receptors known to associate with phosphatases, which in turn, dephosphorylate key players of activating receptor signaling pathways. We hypothesized that SHP-2 deletion would have major effects on T cell development by altering the thresholds for activation, as well as positive and negative selection. Surprisingly, using mice conditionally deficient for SHP-2 in the T cell lineage, we show that the development of these lymphocytes is globally intact. In addition, our data demonstrate that SHP-2 absence does not compromise T cell effector functions, suggesting that SHP-2 is dispensable in these cells. Unexpectedly, in aging mice, Ptpn11 gene deletion driven by CD4 Cre recombinase leads to cartilage tumors in wrist bones in a T cell-independent manner. These tumors resemble miniature cartilaginous growth plates and contain CD4-lineage positive chondrocyte-like cells. Altogether these results indicate that SHP-2 is a cartilage tumor suppressor during aging.

  1. Aryl Hydrocarbon Receptor Activation Reduces Dendritic Cell Function during Influenza Virus Infection

    Science.gov (United States)

    Jin, Guang-Bi; Moore, Amanda J.; Head, Jennifer L.; Neumiller, Joshua J.; Lawrence, B. Paige

    2010-01-01

    It has long been known that activation of the aryl hydrocarbon receptor (AhR) by ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses T cell–dependent immune responses; however, the underlying cellular targets and mechanism remain unclear. We have previously shown that AhR activation by TCDD reduces the proliferation and differentiation of influenza virus–specific CD8+ T cells through an indirect mechanism; suggesting that accessory cells are critical AhR targets during infection. Respiratory dendritic cells (DCs) capture antigen, migrate to lymph nodes, and play a key role in activating naive CD8+ T cells during respiratory virus infection. Herein, we report an examination of how AhR activation alters DCs in the lung and affects their trafficking to and function in the mediastinal lymph nodes (MLN) during infection with influenza virus. We show that AhR activation impairs lung DC migration and reduces the ability of DCs isolated from the MLN to activate naive CD8+ T cells. Using novel AhR mutant mice, in which the AhR protein lacks its DNA-binding domain, we show that the suppressive effects of TCDD require that the activated AhR complex binds to DNA. These new findings suggest that AhR activation by chemicals from our environment impacts DC function to stimulate naive CD8+ T cells and that immunoregulatory genes within DCs are critical targets of AhR. Moreover, our results reinforce the idea that environmental signals and AhR ligands may contribute to differential susceptibilities and responses to respiratory infection. PMID:20498003

  2. Functional paralysis of GM-CSF-derived bone marrow cells productively infected with ectromelia virus.

    Directory of Open Access Journals (Sweden)

    Lidia Szulc-Dąbrowska

    Full Text Available Ectromelia virus (ECTV is an orthopoxvirus responsible for mousepox, a lethal disease of certain strains of mice that is similar to smallpox in humans, caused by variola virus (VARV. ECTV, similar to VARV, exhibits a narrow host range and has co-evolved with its natural host. Consequently, ECTV employs sophisticated and host-specific strategies to control the immune cells that are important for induction of antiviral immune response. In the present study we investigated the influence of ECTV infection on immune functions of murine GM-CSF-derived bone marrow cells (GM-BM, comprised of conventional dendritic cells (cDCs and macrophages. Our results showed for the first time that ECTV is able to replicate productively in GM-BM and severely impaired their innate and adaptive immune functions. Infected GM-BM exhibited dramatic changes in morphology and increased apoptosis during the late stages of infection. Moreover, GM-BM cells were unable to uptake and process antigen, reach full maturity and mount a proinflammatory response. Inhibition of cytokine/chemokine response may result from the alteration of nuclear translocation of NF-κB, IRF3 and IRF7 transcription factors and down-regulation of many genes involved in TLR, RLR, NLR and type I IFN signaling pathways. Consequently, GM-BM show inability to stimulate proliferation of purified allogeneic CD4+ T cells in a primary mixed leukocyte reaction (MLR. Taken together, our data clearly indicate that ECTV induces immunosuppressive mechanisms in GM-BM leading to their functional paralysis, thus compromising their ability to initiate downstream T-cell activation events.

  3. HTLV-1 Alters T Cells for Viral Persistence and Transmission

    Directory of Open Access Journals (Sweden)

    Azusa Tanaka

    2018-03-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 was the first retrovirus to be discovered as a causative agent of adult T-cell leukemia-lymphoma (ATL and chronic inflammatory diseases. Two viral factors, Tax and HTLV-1 bZIP factor (HBZ, are thought to be involved in the leukemogenesis of ATL. Tax expression is frequently lost due to DNA methylation in the promoter region, genetic changes to the tax gene, and deletion of the 5′ long terminal repeat (LTR in approximately half of all ATL cases. On the other hand, HBZ is expressed in all ATL cases. HBZ is known to function in both protein form and mRNA form, and both forms play an important role in the oncogenic process of HTLV-1. HBZ protein has a variety of functions, including the suppression of apoptosis, the promotion of proliferation, and the impairment of anti-viral activity, through the interaction with several host cellular proteins including p300/CBP, Foxp3, and Foxo3a. These functions dramatically modify the transcriptional profiling of host T cells. HBZ mRNA also promotes T cell proliferation and viability. HBZ changes infected T cells to CCR4+TIGIT+CD4+ effector/memory T cells. This unique immunophenotype enables T cells to migrate into various organs and tissues and to survive in vivo. In this review, we summarize how HBZ hijacks the transcriptional networks and immune systems of host T cells to contribute to HTLV-1 pathogenesis on the basis of recent new findings about HBZ and tax.

  4. Replicative stress and alterations in cell cycle checkpoint controls following acetaminophen hepatotoxicity restrict liver regeneration.

    Science.gov (United States)

    Viswanathan, Preeti; Sharma, Yogeshwar; Gupta, Priya; Gupta, Sanjeev

    2018-03-05

    Acetaminophen hepatotoxicity is a leading cause of hepatic failure with impairments in liver regeneration producing significant mortality. Multiple intracellular events, including oxidative stress, mitochondrial damage, inflammation, etc., signify acetaminophen toxicity, although how these may alter cell cycle controls has been unknown and was studied for its significance in liver regeneration. Assays were performed in HuH-7 human hepatocellular carcinoma cells, primary human hepatocytes and tissue samples from people with acetaminophen-induced acute liver failure. Cellular oxidative stress, DNA damage and cell proliferation events were investigated by mitochondrial membrane potential assays, flow cytometry, fluorescence staining, comet assays and spotted arrays for protein expression after acetaminophen exposures. In experimental groups with acetaminophen toxicity, impaired mitochondrial viability and substantial DNA damage were observed with rapid loss of cells in S and G2/M and cell cycle restrictions or even exit in the remainder. This resulted from altered expression of the DNA damage regulator, ATM and downstream transducers, which imposed G1/S checkpoint arrest, delayed entry into S and restricted G2 transit. Tissues from people with acute liver failure confirmed hepatic DNA damage and cell cycle-related lesions, including restrictions of hepatocytes in aneuploid states. Remarkably, treatment of cells with a cytoprotective cytokine reversed acetaminophen-induced restrictions to restore cycling. Cell cycle lesions following mitochondrial and DNA damage led to failure of hepatic regeneration in acetaminophen toxicity but their reversibility offers molecular targets for treating acute liver failure. © 2018 John Wiley & Sons Ltd.

  5. Fine tuning a well-oiled machine: Influence of NK1.1 and NKG2D on NKT cell development and function.

    Science.gov (United States)

    Joshi, Sunil K; Lang, Mark L

    2013-10-01

    Natural killer T cells (NKT) represent a group of CD1d-restricted T-lineage cells that provide a functional interface between innate and adaptive immune responses in infectious disease, cancer, allergy and autoimmunity. There have been remarkable advances in understanding the molecular events that underpin NKT development in the thymus and in the complex array of functions in the periphery. Most functional studies have focused on activation of T cell antigen receptors expressed by NKT cells and their responses to CD1d presentation of glycolipid and related antigens. Receiving less attention has been several molecules that are hallmarks of Natural Killer (NK) cells, but nonetheless expressed by NKT cells. These include several activating and inhibitory receptors that may fine-tune NKT development and survival, as well as activation via antigen receptors. Herein, we review the possible roles of the NK1.1 and NKG2D receptors in regulating development and function of NKT cells in health and disease. We suggest that pharmacological alteration of NKT activity should consider the potential complexities commensurate with NK1.1 and NKG2D expression. Published by Elsevier B.V.

  6. Profilin-1 overexpression in MDA-MB-231 breast cancer cells is associated with alterations in proteomics biomarkers of cell proliferation, survival, and motility as revealed by global proteomics analyses.

    Science.gov (United States)

    Coumans, Joëlle V F; Gau, David; Poljak, Anne; Wasinger, Valerie; Roy, Partha; Moens, Pierre D J

    2014-12-01

    Despite early screening programs and new therapeutic strategies, metastatic breast cancer is still the leading cause of cancer death in women in industrialized countries and regions. There is a need for novel biomarkers of susceptibility, progression, and therapeutic response. Global analyses or systems science approaches with omics technologies offer concrete ways forward in biomarker discovery for breast cancer. Previous studies have shown that expression of profilin-1 (PFN1), a ubiquitously expressed actin-binding protein, is downregulated in invasive and metastatic breast cancer. It has also been reported that PFN1 overexpression can suppress tumorigenic ability and motility/invasiveness of breast cancer cells. To obtain insights into the underlying molecular mechanisms of how elevating PFN1 level induces these phenotypic changes in breast cancer cells, we investigated the alteration in global protein expression profiles of breast cancer cells upon stable overexpression of PFN1 by a combination of three different proteome analysis methods (2-DE, iTRAQ, label-free). Using MDA-MB-231 as a model breast cancer cell line, we provide evidence that PFN1 overexpression is associated with alterations in the expression of proteins that have been functionally linked to cell proliferation (FKPB1A, HDGF, MIF, PRDX1, TXNRD1, LGALS1, STMN1, LASP1, S100A11, S100A6), survival (HSPE1, HSPB1, HSPD1, HSPA5 and PPIA, YWHAZ, CFL1, NME1) and motility (CFL1, CORO1B, PFN2, PLS3, FLNA, FLNB, NME2, ARHGDIB). In view of the pleotropic effects of PFN1 overexpression in breast cancer cells as suggested by these new findings, we propose that PFN1-induced phenotypic changes in cancer cells involve multiple mechanisms. Our data reported here might also offer innovative strategies for identification and validation of novel therapeutic targets and companion diagnostics for persons with, or susceptibility to, breast cancer.

  7. Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition.

    Science.gov (United States)

    Podgórska, Anna; Burian, Maria; Gieczewska, Katarzyna; Ostaszewska-Bugajska, Monika; Zebrowski, Jacek; Solecka, Danuta; Szal, Bożena

    2017-01-01

    Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO 3 - ) and ammonium (NH 4 + ). However, the composition of the N source is important, because excess of NH 4 + promotes morphological disorders. Plants cultured on NH 4 + as the sole N source exhibit serious growth inhibition, commonly referred to as "ammonium toxicity syndrome." NH 4 + -mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH 4 + nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH 4 + as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH 4 + toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH 4 + -mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia , a receptor-like kinase involved in the control of cell wall extension.

  8. Elucidation of Altered Pathways in Tumor-Initiating Cells of Triple-Negative Breast Cancer: A Useful Cell Model System for Drug Screening.

    Science.gov (United States)

    Christensen, Anne G; Ehmsen, Sidse; Terp, Mikkel G; Batra, Richa; Alcaraz, Nicolas; Baumbach, Jan; Noer, Julie B; Moreira, José; Leth-Larsen, Rikke; Larsen, Martin R; Ditzel, Henrik J

    2017-08-01

    A limited number of cancer cells within a tumor are thought to have self-renewing and tumor-initiating capabilities that produce the remaining cancer cells in a heterogeneous tumor mass. Elucidation of central pathways preferentially used by tumor-initiating cells/cancer stem cells (CSCs) may allow their exploitation as potential cancer therapy targets. We used single cell cloning to isolate and characterize four isogenic cell clones from a triple-negative breast cancer cell line; two exhibited mesenchymal-like and two epithelial-like characteristics. Within these pairs, one, but not the other, resulted in tumors in immunodeficient NOD/Shi-scid/IL-2 Rγ null mice and efficiently formed mammospheres. Quantitative proteomics and phosphoproteomics were used to map signaling pathways associated with the tumor-initiating ability. Signaling associated with apoptosis was suppressed in tumor-initiating versus nontumorigenic counterparts with pro-apoptotic proteins, such as Bcl2-associated agonist of cell death (BAD), FAS-associated death domain protein (FADD), and myeloid differentiation primary response protein (MYD88), downregulated in tumor-initiating epithelial-like cells. Functional studies confirmed significantly lower apoptosis in tumor-initiating versus nontumorigenic cells. Moreover, central pathways, including β-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-related signaling, exhibited increased activation in the tumor-initiating cells. To evaluate the CSC model as a tool for drug screening, we assessed the effect of separately blocking NF-κB and Wnt/β-catenin signaling and found markedly reduced mammosphere formation, particularly for tumor-initiating cells. Similar reduction was also observed using patient-derived primary cancer cells. Furthermore, blocking NF-κB signaling in mice transplanted with tumor-initiating cells significantly reduced tumor outgrowth. Our study demonstrates that suppressed apoptosis, activation

  9. Hybrid cell adhesive material for instant dielectrophoretic cell trapping and long-term cell function assessment.

    Science.gov (United States)

    Reyes, Darwin R; Hong, Jennifer S; Elliott, John T; Gaitan, Michael

    2011-08-16

    Dielectrophoresis (DEP) for cell manipulation has focused, for the most part, on approaches for separation/enrichment of cells of interest. Advancements in cell positioning and immobilization onto substrates for cell culture, either as single cells or as cell aggregates, has benefited from the intensified research efforts in DEP (electrokinetic) manipulation. However, there has yet to be a DEP approach that provides the conditions for cell manipulation while promoting cell function processes such as cell differentiation. Here we present the first demonstration of a system that combines DEP with a hybrid cell adhesive material (hCAM) to allow for cell entrapment and cell function, as demonstrated by cell differentiation into neuronlike cells (NLCs). The hCAM, comprised of polyelectrolytes and fibronectin, was engineered to function as an instantaneous cell adhesive surface after DEP manipulation and to support long-term cell function (cell proliferation, induction, and differentiation). Pluripotent P19 mouse embryonal carcinoma cells flowing within a microchannel were attracted to the DEP electrode surface and remained adhered onto the hCAM coating under a fluid flow field after the DEP forces were removed. Cells remained viable after DEP manipulation for up to 8 d, during which time the P19 cells were induced to differentiate into NLCs. This approach could have further applications in areas such as cell-cell communication, three-dimensional cell aggregates to create cell microenvironments, and cell cocultures.

  10. Herbicide effects on freshwater benthic diatoms: Induction of nucleus alterations and silica cell wall abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Debenest, T. [Ecolab UMR 5245 (INP ENSAT, CNRS, UPS), Equipe ECOGEN, Avenue de l' Agrobiopole - BP 32607 Auzeville Tolosane, 31326 Castanet Tolosan Cedex (France); Cemagref, 50 avenue de Verdun, 33612 Cestas Cedex (France); Silvestre, J. [Ecolab UMR 5245 (INP ENSAT, CNRS, UPS), Equipe ECOGEN, Avenue de l' Agrobiopole - BP 32607 Auzeville Tolosane, 31326 Castanet Tolosan Cedex (France); Coste, M.; Delmas, F. [Cemagref, 50 avenue de Verdun, 33612 Cestas Cedex (France); Pinelli, E. [Ecolab UMR 5245 (INP ENSAT, CNRS, UPS), Equipe ECOGEN, Avenue de l' Agrobiopole - BP 32607 Auzeville Tolosane, 31326 Castanet Tolosan Cedex (France)], E-mail: pinelli@ensat.fr

    2008-06-02

    Benthic diatoms are well known bio-indicators of river pollution by nutrients (nitrogen and phosphorus). Biological indexes, based on diatom sensitivity for non-toxic pollution, have been developed to assess the water quality. Nevertheless, they are not reliable tools to detect pollution by pesticides. Many authors have suggested that toxic agents, like pesticides, induce abnormalities of the diatom cell wall (frustule). High abnormal frustule abundances have been reported in natural diatom communities sampled in streams contaminated by pesticides. However, no direct link was found between the abundances of abnormal frustules in these communities and the pesticide concentrations in stream water. In the present study, a freshwater benthic diatom community, isolated from natural biofilm and cultured under controlled conditions, was treated with a known genotoxic herbicide, maleic hydrazide (MH). Cells were exposed to three concentrations of MH (5 x 10{sup -6}, 10{sup -6}, 10{sup -7} M) for 6 h followed by a 24 h-recovery time. After MH treatments, nucleus alterations were observed: abnormal nucleus location, micronucleus, multinuclear cell or disruption of the nuclear membrane. A dose-dependent increase of nuclear alterations was observed. The difference between the control (9.65 nuclear alterations per 1000 cells observed (9.65 per mille), S.D. = 4.23) and the highest concentrations (29.40 per mille, S.D. = 8.49 for 10{sup -6} M and 35.96 per mille , S.D. = 3.71 for 5 x 10{sup -6} M) was statistically significant (Tukey test, P < 0.05). Diatoms also exhibited frustules with deformed morphology and abnormal ornamentation. Significantly increased abundances of abnormal frustules were observed for the highest concentrations (10{sup -6} and 5 x 10{sup -6} M; Tukey test, P < 0.05). These two parameters tended to increase together (Pearson correlation = 0.702, P < 0.05). The results suggest that the induction of abnormal frustules could be associated with the genotoxic

  11. Altered functional connectivity within the central reward network in overweight and obese women

    Science.gov (United States)

    Coveleskie, K; Gupta, A; Kilpatrick, L A; Mayer, E D; Ashe-McNalley, C; Stains, J; Labus, J S; Mayer, E A

    2015-01-01

    Background/Objectives: Neuroimaging studies in obese subjects have identified abnormal activation of key regions of central reward circuits, including the nucleus accumbens (NAcc), in response to food-related stimuli. We aimed to examine whether women with elevated body mass index (BMI) show structural and resting state (RS) functional connectivity alterations within regions of the reward network. Subjects/Methods: Fifty healthy, premenopausal women, 19 overweight and obese (high BMI=26–38 kg m−2) and 31 lean (BMI=19–25 kg m−2) were selected from the University of California Los Angeles' Oppenheimer Center for Neurobiology of Stress database. Structural and RS functional scans were collected. Group differences in grey matter volume (GMV) of the NAcc, oscillation dynamics of intrinsic brain activity and functional connectivity of the NAcc to regions within the reward network were examined. Results: GMV of the left NAcc was significantly greater in the high BMI group than in the lean group (P=0.031). Altered frequency distributions were observed in women with high BMI compared with lean group in the left NAcc (P=0.009) in a medium-frequency (MF) band, and in bilateral anterior cingulate cortex (ACC) (P=0.014, ingestive behaviors. PMID:25599560

  12. Cyclophilin B as a co-regulator of prolactin-induced gene expression and function in breast cancer cells.

    Science.gov (United States)

    Fang, Feng; Zheng, Jiamao; Galbaugh, Traci L; Fiorillo, Alyson A; Hjort, Elizabeth E; Zeng, Xianke; Clevenger, Charles V

    2010-06-01

    The effects of prolactin (PRL) during the pathogenesis of breast cancer are mediated in part though Stat5 activity enhanced by its interaction with its transcriptional inducer, the prolyl isomerase cyclophilin B (CypB). We have demonstrated that knockdown of CypB decreases cell growth, proliferation, and migration, and CypB expression is associated with malignant progression of breast cancer. In this study, we examined the effect of CypB knockdown on PRL signaling in breast cancer cells. CypB knockdown with two independent siRNAs was shown to impair PRL-induced reporter expression in breast cancer cell line. cDNA microarray analysis was performed on these cells to assess the effect of CypB reduction, and revealed a significant decrease in PRL-induced endogenous gene expression in two breast cancer cell lines. Parallel functional assays revealed corresponding alterations of both anchorage-independent cell growth and cell motility of breast cancer cells. Our results demonstrate that CypB expression levels significantly modulate PRL-induced function in breast cancer cells ultimately resulting in enhanced levels of PRL-responsive gene expression, cell growth, and migration. Given the increasingly appreciated role of PRL in the pathogenesis of breast cancer, the actions of CypB detailed here are of biological significance.

  13. Cellular and epigenetic drivers of stem cell ageing.

    Science.gov (United States)

    Ermolaeva, Maria; Neri, Francesco; Ori, Alessandro; Rudolph, K Lenhard

    2018-06-01

    Adult tissue stem cells have a pivotal role in tissue maintenance and regeneration throughout the lifespan of multicellular organisms. Loss of tissue homeostasis during post-reproductive lifespan is caused, at least in part, by a decline in stem cell function and is associated with an increased incidence of diseases. Hallmarks of ageing include the accumulation of molecular damage, failure of quality control systems, metabolic changes and alterations in epigenome stability. In this Review, we discuss recent evidence in support of a novel concept whereby cell-intrinsic damage that accumulates during ageing and cell-extrinsic changes in ageing stem cell niches and the blood result in modifications of the stem cell epigenome. These cumulative epigenetic alterations in stem cells might be the cause of the deregulation of developmental pathways seen during ageing. In turn, they could confer a selective advantage to mutant and epigenetically drifted stem cells with altered self-renewal and functions, which contribute to the development of ageing-associated organ dysfunction and disease.

  14. Androgen and taxol cause cell type-specific alterations of centrosome and DNA organization in androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cells

    Science.gov (United States)

    Schatten, H.; Ripple, M.; Balczon, R.; Weindruch, R.; Chakrabarti, A.; Taylor, M.; Hueser, C. N.

    2000-01-01

    We investigated the effects of androgen and taxol on the androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cell lines. Cells were treated for 48 and 72 h with 0.05-1 nM of the synthetic androgen R1881 and with 100 nM taxol. Treatment of LNCaP cells with 0.05 nM R1881 led to increased cell proliferation, whereas treatment with 1 nM R1881 resulted in inhibited cell division, DNA cycle arrest, and altered centrosome organization. After treatment with 1 nM R1881, chromatin became clustered, nuclear envelopes convoluted, and mitochondria accumulated around the nucleus. Immunofluorescence microscopy with antibodies to centrosomes showed altered centrosome structure. Although centrosomes were closely associated with the nucleus in untreated cells, they dispersed into the cytoplasm after treatment with 1 nM R1881. Microtubules were only faintly detected in 1 nM R1881-treated LNCaP cells. The effects of taxol included microtubule bundling and altered mitochondria morphology, but not DNA organization. As expected, the androgen-independent prostate cancer cell line DU145 was not affected by R1881. Treatment with taxol resulted in bundling of microtubules in both cell lines. Additional taxol effects were seen in DU145 cells with micronucleation of DNA, an indication of apoptosis. Simultaneous treatment with R1881 and taxol had no additional effects on LNCaP or DU145 cells. These results suggest that LNCaP and DU145 prostate cancer cells show differences not only in androgen responsiveness but in sensitivity to taxol as well. Copyright 2000 Wiley-Liss, Inc.

  15. Altered network communication following a neuroprotective drug treatment.

    Directory of Open Access Journals (Sweden)

    Kathleen Vincent

    Full Text Available Preconditioning is defined as a range of stimuli that allow cells to withstand subsequent anaerobic and other deleterious conditions. While cell protection under preconditioning is well established, this paper investigates the influence of neuroprotective preconditioning drugs, 4-aminopyridine and bicuculline (4-AP/bic, on synaptic communication across a broad network of in vitro rat cortical neurons. Using a permutation test, we evaluated cross-correlations of extracellular spiking activity across all pairs of recording electrodes on a 64-channel multielectrode array. The resulting functional connectivity maps were analyzed in terms of their graph-theoretic properties. A small-world effect was found, characterized by a functional network with high clustering coefficient and short average path length. Twenty-four hours after exposure to 4-AP/bic, small-world properties were comparable to control cultures that were not treated with the drug. Four hours following drug washout, however, the density of functional connections increased, while path length decreased and clustering coefficient increased. These alterations in functional connectivity were maintained at four days post-washout, suggesting that 4-AP/bic preconditioning leads to long-term effects on functional networks of cortical neurons. Because of their influence on communication efficiency in neuronal networks, alterations in small-world properties hold implications for information processing in brain systems. The observed relationship between density, path length, and clustering coefficient is captured by a phenomenological model where connections are added randomly within a spatially-embedded network. Taken together, results provide information regarding functional consequences of drug therapies that are overlooked in traditional viability studies and present the first investigation of functional networks under neuroprotective preconditioning.

  16. Response to Dengue virus infections altered by cytokine-like substances from mosquito cell cultures

    Directory of Open Access Journals (Sweden)

    Laosutthipong Chaowanee

    2010-11-01

    Full Text Available Abstract Background With both shrimp and commercial insects such as honey bees, it is known that stable, persistent viral infections characterized by absence of disease can sometimes shift to overt disease states as a result of various stress triggers and that this can result in serious economic losses. The main research interest of our group is to understand the dynamics of stable viral infections in shrimp and how they can be destabilized by stress. Since there are no continuous cell lines for crustaceans, we have used a C6/36 mosquito cell line infected with Dengue virus to test hypotheses regarding these interactions. As a result, we accidentally discovered two new cytokine-like substances in 5 kDa extracts from supernatant solutions of acutely and persistently infected mosquito cells. Results Naïve C6/36 cells were exposed for 48 h to 5 kDa membrane filtrates prepared from the supernatant medium of stable C6/36 mosquito cell cultures persistently-infected with Dengue virus. Subsequent challenge of naïve cells with a virulent stock of Dengue virus 2 (DEN-2 and analysis by confocal immunofluorescence microscopy using anti-DEN-2 antibody revealed a dramatic reduction in the percentage of DEN-2 infected cells when compared to control cells. Similar filtrates prepared from C6/36 cells with acute DEN-2 infections were used to treat stable C6/36 mosquito cell cultures persistently-infected with Dengue virus. Confocal immunofluorescence microscopy revealed destabilization in the form of an apoptosis-like response. Proteinase K treatment removed the cell-altering activities indicating that they were caused by small polypeptides similar to those previously reported from insects. Conclusions This is the first report of cytokine-like substances that can alter the responses of mosquito cells to Dengue virus. This simple model system allows detailed molecular studies on insect cytokine production and on cytokine activity in a standard insect cell line.

  17. Redox biology in normal cells and cancer: restoring function of the redox/Fyn/c-Cbl pathway in cancer cells offers new approaches to cancer treatment.

    Science.gov (United States)

    Noble, Mark; Mayer-Pröschel, Margot; Li, Zaibo; Dong, Tiefei; Cui, Wanchang; Pröschel, Christoph; Ambeskovic, Ibro; Dietrich, Joerg; Han, Ruolan; Yang, Yin Miranda; Folts, Christopher; Stripay, Jennifer; Chen, Hsing-Yu; Stevens, Brett M

    2015-02-01

    This review discusses a unique discovery path starting with novel findings on redox regulation of precursor cell and signaling pathway function and identification of a new mechanism by which relatively small changes in redox status can control entire signaling networks that regulate self-renewal, differentiation, and survival. The pathway central to this work, the redox/Fyn/c-Cbl (RFC) pathway, converts small increases in oxidative status to pan-activation of the c-Cbl ubiquitin ligase, which controls multiple receptors and other proteins of central importance in precursor cell and cancer cell function. Integration of work on the RFC pathway with attempts to understand how treatment with systemic chemotherapy causes neurological problems led to the discovery that glioblastomas (GBMs) and basal-like breast cancers (BLBCs) inhibit c-Cbl function through altered utilization of the cytoskeletal regulators Cool-1/βpix and Cdc42, respectively. Inhibition of these proteins to restore normal c-Cbl function suppresses cancer cell division, increases sensitivity to chemotherapy, disrupts tumor-initiating cell (TIC) activity in GBMs and BLBCs, controls multiple critical TIC regulators, and also allows targeting of non-TICs. Moreover, these manipulations do not increase chemosensitivity or suppress division of nontransformed cells. Restoration of normal c-Cbl function also allows more effective harnessing of estrogen receptor-α (ERα)-independent activities of tamoxifen to activate the RFC pathway and target ERα-negative cancer cells. Our work thus provides a discovery strategy that reveals mechanisms and therapeutic targets that cannot be deduced by standard genetics analyses, which fail to reveal the metabolic information, isoform shifts, protein activation, protein complexes, and protein degradation critical to our discoveries. Copyright © 2015. Published by Elsevier Inc.

  18. LDLR expression and localization are altered in mouse and human cell culture models of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jose F Abisambra

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a chronic neurodegenerative disorder and the most common form of dementia. The major molecular risk factor for late-onset AD is expression of the epsilon-4 allele of apolipoprotein E (apoE, the major cholesterol transporter in the brain. The low-density lipoprotein receptor (LDLR has the highest affinity for apoE and plays an important role in brain cholesterol metabolism. METHODOLOGY/PRINCIPAL FINDINGS: Using RT-PCR and western blotting techniques we found that over-expression of APP caused increases in both LDLR mRNA and protein levels in APP transfected H4 neuroglioma cells compared to H4 controls. Furthermore, immunohistochemical experiments showed aberrant localization of LDLR in H4-APP neuroglioma cells, Abeta-treated primary neurons, and in the PSAPP transgenic mouse model of AD. Finally, immunofluorescent staining of LDLR and of gamma- and alpha-tubulin showed a change in LDLR localization preferentially away from the plasma membrane that was paralleled by and likely the result of a disruption of the microtubule-organizing center and associated microtubule network. CONCLUSIONS/SIGNIFICANCE: These data suggest that increased APP expression and Abeta exposure alters microtubule function, leading to reduced transport of LDLR to the plasma membrane. Consequent deleterious effects on apoE uptake and function will have implications for AD pathogenesis and/or progression.

  19. Alterations in blood-brain barrier function following acute hypertension: comparison of the blood-to-brain transfer of horseradish peroxidase with that of alpha-aminisobutyric acid

    International Nuclear Information System (INIS)

    Ellison, M.D.B.

    1985-01-01

    The blood-brain barrier (BBB) selectively restricts the blood-to-brain passage of many solutes owing to unique properties of cerebrovascular endothelial cell membranes. To date, experimental study of the BBB has been accomplished primarily through the use of two different methodological approaches. Morphological studies have mostly employed large molecular weight (MW) tracers to detect morphological alterations underlying increased permeability. Physiological studies, employing smaller, more physiologic tracers have successfully described, quantitatively, certain functional aspects of blood-to-brain transfer. The current work attempts to merge these two approaches and to consider barrier function/dysfunction from both a morphological and a functional perspective. Specifically, the study compares in rats, following acute hypertension, the cerebrovascular passage of 14 C-alpha-aminoisobutyric acid (AIB) and that of horseradish peroxidase (HRP). The blood-to-brain passage of AIB and HRP were compared following acute hypertension, with regard to both the distributions of the tracer extravasation patterns and the magnitude of tracer extravasation. The results of this study suggest that traditional morphological barrier studies alone do not reveal all aspects of altered barrier status and that multiple mechanisms underlying increased BBB permeability may operate simultaneously during BBB dysfunction

  20. Modified mesenchymal stem cells using miRNA transduction alter lung injury in a bleomycin model.

    Science.gov (United States)

    Huleihel, Luai; Sellares, Jacobo; Cardenes, Nayra; Álvarez, Diana; Faner, Rosa; Sakamoto, Koji; Yu, Guoying; Kapetanaki, Maria G; Kaminski, Naftali; Rojas, Mauricio

    2017-07-01

    Although different preclinical models have demonstrated a favorable role for bone marrow-derived mesenchymal stem cells (B-MSC) in preventing fibrosis, this protective effect is not observed with late administration of these cells, when fibrotic changes are consolidated. We sought to investigate whether the late administration of B-MSCs overexpressing microRNAs (miRNAs) let-7d (antifibrotic) or miR-154 (profibrotic) could alter lung fibrosis in a murine bleomycin model. Using lentiviral vectors, we transduced miRNAs (let-7d or miR-154) or a control sequence into human B-MSCs. Overexpression of let-7d or miR-154 was associated with changes in the mesenchymal properties of B-MSCs and in their cytokine expression. Modified B-MSCs were intravenously administered to mice at day 7 after bleomycin instillation, and the mice were euthanized at day 14 Bleomycin-injured animals that were treated with let-7d cells were found to recover quicker from the initial weight loss compared with the other treatment groups. Interestingly, animals treated with miR-154 cells had the lowest survival rate. Although a slight reduction in collagen mRNA levels was observed in lung tissue from let-7d mice, no significant differences were observed in Ashcroft score and OH-proline. However, the distinctive expression in cytokines and CD45-positive cells in the lung suggests that the differential effects observed in both miRNA mice groups were related to an effect on the immunomodulation function. Our results establish the use of miRNA-modified mesenchymal stem cells as a potential future research in lung fibrosis. Copyright © 2017 the American Physiological Society.

  1. AMP Kinase Activation Alters Oxidant-Induced Stress Granule Assembly by Modulating Cell Signaling and Microtubule Organization.

    Science.gov (United States)

    Mahboubi, Hicham; Koromilas, Antonis E; Stochaj, Ursula

    2016-10-01

    Eukaryotic cells assemble stress granules (SGs) when translation initiation is inhibited. Different cell signaling pathways regulate SG production. Particularly relevant to this process is 5'-AMP-activated protein kinase (AMPK), which functions as a stress sensor and is transiently activated by adverse physiologic conditions. Here, we dissected the role of AMPK for oxidant-induced SG formation. Our studies identified multiple steps of de novo SG assembly that are controlled by the kinase. Single-cell analyses demonstrated that pharmacological AMPK activation prior to stress exposure changed SG properties, because the granules became more abundant and smaller in size. These altered SG characteristics correlated with specific changes in cell survival, cell signaling, cytoskeletal organization, and the abundance of translation initiation factors. Specifically, AMPK activation increased stress-induced eukaryotic initiation factor (eIF) 2α phosphorylation and reduced the concentration of eIF4F complex subunits eIF4G and eIF4E. At the same time, the abundance of histone deacetylase 6 (HDAC6) was diminished. This loss of HDAC6 was accompanied by increased acetylation of α-tubulin on Lys40. Pharmacological studies further confirmed this novel AMPK-HDAC6 interplay and its importance for SG biology. Taken together, we provide mechanistic insights into the regulation of SG formation. We propose that AMPK activation stimulates oxidant-induced SG formation but limits their fusion into larger granules. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Nucleolar proteins change in altered gravity

    Science.gov (United States)

    Sobol, M. A.; Kordyum, E. L.; Gonzalez-Camacho, F.; Medina, F. J.

    Discovery of gravisensitivity of cells no specified to gravity perception focused continuous attention on an elucidation of mechanisms involved in altered gravity effects at the different levels of cellular organization A nucleolus is the nuclear domain in which the major portion of ribosome biogenesis takes place This is a basic process for cell vitality beginning with the transcription of rDNA followed by processing newly synthesized pre-rRNA molecules A wide range of nucleolar proteins plays a highly significant role in all stages of biosynthesis of ribosomes Different steps of ribosome biogenesis should respond to various external factors affecting generally the cell metabolism Nevertheless a nucleolus remains not enough studied under the influence of altered environmental conditions For this reason we studied root apices from 2-day old Lepidium sativum seedlings germinated and grown under slow horizontal clinorotation and stationary conditions in darkness The extraction of cell nuclei followed by sequential fractionation of nuclear proteins according to their solubility in buffers of increasing ionic strength was carried out This procedure gave rise to 5 distinct fractions We analyzed nuclear subproteomes of the most soluble fraction called S2 It is actually a functionally significant fraction consisting of ribonucleoproteins actively engaged in pre-rRNA synthesis and processing 2D-electrophoresis of S2 fraction proteins was carried out The gels were silver stained and stained gels were scanned and analyzed

  3. Structure and function of stem cell pools in mammalian cell renewal systems

    International Nuclear Information System (INIS)

    Fliedner, T.M.; Nothdurft, W.

    1979-01-01

    Stem cells play a key-role in the maintenance of the equilibrium between cell loss and cell production in cell renewal systems as well as in the understanding of the radiation pathophysiology of mammalian organisms. The integrity of mammalian organisms with the need to maintain a constant ''millieu interior'' is depending on the normal functioning of cell renewal systems, especially those of epithelial surfaces and blood cell forming organs. All cell renewal systems of bodies have a very similar functional structure consisting of functional, proliferative - amplifying and stem cell compartments. They differ in transit and cell cycle times and in the number of amplification division - aside from the difference in their functional and biochemical make-up. The stem cell pools are providing the cells capable of differentiation without depleting their own kind. This can be achieved by symmetrical or assymmetrical stem cell division. In normal steady state, 50% of the stem cell division remain in the stem cell pool, while the other 50% leave it to differentiate, proliferate and mature, hemopoietic system is distributed throughout bodies. This is an important factor in the radiation biology of mammalian organisms since the loss of function in one area can be compensated for by more production in other areas, and locally depleted sites can be reseeded with the stem cells migrating in from blood. (Yamashita, S.)

  4. Sensorimotor Functional and Structural Networks after Intracerebral Stem Cell Grafts in the Ischemic Mouse Brain.

    Science.gov (United States)

    Green, Claudia; Minassian, Anuka; Vogel, Stefanie; Diedenhofen, Michael; Beyrau, Andreas; Wiedermann, Dirk; Hoehn, Mathias

    2018-02-14

    their influence on the whole-brain networks. Here, we have longitudinally and noninvasively monitored the structural and functional network alterations in the mouse model of focal cerebral ischemia. Structural changes of fiber-density increases are stimulated in the endogenous tissue without further modulation by the stem cells, while functional networks are stabilized by the stem cells via a paracrine effect. These results will help decipher the underlying networks of brain plasticity in response to cerebral lesions and offer clues to unravelling the mystery of how stem cells mediate regeneration. Copyright © 2018 the authors 0270-6474/18/381648-14$15.00/0.

  5. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    International Nuclear Information System (INIS)

    Ye, Ting; Peng, Jing; Nie, Binbin; Gao, Juan; Liu, Jiangtao; Li, Yang; Wang, Gang; Ma, Xin; Li, Kuncheng

    2012-01-01

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  6. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ting, E-mail: yeting@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Peng, Jing, E-mail: ppengjjing@sina.com.cn [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Nie, Binbin, E-mail: niebb@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Gao, Juan, E-mail: gaojuan@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Liu, Jiangtao, E-mail: Liujiangtao813@sina.com [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Li, Yang, E-mail: Liyang2007428@hotmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Wang, Gang, E-mail: gangwang@gmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Ma, Xin, E-mail: lijianshe@medmail.com.cn [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Li, Kuncheng [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); and others

    2012-12-15

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  7. Impact of blood processing variations on Natural Killer cell frequency, activation, chemokine receptor expression and function

    Science.gov (United States)

    Naranbhai, Vivek; Bartman, Pat; Ndlovu, Dudu; Ramkalawon, Pamela; Ndung’u, Thumbi; Wilson, Douglas; Altfeld, Marcus; Carr, William H

    2011-01-01

    Understanding the role of natural killer (NK) cells in human disease pathogenesis is crucial and necessitates study of patient samples directly ex vivo. Manipulation of whole blood by density gradient centrifugation or delays in sample processing due to shipping, however, may lead to artifactual changes in immune response measures. Here, we assessed the impact of density gradient centrifugation and delayed processing of both whole blood and peripheral blood mononuclear cells (PBMC) at multiple timepoints (2–24 hrs) on flow cytometric measures of NK cell frequency, activation status, chemokine receptor expression, and effector functions. We found that density gradient centrifugation activated NK cells and modified chemokine receptor expression. Delays in processing beyond 8 hours activated NK cells in PBMC but not in whole blood. Likewise, processing delays decreased chemokine receptor (CCR4 and CCR7) expression in both PBMC and whole blood. Finally, delays in processing PBMC were associated with a decreased ability of NK cells to degranulate (as measured by CD107a expression) or secrete cytokines (IFN-γ and TNF-α). In summary, our findings suggest that density gradient centrifugation and delayed processing of PBMC can alter measures of clinically relevant NK cell characteristics including effector functions; and therefore should be taken into account in designing clinical research studies. PMID:21255578

  8. Identifying functional cancer-specific miRNA-mRNA interactions in testicular germ cell tumor.

    Science.gov (United States)

    Sedaghat, Nafiseh; Fathy, Mahmood; Modarressi, Mohammad Hossein; Shojaie, Ali

    2016-09-07

    Testicular cancer is the most common cancer in men aged between 15 and 35 and more than 90% of testicular neoplasms are originated at germ cells. Recent research has shown the impact of microRNAs (miRNAs) in different types of cancer, including testicular germ cell tumor (TGCT). MicroRNAs are small non-coding RNAs which affect the development and progression of cancer cells by binding to mRNAs and regulating their expressions. The identification of functional miRNA-mRNA interactions in cancers, i.e. those that alter the expression of genes in cancer cells, can help delineate post-regulatory mechanisms and may lead to new treatments to control the progression of cancer. A number of sequence-based methods have been developed to predict miRNA-mRNA interactions based on the complementarity of sequences. While necessary, sequence complementarity is, however, not sufficient for presence of functional interactions. Alternative methods have thus been developed to refine the sequence-based interactions using concurrent expression profiles of miRNAs and mRNAs. This study aims to find functional cancer-specific miRNA-mRNA interactions in TGCT. To this end, the sequence-based predicted interactions are first refined using an ensemble learning method, based on two well-known methods of learning miRNA-mRNA interactions, namely, TaLasso and GenMiR++. Additional functional analyses were then used to identify a subset of interactions to be most likely functional and specific to TGCT. The final list of 13 miRNA-mRNA interactions can be potential targets for identifying TGCT-specific interactions and future laboratory experiments to develop new therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. PD-1 Blockade Can Restore Functions of T-Cells in Epstein-Barr Virus-Positive Diffuse Large B-Cell Lymphoma In Vitro.

    Directory of Open Access Journals (Sweden)

    Lina Quan

    Full Text Available Epstein-Barr virus-positive diffuse large B-cell lymphoma (EBV+DLBCL is an aggressive malignancy that is largely resistant to current therapeutic regimens, and is an attractive target for immune-based therapies. Anti-programmed death-1 (PD-1 antibodies showed encouraging anti-tumor effects in both preclinical models and advanced solid and hematological malignancies, but its efficacy against EBV+DLBCL is unknown. Herein, we performed experiments using co-culture system with T cells and lymphoma cell lines including EBV+DLBCL and EBV-DLBCL [including germinal center B-cell like (GCB-DLBCL and non-GCB-DLBCL] in vitro. We show that lymphoma cells augmented the expression of PD-1 on T cells, decreased the proliferation of T cells, and altered the secretion of multiple cytokines. However, through PD-1 blockade, these functions could be largely restored. Notbaly, the effect of PD-1 blockade on antitumor immunity was more effective in EBV+DLBCL than that in EBV-DLBCL in vitro. These results suggest that T-cell exhaustion and immune escape in microenvironment is one of the mechanisms underlying DLBCL; and PD-1 blockade could present as a efficacious immunotherapeutic treatment for EBV+DLBCL.

  10. Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells.

    Science.gov (United States)

    Nakano, Miyako; Saldanha, Rohit; Göbel, Anja; Kavallaris, Maria; Packer, Nicolle H

    2011-11-01

    Resistance to tubulin-binding agents used in cancer is often multifactorial and can include changes in drug accumulation and modified expression of tubulin isotypes. Glycans on cell membrane proteins play important roles in many cellular processes such as recognition and apoptosis, and this study investigated whether changes to the glycan structures on cell membrane proteins occur when cells become resistant to drugs. Specifically, we investigated the alteration of glycan structures on the cell membrane proteins of human T-cell acute lymphoblastic leukemia (CEM) cells that were selected for resistance to desoxyepothilone B (CEM/dEpoB). The glycan profile of the cell membrane glycoproteins was obtained by sequential release of N- and O-glycans from cell membrane fraction dotted onto polyvinylidene difluoride membrane with PNGase F and β-elimination respectively. The released glycan alditols were analyzed by liquid chromatography (graphitized carbon)-electrospray ionization tandem MS. The major N-glycan on CEM cell was the core fucosylated α2-6 monosialo-biantennary structure. Resistant CEM/dEpoB cells had a significant decrease of α2-6 linked sialic acid on N-glycans. The lower α2-6 sialylation was caused by a decrease in activity of β-galactoside α2-6 sialyltransferase (ST6Gal), and decreased expression of the mRNA. It is clear that the membrane glycosylation of leukemia cells changes during acquired resistance to dEpoB drugs and that this change occurs globally on all cell membrane glycoproteins. This is the first identification of a specific glycan modification on the surface of drug resistant cells and the mechanism of this downstream effect on microtubule targeting drugs may offer a route to new interventions to overcome drug resistance.

  11. Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD.

    Directory of Open Access Journals (Sweden)

    Wenxin Ma

    2009-11-01

    Full Text Available Age-related macular degeneration (AMD is a leading cause of legal blindness in the elderly in the industrialized word. While the immune system in the retina is likely to be important in AMD pathogenesis, the cell biology underlying the disease is incompletely understood. Clinical and basic science studies have implicated alterations in the retinal pigment epithelium (RPE layer as a locus of early change. Also, retinal microglia, the resident immune cells of the retina, have been observed to translocate from their normal position in the inner retina to accumulate in the subretinal space close to the RPE layer in AMD eyes and in animal models of AMD.In this study, we examined the effects of retinal microglia on RPE cells using 1 an in vitro model where activated retinal microglia are co-cultured with primary RPE cells, and 2 an in vivo mouse model where retinal microglia are transplanted into the subretinal space. We found that retinal microglia induced in RPE cells 1 changes in RPE structure and distribution, 2 increased expression and secretion of pro-inflammatory, chemotactic, and pro-angiogenic molecules, and 3 increased extent of in vivo choroidal neovascularization in the subretinal space.These findings share similarities with important pathological features found in AMD and suggest the relevance of microglia-RPE interactions in AMD pathogenesis. We speculate that the migration of retinal microglia into the subretinal space in early stages of the disease induces significant changes in RPE cells that perpetuate further microglial accumulation, increase inflammation in the outer retina, and fosters an environment conducive for the formation of neovascular changes responsible for much of vision loss in advanced AMD.

  12. Alterations in gene expression profiles between radioresistant and radiosensitive cell lines

    International Nuclear Information System (INIS)

    Zhou Fuxiang; Zhou Yunfeng; Xie Conghua; Dai Jing; Cao Zhen; Yu Haijun; Liao Zhengkai; Luo Zhiguo

    2007-01-01

    Objective: To study the-difference of gene expressions by the contrastive model including the cells with same pathological origin and genetic background, but definitely different radioresponse, and to find the main molecular targets related to radiosensitivity. Methods: Human larynx squamous carcinoma cell, Hep -2 was irradiated with dose of 637 cGy repeatedly to establish a radioresistant daughter cell line. The radiobiology characteristics were obtained using clone forming assay. The difference of gene expression between parent and daughter cells was detected by cDNA microarray using two different arrays including 14000 genes respectively. Results: A radioresistant cell strain Hep-2R was isolated from its parental strain Hep-2 cell. The SF 2 , D 0 , α, β for Hep-2R cell line were 0.6798, 3.24, 0.2951 and 0.0363, respectively, while 0.4148, 2.06, 0.1074 and 0.0405 for Hep-2, respectively (for SF 2 , χ 2 =63.957, P<0.001). Compared with Hep-2 cells, the expressions of 41 genes were significantly altered in the radioresistant Hep-2R cells, including 22 genes up-regulated and 19 genes down-regulated, which were involved in DNA repair, regulation of the cell cycle, cell proliferation, cytoskeleton, protein synthesis, cellular metabolism and especially apoptosis which is responsible for the different radiosensitivity between these two larynx cancer cells. The telomere protection protein gene, POT1, was the mostly up-regulated by 3.348 times. Conclusions: There is difference of gene expression between the radioresistant contrastive models. POT1 gene may be the target of radiosensitization. (authors)

  13. V(D)J recombination process and the Pre-B to immature B-cells transition are altered in Fanca−/− mice

    Science.gov (United States)

    Nguyen, Thuy Vy; Pawlikowska, Patrycja; Firlej, Virginie; Rosselli, Filippo; Aoufouchi, Saïd

    2016-01-01

    B-lymphocytes in the bone marrow (BM) must generate a functional B-cell receptor and overcome the negative selection induced by reactivity with autoantigens. Two rounds of DNA recombination are required for the production of functional immunoglobulin heavy (Ig-HCs) and light (LCs) chains necessary for the continuation of B-lymphocyte development in the BM. Both rounds depend on the joint action of recombination activating gene-1 (RAG-1) and RAG-2 endonucleases with the DNA non-homologous end-joining pathway. Loss of the FANC gene leads to the chromosome breakage and cancer predisposition syndrome Fanconi anemia. Because the FANC proteins are involved in certain aspects of the recombination process, we sought to determine the impact of the FANC pathway on the Ig diversification process using Fanca−/− mice. In this work we demonstrated that Fanca−/− animals have a mild B-cell differentiation defect characterized by a specific alteration of the IgM− to IgM+ transition of the B220low B-cell population. Pre-B cells from Fanca−/− mice show evidence of impaired kLC rearrangement at the level of the Vk-Jk junction. Furthermore, Fanca−/− mice showed a skewed Vκ gene usage during formation of the LCs Vk-Jk junctions. Therefore, the Fanca protein appears as a yet unidentified factor involved in the primary diversification of Ig. PMID:27883081

  14. Modelling altered revenue function based on varying power consumption distribution and electricity tariff charge using data analytics framework

    Science.gov (United States)

    Zainudin, W. N. R. A.; Ramli, N. A.

    2017-09-01

    In 2010, Energy Commission (EC) had introduced Incentive Based Regulation (IBR) to ensure sustainable Malaysian Electricity Supply Industry (MESI), promotes transparent and fair returns, encourage maximum efficiency and maintains policy driven end user tariff. To cater such revolutionary transformation, a sophisticated system to generate policy driven electricity tariff structure is in great need. Hence, this study presents a data analytics framework that generates altered revenue function based on varying power consumption distribution and tariff charge function. For the purpose of this study, the power consumption distribution is being proxy using proportion of household consumption and electricity consumed in KwH and the tariff charge function is being proxy using three-tiered increasing block tariff (IBT). The altered revenue function is useful to give an indication on whether any changes in the power consumption distribution and tariff charges will give positive or negative impact to the economy. The methodology used for this framework begins by defining the revenue to be a function of power consumption distribution and tariff charge function. Then, the proportion of household consumption and tariff charge function is derived within certain interval of electricity power. Any changes in those proportion are conjectured to contribute towards changes in revenue function. Thus, these changes can potentially give an indication on whether the changes in power consumption distribution and tariff charge function are giving positive or negative impact on TNB revenue. Based on the finding of this study, major changes on tariff charge function seems to affect altered revenue function more than power consumption distribution. However, the paper concludes that power consumption distribution and tariff charge function can influence TNB revenue to some great extent.

  15. TCR stimulation strength is inversely associated with establishment of functional brain-resident memory CD8 T cells during persistent viral infection.

    Science.gov (United States)

    Maru, Saumya; Jin, Ge; Schell, Todd D; Lukacher, Aron E

    2017-04-01

    Establishing functional tissue-resident memory (TRM) cells at sites of infection is a newfound objective of T cell vaccine design. To directly assess the impact of antigen stimulation strength on memory CD8 T cell formation and function during a persistent viral infection, we created a library of mouse polyomavirus (MuPyV) variants with substitutions in a subdominant CD8 T cell epitope that exhibit a broad range of efficiency in stimulating TCR transgenic CD8 T cells. By altering a subdominant epitope in a nonstructural viral protein and monitoring memory differentiation of donor monoclonal CD8 T cells in immunocompetent mice, we circumvented potentially confounding changes in viral infection levels, virus-associated inflammation, size of the immunodominant virus-specific CD8 T cell response, and shifts in TCR affinity that may accompany temporal recruitment of endogenous polyclonal cells. Using this strategy, we found that antigen stimulation strength was inversely associated with the function of memory CD8 T cells during a persistent viral infection. We further show that CD8 TRM cells recruited to the brain following systemic infection with viruses expressing epitopes with suboptimal stimulation strength respond more efficiently to challenge CNS infection with virus expressing cognate antigen. These data demonstrate that the strength of antigenic stimulation during recruitment of CD8 T cells influences the functional integrity of TRM cells in a persistent viral infection.

  16. Genetic Alterations of the Thrombopoietin/MPL/JAK2 Axis Impacting Megakaryopoiesis.

    Science.gov (United States)

    Plo, Isabelle; Bellanné-Chantelot, Christine; Mosca, Matthieu; Mazzi, Stefania; Marty, Caroline; Vainchenker, William

    2017-01-01

    Megakaryopoiesis is an original and complex cell process which leads to the formation of platelets. The homeostatic production of platelets is mainly regulated and controlled by thrombopoietin (TPO) and the TPO receptor (MPL)/JAK2 axis. Therefore, any hereditary or acquired abnormality affecting this signaling axis can result in thrombocytosis or thrombocytopenia. Thrombocytosis can be due to genetic alterations that affect either the intrinsic MPL signaling through gain-of-function (GOF) activity ( MPL, JAK2, CALR ) and loss-of-function (LOF) activity of negative regulators ( CBL, LNK ) or the extrinsic MPL signaling by THPO GOF mutations leading to increased TPO synthesis. Alternatively, thrombocytosis may paradoxically result from mutations of MPL leading to an abnormal MPL trafficking, inducing increased TPO levels by alteration of its clearance. In contrast, thrombocytopenia can also result from LOF THPO or MPL mutations, which cause a complete defect in MPL trafficking to the cell membrane, impaired MPL signaling or stability, defects in the TPO/MPL interaction, or an absence of TPO production.

  17. The surfactant protein C mutation A116D alters cellular processing, stress tolerance, surfactant lipid composition, and immune cell activation

    Directory of Open Access Journals (Sweden)

    Zarbock Ralf

    2012-03-01

    Full Text Available Abstract Background Surfactant protein C (SP-C is important for the function of pulmonary surfactant. Heterozygous mutations in SFTPC, the gene encoding SP-C, cause sporadic and familial interstitial lung disease (ILD in children and adults. Mutations mapping to the BRICHOS domain located within the SP-C proprotein result in perinuclear aggregation of the proprotein. In this study, we investigated the effects of the mutation A116D in the BRICHOS domain of SP-C on cellular homeostasis. We also evaluated the ability of drugs currently used in ILD therapy to counteract these effects. Methods SP-CA116D was expressed in MLE-12 alveolar epithelial cells. We assessed in vitro the consequences for cellular homeostasis, immune response and effects of azathioprine, hydroxychloroquine, methylprednisolone and cyclophosphamide. Results Stable expression of SP-CA116D in MLE-12 alveolar epithelial cells resulted in increased intracellular accumulation of proSP-C processing intermediates. SP-CA116D expression further led to reduced cell viability and increased levels of the chaperones Hsp90, Hsp70, calreticulin and calnexin. Lipid analysis revealed decreased intracellular levels of phosphatidylcholine (PC and increased lyso-PC levels. Treatment with methylprednisolone or hydroxychloroquine partially restored these lipid alterations. Furthermore, SP-CA116D cells secreted soluble factors into the medium that modulated surface expression of CCR2 or CXCR1 receptors on CD4+ lymphocytes and neutrophils, suggesting a direct paracrine effect of SP-CA116D on neighboring cells in the alveolar space. Conclusions We show that the A116D mutation leads to impaired processing of proSP-C in alveolar epithelial cells, alters cell viability and lipid composition, and also activates cells of the immune system. In addition, we show that some of the effects of the mutation on cellular homeostasis can be antagonized by application of pharmaceuticals commonly applied in ILD therapy

  18. Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure

    OpenAIRE

    Martin Göttlich; Nico M. Jandl; Jann F. Wojak; Andreas Sprenger; Janina von der Gablentz; Thomas F. Münte; Ulrike M. Krämer; Christoph Helmchen

    2014-01-01

    Patients with bilateral vestibular failure (BVF) suffer from gait unsteadiness, oscillopsia and impaired spatial orientation. Brain imaging studies applying caloric irrigation to patients with BVF have shown altered neural activity of cortical visual–vestibular interaction: decreased bilateral neural activity in the posterior insula and parietal operculum and decreased deactivations in the visual cortex. It is unknown how this affects functional connectivity in the resting brain and how chang...

  19. Alterations in radioresistance of eucaryotic cells after the transfer of genomic wildtype DNA and metallothionein genes

    International Nuclear Information System (INIS)

    Lohrer, H.

    1987-01-01

    The presented paper describes experiments concerning the alteration of radiosensitivity of eucaryotic cells after gene transfer. Ionizing radiation (γ- or X-ray) induces DNA single- or double strand breaks, which are religated by an unknown repair system. Repair deficient cells are highly sensitive to ionizing radiation. In the experiments described, cells from a patient with the heritable disease Ataxia telangiectasia were used as well as two X-ray sensitive CHO mutant cell lines. After gene transfer of an intact human DNA repair gene or a metallothionein gene the cells should regain radioresistance. (orig.) [de

  20. Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Sinead P Blaber

    Full Text Available Stem cells are increasingly the focus of translational research as well as having emerging roles in human cellular therapy. To support these uses there is a need for improved methods for in vivo cell localization and tracking. In this study, we examined the effects of cell labeling on the in vitro functionality of human adipose-derived mesenchymal stem cells. Our results provide a basis for future in vivo studies investigating implanted cell fate and longevity. In particular, we investigated the effects of two different particles: micron-sized (~0.9 µm fluorescently labeled (Dragon Green superparamagnetic iron oxide particles (M-SPIO particles; and, carboxylated nanodiamonds of ~0.25 µm in size. The effects of labeling on the functionality of adipose-derived MSCs were assessed by in vitro morphology, osteogenic and adipogenic differentiation potential, CD marker expression, cytokine secretion profiling and quantitative proteomics of the intra-cellular proteome. The differentiation and CD marker assays for stem-like functionality were not altered upon label incorporation and no secreted or intra-cellular protein changes indicative of stress or toxicity were detected. These in vitro results indicate that the M-SPIO particles and nanodiamonds investigated in this study are biocompatible with MSCs and therefore would be suitable labels for cell localization and tracking in vivo.

  1. Linking stem cell function and growth pattern of intestinal organoids.

    Science.gov (United States)

    Thalheim, Torsten; Quaas, Marianne; Herberg, Maria; Braumann, Ulf-Dietrich; Kerner, Christiane; Loeffler, Markus; Aust, Gabriela; Galle, Joerg

    2018-01-15

    Intestinal stem cells (ISCs) require well-defined signals from their environment in order to carry out their specific functions. Most of these signals are provided by neighboring cells that form a stem cell niche, whose shape and cellular composition self-organize. Major features of this self-organization can be studied in ISC-derived organoid culture. In this system, manipulation of essential pathways of stem cell maintenance and differentiation results in well-described growth phenotypes. We here provide an individual cell-based model of intestinal organoids that enables a mechanistic explanation of the observed growth phenotypes. In simulation studies of the 3D structure of expanding organoids, we investigate interdependences between Wnt- and Notch-signaling which control the shape of the stem cell niche and, thus, the growth pattern of the organoids. Similar to in vitro experiments, changes of pathway activities alter the cellular composition of the organoids and, thereby, affect their shape. Exogenous Wnt enforces transitions from branched into a cyst-like growth pattern; known to occur spontaneously during long term organoid expansion. Based on our simulation results, we predict that the cyst-like pattern is associated with biomechanical changes of the cells which assign them a growth advantage. The results suggest ongoing stem cell adaptation to in vitro conditions during long term expansion by stabilizing Wnt-activity. Our study exemplifies the potential of individual cell-based modeling in unraveling links between molecular stem cell regulation and 3D growth of tissues. This kind of modeling combines experimental results in the fields of stem cell biology and cell biomechanics constituting a prerequisite for a better understanding of tissue regeneration as well as developmental processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Alterations to the protein profile of bladder carcinoma cell lines induced by plant extract MINA-05 in vitro.

    Science.gov (United States)

    Nguyen-Khuong, Terry; White, Melanie Y; Hung, Tzong-Tyng; Seeto, Shona; Thomas, Melissa L; Fitzgerald, Anna M; Martucci, Carlos E; Luk, Sharon; Pang, Shiu-Fu; Russell, Pamela J; Walsh, Bradley J

    2009-04-01

    Bladder cancer (BLCa) is a severe urological cancer of both men and women that commonly recurs and once invasive, is difficult to treat. MINA-05 (CK Life Sciences Int'l, Hong Kong) is a derivative of complex botanical extracts, shown to reduce cellular proliferation of bladder and prostate carcinomas. We tested the effects of MINA-05 against human BLCa cell sublines, B8, B8-RSP-GCK, B8-RSP-LN and C3, from a transitional cell carcinoma, grade IV, to determine the molecular targets of treatment by observing the cellular protein profile. Cells were acclimatised for 48 h then treated for 72 h with concentrations of MINA-05 reflecting 1/2 IC(50), IC(50) and 2 x IC(50) (n = 3) or with vehicle, (0.5% DMSO). Dose-dependant changes in protein abundance were detected and characterised using 2-dimensional electrophoresis and MS. We identified 10 proteins that underwent changes in abundance, pI and/or molecular mass in response to treatment. MINA-05 was shown to influence proteins across numerous functional classes including cytoskeletal proteins, energy metabolism proteins, protein degradation proteins and tumour suppressors, suggesting a global impact on these cell lines. This study implies that the ability of MINA-05 to retard cellular proliferation is attributed to its ability to alter cell cycling, metabolism, protein degradation and the cancer cell environment.

  3. Effects of blood transportation on human peripheral mononuclear cell yield, phenotype and function: implications for immune cell biobanking.

    Directory of Open Access Journals (Sweden)

    Anita Posevitz-Fejfár

    Full Text Available Human biospecimen collection, processing and preservation are rapidly emerging subjects providing essential support to clinical as well as basic researchers. Unlike collection of other biospecimens (e.g. DNA and serum, biobanking of viable immune cells, such as peripheral blood mononuclear cells (PBMC and/or isolated immune cell subsets is still in its infancy. While certain aspects of processing and freezing conditions have been studied in the past years, little is known about the effect of blood transportation on immune cell survival, phenotype and specific functions. However, especially for multicentric and cooperative projects it is vital to precisely know those effects. In this study we investigated the effect of blood shipping and pre-processing delay on immune cell phenotype and function both on cellular and subcellular levels. Peripheral blood was collected from healthy volunteers (n = 9: at a distal location (shipped overnight and in the central laboratory (processed immediately. PBMC were processed in the central laboratory and analyzed post-cryopreservation. We analyzed yield, major immune subset distribution, proliferative capacity of T cells, cytokine pattern and T-cell receptor signal transduction. Results show that overnight transportation of blood samples does not globally compromise T- cell subsets as they largely retain their phenotype and proliferative capacity. However, NK and B cell frequencies, the production of certain PBMC-derived cytokines and IL-6 mediated cytokine signaling pathway are altered due to transportation. Various control experiments have been carried out to compare issues related to shipping versus pre-processing delay on site. Our results suggest the implementation of appropriate controls when using multicenter logistics for blood transportation aiming at subsequent isolation of viable immune cells, e.g. in multicenter clinical trials or studies analyzing immune cells/subsets. One important conclusion might

  4. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    Science.gov (United States)

    Pinho, Andreia V; Bensellam, Mohammed; Wauters, Elke; Rees, Maxine; Giry-Laterriere, Marc; Mawson, Amanda; Ly, Le Quan; Biankin, Andrew V; Wu, Jianmin; Laybutt, D Ross; Rooman, Ilse

    2015-01-01

    Sirtuin 1 (Sirt1) has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear. This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas. We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r) as well as a marked down regulation of endoplasmic reticulum (ER) chaperones that participate in the Unfolded Protein Response (UPR) pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP) cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas. This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  5. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Andreia V Pinho

    Full Text Available Sirtuin 1 (Sirt1 has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear.This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas.We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r as well as a marked down regulation of endoplasmic reticulum (ER chaperones that participate in the Unfolded Protein Response (UPR pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas.This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  6. Maternal undernutrition does not alter Sertoli cell numbers or the expression of key developmental markers in the mid-gestation ovine fetal testis

    Directory of Open Access Journals (Sweden)

    Andrade Luis P

    2013-01-01

    Full Text Available Abstract Background The aim of this study was to determine the effects of maternal undernutrition on ovine fetal testis morphology and expression of relevant histological indicators. Maternal undernutrition, in sheep, has been reported, previously, to alter fetal ovary development, as indicated by delayed folliculogenesis and the altered expression of ovarian apoptosis-regulating gene products, at day 110 of gestation. It is not known whether or not maternal undernutrition alters the same gene products in the day 110 fetal testis. Design and methods Mature Scottish Blackface ewes were fed either 100% (Control; C or 50% (low; L of estimated metabolisable energy requirements of a pregnant ewe, from mating to day 110 of gestation. All pregnant ewes were euthanized at day 110 and a sub-set of male fetuses was randomly selected (6 C and 9 L for histology studies designed to address the effect of nutritional state on several indices of testis development. Sertoli cell numbers were measured using a stereological method and Ki67 (cell proliferation index, Bax (pro-apoptosis, Mcl-1 (anti-apoptosis, SCF and c-kit ligand (development and apoptosis gene expression was measured in Bouins-fixed fetal testis using immunohistochemistry. Results No significant differences were observed in numbers of Sertoli cells or testicular Ki67 positive cells. The latter were localised to the testicular cords and interstitium. Bax and Mcl-1 were localised specifically to the germ cells whereas c-kit was localised to both the cords and interstitium. SCF staining was very sparse. No treatment effects were observed for any of the markers examined. Conclusions These data suggest that, unlike in the fetal ovary, maternal undernutrition for the first 110 days of gestation affects neither the morphology of the fetal testis nor the expression of gene products which regulate apoptosis. It is postulated that the effects of fetal undernutrition on testis function may be expressed

  7. γ-Secretase modulators reduce endogenous amyloid β42 levels in human neural progenitor cells without altering neuronal differentiation

    Science.gov (United States)

    D’Avanzo, Carla; Sliwinski, Christopher; Wagner, Steven L.; Tanzi, Rudolph E.; Kim, Doo Yeon; Kovacs, Dora M.

    2015-01-01

    Soluble γ-secretase modulators (SGSMs) selectively decrease toxic amyloid β (Aβ) peptides (Aβ42). However, their effect on the physiologic functions of γ-secretase has not been tested in human model systems. γ-Secretase regulates fate determination of neural progenitor cells. Thus, we studied the impact of SGSMs on the neuronal differentiation of ReNcell VM (ReN) human neural progenitor cells (hNPCs). Quantitative PCR analysis showed that treatment of neurosphere-like ReN cell aggregate cultures with γ-secretase inhibitors (GSIs), but not SGSMs, induced a 2- to 4-fold increase in the expression of the neuronal markers Tuj1 and doublecortin. GSI treatment also induced neuronal marker protein expression, as shown by Western blot analysis. In the same conditions, SGSM treatment selectively reduced endogenous Aβ42 levels by ∼80%. Mechanistically, we found that Notch target gene expressions were selectively inhibited by a GSI, not by SGSM treatment. We can assert, for the first time, that SGSMs do not affect the neuronal differentiation of hNPCs while selectively decreasing endogenous Aβ42 levels in the same conditions. Our results suggest that our hNPC differentiation system can serve as a useful model to test the impact of GSIs and SGSMs on both endogenous Aβ levels and γ-secretase physiologic functions including endogenous Notch signaling.—D’Avanzo, C., Sliwinski, C., Wagner, S. L., Tanzi, R. E., Kim, D. Y., Kovacs, D. M. γ-Secretase modulators reduce endogenous amyloid β42 levels in human neural progenitor cells without altering neuronal differentiation. PMID:25903103

  8. Regulation of muscle stem cell functions: a focus on the p38 MAPK signaling pathway

    Directory of Open Access Journals (Sweden)

    Jessica Segales

    2016-08-01

    Full Text Available Formation of skeletal muscle fibers (myogenesis during development and after tissue injury in the adult constitutes an excellent paradigm to investigate the mechanisms whereby environmental cues control gene expression programs in muscle stem cells (satellite cells by acting on transcriptional and epigenetic effectors. Here we will review the molecular mechanisms implicated in the transition of satellite cells throughout the distinct myogenic stages (i.e., activation from quiescence, proliferation, differentiation and self-renewal. We will also discuss recent findings on the causes underlying satellite cell functional decline with aging. In particular, our review will focus on the epigenetic changes underlying fate decisions and on how the p38 MAPK signaling pathway integrates the environmental signals at the chromatin to build up satellite cell adaptive responses during the process of muscle regeneration, and how these responses are altered in aging. A better comprehension of the signaling pathways connecting external and intrinsic factors will illuminate the path for improving muscle regeneration in the aged.

  9. Horizontal transfer of miR-106a/b from cisplatin resistant hepatocarcinoma cells can alter the sensitivity of cervical cancer cells to cisplatin.

    Science.gov (United States)

    Raji, Grace R; Sruthi, T V; Edatt, Lincy; Haritha, K; Sharath Shankar, S; Sameer Kumar, V B

    2017-10-01

    Recent studies indicate that horizontal transfer of genetic material can act as a communication tool between heterogenous populations of tumour cells, thus altering the chemosensitivity of tumour cells. The present study was designed to check whether the horizontal transfer of miRNAs released by cisplatin resistant (Cp-r) Hepatocarcinoma cells can alter the sensitivity of cervical cancer cells. For this exosomes secreted by cisplatin resistant and cisplatin sensitive HepG2 cells (EXres and EXsen) were isolated and characterised. Cytotoxicity analysis showed that EXres can make Hela cells resistant to cisplatin. Analysis of miR-106a/b levels in EXres and EXsen showed that their levels vary. Mechanistic studies showed that miR-106a/b play an important role in EXsen and EXres mediated change in chemosensitivity of Hela cells to cisplatin. Further SIRT1 was identified as a major target of miR-106a/b using in silico tools and this was proved by experimentation. Also the effect of miR-106a/b in chemosensitivity was seen to be dependent on regulation of SIRT1 by miR-106a/b. In brief, this study brings into light, the SIRT1 dependent mechanism of miR-106a/b mediated regulation of chemosensitivity upon the horizontal transfer from one cell type to another. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Cytoskeletal stability and metabolic alterations in primary human macrophages in long-term microgravity.

    Directory of Open Access Journals (Sweden)

    Svantje Tauber

    Full Text Available The immune system is one of the most affected systems of the human body during space flight. The cells of the immune system are exceptionally sensitive to microgravity. Thus, serious concerns arise, whether space flight associated weakening of the immune system ultimately precludes the expansion of human presence beyond the Earth's orbit. For human space flight, it is an urgent need to understand the cellular and molecular mechanisms by which altered gravity influences and changes the functions of immune cells. The CELLBOX-PRIME (= CellBox-Primary Human Macrophages in Microgravity Environment experiment investigated for the first time microgravity-associated long-term alterations in primary human macrophages, one of the most important effector cells of the immune system. The experiment was conducted in the U.S. National Laboratory on board of the International Space Station ISS using the NanoRacks laboratory and Biorack type I standard CELLBOX EUE type IV containers. Upload and download were performed with the SpaceX CRS-3 and the Dragon spaceship on April 18th, 2014 / May 18th, 2014. Surprisingly, primary human macrophages exhibited neither quantitative nor structural changes of the actin and vimentin cytoskeleton after 11 days in microgravity when compared to 1g controls. Neither CD18 or CD14 surface expression were altered in microgravity, however ICAM-1 expression was reduced. The analysis of 74 metabolites in the cell culture supernatant by GC-TOF-MS, revealed eight metabolites with significantly different quantities when compared to 1g controls. In particular, the significant increase of free fucose in the cell culture supernatant was associated with a significant decrease of cell surface-bound fucose. The reduced ICAM-1 expression and the loss of cell surface-bound fucose may contribute to functional impairments, e.g. the activation of T cells, migration and activation of the innate immune response. We assume that the surprisingly small

  11. WNT5A inhibits metastasis and alters splicing of Cd44 in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Wen Jiang

    Full Text Available Wnt5a is a non-canonical signaling Wnt. Low expression of WNT5A is correlated with poor prognosis in breast cancer patients. The highly invasive breast cancer cell lines, MDA-MB-231 and 4T1, express very low levels of WNT5A. To determine if enhanced expression of WNT5A would affect metastatic behavior, we generated WNT5A expressing cells from the 4T1 and MDA-MB-231 parental cell lines. WNT5A expressing cells demonstrated cobblestone morphology and reduced in vitro migration relative to controls. Cell growth was not altered. Metastasis to the lung via tail vein injection was reduced in the 4T1-WNT5A expressing cells relative to 4T1-vector controls. To determine the mechanism of WNT5A action on metastasis, we performed microarray and whole-transcriptome sequence analysis (RNA-seq to compare gene expression in 4T1-WNT5A and 4T1-vector cells. Analysis indicated highly significant alterations in expression of genes associated with cellular movement. Down-regulation of a subset of these genes, Mmp13, Nos2, Il1a, Cxcl2, and Lamb3, in WNT5A expressing cells was verified by semi-quantitative RT-PCR. Significant differences in transcript splicing were also detected in cell movement associated genes including Cd44. Cd44 is an adhesion molecule with a complex genome structure. Variable exon usage is associated with metastatic phenotype. Alternative spicing of Cd44 in WNT5A expressing cells was confirmed using RT-PCR. We conclude that WNT5A inhibits metastasis through down-regulation of multiple cell movement pathways by regulating transcript levels and splicing of key genes like Cd44.

  12. Overexpression of GRß in colonic mucosal cell line partly reflects altered gene expression in colonic mucosa of patients with inflammatory bowel disease.

    Science.gov (United States)

    Nagy, Zsolt; Acs, Bence; Butz, Henriett; Feldman, Karolina; Marta, Alexa; Szabo, Peter M; Baghy, Kornelia; Pazmany, Tamas; Racz, Karoly; Liko, Istvan; Patocs, Attila

    2016-01-01

    The glucocorticoid receptor (GR) plays a crucial role in inflammatory responses. GR has several isoforms, of which the most deeply studied are the GRα and GRß. Recently it has been suggested that in addition to its negative dominant effect on GRα, the GRß may have a GRα-independent transcriptional activity. The GRß isoform was found to be frequently overexpressed in various autoimmune diseases, including inflammatory bowel disease (IBD). In this study, we wished to test whether the gene expression profile found in a GRß overexpressing intestinal cell line (Caco-2GRß) might mimic the gene expression alterations found in patients with IBD. Whole genome microarray analysis was performed in both normal and GRß overexpressing Caco-2 cell lines with and without dexamethasone treatment. IBD-related genes were identified from a meta-analysis of 245 microarrays available in online microarray deposits performed on intestinal mucosa samples from patients with IBD and healthy individuals. The differentially expressed genes were further studied using in silico pathway analysis. Overexpression of GRß altered a large proportion of genes that were not regulated by dexamethasone suggesting that GRß may have a GRα-independent role in the regulation of gene expression. About 10% of genes differentially expressed in colonic mucosa samples from IBD patients compared to normal subjects were also detected in Caco-2 GRß intestinal cell line. Common genes are involved in cell adhesion and cell proliferation. Overexpression of GRß in intestinal cells may affect appropriate mucosal repair and intact barrier function. The proposed novel role of GRß in intestinal epithelium warrants further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Microtubules Growth Rate Alteration in Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Irina B. Alieva

    2010-01-01

    Full Text Available To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with “normal” (similar to those in monolayer EC and “fast” (three times as much growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules.

  14. The melanocortin receptor agonist NDP-MSH impairs the allostimulatory function of dendritic cells.

    Science.gov (United States)

    Rennalls, La'Verne P; Seidl, Thomas; Larkin, James M G; Wellbrock, Claudia; Gore, Martin E; Eisen, Tim; Bruno, Ludovica

    2010-04-01

    As alpha-melanocyte-stimulating hormone (alpha-MSH) is released by immunocompetent cells and has potent immunosuppressive properties, it was determined whether human dendritic cells (DCs) express the receptor for this hormone. Reverse transcription-polymerase chain reaction detected messenger RNA specific for all of the known melanocortin receptors in DCs. Mixed lymphocyte reactions also revealed that treatment with [Nle(4), DPhe(7)]-alpha-MSH (NDP-MSH), a potent alpha-MSH analogue, significantly reduced the ability of DCs to stimulate allogeneic T cells. The expression of various cell surface adhesion, maturation and costimulatory molecules on DCs was also investigated. Although treatment with NDP-MSH did not alter the expression of CD83 and major histocompatibility complex class I and II, the surface expression of CD86 (B7.2), intercellular adhesion molecule (ICAM-1/CD54) and CD1a was reduced. In summary, our data indicate that NDP-MSH inhibits the functional activity of DCs, possibly by down-regulating antigen-presenting and adhesion molecules and that these events may be mediated via the extracellular signal-regulated kinase 1 and 2 pathway.

  15. ADAM10 regulates Notch function in intestinal stem cells of mice.

    Science.gov (United States)

    Tsai, Yu-Hwai; VanDussen, Kelli L; Sawey, Eric T; Wade, Alex W; Kasper, Chelsea; Rakshit, Sabita; Bhatt, Riha G; Stoeck, Alex; Maillard, Ivan; Crawford, Howard C; Samuelson, Linda C; Dempsey, Peter J

    2014-10-01

    A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a cell surface sheddase that regulates physiologic processes, including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types, but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10(f/f) mice) and conditional (Vil-CreER;Adam10(f/f) and Leucine-rich repeat-containing GPCR5 [Lgr5]-CreER;Adam10(f/f) mice) deletion of ADAM10. We performed cell lineage-tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26(NICD)), or mice with intestine-specific disruption of Notch (Rosa26(DN-MAML)), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26(NICD) and Rosa26(DN-MAML) mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage-tracing experiments showed that ADAM10 is required for survival of Lgr5(+) crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  16. Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy.

    Science.gov (United States)

    Wei, Feng; Yan, Li-Min; Su, Tao; He, Na; Lin, Zhi-Jian; Wang, Jie; Shi, Yi-Wu; Yi, Yong-Hong; Liao, Wei-Ping

    2017-08-01

    Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.

  17. Fucosyltransferase Induction during Influenza Virus Infection Is Required for the Generation of Functional Memory CD4+ T Cells

    Science.gov (United States)

    Carrette, Florent; Henriquez, Monique L.; Fujita, Yu

    2018-01-01

    T cells mediating influenza viral control are instructed in lymphoid and nonlymphoid tissues to differentiate into memory T cells that confer protective immunity. The mechanisms by which influenza virus–specific memory CD4+ T cells arise have been attributed to changes in transcription factors, cytokines and cytokine receptors, and metabolic programming. The molecules involved in these biosynthetic pathways, including proteins and lipids, are modified to varying degrees of glycosylation, fucosylation, sialation, and sulfation, which can alter their function. It is currently unknown how the glycome enzymatic machinery regulates CD4+ T cell effector and memory differentiation. In a murine model of influenza virus infection, we found that fucosyltransferase enzymatic activity was induced in effector and memory CD4+ T cells. Using CD4+ T cells deficient in the Fut4/7 enzymes that are expressed only in hematopoietic cells, we found decreased frequencies of effector cells with reduced expression of T-bet and NKG2A/C/E in the lungs during primary infection. Furthermore, Fut4/7−/− effector CD4+ T cells had reduced survival with no difference in proliferation or capacity for effector function. Although Fut4/7−/− CD4+ T cells seeded the memory pool after primary infection, they failed to form tissue-resident cells, were dysfunctional, and were unable to re-expand after secondary infection. Our findings highlight an important regulatory axis mediated by cell-intrinsic fucosyltransferase activity in CD4+ T cell effectors that ensure the development of functional memory CD4+ T cells. PMID:29491007

  18. Chronic tinnitus and unipolar brush cell alterations in the cerebellum and dorsal cochlear nucleus.

    Science.gov (United States)

    Brozoski, Thomas; Brozoski, Daniel; Wisner, Kurt; Bauer, Carol

    2017-07-01

    Animal model research has shown that the central features of tinnitus, the perception of sound without an acoustic correlate, include elevated spontaneous and stimulus-driven activity, enhanced burst-mode firing, decreased variance of inter-spike intervals, and distortion of tonotopic frequency representation. Less well documented are cell-specific correlates of tinnitus. Unipolar brush cell (UBC) alterations in animals with psychophysical evidence of tinnitus has recently been reported. UBCs are glutamatergic interneurons that appear to function as local-circuit signal amplifiers. UBCs are abundant in the dorsal cochlear nucleus (DCN) and very abundant in the flocculus (FL) and paraflocculus (PFL) of the cerebellum. In the present research, two indicators of UBC structure and function were examined: Doublecortin (DCX) and epidermal growth factor receptor substrate 8 (Eps8). DCX is a protein that binds to microtubules where it can modify their assembly and growth. Eps8 is a cell-surface tyrosine kinase receptor mediating the response to epidermal growth factor; it appears to have a role in actin polymerization as well as cytoskeletal protein interactions. Both functions could contribute to synaptic remodeling. In the present research UBC Eps8 and DCX immunoreactivity (IR) were determined in 4 groups of rats distinguished by their exposure to high-level sound and psychophysical performance: Unexposed, exposed to high-level sound with behavioral evidence of tinnitus, and two exposed groups without behavioral evidence of tinnitus. Compared to unexposed controls, exposed animals with tinnitus had Eps8 IR elevated in their PFL; other structures were not affected, nor was DCX IR affected. This was interpreted as UBC upregulation in animals with tinnitus. Exposure that failed to produce tinnitus did not increase either Eps8 or DCX IR. Rather Eps8 IR was decreased in the FL and DCN of one subgroup (Least-Tinnitus), while DCX IR decreased in the FL of the other subgroup (No

  19. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quoilin, C., E-mail: cquoilin@ulg.ac.be [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium); Mouithys-Mickalad, A. [Center of Oxygen Research and Development, Department of Chemistry, University of Liege, 4000 Liege (Belgium); Duranteau, J. [Department of Anaesthesia and Surgical ICU, CHU Bicetre, University Paris XI Sud, 94275 Le Kremlin Bicetre (France); Gallez, B. [Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Universite catholique de Louvain, 1200 Brussels (Belgium); Hoebeke, M. [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  20. Altered effect of dopamine transporter 3'UTR VNTR genotype on prefrontal and striatal function in schizophrenia.

    Science.gov (United States)

    Prata, Diana P; Mechelli, Andrea; Picchioni, Marco M; Fu, Cynthia H Y; Toulopoulou, Timothea; Bramon, Elvira; Walshe, Muriel; Murray, Robin M; Collier, David A; McGuire, Philip

    2009-11-01

    The dopamine transporter plays a key role in the regulation of central dopaminergic transmission, which modulates cognitive processing. Disrupted dopamine function and impaired executive processing are robust features of schizophrenia. To examine the effect of a polymorphism in the dopamine transporter gene (the variable number of tandem repeats in the 3' untranslated region) on brain function during executive processing in healthy volunteers and patients with schizophrenia. We hypothesized that this variation would have a different effect on prefrontal and striatal activation in schizophrenia, reflecting altered dopamine function. Case-control study. Psychiatric research center. Eighty-five subjects, comprising 44 healthy volunteers (18 who were 9-repeat carriers and 26 who were 10-repeat homozygotes) and 41 patients with DSM-IV schizophrenia (18 who were 9-repeat carriers and 23 who were 10-repeat homozygotes). Regional brain activation during word generation relative to repetition in an overt verbal fluency task measured by functional magnetic resonance imaging. Main effects of genotype and diagnosis on activation and their interaction were estimated with analysis of variance in SPM5. Irrespective of diagnosis, the 10-repeat allele was associated with greater activation than the 9-repeat allele in the left anterior insula and right caudate nucleus. Trends for the same effect in the right insula and for greater deactivation in the rostral anterior cingulate cortex were also detected. There were diagnosis x genotype interactions in the left middle frontal gyrus and left nucleus accumbens, where the 9-repeat allele was associated with greater activation than the 10-repeat allele in patients but not controls. Insular, cingulate, and striatal function during an executive task is normally modulated by variation in the dopamine transporter gene. Its effect on activation in the dorsolateral prefrontal cortex and ventral striatum is altered in patients with schizophrenia

  1. Ptpn11 Deletion in CD4+ Cells Does Not Affect T Cell Development and Functions but Causes Cartilage Tumors in a T Cell-Independent Manner

    Directory of Open Access Journals (Sweden)

    S. M. Shahjahan Miah

    2017-10-01

    Full Text Available The ubiquitously expressed tyrosine phosphatase Src homology region 2 domain-containing phosphatase-2 (SHP-2, encoded by Ptpn11 is required for constitutive cellular processes including proliferation, differentiation, and the regulation of immune responses. During development and maturation, subsets of T cells express a variety of inhibitory receptors known to associate with phosphatases, which in turn, dephosphorylate key players of activating receptor signaling pathways. We hypothesized that SHP-2 deletion would have major effects on T cell development by altering the thresholds for activation, as well as positive and negative selection. Surprisingly, using mice conditionally deficient for SHP-2 in the T cell lineage, we show that the development of these lymphocytes is globally intact. In addition, our data demonstrate that SHP-2 absence does not compromise T cell effector functions, suggesting that SHP-2 is dispensable in these cells. Unexpectedly, in aging mice, Ptpn11 gene deletion driven by CD4 Cre recombinase leads to cartilage tumors in wrist bones in a T cell-independent manner. These tumors resemble miniature cartilaginous growth plates and contain CD4-lineage positive chondrocyte-like cells. Altogether these results indicate that SHP-2 is a cartilage tumor suppressor during aging.

  2. In vitro short-term exposure to air pollution PM{sub 2.5-0.3} induced cell cycle alterations and genetic instability in a human lung cell coculture model

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Imane [Université de Lille, Lille (France); EA4492-UCEIV, Université du Littoral-Côte d’Opale, Dunkerque (France); Lebanese Atomic Energy Commission – CNRS, Beirut (Lebanon); Verdin, Anthony [Université de Lille, Lille (France); EA4492-UCEIV, Université du Littoral-Côte d’Opale, Dunkerque (France); Escande, Fabienne [Centre de Biologie Pathologie, Centre Hospitalier Régional et Universitaire, Lille (France); Saint-Georges, Françoise [Université de Lille, Lille (France); Groupement Hospitalier de l’Institut Catholique de Lille, Lille (France); Cazier, Fabrice [Université de Lille, Lille (France); Centre Commun de Mesures, Université du Littoral-Côte d’Opale, Dunkerque (France); Mulliez, Philippe [Université de Lille, Lille (France); Groupement Hospitalier de l’Institut Catholique de Lille, Lille (France); Courcot, Dominique; Shirali, Pirouz [Université de Lille, Lille (France); EA4492-UCEIV, Université du Littoral-Côte d’Opale, Dunkerque (France); Gosset, Pierre [Université de Lille, Lille (France); Groupement Hospitalier de l’Institut Catholique de Lille, Lille (France); and others

    2016-05-15

    Although its adverse health effects of air pollution particulate matter (PM2.5) are well-documented and often related to oxidative stress and pro-inflammatory response, recent evidence support the role of the remodeling of the airway epithelium involving the regulation of cell death processes. Hence, the overarching goals of the present study were to use an in vitro coculture model, based on human AM and L132 cells to study the possible alteration of TP53-RB gene signaling pathways (i.e. cell cycle phases, gene expression of TP53, BCL2, BAX, P21, CCND1, and RB, and protein concentrations of their active forms), and genetic instability (i.e. LOH and/or MSI) in the PM{sub 2.5-0.3}-exposed coculture model. PM{sub 2.5-0.3} exposure of human AM from the coculture model induced marked cell cycle alterations after 24 h, as shown by increased numbers of L132 cells in subG1 and S+G2 cell cycle phases, indicating apoptosis and proliferation. Accordingly, activation of the TP53-RB gene signaling pathways after the coculture model exposure to PM{sub 2.5-0.3} was reported in the L132 cells. Exposure of human AM from the coculture model to PM{sub 2.5-0.3} resulted in MS alterations in 3p chromosome multiple critical regions in L132 cell population. Hence, in vitro short-term exposure of the coculture model to PM{sub 2.5-0.3} induced cell cycle alterations relying on the sequential occurrence of molecular abnormalities from TP53-RB gene signaling pathway activation and genetic instability. - Highlights: • Better knowledge on health adverse effects of air pollution PM{sub 2.5}. • Human alveolar macrophage and normal human epithelial lung cell coculture. • Molecular abnormalities from TP53-RB gene signaling pathway. • Loss of heterozygosity and microsatellite instability. • Pathologic changes in morphology and number of cells in relation to airway remodeling.

  3. Immunologic effects of whole body ultraviolet (uv) irradiation. II. Defect in splenic adherent cell antigen presentation for stimulation of T cell proliferation

    International Nuclear Information System (INIS)

    Letvin, N.L.; Fox, I.J.; Greene, M.I.; Benacerraf, B.; Germain, R.N.

    1980-01-01

    Ultraviolet (uv) irradiation has been shown to alter many parameters of the immunologic reactivity of mice. The altered responsiveness of uv-irradiated mice, as measured by delayed-type hypersensitivity (DTH) and primary in vitro plaque-forming cell (PFC) responses to T-dependent antigens, has recently been correlated with a functional defect in the splenic adherent cell population of these animals. The present studies describe a model of this altered responsiveness, which allows further clarification of the effects of external uv irradiation on the splenic antigen-presenting cell (APC) in its interactions with T cells

  4. Functional microarray analysis suggests repressed cell-cell signaling and cell survival-related modules inhibit progression of head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Soares Fernando A

    2011-04-01

    Full Text Available Abstract Background Cancer shows a great diversity in its clinical behavior which cannot be easily predicted using the currently available clinical or pathological markers. The identification of pathways associated with lymph node metastasis (N+ and recurrent head and neck squamous cell carcinoma (HNSCC may increase our understanding of the complex biology of this disease. Methods Tumor samples were obtained from untreated HNSCC patients undergoing surgery. Patients were classified according to pathologic lymph node status (positive or negative or tumor recurrence (recurrent or non-recurrent tumor after treatment (surgery with neck dissection followed by radiotherapy. Using microarray gene expression, we screened tumor samples according to modules comprised by genes in the same pathway or functional category. Results The most frequent alterations were the repression of modules in negative lymph node (N0 and in non-recurrent tumors rather than induction of modules in N+ or in recurrent tumors. N0 tumors showed repression of modules that contain cell survival genes and in non-recurrent tumors cell-cell signaling and extracellular region modules were repressed. Conclusions The repression of modules that contain cell survival genes in N0 tumors reinforces the important role that apoptosis plays in the regulation of metastasis. In addition, because tumor samples used here were not microdissected, tumor gene expression data are represented together with the stroma, which may reveal signaling between the microenvironment and tumor cells. For instance, in non-recurrent tumors, extracellular region module was repressed, indicating that the stroma and tumor cells may have fewer interactions, which disable metastasis development. Finally, the genes highlighted in our analysis can be implicated in more than one pathway or characteristic, suggesting that therapeutic approaches to prevent tumor progression should target more than one gene or pathway

  5. Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications

    Directory of Open Access Journals (Sweden)

    Wenjuan eGao

    2012-08-01

    Full Text Available Abstract: As a biomaterial, chitosan has been widely used in tissue engineering, wound healing, drug delivery, and other biomedical applications. It can be formulated in a variety of forms, such as powder, film, sphere, gel and fiber. These features make chitosan an almost ideal biomaterial in cell culture applications, and cell cultures arguably constitute the most practical way to evaluate biocompatibility and biotoxicity. The advantages of cell cultures are that they can be performed under totally controlled environments, allow high throughput functional screening, and are less costly, as compared to other assessment methods. Chitosan can also be modified into multilayer composite by combining with other polymers and moieties to alter the properties of chitosan for particular biomedical applications. This review briefly depicts and discusses applications of chitosan and nanoparticles in cell culture, in particular, the effects of chitosan and nanoparticles on cell adhesion, cell survival, and the underlying molecular mechanisms: both stimulatory and inhibitory influences are discussed. Our aim is to update the current status of how nanoparticles can be utilized to modify the properties of chitosan to advance the art of tissue engineering by using cell cultures.

  6. Altered myofilament structure and function in dogs with Duchenne muscular dystrophy cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Ait Mou, Younss; Lacampagne, Alain; Irving, Thomas; Scheuermann, Valérie; Blot, Stéphane; Ghaleh, Bijan; de Tombe, Pieter P.; Cazorla, Olivier

    2018-01-01

    Aim Duchenne Muscular Dystrophy (DMD) is associated with progressive depressed left ventricular (LV) function. However, DMD effects on myofilament structure and function are poorly understood. Golden Retriever Muscular Dystrophy (GRMD) is a dog model of DMD recapitulating the human form of DMD. Objective The objective of this study is to evaluate myofilament structure and function alterations in GRMD model with spontaneous cardiac failure. Methods and results We have employed synchrotron X-rays diffraction to evaluate myofilament lattice spacing at various sarcomere lengths (SL) on permeabilized LV myocardium. We found a negative correlation between SL and lattice spacing in both sub-epicardium (EPI) and sub-endocardium (ENDO) LV layers in control dog hearts. In the ENDO of GRMD hearts this correlation is steeper due to higher lattice spacing at short SL (1.9 μm). Furthermore, cross-bridge cycling indexed by the kinetics of tension redevelopment (ktr) was faster in ENDO GRMD myofilaments at short SL. We measured post-translational modifications of key regulatory contractile proteins. S-glutathionylation of cardiac Myosin Binding Protein-C (cMyBP-C) was unchanged and PKA dependent phosphorylation of the cMyBP-C was significantly reduced in GRMD ENDO tissue and more modestly in EPI tissue. Conclusions We found a gradient of contractility in control dogs' myocardium that spreads across the LV wall, negatively correlated with myofilament lattice spacing. Chronic stress induced by dystrophin deficiency leads to heart failure that is tightly associated with regional structural changes indexed by increased myofilament lattice spacing, reduced phosphorylation of regulatory proteins and altered myofilament contractile properties in GRMD dogs.

  7. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival.

    Science.gov (United States)

    Pai, Vaibhav P; Marshall, Aaron M; Hernandez, Laura L; Buckley, Arthur R; Horseman, Nelson D

    2009-01-01

    The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs

  8. Altered Primary Motor Cortex Structure, Organization, and Function in Chronic Pain: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Chang, Wei-Ju; O'Connell, Neil E; Beckenkamp, Paula R; Alhassani, Ghufran; Liston, Matthew B; Schabrun, Siobhan M

    2018-04-01

    Chronic pain can be associated with movement abnormalities. The primary motor cortex (M1) has an essential role in the formulation and execution of movement. A number of changes in M1 function have been reported in studies of people with chronic pain. This review systematically evaluated the evidence for altered M1 structure, organization, and function in people with chronic pain of neuropathic and non-neuropathic origin. Database searches were conducted and a modified STrengthening the Reporting of OBservational studies in Epidemiology checklist was used to assess the methodological quality of included studies. Meta-analyses, including preplanned subgroup analyses on the basis of condition were performed where possible. Sixty-seven studies (2,290 participants) using various neurophysiological measures were included. There is conflicting evidence of altered M1 structure, organization, and function for neuropathic and non-neuropathic pain conditions. Meta-analyses provided evidence of increased M1 long-interval intracortical inhibition in chronic pain populations. For most measures, the evidence of M1 changes in chronic pain populations is inconclusive. This review synthesizes the evidence of altered M1 structure, organization, and function in chronic pain populations. For most measures, M1 changes are inconsistent between studies and more research with larger samples and rigorous methodology is required to elucidate M1 changes in chronic pain populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Maternal exposure to fish oil primes offspring to harbor intestinal pathobionts associated with altered immune cell balance.

    Science.gov (United States)

    Gibson, D L; Gill, S K; Brown, K; Tasnim, N; Ghosh, S; Innis, S; Jacobson, K

    2015-01-01

    Our previous studies revealed that offspring from rat dams fed fish oil (at 8% and 18% energy), developed impaired intestinal barriers sensitizing the colon to exacerbated injury later in life. To discern the mechanism, we hypothesized that in utero exposure to fish oil, rich in n-3 polyunsaturated fatty acid (PUFA), caused abnormal intestinal reparative responses to mucosal injury through differences in intestinal microbiota and the presence of naïve immune cells. To identify such mechanisms, gut microbes and naïve immune cells were compared between rat pups born to dams fed either n-6 PUFA, n-3 PUFA or breeder chow. Maternal exposure to either of the PUFA rich diets altered the development of the intestinal microbiota with an overall reduction in microbial density. Using qPCR, we found that each type of PUFA differentially altered the major gut phyla; fish oil increased Bacteroidetes and safflower oil increased Firmicutes. Both PUFA diets reduced microbes known to dominate the infant gut like Enterobacteriaceae and Bifidobacteria spp. when compared to the chow group. Uniquely, maternal fish oil diets resulted in offspring showing blooms of opportunistic pathogens like Bilophila wadsworthia, Enterococcus faecium and Bacteroides fragilis in their gut microbiota. As well, fish oil groups showed a reduction in colonic CD8+ T cells, CD4+ Foxp3+ T cells and arginase+ M2 macrophages. In conclusion, fish oil supplementation in pharmacological excess, at 18% by energy as shown in this study, provides an example where excess dosing in utero can prime offspring to harbor intestinal pathobionts and alter immune cell homeostasis.

  10. Characterization of a cultured human T-cell line with genetically altered ribonucleotide reductase activity. Model for immunodeficiency.

    Science.gov (United States)

    Waddell, D; Ullman, B

    1983-04-10

    From human CCRF-CEM T-cells growing in continuous culture, we have selected, isolated, and characterized a clonal cell line, APHID-D2, with altered ribonucleotide reductase activity. In comparative growth rate experiments, the APHID-D2 cell line is less sensitive than the parental cell line to growth inhibition by deoxyadenosine in the presence of 10 microM erythro-9-(2-hydroxy-3-nonyl)adenine, an inhibitor of adenosine deaminase. The APHID-D2 cell line has elevated levels of all four dNTPs. The resistance of the APHID-D2 cell line to growth inhibition by deoxyadenosine and the abnormal dNTP levels can be explained by the fact that the APHID-D2 ribonucleotide reductase, unlike the parental ribonucleotide reductase, is not normally sensitive to inhibition by dATP. These results suggest that the allosteric site of ribonucleotide reductase which binds both dATP and ATP is altered in the APHID-D2 line. The isolation of a mutant clone of human T-cells which contains a ribonucleotide reductase that has lost its normal sensitivity to dATP and which is resistant to deoxyadenosine-mediated growth inhibition suggests that a primary pathogenic target of accumulated dATP in lymphocytes from patients with adenosine deaminase deficiency may be the cellular ribonucleotide reductase.

  11. Buccal alterations in diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Negrato Carlos

    2010-01-01

    Full Text Available Abstract Long standing hyperglycaemia besides damaging the kidneys, eyes, nerves, blood vessels, heart, can also impair the function of the salivary glands leading to a reduction in the salivary flow. When salivary flow decreases, as a consequence of an acute hyperglycaemia, many buccal or oral alterations can occur such as: a increased concentration of mucin and glucose; b impaired production and/or action of many antimicrobial factors; c absence of a metalloprotein called gustin, that contains zinc and is responsible for the constant maturation of taste papillae; d bad taste; e oral candidiasis f increased cells exfoliation after contact, because of poor lubrication; g increased proliferation of pathogenic microorganisms; h coated tongue; i halitosis; and many others may occur as a consequence of chronic hyperglycaemia: a tongue alterations, generally a burning mouth; b periodontal disease; c white spots due to demineralization in the teeth; d caries; e delayed healing of wounds; f greater tendency to infections; g lichen planus; h mucosa ulcerations. Buccal alterations found in diabetic patients, although not specific of this disease, have its incidence and progression increased when an inadequate glycaemic control is present.

  12. Buccal alterations in diabetes mellitus.

    Science.gov (United States)

    Negrato, Carlos Antonio; Tarzia, Olinda

    2010-01-15

    Long standing hyperglycaemia besides damaging the kidneys, eyes, nerves, blood vessels, heart, can also impair the function of the salivary glands leading to a reduction in the salivary flow. When salivary flow decreases, as a consequence of an acute hyperglycaemia, many buccal or oral alterations can occur such as: a) increased concentration of mucin and glucose; b) impaired production and/or action of many antimicrobial factors; c) absence of a metalloprotein called gustin, that contains zinc and is responsible for the constant maturation of taste papillae; d) bad taste; e) oral candidiasis f) increased cells exfoliation after contact, because of poor lubrication; g) increased proliferation of pathogenic microorganisms; h) coated tongue; i) halitosis; and many others may occur as a consequence of chronic hyperglycaemia: a) tongue alterations, generally a burning mouth; b) periodontal disease; c) white spots due to demineralization in the teeth; d) caries; e) delayed healing of wounds; f) greater tendency to infections; g) lichen planus; h) mucosa ulcerations. Buccal alterations found in diabetic patients, although not specific of this disease, have its incidence and progression increased when an inadequate glycaemic control is present.

  13. Altered Brain Functional Connectome in Migraine with and without Restless Legs Syndrome: A Resting-State Functional MRI Study

    Directory of Open Access Journals (Sweden)

    Fu-Chi Yang

    2018-01-01

    Full Text Available BackgroundMigraine is frequently comorbid with restless legs syndrome (RLS, both displaying functional connectivity (FC alterations in multiple brain networks, although the neurological basis of this association is unknown.MethodsWe performed resting-state functional magnetic resonance imaging and network-wise analysis of FC in migraine patients with and without RLS and healthy controls (CRL. Network-based statistics (NBS and composite FC matrix analyses were performed to identify the patterns of FC changes. Correlation analyses were performed to identify associations between alterations in FC and clinical profiles.ResultsNBS results revealed that both migraine patients with and without RLS exhibited lower FC than CRL in the dorsal attention, salience, default mode, cingulo-opercular, visual, frontoparietal, auditory, and sensory/somatomotor networks. Further composite FC matrix analyses revealed differences in FC of the salience, default mode to subcortical and frontoparietal, auditory to salience, and memory retrieval networks between migraine patients with and without RLS. There was a trend toward a negative association between RLS severity and cross-network abnormalities in the default mode to subcortical network.DiscussionMigraine patients with and without RLS exhibit disruptions of brain FC. Such findings suggest that these disorders are associated with differential neuropathological mechanisms and may aid in the future development of neuroimaging-driven biomarkers for these conditions.

  14. Conformational Dynamics of the Focal Adhesion Targeting Domain Control Specific Functions of Focal Adhesion Kinase in Cells

    KAUST Repository

    Kadaré, Gress

    2015-01-02

    Focal adhesion (FA) kinase (FAK) regulates cell survival and motility by transducing signals from membrane receptors. The C-terminal FA targeting (FAT) domain of FAK fulfils multiple functions, including recruitment to FAs through paxillin binding. Phosphorylation of FAT on Tyr925 facilitates FA disassembly and connects to the MAPK pathway through Grb2 association, but requires dissociation of the first helix (H1) of the four-helix bundle of FAT. We investigated the importance of H1 opening in cells by comparing the properties of FAK molecules containing wild-type or mutated FAT with impaired or facilitated H1 openings. These mutations did not alter the activation of FAK, but selectively affected its cellular functions, including self-association, Tyr925 phosphorylation, paxillin binding, and FA targeting and turnover. Phosphorylation of Tyr861, located between the kinase and FAT domains, was also enhanced by the mutation that opened the FAT bundle. Similarly phosphorylation of Ser910 by ERK in response to bombesin was increased by FAT opening. Although FAK molecules with the mutation favoring FAT opening were poorly recruited at FAs, they efficiently restored FA turnover and cell shape in FAK-deficient cells. In contrast, the mutation preventing H1 opening markedly impaired FAK function. Our data support the biological importance of conformational dynamics of the FAT domain and its functional interactions with other parts of the molecule.

  15. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations.

    Science.gov (United States)

    Fuchs, Helmut; Sabrautzki, Sibylle; Przemeck, Gerhard K H; Leuchtenberger, Stefanie; Lorenz-Depiereux, Bettina; Becker, Lore; Rathkolb, Birgit; Horsch, Marion; Garrett, Lillian; Östereicher, Manuela A; Hans, Wolfgang; Abe, Koichiro; Sagawa, Nobuho; Rozman, Jan; Vargas-Panesso, Ingrid L; Sandholzer, Michael; Lisse, Thomas S; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Calzada-Wack, Julia; Ehrhard, Nicole; Elvert, Ralf; Gau, Christine; Hölter, Sabine M; Micklich, Katja; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Racz, Ildiko; Stoeger, Claudia; Vernaleken, Alexandra; Michel, Dian; Diener, Susanne; Wieland, Thomas; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H; Favor, John; Graw, Jochen; Klingenspor, Martin; Lengger, Christoph; Maier, Holger; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildirim, Ali Önder; Strom, Tim M; Zimmer, Andreas; Wolf, Eckhard; Wurst, Wolfgang; Klopstock, Thomas; Beckers, Johannes; Gailus-Durner, Valerie; Hrabé de Angelis, Martin

    2016-12-07

    The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein) family consists of three independent members, Scube1-3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3 N294K/N294K ), which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC). Scube3 N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB), associated with the chromosomal region of human SCUBE3 In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3 N294K/N294K mice. The Scube3 N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function. Copyright © 2016 Fuchs et al.

  16. The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations

    Directory of Open Access Journals (Sweden)

    Helmut Fuchs

    2016-12-01

    Full Text Available The vertebrate Scube (Signal peptide, CUB, and EGF-like domain-containing protein family consists of three independent members, Scube1–3, which encode secreted cell surface-associated membrane glycoproteins. Limited information about the general function of this gene family is available, and their roles during adulthood. Here, we present the first Scube3 mutant mouse line (Scube3N294K/N294K, which clearly shows phenotypic alterations by carrying a missense mutation in exon 8, and thus contributes to our understanding of SCUBE3 functions. We performed a detailed phenotypic characterization in the German Mouse Clinic (GMC. Scube3N294K/N294K mutants showed morphological abnormalities of the skeleton, alterations of parameters relevant for bone metabolism, changes in renal function, and hearing impairments. These findings correlate with characteristics of the rare metabolic bone disorder Paget disease of bone (PDB, associated with the chromosomal region of human SCUBE3. In addition, alterations in energy metabolism, behavior, and neurological functions were detected in Scube3N294K/N294K mice. The Scube3N294K/N294K mutant mouse line may serve as a new model for further studying the effect of impaired SCUBE3 gene function.

  17. Induction of Cell Death through Alteration of Oxidants and Antioxidants in Epithelial Cells Exposed to High Energy Protons

    Science.gov (United States)

    Ramesh, Govindarajan; Wu, Honglu

    2012-01-01

    Radiation affects several cellular and molecular processes including double strand breakage, modifications of sugar moieties and bases. In outer space, protons are the primary radiation source which poses a range of potential health risks to astronauts. On the other hand, the use of proton radiation for tumor radiation therapy is increasing as it largely spares healthy tissues while killing tumor tissues. Although radiation related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton radiation remain poorly understood. Therefore, in the present study, we irradiated rat epithelial cells (LE) with different doses of protons and investigated their effects on cell proliferation and cell death. Our data showed an inhibition of cell proliferation in proton irradiated cells with a significant dose dependent activation and repression of reactive oxygen species (ROS) and antioxidants, glutathione and superoxide dismutase respectively as compared to control cells. In addition, apoptotic related genes such as caspase-3 and -8 activities were induced in a dose dependent manner with corresponding increased levels of DNA fragmentation in proton irradiated cells than control cells. Together, our results show that proton radiation alters oxidant and antioxidant levels in the cells to activate apoptotic pathway for cell death.

  18. Gamma-interferon alters globin gene expression in neonatal and adult erythroid cells

    International Nuclear Information System (INIS)

    Miller, B.A.; Perrine, S.P.; Antognetti, G.; Perlmutter, D.H.; Emerson, S.G.; Sieff, C.; Faller, D.V.

    1987-01-01

    The effect of gamma-interferon on fetal hemoglobin synthesis by purified cord blood, fetal liver, and adult bone marrow erythroid progenitors was studied with a radioligand assay to measure hemoglobin production by BFU-E-derived erythroblasts. Coculture with recombinant gamma-interferon resulted in a significant and dose-dependent decrease in fetal hemoglobin production by neonatal and adult, but not fetal, BFU-E-derived erythroblasts. Accumulation of fetal hemoglobin by cord blood BFU-E-derived erythroblasts decreased up to 38.1% of control cultures (erythropoietin only). Synthesis of both G gamma/A gamma globin was decreased, since the G gamma/A gamma ratio was unchanged. Picograms fetal hemoglobin per cell was decreased by gamma-interferon addition, but picograms total hemoglobin was unchanged, demonstrating that a reciprocal increase in beta-globin production occurred in cultures treated with gamma-interferon. No toxic effect of gamma-interferon on colony growth was noted. The addition of gamma-interferon to cultures resulted in a decrease in the percentage of HbF produced by adult BFU-E-derived cells to 45.6% of control. Fetal hemoglobin production by cord blood, fetal liver, and adult bone marrow erythroid progenitors, was not significantly affected by the addition of recombinant GM-CSF, recombinant interleukin 1 (IL-1), recombinant IL-2, or recombinant alpha-interferon. Although fetal progenitor cells appear unable to alter their fetal hemoglobin program in response to any of the growth factors added here, the interaction of neonatal and adult erythroid progenitors with gamma-interferon results in an altered expression of globin genes

  19. Cell-Intrinsic Roles for Autophagy in Modulating CD4 T Cell Functions

    Directory of Open Access Journals (Sweden)

    Elise Jacquin

    2018-05-01

    Full Text Available The catabolic process of autophagy plays important functions in inflammatory and immune responses by modulating innate immunity and adaptive immunity. Over the last decade, a cell-intrinsic role for autophagy in modulating CD4 T cell functions and differentiation was revealed. After the initial observation of autophagosomes in effector CD4 T cells, further work has shown that not only autophagy levels are modulated in CD4 T cells in response to environmental signals but also that autophagy critically affects the biology of these cells. Mouse models of autophagy deletion in CD4 T cells have indeed shown that autophagy is essential for CD4 T cell survival and homeostasis in peripheral lymphoid organs. Furthermore, autophagy is required for CD4 T cell proliferation and cytokine production in response to T cell receptor activation. Recent developments have uncovered that autophagy controls CD4 T cell differentiation and functions. While autophagy is required for the maintenance of immunosuppressive functions of regulatory T cells, it restrains the differentiation of TH9 effector cells, thus limiting their antitumor and pro-inflammatory properties. We will here discuss these findings that collectively suggest that therapeutic strategies targeting autophagy could be exploited for the treatment of cancer and inflammatory diseases.

  20. Secretion of Interferon gamma (IFNγ) from Human Immune Cells is Altered by Exposure to Tributyltin (TBT) and Dibutyltin (DBT)

    Science.gov (United States)

    Lawrence, Shanieek; Reid, Jacqueline; Whalen, Margaret

    2013-01-01

    Tributyltin (TBT) and dibutyltin (DBT) are widespread environmental contaminants found in food, beverages, and human blood samples. Both of these butyltins (BTs) interfere with the ability of human natural killer (NK) cells to lyse target cells and also alter secretion of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) from human immune cells in vitro. The capacity of BTs to interfere with secretion of other pro-inflammatory cytokines has not been examined. Interferon gamma (IFNγ) is a modulator of adaptive and innate immune responses, playing an important role in overall immune competence. This study shows that both TBT and DBT alter secretion of IFNγ from human immune cells. Peripheral blood cell preparations that were increasingly reconstituted were used to determine if exposures to either TBT or DBT affected IFNγ secretion and how the makeup of the cell preparation influenced that effect. IFNγ secretion was examined after 24 h, 48 h and 6 day exposures to TBT (200- 2.5 nM) and DBT (5- 0.05 μM) in highly enriched human NK cells, a monocyte-depleted preparation of PBMCs, and monocyte-containing PBMCs. Both BTs altered IFNγ secretion from NK cells at most of the conditions tested (either increasing or decreasing secretion). However, there was significant variability among donors as to the concentrations and time points that showed changes as well as the baseline secretion of IFNγ. The majority of donors showed an increase in IFNγ secretion in response to at least one concentration of TBT or DBT at a minimum of one length of exposure. PMID:24357260

  1. Histochemical alterations in colorectal carcinoma and adenoma in Egyptian patients

    Directory of Open Access Journals (Sweden)

    Saber A Sakr

    2016-01-01

    Full Text Available Objective: To evaluate the histochemical alterations in DNA and total carbohydrates, in colorectal cancer cells. Methods: This study was carried out on 48 colorectal carcinoma and 10 adenoma specimens. Hematoxylin and Eosin staining was carried out for histopathological examination to confirm the diagnosis and to evaluate the histopathological characteristics of tumor. Histologic grade and pathologic stage was assessed according to TNM staging system. Staging was also assessed according to original Dukes’ staging system. DNA was demonstrated by Feulgen method and carbohydrates were demonstrated by periodic acid Schiff’s reaction. Results: Adenoma cases showed that the cells lining the glands of the polyp have more crowded, irregular and darker nuclei (hyperchromatic, anisonucleosis, abnormal mitotic figures with prominent nucleoli and variability in the size and shape of nuclei. Colorectal carcinoma cases showed a condensation and reduction in the size of a cell nucleus associated with hyperchromatosis, pyknotic nuclei, abnormal mitotic figures, anisonucleosis, irregular nuclear membrane and inequality in the size of the nuclei (Pleomorphosis. There was a statistical significant differences between adenoma and carcinoma regarding number of mitotic cells (P = 0.03 that was in favour of malignant group. Adenoma and colorectal carcinoma cases showed periodic acid Schiff’s reactivity with different degree. Conclusions: These histochemical alterations can be so characteristic of a given tumor type and stage that they are used in cancer diagnosis and might also be related to the altered functional properties of cancer cells.

  2. Role of Polyamines in Immune Cell Functions

    Directory of Open Access Journals (Sweden)

    Rebecca S. Hesterberg

    2018-03-01

    Full Text Available The immune system is remarkably responsive to a myriad of invading microorganisms and provides continuous surveillance against tissue damage and developing tumor cells. To achieve these diverse functions, multiple soluble and cellular components must react in an orchestrated cascade of events to control the specificity, magnitude and persistence of the immune response. Numerous catabolic and anabolic processes are involved in this process, and prominent roles for l-arginine and l-glutamine catabolism have been described, as these amino acids serve as precursors of nitric oxide, creatine, agmatine, tricarboxylic acid cycle intermediates, nucleotides and other amino acids, as well as for ornithine, which is used to synthesize putrescine and the polyamines spermidine and spermine. Polyamines have several purported roles and high levels of polyamines are manifest in tumor cells as well in autoreactive B- and T-cells in autoimmune diseases. In the tumor microenvironment, l-arginine catabolism by both tumor cells and suppressive myeloid cells is known to dampen cytotoxic T-cell functions suggesting there might be links between polyamines and T-cell suppression. Here, we review studies suggesting roles of polyamines in normal immune cell function and highlight their connections to autoimmunity and anti-tumor immune cell function.

  3. Altered Memory T-Cell Responses to Bacillus Calmette-Guerin and Tetanus Toxoid Vaccination and Altered Cytokine Responses to Polyclonal Stimulation in HIV-Exposed Uninfected Kenyan Infants.

    Science.gov (United States)

    Garcia-Knight, Miguel A; Nduati, Eunice; Hassan, Amin S; Gambo, Faith; Odera, Dennis; Etyang, Timothy J; Hajj, Nassim J; Berkley, James Alexander; Urban, Britta C; Rowland-Jones, Sarah L

    2015-01-01

    Implementation of successful prevention of mother-to-child transmission of HIV strategies has resulted in an increased population of HIV-exposed uninfected (HEU) infants. HEU infants have higher rates of morbidity and mortality than HIV-unexposed (HU) infants. Numerous factors may contribute to poor health in HEU infants including immunological alterations. The present study assessed T-cell phenotype and function in HEU infants with a focus on memory Th1 responses to vaccination. We compared cross-sectionally selected parameters at 3 and 12 months of age in HIV-exposed (n = 42) and HU (n = 28) Kenyan infants. We measured ex vivo activated and bulk memory CD4 and CD8 T-cells and regulatory T-cells by flow cytometry. In addition, we measured the magnitude, quality and memory phenotype of antigen-specific T-cell responses to Bacillus Calmette-Guerin and Tetanus Toxoid vaccine antigens, and the magnitude and quality of the T cell response following polyclonal stimulation with staphylococcal enterotoxin B. Finally, the influence of maternal disease markers on the immunological parameters measured was assessed in HEU infants. Few perturbations were detected in ex vivo T-cell subsets, though amongst HEU infants maternal HIV viral load positively correlated with CD8 T cell immune activation at 12 months. Conversely, we observed age-dependent differences in the magnitude and polyfunctionality of IL-2 and TNF-α responses to vaccine antigens particularly in Th1 cells. These changes mirrored those seen following polyclonal stimulation, where at 3 months, cytokine responses were higher in HEU infants compared to HU infants, and at 12 months, HEU infant cytokine responses were consistently lower than those seen in HU infants. Finally, reduced effector memory Th1 responses to vaccine antigens were observed in HEU infants at 3 and 12 months and higher central memory Th1 responses to M. tuberculosis antigens were observed at 3 months only. Long-term monitoring of vaccine efficacy

  4. Altered Memory T-Cell Responses to Bacillus Calmette-Guerin and Tetanus Toxoid Vaccination and Altered Cytokine Responses to Polyclonal Stimulation in HIV-Exposed Uninfected Kenyan Infants.

    Directory of Open Access Journals (Sweden)

    Miguel A Garcia-Knight

    Full Text Available Implementation of successful prevention of mother-to-child transmission of HIV strategies has resulted in an increased population of HIV-exposed uninfected (HEU infants. HEU infants have higher rates of morbidity and mortality than HIV-unexposed (HU infants. Numerous factors may contribute to poor health in HEU infants including immunological alterations. The present study assessed T-cell phenotype and function in HEU infants with a focus on memory Th1 responses to vaccination. We compared cross-sectionally selected parameters at 3 and 12 months of age in HIV-exposed (n = 42 and HU (n = 28 Kenyan infants. We measured ex vivo activated and bulk memory CD4 and CD8 T-cells and regulatory T-cells by flow cytometry. In addition, we measured the magnitude, quality and memory phenotype of antigen-specific T-cell responses to Bacillus Calmette-Guerin and Tetanus Toxoid vaccine antigens, and the magnitude and quality of the T cell response following polyclonal stimulation with staphylococcal enterotoxin B. Finally, the influence of maternal disease markers on the immunological parameters measured was assessed in HEU infants. Few perturbations were detected in ex vivo T-cell subsets, though amongst HEU infants maternal HIV viral load positively correlated with CD8 T cell immune activation at 12 months. Conversely, we observed age-dependent differences in the magnitude and polyfunctionality of IL-2 and TNF-α responses to vaccine antigens particularly in Th1 cells. These changes mirrored those seen following polyclonal stimulation, where at 3 months, cytokine responses were higher in HEU infants compared to HU infants, and at 12 months, HEU infant cytokine responses were consistently lower than those seen in HU infants. Finally, reduced effector memory Th1 responses to vaccine antigens were observed in HEU infants at 3 and 12 months and higher central memory Th1 responses to M. tuberculosis antigens were observed at 3 months only. Long-term monitoring of

  5. TCR stimulation strength is inversely associated with establishment of functional brain-resident memory CD8 T cells during persistent viral infection.

    Directory of Open Access Journals (Sweden)

    Saumya Maru

    2017-04-01

    Full Text Available Establishing functional tissue-resident memory (TRM cells at sites of infection is a newfound objective of T cell vaccine design. To directly assess the impact of antigen stimulation strength on memory CD8 T cell formation and function during a persistent viral infection, we created a library of mouse polyomavirus (MuPyV variants with substitutions in a subdominant CD8 T cell epitope that exhibit a broad range of efficiency in stimulating TCR transgenic CD8 T cells. By altering a subdominant epitope in a nonstructural viral protein and monitoring memory differentiation of donor monoclonal CD8 T cells in immunocompetent mice, we circumvented potentially confounding changes in viral infection levels, virus-associated inflammation, size of the immunodominant virus-specific CD8 T cell response, and shifts in TCR affinity that may accompany temporal recruitment of endogenous polyclonal cells. Using this strategy, we found that antigen stimulation strength was inversely associated with the function of memory CD8 T cells during a persistent viral infection. We further show that CD8 TRM cells recruited to the brain following systemic infection with viruses expressing epitopes with suboptimal stimulation strength respond more efficiently to challenge CNS infection with virus expressing cognate antigen. These data demonstrate that the strength of antigenic stimulation during recruitment of CD8 T cells influences the functional integrity of TRM cells in a persistent viral infection.

  6. Integrated analysis of genetic, behavioral, and biochemical data implicates neural stem cell-induced changes in immunity, neurotransmission and mitochondrial function in Dementia with Lewy Body mice.

    Science.gov (United States)

    Lakatos, Anita; Goldberg, Natalie R S; Blurton-Jones, Mathew

    2017-03-10

    We previously demonstrated that transplantation of murine neural stem cells (NSCs) can improve motor and cognitive function in a transgenic model of Dementia with Lewy Bodies (DLB). These benefits occurred without changes in human α-synuclein pathology and were mediated in part by stem cell-induced elevation of brain-derived neurotrophic factor (BDNF). However, instrastriatal NSC transplantation likely alters the brain microenvironment via multiple mechanisms that may synergize to promote cognitive and motor recovery. The underlying neurobiology that mediates such restoration no doubt involves numerous genes acting in concert to modulate signaling within and between host brain cells and transplanted NSCs. In order to identify functionally connected gene networks and additional mechanisms that may contribute to stem cell-induced benefits, we performed weighted gene co-expression network analysis (WGCNA) on striatal tissue isolated from NSC- and vehicle-injected wild-type and DLB mice. Combining continuous behavioral and biochemical data with genome wide expression via network analysis proved to be a powerful approach; revealing significant alterations in immune response, neurotransmission, and mitochondria function. Taken together, these data shed further light on the gene network and biological processes that underlie the therapeutic effects of NSC transplantation on α-synuclein induced cognitive and motor impairments, thereby highlighting additional therapeutic targets for synucleinopathies.

  7. Diseased muscles that lack dystrophin or laminin-α2 have altered compositions and proliferation of mononuclear cell populations

    Directory of Open Access Journals (Sweden)

    Miller Jeffrey

    2005-04-01

    Full Text Available Abstract Background Multiple types of mononucleate cells reside among the multinucleate myofibers in skeletal muscles and these mononucleate cells function in muscle maintenance and repair. How neuromuscular disease might affect different types of muscle mononucleate cells had not been determined. In this study, therefore, we examined how two neuromuscular diseases, dystrophin-deficiency and laminin-α2-deficiency, altered the proliferation and composition of different subsets of muscle-derived mononucleate cells. Methods We used fluorescence-activated cell sorting combined with bromodeoxyuridine labeling to examine proliferation rates and compositions of mononuclear cells in diseased and healthy mouse skeletal muscle. We prepared mononucleate cells from muscles of mdx (dystrophin-deficient or Lama2-/- (laminin-α2-deficient mice and compared them to cells from healthy control muscles. We enumerated subsets of resident muscle cells based on Sca-1 and CD45 expression patterns and determined the proliferation of each cell subset in vivo by BrdU incorporation. Results We found that the proliferation and composition of the mononucleate cells in dystrophin-deficient and laminin-α2-deficient diseased muscles are different than in healthy muscle. The mdx and Lama2-/- muscles showed similar significant increases in CD45+ cells compared to healthy muscle. Changes in proliferation, however, differed between the two diseases with proliferation increased in mdx and decreased in Lama2-/- muscles compared to healthy muscles. In particular, the most abundant Sca-1-/CD45- subset, which contains muscle precursor cells, had increased proliferation in mdx muscle but decreased proliferation in Lama2-/- muscles. Conclusion The similar increases in CD45+ cells, but opposite changes in proliferation of muscle precursor cells, may underlie aspects of the distinct pathologies in the two diseases.

  8. Proteomic Alterations in Response to Hypoxia Inducible Factor 2α in Normoxic Neuroblastoma Cells.

    Science.gov (United States)

    Cimmino, Flora; Pezone, Lucia; Avitabile, Marianna; Persano, Luca; Vitale, Monica; Sassi, Mauro; Bresolin, Silvia; Serafin, Valentina; Zambrano, Nicola; Scaloni, Andrea; Basso, Giuseppe; Iolascon, Achille; Capasso, Mario

    2016-10-07

    Hypoxia inducible factor (HIF)-2α protein expression in solid tumors promotes stem-like phenotype in cancer stem cells and increases tumorigenic potential in nonstem cancer cells. Recently, we have shown that HIF-1/2α gene expression is correlated to neuroblastoma (NB) poor survival and to undifferentiated tumor state; HIF-2α protein was demonstrated to enhance aggressive features of the disease. In this study, we used proteomic experiments on NB cells to investigate HIF-2α downstream-regulated proteins or pathways with the aim of providing novel therapeutic targets or bad prognosis markers. We verified that pathways mostly altered by HIF-2α perturbation are involved in tumor progression. In particular, HIF-2α induces alteration of central metabolism and splicing control pathways. Simultaneously, WNT, RAS/MAPK, and PI3K/AKT activity or expression are affected and may impact the sensitivity and the intensity of HIF-2α-regulated pathways. Furthermore, genes coding the identified HIF-2α-related markers built a signature able to stratify NB patients with unfavorable outcome. Taken together, our findings underline the relevance of dissecting the downstream effects of a poor survival marker in developing targeted therapy and improving patient stratification. Future prospective studies are needed to translate the use of these data into the clinical practice.

  9. Modeling and predictions of biphasic mechanosensitive cell migration altered by cell-intrinsic properties and matrix confinement.

    Science.gov (United States)

    Pathak, Amit

    2018-04-12

    Motile cells sense the stiffness of their extracellular matrix (ECM) through adhesions and respond by modulating the generated forces, which in turn lead to varying mechanosensitive migration phenotypes. Through modeling and experiments, cell migration speed is known to vary with matrix stiffness in a biphasic manner, with optimal motility at an intermediate stiffness. Here, we present a two-dimensional cell model defined by nodes and elements, integrated with subcellular modeling components corresponding to mechanotransductive adhesion formation, force generation, protrusions and node displacement. On 2D matrices, our calculations reproduce the classic biphasic dependence of migration speed on matrix stiffness and predict that cell types with higher force-generating ability do not slow down on very stiff matrices, thus disabling the biphasic response. We also predict that cell types defined by lower number of total receptors require stiffer matrices for optimal motility, which also limits the biphasic response. For a cell type with robust biphasic migration on 2D surface, simulations in channel-like confined environments of varying width and height predict faster migration in more confined matrices. Simulations performed in shallower channels predict that the biphasic mechanosensitive cell migration response is more robust on 2D micro-patterns as compared to the channel-like 3D confinement. Thus, variations in the dimensionality of matrix confinement alters the way migratory cells sense and respond to the matrix stiffness. Our calculations reveal new phenotypes of stiffness- and topography-sensitive cell migration that critically depend on both cell-intrinsic and matrix properties. These predictions may inform our understanding of various mechanosensitive modes of cell motility that could enable tumor invasion through topographically heterogeneous microenvironments. © 2018 IOP Publishing Ltd.

  10. Altered time structure of neuro-endocrine-immune system function in lung cancer patients

    Directory of Open Access Journals (Sweden)

    Carughi Stefano

    2010-06-01

    TcS1 was decreased in cancer patients. The melatonin/cortisol mean nocturnal level ratio was decreased in cancer patients. Conclusion The altered secretion and loss of circadian rhythmicity of many studied factors observed in the subjects suffering from neoplastic disease may be expression of gradual alteration of the integrated function of the neuro-immune-endocrine system

  11. Prevention of shockwave induced functional and morphological alterations: an overview.

    Science.gov (United States)

    Sarica, Kemal; Yencilek, Faruk

    2008-03-01

    Experimental as well as clinical findings reported in the literature suggest that treatment with shock wave lithotripsy (SWL) causes renal parenchymal damage mainly by generating free radicals through ischaemia/reperfusion injury mechanism. Although SWL-induced renal damage is well tolerated in the majority of healthy cases with no permanent functional and/or morphologic side effects, a subset of patients with certain risk factors requires close attention on this aspect among which the ones with pre-existing renal disorders, urinary tract infection, previous lithotripsy history and solitary kidneys could be mentioned. It is clear that in such patients lowering the number of shock waves (per session) could be beneficial and has been applied by the physicians as the first practical step of diminishing SWL induced parenchymal damage. On the other hand, taking the injurious effects of high energy shock wave (HESW) induced free radical formation on renal parenchyma and subsequent histopathologic alterations into account, physicians searched for some protective agents in an attempt to prevent or at least to limit the extent of the functional as well as the morphologic alterations. Among these agents calcium channel blocking agents (verapamil and nifedipine), antioxidant agents (allopurinol, vitamin E and selenium) and potassium citrate have been used to minimize these adverse effects. Additionally, therapeutic application of these agents on reducing stone recurrence particularly after SWL will gain more importance in the future in order to limit new stone formation in these cases. Lastly, as experimental and clinical studies have demonstrated, combination of anti-oxidants with free radical scavengers may provide superior renal protection against shock wave induced trauma. However, we believe that further investigations are certainly needed to determine the dose-response relationship between the damaging effects of SWL application and the protective role of these agents.

  12. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy.

    Science.gov (United States)

    Valera, Alexandra; López-Guillermo, Armando; Cardesa-Salzmann, Teresa; Climent, Fina; González-Barca, Eva; Mercadal, Santiago; Espinosa, Iñigo; Novelli, Silvana; Briones, Javier; Mate, José L; Salamero, Olga; Sancho, Juan M; Arenillas, Leonor; Serrano, Sergi; Erill, Nadina; Martínez, Daniel; Castillo, Paola; Rovira, Jordina; Martínez, Antonio; Campo, Elias; Colomo, Luis

    2013-10-01

    MYC alterations influence the survival of patients with diffuse large B-cell lymphoma. Most studies have focused on MYC translocations but there is little information regarding the impact of numerical alterations and protein expression. We analyzed the genetic alterations and protein expression of MYC, BCL2, BCL6, and MALT1 in 219 cases of diffuse large B-cell lymphoma. MYC rearrangement occurred as the sole abnormality (MYC single-hit) in 3% of cases, MYC and concurrent BCL2 and/or BCL6 rearrangements (MYC double/triple-hit) in 4%, MYC amplifications in 2% and MYC gains in 19%. MYC single-hit, MYC double/triple-hit and MYC amplifications, but not MYC gains or other gene rearrangements, were associated with unfavorable progression-free survival and overall survival. MYC protein expression, evaluated using computerized image analysis, captured the unfavorable prognosis of MYC translocations/amplifications and identified an additional subset of patients without gene alterations but with similar poor prognosis. Patients with tumors expressing both MYC/BCL2 had the worst prognosis, whereas those with double-negative tumors had the best outcome. High MYC expression was associated with shorter overall survival irrespectively of the International Prognostic Index and BCL2 expression. In conclusion, MYC protein expression identifies a subset of diffuse large B-cell lymphoma with very poor prognosis independently of gene alterations and other prognostic parameters.

  13. Invasive carnivores alter ecological function and enhance complementarity in scavenger assemblages on ocean beaches.

    Science.gov (United States)

    Brown, Marion B; Schlacher, Thomas A; Schoeman, David S; Weston, Michael A; Huijbers, Chantal M; Olds, Andrew D; Connolly, Rod M

    2015-10-01

    Species composition is expected to alter ecological function in assemblages if species traits differ strongly. Such effects are often large and persistent for nonnative carnivores invading islands. Alternatively, high similarity in traits within assemblages creates a degree of functional redundancy in ecosystems. Here we tested whether species turnover results in functional ecological equivalence or complementarity, and whether invasive carnivores on islands significantly alter such ecological function. The model system consisted of vertebrate scavengers (dominated by raptors) foraging on animal carcasses on ocean beaches on two Australian islands, one with and one without invasive red foxes (Vulpes vulpes). Partitioning of scavenging events among species, carcass removal rates, and detection speeds were quantified using camera traps baited with fish carcasses at the dune-beach interface. Complete segregation of temporal foraging niches between mammals (nocturnal) and birds (diurnal) reflects complementarity in carrion utilization. Conversely, functional redundancy exists within the bird guild where several species of raptors dominate carrion removal in a broadly similar way. As predicted, effects of red foxes were large. They substantially changed the nature and rate of the scavenging process in the system: (1) foxes consumed over half (55%) of all carrion available at night, compared with negligible mammalian foraging at night on the fox-free island, and (2) significant shifts in the composition of the scavenger assemblages consuming beach-cast carrion are the consequence of fox invasion at one island. Arguably, in the absence of other mammalian apex predators, the addition of red foxes creates a new dimension of functional complementarity in beach food webs. However, this functional complementarity added by foxes is neither benign nor neutral, as marine carrion subsidies to coastal red fox populations are likely to facilitate their persistence as exotic

  14. [Endoplasmic-mitochondrial Ca(2+)-functional unit: dependence of respiration of secretory cells on activity of ryanodine- and IP3 - sensitive Ca(2+)-channels].

    Science.gov (United States)

    Velykopols'ka, O Iu; Man'ko, B O; Man'ko, V V

    2012-01-01

    Using Clark oxygen electrode, dependence of mitochondrial functions on Ca(2+)-release channels activity of Chironomus plumosus L. larvae salivary glands suspension was investigated. Cells were ATP-permeabilized in order to enable penetration of exogenous oxidative substrates. Activation of plasmalemmal P2X-receptors (as well as P2Y-receptors) per se does not modify the endogenous respiration of salivary gland suspension. That is, Ca(2+)-influx from extracellular medium does not influence functional activity of mitochondria, although they are located along the basal part of the plasma membrane. Activation of RyRs intensifies endogenous respiration and pyruvate-malate-stimulated respiration, but not succinate-stimulated respiration. Neither activation of IP3Rs (via P2Y-receptors activation), nor their inhibition alters endogenous respiration. Nevertheless, IP3Rs inhibition by 2-APB intensifies succinate-stimulated respiration. All abovementioned facts testify that Ca2+, released from stores via channels, alters functional activity of mitochondria, and undoubtedly confirm the existence of endoplasmic-mitochondrial Ca(2+)-functional unit in Ch. plumosus larvae salivary glands secretory cells. In steady state of endoplasmic-mitochondrial Ca(2+)-functional unit the spontaneous activity of IP3Rs is observed; released through IP3Rs, Ca2+ is accumulated in mitochondria via uniporter and modulates oxidative processes. Activation of RyRs induces the transition of endoplasmic-mitochondrial Ca(2+)-functional unit to the active state, which is required to intensify cell respiration and oxidative phosphorylation. As expected, the transition of endoplasmic-mitochondrial Ca(2+)-functional unit to inactivated state (i. e. inhibition of Ca(2+)-release channels at excessive [Ca2+]i) limits the duration of signal transduction, has protective nature and prevents apoptosis.

  15. Altered 67Ga citrate distribution in patients with multiple red blood cell transfusions

    International Nuclear Information System (INIS)

    Engelstad, B.; Luk, S.S.; Hattner, R.S.

    1982-01-01

    Gallium-67 citrate studies from four patients who received multiple red blood cell transfusions were reviewed. Increased kidney, bladder, or bone localization was associated with decreased liver and colon activity. The findings suggest altered distribution due to competition with iron for receptor binding. Identification of inflammatory disease in two patients was possible. However, the effect of transfusions on detection of inflammatory or neoplastic diseases requires further evaluation

  16. Regulation of Hematopoietic Cell Development and Function Through Phosphoinositides

    Directory of Open Access Journals (Sweden)

    Mila Elich

    2018-05-01

    Full Text Available One of the most paramount receptor-induced signal transduction mechanisms in hematopoietic cells is production of the lipid second messenger phosphatidylinositol(3,4,5trisphosphate (PIP3 by class I phosphoinositide 3 kinases (PI3K. Defective PIP3 signaling impairs almost every aspect of hematopoiesis, including T cell development and function. Limiting PIP3 signaling is particularly important, because excessive PIP3 function in lymphocytes can transform them and cause blood cancers. Here, we review the key functions of PIP3 and related phosphoinositides in hematopoietic cells, with a special focus on those mechanisms dampening PIP3 production, turnover, or function. Recent studies have shown that beyond “canonical” turnover by the PIP3 phosphatases and tumor suppressors phosphatase and tensin homolog (PTEN and SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1/2, PIP3 function in hematopoietic cells can also be dampened through antagonism with the soluble PIP3 analogs inositol(1,3,4,5tetrakisphosphate (IP4 and inositol-heptakisphosphate (IP7. Other evidence suggests that IP4 can promote PIP3 function in thymocytes. Moreover, IP4 or the kinases producing it limit store-operated Ca2+ entry through Orai channels in B cells, T cells, and neutrophils to control cell survival and function. We discuss current models for how soluble inositol phosphates can have such diverse functions and can govern as distinct processes as hematopoietic stem cell homeostasis, neutrophil macrophage and NK cell function, and development and function of B cells and T cells. Finally, we will review the pathological consequences of dysregulated IP4 activity in immune cells and highlight contributions of impaired inositol phosphate functions in disorders such as Kawasaki disease, common variable immunodeficiency, or blood cancer.

  17. Assessment of testicular function after acute and chronic irradiation: Further evidence for an influence of late spermatids on Sertoli cell function in the adult rat

    International Nuclear Information System (INIS)

    Pineau, C.; Velez de la Calle, J.F.; Pinon-Lataillade, G.; Jegou, B.

    1989-01-01

    To study cell to cell communications within the testis of adult Sprague-Dawley rats, we used acute whole body neutron plus gamma-irradiation over 7-121 days postirradiation and chronic whole body gamma-irradiation over 14-84 days of irradiation and 7-86 days postirradiation. Neither irradiation protocol had an effect on the body weight of the animals. Neutron plus gamma-rays induced dramatic damages to spermatogonia, preleptotene spermatocytes, spermatozoa, and, to a lesser extent, pachytene spermatocytes. In contrast, gamma-rays induced a selective destruction of spermatogonia. Subsequently, in both experiments a maturation-depletion process led to a marked decrease in all germ cell types. A complete or near complete recovery of the different germ cell types and spermatozoa took place during the two postirradiation periods. Under both irradiation protocols Sertoli cells number was unchanged. Androgen-binding protein and FSH levels were normal in spite of the disappearance of most germ cells from spermatogonia to early spermatids. However, the decline of androgen-binding protein as well as the rise of FSH and their subsequent recovery were highly correlated to the number of late spermatids and spermatozoa. Moreover, it appeared that spermatocytes may also interfere with the production of inhibin (Exp B). With neither irradiation was Leydig cell function altered, except in Exp B in which elevated LH levels were temporarily observed. Correlation analysis suggested a relationship between preleptotene spermatocytes and Leydig cell function. In conclusion, this study establishes that chronic gamma-irradiation is particularly useful in the study of intratesticular paracrine regulation in vivo and provides further support to the concept that late spermatids play a major role in controlling some aspects of Sertoli cell function in the adult rat

  18. Mutational Analysis of Drosophila Basigin Function in the Visual System

    Science.gov (United States)

    Munro, Michelle; Akkam, Yazan; Curtin, Kathryn D.

    2009-01-01

    Drosophila basigin is a cell-surface glycoprotein of the Ig superfamily and a member of a protein family that includes mammalian EMMPRIN/CD147/basigin, neuroplastin, and embigin. Our previous work on Drosophila basigin has shown that it is required for normal photoreceptor cell structure and normal neuron-glia interaction in the fly visual system. Specifically, the photoreceptor neurons of mosaic animals that are mutant in the eye for basigin show altered cell structure with nuclei, mitochondria and rER misplaced and variable axon diameter compared to wild-type. In addition, glia cells in the optic lamina that contact photoreceptor axons are misplaced and show altered structure. All these defects are rescued by expression of either transgenic fly basigin or transgenic mouse basigin in the photoreceptors demonstrating that mouse basigin can functionally replace fly basigin. To determine what regions of the basigin protein are required for each of these functions, we have created mutant basigin transgenes coding for proteins that are altered in conserved residues, introduced these into the fly genome, and tested them for their ability to rescue both photoreceptor cell structure defects and neuron-glia interaction defects of basigin. The results suggest that the highly conserved transmembrane domain and the extracellular domains are crucial for basigin function in the visual system while the short intracellular tail may not play a role in these functions. PMID:19782733

  19. Analysis of Altered Baseline Brain Activity in Drug-Naive Adult Patients with Social Anxiety Disorder Using Resting-State Functional MRI

    OpenAIRE

    Qiu, Changjian; Feng, Yuan; Meng, Yajing; Liao, Wei; Huang, Xiaoqi; Lui, Su; Zhu, Chunyan; Chen, Huafu; Gong, Qiyong; Zhang, Wei

    2015-01-01

    Objective We hypothesize that the amplitude of low-frequency fluctuations (ALFF) is involved in the altered regional baseline brain function in social anxiety disorder (SAD). The aim of the study was to analyze the altered baseline brain activity in drug-naive adult patients with SAD. Methods We investigated spontaneous and baseline brain activities by obtaining the resting-state functional magnetic resonance imaging data of 20 drug-na?ve adult SAD patients and 19 healthy controls. Voxels wer...

  20. Co-altered functional networks and brain structure in unmedicated patients with bipolar and major depressive disorders.

    Science.gov (United States)

    He, Hao; Sui, Jing; Du, Yuhui; Yu, Qingbao; Lin, Dongdong; Drevets, Wayne C; Savitz, Jonathan B; Yang, Jian; Victor, Teresa A; Calhoun, Vince D

    2017-12-01

    Bipolar disorder (BD) and major depressive disorder (MDD) share similar clinical characteristics that often obscure the diagnostic distinctions between their depressive conditions. Both functional and structural brain abnormalities have been reported in these two disorders. However, the direct link between altered functioning and structure in these two diseases is unknown. To elucidate this relationship, we conducted a multimodal fusion analysis on the functional network connectivity (FNC) and gray matter density from MRI data from 13 BD, 40 MDD, and 33 matched healthy controls (HC). A data-driven fusion method called mCCA+jICA was used to identify the co-altered FNC and gray matter components. Comparing to HC, BD exhibited reduced gray matter density in the parietal and occipital cortices, which correlated with attenuated functional connectivity within sensory and motor networks, as well as hyper-connectivity in regions that are putatively engaged in cognitive control. In addition, lower gray matter density was found in MDD in the amygdala and cerebellum. High accuracy in discriminating across groups was also achieved by trained classification models, implying that features extracted from the fusion analysis hold the potential to ultimately serve as diagnostic biomarkers for mood disorders.