WorldWideScience

Sample records for cationic surface modification

  1. Augmented liver targeting of exosomes by surface modification with cationized pullulan.

    Science.gov (United States)

    Tamura, Ryo; Uemoto, Shinji; Tabata, Yasuhiko

    2017-07-15

    Exosomes are membrane nanoparticles containing biological substances that are employed as therapeutics in experimental inflammatory models. Surface modification of exosomes for better tissue targetability and enhancement of their therapeutic ability was recently attempted mainly using gene transfection techniques. Here, we show for the first time that the surface modification of exosomes with cationized pullulan, which has the ability to target hepatocyte asialoglycoprotein receptors, can target injured liver and enhance the therapeutic effect of exosomes. Surface modification can be achieved by a simple mixing of original exosomes and cationized pullulan and through an electrostatic interaction of both substances. The exosomes modified with cationized pullulan were internalized into HepG2 cells in vitro to a significantly greater extent than unmodified ones and this internalization was induced through the asialoglycoprotein receptor that was specifically expressed on HepG2 cells and hepatocytes. When injected intravenously into mice with concanavalin A-induced liver injury, the modified exosomes accumulated in the liver tissue, resulting in an enhanced anti-inflammatory effect in vivo. It is concluded that the surface modification with cationized pullulan promoted accumulation of the exosomes in the liver and the subsequent biological function, resulting in a greater therapeutic effect on liver injury. Exosomes have shown potentials as therapeutics for various inflammatory disease models. This study is the first to show the specific accumulation of exosomes in the liver and enhanced anti-inflammatory effect via the surface modification of exosomes using pullulan, which is specifically recognized by the asialoglycoprotein receptor (AGPR) on HepG2 cells and hepatocytes. The pullulan was expressed on the surface of PKH-labeled exosomes, and it led increased accumulation of PKH into HepG2 cells, whereas the accumulation was canceled by AGPR inhibitor. In the mouse

  2. In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface

    International Nuclear Information System (INIS)

    Baranton, Steve; Belanger, Daniel

    2008-01-01

    The modification of glassy carbon electrode was achieved by electrochemical reduction of in situ generated diazonium cations in acetonitrile. The in situ generation of 4-nitrophenyl diazonium cations in acetonitrile was investigated by spectroscopic methods. UV-visible spectroscopy revealed slow kinetics for the reaction of 4-nitroaniline with tert-butylnitrite in acetonitrile to form the corresponding diazonium cation. As a result, a coupling reaction, which implies a consumption of the amine and loss of the already formed diazonium cations, was evidenced by 1 H NMR spectroscopy. This spectroscopic study allowed the optimization of the in situ diazonium cations generation prior to the modification step. The electrochemical modification of the carbon electrodes with 4-nitrophenyl, 4-bromophenyl and anthraquinone groups was characterized by cyclic voltammetry and the resulting grafted layer were characterized by electrochemical techniques. The cyclic voltammetric behaviour during the electrochemical grafting was very similar to the one observed for an isolated diazonium salt dissolved in acetonitrile. In the case of the anthraquinone-modified electrode, the use of acetonitrile, into which the corresponding amine is soluble but not in aqueous media, allowed for its grafting by the in situ approach. The barrier properties of these grafted layers are similar to those obtained from isolated diazonium salts. Finally, the chemical composition of the grafted layers was determined by X-ray photoelectron spectroscopy and surface coverage in the range 5-7 x 10 -10 mol cm -2 was estimated for films grown in our experimental conditions

  3. In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface

    Energy Technology Data Exchange (ETDEWEB)

    Baranton, Steve [Departement de Chimie, Universite du Quebec a Montreal, Case Postale 8888, succursale Centre-Ville, Montreal (Quebec), H3C 3P8 (Canada); Belanger, Daniel [Departement de Chimie, Universite du Quebec a Montreal, Case Postale 8888, succursale Centre-Ville, Montreal (Quebec), H3C 3P8 (Canada)], E-mail: belanger.daniel@uqam.ca

    2008-10-01

    The modification of glassy carbon electrode was achieved by electrochemical reduction of in situ generated diazonium cations in acetonitrile. The in situ generation of 4-nitrophenyl diazonium cations in acetonitrile was investigated by spectroscopic methods. UV-visible spectroscopy revealed slow kinetics for the reaction of 4-nitroaniline with tert-butylnitrite in acetonitrile to form the corresponding diazonium cation. As a result, a coupling reaction, which implies a consumption of the amine and loss of the already formed diazonium cations, was evidenced by {sup 1}H NMR spectroscopy. This spectroscopic study allowed the optimization of the in situ diazonium cations generation prior to the modification step. The electrochemical modification of the carbon electrodes with 4-nitrophenyl, 4-bromophenyl and anthraquinone groups was characterized by cyclic voltammetry and the resulting grafted layer were characterized by electrochemical techniques. The cyclic voltammetric behaviour during the electrochemical grafting was very similar to the one observed for an isolated diazonium salt dissolved in acetonitrile. In the case of the anthraquinone-modified electrode, the use of acetonitrile, into which the corresponding amine is soluble but not in aqueous media, allowed for its grafting by the in situ approach. The barrier properties of these grafted layers are similar to those obtained from isolated diazonium salts. Finally, the chemical composition of the grafted layers was determined by X-ray photoelectron spectroscopy and surface coverage in the range 5-7 x 10{sup -10} mol cm{sup -2} was estimated for films grown in our experimental conditions.

  4. Surface modification of cation exchange membranes by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles

    International Nuclear Information System (INIS)

    Nemati, Mahsa; Hosseini, Sayed Mohsen; Bagheripour, Ehsan; Madaeni, Sayed Siavash

    2016-01-01

    Surface modification of polyvinylchloride based heterogeneous cation exchange membrane was performed by graft polymerization of PAA and PAA-co-PANI/MWCNTs nanoparticles. The ion exchange membranes were prepared by solution casting technique. Spectra analysis confirmed graft polymerization clearly. SEM images illustrated that graft polymerization covers the membranes by simple gel network entanglement. The membrane water content was decreased by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles on membrane surface. Membrane transport number and selectivity declined initially by PAA graft polymerization and then began to increase by utilizing of composite nanoparticles in modifier solution. The sodium and barium flux was improved sharply by PAA and PAAco- 0.01%wt PANI/MWCNTs graft polymerization on membrane surface and then decreased again by more increase of PANI/MWCNTs nanoparticles content ratio in modifier solution. The electrodialysis experiment results in laboratory scale showed higher dialytic rate in heavy metals removal for grafted-PAA and grafted-PAA-co-PANI/MWCNTs modified membrane compared to pristine one. Membrane areal electrical resistance was also decreased by introducing graft polymerization of PAA and PAA-co-PANI/MWCNTs NPs on membrane surface.

  5. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    International Nuclear Information System (INIS)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-01-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function. (paper)

  6. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    Science.gov (United States)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-02-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.

  7. Modification of Ti6Al4V surface by diazonium compounds

    Science.gov (United States)

    Sandomierski, Mariusz; Buchwald, Tomasz; Strzemiecka, Beata; Voelkel, Adam

    2018-02-01

    Ti6Al4V alloy is the most commonly used in orthopedic industry as an endoprosthesis. Ti6Al4V exhibits good mechanical properties, except the abrasion resistance. Surface modification of Ti6Al4V in order to obtain organic layer, and then the attachment of the polymer, can allow for overcoming this problem. The aim of the work was the modification of Ti6Al4V surface by diazonium compounds: salt or cation generated in situ and examine the influence of the reducing agent - ascorbic acid, and the temperature of reaction on modification process. Moreover, the simulated body fluid was used for the assessment of the organic layer stability on Ti6Al4V surface. The evaluation of the modification was carried out using the following methods: Raman microspectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Higher temperature of modification by 4-hydroxymethylbenzenediazonium cation, provides the largest amount of organic layer on the Ti6Al4V alloy. In the case of the Ti6Al4V modified by Variamine Blue B salt, the amount of organic layer is not dependent on the reaction condition. Moreover, the ascorbic acid and the presence of TiO2 does not effect on the modification. The modified surface is completely coated with the organic layer which is stable in simulated body fluid.

  8. Antimicrobial membrane surfaces via efficient polyethyleneimine immobilization and cationization

    Science.gov (United States)

    Qiu, Wen-Ze; Zhao, Zi-Shu; Du, Yong; Hu, Meng-Xin; Xu, Zhi-Kang

    2017-12-01

    Biofouling control is a major task in membrane separation processes for water treatment and biomedical applications. In this work, N-alkylated polyethylenimine (PEI) is facilely and efficiently introduced onto the membrane surfaces via the co-deposition of catechol (CCh) and PEI, followed by further grafting of PEIs (600 Da, 70 kDa and 750 kDa) and cationization with methyl iodide (CH3I). The physical and chemical properties of the constructed membrane surfaces are characterized with scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, zeta potential and water contact angle measurements. Antibacterial assay reveals that the optimized membrane surfaces possess around 95% antibacterial efficiency against Gram-positive Staphylococcus aureus (S. aureus) with weak adhesion of bacteria cells after 24 h of bacterial contact. Additionally, the membrane surfaces also exhibit much enhanced antifouling property during the filtration of opposite charged bovine serum albumin (BSA). These results demonstrate a useful strategy for the surface modification of separation membranes by a kind of antimicrobial and antifouling coating.

  9. Effect of Cationic Surface Modification on the Rheological Behavior and Microstructure of Nanocrystalline Cellulose

    Directory of Open Access Journals (Sweden)

    Yanjun Tang

    2018-03-01

    Full Text Available In the present work, the microstructure and rheological behavior of nanocrystalline cellulose (NCC and cationically modified NCC (CNCC were comparatively studied. The resultant CNCC generally showed improved dispersion and higher thermal stability in comparison to the un-modified NCC. The rheological behavior demonstrated that the viscosity of the NCC suspension substantially decreased with the increasing shear rate (0.01–100 s−1, showing the typical characteristics of a pseudoplastic fluid. In contrast, the CNCC suspensions displayed a typical three-region behavior, regardless of changes in pH, temperature, and concentration. Moreover, the CNCC suspensions exhibited higher shear stress and viscosity at a given shear rate (0.01–100 s−1 than the NCC suspension. Meanwhile, the dynamic viscoelasticity measurements revealed that the CNCC suspensions possessed a higher elastic (G′ and loss modulus (G″ than NCC suspensions over the whole frequency range (0.1–500 rad·s−1, providing evidence that the surface cationization of NCC makes it prone to behave as a gel-like structure.

  10. Effect of cation size and charge on the interaction between silica surfaces in 1:1, 2:1, and 3:1 aqueous electrolytes.

    Science.gov (United States)

    Dishon, Matan; Zohar, Ohad; Sivan, Uri

    2011-11-01

    Application of two complementary AFM measurements, force vs separation and adhesion force, reveals the combined effects of cation size and charge (valency) on the interaction between silica surfaces in three 1:1, three 2:1, and three 3:1 metal chloride aqueous solutions of different concentrations. The interaction between the silica surfaces in 1:1 and 2:1 salt solutions is fully accounted for by ion-independent van der Waals (vdW) attraction and electric double-layer repulsion modified by cation specific adsorption to the silica surfaces. The deduced ranking of mono- and divalent cation adsorption capacity (adsorbability) to silica, Mg(2+) cation bare size as well as cation solvation energy but does not correlate with hydrated ionic radius or with volume or surface ionic charge density. In the presence of 3:1 salts, the coarse phenomenology of the force between the silica surfaces as a function of salt concentration resembles that in 1:1 and 2:1 electrolytes. Nevertheless, two fundamental differences should be noticed. First, the attraction between the silica surfaces is too large to be attributed solely to vdW force, hence implying an additional attraction mechanism or gross modification of the conventional vdW attraction. Second, neutralization of the silica surfaces occurs at trivalent cation concentrations that are 3 orders of magnitude smaller than those characterizing surface neutralization by mono- and divalent cations. Consequently, when trivalent cations are added to our cation adsorbability series the correlation with bare ion size breaks down abruptly. The strong adsorbability of trivalent cations to silica contrasts straightforward expectations based on ranking of the cationic solvation energies, thus suggesting a different adsorption mechanism which is inoperative or weak for mono- and divalent cations.

  11. Pore channel surface modification for enhancing anti-fouling membrane distillation

    Science.gov (United States)

    Qiu, Haoran; Peng, Yuelian; Ge, Lei; Villacorta Hernandez, Byron; Zhu, Zhonghua

    2018-06-01

    Membrane surface modification by forming a functional layer is an effective way to improve the anti-fouling properties of membranes; however, the additional layer and the potential blockage of bulk pores may increase the mass transfer resistance and reduce the permeability. In this study, we applied a novel method of preparing anti-fouling membranes for membrane distillation by dispersing graphene oxide (GO) on the channel surface of polyvinylidene fluoride membranes. The surface morphology and properties were characterized by scanning electron microscopy, atomic force microscope, and Fourier transform infrared spectrometry. Compared to the membrane surface modification by nanoparticles (e.g. SiO2), GO was mainly located on the pore surface of the membrane bulk, rather than being formed as an individual layer onto the membrane surface. The performance was evaluated via a direct-contact membrane distillation process with anionic and cationic surfactants as the foulants, separately. Compared to the pristine PVDF membrane, the anti-fouling behavior and distillate flux of the GO-modified membranes were improved, especially when using the anionic surfactant as the foulant. The enhanced anti-fouling performance can be attributed to the oxygen containing functional groups in GO and the healing of the membrane pore defects. This method may provide an effective route to manipulate membrane pore surface properties for anti-fouling separation without increasing mass transfer resistance.

  12. Strong Cation Exchange Chromatography in Analysis of Posttranslational Modifications: Innovations and Perspectives

    Science.gov (United States)

    Edelmann, Mariola J.

    2011-01-01

    Strong cation exchange (SCX) chromatography has been utilized as an excellent separation technique that can be combined with reversed-phase (RP) chromatography, which is frequently used in peptide mass spectrometry. Although SCX is valuable as the second component of such two-dimensional separation methods, its application goes far beyond efficient fractionation of complex peptide mixtures. Here I describe how SCX facilitates mapping of the protein posttranslational modifications (PTMs), specifically phosphorylation and N-terminal acetylation. The SCX chromatography has been mainly used for enrichment of these two PTMs, but it might also be beneficial for high-throughput analysis of other modifications that alter the net charge of a peptide. PMID:22174558

  13. Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy

    International Nuclear Information System (INIS)

    Syverud, K.; Xhanari, K.; Chinga-Carrasco, G.; Yu, Y.; Stenius, P.

    2011-01-01

    Films made of nanofibrils were modified by adsorption of a cationic surfactant directly on the film surfaces. The nanofibrils were prepared by 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation and mechanical fibrillation, and were relatively homogeneous in size. The average nanofibril diameter and surface porosity was quantified based on computer-assisted field-emission scanning electron microscopy (FE-SEM). The cationic surfactant used in the adsorption was n-hexadecyl trimethylammonium bromide (cetyltrimethylammonium bromide, CTAB). The adsorption of CTAB was confirmed by Fourier transform infrared (FTIR) spectroscopy and high-resolution transmission electron microscopy (HRTEM) analyses. It was shown that the adsorbed layer of CTAB increased the hydrophobicity, without affecting the tensile index significantly. This capability, combined with the antiseptic properties of CTAB, may be a major advantage for several applications.

  14. Inversion of membrane surface charge by trivalent cations probed with a cation-selective channel.

    Science.gov (United States)

    Gurnev, Philip A; Bezrukov, Sergey M

    2012-11-13

    We demonstrate that the cation-selective channel formed by gramicidin A can be used as a reliable sensor for studying the multivalent ion accumulation at the surfaces of charged lipid membranes and the "charge inversion" phenomenon. In asymmetrically charged membranes with the individual leaflets formed from pure negative and positive lipids bathed by 0.1 M CsCl solutions the channel exhibits current rectification, which is comparable to that of a typical n/p semiconductor diode. We show that even at these highly asymmetrical conditions the channel conductance can be satisfactorily described by the electrodiffusion equation in the constant field approximation but, due to predictable limitations, only when the applied voltages do not exceed 50 mV. Analysis of the changes in the voltage-dependent channel conductance upon addition of trivalent cations allows us to gauge their interactions with the membrane surface. The inversion of the sign of the effective surface charge takes place at the concentrations, which correlate with the cation size. Specifically, these concentrations are close to 0.05 mM for lanthanum, 0.25 mM for hexaamminecobalt, and 4 mM for spermidine.

  15. Surface enhanced spectroscopic investigations of adsorption of cations on electrochemical interfaces.

    Science.gov (United States)

    Dunwell, M; Wang, Junhua; Yan, Y; Xu, B

    2017-01-04

    The adsorption of alkali and tetraalkylammonium cations on Pt is investigated using surface enhanced infrared absorption spectroscopy and carbon monoxide as a probe molecule. Alkali cations exhibit a stronger adsorption than organic cations, with potassium showing the strongest effect, followed by sodium and lithium.

  16. The surface modification of polystyrene

    International Nuclear Information System (INIS)

    Tremlett, C.

    2000-03-01

    Polymers have ideal bulk properties for many applications. However, adhesion to many polymers is poor without surface pretreatment. This can result, for example, in peeling paint and printing, adhesive joint failure and bio-incompatibility. In applications such as painting, printing, adhesive bonding and biocompatibility, various cleaning or surface chemical modifications may be employed. A commodity polymer where pretreatment is sometimes needed is polystyrene. This project investigated, in detail, the effects of a novel method of modification namely mediated electrochemical oxidation (MEO), as a mode of surface modification on polystyrene and a comparison was made with other polymers. The resulting modification was investigated using a range of surface analysis techniques to obtain complementary information. These included, X-ray photoelectron spectroscopy, contact angles, static secondary ion mass spectrometry, atomic force microscopy, chemical derivatization, scanning electron microscopy, attenuated total reflection Fourier Transform infrared spectroscopy and composite lap shear joint testing. It has been shown that MEO modifies the surface of polystyrene introduced oxygen mainly as hydroxyl groups, and a small number of carbonyl groups, that are positioned only on the backbone hydrocarbon chain. This modification improved adhesion, was stable and samples could be stored in aqueous media. The resulting hydroxylation was further derivatized using an amino acid to provide a specialised surface. This was very different from the multiple oxygen functionalities introduced in the comparison studies by UV/ozone and plasma treatments. (author)

  17. Modification of Nafion Membranes by IL-Cation Exchange: Chemical Surface, Electrical and Interfacial Study

    Directory of Open Access Journals (Sweden)

    V. Romero

    2012-01-01

    A study of time evolution of the impedance curves measured in the system “IL aqueous solution/Nafion-112 membrane/IL aqueous solution” was also performed. This study allows us monitoring the electrical changes associated to the IL-cation incorporation in both the membrane and the membrane/IL solution interface, and it provides supplementary information on the characteristic of the Nafion/DTA+ hybrid material. Moreover, the results also show the significant effect of water on the electrical resistance of the Nafion-112/IL-cation-modified membrane.

  18. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  19. Gamma-irradiated cationic starches: Paper surface-sizing agents

    International Nuclear Information System (INIS)

    Hofreiter, B.T.; Heath, H.D.; Schulte, M.I.; Phillips, B.S.

    1981-01-01

    Cationic starches, precisely depolymerized by gamma-irradiation ( 60 Co), were dispersed in mild alkali and evaluated as surface sizes for bond paper on a pilot paper machine. The irradiated products had excellent dispersion properties, were well retained on fibers when sized wastepaper (broke) was repulped and had an ability to enhance paper properties that was comparable to that of starch-based materials used commercially. A yellow corn flour, cationized by an essentially dry reaction process recently developed at this Center, was also radiolyzed and evaluated as a size. This latter product was unique in that all drying steps were eliminated in the preparation of a cationic ceral product of reduced viscosity. (orig.) [de

  20. Ion bombardment modification of surfaces

    International Nuclear Information System (INIS)

    Auciello, O.

    1984-01-01

    Ion bombardment-induced modification of surfaces may be considered one of the significant scientific and technological developments of the last two decades. The understanding acquired concerning the underlying mechanisms of several phenomena occurring during ion-surface interactions has led to applications within different modern technologies. These include microelectronics, surface acoustical and optical technologies, solar energy conversion, thin film technology, ion implantation metallurgy, nuclear track technology, thermonuclear fusion, vacuum technology, cold welding technology, biomedicine (implantology). It has become clear that information on many relevant advances, regarding ion bombardment modification of surfaces is dispersed among journals involving fields sometimes not clearly related. This may result, in some cases, in a loss of the type of interdisciplinary exchange of ideas, which has proved to be so fruitful for the advancement of science and technology. This book has been planned in an attempt to collect at least some of today's relevant information about the experimental and theoretical knowledge related to surface modification and its application to technology. (Auth.)

  1. Surface modification of montmorillonite on surface Acid-base characteristics of clay and thermal stability of epoxy/clay nanocomposites.

    Science.gov (United States)

    Park, Soo-Jin; Seo, Dong-Il; Lee, Jae-Rock

    2002-07-01

    In this work, the effect of surface treatments on smectitic clay was investigated in surface energetics and thermal behaviors of epoxy/clay nanocomposites. The pH values, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the effect of cation exchange on clay surface and the exfoliation phenomenon of clay interlayer. The surface energetics of clay and thermal properties of epoxy/clay nanocomposites were investigated in contact angles and thermogravimetric analysis (TGA), respectively. From the experimental results, the surface modification of clay by dodecylammonium chloride led to the increases in both distance between silicate layers of about 8 A and surface acid values, as well as in the electron acceptor component (gamma(+)(s)) of surface free energy, resulting in improved interfacial adhesion between basic (or electron donor) epoxy resins and acidic (electron acceptor) clay interlayers. Also, the thermal stability of nanocomposites was highly superior to pure epoxy resin due to the presence of the well-dispersed clay nanolayer, which has a barrier property in a composite system.

  2. Surface modification of polyester biomaterials for tissue engineering

    International Nuclear Information System (INIS)

    Jiao Yanpeng; Cui Fuzhai

    2007-01-01

    Surfaces play an important role in a biological system for most biological reactions occurring at surfaces and interfaces. The development of biomaterials for tissue engineering is to create perfect surfaces which can provoke specific cellular responses and direct new tissue regeneration. The improvement in biocompatibility of biomaterials for tissue engineering by directed surface modification is an important contribution to biomaterials development. Among many biomaterials used for tissue engineering, polyesters have been well documented for their excellent biodegradability, biocompatibility and nontoxicity. However, poor hydrophilicity and the lack of natural recognition sites on the surface of polyesters have greatly limited their further application in the tissue engineering field. Therefore, how to introduce functional groups or molecules to polyester surfaces, which ideally adjust cell/tissue biological functions, becomes more and more important. In this review, recent advances in polyester surface modification and their applications are reviewed. The development of new technologies or methods used to modify polyester surfaces for developing their biocompatibility is introduced. The results of polyester surface modifications by surface morphological modification, surface chemical group/charge modification, surface biomacromolecule modification and so on are reported in detail. Modified surface properties of polyesters directly related to in vitro/vivo biological performances are presented as well, such as protein adsorption, cell attachment and growth and tissue response. Lastly, the prospect of polyester surface modification is discussed, especially the current conception of biomimetic and molecular recognition. (topical review)

  3. Nanoscale encapsulation: the structure of cations in hydrophobic microporous aluminosilicates

    International Nuclear Information System (INIS)

    Wasserman, S.R.; Yuchs, S.E.; Giaquinta, D.; Soderholm, L.; Song, Kang.

    1996-01-01

    Hydrophobic microporous aluminosilicates, created by organic surface modification of inherently hydrophilic materials such as zeolites and clays, are currently being investigated as storage media for hazardous cations. Use of organic monolayers to modify the surface of an aluminosilicate after introducing an ion into the zeolite/clay reduces the interaction of water with the material. Resulting systems are about 20 times more resistant to leaching of stored ion. XAS spectra from the encapsulated ion demonstrate that byproducts from the organic modifier can complex with the stored cation. This complexation can result in a decreased affinity of the cation for the aluminosilicate matrix. Changing the organic modifier eliminates this problem. XAS spectra also indicate that the reactivity and speciation of the encapsulated ion may change upon application of the hydrophobic layer

  4. Surface modification of ceramics. Ceramics no hyomen kaishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Hioki, T. (Toyota Central Research and Development Labs., Inc., Nagoya (Japan))

    1993-07-05

    Surface modification of ceramics and some study results using in implantation in surface modification are introduced. The mechanical properties (strength, fracture toughness, flaw resistance) of ceramics was improved and crack was repaired using surface modification by ion implantation. It is predicted that friction and wear properties are considerably affected because the hardness of ceramics is changed by ion implantation. Cementing and metalization are effective as methods for interface modification and the improvement of the adhesion power of the interface between metal and ceramic is their example. It was revealed that the improvement of mechanical properties of ceramics was achieved if appropriate surface modification was carried out. The market of ceramics mechanical parts is still small, therefore, the present situation is that the field of activities for surface modification of ceramics is also narrow. However, it is thought that in future, ceramics use may be promoted surely in the field like medicine and mechatronics. 8 refs., 4 figs.

  5. Microscale surface modifications for heat transfer enhancement.

    Science.gov (United States)

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-09

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  6. Covalent Surface Modifications of Carbon Nanotubes.

    Energy Technology Data Exchange (ETDEWEB)

    Pavia Sanders, Adriana [Sandia National Lab. (SNL-CA), Livermore, CA (United States); O' Bryan, Greg [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    A report meant to document the chemistries investigated by the author for covalent surface modification of CNTs. Oxidation, cycloaddition, and radical reactions were explored to determine their success at covalently altering the CNT surface. Characterization through infrared spectroscopy, Raman spectroscopy, and thermo gravimetric analysis was performed in order to determine the success of the chemistries employed. This report is not exhaustive and was performed for CNT surface modification exploration as it pertains to the "Next Gen" project.

  7. Significant role of cationic polymers in drug delivery systems.

    Science.gov (United States)

    Farshbaf, Masoud; Davaran, Soodabeh; Zarebkohan, Amir; Annabi, Nasim; Akbarzadeh, Abolfazl; Salehi, Roya

    2017-11-06

    Cationic polymers are characterized as the macromolecules that possess positive charges, which can be either inherently in the polymer side chains and/or its backbone. Based on their origins, cationic polymers are divided in two category including natural and synthetic, in which the possessed positive charges are as result of primary, secondary or tertiary amine functional groups that could be protonated in particular situations. Cationic polymers have been employed commonly as drug delivery agents due to their superior encapsulation efficacy, enhanced bioavailability, low toxicity and improved release profile. In this paper, we focus on the most prominent examples of cationic polymers which have been revealed to be applicable in drug delivery systems and we also discuss their general synthesis and surface modification methods as well as their controlled release profile in drug delivery.

  8. Dependency of Nanodiamond Particle Size and Outermost-Surface Composition on Organo-Modification: Evaluation by Formation of Organized Molecular Films and Nanohybridization with Organic Polymers.

    Science.gov (United States)

    Tasaki, Taira; Guo, Yifei; Meng, Qi; Mamun, Muhammad Abdullah Al; Kasahara, Yusuke; Akasaka, Shuichi; Fujimori, Atsuhiro

    2017-04-26

    The formation behavior of organized organo-modified nanodiamond films and polymer nanocomposites has been investigated using nanodiamonds of several different particle sizes and outermost-surface compositions. The nanodiamond particle sizes used in this study were 3 and 5 nm, and the outermost surface contained -OH and/or -COOH groups. The nanodiamond was organo-modified to prepare -OH 2 + cations and -COO - anions on the outermost surface by carboxylic anion of fatty acid and long-chain phosphonium cation, respectively. The surface of nanodiamond is known to be covered with a nanolayer of adsorbed water, which was exploited here for the organo-modification of nanodiamond with long-chain fatty acids via adsorption, leading to nanodispersions of nanodiamond in general organic solvents as a mimic of solvency. Particle multilayers were then formed via the Langmuir-Blodgett technique and subjected to fine structural analysis. The organo-modification enabled integration and multilayer formation of inorganic nanoparticles due to enhancement of the van der Waals interactions between the chains. Therefore, "encounters" between the organo-modifying chain and the inorganic particles led to solubilization of the inorganic particles and enhanced interactions between the particles; this can be regarded as imparting a new functionality to the organic molecules. Nanocomposites with a transparent crystalline polymer were fabricated by nanodispersing the nanodiamond into the polymer matrix, which was achievable due to the organo-modification. The resulting transparent nanocomposites displayed enhanced degrees of crystallization and improved crystallization temperatures, compared with the neat polymer, due to a nucleation effect.

  9. Corrosion principles and surface modification

    International Nuclear Information System (INIS)

    Kruger, J.

    1982-01-01

    This chapter examines the important strategies provided by the newer ideas of corrosion science and engineering that surface modification techniques must utilize to help prevent corrosion, especially the most damaging kind of aqueous corrosion, localized corrosion. Provides a brief introduction to the principles underlying the phenomenon of corrosion in order to use them to discuss surface modification strategies to combat corrosion. Discusses the electrochemistry of corrosion; the thermodynamics of corrosion; the kinetics of corrosion; thermodynamic strategies; and kinetic strategies (formation of more protective passive films; resistance to breakdown; ductility; repassivation)

  10. Surface Modification of Biomaterials: A Quest for Blood Compatibility

    Directory of Open Access Journals (Sweden)

    Achala de Mel

    2012-01-01

    Full Text Available Cardiovascular implants must resist thrombosis and intimal hyperplasia to maintain patency. These implants when in contact with blood face a challenge to oppose the natural coagulation process that becomes activated. Surface protein adsorption and their relevant 3D confirmation greatly determine the degree of blood compatibility. A great deal of research efforts are attributed towards realising such a surface, which comprise of a range of methods on surface modification. Surface modification methods can be broadly categorized as physicochemical modifications and biological modifications. These modifications aim to modulate platelet responses directly through modulation of thrombogenic proteins or by inducing antithrombogenic biomolecules that can be biofunctionalised onto surfaces or through inducing an active endothelium. Nanotechnology is recognising a great role in such surface modification of cardiovascular implants through biofunctionalisation of polymers and peptides in nanocomposites and through nanofabrication of polymers which will pave the way for finding a closer blood match through haemostasis when developing cardiovascular implants with a greater degree of patency.

  11. Microwave-assisted grafting polymerization modification of nylon 6 capillary-channeled polymer fibers for enhanced weak cation exchange protein separations

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Liuwei; Marcus, R. Kenneth, E-mail: marcusr@clemson.edu

    2017-02-15

    A weak cation exchange liquid chromatography stationary phase (nylon-COOH) was prepared by grafting polyacrylic acid on to native nylon 6 capillary-channeled polymer (C-CP) fibers via a microwave-assisted radical polymerization. To the best of our knowledge, this is the first study of applying microwave-assisted grafting polymerization to affect nylon material for protein separation. The C-CP fiber surfaces were characterized by attenuated total reflection (ATR) infrared spectroscopy and scanning electron microscope (SEM). The anticipated carbonyl peak at 1722.9 cm{sup −1} was found on the nylon-COOH fibers, but was not found on the native fiber, indicating the presence of the polyacrylic acid on nylon fibers after grafting. The nylon-COOH phase showed a ∼12× increase in lysozyme dynamic binding capacity (∼12 mg mL{sup −1}) when compared to the native fiber phase (∼1 mg mL{sup −1}). The loading capacity of the nylon-COOH phase is nearly independent of the lysozyme loading concentration (0.05–1 mg mL{sup −1}) and the mobile phase linear velocity (7.3–73 mm s{sup −1}). The reproducibility of the lysozyme recovery from the nylon-COOH (RSD = 0.3%, n = 10) and the batch-to-batch variability in the functionalization (RSD = 3%, n = 5) were also investigated, revealing very high levels of consistency. Fast baseline separations of myoglobin, α-chymotrypsinogen A, cytochrome c and lysozyme were achieved using the nylon-COOH column. It was found that a 5× increase in the mobile phase linear velocity (7.3-to-36.5 mm s{sup −1}) had little effect on the separation resolution. The microwave-assisted grafting polymerization has great potential as a generalized surface modification methodology across the applications of C-CP fibers. - Highlights: • A microwave-assisted grafting method to attach acrylic acid is described for the first time for chromatographic phases. • A high-density, weak cation exchange surface is created on a nylon

  12. Surface collisions of formic acid cations HCOOH+ and DCOOD+ with a hydrocarbon-covered stainless steel surface

    Science.gov (United States)

    Tepnual, Thawatchai; Feketeová, Linda; Grill, Verena; Scheier, Paul; Herman, Zdenek; Märk, Tilmann D.

    2005-07-01

    Interaction of the formic acid cation HCOOH+ with a stainless steel surface covered with hydrocarbons has been studied as a function of the collision energy from a few eV up to 40 eV. Mass spectra of the product ions showed ions produced by surface-induced dissociation of the projectile and formation of HCO2H2+ in interaction with the surface material. The fragmentation of the projectile led to product ions HCOO+ and CHO+. The product ion HCO2H2+ fragmented to give only CHO+, indicating that its structure was HC(OH)2+ as suggested earlier by others. The results were confirmed by studies using the deuterated formic acid cation DCOOD+.

  13. Ion bombardment modification of surfaces

    International Nuclear Information System (INIS)

    Auciello, O.

    1984-01-01

    An historical overview of the main advances in the understanding of bombardment-induced surface topography is presented. The implantation and sputtering mechanisms which are relevant to ion bombardment modification of surfaces and consequent structural, electronic and compositional changes are described. Descriptions of plasma and ion-beam sputtering-induced film formation, primary ion-beam deposition, dual beam techniques, cluster of molecule ion-beam deposition, and modification of thin film properties by ion bombardment during deposition are presented. A detailed account is given of the analytical and computational modelling of topography from the viewpoint of first erosion theory. Finally, an account of the possible application and/or importance of textured surfaces in technologies and/or experimental techniques not considered in previous chapters is presented. refs.; figs.; tabs

  14. Chemical Surface, Thermal and Electrical Characterization of Nafion Membranes Doped with IL-Cations

    Directory of Open Access Journals (Sweden)

    María del Valle Martínez de Yuso

    2014-04-01

    Full Text Available Surface and bulk changes in a Nafion membrane as a result of IL-cation doping (1-butyl-3-methylimidazolium tetrafluoroborate or BMIM+BF4 and phenyltrimethylammonium chloride or TMPA+Cl− were studied by X-ray photoelectron spectroscopy (XPS, contact angle, differential scanning calorimetry (DSC and impedance spectroscopy (IS measurements performed with dry samples after 24 h in contact with the IL-cations BMIM+ and TMPA+. IL-cations were selected due to their similar molecular weight and molar volume but different shape, which could facilitate/obstruct the cation incorporation in the Nafion membrane structure by proton/cation exchange mechanism. The surface coverage of the Nafion membrane by the IL-cations was confirmed by XPS analysis and contact angle, while the results obtained by the other two techniques (DSC and IS seem to indicate differences in thermal and electrical behaviour depending on the doping-cation, being less resistive the Nafion/BMIM+ membrane. For that reason, determination of the ion transport number was obtained for this membrane by measuring the membrane or concentration potential with the samples in contact with HCl solutions at different concentrations. The comparison of these results with those obtained for the original Nafion membrane provides information on the effect of IL-cation BMIM+ on the transport of H+ across wet Nafion/BMIM+ doped membranes.

  15. Tribological effects of polymer surface modification through plastic

    Indian Academy of Sciences (India)

    Tribological effects of polymer surface modification through plastic deformation. K O Low K J Wong ... In this regard, a surface modification technique through plastic deformation has been implemented. ... Bulletin of Materials Science | News.

  16. Polyamide desalination membrane characterization and surface modification to enhance fouling resistance.

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mukul M. (Univeristy of Texas at Austin, Austin, TX); Freeman, Benny D. (Univeristy of Texas at Austin, Austin, TX); Van Wagner, Elizabeth M. (Univeristy of Texas at Austin, Austin, TX); Hickner, Michael A. (Pennsylvania State University, University Park, PA); Altman, Susan Jeanne

    2010-08-01

    The market for polyamide desalination membranes is expected to continue to grow during the coming decades. Purification of alternative water sources will also be necessary to meet growing water demands. Purification of produced water, a byproduct of oil and gas production, is of interest due to its dual potential to provide water for beneficial use as well as to reduce wastewater disposal costs. However, current polyamide membranes are prone to fouling, which decreases water flux and shortens membrane lifetime. This research explored surface modification using poly(ethylene glycol) diglycidyl ether (PEGDE) to improve the fouling resistance of commercial polyamide membranes. Characterization of commercial polyamide membrane performance was a necessary first step before undertaking surface modification studies. Membrane performance was found to be sensitive to crossflow testing conditions. Concentration polarization and feed pH strongly influenced NaCl rejection, and the use of continuous feed filtration led to higher water flux and lower NaCl rejection than was observed for similar tests performed using unfiltered feed. Two commercial polyamide membranes, including one reverse osmosis and one nanofiltration membrane, were modified by grafting PEGDE to their surfaces. Two different PEG molecular weights (200 and 1000) and treatment concentrations (1% (w/w) and 15% (w/w)) were studied. Water flux decreased and NaCl rejection increased with PEGDE graft density ({micro}g/cm{sup 2}), although the largest changes were observed for low PEGDE graft densities. Surface properties including hydrophilicity, roughness and charge were minimally affected by surface modification. The fouling resistance of modified and unmodified membranes was compared in crossflow filtration studies using model foulant solutions consisting of either a charged surfactant or an oil in water emulsion containing n-decane and a charged surfactant. Several PEGDE-modified membranes demonstrated improved

  17. Organic light emitting diode with surface modification layer

    Science.gov (United States)

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.

    2017-09-12

    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  18. Surface Modifications in Adhesion and Wetting

    Science.gov (United States)

    Longley, Jonathan

    Advances in surface modification are changing the world. Changing surface properties of bulk materials with nanometer scale coatings enables inventions ranging from the familiar non-stick frying pan to advanced composite aircraft. Nanometer or monolayer coatings used to modify a surface affect the macro-scale properties of a system; for example, composite adhesive joints between the fuselage and internal frame of Boeing's 787 Dreamliner play a vital role in the structural stability of the aircraft. This dissertation focuses on a collection of surface modification techniques that are used in the areas of adhesion and wetting. Adhesive joints are rapidly replacing the familiar bolt and rivet assemblies used by the aerospace and automotive industries. This transition is fueled by the incorporation of composite materials into aircraft and high performance road vehicles. Adhesive joints have several advantages over the traditional rivet, including, significant weight reduction and efficient stress transfer between bonded materials. As fuel costs continue to rise, the weight reduction is accelerating this transition. Traditional surface pretreatments designed to improve the adhesion of polymeric materials to metallic surfaces are extremely toxic. Replacement adhesive technologies must be compatible with the environment without sacrificing adhesive performance. Silane-coupling agents have emerged as ideal surface modifications for improving composite joint strength. As these coatings are generally applied as very thin layers (coatings using the buckling instability formed between two materials of a large elastic mismatch. The elastic modulus is found to effectively predict the joint strength of an epoxy/aluminum joint that has been reinforced with silane coupling agents. This buckling technique is extended to investigate the effects of chemical composition on the elastic modulus. Finally, the effect of macro-scale roughness on silane-reinforced joints is investigated

  19. Characterization of organo-modified bentonite sorbents: The effect of modification conditions on adsorption performance

    International Nuclear Information System (INIS)

    Parolo, María E.; Pettinari, Gisela R.; Musso, Telma B.; Sánchez-Izquierdo, María P.; Fernández, Laura G.

    2014-01-01

    Graphical abstract: - Highlights: • Modification of clay was evaluated by two methods for removing an organic substance. • Surfactant cations and organosilanes were intercalated into the interlayer space. • The hydrophobic surface of adsorbents increased the retention of organic substances. • Clay grafted with vinyltrimethoxysilane showed the highest adsorption for aniline. - Abstract: The organic modification of a natural bentonite was evaluated using two methods: exchanging the interlayer cations by hexadecyltrimethylammonium (HDTMA) and grafting with vinyltrimethoxysilane (VTMS) and γ-methacryloyloxy propyl trimethoxysilane (TMSPMA) on montmorillonite surface. The physicochemical characterization of all materials was made by X-ray diffraction (XRD), IR spectroscopy, thermogravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) surface area techniques. HDTMA cations and organosilanes were intercalated into the interlayer space of montmorillonite, as deduced from the increase of the basal spacing. IR spectroscopy, TGA and BET area give evidence of successful organic modification. The studies show a decrease in the IR absorption band intensity at 3465 cm −1 with surfactant modification, and also a decrease of mass loss due to adsorbed water observed in two samples: the organoclay and functionalized bentonites, which are evidences of a lower interlayer hydrophilicity. The efficiency of aniline removal onto natural bentonite, organobentonite and functionalized bentonites from aqueous solutions was evaluated. Aniline sorption on natural bentonite was studied using batch experiments, XRD and IR spectroscopy. The hydrophobic surface of organobentonite and functionalized bentonites increased the retention capacity for nonionic organic substances such as aniline on bentonites. The sorption properties of modified bentonite, through different modification methods, enhanced the potential industrial applications of bentonites in water decontamination

  20. Nanofibrillated Cellulose Surface Modification: A Review

    Directory of Open Access Journals (Sweden)

    Julien Bras

    2013-05-01

    Full Text Available Interest in nanofibrillated cellulose (NFC has increased notably over recent decades. This bio-based nanomaterial has been used essentially in bionanocomposites or in paper thanks to its high mechanical reinforcement ability or barrier property respectively. Its nano-scale dimensions and its capacity to form a strong entangled nanoporous network have encouraged the emergence of new high-value applications. It is worth noting that chemical surface modification of this material can be a key factor to achieve a better compatibility with matrices. In order to increase the compatibility in different matrices or to add new functions, surface chemical modification of NFC appears to be the prior choice to conserve its intrinsic nanofibre properties. In this review, the authors have proposed for the first time an overview of all chemical grafting strategies used to date on nanofibrillated cellulose with focus on surface modification such as physical adsorption, molecular grafting or polymer grafting.

  1. Analysis of adsorption behavior of cations onto quartz surface by electrical double-layer model

    International Nuclear Information System (INIS)

    Kitamura, Akira; Yamamoto, Tadashi; Fujiwara, Kenso; Nishikawa, Sataro; Moriyama, Hirotake

    1999-01-01

    In a study of the adsorption behavior of cations onto quartz, the distribution coefficient of a variety of cations was determined using the batch method, and using the titration method, the surface charge densities of quartz in a number of electrolyte solutions. The two values thus determined were analyzed applying the electrical double-layer model, from which optimum parameter values were derived for double-layer electrostatics and intrinsic adsorption equilibrium constants. Based on these parameter values, the mechanism of cation adsorption is discussed: A key factor governing this mechanism proved to be the hydration behavior of cations. Consideration of the Coulomb interaction between the adsorbate ions and adsorbent surface led to the finding of a simple rule governing in common the adsorption equilibrium constants of different metal ions. (author)

  2. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hanzhong, E-mail: jiahz@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Li, Li [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Chen, Hongxia; Zhao, Yue [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); School of Geology and Mining Engineering, Xinjiang University, Urumqi 830046 (China); Li, Xiyou [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Wang, Chuanyi, E-mail: cywang@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China)

    2015-04-28

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe{sup 3+} > Al{sup 3+} > Cu{sup 2+} >> Ca{sup 2+} > K{sup +} > Na{sup +}, which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na{sup +}-smectite and K{sup +}-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe{sup 3+}, Al{sup 3+}, and Cu{sup 2+} are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O{sub 2}{sup −}· , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation.

  3. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    International Nuclear Information System (INIS)

    Jia, Hanzhong; Li, Li; Chen, Hongxia; Zhao, Yue; Li, Xiyou; Wang, Chuanyi

    2015-01-01

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe 3+ > Al 3+ > Cu 2+ >> Ca 2+ > K + > Na + , which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na + -smectite and K + -smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe 3+ , Al 3+ , and Cu 2+ are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O 2 − · , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation

  4. Modification of rubber surface by UV surface grafting

    International Nuclear Information System (INIS)

    Shanmugharaj, A.M.; Kim, Jin Kuk; Ryu, Sung Hun

    2006-01-01

    Rubber surface is subjected to ultraviolet radiation (UV) in the presence of allylamine and radiation sensitizer benzophenone (BP). Fourier transform infrared spectral studies reveal the presence of allylamine on the surface. The presence of irregular needle shapes on the surface as observed in scanning electron micrographs also confirms the polymerized allylamine on the surface. Allylamine coatings have been further confirmed from atomic force microscopy (AFM) analysis. Thermogravimetric analysis (TGA) reveals that allylamine coating on the rubber surface lowers the thermal degradation rate. The contact angle between the water and rubber surface decreases for the modified rubber surface confirming the surface modification due to UV surface grafting

  5. Adsorption of cationic surfactants on silica surface: 1. Adsorption isotherms and surface charge

    NARCIS (Netherlands)

    Goloub, T.P.; Koopal, L.K.; Sidorova, M.P.

    2004-01-01

    Adsorption isotherms of cationic surfactant, dodecylpyridinium chloride, on an Aerosil OX50 and isotherms of surface charge against the background of 0.001- and 0.1-M KCl solutions at pH 7 and 9 were measured and analyzed. Different forms of adsorption isotherms of surfactants at low and high

  6. A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification.

    Science.gov (United States)

    Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2016-09-21

    Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.

  7. Characterization of organo-modified bentonite sorbents: The effect of modification conditions on adsorption performance

    Energy Technology Data Exchange (ETDEWEB)

    Parolo, María E., E-mail: maria.parolo@fain.uncoma.edu.ar [Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén 8300 (Argentina); Pettinari, Gisela R. [Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén 8300 (Argentina); Musso, Telma B. [Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén 8300 (Argentina); CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires (Argentina); Sánchez-Izquierdo, María P.; Fernández, Laura G. [Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén 8300 (Argentina)

    2014-11-30

    Graphical abstract: - Highlights: • Modification of clay was evaluated by two methods for removing an organic substance. • Surfactant cations and organosilanes were intercalated into the interlayer space. • The hydrophobic surface of adsorbents increased the retention of organic substances. • Clay grafted with vinyltrimethoxysilane showed the highest adsorption for aniline. - Abstract: The organic modification of a natural bentonite was evaluated using two methods: exchanging the interlayer cations by hexadecyltrimethylammonium (HDTMA) and grafting with vinyltrimethoxysilane (VTMS) and γ-methacryloyloxy propyl trimethoxysilane (TMSPMA) on montmorillonite surface. The physicochemical characterization of all materials was made by X-ray diffraction (XRD), IR spectroscopy, thermogravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) surface area techniques. HDTMA cations and organosilanes were intercalated into the interlayer space of montmorillonite, as deduced from the increase of the basal spacing. IR spectroscopy, TGA and BET area give evidence of successful organic modification. The studies show a decrease in the IR absorption band intensity at 3465 cm{sup −1} with surfactant modification, and also a decrease of mass loss due to adsorbed water observed in two samples: the organoclay and functionalized bentonites, which are evidences of a lower interlayer hydrophilicity. The efficiency of aniline removal onto natural bentonite, organobentonite and functionalized bentonites from aqueous solutions was evaluated. Aniline sorption on natural bentonite was studied using batch experiments, XRD and IR spectroscopy. The hydrophobic surface of organobentonite and functionalized bentonites increased the retention capacity for nonionic organic substances such as aniline on bentonites. The sorption properties of modified bentonite, through different modification methods, enhanced the potential industrial applications of bentonites in water decontamination.

  8. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light.

    Science.gov (United States)

    Jia, Hanzhong; Li, Li; Chen, Hongxia; Zhao, Yue; Li, Xiyou; Wang, Chuanyi

    2015-04-28

    Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe(3+)>Al(3+)>Cu(2+)>Ca(2+)>K(+)>Na(+), which is consistent with the binding energy of cation-π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation-π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na(+)-smectite and K(+)-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe(3+), Al(3+), and Cu(2+) are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O2(-) , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Divalent cations and the protein surface co-ordinate the intensity of human platelet adhesion and P-selectin surface expression.

    Science.gov (United States)

    Whiss, P A; Andersson, R G G

    2002-07-01

    At sites of blood vessel injury, platelets adhere to exposed vessel components, such as collagen, or immobilized fibrinogen derived from plasma or activated platelets. The divalent cations Mg(2+) and Ca(2+) are essential for platelet adhesion and activation, but Mg(2+) can also inhibit platelet activation. The present study evaluates, by an enzymatic method, the effects of various divalent cations on the adhesion of isolated human platelets to collagen, fibrinogen, albumin or plastic in vitro. By enzyme-linked immunosorbent assay, platelet surface expression of P-selectin was measured to estimate the state of activation on adherence. Mg(2+) increased platelet adhesion exclusively to collagen and fibrinogen at physiologically relevant concentrations. At higher concentrations, the adhesion declined. Ca(2+) induced a weak adhesion only to fibrinogen at physiological doses and a peak of increased adhesion to all protein-coated surfaces at 10 mmol/l. Mn(2+) elicited dose-dependent adhesion only to collagen and fibrinogen. Zn(2+), Ni(2+) and Cu(2+) increased the adhesion of platelets independently of the surface. Ca(2+) dose-dependently inhibited adhesion elicited by Mg(2+) to collagen and fibrinogen. No other combination of divalent cations elicited such an effect. Mg(2+)-dependent platelet adhesion to collagen and Ca(2+)-dependent adhesion to fibrinogen increased P-selectin expression. Thus, the present study shows that the outcome of the platelet adhesion depends on the surface and the access of divalent cations, which co-ordinate the intensity of platelet adhesion and P-selectin surface expression.

  10. Modification of surfaces and surface layers by non equilibrium processes

    International Nuclear Information System (INIS)

    Beamson, G.; Brennan, W.J.; Clark, D.T.; Howard, J.

    1988-01-01

    Plasmas are examples of non-equilibrium phenomena which are being used increasingly for the synthesis and modification of materials impossible by conventional routes. This paper introduces methods available by describing the construction and characteristics of some equipment used for the production of different types of plasmas and other non-equilibrium phenomena. This includes high energy ion beams. The special features, advantages and disadvantages of the techniques will be described. There are a multitude of potential application relevant to electronic, metallic, ceramic, and polymeric materials. However, scale-up from the laboratory to production equipment depends on establishing a better understanding of both the physics and chemistry of plasma as well as plasma-solid interactions. Examples are given of how such an understanding can be gained. The chemical analysis of polymer surfaces undergoing modification by inert gas, hydrogen or oxygen plasmas is shown to give physical information regarding the relative roles of diffusion of active species, and direct and radiative energy transfer from the plasma. Surface modification by plasma depositing a new material onto an existing substrate is discussed with particular reference to the deposition of amorphous carbon films. Applications of the unique properties of these films are outlined together with our current understanding of these properties based on chemical and physical methods of analysis of both the films and the plasmas producing them. Finally, surface modification by ion beams is briefly illustrated using examples from the electronics and metals industries where the modification has had a largely physical rather than chemical effect on the starting material. (orig.)

  11. Acetone n-radical cation internal rotation spectrum: The torsional potential surface

    International Nuclear Information System (INIS)

    Shea, Dana A.; Goodman, Lionel; White, Michael G.

    2000-01-01

    The one color REMPI and two color ZEKE-PFI spectra of acetone-d 3 have been recorded. The 3p x Rydberg state of acetone-d 3 lies at 59 362.3 cm-1 and both of the torsional modes are visible in this spectrum. The antigearing Rydberg (a 2 ) mode, v 12 * , has a frequency of 62.5 cm-1, while the previously unobserved gearing (b 1 ) mode, v 17 * , is found at 119.1 cm-1. An ionization potential of 78 299.6 cm-1 for acetone-d 3 has been measured. In acetone-d 3 n-radical cation ground state, the fundamentals of both of the torsional modes have been observed, v 12 + at 51.0 cm-1 and v 17 + at 110.4 cm-1, while the first overtone of v 12 + has been measured at 122.4 cm-1. Deuterium shifts show that v 12 + behaves like a local C 3v rotor, but that v 17 + is canonical. Combining this data with that for acetone-d 0 and aacetone-d 6 has allowed us to fit the observed frequencies to a torsional potential energy surface based on an ab initio C 2v cation ground state geometry. This potential energy surface allows for prediction of the v 17 vibration in acetone-d 0 and acetone-d 6 . The barrier to synchronous rotation is higher in the cation ground state than in the neutral ground state, but significantly lower than in the 3s Rydberg state. The 3p x Rydberg and cation ground state potential energy surfaces are found to be very similar to each other, strongly supporting the contention that the 3p x Rydberg state has C 2v geometry and is a good model for the ion core. The altered 3s Rydberg state potential surface suggests this state has significant valence character. (c) 2000 American Institute of Physics

  12. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.

    Science.gov (United States)

    Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal

    2014-04-01

    This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Laser modification of macroscopic properties of metal surface layer

    Science.gov (United States)

    Kostrubiec, Franciszek

    1995-03-01

    Surface laser treatment of metals comprises a number of diversified technological operations out of which the following can be considered the most common: oxidation and rendering surfaces amorphous, surface hardening of steel, modification of selected physical properties of metal surface layers. In the paper basic results of laser treatment of a group of metals used as base materials for electric contacts have been presented. The aim of the study was to test the usability of laser treatment from the viewpoint of requirements imposed on materials for electric contacts. The results presented in the paper refer to two different surface treatment technologies: (1) modification of infusible metal surface layer: tungsten and molybdenum through laser fusing of their surface layer and its crystallization, and (2) modification of surface layer properties of other metals through laser doping of their surface layer with foreign elements. In the paper a number of results of experimental investigations obtained by the team under the author's supervision are presented.

  14. Surface Modification of Biomaterials: A Quest for Blood Compatibility

    OpenAIRE

    de Mel, Achala; Cousins, Brian G.; Seifalian, Alexander M.

    2012-01-01

    Cardiovascular implants must resist thrombosis and intimal hyperplasia to maintain patency. These implants when in contact with blood face a challenge to oppose the natural coagulation process that becomes activated. Surface protein adsorption and their relevant 3D confirmation greatly determine the degree of blood compatibility. A great deal of research efforts are attributed towards realising such a surface, which comprise of a range of methods on surface modification. Surface modification ...

  15. Plasma assisted surface coating/modification processes: An emerging technology

    Science.gov (United States)

    Spalvins, T.

    1986-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation). These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  16. Plasma assisted surface coating/modification processes - An emerging technology

    Science.gov (United States)

    Spalvins, T.

    1987-01-01

    A broad understanding of the numerous ion or plasma assisted surface coating/modification processes is sought. An awareness of the principles of these processes is needed before discussing in detail the ion nitriding technology. On the basis of surface modifications arising from ion or plasma energizing and interactions, it can be broadly classified as deposition of distinct overlay coatings (sputtering-dc, radio frequency, magnetron, reactive; ion plating-diode, triode) and surface property modification without forming a discrete coating (ion implantation, ion beam mixing, laser beam irradiation, ion nitriding, ion carburizing, plasma oxidation. These techniques offer a great flexibility and are capable in tailoring desirable chemical and structural surface properties independent of the bulk properties.

  17. Surface Modification of Multiwall Carbon Nanotubes with Cationic Conjugated Polyelectrolytes: Fundamental Interactions and Intercalation into Conductive Poly(methyl-methacrylate) Composites

    KAUST Repository

    Ezzeddine, Alaa

    2015-05-22

    This research investigates the modification and dispersion and of pristine multiwalled carbon nanotubes (MWCNTs) through a simple solution mixing technique based on noncovalent interactions between poly(phenylene ethynylene) based conjugated polyelectrolytes functionalized with cationic imidazolium solubilizing groups (PIM-2 and PIM-4) and MWCNTs. Spectroscopic studies demonstrated the ability of PIMs to strongly interact with and efficiently disperse MWCNTs in different solvents mainly due to π-interactions between the PIMs and MWCNTs. Transmission electron microscopy and atomic force microscopy revealed the coating of the polyelectrolytes on the walls of the nanotubes. Scanning electron microscopy (SEM) studies confirm the homogenous dispersion of PIM modified MWCNTs in poly(methyl methacrylate) (PMMA) matrix. The addition of 1 wt% PIM modified MWCNTs to the matrix has led to a significant decrease in DC resistivity of the composite (13 orders of magnitude). The increase in electrical conductivity and the improvement in thermal and mechanical properties of the membranes containing the PIM modified MWCNTs is ascribed to the formation of MWCNTs networks and cross-linking sites that provided channels for the electrons to move in throughout the matrix and reinforced the interface between MWCNTs and PMMA.

  18. Excimer laser surface modification: Process and properties

    Energy Technology Data Exchange (ETDEWEB)

    Jervis, T.R.; Nastasi, M. [Los Alamos National Lab., NM (United States); Hirvonen, J.P. [Technical Research Institute, Espoo (Finland). Metallurgy Lab.

    1992-12-01

    Surface modification can improve materials for structural, tribological, and corrosion applications. Excimer laser light has been shown to provide a rapid means of modifying surfaces through heat treating, surface zone refining, and mixing. Laser pulses at modest power levels can easily melt the surfaces of many materials. Mixing within the molten layer or with the gas ambient may occur, if thermodynamically allowed, followed by rapid solidification. The high temperatures allow the system to overcome kinetic barriers found in some ion mixing experiments. Alternatively, surface zone refinement may result from repeated melting-solidification cycles. Ultraviolet laser light couples energy efficiently to the surface of metallic and ceramic materials. The nature of the modification that follows depends on the properties of the surface and substrate materials. Alloying from both gas and predeposited layer sources has been observed in metals, semiconductors, and ceramics as has surface enrichment of Cr by zone refinement of stainless steel. Rapid solidification after melting often results in the formation of nonequilibrium phases, including amorphous materials. Improved surface properties, including tribology and corrosion resistance, are observed in these materials.

  19. TEXTILE SURFACE MODIFICATION BY PYHSICAL VAPOR DEPOSITION – (REVIEW

    Directory of Open Access Journals (Sweden)

    YUCE Ismail

    2017-05-01

    Full Text Available Textile products are used in various branches of the industry from automotive to space products. Textiles produced for industrial use are generally referred to as technical textiles. Technical textiles are nowadays applied to several areas including transportation, medicine, agriculture, protection, sports, packaging, civil engineering and industry. There are rapid developments in the types of materials used in technical textiles. Therefore, modification and functionalization of textile surfaces is becoming more crucial. The improvements of the properties such as anti-bacterial properties, fire resistivity, UV radiation resistance, electrical conductivity, self cleaning, and super hydrophobic, is getting more concern with respect to developments in textile engineering. The properties of textile surfaces are closely related to the fiber structure, the differences in the polymer composition, the fiber mixture ratio, and the physical and chemical processes applied. Textile surface modifications can be examined in four groups under the name mechanical, chemical, burning and plasma. Surface modifications are made to improve the functionality of textile products. Textile surface modifications affect the properties of the products such as softness, adhesion and wettability. The purpose of this work is to reveal varieties of vapor deposition modifications to improve functionality. For this purpose, the pyhsical vapor deposition methods, their affects on textile products and their end-uses will be reviewed.

  20. Stability studies of plasma modification effects of polylactide and polycaprolactone surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Stepczyńska, Magdalena [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87‐100 Toruń (Poland); Rytlewski, Piotr; Jagodziński, Bartłomiej; Żenkiewicz, Marian [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland)

    2016-07-30

    Highlights: • Plasma modification affects surface roughness, wettability and surface energy. • Polylactide and polycaprolactone aging causes decay of the modification effects. • Changes in the surface characteristic and wettability deterioration were observed. • The decay occurs due to migration of low molecular weight molecules to the surface. • Plasma modification effect lasts longer in the case of polycaprolactone. - Abstract: The article presents results of research on the stability of oxygen plasma modification effects of polylactide and polycaprolactone surface layers. The modified samples were aged for three, six or nine weeks. The studies were carried out using scanning electron microscopy, goniometry and Fourier transform infrared spectroscopy. Studies have shown that the plasma modification has significant impact on the geometric structure and chemical composition of the surface, wettability and surface energy of tested polymers. The modification effects are not permanent. It has been observed that over time the effects of plasma modification fade. Studies have shown that modifying effect lasts longer in the case of polycaprolactone.

  1. Laser surface modification of PEEK

    Energy Technology Data Exchange (ETDEWEB)

    Riveiro, A., E-mail: ariveiro@uvigo.es [Applied Physics Department, University of Vigo ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Centro Universitario de la Defensa, Escuela Naval Militar, Plaza de Espana 2, 36920 Marin (Spain); Soto, R.; Comesana, R.; Boutinguiza, M.; Val, J. del; Quintero, F.; Lusquinos, F.; Pou, J. [Applied Physics Department, University of Vigo ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Role of laser irradiation wavelength on the surface modification of PEEK (polyether-ether-ketone) was investigated. Black-Right-Pointing-Pointer Adequate processing conditions to improve wettability, roughness, and cell adhesion characteristics are determined. Black-Right-Pointing-Pointer A design of experiments (DOE) methodology was performed. Black-Right-Pointing-Pointer UV (355 nm) radiation is the most promising laser radiation for improving the adhesive surface properties of PEEK. - Abstract: Polyether-ether-ketone (PEEK) is a synthetic thermoplastic polymer with excellent mechanical and chemical properties, which make it attractive for the field of reconstructive surgery. Nevertheless, this material has a poor interfacial biocompatibility due to its large chemical stability which induces poor adhesive bonding properties. The possibilities of enhancing the PEEK adhesive properties by laser treatments have been explored in the past. This paper presents a systematic approach to discern the role of laser irradiation wavelength on the surface modification of PEEK under three laser wavelengths ({lambda} = 1064, 532, and 355 nm) with the aim to determine the most adequate processing conditions to increase the roughness and wettability, the main parameters affecting cell adhesion characteristics of implants. Overall results show that the ultraviolet ({lambda} = 355 nm) laser radiation is the most suitable one to enhance surface wettability of PEEK.

  2. Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds.

    Science.gov (United States)

    Tran, Hai Nguyen; Viet, Pham Van; Chao, Huan-Ping

    2018-01-01

    A hydrophilic Y zeolite was primarily treated with sodium hydroxide to enhance its cation exchange capacity (Na-zeolite). The organo-zeolite (Na-H-zeolite) was prepared by a modification process of the external surface of Na-zeolite with a cationic surfactant (hexadecyltrimethylammonium; HDTMA). Three adsorbents (i.e., pristine zeolite, Na-zeolite, and Na-H-zeolite) were characterized with nitrogen adsorption/desorption isotherms, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, cation exchange capacities, and zeta potential. Results demonstrated that HDTMA can be adsorbed on the surface of Na-zeolite to form patchy bilayers. The adsorption capacity of several hazardous pollutants (i.e., Pb 2+ , Cu 2+ , Ni 2+ , Cr 2 O 7 2- , propylbenzene, ethylbenzene, toluene, benzene, and phenol) onto Na-H-zeolite was investigated in a single system and multiple-components. Adsorption isotherm was measured to further understand the effects of the modification process on the adsorption behaviors of Na-H-zeolite. Adsorption performances indicated that Na-H-zeolite can simultaneously adsorb the metal cations (on the surface not covered by HDTMA), oxyanions (on the surface covered by HDTMA). Na-H-zeolite also exhibited both hydrophilic and hydrophobic surfaces to uptake organic compounds with various water solubilities (from 55 to 75,000mg/L). It was experimentally concluded that Na-H-zeolite is a potential dual-electronic and amphiphilic adsorbent for efficiently removing a wide range of potentially toxic pollutants from aquatic environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Preparation and studies on surface modifications of calcium-silico-phosphate ferrimagnetic glass-ceramics in simulated body fluid

    International Nuclear Information System (INIS)

    Sharma, K.; Dixit, A.; Singh, Sher; Jagannath,; Bhattacharya, S.; Prajapat, C.L.; Sharma, P.K.; Yusuf, S.M.; Tyagi, A.K.; Kothiyal, G.P.

    2009-01-01

    The structure and magnetic behaviour of 34SiO 2 -(45 - x) CaO-16P 2 O 5 -4.5 MgO-0.5 CaF 2 - x Fe 2 O 3 (where x = 5, 10, 15, 20 wt.%) glasses have been investigated. Ferrimagnetic glass-ceramics are prepared by melt quench followed by controlled crystallization. The surface modification and dissolution behaviour of these glass-ceramics in simulated body fluid (SBF) have also been studied. Phase formation and magnetic behaviour have been studied using XRD and SQUID magnetometer. The room temperature Moessbauer study has been done to monitor the local environment around Fe cations and valence state of Fe ions. X-ray photoelectron spectroscopy (XPS) was used to study the surface modification in glass-ceramics when immersed in simulated body fluid. Formation of bioactive layer in SBF has been ascertained using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The SBF solutions were analyzed using an absorption spectrophotometer. The magnetic measurements indicated that all these glasses possess paramagnetic character and the [Fe 2+ /Fe 3+ ] ions ratio depends on the composition of glass and varied with Fe 2 O 3 concentration in glass matrix. In glass-ceramics saturation magnetization increases with increase in amount of Fe 2 O 3 . The nanostructure of hematite and magnetite is formed in the glass-ceramics with 15 and 20 wt.% Fe 2 O 3 , which is responsible for the magnetic property of these glass-ceramics. Introduction of Fe 2 O 3 induces several modifications at the glass-ceramics surface when immersed in SBF solution and thereby affecting the surface dissolution and the formation of the bioactive layer.

  4. Role of organic cations on hybrid halide perovskite CH3NH3PbI3 surfaces

    Science.gov (United States)

    Teng, Qiang; Shi, Ting-Ting; Tian, Ren-Yu; Yang, Xiao-Bao; Zhao, Yu-Jun

    2018-02-01

    Organic-inorganic hybrid halide perovskite CH3NH3PbI3 (MAPbI3) has received rapid progress in power conversion efficiency as promising photovoltaic materials, yet the surface structures and the role of MA cations are not well understood. In this work, we investigated the structural stability and electronic properties of (001) surface of cubic, (001) and (110) surfaces of tetragonal and orthorhombic phases of MAPbI3 with considering the orientation of MA cations, by density functional theory calculations. We demonstrate that the orientation of MA cations has profound consequences on the structural stability and the electronic properties of the surfaces, in contrast to the bulk phases. Compared with the MA-I terminated surfaces, the Pb-I2 terminated ones generally have smaller band gaps and the advantage to enable the photo-excited holes to transfer to the hole-transport materials in both tetragonal and orthorhombic phases. Overall, we suggest that the films with Pb-I2 terminated surfaces would prevail in high performance solar energy absorbers.

  5. Characterization of organo-modified bentonite sorbents: The effect of modification conditions on adsorption performance

    Science.gov (United States)

    Parolo, María E.; Pettinari, Gisela R.; Musso, Telma B.; Sánchez-Izquierdo, María P.; Fernández, Laura G.

    2014-11-01

    The organic modification of a natural bentonite was evaluated using two methods: exchanging the interlayer cations by hexadecyltrimethylammonium (HDTMA) and grafting with vinyltrimethoxysilane (VTMS) and γ-methacryloyloxy propyl trimethoxysilane (TMSPMA) on montmorillonite surface. The physicochemical characterization of all materials was made by X-ray diffraction (XRD), IR spectroscopy, thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) surface area techniques. HDTMA cations and organosilanes were intercalated into the interlayer space of montmorillonite, as deduced from the increase of the basal spacing. IR spectroscopy, TGA and BET area give evidence of successful organic modification. The studies show a decrease in the IR absorption band intensity at 3465 cm-1 with surfactant modification, and also a decrease of mass loss due to adsorbed water observed in two samples: the organoclay and functionalized bentonites, which are evidences of a lower interlayer hydrophilicity. The efficiency of aniline removal onto natural bentonite, organobentonite and functionalized bentonites from aqueous solutions was evaluated. Aniline sorption on natural bentonite was studied using batch experiments, XRD and IR spectroscopy. The hydrophobic surface of organobentonite and functionalized bentonites increased the retention capacity for nonionic organic substances such as aniline on bentonites. The sorption properties of modified bentonite, through different modification methods, enhanced the potential industrial applications of bentonites in water decontamination.

  6. MODIFICATION OF SURFACE KONDENSITSIONNYH AEROSOLS WELDING AND METALLURGICHESKIH PRODUCTIONS

    Directory of Open Access Journals (Sweden)

    A. A. Ennan

    2016-04-01

    Full Text Available Chemical modification of surface kondensitsionnyh aerosols (KA which formation when heat treatment metals (process of weld, foundry processes with application chlorosilanes are suggested. Adsorbtion vapor of water on modification powders KA decreases and changes in varies from modifier and conditions modification are setted.

  7. Comparison of several innovative bridge cable surface modifications

    DEFF Research Database (Denmark)

    Kleissl, Kenneth; Georgakis, Christos T.

    Over the last two decades, several bridge cable manufacturers have introduced surface modifications on the high-density polyethylene (HDPE) sheathing that is installed for the protection of inner cable strands or wires. The modifications are based on research undertaken predominantly in Europe...

  8. LASER SURFACE MODIFICATION OF TITANIUM ALLOYS — A REVIEW

    OpenAIRE

    Y. S. TIAN; C. Z. CHEN; D. Y. WANG; T. Q. LEI

    2005-01-01

    Recent developments of laser surface modification of titanium alloys for increasing their corrosion, wear and oxidation resistance are introduced. The effects of laser processing parameters on the resulting surface properties of titanium alloys are reviewed. The problems to be solved and the prospects in the field of laser modification of Ti alloys are discussed. Due to the intrinsic properties, a laser beam can be focused onto the metallic surface to produce a broad range of treatments depen...

  9. Surface modification of glass beads with glutaraldehyde: Characterization and their adsorption property for metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Ozmen, Mustafa; Can, Keziban; Akin, Ilker; Arslan, Gulsin [Department of Chemistry, Selcuk University, 42031, Konya (Turkey); Tor, Ali, E-mail: ali.alitor@gmail.com [Department of Environmental Engineering, Selcuk University, Engineering Faculty, Campus, 42031, Konya (Turkey); Cengeloglu, Yunus; Ersoz, Mustafa [Department of Chemistry, Selcuk University, 42031, Konya (Turkey)

    2009-11-15

    In this study, a new material that adsorbs the metal ions was prepared by modification of the glass beads surfaces with glutaraldehyde. First, the glass beads were etched with 4 M NaOH solution. Then, they were reacted with 3-aminopropyl-triethoxysilane (APTES). Finally, silanized glass beads were treated with 25% of glutaraldehyde solution. The characterization studies by using Fourier Transform Infrared Spectroscopy (FT-IR), Thermal Gravimetric Analysis (TGA), elemental analysis and Scanning Electron Microscopy (SEM) indicated that modification of the glass bead surfaces was successfully performed. The adsorption studies exhibited that the modified glass beads could be efficiently used for the removal of the metal cations and anion (chromate ion) from aqueous solutions via chelation and ion-exchange mechanisms. For both Pb(II) and Cr(VI), selected as model ions, the adsorption equilibrium was achieved in 60 min and adsorption of both ions followed the second-order kinetic model. It was found that the sorption data was better represented by the Freundlich isotherm in comparison to the Langmuir and Redlich-Peterson isotherm models. The maximum adsorption capacities for Pb(II) and Cr(VI) were 9.947 and 11.571 mg/g, respectively. The regeneration studies also showed that modified glass beads could be re-used for the adsorption of Pb(II) and Cr(VI) from aqueous solutions over three cycles.

  10. Adsorption of Cationic Peptides to Solid Surfaces of Glass and Plastic

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2015-01-01

    , that the peptides adsorb to solid surfaces of glass and plastic. Specifically, we use analytical HPLC to systematically quantify the adsorption of the three cationic membraneactive peptides mastoparan X, melittin, and magainin 2 to the walls of commonly used glass and plastic sample containers. Our results show...

  11. Facile synthesis of surface-functionalized magnetic nanocomposites for effectively selective adsorption of cationic dyes

    Science.gov (United States)

    Hua, Yani; Xiao, Juan; Zhang, Qinqin; Cui, Chang; Wang, Chuan

    2018-04-01

    A new magnetic nano-adsorbent, polycatechol modified Fe3O4 magnetic nanoparticles (Fe3O4/PCC MNPs) were prepared by a facile chemical coprecipitation method using iron salts and catechol solution as precursors. Fe3O4/PCC MNPs owned negatively charged surface with oxygen-containing groups and showed a strong adsorption capacity and fast adsorption rates for the removal of cationic dyes in water. The adsorption capacity of methylene blue (MB), cationic turquoise blue GB (GB), malachite green (MG), crystal violet (CV) and cationic pink FG (FG) were 60.06 mg g- 1, 70.97 mg g- 1, 66.84 mg g- 1, 66.01 mg g- 1 and 50.27 mg g- 1, respectively. The adsorption mechanism was proposed by the analyses of the adsorption isotherms and adsorption kinetics of cationic dyes on Fe3O4/PCC MNPs. Moreover, the cationic dyes adsorbed on the MNPs as a function of contact time, pH value, temperature, coexisting cationic ions and ion strength were also investigated. These results suggested that the Fe3O4/PCC MNPs is promising to be used as a magnetic adsorbent for selective adsorption of cationic dyes in wastewater treatment.

  12. Effects of aluminium surface morphology and chemical modification on wettability

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, M., E-mail: mar@sbi.aau.dk [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark); Fojan, P.; Gurevich, L. [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4, DK-9220 Aalborg East (Denmark); Afshari, A. [Department of Energy and Environment, Danish Building Research Institute, Aalborg University, A.C. Meyers Vænge 15, 2450 København SV (Denmark)

    2014-03-01

    Highlights: • Successful surface modification procedures on aluminium samples were performed involving formation of the layer of hydrophilic hyperbranched polyethyleneglycol (PEG) via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. • The groups of surfaces with hydrophobic behavior were found to follow the Wenzel model. • A transition from Cassie–Baxter's to Wenzel's regime was observed due to changing of the surface roughness upon mechanical polishing in aluminium samples. - Abstract: Aluminium alloys are some of the predominant metals in industrial applications such as production of heat exchangers, heat pumps. They have high heat conductivity coupled with a low specific weight. In cold working conditions, there is a risk of frost formation on the surface of aluminium in the presence of water vapour, which can lead to the deterioration of equipment performance. This work addresses the methods of surface modification of aluminium and their effect of the underlying surface morphology and wettability, which are the important parameters for frost formation. Three groups of real-life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types of surface modifications the contact angle of water droplets on aluminium samples can be varied from 12° to more than 120°. A crossover from Cassie–Baxter to Wenzel regime upon changing the surface

  13. Fabrication and surface-modification of implantable microprobes for neuroscience studies

    International Nuclear Information System (INIS)

    Cao, H; Nguyen, C M; Chiao, J C

    2012-01-01

    In this work implantable micro-probes for central nervous system (CNS) studies were developed on silicon and polyimide substrates. The probes which contained micro-electrode arrays with different surface modifications were designed for implantation in the CNS. The electrode surfaces were modified with nano-scale structures that could greatly increase the active surface area in order to enhance the electrochemical current outputs while maintaining micro-scale dimensions of the electrodes and probes. The electrodes were made of gold or platinum, and designed with different sizes. The silicon probes were modified by silicon nanowires fabricated with the vapor–liquid–solid mechanism at high temperatures. With polyimide substrates, the nanostructure modification was carried out by applying concentrated gold or silver colloid solutions onto the micro-electrodes at room temperature. The surfaces of electrodes before and after modification were observed by scanning electron microscopy. The silicon nanowire-modified surface was characterized by cyclic voltammetry. Experiments were carried out to investigate the improvement in sensing performance. The modified electrodes were tested with H 2 O 2 , electrochemical L-glutamate and dopamine. Comparisons between electrodes with and without nanostructure modification were conducted showing that the modifications have enhanced the signal outputs of the electrochemical neurotransmitter sensors

  14. Fabrication and surface-modification of implantable microprobes for neuroscience studies

    Science.gov (United States)

    Cao, H.; Nguyen, C. M.; Chiao, J. C.

    2012-06-01

    In this work implantable micro-probes for central nervous system (CNS) studies were developed on silicon and polyimide substrates. The probes which contained micro-electrode arrays with different surface modifications were designed for implantation in the CNS. The electrode surfaces were modified with nano-scale structures that could greatly increase the active surface area in order to enhance the electrochemical current outputs while maintaining micro-scale dimensions of the electrodes and probes. The electrodes were made of gold or platinum, and designed with different sizes. The silicon probes were modified by silicon nanowires fabricated with the vapor-liquid-solid mechanism at high temperatures. With polyimide substrates, the nanostructure modification was carried out by applying concentrated gold or silver colloid solutions onto the micro-electrodes at room temperature. The surfaces of electrodes before and after modification were observed by scanning electron microscopy. The silicon nanowire-modified surface was characterized by cyclic voltammetry. Experiments were carried out to investigate the improvement in sensing performance. The modified electrodes were tested with H2O2, electrochemical L-glutamate and dopamine. Comparisons between electrodes with and without nanostructure modification were conducted showing that the modifications have enhanced the signal outputs of the electrochemical neurotransmitter sensors.

  15. Possibility of Modification of Zeolites by Iron Oxides and its Utilization for Removal of Pb(II from Water Solutions

    Directory of Open Access Journals (Sweden)

    Michal Lovás

    2004-12-01

    Full Text Available Ion-exchange properties of cations from lattice and ions from solutions are characteristic for zeolites. Zeolites as sorbents are used in many branches of industry. Ion-exchange reactions of cations on zeolites have been a theme of many works. With the exception of using natural zeolites as the sorbent, a modification of surface of zeolites and preparation of synthetic zeolites has received interest lately. One of the common modification of zeolites is modification by iron oxides, which increases capacity of adsorption. In this work, we prepared a modified zeolite by the precipitation of magnetite on the surface of zeolite. This new adsorbent was used to remove of Pb(II from waste water. The maximum adsorption capacity was 73,25 mg/g from the solution of Pb with the concentration of 400 mg/l.

  16. Investigation of surface halide modification of nitrile butadiene rubber

    Science.gov (United States)

    Sukhareva, K. V.; Mikhailov, I. A.; Andriasyan, Yu O.; Mastalygina, E. E.; Popov, A. A.

    2017-12-01

    The investigation is devoted to the novel technology of surface halide modification of rubber samples based on nitrile butadiene rubber (NBR). 1,1,2-trifluoro-1,2,2-trichlorethane was used as halide modifier. The developed technology is characterized by production stages reduction to one by means of treating the rubber compound with a halide modifier. The surface halide modification of compounds based on nitrile butadiene rubber (NBR) was determined to result in increase of resistance to thermal oxidation and aggressive media. The conducted research revealed the influence of modification time on chemical resistance and physical-mechanical properties of rubbers under investigation.

  17. Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers

    Science.gov (United States)

    Labay, C.; Canal, C.; Rodríguez, C.; Caballero, G.; Canal, J. M.

    2013-10-01

    Fiber surface modification with air corona plasma has been studied through dyeing kinetics under isothermal conditions at 30 °C on an acrylic-fiber fabric with a cationic dye (CI Basic Blue 3) analyzing the absorption, desorption and fixing on the surface of molecules having defined cationic character. The initial dyeing rate in the first 60 s indicates an increase of 58.3% in the dyeing rate due to the effect of corona plasma on the acrylic fiber surface. At the end of the dyeing process, the plasma-treated fabrics absorb 24.7% more dye, and the K/S value of the acrylic fabric increases by 8.8%. With selected dyestuff molecules, new techniques can be designed to amplify the knowledge about plasma-treated surface modifications of macromolecules.

  18. Reactive Pad-Steam Dyeing of Cotton Fabric Modified with Cationic P(St-BA-VBT Nanospheres

    Directory of Open Access Journals (Sweden)

    Kuanjun Fang

    2018-05-01

    Full Text Available The Poly[Styrene-Butyl acrylate-(P-vinylbenzyl trimethyl ammonium chloride] P(St-BA-VBT nanospheres with N+(CH33 functional groups were successfully prepared and applied to modify cotton fabrics using a pad-dry process. The obtained cationic cotton fabrics were dyed with pad-steam dyeing with reactive dye. The results show that the appropriate concentration of nanospheres was 4 g/L. The sodium carbonate of 25 g/L and steaming time of 3 min were suitable for dyeing cationic cotton with 25 g/L of C.I. Reactive Blue 222. The color strength and dye fixation rates of dyed cationic cotton fabrics increased by 39.4% and 14.3% compared with untreated fabrics. Moreover, sodium carbonate and steaming time were reduced by 37.5% and 40%, respectively. The rubbing and washing fastness of dyed fabrics were equal or higher 3 and 4–5 grades, respectively. Scanning electron microscopy (SEM images revealed that the P(St-BA-VBT nanospheres randomly distributed and did not form a continuous film on the cationic cotton fiber surfaces. The X-ray photoelectron spectroscopy (XPS analysis further demonstrated the presence of cationic nanospheres on the fiber surfaces. The cationic modification did not affect the breaking strength of cotton fabrics.

  19. Modification of Material Surface Using Plasma-Enhanced Ion Beams

    National Research Council Canada - National Science Library

    Bystritskii, V

    1998-01-01

    ...) Technology for Materials Surface Modification. Following second year programmatic plan, formulated in the conclusion of the 1-st year report we focused our effort on study of aluminum alloys modification (Al2024, 6061, 7075...

  20. Surface modification effects on defect-related photoluminescence in colloidal CdS quantum dots.

    Science.gov (United States)

    Lee, TaeGi; Shimura, Kunio; Kim, DaeGwi

    2018-05-03

    We investigated the effects of surface modification on the defect-related photoluminescence (PL) band in colloidal CdS quantum dots (QDs). A size-selective photoetching process and a surface modification technique with a Cd(OH)2 layer enabled the preparation of size-controlled CdS QDs with high PL efficiency. The Stokes shift of the defect-related PL band before and after the surface modification was ∼1.0 eV and ∼0.63 eV, respectively. This difference in the Stokes shifts suggests that the origin of the defect-related PL band was changed by the surface modification. Analysis by X-ray photoelectron spectroscopy revealed that the surface of the CdS QDs before and after the surface modification was S rich and Cd rich, respectively. These results suggest that Cd-vacancy acceptors and S-vacancy donors affect PL processes in CdS QDs before and after the surface modification, respectively.

  1. Surface Modification Of Implants For Bone Surgery

    Directory of Open Access Journals (Sweden)

    Marciniak J.

    2015-09-01

    Full Text Available The study discusses the methods of surface modification methods for AISAI 316 L steel and Ti6Al4V ELI titanium alloy, dedicated to complex design implants used in bone surgery. Results of structural tests have been presented along with those evaluating the physicochemical properties of the formed surface layers. Clinical feasibility of the surface layers has also been evaluated.

  2. Surface modification of protein enhances encapsulation in chitosan nanoparticles

    Science.gov (United States)

    Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2018-04-01

    Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.

  3. Surface modification and characterization Collaborative Research Center at ORNL

    International Nuclear Information System (INIS)

    1986-01-01

    The Surface Modification and Characterization Collaborative Research Center (SMAC/CRC) is a unique facility for the alteration and characterization of the near-surface properties of materials. The SMAC/CRC facility is equipped with particle accelerators and high-powered lasers which can be used to improve the physical, electrical, and/or chemical properties of solids and to create unique new materials not possible to obtain with conventional ''equilibrium'' processing techniques. Surface modification is achieved using such techniques as ion implantation doping, ion beam mixing, laser mixing, ion deposition, and laser annealing

  4. Effects of aluminium surface morphology and chemical modification on wettability

    DEFF Research Database (Denmark)

    Rahimi, Maral; Fojan, Peter; Gurevich, Leonid

    2014-01-01

    -life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition...... of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types...

  5. Surface modification for interaction study with bacteria and preosteoblast cells

    Science.gov (United States)

    Song, Qing

    Surface modification plays a pivotal role in bioengineering. Polymer coatings can provide biocompatibility and biofunctionalities to biomaterials through surface modification. In this dissertation, initiated chemical vapor deposition (iCVD) was utilized to coat two-dimensional (2D) and three-dimensional (3D) substrates with differently charged polyelectrolytes in order to generate antimicrobial and osteocompatible biomaterials. ICVD is a modified CVD technique that enables surface modification in an all-dry condition without substrate damage and solvent contamination. The free-radical polymerization allows the vinyl polymers to conformally coat on various micro- and nano-structured substrates and maintains the delicate structure of the functional groups. The vapor deposition of polycations provided antimicrobial activity to planar and porous substrates through destroying the negatively charged bacterial membrane and brought about high contact-killing efficiency (99.99%) against Gram-positive Bacillus subtilis and Gram-negative Escherichia coli. Additionally, the polyampholytes synthesized by iCVD exhibited excellent antifouling performance against the adhesion of Gram-positive Listeria innocua and Gram-negative E. coli in phosphate buffered saline (PBS). Their antifouling activities were attributed to the electrostatic interaction and hydration layers that served as physical and energetic barriers to prevent bacterial adhesion. The contact-killing and antifouling polymers synthesized by iCVD can be applied to surface modification of food processing equipment and medical devices with the aim of reducing foodborne diseases and medical infections. Moreover, the charged polyelectrolyte modified 2D polystyrene surfaces displayed good osteocompatibility and enhanced osteogenesis of preosteoblast cells than the un-modified polystyrene surface. In order to promote osteoinduction of hydroxyapatite (HA) scaffolds, bioinspired polymer-controlled mineralization was conducted

  6. Printing-assisted surface modifications of patterned ultrafiltration membranes

    International Nuclear Information System (INIS)

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; Snyder, Seth W.

    2016-01-01

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted in all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.

  7. The role of cell walls and pectins in cation exchange and surface area of plant roots.

    Science.gov (United States)

    Szatanik-Kloc, A; Szerement, J; Józefaciuk, G

    2017-08-01

    We aimed to assess role of cell walls in formation of cation exchange capacity, surface charge, surface acidity, specific surface, water adsorption energy and surface charge density of plant roots, and to find the input of the cell wall pectins to the above properties. Whole roots, isolated cell walls and the residue after the extraction of pectins from the cell walls of two Apiaceae L. species (celeriac and parsnip) were studied using potentiometric titration curves and water vapor adsorption - desorption isotherms. Total amount of surface charge, as well as the cation exchange capacity were markedly higher in roots than in their cell walls, suggesting large contribution of other cell organelles to the binding of cations by the whole root cells. Significantly lower charge of the residues after removal of pectins was noted indicating that pectins play the most important role in surface charge formation of cell walls. The specific surface was similar for all of the studied materials. For the separated cell walls it was around 10% smaller than of the whole roots, and it increased slightly after the removal of pectins. The surface charge density and water vapor adsorption energy were the highest for the whole roots and the lowest for the cell walls residues after removal of pectins. The results indicate that the cell walls and plasma membranes are jointly involved in root ion exchange and surface characteristics and their contribution depends upon the plant species. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Surface modification by preparation of buffer zone in glow-discharge plasma

    International Nuclear Information System (INIS)

    Cho, D.L.

    1986-01-01

    Reactive species, energetic particles, and uv radiation in the plasma created by a glow discharge strongly interact with solid surfaces under the influence of the plasma. As a result of the strong interaction, various physical and chemical reactions, unique and advantageous for the surface modification of solid materials, occur on the solid surfaces. The surface modification is carried out through formation of a thin buffering layer on the solid surface. The preparation of a buffer zone on solid surfaces for surface modification is described. Two kinds of a buffer zone are prepared by plasma polymerization, or simultaneous sputter deposition of electrode material with plasma polymerization: a transitional buffer zone and a graded buffer zone. Important factors for preparation of the buffer zone (pre-conditioning of a substrate surface, thin-film deposition, post-treatment of the film, magnetron discharge, energy input, geometry of a substrate and a plasma) are discussed

  9. Research Progress of Optical Fabrication and Surface-Microstructure Modification of SiC

    Directory of Open Access Journals (Sweden)

    Fang Jiang

    2012-01-01

    Full Text Available SiC has become the best candidate material for space mirror and optical devices due to a series of favorable physical and chemical properties. Fine surface optical quality with the surface roughness (RMS less than 1 nm is necessary for fine optical application. However, various defects are present in SiC ceramics, and it is very difficult to polish SiC ceramic matrix with the 1 nm RMS. Surface modification of SiC ceramics must be done on the SiC substrate. Four kinds of surface-modification routes including the hot pressed glass, the C/SiC clapping, SiC clapping, and Si clapping on SiC surface have been reported and reviewed here. The methods of surface modification, the mechanism of preparation, and the disadvantages and advantages are focused on in this paper. In our view, PVD Si is the best choice for surface modification of SiC mirror.

  10. Surface Topographical Modification of Coronary Stent: A Review

    Science.gov (United States)

    Tan, C. H.; Muhamad, N.; Abdullah, M. M. A. B.

    2017-06-01

    Driven by the urge of mediating the inflammatory response from coronary stent implant to improve patency rates of the current coronary stent, concern has been focusing on reducing the risk of in-stent restenosis and thrombosis for long-term safety. Surface modification approach has been found to carry great potential due to the surface is the vital parts that act as a buffer layer between the biomaterial and the organic material like blood and vessel tissues. Nevertheless, manipulating cell response in situ using physical patterning is very complex as the exact mechanism were yet elucidated. Thus, the aim of this review is to summarise the recent efforts on modifying the surface topography of coronary stent at the micro- and nanometer scale with the purpose of inducing rapid in situ endothelialization to regenerate a healthy endothelium layer on biomaterial surface. In particular, a discussion on the surface patterns that have been investigated on cell selective behaviour together with the methods used to generate them are presented. Furthermore, the probable future work involving the surface modification of coronary stent were indicated.

  11. Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers

    OpenAIRE

    Labay, C.; Canal, C.; Rodríguez, C.; Caballero, G.; Canal, J.M.

    2013-01-01

    Fiber surface modification with air corona plasma has been studied through dyeing kinetics under isothermal conditions at 30 °C on an acrylic-fiber fabric with a cationic dye (CI Basic Blue 3) analyzing the absorption, desorption and fixing on the surface of molecules having defined cationic character. The initial dyeing rate in the first 60 s indicates an increase of 58.3% in the dyeing rate due to the effect of corona plasma on the acrylic fiber surface. At the end of the dyeing process...

  12. Surface modification of porous titanium with rice husk as space holder

    Science.gov (United States)

    Wang, Xinsheng; Hou, Junjian; Liu, Yanpei

    2018-06-01

    Porous titanium was characterized after its surface modification by acid and alkali solution immersion. The results show that the acid surface treatment caused the emergence of flocculent sodium titanate and induced apatite formation. The surface modification of porous titanium promotes biological activation, and the application of porous titanium is also improved as an implant material because of the existence of C and Si.

  13. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes.

    Science.gov (United States)

    Nady, Norhan

    2016-04-18

    A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled "green surface modification". This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers-ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)-is presented.

  14. Surface Modification for Microreactor Fabrication

    Directory of Open Access Journals (Sweden)

    Wladyslaw Torbicz

    2006-04-01

    Full Text Available In this paper, methods of surface modification of different supports, i.e. glass andpolymeric beads for enzyme immobilisation are described. The developed method ofenzyme immobilisation is based on Schiff’s base formation between the amino groups onthe enzyme surface and the aldehyde groups on the chemically modified surface of thesupports. The surface of silicon modified by APTS and GOPS with immobilised enzymewas characterised by atomic force microscopy (AFM, time-of-flight secondary ion massspectroscopy (ToF-SIMS and infrared spectroscopy (FTIR. The supports withimmobilised enzyme (urease were also tested in combination with microreactors fabricatedin silicon and Perspex, operating in a flow-through system. For microreactors filled withurease immobilised on glass beads (Sigma and on polymeric beads (PAN, a very high andstable signal (pH change was obtained. The developed method of urease immobilisationcan be stated to be very effective.

  15. Selective adsorption of cationic dyes by UiO-66-NH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qi; He, Qinqin; Lv, Mengmeng; Xu, Yanli; Yang, Hanbiao; Liu, Xueting, E-mail: wmlxt@163.com; Wei, Fengyu, E-mail: weifyliuj@163.com

    2015-02-01

    Graphical abstract: - Highlights: • Two Zr(IV)-based MOFs can remove cationic dyes more effectively than anionic dyes. • UiO-66 has higher selectivity for cationic dyes after modification with NH{sub 2}. • The mechanism for adsorption selectivity is rationally proposed. - Abstract: Herein, two zirconium(IV)-based MOFs UiO-66 and UiO-66-NH{sub 2} had been successfully prepared by a facile solvothermal method and were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM), N{sub 2} adsorption–desorption (BET), X-ray photoelectron spectroscopy (XPS), and zeta potential. They exhibit small size, large surface area, and can remove cationic dyes from aqueous solution more effectively than anionic dyes. This adsorption selectivity is due to the favorable electrostatic interactions between the adsorbents and cationic dyes. Furthermore, owing to the individual micropore structure of UiO-66-NH{sub 2} and its more negative zeta potential resulted from the charge balance for the protonation of –NH{sub 2}, UiO-66-NH{sub 2} displays much higher adsorption capacity for cationic dyes and lower adsorption capacity for anionic dyes than UiO-66.

  16. Adsorption of a cationic dye molecule on polystyrene microspheres in colloids: effect of surface charge and composition probed by second harmonic generation.

    Science.gov (United States)

    Eckenrode, Heather M; Jen, Shih-Hui; Han, Jun; Yeh, An-Gong; Dai, Hai-Lung

    2005-03-17

    Nonlinear optical probe, second harmonic generation (SHG), of the adsorption of the dye molecule malachite green (MG), in cationic form at pH polystyrene microspheres in aqueous solution is used to study the effect of surface charge and composition on molecular adsorption. Three types of polystyrene microspheres with different surface composition are investigated: (1) a sulfate terminated, anionic surface, (2) a neutral surface without any functional group termination, and (3) an amine terminated, cationic surface. The cationic dye was found to adsorb at all three surfaces, regardless of surface charge. The adsorption free energies, DeltaG's, measured for the three surfaces are -12.67, -12.39, and -10.46 kcal/mol, respectively, with the trend as expected from the charge interactions. The adsorption density on the anionic surface, where attractive charge-charge interaction dominates, is determined by the surface negative charge density. The adsorption densities on the neutral and cationic surfaces are on the other hand higher, perhaps as a result of a balance between minimizing repulsive charge interaction and maximizing attractive molecule-substrate and intermolecular interactions. The relative strength of the SH intensity per molecule, in combination of a model calculation, reveals that the C(2) axis of the MG molecule is nearly perpendicular to the surface on the anionic surface and tilts away from the surface norm when the surface is neutral and further away when cationic. Changing the pH of the solution may alter the surface charge and subsequently affect the adsorption configuration and SH intensity.

  17. Research progress on laser surface modification of titanium alloys

    International Nuclear Information System (INIS)

    Tian, Y.S.; Chen, C.Z.; Li, S.T.; Huo, Q.H.

    2005-01-01

    Recent developments on laser surface modification of titanium and its alloys are reviewed. Due to the intrinsic properties of high coherence and directionality, laser beam can be focus onto metallic surface to perform a broad range of treatments such as remelting, alloying and cladding, which are used to improve the wear and corrosion resistance of titanium alloys. In addition, the fabrication of bioactive films on the surface of titanium alloys to improve their biocompatibility can be performed by the method of laser ablation deposition. The effect of some laser processing parameters on the resulting surface properties of titanium alloys is discussed. The problems to be solved and the prospects in the field of laser modification of titanium and its alloys are elucidated

  18. Effects of surface atomistic modification on mechanical properties of gold nanowires

    International Nuclear Information System (INIS)

    Sun, Xiao-Yu; Xu, Yuanjie; Wang, Gang-Feng; Gu, Yuantong; Feng, Xi-Qiao

    2015-01-01

    Highlights: • Molecular dynamics simulations of surface modification effect of Au nanowires. • Surface modification can greatly affect the mechanical properties of nanowires. • Core–shell model is used to elucidate the effect of residual surface stress. - Abstract: Modulation of the physical and mechanical properties of nanowires is a challenging issue for their technological applications. In this paper, we investigate the effects of surface modification on the mechanical properties of gold nanowires by performing molecular dynamics simulations. It is found that by modifying a small density of silver atoms to the surface of a gold nanowire, the residual surface stress state can be altered, rendering a great improvement of its plastic yield strength. This finding is in good agreement with experimental measurements. The underlying physical mechanisms are analyzed by a core–shell nanowire model. The results are helpful for the design and optimization of advanced nanomaterial with superior mechanical properties

  19. Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics

    Science.gov (United States)

    Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru

    2018-05-01

    Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.

  20. Influence of cationic lipid concentration on properties of lipid–polymer hybrid nanospheres for gene delivery

    Directory of Open Access Journals (Sweden)

    Bose RJC

    2015-09-01

    Full Text Available Rajendran JC Bose,1,2 Yoshie Arai,1 Jong Chan Ahn,1 Hansoo Park,2 Soo-Hong Lee11Department of Biomedical Science, College of Life Science, CHA University, Seongnam, 2Department of Integrative Engineering, Chung-Ang University, Seoul, South Korea Abstract: Nanoparticles have been widely used for nonviral gene delivery. Recently, cationic hybrid nanoparticles consisting of two different materials were suggested as a promising delivery vehicle. In this study, nanospheres with a poly(D,l-lactic-co-glycolic acid (PLGA core and cationic lipid shell were prepared, and the effect of cationic lipid concentrations on the properties of lipid polymer hybrid nanocarriers investigated. Lipid–polymer hybrid nanospheres (LPHNSs were fabricated by the emulsion-solvent evaporation method using different concentrations of cationic lipids and characterized for size, surface charge, stability, plasmid DNA-binding capacity, cytotoxicity, and transfection efficiency. All LPHNSs had narrow size distribution with positive surface charges (ζ-potential 52–60 mV, and showed excellent plasmid DNA-binding capacity. In vitro cytotoxicity measurements with HEK293T, HeLa, HaCaT, and HepG2 cells also showed that LPHNSs exhibited less cytotoxicity than conventional transfection agents, such as Lipofectamine and polyethyleneimine–PLGA. As cationic lipid concentrations increased, the particle size of LPHNSs decreased while their ζ-potential increased. In addition, the in vitro transfection efficiency of LPHNSs increased as lipid concentration increased. Keywords: core–shell hybrid nanospheres, lipid concentration, surface modification, low cytotoxicity, transfection efficiency

  1. Surface modification of steels by electrical discharge treatment in electrolyte

    International Nuclear Information System (INIS)

    Krastev, D.; Paunov, V.; Yordanov, B.; Lazarova, V.

    2013-01-01

    Full text: In this work are discussed some experimental data about the influence of applied electrical discharge treatment in electrolyte on the surface structure of steels. The electrical discharge treatment of steel surface in electrolyte gives a modified structure with specific combination of characteristics in result of nonequilibrium transformations. The modification goes by a high energy thermal process in a very small volume on the metallic surface involving melting, vaporisation, activation and alloying in electrical discharges, and after that cooling of this surface with high rate in the electrolyte. The surface layers obtain a different structure in comparison with the metal matrix and are with higher hardness, wear resistance and corrosion resistance. key words: surface modification, electrical discharge treatment in electrolyte, steels

  2. Surface modifications of polypropylene by high energy carbon ions

    International Nuclear Information System (INIS)

    Saha, A.; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N.

    2000-01-01

    Polypropylene was irradiated with 12 C ions of 3.6 and 5.4 MeV energies using 3 MV tandem accelerator. The surface modification was investigated by Scanning Electron Microscopy (SEM). Optical changes were monitored by UV-VIS and FTIR spectroscopy. At the lowest ion fluence, only blister formation of various sizes (1-6 μm) was observed. Polymer when irradiated at a fluence of 1x10 14 ions/cm 2 exhibited a network structure. A comparative study on dose dependence of surface and bulk modification has been described. (author)

  3. Surface Modification of Polymer Substrates for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Oldřich Neděla

    2017-09-01

    Full Text Available While polymers are widely utilized materials in the biomedical industry, they are rarely used in an unmodified state. Some kind of a surface treatment is often necessary to achieve properties suitable for specific applications. There are multiple methods of surface treatment, each with their own pros and cons, such as plasma and laser treatment, UV lamp modification, etching, grafting, metallization, ion sputtering and others. An appropriate treatment can change the physico-chemical properties of the surface of a polymer in a way that makes it attractive for a variety of biological compounds, or, on the contrary, makes the polymer exhibit antibacterial or cytotoxic properties, thus making the polymer usable in a variety of biomedical applications. This review examines four popular methods of polymer surface modification: laser treatment, ion implantation, plasma treatment and nanoparticle grafting. Surface treatment-induced changes of the physico-chemical properties, morphology, chemical composition and biocompatibility of a variety of polymer substrates are studied. Relevant biological methods are used to determine the influence of various surface treatments and grafting processes on the biocompatibility of the new surfaces—mammalian cell adhesion and proliferation is studied as well as other potential applications of the surface-treated polymer substrates in the biomedical industry.

  4. MODIFICATION OF PAPERMAKING GRADE FILLERS: A BRIEF REVIEW

    Directory of Open Access Journals (Sweden)

    Jing Shen

    2009-08-01

    Full Text Available The use of fillers in paper products can provide cost and energy savings, improved paper properties, increased productivities, and specifically desired paper functionalities. There are many problems associated with the use of fillers, such as unsuitability of calcium carbonate fillers in acid papermaking, negative effects of filler loading on paper strength, sizing, and retention, and tendencies of fillers to cause abrasion and dusting. In order to solve these problems and to make better use of fillers, many methods have been proposed, among which filler modification has been a hot topic. The available technologies of filler modification mainly include modification with inorganic substances, modification with natural polymers or their derivatives, modification with water-soluble synthetic polymers, modification with surfactants, modification with polymer latexes, hydrophobic modification, cationic modification, surface nano-structuring, physical modification by compressing, calcination or grinding, and modification for use in functional papers. The methods of filler modification can provide improved acid tolerant and optical properties of fillers, enhanced fiber-filler bonding, improved filler retention and filler sizabilities, alleviated filler abrasiveness, improved filler dispersability, and functionalization of filled papers. Filler modification has been an indispensable way to accelerate the development of high filler technology in papermaking, which is likely to create additional benefits to papermaking industry in the future.

  5. Nanoscale surface modifications to control capillary flow characteristics in PMMA microfluidic devices

    Directory of Open Access Journals (Sweden)

    Mukhopadhyay Subhadeep

    2011-01-01

    Full Text Available Abstract Polymethylmethacrylate (PMMA microfluidic devices have been fabricated using a hot embossing technique to incorporate micro-pillar features on the bottom wall of the device which when combined with either a plasma treatment or the coating of a diamond-like carbon (DLC film presents a range of surface modification profiles. Experimental results presented in detail the surface modifications in the form of distinct changes in the static water contact angle across a range from 44.3 to 81.2 when compared to pristine PMMA surfaces. Additionally, capillary flow of water (dyed to aid visualization through the microfluidic devices was recorded and analyzed to provide comparison data between filling time of a microfluidic chamber and surface modification characteristics, including the effects of surface energy and surface roughness on the microfluidic flow. We have experimentally demonstrated that fluid flow and thus filling time for the microfluidic device was significantly faster for the device with surface modifications that resulted in a lower static contact angle, and also that the incorporation of micro-pillars into a fluidic device increases the filling time when compared to comparative devices.

  6. New surface modification method of bio-titanium alloy by EB polishing

    International Nuclear Information System (INIS)

    Okada, Akira; Uno, Yoshiyuki; Iio, Atsuo; Fujiwara, Kunihiko; Doi, Kenji

    2008-01-01

    A new surface modification for bio-titanium alloy products by electron beam (EB) polishing is proposed. In this EB polishing method, high energy density EB can be irradiated without concentrating the beam. Therefore, large-area EB with a maximum diameter of 60 mm can be used for instantaneously melting or evaporating metal surface. Experimental results made it clear that surface characteristics, such as repellency, corrosion resistance and coefficient of friction could be improved simultaneously with the surface smoothing in a few minutes under a proper condition. Therefore, EB polishing method has a possibility of high efficient surface smoothing and surface modification process for bio-titanium alloy. (author)

  7. Plasma polymerization surface modification of Carbon black and its effect in elastomers

    NARCIS (Netherlands)

    Mathew, T.; Datta, Rabin; Dierkes, Wilma K.; Talma, Auke; Ooij, W.J.; Noordermeer, Jacobus W.M.

    2011-01-01

    Surface modification of carbon black by plasma polymerization was aimed to reduce its surface energy in order to compatibilize the filler with various elastomers. A fullerenic carbon black was used for the modification process. Thermogravimetric analysis, wetting behavior with liquids of known

  8. Femtosecond laser-induced surface wettability modification of polystyrene surface

    Science.gov (United States)

    Wang, Bing; Wang, XinCai; Zheng, HongYu; Lam, YeeCheong

    2016-12-01

    In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene's surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.

  9. Surface Modification of Mg and Mg Alloys

    OpenAIRE

    Turhan, Can Metehan

    2012-01-01

    Progressively, the well explored and studied mechanical properties of a bulk metal are compared with the corrosion behaviour obtained from its surface, which enables promising improvements in desired applications. An example is magnesium metal: where, by developing new types of surface modifications by understanding its inconsistent corrosion behaviour, it would be possible to apply this engineering metal safely as a biocompatible metal, in addition to its widely used application areas such a...

  10. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes

    Directory of Open Access Journals (Sweden)

    Norhan Nady

    2016-04-01

    Full Text Available A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme and nontoxic modifier, which can be safely labelled “green surface modification”. This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone (PES membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers—ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid—is presented.

  11. Efficient Removal of Cationic and Anionic Radioactive Pollutants from Water Using Hydrotalcite-Based Getters.

    Science.gov (United States)

    Bo, Arixin; Sarina, Sarina; Liu, Hongwei; Zheng, Zhanfeng; Xiao, Qi; Gu, Yuantong; Ayoko, Godwin A; Zhu, Huaiyong

    2016-06-29

    Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.

  12. Effect of surface modification and hybridization on dynamic ...

    Indian Academy of Sciences (India)

    Epoxy; Roystonea regia; glass; surface modification; hybridization; dynamic mechanical ... other advantages such as light weight, low cost, high specific ... ful technique to study the mechanical behaviour of mate- ... The test reveals response.

  13. Surface modification on silicon with chitosan and biological research

    International Nuclear Information System (INIS)

    Lue Xiaoying; Cui Wei; Huang Yan; Zhao Yi; Wang Zhigong

    2009-01-01

    The aim of the present study was to investigate the effect of chitosan modification of silicon (Si) on protein adsorption, cell adhesion and cell proliferation. Chitosan was first immobilized on the Si surface through a (3-aminopropyl)triethoxysilane (APTES) bridge. The surface was then characterized by contact angle measurement, atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDX). The amount of protein adsorbed on the native Si and chitosan-modified Si surface was evaluated by a modified Coomassie brilliant blue (CBB) protein assay. The adhesion and proliferation behavior of L-929 and pc12 cells were then assessed by microscopy and methylthiazoltetrazolium (MTT) tests. The results showed that the chitosan modification could resist protein adsorption and inhibit the adhesion and proliferation of two kinds of cells on Si.

  14. Thermal performance enhancement of erythritol/carbon foam composites via surface modification of carbon foam

    Science.gov (United States)

    Li, Junfeng; Lu, Wu; Luo, Zhengping; Zeng, Yibing

    2017-03-01

    The thermal performance of the erythritol/carbon foam composites, including thermal diffusivity, thermal capacity, thermal conductivity and latent heat, were investigated via surface modification of carbon foam using hydrogen peroxide as oxider. It was found that the surface modification enhanced the wetting ability of carbon foam surface to the liquid erythritol of the carbon foam surface and promoted the increase of erythritol content in the erythritol/carbon foam composites. The dense interfaces were formed between erythritol and carbon foam, which is due to that the formation of oxygen functional groups C=O and C-OH on the carbon surface increased the surface polarity and reduced the interface resistance of carbon foam surface to the liquid erythritol. The latent heat of the erythritol/carbon foam composites increased from 202.0 to 217.2 J/g through surface modification of carbon foam. The thermal conductivity of the erythritol/carbon foam composite before and after surface modification further increased from 40.35 to 51.05 W/(m·K). The supercooling degree of erythritol also had a large decrease from 97 to 54 °C. Additionally, the simple and effective surface modification method of carbon foam provided an extendable way to enhance the thermal performances of the composites composed of carbon foams and PCMs.

  15. Corrosion and surface modification on biocompatible metals: A review.

    Science.gov (United States)

    Asri, R I M; Harun, W S W; Samykano, M; Lah, N A C; Ghani, S A C; Tarlochan, F; Raza, M R

    2017-08-01

    Corrosion prevention in biomaterials has become crucial particularly to overcome inflammation and allergic reactions caused by the biomaterials' implants towards the human body. When these metal implants contacted with fluidic environments such as bloodstream and tissue of the body, most of them became mutually highly antagonistic and subsequently promotes corrosion. Biocompatible implants are typically made up of metallic, ceramic, composite and polymers. The present paper specifically focuses on biocompatible metals which favorably used as implants such as 316L stainless steel, cobalt-chromium-molybdenum, pure titanium and titanium-based alloys. This article also takes a close look at the effect of corrosion towards the implant and human body and the mechanism to improve it. Due to this corrosion delinquent, several surface modification techniques have been used to improve the corrosion behavior of biocompatible metals such as deposition of the coating, development of passivation oxide layer and ion beam surface modification. Apart from that, surface texturing methods such as plasma spraying, chemical etching, blasting, electropolishing, and laser treatment which used to improve corrosion behavior are also discussed in detail. Introduction of surface modifications to biocompatible metals is considered as a "best solution" so far to enhanced corrosion resistance performance; besides achieving superior biocompatibility and promoting osseointegration of biocompatible metals and alloys. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Low-temperature plasma techniques in surface modification of biomaterials

    International Nuclear Information System (INIS)

    Feng Xiangfen; Xie Hankun; Zhang Jing

    2002-01-01

    Since synthetic polymers usually can not meet the biocompatibility and bio-functional demands of the human body, surface treatment is a prerequisite for them to be used as biomaterials. A very effective surface modification method, plasma treatment, is introduced. By immobilizing the bio-active molecules with low temperature plasma, polymer surfaces can be modified to fully satisfy the requirements of biomaterials

  17. Sorption and fixation of large cations by shale formations

    International Nuclear Information System (INIS)

    Brindley, G.W.

    1977-01-01

    Large cations such as Cs + are preferentially sorbed and partially fixed by fine-grained 2 : 1 type layer silicates such as micas, vermiculites, smectites and various mixed-layer minerals. Since these minerals are common constituents of many shale formations, these formations may provide suitable location for the burial of radioactive waste containers. However, the usual investigations of cation sorption and fixation must be extended to the conditions likely to develop in the vicinity of buried radioactive waste. Prior to possible leakage from buried containers, elevated temperatures around the burial site will develop leading to hydrothermal modification of the surrounding mineralogy. A range of temperature and of mineralogy must be envisaged. If and when leakage occurs, an outward diffusion of radioactive ions will occur by solvation in the fluids in the shale. The ratio of radioactive ions/normal ions will diminish outwards from the source. At near distances from the source high temperature modifications of the clay minerals and high concentrations of radioactive cations may lead to saturation of the fixation capacity. At greater distances, little or no thermal modification of the clay minerals and lower concentrations of ions will permit maximum sorption and fixation

  18. Long-term stable surface modification of DLC coatings

    Directory of Open Access Journals (Sweden)

    Gotzmann Gaby

    2017-09-01

    Full Text Available The use of coatings based on diamond like carbon (DLC for medical applications was established during the last years. Main advantages of these coatings are its high hardness, good wear and friction behavior and its biocompatibility. Using low-energy electron-beam treatment, we addressed the surface modification of DLC coatings. The aim was to generate new biofunctional surface characteristics that are long-term stable.

  19. Vacuum-based surface modification of organic and metallic substrates

    Science.gov (United States)

    Torres, Jessica

    Surface physico-chemical properties play an important role in the development and performance of materials in different applications. Consequently, understanding the chemical and physical processes involved during surface modification strategies is of great scientific and technological importance. This dissertation presents results from the surface modification of polymers, organic films and metallic substrates with reactive species, with the intent of simulating important modification processes and elucidating surface property changes of materials under different environments. The reactions of thermally evaporated copper and titanium with halogenated polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC) are used to contrast the interaction of metals with polymers. Results indicate that reactive metallization is thermodynamically favored when the metal-halogen bond strength is greater than the carbon-halogen bond strength. X-ray post-metallization treatment results in an increase in metal-halide bond formation due to the production of volatile halogen species in the polymer that react with the metallic overlayer. The reactions of atomic oxygen (AO) and atomic chlorine with polyethylene (PE) and self-assembled monolayers (SAMs) films were followed to ascertain the role of radical species during plasma-induced polymer surface modification. The reactions of AO with X-ray modified SAMs are initially the dominated by the incorporation of new oxygen containing functionality at the vacuum/film interface, leading to the production of volatile carbon containing species such as CO2 that erodes the hydrocarbon film. The reaction of atomic chlorine species with hydrocarbon SAMs, reveals that chlorination introduces C-Cl and C-Cl2 functionalities without erosion. A comparison of the reactions of AO and atomic chlorine with PE reveal a maximum incorporation of the corresponding C-O and C-Cl functionalities at the polymer surface. A novel method to prepare phosphorous

  20. Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method

    Science.gov (United States)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2011-01-01

    This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 μm and 150 μm. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 μm. The maximum hardness achieved was between 728 and 905 HV0.1. These findings are significant to modern development of hard coatings for wear resistant applications.

  1. Improvement of Polypropylene Biological Interactions by using Superhydrophobic Surface Modification

    Directory of Open Access Journals (Sweden)

    E. Shirani

    2018-03-01

    Full Text Available The significance of producing superhydrophobic surfaces through modification of surface chemistry and structure is in preventing or delaying biofilm formation. This is done to improve biocompatibility and chemical and biological properties of the surface by creating micro-nano multilevel rough structure; and to decrease surface free energy by Fault Tolerant Control Strategy (FTCS . Here, we produced a superhydrophobic surface through TiO2 coating and flurosilanization methods. Then, in order to evaluate the physicochemical properties of the modified surfaces, they were characterized by Scanning Electron Microscope (SEM, Fourier Transform Infrared Spectroscopy (FTIR, Contact Angle (CA, cell viability assay (using Hela and MCF-7 cancer cell lines as well as non-cancerous human fibroblast cells by MTT, Bovine Serum Abumin (BSA protein adsorption using Bradford and bacterial adhesion assay (Staphylococcus aureus and Staphylococcus epidermidis using microtiter. Results showed that contact angle and surface energey of superhydrophobic modified surface increased to 150° and decreased to 5.51 mj/m2, respectively due to physicochemical modifications of the surface. In addition, the results showed a substantial reduction in protein adsorption and bacterial cell adhesion in superhydrophobic surface.

  2. Laser and chemical surface modifications of titanium grade 2 for medical application

    Energy Technology Data Exchange (ETDEWEB)

    Kwaśniak, P. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Pura, J., E-mail: jaroslawpura@gmail.com [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Zwolińska, M.; Wieciński, P. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Skarżyński, H.; Olszewski, L. [Institute of Physiology and Pathology of Hearing, Warsaw (Poland); World Hearing Center, Kajetany (Poland); Marczak, J. [Military University of Technology, Institute of Optoelectronics, Warsaw (Poland); Garbacz, H.; Kurzydłowski, K.J. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland)

    2015-05-01

    Highlights: • DLIL technique and etching were used for functionalization of Ti grade 2 surface. • Modification was performed on semi-finished flat and curved Ti surfaces. • Modification results in periodic multimodal (micro and nano-size) Ti topography. - Abstract: The article presents combined, chemical and physical approach to titanium surface functionalization designed for biomedical applications. The topography modification has been obtained by employing the double laser beam interference technique and chemical etching. In the outcome, clean and smooth Ti surface as well as periodic striated topography with the roughness range from nano- to micrometers were created. The obtained structures were characterized in terms of shape, roughness, chemical composition, mechanical properties and microstructures. In order to achieve all information, numerous of research methods have been used: scanning electron microscopy, atomic force microscopy, optical profilometry and microhardness measurements. Demonstrated methodology can be used as an effective tool for manufacturing controlled surface structures improving the bone–implants interactions.

  3. Surface modification on PMMA : PVDF polyblend: hardening under ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Polyblend; surface modification; microhardness; hardening; plasticization; segmental mobility. 1. Introduction. Polymeric materials have a specific feature of stability towards various aggressive chemical environments, which depends on a multiplicity of factors like structure and nature of the polymers and chemical ...

  4. Actinide cation-cation complexes

    International Nuclear Information System (INIS)

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO 2 + ) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO 2 + ; therefore, cation-cation complexes indicate something unique about AnO 2 + cations compared to actinide cations in general. The first cation-cation complex, NpO 2 + ·UO 2 2+ , was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO 2 + species, the cation-cation complexes of NpO 2 + have been studied most extensively while the other actinides have not. The only PuO 2 + cation-cation complexes that have been studied are with Fe 3+ and Cr 3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO 2 + ·UO 2 2+ , NpO 2 + ·Th 4+ , PuO 2 + ·UO 2 2+ , and PuO 2 + ·Th 4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M -1

  5. Microwave plasma induced surface modification of diamond-like carbon films

    Science.gov (United States)

    Rao Polaki, Shyamala; Kumar, Niranjan; Gopala Krishna, Nanda; Madapu, Kishore; Kamruddin, Mohamed; Dash, Sitaram; Tyagi, Ashok Kumar

    2017-12-01

    Tailoring the surface of diamond-like carbon (DLC) film is technically relevant for altering the physical and chemical properties, desirable for useful applications. A physically smooth and sp3 dominated DLC film with tetrahedral coordination was prepared by plasma-enhanced chemical vapor deposition technique. The surface of the DLC film was exposed to hydrogen, oxygen and nitrogen plasma for physical and chemical modifications. The surface modification was based on the concept of adsorption-desorption of plasma species and surface entities of films. Energetic chemical species of microwave plasma are adsorbed, leading to desorbtion of the surface carbon atoms due to energy and momentum exchange. The interaction of such reactive species with DLC films enhanced the roughness, surface defects and dangling bonds of carbon atoms. Adsorbed hydrogen, oxygen and nitrogen formed a covalent network while saturating the dangling carbon bonds around the tetrahedral sp3 valency. The modified surface chemical affinity depends upon the charge carriers and electron covalency of the adsorbed atoms. The contact angle of chemically reconstructed surface increases when a water droplet interacts either through hydrogen or van dear Waals bonding. These weak interactions influenced the wetting property of the DLC surface to a great extent.

  6. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  7. Surface modification of zinc oxide nanorods for potential applications in organic materials

    International Nuclear Information System (INIS)

    Zhang Lei; Zhong Min; Ge Hongliang

    2011-01-01

    A facile and simple modification method towards changing surface property of ZnO nanorods from a hydrophilic one to a hydrophobic one have been developed by refluxing precursor in three-necked flask. Comparing with the other modifiers discussed in the paper, NDZ-311w titanate coupling agent was selected as the best one not only because of the good lipophilic modification effect, but also for its multifunctional groups could play a crucial part in further composite with organic materials. Moreover, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), respectively, were used to evaluate the morphology, structure and combinative way before and after surface modification. The TEM result showed, after modifying process, there was a thin layer capping on the surface of ZnO nanorods which could be considered as NDZ-311w titanate coupling agent. Through the structure analysis by XRD, it was found that the surface modification had not substantially altered crystalline structure. Besides, the FT-IR test proved that NDZ-311w titanate coupling agent was rather covalently bonded to the surface of ZnO nanorods than physically capping. More practically speaking, the NDZ-311w titanate coupling agent modified ZnO nanorods have much more potential applications in organic materials than unmodified ones.

  8. Surface modification of titanium and titanium alloys by ion implantation.

    Science.gov (United States)

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.

  9. Effect of surface roughness and surface modification of indium tin oxide electrode on its potential response to tryptophan

    International Nuclear Information System (INIS)

    Khan, Md. Zaved Hossain; Nakanishi, Takuya; Kuroiwa, Shigeki; Hoshi, Yoichi; Osaka, Tetsuya

    2011-01-01

    Highlights: → We examine factors affecting potential response of ITO electrode to tryptophan. → Surface roughness of ITO electrode affects the stability of its rest potential. → Surface modification is effective for ITO electrode with a certain roughness. → Optimum values of work function exist for potential response of ITO to tryptophan. - Abstract: The effect of surface modification of indium tin oxide (ITO) electrode on its potential response to tryptophan was investigated for ITO substrates with different surface roughness. It was found that a small difference in surface roughness, between ∼1 and ∼2 nm of R a evaluated by atomic force microscopy, affects the rest potential of ITO electrode in the electrolyte. A slight difference in In:Sn ratio at the near surface of the ITO substrates, measured by angle-resolved X-ray photoelectron spectrometry and Auger electron spectroscopy is remarkable, and considered to relate with surface roughness. Interestingly, successive modification of the ITO surface with aminopropylsilane and disuccinimidyl suberate, of which essentiality to the potential response to indole compounds we previously reported, improved the stability of the rest potential and enabled the electrodes to respond to tryptophan in case of specimens with R a values ranging between ∼2 and ∼3 nm but not for those with R a of ∼1 nm. It was suggested that there are optimum values of effective work function of ITO for specific potential response to tryptophan, which can be obtained by the successive modification of ITO surface.

  10. Modification of inorganic surface with 1-alkenes and 1-alkynes

    NARCIS (Netherlands)

    Maat, ter J.

    2012-01-01

    Surface modification is important because it allows the tuning of surface properties, thereby enabling new applications of a material. It can change physical properties such as wettability and friction, but can also introduce chemical functionalities and binding specificity. Several techniques

  11. Surface modifications of magnesium alloys for biomedical applications.

    Science.gov (United States)

    Yang, Jingxin; Cui, Fuzhai; Lee, In Seop

    2011-07-01

    In recent years, research on magnesium (Mg) alloys had increased significantly for hard tissue replacement and stent application due to their outstanding advantages. Firstly, Mg alloys have mechanical properties similar to bone which avoid stress shielding. Secondly, they are biocompatible essential to the human metabolism as a factor for many enzymes. In addition, main degradation product Mg is an essential trace element for human enzymes. The most important reason is they are perfectly biodegradable in the body fluid. However, extremely high degradation rate, resulting in too rapid loss of mechanical strength in chloride containing environments limits their applications. Engineered artificial biomaterials with appropriate mechanical properties, surface chemistry, and surface topography are in a great demand. As the interaction between the cells and tissues with biomaterials at the tissue--implant interface is a surface phenomenon; surface properties play a major role in determining both the biological response to implants and the material response to the physiological condition. Therefore, the ability to modify the surface properties while preserve the bulk properties is important, and surface modification to form a hard, biocompatible and corrosion resistant modified layer have always been an interesting topic in biomaterials field. In this article, attempts are made to give an overview of the current research and development status of surface modification technologies of Mg alloys for biomedical materials research. Further, the advantages/disadvantages of the different methods and with regard to the most promising method for Mg alloys are discussed. Finally, the scientific challenges are proposed based on own research and the work of other scientists.

  12. Chemical modification of carbon powders with aminophenyl and aryl-aliphatic amine groups by reduction of in situ generated diazonium cations: Applicability of the grafted powder towards CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Aurelie Grondein; Daniel Belanger [Universite du Quebec a Montreal, Montreal, PQ (Canada). Departement de Chimie

    2011-08-15

    Aminophenyl, p-aminobenzyl and p-aminoethylphenyl groups were grafted at the surface of carbon Vulcan XC72R by spontaneous reduction of the in situ generated diazonium cations from the corresponding amine. X-ray photoelectron spectroscopy and elemental analysis confirmed an amine loading of about 1 mmol/g. The grafting of amine functionalities leads to a decrease of specific surface area from 223 to about 110 m{sup 2}/g with a drastic loss of microporosity. Acid-base properties of the surface are also affected by the modification. Aminophenyl grafted groups make the surface more acidic while aryl-aliphatic amines groups tends to render it more basic. The grafted layer shows in each case a good thermal stability up to 250{sup o}C. The affinity of the modified powder towards CO{sub 2} and N{sub 2} has been evaluated by thermal swing adsorption. The maximum adsorption capacity of CO{sub 2} of modified carbons is lower than the unmodified carbon but the presence of the amine functionalities involves a better selectivity of the material towards CO{sub 2} adsorption in comparison of N{sub 2} adsorption. 53 refs., 9 figs., 3 tabs.

  13. Selected anionic and cationic surface active agents: case study on the Kłodnica sediments

    Directory of Open Access Journals (Sweden)

    Olkowska Ewa

    2017-03-01

    Full Text Available Surface active agents (surfactants are a group of chemical compounds, which are used as ingredients of detergents, cleaning products, cosmetics and functional products. After use, wastes containing surfactants or their degradation products are discharged to wastewater treatment plants or directly into surface waters. Due to their specific properties of SAAs, compounds are able to migrate between different environmental compartments such as soil, sediment, water or even living organisms and accumulate there. Surfactants can have a harmful effect on living organisms. They can connect with bioactive molecules and modify their function. Additionally, they have the ability to migrate into cells and cause their damage or death. For these reasons investigation of individual surfactants should be conducted. The presented research has been undertaken to obtain information about SAA contamination of sediment from the River Kłodnica catchment caused by selected anionic (linear alkylbenzene sulfonates (LAS C10-C13 and cationic (alkylbenzyldimethylammonium (BDMA-C12-16, alkyl trimethyl ammonium (DTMA, hexadecyl piridinium chloride (HP chlorides surfactants. This river flows through an area of the Upper Silesia Industrial Region where various companies and other institutions (e.g. coal mining, power plants, metallurgy, hospitals are located. To determine their concentration the following analytical tools have been applied: accelerated solvent extraction– solid phase extraction – high performance liquid chromatography – UV-Vis (anionic SAAs and conductivity (cationic SAAs detectors. In all sediments anionic SAAs have been detected. The concentrations of HTMA and BDMA-C16 in tested samples were higher than other cationic analytes. Generally, levels of surfactants with longer alkyl chains were higher and this observation can confirm their higher susceptibility to sorption on solid surfaces.

  14. Silane surface modification for improved bioadhesion of esophageal stents

    Science.gov (United States)

    Karakoy, Mert; Gultepe, Evin; Pandey, Shivendra; Khashab, Mouen A.; Gracias, David H.

    2014-08-01

    Stent migration occurs in 10-40% of patients who undergo placement of esophageal stents, with higher migration rates seen in those treated for benign esophageal disorders. This remains a major drawback of esophageal stent therapy. In this paper, we propose a new surface modification method to increase the adhesion between self-expandable metallic stents (SEMS) and tissue while preserving their removability. Taking advantage of the well-known affinity between epoxide and amine terminated silane coupling agents with amine and carboxyl groups that are abundant in proteins and related molecules in the human body; we modified the surfaces of silicone coated esophageal SEMS with these adhesive self-assembled monolayers (SAMs). We utilized vapor phase silanization to modify the surfaces of different substrates including PDMS strips and SEMS, and measured the force required to slide these substrates on a tissue piece. Our results suggest that surface modification of esophageal SEMS via covalent attachment of protein-binding coupling agents improves adhesion to tissue and could offer a solution to reduce SEMS migration while preserving their removability.

  15. Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Primo, Gastón A.; Alvarez Igarzabal, Cecilia I. [IMBIV (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba X5000HUA (Argentina); Pino, Gustavo A.; Ferrero, Juan C. [INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Córdoba X5000IUS (Argentina); Rossa, Maximiliano, E-mail: mrossa@fcq.unc.edu.ar [INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Córdoba X5000IUS (Argentina)

    2016-04-30

    Graphical abstract: - Highlights: • Laser-induced surface modification of crosslinked hydrophilic co-polymers by ns pulses. • Formation of ablation craters observed under most of the single-pulse experimental conditions. • UV laser foaming of dried hydrogel samples resulting from single- and multiple-pulse experiments. • Threshold values of the incident laser fluence reported for the observed surface modifications. • Lower threshold fluences for acrylate-based, compared to acrylamide-based hydrogels. - Abstract: This work reports an investigation of the surface modifications induced by irradiation with nanosecond laser pulses of ultraviolet and visible wavelengths on crosslinked hydrophilic co-polymeric materials, which have been functionalized with 1-vinylimidazole as a co-monomer. A comparison is made between hydrogels differing in the base co-monomer (N,N-dimethylaminoethyl methacrylate and N-[3-(dimethylamino)propyl] methacrylamide) and in hydration state (both swollen and dried states). Formation of craters is the dominant morphological change observed by ablation in the visible at 532 nm, whereas additional, less aggressive surface modifications, chiefly microfoams and roughness, are developed in the ultraviolet at 266 nm. At both irradiation wavelengths, threshold values of the incident laser fluence for the observation of the various surface modifications are determined under single-pulse laser irradiation conditions. It is shown that multiple-pulse irradiation at 266 nm with a limited number of laser shots can be used alternatively for generating a regular microfoam layer at the surface of dried hydrogels based on N,N-dimethylaminoethyl methacrylate. The observations are rationalized on the basis of currently accepted mechanisms for laser-induced polymer surface modification, with a significant contribution of the laser foaming mechanism. Prospective applications of the laser-foamed hydrogel matrices in biomolecule immobilization are suggested.

  16. Vapor phase modification of sol-gel derived titania (TiO{sub 2}) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Piwonski, Ireneusz [University of Lodz, Department of Chemical Technology and Environmental Protection, Pomorska 163, 90-236 Lodz (Poland)]. E-mail: irek@uni.lodz.pl; Ilik, Aneta [University of Lodz, Department of Chemical Technology and Environmental Protection, Pomorska 163, 90-236 Lodz (Poland)

    2006-12-30

    Chemical vapor deposition (CVD) method was used in titania surface modification. Titania layers were obtained in sol-gel process and prepared as thin films on silicon wafers in dip-coating method. In order to define the influence of modification on titania surface properties (e.g., friction), various types of fluoroalkylsilanes were used. The effectiveness of the modification was monitored by FT-IR spectroscopy. The topography and frictional measurements were investigated with the use of atomic force microscopy (AFM)

  17. Study of Textile Surface Characteristic Modification by Using Electron Beam Radiation

    International Nuclear Information System (INIS)

    Iswani Gitawati; Rany Saptaaji

    2007-01-01

    The success of accelerator technology application in various field of industry, medical and pharmacy, environment, agricultural, food increase each year as the increasing of people needs, not excepted for surface treatment of fibers and textiles in textile industry. This writing aim is to asses the application of electron beam accelerator for textile surface treatment on finishing step. Surface treatment was done with electron beam low energy (100 - 500 keV), and because of its low penetration it was suitable used to gain the improvement of chemical, physical and mechanical properties of textile surface such as adhesion, wettability, printability, dyes-intake, crease recovery, wrinkle-resistance, flammability, abrasion resistance, soil and stain release to get better result. Modification of fibers and textiles surface properties on finishing process can be caused by crosslinking, grafting and degradation reactions. The assesment results showed that the greatest impact on commercial application of radiation in textiles were crease recovery and surface modification of wetting properties (soil and stain release). The radiation dose used for those purposes were 5 - 50 kGy. The bach process of graft textiles surface modification before and after irradiation by Co-60 source (gamma energies of 1.33 and 1.17 MeV) and continue process by electron beam were presented. The assesment results were reported in this paper. (author)

  18. Adsorption of cations onto positively charged surface mesopores.

    Science.gov (United States)

    Neue, Uwe; Iraneta, Pamela; Gritti, Fabrice; Guiochon, Georges

    2013-11-29

    Uwe Neue developed a theoretical treatment to account for the adsorption of ions on mesopores of packing materials the walls of which are bonded to ionic ligands but left this work unfinished. We elaborated upon this treatment and refined it, based on the equivalence that he suggested between charged surface particles and a membrane that separates two ionic solutions but is impermeable to one specification. He had written that the electro-chemical potentials in both ionic solutions are equal (Donnan equilibrium). The equilibrium between the surface and the pore concentrations is accounted for by an homogeneous electrostatically modified Langmuir (EML) isotherm model. The theoretical results are presented for four different charge surface concentrations σ0=0, 0.001, 0.002, and 0.003C/m(2), using a phosphate buffer (W(S)pH=2.65) of ionic strength I=10mM. The average pore size, the specific surface area, and the specific pore volume of the stationary phase were Dp=140Å, Sp=182m(2)/g, and Vp=0.70cm(3)/g, respectively. The theoretical results provide the quantitative difference between the ionic strength, the pH, and the concentrations of all the ions in the pores and in the bulk eluent. The theory predicts (1) that the retention times of cations under linear conditions is lower and (2) that their band widths under overloaded conditions for a given retention factor shrinks when the surface charge density σ0 is increased. These theoretical results are in good agreement with experimental results published previously and explain them. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Ion-Induced Surface Modification of Magnetically Operated Contacts

    Directory of Open Access Journals (Sweden)

    Karen Arushanov

    2012-02-01

    Full Text Available A study has been made of permalloy (iron-nickel contacts of reed switches before and after ion-induced surface modification using atomic force and optical microscopy, Auger electron and X-ray photoelectron spectroscopy. It has been found that the formation of surface nitride layers enhances corrosion and erosion resistance of contacts. We proposed to produce such layers directly into sealed reed switches by means of pulsing glow-discharge nitrogen plasma.

  20. Induction of surface modification of polytetrafluoroethylene with proton ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Noh, I S; Kim, H R; Choi, Y J; Park, H S [Seoul National Univ. of Technology, Seoul (Korea, Republic of)

    2007-04-15

    Cardiovascular disease is one of the leading causes of the death in the USA and developed countries. More than 570,000 artery bypass graft surgeries per USA are performed each year, though percutaneous devices have abounded in extreme cases. Based on the surgery follow-ups, large diameter expanded polytetrafluoroethylene (ePTFE) (>5 mm) are clinically employed with good results but its clinical applications in smaller vessels is still problematic due to thrombosis and neointima formation. Achievement of high patency grafts has been to some extent achieved by numerous methods of surface modification techniques, but its results are less than its initial hopes. As examples, endothelial cells coated on the luminal surface of ePTFE has demonstrated limited success after recirculation. Surface modifications of PTFE film with either argon ion beam or UV light from Xe-excimer lamp were reported to increase its interaction with vascular endothelial cell. Surface modification of poly(lactide-co-glycolide)[PLGA] is also very important in tissue engineering, in where induction of its initial high cellular adhesion and spreading is a critical step for development of tissue engineering medical products. We previously reported tissue engineering of the hybrid ePTFE scaffold by seeding smooth muscle cells and subsequently evaluation of its tissue regeneration behaviors and stabilities with circulation of pulsatile flow. To improve its tissue engineering more quickly, we here performed surface modification of ePTFE and porous PLGA scaffold and evaluated its subsequent chemical and biological properties after treating its surface with low energy ion beams. The porous ePTFE was prepared in a round shape (diameter = 1 cm) and dried after organic solvent extraction for ion beam treatment. Another porous PLGA layers (d = 1 cm, t = 1 cm with approximately 92% porosity) were fabricated and treated its surface by irradiating low energy either nitrogen or argon ion beams (1 keV, 1x1015 ions

  1. Induction of surface modification of polytetrafluoroethylene with proton ion beams

    International Nuclear Information System (INIS)

    Noh, I. S.; Kim, H. R.; Choi, Y. J.; Park, H. S.

    2007-04-01

    Cardiovascular disease is one of the leading causes of the death in the USA and developed countries. More than 570,000 artery bypass graft surgeries per USA are performed each year, though percutaneous devices have abounded in extreme cases. Based on the surgery follow-ups, large diameter expanded polytetrafluoroethylene (ePTFE) (>5 mm) are clinically employed with good results but its clinical applications in smaller vessels is still problematic due to thrombosis and neointima formation. Achievement of high patency grafts has been to some extent achieved by numerous methods of surface modification techniques, but its results are less than its initial hopes. As examples, endothelial cells coated on the luminal surface of ePTFE has demonstrated limited success after recirculation. Surface modifications of PTFE film with either argon ion beam or UV light from Xe-excimer lamp were reported to increase its interaction with vascular endothelial cell. Surface modification of poly(lactide-co-glycolide)[PLGA] is also very important in tissue engineering, in where induction of its initial high cellular adhesion and spreading is a critical step for development of tissue engineering medical products. We previously reported tissue engineering of the hybrid ePTFE scaffold by seeding smooth muscle cells and subsequently evaluation of its tissue regeneration behaviors and stabilities with circulation of pulsatile flow. To improve its tissue engineering more quickly, we here performed surface modification of ePTFE and porous PLGA scaffold and evaluated its subsequent chemical and biological properties after treating its surface with low energy ion beams. The porous ePTFE was prepared in a round shape (diameter = 1 cm) and dried after organic solvent extraction for ion beam treatment. Another porous PLGA layers (d = 1 cm, t = 1 cm with approximately 92% porosity) were fabricated and treated its surface by irradiating low energy either nitrogen or argon ion beams (1 keV, 1x1015 ions

  2. Modification of Textile Materials' Surface Properties Using Chemical Softener

    Directory of Open Access Journals (Sweden)

    Jurgita KOŽENIAUSKIENĖ

    2011-03-01

    Full Text Available In the present study the effect of technological treatment involving the processes of washing or washing and softening with chemical cationic softener "Surcase" produced in Great Britain on the surface properties of cellulosic textile materials manufactured from cotton, bamboo and viscose spun yarns was investigated. The changes in textile materials surface properties were evaluated using KTU-Griff-Tester device and FEI Quanta 200 FEG scanning electron microscope (SEM. It was observed that the worst hand properties and the higher surface roughness are observed of cotton materials if compared with those of bamboo and viscose materials. Also, it was shown that depending on the material structure the handle parameters of knitted materials are the better than the ones of woven fabrics.http://dx.doi.org/10.5755/j01.ms.17.1.249

  3. Plasma surface modification of rigid contact lenses decreases bacterial adhesion.

    Science.gov (United States)

    Wang, Yingming; Qian, Xuefeng; Zhang, Xiaofeng; Xia, Wei; Zhong, Lei; Sun, Zhengtai; Xia, Jing

    2013-11-01

    Contact lens safety is an important topic in clinical studies. Corneal infections usually occur because of the use of bacteria-carrying contact lenses. The current study investigated the impact of plasma surface modification on bacterial adherence to rigid contact lenses made of fluorosilicone acrylate materials. Boston XO and XO2 contact lenses were modified using plasma technology (XO-P and XO2-P groups). Untreated lenses were used as controls. Plasma-treated and control lenses were incubated in solutions containing Staphylococcus aureus or Pseudomonas aeruginosa. MTT colorimetry, colony-forming unit counting method, and scanning electron microscopy were used to measure bacterial adhesion. MTT colorimetry measurements showed that the optical density (OD) values of XO-P and XO2-P were significantly lower than those of XO and XO2, respectively, after incubation with S. aureus (P lenses and to the XO2-P versus XO2 lenses incubated with S. aureus (P lenses incubated with P. aeruginosa (P lenses. Plasma surface modification can significantly decrease bacterial adhesion to fluorosilicone acrylate contact lenses. This study provides important evidence of a unique benefit of plasma technology in contact lens surface modification.

  4. Effect of Reaction Conditions on the Surface Modification of Cellulose Nanofibrils with Aminopropyl Triethoxysilane

    Directory of Open Access Journals (Sweden)

    Eduardo Robles

    2018-04-01

    Full Text Available Nine different surface modifications of cellulose nanofibrils (CNF with 3-aminopropyl triethoxysilane (ATS by using three different solvent systems (water, ethanol, and a mixture of both were investigated. The effect of reaction conditions, such as silane to cellulose ratio and solvent type were evaluated to determine their contribution to the extent of the silane modification. Nanofibril properties were evaluated by infrared spectroscopy, powder X-ray diffraction, surface free energy, thermogravimetry, 13C and 29Si nuclear magnetic resonance, and electronic microscopy. The influence of the solvent in the solvolysis of the silane was reflected in the presence or absence of ethoxy groups in the silane. On the other hand, whereas the surface modification was increased directly proportionally to silane ratio on the reaction, the aggregation of nanofibrils was also increased, which can play a negative role in certain applications. The increment of silane modification also had substantial repercussions on the crystallinity of the nanofibrils by the addition of amorphous components to the crystalline unit; moreover, silane surface modifications enhanced the hydrophobic character of the nanofibrils.

  5. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media

    International Nuclear Information System (INIS)

    Kamiya, Hidehiro; Iijima, Motoyuki

    2010-01-01

    Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM). Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids. (topical review)

  6. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media

    Directory of Open Access Journals (Sweden)

    Hidehiro Kamiya and Motoyuki Iijima

    2010-01-01

    Full Text Available Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM. Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids.

  7. Topological surface states of Bi{sub 2}Te{sub 2}Se are robust against surface chemical modification

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Conor R.; Sahasrabudhe, Girija; Kushwaha, Satya Kumar; Cava, Robert J.; Schwartz, Jeffrey [Department of Chemistry, Princeton University, Princeton, NJ (United States); Xiong, Jun [Department of Physics, Princeton University, Princeton, NJ (United States)

    2014-12-01

    The robustness of the Dirac-like electronic states on the surfaces of topological insulators (TIs) during materials process-ing is a prerequisite for their eventual device application. Here, the (001) cleavage surfaces of crystals of the topological insulator Bi{sub 2}Te{sub 2}Se (BTS) were subjected to several surface chemical modification procedures that are common for electronic materials. Through measurement of Shubnikov-de Hass (SdH) oscillations, which are the most sensitive measure of their quality, the surface states of the treated surfaces were compared to those of pristine BTS that had been exposed to ambient conditions. In each case - surface oxidation, deposition of thin layers of Ti or Zr oxides, or chemical modification of the surface oxides - the robustness of the topological surface electronic states was demonstrated by noting only very small changes in the frequency and amplitude of the SdH oscillations. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Work function modifications of graphite surface via oxygen plasma treatment

    Science.gov (United States)

    Duch, J.; Kubisiak, P.; Adolfsson, K. H.; Hakkarainen, M.; Golda-Cepa, M.; Kotarba, A.

    2017-10-01

    The surface modification of graphite by oxygen plasma was investigated experimentally (X-ray diffraction, nanoparticle tracking analysis, laser desorption ionization mass spectrometry, thermogravimetry, water contact angle) and by molecular modelling (Density Functional Theory). Generation of surface functional groups (mainly sbnd OHsurf) leads to substantial changes in electrodonor properties and wettability gauged by work function and water contact angle, respectively. The invoked modifications were analyzed in terms of Helmholtz model taking into account the theoretically determined surface dipole moment of graphite-OHsurf system (μ = 2.71 D) and experimentally measured work function increase (from 0.75 to 1.02 eV) to determine the sbnd OH surface coverage (from 0.70 to 1.03 × 1014 groups cm-2). Since the plasma treatment was confined to the surface, the high thermal stability of the graphite material was preserved as revealed by the thermogravimetric analysis. The obtained results provide a suitable quantitative background for tuning the key operating parameters of carbon electrodes: electronic properties, interaction with water and thermal stability.

  9. Formation of ZnSe/Bi2Se3 QDs by surface cation exchange and high photothermal conversion

    Directory of Open Access Journals (Sweden)

    Guozhi Jia

    2015-08-01

    Full Text Available Water-dispersed core/shell structure ZnSe/Bi2Se3 quantum dots were synthesized by ultrasonicwave-assisted cation exchange reaction. Only surface Zn ion can be replaced by Bi ion in ZnSe quantum dots, which lead to the ultrathin Bi2Se3 shell layer formed. It is significance to find to change the crystal of QDs due to the acting of ultrasonicwave. Cation exchange mechanism and excellent photothermal conversion properties are discussed in detail.

  10. Ultralow energy ion beam surface modification of low density polyethylene.

    Science.gov (United States)

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  11. Surface Modification of Poly(tetrafluoroethylene) by Magnesium Amalgam

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Janda, Pavel; Weber, Jan

    2001-01-01

    Roč. 36, - (2001), s. 879-885 ISSN 0022-2461 R&D Projects: GA ČR GA203/98/1168; GA ČR GA203/98/1181 Institutional research plan: CEZ:AV0Z4040901 Keywords : poly(tetrafluoroethylene) * surface modification * ESCA Subject RIV: CG - Electrochemistry Impact factor: 0.728, year: 2001

  12. Surface modification of metals by ion implantation

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1988-01-01

    Ion implantation in metals has attracted the attention as a useful technology for the formation of new metastable alloys and compounds in metal surface layers without thermal equilibrium. Current studies of metal surface modification by ion implantation with high fluences have expanded from basic research areas and to industrial applications for the improvement of life time of tools. Many results suggest that the high fluence implantation produces the new surface layers with un-expected microscopic characteristics and macroscopic properties due to implant particles, radiation damage, sputtering, and knock-on doping. In this report, the composition, structure and chemical bonding state in surface layers of iron, iron-based alloy and aluminum sheets implanted with high fluences have been investigated by means of secondary ion mass spectroscopy (SIMS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Tribological properties such as hardness, friction and wear are introduced. (author)

  13. Ultrasound enhanced plasma surface modification at atmospheric pressure

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Norrman, Kion

    and the material surface, and thus many reactive species generated in the plasma can reach the surface before inactivated, and be efficiently utilized for surface modification. In the present work polyester plates are treated using a dielectric barrier discharge (DBD) and a gliding arc at atmospheric pressure......Atmospheric pressure plasma treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation onto the treating surface. It is because ultrasonic waves with a sound pressure level (SPL) above approximately 140 dB can reduce the thickness of a boundary gas layer between the plasma...... irradiation, the water contact angle dropped markedly, and tended to decrease furthermore at higher power. The ultrasonic irradiation during the plasma treatment consistently improved the wettability. Oxygen containing polar functional groups were introduced at the surface by the plasma treatment...

  14. Surface modification of polyethylene by plasma

    International Nuclear Information System (INIS)

    Colin O, E.

    2003-01-01

    The products made of polyethylene (PE) go from construction materials, electric insulating until packing material. The films for bags and pack occupy 83.6% of the distribution of the market of PE approximately. The enormous quantity of PE that is generated by its indiscriminate use brings as consequence a deterioration to the atmosphere, due to the long life that they present as waste. This work is a study on the modification of low density polyethylene films. In this type of thin materials, the changes in the surface meet with largely on the conformation of the rest of the material. To induce changes that modify the surface of PE, plasmas were used with reactive atmospheres of air, oxygen and nitrogen. The experimentation that was carries out went to introduce the PE to a cylindrical reactor where it was generated the plasma of air, oxygen and nitrogen to different times of exposure. After having carried out the exposure to the plasma, it was found that in the polyethylene it modifies their morphology, crystallinity, hydrophobicity, composition and electric conductivity. The analytical techniques that were used to characterize later to the polyethylene of being in contact with the plasma were: X-ray diffraction, Scanning Electron Microscopy, Infrared spectroscopy, Electric conductivity, Angle of contact and finally Thermal Gravimetric Analysis. The content of this work it is presented in five chapters: In the chapter 1 there are presented some general concepts of plasma and of the one polymer in study PE. In the chapter 2 it is made a general revision on modification of surfaces, as well as the properties that were modified in polymeric materials that were exposed to plasma in previous works. In the chapter 3 the experimental part and the conditions used are described in the modification of the PE. Also in this chapter a brief description it is made of the used characterization techniques. The results and discussion are presented in the chapter 4. These results

  15. Surface modification of malachite with ethanediamine and its effect on sulfidization flotation

    Science.gov (United States)

    Feng, Qicheng; Zhao, Wenjuan; Wen, Shuming

    2018-04-01

    Ethanediamine was used to modify the mineral surface of malachite to improve its sulfidization and flotation behavior. The activation mechanism was investigated by adsorption experiments, X-ray photoelectron spectroscopy (XPS) analysis, and zeta potential measurements. Microflotation experiments showed that the flotation recovery of malachite was enhanced after the pretreatment of the mineral particles with ethanediamine prior to the addition of Na2S. Adsorption tests revealed that numerous sulfide ion species in the pulp solution were transferred onto the mineral surface through the formation of more copper sulfide species. This finding was confirmed by the results of the XPS measurements. Ethanediamine modification not only increased the contents of copper sulfide species on the malachite surface but also enhanced the reactivity of the sulfidization products. During sulfidization, Cu(II) species on the mineral surface were reduced into Cu(I) species, and the percentages of S22- and Sn2- relative to the total S increased after modification, resulting in increased surface hydrophobicity. The results of zeta potential measurements showed that the ethanediamine-modified mineral surface adsorbed with more sulfide ion species was advantageous to the attachment of xanthate species, thereby improving malachite floatability. The proposed ethanediamine modification followed by sulfidization xanthate flotation exhibits potential for industrial application.

  16. Use of modern methods of fibre surface modification to obtain the multifunctional properties of textile materials

    Directory of Open Access Journals (Sweden)

    Jocić Dragan

    2003-01-01

    Full Text Available The modern textile fibre treatments aim to obtain the required level of beneficial effect while attempting to confine the modification to the fibre surface. Recently, much attention has been focused on different physical methods of fibre surface modification, cold plasma treatment being considered as very useful. Moreover, there are efficient chemical methods available, such as peroxide, biopolymer and enzyme treatment. Some interesting combinations of these physical and chemical surface modification methods as means to modify fibre surface topography and thus controlling the surface-related properties of the fibre are presented in this paper. The properties obtained are discussed on the basis of the physico-chemical changes in the surface layer of the fibre, being assessed by wettability and contact angle measurements, as well as by FTIR-ATR and XPS analysis. The SEM and AFM technique are used to assess the changes in the fibre surface topography and to correlate these changes to the effectiveness, uniformity and severity of the textile fibre surface modification treatments.

  17. Modification of silicon nitride surfaces with GOPES and APTES for antibody immobilization: computational and experimental studies

    International Nuclear Information System (INIS)

    To, Thien Dien; Nguyen, Anh Tuan; Phan, Khoa Nhat Thanh; Truong, An Thu Thi; Doan, Tin Chanh Duc; Dang, Chien Mau

    2015-01-01

    Chemical modification of silicon nitride (SiN) surfaces by silanization has been widely studied especially with 3-(aminopropyl)triethoxysilane (APTES) and 3-(glycidyloxypropyl) dimethylethoxysilane (GOPES). However few reports performed the experimental and computational studies together. In this study, surface modification of SiN surfaces with GOPES and APTES covalently bound with glutaraldehyde (GTA) was investigated for antibody immobilization. The monoclonal anti-cytokeratin-FITC (MACF) antibody was immobilized on the modified SiN surfaces. The modified surfaces were characterized by water contact angle measurements, atomic force microscopy and fluorescence microscopy. The FITC-fluorescent label indicated the existence of MACF antibody on the SiN surfaces and the efficiency of the silanization reaction. Absorption of APTES and GOPES on the oxidized SiN surfaces was computationally modeled and calculated by Materials Studio software. The computational and experimental results showed that modification of the SiN surfaces with APTES and GTA was more effective than the modification with GOPES. (paper)

  18. Benefits of aggregates surface modification in concrete production

    Science.gov (United States)

    Junak, J.; Sicakova, A.

    2017-10-01

    In our study, recycled concrete aggregates (RCA), which surfaces had been modified by geopolymer material based on coal fly ash, were used to produce the concrete samples. In these samples, fraction 4/8 mm was replaced by recycled concrete aggregate with a range of 100%. To modify the surface of RCA was “Solo” and “Triple stage” modification used. On these samples real density, total water absorption and compressive strength were examined after 28, 90, 180 and 365 days of hardening. The highest compressive strength 56.8 MPa, after 365 days hardening, reached sample which had improved RCA surface by “Triple stage mixing”.

  19. Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives.

    Science.gov (United States)

    Tanaka, Mutsuo; Sawaguchi, Takahiro; Sato, Yukari; Yoshioka, Kyoko; Niwa, Osamu

    2011-01-04

    Surface modification of glassy carbon (GC) and highly oriented pyrolytic graphite (HOPG) was carried out with diazonium, amine, azide, and olefin derivatives bearing ferrocene as an electroactive moiety. Features of the modified surfaces were evaluated by surface concentrations of immobilized molecule, blocking effect of the modified surface against redox reaction, and surface observation using cyclic voltammetry and electrochemical scanning tunneling microscope (EC-STM). The measurement of surface concentrations of immobilized molecule revealed the following three aspects: (i) Diazonium and olefin derivatives could modify substrates with the dense-monolayer concentration. (ii) The surface concentration of immobilized amine derivative did not reach to the dense-monolayer concentration reflecting their low reactivity. (iii) The surface modification with the dense-monolayer concentration was also possible with azide derivative, but the modified surface contained some oligomers produced by the photoreaction of azides. Besides, the blocking effect against redox reaction was observed for GC modified with diazonium derivative and for HOPG modified with diazonium and azide derivatives, suggesting fabrication of a densely modified surface. Finally, the surface observation for HOPG modified with diazonium derivative by EC-STM showed a typical monolayer structure, in which the ferrocene moieties were packed densely at random. On the basis of those results, it was demonstrated that surface modification of carbon substrates with diazonium could afford a dense monolayer similar to the self-assembled monolayer (SAM) formation.

  20. Dry powder pulmonary delivery of cationic PGA-co-PDL nanoparticles with surface adsorbed model protein.

    Science.gov (United States)

    Kunda, Nitesh K; Alfagih, Iman M; Dennison, Sarah R; Somavarapu, Satyanarayana; Merchant, Zahra; Hutcheon, Gillian A; Saleem, Imran Y

    2015-08-15

    Pulmonary delivery of macromolecules has been the focus of attention as an alternate route of delivery with benefits such as; large surface area, thin alveolar epithelium, rapid absorption and extensive vasculature. In this study, a model protein, bovine serum albumin (BSA) was adsorbed onto cationic PGA-co-PDL polymeric nanoparticles (NPs) prepared by a single emulsion solvent evaporation method using a cationic surfactant didodecyldimethylammonium bromide (DMAB) at 2% w/w (particle size: 128.64±06.01 nm and zeta-potential: +42.32±02.70 mV). The optimum cationic NPs were then surface adsorbed with BSA, NP:BSA (100:4) ratio yielded 10.01±1.19 μg of BSA per mg of NPs. The BSA adsorbed NPs (5 mg/ml) were then spray-dried in an aqueous suspension of L-leucine (7.5 mg/ml, corresponding to a ratio of 1:1.5/NP:L-leu) using a Büchi-290 mini-spray dryer to produce nanocomposite microparticles (NCMPs) containing cationic NPs. The aerosol properties showed a fine particle fraction (FPF, dae<4.46 μm) of 70.67±4.07% and mass median aerodynamic diameter (MMAD) of 2.80±0.21 μm suggesting a deposition in the respiratory bronchiolar region of the lungs.The cell viability was 75.76±03.55% (A549 cell line) at 156.25 μg/ml concentration after 24 h exposure. SDS-PAGE and circular dichroism (CD) confirmed that the primary and secondary structure of the released BSA was maintained. Moreover, the released BSA showed 78.76±1.54% relative esterolytic activity compared to standard BSA. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Hua [Key Laboratory for Liquid phase chemical oxidation Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China); Wang Chengguo, E-mail: sduwangchg@gmail.com [Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China); Zhang Shan; Lin Xue [Carbon Fibre Engineering Research Center, Faculty of Materials Science, Shandong University, Jinan 250061 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We used very simple and effective modification method to treat PAN-based carbon fiber by liquid oxidation and coupling agent. Black-Right-Pointing-Pointer Carbon fiber surface functional groups were analyzed by LRS and XPS. Black-Right-Pointing-Pointer Proper treatment of carbon fiber can prove an effective way to increase composite's performance. Black-Right-Pointing-Pointer Carbon fiber surface modifications by oxidation and APS could strengthen fiber activity and enlarge surface area as well as its roughness. - Abstract: In this work, polyacrylonitrile (PAN)-based carbon fiber were chemically modified with H{sub 2}SO{sub 4}, KClO{sub 3} and silane coupling agent ({gamma}-aminopropyltriethoxysilane, APS), and carbon fiber reinforced phenolic matrix composites were prepared. The structural and surface characteristics of the carbon fiber were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser Raman scattering (LRS) and Fourier transform infrared spectroscopy (FTIR). Single fiber mechanical properties, specific surface area, composite impact properties and interfacial shear strength (ILSS) were researched to indicate the effects of surface modification on fibers and the interaction between modified fiber surface and phenolic matrix. The results showed that carbon fiber surface modification by oxidation and APS can strengthen fiber surface chemical activity and enlarge the fiber surface area as well as its roughness. When carbon fiber (CF) is oxidized treatment, the oxygen content as well as the O/C ratio will be obviously increased. Oxygen functional groups increase with oxidation time increasing. Carbon fiber treated with APS will make C-O-R content increase and O-C=O content decrease due to surface reaction. Proper treatment of carbon fiber with acid and silane coupling agent prove an effective way to increase the interfacial adhesion and improve the mechanical and outdoor

  2. Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite

    International Nuclear Information System (INIS)

    Yuan Hua; Wang Chengguo; Zhang Shan; Lin Xue

    2012-01-01

    Highlights: ► We used very simple and effective modification method to treat PAN-based carbon fiber by liquid oxidation and coupling agent. ► Carbon fiber surface functional groups were analyzed by LRS and XPS. ► Proper treatment of carbon fiber can prove an effective way to increase composite's performance. ► Carbon fiber surface modifications by oxidation and APS could strengthen fiber activity and enlarge surface area as well as its roughness. - Abstract: In this work, polyacrylonitrile (PAN)-based carbon fiber were chemically modified with H 2 SO 4 , KClO 3 and silane coupling agent (γ-aminopropyltriethoxysilane, APS), and carbon fiber reinforced phenolic matrix composites were prepared. The structural and surface characteristics of the carbon fiber were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser Raman scattering (LRS) and Fourier transform infrared spectroscopy (FTIR). Single fiber mechanical properties, specific surface area, composite impact properties and interfacial shear strength (ILSS) were researched to indicate the effects of surface modification on fibers and the interaction between modified fiber surface and phenolic matrix. The results showed that carbon fiber surface modification by oxidation and APS can strengthen fiber surface chemical activity and enlarge the fiber surface area as well as its roughness. When carbon fiber (CF) is oxidized treatment, the oxygen content as well as the O/C ratio will be obviously increased. Oxygen functional groups increase with oxidation time increasing. Carbon fiber treated with APS will make C-O-R content increase and O-C=O content decrease due to surface reaction. Proper treatment of carbon fiber with acid and silane coupling agent prove an effective way to increase the interfacial adhesion and improve the mechanical and outdoor performance of the resulting fiber/resin composites.

  3. Surface modification of fluorocarbon polymers by synchrotron radiation

    CERN Document Server

    Kanda, K; Matsui, S; Ideta, T; Ishigaki, H

    2003-01-01

    The surface modification of a poly (tetrafluoroethylene) sheet was carried out by synchrotron radiation in the soft X-ray region. The poly (tetrafluoroethylene) substrate was exposed to synchrotron radiation while varying the substrate temperature from room temperature to 200degC. The contact angle of the modified surfaces with a water drop decreased from 96deg to 72deg by the irradiation at room temperature, while the contact angle increased to 143deg by the irradiation at the substrate temperature of 200degC. Scanning electron microscopy suggested that this repellence was ascribable to the microstructure of the poly (tetrafluoroethylene) surface. We succeeded in controlling the wettability of the poly (tetrafluoroethylene) surface from hydrophobic to hydrophilic by irradiation of the soft X-ray light. (author)

  4. Plasma-implantation-based surface modification of metals with single-implantation mode

    Science.gov (United States)

    Tian, X. B.; Cui, J. T.; Yang, S. Q.; Fu, Ricky K. Y.; Chu, Paul K.

    2004-12-01

    Plasma ion implantation has proven to be an effective surface modification technique. Its biggest advantage is the capability to treat the objects with irregular shapes without complex manipulation of target holder. Many metal materials such as aluminum, stainless steel, tool steel, titanium, magnesium etc, has been treated using this technique to improve their wear-resistance, corrosion-resistance, fatigue-resistance, oxidation-resistance, bio-compatiblity etc. However in order to achieve thicker modified layers, hybrid processes combining plasma ion implantation with other techniques have been frequently employed. In this paper plasma implantation based surface modification of metals using single-implantation mode is reviewed.

  5. Fast surface modification by microwave assisted click reactions on silicon substrates

    NARCIS (Netherlands)

    Haensch, C.; Erdmenger, T.; Fijten, M.W.M.; Höppener, S.; Schubert, U.S.

    2009-01-01

    Microwave irradiation has been used for the chemical modification of functional monolayers on silicon surfaces. The thermal and chemical stability of these layers was tested under microwave irradiation to investigate the possibility to use this alternative heating process for the surface

  6. Laser surface modification of boronickelized medium carbon steel

    Science.gov (United States)

    Bartkowska, Aneta; Pertek, Aleksandra; Kulka, Michał; Klimek, Leszek

    2015-11-01

    A two-step process was applied to produce the multicomponent boride layers. Boronickelizing consisted of nickel plating and diffusion boriding. Two different methods of heat treatment of boronickelized C45 steel were used: a typical through-hardening, and a laser surface modification with remelting. Microstructure and some mechanical properties of these layers were examined. Microstructural characterization was studied using optical microscope, Scanning Electron Microscope, energy-dispersive X-ray microanalysis, Electron Back-Scatter Diffraction and X-ray diffraction. The laser modification improved wear resistance, cohesion as well as low-cycle fatigue of the boronickelized layer. Compressive stresses, occurring after laser remelting, could be the reason for the advantageous mechanical behavior of the layer.

  7. Surface charging, discharging and chemical modification at a sliding contact

    DEFF Research Database (Denmark)

    Singh, Shailendra Vikram; Kusano, Yukihiro; Morgen, Per

    2012-01-01

    Electrostatic charging, discharging, and consequent surface modification induced by sliding dissimilar surfaces have been studied. The surface-charge related phenomena were monitored by using a home-built capacitive, non-contact electrical probe, and the surface chemistry was studied by X...... are also able to comment on the behavior and the charge decay time in the ambient air-like condition, once the sliding contact is discontinued. XPS analysis showed a marginal deoxidation effect on the polyester disks due to the charging and discharging of the surfaces. Moreover, these XPS results clearly...

  8. The effects of size and surface modification of amorphous silica particles on biodistribution and liver metabolism in mice

    Science.gov (United States)

    Lu, Xiaoyan; Ji, Cai; Jin, Tingting; Fan, Xiaohui

    2015-05-01

    Engineered nanoparticles, with unconventional properties, are promising platforms for biomedical applications. Since they may interact with a wide variety of biomolecules, it is critical to understand the impact of the physicochemical properties of engineered nanoparticles on biological systems. In this study, the effects of particle size and surface modification alone or in combination of amorphous silica particles (SPs) on biological responses were determined using a suite of general toxicological assessments and metabonomics analysis in mice model. Our results suggested that amino or carboxyl surface modification mitigated the liver toxicity of plain-surface SPs. 30 nm SPs with amino surface modification were found to be the most toxic SPs among all the surface-modified SP treatments at the same dosage. When treatment dose was increased, submicro-sized SPs with amino or carboxyl surface modification also induced liver toxicity. Biodistribution studies suggested that 70 nm SPs were mainly accumulated in liver and spleen regardless of surface modifications. Interestingly, these two organs exhibited different uptake trends. Furthermore, metabonomics studies indicated that surface modification plays a more dominant role to affect the liver metabolism than particle size.

  9. Approach to the surface characteristics of the H+ and H+-La3+ forms of cation-exchange resins by measurement of the heat of immersion

    International Nuclear Information System (INIS)

    Suzuki, T.; Uematsu, T.

    1985-01-01

    Surface characteristics of H + and its multivalent cation-exchanged resins, which have been used as catalysts, were probed by measurement of the heats of immersion in 1-nitropropane, n-hexane, and water. It was found that the electrostatic field strengths (F) calculated from the heats of immersion in 1-nitropropane and n-hexane increased with increasing ratios of the exchanged multivalent cation (La 3+ ) in the univalent form (H + ) cation-exchange resin. This tendency was also observed in the differences in F between the La 3+ exchanged resins and H + form of the resin by using the calorimetric data obtained from the heats of immersion in water. These results suggest that the exchanged La 3 μ ion does not homogeneously interact with three univalent anionic sites (SO 3 - ) of the cation-exchange resin, but interacts with only two SO 3 - ions, that is, the La 3+ ion is localized on the surface of the resin. The difference in F obtained from the heats of immersion into water was found to be useful as a simple and rapid criterion of the surface characteristics of the cation-exchange resins. 18 references, 4 figures, 1 table

  10. Effects of combinative surface modification on the stability and conductivity of the copper particles

    International Nuclear Information System (INIS)

    Zeng, Yike; Li, Tongtong; Fu, Ming; Jiang, Shenglin; Zhang, Guangzu

    2014-01-01

    Highlights: • A combinative method is used to improve the performance of the copper powder. • The method integrates passivation, silver-coating, and coupling agent treatment. • The stability of the copper powder has been improved after the modification. • The sheet resistance of the conductive film is reduced to 15 mΩ. -- Abstract: The specific goal of the present study is to evaluate the surface performance of the copper particles and get excellent copper powder by surface modification. This paper proposes a combinative modification method integrating passivation, silver-coated, and coupling agent. As a result, after 600 h at room temperature the copper powder has the stabilization improved and is well combined with organic matters, and the sheet resistance of the film fabricated by the copper conductive filler is reduced to 15 mΩ. The performance of the copper powder has been greatly enhanced by the combinative modification, and the cost of the copper conductive filler is decreased significantly by this method. The results indicate that the combinative surface modification method can be used for practical electronic application

  11. Application of xenon difluoride for surface modification of polymers

    International Nuclear Information System (INIS)

    Barsamyan, G.B.; Belokonov, K.V.; Vargasova, N.A.; Sokolov, V.B.; Chaivanov, B.B.; Zubov, V.P.

    1994-01-01

    Chemical interaction between xenon difluoride (XeF 2 ) and polymeric materials was investigated. It was shown that the reaction occurs on the surface of solid polymer layer and brings to chemical modification of the surface properties of the polymer leaving the bulk properties unchanged. The results of various analysis of the fluorinated samples (IR, FTIR-ATR, ESCA, bulk analysis etc) are presented. The mechanism of reaction is proposed. 12 refs.; 13 figs

  12. Hydrophilic Surface Modification of PDMS Microchannel for O/W and W/O/W Emulsions

    Directory of Open Access Journals (Sweden)

    Shazia Bashir

    2015-09-01

    Full Text Available A surface modification method for bonded polydimethylsiloxane (PDMS microchannels is presented herein. Polymerization of acrylic acid was performed on the surface of a microchannel using an inline atmospheric pressure dielectric barrier microplasma technique. The surface treatment changes the wettability of the microchannel from hydrophobic to hydrophilic. This is a challenging task due to the fast hydrophobic recovery of the PDMS surface after modification. This modification allows the formation of highly monodisperse oil-in-water (O/W droplets. The generation of water-in-oil-in-water (W/O/W double emulsions was successfully achieved by connecting in series a hydrophobic microchip with a modified hydrophilic microchip. An original channel blocking technique to pattern the surface wettability of a specific section of a microchip using a viscous liquid comprising a mixture of honey and glycerol, is also presented for generating W/O/W emulsions on a single chip.

  13. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    International Nuclear Information System (INIS)

    Bai Liqiang; Zhu Liangjun; Min Sijia; Liu Lin; Cai Yurong; Yao Juming

    2008-01-01

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B (CB) antimicrobial peptide, (NH 2 )-NGIVKAGPAIAVLGEAAL-CONH 2 , using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC.HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI)

  14. Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide

    Energy Technology Data Exchange (ETDEWEB)

    Bai Liqiang [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China); Zhu Liangjun; Min Sijia [College of Animal Sciences, Zhejiang University, Hangzhou 310029 (China); Liu Lin; Cai Yurong [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China); Yao Juming [Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Xiasha Higher Education Park, Hangzhou 310018 (China)], E-mail: yaoj@zstu.edu.cn

    2008-03-15

    The Bombyx mori silk fibroin films (SFFs) were modified by a Cecropin B (CB) antimicrobial peptide, (NH{sub 2})-NGIVKAGPAIAVLGEAAL-CONH{sub 2}, using the carbodiimide chemistry method. In order to avoid the dissolution of films during the modification procedure, the SFFs were first treated with 60% (v/v) ethanol aqueous solution, resulting a structural transition from unstable silk I to silk II. The investigation of modification conditions showed that the surface-modified SFFs had the satisfied antimicrobial activity and durability when they were activated by EDC.HCl/NHS solution followed by a treatment in CB peptide/PBS buffer (pH 6.5 or 8) solution at ambient temperature for 2 h. Moreover, the surface-modified SFFs showed the smaller contact angle due to the hydrophilic antimicrobial peptides coupled on the film surface, which is essential for the cell adhesion and proliferation. AFM results indicated that the surface roughness of SFFs was considerably increased after the modification by the peptides. The elemental composition analysis results also suggested that the peptides were tightly coupled to the surface of SFFs. This approach may provide a new option to engineer the surface-modified implanted materials preventing the biomaterial-centered infection (BCI)

  15. Surface modification of promising cerium oxide nanoparticles for nanomedicine applications

    KAUST Repository

    Nanda, Himansu Sekhar

    2016-11-14

    Cerium oxide nanoparticles (CNPs) or nanoceria have emerged as a potential nanomedicine for the treatment of several diseases such as cancer. CNPs have a natural tendency to aggregate or agglomerate in their bare state, which leads to sedimentation in a biological environment. Since the natural biological environment is essentially aqueous, nanoparticle surface modification using suitable biocompatible hydrophilic chemical moieties is highly desirable to create effective aqueous dispersions. In this report, (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl)triethoxysilane was used as a functional, biocompatible organosilane to modify the surface of CNPs to produce promising nanoparticles which open substantial therapeutic avenues. The surface modified nanoparticles were produced in situ via an ammonia-induced ethylene glycol-assisted precipitation method and were characterized using complimentary characterization techniques. The interaction between the functional moiety and the nanoparticle was studied using powerful cross polarization/magic angle sample spinning solid state nuclear magnetic resonance spectroscopy. The surface-modified nanoparticles were extremely small and demonstrated a significant improvement in aqueous dispersibility. Moreover, the existence of a strong ionic coordination between the functional moiety and the surface of the nanoparticle was realised, indicating that the surface modified nanoceria are stable and that the nanoparticles should demonstrate an enhanced circulation time in a biological environment. The surface modification approach should be promising for the production of CNPs for nanomedicine applications. © The Royal Society of Chemistry.

  16. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.

    Science.gov (United States)

    Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A

    2017-06-06

    With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (K d ). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (K d ) decreasing as follows: K d Na + > K d NH 4 + ≥ K d K + > K d Ca 2+ ≥ K d Mg 2+ > K d Al 3+ . This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium K d values, allowed for

  17. A study of laser surface modification of polymers: A comparison in air and water

    DEFF Research Database (Denmark)

    Marla, Deepak; Andersen, Sebastian A.; Zhang, Yang

    2018-01-01

    Laser surface modification is a technique to modify polymer surfaces for various applications. In our earlier work [Physics Procedia, 83:211–217, 2016], we showed that when the laser surface modification process was carried out in water instead of air, the obtained surface characteristics were...... research. The observed images of laser modified surfaces suggest that a hemispherical hump is formed in the case of water at lower laser fluences that breakup with an increase in fluence. Such a behavior was not observed when the process was carried out in air. We explain this phenomenon by simulating...

  18. Surface modifications of dental implants.

    Science.gov (United States)

    Stanford, C M

    2008-06-01

    Dental implant surface technologies have been evolving rapidly to enhance a more rapid bone formation on their surface and hold a potential to increase the predictability of expedited implant therapy. While implant outcomes have become highly predictable, there are sites and conditions that result in elevated implant loss. This paper reviews the impact of macro-retentive features which includes approaches to surface oxide modification, thread design, press-fit and sintered-bead technologies to increase predictability of outcomes. Implant designs that lead to controlled lateral compression of the bone can improve primary stability as long as the stress does not exceed the localized yield strength of the cortical bone. Some implant designs have reduced crestal bone loss by use of multiple cutting threads that are closely spaced, smoothed on the tip but designed to create a hoop-stress stability of the implant as it is completely seated in the osteotomy. Following the placement of the implant, there is a predictable sequence of bone turnover and replacement at the interface that allows the newly formed bone to adapt to microscopic roughness on the implant surface, and on some surfaces, a nanotopography (<10(-9) m scale) that has been shown to preferably influence the formation of bone. Newly emerging studies show that bone cells are exquisitely sensitive to these topographical features and will upregulate the expression of bone related genes for new bone formation when grown on these surfaces. We live in an exciting time of rapid changes in the modalities we can offer patients for tooth replacement therapy. Given this, it is our responsibility to be critical when claims are made, incorporate into our practice what is proven and worthwhile, and to continue to support and provide the best patient care possible.

  19. Covalent and stable CuAAC modification of silicon surfaces for control of cell adhesion

    DEFF Research Database (Denmark)

    Vutti, Surendra; Buch-Månson, Nina; Schoffelen, Sanne

    2015-01-01

    in the vapor or liquid phase. In this work, we compared these two methods for oxidized silicon surfaces and thoroughly characterized the functionalization steps by tagging and fluorescence imaging. We demonstrate that the vapor-phase functionalization only provided transient surface modification that was lost...... on extensive washing. For stable surface modification, a liquid-phase method was developed. In this method, silicon wafers were decorated with azides, either by silanization with (3-azidopropyl)triethoxysilane or by conversion of the amine groups of an aminopropylated surface by means of the azido...

  20. Cationic polymers and porous materials

    KAUST Repository

    Han, Yu

    2017-04-27

    According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.

  1. Cationic polymers and porous materials

    KAUST Repository

    Han, Yu; Tian, Qiwei; Dong, Xinglong; Liu, Zhaohui; Basset, Jean-Marie; Saih, Youssef; Sun, Miao; Xu, Wei; Shaikh, Sohel

    2017-01-01

    According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.

  2. Quantitative Analysis and Efficient Surface Modification of Silica Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hak-Sung Jung

    2012-01-01

    Full Text Available Aminofunctional trialkoxysilanes such as aminopropyltrimethoxysilane (APTMS and (3-trimethoxysilylpropyldiethylenetriamine (DETAS were employed as a surface modification molecule for generating monolayer modification on the surface of silica (SiO2 nanoparticles. We were able to quantitatively analyze the number of amine functional groups on the modified SiO2 nanoparticles by acid-base back titration method and determine the effective number of amine functional groups for the successive chemical reaction by absorption measurements after treating with fluorescent rhodamine B isothiocyanate (RITC molecules. The numbers of amine sites measured by back titration were 2.7 and 7.7 ea/nm2 for SiO2-APTMS and SiO2-DETAS, respectively, while the numbers of effective amine sites measured by absorption calibration were about one fifth of the total amine sites, namely, 0.44 and 1.3 ea/nm2 for SiO2-APTMS(RITC and SiO2-DETAS(RITC, respectively. Furthermore, it was confirmed that the reactivity of amino groups on the surface-modified silica nanoparticles could be maintained in ethanol for more than 1.5 months without showing any significant differences in the reactivity.

  3. PREFACE Surface Modifications and Functionalization of Materials for Biomedical Applications

    Science.gov (United States)

    Endrino, Jose Luis; Puértolas, Jose A.; Albella, Jose M.

    2010-11-01

    Conference photograph This special issue contains selected papers which were presented as invited and contributed communications at the workshop entitled 'Surface modification and functionalization of materials for biomedical applications' (BIO-COAT 2010) which was held on 24 June 2010 in Zaragoza (Spain). The surface of a material plays a major role in its interaction with the biological medium. Processes related to the mechanical stability of articular devices in contact, osseointegration, thrombogenicity, corrosion and leaching, or the inflammatory response of rejection of a material, are clearly conditioned by the surface properties. Therefore, the modification or functionalization of surfaces can have an important impact on these issues. New techniques for functionalization by thin film deposition or surface treatments help to improve superficial properties, while understanding the interaction of the surface-biological medium is critical for their application in new devices. Jointly organized by the Spanish Materials Research Society, BIO-COAT 2010 provided an open forum to discuss the progress and latest developments in thin film processing and the engineering of biomaterials. Invited lectures were particularly aimed at providing overviews on scientific topics and were given by recognized world-class scientists. Two of them have contributed with a proceedings article to this selected collection (articles 012001 and 012008). The contributed communications were focused on particular cutting-edge aspects of thin film science and functionalization technologies for biomaterials, showing the major scientific push of Spanish research groups in the field. The 2010 BIO-COAT conference was organized along four main topics: (1) functionalization and texture on surfaces, (2) tribology and corrosion, (3) the surface modification of biomaterials, and (4) surface-biological environment interactions. The papers published in this volume were accepted for publication after

  4. Surface modification of polystyrene with atomic oxygen radical anions-dissolved solution

    International Nuclear Information System (INIS)

    Wang Lian; Yan Lifeng; Zhao Peitao; Torimoto, Yoshifumi; Sadakata, Masayoshi; Li Quanxin

    2008-01-01

    A novel approach to surface modification of polystyrene (PS) polymer with atomic oxygen radical anions-dissolved solution (named as O - water) has been investigated. The O - water, generated by bubbling of the O - (atomic oxygen radical anion) flux into the deionized water, was characterized by UV-absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The O - water treatments caused an obvious increase of the surface hydrophilicity, surface energy, surface roughness and also caused an alteration of the surface chemical composition for PS surfaces, which were indicated by the variety of contact angle and material characterization by atomic force microscope (AFM) imaging, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and attenuated total-reflection Fourier transform infrared (ATR-FTIR) measurements. Particularly, it was found that some hydrophilic groups such as hydroxyl (OH) and carbonyl (C=O) groups were introduced onto the polystyrene surfaces via the O - water treatment, leading to the increases of surface hydrophilicity and surface energy. The active oxygen species would react with the aromatic ring molecules on the PS surfaces and decompose the aromatic compounds to produce hydrophilic hydroxyl and carbonyl compounds. In addition, the O - water is also considered as a 'clean solution' without adding any toxic chemicals and it is easy to be handled at room temperature. Present method may suit to the surface modification of polymers and other heat-sensitive materials potentially

  5. Effect of cations in the background electrolyte on the adsorption kinetics of copper and cadmium and the isoelectric point of imogolite

    International Nuclear Information System (INIS)

    Arancibia-Miranda, Nicolás; Silva-Yumi, Jorge; Escudey, Mauricio

    2015-01-01

    Highlights: • Effect of various cations on the IEP of imogolite was studied. • Studied adsorption kinetics of Cd and Cu on imogolite in the presence of cations. • K"+ acted as an indifferent electrolyte and did not affect the IEP of imogolite. • Adsorption in the presence of K"+ is described well by three of the four models. • These include pseudo-second order, Elovich equation, and Weber–Morris model. - Abstract: Modification of surface charge and changes in the isoelectric point (IEP) of synthetic imogolite were studied for various cations in the background electrolyte (K"+, NH_4"+, Mg"2"+, and Ca"2"+). From the electrophoretic mobility data, it was established that the K"+ (KCl) concentration does not affect the IEP of imogolite; therefore, KCl is a suitable background electrolyte. In terms of the magnitude of changes in the IEP and surface charge, the cations may be ranked in the following order: Mg"2"+ ≈ Ca"2"+ >> NH_4"+ >> K"+. Four different kinetic models were used to evaluate the influence of Mg"2"+, Ca"2"+, NH_4"+, and K"+ on the adsorption of Cd and Cu on synthetic imogolite. When adsorption occurs in the presence of cations with the exception of K"+, the kinetics of the process is well described by the pseudo-first order model. On the other hand, when adsorption is conducted in the presence of K"+, the adsorption kinetics is well described by the pseudo-second order, Elovich, and Weber–Morris models. From the surface charge measurements, the affinity between imogolite and the cations and their effect on the adsorption of trace elements, namely Cu and Cd, were established.

  6. Amphiphilic cationic peptides mediate cell adhesion to plastic surfaces.

    Science.gov (United States)

    Rideout, D C; Lambert, M; Kendall, D A; Moe, G R; Osterman, D G; Tao, H P; Weinstein, I B; Kaiser, E T

    1985-09-01

    Four amphiphilic peptides, each with net charges of +2 or more at neutrality and molecular weights under 4 kilodaltons, were found to mediate the adhesion of normal rat kidney fibroblasts to polystyrene surfaces. Two of these peptides, a model for calcitonin (peptide 1, MCT) and melittin (peptide 2, MEL), form amphiphilic alpha-helical structures at aqueous/nonpolar interfaces. The other two, a luteinizing hormone-releasing hormone model (peptide 3, LHM) and a platelet factor model (peptide 4, MPF) form beta-strand structures in amphiphilic environments. Although it contains only 10 residues, LHM mediated adhesion to surfaces coated with solutions containing as little as 10 pmoles/ml of peptide. All four of these peptides were capable of forming monolayers at air-buffer interfaces with collapse pressures greater than 20 dynes/cm. None of these four peptides contains the tetrapeptide sequence Arg-Gly-Asp-Ser, which has been associated with fibronectin-mediated cell adhesion. Ten polypeptides that also lacked the sequence Arg-Gly-Asp-Ser but were nonamphiphilic and/or had net charges less than +2 at neutrality were all incapable of mediating cell adhesion (Pierschbacher and Ruoslahti, 1984). The morphologies of NRK cells spread on polystyrene coated with peptide LHM resemble the morphologies on fibronectin-coated surfaces, whereas cells spread on surfaces coated with MCT or MEL exhibit strikingly different morphologies. The adhesiveness of MCT, MEL, LHM, and MPF implies that many amphiphilic cationic peptides could prove useful as well defined adhesive substrata for cell culture and for studies of the mechanism of cell adhesion.

  7. The effects of size and surface modification of amorphous silica particles on biodistribution and liver metabolism in mice

    International Nuclear Information System (INIS)

    Lu, Xiaoyan; Ji, Cai; Jin, Tingting; Fan, Xiaohui

    2015-01-01

    Engineered nanoparticles, with unconventional properties, are promising platforms for biomedical applications. Since they may interact with a wide variety of biomolecules, it is critical to understand the impact of the physicochemical properties of engineered nanoparticles on biological systems. In this study, the effects of particle size and surface modification alone or in combination of amorphous silica particles (SPs) on biological responses were determined using a suite of general toxicological assessments and metabonomics analysis in mice model. Our results suggested that amino or carboxyl surface modification mitigated the liver toxicity of plain-surface SPs. 30 nm SPs with amino surface modification were found to be the most toxic SPs among all the surface-modified SP treatments at the same dosage. When treatment dose was increased, submicro-sized SPs with amino or carboxyl surface modification also induced liver toxicity. Biodistribution studies suggested that 70 nm SPs were mainly accumulated in liver and spleen regardless of surface modifications. Interestingly, these two organs exhibited different uptake trends. Furthermore, metabonomics studies indicated that surface modification plays a more dominant role to affect the liver metabolism than particle size. (paper)

  8. Surface modification of polyacrylonitrile-based carbon fiber and its interaction with imide

    International Nuclear Information System (INIS)

    Xu Bing; Wang Xiaoshu; Lu Yun

    2006-01-01

    In this work, sized polyacrylonitrile (PAN)-based carbon fibers were chemically modified with nitric acid and maleic anhydride (MA) in order to improve the interaction between carbon fiber surface and polyimide matrix. Bismaleimide (BMI) was selected as a model compound of polyimide to react with modified carbon fiber. The surface characteristic changing after modification and surface reaction was investigated by element analysis (EA), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and surface enhanced Raman scattering (SERS). The results indicated that the modification of carbon fiber surface with MA might follow the Diels Alder reaction mechanism. In the surface reaction between modified fibers and BMI, among the various surface functional groups, the hydroxyl group provided from phenolic hydroxyl group and bridged structure on carbon fiber may be the most effective group reacted with imide structure. The results may shed some light on the design of the appropriate surface structure, which could react with polyimide, and the manufacture of the carbon fiber-reinforced polyimide matrix composites

  9. Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma

    International Nuclear Information System (INIS)

    Wang Chen; Chen Jierong; Li Ru

    2008-01-01

    Poly(tetrafluoroethylene) (PTFE) surfaces are modified with remote and direct Ar plasma, and the effects of the modification on the hydrophilicity of PTFE are investigated. The surface microstructures and compositions of the PTFE film were characterized with the goniometer, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Results show that the remote and direct plasma treatments modify the PTFE surface in morphology and composition, and both modifications cause surface oxidation of PTFE films, in the forming of some polar functional groups enhancing polymer wettability. When the remote and direct Ar plasma treats PTFE film, the contact angles decrease from the untreated 108-58 o and 65.2 o , respectively. The effect of the remote Ar plasma is more noticeable. The role of all kinds of active species, e.g. electrons, ions and free radicals involved in plasma surface modification is further evaluated. This shows that remote Ar plasma can restrain the ion and electron etching reaction and enhance radical reaction

  10. Modification of surface/neuron interfaces for neural cell-type specific responses: a review

    International Nuclear Information System (INIS)

    Chen, Cen; Kong, Xiangdong; Lee, In-Seop

    2016-01-01

    Surface/neuron interfaces have played an important role in neural repair including neural prostheses and tissue engineered scaffolds. This comprehensive literature review covers recent studies on the modification of surface/neuron interfaces. These interfaces are identified in cases both where the surfaces of substrates or scaffolds were in direct contact with cells and where the surfaces were modified to facilitate cell adhesion and controlling cell-type specific responses. Different sources of cells for neural repair are described, such as pheochromocytoma neuronal-like cell, neural stem cell (NSC), embryonic stem cell (ESC), mesenchymal stem cell (MSC) and induced pluripotent stem cell (iPS). Commonly modified methods are discussed including patterned surfaces at micro- or nano-scale, surface modification with conducting coatings, and functionalized surfaces with immobilized bioactive molecules. These approaches to control cell-type specific responses have enormous potential implications in neural repair. (paper)

  11. Thermal desorption and surface modification of He+ implanted into tungsten

    International Nuclear Information System (INIS)

    Fu Zhang; Yoshida, N.; Iwakiri, H.; Xu Zengyu

    2004-01-01

    Tungsten divertor plates in fusion reactors will be subject to helium bombardment. Helium retention and thermal desorption is a concerned issue in controlling helium ash. In the present study, fluence dependence of thermal desorption behavior of helium in tungsten was studied at different irradiation temperatures and ion energies. Results showed that helium desorption could start at ∼400 K with increasing fluence, while no noticeable peaks were detected at low fluence. Total helium desorption reached a saturation value at high fluence range, which was not sensitive to irradiation temperature or ion energy for the conditions evaluated. Surface modifications caused by either ion irradiation or thermal desorption were observed by SEM. The relationship of surface modifications and helium desorption behavior was discussed. Some special features of elevated irradiation temperature and lower ion energy were also indicated

  12. Surface modification of silicon carbide with silane coupling agent and hexadecyl iodiele

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Xujing, E-mail: shangxujing@tju.edu.cn; Zhu, Yumei, E-mail: zymtju@163.com; Li, Zhihong, E-mail: lzhtju@163.com

    2017-02-01

    Highlights: • A novel universal method was performed to enhance hydrophobicity of SiC powder. • The modification effects of KH550 and KH590 were compared and the optimum reaction parameters were established. • Hexadecyl iodiele was successfully grafted on the surface of SiC-KH590 powder. • Surface changes on SiC powder before and after modification were analyzed via FTIR, XPS, SEM. • The related reaction mechanisms were discussed. - Abstract: In this paper, two kinds of silane coupling agents, namely 3-aminopropyl triethoxysilane (KH550) and 3-mercaptopropyl trimethoxysilane (KH590), were adopted as preliminary modifiers to improve the hydrophobic surface properties of silicon carbide (SiC) powder for the first step. The factors that influence the modification effects were investigated by measuring the contact angle. The results showed that KH590 has a better effect than KH550 for the hydrophobic modification of SiC, and the contact angle improved most after SiC powder was reacted with 0.3 g KH590 at 75 °C in aqueous/alcohol solution for 4 h. On account of further enhancement of hydrophobicity, the study was focused on utilizing nucleophilic substitution between KH590 and hexadecyl iodiele to extend the length of alkyl chain. Compared with using KH590 alone, SiC powder modified by KH590 and hexadecyl iodiele showed better water resistance with an increase of contact angle from 106.8° to 127.5°. The Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectra (XPS) as well as X-ray diffraction (XRD) analysis results showed that KH550/KH590 and hexadecyl iodiele can be covalently bonded to the surface of SiC powder without altering its crystal configuration. This methodology may provide a new way of the modification of inorganic materials in further.

  13. Surface modification of positive electrode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Julien, C.M., E-mail: Christian.Julien@upmc.fr [Sorbonne Universités, UPMC Univ. Paris 6, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), UMR 8234, 75005 Paris (France); Mauger, A. [Institut de Minéralogie de Physique des Matériaux et de Cosmochimie (IMPMC), UPMC Univ. Paris 6, 4 place Jussieu, 75005 Paris (France); Groult, H. [Sorbonne Universités, UPMC Univ. Paris 6, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), UMR 8234, 75005 Paris (France); Zaghib, K. [Energy Storage and Conversion, Research Institute of Hydro-Québec, Varennes, Québec J3X 1S1 (Canada)

    2014-12-01

    The advanced lithium-ion batteries are critically important for a wide range of applications, from portable electronics to electric vehicles. The research on their electrodes aims to increase the energy density and the power density, improve the calendar and the cycling life, without sacrificing the safety issues. A constant progress through the years has been obtained owing to the surface treatment of the particles, in particular the coating of the nanoparticles with a layer that protects the core region from side reactions with the electrolyte, prevents the loss of oxygen, and the dissolution of the metal ions in the electrolyte, or simply improve the conductivity of the powder. The purpose of the present work is to present the different surface modifications that have been tried for three families of positive electrodes: layered, spinel and olivine frameworks that are currently considered as promising materials. The role of the different coats used to improve either the surface conductivity, or the thermal stability, or the structural integrity is discussed. - Highlights: • Report the various surface modifications tried for the positive electrodes of Li-ion batteries. • The role of different coats used to improve the conductivity, or the thermal stability, or the structural integrity. • Improvement of electrochemical properties of electrodes after coating or surface treatment.

  14. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications.

    Science.gov (United States)

    Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong

    2015-08-07

    Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts.

  15. A new green methodology for surface modification of diatomite filler in elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Lamastra, F.R. [Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata, Via del Politecnico 1, 00133, Rome (Italy); Mori, S.; Cherubini, V. [Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata, Via del Politecnico 1, 00133, Rome (Italy); Department of Enterprise Engineering, University of Rome ' Tor Vergata' , Via del Politecnico 1, 00133, Rome (Italy); Scarselli, M. [Department of Physics, University of Rome ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133, Rome (Italy); Nanni, F., E-mail: fnanni@ing.uniroma2.it [Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata, Via del Politecnico 1, 00133, Rome (Italy); Department of Enterprise Engineering, University of Rome ' Tor Vergata' , Via del Politecnico 1, 00133, Rome (Italy)

    2017-06-15

    In this work a new, simple and green protocol to introduce a limited content of silanol groups on the surface of an hydrophobic diatomite, in order to be slightly hydrophilic and susceptible to be silanized by bifunctional, sulfur-containing organosilanes for rubber applications, is proposed. The chemical modification was carried out at 85 °C in a solution of H{sub 2}O:NaOH:H{sub 2}O{sub 2}. The modified diatomite was then silanized with bis(triethoxysilylpropyl) disulfide by a procedure that does not involve toxic solvent. Morphological features and elemental composition of diatomite were investigated by Field emission scanning electron microscopy coupled with Energy dispersive X-ray spectroscopy. The surface modification and silanization process were assessed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Diatomite was composed by micrometric frustules from different diatom species with pore size ranging from 25 nm to 1 μm. The spectroscopic characterizations confirmed the surface modification of diatomite with some silanols that acted as sites for silanization reaction. The silanized diatomite and the untreated one were used as filler in unvulcanized solvent-cast SBR films in order to verify that the modification does not negatively affect the polymer/filler interface and as consequence the mechanical properties. Mechanical properties of the realized samples were assessed by uniaxial tensile tests. Films filled with 10 wt% of diatomite (untreated or silanized) showed an increase of Elastic Modulus about of 50% and a decrease of the strain at break with respect to SBR samples, while the tensile strength was not significantly affected by the diatomite addition. SEM images of fracture surfaces of tested specimens showed a fine dispersion of both untreated and silanized diatomite in the polymeric matrix and the achieving of a good interfacial adhesion SBR/fillers. The silanized diatomite, as it is potentially able to bind

  16. A new green methodology for surface modification of diatomite filler in elastomers

    International Nuclear Information System (INIS)

    Lamastra, F.R.; Mori, S.; Cherubini, V.; Scarselli, M.; Nanni, F.

    2017-01-01

    In this work a new, simple and green protocol to introduce a limited content of silanol groups on the surface of an hydrophobic diatomite, in order to be slightly hydrophilic and susceptible to be silanized by bifunctional, sulfur-containing organosilanes for rubber applications, is proposed. The chemical modification was carried out at 85 °C in a solution of H_2O:NaOH:H_2O_2. The modified diatomite was then silanized with bis(triethoxysilylpropyl) disulfide by a procedure that does not involve toxic solvent. Morphological features and elemental composition of diatomite were investigated by Field emission scanning electron microscopy coupled with Energy dispersive X-ray spectroscopy. The surface modification and silanization process were assessed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Diatomite was composed by micrometric frustules from different diatom species with pore size ranging from 25 nm to 1 μm. The spectroscopic characterizations confirmed the surface modification of diatomite with some silanols that acted as sites for silanization reaction. The silanized diatomite and the untreated one were used as filler in unvulcanized solvent-cast SBR films in order to verify that the modification does not negatively affect the polymer/filler interface and as consequence the mechanical properties. Mechanical properties of the realized samples were assessed by uniaxial tensile tests. Films filled with 10 wt% of diatomite (untreated or silanized) showed an increase of Elastic Modulus about of 50% and a decrease of the strain at break with respect to SBR samples, while the tensile strength was not significantly affected by the diatomite addition. SEM images of fracture surfaces of tested specimens showed a fine dispersion of both untreated and silanized diatomite in the polymeric matrix and the achieving of a good interfacial adhesion SBR/fillers. The silanized diatomite, as it is potentially able to bind chemically to

  17. Surface modification of polyethylene by diffuse barrier discharge plasma

    Czech Academy of Sciences Publication Activity Database

    Novák, I.; Števiar, M.; Popelka, A.; Chodák, I.; Mosnáček, J.; Špírková, Milena; Janigová, I.; Kleinová, A.; Sedliačik, J.; Šlouf, Miroslav

    2013-01-01

    Roč. 53, č. 3 (2013), s. 516-523 ISSN 0032-3888 R&D Projects: GA AV ČR(CZ) IAAX08240901 Institutional research plan: CEZ:AV0Z40500505 Keywords : low-density polyethylene * plasma discharge * surface modification Subject RIV: JI - Composite Materials Impact factor: 1.441, year: 2013

  18. Selective cell culture on UV transparent polymer by F2 laser surface modification

    International Nuclear Information System (INIS)

    Hanada, Yasutaka; Sugioka, Koji; Kawano, Hiroyuki; Tsuchimoto, Takayoshi; Miyamoto, Iwao; Miyawaki, Atsushi; Midorikawa, Katsumi

    2009-01-01

    A microchip made of UV transparent polymer (CYTOP) that can perform selective cell culture has been fabricated by F 2 laser surface modification. The refractive index of CYTOP is almost the same as that of culture medium, which is essential for three-dimensional (3D) observation of cells. The F 2 laser modification of CYTOP achieves hydrophilicity only on the laser irradiated area with little deterioration of the optical properties and surface smoothness. After the laser modification, HeLa cells were successfully cultured and strongly adhered only on the modified area of CYTOP. The cells patterned on CYTOP were applied for clear 3D observation using an optical microscope in phase contrast mode.

  19. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy.

    Science.gov (United States)

    Dou, Shuo; Tao, Li; Wang, Ruilun; El Hankari, Samir; Chen, Ru; Wang, Shuangyin

    2018-02-14

    Renewable energy technology has been considered as a "MUST" option to lower the use of fossil fuels for industry and daily life. Designing critical and sophisticated materials is of great importance in order to realize high-performance energy technology. Typically, efficient synthesis and soft surface modification of nanomaterials are important for energy technology. Therefore, there are increasing demands on the rational design of efficient electrocatalysts or electrode materials, which are the key for scalable and practical electrochemical energy devices. Nevertheless, the development of versatile and cheap strategies is one of the main challenges to achieve the aforementioned goals. Accordingly, plasma technology has recently appeared as an extremely promising alternative for the synthesis and surface modification of nanomaterials for electrochemical devices. Here, the recent progress on the development of nonthermal plasma technology is highlighted for the synthesis and surface modification of advanced electrode materials for renewable energy technology including electrocatalysts for fuel cells, water splitting, metal-air batteries, and electrode materials for batteries and supercapacitors, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing, E-mail: shisq@nwu.edu.cn; Gong, Yongkuan

    2016-11-15

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH{sub 2}) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  1. Biomimetic surface modification of polypropylene by surface chain transfer reaction based on mussel-inspired adhesion technology and thiol chemistry

    International Nuclear Information System (INIS)

    Niu, Zhijun; Zhao, Yang; Sun, Wei; Shi, Suqing; Gong, Yongkuan

    2016-01-01

    Highlights: • Biomimetic surface modification of PP was successfully conducted by integrating mussel-inspired technology, thiol chemistry and cell outer membranes-like structures. • The resultant biomimetic surface exhibits good interface and surface stability. • The obvious suppression of protein adsorption and platelet adhesion is also achieved. • The residue thoil groups on the surface could be further functionalized. - Abstract: Biomimetic surface modification of polypropylene (PP) is conducted by surface chain transfer reaction based on the mussel-inspired versatile adhesion technology and thiol chemistry, using 2-methacryloyloxyethylphosphorylcholine (MPC) as a hydrophilic monomer mimicking the cell outer membrane structure and 2,2-azobisisobutyronitrile (AIBN) as initiator in ethanol. A layer of polydopamine (PDA) is firstly deposited onto PP surface, which not only offers good interfacial adhesion with PP, but also supplies secondary reaction sites (-NH 2 ) to covalently anchor thiol groups onto PP surface. Then the radical chain transfer to surface-bonded thiol groups and surface re-initiated polymerization of MPC lead to the formation of a thin layer of polymer brush (PMPC) with cell outer membrane mimetic structure on PP surface. X-ray photoelectron spectrophotometer (XPS), atomic force microscopy (AFM) and water contact angle measurements are used to characterize the PP surfaces before and after modification. The protein adsorption and platelet adhesion experiments are also employed to evaluate the interactions of PP surface with biomolecules. The results show that PMPC is successfully grafted onto PP surface. In comparison with bare PP, the resultant PP-PMPC surface exhibits greatly improved protein and platelet resistance performance, which is the contribution of both increased surface hydrophilicity and zwitterionic structure. More importantly, the residue thiol groups on PP-PMPC surface create a new pathway to further functionalize such

  2. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Kim, Ki Jae; Kim, Young-Jun; Kim, Jae-Hun; Park, Min-Sik

    2011-01-01

    Highlights: ► We observed the physical and chemical changes on the surface of carbon felts after various surface modifications. ► The surface area and chemistry of functional groups formed on the surface of carbon felt are critical to determine the kinetics of the redox reactions of vanadium ions. ► By incorporation of the surface modifications into the electrode preparation, the electrochemical activity of carbon felts could be notably enhanced. - Abstract: The surface of carbon felt electrodes has been modified for improving energy efficiency of vanadium redox flow batteries. For comparative purposes, the effects of various surface modifications such as mild oxidation, plasma treatment, and gamma-ray irradiation on the electrochemical properties of carbon felt electrodes were investigated at optimized conditions. The cell energy efficiency was improved from 68 to 75% after the mild oxidation of the carbon felt at 500 °C for 5 h. This efficiency improvement could be attributed to the increased surface area of the carbon felt electrode and the formation of functional groups on its surface as a result of the modification. On the basis of various structural and electrochemical characterizations, a relationship between the surface nature and electrochemical activity of the carbon felt electrodes is discussed.

  3. Chemical surface reactions by click chemistry: coumarin dye modification of 11-bromoundecyltrichlorosilane monolayers

    International Nuclear Information System (INIS)

    Haensch, Claudia; Hoeppener, Stephanie; Schubert, Ulrich S

    2008-01-01

    The functionalization of surfaces and the ability to tailor their properties with desired physico-chemical functions is an important field of research with a broad spectrum of applications. These applications range from the modification of wetting properties, over the alteration of optical properties, to the fabrication of molecular electronic devices. In each of these fields, it is of specific importance to be able to control the quality of the layers with high precision. The present study demonstrates an approach that utilizes the 1,3-dipolar cycloaddition of terminal acetylenes to prepare triazole-terminated monolayers on different substrates. The characterization of the precursor monolayers, the optimization of the chemical surface reactions as well as the clicking of a fluorescent dye molecule on such azide-terminated monolayers was carried out. A coumarin 343 derivative was utilized to discuss the aspects of the functionalization approach. Based on this approach, a number of potential surface reactions, facilitated via the acetylene-substituted functional molecules, for a broad range of applications is at hand, thus leading to numerous possibilities where surface modifications are concerned. These modifications can be applied on non-structured surfaces of silicon or glass or can be used on structured surfaces. Various possibilities are discussed

  4. Surface modifications induced by pulsed-laser texturing—Influence of laser impact on the surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Costil, S., E-mail: sophie.costil@utbm.fr [IRTES-LERMPS, Université de Technologie de Belfort - Montbéliard, site de Sévenans, 90010 Belfort Cedex (France); Lamraoui, A.; Langlade, C. [IRTES-LERMPS, Université de Technologie de Belfort - Montbéliard, site de Sévenans, 90010 Belfort Cedex (France); Heintz, O.; Oltra, R. [ICB, Université de Bourgogne, 21078 Dijon Cedex (France)

    2014-01-01

    Laser cleaning technology provides a safe, environmentally friendly and very cost effective way to improve cleaning and surface preparation of metallic materials. Compared with efficient cleaning processes, it can avoid the disadvantages of ductile materials prepared by conventional technologies (cracks induced by sand-blasting for example) and treat only some selected areas (due to the optical fibers). By this way, laser technology could have several advantages and expand the range of thermal spraying. Moreover, new generations of lasers (fiber laser, disc laser) allow the development of new methods. Besides a significant bulk reduction, no maintenance, low operating cost, laser fibers can introduce alternative treatments. Combining a short-pulse laser with a scanner allows new applications in terms of surface preparation. By multiplying impacts using scanning laser, it is possible to shape the substrate surface to improve the coating adhesion as well as the mechanical behaviour. In addition, during the interactions of the laser beam with metallic surfaces, several modifications can be induced and particularly thermal effects. Indeed, under ambient conditions, a limited oxidation of the clean surface can occur. This phenomenon has been investigated in detail for silicon but few works have been reported concerning metallic materials. This paper aims at studying the surface modifications induced on aluminium alloy substrates after laser texturing. After morphological observations (SEM), a deeper surface analysis will be performed using XPS (X-ray photoelectron spectroscopy) measures and microhardness testing.

  5. Surface Modification of Ceramic Membranes with Thin-film Deposition Methods for Wastewater Treatment

    KAUST Repository

    Jahangir, Daniyal

    2017-12-01

    Membrane fouling, which is caused by deposition/adsorption of foulants on the surface or within membrane pores, still remains a bottleneck that hampers the widespread application of membrane bioreactor (MBR) technology for wastewater treatment. Recently membrane surface modification has proved to be a useful method in water/wastewater treatment to improve the surface hydrophilicity of membranes to obtain higher water fluxes and to reduce fouling. In this study, membrane modification was investigated by depositing a thin film of same thickness of TiO2 on the surface of an ultrafiltration alumina membrane. Various thin-film deposition (TFD) methods were employed, i.e. electron-beam evaporation, sputter and atomic layer deposition (ALD), and a comparative study of the methods was conducted to assess fouling inhibition performance in a lab-scale anaerobic MBR (AnMBR) fed with synthetic municipal wastewater. Thorough surface characterization of all modified membranes was carried out along with clean water permeability (CWP) tests and fouling behavior by bovine serum albumin (BSA) adsorption tests. The study showed better fouling inhibition performance of all modified membranes; however the effect varied due to different surface characteristics obtained by different deposition methods. As a result, ALD-modified membrane showed a superior status in terms of surface characteristics and fouling inhibition performance in AnMBR filtration tests. Hence ALD was determined to be the best TFD method for alumina membrane surface modification for this study. ALD-modified membranes were further characterized to determine an optimum thickness of TiO2-film by applying different ALD cycles. ALD treatment significantly improved the surface hydrophilicity of the unmodified membrane. Also ALD-TiO2 modification was observed to reduce the surface roughness of original alumina membrane, which in turn enhanced the anti-fouling properties of modified membranes. Finally, a same thickness of ALD

  6. Surface chemical modification for exceptional wear life of MEMS materials

    Directory of Open Access Journals (Sweden)

    R. Arvind Singh

    2011-12-01

    Full Text Available Micro-Electro-Mechanical-Systems (MEMS are built at micro/nano-scales. At these scales, the interfacial forces are extremely strong. These forces adversely affect the smooth operation and cause wear resulting in the drastic reduction in wear life (useful operating lifetime of actuator-based devices. In this paper, we present a surface chemical modification method that reduces friction and significantly extends the wear life of the two most popular MEMS structural materials namely, silicon and SU-8 polymer. The method includes surface chemical treatment using ethanolamine-sodium phosphate buffer, followed by coating of perfluoropolyether (PFPE nanolubricant on (i silicon coated with SU-8 thin films (500 nm and (ii MEMS process treated SU-8 thick films (50 μm. After the surface chemical modification, it was observed that the steady-state coefficient of friction of the materials reduced by 4 to 5 times and simultaneously their wear durability increased by more than three orders of magnitude (> 1000 times. The significant reduction in the friction coefficients is due to the lubrication effect of PFPE nanolubricant, while the exceptional increase in their wear life is attributed to the bonding between the -OH functional group of ethanolamine treated SU-8 thin/thick films and the -OH functional group of PFPE. The surface chemical modification method acts as a common route to enhance the performance of both silicon and SU-8 polymer. It is time-effective (process time ≤ 11 min, cost-effective and can be readily integrated into MEMS fabrication/assembly processes. It can also work for any kind of structural material from which the miniaturized devices are/can be made.

  7. Surface Modification and Surface - Subsurface Exchange Processes on Europa

    Science.gov (United States)

    Phillips, C. B.; Molaro, J.; Hand, K. P.

    2017-12-01

    The surface of Jupiter's moon Europa is modified by exogenic processes such as sputtering, gardening, radiolysis, sulfur ion implantation, and thermal processing, as well as endogenic processes including tidal shaking, mass wasting, and the effects of subsurface tectonic and perhaps cryovolcanic activity. New materials are created or deposited on the surface (radiolysis, micrometeorite impacts, sulfur ion implantation, cryovolcanic plume deposits), modified in place (thermal segregation, sintering), transported either vertically or horizontally (sputtering, gardening, mass wasting, tectonic and cryovolcanic activity), or lost from Europa completely (sputtering, plumes, larger impacts). Some of these processes vary spatially, as visible in Europa's leading-trailing hemisphere brightness asymmetry. Endogenic geologic processes also vary spatially, depending on terrain type. The surface can be classified into general landform categories that include tectonic features (ridges, bands, cracks); disrupted "chaos-type" terrain (chaos blocks, matrix, domes, pits, spots); and impact craters (simple, complex, multi-ring). The spatial distribution of these terrain types is relatively random, with some differences in apex-antiapex cratering rates and latitudinal variation in chaos vs. tectonic features. In this work, we extrapolate surface processes and rates from the top meter of the surface in conjunction with global estimates of transport and resurfacing rates. We combine near-surface modification with an estimate of surface-subsurface (and vice versa) transport rates for various geologic terrains based on an average of proposed formation mechanisms, and a spatial distribution of each landform type over Europa's surface area. Understanding the rates and mass balance for each of these processes, as well as their spatial and temporal variability, allows us to estimate surface - subsurface exchange rates over the average surface age ( 50myr) of Europa. Quantifying the timescale

  8. Surface Modification of Sputtered Ga.5In.5Sb Thin Films ISHU ...

    African Journals Online (AJOL)

    MICHAEL

    IR detectors useful for fiber optic communication. Since the efficiency of detector depends very much on the surface properties of the substrate material, improvement of substrate surfaces is a challenging task in device technology. Reports on the improved electrical properties of GaAs and InP surfaces by. Ru3+ modification ...

  9. Effects of surface modification on the critical behaviour in multiple-surface-layer ferroelectric thin films

    International Nuclear Information System (INIS)

    Lu, Z X

    2013-01-01

    Using the usual mean-field theory approximation, the critical behaviour (i.e. the Curie temperature T c and the critical surface transverse field Ω sc ) in a multiple-surface-layer ferroelectric thin film is studied on the basis of the spin- 1/2 transverse Ising model. The dependence of the Curie temperature T c on the surface transverse field Ω s and the surface layer number N s are discussed in detail. Meanwhile the dependence of the critical surface transverse field Ω sc on the surface layer number N s is also examined. The numerical results indicate that the critical behaviour of ferroelectric thin films is obviously affected by modifications of the surface transverse field Ω s and surface layer number N s .

  10. DNA immobilization and detection on cellulose paper using a surface grown cationic polymer via ATRP.

    Science.gov (United States)

    Aied, Ahmed; Zheng, Yu; Pandit, Abhay; Wang, Wenxin

    2012-02-01

    Cationic polymers with various structures have been widely investigated in the areas of medical diagnostics and molecular biology because of their unique binding properties and capability to interact with biological molecules in complex biological environments. In this work, we report the grafting of a linear cationic polymer from an atom transfer radical polymerization (ATRP) initiator bound to cellulose paper surface. We show successful binding of ATRP initiator onto cellulose paper and grafting of polymer chains from the immobilized initiator with ATRP. The cellulose paper grafted polymer was used in combination with PicoGreen (PG) to demonstrate detection of nucleic acids in the nanogram range in homogeneous solution and in a biological sample (serum). The results showed specific identification of hybridized DNA after addition of PG in both solutions.

  11. Modification of Au surfaces using new ferrocene derivatives

    International Nuclear Information System (INIS)

    Diaz-Ortiz, Tanya L.; Malave-Leon, Maria; Rivera-Claudio, Mirna; Castillo-Ramirez, Jorge; Cabrera-Martinez, Carlos R.; Brito-Gomez, Rosa; Tremont, Rolando J.

    2008-01-01

    Gold surfaces have been modified by self-assembled techniques. Here the adsorption time of diasteroisomers (1R, 3S)-1-ferrocenyl-3-methyl-4,4-diphenyl-2,5-dioxacyclopentane and (1S, 3S)-1-ferrocenyl-3-methyl-4,4-diphenyl-2,5-dioxacyclopentane (, 3a and 3b) at a Au surface in ethanol solution was controlled. This study was followed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) analysis. The method used for the surface modification was the control of exposure time of a Au surface in the modifier/ethanol solution. It was demonstrated by EIS and XPS that the Au surface was modified with mixture of compounds 3a + 3b, avoiding the electron transference in the interface. It was also observed that the organometallic molecule indeed had been adsorbed on the Au surface. In addition, evidence seems to conclude that the molecule-Au interaction is through the electrons of cyclopentadienyl moiety, where the oxygen atoms are near the air-molecule interface and the iron atom is near the Au surface. This type of interaction of the ferrocene derivatives with gold surfaces has not been reported by any other author

  12. Neutralization of methyl cation via chemical reactions in low-energy ion-surface collisions with fluorocarbon and hydrocarbon self-assembled monolayer films.

    Science.gov (United States)

    Somogyi, Arpád; Smith, Darrin L; Wysocki, Vicki H; Colorado, Ramon; Lee, T Randall

    2002-10-01

    Low-energy ion-surface collisions of methyl cation at hydrocarbon and fluorocarbon self-assembled monolayer (SAM) surfaces produce extensive neutralization of CH3+. These experimental observations are reported together with the results obtained for ion-surface collisions with the molecular ions of benzene, styrene, 3-fluorobenzonitrile, 1,3,5-triazine, and ammonia on the same surfaces. For comparison, low-energy gas-phase collisions of CD3+ and 3-fluorobenzonitrile molecular ions with neutral n-butane reagent gas were conducted in a triple quadrupole (QQQ) instrument. Relevant MP2 6-31G*//MP2 6-31G* ab initio and thermochemical calculations provide further insight in the neutralization mechanisms of methyl cation. The data suggest that neutralization of methyl cation with hydrocarbon and fluorocarbon SAMs occurs by concerted chemical reactions, i.e., that neutralization of the projectile occurs not only by a direct electron transfer from the surface but also by formation of a neutral molecule. The calculations indicate that the following products can be formed by exothermic processes and without appreciable activation energy: CH4 (formal hydride ion addition) and C2H6 (formal methyl anion addition) from a hydrocarbon surface and CH3F (formal fluoride addition) from a fluorocarbon surface. The results also demonstrate that, in some cases, simple thermochemical calculations cannot be used to predict the energy profiles because relatively large activation energies can be associated with exothermic reactions, as was found for the formation of CH3CF3 (formal addition of trifluoromethyl anion).

  13. Effect of cations in the background electrolyte on the adsorption kinetics of copper and cadmium and the isoelectric point of imogolite

    Energy Technology Data Exchange (ETDEWEB)

    Arancibia-Miranda, Nicolás, E-mail: nicolas.arancibia@usach.cl [Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124, Santiago (Chile); Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O' Higgins, 3363, Santiago (Chile); Silva-Yumi, Jorge [Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124, Santiago (Chile); Escudey, Mauricio [Center for the Development of Nanoscience and Nanotechnology, CEDENNA, 9170124, Santiago (Chile); Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O' Higgins, 3363, Santiago (Chile)

    2015-12-15

    Highlights: • Effect of various cations on the IEP of imogolite was studied. • Studied adsorption kinetics of Cd and Cu on imogolite in the presence of cations. • K{sup +} acted as an indifferent electrolyte and did not affect the IEP of imogolite. • Adsorption in the presence of K{sup +} is described well by three of the four models. • These include pseudo-second order, Elovich equation, and Weber–Morris model. - Abstract: Modification of surface charge and changes in the isoelectric point (IEP) of synthetic imogolite were studied for various cations in the background electrolyte (K{sup +}, NH{sub 4}{sup +}, Mg{sup 2+}, and Ca{sup 2+}). From the electrophoretic mobility data, it was established that the K{sup +} (KCl) concentration does not affect the IEP of imogolite; therefore, KCl is a suitable background electrolyte. In terms of the magnitude of changes in the IEP and surface charge, the cations may be ranked in the following order: Mg{sup 2+} ≈ Ca{sup 2+} >> NH{sub 4}{sup +} >> K{sup +}. Four different kinetic models were used to evaluate the influence of Mg{sup 2+}, Ca{sup 2+}, NH{sub 4}{sup +}, and K{sup +} on the adsorption of Cd and Cu on synthetic imogolite. When adsorption occurs in the presence of cations with the exception of K{sup +}, the kinetics of the process is well described by the pseudo-first order model. On the other hand, when adsorption is conducted in the presence of K{sup +}, the adsorption kinetics is well described by the pseudo-second order, Elovich, and Weber–Morris models. From the surface charge measurements, the affinity between imogolite and the cations and their effect on the adsorption of trace elements, namely Cu and Cd, were established.

  14. Laser-assisted modification of polystyrene surfaces for cell culture applications

    International Nuclear Information System (INIS)

    Pfleging, Wilhelm; Bruns, Michael; Welle, Alexander; Wilson, Sandra

    2007-01-01

    Laser-assisted patterning and modification of polystyrene (PS) was investigated with respect to applications in micro-fluidics and cell culture. For this purpose the wettability, the adsorption of proteins and the adhesion of animal cells were investigated as function of laser- and processing parameters. The change of surface chemistry was characterized by X-ray photoelectron spectroscopy. The local formation of chemical structures suitable for improved cell adhesion was realized on PS surfaces by UV laser irradiation. Above and below the laser ablation threshold two different mechanisms affecting cell adhesion were detected. In the first case the debris deposited on and along laser irradiated areas was responsible for improved cell adhesion, while in the second case a photolytic activation of the polymer surface including a subsequent oxidization in oxygen or ambient air is leading to a highly localized alteration of protein adsorption from cell culture media and finally to increased cell adhesion. Laser modifications of PS using suitable exposure doses and an appropriate choice of the processing gas (helium or oxygen) enabled a highly localized control of wetting. The dynamic advancing contact angle could be adjusted between 2 o and 150 o . The hydrophilic and hydrophobic behaviour are caused by chemical and topographical surface changes

  15. Nanoscale surface modification of Li-rich layered oxides for high-capacity cathodes in Li-ion batteries

    Science.gov (United States)

    Lan, Xiwei; Xin, Yue; Wang, Libin; Hu, Xianluo

    2018-03-01

    Li-rich layered oxides (LLOs) have been developed as a high-capacity cathode material for Li-ion batteries, but the structural complexity and unique initial charging behavior lead to several problems including large initial capacity loss, capacity and voltage fading, poor cyclability, and inferior rate capability. Since the surface conditions are critical to electrochemical performance and the drawbacks, nanoscale surface modification for improving LLO's properties is a general strategy. This review mainly summarizes the surface modification of LLOs and classifies them into three types of surface pre-treatment, surface gradient doping, and surface coating. Surface pre-treatment usually introduces removal of Li2O for lower irreversible capacity while surface doping is aimed to stabilize the structure during electrochemical cycling. Surface coating layers with different properties, protective layers to suppress the interface side reaction, coating layers related to structural transformation, and electronic/ionic conductive layers for better rate capability, can avoid the shortcomings of LLOs. In addition to surface modification for performance enhancement, other strategies can also be investigated to achieve high-performance LLO-based cathode materials.

  16. Construction of mechanically durable superhydrophobic surfaces by thermal spray deposition and further surface modification

    Science.gov (United States)

    Chen, Xiuyong; Gong, Yongfeng; Suo, Xinkun; Huang, Jing; Liu, Yi; Li, Hua

    2015-11-01

    Here we report a simple and cost-effective technical route for constructing superhydrophobic surfaces with excellent abrasion resistance on various substrates. Rough surface structures were fabricated by thermal spray deposition of a variety of inorganic materials, and further surface modification was made by applying a thin layer of polytetrafluoroethylene. Results show that the Al, Cu, or NiCrBSi coatings with the surface roughness of up to 13.8 μm offer rough surface profile to complement the topographical morphology in micro-/nano-scaled sizes, and the hydrophobic molecules facilitate the hydrophobicity. The contact angles of water droplets of ∼155° with a sliding angle of up to 3.5° on the samples have been achieved. The newly constructed superhydrophobic coatings tolerate strong abrasion, giving clear insight into their long-term functional applications.

  17. Nanotubular surface modification of metallic implants via electrochemical anodization technique.

    Science.gov (United States)

    Wang, Lu-Ning; Jin, Ming; Zheng, Yudong; Guan, Yueping; Lu, Xin; Luo, Jing-Li

    2014-01-01

    Due to increased awareness and interest in the biomedical implant field as a result of an aging population, research in the field of implantable devices has grown rapidly in the last few decades. Among the biomedical implants, metallic implant materials have been widely used to replace disordered bony tissues in orthopedic and orthodontic surgeries. The clinical success of implants is closely related to their early osseointegration (ie, the direct structural and functional connection between living bone and the surface of a load-bearing artificial implant), which relies heavily on the surface condition of the implant. Electrochemical techniques for modifying biomedical implants are relatively simple, cost-effective, and appropriate for implants with complex shapes. Recently, metal oxide nanotubular arrays via electrochemical anodization have become an attractive technique to build up on metallic implants to enhance the biocompatibility and bioactivity. This article will thoroughly review the relevance of electrochemical anodization techniques for the modification of metallic implant surfaces in nanoscale, and cover the electrochemical anodization techniques used in the development of the types of nanotubular/nanoporous modification achievable via electrochemical approaches, which hold tremendous potential for bio-implant applications. In vitro and in vivo studies using metallic oxide nanotubes are also presented, revealing the potential of nanotubes in biomedical applications. Finally, an outlook of future growth of research in metallic oxide nanotubular arrays is provided. This article will therefore provide researchers with an in-depth understanding of electrochemical anodization modification and provide guidance regarding the design and tuning of new materials to achieve a desired performance and reliable biocompatibility.

  18. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    International Nuclear Information System (INIS)

    Verma, Pallavi; Maire, Pascal; Novak, Petr

    2011-01-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH 2 ) 3 OCO 2 Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C 6 H 4 NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C 6 H 4 CH 2 OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  19. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Pallavi; Maire, Pascal [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland); Novak, Petr, E-mail: petr.novak@psi.c [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland)

    2011-04-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH{sub 2}){sub 3}OCO{sub 2}Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C{sub 6}H{sub 4}NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C{sub 6}H{sub 4}CH{sub 2}OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  20. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    Science.gov (United States)

    Manthiram, Arumugam (Inventor); Wu, Yan (Inventor)

    2010-01-01

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  1. Development of bio/blood compatible polypropylene through low pressure nitrogen plasma surface modification

    International Nuclear Information System (INIS)

    Gomathi, N.; Rajasekar, R.; Babu, R. Rajesh; Mishra, Debasish; Neogi, S.

    2012-01-01

    Surface modification of polypropylene by nitrogen containing plasma was performed in this work in order to improve the wettability which resulted in enhanced biocompatibility and blood compatibility. Various nitrogen containing functional groups as well as oxygen containing functional groups were found to be incorporated to the polymer surface during plasma treatment and post plasma reaction respectively. Wettability of the polymers was evaluated by static contact angle measurement to show the improvement in hydrophilicity of plasma treated polypropylene. Cross linking and surface modification were reported to be dominating in the case of nitrogen plasma treatment compared to degradation. The effect of various process variables namely power, pressure, flow rate and treatment time on surface energy and weight loss was studied at various levels according to the central composite design of response surface methodology (RSM). Except pressure the other variables resulted in increased weight loss due to etching whereas with increasing pressure weight loss was found to increase and then decrease. The effect of process variables on surface morphology of polymers was evaluated by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Well spread fibroblast cells on nitrogen plasma treated polypropylene due to the presence of CO, NH 2+ and NH + was observed. Reduced platelet adhesion and increased partial thromboplastin time evidenced the increased blood compatibility. - Highlights: ► Improved biocompatibility and blood compatibility of polypropylene. ► Nitrogen plasma surface modification. ► Maintaining a balance between polar group incorporation and weight loss due to etching. ► Optimization of process conditions by response surface methodology.

  2. Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface

    International Nuclear Information System (INIS)

    Ahn, Ho Seon; Lee, Chan; Kim, Hyungdae; Jo, HangJin; Kang, SoonHo; Kim, Joonwon; Shin, Jeongseob; Kim, Moo Hwan

    2010-01-01

    Consideration of the critical heat flux (CHF) requires difficult compromises between economy and safety in many types of thermal systems, including nuclear power plants. Much research has been directed towards enhancing the CHF, and many recent studies have revealed that the significant CHF enhancement in nanofluids is due to surface deposition of nanoparticles. The surface deposition of nanoparticles influenced various surface characteristics. This fact indicated that the surface wettability is a key parameter for CHF enhancement and so is the surface morphology. In this study, surface wettability of zircaloy-4 used as cladding material of fuel rods in nuclear power plants was modified using surface treatment technique (i.e. anodization). Pool boiling experiments of distilled water on the prepared surfaces was conducted at atmospheric and saturated conditions to examine effects of the surface modification on CHF. The experimental results showed that CHF of zircaloy-4 can be significantly enhanced by the improvement in surface wettability using the surface modification, but only the wettability effect cannot explain the CHF increase on the treated zircaloy-4 surfaces completely. It was found that below a critical value of contact angle (10 o ), micro/nanostructures created by the surface treatment increased spreadability of liquid on the surface, which could lead to further increase in CHF even beyond the prediction caused only by the wettability improvement. These micro/nanostructures with multiscale on heated surface induced more significant CHF enhancement than it based on the wettability effect, due to liquid spreadability.

  3. Advancing Sustainable Catalysis with Magnetite Surface Modification and Synthetic Applications

    Science.gov (United States)

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heteroge...

  4. Flotation separation of polyvinyl chloride and polyethylene terephthalate plastics combined with surface modification for recycling.

    Science.gov (United States)

    Wang, Chongqing; Wang, Hui; Fu, Jiangang; Zhang, Lingling; Luo, Chengcheng; Liu, Younian

    2015-11-01

    Surface modification with potassium permanganate (KMnO4) solution was developed for separation of polyvinyl chloride (PVC) and polyethylene terephthalate (PET) waste plastics. The floatability of PVC decreases with increasing of KMnO4 concentration, treatment time, temperature and stirring rate, while that of PET is unaffected. Fourier transform infrared (FT-IR) analysis confirms that mechanism of surface modification may be due to oxidization reactions occurred on PVC surface. The optimum conditions are KMnO4 concentration 1.25 mM/L, treatment time 50 min, temperature 60°C, stirring rate 300 r/min, frother concentration 17.5 g/L and flotation time 1 min. PVC and PET with different particle sizes were separated efficiently through two-stage flotation. Additionally, after ultrasonic assisted surface modification, separation of PVC and PET with different mass ratios was obtained efficiently through one-stage flotation. The purity and the recovery of the obtained products after flotation separation are up to 99.30% and 99.73%, respectively. A flotation process was designed for flotation separation of PVC and PET plastics combined with surface modification. This study provides technical insights into physical separation of plastic wastes for recycling industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Plasma immersion ion implantation for the efficient surface modification of medical materials

    International Nuclear Information System (INIS)

    Slabodchikov, Vladimir A.; Borisov, Dmitry P.; Kuznetsov, Vladimir M.

    2015-01-01

    The paper reports on a new method of plasma immersion ion implantation for the surface modification of medical materials using the example of nickel-titanium (NiTi) alloys much used for manufacturing medical implants. The chemical composition and surface properties of NiTi alloys doped with silicon by conventional ion implantation and by the proposed plasma immersion method are compared. It is shown that the new plasma immersion method is more efficient than conventional ion beam treatment and provides Si implantation into NiTi surface layers through a depth of a hundred nanometers at low bias voltages (400 V) and temperatures (≤150°C) of the substrate. The research results suggest that the chemical composition and surface properties of materials required for medicine, e.g., NiTi alloys, can be successfully attained through modification by the proposed method of plasma immersion ion implantation and by other methods based on the proposed vacuum equipment without using any conventional ion beam treatment

  6. Laser surface modification of stainless steels for cavitation erosion resistance

    Science.gov (United States)

    Kwok, Chi Tat

    1999-12-01

    Austenitic stainless steel UNS S31603 (Fe -17.6Cr -11.2Ni -2.5Mo -1.4Mn -0.4Si -0.03C) has higher pitting corrosion resistance but lower cavitation erosion resistance than that of UNS S30400. This is because of its lower tendency for strain induced martensitic transformation and higher stacking fault energy as compared with those of UNS S30400. In order to improve its cavitation erosion resistance, surface modification of S31603 was performed by laser surface melting and laser surface alloying using a 2-kW CW Nd-YAG laser and a 3-kW CW CO2 laser. For laser surface melting, austenitic stainless steel UNS S30400, super duplex stainless steel UNS S32760 and martensitic stainless steel UNS S42000 were also investigated for comparison purpose. For laser surface alloying, alloying materials including various elements (Co, Cr, Ni, Mo, Mn, Si & C), alloys (AlSiFe & NiCrSiB), ceramics (Si3N 4, SiC, Cr3C2, TiC, CrB & Cr2O 3) and alloys-ceramics (Co-WC, Ni-WC, Ni-Al2O3, Ni-Cr2C3) were used to modify the surface of S31603. The alloyed surface was achieved first by flame spraying or pre-placing of the alloy powder on the S31603 surface and then followed by laser surface remelting. The cavitation erosion characteristics of laser surface modified specimens in 3.5% NaCl solution at 23°C were studied by means of a 20-kHz ultrasonic vibrator at a peak-to-peak amplitude of 30 mum. In addition, their pitting corrosion behaviour was evaluated by electrochemical techniques. The microstructures, compositions, phase changes and damage mechanisms under cavitation erosion were investigated by optical microscopy, SEM, EDAX and X-ray diffractometry. Mechanical properties such as microhardness profile were also examined. The cavitation erosion resistance Re (reciprocal of the mean depth of penetration rate) of laser surface melted S31603 was found to be improved by 22% and was attributed to the existence of tensile residual stress. Improvement on the Re of S42000 was found to be 8.5 times

  7. Selective cell culture on UV transparent polymer by F{sub 2} laser surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Hanada, Yasutaka, E-mail: y-hanada@riken.jp [RIKEN-Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Sugioka, Koji [RIKEN-Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kawano, Hiroyuki [RIKEN-Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsuchimoto, Takayoshi [RIKEN-Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Applied Electronics, Faculty of Industrial Science and Technology Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Miyamoto, Iwao [Department of Applied Electronics, Faculty of Industrial Science and Technology Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Miyawaki, Atsushi [RIKEN-Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Midorikawa, Katsumi [RIKEN-Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2009-09-30

    A microchip made of UV transparent polymer (CYTOP) that can perform selective cell culture has been fabricated by F{sub 2} laser surface modification. The refractive index of CYTOP is almost the same as that of culture medium, which is essential for three-dimensional (3D) observation of cells. The F{sub 2} laser modification of CYTOP achieves hydrophilicity only on the laser irradiated area with little deterioration of the optical properties and surface smoothness. After the laser modification, HeLa cells were successfully cultured and strongly adhered only on the modified area of CYTOP. The cells patterned on CYTOP were applied for clear 3D observation using an optical microscope in phase contrast mode.

  8. Surface modification of magnesium hydroxide sulfate hydrate whiskers using a silane coupling agent by dry process

    International Nuclear Information System (INIS)

    Zhu, Donghai; Nai, Xueying; Lan, Shengjie; Bian, Shaoju; Liu, Xin; Li, Wu

    2016-01-01

    Highlights: • Dry process was adopted to modify the surface of MHSH whiskers using silane. • Si−O−Mg bonds were formed directly by the reaction between Si−OC 2 H 5 and −OH of MHSH. • Dispersibility and compatibility of modified whiskers greatly improved in organic phase. • Thermal stability of whiskers was enhanced after modified. - Abstract: In order to improve the compatibility of magnesium hydroxide sulfate hydrate (MHSH) whiskers with polymers, the surface of MHSH whiskers was modified using vinyltriethoxysilane (VTES) by dry process. The possible mechanism of the surface modification and the interfacial interactions between MHSH whiskers and VTES, as well as the effect of surface modification, were studied. Scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that the agglomerations were effectively separated and a thin layer was formed on the surface of the whiskers after modification. Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses showed that the VTES molecules were bound to the surface of MHSH whiskers after modification. Chemical bonds (Si−O−Mg) were formed by the reaction between Si−OC 2 H 5 or Si−OH and the hydroxyl group of MHSH whiskers. The effect of surface modification was evaluated by sedimentation tests, contact angle measurements and thermogravimetric analysis (TGA). The results showed that the surface of MHSH whiskers was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MHSH whiskers were significantly improved in the organic phase. Additionally, the thermal stability of the VTES-modified MHSH whiskers was improved significantly.

  9. The cation-π interaction.

    Science.gov (United States)

    Dougherty, Dennis A

    2013-04-16

    The chemistry community now recognizes the cation-π interaction as a major force for molecular recognition, joining the hydrophobic effect, the hydrogen bond, and the ion pair in determining macromolecular structure and drug-receptor interactions. This Account provides the author's perspective on the intellectual origins and fundamental nature of the cation-π interaction. Early studies on cyclophanes established that water-soluble, cationic molecules would forego aqueous solvation to enter a hydrophobic cavity if that cavity was lined with π systems. Important gas phase studies established the fundamental nature of the cation-π interaction. The strength of the cation-π interaction (Li(+) binds to benzene with 38 kcal/mol of binding energy; NH4(+) with 19 kcal/mol) distinguishes it from the weaker polar-π interactions observed in the benzene dimer or water-benzene complexes. In addition to the substantial intrinsic strength of the cation-π interaction in gas phase studies, the cation-π interaction remains energetically significant in aqueous media and under biological conditions. Many studies have shown that cation-π interactions can enhance binding energies by 2-5 kcal/mol, making them competitive with hydrogen bonds and ion pairs in drug-receptor and protein-protein interactions. As with other noncovalent interactions involving aromatic systems, the cation-π interaction includes a substantial electrostatic component. The six (four) C(δ-)-H(δ+) bond dipoles of a molecule like benzene (ethylene) combine to produce a region of negative electrostatic potential on the face of the π system. Simple electrostatics facilitate a natural attraction of cations to the surface. The trend for (gas phase) binding energies is Li(+) > Na(+) > K(+) > Rb(+): as the ion gets larger the charge is dispersed over a larger sphere and binding interactions weaken, a classical electrostatic effect. On other hand, polarizability does not define these interactions. Cyclohexane is

  10. Surface modification and electrochemical behaviour of undoped nanodiamonds

    International Nuclear Information System (INIS)

    Zang Jianbing; Wang Yanhui; Bian Linyan; Zhang Jinhui; Meng Fanwei; Zhao Yuling; Ren Shubin; Qu Xuanhui

    2012-01-01

    Surface modifications of undoped nanodiamond (ND) particles were carried out through different annealing treatments. The methods of Fourier transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy were used to characterize the ND surface before and after the annealing process. The electrochemical properties of the modified ND powders in aqueous solution were investigated with Fe(CN) 6 3−/4− as a redox probe. When the annealing temperature was below 850 °C, vacuum annealing removed parts of the oxygen-containing surface functionalities from the ND surface and produced more sp 2 carbon atoms in the shell. The charge transfer of the Fe(CN) 6 3−/4− redox couple decreased with increasing annealing temperature. Re-annealing in air restored the original surface conditions: few sp 2 -bonded carbon atoms and similar surface functionalities, and thus the electrochemical activity. When ND was annealed in vacuum at 900–1100 °C, more serious graphitization produced a continuous fullerenic shell wrapped around a diamond core, which had a high conductivity and electrochemical activity. This provides a novel nanoparticle with high conductivity and high stability for electrochemical applications.

  11. Laser Surface Treatment and Modification of Aluminum Alloy Matrix Composites

    Science.gov (United States)

    Abbass, Muna Khethier

    2018-02-01

    The present work aimed to study the laser surface treatment and modification of Al-4.0%Cu-1.0%Mg alloy matrix composite reinforced with 10%SiC particles produced by stir casting. The specimens of the base alloy and composite were irradiated with an Nd:YAG laser of 1000 mJ, 1064 nm and 3 Hz . Dry wear test using the pin-on -disc technique at different sliding times (5-30 min) at a constant applied load and sliding speed were performed before and after laser treatment. Micro hardness and wear resistance were increased for all samples after laser hardening treatment. The improvement of these properties is explained by microstructural homogenization and grain refinement of the laser treated surface. Modification and refinement of SiC particles and grain refinement in the microstructure of the aluminum alloy matrix (α-Al) were observed by optical and SEM micrographs. The highest increase in hardness was 21.4% and 26.2% for the base alloy and composite sample respectively.

  12. Remarkable fluorescence enhancement versus complex formation of cationic porphyrins on the surface of ZnO nanoparticles

    KAUST Repository

    Aly, Shawkat Mohammede

    2014-06-12

    Fluorescence enhancement of organic fluorophores shows tremendous potential to improve image contrast in fluorescence-based bioimaging. Here, we present an experimental study of the interaction of two cationic porphyrins, meso-tetrakis(1-methylpyridinium-4-yl)porphyrin chloride (TMPyP) and meso-tetrakis(4-N,N,N-trimethylanilinium)porphyrin chloride (TMAP), with cationic surfactant-stabilized zinc oxide nanoparticles (ZnO NPs) based on several steady-state and time-resolved techniques. We show the first experimental measurements demonstrating a clear transition from pronounced fluorescence enhancement to charge transfer (CT) complex formation by simply changing the nature and location of the positive charge of the meso substituent of the cationic porphyrins. For TMPyP, we observe a sixfold increase in the fluorescence intensity of TMPyP upon addition of ZnO NPs. Our experimental results indicate that the electrostatic binding of TMPyP with the surface of ZnO NPs increases the symmetry of the porphyrin macrocycle. This electronic communication hinders the rotational relaxation of the meso unit and/or decreases the intramolecular CT character between the cavity and the meso substituent of the porphyrin, resulting in the enhancement of the intensity of the fluorescence. For TMAP, on the other hand, the different type and nature of the positive charge resulting in the development of the CT band arise from the interaction with the surface of ZnO NPs. This observation is confirmed by the femtosecond transient absorption spectroscopy, which provides clear spectroscopic signatures of photoinduced electron transfer from TMAP to ZnO NPs. © 2014 American Chemical Society.

  13. Modification of the surface energy in isovalent nano-oxides prepared by chemical synthesis

    International Nuclear Information System (INIS)

    Miagava, J.; Gouvea, D.

    2011-01-01

    The phase stability of the nano-oxides depends on the bulk energy but it also depends on the surface energy. The difference of surface energy of the rutile and anatase phases result in a change of phase stability: TiO_2 without additives is stable as anatase when particles have nanometric size and a high specific surface area whereas rutile is stable when particles are larger. But this stability can be modified through the use of additives. Different studies demonstrate that additives segregate on the particle surface modifying the surface energy. In this work (1-X)TiO_2-XSnO_2 powders were synthesized by the polymeric precursor method with concentrations of 0 ≤ X ≤ 1. The specific surface area measurements demonstrate that the modification of the composition change the specific surface areas and it reaches a maximum at X = 0.005. The Raman spectroscopy demonstrates that a modification on the stability of the TiO_2 polymorphs occurs and the phase rutile is stabilized when SnO_2 is added to the nano powders.(author)

  14. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations.

    Science.gov (United States)

    Kutzner, Susann; Schaffer, Mario; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard

    2014-05-01

    Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Surface Patterning Using Diazonium Ink Filled Nanopipette.

    Science.gov (United States)

    Zhou, Min; Yu, Yun; Blanchard, Pierre-Yves; Mirkin, Michael V

    2015-11-03

    Molecular grafting of diazonium is a widely employed surface modification technique. Local electrografting of this species is a promising approach to surface doping and related properties tailoring. The instability of diazonium cation complicates this process, so that this species was generated in situ in many reported studies. In this Article, we report the egress transfer of aryl diazonium cation across the liquid/liquid interface supported at the nanopipette tip that can be used for controlled delivery this species to the external aqueous phase for local substrate patterning. An aryl diazonium salt was prepared with weakly coordinating and lipophilic tetrakis(pentafluorophenyl)borate anion stable as a solid and soluble in low polarity media. The chemically stable solution of this salt in 1,2-dichloroethane can be used as "diazonium ink". The ink-filled nanopipette was employed as a tip in the scanning electrochemical microscope (SECM) for surface patterning with the spatial resolution controlled by the pipette orifice radius and a few nanometers film thickness. The submicrometer-size grafted spots produced on the HOPG surface were located and imaged with the atomic force microscope (AFM).

  16. Surface modification of an epoxy resin with polyamines and polydopamine: The effect on the initial electroless copper deposition

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Mader, Lothar [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); De Geyter, Nathalie; Morent, Rino [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 bis, B-9000 Ghent (Belgium); Vanfleteren, Jan [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium)

    2014-06-01

    This paper describes the influence of polydopamine and polyamine surface modifications of an etched epoxy cresol novolak (ECN) resin on the initial electroless copper deposition. Three different strategies to introduce polyamines on a surface in aqueous environment are applied: via polyethyleneimine adsorption (PEI), via polydopamine and via polyamines grafted to polydopamine. Next, the influence of these surface modifications on the catalytic palladium activation is investigated through X-ray photoelectron spectroscopy (XPS) analysis. Finally, the initial electroless copper deposition on modified epoxy surfaces is evaluated using SEM and Energy Dispersive Spectroscopy (EDS). Grafted polyamines on polydopamine surface modifications result in a large increase of the initial deposited copper.

  17. Surface-Modified Electrodes: Enhancing Performance Guided by Insitu Spectroscopy and Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chueh, William [Stanford Univ., CA (United States)

    2016-12-01

    The aim of this project is to understand the nature of active sites and degradation mechanisms in solid-oxide fuel cells cathodes. Using Co and Fe-based perovskite oxides as model systems, we developed a comprehensive understanding of the active site and degradation. In particular, we correlated cation segregation, precipitation and surface reconstruction to electrochemical activity and stability. We show that in conventional materials, the most active cathodes are not the most stable ones. A novel strategy of cation segregation buffer layer was proposed and developed to overcome this limitation. A nanoscale barrier layer was inserted a few nanometer below the surface of the cathodes which prevents the cations from diffusing from the bulk to the surface. We report a LSCF-based cathode with record performance and stability, reach an impressive 0.03 Ω cm2 at 650 °C in air. This modification strategy is expected to lead to more active and stable solid-oxide fuel cells, and ultimately lead to lower cost in commercial systems.

  18. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    Science.gov (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  19. [Surface grafting modification and stabilization of Kevlar fiber].

    Science.gov (United States)

    Zheng, Yu-ying; Fu, Ming-lian; Wang, Can-yao; Wang, Liang-en

    2005-11-01

    Chemical disposal was used to bring the activity group onto the surface of Kevlar fiber for the purpose of surface grafting modification. The interfacial constitution of the grafting of toluene-2,4-diisocyanate (TDI) onto Kevlar fiber was determined by Fourier transform infrared spectroscopy. In the mean time, hexyl-lactam stabilization and poly-glycol (400, PEG) stabilization on the grafted product were also studied. The effects of different nTDI:nPEG ratios on the production's interfacial constitution was analysed. It is concluded that the stabilization took place on the surface. The intensity of the bands relented at about 3300 cm(-1) and was reinforced at about 1700-1720 cm(-1) when the ratio of nTDI:nPEG = 1:3, but when the ratio is 1:1 and 1:2, the bands at about 3 300 and 1700-1720 cm(-1) are almost the same.

  20. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro

    NARCIS (Netherlands)

    Kneuer, C; Sameti, M; Bakowsky, U; Schiestel, T; Schirra, H

    2000-01-01

    Diverse polycationic polymers have been used as nonviral transfection agents. Here we report the ability of colloidal silica particles with covalently attached cationic surface modifications to transfect plasmid DNA in vitro and make an attempt to describe the structure of the resulting transfection

  1. UV Light Induced Surface Modification of HDPE Films with Bioactive Compounds

    Czech Academy of Sciences Publication Activity Database

    Daniloska, V.; Blazevska-Gilev, J.; Dimova, V.; Fajgar, Radek; Tomovska, R.

    2010-01-01

    Roč. 256, č. 7 (2010), s. 2276-2283 ISSN 0169-4332 Institutional research plan: CEZ:AV0Z40720504 Keywords : surface modification * uv irradiation * benzocaine Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.795, year: 2010

  2. Bioactive surface modifications on inner walls of poly-tetra-fluoro-ethylene tubes using dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Ki [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Heat Treatment and Surface Engineering R and D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Park, Daewon; Kim, Hoonbae [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Hyerim; Park, Heonyong [Department of Molecular Biology, Dankook University, Yongin 448-701 (Korea, Republic of); Kim, Hong Ja [Department of Internal Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Jung, Donggeun, E-mail: djung@skku.ac.kr [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-03-01

    Graphical abstract: - Highlights: • The surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts. • Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment using micro plasma discharge. - Abstract: Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature

  3. Bioactive surface modifications on inner walls of poly-tetra-fluoro-ethylene tubes using dielectric barrier discharge

    International Nuclear Information System (INIS)

    Cho, Yong Ki; Park, Daewon; Kim, Hoonbae; Lee, Hyerim; Park, Heonyong; Kim, Hong Ja; Jung, Donggeun

    2014-01-01

    Graphical abstract: - Highlights: • The surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts. • Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment using micro plasma discharge. - Abstract: Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature

  4. Wind-Tunnel Investigation of the Aerodynamic Performance of Surface-Modification Cables

    Directory of Open Access Journals (Sweden)

    Hiroshi Katsuchi

    2017-12-01

    Full Text Available The wind-induced vibration of stay cables of cable-stayed bridges, which includes rain-wind-induced vibration (RWIV and dry galloping (DG, has been studied for a considerable amount of time. In general, mechanical dampers or surface modification are applied to suppress the vibration. In particular, several types of surface-modification cable, including indentation, longitudinally parallel protuberance, helical fillet, and U-shaped grooving, have been developed. Recently, a new type of aerodynamically stable cable with spiral protuberances was developed. It was confirmed that the cable has a low drag force coefficient, like an indented cable, and that it prevented the formation of water rivulets on the cable surface. In this study, the stability for RWIV of this cable was investigated with various flow angles and protuberance dimensions in a wind-tunnel test. It was found that the spiral protuberance cable is aerodynamically stable against both RWIV and DG for all test wind angles. The effects of the protuberance dimensions were also clarified. Keywords: Rain-wind-induced vibration, Dry galloping, Stay cable, Wind-tunnel test

  5. Relating surface chemistry and oxygen surface exchange in LnBaCo2O(5+δ) air electrodes.

    Science.gov (United States)

    Téllez, Helena; Druce, John; Kilner, John A; Ishihara, Tatsumi

    2015-01-01

    The surface and near-surface chemical composition of electroceramic materials often shows significant deviations from that of the bulk. In particular, layered materials, such as cation-ordered LnBaCo2O(5+δ) perovskites (Ln = lanthanide), undergo surface and sub-surface restructuring due to the segregation of the divalent alkaline-earth cation. These processes can take place during synthesis and processing steps (e.g. deposition, sintering or annealing), as well as at temperatures relevant for the operation of these materials as air electrodes in solid oxide fuel cells and electrolysers. Furthermore, the surface segregation in these double perovskites shows fast kinetics, starting at temperatures as low as 400 °C over short periods of time and leading to a decrease in the transition metal surface coverage exposed to the gas phase. In this work, we use a combination of stable isotope tracer labeling and surface-sensitive ion beam techniques to study the oxygen transport properties and their relationship with the surface chemistry in ordered LnBaCo2O(5+δ) perovskites. Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS) combined with (18)O isotope exchange was used to determine the oxygen tracer diffusion (D*) and surface exchange (k*) coefficients. Furthermore, Low Energy Ion Scattering (LEIS) was used for the analysis of the surface and near surface chemistry as it provides information from the first mono-atomic layer of the materials. In this way, we could relate the compositional modifications (e.g. cation segregation) taking place at the electrochemically-active surface during the exchange at high temperatures and the oxygen transport properties in double perovskite electrode materials to further our understanding of the mechanism of the surface exchange process.

  6. Carbon ion irradiation induced surface modification of polypropylene

    International Nuclear Information System (INIS)

    Saha, A.; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N.

    2001-01-01

    Polypropylene was irradiated with 12 C ions of 3.6 and 5.4 MeV energies in the fluence range of 5x10 13 -5x10 14 ions/cm 2 using 3 MV tandem accelerator. Ion penetration was limited to a few microns and surface modifications were investigated by scanning electron microscopy. At the lowest ion fluence only blister formation of various sizes (1-6 μm) were observed, but at higher fluence (1x10 14 ions/cm 2 ) a three-dimensional network structure was found to form. A gradual degradation in the network structure was observed with further increase in the ion fluence. The dose dependence of the changes on surface morphology of polypropylene is discussed

  7. Carbon ion irradiation induced surface modification of polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A. E-mail: abhijit@alpha.iuc.res.in; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N

    2001-12-01

    Polypropylene was irradiated with {sup 12}C ions of 3.6 and 5.4 MeV energies in the fluence range of 5x10{sup 13}-5x10{sup 14} ions/cm{sup 2} using 3 MV tandem accelerator. Ion penetration was limited to a few microns and surface modifications were investigated by scanning electron microscopy. At the lowest ion fluence only blister formation of various sizes (1-6 {mu}m) were observed, but at higher fluence (1x10{sup 14} ions/cm{sup 2}) a three-dimensional network structure was found to form. A gradual degradation in the network structure was observed with further increase in the ion fluence. The dose dependence of the changes on surface morphology of polypropylene is discussed.

  8. Comparison of cation adsorption by isostructural rutile and cassiterite.

    Science.gov (United States)

    Machesky, Michael; Wesolowski, David; Rosenqvist, Jörgen; Předota, Milan; Vlcek, Lukas; Ridley, Moira; Kohli, Vaibhav; Zhang, Zhan; Fenter, Paul; Cummings, Peter; Lvov, Serguei; Fedkin, Mark; Rodriguez-Santiago, Victor; Kubicki, James; Bandura, Andrei

    2011-04-19

    Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl(2) in NaCl, and trace ZnCl(2) in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite (ε(bulk) ≈ 11). Inner-sphere adsorption is also significant for Rb(+) and Na(+) on neutral surfaces, whereas Cl(-) binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb(+), Na(+), and especially Sr(2+) are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn(2+) are very steep but similar for both oxides, reflective of Zn(2+) hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH(+) on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the cassiterite (110) surface. Hence, their removal upon inner

  9. Enhancement of perchlorate removal from groundwater by cationic granular activated carbon: Effect of preparation protocol and surface properties.

    Science.gov (United States)

    Hou, Pin; Yan, Zhe; Cannon, Fred S; Yue, Ye; Byrne, Timothy; Nieto-Delgado, Cesar

    2018-06-01

    In order to obtain a high adsorption capacity for perchlorate, the epoxide-forming quaternary ammonium (EQA) compounds were chemically bonded onto granular activated carbon (GAC) surface by cationic reaction. The optimum preparation condition of the cationic GAC was achieved while applying softwood-based Gran C as the parent GAC, dosing EQA first at a pH of 12, preparation time of 48 h, preparation temperature of 50 °C, and mole ratio of EQA/oxygen groups of 2.5. The most favorable cationic GAC that had the QUAB360 pre-anchored exhibited the highest perchlorate adsorption capacity of 24.7 mg/g, and presented the longest bed volumes (3000 BV) to 2 ppb breakthrough during rapid small scale column tests (RSSCTs), which was 150 times higher than that for the pristine Gran C. This was attributed to its higher nitrogen amount (1.53 At%) and higher positive surface charge (0.036 mmol/g) at pH 7.5. Also, there was no leaching of the quaternary ammonium detected in the effluent of the RSSCTs, indicating there was no secondary pollution occurring during the perchlorate removal process. Overall, this study provides an effective and environmental-friendly technology for improving GAC perchlorate adsorption capacity for groundwater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method

    Science.gov (United States)

    Cao, Jiliang; Wang, Chaoxia

    2017-05-01

    Multifunctional silk fabrics with electrical conductive, anti-ultraviolet and water repellent were successfully prepared by surface modification with graphene oxide (GO). The yellow-brown GO deposited on the surface of silk fabric was converted into graphitic black reduced graphene (RGO) by sodium hydrosulfite. The surface properties of silk fabrics were changed by repeatedly RGO coating process, which have been proved by SEM and XPS. The SEM results showed that the RGO sheets were successive form a continuously thin film on the surface of silk fabrics, and the deposition of GO or RGO also can be proved by XPS. The electrical conductivity was tested by electrical surface resistance value of the silk fabric, the surface resistance decreased with increasing of RGO surface modification times, and a low surface resistance value reached to 3.24 KΩ cm-1 after 9 times of modification, indicating the silk obtained excellent conductivity. The UPF value of one time GO modification silk fabric (silk-1RGO) was enhanced significantly to 24.45 in comparison to 10.40 of original silk. The contact angle of RGO coating silk samples was all above of 120°. The durability of RGO coated silk fabrics was tested by laundering. The electrical surface resistance of silk-4RGO (65.74 KΩ cm-1), silk-6RGO (15.54 KΩ cm-1) and silk-8RGO (3.86 KΩ cm-1) fabrics was up to 86.82, 22.30 and 6.57 KΩ cm-1 after 10 times of standard washing, respectively. The UPF value, contact angle and color differences of RGO modified silk fabric slightly changed before and after 10 times of standard washing. Therefore, the washing fastness of electric conduction, anti-ultraviolet and water repellent multifunctional silk fabrics was excellent.

  11. Drag reduction in reservoir rock surface: Hydrophobic modification by SiO_2 nanofluids

    International Nuclear Information System (INIS)

    Yan, Yong-Li; Cui, Ming-Yue; Jiang, Wei-Dong; He, An-Le; Liang, Chong

    2017-01-01

    Graphical abstract: The micro-nanoscale hierarchical structures at the sandstone core surface are constructed by adsorption of the modified silica nanoparticles, which leads to the effect of drag reduction to improve the low injection rate in ultra-low permeability reservoirs. - Highlights: • A micro-nanoscale hierarchical structure is formed at the reservoir rock surface. • An inversion has happened from hydrophilic into hydrophobic modified by nanofluids. • The effect of drag reduction to improve the low injection rate is realized. • The mechanism of drag reduction induced from the modified core surface was unclosed. - Abstract: Based on the adsorption behavior of modified silica nanoparticles in the sandstone core surface, the hydrophobic surface was constructed, which consists of micro-nanoscale hierarchical structure. This modified core surface presents a property of drag reduction and meets the challenge of high injection pressure and low injection rate in low or ultra-low permeability reservoir. The modification effects on the surface of silica nanoparticles and reservoir cores, mainly concerning hydrophobicity and fine structure, were determined by measurements of contact angle and scanning electron microscopy. Experimental results indicate that after successful modification, the contact angle of silica nanoparticles varies from 19.5° to 141.7°, exhibiting remarkable hydrophobic properties. These modified hydrophobic silica nanoparticles display a good adsorption behavior at the core surface to form micro-nanobinary structure. As for the wettability of these modified core surfaces, a reversal has happened from hydrophilic into hydrophobic and its contact angle increases from 59.1° to 105.9°. The core displacement experiments show that the relative permeability for water has significantly increased by an average of 40.3% via core surface modification, with the effects of reducing injection pressure and improving injection performance of water

  12. Surface modification of the metal plates using continuous electron beam process (CEBP)

    International Nuclear Information System (INIS)

    Kim, Jisoo; Kim, Jin-Seok; Kang, Eun-Goo; Park, Hyung Wook

    2014-01-01

    Highlights: • We performed surface modification of SM20C, SUS303, and Al6061 using CEBP. • We analyzed surface properties and microstructure after electron-beam irradiation. • The surface quality was improved after electron-beam irradiation. • The surface hardness for SM20C was increased by ∼50% after CEBP irradiation. - Abstract: The finishing process is an important component of the quality-control procedure for final products in manufacturing applications. In this study, we evaluated the performance of continuous electron-beam process as the final process for finishing SM20C (steel alloy), SUS303 (stainless steel alloy), and Al6061 (aluminum alloy) surfaces both on the initially smooth and rough surfaces. Surface modification of the metals was carried out by varying the feed and frequency of the continuous electron-beam irradiation procedure. The resulting surface roughness was examined with respect to the initial surface roughness of the metals. SM20C and SUS303 experienced an improvement in surface roughness, particularly for initially rough surfaces. Continuous electron-beam process produced craters during the process and the effect of this phenomenon on the resulting surface roughness was relatively large with the initially smooth SM20C and SUS303 alloy surfaces. For Al6061, the continuous electron-beam process was effective at improving its surface roughness even with the initially smooth surface under the optimized conditions of process; this was attributed to its low melting point. Scanning electron microscopy was used to identify metallurgical variation within the thin melted and re-solidification layers of the tested alloys. Changes in the surface contact angle and hardness before and after electron-beam irradiation were also examined

  13. Surface modification of the metal plates using continuous electron beam process (CEBP)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jisoo, E-mail: kimjisu16@unist.ac.kr [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan Metropolitan City 689-798 (Korea, Republic of); Kim, Jin-Seok, E-mail: totoro22@kitech.re.kr [Korea Institute of Industrial Technology (KITECH), KITECH Cheonan Headquarters 35-3 Hongcheon-ri, Ipjang-myeon, Cheonan-si, Chungcheongnam-do 330-825 (Korea, Republic of); Kang, Eun-Goo, E-mail: egkang@kitech.re.kr [Korea Institute of Industrial Technology (KITECH), KITECH Cheonan Headquarters 35-3 Hongcheon-ri, Ipjang-myeon, Cheonan-si, Chungcheongnam-do 330-825 (Korea, Republic of); Park, Hyung Wook, E-mail: hwpark@unist.ac.kr [School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan Metropolitan City 689-798 (Korea, Republic of)

    2014-08-30

    Highlights: • We performed surface modification of SM20C, SUS303, and Al6061 using CEBP. • We analyzed surface properties and microstructure after electron-beam irradiation. • The surface quality was improved after electron-beam irradiation. • The surface hardness for SM20C was increased by ∼50% after CEBP irradiation. - Abstract: The finishing process is an important component of the quality-control procedure for final products in manufacturing applications. In this study, we evaluated the performance of continuous electron-beam process as the final process for finishing SM20C (steel alloy), SUS303 (stainless steel alloy), and Al6061 (aluminum alloy) surfaces both on the initially smooth and rough surfaces. Surface modification of the metals was carried out by varying the feed and frequency of the continuous electron-beam irradiation procedure. The resulting surface roughness was examined with respect to the initial surface roughness of the metals. SM20C and SUS303 experienced an improvement in surface roughness, particularly for initially rough surfaces. Continuous electron-beam process produced craters during the process and the effect of this phenomenon on the resulting surface roughness was relatively large with the initially smooth SM20C and SUS303 alloy surfaces. For Al6061, the continuous electron-beam process was effective at improving its surface roughness even with the initially smooth surface under the optimized conditions of process; this was attributed to its low melting point. Scanning electron microscopy was used to identify metallurgical variation within the thin melted and re-solidification layers of the tested alloys. Changes in the surface contact angle and hardness before and after electron-beam irradiation were also examined.

  14. A low-cost, high-efficiency and high-flexibility surface modification technology for a black bisphenol A polycarbonate board

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Suhuan; Liu, Jianguo, E-mail: Liujg@mail.hust.edu.cn; Lv, Ming; Zeng, Xiaoyan

    2014-09-30

    Highlights: • A low-cost, high-efficiency, high-flexibility surface modification technology was achieved. • Different laser modification parameters resulted in different surface microstructures. • These special microstructures played a deciding role in the surface properties. • After the modification, the surface energy was found to have a significant increase. • The technology would be advantageous to fabricate high-quality micro devices and systems. - Abstract: In this paper, a low-cost, high-efficiency and high-flexibility surface modification technology for polymer materials was achieved at high laser scanning speeds (600–1000 mm s{sup −1}) and using an all-solid state, Q-switched, high-average power, and nanosecond pulse ultraviolet (355 nm wavelength) laser. During the surface modification of a very important engineering plastic, i.e., black bisphenol A polycarbonate (BAPC) board, it was found that different laser parameters (e.g., laser fluence and pulse frequency) were able to result in different surface microstructures (e.g., many tiny protuberances or a porous microstructure with periodical V-type grooves). After the modification, although the total relative content of the oxygen-containing groups (e.g., C-O and COO{sup −}) on the BAPC surface increased, however, the special microstructures played a deciding role in the surface properties (e.g., contact angle and surface energy) of the BAPC. The change trend of the water contact angle on the BAPC surface was with an obvious increase, that of the diiodomethane contact angle was with a most decrease, and that of the ethylene glycol contact angle was between the above two. It showed that the wetting properties of the three liquids on the modified BAPC surface were different. Basing on the measurements of the contact angles of the three liquids, and according to the Young equation and the Lifshitz van der Waals and Lewis acid–base theory, the BAPC surface energy after the modification was

  15. A low-cost, high-efficiency and high-flexibility surface modification technology for a black bisphenol A polycarbonate board

    International Nuclear Information System (INIS)

    Wang, Suhuan; Liu, Jianguo; Lv, Ming; Zeng, Xiaoyan

    2014-01-01

    Highlights: • A low-cost, high-efficiency, high-flexibility surface modification technology was achieved. • Different laser modification parameters resulted in different surface microstructures. • These special microstructures played a deciding role in the surface properties. • After the modification, the surface energy was found to have a significant increase. • The technology would be advantageous to fabricate high-quality micro devices and systems. - Abstract: In this paper, a low-cost, high-efficiency and high-flexibility surface modification technology for polymer materials was achieved at high laser scanning speeds (600–1000 mm s −1 ) and using an all-solid state, Q-switched, high-average power, and nanosecond pulse ultraviolet (355 nm wavelength) laser. During the surface modification of a very important engineering plastic, i.e., black bisphenol A polycarbonate (BAPC) board, it was found that different laser parameters (e.g., laser fluence and pulse frequency) were able to result in different surface microstructures (e.g., many tiny protuberances or a porous microstructure with periodical V-type grooves). After the modification, although the total relative content of the oxygen-containing groups (e.g., C-O and COO − ) on the BAPC surface increased, however, the special microstructures played a deciding role in the surface properties (e.g., contact angle and surface energy) of the BAPC. The change trend of the water contact angle on the BAPC surface was with an obvious increase, that of the diiodomethane contact angle was with a most decrease, and that of the ethylene glycol contact angle was between the above two. It showed that the wetting properties of the three liquids on the modified BAPC surface were different. Basing on the measurements of the contact angles of the three liquids, and according to the Young equation and the Lifshitz van der Waals and Lewis acid–base theory, the BAPC surface energy after the modification was calculated

  16. Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modifed nanocapsules.

    OpenAIRE

    Mosqueira, Vanessa Carla Furtado; Legrand, Philippe; Gulik, Annette; Bourdon, Olivier; Gref, Ruxandra; Labarre, Denis; Barratt, Gillian

    2001-01-01

    ABSTRACT: The aim of our work was to examine the relationship between modi"cations of the surface of nanocapsules (NC) by adsorption or covalent grafting of poly(ethylene oxide) (PEG), and changes in their phospholipid (PL) content on complement activation (C3 cleavage) and on uptake by macrophages. The physicochemical characterization of the NC included an investigation of their properties, such as surface charge, size, hydrophilicity, morphology and homogeneity. This is the "rst ti...

  17. Surface modification of nanodiamond through metal free atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangjian; Liu, Meiying; Shi, Kexin; Heng, Chunning; Mao, Liucheng; Wan, Qing; Huang, Hongye [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-12-30

    Highlights: • Surface modification of ND with water soluble and biocompatible polymers. • Functionalized ND through metal free surface initiated ATRP. • The metal free surface initiated ATRP is rather simple and effective. • The ND-poly(MPC) showed high dispersibility and desirable biocompatibility. - Abstract: Surface modification of nanodiamond (ND) with poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] has been achieved by using metal free surface initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiator was first immobilized on the surface of ND through direct esterification reaction between hydroxyl group of ND and 2-bromoisobutyryl bromide. The initiator could be employed to obtain ND-poly(MPC) nanocomposites through SI-ATRP using an organic catalyst. The final functional materials were characterized by {sup 1}H nuclear magnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermo gravimetric analysis in detailed. All of these characterization results demonstrated that ND-poly(MPC) have been successfully obtained via metal free photo-initiated SI-ATRP. The ND-poly(MPC) nanocomposites shown enhanced dispersibility in various solvents as well as excellent biocompatibility. As compared with traditional ATRP, the metal free ATRP is rather simple and effective. More importantly, this preparation method avoided the negative influence of metal catalysts. Therefore, the method described in this work should be a promising strategy for fabrication of polymeric nanocomposites with great potential for different applications especially in biomedical fields.

  18. Surface modification of nanodiamond through metal free atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Zeng, Guangjian; Liu, Meiying; Shi, Kexin; Heng, Chunning; Mao, Liucheng; Wan, Qing; Huang, Hongye; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2016-01-01

    Highlights: • Surface modification of ND with water soluble and biocompatible polymers. • Functionalized ND through metal free surface initiated ATRP. • The metal free surface initiated ATRP is rather simple and effective. • The ND-poly(MPC) showed high dispersibility and desirable biocompatibility. - Abstract: Surface modification of nanodiamond (ND) with poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] has been achieved by using metal free surface initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiator was first immobilized on the surface of ND through direct esterification reaction between hydroxyl group of ND and 2-bromoisobutyryl bromide. The initiator could be employed to obtain ND-poly(MPC) nanocomposites through SI-ATRP using an organic catalyst. The final functional materials were characterized by 1 H nuclear magnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermo gravimetric analysis in detailed. All of these characterization results demonstrated that ND-poly(MPC) have been successfully obtained via metal free photo-initiated SI-ATRP. The ND-poly(MPC) nanocomposites shown enhanced dispersibility in various solvents as well as excellent biocompatibility. As compared with traditional ATRP, the metal free ATRP is rather simple and effective. More importantly, this preparation method avoided the negative influence of metal catalysts. Therefore, the method described in this work should be a promising strategy for fabrication of polymeric nanocomposites with great potential for different applications especially in biomedical fields.

  19. Surface-defect induced modifications in the optical properties of α-MnO_2 nanorods

    International Nuclear Information System (INIS)

    John, Reenu Elizabeth; Chandran, Anoop; Thomas, Marykutty; Jose, Joshy; George, K.C.

    2016-01-01

    Graphical abstract: - Highlights: • Alpha-MnO_2 nanorods are prepared by chemical method. • Difference in surface defect density is achieved. • Characterized using XRD, Rietveld, XPS, EDS, HR-TEM, BET, UV–vis absorption spectroscopy and PL spectroscopy. • Explains the bandstructure modification due to Jahn–Teller distortions using crystal field theory. • Modification in the intensity of optical emissions related to defect levels validates the concept of surface defect induced tuning of optical properties. - Abstract: The science of defect engineering via surface tuning opens a new route to modify the inherent properties of nanomaterials for advanced functional and practical applications. In this work, two independent synthesis methods (hydrothermal and co-precipitation) are adopted to fabricate α-MnO_2 nanorods with different defect structures so as to understand the effect of surface modifications on their optical properties. The crystal structure and morphology of samples are investigated with the aid of X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Atomic composition calculated from energy dispersive spectroscopy (EDS) confirms non-stoichiometry of the samples. The surface properties and chemical environment are thoroughly studied using X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) analysis. Bond angle variance and bond valence sum are determined to validate distortions in the basic MnO_6 octahedron. The surface studies indicate that the concentration of Jahn–Teller manganese (III) (Mn"3"+) ion in the samples differ from each other which results in their distinct properties. Band structure modifications due to Jahn–Teller distortion are examined with the aid of ultraviolet–visible (UV) reflectance and photoluminescence (PL) studies. The dual peaks obtained in derivative spectrum conflict the current concept on the bandgap energy of MnO_2. These studies suggest that

  20. Liquid-solid extraction of metallic cations by cationic amphiphiles

    International Nuclear Information System (INIS)

    Mueller, Wolfram; Sievers, Torsten K.; Zemb, Thomas; Diat, Olivier; Sievers, Torsten K.; Dejugnat, Christophe

    2012-01-01

    In the field of selective metal ion separation, liquid-liquid extraction is usually conducted through an emulsion mixing of hydrophobic complexants dispersed in an organic phase and acidic water containing the ionic species. Recently, it has been shown that amphiphilic complexants could influence strongly extraction efficiency by enhancing the interfacial interaction between the metal ion in the aqueous and the complexant in the organic phase. Moreover, these amphiphiles can also substitute the organic phase if an appropriate aliphatic chain is chosen. The dispersion of such amphiphilic complexants in an aqueous solution of salt mixtures is not only attractive for studying specific interactions but also to better the understanding of complex formation in aqueous solution of multivalent metal ions, such as lanthanides and actinides. This understanding is of potential interest for a broad range of industries including purification of rare earth metals and pollute treatment e.g. of fission byproducts. This principle can also be applied to liquid-solid extraction, where the final state of the separation is a solid phase containing the selectively extracted ions. Indeed, a novel solid-liquid extraction method exploits the selective precipitation of metal ions from an aqueous salt mixture using a cationic surfactant, below its Krafft point (temperature below which the long aliphatic chains of surfactant crystallize). This technique has been proven to be highly efficient for the separation of actinides and heavy metal using long chain ammonium or pyridinium amphiphiles. The most important point in this process is the recognition of cationic metal ions by cationic surfactants. By computing the free energy of the polar head group per micelle as a function of the different counter-anions, we have demonstrated for the first time that different interactions exist between the micellar surface and the ions. These interactions depend on the nature of the cation but also on

  1. Surface Modification of Polymeric Materials by Plasma Treatment

    Directory of Open Access Journals (Sweden)

    E.F. Castro Vidaurre

    2002-03-01

    Full Text Available Low-temperature plasma treatment has been used in the last years as a useful tool to modify the surface properties of different materials, in special of polymers. In the present work low temperature plasma was used to treat the surface of asymmetric porous substrates of polysulfone (PSf membranes. The main purpose of this work was to study the influence of the exposure time and the power supplied to argon plasma on the permeability properties of the membranes. Three rf power levels, respectively 5, 10 and 15 W were used. Treatment time ranged from 1 to 50 min. Reduction of single gas permeability was observed with Ar plasma treatments at low energy bombardment (5 W and short exposure time (20 min. Higher power and/or higher plasma exposition time causes a degradation process begins. The chemical and structural characterization of the membranes before and after the surface modification was done by AFM, SEM and XPS.

  2. Chemical modifications of Au/SiO2 template substrates for patterned biofunctional surfaces.

    Science.gov (United States)

    Briand, Elisabeth; Humblot, Vincent; Landoulsi, Jessem; Petronis, Sarunas; Pradier, Claire-Marie; Kasemo, Bengt; Svedhem, Sofia

    2011-01-18

    The aim of this work was to create patterned surfaces for localized and specific biochemical recognition. For this purpose, we have developed a protocol for orthogonal and material-selective surface modifications of microfabricated patterned surfaces composed of SiO(2) areas (100 μm diameter) surrounded by Au. The SiO(2) spots were chemically modified by a sequence of reactions (silanization using an amine-terminated silane (APTES), followed by amine coupling of a biotin analogue and biospecific recognition) to achieve efficient immobilization of streptavidin in a functional form. The surrounding Au was rendered inert to protein adsorption by modification by HS(CH(2))(10)CONH(CH(2))(2)(OCH(2)CH(2))(7)OH (thiol-OEG). The surface modification protocol was developed by testing separately homogeneous SiO(2) and Au surfaces, to obtain the two following results: (i) SiO(2) surfaces which allowed the grafting of streptavidin, and subsequent immobilization of biotinylated antibodies, and (ii) Au surfaces showing almost no affinity for the same streptavidin and antibody solutions. The surface interactions were monitored by quartz crystal microbalance with dissipation monitoring (QCM-D), and chemical analyses were performed by polarization modulation-reflexion absorption infrared spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS) to assess the validity of the initial orthogonal assembly of APTES and thiol-OEG. Eventually, microscopy imaging of the modified Au/SiO(2) patterned substrates validated the specific binding of streptavidin on the SiO(2)/APTES areas, as well as the subsequent binding of biotinylated anti-rIgG and further detection of fluorescent rIgG on the functionalized SiO(2) areas. These results demonstrate a successful protocol for the preparation of patterned biofunctional surfaces, based on microfabricated Au/SiO(2) templates and supported by careful surface analysis. The strong immobilization of the biomolecules resulting from the described

  3. Towards convective heat transfer enhancement: surface modification, characterization and measurement techniques

    NARCIS (Netherlands)

    Taha, T.J.; Thakur, D.B.; van der Meer, Theodorus H.

    2012-01-01

    In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon

  4. Surface modification of multilayer graphene using Ga ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quan, E-mail: wangq@mail.ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Shao, Ying; Ge, Daohan; Ren, Naifei [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yang, Qizhi [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); State key laboratory of Robotics, Chinese Academy of Sciences, Shengyang 110000 (China)

    2015-04-28

    The effect of Ga ion irradiation intensity on the surface of multilayer graphene was examined. Using Raman spectroscopy, we determined that the irradiation caused defects in the crystal structure of graphene. The density of defects increased with the increase in dwell times. Furthermore, the strain induced by the irradiation changed the crystallite size and the distance between defects. These defects had the effect of doping the multilayer graphene and increasing its work function. The increase in work function was determined using contact potential difference measurements. The surface morphology of the multilayer graphene changed following irradiation as determined by atomic force microscopy. Additionally, the adhesion between the atomic force microscopy tip and sample increased further indicating that the irradiation had caused surface modification, important for devices that incorporate graphene.

  5. Modification of ntezi bentonite structure by hydrochloric acid: process kinetics and structural properties of the modified samples

    International Nuclear Information System (INIS)

    Ajemba, R.O.

    2014-01-01

    Bentonite from Ntezi was modified by reacting it with different concentrations of hydrochloric acid solutions. The modified samples were analysed by x-ray fluorescence. The kinetics of the modification reaction was studied by performing the experiment at different temperatures and times. Results of the analysis of the modified samples showed that the octahedral cations were removed which altered the chemical composition of the bentonite. The surface area and adsorptive capacity of the bentonite were improved after the modification. The kinetic studies showed that the acid modification reaction is controlled by the product layer diffusion and can be represented by (1-(l-X)/sup 1/3)/sup 2/ = k t; where, X is the fraction of the bentonite dissolved at time t. The activation energy was determined to be 24.98 kJ/mol. (author)

  6. Enhanced osteointegration of medical titanium implant with surface modifications in micro/nanoscale structures

    OpenAIRE

    Lin, Liwen; Wang, Hui; Ni, Ming; Rui, Yunfeng; Cheng, Tian-Yuan; Cheng, Cheng-Kung; Pan, Xiaohua; Li, Gang; Lin, Changjian

    2014-01-01

    Biomimetic design and substrate-based surface modification of medical implants will help to improve the integration of tissue to its material interfaces. Surface energy, composition, roughness, and topography all influence the biological responses of the implants, such as protein adsorption and cell adhesion, proliferation and differentiation. In the current study, different surface structures of Ti implants were constructed using facile surface techniques to create various micro-, nano-, and...

  7. Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology.

    Science.gov (United States)

    Bayat Tork, Mahya; Khalilzadeh, Rasoul; Kouchakzadeh, Hasan

    2017-11-01

    Harvesting involves nearly thirty percent of total production cost of microalgae that needs to be done efficiently. Utilizing inexpensive and highly available biopolymer-based flocculants can be a solution for reducing the harvest costs. Herein, flocculation process of Chlorella vulgaris microalgae using cationic starch nanoparticles (CSNPs) was evaluated and optimized through the response surface methodology (RSM). pH, microalgae and CSNPs concentrations were considered as the main independent variables. Under the optimum conditions of microalgae concentration 0.75gdry weight/L, CSNPs concentration 7.1mgdry weight/L and pH 11.8, the maximum flocculation efficiency (90%) achieved. Twenty percent increase in flocculation efficiency observed with the use of CSNPs instead of the non-particulate starch which can be due to the more electrostatic interactions between the cationic nanoparticles and the microalgae. Therefore, the synthesized CSNPs can be employed as a convenient and economical flocculants for efficient harvest of Chlorella vulgaris microalgae at large scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Review of some research work on surface modification and polymerizations by non-equilibrium plasma in Turkey

    International Nuclear Information System (INIS)

    Akovali, Guneri

    2004-01-01

    Non equilibrium plasma studies in Turkey can be considered as organized on two different lines: surface modification studies and plasma polymerization studies. Plasma surface modification studies: In different laboratories in Turkey the modification of materials' surfaces by plasma covers a wide spectra, for example: fibers (Carbon (CF) and polyacrylonitrile (PAN)), fabrics (PET/Cotton and PET/PA), biomaterials-food oriented (PU), denture Acrylic matrix, plasmochemical modification of a (PE and PP) film surface by several selected silicon and tin containing monomers, polymer blends and composites, recycled rubber and epoxy systems, etc. Plasma polymerization studies: This topic is accomplished by a great number of projects, for instance: plasma initiation polymerization and copolymerization of Styrene and MMA, Plasma-initiated polymerizations of Acrylamide (AA), kinetics of polymer deposition of several selected saturated hydrocarbons, silanization treatments by hexamethyldisilazane (HDMS), Plasma initiated polymerization (PIP) of allyl alcohol and 1-propano, (PSP) and (PIP) studies related to activated charcoal are done to explore their applications in haemoperfusion, an amperometric alcohol single-layer electrode is prepared by (EDA) plasma polymerization, preparation of mass sensitive immuno sensors and single layer multi enzyme electrodes by plasma polymerisation technique, etc

  9. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility

    International Nuclear Information System (INIS)

    Liu, Pingsheng; Chen, Qiang; Yuan, Bo; Chen, Mengzhou; Wu, Shishan; Lin, Sicong; Shen, Jian

    2013-01-01

    A facile approach to modify silicone rubber (SR) membrane for improving the blood compatibility was investigated. The hydrophobic SR surface was firstly activated by air plasma, after which an initiator was immobilized on the activated surface for atom transfer radical polymerization (ATRP). Three zwitterionic polymers were then grafted from SR membrane via surface-initiated atom transfer radical polymerization (SI-ATRP). The surface composition, wettability, and morphology of the membranes before and after modification were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (WCA) measurement, and atomic force microscopy (AFM). Results showed that zwitterionic polymers were successfully grafted from SR surfaces, which remarkably improved the wettability of the SR surface. The blood compatibility of the membranes was evaluated by protein adsorption and platelet adhesion tests in vitro. As observed, all the zwitterionic polymer modified surfaces have improved resistance to nonspecific protein adsorption and have excellent resistance to platelet adhesion, showing significantly improved blood compatibility. This work should inspire many creative uses of SR based materials for biomedical applications such as vessel, catheter, and microfluidics. Highlights: • Facile surface modification of silicone rubber with functional brushes • Modified SR surfaces have improved resistance to nonspecific protein adsorption. • Modified SR surfaces have excellent resistance to platelet adhesion. • Zwitteironic surface significant improvement in blood compatibility • Could inspire many creative uses of SR based materials for biomedical

  10. Facile surface modification of silicone rubber with zwitterionic polymers for improving blood compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pingsheng [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Chen, Qiang, E-mail: chem100@nju.edu.cn [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); High Technology Research Institute of Nanjing University, Changzhou 213164 (China); Yuan, Bo; Chen, Mengzhou; Wu, Shishan; Lin, Sicong [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Shen, Jian, E-mail: shenj1957@yahoo.com.cn [School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2013-10-15

    A facile approach to modify silicone rubber (SR) membrane for improving the blood compatibility was investigated. The hydrophobic SR surface was firstly activated by air plasma, after which an initiator was immobilized on the activated surface for atom transfer radical polymerization (ATRP). Three zwitterionic polymers were then grafted from SR membrane via surface-initiated atom transfer radical polymerization (SI-ATRP). The surface composition, wettability, and morphology of the membranes before and after modification were characterized by X-ray photoelectron spectroscopy (XPS), static water contact angle (WCA) measurement, and atomic force microscopy (AFM). Results showed that zwitterionic polymers were successfully grafted from SR surfaces, which remarkably improved the wettability of the SR surface. The blood compatibility of the membranes was evaluated by protein adsorption and platelet adhesion tests in vitro. As observed, all the zwitterionic polymer modified surfaces have improved resistance to nonspecific protein adsorption and have excellent resistance to platelet adhesion, showing significantly improved blood compatibility. This work should inspire many creative uses of SR based materials for biomedical applications such as vessel, catheter, and microfluidics. Highlights: • Facile surface modification of silicone rubber with functional brushes • Modified SR surfaces have improved resistance to nonspecific protein adsorption. • Modified SR surfaces have excellent resistance to platelet adhesion. • Zwitteironic surface significant improvement in blood compatibility • Could inspire many creative uses of SR based materials for biomedical.

  11. Silane surface modification effects on the electromagnetic properties of phosphatized iron-based SMCs

    Science.gov (United States)

    Fan, Liang-Fang; Hsiang, Hsing-I.; Hung, Jia-Jing

    2018-03-01

    It is difficult to achieve homogeneous phosphatized iron powder dispersion in organic resins during the preparation of soft magnetic composites (SMCs). Inhomogeneous iron powder mixing in organic resins generally leads to the formation of micro-structural defects in SMCs and hence causes the magnetic properties to become worse. Phosphatized iron powder dispersion in organic resins can be improved by coating the phosphatized iron powder surfaces with a coupling agent. This study investigated the (3-aminopropyl) triethoxysilane (APTES) surface modification effects on the electromagnetic properties of phosphatized iron-based soft magnetic composites (SMCs). The results showed that the phosphatized iron powder surface can be modified using APTES to improve the phosphatized iron powder and epoxy resin compatibility and hence enhance phosphate iron powder epoxy mixing. The tensile strength, initial permeability, rated current under DC-bias superposition and magnetic loss in SMCs prepared using phosphatized iron powders can be effectively improved using APTES surface modification, which provides a promising candidate for power chip inductor applications.

  12. Laser surface modification of ultra-high-molecular-weight polyethylene (UHMWPE) for biomedical applications

    International Nuclear Information System (INIS)

    Riveiro, A.; Soto, R.; Val, J. del; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J.

    2014-01-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore, this material is being used in human orthopedic implants such as total hip or knee replacements. Surface modification of this material relates to changes on its chemistry, microstructure, roughness, and topography, all influencing its biological response. Surface treatment of UHMWPE is very difficult due to its high melt viscosity. This work presents a systematic approach to discern the role of different laser wavelengths (λ = 1064, 532, and 355 nm) on the surface modification of carbon coated UHMWPE samples. Influence of laser processing conditions (irradiance, pulse frequency, scanning speed, and spot overlapping) on the surface properties of this material was determined using an advanced statistical planning of experiments. A full factorial design of experiments was used to find the main effects of the processing parameters. The obtained results indicate the way to maximize surface properties which largely influence cell–material interaction.

  13. Laser surface modification of ultra-high-molecular-weight polyethylene (UHMWPE) for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Riveiro, A., E-mail: ariveiro@uvigo.es [Applied Physics Department, University of Vigo, ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Centro Universitario de la Defensa, Escuela Naval Militar, Plaza de España 2, 36920 Marín (Spain); Soto, R.; Val, J. del; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J. [Applied Physics Department, University of Vigo, ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain)

    2014-05-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore, this material is being used in human orthopedic implants such as total hip or knee replacements. Surface modification of this material relates to changes on its chemistry, microstructure, roughness, and topography, all influencing its biological response. Surface treatment of UHMWPE is very difficult due to its high melt viscosity. This work presents a systematic approach to discern the role of different laser wavelengths (λ = 1064, 532, and 355 nm) on the surface modification of carbon coated UHMWPE samples. Influence of laser processing conditions (irradiance, pulse frequency, scanning speed, and spot overlapping) on the surface properties of this material was determined using an advanced statistical planning of experiments. A full factorial design of experiments was used to find the main effects of the processing parameters. The obtained results indicate the way to maximize surface properties which largely influence cell–material interaction.

  14. Surface modification technique of structural ceramics: ion implantation-assisted multi-arc ion plating

    International Nuclear Information System (INIS)

    Peng Zhijian; Miao Hezhuo; Si Wenjie; Qi Longhao; Li Wenzhi

    2003-01-01

    Through reviewing the advantages and disadvantages of the existed surface modification techniques, a new technique, ion implantation-assisted multi-arc ion plating, was proposed. Using the proposed technique, the surfaces of silicon nitride ceramics were modified by Ti ion implantation, and then three kinds of ternary coatings, (Ti,Al)N, (Ti,Zr)N and (Ti,Cr)N, were deposited on the as-implanted ceramics. The coatings prepared by this technique are of high-hardness and well adhesive to the ceramic substrates. The maximal hardness measured by nanoindentation tests is more than 40 GPa. The maximal critical load by nanoscratch tests is more than 60 mN. The cutting tools prepared by this technique with the presented coatings are of excellent performance in industrial applications. The technique may be promising for the surface modification of structural ceramics. (orig.)

  15. Surface Modification of SiO2 Microchannels with Biocompatible Polymer Using Supercritical Carbon Dioxide

    Science.gov (United States)

    Saito, Tatsuro; Momose, Takeshi; Hoshi, Toru; Takai, Madoka; Ishihara, Kazuhiko; Shimogaki, Yukihiro

    2010-11-01

    The surface of 500-mm-long microchannels in SiO2 microchips was modified using supercritical CO2 (scCO2) and a biocompatible polymer was coated on it to confer biocompatibility to the SiO2 surface. In this method, the SiO2 surface of a microchannel was coated with poly(ethylene glycol monomethacrylate) (PEGMA) as the biocompatible polymer using allyltriethoxysilane (ATES) as the anchor material in scCO2 as the reactive medium. Results were compared with those using the conventional wet method. The surface of a microchannel could not be modified by the wet method owing to the surface tension and viscosity of the liquid, but it was modified uniformly by the scCO2 method probably owing to the near-zero surface tension, low viscosity, and high diffusivity of scCO2. The effect of the surface modification by the scCO2 method to prevent the adsorption of protein was as high as that of the modification by the wet method. Modified microchips can be used in biochemical and medical analyses.

  16. Cation effects on phosphatidic acid monolayers at various pH conditions.

    Science.gov (United States)

    Zhang, Ting; Cathcart, Matthew G; Vidalis, Andrew S; Allen, Heather C

    2016-10-01

    The impact of pH and cations on phase behavior, stability, and surface morphology for dipalmitoylphosphatidic acid (DPPA) monolayers was investigated. At pHCations are found to expand and stabilize the monolayer in the following order of increasing magnitude at pH 5.6: Na + >K + ∼Mg 2+ >Ca 2+ . Additionally, cation complexation is tied to the pH and protonation state of DPPA, which are the primary factors controlling the monolayer surface behavior. The binding affinity of cations to the headgroup and thus deprotonation capability of the cation, ranked in the order of Ca 2+ >Mg 2+ >Na + >K + , is found to be well explained by the law of matching water affinities. Nucleation of surface 3D lipid structures is observed from Ca 2+ , Mg 2+ , and Na + , but not from K + , consistent with the lowest binding affinity of K + . Unraveling cation and pH effects on DPPA monolayers is useful in further understanding the surface properties of complex systems such as organic-coated marine aerosols where organic films are directly influenced by the pH and ionic composition of the underlying aqueous phase. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Near-surface modifications for improved crack tolerant behavior of high strength alloys: trends and prospects

    International Nuclear Information System (INIS)

    Hettche, L.R.; Rath, B.B.

    1982-01-01

    The purpose of this chapter is to examine the potential of surface modifications in improving the crack tolerant behavior of high strength alloys. Provides a critique of two of the most promising and versatile techniques: ion implantation and laser beam surface processing. Discusses crack tolerant properties; engineering characterization; publication trends and Department of Defense interests; and emergent surface modification techniques. Finds that the efficiency with which high strength alloys can be incorporated into a structure or component is dependent on the following crack tolerant properties: fracture toughness, fatigue resistance, sustained loading cracking resistance, fretting fatigue resistance, and hydrogen embrittlement resistance. Concludes that ion implantation and laser surface processing coupled with other advanced metallurgical procedures and fracture mechanic analyses provide the means to optimize both the bulk and surface controlled crack tolerant properties

  18. Surface Modification of Photoresist SU-8 for Low Autofluorescence and Bioanalytical Applications

    DEFF Research Database (Denmark)

    Cao, Cuong; Birtwell, Sam W.; Høgberg, Jonas

    2011-01-01

    This paper reports a surface modification of epoxy-based negative photoresist SU-8 for reducing its autofluorescence while enhancing its biofunctionality. By covalently depositing a thin layer of 20 nm Au nanoparticles (AuNPs) onto the SU-8 surface, we found that the AuNPs-coated SU-8 surface...... is much less fluorescent than the untreated SU-8. Moreover, DNA probes can easily be immobilized on the Au surface and are thermally stable over a wide range of temperature. These improvements will benefit bioanalytical applications such as DNA hybridization and solid-phase PCR (SP-PCR)....

  19. Application of MEVVA discharge to material surface modification

    International Nuclear Information System (INIS)

    Gao Yu; Geng Man; Huang Yuming; Gong Xiaorong; Yu Yijun; Tang Deli; Tie Jun

    1996-01-01

    The authors describes some characteristics of the MEVVA discharge, the process of generating a cathode-arc plasma and the advantages of the MEVVA discharge compared with the kind of heating-vaporizing-ionizing source. Some practical parameters and the operating process of the MEVVA ion source as well as a plasma source with MEVVA discharge used in a PSII device are presented. Various plasmas having good-quality and high-performance are obtained with MEVVA discharges and have been widely used in sight-line processing and omnibearing ion implantation for material surface modification

  20. In vitro modifications of the scala tympani environment and the cochlear implant array surface.

    Science.gov (United States)

    Kontorinis, Georgios; Scheper, Verena; Wissel, Kirsten; Stöver, Timo; Lenarz, Thomas; Paasche, Gerrit

    2012-09-01

    To investigate the influence of alterations of the scala tympani environment and modifications of the surface of cochlear implant electrode arrays on insertion forces in vitro. Research experimental study. Fibroblasts producing neurotrophic factors were cultivated on the surface of Nucleus 24 Contour Advance electrodes. Forces were recorded by an Instron 5542 Force Measurement System as three modified arrays were inserted into an artificial scala tympani model filled with phosphate-buffered saline (PBS). The recorded forces were compared to control groups including three unmodified electrodes inserted into a model filled with PBS (unmodified environment) or Healon (current practice). Fluorescence microscopy was used before and after the insertions to identify any remaining fibroblasts. Additionally, three Contour Advance electrodes were inserted into an artificial model, filled with alginate/barium chloride solution at different concentrations, while insertion forces were recorded. Modification of the scala tympani environment with 50% to 75% alginate gel resulted in a significant decrease in the insertion forces. The fibroblast-coated arrays also led to decreased forces comparable to those recorded with Healon. Fluorescence microscopy revealed fully cell-covered arrays before and partially covered arrays after the insertion; the fibroblasts on the arrays' modiolar surface remained intact. Modifications of the scala tympani's environment with 50% to 75% alginate/barium chloride and of the cochlear implant electrode surface with neurotrophic factor-producing fibroblasts drastically reduce the insertion forces. As both modifications may serve future intracochlear therapies, it is expected that these might additionally reduce possible insertion trauma. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  1. Alkyl chain interaction at the surface of room temperature ionic liquids: systematic variation of alkyl chain length (R = C(1)-C(4), C(8)) in both cation and anion of [RMIM][R-OSO(3)] by sum frequency generation and surface tension.

    Science.gov (United States)

    Santos, Cherry S; Baldelli, Steven

    2009-01-29

    The gas-liquid interface of halide-free 1,3-dialkylimidazolium alkyl sulfates [RMIM][R-OSO(3)] with R chain length from C(1)-C(4) and C(8) has been studied systematically using the surface-specific sum frequency generation (SFG) vibrational spectroscopy and surface tension measurements. From the SFG spectra, vibrational modes from the methyl group of both cation and anion are observed for all ionic liquid samples considered in the present study. These results suggest the presence of both ions at the gas-liquid interface, which is further supported by surface tension measurements. Surface tension data show a decreasing trend as the alkyl chain in the imidazolium cation is varied from methyl to butyl chain, with a specific anion. A similar trend is observed when the alkyl chain of the anion is modified and the cation is fixed.

  2. Effect of surface topological structure and chemical modification of flame sprayed aluminum coatings on the colonization of Cylindrotheca closterium on their surfaces

    Science.gov (United States)

    Chen, Xiuyong; He, Xiaoyan; Suo, Xinkun; Huang, Jing; Gong, Yongfeng; Liu, Yi; Li, Hua

    2016-12-01

    Biofouling is one of the major problems for the coatings used for protecting marine infrastructures during their long-term services. Regulation in surface structure and local chemistry is usually the key for adjusting antifouling performances of the coatings. In this study, flame sprayed multi-layered aluminum coatings with micropatterned surfaces were constructed and the effects of their surface structure and chemistry on the settlement of typical marine diatoms were investigated. Micropatterned topographical morphology of the coatings was constructed by employing steel mesh as a shielding plate during the coating deposition. A silicone elastomer layer for sealing and interconnection was further brush-coated on the micropatterned coatings. Additional surface modification was made using zwitterionic molecules via DOPA linkage. The surface-modified coatings resist effectively colonization of Cylindrotheca closterium. This is explained by the quantitative examination of a simplified conditioning layer that deteriorated adsorption of bovine calf serum proteins on the zwitterionic molecule-treated samples is revealed. The colonization behaviors of the marine diatoms are markedly influenced by the micropatterned topographical morphology. Either the surface micropatterning or the surface modification by zwitterionic molecules enhances antimicrobial ability of the coatings. However, the combined micropatterned structure and zwitterionic modification do not show synergistic effect. The results give insight into anti-corrosion/fouling applications of the modified aluminum coatings in the marine environment.

  3. Bioactive surface modifications on inner walls of poly-tetra-fluoro-ethylene tubes using dielectric barrier discharge

    Science.gov (United States)

    Cho, Yong Ki; Park, Daewon; Kim, Hoonbae; Lee, Hyerim; Park, Heonyong; Kim, Hong Ja; Jung, Donggeun

    2014-03-01

    Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature-mimetic model systems, and to medical vascular grafts.

  4. Surface modification of plasmonic nanostructured materials with thiolated oligonucleotides in 10 seconds using selective microwave heating

    International Nuclear Information System (INIS)

    Abel, B.; Aslan, K.

    2012-01-01

    This study demonstrates the proof-of-principle of rapid surface modification of plasmonic nanostructured materials with oligonucleotides using low power microwave heating. Due to their interesting optical and electronic properties, silver nanoparticle films (SNFs, 2 nm thick) deposited onto glass slides were used as the model plasmonic nanostructured materials. Rapid surface modification of SNFs with oligonucleotides was carried out using two strategies (1) Strategy 1: for ss-oligonucleotides, surface hybridization and (2) Strategy 2: for ds-oligonucleotides, solution hybridization, where the samples were exposed to 10, 15, 30 and 60 seconds microwave heating. To assess the efficacy of our new rapid surface modification technique, identical experiments carried out without the microwave heating (i.e., conventional method), which requires 24 hours for the completion of the identical steps. It was found that SNFs can be modified with ss- and ds-oligonucleotides in 10 seconds, which typically requires several hours of incubation time for the chemisorption of thiol groups on to the planar metal surface using conventional techniques. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Enhancing the Properties of Carbon and Gold Substrates by Surface Modification

    Energy Technology Data Exchange (ETDEWEB)

    Harnisch, Jennifer Anne [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The properties of both carbon and gold substrates are easily affected by the judicious choice of a surface modification protocol. Several such processes for altering surface composition have been published in literature. The research presented in this thesis primarily focuses on the development of on-column methods to modify carbon stationary phases used in electrochemically modulated liquid chromatography (EMLC). To this end, both porous graphitic carbon (PGC) and glassy carbon (GC) particles have been modified on-column by the electroreduction of arenediazonium salts and the oxidation of arylacetate anions (the Kolbe reaction). Once modified, the carbon stationary phases show enhanced chromatographic performance both in conventional liquid chromatographic columns and EMLC columns. Additionally, one may also exploit the creation of aryl films to by electroreduction of arenediazonium salts in the creation of nanostructured materials. The formation of mercaptobenzene film on the surface of a GC electrode provides a linking platform for the chemisorption of gold nanoparticles. After deposition of nanoparticles, the surface chemistry of the gold can be further altered by self-assembled monolayer (SAM) formation via the chemisorption of a second thiol species. Finally, the properties of gold films can be altered such that they display carbon-like behavior through the formation of benzenehexathiol (BHT) SAMs. BHT chemisorbs to the gold surface in a previously unprecedented planar fashion. Carbon and gold substrates can be chemically altered by several methodologies resulting in new surface properties. The development of modification protocols and their application in the analytical arena is considered herein.

  6. Biofouling behavior and performance of forward osmosis membranes with bioinspired surface modification in osmotic membrane bioreactor.

    Science.gov (United States)

    Li, Fang; Cheng, Qianxun; Tian, Qing; Yang, Bo; Chen, Qianyuan

    2016-07-01

    Forward osmosis (FO) has received considerable interest for water and energy related applications in recent years. Biofouling behavior and performance of cellulose triacetate (CTA) forward osmosis membranes with bioinspired surface modification via polydopamine (PD) coating and poly (ethylene glycol) (PEG) grafting (PD-g-PEG) in a submerged osmotic membrane bioreactor (OMBR) were investigated in this work. The modified membranes exhibited lower flux decline than the pristine one in OMBR, confirming that the bioinspired surface modification improved the antifouling ability of the CTA FO membrane. The result showed that the decline of membrane flux related to the increase of the salinity and MLSS concentration of the mixed liquid. It was concluded that the antifouling ability of modified membranes ascribed to the change of surface morphology in addition to the improvement of membrane hydrophilicity. The bioinspired surface modifications might improve the anti-adhesion for the biopolymers and biocake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Spatial and temporal control of the diazonium modification of sp2 carbon surfaces.

    Science.gov (United States)

    Kirkman, Paul M; Güell, Aleix G; Cuharuc, Anatolii S; Unwin, Patrick R

    2014-01-08

    Interest in the controlled chemical functionalization of sp(2) carbon materials using diazonium compounds has been recently reignited, particularly as a means to generate a band gap in graphene. We demonstrate local diazonium modification of pristine sp(2) carbon surfaces, with high control, at the micrometer scale through the use of scanning electrochemical cell microscopy (SECCM). Electrochemically driven diazonium patterning is investigated at a range of driving forces, coupled with surface analysis using atomic force microscopy (AFM) and Raman spectroscopy. We highlight how the film density, level of sp(2)/sp(3) rehybridization and the extent of multilayer formation can be controlled, paving the way for the use of localized electrochemistry as a route to controlled diazonium modification.

  8. Sensitivity enhancement for nitrophenols using cationic surfactant-modified activated carbon for solid-phase extraction surface-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Chen, Y C; Tsai, M F

    2000-01-01

    Previous work has demonstrated that a combination of solid-phase extraction with surface-assisted laser desorption/ionization (SPE-SALDI) mass spectrometry can be applied to the determination of trace nitrophenols in water. An improved method to lower the detection limit of this hyphenated technique is described in this present study. Activated carbon powder is used as both the SPE adsorbent and the SALDI solid in the analysis by SPE-SALDI. The surface of the activated carbon is modified by passing an aqueous solution of a cationic surfactant through the SPE cartridge. The results demonstrate that the sensitivity for nitrophenols in the analysis by SPE-SALDI can be improved by using cationic surfactants to modify the surface of the activated carbon. The detection limit for nitrophenols is about 25 ppt based on a signal-to-noise ratio of 3 by sampling from 100 mL of solution. Copyright 2000 John Wiley & Sons, Ltd.

  9. Chemical modification of glass surface with a monolayer of nonchromophoric and chromophoric methacrylate terpolymer

    Energy Technology Data Exchange (ETDEWEB)

    Janik, Ryszard [Department of Polymer Engineering and Technology, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Kucharski, Stanislaw, E-mail: stanislaw.kucharski@pwr.wroc.pl [Department of Polymer Engineering and Technology, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Sobolewska, Anna [Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Barille, Regis [Institut des Sciences et Techniques Moleculaires d' Angers ' Moltech Anjou' , CNRS UMR 6200, 49045 Angers (France)

    2010-11-15

    The methacrylate terpolymers, a nonchromophoric and chromophoric one, containing 2-hydroxyethyl groups were reacted with 3-isocyanatopropyltriethoxysilane to obtain reactive polymers able to form covalent bonding with -SiOH groups of the glass surface via triethoxysilane group condensation. Chemical modification of the Corning 2949 glass plates treated in this way resulted in increase of wetting angle from 11{sup o} to ca. 70-73{sup o}. Determination of ellipsometric parameters revealed low value of the substrate refractive index as compared with that of bulk Corning 2949 glass suggesting roughness of the surface. The AFM image of the bare glass surface and that modified with terpolymer monolayer confirmed this phenomenon. Modification of the glass with the terpolymer monolayer made it possible to create the substrate surface well suited for deposition of familiar chromophore film by spin-coating. The chromophore polymer film deposited onto the modified glass surface was found to be resistant to come unstuck in aqueous solution.

  10. In situ emulsion cationic polymerization of isoprene onto the surface of graphite oxide sheets

    Energy Technology Data Exchange (ETDEWEB)

    Pazat, Alice [Ingénierie des Matériaux Polymères, IMP, CNRS UMR 5223, Université Claude Bernard Lyon 1 and INSA de Lyon, 15 boulevard Latarjet, 69122 Villeurbanne cedex (France); Laboratoire de Recherches et de Contrôle du Caoutchouc et des Plastiques, LRCCP, 60 rue Auber, 94408 Vitry-sur-Seine cedex (France); Beyou, Emmanuel, E-mail: beyou@univ-lyon1.fr [Ingénierie des Matériaux Polymères, IMP, CNRS UMR 5223, Université Claude Bernard Lyon 1 and INSA de Lyon, 15 boulevard Latarjet, 69122 Villeurbanne cedex (France); Barrès, Claire [Ingénierie des Matériaux Polymères, IMP, CNRS UMR 5223, Université Claude Bernard Lyon 1 and INSA de Lyon, 15 boulevard Latarjet, 69122 Villeurbanne cedex (France); Bruno, Florence; Janin, Claude [Laboratoire de Recherches et de Contrôle du Caoutchouc et des Plastiques, LRCCP, 60 rue Auber, 94408 Vitry-sur-Seine cedex (France)

    2017-02-28

    Highlights: • Graphite oxide sheets were functionalized by polyisoprene in a two steps procedure. • The polyisoprene chains were grafted onto functionalized GO sheets by the grafting through technique. • A polyisoprene weight content of 50% was calculated from TGA measurements. • A decrease of the air permeability coefficient of 27% for the vulcanized PI composites has been reached. - Abstract: Grafting of polymers onto graphite oxide sheets (GO) has been widely studied in recent years due to the numerous applications of GO-based composites. Herein, polyisoprene (PI) chains were anchored on the surface of GO by in situ cationic polymerization using a “grafting through” approach with allyltrimethoxysilane-modified GO (GO-ATMS). First, the functionalization of GO sheets through the hydrolysis-condensation of allyltrimethoxysilane (ATMS) molecules was qualitatively evidenced by infra-red spectroscopy and X-ray photoelectron spectrometry and a weight content of 4% grafted ATMS was calculated from thermogravimetric analysis. Then, isoprene was in situ polymerized through a one-pot cationic mechanism by using a highly water-dispersible Lewis acid surfactant combined catalyst. For comparison, it was shown that the cationic polymerization of isoprene in presence of un-functionalized GO sheets led to a polyisoprene weight content on the solid filler divided by 3 compared to GO-ATMS. Finally, the compounding of the modified GO/PI composites was performed at a processing temperature of 80 °C with 2 phr and 15 phr loadings and it was shown a decrease of the air permeability coefficient of 27% for the vulcanizates with 15 phr loading.

  11. In situ emulsion cationic polymerization of isoprene onto the surface of graphite oxide sheets

    International Nuclear Information System (INIS)

    Pazat, Alice; Beyou, Emmanuel; Barrès, Claire; Bruno, Florence; Janin, Claude

    2017-01-01

    Highlights: • Graphite oxide sheets were functionalized by polyisoprene in a two steps procedure. • The polyisoprene chains were grafted onto functionalized GO sheets by the grafting through technique. • A polyisoprene weight content of 50% was calculated from TGA measurements. • A decrease of the air permeability coefficient of 27% for the vulcanized PI composites has been reached. - Abstract: Grafting of polymers onto graphite oxide sheets (GO) has been widely studied in recent years due to the numerous applications of GO-based composites. Herein, polyisoprene (PI) chains were anchored on the surface of GO by in situ cationic polymerization using a “grafting through” approach with allyltrimethoxysilane-modified GO (GO-ATMS). First, the functionalization of GO sheets through the hydrolysis-condensation of allyltrimethoxysilane (ATMS) molecules was qualitatively evidenced by infra-red spectroscopy and X-ray photoelectron spectrometry and a weight content of 4% grafted ATMS was calculated from thermogravimetric analysis. Then, isoprene was in situ polymerized through a one-pot cationic mechanism by using a highly water-dispersible Lewis acid surfactant combined catalyst. For comparison, it was shown that the cationic polymerization of isoprene in presence of un-functionalized GO sheets led to a polyisoprene weight content on the solid filler divided by 3 compared to GO-ATMS. Finally, the compounding of the modified GO/PI composites was performed at a processing temperature of 80 °C with 2 phr and 15 phr loadings and it was shown a decrease of the air permeability coefficient of 27% for the vulcanizates with 15 phr loading.

  12. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification.

    Science.gov (United States)

    Rajapaksha, Anushka Upamali; Chen, Season S; Tsang, Daniel C W; Zhang, Ming; Vithanage, Meththika; Mandal, Sanchita; Gao, Bin; Bolan, Nanthi S; Ok, Yong Sik

    2016-04-01

    The use of biochar has been suggested as a means of remediating contaminated soil and water. The practical applications of conventional biochar for contaminant immobilization and removal however need further improvements. Hence, recent attention has focused on modification of biochar with novel structures and surface properties in order to improve its remediation efficacy and environmental benefits. Engineered/designer biochars are commonly used terms to indicate application-oriented, outcome-based biochar modification or synthesis. In recent years, biochar modifications involving various methods such as, acid treatment, base treatment, amination, surfactant modification, impregnation of mineral sorbents, steam activation and magnetic modification have been widely studied. This review summarizes and evaluates biochar modification methods, corresponding mechanisms, and their benefits for contaminant management in soil and water. Applicability and performance of modification methods depend on the type of contaminants (i.e., inorganic/organic, anionic/cationic, hydrophilic/hydrophobic, polar/non-polar), environmental conditions, remediation goals, and land use purpose. In general, modification to produce engineered/designer biochar is likely to enhance the sorption capacity of biochar and its potential applications for environmental remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Directly thiolated modification onto the surface of detonation nanodiamonds.

    Science.gov (United States)

    Hsu, Ming-Hua; Chuang, Hong; Cheng, Fong-Yu; Huang, Ying-Pei; Han, Chien-Chung; Chen, Jiun-Yu; Huang, Su-Chin; Chen, Jen-Kun; Wu, Dian-Syue; Chu, Hsueh-Liang; Chang, Chia-Ching

    2014-05-28

    An efficient method for modifying the surface of detonation nanodiamonds (5 and 100 nm) with thiol groups (-SH) by using an organic chemistry strategy is presented herein. Thiolated nanodiamonds were characterized by spectroscopic techniques, and the atomic percentage of sulfur was analyzed by elemental analysis and X-ray photoelectron spectroscopy. The conjugation between thiolated nanodiamonds and gold nanoparticles was elucidated by transmission electron microscopy and UV-vis spectrometry. Moreover, the material did not show significant cytotoxicity to the human lung carcinoma cell line and may prospectively be applied in bioconjugated technology. The new method that we elucidated may significantly improve the approach to surface modification of detonation nanodiamonds and build up a new platform for the application of nanodiamonds.

  14. Surface modification of seawater desalination reverse osmosis membranes: Characterization studies & performance evaluation

    KAUST Repository

    Matin, Asif

    2014-06-01

    In this work we report surface modification of commercial reverse osmosis membranes by depositing ultrathin copolymer coatings, which could potentially enhance the biofouling resistance of RO membranes. Hydrophilic monomer hydroxyethyl methacrylate (HEMA) and a hydrophobic monomer, perfluorodecyl acrylate (PFDA) were copolymerized directly on the active layer of commercial aromatic polyamide reverse osmosis (RO) membranes using an initiated Chemical Vapor Deposition (iCVD) technique. Attenuated total reflective Fourier transform infrared spectra (ATR-FTIR) verified the successful modification of the membrane surfaces as a new FTIR adsorption band around 1730cm-1 corresponding to carbonyl groups in the copolymer film appeared after the deposition. X-ray Photoelectron spectroscopy (XPS) analysis also confirmed the presence of the copolymer film on the membrane surface by showing strong fluorine peaks emanating from the fluorinated alkyl side chains of the PFA molecules. Contact angle measurements with deionized water showed the modified membrane surfaces to be initially very hydrophobic but quickly assumed a hydrophilic character within few minutes. Atomic Force Microscopy (AFM) revealed that the deposited films were smooth and conformal as the surface topology of the underlying membrane surface remained virtually unchanged after the deposition. FESEM images of the top surface also showed that the typical ridge-and-valley structure associated with polyamide remained intact after the deposition. Short-term permeation tests using DI water and 2000ppm NaCl water showed that the deposited copolymer coatings had negligible effect on permeate water flux and salt rejection. © 2013 Elsevier B.V.

  15. Surface modification and characterization of magnesium hydroxide sulfate hydrate nanowhiskers

    Energy Technology Data Exchange (ETDEWEB)

    Gao Chuanhui [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Li Xianguo, E-mail: chuanhuigao@foxmail.com [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Feng Lijuan; Lu Shaoyan; Liu Jinyan [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China)

    2010-03-01

    In order to enhance the compatibility with plastic polymers, magnesium hydroxide sulfate hydrate (MHSH) nanowhiskers were modified through grafting methyl methacrylate (MMA) on the surface of the nanowhiskers by emulsion polymerization. The influences of the reaction time, MMA monomer content, adding speed of monomer and the reaction temperature on the grafting ratio were investigated. Thermogravimetry (TG), Fourier transform infrared (FT-IR) spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray (EDX) spectroscopy and surface contact angle measurement were used to characterize the effect of surface modification. The results showed that the MHSH nanowhiskers were uniformly coated by polymethyl methacrylate (PMMA), and a well-defined core-shell hybrid structure of MHSH/PMMA was obtained. The surface contact angle of the hybrid whiskers increased to 87.32 deg. from 12.71 deg. and the whiskers surface was changed from hydrophilic to lipophilic.

  16. Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors.

    Science.gov (United States)

    Wei, Qingshuo; Tajima, Keisuke; Tong, Yujin; Ye, Shen; Hashimoto, Kazuhito

    2009-12-09

    We report a new type of ordered monolayer for the surface modification of organic semiconductors. Fullerene derivatives with fluorocarbon chains ([6,6]-phenyl-C(61)-buryric acid 1H,1H-perfluoro-1-alkyl ester or FC(n)) spontaneously segregated as a monolayer on the surface of a [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) film during a spin-coating process from the mixture solutions, as confirmed by X-ray photoelectron spectroscopy (XPS). Ultraviolet photoelectron spectroscopy (UPS) showed the shift of ionization potentials (IPs) depending on the fluorocarbon chain length, indicating the formation of surface dipole moments. Surface-sensitive vibrational spectroscopy, sum frequency generation (SFG) revealed the ordered molecular orientations of the C(60) moiety in the surface FC(n) layers. The intensity of the SFG signals from FC(n) on the surface showed a clear odd-even effect when the length of the fluorocarbon chain was changed. This new concept of the surface-segregated monolayer provides a facile and versatile approach to modifying the surface of organic semiconductors and is applicable to various organic optoelectronic devices.

  17. Surface defect modification of ZnO quantum dots based on rare earth acetylacetonate and their impacts on optical performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lixi, E-mail: wanglixi_njut@163.com [School of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, Jiangsu (China); Jiangsu Collaboration Innovation Center for Advanced Inorganic Function Composites, Nanjing, 210009, Jiangsu (China); Yang, Xiaojuan; Yang, Weimin [School of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, Jiangsu (China); Jiangsu Collaboration Innovation Center for Advanced Inorganic Function Composites, Nanjing, 210009, Jiangsu (China); Zhang, Jing [China Geol Survey, Nanjing Ctr, Nanjing, 210016, Jiangsu (China); Zhang, Qitu [School of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, Jiangsu (China); Jiangsu Collaboration Innovation Center for Advanced Inorganic Function Composites, Nanjing, 210009, Jiangsu (China); Song, Bo; Wong, Chingping [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, 30332, GA (United States)

    2017-03-15

    Graphical abstract: RE(AcAc){sub 3} (RE = Ce, Dy and Tb) can realize the defects modification of ZnO QDs based on the linkage occurs between the protons of the hydroxyl groups on the surface of ZnO QDs and the π–system of acetylacetone. The color coordinate could be shifted among yellow-green, blue-green, and green region by changing the RE (AcAc){sub 3} ratios. The stable Ce(AcAc){sub 3}/ZnO QDs with average sizes of about 3.0 nm can be obtained. The calculated band gap data also proved the efficient modification of Ce(AcAc){sub 3} for ZnO QDs with the largest variation of band gap energy of 0.039 eV (from 3.583 eV to 3.544 eV). - Highlights: • Defects modification of ZnO QDs based on rare earth acetylacetonate. • Stable Ce(AcAc){sub 3}/ZnO QDs with an average sizes of about 3.0 nm. • The color coordinate could be shifted among yellow-green, blue-green, and green region by changing the RE (AcAc){sub 3} ratios. - Abstract: The surface defect modification has an important effect on the application of ZnO quantum dots, and it has gained much progress in recently years, propelled by the development of additives. Our research efforts are directed toward developing a new surface modification additive RE(AcAc){sub 3} (RE = Ce, Dy, Tb) to achieve fine ZnO QDs and adjust their surface properties. RE(AcAc){sub 3}/ZnO QDs nanostructured materials have been designed and prepared, and particular emphasis has been given to the relation between the surface modification and optical properties. The effects of RE(III) acetylacetonate modification on the FT-IR, TEM images and photoluminescence (PL) spectra were investigated, and the surface defect modification principle and effect were discussed in details. The band gap (E{sub g}) was also calculated to prove the surface modification effect. For the RE(AcAc){sub 3}/ZnO QDs complex materials, stable linkage occurs because of the affinity of −COOH from acetylacetonate anionic ligand to zinc oxide surfaces, with attachment

  18. Altering protein surface charge with chemical modification modulates protein–gold nanoparticle aggregation

    International Nuclear Information System (INIS)

    Jamison, Jennifer A.; Bryant, Erika L.; Kadali, Shyam B.; Wong, Michael S.; Colvin, Vicki L.; Matthews, Kathleen S.; Calabretta, Michelle K.

    2011-01-01

    Gold nanoparticles (AuNP) can interact with a wide range of molecules including proteins. Whereas significant attention has focused on modifying the nanoparticle surface to regulate protein–AuNP assembly or influence the formation of the protein “corona,” modification of the protein surface as a mechanism to modulate protein–AuNP interaction has been less explored. Here, we examine this possibility utilizing three small globular proteins—lysozyme with high isoelectric point (pI) and established interactions with AuNP; α-lactalbumin with similar tertiary fold to lysozyme but low pI; and myoglobin with a different globular fold and an intermediate pI. We first chemically modified these proteins to alter their charged surface functionalities, and thereby shift protein pI, and then applied multiple methods to assess protein–AuNP assembly. At pH values lower than the anticipated pI of the modified protein, AuNP exposure elicits changes in the optical absorbance of the protein–NP solutions and other properties due to aggregate formation. Above the expected pI, however, protein–AuNP interaction is minimal, and both components remain isolated, presumably because both species are negatively charged. These data demonstrate that protein modification provides a powerful tool for modulating whether nanoparticle–protein interactions result in material aggregation. The results also underscore that naturally occurring protein modifications found in vivo may be critical in defining nanoparticle–protein corona compositions.

  19. Plasma processing of large curved surfaces for superconducting rf cavity modification

    Directory of Open Access Journals (Sweden)

    J. Upadhyay

    2014-12-01

    Full Text Available Plasma-based surface modification of niobium is a promising alternative to wet etching of superconducting radio frequency (SRF cavities. We have demonstrated surface layer removal in an asymmetric nonplanar geometry, using a simple cylindrical cavity. The etching rate is highly correlated with the shape of the inner electrode, radio-frequency (rf circuit elements, gas pressure, rf power, chlorine concentration in the Cl_{2}/Ar gas mixtures, residence time of reactive species, and temperature of the cavity. Using variable radius cylindrical electrodes, large-surface ring-shaped samples, and dc bias in the external circuit, we have measured substantial average etching rates and outlined the possibility of optimizing plasma properties with respect to maximum surface processing effect.

  20. MEMS-based dynamic cell-to-cell culture platforms using electrochemical surface modifications

    International Nuclear Information System (INIS)

    Chang, Jiyoung; Lin, Liwei; Yoon, Sang-Hee; Mofrad, Mohammad R K

    2011-01-01

    MEMS-based biological platforms with the capability of both spatial placements and time releases of living cells for cell-to-cell culture experiments have been designed and demonstrated utilizing electrochemical surface modification effects. The spatial placement is accomplished by electrochemical surface modification of substrate surfaces to be either adhesive or non-adhesive for living cells. The time control is achieved by the electrical activation of the selective indium tin oxide co-culture electrode to allow the migration of living cells onto the electrode to start the cell-to-cell culture studies. Prototype devices have a three-electrode design with an electrode size of 50 × 50 µm 2 and the separation gaps of 2 µm between them. An electrical voltage of −1.5 V has been used to activate the electrodes independently and sequentially to demonstrate the dynamic cell-to-cell culture experiments of NIH 3T3 fibroblast and Madin Darby canine kidney cells. As such, this MEMS platform could be a basic yet versatile tool to characterize transient cell-to-cell interactions

  1. Interaction of progenitor bone cells with different surface modifications of titanium implant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Chen, Ya-Shun [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Ko, Chia-Ling [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Dental Medical Devices and Materials Research Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Lin, Yi; Kuo, Tzu-Huang; Kuo, Hsien-Nan [Medical Device Development Division, Metal Industries Research and Development Centre, Kaohsiung 82151, Taiwan (China)

    2014-04-01

    Changes in the physical and chemical properties of Ti surfaces can be attributed to cell performance, which improves surface biocompatibility. The cell proliferation, mineralization ability, and gene expression of progenitor bone cells (D1 cell) were compared on five different Ti surfaces, namely, mechanical grinding (M), electrochemical modification through potentiostatic anodization (ECH), sandblasting and acid etching (SLA), sandblasting, hydrogen peroxide treatment, and heating (SAOH), and sandblasting, alkali heating, and etching (SMART). SAOH treatment produced the most hydrophilic surface, whereas SLA produced the most hydrophobic surface. Cell activity indicated that SLA and SMART produced significantly rougher surfaces and promoted D1 cell attachment within 1 day of culturing, whereas SAOH treatment produced moderate roughness (Ra = 1.26 μm) and accelerated the D1 cell proliferation up to 7 days after culturing. The ECH surface significantly promoted alkaline phosphatase (ALP) expression and osteocalcin (OCN) secretion in the D1 cells compared with the other surface groups. The ECH and SMART-treated Ti surfaces resulted in maximum ALP and OCN expressions during the D1 cell culture. SLA, SAOH, and SMART substrate surfaces were rougher and exhibited better cell metabolic responses during the early stage of cell attachment, proliferation, and morphologic expressions within 1 day of D1 cell culture. The D1 cells cultured on the ECH and SMART substrates exhibited higher differentiation, and higher ALP and OCN expressions after 10 days of culture. Thus, the ECH and SMART treatments promote better ability of cell mineralization in vitro, which demonstrate their great potential for clinical use. - Highlights: • Progenitor bone cells onto Ti with different modifications are characterized. • Surface roughness and hydrophilicity encourage early stage cell attachment. • Composition and surface treatments are more vital in bone cell mineralization.

  2. Interaction of progenitor bone cells with different surface modifications of titanium implant

    International Nuclear Information System (INIS)

    Chen, Wen-Cheng; Chen, Ya-Shun; Ko, Chia-Ling; Lin, Yi; Kuo, Tzu-Huang; Kuo, Hsien-Nan

    2014-01-01

    Changes in the physical and chemical properties of Ti surfaces can be attributed to cell performance, which improves surface biocompatibility. The cell proliferation, mineralization ability, and gene expression of progenitor bone cells (D1 cell) were compared on five different Ti surfaces, namely, mechanical grinding (M), electrochemical modification through potentiostatic anodization (ECH), sandblasting and acid etching (SLA), sandblasting, hydrogen peroxide treatment, and heating (SAOH), and sandblasting, alkali heating, and etching (SMART). SAOH treatment produced the most hydrophilic surface, whereas SLA produced the most hydrophobic surface. Cell activity indicated that SLA and SMART produced significantly rougher surfaces and promoted D1 cell attachment within 1 day of culturing, whereas SAOH treatment produced moderate roughness (Ra = 1.26 μm) and accelerated the D1 cell proliferation up to 7 days after culturing. The ECH surface significantly promoted alkaline phosphatase (ALP) expression and osteocalcin (OCN) secretion in the D1 cells compared with the other surface groups. The ECH and SMART-treated Ti surfaces resulted in maximum ALP and OCN expressions during the D1 cell culture. SLA, SAOH, and SMART substrate surfaces were rougher and exhibited better cell metabolic responses during the early stage of cell attachment, proliferation, and morphologic expressions within 1 day of D1 cell culture. The D1 cells cultured on the ECH and SMART substrates exhibited higher differentiation, and higher ALP and OCN expressions after 10 days of culture. Thus, the ECH and SMART treatments promote better ability of cell mineralization in vitro, which demonstrate their great potential for clinical use. - Highlights: • Progenitor bone cells onto Ti with different modifications are characterized. • Surface roughness and hydrophilicity encourage early stage cell attachment. • Composition and surface treatments are more vital in bone cell mineralization.

  3. Drag reduction in reservoir rock surface: Hydrophobic modification by SiO{sub 2} nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yong-Li, E-mail: yylhill@163.com [College of Chemistry & Chemical Engineering, Xi’an Shiyou University, Xi’an 710065 (China); Cui, Ming-Yue; Jiang, Wei-Dong; He, An-Le; Liang, Chong [Langfang Branch of Research Institute of Petroleum Exploration & Development, Langfang 065007 (China)

    2017-02-28

    Graphical abstract: The micro-nanoscale hierarchical structures at the sandstone core surface are constructed by adsorption of the modified silica nanoparticles, which leads to the effect of drag reduction to improve the low injection rate in ultra-low permeability reservoirs. - Highlights: • A micro-nanoscale hierarchical structure is formed at the reservoir rock surface. • An inversion has happened from hydrophilic into hydrophobic modified by nanofluids. • The effect of drag reduction to improve the low injection rate is realized. • The mechanism of drag reduction induced from the modified core surface was unclosed. - Abstract: Based on the adsorption behavior of modified silica nanoparticles in the sandstone core surface, the hydrophobic surface was constructed, which consists of micro-nanoscale hierarchical structure. This modified core surface presents a property of drag reduction and meets the challenge of high injection pressure and low injection rate in low or ultra-low permeability reservoir. The modification effects on the surface of silica nanoparticles and reservoir cores, mainly concerning hydrophobicity and fine structure, were determined by measurements of contact angle and scanning electron microscopy. Experimental results indicate that after successful modification, the contact angle of silica nanoparticles varies from 19.5° to 141.7°, exhibiting remarkable hydrophobic properties. These modified hydrophobic silica nanoparticles display a good adsorption behavior at the core surface to form micro-nanobinary structure. As for the wettability of these modified core surfaces, a reversal has happened from hydrophilic into hydrophobic and its contact angle increases from 59.1° to 105.9°. The core displacement experiments show that the relative permeability for water has significantly increased by an average of 40.3% via core surface modification, with the effects of reducing injection pressure and improving injection performance of water

  4. Surface-defect induced modifications in the optical properties of α-MnO{sub 2} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    John, Reenu Elizabeth [Department of Physics, St. Berchmans College, Changanassery, Kerala 686101 (India); Chandran, Anoop [School of Pure and Applied Physics, MG University, Kottayam, Kerala 686560 (India); Thomas, Marykutty [Department of Physics, BCM College, Kottayam, Kerala 686001 (India); Jose, Joshy [Department of Physics, St. Berchmans College, Changanassery, Kerala 686101 (India); George, K.C., E-mail: drkcgeorge@gmail.com [Department of Physics, St. Berchmans College, Changanassery, Kerala 686101 (India)

    2016-03-30

    Graphical abstract: - Highlights: • Alpha-MnO{sub 2} nanorods are prepared by chemical method. • Difference in surface defect density is achieved. • Characterized using XRD, Rietveld, XPS, EDS, HR-TEM, BET, UV–vis absorption spectroscopy and PL spectroscopy. • Explains the bandstructure modification due to Jahn–Teller distortions using crystal field theory. • Modification in the intensity of optical emissions related to defect levels validates the concept of surface defect induced tuning of optical properties. - Abstract: The science of defect engineering via surface tuning opens a new route to modify the inherent properties of nanomaterials for advanced functional and practical applications. In this work, two independent synthesis methods (hydrothermal and co-precipitation) are adopted to fabricate α-MnO{sub 2} nanorods with different defect structures so as to understand the effect of surface modifications on their optical properties. The crystal structure and morphology of samples are investigated with the aid of X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Atomic composition calculated from energy dispersive spectroscopy (EDS) confirms non-stoichiometry of the samples. The surface properties and chemical environment are thoroughly studied using X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) analysis. Bond angle variance and bond valence sum are determined to validate distortions in the basic MnO{sub 6} octahedron. The surface studies indicate that the concentration of Jahn–Teller manganese (III) (Mn{sup 3+}) ion in the samples differ from each other which results in their distinct properties. Band structure modifications due to Jahn–Teller distortion are examined with the aid of ultraviolet–visible (UV) reflectance and photoluminescence (PL) studies. The dual peaks obtained in derivative spectrum conflict the current concept on the bandgap energy of MnO{sub 2}. These

  5. Simple surface modification of poly(dimethylsiloxane) for DNA hybridization

    Science.gov (United States)

    Zhou, Jinwen; Voelcker, Nicolas H.; Ellis, Amanda V.

    2010-01-01

    Here, we present a simple chemical modification of poly(dimethylsiloxane) (PDMS) by curing a mixture of 2 wt% undecylenic acid (UDA) in PDMS prepolymer on a gold-coated glass slide. This gold slide had been previously pretreated with a self-assembled hydrophilic monolayer of 3-mercaptopropionic acid (MPA). During curing of the UDA∕PDMS prepolymer, the hydrophilic UDA carboxyl moieties diffuses toward the hydrophilic MPA carboxyl moieties on the gold surface. This diffusion of the UDA within the PDMS prepolymer to the surface is a direct result of surface energy minimization. Once completely cured, the PDMS is peeled off the gold substrate, thereby exposing the interfacial carboxyl groups. These groups are then available for subsequent attachment of 5′-amino terminated DNA oligonucleotides via amide linkages. Our results show that the covalently tethered oligonucleotides can successfully capture fluorescein-labeled complementary oligonucleotides via hybridization, which are visualized using fluorescence microscopy. PMID:21264061

  6. Electrochemical surface modification of titanium in dentistry.

    Science.gov (United States)

    Kim, Kyo-Han; Ramaswamy, Narayanan

    2009-01-01

    Titanium and its alloys have good biocompatibility with body cells and tissues and are widely used for implant applications. However, clinical procedures place more stringent and tough requirements on the titanium surface necessitating artificial surface treatments. Among the many methods of titanium surface modification, electrochemical techniques are simple and cheap. Anodic oxidation is the anodic electrochemical technique while electrophoretic and cathodic depositions are the cathodic electrochemical techniques. By anodic oxidation it is possible to obtain desired roughness, porosity and chemical composition of the oxide. Anodic oxidation at high voltages can improve the crystallinity of the oxide. The chief advantage of this technique is doping of the coating of the bath constituents and incorporation of these elements improves the properties of the oxide. Electrophoretic deposition uses hydroxyapatite (HA) powders dispersed in a suitable solvent at a particular pH. Under these operating conditions these particles acquire positive charge and coatings are obtained on the cathodic titanium by applying an external electric field. These coatings require a post-sintering treatment to improve the coating properties. Cathodic deposition is another type of electrochemical method where HA is formed in situ from an electrolyte containing calcium and phosphate ions. It is also possible to alter structure and/or chemistry of the obtained deposit. Nano-grained HA has higher surface energy and greater biological activity and therefore emphasis is being laid to produce these coatings by cathodic deposition.

  7. RF plasma based selective modification of hydrophilic regions on super hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaehyun; Hwang, Sangyeon; Cho, Dae-Hyun [Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Hong, Jungwoo [Department of Mechanical Engineering, Graduate of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141 (Korea, Republic of); Shin, Jennifer H., E-mail: j_shin@kaist.ac.kr [Department of Mechanical Engineering, Graduate of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141 (Korea, Republic of); Byun, Doyoung, E-mail: dybyun@skku.edu [Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of)

    2017-02-01

    Highlights: • Simple and amenable reforming method for a substrate with disparate patterns of hydrophilic dots on super-hydrophobic surfaces is proposed. • Wettability characteristics and modification mechanism for the surfaces are conducted and revealed through SEM, AFM, WSI, and SIMS. • Several representative materials for various applications are successfully deposited. - Abstract: Selective modification and regional alterations of the surface property have gained a great deal of attention to many engineers. In this paper, we present a simple, a cost-effective, and amendable reforming method for disparate patterns of hydrophilic regions on super-hydrophobic surfaces. Uniform super-hydrophobic layer (Contact angle; CA > 150°, root mean square (RMS) roughness ∼0.28 nm) can be formed using the atmospheric radio frequency (RF) plasma on top of the selective hydrophilic (CA ∼ 70°, RMS roughness ∼0.34 nm) patterns imprinted by electrohydrodynamic (EHD) jet printing technology with polar alcohols (butyl carbitol or ethanol). The wettability of the modified surface was investigated qualitatively utilizing scanning electron microscopy (SEM), atomic force microscopy (AFM), and wavelength scanning interferometer (WSI). Secondary ion mass spectroscopy (SIMS) analysis showed that the alcohol addiction reaction changed the types of radicals on the super-hydrophobic surface. The wettability was found to depend sensitively on chemical radicals on the surface, not on surface morphology (particle size and surface roughness). Furthermore, three different kinds of representative hydrophilic samples (polystyrene nano-particle aqueous solution, Salmonella bacteria medium, and poly(3,4-ethylenediocythiophene) ink) were tested for uniform deposition onto the desired hydrophilic regions. This simple strategy would have broad applications in various research fields that require selective deposition of target materials.

  8. RF plasma based selective modification of hydrophilic regions on super hydrophobic surface

    International Nuclear Information System (INIS)

    Lee, Jaehyun; Hwang, Sangyeon; Cho, Dae-Hyun; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung

    2017-01-01

    Highlights: • Simple and amenable reforming method for a substrate with disparate patterns of hydrophilic dots on super-hydrophobic surfaces is proposed. • Wettability characteristics and modification mechanism for the surfaces are conducted and revealed through SEM, AFM, WSI, and SIMS. • Several representative materials for various applications are successfully deposited. - Abstract: Selective modification and regional alterations of the surface property have gained a great deal of attention to many engineers. In this paper, we present a simple, a cost-effective, and amendable reforming method for disparate patterns of hydrophilic regions on super-hydrophobic surfaces. Uniform super-hydrophobic layer (Contact angle; CA > 150°, root mean square (RMS) roughness ∼0.28 nm) can be formed using the atmospheric radio frequency (RF) plasma on top of the selective hydrophilic (CA ∼ 70°, RMS roughness ∼0.34 nm) patterns imprinted by electrohydrodynamic (EHD) jet printing technology with polar alcohols (butyl carbitol or ethanol). The wettability of the modified surface was investigated qualitatively utilizing scanning electron microscopy (SEM), atomic force microscopy (AFM), and wavelength scanning interferometer (WSI). Secondary ion mass spectroscopy (SIMS) analysis showed that the alcohol addiction reaction changed the types of radicals on the super-hydrophobic surface. The wettability was found to depend sensitively on chemical radicals on the surface, not on surface morphology (particle size and surface roughness). Furthermore, three different kinds of representative hydrophilic samples (polystyrene nano-particle aqueous solution, Salmonella bacteria medium, and poly(3,4-ethylenediocythiophene) ink) were tested for uniform deposition onto the desired hydrophilic regions. This simple strategy would have broad applications in various research fields that require selective deposition of target materials.

  9. Amino-functionalized surface modification of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Leiqing; Cheng, Jun, E-mail: juncheng@zju.edu.cn; Li, Yannan; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2017-08-15

    Highlights: • Amino group was introduced to improve surface polarity of PDMS membrane. • The water contact angle of PDMS membrane decreased after the modification. • The concentration of N atom on surface of PDMS membrane reached up to ∼6%. • The density of PDMS membrane decreased while the swelling degree increased. • CO{sub 2} permeability increased while selectivity decreased after the modification. - Abstract: This study aimed to improve surface polarity of polydimethylsiloxane (PDMS) membranes and provide surface active sites which were easy to react with other chemicals. 3-Aminopropyltriethoxysilane (APTES) containing an amino group was introduced into a PDMS membrane by crosslinking to prepare polyacrylonitrile hollow fiber-supported PDMS membranes with an amino-functionalized surface. Fourier transform infrared and X-ray photoelectron spectroscopic analyses proved the existence of APTES and its amino group in the PDMS membrane. The concentration of N atoms on the PDMS membrane surface reached ∼6% when the mass ratio of APTES/PDMS oligomer in the PDMS coating solution was increased to 4/3. The water contact angle decreased from ∼114° to ∼87.5°, indicating the improved surface polarization of the PDMS membrane. The density and swelling degree of the PDMS membrane decreased and increased, respectively, with increasing APTES content in PDMS. This phenomenon increased CO{sub 2} permeability and decreased CO{sub 2}/H{sub 2} selectivity, CO{sub 2}/CH{sub 4} selectivity, and CO{sub 2}/N{sub 2} selectivity. When the mass ratio of APTES/PDMS oligomer was increased from 0 to 4/3, the CO{sub 2} permeation rate of the hollow fiber-supported PDMS membranes initially decreased from ∼2370 GPU to ∼860 GPU and then increased to ∼2000 GPU due to the change in coating solution viscosity.

  10. Epitope mapping of imidazolium cations in ionic liquid-protein interactions unveils the balance between hydrophobicity and electrostatics towards protein destabilisation.

    Science.gov (United States)

    Silva, Micael; Figueiredo, Angelo Miguel; Cabrita, Eurico J

    2014-11-14

    We investigated imidazolium-based ionic liquid (IL) interactions with human serum albumin (HSA) to discern the level of cation interactions towards protein stability. STD-NMR spectroscopy was used to observe the imidazolium IL protons involved in direct binding and to identify the interactions responsible for changes in Tm as accessed by differential scanning calorimetry (DSC). Cations influence protein stability less than anions but still significantly. It was found that longer alkyl side chains of imidazolium-based ILs (more hydrophobic) are associated with a higher destabilisation effect on HSA than short-alkyl groups (less hydrophobic). The reason for such destabilisation lies on the increased surface contact area of the cation with the protein, particularly on the hydrophobic contacts promoted by the terminus of the alkyl chain. The relevance of the hydrophobic contacts is clearly demonstrated by the introduction of a polar moiety in the alkyl chain: a methoxy or alcohol group. Such structural modification reduces the degree of hydrophobic contacts with HSA explaining the lesser extent of protein destabilisation when compared to longer alkyl side chain groups: above [C2mim](+). Competition STD-NMR experiments using [C2mim](+), [C4mim](+) and [C2OHmim](+) also validate the importance of the hydrophobic interactions. The combined effect of cation and anion interactions was explored using (35)Cl NMR. Such experiments show that the nature of the cation has no influence on the anion-protein contacts, still the nature of the anion modulates the cation-protein interaction. Herein we propose that more destabilising anions are likely to be a result of a partial contribution from the cation as a direct consequence of the different levels of interaction (cation-anion pair and cation-protein).

  11. Surface modification of Ti dental implants by Nd:YVO4 laser irradiation

    International Nuclear Information System (INIS)

    Braga, Francisco J.C.; Marques, Rodrigo F.C.; Filho, Edson de A.; Guastaldi, Antonio C.

    2007-01-01

    Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO 2 or TiO 2 , and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO 4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases αTi, βTi, Ti 6 O, Ti 3 O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters. The aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process

  12. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention

    Energy Technology Data Exchange (ETDEWEB)

    Buzi, Luxherta [IEK - Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Juelich (Germany); FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research (Netherlands); Ghent University (Belgium); Temmerman, Greg de [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research (Netherlands); Reinhart, Michael; Matveev, Dmitry; Unterberg, Bernhard; Wienhold, Peter; Breuer, Uwe; Kreter, Arkadi [IEK - Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Juelich (Germany); Oost, Guido van [Ghent University (Belgium)

    2014-07-01

    Tungsten is to be used as plasma-facing material for the ITER divertor due to its favourable thermal properties, low erosion and fuel retention. Bombardment of tungsten by low energy ions of hydrogen isotopes, at different surface temperature, can lead to surface modifications and influence the fuel accumulation in the material. This contribution will assess the impact of material microstructure and the correlation between the particle flux, surface modifications and deuterium retention in tungsten. Tungsten samples were exposed to deuterium plasma at a surface temperature of 510 K, 670 K and 870 K, ion energy of 40 eV and ion fluence of 10{sup 26} m{sup -2}. The high and low ion flux ranges were in the order 10{sup 24} m{sup -2}s{sup -1} and 10{sup 22} m{sup -2}s{sup -1}. Depth profiling of deuterium in all the samples was done by secondary ion mass spectroscopy technique and a scanning electron microscope was used to investigate the surface modifications. Modelling of the D desorption spectra with the coupled reaction diffusion system model will be also presented.

  13. Laser- and UV-assisted modification of polystyrene surfaces for control of protein adsorption and cell adhesion

    International Nuclear Information System (INIS)

    Pfleging, Wilhelm; Torge, Maika; Bruns, Michael; Trouillet, Vanessa; Welle, Alexander; Wilson, Sandra

    2009-01-01

    An appropriate choice of laser and process parameters enables new approaches for the fabrication of polymeric lab-on-chip devices with integrated functionalities. We will present our current research results in laser-assisted modification of polystyrene (PS) with respect to the fabrication of polymer devices for cell culture applications. For this purpose laser micro-patterning of PS and subsequent surface functionalization was investigated as function of laser and process parameters. A high power ArF-excimer laser radiation source with a pulse length of 19 ns as well as a high repetition ArF-excimer laser source with a pulse length of 5 ns were used in order to study the influence of laser pulse length on laser-induced surface oxidation. The change in surface chemistry was characterized by X-ray photoelectron spectroscopy and contact angle measurements. The difference between laser-assisted modification versus UV-lamp assisted modification was investigated. A photolytic activation of specific areas of the polymer surface and subsequent oxidization in oxygen or ambient air leads to a chemically modified polymer surface bearing carboxylic acid groups well-suited for controlled competitive protein adsorption or protein immobilization. Finally, distinct areas for cell growth and adhesion are obtained

  14. Surface modification of polylactic acid films by atmospheric pressure plasma treatment

    Science.gov (United States)

    Kudryavtseva, V. L.; Zhuravlev, M. V.; Tverdokhlebov, S. I.

    2017-09-01

    A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.

  15. Surface modification of carbon/epoxy prepreg using oxygen plasma and its effect on the delamination resistance behavior of carbon/epoxy composites

    International Nuclear Information System (INIS)

    Kim, M.H.; Rhee, K.Y.; Kim, H.J.; Jung, D.H.

    2007-01-01

    It was shown in previous study that the fracture toughness of carbon/epoxy laminated composites could be significantly improved by modifying the surface of the prepreg using Ar + irradiation in an oxygen environment. In this study, the surface of carbon/epoxy prepreg was modified using an oxygen plasma to improve the delamination resistance behavior of carbon/epoxy laminated composites. The variation of the contact angle on the prepreg surface was determined as a function of the modification time, in order to determine the optimal modification time. An XPS analysis was conducted to investigate the chemical changes on the surface of the prepreg caused by the plasma modification. Mode I delamination resistance curves of the composites with and without surface modification were plotted as a function of the delamination increment. The results showed that the contact angle varied from ∼64 o to ∼47 o depending on the modification time and reached a minimum for a modification time of 30 min. The XPS analysis showed that the hydrophilic carbonyl C=O group was formed by the oxygen plasma modification. The results also showed that the delamination resistance behavior was significantly improved by the plasma modification of the prepreg. This improvement was caused by the better layer-to-layer adhesion as well as increased interfacial strength between the fibers and matrix

  16. Surface modification of ceramics and metals by ion implantation combined with plasma irradiation

    International Nuclear Information System (INIS)

    Miyagawa, Soji; Miyagawa, Yoshiko; Nakao, Setsuo; Ikeyama, Masami; Saitoh, Kazuo

    2000-01-01

    To develop a new surface modification technique using ion implantation combined with plasma irradiation, thin film formation by IBAD (Ion Beam Assisted Deposition) and atom relocation processes such as radiation enhanced diffusion and ion beam mixing under high dose implantation have been studied. It was confirmed that the computer simulation code, dynamic-SASAMAL (IBAD version) developed in this research, is quite useful to evaluate ballistic components in film formation by high dose implantation on ceramics and metals, by ion beam mixing of metal-ceramics bi-layer and by the IBAD method including hydrocarbon deposition. Surface modification process of SiC by simultaneous irradiation of ions with a radical beam has also been studied. A composite of SiC and β-Si 3 N 4 was found to be formed on a SiC surface by hot implantation of nitrogen. The amount of β- Si 3 N 4 crystallites increased with increasing the dosage of the hydrogen radical beam during nitrogen implantation. (author)

  17. Modification and characterization of sites giving acid cracking on aluminium oxide supports; Modification et caracterisation des sites responsables du craquage acide sur des supports a base d`alumine

    Energy Technology Data Exchange (ETDEWEB)

    Guillaume, D

    1997-10-23

    The aim of this work is to characterize the surface acid properties of {gamma} alumina, especially the nature, the amount, the strength and the environment of acid sites. The techniques that have been used are: the thermo-desorption of trimethyl-phosphine followed by {sup 31}P MAS NMR, the infrared spectroscopy, the n-heptane cracking, the modification of {gamma} alumina by the addition of chlorine, silicon and alkali (K{sup +}, Na{sup +}), alkaline-earths (Mg{sup 2+}, Ca{sup 2+}), lanthanum (La{sup 3+}) cations. The combination of these techniques has allowed to identify the surface acid properties of {gamma} alumina through the n-heptane transformation reactions under reforming conditions. We have shown that Lewis acidity is responsible for cracking reactions leading to C{sub 1}-C{sub 6} and C{sub 2}-C{sub 5} whereas the cracking of n-heptane producing C{sub 3}-C{sub 4} is due to Broensted acid sites. The isomerization and cyclization reactions both require weaker Broensted acid sites than cracking leading to C{sub 3}-C{sub 4}. The mechanisms involved in the formation of products of these reactions have been identified. Despite the complexity of surface acid properties of {gamma} alumina, this study has determined the environment of catalytically active sites, considering the presence of cation vacancies. (author) 206 refs.

  18. Surface modification of polymeric substrates by plasma-based ion implantation

    Science.gov (United States)

    Okuji, S.; Sekiya, M.; Nakabayashi, M.; Endo, H.; Sakudo, N.; Nagai, K.

    2006-01-01

    Plasma-based ion implantation (PBII) as a tool for polymer modification is studied. Polymeric films have good performances for flexible use, such as food packaging or electronic devices. Compared with inorganic rigid materials, polymers generally have large permeability for gases and moisture, which causes packaged contents and devices to degrade. In order to add a barrier function, surface of polymeric films are modified by PBII. One of the advantageous features of this method over deposition is that the modified surface does not have peeling problem. Besides, micro-cracks due to mechanical stress in the modified layer can be decreased. From the standpoint of mass production, conventional ion implantation that needs low-pressure environment of less than 10-3 Pa is not suitable for continuous large-area processing, while PBII works at rather higher pressure of several Pa. In terms of issues mentioned above, PBII is one of the most expected techniques for modification on flexible substrates. However, the mechanism how the barrier function appears by ion implantation is not well explained so far. In this study, various kinds of polymeric films, including polyethyleneterephthalate (PET), are modified by PBII and their barrier characteristics that depend on the ion dose are evaluated. In order to investigate correlations of the barrier function with implanted ions, modified surface is analyzed with X-ray photoelectron spectroscopy (XPS). It is assumed that the diffusion and sorption coefficients are changed by ion implantation, resulting in higher barrier function.

  19. Surface modification of polymeric substrates by plasma-based ion implantation

    International Nuclear Information System (INIS)

    Okuji, S.; Sekiya, M.; Nakabayashi, M.; Endo, H.; Sakudo, N.; Nagai, K.

    2006-01-01

    Plasma-based ion implantation (PBII) as a tool for polymer modification is studied. Polymeric films have good performances for flexible use, such as food packaging or electronic devices. Compared with inorganic rigid materials, polymers generally have large permeability for gases and moisture, which causes packaged contents and devices to degrade. In order to add a barrier function, surface of polymeric films are modified by PBII. One of the advantageous features of this method over deposition is that the modified surface does not have peeling problem. Besides, micro-cracks due to mechanical stress in the modified layer can be decreased. From the standpoint of mass production, conventional ion implantation that needs low-pressure environment of less than 10 -3 Pa is not suitable for continuous large-area processing, while PBII works at rather higher pressure of several Pa. In terms of issues mentioned above, PBII is one of the most expected techniques for modification on flexible substrates. However, the mechanism how the barrier function appears by ion implantation is not well explained so far. In this study, various kinds of polymeric films, including polyethyleneterephthalate (PET), are modified by PBII and their barrier characteristics that depend on the ion dose are evaluated. In order to investigate correlations of the barrier function with implanted ions, modified surface is analyzed with X-ray photoelectron spectroscopy (XPS). It is assumed that the diffusion and sorption coefficients are changed by ion implantation, resulting in higher barrier function

  20. Modification of a cyclo-olefin surface by radio-sterilization: is there any effect on the interaction with drug solutions?

    Science.gov (United States)

    Barakat, Hala; Saunier, Johanna; Aymes Chodur, Caroline; Aubert, Pascal; Vigneron, Jackie; Etcheberry, Arnaud; Yagoubi, Najet

    2013-11-01

    A cyclo-olefin copolymer was subjected to an e-beam ionizing treatment. Two doses were studied: one corresponding to the recommended dose for the sterilization of pharmaceutical packaging (25 kGy), and a greater one to enhance the modifications caused by the treatment (150 kGy). The surface modifications were studied by X-ray photoelectron spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM). The roughness and the wettability of the surface were enhanced by the treatment. The consequences of the surface modifications on the drug interaction with the polymer were studied. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Modification of transition's factor in the compact surface-potential-based MOSFET model

    Directory of Open Access Journals (Sweden)

    Kevkić Tijana

    2016-01-01

    Full Text Available The modification of an important transition's factor which enables continual behavior of the surface potential in entire useful range of MOSFET operation is presented. The various modifications have been made in order to obtain an accurate and computationally efficient compact MOSFET model. The best results have been achieved by introducing the generalized logistic function (GL in fitting of considered factor. The smoothness and speed of the transition of the surface potential from the depletion to the strong inversion region can be controlled in this way. The results of the explicit model with this GL functional form for transition's factor have been verified extensively with the numerical data. A great agreement was found for a wide range of substrate doping and oxide thickness. Moreover, the proposed approach can be also applied on the case where quantum mechanical effects play important role in inversion mode.

  2. Surface modification and characterization of aramid fibers with hybrid coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jianrui; Zhu, Yaofeng; Ni, Qingqing; Fu, Yaqin, E-mail: fyq01@zstu.edu.cn; Fu, Xiang

    2014-12-01

    Graphical abstract: - Highlights: • Aramid fibers modification sizing synthesized by sol–gel in the absence of water. • The strength and interfacial adhesion property of modified fibers were improved. • Modified fibers show a special surface structure. • The mechanism explains the function of structure. - Abstract: Aramid fibers were modified through solution dip-coating and interfacial in situ polymerization using a newly synthesized SiO{sub 2}/shape memory polyurethane (SiO{sub 2}/SMPU) hybrid. Fourier transform infrared and X-ray photoelectron spectroscopy indicated that the synthesized SiO{sub 2}/SMPU hybrid successfully coated the fiber surface. The surface morphology of the aramid fibers and the single fiber tensile strength and interfacial shear strength (IFSS) of the composites were determined. The IFSS of the fiber coated with the hybrid improved by 45%, which benefited from a special “pizza-like” structure on the fiber surface.

  3. Surface modification and characterization of aramid fibers with hybrid coating

    International Nuclear Information System (INIS)

    Chen, Jianrui; Zhu, Yaofeng; Ni, Qingqing; Fu, Yaqin; Fu, Xiang

    2014-01-01

    Graphical abstract: - Highlights: • Aramid fibers modification sizing synthesized by sol–gel in the absence of water. • The strength and interfacial adhesion property of modified fibers were improved. • Modified fibers show a special surface structure. • The mechanism explains the function of structure. - Abstract: Aramid fibers were modified through solution dip-coating and interfacial in situ polymerization using a newly synthesized SiO 2 /shape memory polyurethane (SiO 2 /SMPU) hybrid. Fourier transform infrared and X-ray photoelectron spectroscopy indicated that the synthesized SiO 2 /SMPU hybrid successfully coated the fiber surface. The surface morphology of the aramid fibers and the single fiber tensile strength and interfacial shear strength (IFSS) of the composites were determined. The IFSS of the fiber coated with the hybrid improved by 45%, which benefited from a special “pizza-like” structure on the fiber surface

  4. Carbon nitride nanotube as a sensor for alkali and alkaline earth cations

    Energy Technology Data Exchange (ETDEWEB)

    Beheshtian, Javad [Department of Chemistry, Shahid Rajaee Teacher Training University, P.O. Box: 16875-163, Tehran (Iran, Islamic Republic of); Baei, Mohammad T. [Department of Chemistry, Azadshahr Branch, Islamic Azad University, Azadshahr, Golestan (Iran, Islamic Republic of); Bagheri, Zargham [Physics Group, Science Department, Islamic Azad University, Islamshahr Branch, P.O. Box: 33135-369, Islamshahr, Tehran (Iran, Islamic Republic of); Peyghan, Ali Ahmadi, E-mail: ahmadi.iau@gmail.com [Young Researchers Club, Islamic Azad University, Islamshahr Branch, Tehran (Iran, Islamic Republic of)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Adsorption of alkali and alkaline earth cations on a CN nanotube studied by DFT. Black-Right-Pointing-Pointer The alkaline cation adsorption may raise potential barrier of the electron emission. Black-Right-Pointing-Pointer The tube may act as a sensor in the presence of alkali and alkaline cations. - Abstract: Adsorption of several alkali (Li{sup +}, Na{sup +}, and K{sup +}) and alkaline earth (Be{sup 2+}, Mg{sup 2+}, and Ca{sup 2+}) cations on the surface of a zigzag (9, 0) carbon nitride nanotube has been investigated using density functional theory. It has been found that almost all of the cations prefer to be strongly chemisorbed at the center of porous site of the tube surface. The adsorption of alkaline cations much more influences the electronic properties of the tube, in comparison with the alkali ones, so that it is transformed from an intrinsic semiconductor with HOMO/LUMO energy gap of 4.02 eV to extrinsic p-type one with the gap of 0.54-1.94 eV. The alkaline cation adsorption may significantly raise potential barrier of the electron emission from the tube surface, hence impeding the field emission. It has been also concluded that the electrical sensitivity of the tube toward the cations may be in the order: Be{sup 2+} Much-Greater-Than Mg{sup 2+} Much-Greater-Than Ca{sup 2+} Much-Greater-Than Li{sup +} {approx} Na{sup +} {approx} K{sup +}.

  5. Enhanced osteointegration of medical titanium implant with surface modifications in micro/nanoscale structures

    Directory of Open Access Journals (Sweden)

    Liwen Lin

    2014-01-01

    Full Text Available Biomimetic design and substrate-based surface modification of medical implants will help to improve the integration of tissue to its material interfaces. Surface energy, composition, roughness, and topography all influence the biological responses of the implants, such as protein adsorption and cell adhesion, proliferation and differentiation. In the current study, different surface structures of Ti implants were constructed using facile surface techniques to create various micro-, nano-, and nano/micro composite scale topography. We have fabricated three types of hierarchical structures of TiO2 coating on Ti implants, including nanotube structure, nano sponge-like structure, and nano/micro nest-like structure. The osteointegration and biomechanical performance of the coated Ti screws were evaluated by histology and removal of torque force test in vivo. We found that the nano/micro nest-like and nanotube structured surface possessed better osteointegration ability. It indicated that the alkaline hydrothermally treated Ti substrate was the best for bone-implant integration in terms of all in vitro and in vivo testing parameters. The alkaline hydrothermally treated surface displayed a hydrophilic (contact angle value 5.92 ± 1.2, higher roughness (Ra value 911.3 ± 33.8 nm, higher specific surface area (8.26 ± 1.051 m2/g, and greater apatite inductivity. The electrochemical surface modification may become a powerful approach to enhance metal implant to bone integration in orthopaedic applications.

  6. Laser surface modification of polyethersulfone films: effect of laser wavelength on biocompatibility

    International Nuclear Information System (INIS)

    Pazokian, H; Jelvani, S; Mollabashi, M; Barzin, J

    2013-01-01

    In this paper laser ablation of polyethersulfone (PES) films regarding to the change in biocompatibility of the surface is investigated at 3 different wavelengths of 193nm (ArF), 248 nm (KrF) and 308 nm (XeCl). The optimum laser fluence and number of pulses for the improvement of the surface biocompatibility is found by examination of the surface behavior in contact with platelets and fibroblasts cells at 3 wavelengths. These biological modifications are explained by alteration of the surface morphology and chemistry following irradiation. The results show that the KrF laser is the best choice for treatment of PES in biological applications.

  7. Nano-scale surface modification of materials with slow, highly charged ion beams

    International Nuclear Information System (INIS)

    Sakurai, M.; Tona, M.; Takahashi, S.; Watanabe, H.; Nakamura, N.; Yoshiyasu, N.; Yamada, C.; Ohtani, S.; Sakaue, H.A.; Kawase, Y.; Mitsumori, K.; Terui, T.; Mashiko, S.

    2007-01-01

    Some results on surface modification of Si and graphite with highly charged ions (HCIs) are presented. Modified surfaces were observed using scanning tunneling microscopy. Crater-like structure with a diameter in nm region is formed on a Si(1 1 1)-(7 x 7) surface by the incidence of a single HCI. The protrusion structure is formed on a highly oriented pyrolytic graphite surface on the other hand, and the structure becomes an active site for molecular adsorption. A new, intense HCI source and an experimental apparatus are under development in order to process and observe aligned nanostructures created by the impact of collimated HCI beam

  8. Modeling nanostructural surface modifications in metal cutting by an approach of thermodynamic irreversibility: Derivation and experimental validation

    Science.gov (United States)

    Buchkremer, S.; Klocke, F.

    2017-01-01

    Performance and operational safety of many metal parts in engineering depend on their surface integrity. During metal cutting, large thermomechanical loads and high gradients of the loads concerning time and location act on the surfaces and may yield significant structural material modifications, which alter the surface integrity. In this work, the derivation and validation of a model of nanostructural surface modifications in metal cutting are presented. For the first time in process modeling, initiation and kinetics of these modifications are predicted using a thermodynamic potential, which considers the interdependent developments of plastic work, dissipation, heat conduction and interface energy as well as the associated productions and flows of entropy. The potential is expressed based on the free Helmholtz energy. The irreversible thermodynamic state changes in the workpiece surface are homogenized over the volume in order to bridge the gap between discrete phenomena involved with the initiation and kinetics of dynamic recrystallization and its macroscopic implications for surface integrity. The formulation of the thermodynamic potential is implemented into a finite element model of orthogonal cutting of steel AISI 4140. Close agreement is achieved between predicted nanostructures and those obtained in transmission electron microscopical investigations of specimen produced in cutting experiments.

  9. Enhanced surface modification engineering (H, F, Cl, Br, and NO{sub 2}) of CdS nanowires with and without surface dangling bonds

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yijie; Xing, Huaizhong, E-mail: xinghz@dhu.edu.cn; Lu, Aijiang; Wang, Chunrui; Xu, Xiaofeng [Department of Applied Physics and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Ren Min Road 2999, Songjiang District, Shanghai 201620 (China); Huang, Yan; Chen, Xiaoshuang, E-mail: jqwang@ee.ecnu.edu.cn, E-mail: xschen@mail.sitp.ac.cn [National Lab. of Infrared Physics, Shanghai Institute for Technical Physics, Chinese Academy of Science, 500 Yu Tian Road, Shanghai 200083 (China); Wang, Jiqing, E-mail: jqwang@ee.ecnu.edu.cn, E-mail: xschen@mail.sitp.ac.cn [Key Laboratory of Polarized Materials and Devices, East China Normal University, Shanghai 200062 (China)

    2015-08-07

    Semiconductor nanowires (NWs) can be applied in gas sensing and cell detection, but the sensing mechanism is not clearly understood. In this study, surface modification effect on the electronic properties of CdS NWs for different diameters with several species (H, F, Cl, Br, and NO{sub 2}) is investigated by first principles calculations. The surface dangling bonds and halogen elements are chosen to represent the environment of the surface. Halogen passivation drastically changes the band gaps due to the strong electronegativity and the energy level of halogen atoms. Density of states analysis indicates that valence band maximum (VBM) of halogen-passivated NWs is formed by the p states of halogen atoms, while VBM of H-passivated NWs is originated from Cd 4d and S 3p orbitals. To illustrate that surface modification can be applied in gas sensing, NO{sub 2}-absorbed NWs with different coverage are calculated. Low coverage of NO{sub 2} introduces a deep p-type dopant-like level, while high coverage introduces a shallow n-type dopant-like level into the band structure. The transformation is due to that at low coverage the adsorption is chemical while at high coverage is physical. These findings might promote the understanding of surface modification effect and the sensing mechanism of NWs as gas sensors.

  10. Cation Exchange Capacity of Biochar: An urgent method modification

    Science.gov (United States)

    Munera, Jose; Martinsen, Vegard; Mulder, Jan; Tau Strand, Line; Cornelissen, Gerard

    2017-04-01

    A better understanding of the cation exchange capacity (CEC) values of biochar and its acid neutralizing capacity (ANC) is crucial when tailoring a single biochar for a particular soil and crop. Literature values for the CEC of biochar are surprisingly variable, commonly ranging from 5 to 50 cmol+/Kg even as high as 69 to 204 cmol+/Kg and often poorly reproducible, suggesting methodological problems. Ashes and very fine pores in biochar may complicate the analysis and thus compromise the results. Here, we modify and critically assess different steps in a common method for CEC determination in biochar and investigate how the measured CEC may be affected by slow cation diffusion from micro-pores. We modified the existing ammonium acetate (NH4-OAc) method (buffered at pH 7), based on displaced ammonium (NH4+) in potassium chloride (KCl) extracts after removing excess NH4-OAc with alcohol in batch mode. We used pigeon pea biochar (produced at 350 ˚C; particle size 0.5mm to 2mm) to develop the method and we tested its reproducibility in biochars with different ANC. The biochar sample (1.00g) was pH-adjusted to 7 after 2 days of equilibration, using hydrochloric acid (HCl), and washed with water until the conductivity of the water was modified method were highly reproducible and that 1 day shaking with NH4OAc and KCl is enough to saturate the exchange sites with NH4+ and subsequently with K+. The biochar to NH4OAc solution ratio did not affect the measured CEC. Three washings with at least 15 ml alcohol are required to remove excess NH4-OAc. We found the CEC of biochar with the displacement method from pigeon pea, corncob, rice husk and cacao shell to be 26.4(±0.3), 19.2(±0.5), 20.5(±0.4), 46.5±(0.2) cmol+/Kg, respectively. The selected batch experiment allows a large sample throughput, less laboratory equipment is needed and shaking ensures better contact between the extracting solution and the exchange sites.

  11. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy.

    Science.gov (United States)

    Yoon, A-Rum; Hong, Jinwoo; Kim, Sung Wan; Yun, Chae-Ok

    2016-06-01

    Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.

  12. Microwave plasma initiated graft copolymerization modification of monomers onto PTFE surface

    International Nuclear Information System (INIS)

    Guan Weishu; Wen Yunjian; Fang Yan; Yin Yongxiang

    1996-02-01

    A graft copolymerization modification technique of monomers onto polytetrafluoroethylene (PTFE) surface initiated by a 2.45 GHz non-equilibrium microwave plasma has been investigated. Standard X-Ray Photoelectron Spectroscopy (XPS), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (sEM) and wetting techniques were used for examination and analysis of samples. Considerable changes in chemical structure, composition and in morphology of grafted surface of PTFE were found. Results showed the occurrence of noticeable defluorination and cross-linked structure on grafted surface, and indicated that different kinds and contents of oxygen-containing functional groups were introduced into the surface of PTFE. Wetting and adhesion experiment of the sample proved that significant improvements in hydrophilicity and adhesion of surface were exhibited. These results confirmed the success of grafting. (8 refs., 7 figs., 1 tab.)

  13. Conserved Aromatic Residue Confers Cation Selectivity in Claudin-2 and Claudin-10b*

    Science.gov (United States)

    Li, Jiahua; Zhuo, Min; Pei, Lei; Yu, Alan S. L.

    2013-01-01

    In tight junctions, both claudin-2 and claudin-10b form paracellular cation-selective pores by the interaction of the first ECL 1 with permeating ions. We hypothesized that a highly conserved aromatic residue near the pore selectivity filter of claudins contributes to cation selectivity by cation-π interaction with the permeating cation. To test this, we generated MDCK I Tet-off cells stably transfected with claudin-2 Tyr67 mutants. The Y67L mutant showed reduced cation selectivity compared with wild-type claudin-2 due to a decrease in Na+ permeability, without affecting the Cl− permeability. The Y67A mutant enlarged the pore size and further decreased the charge selectivity due to an increase in Cl− permeability. The Y67F mutant restored the Na+ permeability, Cl− permeability, and pore size back to wild-type. The accessibility of Y67C to methanethiosulfonate modification indicated that its side chain faces the lumen of the pore. In claudin-10b, the F66L mutant reduced cation selectivity, and the F66A mutant lost pore conductance. We conclude that the conserved aromatic residue near the cation pore domain of claudins contributes to cation selectivity by a dual role of cation-π interaction and a luminal steric effect. Our findings provide new insight into how ion selectivity is achieved in the paracellular pore. PMID:23760508

  14. Surface modification of TA2 pure titanium by low energy high current pulsed electron beam treatments

    International Nuclear Information System (INIS)

    Gao Yukui

    2011-01-01

    Surface integrity changes of TA2 pure titanium including surface topography, microstructure and nanohardness distribution along surface layer were investigated by different techniques of low energy high current pulsed electron beam treatments (LEHCPEBTs). The surface topography was characterized by SEM. Moreover, the TEM observation and X-ray diffraction analysis were performed to reveal the surface modification mechanism of TA2 pure titanium by LEHCPEBTs. The surface roughness was modified by electron beam treatment and the polishing mechanism was analyzed by studying the cross section microstructure of electron beam treated specimens by SEM and TEM. The results show that the surface finish obtains good polishing quality and there is no phase transformation but the dislocations by LEHCPEBT. Furthermore, the nanohardness in the surface modified layer is improved. The remelt and fine-grain microstructure of surface layer caused by LEHCPEBTs are the main polishing mechanism and the reason of modification of surface topography and the increment in nanohardness is mainly due to the dislocations and fine grains in the modified layer induced by LEHCPEBT.

  15. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    International Nuclear Information System (INIS)

    Wang, Chih-Jen; Li, Zhaohui; Jiang, Wei-Teh; Jean, Jiin-Shuh; Liu, Chia-Chuan

    2010-01-01

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca 2+ as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK a2 (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d 001 ) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  16. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chih-Jen [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, University of Wisconsin - Parkside, Kenosha, WI 53144 (United States); Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Jean, Jiin-Shuh; Liu, Chia-Chuan [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2010-11-15

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca{sup 2+} as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK{sub a2} (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d{sub 001}) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  17. Surface modification of steels and magnesium alloy by high current pulsed electron beam

    Science.gov (United States)

    Hao, Shengzhi; Gao, Bo; Wu, Aimin; Zou, Jianxin; Qin, Ying; Dong, Chuang; An, Jian; Guan, Qingfeng

    2005-11-01

    High current pulsed electron beam (HCPEB) is now developing as a useful tool for surface modification of materials. When concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved physico-chemical and mechanical properties. This paper presents our research work on surface modification of steels and magnesium alloy with HCPEB of working parameters as electron energy 27 keV, pulse duration ∼1 μs and energy density ∼2.2 J/cm2 per pulse. Investigations performed on carbon steel T8, mold steel D2 and magnesium alloy AZ91HP have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layers, while the thickness of the modified layer with improved microhardness (several hundreds of micrometers) is significantly greater than that of the heat-affected zone. The formation mechanisms of surface cratering and non-stationary hardening effect in depth are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stresses formed during pulsed electron beam melting treatment. After the pulsed electron beam treatments, samples show significant improvements in measurements of wear and corrosion resistance.

  18. Surface modification of steels and magnesium alloy by high current pulsed electron beam

    International Nuclear Information System (INIS)

    Hao, Shengzhi; Gao, Bo; Wu, Aimin; Zou, Jianxin; Qin, Ying; Dong, Chuang; An, Jian; Guan, Qingfeng

    2005-01-01

    High current pulsed electron beam (HCPEB) is now developing as a useful tool for surface modification of materials. When concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved physico-chemical and mechanical properties. This paper presents our research work on surface modification of steels and magnesium alloy with HCPEB of working parameters as electron energy 27 keV, pulse duration ∼1 μs and energy density ∼2.2 J/cm 2 per pulse. Investigations performed on carbon steel T8, mold steel D2 and magnesium alloy AZ91HP have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layers, while the thickness of the modified layer with improved microhardness (several hundreds of micrometers) is significantly greater than that of the heat-affected zone. The formation mechanisms of surface cratering and non-stationary hardening effect in depth are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stresses formed during pulsed electron beam melting treatment. After the pulsed electron beam treatments, samples show significant improvements in measurements of wear and corrosion resistance

  19. Plasma immersion surface modification with metal ion plasma

    International Nuclear Information System (INIS)

    Brown, I.G.; Yu, K.M.; Godechot, X.

    1991-04-01

    We describe here a novel technique for surface modification in which metal plasma is employed and by which various blends of plasma deposition and ion implantation can be obtained. The new technique is a variation of the plasma immersion technique described by Conrad and co-workers. When a substrate is immersed in a metal plasma, the plasma that condenses on the substrate remains there as a film, and when the substrate is then implanted, qualitatively different processes can follow, including' conventional' high energy ion implantation, recoil implantation, ion beam mixing, ion beam assisted deposition, and metallic thin film and multilayer fabrication with or without species mixing. Multiple metal plasma guns can be used with different metal ion species, films can be bonded to the substrate through ion beam mixing at the interface, and multilayer structures can be tailored with graded or abrupt interfaces. We have fabricated several different kinds of modified surface layers in this way. 22 refs., 4 figs

  20. Comparative studies of biological activity of cadmium-based quantum dots with different surface modifications

    Science.gov (United States)

    Kalinowska, D.; Grabowska-Jadach, I.; Drozd, M.; Pietrzak, M.

    2018-05-01

    This paper presents a modification of the surface of CdS/ZnS and CdSe x S1-x /ZnS quantum dots (QDs) with 3-mercaptopropionic and 6-mercaptohexanoic acid. The obtained QDs were characterized using TEM, DLS, UV-Vis, and fluorescence spectroscopy. Flow cytometry was applied to evaluate the cytotoxicity of QDs and examine the type of death caused by the tested nanoparticles. In addition, the generation of reactive oxygen species after incubation of the tested cells with CdSe x S1-x /ZnS-MPA and CdSe x S1-x /ZnS-MHA QDs was evaluated. The study was conducted on three cell lines: adherent (A549 and MRC-5) and suspension ones (K562). The conducted research demonstrated that the tested nanoparticles exhibit concentration-dependent toxicity. It was observed that the surface modification influences the toxicity level of the examined QDs, and modification of their surface with the use of the ligand of longer carbon chain (MHA) reduces the toxicity in comparison with QDs-MPA. It was also found that all tested QDs caused the death of cells in the course of necrosis. Based on obtained results, it was concluded that the cytotoxicity of QDs is to a large extent related to reactive oxygen species (ROS) generation.

  1. Nanoscale surface modification for enhanced biosensing a journey toward better glucose monitoring

    CERN Document Server

    Zhang, Guigen

    2015-01-01

    This book gives a comprehensive overview of electrochemical-based biosensors and their crucial components. Practical examples are given throughout the text to illustrate how the performance of electrochemical-based biosensors can be improved by nanoscale surface modification and how an optimal design can be achieved. All essential aspects of biosensors are considered, including electrode functionalization, efficiency of the mass transport of reactive species, and long term durability and functionality of the sensor. This book also: ·       Explains how the performance of an electrochemical-based biosensor can be improved by nanoscale surface modification ·       Gives readers the tools to evaluate and improve the performance of a biosensor with a multidisciplinary approach that considers electrical, electrostatic, electrochemical, chemical, and biochemical events ·       Links the performance of a sensor to the various governing physical and chemical principles so readers can fully unders...

  2. Disposal of heavy metal cations in aqueous media by adsorption on coal to Ghazni

    Directory of Open Access Journals (Sweden)

    О.М. Заславський

    2008-03-01

    Full Text Available  Adsorption of Pb and Cu cations and their mixture on the surface of modified and non-modified anti-gas coal trough different time intervals have been studied. The maximum adsorption capacity of coal relative to each cations have been determined. Absence  of concurrence between cations of Pb and Cu during adsorption from mixture is explained by difference of  types of their interaction with coal surface. The high effectiveness and perspectivities of application of anti-gas coal for neutralization of heavy metal cations in aqueous solution was shown.

  3. Influence of DC plasma modification on the selected properties and the geometrical surface structure of polylactide prior to autocatalytic metallization

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Rytlewski, Piotr [Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 Toruń (Poland); Tracz, Adam [Centre for Molecular and Macromolecular Studies of the Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź (Poland); Żenkiewicz, Marian [Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 Toruń (Poland)

    2015-03-01

    The paper presents the results of studies to determine the applicability of plasma modification in the process of polylactide (PLA) surface preparation prior to the autocatalytic metallization. The polylactide plasma modification was carried out in an oxygen or nitrogen chemistry. The samples were tested with the following methods: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and electron spectrophotometry (XPS). Scanning electron microscopy and atomic force microscopy images were demonstrated. The results of surface free energy calculations, performed based on the results of the contact angle measurements have been presented. The results of the qualitative (degree of oxidation or nitridation) and quantitative analysis of the chemical composition of the polylactide surface layer have also been described. The results of the studies show that the DC plasma modification performed in the proposed condition is a suitable as a method of surface preparation for the polylactide metallization. - Highlights: • We modified polylactide surface layer with plasma generated in oxygen or nitrogen. • We tested selected properties and surface structure of modified samples. • DC plasma modification can be used to prepare the PLA surface for metallization. • For better results metallization should be preceded by sonication process.

  4. Plasma based Ar+ beam assisted poly(dimethylsiloxane) surface modification

    International Nuclear Information System (INIS)

    Vladkova, T.G.; Keranov, I.L.; Dineff, P.D.; Youroukov, S.Y.; Avramova, I.A.; Krasteva, N.; Altankov, G.P.

    2005-01-01

    Plasma based Ar + beam performed in RF (13.56 MHz) low-pressure (200 mTorr) glow discharge (at 100 W, 1200 W and 2500 W) with a serial capacitance was employed for surface modification of poly(dimethylsiloxane) (PDMS) aimed at improvement of its interactions with living cells. The presence of a serial capacitance ensures arise of an ion-flow inside the plasma volume directed toward the treated sample and the vary of the discharge power ensures varied density of the ion-flow. XPS analysis was performed to study the changes in the surface chemical composition of the modified samples and the corresponding changes in the surface energy were monitored by contact angle measurements. We found that plasma based Ar + beam transforms the initially hydrophobic PDMS surface into a hydrophilic one mainly due to a raising of the polar component of the surface tension, this effect being most probably due to an enrichment of the modified surface layer with permanent dipoles of a [SiO x ]-based network and elimination of the original methyl groups. The initial adhesion of human fibroblast cells was studied on the described above plasma based Ar + beam modified and acrylic acid (AA) grafted or not fibronectin (FN) pre-coated or bare surfaces. The cell response seems to be related with the peculiar structure and wettability of the modified PDMS surface layer after plasma based Ar + beam treatment followed or not by AA grafting

  5. Growth and surface modification of LaFeO3 thin films induced by reductive annealing

    International Nuclear Information System (INIS)

    Flynn, Brendan T.; Zhang, Kelvin H.L.; Shutthanandan, Vaithiyalingam; Varga, Tamas; Colby, Robert J.; Oleksak, Richard P.; Manandhar, Sandeep; Engelhard, Mark H.; Chambers, Scott A.; Henderson, Michael A.; Herman, Gregory S.; Thevuthasan, Suntharampillai

    2015-01-01

    Highlights: • LaFeO 3 was grown by molecular beam epitaxy on ZrO 2 :Y 2 O 3 . • The film was highly oriented but not single crystalline. • Angle resolved XPS revealed differences between surface and bulk oxygen. • Annealing the film in vacuum resulted in the sequential reduction of Fe cations. • A greater degree of Fe reduction was found at the surface. - Abstract: The mixed electronic and ionic conductivity of perovskite oxides has enabled their use in diverse applications such as automotive exhaust catalysts, solid oxide fuel cell cathodes, and visible light photocatalysts. The redox chemistry at the surface of perovskite oxides is largely dependent on the oxidation state of the metal cations as well as the oxide surface stoichiometry. In this study, LaFeO 3 (LFO) thin films grown on yttria-stabilized zirconia (YSZ) was characterized using both bulk and surface sensitive techniques. A combination of in situ reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) demonstrated that the film is primarily textured in the [1 0 0] direction and is stoichiometric. High-resolution transmission electron microscopy measurements show regions that are dominated by [1 0 0] oriented LFO grains that are oriented with respect to the substrates lattice. However, selected regions of the film show multiple domains of grains that are not [1 0 0] oriented. The film was annealed in an ultra-high vacuum chamber to simulate reducing conditions and studied by angle-resolved X-ray photoelectron spectroscopy (XPS). Iron was found to exist as Fe(0), Fe(II), and Fe(III) depending on the annealing conditions and the depth within the film. A decrease in the concentration of surface oxygen species was correlated with iron reduction. These results should help guide and enhance the design of LFO materials for catalytic applications

  6. Adsorptive behaviour of mercury on algal biomass: Competition with divalent cations and organic compounds

    International Nuclear Information System (INIS)

    Carro, Leticia; Barriada, Jose L.; Herrero, Roberto; Sastre de Vicente, Manuel E.

    2011-01-01

    Highlights: → Native and protonated macroalga S. muticum are good materials for mercury removal. → Fast kinetic process and high mercury uptakes have been found for those materials. → Diffusion control is the rate limiting step of the process. → Competition effects by organic compounds, inorganic salts and divalent cations were analyzed. → Continuous flow experiments allowed identification of mercury reduction during metal removal. - Abstract: Biosorption processes constitute an effective technique for mercury elimination. Sorption properties of native and acid-treated Sargassum muticum have been studied. Effect of pH, initial mercury concentration and contact time studies provided fundamental information about the sorption process. This information was used as the reference values to analyse mercury sorption under competition conditions. Saline effect has shown little influence in sorption, when only electrostatic modifications took place upon salt addition. On the contrary, if mercury speciation dramatically changed owing to the addition of an electrolyte, such as in the case of chloride salt, very large modifications in mercury sorption were observed. Competition with other divalent cations or organic compounds has shown little or none effect on mercury, indicating that a different mechanism is taking place during the removal of these pollutants. Finally, continuous flow experiments have clearly shown that a reduction process is also taking place during mercury removal. This fact is not obvious to elucidate under batch sorption experiments. Scanning Electron Microscopy analysis of the surface of the materials show deposits of mercury(I) and metallic mercury which is indicative of the reduction process proposed.

  7. Green aqueous surface modification of polypropylene for novel polymer nanocomposites.

    Science.gov (United States)

    Thakur, Vijay Kumar; Vennerberg, Danny; Kessler, Michael R

    2014-06-25

    Polypropylene is one of the most widely used commercial commodity polymers; among many other applications, it is used for electronic and structural applications. Despite its commercial importance, the hydrophobic nature of polypropylene limits its successful application in some fields, in particular for the preparation of polymer nanocomposites. Here, a facile, plasma-assisted, biomimetic, environmentally friendly method was developed to enhance the interfacial interactions in polymer nanocomposites by modifying the surface of polypropylene. Plasma treated polypropylene was surface-modified with polydopamine (PDA) in an aqueous medium without employing other chemicals. The surface modification strategy used here was based on the easy self-polymerization and strong adhesion characteristics of dopamine (DA) under ambient laboratory conditions. The changes in surface characteristics of polypropylene were investigated using FTIR, TGA, and Raman spectroscopy. Subsequently, the surface modified polypropylene was used as the matrix to prepare SiO2-reinforced polymer nanocomposites. These nanocomposites demonstrated superior properties compared to nanocomposites prepared using pristine polypropylene. This simple, environmentally friendly, green method of modifying polypropylene indicated that polydopamine-functionalized polypropylene is a promising material for various high-performance applications.

  8. Roughness modification of surfaces treated by a pulsed dielectric barrier discharge

    CERN Document Server

    Dumitrascu, N; Apetroaei, N; Popa, G

    2002-01-01

    Local modifications of surface roughness are very important in many applications, as this surface property is able to generate new mechano-physical characteristics of a large category of materials. Roughness is one of the most important parameters used to characterize and control the surface morphology, and techniques that allow modifying and controlling the surface roughness present increasing interest. In this respect we propose the dielectric barrier discharge (DBD) as a simple and low cost method that can be used to induce controlled roughness on various surfaces in the nanoscale range. DBD is produced in helium, at atmospheric pressure, by a pulsed high voltage, 28 kV peak to peak, 13.5 kHz frequency and 40 W power. This type of discharge is a source of energy capable of modifying the physico-chemical properties of the surfaces without affecting their bulk properties. The discharge is characterized by means of electrical probes and, in order to analyse the heat transfer rate from the discharge to the tre...

  9. Investigation of graft copolymerization modification of PTFE surface using microwave plasma

    International Nuclear Information System (INIS)

    Wen Yunjian; Guan Weishu; Fang Yan; Ying Yongxiang

    1995-03-01

    Investigation of graft copolymerization modification of PTFE surface with kind of one or another reactive monomers was performed by using non-equilibrium microwave plasma at 2.45 GHz under various operating conditions. Untreated clean samples and grafted samples were examined and analyzed with different surface analytical techniques such as X-Ray Photoelectron Spectroscopy (XPS), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Scanning Electron Microscopy (SEM). The results showed that the occurrence of noticeable de-fluorination and cross linking on grafted surface, and different polar groups and content of oxygen-containing were introduced into the grafted surface of PTFE. Fibriform hetero-structure layer was also formed. These results confirmed the success of graft and indicated that the hydrophilicity of the grafted surface is excellent and a significant improvement in adhesion characteristics has been achieved. The experiments revealed that the changes in surface properties are correlated closely to the changes in chemical structure, composition and morphology. (8 figs., 1 refs.)

  10. In-situ investigation of laser surface modifications of WC-Co hard metals inside a scanning electron microscope

    Science.gov (United States)

    Mueller, H.; Wetzig, K.; Schultrich, B.; Pompe, Wolfgang; Chapliev, N. I.; Konov, Vitaly I.; Pimenov, S. M.; Prokhorov, Alexander M.

    1989-05-01

    The investigation of laser interaction with solid surfaces and of the resulting mechanism of surface modification are of technical interest to optimize technological processes, and they are also of fundamental scientific importance. Most instructive indormation is available with the ail of the in-situ techniques. For instance, measuring of the photon emission of the irradiated surface ane the plasma torch (if it is produced) simultaneously to laser action, makes it possible to gain a global characterization of the laser-solid interaction. In order to obtain additional information about surface and structure modifications in microscopic detail , a laser and scanning electron microscope were combined in to a tandem equipment (LASEM). Inside this eqiipment the microscopic observation is carried out directly at the laser irradiated area without any displacement of the sample. In this way, the stepwise development of surface modification during multipulse irradiation is visible in microscopic details and much more reliable information about the surface modification process is obtainable in comparison to an external laser irradiation. Such kind of equipments were realized simultaneously and independently in the Institut of General Physics (Moscow) and the Central Institute of Solid State Physics and Material Research (Dresden) using a CO2 and a LTd-glass-laser, respectively. In the following the advantages and possibilities of a LASEM shall be demonstrated by some selected investigations of WC-CO hardmeta. The results were obtained in collaboration by both groups with the aid of the pulsed CO2-laser. The TEA CO2 laser was transmitted through a ZnSe-window into the sample chamber of the SEM and focused ofAo tfte sample surface. It was operated in TEM - oo mode with a repetition rate of about 1 pulse per second. A peak power density of about 160 MW/cm2 was achieved in front of the sample surface.

  11. Effective modification of particle surface properties using ultrasonic water mist

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2009-01-01

    The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied...... properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight...... increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures...

  12. Preparation of poly(2-chloroaniline) membrane and plasma surface modification

    International Nuclear Information System (INIS)

    Kir, E.; Oksuz, L.; Helhel, S.

    2006-01-01

    P2ClAn membranes were obtained from chemically synthesized poly(2-chloroaniline) (P2ClAn) by casting method. These membranes were cast from dimethyl formamide (DMF) and were in the undoped state. P2ClAn membranes were characterized by Fourier infrared spectroscopy and scanning electron microscopy. Measurements of water content capacity, membrane thickness and ion-exchange capacity of the cast membranes were carried out. P2ClAn membranes were treated by electron cylotron resonance (ECR) plasma for surface modification. Plasma treatment has been successfully utilized for improving the surface properties of P2ClAn membranes such as increasing pore diameters and number of pores for better anion or molecule transportation

  13. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Chen, Chih-Hao; Lee, Ming-Yih; Shyu, Victor Bong-Hang; Chen, Yi-Chieh; Chen, Chien-Tzung; Chen, Jyh-Ping

    2014-01-01

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. - Highlights: • Selective laser sintered polycaprolactone scaffolds are prepared. • Scaffolds are surface modified through immersion coating with gelatin or collagen. • Collagen-scaffold is the best for cartilage tissue engineering in vitro. • Chondrocytes/collagen-scaffold reveals enhanced cartilage tissue formation in vivo

  14. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih-Hao [Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Craniofacial Research Center, Chang Gung University, Kweishann, Taoyuan 333, Taiwan, ROC (China); Lee, Ming-Yih [Graduate Institute of Medical Mechatronics, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Shyu, Victor Bong-Hang; Chen, Yi-Chieh; Chen, Chien-Tzung [Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Craniofacial Research Center, Chang Gung University, Kweishann, Taoyuan 333, Taiwan, ROC (China); Chen, Jyh-Ping, E-mail: jpchen@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan, ROC (China)

    2014-07-01

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. - Highlights: • Selective laser sintered polycaprolactone scaffolds are prepared. • Scaffolds are surface modified through immersion coating with gelatin or collagen. • Collagen-scaffold is the best for cartilage tissue engineering in vitro. • Chondrocytes/collagen-scaffold reveals enhanced cartilage tissue formation in vivo.

  15. Non-surface activity and micellization behavior of cationic amphiphilic block copolymer synthesized by reversible addition-fragmentation chain transfer process.

    Science.gov (United States)

    Ghosh, Arjun; Yusa, Shin-ichi; Matsuoka, Hideki; Saruwatari, Yoshiyuki

    2011-08-02

    Cationic amphiphilic diblock copolymers of poly(n-butylacrylate)-b-poly(3-(methacryloylamino)propyl)trimethylammonium chloride) (PBA-b-PMAPTAC) with various hydrophobic and hydrophilic chain lengths were synthesized by a reversible addition-fragmentation chain transfer (RAFT) process. Their molecular characteristics such as surface activity/nonactivity were investigated by surface tension measurements and foam formation observation. Their micelle formation behavior and micelle structure were investigated by fluorescence probe technique, static and dynamic light scattering (SLS and DLS), etc., as a function of hydrophilic and hydrophobic chain lengths. The block copolymers were found to be non-surface active because the surface tension of the aqueous solutions did not change with increasing polymer concentration. Critical micelle concentration (cmc) of the polymers could be determined by fluorescence and SLS measurements, which means that these polymers form micelles in bulk solution, although they were non-surface active. Above the cmc, the large blue shift of the emission maximum of N-phenyl-1-naphthylamine (NPN) probe and the low micropolarity value of the pyrene probe in polymer solution indicate the core of the micelle is nonpolar in nature. Also, the high value of the relative intensity of the NPN probe and the fluorescence anisotropy of the 1,6-diphenyl-1,3,5-hexatriene (DPH) probe indicated that the core of the micelle is highly viscous in nature. DLS was used to measure the average hydrodynamic radii and size distribution of the copolymer micelles. The copolymer with the longest PBA block had the poorest water solubility and consequently formed micelles with larger size while having a lower cmc. The "non-surface activity" was confirmed for cationic amphiphilic diblock copolymers in addition to anionic ones studied previously, indicating the universality of non-surface activity nature.

  16. Post-Translational Modifications of TRP Channels

    Directory of Open Access Journals (Sweden)

    Olaf Voolstra

    2014-04-01

    Full Text Available Transient receptor potential (TRP channels constitute an ancient family of cation channels that have been found in many eukaryotic organisms from yeast to human. TRP channels exert a multitude of physiological functions ranging from Ca2+ homeostasis in the kidney to pain reception and vision. These channels are activated by a wide range of stimuli and undergo covalent post-translational modifications that affect and modulate their subcellular targeting, their biophysical properties, or channel gating. These modifications include N-linked glycosylation, protein phosphorylation, and covalent attachment of chemicals that reversibly bind to specific cysteine residues. The latter modification represents an unusual activation mechanism of ligand-gated ion channels that is in contrast to the lock-and-key paradigm of receptor activation by its agonists. In this review, we summarize the post-translational modifications identified on TRP channels and, when available, explain their physiological role.

  17. Surface Modification of Solution-Processed ZrO2 Films through Double Coating for Pentacene Thin-Film Transistors

    Science.gov (United States)

    Kwon, Jin-Hyuk; Bae, Jin-Hyuk; Lee, Hyeonju; Park, Jaehoon

    2018-03-01

    We report the modification of surface properties of solution-processed zirconium oxide (ZrO2) dielectric films achieved by using double-coating process. It is proven that the surface properties of the ZrO2 film are modified through the double-coating process; the surface roughness decreases and the surface energy increases. The present surface modification of the ZrO2 film contributes to an increase in grain size of the pentacene film, thereby increasing the field-effect mobility and decreasing the threshold voltage of the pentacene thin-film transistors (TFTs) having the ZrO2 gate dielectric. Herein, the molecular orientation of pentacene film is also studied based on the results of contact angle and X-ray diffraction measurements. Pentacene molecules on the double-coated ZrO2 film are found to be more tilted than those on the single-coated ZrO2 film, which is attributed to the surface modification of the ZrO2 film. However, no significant differences are observed in insulating properties between the single-and the double-coated ZrO2 dielectric films. Consequently, the characteristic improvements of the pentacene TFTs with the double-coated ZrO2 gate dielectric film can be understood through the increase in pentacene grain size and the reduction in grain boundary density.

  18. The third generation multi-purpose plasma immersion ion implanter for surface modification of materials

    CERN Document Server

    Tang Bao Yin; Wang Xiao Feng; Gan Kong Yin; Wang Song Yan; Chu, P K; Huang Nian Ning; Sun Hong

    2002-01-01

    The third generation multi-purpose plasma immersion ion implantation (PIII) equipment has been successfully used for research and development of surface modification of biomedical materials, metals and their alloys in the Southwest Jiaotong University. The implanter equipped with intense current, pulsed cathodic arc metal plasma sources which have both strong coating function and gas and metal ion implantation function. Its pulse high voltage power supply can provide big output current. It can acquire very good implantation dose uniformity. The equipment can both perform ion implantation and combine ion implantation with sputtering deposition and coating to form many kinds of synthetic surface modification techniques. The main design principles, features of important components and achievement of research works in recent time have been described

  19. Acid/base bifunctional carbonaceous nanomaterial with large surface area: Preparation, characterization, and adsorption properties for cationic and anionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kai; Ma, Chun–Fang; Ling, Yuan; Li, Meng [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Gao, Qiang, E-mail: gaoqiang@cug.edu.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Luo, Wen–Jun, E-mail: heartnohome@yahoo.com.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China)

    2015-07-15

    Nanostructured carbonaceous materials are extremely important in the nano field, yet developing simple, mild, and “green” methods that can make such materials possess large surface area and rich functional groups on their surfaces still remains a considerable challenge. Herein, a one-pot and environment-friendly method, i.e., thermal treatment (180 °C; 18 h) of water mixed with glucose and chitosan (CTS), has been proposed. The resultant carbonaceous nanomaterials were characterized by field emitting scanning electron microscope, N{sub 2} adsorption/desorption, Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, and zeta-potential analysis. It was found that, in contrast to the conventional hydrothermally carbonized product from pure glucose, with low surface area (9.3 m{sup 2} g{sup −1}) and pore volume (0.016 cm{sup 3} g{sup −1}), the CTS-added carbonaceous products showed satisfactory textural parameters (surface area and pore volume up to 254 m{sup 2} g{sup −1} and 0.701 cm{sup 3} g{sup −1}, respectively). Moreover, it was also interestingly found that these CTS-added carbonaceous products possessed both acidic (–COOH) and basic (–NH{sub 2}) groups on their surfaces. Taking the advantages of large surface area and –COOH/–NH{sub 2} bifunctional surface, the carbonaceous nanomaterials exhibited excellent performance for adsorptions of cationic compound (i.e., methylene blue) at pH 10 and anionic compound (i.e., acid red 18) at pH 2, respectively. This work not only provides a simple and green route to prepare acid/base bifunctional carbonaceous nanomaterials with large surface area but also well demonstrates their potential for application in adsorption. - Highlights: • A simple and green method was proposed to prepare carbon nanomaterials. • The carbon product showed acid/base bifunctional surface with large surface area. • The carbon material could efficiently adsorb both cationic and anionic compounds.

  20. A study of chemical modifications of a Nafion membrane by incorporation of different room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Martinez de Yuso, M.V.; Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Malaga (Spain); Neves, L.A.; Coelhoso, I.M.; Crespo, J.G. [REQUIMTE/CQFB, Departamento de Quimica, Universidade Nova de Lisboa, Caparica (Portugal); Benavente, J. [Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga (Spain)

    2012-08-15

    Surface and bulk chemical changes in a Nafion membrane as a result of room temperature ionic liquids (RTILs) incorporation were determined by X-ray photoelectron spectroscopy (XPS) and elemental analysis, respectively. RTILs with different physicochemical properties were selected. Two imidazolium based RTIL-cations (1-octyl-3-methylimidazolium and 1-butyl-3-methylimidazolium) were used to detect the effect of cation size on membrane modification, while the effect of the RTIL hydrophilic/hydrophobic character was also considered by choosing different anions. Angle resolved XPS measurements (ARXPS) were carried out varying the angle of analysis between 15 and 75 to get elemental information on the Nafion/RTIL-modified membranes interactions for a deepness of around 10 nm. Moreover, changes in the RTIL-modified membranes associated to thermal effect were also considered by analyzing the samples after their heating at 120 C for 24 h. Agreement between both chemical techniques, bulk and destructive elemental analysis and surface and non-destructive XPS, were obtained. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands

    NARCIS (Netherlands)

    Neouze, M.A.; Schubert, U.S.

    2008-01-01

    Metal or metal oxide nanoparticles possess unique features compared to equivalent larger-scale materials. For applications, it is often necessary to stabilize or functionalize such nanoparticles. Thus, modification of the surface of nanoparticles is an important chemical challenge. In this survey,

  2. Effect of Electropulsing-Assisted Ultrasonic Nanocrystalline Surface Modification on the Surface Mechanical Properties and Microstructure of Ti-6Al-4V Alloy

    Science.gov (United States)

    Ye, Yongda; Wang, Haibo; Tang, Guoyi; Song, Guolin

    2018-05-01

    The effect of electropulsing-assisted ultrasonic nanocrystalline surface modification (EP-UNSM) on surface mechanical properties and microstructure of Ti-6Al-4V alloy is investigated. Compared to conventional ultrasonic nanocrystalline surface modification (UNSM), EP-UNSM can effectively facilitate surface roughness and morphology, leading to excellent surface roughness (reduced from Ra 0.918 to Ra 0.028 μm by UNSM and Ra 0.019 μm by EP-UNSM) and smoother morphology with less cracks and defects. Surface friction coefficients are enhanced, resulting in lower and smoother friction coefficients. In addition, the surface-strengthened layer and ultra-refined grains are significantly enhanced with more severe plastic deformation and a greater surface hardness (a maximum hardness value of 407 HV and an effective depth of 550 μm, in comparison with the maximum hardness value of 364 HV and effective depth of 300 μm obtained by conventional UNSM). Remarkable enhancement of surface mechanical properties can be attributed to the refined gradient microstructure and the enhanced severe plastic deformation layer induced by coupling the effects of UNSM and electropulsing. The accelerated dislocation mobility and atom diffusion caused by the thermal and athermal effects of electropulsing treatment may be the primary intrinsic reasons for these improvements.

  3. Surface modification and electrochemical properties of activated carbons for supercapacitor electrodes

    Science.gov (United States)

    Yang, Dan; Qiu, Wenmei; Xu, Jingcai; Han, Yanbing; Jin, Hongxiao; Jin, Dingfeng; Peng, Xiaoling; Hong, Bo; Li, Ji; Ge, Hongliang; Wang, Xinqing

    2015-12-01

    Modifications with different acids (HNO3, H2SO4, HCl and HF, respectively) were introduced to treat the activated carbons (ACs) surface. The microstructures and surface chemical properties were discussed by X-ray diffraction (XRD), thermogravimetric analysis (TGA), ASAP, Raman spectra and Fourier transform infrared (FTIR) spectra. The ACs electrode-based supercapacitors were assembled with 6 mol ṡ L-1 KOH electrolyte. The electrochemical properties were studied by galvanostatic charge-discharge and cyclic voltammetry. The results indicated that although the BET surface area of modified ACs decreased, the functional groups were introduced and the ash contents were reduced on the surface of ACs, receiving larger specific capacitance to initial AC. The specific capacitance of ACs modified with HCl, H2SO4, HF and HNO3 increased by 31.4%, 23%, 21% and 11.6%, respectively.

  4. Surface modification of an epoxy resin with polyamines and polydopamine: Adhesion toward electroless deposited copper

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Mader, Lothar [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 bis, B-9000 Ghent (Belgium); Vanfleteren, Jan [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium)

    2015-10-30

    Highlights: • Surface modifications of epoxy resins with polydopamine and grafted polyamines can significantly increase the adhesion toward electroless deposited copper. • A clear characterization of the copper/epoxy interphase is provided by SEM analyses of cross sections. • Tailored conditions such as etching time (roughness) and electroless deposition temperature are needed to increase the adhesion of the modified surfaces. - Abstract: In this paper the influence of the epoxy roughness, surface modifications and ELD (electroless copper deposition) temperatures on the adhesive strength of the copper is studied. Good adhesion at low roughness values is targeted due to their applicability in high density electronic circuits. Roughened epoxy surfaces are modified with adsorbed polyamines, polydopamine and polyamines grafted to polydopamine. Next the, adhesive strength of ELD copper is determined with peel strength measurements and the interphases are examined with SEM (scanning electron microscopy). Polydopamine and polyamines grafted to polydopamine can lead to increased adhesive strength at lower roughness values compared to the non-modified samples at specific plating temperatures.

  5. Hydrophobic modification of wood via surface-initiated ARGET ATRP of MMA

    Energy Technology Data Exchange (ETDEWEB)

    Fu Yanchun; Li Gang [Material Science and Engineering College, Northeast Forestry University, Harbin 150040 (China); Yu Haipeng, E-mail: yuhaipeng20000@yahoo.com.cn [Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Material Science and Engineering College, Northeast Forestry University, Harbin 150040 (China); Liu Yixing, E-mail: yxl200488@sina.com [Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Material Science and Engineering College, Northeast Forestry University, Harbin 150040 (China)

    2012-01-15

    To convert the hydrophilic surface of wood into a hydrophobic surface, the present study investigated activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) as a method of grafting methyl methacrylate (MMA) onto the wood surface. The wood treated with 2-bromoisobutyryl bromide and with the subsequently attached MMA via ARGET ATRP under different polymerization times (2 h, 4 h, 6 h, 8 h) were examined using scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. All the analyses confirmed that PMMA had been grafted onto the wood surface. Water contact angle measurement proved that the covering layer of PMMA on wood made the surface hydrophobic. Polymerization time had a positive influence on the contact angle value and higher contact angle can be produced with the prolongation of the polymerization time. When the reaction time was extended to 8 h, the contact angle of treated wood surface reached 130 Degree-Sign in the beginning, and remained at 116 Degree-Sign after 60 s. The ARGET ATRP method may raise an alteration on the wood surface modification.

  6. Preparation of Robust Superhydrophobic Halloysite Clay Nanotubes via Mussel-Inspired Surface Modification

    Directory of Open Access Journals (Sweden)

    Yang Meng

    2017-11-01

    Full Text Available In this study, a novel and convenient bio-inspired modification strategy was used to create stable superhydrophobic structures on halloysite clay nanotubes (HNTs surfaces. The polydopamine (PDA nanoparticles can firmly adhere on HNTs surfaces in a mail environment of pH 8.5 via the oxidative self-polymerization of dopamine and synthesize a rough nano-layer assisted with vitamin M, which provides a catechol functional platform for the secondary reaction to graft hydrophobic long-chain alkylamine for preparation of hierarchical micro/nano structures with superhydrophobic properties. The micromorphology, crystal structure, and surface chemical composition of the resultant superhydrophobic HNTs were characterized by field emission scanning electron (FE-SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, and X-ray photoelectron spectroscopy (XPS. The as-formed surfaces exhibited outstanding superhydrophobicity with a water contact angle (CA of 156.3 ± 2.3°, while having little effect on the crystal structures of HNTs. Meanwhile, the resultant HNTs also showed robust stability that can conquer various harsh conditions including strong acidic/alkaline solutions, organic solvents, water boiling, ultrasonic cleaning, and outdoor solar radiation. In addition, the novel HNTs exhibited excellent packaged capabilities of phase change materials (PCMs for practical application in thermal energy storage, which improved the mass fractions by 22.94% for stearic acid and showed good recyclability. These HNTs also exhibited good oil/water separation ability. Consequently, due to the superior merits of high efficiency, easy operation, and non-toxicity, this bionic surface modification approach may make HNTs have great potentials for extensive applications.

  7. Applications of Functional Amyloids from Fungi: Surface Modification by Class I Hydrophobins

    Directory of Open Access Journals (Sweden)

    Alessandra Piscitelli

    2017-06-01

    Full Text Available Class I hydrophobins produced from fungi are amongst the first proteins recognized as functional amyloids. They are amphiphilic proteins involved in the formation of aerial structures such as spores or fruiting bodies. They form chemically robust layers which can only be dissolved in strong acids. These layers adhere to different surfaces, changing their wettability, and allow the binding of other proteins. Herein, the modification of diverse types of surfaces with Class I hydrophobins is reported, highlighting the applications of the coated surfaces. Indeed, these coatings can be exploited in several fields, spanning from biomedical to industrial applications, which include biosensing and textile manufacturing.

  8. Rapid and selective adsorption of cationic dyes by a unique metal-organic framework with decorated pore surface

    Science.gov (United States)

    Zhang, Jie; Li, Fan; Sun, Qian

    2018-05-01

    Organic dye pollutants become a big headache due to their toxic nature to the environment, and it should be one of the best solutions if we can remove and separate them. Here, a metal-organic framework (MOF) (denoted as Zn-MOF) with carbonyl group based on fluorenone-2,7-dicarboxylate ligand, was directly synthesized without post-synthesis method and applied to selectively absorb cationic dyes such as MB, CV, RhB from aqueous solution, while anionic or neutral dyes were excluded. Characterization of the Zn-MOF was achieved by X-ray diffraction, scanning electron microscope, Fourier transform infrared spectrometry and elemental analysis. The Zn-MOF mainly possesses open pore channels, high surface area, big pore volume, and most important, the pore surface is furnished with carbonyl groups arising from the ligand and pointing toward the centers of the large chambers of the framework, which are benefit for the adsorption of the cationic dyes. The MB maximum adsorption capacities can attain 326 mg g-1, which is probably due to the suitable pore size, higher solvent-accessible void, and the prominent adsorption capacity of the mesoporous material. The dye adsorption process for the material is proven to be charge-selective and size-selective, and the adsorption isotherms, as well as kinetics characteristic of dye adsorption onto the Zn-MOF were also investigated.

  9. Microscopic theory of cation exchange in CdSe nanocrystals.

    Science.gov (United States)

    Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C

    2014-10-10

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.

  10. Effects of Surface Modification of MWCNT on the Mechanical and Electrical Properties of Fluoro Elastomer/MWCNT Nanocomposites

    Directory of Open Access Journals (Sweden)

    Tao Xu

    2012-01-01

    Full Text Available Surface modification is a good way to improve the surface activity and interfacial strength of multiwalled carbon nanotubes (MWCNTs when used as fillers in the polymer composites. Among the reported methods for nanotube modification, mixed acid oxidation and plasma treatment is often used by introducing polar groups to the sidewall of MWCNT successfully. The purpose of this study is to evaluate the effect of different surface modification of MWCNT on the mechanical property and electrical conductivity of Fluoro-elastomer (FE/MWCNT nanocomposites. MWCNTs were surface modified by mixed oxidation and CF4 plasma treatment and then used to reinforce the fluoro elastomer (FE, a copolymer of trifluorochloroethylene and polyvinylidene fluoride. FE/MWCNT composite films were prepared from mixture solutions of ethylacetate and butylacetate, using untreated CNTs (UCNTs, acid-modified CNTs (ACNTs, and CF4 plasma-modified CNT (FCNTs. In each case, MWCNT content was 0.01 wt%, 0.05 wt%, 0.1 wt%, and 0.2 wt% with respect to the polymer. Morphology and mechanical properties were characterized by using scanning electron microscopy (SEM, Raman spectroscopy, as well as dynamic mechanical tests. The SEM results indicated that dispersion of ACNTs and especially FCNTs in FE was better than that of UCNTs. DMA indicated mechanical properties of FCNT composites were improved over ACNT and UCNT filled FE. The resulting electrical properties of the composites ranged from dielectric behavior to bulk conductivities of 10-2 Sm-1 and were found to depend strongly on the surface modification methods of MWCNTs.

  11. Long-term drug modification to the surface of mesenchymal stem cells by the avidin-biotin complex method.

    Science.gov (United States)

    Takayama, Yukiya; Kusamori, Kosuke; Hayashi, Mika; Tanabe, Noriko; Matsuura, Satoru; Tsujimura, Mari; Katsumi, Hidemasa; Sakane, Toshiyasu; Nishikawa, Makiya; Yamamoto, Akira

    2017-12-05

    Mesenchymal stem cells (MSCs) have various functions, making a significant contribution to tissue repair. On the other hand, the viability and function of MSCs are not lasting after an in vivo transplant, and the therapeutic effects of MSCs are limited. Although various chemical modification methods have been applied to MSCs to improve their viability and function, most of conventional drug modification methods are short-term and unstable and cause cytotoxicity. In this study, we developed a method for long-term drug modification to C3H10T1/2 cells, murine mesenchymal stem cells, without any damage, using the avidin-biotin complex method (ABC method). The modification of NanoLuc luciferase (Nluc), a reporter protein, to C3H10T1/2 cells by the ABC method lasted for at least 14 days in vitro without major effects on the cellular characteristics (cell viability, cell proliferation, migration ability, and differentiation ability). Moreover, in vivo, the surface Nluc modification to C3H10T1/2 cells by the ABC method lasted for at least 7 days. Therefore, these results indicate that the ABC method may be useful for long-term surface modification of drugs and for effective MSC-based therapy.

  12. Plasma modification of polypropylene surfaces and its alloying with styrene in situ

    Energy Technology Data Exchange (ETDEWEB)

    Ma Guiqiu, E-mail: magq@tju.edu.cn [School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 (China); Liu Ben; Li Chen; Huang Dinghai; Sheng Jing [School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 (China)

    2012-01-15

    The treatment of polypropylene surfaces has been studied by dielectric barrier discharges plasma of Ar. The structure and morphology of polypropylene surfaces of Ar plasma modification are characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectrometers and scanning electron microscope. The modified by plasma treatment of iPP (isotactic polypropylene) surface properties have been examined in a determination of free radicals. The modified active surfaces of polypropylene can induce grafting copolymerization of styrene onto polypropylene. The structure of grafting copolymer is characterized and the grafting percent of styrene onto polypropylene is calculated. The homopolymer of styrene can be formed under grafting copolymerization of styrene onto polypropylene, which follows that the alloying of polypropylene with styrene is achieved in situ.

  13. Ion beam modifications of near-surface compositions in ternary alloys

    International Nuclear Information System (INIS)

    Lam, N.Q.; Tang, S.; Yacout, A.M.; Rehn, L.E.; Stubbins, J.F.

    1990-11-01

    Changes in the surface and subsurface compositions of ternary alloys during elevated-temperature sputtering with inert-gas ions were investigated. Theoretically, a comprehensive kinetic model which includes all the basic processes, such as preferential sputtering, displacement mixing, Gibbsian segregation, radiation-enhanced diffusion and radiation-induced segregation, was developed. This phenomenological approach enabled to predict the effects of each individual process or of a combination of processes on the compositional modification in model alloys. Experimentally, measurements of compositional changes at the surface of a Ag-40at%Au -- 20at%Cu alloy during 3-keV Ne + bombardment at various temperatures were made, using ion scattering spectroscopy. These measurements were interpreted on the basis of the results of theoretical modeling. 8 refs., 2 figs

  14. Surface modification and stability of detonation nanodiamonds in microwave gas discharge plasma

    International Nuclear Information System (INIS)

    Stanishevsky, Andrei V.; Walock, Michael J.; Catledge, Shane A.

    2015-01-01

    Graphical abstract: - Highlights: • Single and binary gas plasma modification of nanodiamond powders studied. • Temperature-dependent effect of N 2 and N 2 /H 2 plasma reported for the first time. • Role of H 2 in H 2 /N 2 and H 2 /O 2 plasma modification of nanodiamond discussed. - Abstract: Detonation nanodiamonds (DND), with low hydrogen content, were exposed to microwave plasma generated in pure H 2 , N 2 , and O 2 gases and their mixtures, and investigated using X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Raman, and X-ray photoelectron spectroscopies. Considerable alteration of the DND surface was observed under the plasma conditions for all used gases, but the diamond structure of the DND particle core was preserved in most cases. The stabilizing effect of H 2 in H 2 /N 2 and H 2 /O 2 binary gas plasmas on the DND structure and the temperature-dependent formation of various CNH x surface groups in N 2 and H 2 /N 2 plasmas were observed and discussed for the first time. DND surface oxidation and etching were the main effects of O 2 plasma, whereas the N 2 plasma led to DND surfaces rich in amide groups below 1073 K and nitrile groups at higher temperatures. Noticeable graphitization of the DND core structure was detected only in N 2 plasma when the substrate temperature was above 1103 K.

  15. Surface modification of food contact materials for processing and packaging applications

    Science.gov (United States)

    Barish, Jeffrey A.

    This body of work investigates various techniques for the surface modification of food contact materials for use in food packaging and processing applications. Nanoscale changes to the surface of polymeric food packaging materials enables changes in adhesion, wettability, printability, chemical functionality, and bioactivity, while maintaining desirable bulk properties. Polymer surface modification is used in applications such as antimicrobial or non-fouling materials, biosensors, and active packaging. Non-migratory active packagings, in which bioactive components are tethered to the package, offer the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing non-migratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. Polyethylene glycol (PEG), a biocompatible polymer, is grafted from the surface of ozone treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. The grafting of PEG onto the surface of polymer packaging films is accomplished by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of non-migratory active packaging. Fouling on food contact surfaces during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. An electroless nickel coating is co-deposited with polytetrafluoroethylene onto stainless steel to test its ability to resist fouling on a pilot plant scale plate heat exchanger. Further

  16. Surface modification of materials by ion implantations for industrial and medical applications. Final report of a co-ordinated research project

    International Nuclear Information System (INIS)

    2000-07-01

    The objectives of the Co-ordinated Research Project on Modification of Materials by Ion Treatment for Industrial Applications were to develop economically acceptable surface modification techniques leading to thick treated layers, to predict ion beam mixing and impurity atom migration during and after implantation, and to evaluate the tribological post-implantation properties and performance of treated components. This TECDOC summarises the current status and prospects in surface modification by ion implantation methodology and technology, providing new information in basic and applied research

  17. Surface modification of materials by ion implantations for industrial and medical applications. Final report of a co-ordinated research project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The objectives of the Co-ordinated Research Project on Modification of Materials by Ion Treatment for Industrial Applications were to develop economically acceptable surface modification techniques leading to thick treated layers, to predict ion beam mixing and impurity atom migration during and after implantation, and to evaluate the tribological post-implantation properties and performance of treated components. This TECDOC summarises the current status and prospects in surface modification by ion implantation methodology and technology, providing new information in basic and applied research.

  18. Surface modification of yttria stabilized zirconia by ion implantation

    International Nuclear Information System (INIS)

    Scholten, D.

    1987-01-01

    The results of investigations of surface modification by ion implantation in zirconia are described. As dopant material, iron was investigated thoroughly. The depth distribution of implanted ions depends on implantation parameters and the dopant-matrix system. The investigations of thermal stability of some implanted iron profiles by RBS and AES are described. Special interest lies in the thermal stability under working conditions of the zirconia material (400-1000 0 C). Radiation damage introduced in the implanted layer was investigated using transmission electron microscopy on polycrystalline material and channeling experiments on a single crystal implanted with iron. 179 refs.; 87 figs.; 20 tabs

  19. Enhancing the formation and shear resistance of nitrifying biofilms on membranes by surface modification

    DEFF Research Database (Denmark)

    Lackner, Susanne; Holmberg, Maria; Terada, Akihiko

    2009-01-01

    Polypropylene (PP) membranes and polyethylene (PE) surfaces were modified to enhance formation and shear resistance of nitrifying biofilms for wastewater treatment applications. A combination of plasma polymerization and wet chemistry was employed to ultimately introduce poly(ethyleneglycol) (PEG......) chains with two different functional groups (-PEG-NH2 and -PEG-CH3). Biofilm growth experiments using a mixed nitrifying bacterial culture revealed that the specific combination of PEG chains with amino groups resulted in most biofilm formation on both PP and PE samples. Detachment experiments showed...... structure might be possible explanations of the superiority of the -PEG-NH2 modification. The success of the-PEG-NH2 modification was independent of the original surface and might, therefore, be used in wastewater treatment bioreactors to improve reactor performance by making biofilm formation more stable...

  20. Morphological evolution of InP nano-dots and surface modifications after keV irradiation

    International Nuclear Information System (INIS)

    Paramanik, Dipak; Sahu, S N; Varma, Shikha

    2008-01-01

    Evolution and coarsening behaviour of self-assembled nano-dots fabricated on an InP surface by 3 keV Ar ion sputtering have been studied in conjunction with the structural modifications at the surface. The dots have been produced in off-normal geometry but in the absence of rotation. For small sputtering durations, the dots coarsen and agglomerate, up to a critical time t c , while the surface roughens and experiences a tensile stress. A relaxation in this stress is observed after the surface becomes amorphized at t c , beyond which an inverse coarsening, fragmentation of dots and a smoothened surface are observed

  1. Modification of preheated tungsten surface after irradiation at the GOL-3 facility

    Energy Technology Data Exchange (ETDEWEB)

    Shoshin, A.A., E-mail: shoshin@mail.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Arakcheev, A.S.; Arzhannikov, A.V. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Burdakov, A.V. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Novosibirsk 630092 (Russian Federation); Huber, A. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Ivanov, I.A. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Kuklin, K.N. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Polosatkin, S.V.; Postupaev, V.V.; Sinitsky, S.L. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Vasilyev, A.A. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-12-15

    Highlights: • Preheated tungsten was irradiated at the GOL-3 facility with plasma loads corresponding to the ITER type I ELMs. • The crack pattern and the quantity of bubbles depend on the initial temperatures of the target. • The orientation of major crack networks correlates with the direction of machining of the samples. • Dust impact craters were found. - Abstract: The study is devoted to tungsten surface modification after irradiation at the GOL-3 facility with plasma loads corresponding to the ITER type I ELMs. In order to emulate heating with a steady plasma flux in the ITER divertor, some of the tungsten samples were preheated up to 500 °C. It was found out that the behavior of the surface modification (the crack pattern and the number of bubbles) depends on the initial temperature of the targets. While the orientation of major crack networks correlates with the direction of machining of the samples. Afterwards we have observed the process of craters’ formation caused by dust particle impacts.

  2. Modifications of the hydriding kinetics of a metallic surface, using ion implantation

    International Nuclear Information System (INIS)

    Crusset, D.

    1992-10-01

    Uranium reacts with hydrogen to form an hydride: this reaction leads to the total destruction of the material. To modify the reactivity of an uranium surface towards hydrogen, ion implantation was selected, among surface treatments techniques. Four elements (carbon, nitrogen, oxygen, sulfur) were implanted to different doses. The results show a modification of the hydriding mechanism and a significant increase in the reaction induction times, notably at high implantation doses. Several techniques (SIMS, X-rays phases analysis and residual stresses determination) were used to characterize the samples and understand the different mechanisms involved

  3. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    Science.gov (United States)

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  4. Structural and energetic study of cation-π-cation interactions in proteins.

    Science.gov (United States)

    Pinheiro, Silvana; Soteras, Ignacio; Gelpí, Josep Lluis; Dehez, François; Chipot, Christophe; Luque, F Javier; Curutchet, Carles

    2017-04-12

    Cation-π interactions of aromatic rings and positively charged groups are among the most important interactions in structural biology. The role and energetic characteristics of these interactions are well established. However, the occurrence of cation-π-cation interactions is an unexpected motif, which raises intriguing questions about its functional role in proteins. We present a statistical analysis of the occurrence, composition and geometrical preferences of cation-π-cation interactions identified in a set of non-redundant protein structures taken from the Protein Data Bank. Our results demonstrate that this structural motif is observed at a small, albeit non-negligible frequency in proteins, and suggest a preference to establish cation-π-cation motifs with Trp, followed by Tyr and Phe. Furthermore, we have found that cation-π-cation interactions tend to be highly conserved, which supports their structural or functional role. Finally, we have performed an energetic analysis of a representative subset of cation-π-cation complexes combining quantum-chemical and continuum solvation calculations. Our results point out that the protein environment can strongly screen the cation-cation repulsion, leading to an attractive interaction in 64% of the complexes analyzed. Together with the high degree of conservation observed, these results suggest a potential stabilizing role in the protein fold, as demonstrated recently for a miniature protein (Craven et al., J. Am. Chem. Soc. 2016, 138, 1543). From a computational point of view, the significant contribution of non-additive three-body terms challenges the suitability of standard additive force fields for describing cation-π-cation motifs in molecular simulations.

  5. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    International Nuclear Information System (INIS)

    Mora, M.B. de la; Bornacelli, J.; Nava, R.; Zanella, R.; Reyes-Esqueda, J.A.

    2014-01-01

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material

  6. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    Energy Technology Data Exchange (ETDEWEB)

    Mora, M.B. de la; Bornacelli, J. [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Nava, R. [Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos 62580 (Mexico); Zanella, R. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Reyes-Esqueda, J.A., E-mail: betarina@gmail.com [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico)

    2014-02-15

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material.

  7. PREFACE Surface Modifications of Diamond and Related Materials (Session D, E-MRS Spring Meeting)

    Science.gov (United States)

    Nebel, Christoph E.

    2010-11-01

    This special issue contains selected papers which were presented at the E-MRS Symposium BIOMATERIALS, SENSORS & SURFACES, D: 'Surface modifications of diamond and related materials' which was held on 7-9 June 2010 in Strasbourg (France). With about 54 oral and poster presentations given from teams all over the world it was a very interesting, dense and lively meeting. The symposium focused on chemical modifications applied to graft surfaces of diamond, nano-diamond particles, diamond-like carbon, graphene, graphite and carbon nano-tubes with linker molecular layers for realization of bio-sensors, bio-markers, separation techniques, and switchable chemical links. Presented techniques span spontaneous bonding to photo-chemical attachment, electrochemical modifications, to Suzuki-coupling of aryl molecules. Special attention was drawn to mechanisms driving bonding kinetics such as electron transfer reactions, hydrogen cleavage reactions by nucleophilic molecules and growths schemas which vary from correlated two-dimensional chain reactions to three-dimensional cross polymerization. Hydrogen terminations, surface defects, surface roughness and atomic arrangements of surface carbon atoms were of interest to elucidate bonding mechanisms. In addition, bonding stability, either of linker molecules or of complex functionalized surfaces with DNA, proteins and enzymes was discussed by several speakers as well as details of the electronic interfaces between solid transducers and bio-layers. Here the characterization of surface and interface defect densities, of Fermi level pinning and of electron transfer rates was a major topic. Miniaturization of sensor area and application of new detection schemas was discussed. Diamond nano-particles which are increasingly used as biomarkers in drug delivery experiments also attracted attention. The organizers express our gratitude to the international members of the scientific committee who actively contributed to ensure an attractive

  8. Surface Modification of Micro-Alloyed High-Strength Low-Alloy Steel by Controlled TIG Arcing Process

    Science.gov (United States)

    Ghosh, P. K.; Kumar, Ravindra

    2015-02-01

    Surface modification of micro-alloyed HSLA steel plate has been carried out by autogenous conventional and pulse current tungsten inert gas arcing (TIGA) processes at different welding parameters while the energy input was kept constant. At a given energy input the influence of pulse parameters on the characteristics of surface modification has been studied in case of employing single and multi-run procedure. The role of pulse parameters has been studied by considering their summarized influence defined by a factor Φ. The variation in Φ and pulse frequency has been found to significantly affect the thermal behavior of fusion and accordingly the width and penetration of the modified region along with its microstructure, hardness and wear characteristics. It is found that pulsed TIGA is relatively more advantageous over the conventional TIGA process, as it leads to higher hardness, improved wear resistance, and a better control over surface characteristics.

  9. Surface modification of calcium–copper hydroxyapatites using polyaspartic acid

    International Nuclear Information System (INIS)

    Othmani, Masseoud; Aissa, Abdallah; Bachoua, Hassen; Debbabi, Mongi

    2013-01-01

    Highlights: ► The reaction of polyaspartic acid with calcium hydroxyapatite and mixed calcium–copper hydroxyapatite is tested. ► Chemical analysis shows that the presence of copper in the apatitic structure increases the reactivity of the apatite surface. ► X-ray powder analysis shows the conservation of unique crystalline phase of hydroxyapatite after copper incorporation and/or PASP acid reacting. ► IR spectra show the formation of the formation of organometallic bond M-O-C (M=Ca or Cu) on the apatitic surface. ► Transmission electron microscopy (TEM) micrographs and atomic force microscopy (AFM) indicated that the texture surface was changed by the grafting. - Abstract: Mixed calcium–copper hydroxyapatite (Ca–CuHAp), with general formula Ca (10−x) Cu x (PO 4 ) 6 (OH) 2 , where 0 ≤ x ≤ 0.75 was prepared in aqueous medium in the presence of different concentrations of poly-L-aspartic acid (PASP). XRD, IR, TG-DTA, TEM-EDX, AFM and chemical analyses were used to characterize the structure, morphology and composition of the products. All techniques show the formation of new hybrid compounds Ca–CuHAp–PASP. The presence of the grafting moiety on the apatitic material is more significant with increasing of copper amount and/or organic concentration in the starting solution. These increases lead to the affectation of apatite crystallinity. The IR spectroscopy shows the conservation of (P-OH) band of (HPO 4 ) 2− groups, suggesting that PASP acid was interacted only with metallic cations of hydroxyapatite.

  10. Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators

    Science.gov (United States)

    Huang, Xin; Wang, Weiping; Zheng, Zhi; Fan, Wenling; Mao, Chun; Shi, Jialiang; Li, Lei

    2016-01-01

    The hemocompatibility of polymethyl pentene (PMP) hollow fiber membranes (HFMs) was improved through surface modification for membrane oxygenator applications. The modification was performed stepwise with the following: (1) oxygen plasma treatment, (2) functionalization of monosort hydroxyl groups through NaBH4 reduction, and (3) grafting 2-methacryloyloxyethyl phosphorylcholine (MPC) or heparin. SEM, ATR-FTIR, and XPS analyses were conducted to confirm successful grafting during the modification. The hemocompatibility of PMP HFMs was analyzed and compared through protein adsorption, platelet adhesion, and coagulation tests. Pure CO2 and O2 permeation rates, as well as in vitro gas exchange rates, were determined to evaluate the mass transfer properties of PMP HFMs. SEM results showed that different nanofibril topographies were introduced on the HFM surface. ATR-FTIR and XPS spectra indicated the presence of functionalization of monosort hydroxyl group and the grafting of MPC and heparin. Hemocompatibility evaluation results showed that the modified PMP HFMs presented optimal hemocompatibility compared with pristine HFMs. Gas permeation results revealed that gas permeation flux increased in the modified HFMs because of dense surface etching during the plasma treatment. The results of in vitro gas exchange rates showed that all modified PMP HFMs presented decreased gas exchange rates because of potential surface fluid wetting. The proposed strategy exhibits a potential for fabricating membrane oxygenators for biomedical applications to prevent coagulation formation and alter plasma-induced surface topology and composition.

  11. Modification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: a review

    Directory of Open Access Journals (Sweden)

    Negar Lashgari

    2016-01-01

    Full Text Available The recognition of the biologically and environmentally important ions is of great interest in the field of chemical sensors in recent years. The fluorescent sensors as a powerful optical analytical technique for the detection of low level of various analytes such as anions and metal cations have been progressively developed due to the simplicity, cost effective, and selectivity for monitoring specific analytes in various systems. Organic-inorganic hybrid nanomaterials have important advantages as solid chemosensors and various innovative hybrid materials modified by fluorescence molecules were recently prepared. On the other hand, the homogeneous porosity and large surface area of mesoporous silica make it a promising inorganic support. SBA-15 as a two-dimensional hexagonal mesoporous silica material with stable structure, thick walls, tunable pore size, and high specific surface area is a valuable substrate for modification with different organic chelating groups. This review highlights the fluorescent chemosensors for ionic species based on modification of the mesoporous silica SBA-15 with different organic molecules, which have been recently developed from our laboratory.

  12. Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance

    International Nuclear Information System (INIS)

    Pacquentin, Wilfried; Caron, Nadège; Oltra, Roland

    2014-01-01

    Surface modifications of AISI 304L stainless steel by laser surface melting (LSM) were investigated using a nanosecond pulsed laser-fibre doped by ytterbium at different overlaps. The objective was to study the change in the corrosion properties induced by the treatment of the outer-surface of the stainless steel without modification of the bulk material. Different analytical techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and glow discharge optical emission spectrometry (GDOES) were used to characterize the laser-melted surface. The corrosion resistance was evaluated in a chloride solution at room temperature by electrochemical tests. The results showed that the crystallographic structure, the chemical composition, the properties of the induced oxide layer and consequently the pitting corrosion resistance strongly depend on the overlap rate. The most efficient laser parameters led to an increase of the pitting potential by more than 300 mV, corresponding to a quite important improvement of the corrosion resistance. This latter was correlated to chromium enrichment (47 wt.%) at the surface of the stainless steel and the induced absence of martensite and ferrite phases. However, these structural and chemical modifications were not sufficient to explain the change in corrosion behaviour: defects and adhesion of the surface oxide layer must have been taken into consideration.

  13. Enhancing adhesion of yeast brewery strains to chamotte carriers through aminosilane surface modification.

    Science.gov (United States)

    Berlowska, Joanna; Kregiel, Dorota; Ambroziak, Wojciech

    2013-07-01

    The adhesion of cells to solid supports is described as surface-dependent, being largely determined by the properties of the surface. In this study, ceramic surfaces modified using different organosilanes were tested for proadhesive properties using industrial brewery yeast strains in different physiological states. Eight brewing strains were tested: bottom-fermenting Saccharomyces pastorianus and top-fermenting Saccharomyces cerevisiae. To determine adhesion efficiency light microscopy, scanning electron microscopy and the fluorymetric method were used. Modification of chamotte carriers by 3-(3-anino-2-hydroxy-1-propoxy) propyldimethoxysilane and 3-(N, N-dimethyl-N-2-hydroxyethyl) ammonium propyldimethoxysilane groups increased their biomass load significantly.

  14. Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine

    KAUST Repository

    Nanda, Himansu Sekhar

    2016-11-03

    The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium)-doped cerium oxide nanoparticles (SmCNPs) as model redox altered CNPs of biological relevance. SmCNP surface modified with hydrophilic biocompatible (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl) triethoxysilane (MEEETES) were prepared using ammonia-induced ethylene glycol-assisted precipitation method and were characterized using a variety of complementary characterization techniques. The chemical interaction of functional moieties with the surface of doped nanoparticle was studied using powerful 13C cross polarization magic angle sample spinning nuclear magnetic resonance spectroscopy. The results demonstrated the production of the extremely small size MEEETES surface modified doped nanoparticles with significant reduction in aggregation compared to their unmodified state. Moreover, the functional moieties had strong chemical interaction with the surface of the doped nanoparticles. The biocompatible surface modification using MEEETES should also be extended to several other transition metal ion doped and co-doped CNPs for the production of aqueous dispersible redox altered CNPs that are promising for nanobiology and medicine.

  15. Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine

    KAUST Repository

    Nanda, Himansu Sekhar

    2016-01-01

    The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium)-doped cerium oxide nanoparticles (SmCNPs) as model redox altered CNPs of biological relevance. SmCNP surface modified with hydrophilic biocompatible (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl) triethoxysilane (MEEETES) were prepared using ammonia-induced ethylene glycol-assisted precipitation method and were characterized using a variety of complementary characterization techniques. The chemical interaction of functional moieties with the surface of doped nanoparticle was studied using powerful 13C cross polarization magic angle sample spinning nuclear magnetic resonance spectroscopy. The results demonstrated the production of the extremely small size MEEETES surface modified doped nanoparticles with significant reduction in aggregation compared to their unmodified state. Moreover, the functional moieties had strong chemical interaction with the surface of the doped nanoparticles. The biocompatible surface modification using MEEETES should also be extended to several other transition metal ion doped and co-doped CNPs for the production of aqueous dispersible redox altered CNPs that are promising for nanobiology and medicine.

  16. Preparation and Biocompatible Surface Modification of Redox Altered Cerium Oxide Nanoparticle Promising for Nanobiology and Medicine

    Directory of Open Access Journals (Sweden)

    Himansu Sekhar Nanda

    2016-11-01

    Full Text Available The biocompatible surface modification of metal oxide nanoparticles via surface functionalization technique has been used as an important tool in nanotechnology and medicine. In this report, we have prepared aqueous dispersible, trivalent metal ion (samarium-doped cerium oxide nanoparticles (SmCNPs as model redox altered CNPs of biological relevance. SmCNP surface modified with hydrophilic biocompatible (6-{2-[2-(2-methoxy-ethoxy-ethoxy]-ethoxy}-hexyl triethoxysilane (MEEETES were prepared using ammonia-induced ethylene glycol-assisted precipitation method and were characterized using a variety of complementary characterization techniques. The chemical interaction of functional moieties with the surface of doped nanoparticle was studied using powerful 13C cross polarization magic angle sample spinning nuclear magnetic resonance spectroscopy. The results demonstrated the production of the extremely small size MEEETES surface modified doped nanoparticles with significant reduction in aggregation compared to their unmodified state. Moreover, the functional moieties had strong chemical interaction with the surface of the doped nanoparticles. The biocompatible surface modification using MEEETES should also be extended to several other transition metal ion doped and co-doped CNPs for the production of aqueous dispersible redox altered CNPs that are promising for nanobiology and medicine.

  17. The increase of apatite layer formation by the poly(3-hydroxybutyrate) surface modification of hydroxyapatite and β-tricalcium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Szubert, M., E-mail: mm.szubert@gmail.com [Faculty of Chemical Technology, Poznan University of Technology, Poznan (Poland); Adamska, K. [Faculty of Chemical Technology, Poznan University of Technology, Poznan (Poland); Szybowicz, M. [Faculty of Technical Physics, Poznan University of Technology, Poznan (Poland); Jesionowski, T. [Faculty of Chemical Technology, Poznan University of Technology, Poznan (Poland); Buchwald, T. [Faculty of Technical Physics, Poznan University of Technology, Poznan (Poland); Voelkel, A. [Faculty of Chemical Technology, Poznan University of Technology, Poznan (Poland)

    2014-01-01

    The aim of this study was the surface modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) grafting and characterization of modificates. The bioactivity examination was carried out by the determination to grow an apatite layer on modified materials during incubation in simulated body fluid at 37 °C. The additional issue taken up in this paper was to investigate the influence of fluid replacement. The process of the surface modification of biomaterials was evaluated by means of infrared and Raman spectroscopy. Formation of the apatite layer was assessed by means of scanning electron microscopy and confirmed by energy dispersive, Raman and Fourier transformed infrared spectroscopy. During exposure in simulated body fluid, the variation of the zeta potential, pH measurement and relative weight was monitored. Examination of scanning electron microscopy micrographs suggests that modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) significantly increases apatite layer formation. Raman spectroscopy evaluation revealed that the formation of the apatite layer was more significant in the case of hydroxyapatite modificate, when compared to the β-tricalcium phosphate modificate. Both modificates were characterized by stable pH, close to the natural pH of human body fluids. Furthermore, we have shown that a weekly changed, simulated body fluid solution increases apatite layer formation. - Highlights: • Surface modification of HA and β-TCP was performed by PHB grafting. • The growth of apatite layer on materials was examined in simulated body fluid (SBF). • The bioactivity of obtained materials was proved. • The replacement of SBF solution plays an important role in the process of apatite formation.

  18. The increase of apatite layer formation by the poly(3-hydroxybutyrate) surface modification of hydroxyapatite and β-tricalcium phosphate

    International Nuclear Information System (INIS)

    Szubert, M.; Adamska, K.; Szybowicz, M.; Jesionowski, T.; Buchwald, T.; Voelkel, A.

    2014-01-01

    The aim of this study was the surface modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) grafting and characterization of modificates. The bioactivity examination was carried out by the determination to grow an apatite layer on modified materials during incubation in simulated body fluid at 37 °C. The additional issue taken up in this paper was to investigate the influence of fluid replacement. The process of the surface modification of biomaterials was evaluated by means of infrared and Raman spectroscopy. Formation of the apatite layer was assessed by means of scanning electron microscopy and confirmed by energy dispersive, Raman and Fourier transformed infrared spectroscopy. During exposure in simulated body fluid, the variation of the zeta potential, pH measurement and relative weight was monitored. Examination of scanning electron microscopy micrographs suggests that modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) significantly increases apatite layer formation. Raman spectroscopy evaluation revealed that the formation of the apatite layer was more significant in the case of hydroxyapatite modificate, when compared to the β-tricalcium phosphate modificate. Both modificates were characterized by stable pH, close to the natural pH of human body fluids. Furthermore, we have shown that a weekly changed, simulated body fluid solution increases apatite layer formation. - Highlights: • Surface modification of HA and β-TCP was performed by PHB grafting. • The growth of apatite layer on materials was examined in simulated body fluid (SBF). • The bioactivity of obtained materials was proved. • The replacement of SBF solution plays an important role in the process of apatite formation

  19. Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Miksovsky, J. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Voss, A. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Kozarova, R. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Kocourek, T.; Pisarik, P. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Ceccone, G. [Unit Nanobiosciences, European Commission Joint Research Centre, Ispra (Italy); Kulisch, W. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Jelinek, M. [Institute of Physics ASCR, Prague (Czech Republic); Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno (Czech Republic); Apostolova, M.D. [Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia (Bulgaria); Reithmaier, J.P. [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany); Popov, C., E-mail: popov@ina.uni-kassel.de [Institute of Nanostructure Technologies and Analytics, Center for Interdisciplinary Nanostructure Science and Technology, University of Kassel (Germany)

    2014-04-01

    Graphical abstract: - Highlights: • UNCD and DLC films were modified by UV/O{sub 3} treatments, O{sub 2} or NH{sub 3}-containing plasmas. • Surface composition, wettability and surface energy change upon modifications. • Higher efficiency of UNCD modifications was observed. • Cell attachment and growth were influenced by the surface termination and roughness. - Abstract: Diamond and diamond-like carbon (DLC) films possess a set of excellent physical and chemical properties which together with a high biocompatibility make them attractive candidates for a number of medical and biotechnological applications. In the current work thin ultrananocrystalline diamond (UNCD) and DLC films were comparatively investigated with respect to cell attachment and proliferation after different surface modifications. The UNCD films were prepared by microwave plasma enhanced chemical vapor deposition, the DLC films by pulsed laser deposition (PLD). The films were comprehensively characterized with respect to their basic properties, e.g. crystallinity, morphology, chemical bonding nature, etc. Afterwards the UNCD and DLC films were modified applying O{sub 2} or NH{sub 3}/N{sub 2} plasmas and UV/O{sub 3} treatments to alter their surface termination. The surface composition of as-grown and modified samples was studied by X-ray photoelectron spectroscopy (XPS). Furthermore the films were characterized by contact angle measurements with water, formamide, 1-decanol and diiodomethane; from the results obtained the surface energy with its dispersive and polar components was calculated. The adhesion and proliferation of MG63 osteosarcoma cells on the different UNCD and DLC samples were assessed by measurement of the cell attachment efficiency and MTT assays. The determined cell densities were compared and correlated with the surface properties of as-deposited and modified UNCD and DLC films.

  20. Surface Modifications of Support Partitions for Stabilizing Biomimetic Membrane Arrays

    DEFF Research Database (Denmark)

    Perry, Mark; Hansen, Jesper Schmidt; Jensen, Karin Bagger Stibius

    2011-01-01

    with a high signal-to-noise (s/n) ratio. We demonstratesd this by reconstituting gA and α-hemolysin (α-HL) into BLM arrays. The improvement in membrane array lifetime and s/n ratio demonstrates that surface plasma polymerization of the supporting partition can be used to increase the stability of biomimetic......Black lipid membrane (BLM) formation across apertures in an ethylene tetra-fluoroethylene (ETFE) partition separating two aqueous compartments is an established technique for the creation of biomimetic membranes. Recently multi-aperture BLM arrays have attracted interest and in order to increase...... BLM array stability we studied the effect of covalently modifying the partition substrate using surface plasma polymerization with hydrophobic n-hexene, 1-decene and hexamethyldisiloxane (HMDSO) as modification groups. Average lifetimes across singlesided HMDSO modified partitions or using 1-decene...

  1. Surface modification of Ti-30Ta alloy by electrospun PCL deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wada, C.M.; Rangel, A.L.R.; Souza, M.A. de; Claro, A.P.R.A.; Rezende, M.C.R. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil); Almeida, R. dos S. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2014-07-01

    Full text: Surface modifications techniques have been used for change the inert surface of the titanium alloys for better interaction. Ingots of the experimental alloy Ti30Ta were melted in an arc furnace and re-melted ten times at least. They were homogenized under vacuum at 1000 °C for 86. 4 ks to eliminate chemical segregation and cold-worked by swaging. Discs were immersed in aqueous NaOH solution for 24 h, dried at room temperature, immersed in HCl and dried at 40 °C in oven for 24 hours. Followed, PCL fibers were deposited on the Ti30Ta alloy discs surfaces by electrospinning. Plasma treatment was carried out for change PCL electrospun by using stainless steel plasma reactor. Samples were immersed in SBF 5x solution for apatite growth. Surfaces were evaluated by using SEM, X-rays diffraction and contact angle. Samples exhibited hydrophilic behavior after plasma treatment and SBF immersion. Results are very interesting for biomedical applications. (author)

  2. Surface modification of Ti-30Ta alloy by electrospun PCL deposition

    International Nuclear Information System (INIS)

    Wada, C.M.; Rangel, A.L.R.; Souza, M.A. de; Claro, A.P.R.A.; Rezende, M.C.R.; Almeida, R. dos S.

    2014-01-01

    Full text: Surface modifications techniques have been used for change the inert surface of the titanium alloys for better interaction. Ingots of the experimental alloy Ti30Ta were melted in an arc furnace and re-melted ten times at least. They were homogenized under vacuum at 1000 °C for 86. 4 ks to eliminate chemical segregation and cold-worked by swaging. Discs were immersed in aqueous NaOH solution for 24 h, dried at room temperature, immersed in HCl and dried at 40 °C in oven for 24 hours. Followed, PCL fibers were deposited on the Ti30Ta alloy discs surfaces by electrospinning. Plasma treatment was carried out for change PCL electrospun by using stainless steel plasma reactor. Samples were immersed in SBF 5x solution for apatite growth. Surfaces were evaluated by using SEM, X-rays diffraction and contact angle. Samples exhibited hydrophilic behavior after plasma treatment and SBF immersion. Results are very interesting for biomedical applications. (author)

  3. Plasma transferred arc surface modification of atmospheric plasma sprayed ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ulutan, Mustafa; Kilicay, Koray; Kaya, Esad; Bayar, Ismail [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2016-08-15

    In this study, a 90MnCrV8 steel surface was coated with aluminum oxide and chromium oxide powders through the Atmospheric plasma spray (APS) and Plasma transferred arc (PTA) methods. The effects of PTA surface melting on the microstructure, hardness, and wear behavior were investigated. The microstructures of plasma-sprayed and modified layers were characterized by Optical microscopy (OM), Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS). The dry-sliding wear properties of the samples were determined through the ball-on-disk wear test method. Voids, cracks, and nonhomogeneous regions were observed in the microstructure of the APS ceramic-coated surface. These microstructure defects were eliminated by the PTA welding process. The microhardness of the samples was increased. Significant reductions in wear rate were observed after the PTA surface modification. The wear resistance of ceramic coatings increased 7 to 12 times compared to that of the substrate material.

  4. Laser-induced surface modification of biopolymers – micro/nanostructuring and functionalization

    Science.gov (United States)

    Stankova, N. E.; Atanasov, P. A.; Nedyalkov, N. N.; Tatchev, Dr; Kolev, K. N.; Valova, E. I.; Armyanov, St. A.; Grochowska, K.; Śliwiński, G.; Fukata, N.; Hirsch, D.; Rauschenbach, B.

    2018-03-01

    The medical-grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial in medicine for preparation of high-tech devices because of its remarkable properties. In this paper, we present experimental results on surface modification of PDMS elastomer by using ultraviolet, visible, and near-infrared ns-laser system and investigation of the chemical composition and the morphological structure inside the treated area in dependence on the processing parameters – wavelength, laser fluence and number of pulses. Remarkable chemical transformations and changes of the morphological structure were observed, resulting in the formation of a highly catalytically active surface, which was successfully functionalized via electroless Ni and Pt deposition by a sensitizing-activation free process. The results obtained are very promising in view of applying the methods of laser-induced micro- and nano-structuring and activation of biopolymers’ surface and further electroless metal plating to the preparation of, e.g., multielectrode arrays (MEAs) devices in neural and muscular surface interfacing implantable systems.

  5. Cationic antimicrobial peptides inactivate Shiga toxin-encoding bacteriophages

    Science.gov (United States)

    Del Cogliano, Manuel E.; Hollmann, Axel; Martinez, Melina; Semorile, Liliana; Ghiringhelli, Pablo D.; Maffía, Paulo C.; Bentancor, Leticia V.

    2017-12-01

    Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: 1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, 2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and 3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  6. Cationic Antimicrobial Peptides Inactivate Shiga Toxin-Encoding Bacteriophages

    Directory of Open Access Journals (Sweden)

    Manuel E. Del Cogliano

    2017-12-01

    Full Text Available Shiga toxin (Stx is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1 direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2 cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3 inactivation by cationic peptides could be sequence (or structure specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  7. On the Electrodeposition of Ca-P Coatings on Nitinol Alloy: A Comparison Between Different Surface Modification Methods

    Science.gov (United States)

    Etminanfar, M. R.; Khalil-Allafi, J.

    2016-02-01

    In this study, a combination of surface modification process and the electrochemical deposition of Ca-P coatings was used for the modification of the Nitinol shape memory alloy. DSC, SEM, GIB-XRD, FT-Raman, XPS, and FTIR measurements were performed for the characterization of the samples. Results indicated that chemical etching and boiling of the samples in distilled water formed TiO film on the surface. After the chemical modification, subsequent aging of the sample, at 470 °C for 30 min, converted the oxide film to a stable structure of titanium dioxide. In that case, the treated substrate indicated a superelastic behavior. At the same electrochemical condition, the treated substrate revealed more stable and uniform Ca-P coatings in comparison with the abraded Nitinol substrate. This difference was attributed to the presence of hydroxyl groups on the titanium dioxide surface. Also, after soaking the sample in SBF, the needle-like coating on the treated substrate was completely covered with the hydroxyapatite phase which shows a good bioactivity of the coating.

  8. Surface modification and stability of detonation nanodiamonds in microwave gas discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Stanishevsky, Andrei V., E-mail: astan@uab.edu; Walock, Michael J.; Catledge, Shane A.

    2015-12-01

    Graphical abstract: - Highlights: • Single and binary gas plasma modification of nanodiamond powders studied. • Temperature-dependent effect of N{sub 2} and N{sub 2}/H{sub 2} plasma reported for the first time. • Role of H{sub 2} in H{sub 2}/N{sub 2} and H{sub 2}/O{sub 2} plasma modification of nanodiamond discussed. - Abstract: Detonation nanodiamonds (DND), with low hydrogen content, were exposed to microwave plasma generated in pure H{sub 2}, N{sub 2}, and O{sub 2} gases and their mixtures, and investigated using X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Raman, and X-ray photoelectron spectroscopies. Considerable alteration of the DND surface was observed under the plasma conditions for all used gases, but the diamond structure of the DND particle core was preserved in most cases. The stabilizing effect of H{sub 2} in H{sub 2}/N{sub 2} and H{sub 2}/O{sub 2} binary gas plasmas on the DND structure and the temperature-dependent formation of various CNH{sub x} surface groups in N{sub 2} and H{sub 2}/N{sub 2} plasmas were observed and discussed for the first time. DND surface oxidation and etching were the main effects of O{sub 2} plasma, whereas the N{sub 2} plasma led to DND surfaces rich in amide groups below 1073 K and nitrile groups at higher temperatures. Noticeable graphitization of the DND core structure was detected only in N{sub 2} plasma when the substrate temperature was above 1103 K.

  9. Surface modification of RuO2 electrodes by laser irradiation and ion ...

    Indian Academy of Sciences (India)

    RuO2 thin layers were deposited on Ti supports by thermal decomposition of RuCl3 at 400°C. Some of the samples were subjected to laser irradiation between 0.5 and 1.5 J cm-2. Some others to Kr bombardment with doses between 1015 and 1016 cm-2. Modifications introduced by the surface treatments were monitored ...

  10. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation.

    Science.gov (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-28

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  11. Chitosan surface modified electrospun poly(ε-caprolactone)/carbon nanotube composite fibers with enhanced mechanical, cell proliferation and antibacterial properties.

    Science.gov (United States)

    Wang, Siyu; Li, Yumei; Zhao, Rui; Jin, Toufeng; Zhang, Li; Li, Xiang

    2017-11-01

    The surface modification is one of the most effective methods to improve the bioactivity and cell affinity effect of electrospun poly(ε-caprolactone) (PCL) fibers. In the present study, chitosan (CS), a cationic polysaccharide, was used to modify the surface of electrospun PCL fibers. To obtain strong interaction between CS and PCL fibers, negatively charged PCL fibers were prepared by the incorporation of acid-treated carbon nanotubes (CNTs) into the fibers. In this way, the positively charged chitosan could be immobilized onto the surface of PCL fibers tightly by the electrostatic attraction. Besides, the incorporation of CNTs could significantly improve the mechanical strength of electrospun PCL fibers even after the CS modification, which guaranteed their usability in practical applications. The CS modification could effectively improve the wettability and bioactivity of electrospun PCL fibers. Cultivation of L929 fibroblast cells on the obtained fibers and the antibacterial activity were both evaluated to discuss the influence of chitosan modification. The results indicated that this modification could enhance the cell proliferation and antibacterial ability in comparison to the non-modified groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Surface modification and functionalization of carbon nanotube with some organic compounds

    International Nuclear Information System (INIS)

    Le, Van Thu; Ngo, Cao Long; Le, Quoc Trung; Ngo, Trinh Tung; Nguyen, Duc Nghia; Vu, Minh Thanh

    2013-01-01

    In this work the surface modification and functionalization of carbon nanotubes (CNTs) were investigated. CNTs were firstly treated by acid mixture H 2 SO 4 /HNO 3 to introduce the carboxylic group onto the surface of CNTs. This carboxylic group was used as reaction precursor in the functionalization. Two functional groups, dodecylamine (DDA) and 3-aminopropyl triethoxysilane (3-APTES), were successfully covalently attached to CNTs. The functionalized CNTs were characterized by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, differential scanning calorimetry and thermal gravimetric analysis (DSC/TGA) and transmission electron microscopy (TEM) methods. The CNTs attached to the organofunctional moieties have greater versatility for further utilization in different application fields such as biology, nanocomposites, solar energy, etc. (paper)

  13. Surface modification by EUV laser beam based on capillary discharge

    Czech Academy of Sciences Publication Activity Database

    Frolov, Oleksandr; Koláček, Karel; Schmidt, Jiří; Štraus, Jaroslav; Prukner, Václav; Shukurov, A.

    -, č. 58 (2011), s. 484-487 ISSN 2010-376X. [International Conference on Fusion and Plasma Physics. Bali, Indonésie, 26.10.2011-28.10.2011] R&D Projects: GA AV ČR KAN300100702; GA MŠk LA08024; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508 Keywords : soft x-ray * EUV * laser * radiation * source * capillary * discharge * plasma * ablation * surface modification Subject RIV: BL - Plasma and Gas Discharge Physics http://www.waset.org/journals/waset/v58/v58-99.pdf

  14. Interaction of divalent cations with basal planes and edge surfaces of phyllosilicate minerals: muscovite and talc.

    Science.gov (United States)

    Yan, Lujie; Masliyah, Jacob H; Xu, Zhenghe

    2013-08-15

    Smooth basal plane and edge surfaces of two platy phyllosilicate minerals (muscovite and talc) were prepared successfully to allow accurate colloidal force measurement using an atomic force microscope (AFM), which allowed us to probe independently interactions of divalent cations with phyllosilicate basal planes and edge surfaces. The Stern potential of basal planes and edge surfaces was obtained by fitting the measured force profiles with the classical DLVO theory. The fitted Stern potential of the muscovite basal plane became less negative with increasing Ca(2+) or Mg(2+) concentration but did not reverse its sign even at Ca(2+) or Mg(2+) concentrations up to 5 mM. In contrast, the Stern potential of the muscovite edge surface reversed at Ca(2+) or Mg(2+) concentrations as low as 0.1 mM. The Stern potential of the talc basal plane became less negative with 0.1 mM Ca(2+) addition and nearly zero with 1 mM Ca(2+) addition. The Stern potential of talc edge surface became reversed with 0.1 mM Ca(2+) or 1 mM Mg(2+) addition, showing not only a different binding mechanism of talc basal planes and edge surfaces with Ca(2+) and Mg(2+), but also different binding mechanism between Ca(2+) and Mg(2+) ions with basal planes and edge surfaces. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Surface Modification of Carbon Nanotubes with Conjugated Polyelectrolytes: Fundamental Interactions and Applications in Composite Materials, Nanofibers, Electronics, and Photovoltaics

    KAUST Repository

    Ezzeddine, Alaa

    2015-10-01

    Ever since their discovery, Carbon nanotubes (CNTs) have been renowned to be potential candidates for a variety of applications. Nevertheless, the difficulties accompanied with their dispersion and poor solubility in various solvents have hindered CNTs potential applications. As a result, studies have been developed to address the dispersion problem. The solution is in modifying the surfaces of the nanotubes covalently or non-covalently with a desired dispersant. Various materials have been employed for this purpose out of which polymers are the most common. Non-covalent functionalization of CNTs via polymer wrapping represents an attractive method to obtain a stable and homogenous CNTs dispersion. This method is able to change the surface properties of the nanotubes without destroying their intrinsic structure and preserving their properties. This thesis explores and studies the surface modification and solublization of pristine single and multiwalled carbon nanotubes via a simple solution mixing technique through non-covalent interactions of CNTs with various anionic and cationic conjugated polyelectrolytes (CPEs). The work includes studying the interaction of various poly(phenylene ethynylene) electrolytes with MWCNTs and an imidazolium functionalized poly(3-hexylthiophene) with SWCNTs. Our work here focuses on the noncovalent modifications of carbon nanotubes using novel CPEs in order to use these resulting CPE/CNT complexes in various applications. Upon modifying the CNTs with the CPEs, the resulting CPE/CNT complex has been proven to be easily dispersed in various organic and aqueous solution with excellent homogeneity and stability for several months. This complex was then used as a nanofiller and was dispersed in another polymer matrix (poly(methyl methacrylate), PMMA). The PMMA/CPE/CNT composite materials were cast or electrospun depending on their desired application. The presence of the CPE modified CNTs in the polymer matrix has been proven to enhance

  16. Direct modification of silicon surface by nanosecond laser interference lithography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dapeng [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Wang, Zuobin, E-mail: wangz@cust.edu.cn [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Zhang, Ziang [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); Yue, Yong [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Li, Dayou [JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom); Maple, Carsten [JR3CN and CNM (Changchun University of Science and Technology), Changchun 130022 (China); JR3CN and IRAC (University of Bedfordshire), Luton LU1 3JU (United Kingdom)

    2013-10-01

    Periodic and quasi-periodic structures on silicon surface have numerous significant applications in photoelectronics and surface engineering. A number of technologies have been developed to fabricate the structures in various research fields. In this work, we take the strategy of direct nanosecond laser interference lithography technology, and focus on the silicon material to create different well-defined surface structures based on theoretical analysis of the formation of laser interference patterns. Two, three and four-beam laser interference systems were set up to fabricate the grating, regular triangle and square structures on silicon surfaces, respectively. From the AFM micrographs, the critical features of structures have a dependence on laser fluences. For a relative low laser fluence, grating and dot structures formed with bumps due to the Marangoni Effect. With the increase of laser fluences, melt and evaporation behaviors can be responsible for the laser modification. By properly selecting the process parameters, well-defined grating and dot structures can been achieved. It can be demonstrated that direct laser interference lithography is a facile and efficient technology with the advantage of a single process procedure over macroscale areas for the fabrication of micro and nano structures.

  17. Design and development of anisotropic inorganic/polystyrene nanocomposites by surface modification of zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xiao [School of Materials Science and Engineering, Tongji University, Shanghai 200092 (China); Research Center for Translational Medicine, East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092 (China); Huang, Shiming [Department of Physics, Tongji University, Shanghai 200092 (China); Wang, Yilong, E-mail: yilongwang@tongji.edu.cn [Research Center for Translational Medicine, East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092 (China); Shi, Donglu, E-mail: shid@ucmail.uc.edu [Research Center for Translational Medicine, East Hospital, the Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092 (China); The Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221 (United States)

    2016-07-01

    Anisotropic yolk/shell or Janus inorganic/polystyrene nanocomposites were prepared by combining miniemulsion polymerization and sol–gel reaction. The morphologies of the anisotropic composites were found to be greatly influenced by surface modification of zinc oxide (ZnO) nanoparticle seeds. Two different types of the oleic acid modified ZnO nanoparticles (OA-ZnO) were prepared by post-treatment of commercial ZnO powder and homemade OA-ZnO nanoparticles. The morphologies and properties of the nanocomposites were investigated by transmission electron microscope (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and energy dispersive X-ray spectroscopy (EDX). It was found that both post-treated OA-ZnO and in-situ prepared OA-ZnO nanoparticles resulted in the yolk–shell and Janus structure nanocomposites, but with varied size and morphology. These nanocomposites showed stable and strong fluorescence by introducing quantum dots as the co-seeds. The fluorescent anisotropic nanocomposites were decorated separately with surface carboxyl and hydroxyl groups. These composites with unique anisotropic properties will have high potential in biomedical applications, particularly in bio-detection. - Graphical abstract: Design and development of anisotropic inorganic/polystyrene nanocomposites by surface modification of zinc oxide nanoparticles. - Highlights: • Non-magnetic anisotropic yolk/shell or Janus nanocomposites are prepared and characterized. • Different surface modification of zinc oxide (ZnO) nanoparticles results in varied morphology and size of the final product. • Fluorescent anisotropic nanocomposites embodying quantum dots are an ideal candidate for bio-detection applications.

  18. Studies on the surface modification of diatomite with polyethyleneimine and trapping effect of the modified diatomite for phenol

    International Nuclear Information System (INIS)

    Gao Baojiao; Jiang Pengfei; An Fuqiang; Zhao Shuying; Ge Zhen

    2005-01-01

    The adsorption isotherm of polyethyleneimine (PEI) on diatomite was studied using UV spectrophotometry, the surface of diatomite was modified with polyethyleneimine by using impregnation method, and the trapping behavior of the modified diatomite for phenol was investigated by using 4-aminoantipyrine (4-AAP) spectrophotometric method. The experiment results show that negatively charged diatomite particles have very strong absorption effect for cationic macromolecule PEI, the adsorption isotherm fits in Freundlich equation. The character that there is a maximum value after intitial sharp increase of adsorption capacity on the adsorption curve indicates that there is strong affinity between diatomite particles and polyethyleneimine macromolecules, and it attributes to the strong electrostatic interaction. After modification with PEI, the electric property of diatomite particle surface changes essentially, and the isoelectric point of diatomite particles moves from pH 2.0 to 10.5. In acidic solution, phenol exists as molecular state, and the modified diatomite particles adsorb phenol through hydrogen bond interaction. However, the hydrogen bond interaction between nitrogen atoms on PEI chains and phenol is weaker because of high degree of protonation of polyethyleneimine macromolecules, so the adsorption quantity is lower. In basic solution, phenol exists as negative benzene-oxygen ion, and the modified diatomite particles adsorb phenol through electrostatic interaction. However, the electrostatic interaction between PEI and negative benzene-oxygen ion is very weak because of low degree of protonation of polyethyleneimine macromolecules, so the adsorption quantity is much lower. The modified diatomite particles produce very strong trapping effect for phenol in neutral aqueous solution via the cooperating of strong electrostatic interaction and hydrogen bond interaction, and the saturated adsorption capacity can attain to 92 mg g -1

  19. Surface modification of additive manufactured metal products by an intense electron beam

    Science.gov (United States)

    Teresov, A. D.; Koval, N. N.; Ivanov, Yu F.; Petrikova, E. A.; Krysina, O. V.

    2017-11-01

    On the example of VT6 titanium alloy it is shown that successive surface modification of additive manufactured metal specimens in vacuum at an argon pressure of 3.5·10-2 by ten pulses with 200 μs, 45 J/cm2 and then by three pulses with 50 μm, 20 J/cm2 provides a considerable decrease in their porosity and surface roughness (20 times for Ra) while their surface microhardness, friction coefficient, and wear level remain almost unchanged. After electron beam irradiation, the ultimate tensile strength of the material increases 1.33 times, and its tensile strain 1.18 times. For specimens obtained by conventional metallurgy and irradiated in the same modes, no such effects are observed.

  20. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms.

    Science.gov (United States)

    Sugano, Marika; Morisaki, Hirobumi; Negishi, Yoichi; Endo-Takahashi, Yoko; Kuwata, Hirotaka; Miyazaki, Takashi; Yamamoto, Matsuo

    2016-01-01

    Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail. The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms. Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were -13 and 8 mV, respectively, and both had a mean particle size of approximately 180 nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy. The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms. In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.

  1. Polytetrafluoroethylene surface modification by filamentary and homogeneous dielectric barrier discharges in air

    International Nuclear Information System (INIS)

    Fang Zhi; Hao Lili; Yang Hao; Xie Xiangqian; Qiu Yuchang; Edmund, Kuffel

    2009-01-01

    In this paper, polytetrafluoroethylene (PTFE) films are modified using non-equilibrium plasma generated by homogeneous DBD in air at medium pressure, and the results are compared to those treated by using filamentary DBD in air at atmospheric pressure. The surface properties of PTFE films before and after the treatments are studied using contact angle and surface energy measurement, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the plasma treatments modify the PTFE surface in both morphology and composition. The PTFE films modified in both treatments show a remarkable decrease in water contact and a remarkable increase in surface energy. XPS analysis reveals that oxygen-containing polar groups are introduced onto the PTFE surface, and SEM analysis shows that the surfaces of the films are etched after both the treatments. It is found that homogeneous DBD is more effective in PTFE surface modification than filamentary DBD as it can make the contact angle decline to a lower level by introducing more oxygen-containing groups, and the possible reason for this effect is discussed.

  2. Surface modification by electrolytic plasma processing for high Nb-TiAl alloys

    Science.gov (United States)

    Gui, Wanyuan; Hao, Guojian; Liang, Yongfeng; Li, Feng; Liu, Xiao; Lin, Junpin

    2016-12-01

    Metal surface modification by electrolytic plasma processing (EPP) is an innovative treatment widely commonly applied to material processing and pretreatment process of coating and galvanization. EPP involves complex processes and a great deal of parameters, such as preset voltage, current, solution temperature and processing time. Several characterization methods are presented in this paper for evaluating the micro-structure surfaces of Ti45Al8Nb alloys: SEM, EDS, XRD and 3D topography. The results showed that the oxide scale and other contaminants on the surface of Ti45Al8Nb alloys can be effectively removed via EPP. The typical micro-crater structure of the surface of Ti45Al8Nb alloys were observed by 3D topography after EPP to find that the mean diameter of the surface structure and roughness value can be effectively controlled by altering the processing parameters. The mechanical properties of the surface according to nanomechanical probe testing exhibited slight decrease in microhardness and elastic modulus after EPP, but a dramatic increase in surface roughness, which is beneficial for further processing or coating.

  3. Surface modification of titanium hydride with epoxy resin via microwave-assisted ball milling

    International Nuclear Information System (INIS)

    Ning, Rong; Chen, Ding; Zhang, Qianxia; Bian, Zhibing; Dai, Haixiong; Zhang, Chi

    2014-01-01

    Highlights: • TiH 2 was modified with epoxy resin by microwave-assisted ball milling. • The epoxy ring was opened under the coupling effect of microwave and ball milling. • Microwave-assisted ball milling improved the compatibility of TiH 2 with epoxy. - Abstract: Surface modification of titanium hydride with epoxy resin was carried out via microwave-assisted ball milling and the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermo-gravimetry (TG) and Fourier transform infrared spectroscopy (FT-IR). A sedimentation test was performed to investigate the compatibility of the modified nano titanium hydride with the epoxy resin. The results show that the epoxy resin molecules were grafted on the surface of nano titanium hydride particles during the microwave-assisted ball milling process, which led to the improvement of compatibility between the nanoparticles and epoxy resin. According to the FT-IR, the grafting site was likely to be located around the epoxy group due to the fact that the epoxy ring was opened. However, compared with microwave-assisted ball milling, the conventional ball milling could not realize the surface modification, indicating that the coupling effect of mechanical force and microwave played a key role during the process

  4. Surface modification of calcium-copper hydroxyapatites using polyaspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Othmani, Masseoud; Aissa, Abdallah; Bachoua, Hassen [Laboratoire de Physico-Chimie des Materiaux, Faculte des Sciences de Monastir, 5019 Monastir (Tunisia); Debbabi, Mongi, E-mail: m.debbabi@yahoo.fr [Laboratoire de Physico-Chimie des Materiaux, Faculte des Sciences de Monastir, 5019 Monastir (Tunisia)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer The reaction of polyaspartic acid with calcium hydroxyapatite and mixed calcium-copper hydroxyapatite is tested. Black-Right-Pointing-Pointer Chemical analysis shows that the presence of copper in the apatitic structure increases the reactivity of the apatite surface. Black-Right-Pointing-Pointer X-ray powder analysis shows the conservation of unique crystalline phase of hydroxyapatite after copper incorporation and/or PASP acid reacting. Black-Right-Pointing-Pointer IR spectra show the formation of the formation of organometallic bond M-O-C (M=Ca or Cu) on the apatitic surface. Black-Right-Pointing-Pointer Transmission electron microscopy (TEM) micrographs and atomic force microscopy (AFM) indicated that the texture surface was changed by the grafting. - Abstract: Mixed calcium-copper hydroxyapatite (Ca-CuHAp), with general formula Ca{sub (10-x)}Cu{sub x}(PO{sub 4}){sub 6}(OH){sub 2}, where 0 {<=} x {<=} 0.75 was prepared in aqueous medium in the presence of different concentrations of poly-L-aspartic acid (PASP). XRD, IR, TG-DTA, TEM-EDX, AFM and chemical analyses were used to characterize the structure, morphology and composition of the products. All techniques show the formation of new hybrid compounds Ca-CuHAp-PASP. The presence of the grafting moiety on the apatitic material is more significant with increasing of copper amount and/or organic concentration in the starting solution. These increases lead to the affectation of apatite crystallinity. The IR spectroscopy shows the conservation of (P-OH) band of (HPO{sub 4}){sup 2-} groups, suggesting that PASP acid was interacted only with metallic cations of hydroxyapatite.

  5. A computational study of anion-modulated cation-π interactions.

    Science.gov (United States)

    Carrazana-García, Jorge A; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M

    2012-05-24

    The interaction of anions with cation-π complexes formed by the guanidinium cation and benzene was thoroughly studied by means of computational methods. Potential energy surface scans were performed in order to evaluate the effect of the anion coming closer to the cation-π pair. Several structures of guanidinium-benzene complexes and anion approaching directions were examined. Supermolecule calculations were performed on ternary complexes formed by guanidinium, benzene, and one anion and the interaction energy was decomposed into its different two- and three-body contributions. The interaction energies were further dissected into their electrostatic, exchange, repulsion, polarization and dispersion contributions by means of local molecular orbital energy decomposition analysis. The results confirm that, besides the electrostatic cation-anion attraction, the effect of the anion over the cation-π interaction is mainly due to polarization and can be rationalized following the changes in the anion-π and the nonadditive (three-body) terms of the interaction. When the cation and the anion are on the same side of the π system, the three-body interaction is anticooperative, but when the anion and the cation are on opposite sides of the π system, the three-body interaction is cooperative. As far as we know, this is the first study where this kind of analysis is carried out with a structured cation as guanidinium with a significant biological interest.

  6. Comparative Effects of MMT Clay Modified with Two Different Cationic Surfactants on the Thermal and Rheological Properties of Polypropylene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Meshal Al-Samhan

    2017-01-01

    Full Text Available Polypropylene montmorillonite (MMT nanocomposites were prepared by melt blending using two different organoclays modified with imidazolium and alkylammonium surfactants. The imidazolium and ammonium modified organoclays were characterized by the FTIR and SEM analysis. The effect of organic clay (MMT on the physical properties of polypropylene was evaluated, thermal and rheological properties with different filler weight percentage. Differential scanning calorimetric results showed that imidazolium modified clay (IMMT exhibits low melting temperature compared to the ammonium modified clay (AMMT. The crystallinity analysis showed that crystallization improved in all nanocomposites irrespective of surface modification; the thermogravimetric analysis showed that the imidazolium modified polymer composites are more thermally stable than conventional ammonium modified composites. The Transmission Electron Microscopy (TEM analyses indicated that the PP-IMMT composites displayed exfoliated morphologies compared with the intercalated structure in PP-AMMT, and the rheological analysis at 180°C showed an enhancement in the viscoelastic properties as the clay concentration increases. The melt viscosity, crossover modulus, and relaxation times were comparable for both the surface modified composites with two different cations. The imidazolium based surfactant was found to be an effective organic modification for MMT to prepare thermally stable PP/MMT nanocomposites.

  7. Computer simulation of displacement cation exchange chromatography: separation of trivalent actinides and lanthanides

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1980-05-01

    A first-generation mathematical model of displacement cation exchange chromatography (CES) was constructed. The model incorporated the following phenomena: diffusion of cations up and down the column, diffusion of cations from the bulk liquid to the resin surface, and equilibrium of cations between liquid and solid resin beads. A limited number of experiments with rare earths using DTPA as the separation agent were undertaken to increase the current understanding of the processes involved in cation exchange chromatography. The numerical computer program based on the mathematical model was written in FORTRAN IV for use on the IBM 360 series of computers

  8. Self-assembling triblock proteins for biofunctional surface modification

    Science.gov (United States)

    Fischer, Stephen E.

    of the triblock protein hydrogels, and the ease of introducing multiple functionalities to a substrate surface, a surface coating is tailored for neural stem cell culture in order to improve proliferation on the scaffold, while maintaining the stem cell phenotype. These studies demonstrate the unique advantages of genetic engineering over traditional techniques for surface modification. In addition to their unmatched sequence fidelity, recombinant proteins can easily be modified with bioactive ligands and their organization into coherent, supramolecular structures mimics natural self-assembly processes.

  9. Photophysical and antibacterial properties of complex systems based on smectite, a cationic surfactant and methylene blue.

    Science.gov (United States)

    Donauerová, Alena; Bujdák, Juraj; Smolinská, Miroslava; Bujdáková, Helena

    2015-10-01

    Solid or colloidal materials with embedded photosensitizers are promising agents from the medical or environmental perspective, where the direct use of photoactive solutions appears to be problematic. Colloids based on layered silicates of the saponite (Sap) and montmorillonite (Mon) type, including those modified with dodecylammonium cations (C12) and photosensitizer--methylene blue (MB) were studied. Two representatives of bacteria, namely Enterobacter cloacae and Escherichia coli, were selected for this work. A spectral study showed that MB solutions and also colloids with Sap including C12 exhibited the highest photoactivities. The antimicrobial properties of the smectite colloids were not directly linked to the photoactivity of the adsorbed MB cations. They were also influenced by other parameters, such as light vs. dark conditions, the spectrum, power and duration of the light used for the irradiation; growth phases, and the pre-treatment of microorganisms. Both the photoactivity and antimicrobial properties of the colloids were improved upon pre-modification with C12. Significantly higher antimicrobial properties were observed for the colloids based on Mon with MB in the form of molecular aggregates without significant photoactivities. The MB/Mon colloids, both modified and non-modified with C12 cations, exhibited higher antimicrobial effects than pure MB solution. Besides the direct effect of photosensitization, the surface properties of the silicate particles likely played a crucial role in the interactions with microorganisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Surface modification of cellulose isolated from Sesamun indicum underutilized seed: A means of enhancing cellulose hydrophobicity

    Directory of Open Access Journals (Sweden)

    Adewale Adewuyi

    2017-09-01

    Full Text Available Cellulose (SC isolated from sesame seed (SS was surface modified with the introduction of an ester functional group via a simple reaction to produce the modified product (SA. SS, SC and SA were characterized using Fourier transform infrared (FTIR, X-ray diffraction (XRD, thermogravimetric analysis (TG, particle size distribution (PSD, zeta potential and scanning electron microscopy (SEM. SC and SA were evaluated for their water holding capacity (WC, oil holding capacity (OC, swelling capacity (SW and their ability to adsorb heavy metals. The FTIR revealed peaks corresponding to the formation of the ester functional group at the surface of SA. The crystallinity of SC was 28.02% but after the modification, it increased to 77.03% in SA. The PSD of SC and SA was both monomodal with sizes of 10.1305 μm in SC and 10.2511 μm in SA. The adsorption capacity of SC towards Pb (II and Cu (II ions was higher than that of SA. However, SA was unable to adsorb Cu (II ions. SA exhibited the lower WC and SW values as compared to SC which suggested an improved hydrophobicity after the modification. This study has shown that hydrophobicity can be improved in cellulose via surface modification.

  11. Effect of surface modifications and environment on the interfacial adhesion of polymer/aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.F. [Xi' an High-technology Institute, Xi' an 710025 (China)], E-mail: xiaofang_liu@263.net; Wu, Q.Y.; Wang, H.G. [Xi' an High-technology Institute, Xi' an 710025 (China)

    2008-06-15

    This work investigates the influence of surface modifications and environmental conditions on the interfacial adhesion of epoxy resin films on a 6016 aluminum alloy, as measured by peeling experiments. The alloy surfaces were pretreated with an etching solution, and then modified, respectively, with aminopropyl silane solution, aminopropyl phosphonate solution, and hexamethyldisiloxane plasma. The modified surfaces were examined by scanning electron microscopy and their roughness was quantified by a fractal index. The peeling experiments show that the interfacial adhesion of epoxy on the aluminum alloy mainly results from the chemical and mechanical characteristics of the material surface. Environmental factors such as humidity can also weaken interfacial adhesion.

  12. Effect of surface modifications and environment on the interfacial adhesion of polymer/aluminum alloy

    International Nuclear Information System (INIS)

    Liu, X.F.; Wu, Q.Y.; Wang, H.G.

    2008-01-01

    This work investigates the influence of surface modifications and environmental conditions on the interfacial adhesion of epoxy resin films on a 6016 aluminum alloy, as measured by peeling experiments. The alloy surfaces were pretreated with an etching solution, and then modified, respectively, with aminopropyl silane solution, aminopropyl phosphonate solution, and hexamethyldisiloxane plasma. The modified surfaces were examined by scanning electron microscopy and their roughness was quantified by a fractal index. The peeling experiments show that the interfacial adhesion of epoxy on the aluminum alloy mainly results from the chemical and mechanical characteristics of the material surface. Environmental factors such as humidity can also weaken interfacial adhesion

  13. Laser surface modification of decellularized extracellular cartilage matrix for cartilage tissue engineering.

    Science.gov (United States)

    Goldberg-Bockhorn, Eva; Schwarz, Silke; Subedi, Rachana; Elsässer, Alexander; Riepl, Ricarda; Walther, Paul; Körber, Ludwig; Breiter, Roman; Stock, Karl; Rotter, Nicole

    2018-02-01

    The implantation of autologous cartilage as the gold standard operative procedure for the reconstruction of cartilage defects in the head and neck region unfortunately implicates a variety of negative effects at the donor site. Tissue-engineered cartilage appears to be a promising alternative. However, due to the complex requirements, the optimal material is yet to be determined. As demonstrated previously, decellularized porcine cartilage (DECM) might be a good option to engineer vital cartilage. As the dense structure of DECM limits cellular infiltration, we investigated surface modifications of the scaffolds by carbon dioxide (CO 2 ) and Er:YAG laser application to facilitate the migration of chondrocytes inside the scaffold. After laser treatment, the scaffolds were seeded with human nasal septal chondrocytes and analyzed with respect to cell migration and formation of new extracellular matrix proteins. Histology, immunohistochemistry, SEM, and TEM examination revealed an increase of the scaffolds' surface area with proliferation of cell numbers on the scaffolds for both laser types. The lack of cytotoxic effects was demonstrated by standard cytotoxicity testing. However, a thermal denaturation area seemed to hinder the migration of the chondrocytes inside the scaffolds, even more so after CO 2 laser treatment. Therefore, the Er:YAG laser seemed to be better suitable. Further modifications of the laser adjustments or the use of alternative laser systems might be advantageous for surface enlargement and to facilitate migration of chondrocytes into the scaffold in one step.

  14. Surface modification of ceramic and metallic alloy substrates by laser raster-scanning

    Science.gov (United States)

    Ramos Grez, Jorge Andres

    This work describes the feasibility of continuous wave laser-raster scan-processing under controlled atmospheric conditions as employed in three distinct surface modification processes: (a) surface roughness reduction of indirect-Selective Laser Sintered 420 martensitic stainless steel-40 wt. % bronze infiltrated surfaces; (b) Si-Cr-Hf-C coating consolidation over 3D carbon-carbon composites cylinders; (c) dendritic solidification structures of Mar-M 247 confined powder precursor grown from polycrystalline Alloy 718 substrates. A heat transfer model was developed to illustrate that the aspect ratio of the laser scanned pattern and the density of scanning lines play a significant role in determining peak surface temperature, heating and cooling rates and melt resident times. Comprehensive characterization of the surface of the processed specimens was performed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), optical metallography, X-ray diffraction (XRD), and, in certain cases, tactile profilometry. In Process (a), it was observed that a 24% to 37% roughness Ra reduction could be accomplished from the as-received value of 2.50+/-0.10 microns for laser energy densities ranging from 350 to 500 J/cm2. In Process (b), complete reactive wetting of carbon-carbon composite cylinders surface was achieved by laser melting a Si-Cr-Hf-C slurry. Coatings showed good thermal stability at 1000°C in argon, and, when tested in air, a percent weight reduction rate of -6.5 wt.%/hr was achieved. A soda-glass overcoat applied over the coated specimens by conventional means revealed a percent weight reduction rate between -1.4 to -2.2 wt.%/hr. Finally, in Process (c), microstructure of the Mar-M 247 single layer deposits, 1 mm in height, grown on Alloy 718 polycrystalline sheets, resulted in a sound metallurgical bond, low porosity, and uniform thickness. Polycrystalline dendrites grew preferentially along the [001] direction from the substrate up to 400

  15. Air-spun PLA nanofibers modified with reductively sheddable hydrophilic surfaces for vascular tissue engineering: synthesis and surface modification.

    Science.gov (United States)

    Ko, Na Re; Sabbatier, Gad; Cunningham, Alexander; Laroche, Gaétan; Oh, Jung Kwon

    2014-02-01

    Polylactide (PLA) is a class of promising biomaterials that hold great promise for various biological and biomedical applications, particularly in the field of vascular tissue engineering where it can be used as a fibrous mesh to coat the inside of vascular prostheses. However, its hydrophobic surface providing nonspecific interactions and its limited ability to further modifications are challenges that need to be overcome. Here, the development of new air-spun PLA nanofibers modified with hydrophilic surfaces exhibiting reduction response is reported. Surface-initiated atom transfer radical polymerization allows for grafting pendant oligo(ethylene oxide)-containing polymethacrylate (POEOMA) from PLA air-spun fibers labeled with disulfide linkages. The resulting PLA-ss-POEOMA fibers exhibit enhanced thermal stability and improved surface properties, as well as thiol-responsive shedding of hydrophilic POEOMA by the cleavage of its disulfide linkages in response to reductive reactions, thus tuning the surface properties. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Surface modification and enhanced photocatalytic CO{sub 2} reduction performance of TiO{sub 2}: a review

    Energy Technology Data Exchange (ETDEWEB)

    Low, Jingxiang; Cheng, Bei [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2017-01-15

    Highlights: • Application of modified TiO{sub 2} for photocatalytic CO{sub 2} reduction is summarized. • Different surface modification strategies of TiO{sub 2} are highlighted. • Summary and future perspectives in photocatalytic CO{sub 2} reduction are presented. - Abstract: Recently, the excessive consumption of fossil fuels has caused high emissions of the greenhouse gases, CO{sub 2} into atmosphere and global energy crisis. Mimicking the natural photosynthesis by using semiconductor materials to achieve photocatalytic CO{sub 2} reduction into valuable solar fuels such as CH{sub 4}, HCO{sub 2}H, CH{sub 2}O, and CH{sub 3}OH is known as one of the best solutions for addressing the aforementioned issue. Among various proposed photocatalysts, TiO{sub 2} has been extensively studied over the past several decades for photocatalytic CO{sub 2} reduction because of its cheapness and environmental friendliness. Particularly, surface modification of TiO{sub 2} has attracted numerous interests due to its capability of enhancing the light absorption ability, facilitating the electron-hole separation, tuning the CO{sub 2} reduction selectivity and increasing the CO{sub 2} adsorption and activation ability of TiO{sub 2} for photocatalytic CO{sub 2} reduction. In this review, recent approaches of the surface modification of TiO{sub 2} for photocatalytic CO{sub 2} reduction, including impurity doping, metal deposition, alkali modification, heterojunction construction and carbon-based material loading, are presented. The photocatalytic CO{sub 2} reduction mechanism and pathways of TiO{sub 2} are discussed. The future research direction and perspective of photocatalytic CO{sub 2} reduction over surface-modified TiO{sub 2} are also presented.

  17. Reversible electrochemical modification of the surface of a semiconductor by an atomic-force microscope probe

    Energy Technology Data Exchange (ETDEWEB)

    Kozhukhov, A. S., E-mail: antonkozhukhov@yandex.ru; Sheglov, D. V.; Latyshev, A. V. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2017-04-15

    A technique for reversible surface modification with an atomic-force-microscope (AFM) probe is suggested. In this method, no significant mechanical or topographic changes occur upon a local variation in the surface potential of a sample under the AFM probe. The method allows a controlled relative change in the ohmic resistance of a channel in a Hall bridge within the range 20–25%.

  18. Modification of the surface properties of a polyimide film during irradiation with polychromic light

    International Nuclear Information System (INIS)

    Rosu, Liliana; Sava, Ion; Rosu, Dan

    2011-01-01

    The behaviour of a polyimide film with the aromatic structure during the exposure to UV light with λ > 290 nm was studied. Significant changes in color surface and gloss surface were identified during irradiation. Sample became lighten and less glossy after exposure to the light. These modifications were correlated with the structural changes in FTIR spectra. Based on changes in FTIR spectra recorded during irradiation, a mechanism for the photochemical degradation of polyimide film was proposed.

  19. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    Energy Technology Data Exchange (ETDEWEB)

    Sodipo, Bashiru Kayode, E-mail: bashirsodipo@gmail.com [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Aziz, Azlan Abdul [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia)

    2016-10-15

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION. - Highlights: • We present recent advances in synthesis of SPION and various routes of producing silica coated SPION • The synthetic routes of producing SPION can be classified into three: physical, chemical and biological methods. • The chemical method is the most cited method of producing SPION and it sub-classified into liquid and gas phase. • The techniques of producing silica coated SPION is grouped into seeded and non-seeded methods.

  20. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    International Nuclear Information System (INIS)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2016-01-01

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION. - Highlights: • We present recent advances in synthesis of SPION and various routes of producing silica coated SPION • The synthetic routes of producing SPION can be classified into three: physical, chemical and biological methods. • The chemical method is the most cited method of producing SPION and it sub-classified into liquid and gas phase. • The techniques of producing silica coated SPION is grouped into seeded and non-seeded methods.

  1. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.

    Science.gov (United States)

    Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric

    2011-10-15

    Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for

  2. Evaluation of phenomena affecting diffusion of cations in compacted bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Lehikoinen, J.

    1995-04-01

    In a number of diffusion studies, contradictions between the apparent diffusivities of cations and their distribution coefficients in bentonite have been found. Two principal reasons have been offered as explanations for this discrepancy; diffusion of the sorbed cations, often called surface diffusion, and the decrease of sorption in compacted clay compared to a sorption value obtained from a batch experiment. In the study the information available from the literature on sorption-diffusion mechanisms of cations in bentonite has been compiled and re-interpreted in order to improve the understanding of the diffusion process. (103 refs., 23 figs., 8 tabs.)

  3. Surface modification of biomaterials and biomedical devices using additive manufacturing.

    Science.gov (United States)

    Bose, Susmita; Robertson, Samuel Ford; Bandyopadhyay, Amit

    2018-01-15

    The demand for synthetic biomaterials in medical devices, pharmaceutical products and, tissue replacement applications are growing steadily due to aging population worldwide. The use for patient matched devices is also increasing due to availability and integration of new technologies. Applications of additive manufacturing (AM) or 3D printing (3DP) in biomaterials have also increased significantly over the past decade towards traditional as well as innovative next generation Class I, II and III devices. In this review, we have focused our attention towards the use of AM in surface modified biomaterials to enhance their in vitro and in vivo performances. Specifically, we have discussed the use of AM to deliberately modify the surfaces of different classes of biomaterials with spatial specificity in a single manufacturing process as well as commented on the future outlook towards surface modification using AM. It is widely understood that the success of implanted medical devices depends largely on favorable material-tissue interactions. Additive manufacturing has gained traction as a viable and unique approach to engineered biomaterials, for both bulk and surface properties that improve implant outcomes. This review explores how additive manufacturing techniques have been and can be used to augment the surfaces of biomedical devices for direct clinical applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Surface modification of poly(D,L-lactic acid) scaffolds for orthopedic applications: a biocompatible, nondestructive route via diazonium chemistry.

    Science.gov (United States)

    Mahjoubi, Hesameddin; Kinsella, Joseph M; Murshed, Monzur; Cerruti, Marta

    2014-07-09

    Scaffolds made with synthetic polymers such as polyesters are commonly used in bone tissue engineering. However, their hydrophobicity and the lack of specific functionalities make their surface not ideal for cell adhesion and growth. Surface modification of these materials is thus crucial to enhance the scaffold's integration in the body. Different surface modification techniques have been developed to improve scaffold biocompatibility. Here we show that diazonium chemistry can be used to modify the outer and inner surfaces of three-dimensional poly(D,L-lactic acid) (PDLLA) scaffolds with phosphonate groups, using a simple two-step method. By changing reaction time and impregnation procedure, we were able to tune the concentration of phosphonate groups present on the scaffolds, without degrading the PDLLA matrix. To test the effectiveness of this modification, we immersed the scaffolds in simulated body fluid, and characterized them with scanning electron microscopy, X-ray photoelectron spectroscopy, Raman, and infrared spectroscopy. Our results showed that a layer of hydroxyapatite particles was formed on all scaffolds after 2 and 4 weeks of immersion; however, the precipitation was faster and in larger amounts on the phosphonate-modified than on the bare PDLLA scaffolds. Both osteogenic MC3T3-E1 and chondrogenic ATDC5 cell lines showed increased cell viability/metabolic activity when grown on a phosphonated PDLLA surface in comparison to a control PDLLA surface. Also, more calcium-containing minerals were deposited by cultures grown on phosphonated PDLLA, thus showing the pro-mineralization properties of the proposed modification. This work introduces diazonium chemistry as a simple and biocompatible technique to modify scaffold surfaces, allowing to covalently and homogeneously bind a number of functional groups without degrading the scaffold's polymeric matrix.

  5. The increase of apatite layer formation by the poly(3-hydroxybutyrate) surface modification of hydroxyapatite and β-tricalcium phosphate.

    Science.gov (United States)

    Szubert, M; Adamska, K; Szybowicz, M; Jesionowski, T; Buchwald, T; Voelkel, A

    2014-01-01

    The aim of this study was the surface modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) grafting and characterization of modificates. The bioactivity examination was carried out by the determination to grow an apatite layer on modified materials during incubation in simulated body fluid at 37°C. The additional issue taken up in this paper was to investigate the influence of fluid replacement. The process of the surface modification of biomaterials was evaluated by means of infrared and Raman spectroscopy. Formation of the apatite layer was assessed by means of scanning electron microscopy and confirmed by energy dispersive, Raman and Fourier transformed infrared spectroscopy. During exposure in simulated body fluid, the variation of the zeta potential, pH measurement and relative weight was monitored. Examination of scanning electron microscopy micrographs suggests that modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) significantly increases apatite layer formation. Raman spectroscopy evaluation revealed that the formation of the apatite layer was more significant in the case of hydroxyapatite modificate, when compared to the β-tricalcium phosphate modificate. Both modificates were characterized by stable pH, close to the natural pH of human body fluids. Furthermore, we have shown that a weekly changed, simulated body fluid solution increases apatite layer formation. © 2013.

  6. Inhibition of charge recombination for enhanced dye-sensitized solar cells and self-powered UV sensors by surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Liang, E-mail: chuliang@njupt.edu.cn [Advanced Energy Technology Center, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Wuhan National Laboratory for Optoelectronics (WNLO)-School of Physics, Huazhong University of Science and Technology (HUST), Wuhan 430074 (China); Qin, Zhengfei; Liu, Wei [School of Materials Science and Engineering (SMSE), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210046 (China); Ma, Xin’guo, E-mail: maxg2013@sohu.com [Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China)

    2016-12-15

    Graphical abstract: Inhibition of charge recombination was utilized to prolong electrode lifetime in dye-sensitized solar cells (DSSCs) and self-powered UV sensors based on TiO{sub 2}-modified SnO{sub 2} photoelectrodes. The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the electron lifetime was significantly prolonged in DSSCs after TiO{sub 2} modification. And in self-powered UV sensors, the sensitivity and response time were enhanced. - Highlights: • The surface modification to inhibit charge recombination was utilized in photovoltaic devices. • Inhibition of charge recombination can prolong electrode lifetime in photovoltaic devices. • Enhanced DSSCs and self-powered UV sensors based on SnO{sub 2} photoelectrodes were obtained by TiO{sub 2} modification. - Abstract: The surface modification to inhibit charge recombination was utilized in dye-sensitized solar cells (DSSCs) and self-powered ultraviolet (UV) sensors based on SnO{sub 2} hierarchical microspheres by TiO{sub 2} modification. For DSSCs with SnO{sub 2} photoelectrodes modified by TiO{sub 2}, the power conversion efficiency (PCE) was improved from 1.40% to 4.15% under standard AM 1.5G illumination (100 mW/cm{sup 2}). The electrochemical impedance spectroscopy and open-circuit voltage decay measurements indicated that the charge recombination was effectively inhibited, resulting in long electron lifetime. For UV sensors with SnO{sub 2} photoelectrodes modified by TiO{sub 2} layer, the self-powered property was more obvious, and the sensitivity and response time were enhanced from 91 to 6229 and 0.15 s to 0.055 s, respectively. The surface modification can engineer the interface energy to inhibit charge recombination, which is a desirable approach to improve the performance of photoelectric nanodevice.

  7. Influence of gas and treatment time on the surface modification of EPDM rubber treated at afterglow microwave plasmas

    Science.gov (United States)

    da Maia, J. V.; Pereira, F. P.; Dutra, J. C. N.; Mello, S. A. C.; Becerra, E. A. O.; Massi, M.; Sobrinho, A. S. da Silva

    2013-11-01

    The ethylene propylene diene monomer (EPDM) rubber possesses excellent physical/chemical bulk properties, is cost-effective, and has been used in the mechanical and aerospace industry. However, it has an inert surface and needs a surface treatment in order to improve its adhesion properties. Plasma modification is the most accepted technique for surface modification of polymers without affecting the properties of the bulk. In this study, an afterglow microwave plasma reactor was used to generate the plasma species responsible for the EPDM surface modification. The plasma modified surfaces were analyzed by means of contact angle measurement, adhesion tests, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. Two experimental variables were analyzed: type of the plasma gases and exposure time were considered. The predominant failure mode was adhesive, for long treatment times a mixture of adhesive and cohesive failure can be observed and the best conditions tested there was an increase of the rupture strength of about 27%, that can be associated mainly with the creation of oxygen containing functional groups on the rubber surface (CO, COC and CO) identified by spectroscopic methods. The predominant failure mode was adhesive, for long treatment times a mixture of adhesive and cohesive failure can be observed. In various conditions tested the contact angles easily decreased more than 500%. What can be concluded that high wettability is a necessary condition to obtain good adhesion, but this is not a sufficient condition.

  8. Influence of gas and treatment time on the surface modification of EPDM rubber treated at afterglow microwave plasmas

    International Nuclear Information System (INIS)

    Maia, J.V. da; Pereira, F.P.; Dutra, J.C.N.; Mello, S.A.C.; Becerra, E.A.O.; Massi, M.; Sobrinho, A.S. da Silva

    2013-01-01

    The ethylene propylene diene monomer (EPDM) rubber possesses excellent physical/chemical bulk properties, is cost-effective, and has been used in the mechanical and aerospace industry. However, it has an inert surface and needs a surface treatment in order to improve its adhesion properties. Plasma modification is the most accepted technique for surface modification of polymers without affecting the properties of the bulk. In this study, an afterglow microwave plasma reactor was used to generate the plasma species responsible for the EPDM surface modification. The plasma modified surfaces were analyzed by means of contact angle measurement, adhesion tests, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. Two experimental variables were analyzed: type of the plasma gases and exposure time were considered. The predominant failure mode was adhesive, for long treatment times a mixture of adhesive and cohesive failure can be observed and the best conditions tested there was an increase of the rupture strength of about 27%, that can be associated mainly with the creation of oxygen containing functional groups on the rubber surface (C-O, C-O-C and C=O) identified by spectroscopic methods. The predominant failure mode was adhesive, for long treatment times a mixture of adhesive and cohesive failure can be observed. In various conditions tested the contact angles easily decreased more than 500%. What can be concluded that high wettability is a necessary condition to obtain good adhesion, but this is not a sufficient condition.

  9. Influence of gas and treatment time on the surface modification of EPDM rubber treated at afterglow microwave plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maia, J.V. da, E-mail: jaisondamaia@hotmail.com [Plasmas and Processes Laboratory, Department of Physics, Technological Institute of Aeronautics, 12228-900 S. J. dos Campos, SP (Brazil); Department of Physics, Federal Institute of Santa Catarina, 89251-000 Jaraguá do Sul, SC (Brazil); Pereira, F.P. [Plasmas and Processes Laboratory, Department of Physics, Technological Institute of Aeronautics, 12228-900 S. J. dos Campos, SP (Brazil); Dutra, J.C.N.; Mello, S.A.C. [EBO, Chemistry Division, IAE, CTA, 12228-900 S. J. dos Campos, SP (Brazil); Becerra, E.A.O. [Department of Physics, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ (Brazil); Massi, M.; Sobrinho, A.S. da Silva [Plasmas and Processes Laboratory, Department of Physics, Technological Institute of Aeronautics, 12228-900 S. J. dos Campos, SP (Brazil)

    2013-11-15

    The ethylene propylene diene monomer (EPDM) rubber possesses excellent physical/chemical bulk properties, is cost-effective, and has been used in the mechanical and aerospace industry. However, it has an inert surface and needs a surface treatment in order to improve its adhesion properties. Plasma modification is the most accepted technique for surface modification of polymers without affecting the properties of the bulk. In this study, an afterglow microwave plasma reactor was used to generate the plasma species responsible for the EPDM surface modification. The plasma modified surfaces were analyzed by means of contact angle measurement, adhesion tests, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. Two experimental variables were analyzed: type of the plasma gases and exposure time were considered. The predominant failure mode was adhesive, for long treatment times a mixture of adhesive and cohesive failure can be observed and the best conditions tested there was an increase of the rupture strength of about 27%, that can be associated mainly with the creation of oxygen containing functional groups on the rubber surface (C-O, C-O-C and C=O) identified by spectroscopic methods. The predominant failure mode was adhesive, for long treatment times a mixture of adhesive and cohesive failure can be observed. In various conditions tested the contact angles easily decreased more than 500%. What can be concluded that high wettability is a necessary condition to obtain good adhesion, but this is not a sufficient condition.

  10. Influence of Different Surface Modifications on the Photovoltaic Performance and Dark Current of Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    XU Weiwei; DAI Songyuan; HU Linhua; ZHANG Changneng; XIAO Shangfeng; LUO Xiangdong; JING Weiping; WANG Kongjia

    2007-01-01

    The TiO2 nanoporous film photoelectrode, as a crucial component of dye-sensitized solar cells, has been investigated. The photovoltaic properties and the dark current were studied by two surface modification methods. One was to apply a compact layer between the conductive glass substrate and nanoporous TiO2 film. Another was to produce TiO2 nanoparticles among the microstructure by TiCU treatment. A suitable concentration and number of times for TiCU treatment were found in our experiment. The dark current is suppressed by surface modifications, leading to a significant improvement in the solar cells performance. An excessive concentration of TiCU will produce more surface states and introduce a larger dark current reversely. The dye is also regarded as a source of charge recombination in dark to some extent, due to an amount of surface protonations introduced by the interfacial link in the conductive glass substrate/dye interface and dye/TiO2 interface.

  11. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    Science.gov (United States)

    Moraczewski, Krzysztof; Rytlewski, Piotr; Malinowski, Rafał; Żenkiewicz, Marian

    2015-08-01

    The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm2 was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

  12. One-step surface modification of poly(dimethylsiloxane) by undecylenic acid

    Science.gov (United States)

    Zhou, Jinwen; McInnes, Steven J. P.; Md Jani, Abdul Mutalib; Ellis, Amanda V.; Voelcker, Nicolas H.

    2008-12-01

    Poly(dimethylsiloxane) (PDMS) is a popular material for microfluidic devices due to its relatively low cost, ease of fabrication, oxygen permeability and optical transmission characteristics. However, its highly hydrophobic surface is still the main factor limiting its wide application, in particular as a material for biointerfaces. A simple and rapid method to form a relatively stable hydrophilised PDMS surface is reported in this paper. The PDMS surface was treated with pure undecylenic acid (UDA) for 10 min, 1 h and 1 day at 80 °C in a sealed container. The effects of the surface modification were investigated using water contact angle (WCA) measurements, Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), and streaming zeta-potential analysis. The water contact angle of 1 day UDAmodified PDMS was found to decrease from that of native PDMS (110 °) to 75 °, demonstrating an increase in wettability of the surface. A distinctive peak at 1715 cm-1 in the FTIR-ATR spectra after UDA treatment was representative of carboxylation of the PDMS surface. The measured zeta-potential (ζ) at pH 4 changed from -27 mV for pure PDMS to -19 mV after UDA treatment. In order to confirm carboxylation of the surface visually, Lucifer Yellow CH fluorescence dye was reacted via a condensation reaction to the 1 day UDA modified PDMS surface. Fluorescent microscopy showed Lucifer Yellow CH fluorescence on the carboxylated surface, but not on the pure PDMS surface. Stability experiments were also performed showing that 1 day modified UDA samples were stable in both MilliQ water at 50 °C for 17 h, and in a desiccator at room temperature for 19.5 h.

  13. Microstructural evolution and surface properties of nanostructured Cu-based alloy by ultrasonic nanocrystalline surface modification technique

    Energy Technology Data Exchange (ETDEWEB)

    Amanov, Auezhan, E-mail: amanov_a@yahoo.com [Department of Mechanical Engineering, Sun Moon University, Asan 336-708 (Korea, Republic of); Cho, In-Sik [R& D Group, Mbrosia Co., Ltd., Asan 336-708 (Korea, Republic of); Pyun, Young-Sik [Department of Mechanical Engineering, Sun Moon University, Asan 336-708 (Korea, Republic of)

    2016-12-01

    Graphical abstract: - Highlights: • A nanostructured surface was produced by UNSM technique. • Porosities were eliminated from the surface by UNSM technique. • Extremely high hardness obtained at the top surface after UNSM treatment. • Friction and wear behavior was improved by UNSM technique. • Resistance to scratch behavior was improved by UNSM technique. - Abstract: A nanostructured surface layer with a thickness of about 180 μm was successfully produced in Cu-based alloy using an ultrasonic nanocrystalline surface modification (UNSM) technique. Cu-based alloy was sintered onto low carbon steel using a powder metallurgy (P/M) method. Transmission electron microscope (TEM) characterization revealed that the severe plastic deformation introduced by UNSM technique resulted in nano-sized grains in the topmost surface layer and deformation twins. It was also found by atomic force microscope (AFM) observations that the UNSM technique provides a significant reduction in number of interconnected pores. The effectiveness of nanostructured surface layer on the tribological and micro-scratch properties of Cu-based alloy specimens was investigated using a ball-on-disk tribometer and micro-scratch tester, respectively. Results exhibited that the UNSM-treated specimen led to an improvement in tribological and micro-scratch properties compared to that of the sintered specimen, which may be attributed to the presence of nanostructured surface layer having an increase in surface hardness and reduction in surface roughness. The findings from this study are expected to be implemented to the automotive industry, in particular connected rod bearings and bushings in order to increase the efficiency and performance of internal combustion engines (ICEs).

  14. Surface Modification for Improved Design and Functionality of Nanostructured Materials and Devices

    Science.gov (United States)

    Keiper, Timothy Keiper

    Progress in nanotechnology is trending towards applications which require the integration of soft (organic or biological) and hard (semiconductor or metallic) materials. Many applications for functional nanomaterials are currently being explored, including chemical and biological sensors, flexible electronics, molecular electronics, etc., with researchers aiming to develop new paradigms of nanoelectronics through manipulation of the physical properties by surface treatments. This dissertation focuses on two surface modification techniques important for integration of hard and soft materials: thermal annealing and molecular modification of semiconductors. First, the effects of thermal annealing are investigated directly for their implication in the fundamental understanding of transparent conducting oxides with respect to low resistivity contacts for electronic and optoelectronic applications and the response to environmental stimuli for sensing applications. The second focus of this dissertation covers two aspects of the importance of molecular modification on semiconductor systems. The first of these is the formation of self-assembled monolayers in patterned arrays which leads explicitly to the directed self-assembly of nanostructures. The second aspect concerns the modification of the underlying magnetic properties of the preeminent dilute magnetic semiconductor, manganese-doped gallium arsenide. Tin oxide belongs to a class of materials known as transparent conducting oxides which have received extensive interest due to their sensitivity to environmental stimuli and their potential application in transparent and flexible electronics. Nanostructures composed of SnO2 have been demonstrated as an advantageous material for high performance, point-of-care nanoelectronic sensors, capable of detecting and distinguishing gaseous or biomolecular interactions on unprecedented fast timescales. Through bottom-up fabrication techniques, binary oxide nanobelts synthesized

  15. Surface modification of quartz fibres for dental composites through a sol-gel process.

    Science.gov (United States)

    Wang, Yazi; Wang, Renlin; Habib, Eric; Wang, Ruili; Zhang, Qinghong; Sun, Bin; Zhu, Meifang

    2017-05-01

    In this study, quartz fibres (QFs) surface modification using a sol-gel method was proposed and dental posts reinforced with modified QFs were produced. A silica sol (SS) was prepared using tetraethoxysilane (TEOS) and 3-methacryloxypropyltrimethoxysilane (γ-MPS) as precursors. The amount of γ-MPS in the sol-gel system was varied from 0 to 24wt.% with a constant molar ratio of TEOS, ethanol, deionized water, and HCl. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and contact angle (CA) measurements were used to characterize the modified QFs, which confirmed that SS had successfully coated the surface of QFs. SEM images showed good interfacial bonding between the modified QFs and the resin matrix. The results of three-point bending tests of the fibre reinforced composite (FRC) posts showed that the QFs modified by SS with 12wt.% γ-MPS presented the best mechanical properties, demonstrating improvements of 108.3% and 89.6% for the flexural strength and flexural modulus, respectively, compared with untreated QFs. Furthermore, the sorption and solubility of the prepared dental posts were also studied by immersing the posts in artificial saliva (AS) for 4weeks, and yielded favourable results. This sol-gel surface modification method promises to resolve interfacial bonding issues of fibres with the resin matrix, and produce FRC posts with excellent properties. Copyright © 2017. Published by Elsevier B.V.

  16. Innovative coatings and surface modification of titanium for sea water condenser applications

    International Nuclear Information System (INIS)

    George, R.P.; Anandkumar, B.; Vanithakumari, S.C.; Kamachi Mudali, U.

    2016-01-01

    Effectiveness of cooling water systems in various power plants to maintain highest electrical energy output per tonne of fuel is important as part of good energy management. Cooling water systems of nuclear power plants using seawater for cooling comes under constant attack from the marine and sea water environment. Many metallic components and civil structures in the cooling water systems like bridges, intake wells, intake pipes, pump house wells, water boxes, condenser pipes are subjected to severe fouling and corrosion which limits the service life and availability of power plants. The experience with a coastal water cooled power plant at Kalpakkam (MAPS), India, showed that chlorination and screening control macrofouling to a great extend by controlling protozoans, invertebrates, algae and fungi. However 90% of marine bacteria are resistant to such control measures, and they cause microfouling of condenser pipes leading to poor heat transfer and microbially influenced corrosion (MIC) failures. Titanium is used as condenser for Indian nuclear power plants employing sea water cooling, including the PFBR at Kalpakkam. Though titanium is excellent with respect to corrosion behavior under sea water conditions, its biocompatible nature results in biofouling and MIC during service. Therefore innovative antifouling coatings and surface modification techniques for titanium condenser applications in seawater and marine environments are the need of the hour. Extensive investigations were carried out by different methods including nanostructuring of surfaces for making them antibacterial. The microroughness of titanium was produced by repeated pickling and polishing which by itself reduced microbial adhesion. To utilize photocatalytic activity for antibacterial property, anodization of titanium surfaces followed by heat treatment was adopted and this also has controlled microbial fouling. Electroless plating of nanofilm of copper-nickel alloy decreased biofouling of

  17. Surface modification to produce hydrophobic nano-silica particles using sodium dodecyl sulfate as a modifier

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Bing; Liang, Yong; Wang, Ting-Jie, E-mail: wangtj@tsinghua.edu.cn; Jiang, Yanping

    2016-02-28

    Graphical abstract: Nano silica particle was modified to produce hydrophobic surface with contact angle of 107° using the water soluble SDS as a modifier through a new route. The grafted density reached 1.82–2 nm. Brønsted acid sites supply proton to react with SDS via generating carbocation, forming a Si–O–C structure. - Highlights: • Silica was modified to produce hydrophobic surface using SDS as modifier. • The route is free of organic solvent and gets perfect contact of SDS and silica. • Contact angle of modified silica particles reached 107°. • Grafted density on the silica surface reached 1.82 SDS nm{sup −2}. • Brønsted acid sites supply proton to react with SDS via generating carbocation. - Abstract: Hydrophobic silica particles were prepared using the surfactant sodium dodecyl sulfate (SDS) as a modifier by a new route comprising three processes, namely, aqueous mixing, spray drying and thermal treatment. Since SDS dissolves in water, this route is free of an organic solvent and gave a perfect dispersion of SDS, that is, there was excellent contact between SDS and silica particles in the modification reaction. The hydrophobicity of the modified surface was verified by the contact angle of the nano-sized silica particles, which was 107°. The SDS grafting density reached 1.82 nm{sup −2}, which is near the highest value in the literature. The optimal parameters of the SDS/SiO{sub 2} ratio in the aqueous phase, process temperature and time of thermal treatment were determined to be 20%, 200 °C and 30 min, respectively. The grafting mechanism was studied by comparing the modification with that on same sized TiO{sub 2} particles, which indicated that the protons of the Brønsted acid sites on the surface of SiO{sub 2} reacted with SDS to give a carbocation which then formed a Si–O–C structure. This work showed that the hydrophilic surface of silica can be modified to be a hydrophobic surface by using a water soluble modifier SDS in a

  18. Specific ion effects on the properties of cationic Gemini surfactant monolayers

    International Nuclear Information System (INIS)

    Alejo, T.; Merchan, M.D.; Velazquez, M.M.

    2011-01-01

    The effects of some anions of the Hofmeister series and different divalent cations of alkaline earth metals on the properties of Langmuir monolayers of the cationic Gemini surfactant ethyl-bis (dimethyl octadecylammonium bromide) have been investigated. Surface pressure and potential isotherms at the air-water interface were obtained on aqueous subphases containing sodium salts with several anions of the Hofmeister series (Cl - , NO 3 - , Br - , I - , ClO 4 - , and SCN - ). The influence of the investigated anions on the monolayer properties can be ordered according to the Hofmeister series with a change in the order between bromide and nitrate anions. On the other hand, for a given anion, the cation of the salt also influences the surface properties of the Langmuir films. The monolayers can be transferred onto mica by the Langmuir-Blodgett technique and then the Langmuir-Blodgett films were characterized by atomic force microscopy (AFM). The AFM images show that the molecules become more closely packed and nearly vertical to the surface when anions screen the electric charge of the surfactant molecules.

  19. Specific ion effects on the properties of cationic Gemini surfactant monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Alejo, T.; Merchan, M.D.; Velazquez, M.M., E-mail: mvsal@usal.es

    2011-06-01

    The effects of some anions of the Hofmeister series and different divalent cations of alkaline earth metals on the properties of Langmuir monolayers of the cationic Gemini surfactant ethyl-bis (dimethyl octadecylammonium bromide) have been investigated. Surface pressure and potential isotherms at the air-water interface were obtained on aqueous subphases containing sodium salts with several anions of the Hofmeister series (Cl{sup -}, NO{sub 3}{sup -}, Br{sup -}, I{sup -}, ClO{sub 4}{sup -}, and SCN{sup -}). The influence of the investigated anions on the monolayer properties can be ordered according to the Hofmeister series with a change in the order between bromide and nitrate anions. On the other hand, for a given anion, the cation of the salt also influences the surface properties of the Langmuir films. The monolayers can be transferred onto mica by the Langmuir-Blodgett technique and then the Langmuir-Blodgett films were characterized by atomic force microscopy (AFM). The AFM images show that the molecules become more closely packed and nearly vertical to the surface when anions screen the electric charge of the surfactant molecules.

  20. Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating

    International Nuclear Information System (INIS)

    Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju; Kim, Hye-Lee; Park, Jong-Chul; Jin Lee, Seung; Kim, Bong-Jin; Wang, Kang-Kyun; Kim, Yong-Rok

    2013-01-01

    Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion and maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH 2 (399.70 eV) was increased significantly and –N=CH (400.80 eV) and –NH 3 + (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic

  1. The influence of surface modification on sound absorption coefficient of albizzia wood absorber

    Science.gov (United States)

    Diharjo, Kuncoro; Prabowo, Anditya E.; Jamasri, Suharty, Neng Sri

    2017-01-01

    The purpose of this research is to investigate the influence of surface modification to sound absorption on absorber based albizia wood and kenaf fiber. The absorber was produced using the albizia wood as main materials, and the kenaf fiber was used as acoustic fill. The albizia wood used for producing the absorber was cut in the transverse direction so that its surface had good porosity. The size of specimens had 100 mm in diameter and 40 mm in thickness. The configuration of resonator cavities was 30 mm in diameter and 20 mm in depth, and each resonator was completed with a neck hole of the resonator. The types of surface modification were the addition of screen printing ink, fabric (with and without neck hole), and vinyl-wallpaper (with and without neck hole). According to ISO 10534-2, the absorber specimens were tested using two microphones impedance tube with random noise source to get the curve of noise absorption coefficient (NAC) for each specimen. The result shows that both unmodified absorber and absorber modified with screen printing ink have the similar characteristic of NAC and they are feasible to be used as an absorber in conversation rooms. The addition of fabric and vinyl-wallpaper as cover on the absorber surface give the positive effect of the air gap, and it increases the NAC in low frequency (100-400 Hz). However, the covers decrease the NAC in high frequency (400-1,400 Hz). The holes on the fabric and wallpaper covers give the improvement of NAC.

  2. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal.

    Science.gov (United States)

    Li, Lin; Liu, Suqin; Liu, Junxin

    2011-08-30

    In this study, coconut shell based carbons were chemically treated by ammonia, sodium hydroxide, nitric acid, sulphuric acid, and phosphoric acid to determine suitable modification for improving adsorption ability of hydrophobic volatile organic compounds (VOCs) on granular activated carbons (GAC). The saturated adsorption capacities of o-xylene, a hydrophobic volatile organic compound, were measured and adsorption effects of the original and modified activated carbons were compared. Results showed that GAC modified by alkalis had better o-xylene adsorption capacity. Uptake amount was enhanced by 26.5% and reduced by 21.6% after modification by NH(3)H(2)O and H(2)SO(4), respectively. Compared with the original, GAC modified by acid had less adsorption capacity. Both SEM/EDAX and BET were used to identify the structural characteristics of the tested GAC, while IR spectroscopy and Boehm's titration were applied to analysis the surface functional groups. Relationships between physicochemical characteristics of GAC and their adsorption performances demonstrated that o-xylene adsorption capacity was related to surface area, pore volume, and functional groups of the GAC surface. Removing surface oxygen groups, which constitute the source of surface acidity, and reducing hydrophilic carbon surface favors adsorption capacity of hydrophobic VOCs on carbons. The performances of modified GACs were also investigated in the purification of gases containing complex components (o-xylene and steam) in the stream. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Photoinducedly electrochemical preparation of Prussian blue film and electrochemical modification of the film with cetyltrimethylammonium cation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Shouqing, E-mail: shouqing_liu@hotmail.co [Key Laboratory of Environmental Functional Materials of Jiangsu Province, College of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Li Hua; Sun Weihui; Wang Xiaomei; Chen Zhigang [Key Laboratory of Environmental Functional Materials of Jiangsu Province, College of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Xu Jingjuan; Ju Huangxian; Chen Hongyuan [Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education, Nanjing University, Nanjing 210093 (China)

    2011-04-15

    Research highlights: {yields} Cetyltrimethylammonium cations work as counter ions in Prussian blue film was observed and confirmed by cyclic voltammetry, Fourier transform infrared spectroscopy, X-ray powder diffraction measurements, scanning electronic microscopy and transmission electron microscope for the first time. {yields} Because the cetyltrimethylammonium cations in Prussian blue film are hydrophobic, the Prussian blue film is very stable even in alkali solution, which provides a technical basis for fabrication of stable biosensors. - Abstract: This work presents a photoinducedly electrochemical preparation of Prussian blue from a single sodium nitroprusside and insertion of cetyltrimethylammonium cations into Prussian blue as counter ions. The product of photoinducedly electrochemical reactions has a couple of voltammetric peaks at E{sup o} = 0.266 V in 0.2 mol l{sup -1} KCl solution, the measurements of X-ray powder diffraction and FT-IR spectroscopy show that it is Prussian blue (PB). The formation mechanism of a pre-photochemical reaction and subsequent electrochemical reaction is suggested. The cyclic voltammetric treatment of the freshly as-prepared PB film in 1.0 mmol l{sup -1} cetyltrimethylammonium (CTA) bromide solution leads to the insertion of cetyltrimethylammonium cations into the channels of Prussian blue, which substitutes for potassium ions as counter ions in Prussian blue. The Prussian blue containing CTA counter ions shows two couples of voltammetric peaks at E{sup o} = -0.106 V and E{sup o} = 0.249 V in 0.2 mol l{sup -1} KCl solution containing 1.0 mmol l{sup -1} cetyltrimethylammonium bromide. Compared with the electrochemical behaviors of KFeFe(CN){sub 6} in 0.1 mol l{sup -1} KOH alkali solution, CTAFeFe(CN){sub 6} shows relatively durable voltammetric currents due to the hydrophobic effects of cetyltrimethylammonium. The diffusion coefficients for CTA and potassium cations were estimated to be D{sub CTA} 1.25 x 10{sup -12} cm{sup 2} s

  4. Jahn Teller effect of cations in water: The cupric ion in water

    Energy Technology Data Exchange (ETDEWEB)

    Halley, J.W. [Minnesota Univ., Minneapolis, MN (United States). School of Physics and Astronomy; Wang, X.R. [Hong Kong Univ. of Science and Technology, Kowlon (Hong Kong). Dept. of Physics; Curtiss, L.A. [Argonne National Lab., IL (United States)

    1993-02-01

    We report a molecular dynamics model for the Jahn Teller effect in the solvation shell of a cation in solution in an aqueous liquid. We apply the model to the cupric ion and compare results with results of neutron scattering experiments on copper chlorate solutions. We conclude that the original interpretation of the experiments in terms of a Jan Teller effect may require modification.

  5. The effect of substrate modification on microbial growth on surfaces

    International Nuclear Information System (INIS)

    Brown, Angela Ann

    1998-01-01

    The principle aim of the program was to produce a novel, non-leaching antimicrobial surface for commercial development and future use in the liquid food packaging industry. Antimicrobial surfaces which exist presently have been produced to combat the growth of prokaryotic organisms and usually function as slow release systems. A system which could inhibit eukaryotic growth without contaminating the surrounding 'environment' with the inhibitor was considered of great commercial importance. The remit of this study was concerned with creating a surface which could control the growth of eukaryotic organisms found in fruit juice with particular interest in the yeast, Saccharomyces cerevisiae. Putative antimicrobial surfaces were created by the chemical modification of the test substrate polymers; nylon and ethylvinyl alcohol (EVOH). Surfaces were chemically modified by the covalent coupling of antimicrobial agents known to be active against the yeast Saccharomyces cerevisiae as ascertained by the screening process determining the minimum inhibitory concentration (MIC) values of agents in the desired test medium. During the study it was found that a number of surfaces did appear to inhibit yeast growth in fruit juice, however on further investigation the apparent inhibitory effect was discovered to be the result of un-bound material free in the test medium. On removing the possibility of any un-bound material present on the test surface, by a series of surface washings, the inhibitory effect on yeast growth was eliminated. Of the agents tested only one appeared to have an inhibitory effect which could be attributed to a true antimicrobial surface effect, Amical 48. As there is little known about this agent in the literature, its affect on yeast growth was examined and in particular a proposal for the mode of action on yeast is discussed, providing a plausible explanation for the inhibitory effect observed when this agent is covalently immobilised onto nylon. (author)

  6. Surface modification of a proton exchange membrane and hydrogen storage in a metal hydride for fuel cells

    Science.gov (United States)

    Andrews, Lisa

    Interest in fuel cell technology is rising as a result of the need for more affordable and available fuel sources. Proton exchange membrane fuel cells involve the catalysis of a fuel to release protons and electrons. It requires the use of a polymer electrolyte membrane to transfer protons through the cell, while the electrons pass through an external circuit, producing electricity. The surface modification of the polymer, NafionRTM, commonly researched as a proton exchange membrane, may improve efficiency of a fuel cell. Surface modification can change the chemistry of the surface of a polymer while maintaining bulk properties. Plasma modification techniques such as microwave discharge of an argon and oxygen gas mixture as well as vacuum-ultraviolet (VUV) photolysis may cause favorable chemical and physical changes on the surface of Nafion for improved fuel cell function. A possible increase in hydrophilicity as a result of microwave discharge experiments may increase proton conductivity. Grafting of acrylic acid from the surface of modified Nafion may decrease the permeation of methanol in a direct methanol fuel cell, a process which can decrease efficiency. Modification of the surface of Nafion samples were carried out using: 1) An indirect Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals with the surface, 2) A direct Ar/O2 gas mixture plasma investigating the reaction of oxygen radicals and VUV radiation with the surface and, 3) VUV photolysis investigating exclusively the interaction of VUV radiation with the surface and any possible oxidation upon exposure to air. Acrylic acid was grafted from the VUV photolysed Nafion samples. All treated surfaces were analyzed using X-ray photoelectron spectroscopy (XPS). Fourier transform infrared spectroscopy (FTIR) was used to analyze the grafted Nafion samples. Scanning electron microscopy (SEM) and contact angle measurements were used to analyze experiments 2 and 3. Using hydrogen as fuel is a

  7. Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes

    Science.gov (United States)

    Zhu, Liang; Yu, Xuedi; Hickner, Michael A.

    2018-01-01

    In order to systematically study how the arrangement of cations on the side chain and length of alkyl spacers between cations impact the performance of multi-cation AEMs for alkaline fuel cells, a series of polyphenylene oxide (PPO)-based AEMs with different cationic side chains were synthesized. This work resulted in samples with two or three cations in a side chain pendant to the PPO backbone. More importantly, the length of the spacer between cations varied from 3 methylene (-CH2-) (C3) groups to 8 methylene (C8) groups. The highest conductivity, up to 99 mS/cm in liquid water at room temperature, was observed for the triple-cation side chain AEM with pentyl (C5) or hexyl (C6) spacers. The multi-cation AEMs were found to have decreased water uptake and ionic conductivity when the spacer chains between cations were lengthened from pentyl (C5) or hexyl (C6) to octyl (C8) linking groups. The triple-cation membranes with pentyl (C5) or hexyl (C6) groups between cations showed greatest stability after immersion in 1 M NaOH at 80 °C for 500 h.

  8. Surface modification of biomaterials by pulsed laser ablation deposition and plasma/gamma polymerization

    Science.gov (United States)

    Rau, Kaustubh R.

    Surface modification of stainless-steel was carried out by two different methods: pulsed laser ablation deposition (PLAD) and a combined plasma/gamma process. A potential application was the surface modification of endovascular stents, to enhance biocompatibility. The pulsed laser ablation deposition process, had not been previously reported for modifying stents and represented a unique and potentially important method for surface modification of biomaterials. Polydimethylsiloxane (PDMS) elatomer was studied using the PLAD technique. Cross- linked PDMS was deemed important because of its general use for biomedical implants and devices as well as in other fields. Furthermore, PDMS deposition using PLAD had not been previously studied and any information gained on its ablation characteristics could be important scientifically and technologically. The studies reported here showed that the deposited silicone film properties had a dependence on the laser energy density incident on the target. Smooth, hydrophobic, silicone-like films were deposited at low energy densities (100-150 mJ/cm2). At high energy densities (>200 mJ/cm2), the films had an higher oxygen content than PDMS, were hydrophilic and tended to show a more particulate morphology. It was also determined that (1)the deposited films were stable and extremely adherent to the substrate, (2)silicone deposition exhibited an `incubation effect' which led to the film properties changing with laser pulse number and (3)films deposited under high vacuum were similar to films deposited at low vacuum levels. The mechanical properties of the PLAD films were determined by nanomechanical measurements which are based on the Atomic Force Microscope (AFM). From these measurements, it was possible to determine the modulus of the films and also study their scratch resistance. Such measurement techniques represent a significant advance over current state-of-the-art thin film characterization methods. An empirical model for

  9. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation.

    Science.gov (United States)

    Desrousseaux, C; Sautou, V; Descamps, S; Traoré, O

    2013-10-01

    The development of devices with surfaces that have an effect against microbial adhesion or viability is a promising approach to the prevention of device-related infections. To review the strategies used to design devices with surfaces able to limit microbial adhesion and/or growth. A PubMed search of the published literature. One strategy is to design medical devices with a biocidal agent. Biocides can be incorporated into the materials or coated or covalently bonded, resulting either in release of the biocide or in contact killing without release of the biocide. The use of biocides in medical devices is debated because of the risk of bacterial resistance and potential toxicity. Another strategy is to modify the chemical or physical surface properties of the materials to prevent microbial adhesion, a complex phenomenon that also depends directly on microbial biological structure and the environment. Anti-adhesive chemical surface modifications mostly target the hydrophobicity features of the materials. Topographical modifications are focused on roughness and nanostructures, whose size and spatial organization are controlled. The most effective physical parameters to reduce bacterial adhesion remain to be determined and could depend on shape and other bacterial characteristics. A prevention strategy based on reducing microbial attachment rather than on releasing a biocide is promising. Evidence of the clinical efficacy of these surface-modified devices is lacking. Additional studies are needed to determine which physical features have the greatest potential for reducing adhesion and to assess the usefulness of antimicrobial coatings other than antibiotics. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  10. Surface Modification of Zinc with an Oxime for Corrosion Protection in Chloride Medium

    Directory of Open Access Journals (Sweden)

    Ganesha Achary

    2013-01-01

    Full Text Available The surface treatment of zinc was done with different concentrations of an oxime (2E-2-(hydroxylamino-1,2-diphenylethanol molecule by the immersion method. The electrochemical corrosion studies of surface-treated zinc specimens were performed in aqueous sodium chloride solution (1 M, pH 5.0 at different temperatures in order to study the corrosion mechanism. The recorded electrochemical data indicated a basic modification of the cathodic corrosion behavior of the treated zinc resulting in a decrease of the electron transfer rate. The zinc samples treated by immersion in the inhibiting organic solution presented good corrosion resistance. Using scanning electron microscopy (SEM, it was found that a protective film was formed on the surface of zinc.

  11. Transport of particles by surface waves: a modification of the classical bouncer model

    International Nuclear Information System (INIS)

    Ragulskis, M; Sanjuan, M A F

    2008-01-01

    We consider a ball under the influence of gravity on a platform. A propagating surface wave travels on the surface of the platform, while the platform remains motionless. This is a modification of the classical bouncing ball problem and describes the transport of particles by surface waves. Phase and velocity maps cannot be expressed in an explicit form owing to implicit formulations, and no formal analytical analysis is possible. Numerical analysis shows that the transition to chaos is produced via a period doubling route, which is a common property for classical bouncers. The bouncing process can be sensitive to the initial conditions, which can build the ground for control techniques that can dramatically increase the effectiveness of particle transport in practical applications

  12. Use of Intense Ion Beams for Surface Modification and Creation of New Materials

    CERN Document Server

    Renk, T; Prasad, S V; Provencio, P P; Thompson, M

    2002-01-01

    We have conducted surface treatment and alloying experiments with Al, Fe, and Ti-based metals on the RHEPP-1 accelerator (0.8 MV, 20 W, 80 ns FHWM, up to 1 Hz repetition rate) at Sandia National Laboratories. Ions are generated by the MAP gas-breakdown active anode, which can yield a number of different beam species including H, N, and C, depending upon the injected gas. Beams of intense pulsed high-power ion beams have been used to produce surface modification by changes in microstructure caused by rapid heating and cooling of the surface. Increase of beam power leads to ablation of a target surface, and redeposition of ablated material onto a separate substrate. Experiments are described in which ion beams are used in an attempt to increase high-voltage breakdown of a treated surface. Surface alloying of coated Pt and Hf layers is also described. This mixing of a previously deposited thin-film layer into a Ti-alloy substrate leads to significantly enhanced surface wear durability, compared to either untreat...

  13. Studies on cationic UV curing of epoxidised palm oil (EPO) for surface coatings

    International Nuclear Information System (INIS)

    Mek Zah Salleh; Mohd Hilmi Mahmood; Wan Rosli Wan Daud; Kumar, R.N.

    2000-01-01

    Epoxidised palm oil (EPO) resin can be cured by ultraviolet (UV) radiation either by radical, cationic or hybrid system. Cationic curing system has been chosen in this study due to the fact that epoxy groups present in EPO can be utilised directly to form crosslinking. Curing was done by means of a 20 cm wide UV IST machine with the conditions of 7.5 A current and 4 m/min conveyor speed. Sulphonium and ferrocenium salts were used as cationic photoinitiator. A formulations study was performed on the selected grades of EPO with other materials. These include types and concentration of photoinitiator, monomers, concentration of EPO and post-cure. The properties of the cured film such as pendulum hardness, percentage of gel content and tensile strength were determined. It was found that triarylsulphonium hexafluorophosphate has a very low solubility in EPO. Addition of vinyl ether monomer to the formulation did not enhance pendulum hardness and gel content of the cured films. It is also found that the post cure temperature has no significant effect on the cured film

  14. Ultraviolet light and ozone surface modification of poly-alpha α-methylstyrene using electroless nickel plating

    International Nuclear Information System (INIS)

    Chi Fangting; Sichuan Univ., Chengdu; Li Bo; Liu Yiyang; Chen Sufen; Jiang Bo

    2009-01-01

    The deposition capability of nickel on the surface of poly-α-methylstyrene microspheres was improved by combined treatment of ozone aeration and UV irradiation in aqueous ammonia. Surface properties of the treated film were investigated by X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared(FT-TR) measurements. The samples were characterized by SEM. The results indicate that after ultraviolet joint ozone treatment, the surfaces of microspheres were oxidized, and the amine and amide groups are introduced on their surface. The images of SEM show the adhesion between microspheres and nickel-phosphorus films was improved after surface modification. This was attributed to amide which could chemisorb palladium ions to catalyze electroless nickel plating on the pretreated surface of microspheres. (authors)

  15. Effect of surface organic coatings of cellulose nanocrystals on the viability of mammalian cell lines

    Directory of Open Access Journals (Sweden)

    Jimenez AS

    2017-09-01

    Full Text Available Ambar S Jimenez,1 Francesca Jaramillo,1 Usha D Hemraz,2 Yaman Boluk,3 Karina Ckless,1 Rajesh Sunasee1 1Department of Chemistry, State University of New York at Plattsburgh, Plattsburgh, NY, USA; 2National Research Council, Montreal, QC, Canada, 3Department of Civil & Environmental Engineering, University of Alberta and National Institute for Nanotechnology, National Research Council, Edmonton, AB, Canada Abstract: Cellulose nanocrystals (CNCs have emerged as promising candidates for a number of bio-applications. Surface modification of CNCs continues to gain significant research interest as it imparts new properties to the surface of the nanocrystals for the design of multifunctional CNCs-based materials. A small chemical surface modification can potentially lead to drastic behavioral changes of cell-material interactions thereby affecting the intended bio-application. In this work, unmodified CNCs were covalently decorated with four different organic moieties such as a diaminobutane fragment, a cyclic oligosaccharide (β-cyclodextrin, a thermoresponsive polymer (poly[N-isopropylacrylamide], and a cationic aminomethacrylamide-based polymer using different synthetic covalent methods. The effect of surface coatings of CNCs and the respective dose-response of the above organic moieties on the cell viability were evaluated on mammalian cell cultures (J774A.1 and MFC-7, using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays. Overall, the results indicated that cells exposed to surface-coated CNCs for 24 h did not display major changes in cell viability, membrane permeability as well as cell morphology. However, with longer exposure, all these parameters were somewhat affected, which appears not to be correlated with either anionic or cationic surface coatings of CNCs used in this study. Keywords: cellulose nanocrystals, surface coating, cell viability, MTT, LDH

  16. Development of Surface Modification Methods for Religaheart® Cardiac Support System

    Directory of Open Access Journals (Sweden)

    Major R.

    2016-09-01

    Full Text Available The work is a review of the methods of the surface modification performed by the authors dedicated for for cardiac support system. It presents the evolution of designing the surface dedicated to direct contact with blood. Initially thin and ultrathin coatings were developed. They were designed as a blood-polymer barrier. The pneumatic heart assist devices are made of a medical grade polyurethane. A major milestone was to create advanced ceramic thin films expressing the flexible effects deposited by physical techniques. Coatings have evolved. Another milestone was the surface reproducing the microenvironment to capture progenitor cells from the bloodstream. Thin coatings were prepared, using methods of ion been, controlled residual stresses were introduced. Wrinkles appeared without cracking. This enabled taking control over the process of cell differentiation. Alternatively, the tissue inspired structure resulted of the coating in the form of extracellular matrix. The outer surface was modified with synthetic materials. This enabled the effective proteins docking to induce cell growth, recreating the luminal side of the blood vessel. Coagulation processes have been slowed down. In addition, it was found pro-angiogenic effect.

  17. Processing and surface modification of novel natural-origin architectures aimed for biomedical applications

    Science.gov (United States)

    Silva, Simone dos Santos

    In the last decades, tissue engineering has emerged as a potential therapeutical tool aimed at developing substitutes that are able to restore proper function of the damaged organs/tissues. Nature-inspired routes involving natural origin polymer-based systems represent an attractive alternative to produce novel materials by mimicking the tissue environment required for tissue regeneration. Moreover, further modifications of these systems allow the adjustment of their properties in accordance with the requirements for successful biomedical applications. The main goal of the present thesis is to develop and modify natural origin polymer-based systems using simple methodologies such as sol-gel, surface modification by means of plasma treatment and blending of chitosan with proteins (soy protein isolate and silk fibroin). A sol-gel method was used to improve the bulk properties of chitosan by the incorporation of an inorganic component at the sub-nanometric level. Chitosan/siloxane hybrid materials were synthesised, where essentially urea bridges covalently bond the chitosan to the polysiloxane network. These bifunctional materials exhibit interesting photoluminescence features and a bioactive behaviour. In most situations in the biomedical field, the surface of a biomaterial is in direct contact with living tissues. Therefore, the surface characteristics play a fundamental role on the implant biocompatibility. In this thesis, nitrogen and argon plasma treatment was applied on chitosan membranes in order to improve their surface properties. The applied modifications promoted differences on surface chemistry, wettability and roughness, which reflected in a significant improvement of fibroblast adhesion and proliferation onto chitosan membranes. Besides the surface modification, blending of chitosan with proteins such as soy protein isolate and silk fibroin was also used to modify the bulk properties of chitosan. In situ cross-linking with glutaraldehyde solutions was

  18. Preparation of Iron-nickel Alloy Nanostructures via Two Cationic Pyridinium Derivatives as Soft Templates

    Directory of Open Access Journals (Sweden)

    Jingxin Zhou

    2015-09-01

    Full Text Available In this paper, crystalline iron-nickel alloy nanostructures were successfully prepared from two cationic pyridinium derivatives as soft templates in solution. The crystal structure and micrograph of FeNi alloy nanostructures were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy, and the content was confirmed by energy-dispersive spectrometry. The results indicated that the as-prepared nanostructures showed slightly different diameter ranges with the change of cationic pyridinium derivatives on the surface. The experimental data indicated that the adsorption of cationic pyridinium compounds on the surface of particles reduces the surface charge, leading to an isotropic distribution of the residual surface charges. The magnetic behaviours of as-prepared FeNi alloy nanostructures exhibited disparate behaviours, which could be attributed to their grain sizes and distinctive structures. The present work may give some insight into the synthesis and character of new alloy nanomaterials with special nanostructures using new soft templates.

  19. Laser Surface Modification of H13 Die Steel using Different Laser Spot Sizes

    Science.gov (United States)

    Aqida, S. N.; Naher, S.; Brabazon, D.

    2011-05-01

    This paper presents a laser surface modification process of AISI H13 tool steel using three sizes of laser spot with an aim to achieve reduced grain size and surface roughness. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). Metallographic study and image analysis were done to measure the grain size and the modified surface roughness was measured using two-dimensional surface profilometer. From metallographic study, the smallest grain sizes measured by laser modified surface were between 0.51 μm and 2.54 μm. The minimum surface roughness, Ra, recorded was 3.0 μm. This surface roughness of the modified die steel is similar to the surface quality of cast products. The grain size correlation with hardness followed the findings correlate with Hall-Petch relationship. The potential found for increase in surface hardness represents an important method to sustain tooling life.

  20. Comparative investigation on cation-cation (Al-Sn) and cation-anion (Al-F) co-doping in RF sputtered ZnO thin films: Mechanistic insight

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, Arindam; Basak, Durga, E-mail: sspdb@iacs.res.in

    2017-07-15

    Highlights: • Comparative study on Al, Al-Sn and Al-F doped ZnO films has been carried out. • High transparent Al-F co-doped film shows three times enhanced carrier density. • Al-F co-doped film shows larger carrier relaxation time. • Al-Sn co-doped films shows carrier transport dominated by impurity scattering. • Al-F co-doped ZnO film can be applied as transparent electrode. - Abstract: Herein, we report a comparative mechanistic study on cation-cation (Al-Sn) and cation-anion (Al-F) co-doped nanocrystalline ZnO thin films grown on glass substrate by RF sputtering technique. Through detailed analyses of crystal structure, surface morphology, microstructure, UV-VIS-NIR transmission-reflection and electrical transport property, the inherent characteristics of the co-doped films were revealed and compared. All the nanocrystalline films retain the hexagonal wurtzite structure of ZnO and show transparency above 90% in the visible and NIR region. As opposed to expectation, Al-Sn (ATZO) co-doped film show no enhanced carrier concentration consistent with the probable formation of SnO{sub 2} clusters supported by the X-ray photoelectron spectroscopy study. Most interestingly, it has been found that Al-F (AFZO) co-doped film shows three times enhanced carrier concentration as compared to Al doped and Al-Sn co-doped films attaining a value of ∼9 × 10{sup 20} cm{sup −3} due to the respective cation and anion substitution. The carrier relaxation time increases in AFZO while it decreases significantly for ATZO film consistent with the concurrence of the impurity scattering in the latter.

  1. Surface modification of magnesium aluminum hydroxide nanoparticles with poly(methyl methacrylate) via one-pot in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaojun, E-mail: guoxj6906@163.com [College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070 (China); Zhao Leihua; Zhang Li; Li Jing [College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070 (China)

    2012-01-15

    Hydrophobic magnesium aluminum hydroxide composite particles (PMMA-MAH) were obtained by means of grafting poly(methyl methacrylate) (PMMA) onto the surface of magnesium aluminum hydroxide(MAH) nanoparticles after a novel type of phosphate coupling agent (DN-27) modification. The introduction of functional double bonds was firstly conducted on the surface of nanoparticles by DN-27 modification, followed by one-pot in situ polymerization on the particles surface using methyl methacrylate (MMA) as monomer, azoisobutyronitrile (AIBN) as initiator and sodium dodecyl sulfate (SDS) as stabilizer to graft PMMA on the surface of DN-27-modified MAH particles. The obtained composite particles were characterized by field-emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD). The results show that the organic macromolecule PMMA could be successfully grafted on the surface of DN-27-modified MAH nanoparticles and the thermal stability of the PMMA-MAH composite particles had been improved. Compared with unmodified blank MAH sample, the product obtained with this method possesses better hydrophobic properties such as a higher water contact angle of 108 Degree-Sign and a well dispersion.

  2. Peri- and intra-implant bone response to microporous Ti coatings with surface modification.

    Science.gov (United States)

    Braem, Annabel; Chaudhari, Amol; Vivan Cardoso, Marcio; Schrooten, Jan; Duyck, Joke; Vleugels, Jozef

    2014-02-01

    Bone growth on and into implants exhibiting substantial surface porosity is a promising strategy in order to improve the long-term stable fixation of bone implants. However, the reliability in clinical applications remains a point of discussion. Most attention has been dedicated to the role of macroporosity, leading to the general consensus of a minimal pore size of 50-100 μm in order to allow bone ingrowth. In this in vivo study, we assessed the feasibility of early bone ingrowth into a predominantly microporous Ti coating with an average thickness of 150 μm and the hypothesis of improving the bone response through surface modification of the porous coating. Implants were placed in the cortical bone of rabbit tibiae for periods of 2 and 4 weeks and evaluated histologically and histomorphometrically using light microscopy and scanning electron microscopy. Bone with osteocytes encased in the mineralized matrix was found throughout the porous Ti coating up to the coating/substrate interface, highlighting that osseointegration of microporosities (coating in the host bone in the long term is possible. When surface modifications inside the porous structure further reduced the interconnective pore size to the submicrometer level, bone ingrowth was impaired. On the other hand, application of a sol-gel-derived bioactive glass-ceramic coating without altering the pore characteristics was found to significantly improve bone regeneration around the coating, while still supporting bone ingrowth. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Surface modification of polysulfone membranes applied for a membrane reactor with immobilized alcohol dehydrogenase

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Silau, Harald; Pinelo, Manuel

    2018-01-01

    activated by lithiation followed by functionalization with acid chlorides at 0 °C, permitting modification of commercial PSf membranes without compromising the mechanical integrity of the membrane. Post-functionalization polymer grafting was illustrated through both, a “grafting from” approach by surface...... initiated atom transfer radical polymerization (SI-ATRP) and by a “grafting to” approach exploiting Cu(I) catalyzed 1,3-cycloadditions of alkynes with azides (CuAAC) introducing hydrophilic polymers onto the membrane surface. Poly(1-vinyl imidazole) (pVim) grafted membranes were exploited as support...

  4. Surface tension and density for members of four ionic liquid homologous series containing a pyridinium based-cation and the bis(trifluoromethylsulfonyl)imide anion

    Czech Academy of Sciences Publication Activity Database

    Klomfar, Jaroslav; Součková, Monika; Pátek, Jaroslav

    2017-01-01

    Roč. 431, January (2017), s. 24-33 ISSN 0378-3812 R&D Projects: GA ČR GA13-00145S Institutional support: RVO:61388998 Keywords : ionic liquid * pyridinium-based cation * bis(trifluoromethylsulfonyl)imide anion * density-temperature relation * surface tension-temperature relation * recommended property values Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 2.473, year: 2016

  5. The surface modifications of multi-walled carbon nanotubes for multi-walled carbon nanotube/poly(ether ether ketone) composites

    International Nuclear Information System (INIS)

    Cao, Zongshuang; Qiu, Li; Yang, Yongzhen; Chen, Yongkang; Liu, Xuguang

    2015-01-01

    Graphical abstract: Multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites incorporating surface modified multi-walled carbon nanotubes (MWCNTs) as fillers were fabricated in a solution blending method in order to explore the dynamic mechanical and tribological properties of MWCNT/PEEK composites systematically. It is evident that surface modifications of MWCNTs have a significant impact on dispersibility of MWCNTs in PEEK, dynamic mechanical and tribological properties of MWCNT/PEEK composites. Typically, a clear effect of surface modifications of MWCNTs on tribological properties of MWCNT/PEEK composites was observed. A significant reduction in frictional coefficient of MWCNT/PEEK composites with the MWCNTs modified with ethanolamine has been achieved and the self-lubricating film on their worn surfaces was also observed. - Highlights: • The dispersibility of surface modified MWCNTs in PEEK has been studied. • MWCNTs modified with ethanolamine have showed a good dispersion in PEEK. • Surface modifications of MWCNTs have a significant impact on both dynamic mechanical and tribological properties of MWCNT/PEEK composites. - Abstract: The effects of surface modifications of multi-walled carbon nanotubes (MWCNTs) on the morphology, dynamic mechanical and tribological properties of multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites have been investigated. MWCNTs were treated with mixed acids to obtain acid-functionalized MWCNTs. Then the acid-functionalized MWCNTs were modified with ethanolamine (named e-MWCNTs). The MWCNT/PEEK composites were prepared by a solution-blending method. A more homogeneous distribution of e-MWCNTs within the composites was found with scanning electron microscopy. Dynamic mechanical analysis demonstrated a clear increase in the storage modulus of e-MWCNT/PEEK composites because of the improved interfacial adhesion strength between e-MWCNTs and PEEK. Furthermore, the presence of e

  6. The surface modifications of multi-walled carbon nanotubes for multi-walled carbon nanotube/poly(ether ether ketone) composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zongshuang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Research Center of Advanced Material Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Qiu, Li [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Yang, Yongzhen, E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Research Center of Advanced Material Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Chen, Yongkang, E-mail: y.k.chen@herts.ac.uk [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); University of Hertfordshire, School of Engineering and Technology, Hatfield, Hertfordshire AL10 9AB (United Kingdom); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-10-30

    Graphical abstract: Multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites incorporating surface modified multi-walled carbon nanotubes (MWCNTs) as fillers were fabricated in a solution blending method in order to explore the dynamic mechanical and tribological properties of MWCNT/PEEK composites systematically. It is evident that surface modifications of MWCNTs have a significant impact on dispersibility of MWCNTs in PEEK, dynamic mechanical and tribological properties of MWCNT/PEEK composites. Typically, a clear effect of surface modifications of MWCNTs on tribological properties of MWCNT/PEEK composites was observed. A significant reduction in frictional coefficient of MWCNT/PEEK composites with the MWCNTs modified with ethanolamine has been achieved and the self-lubricating film on their worn surfaces was also observed. - Highlights: • The dispersibility of surface modified MWCNTs in PEEK has been studied. • MWCNTs modified with ethanolamine have showed a good dispersion in PEEK. • Surface modifications of MWCNTs have a significant impact on both dynamic mechanical and tribological properties of MWCNT/PEEK composites. - Abstract: The effects of surface modifications of multi-walled carbon nanotubes (MWCNTs) on the morphology, dynamic mechanical and tribological properties of multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites have been investigated. MWCNTs were treated with mixed acids to obtain acid-functionalized MWCNTs. Then the acid-functionalized MWCNTs were modified with ethanolamine (named e-MWCNTs). The MWCNT/PEEK composites were prepared by a solution-blending method. A more homogeneous distribution of e-MWCNTs within the composites was found with scanning electron microscopy. Dynamic mechanical analysis demonstrated a clear increase in the storage modulus of e-MWCNT/PEEK composites because of the improved interfacial adhesion strength between e-MWCNTs and PEEK. Furthermore, the presence of e

  7. Radiation induced graft copolymerization for preparation of cation exchange membranes: a review

    International Nuclear Information System (INIS)

    Mohamed Mahmoud Nasef; Hamdani Saidi; Hussin Mohd Nor

    1999-01-01

    Cation exchange membranes are regarded as the ideal solid polymer electrolyte materials for the development of various electrochemical energy conversion applications where significant improvements in the current density are required. Such membranes require special polymers and preparation techniques to maintain high chemical , mechanical and thermal stability in addition to high ionic conductivity and low resistance. A lot of different techniques have been proposed in the past to prepare such membranes. Radiation-induced graft copolymerization provides an attractive ft method for modification of chemical and physical properties of polymeric materials and is of particular interest in achieving specially desired cation exchange membranes as well as excellent membrane properties. This is due to the ability to control the membrane compositions as well as properties by proper selection of grafting conditions. Therefore numerous parameters have to be investigated to properly select the right polymeric materials, radiation grafting technique and the grafting conditions to be employed. In this paper a state-of-the-art of radiation-induced graft copolymerization for preparation of cation exchange membranes and their applications are briefly reviewed. (Author)

  8. Phase modification and surface plasmon resonance of Au/WO{sub 3} system

    Energy Technology Data Exchange (ETDEWEB)

    Bose, R. Jolly; Kavitha, V.S. [Department of Optoelectronics, University of Kerala, Kariyavattom, Thiruvananthapuram 691574, Kerala (India); Sudarsanakumar, C. [School of Pure and Applied Physics, Mahatma Gandhi University, Priyadarshini Hills, Kottayam 686560, Kerala (India); Pillai, V.P. Mahadevan, E-mail: vpmpillai9@gmail.com [Department of Optoelectronics, University of Kerala, Kariyavattom, Thiruvananthapuram 691574, Kerala (India)

    2016-08-30

    Highlights: • We have investigated the role of gold as catalyst and nucleation centers, for the crystallization and phase modification of tungsten oxide, in Au/WO{sub 3} matrix. • The phase change from triclinic WO{sub 3} to monoclinic W{sub 18}O{sub 49} is found to enhance with gold incorporation. • The surface plasmon resonance is observed in gold/tungsten oxide system with the appearance of an absorption band near the wavelength 604 nm. - Abstract: We report the action of gold as catalyst for the modification of phase from triclinic WO{sub 3} to monoclinic W{sub 18}O{sub 49} and nucleation centre for the formation of W{sub 18}O{sub 49} phase, in gold incorporated tungsten oxide films prepared by RF magnetron sputtering technique. A new band is observed near 925 cm{sup −1} in the Raman spectra of gold incorporated tungsten oxide films which is not observed in the pure tungsten oxide film. The intensity of this band enhances with gold content. A localized surface plasmon resonance (LSPR) band is observed near the wavelength 604 nm in gold incorporated tungsten oxide films. The integrated intensities of LSPR band and Raman band (∼925 cm{sup −1}) can be used for sensing the quantity of gold in the Au/WO{sub 3} matrix.

  9. Surface modification and particles size distribution control in nano-CdS/polystyrene composite film

    International Nuclear Information System (INIS)

    Min Zhirong; Ming Qiuzhang; Hai Chunliang; Han Minzeng

    2003-01-01

    Preparation of nano-CdS particles with surface thiol modification by microemulsion method and their influences on the particle size distribution in highly filled polystyrene-based composites were studied. The modified nano-CdS was characterized by X-ray photoelectron spectroscopy (XPS), light absorption and emission measurements to reveal the morphologies of the surface modifier, which are consistent with the surface molecules packing calculation. The morphologies of the surface modifier exerted a great influence not only on the optical performance of the particles themselves, but also on the size distribution of the particle in polystyrene matrix. A monolayer coverage with tightly packed thiol molecules was believed to be most effective in promoting a uniform particle size distribution and eliminating the surface defects that cause radiationless recombination. Control of the particles size distribution in polystyrene can be attained by adjusting surface coverage status of the thiol molecules based on the strong interaction between the surface modifier and the matrix

  10. Removal of cationic dye from water by activated pine cones

    Directory of Open Access Journals (Sweden)

    Momčilović Milan Z.

    2012-01-01

    Full Text Available Adsorption of a cationic phenothyazine dye methylene blueonto activated carbon prepared from pine cones was investigated with the variation in parameters of contact time, dye concentration and pH. The kinetic data were found to follow the pseudo-second-order kinetic modelclosely. The equilibrium data were best represented by the Langmuir isotherm with maximum adsorption capacity of 233.1 mg g-1. Adsorption was favored by using a higher solution pH. Textural analysis by nitrogen adsorption was used to determine specific surface area and pore structure of the obtained carbon. Boehm titrations revealed that carboxylic groups are present in the highest degree on the carbon surface. The results indicate that the presented method for activation of pine cones could yield activated carbon with significant porosity, developed surface reactivity and considerable adsorption affinity toward cationic dye methylene blue.

  11. Comparison of some effects of modification of a polylactide surface layer by chemical, plasma, and laser methods

    Energy Technology Data Exchange (ETDEWEB)

    Moraczewski, Krzysztof, E-mail: kmm@ukw.edu.pl [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Rytlewski, Piotr [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, Rafał [Institute for Engineering of Polymer Materials and Dyes, ul. M. Skłodowskiej–Curie 55, 87-100 Toruń (Poland); Żenkiewicz, Marian [Department of Materials Engineering, Kazimierz Wielki University, Department of Materials Engineering, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland)

    2015-08-15

    Highlights: • We modified polylactide surface layer with chemical, plasma or laser methods. • We tested selected properties and surface structure of modified samples. • We stated that the plasma treatment appears to be the most beneficial. - Abstract: The article presents the results of studies and comparison of selected properties of the modified PLA surface layer. The modification was carried out with three methods. In the chemical method, a 0.25 M solution of sodium hydroxide in water and ethanol was utilized. In the plasma method, a 50 W generator was used, which produced plasma in the air atmosphere under reduced pressure. In the laser method, a pulsed ArF excimer laser with fluency of 60 mJ/cm{sup 2} was applied. Polylactide samples were examined by using the following techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), goniometry and X-ray photoelectron spectroscopy (XPS). Images of surfaces of the modified samples were recorded, contact angles were measured, and surface free energy was calculated. Qualitative and quantitative analyses of chemical composition of the PLA surface layer were performed as well. Based on the survey it was found that the best modification results are obtained using the plasma method.

  12. The effect of fluoride surface modification of ceramic TiO{sub 2} on the surface properties and biological response of osteoblastic cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Tiainen, H; Knychala, J; Lyngstadaas, S P; Haugen, H J [Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109 Blindern, NO-0317 Oslo (Norway); Monjo, M [Department of Fundamental Biology and Health Sciences, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, Cra. de Valldemossa, km 7.5, 07122 Palma de Mallorca (Spain); Nilsen, O [Department of Chemistry, University of Oslo, PO Box 1033 Blindern, NO-0315 Oslo (Norway); Ellingsen, J E, E-mail: h.j.haugen@odont.uio.no [Oral Research Laboratory, Institute for Clinical Dentistry, University of Oslo, PO Box 1109 Blindern, NO-0317 Oslo (Norway)

    2011-08-15

    This study investigates the effect of fluoride surface modification on the surface properties of polycrystalline ceramic TiO{sub 2} and the biological response of murine osteoblast cells to fluoride-modified TiO{sub 2} in vitro. Fluoride concentrations up to 9 at.% were detected and the fluoride was found to bind to the surface in a ligand exchange reaction between surface hydroxyl groups and the fluoride anions from the HF. No significant changes in the surface topography were detected. In vitro experiments were performed in order to evaluate the biological response of the MC3T3-E1 cells to the fluoride-modified ceramic TiO{sub 2} surfaces. No difference in the lactate dehydrogenase (LDH) activity was seen in comparison to unmodified samples, apart from the highest fluoride concentration ({approx}9 at.%) which was found to be more toxic to the cells. Real-time PCR analysis showed no conclusive evidence for the fluoride-induced promotion of osteoblast differentiation as no significant increase in the collagen-1, osteocalcin, or BMP-2 mRNA levels was detected on the fluoride-modified ceramic TiO{sub 2} surfaces apart from one group, which showed an elevated osteocalcin level and higher number of cells. Since the observed grain boundary corrosion is also anticipated to reduce the mechanical properties of ceramic TiO{sub 2}, this surface modification method may not be an ideal method for improving the osteogenic response of ceramic TiO{sub 2} scaffolds.

  13. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    Science.gov (United States)

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  14. Surface modification of ultra thin PES-zeolite using thermal annealing to increase flux and rejection of produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Widayat,; Pradini, A. W.; Armeli, Y. P. [Department of Chemical Engineering, University of Diponegoro Prof. Soedarto, Tembalang, Semarang, 50239, Phone/Fax : (024) 7460058 (Indonesia)

    2015-12-29

    Membrane technology is an alternative of water treatment based on filtration that is being developed. Surface Modification using heat treatment has been investigated to improve the performance of ultra thin PES-Zeolite nanocomposite membrane for produced water treatment from Pertamina Balongan. Two types of membranes with surface modification and without modification were prepared to study the effect of surface modification on its permeation properties. Asymmetric ultra thin PES-Zeolite nanocomposite membrane for produced water treatment was casted using the dry/wet phase inversion technique from dope solutions containing polyethersulfone, N-methyl-2-pyrrolidone (NMP) as a solvent and zeolite as a filler. Experimental results showed that the heat treatment at near glass transition temperature was increase the rejection of COD, Turbidity and ion Ca{sup 2+}. The better adherence of zeolite particles in the polymer matrix combined with formation of charge transfer complexes (CTCs) and cross-linking might be the main factors to enhance the percent of rejection. Field emission scanning electron microscopy (FESEM) micrographs showed that the selective layer and the substructure of PES-zeolite membrane became denser and more compact after the heat treatment. The FESEM micrographs also showed that the heat treatment was increased the adherence of zeolite particle and polymer. Membranes treated at 180 °C for 15 seconds indicated increase the rejection and small decrease in flux for produced water treatment.

  15. Surface modification of bisphenol A polycarbonate material by ultraviolet Nd:YVO4 laser high-speed microprocessing technology

    International Nuclear Information System (INIS)

    Liu, Jianguo; Wang, Suhuan; Lv, Ming; Zeng, Xiaoyan

    2014-01-01

    In this paper, a low-cost and high-efficiency microprocessing modification technology for the surface of bisphenol A polycarbonate (BAPC) material was achieved (in particular, from hydrophilicity to hydrophobicity) at high laser scanning speeds (600–1000 mm s  − 1 ) and using an all-solid state, Q-switched, high-average power and nanosecond pulse Nd:YVO 4 laser (355 nm wavelength). During the modification, it was found that the laser fluence and pulse width were the two main parameters affecting the modification effect. Moreover, the modification had a significant effect on the water contact angle, wetting behavior, microstructure, average roughness and chemical composition of the surface. When the laser fluences applied were low (i.e., less than the so-called critical fluence of the UV laser modification of the BAPC material), the water contact angle was found to be a little less than the original, the hydrophilicity was slightly improved, the relative content of the oxygen-containing groups (e.g. O–C and COO  −  ) increased, the microstructure and average roughness only had a very slight change, and the wetting behavior complied with the Wenzel regime. On the other hand, when the laser fluences applied were high, the water contact angle significantly increased, the hydrophilicity markedly decreased and the relative content of the oxygen-containing groups also increased. Here, a porous microstructure with periodical v-type grooves was generated and the average roughness had an obvious increase. In this case, the wetting behavior could be explained by the Cassie-Baxter regime, i.e., the microstructure and average roughness change played a deciding role. The reason for this might be that different laser parameters result in different material deformation and removal processes, thereby resulting in different surface chemical compositions, microstructures, roughnesses and wetting properties. (paper)

  16. Rotary bending fatigue properties of Inconel 718 alloys by ultrasonic nanocrystal surface modification technique

    Directory of Open Access Journals (Sweden)

    Jun-Hyong Kim

    2015-08-01

    Full Text Available This study investigates the influence of ultrasonic nanocrystal surface modification (UNSM technique on fatigue properties of SAE AMS 5662 (solution treatment of Inconel 718 alloys. The fatigue properties of the specimens were investigated using a rotary bending fatigue tester. Results revealed that the UNSM-treated specimens showed longer fatigue life in comparison with those of the untreated specimens. The improvement in fatigue life of the UNSM-treated specimens is attributed mainly to the induced compressive residual stress, increased hardness, reduced roughness and refined grains at the top surface. Fractured surfaces were analysed using a scanning electron microscopy (SEM in order to give insight into the effectiveness of UNSM technique on fracture mechanisms and fatigue life.

  17. Surface modification of closed plastic bags for adherent cell cultivation

    Science.gov (United States)

    Lachmann, K.; Dohse, A.; Thomas, M.; Pohl, S.; Meyring, W.; Dittmar, K. E. J.; Lindenmeier, W.; Klages, C.-P.

    2011-07-01

    In modern medicine human mesenchymal stem cells are becoming increasingly important. However, a successful cultivation of this type of cells is only possible under very specific conditions. Of great importance, for instance, are the absence of contaminants such as foreign microbiological organisms, i.e., sterility, and the chemical functionalization of the ground on which the cells are grown. As cultivation of these cells makes high demands, a new procedure for cell cultivation has been developed in which closed plastic bags are used. For adherent cell growth chemical functional groups have to be introduced on the inner surface of the plastic bag. This can be achieved by a new, atmospheric-pressure plasma-based method presented in this paper. The method which was developed jointly by the Fraunhofer IST and the Helmholtz HZI can be implemented in automated equipment as is also shown in this contribution. Plasma process gases used include helium or helium-based gas mixtures (He + N2 + H2) and vapors of suitable film-forming agents or precursors such as APTMS, DACH, and TMOS in helium. The effect of plasma treatment is investigated by FTIR-ATR spectroscopy as well as surface tension determination based on contact angle measurements and XPS. Plasma treatment in nominally pure helium increases the surface tension of the polymer foil due to the presence of oxygen traces in the gas and oxygen diffusing through the gas-permeable foil, respectively, reacting with surface radical centers formed during contact with the discharge. Primary amino groups are obtained on the inner surface by treatment in mixtures with nitrogen and hydrogen albeit their amount is comparably small due to diffusion of oxygen through the gas-permeable bag, interfering with the plasma-amination process. Surface modifications introducing amino groups on the inner surface turned out to be most efficient in the promotion of cell growth.

  18. Adsorption of dissymmetric cationic gemini surfactants at silica/water interface

    Science.gov (United States)

    Sun, Yuhai; Feng, Yujun; Dong, Hongwei; Chen, Zhi

    2007-05-01

    Adsorption of a series of cationic gemini surfactants 12-2- m ( m = 8, 12, 16) on the surface of silica was investigated. The critical micelle concentrations, cmcs, of cationic gemini surfactants in the initial solutions and in the supernatants were measured by conductometry and tensiometer. The changes in cmc values indicate that the ion exchanges take place between polar groups of gemini surfactants adsorbed and ions bound on the surface of silica. The adsorption isotherms of cationic gemini surfactants were obtained by a solution depletion method. Based on the driving force, the adsorption includes two steps, one of which is ion exchange, and the other is hydrophobic interaction. In each step, the tendency of surfactant molecules in the solution to form aggregates or to be adsorbed on the silica varies with their structures. The maximum adsorption amount of gemini surfactants on the silica, τmax, decreases as increasing in the length of one alkyl chain, m, from 8, 12 to 16. So the results show that the adsorption behaviors of gemini surfactants are closely related to the dissymmetry of gemini molecules.

  19. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Abednejad, Atiye Sadat, E-mail: atiyeabednejad@gmail.com [Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran (Iran, Islamic Republic of); Amoabediny, Ghasem [Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran (Iran, Islamic Republic of); Research Center for New Technologies in Life Science Engineering, University of Tehran, P.O. Box 63894-14179, Tehran (Iran, Islamic Republic of); Ghaee, Azadeh [Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran (Iran, Islamic Republic of)

    2014-09-01

    Polypropylene hollow fiber microporous membranes have been used in a wide range of applications, including blood oxygenator. The hydrophobic feature of the polypropylene surface causes membrane fouling. To minimize fouling, a modification consisting of three steps: surface activation in H{sub 2} and O{sub 2} plasma, membrane immersion in polyethylene glycol (PEG) and plasma graft polymerization was performed. The membranes were characterized by contact angle measurement, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Oxygen transfer of modified membranes was also tested. The stability of grafted PEG was measured in water and in phosphate buffer saline (PBS) at 37 °C. Blood compatibility of modified surfaces was evaluated by the platelet adhesion method. Water contact angel reduction from 110° to 72° demonstrates the enhanced hydrophilicity, and XPS results verify the presence of oxygenated functional groups due to the peak existence in 286 eV as a result of PEG grafting. The results clearly indicate that plasma graft-polymerization of PEG is an effective way for antifouling improvement of polypropylene membranes. Also, the results show that oxygen transfer changes in PEG grafted membranes are not significant. - Highlights: • H{sub 2} and O{sub 2} plasma graft polymerization of PEG on polypropylene membrane was carried out. • Changes in surface properties were investigated by FTIR, XPS, SEM, and AFM. • Surface wettability enhanced as a result of poly ethylene glycol grafting. • PEG grafting degree increase causes reduction of fouling and adhesion.

  20. Synthetic cation-selective nanotube: permeant cations chaperoned by anions.

    Science.gov (United States)

    Hilder, Tamsyn A; Gordon, Dan; Chung, Shin-Ho

    2011-01-28

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.