Sample records for cationic liposomes loaded

  1. Adjuvant Effect of Cationic Liposomes for Subunit Influenza Vaccine: Influence of Antigen Loading Method, Cholesterol and Immune Modulators

    Alexander Kros


    Full Text Available Cationic liposomes are potential adjuvants for influenza vaccines. In a previous study we reported that among a panel of cationic liposomes loaded with influenza hemagglutinin (HA, DC-Chol:DPPC (1:1 molar ratio liposomes induced the strongest immune response. However, it is not clear whether the cholesterol (Chol backbone or the tertiary amine head group of DC-Chol was responsible for this. Therefore, in the present work we studied the influence of Chol in the lipid bilayer of cationic liposomes. Moreover, we investigated the effect of the HA loading method (adsorption versus encapsulation and the encapsulation of immune modulators in DC-Chol liposomes on the immunogenicity of HA. Liposomes consisting of a neutral lipid (DPPC or Chol and a cationic compound (DC-Chol, DDA, or eDPPC were produced by film hydration-extrusion with/without an encapsulated immune modulator (CpG or imiquimod. The liposomes generally showed comparable size distribution, zeta potential and HA loading. In vitro studies with monocyte-derived human dendritic cells and immunization studies in C57Bl/6 mice showed that: (1 liposome-adsorbed HA is more immunogenic than encapsulated HA; (2 the incorporation of Chol in the bilayer of cationic liposomes enhances their adjuvant effect; and (3 CpG loaded liposomes are more efficient at enhancing HA-specific humoral responses than plain liposomes or Alhydrogel.

  2. siRNA-loaded cationic liposomes for cancer therapy: Development, characterization and efficacy evaluation

    Ying, Bo

    Cancer is a major health problem in the United States and many other parts of the world. However, cancer treatment is severely limited by the lack of highly effective cytotoxic agents and selective delivery methods which can serve as the "magic bullet" (first raised by Dr. Paul Ehrlich, the goal of targeting a specific location without causing harm to surrounding tissues or to more distant regions in the body). The revolutionary finding that tumors cannot grow beyond a microscopic size without dedicated blood supply provided a highly effective alternative for the treatment of cancer. Currently, anti-angiogenic therapy and the discovery of RNA interference makes it possible to treat some conditions by silencing disorder-causing genes of targeting cells which are otherwise difficult to eradicate with more conventional therapies. However, before siRNA technology could be widely used as a therapeutic approach, the construct must be efficiently and safely delivered to target cells. Strategies used for siRNA delivery should minimize uptake by phagocytes, enzymatic degradation by nucleases and should be taken up preferentially, if not specifically, by the intended cell population. Kinesin spindle proteins (KSP) are the motor proteins which play critical roles during mitosis. Different from tubulins which are also present in post-mitotic cells, such as axons, KSP is exclusively expressed in mitotic cells, which makes them the ideal target for anti-mitotics. In the present study, we intend to develop, characterize and evaluate a liposome-based delivery system which can deliver KSP siRNA selectively to the tumor vasculature (thus inhibiting angiogenesis, destroying tumor vasculature and eventually, eradicating tumor growth). We first developed ten different liposome preparation types with different compositions of lipids. Next, the capacity for loading siRNA and efficiency of targeting the tumor vascular supply was evaluated using relevant cellular and tumor models

  3. Temoporfin-loaded liposomes

    Kuntsche, Judith; Freisleben, Ines; Steiniger, Frank;


    Temoporfin (mTHPC) is a potent but highly hydrophobic second-generation photosensitizer and has been approved for the palliative treatment of patients with advanced head and neck cancer by photodynamic therapy. Liposome formulations have been evaluated as carrier system for this drug to overcome ...... investigations indicate the presence of micellar structures in addition to vesicles. Lyophilization and reconstitution led to an alteration in the morphology but had overall no distinct influence on the colloidal stability....

  4. Liposome-Loaded Cell Backpacks.

    Polak, Roberta; Lim, Rosanna M; Beppu, Marisa M; Pitombo, Ronaldo N M; Cohen, Robert E; Rubner, Michael F


    Cell backpacks, or micron-scale patches of a few hundred nanometers in thickness fabricated by layer-by-layer (LbL) assembly, are potentially useful vehicles for targeted drug delivery on the cellular level. In this work, echogenic liposomes (ELIPs) containing the anticancer drug doxorubicin (DOX) are embedded into backpacks through electrostatic interactions and LbL assembly. Poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA)n , and poly(diallyldimethylammonium chloride)/poly(styrene sulfonate) (PDAC/SPS)n film systems show the greatest ELIP incorporation of the films studied while maintaining the structural integrity of the vesicles. The use of ELIPs for drug encapsulation into backpacks facilitates up to three times greater DOX loading compared to backpacks without ELIPs. Cytotoxicity studies reveal that monocyte backpack conjugates remain viable even after 72 h, demonstrating promise as drug delivery vehicles. Because artificial vesicles can load many different types of drugs, ELIP containing backpacks offer a unique versatility for broadening the range of possible applications for cell backpacks. PMID:26616471

  5. In vivo toxicity of cationic micelles and liposomes

    Knudsen, Kristina Bram; Northeved, Helle; Ek, Pramod Kumar;


    This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the las...

  6. Temperature-controlled interaction of thermosensitive polymer-modified cationic liposomes with negatively charged phospholipid membranes.

    Kono, K; Henmi, A; Takagishi, T


    To obtain cationic liposomes of which affinity to negatively charged membranes can be controlled by temperature, cationic liposomes consisting of 3beta-[N-(N', N'-dimethylaminoethane)carbamoyl]cholesterol and dioleoylphosphatidylethanolamine were modified with poly(N-acryloylpyrrolidine), which is a thermosensitive polymer exhibiting a lower critical solution temperature (LCST) at ca. 52 degrees C. The unmodified cationic liposomes did not change its zeta potential between 20-60 degrees C. The polymer-modified cationic liposomes revealed much lower zeta potential values below the LCST of the polymer than the unmodified cationic liposomes. However, their zeta potential increased significantly above this temperature. The unmodified cationic liposomes formed aggregates and fused intensively with anionic liposomes consisting of egg yolk phosphatidylcholine and phosphatidic acid in the region of 20-60 degrees C, due to the electrostatic interaction. In contrast, aggregation and fusion of the polymer-modified cationic liposomes with the anionic liposomes were strongly suppressed below the LCST. However, these interactions were enhanced remarkably above the LCST. In addition, the polymer-modified cationic liposomes did not cause leakage of calcein from the anionic liposomes below the LCST, but promoted the leakage above this temperature as the unmodified cationic liposomes did. Temperature-induced conformational change of the polymer chains from a hydrated coil to a dehydrated globule might affect the affinity of the polymer-modified cationic liposomes to the anionic liposomes. PMID:10561483

  7. Preparation of stealth cationic liposome loaded with doxorubicin and cell studies in vitro%新型阿霉素隐形阳离子脂质体的制备及体外细胞实验

    吉丽; 常爽; 何斌; 李莉; 聂宇; 顾忠伟


    目的 制备阿霉素隐形阳离子脂质体( DOX - SCL),并与中性脂质体(DOX - SNL)比较在体外小鼠乳腺癌4T1细胞实验上的差异.方法 采用薄膜超声法制备空白脂质体,硫酸铵梯度法包载盐酸阿霉素(DOX);引入赖氨酸-胆固醇酯( Chol - lys)制成阳离子脂质体(CL),同时引入聚乙二醇-胆固醇琥珀酸酯(CHEMS-PEG)制成隐形阳离子脂质体(SCL);采用凝胶柱- UV法测定包封率;采用MTT法测定细胞毒性及体外抗肿瘤活性;通过流式细胞试验考察4T1细胞对脂质体的摄取情况.结果 SCL粒径约为100 nm,Zeta电位约为15.2 mV,对DOX的包封率大于95%;CHEMS - PEG的引入可以有效地降低CL的细胞毒性;与DOX-SNL相比,4T1细胞对DOX-SCL的摄取有所增加,DOX - SCL对4T1细胞的抑制率也更高.结论 SCL作为新型药物载体,可有效地促进DOX在肿瘤细胞中的传递.%OBJECTIVE To prepare the stealth cationic liposome (SCL) loaded with doxorubicin (DOX) ,and investigate the difference between DOX - SCL and neutral liposome (DOX - SNL) on murine breast carcinoma 4T1 cell line in vitro. METHODS lipo-somes loaded with DOX were prepared by film dispersion followed by ammonium sulfate gradient method. Cationic liposome ( CL) was formed in the addition of lysine - based cholesterol ( Chol- lys) , while SCL was constructed with both Chol- lys and PEGylated cholesterol hemisuccinate ( CHEMS - PEG). The entrapment efficiency was determined by Sephadex G -75 - UV. Cytotoxicity and anti -tumor activity in vitro were evaluated by MTT method. Flow cytometry was performed to evaluate the cellular uptake of liposomes by 4T1 cells. RESULTS The results revealed that the mean size of SCL was around 100 nm,with a Zeta potential of 15. 2 mV, and the entrapment efficiency was above 95%. The addition of CHEMS - PEG could effectively reduce the cytotoxicity of CL. Compared with DOX - SNL,the uptake of DOX - SCL by 4T1 cells was increased, and DOX - SCL showed

  8. In ovo transfection of chicken embryos using cationic liposomes.

    Rosenblum, C I; Chen, H Y


    It is reported that cationic liposomes are capable of transfecting embryos in unincubated fertile chicken eggs and that the cationic liposome, TransfectAce, has superior properties to Lipofectin. In order to determine the duration of expression of genes introduced in this way, embryos were transfected with an expression vector encoding the firefly luciferase cDNA under the control of the Rous sarcoma virus long terminal repeat (LTR). Luciferase activity could be observed consistently in day 3 embryos and activity was detectable up to day 8 of incubation. The relative expression of luciferase under the control of different viral promoters was compared in transfected chicken embryo fibroblasts and day 3 embryos. The cytomegalovirus immediate early promoter and the SV40 early promoter directed the highest amount of expression in fibroblasts while the Rous sarcoma virus LTR caused the highest amount of expression in embryos. Chicken embryo fibroblasts were transfected with the luciferase vector in order to examine duration of reporter gene expression in vitro. Luciferase expression was decreased exponentially over a 24-day period after which point luciferase activity could no longer be detected. These data suggest that stable integration of transfected DNA using liposomes is a rare event. Nevertheless, liposome-mediated transfection of embryos is suitable for the examination of promoter activity in vivo and may be a useful method to transfect genes to study embryonic development. PMID:7795662

  9. Biophysical characterization of gold nanoparticles-loaded liposomes.

    Mady, Mohsen Mahmoud; Fathy, Mohamed Mahmoud; Youssef, Tareq; Khalil, Wafaa Mohamed


    Gold nanoparticles were prepared and loaded into the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Biophysical characterization of gold-loaded liposomes was studied by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy as well as turbidity and rheological measurements. FTIR measurements showed that gold nanoparticles made significant changes in the frequency of the CH(2) stretching bands, revealing that gold nanoparticles increased the number of gauche conformers and create a conformational change within the acyl chains of phospholipids. The transmission electron micrographs (TEM) revealed that gold nanoparticles were loaded in the liposomal bilayer. The zeta potential of DPPC liposomes had a more negative value after incorporating of Au NPs into liposomal membranes. Turbidity studies revealed that the loading of gold nanoparticles into DPPC liposomes results in shifting the temperature of the main phase transition to a lower value. The membrane fluidity of DPPC bilayer was increased by loading the gold nanoparticles as shown from rheological measurements. Knowledge gained in this study may open the door to pursuing liposomes as a viable strategy for Au NPs delivery in many diagnostic and therapeutic applications. PMID:22027546

  10. Delivery of siRNA Using Cationic Liposomes Incorporating Stearic Acid-modified Octa-Arginine.

    Yang, Dongsheng; Li, Yuhuan; Qi, Yuhang; Chen, Yongzhen; Yang, Xuewei; Li, Yujing; Liu, Songcai; Lee, Robert J


    Cationic liposomes incorporating stearic acid-modified octa-arginine (StA-R8) were evaluated for survivin small interfering RNA (siRNA) delivery. StA-R8 was synthesized and incorporated into liposomes. The composition of liposomes was optimized. Physicochemical properties, cytotoxicity, cellular uptake and gene silencing activity of the liposomes complexed to survivin siRNA were investigated. The results showed that StA-R8-containing liposomes had reduced cytotoxicity and improved delivery efficiency of siRNA into cancer cells compared with StA-R8 by itself. PMID:27354583

  11. 64Cu loaded liposomes as positron emission tomography imaging agents

    Petersen, Anncatrine Luisa; Binderup, Tina; Rasmussen, Palle;


    -radionuclide (64Cu) using a new ionophore, 2-hydroxyquinoline, to carry 64Cu(II) across the membrane of preformed liposomes and deliver it to an encapsulated copper-chelator. Using this ionophore we achieved very efficient loading (95.5 ± 1.6%) and retention stability (>99%), which makes the 64Cu-liposomes highly...

  12. The preparation of Tc-99m labeled liposomes by a cationic SP/DOPE formulation for tumor imaging

    Aim: Liposomes can provide a gene delivery system to be used in the cancer gene therapy. Radiolabeled liposomes can be used in tumor imaging and tumor therapy. A new cationic liposome formulation of sphingosin e (SP) and dioleoylphosphatidylethanolamine (DOPE) was developed and showed very efficient transfection in a wide variety of mammalian cancer cells, including SKOV-3 (human ovarian carcinoma cells), NPC076 (human nasopharyngeal carcinoma cells), and A431 (human epidermoid carcinoma cells) (Kao et al., Oncol Reports. 5:625-629, 1998). The present study is designed and evaluated the labeling and stability of Tc-99m liposomes by SP/DOPE formulation. Material and Methods: A mixture of 8 mg of SP (Sigma Chemical) and 8 mg of DOPE (Sigma Chemical) dissolved in 4 ml absolute ethanol and used as a lipid stock solution (4 mg/ml). In the direct labeling method, taking 0.25 ml (1 mg) stock solution dried under nitrogen gas and then added 1 ml 20 mM HEPES buffer for hydration 8 hours. The remaining stock solution was dried, hydrated 8 hours, and sonicated 10 min to form liposomes for after-loading labeling method (preformed liposomes). The labeling studies included Tc-99m direct labeling (1), Tc-99m HMPAO direct labeling (2), Tc-99m stannous chloride after-loading labeling (3), Tc-99m HMPAO after-loading labeling (4), and Tc-99m pCMVβ DNA inclusion labeling (5). The labeling efficiency (LE) was determined by thin layer chromatography. The labeled liposomes were incubated with fetal bovine serum (FBS) 30 min to evaluate their stability. Results: It is shown that LE (48%) of Tc-99m direct labeling was the highest in the five methods; however, the LE was reduced to 9% (corrected to original LE) after incubating with serum. Tc-99m may be loosely conjugated to the outer surface of the liposomes. The LE (32%) of Tc-99m HMPAO direct labeling was the second; however, LE was most stable when incubating with serum. The LE of the after-loading labeling was not better than that of

  13. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells.

    Filion, M C; Phillips, N C


    Liposomal vectors formulated with cationic lipids (cationic liposomes) and fusogenic dioleoylphosphatidylethanolamine (DOPE) have potential for modulating the immune system by delivering gene or antisense oligonucleotide inside immune cells. The toxicity and the immunoadjuvant activity of cationic liposomes containing nucleic acids toward immune effector cells has not been investigated in detail. In this report, we have evaluated the toxicity of liposomes formulated with various cationic lipids towards murine macrophages and T lymphocytes and the human monocyte-like U937 cell line. The effect of these cationic liposomes on the synthesis of two immunomodulators produced by activated macrophages, nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha), has also been determined. We have found that liposomes formulated from DOPE and cationic lipids based on diacyltrimethylammonium propane (dioleoyl-, dimyristoyl-, dipalmitoyl-, disteroyl-: DOTAP, DMTAP, DPTAP, DSTAP) or dimethyldioctadecylammonium bromide (DDAB) are highly toxic in vitro toward phagocytic cells (macrophages and U937 cells), but not towards non-phagocytic T lymphocytes. The rank order of toxicity was DOPE/DDAB > DOPE/DOTAP > DOPE/DMTAP > DOPE/DPTAP > DOPE/DSTAP. The ED50's for macrophage toxicity were 1000 nmol/ml for DOPE/DSTAP. The incorporation of DNA (antisense oligonucleotide or plasmid vector) into the cationic liposomes marginally reduced their toxicity towards macrophages. Although toxicity was observed with cationic lipids alone, it was clearly enhanced by the presence of DOPE. The replacement of DOPE by dipalmitoylphosphatidylcholine (DPPC) significantly reduced liposome toxicity towards macrophages, and the presence of dipalmitoylphosphatidylethanolamine-PEG2000 (DPPE-PEG2000: 10 mol%) in the liposomes completely abolished this toxicity. Cationic liposomes, irrespective of their DNA content, downregulated NO and TNF-alpha synthesis by lipopolysaccharide (LPS)/interferon-gamma (IFN

  14. Gene vectors based on DOEPC/DOPE mixed cationic liposomes : a physicochemical study

    Munoz-Ubeda, Monica; Rodriguez-Pulido, Alberto; Nogales, Aurora; Llorca, Oscar; Quesada-Perez, Manuel; Martin-Molina, Alberto; Aicart, Emilio; Junquera, Elena


    A double approach, experimental and theoretical, has been followed to characterize from a physicochemical standpoint the compaction process of DNA by means of cationic colloidal aggregates. The colloidal vectors are cationic liposomes constituted by a mixture of a novel cationic lipid, 1,2-dioleoyl-

  15. A novel cationic liposome formulation for efficient gene delivery via a pulmonary route

    Li, Peng; Liu, Donghua; Sun, Xiaoli; Liu, Chunxi; Liu, Yongjun; Zhang, Na


    The clinical success of gene therapy for lung cancer is not only dependent on efficient gene carriers but also on a suitable delivery route. A pulmonary delivery route can directly deliver gene vectors to the lung which is more efficient than a systemic delivery route. For gene carriers, cationic liposomes have recently emerged as leading non-viral vectors in worldwide gene therapy clinical trials. However, cytotoxic effects or apoptosis are often observed which is mostly dependent on the cationic lipid used. Therefore, an efficient and safe cationic lipid, 6-lauroxyhexyl lysinate (LHLN), previously synthesized by our group was first used to prepare cationic liposomes. Physicochemical and biological properties of LHLN-liposomes were investigated. LHLN-liposome/DNA complexes showed positive surface charge, spherical morphology, a relatively narrow particle size distribution and strong DNA binding capability. Compared with Lipofectamine2000, the new cationic liposome formulation using LHLN exhibited not only lower cytotoxicity (P transfection efficiency in A549 and HepG2 lung cancer cells for in vitro tests. When administered by intratracheal instillation into rat lungs for in vivo evaluation, LHLN-liposome/DNA complexes exhibited higher pulmonary gene transfection efficiency than Lipofectamine2000/DNA complexes (P < 0.05). These results suggested that LHLN-liposomes may have great potential for efficient pulmonary gene delivery.

  16. A novel cationic liposome formulation for efficient gene delivery via a pulmonary route

    The clinical success of gene therapy for lung cancer is not only dependent on efficient gene carriers but also on a suitable delivery route. A pulmonary delivery route can directly deliver gene vectors to the lung which is more efficient than a systemic delivery route. For gene carriers, cationic liposomes have recently emerged as leading non-viral vectors in worldwide gene therapy clinical trials. However, cytotoxic effects or apoptosis are often observed which is mostly dependent on the cationic lipid used. Therefore, an efficient and safe cationic lipid, 6-lauroxyhexyl lysinate (LHLN), previously synthesized by our group was first used to prepare cationic liposomes. Physicochemical and biological properties of LHLN-liposomes were investigated. LHLN-liposome/DNA complexes showed positive surface charge, spherical morphology, a relatively narrow particle size distribution and strong DNA binding capability. Compared with Lipofectamine2000, the new cationic liposome formulation using LHLN exhibited not only lower cytotoxicity (P < 0.05) but also similar transfection efficiency in A549 and HepG2 lung cancer cells for in vitro tests. When administered by intratracheal instillation into rat lungs for in vivo evaluation, LHLN-liposome/DNA complexes exhibited higher pulmonary gene transfection efficiency than Lipofectamine2000/DNA complexes (P < 0.05). These results suggested that LHLN-liposomes may have great potential for efficient pulmonary gene delivery.

  17. Preparation of oligodeoxynucleotide encapsulated cationic liposomes and release study with models of cellular membranes

    Tamaddon AM.; Hosseini-Shirazi F.; Moghimi HR


    Cationic liposomes are used for cellular delivery of antisense oligodeoxynucleotide (AsODN), where release of encapsulated AsODN is mainly controlled by endocytosis and fusion mechanisms. In this investigation, it was tried to model such a release process that is difficult to evaluate in cell culture. For this purpose, an AsODN model (against protein kinase C-α) was encapsulated in a DODAP-containing cationic liposome and evaluated for size, zeta-potential, encapsulation and ODN stab...

  18. Liposome drugs' loading efficiency: a working model based on loading conditions and drug's physicochemical properties.

    Zucker, Daniel; Marcus, David; Barenholz, Yechezkel; Goldblum, Amiram


    Remote loading of liposomes by transmembrane gradients is one of the best approaches for achieving the high enough drug level per liposome required for the liposomal drug to be therapeutically efficacious. This breakthrough, which enabled the approval and clinical use of nanoliposomal drugs such as Doxil, has not been paralleled by an in-depth understanding that allows predicting loading efficiency of drugs. Here we describe how applying data-mining algorithms on a data bank based on Barenholz's laboratory's 15 years of liposome research experience on remote loading of 9 different drugs enabled us to build a model that relates drug physicochemical properties and loading conditions to loading efficiency. This model enables choosing candidate molecules for remote loading and optimizing loading conditions according to logical considerations. The model should also help in designing pro-drugs suitable for remote loading. Our approach is expected to improve and accelerate development of liposomal formulations for clinical applications. PMID:19508880

  19. Surface area of lipid membranes regulates the DNA-binding capacity of cationic liposomes

    Marchini, Cristina; Montani, Maura; Amici, Augusto; Pozzi, Daniela; Caminiti, Ruggero; Caracciolo, Giulio


    We have applied electrophoresis on agarose gels to investigate the DNA-binding capacity of cationic liposomes made of cationic DC-cholesterol and neutral dioleoylphosphatidylethanolamine as a function of membrane charge density and cationic lipid/DNA charge ratio. While each cationic liposome formulation exhibits a distinctive DNA-protection ability, here we show that such a capacity is universally regulated by surface area of lipid membranes available for binding in an aspecific manner. The relevance of DNA protection for gene transfection is also discussed.

  20. Preparation and characterization of clove essential oil-loaded liposomes.

    Sebaaly, Carine; Jraij, Alia; Fessi, Hatem; Charcosset, Catherine; Greige-Gerges, Hélène


    In this study, suitable formulations of natural soybean phospholipid vesicles were developed to improve the stability of clove essential oil and its main component, eugenol. Using an ethanol injection method, saturated (Phospholipon 80H, Phospholipon 90H) and unsaturated soybean (Lipoid S100) phospholipids, in combination with cholesterol, were used to prepare liposomes at various eugenol and clove essential oil concentrations. Liposomal batches were characterized and compared for their size, polydispersity index, Zeta potential, loading rate, encapsulation efficiency and morphology. The liposomes were tested for their stability after storing them for 2 months at 4°C by monitoring changes in their mean size, polydispersity index and encapsulation efficiency (EE) values. It was found that liposomes exhibited nanometric oligolamellar and spherical shaped vesicles and protected eugenol from degradation induced by UV exposure; they also maintained the DPPH-scavenging activity of free eugenol. Liposomes constitute a suitable system for encapsulation of volatile unstable essential oil constituents. PMID:25704683

  1. Remote Loading of (64)Cu(2+) into Liposomes without the Use of Ion Transport Enhancers.

    Henriksen, Jonas R; Petersen, Anncatrine L; Hansen, Anders E; Frankær, Christian G; Harris, Pernille; Elema, Dennis R; Kristensen, Annemarie T; Kjær, Andreas; Andresen, Thomas L


    Due to low ion permeability of lipid bilayers, it has been and still is common practice to use transporter molecules such as ionophores or lipophilic chelators to increase transmembrane diffusion rates and loading efficiencies of radionuclides into liposomes. Here, we report a novel and very simple method for loading the positron emitter (64)Cu(2+) into liposomes, which is important for in vivo positron emission tomography (PET) imaging. By this approach, copper is added to liposomes entrapping a chelator, which causes spontaneous diffusion of copper across the lipid bilayer where it is trapped. Using this method, we achieve highly efficient (64)Cu(2+) loading (>95%), high radionuclide retention (>95%), and favorable loading kinetics, excluding the use of transporter molecule additives. Therefore, clinically relevant activities of 200-400 MBq/patient can be loaded fast (60-75 min) and efficiently into preformed stealth liposomes avoiding subsequent purification steps. We investigate the molecular coordination of entrapped copper using X-ray absorption spectroscopy and demonstrate high adaptability of the loading method to pegylated, nonpegylated, gel- or fluid-like, cholesterol rich or cholesterol depleted, cationic, anionic, and zwitterionic lipid compositions. We demonstrate high in vivo stability of (64)Cu-liposomes in a large canine model observing a blood circulation half-life of 24 h and show a tumor accumulation of 6% ID/g in FaDu xenograft mice using PET imaging. With this work, it is demonstrated that copper ions are capable of crossing a lipid membrane unassisted. This method is highly valuable for characterizing the in vivo performance of liposome-based nanomedicine with great potential in diagnostic imaging applications. PMID:26426093

  2. Transdermal Delivery of Small Interfering RNA with Elastic Cationic Liposomes in Mice

    Yoshiyuki Hattori


    Full Text Available We developed elastic cationic liposomal vectors for transdermal siRNA delivery. These liposomes were prepared with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP as a cationic lipid and sodium cholate (NaChol or Tween 80 as an edge activator. When NaChol or Tween 80 was included at 5, 10, and 15% (w/w into DOTAP liposomal formulations (C5-, C10-, and C15-liposomes and T5-, T10-, and T15-liposomes, C15- and T10-liposomes showed 2.4- and 2.7-fold-higher elasticities than DOTAP liposome, respectively. Although the sizes of all elastic liposomes prepared in this study were about 80–90 nm, the sizes of C5-, C10- and C15-liposome/siRNA complexes (lipoplexes were about 1,700–1,800 nm, and those of T5-, T10-, and T15-lipoplexes were about 550–780 nm. Their elastic lipoplexes showed strong gene suppression by siRNA without cytotoxicity when transfected into human cervical carcinoma SiHa cells. Following skin application of the fluorescence-labeled lipoplexes in mice, among the elastic lipoplexes, C15- and T5-lipoplexes showed effective penetration of siRNA into skin, compared with DOTAP lipoplex and free siRNA solution. These data suggest that elastic cationic liposomes containing an appropriate amount of NaChol or Tween 80 as an edge activator could deliver siRNA transdermally.

  3. Potentiating effects of MPL on DSPC bearing cationic liposomes promote recombinant GP63 vaccine efficacy: high immunogenicity and protection.

    Saumyabrata Mazumder


    Full Text Available BACKGROUND: Vaccines that activate strong specific Th1-predominant immune responses are critically needed for many intracellular pathogens, including Leishmania. The requirement for sustained and efficient vaccination against leishmaniasis is to formulate the best combination of immunopotentiating adjuvant with the stable antigen (Ag delivery system. The aim of the present study is to evaluate the effectiveness of an immunomodulator on liposomal Ag through subcutaneous (s.c. route of immunization, and its usefulness during prime/boost against visceral leishmaniasis (VL in BALB/c mice. METHODOLOGY/PRINCIPAL FINDINGS: Towards this goal, we formulated recombinant GP63 (rGP63-based vaccines either with monophosphoryl lipid A-trehalose dicorynomycolate (MPL-TDM or entrapped within cationic liposomes or both. Combinatorial administration of liposomes with MPL-TDM during prime confers activation of dendritic cells, and induces an early robust T cell response. To investigate whether the combined formulation is required for optimum immune response during boost as well, we chose to evaluate the vaccine efficacy in mice primed with combined adjuvant system followed by boosting with either rGP63 alone, in association with MPL-TDM, liposomes or both. We provide evidences that the presence of either liposomal rGP63 or combined formulations during boost is necessary for effective Th1 immune responses (IFN-γ, IL-12, NO before challenge infection. However, boosting with MPL-TDM in conjugation with liposomal rGP63 resulted in a greater number of IFN-γ producing effector T cells, significantly higher levels of splenocyte proliferation, and Th1 responses compared to mice boosted with liposomal rGP63, after virulent Leishmania donovani (L. donovani challenge. Moreover, combined formulations offered superior protection against intracellular amastigote replication in macrophages in vitro, and hepatic and splenic parasite load in vivo. CONCLUSION: Our results define

  4. Hepatocytes targeting of cationic liposomes modified with soybean sterylglucoside and polyethylene glycol

    Xian-Rong Qi; Wen-Wei Yan; Jing Shi


    AIM: In this study, a hepatocyte-specific targeting technology was developed by modifying cationic liposomes with soybean sterylglucoside (SG) and polyethylene glycol (PEG) (C/SG/PEG-liposomes).METHODS: The liposomal transfection efficiencies in HepG22.2.15 cells were estimated with the use of fluorescein sodium (FS) as a model drug, by flow cytometry. The antisense activity of C/SG/PEG-liposomes entrapped antisense oligonucleotides (ODN) was determined as HBsAg and HBeAg in HepG2 2.2.15 cells by ELISA. The liposome uptake by liver and liver cells in mice was carried out after intravenous injection of 3H-labeled liposomes.RESULTS: C/SG-liposomes entrapped FS were effectively transfected into HepG2 2.2.15 cells in vitro. C/SG/PEGliposomes entrapped ODN, reduced the secretion of both HBsAg and HBeAg in HepG2 2.2.15 cells when compared to free ODN. After in vivo injection of 3H-labeled C/SG/PEG-liposomes, higher radiation accumulation was observed in the hepatocytes than non-parenchymal cells of the liver.CONCLUSION: C/SG/PEG-liposomes mediated gene transfer to the liver is an effective gene-delivery method for hepatocytes-specific targeting, which appears to have a potential for gene therapy of HBV infections.

  5. Drug loading to lipid-based cationic nanoparticles

    Lipid-based cationic nanoparticles are a new promising option for tumor therapy, because they display enhanced binding and uptake at the neo-angiogenic endothelial cells, which a tumor needs for its nutrition and growth. By loading suitable cytotoxic compounds to the cationic carrier, the tumor endothelial and consequently also the tumor itself can be destroyed. For the development of such novel anti-tumor agents, the control of drug loading and drug release from the carrier matrix is essential. We have studied the incorporation of the hydrophobic anti-cancer agent Paclitaxel (PXL) into a variety of lipid matrices by X-Ray reflectivity measurements. Liposome suspensions from cationic and zwitterionic lipids, comprising different molar fractions of Paclitaxel, were deposited on planar glass substrates. After drying at controlled humidity, well ordered, oriented multilayer stacks were obtained, as proven by the presence of bilayer Bragg peaks to several orders in the reflectivity curves. The presence of the drug induced a decrease of the lipid bilayer spacing, and with an excess of drug, also Bragg peaks of drug crystals could be observed. From the results, insight into the solubility of Paclitaxel in the model membranes was obtained and a structural model of the organization of the drug in the membrane was derived. Results from subsequent pressure/area-isotherm and grazing incidence diffraction (GID) measurements performed with drug/lipid Langmuir monolayers were in accordance with these conjectures

  6. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity

    Sarker SR


    Full Text Available Satya Ranjan Sarker, Yumiko Aoshima, Ryosuke Hokama, Takafumi Inoue, Keitaro Sou, Shinji Takeoka Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns, Tokyo, Japan Background: Currently available gene delivery vehicles have many limitations such as low gene delivery efficiency and high cytotoxicity. To overcome these drawbacks, we designed and synthesized two cationic lipids comprised of n-tetradecyl alcohol as the hydrophobic moiety, 3-hydrocarbon chain as the spacer, and different counterions (eg, hydrogen chloride [HCl] salt or trifluoroacetic acid [TFA] salt in the arginine head group. Methods: Cationic lipids were hydrated in 4-(2-hydroxyethyl-1-piperazineethanesulfonic acid (HEPES buffer to prepare cationic liposomes and characterized in terms of their size, zeta potential, phase transition temperature, and morphology. Lipoplexes were then prepared and characterized in terms of their size and zeta potential in the absence or presence of serum. The morphology of the lipoplexes was determined using transmission electron microscopy and atomic force microscopy. The gene delivery efficiency was evaluated in neuronal cells and HeLa cells and compared with that of lysine-based cationic assemblies and Lipofectamine™ 2000. The cytotoxicity level of the cationic lipids was investigated and compared with that of Lipofectamine™ 2000. Results: We synthesized arginine-based cationic lipids having different counterions (ie, HCl-salt or TFA-salt that formed cationic liposomes of around 100 nm in size. In the absence of serum, lipoplexes prepared from the arginine-based cationic liposomes and plasmid (p DNA formed large aggregates and attained a positive zeta potential. However, in the presence of serum, the lipoplexes were smaller in size and negative in zeta potential. The morphology of the lipoplexes was vesicular. Arginine-based cationic liposomes with HCl-salt showed the

  7. Dextran sulfate-dependent fusion of liposomes containing cationic stearylamine.

    Zschörnig, O; Arnold, K; Richter, W; Ohki, S


    The incorporation of the positively charged stearylamine into phosphatidylcholine liposomes was studied by measuring electrophoretic mobilities. Up to a molar ratio SA/PC = 0.5 an increase of the positive zeta potential can be observed. Addition of the negatively charged macromolecule dextran sulfate leads to a change of the sign of the surface potential of the PC/SA liposomes indicating binding of the macromolecule to the surface. This process is accompanied by an increase in turbidity, which is dependent on the molecular weight of the dextran sulfate and the SA concentration (measured by turbidimetry). Using the NBD/Rh and Pyr-PC fluorescence assays the fusion of SA containing liposomes was investigated. A strong influence of the SA content and molecular weight of dextran sulfate on the fusion extent was observed. The fusion extent is proportional to the SA content in the PC membrane and the molecular weight of dextran sulfate. PC/SA/PE liposomes exhibit a higher fusion extent after addition of dextran sulfate compared to PC/SA liposomes indicating that PE additionally destabilizes the bilayer. Freeze-fracture electron microscopy reveals that the reaction products are large complexes composed of multilamellar stacks of tightly packed, straight membranes and aggregated vesicles. The tight packing of the membranes in the stacks (and the narrow contact of the aggregated vesicles) indicates a strong adherence of opposite membrane surfaces induced by dextran sulfate. PMID:1486657

  8. Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes

    Duangjit S


    Full Text Available Sureewan Duangjit,1,2 Boonnada Pamornpathomkul,1 Praneet Opanasopit,1 Theerasak Rojanarata,1 Yasuko Obata,2 Kozo Takayama,2 Tanasait Ngawhirunpat11Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; 2Department of Pharmaceutics, Hoshi University, Shinagawa-ku, Tokyo, JapanAbstract: The objective of this study was to investigate the influence of surfactant charge, surfactant carbon chain length, and surfactant content on the physicochemical characteristics (ie, vesicle size, zeta potential, elasticity, and entrapment efficiency, morphology, stability, and in vitro skin permeability of meloxicam (MX-loaded liposome. Moreover, the mechanism for the liposome-enhanced skin permeation of MX was determined by Fourier transform infrared spectroscopy and differential scanning calorimetry. The model formulation used in this study was obtained using a response surface method incorporating multivariate spline interpolation (RSM-S. Liposome formulations with varying surfactant charge (anionic, neutral, and cationic, surfactant carbon chain length (C4, C12, and C16, and surfactant content (10%, 20%, and 29% were prepared. The formulation comprising 29% cationic surfactant with a C16 chain length was found to be the optimal liposome for the transdermal delivery of MX. The skin permeation flux of the optimal formulation was 2.69-fold higher than that of a conventional liposome formulation. Our study revealed that surfactants affected the physicochemical characteristics, stability, and skin permeability of MX-loaded liposomes. These findings provide important fundamental information for the development of liposomes as transdermal drug delivery systems.Keywords: optimal liposome, optimization, transdermal drug delivery, surfactant charge, surfactant carbon chain length, surfactant content

  9. Monocyte targeting and activation by cationic liposomes formulated with a TLR7 agonist

    Johansen, Pia Thermann; Zucker, Daniel; Parhamifar, Ladan;


    induction of IL-6 and IL-12p40, and differentiation into CD14+ and DC-SIGN+ DCs.Conclusion: Our present liposomes selectively target monocytes in fresh blood, enabling delivery of TLR7 agonists to the intracellular TLR7 receptor, with subsequent monocyte activation and boost in secretion of proinflammatory...... surface chemistry.Methods: Liposomes were extruded at 100 nm, incubated with fresh blood, followed by leukocyte analyses by FACS. Liposomes with and without the TLR7 agonist TMX-202 were incubated with fresh blood, and monocyte activation measured by cytokine secretion by ELISA and CD14 and DC......-SIGN expression.Results: The liposonnes target nnonocytes specifically over lymphocytes and granulocytes in human whole blood, and show association with 75 - 95% of the nnonocytes after 1 h incubation. Formulations of TMX-202 in cationic liposomes were potent in targeting and activation of monocytes, with strong...

  10. (99m)Tc-labeled therapeutic inhaled amikacin loaded liposomes.

    Lee, Jae-Ho; Cheng, Kenneth T; Malinin, Vladimir; Li, Zhili; Yao, Zhengsheng; Lee, Sung-Jin; Gould, Christine M; Olivier, Kenneth N; Chen, Clara; Perkins, Walter R; Paik, Chang H


    The radiolabeling of the liposome surface can be a useful tool for in vivo tracking of therapeutic drug loaded liposomes. We investigated radiolabeling therapeutic drug (i.e. an antibiotic, amikacin) loaded liposomes with (99m)Tc, nebulization properties of (99m)Tc-labeled liposomal amikacin for inhalation ((99m)Tc-LAI), and its stability by size exclusion low-pressure liquid chromatography (LPLC). LAI was reacted with (99m)Tc using SnCl2 dissolved in ascorbic acid as a reducing agent for 10 min at room temperature. The labeled products were then purified by anion exchange resin. The purified (99m)Tc-LAI in 1.5% NaCl solution was incubated at 4 °C to assess its stability by LPLC. The purified (99m)Tc-LAI was subjected to studies with a clinically used nebulizer (PARI eFlow®) and the Anderson Cascade Impactor (ACI). The use of ascorbic acid at 0.91 mM resulted in a quantitative labeling efficiency. The LPLC profile showed that the liposomal peak of LAI detected by a UV monitor at both 200 nm and 254 nm overlapped with the radioactivity peak of (99m)Tc-LAI, indicating that (99m)Tc-LAI is suitable for tracing LAI. The ACI study demonstrated that the aerosol droplet size distribution determined gravimetrically was similar to that determined by radioactivity. The liposome surface labeling method using SnCl₂ in 0.91 mM ascorbic acid produced (99m)Tc-LAI with a high labeling efficiency and stability that are adequate to evaluate the deposition and clearance of inhaled LAI in the lung by gamma scintigraphy. PMID:23879241

  11. Enhancement of gene transduction efficiency in cancer cells using cationic liposome with hyperthermia.

    Mushiake H


    Full Text Available We evaluated the effects of hyperthermia on the efficiency of gene transduction by using a cationic liposome to develop an efficient method for lipofection. We used Lewis lung carcinoma (LLC, NIH3T3, and A549 cell lines, with Lipofectamine reagent as the cationic liposome and the LacZ gene as the reporter gene. In LLC, co-incubation of the cationic liposome and plasmid DNA complex (lipoplex with the cells for 2 h at 41 degrees C enhanced the efficiency of gene transduction approximately 1.4-fold compared to incubation for 2 h at 37 degrees C, as measured by X-gal staining and beta-galactosidase activity. In cell lines NIH3T3 and A549, the efficiency of gene transduction showed a tendency toward enhancement after 2 h co-incubation with lipoplex at 41 degrees C compared to that at 37 degrees C, as measured by X-gal staining. This is the first study to demonstrate the enhancement of gene transduction efficiency achieved by using a cationic liposome under conditions of hyperthermia. This method should prove useful for lipofection in other cancer cells.

  12. Photodynamic therapy disinfection of carious tissue mediated by aluminum-chloride-phthalocyanine entrapped in cationic liposomes: an in vitro and clinical study.

    Longo, João Paulo F; Leal, Soraya C; Simioni, Andreza R; de Fátima Menezes Almeida-Santos, Maria; Tedesco, Antônio C; Azevedo, Ricardo B


    Photodynamic therapy (PDT) is a technique employed in the treatment of several superficial infections, such as caries. PDT uses a non-toxic drug termed photosensitizer (PS) followed by light irradiation. The cytotoxic effects of the therapy are related to the production of reactive species produced after light activation of a photosensitizer, which reacts with surrounding molecules and disrupts several of the cell's functions. Within this context, this study aimed to develop a clinical protocol involving PDT application mediated by aluminum-chloride-phthalocyanine (AlClPc) entrapped in cationic liposomes against cariogenic bacteria in caries lesions. Cationic liposomes were used to delivery AlClPc preferentially to bacterial cells due to the strong anionic superficial charges of these cell types. The results are represented in two fundamental steps: (1) in vitro evaluation of AlClPc delivery to cariogenic bacteria and pulp cells, as well as its potential phototoxicity; (2) a clinical study involving volunteer patients that were treated with the PDT protocol mediated by AlClPc-cationic liposome. The main results showed that the AlClPc-cationic liposome was preferentially absorbed by bacterial cells compared to eukaryotic dental pulp cells, and it was efficient in the reduction of microbial load from bacterial cultures. In addition, the clinical study showed a mean reduction of 82% of total bacterial in the treated cavities after PDT application. Taken together, the results presented in this study showed that the antimicrobial PDT protocol mediated by cationic liposomes containing AlClPc is safety for clinical application and is efficient in the reduction of bacterial load in caries lesions. PMID:21809069

  13. Effect of Mechanical Agitation on Cationic Liposome Transport across an Unstirred Water Layer in Caco-2 Cells.

    Kono, Yusuke; Iwasaki, Ayu; Matsuoka, Kenta; Fujita, Takuya


    To develop an effective oral delivery system for plasmid DNA (pDNA) using cationic liposomes, it is necessary to clarify the characteristics of uptake and transport of cationic liposome/pDNA complexes into the intestinal epithelium. In particular, evaluation of the involvement of an unstirred water layer (UWL), which is a considerable permeability barrier, in cationic liposome transport is very important. Here, we investigated the effects of a UWL on the transfection efficiency of cationic liposome/pDNA complexes into a Caco-2 cell monolayer. When Caco-2 cells were transfected with cationic liposome/pDNA complexes in shaking cultures to reduce the thickness of the UWL, gene expression was significantly higher in Caco-2 cells compared with static cultures. We also found that this enhancement of gene expression by shaking was not attributable to activation of transcription factors such as activator protein-1 and nuclear factor-kappaB (NF-κB). In addition, the increase in gene expression by mechanical agitation was observed at all charge ratios (1.5, 2.3, 3.1, 4.5) of cationic liposome/pDNA complexes. Transport experiments using Transwells demonstrated that mechanical agitation increased the uptake of cationic liposome/pDNA complexes by Caco-2 cells, whereas transport of the complexes across a Caco-2 cell monolayer did not occurr. Moreover, the augmentation of the gene expression of cationic liposome/pDNA complexes by shaking was observed in Madin-Darby canine kidney cells. These results indicate that a UWL greatly affects the uptake and transfection efficiency of cationic liposome/pDNA complexes into an epithelial monolayer in vitro. PMID:27476939


    Prakash Goudanavar; Manjunatha; Doddayya Hiremath


    The present work describes the preparation of Perindopril erbumine ethosomes and study of effect of alcohol and phospholipid on transdermal delivery. Perindopril erbumine is an ACE inhibitor which slowly inhibits the activity of the enzyme ACE, which decreases the production of angiotensin II, is being involved in the blood pressure regulation. Perindopril erbumine loaded ethanolic Liposomes were prepared by an hot - cold method using different concentrations of Alcohol and Soya lecithin in d...

  15. The effects of salt on the physicochemical properties and immunogenicity of protein based vaccine formulated in cationic liposome.

    Yan, Weili; Huang, Leaf


    Recently, we have developed a simple and potent therapeutic cancer vaccine consisting of a cationic lipid and a peptide antigen. In this report, we expanded the utility of this formulation to protein based vaccines. First, we formulated the human papillomavirus (HPV) 16 E7 protein (E7) in different doses of DOTAP liposome. The results showed that these formulations failed to regress an established tumor. However, when sodium chloride (30 mM) was added to the DOTAP (100 nmol)/E7 (20 microg) formulation, anti-tumor activity was generated in the immunized mice. Correlatively, 30 mM NaCl in the DOTAP/E7 protein formulation increased the particle size from approximately 350 to 550 nm, decreased the protein loading capacity (from 95 to 90%), and finally increased the zeta potential (from 29 to 38 mV). Next, a model protein antigen ovalbumin (OVA) was formulated in different doses of DOTAP liposomes. Similarly, the results showed that 20 microg OVA formulated in 200 nmol DOTAP with 30 mM NaCl had the best OVA-specific antibody response, including both IgG(1) and IgG(2a), suggesting both Th1 and Th2 immune responses were generated by this formulation. In conclusion, we have expanded the application of cationic DOTAP liposome formulation to protein based vaccines and also identified that small amounts of salt could change the physicochemical properties of the vaccine formulation and enhance the activity of the DOTAP/protein based vaccine. The enhancement of immune responses by salt is possibly due to its interference of the electrostatic interaction between the cationic lipid and the protein antigen to facilitate the antigen release from the carrier and at the same time activate the antigen presenting cells. PMID:18992312

  16. Synthesis and validation of novel cholesterol-based fluorescent lipids designed to observe the cellular trafficking of cationic liposomes.

    Kim, Bieong-Kil; Seu, Young-Bae; Choi, Jong-Soo; Park, Jong-Won; Doh, Kyung-Oh


    Cholesterol-based fluorescent lipids with ether linker were synthesized using NBD (Chol-E-NBD) or Rhodamine B (Chol-E-Rh), and the usefulnesses as fluorescent probes for tracing cholesterol-based liposomes were validated. The fluorescent intensities of liposomes containing these modified lipids were measured and observed under a microscope. Neither compound interfered with the expression of GFP plasmid, and live cell images were obtained without interferences. Changes in the fluorescent intensity of liposomes containing Chol-E-NBD were followed by flow cytometry for up to 24h. These fluorescent lipids could be useful probes for trafficking of cationic liposome-mediated gene delivery. PMID:26243368

  17. Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy.

    Altieri, S; Balzi, M; Bortolussi, S; Bruschi, P; Ciani, L; Clerici, A M; Faraoni, P; Ferrari, C; Gadan, M A; Panza, L; Pietrangeli, D; Ricciardi, G; Ristori, S


    Boron neutron capture therapy (BNCT) is an anticancer therapy based on the incorporation of (10)B in tumors, followed by neutron irradiation. Recently, the synthesis and delivery of new boronated compounds have been recognized as some of the main challenges in BNCT application. Here, we report on the use of liposomes as carriers for BNCT active compounds. Two carborane derivatives, i.e., o-closocarboranyl beta-lactoside (LCOB) and 1-methyl-o-closocarboranyl-2-hexylthioporphyrazine (H(2)PzCOB), were loaded into liposomes bearing different surface charges. The efficacy of these formulations was tested on model cell cultures, that is, DHD/K12/TRb rat colon carcinoma and B16-F10 murine melanoma. These induce liver and lung metastases, respectively, and are used to study the uptake of standard BNCT drugs, including borophenylalanine (BPA). Boron concentration in treated cells was measured by alpha spectrometry at the TRIGA mark II reactor (University of Pavia). Results showed high performance of the proposed formulations. In particular, the use of cationic liposomes increased the cellular concentration of (10)B by at least 30 times more than that achieved by BPA. PMID:19954249

  18. Preparation of oligodeoxynucleotide encapsulated cationic liposomes and release study with models of cellular membranes

    Tamaddon AM.


    Full Text Available Cationic liposomes are used for cellular delivery of antisense oligodeoxynucleotide (AsODN, where release of encapsulated AsODN is mainly controlled by endocytosis and fusion mechanisms. In this investigation, it was tried to model such a release process that is difficult to evaluate in cell culture. For this purpose, an AsODN model (against protein kinase C-α was encapsulated in a DODAP-containing cationic liposome and evaluated for size, zeta-potential, encapsulation and ODN stability. Vesicular models of outer layer and total plasma membranes and early and late endosomal membranes were developed, based on lipid content and pH, using ether injection method. ODN release was determined by the fluorescence dequenching of encapsulated FITC-ODN. Zeta potential, size and ODN encapsulation efficiency of the prepared liposomes were -2.49 ± 7.15 mV, 108.4 nm and 73% respectively. ODN protection was 3-4 times more than that of conventional liposome/ODN complexation method. There was a correlation between model concentration and percent of ODN release. At 7.5 µM, the percent of released ODN was 76% for the cholesterol-free model of the late endosome and 16% for the early endosomal membrane; while the release was less than 11% for the models of plasma membrane. ODN release increased with temperature in the range of 4-37◦C for the late endosomal model, but not for others, possibly due to their high cholesterol contents or acidic pH. The interaction was fast and completed within 5 minutes and didn’t change in the range of 5-60 minutes. Our data are in agreement with published cell culture studies and reveal that cell-liposomes interaction can be modeled by lamellar membranes.

  19. Novel siRNA-loaded Bubble Liposomes with Ultrasound Exposure for RNA Interference

    Endo-Takahashi, Yoko; Negishi, Yoichi; Suzuki, Ryo; Maruyama, Kazuo; Aramaki, Yukihiko


    Recently, we have developed novel polyethyleneglycol (PEG) modified liposomes (Bubble liposomes; BLs) entrapping an ultrasound (US) imaging gas, which can work as a gene delivery tool with US exposure. We have shown that the combination of BLs and US was also useful for the delivery of siRNA. However, for use in intravenous administration, there is room for improvement in the colocalization of BLs and siRNA in blood vessels and the stability of siRNA. In this study, we have attempted to prepare novel siRNA-loaded BLs (si-BLs) using cationic lipid, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). As a result, siRNA loaded onto the surface of BLs could be observed. Furthermore, siRNA-loaded BLs were stable even in the presence of serum. The specific gene silencing effect caused by transfection with si-BLs and US could be also observed. Thus, si-BLs with US-exposure may be a useful novel transfection method for siRNA delivery to a target tissue or organ via systemic injection.

  20. Europium chelate-loaded liposomes: a tool for the study of binding and integrity of liposomes.

    Orellana, A; Laukkanen, M L; Keinänen, K


    Using the biotin-streptavidin interaction as a model, we investigated the suitability of lanthanide chelates as encapsulated liposomal labels in liposome-based binding assays. Large unilamellar phospholipid:cholesterol liposomes containing europium-DTPA chelate and biotinylated phosphatidylethanolamine were prepared by detergent dialysis. The resulting Eu-liposomes ([symbol: see text] 120 nm) bound specifically to streptavidin in microtiter wells as measured by time-resolved fluorometric assay (TRF). The intensity of fluorescence released from the bound liposomes was dependent on the concentration of biotin in the liposome membrane, the concentration of europium entrapped in the liposomes, the incubation time and the amount of liposomes used in the assay. The sensitivity of the TRF assay allowed the detection of binding of attomole quantities of liposomes. The streptavidin-immobilised liposomes subjected to porcine pancreatic phospholipase A2 (EC and detergents displayed a dose-dependent release of the encapsulated europium. Lanthanide-chelate-liposomes should prove useful for studies addressing binding and stability of liposomes. PMID:8865811

  1. Melatonin loaded ethanolic liposomes: physicochemical characterization and enhanced transdermal delivery.

    Dubey, Vaibhav; Mishra, Dinesh; Jain, N K


    The current investigation aims to evaluate the transdermal potential of novel ethanolic liposomes (ethosomes) bearing Melatonin (MT), an anti-jet lag agent associated with poor skin permeation and long lag time. MT loaded ethosomes were prepared and characterized for vesicular shape and surface morphology, vesicular size, entrapment efficiency, stability, in vitro skin permeation and in vivo skin tolerability. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Dynamic Light Scattering (DLS) defined ethosomes as spherical, unilamellar structures having low polydispersity (0.032+/-0.011) and nanometric size range (122+/-3.5 nm). % Entrapment efficiency of MT in ethosomal carrier was found to be 70.71+/-1.4. Stability profile of prepared system assessed for 120 days revealed very low aggregation and growth in vesicular size (7.6+/-1.2%). MT loaded ethosomal carriers also provided an enhanced transdermal flux of 59.2+/-1.22 microg/cm2/h and decreased lag time of 0.9 h across human cadaver skin. Fourier Transform-Infrared (FT-IR) data generated to assess the fluidity of skin lipids after application of formulation revealed a greater mobility of skin lipids on application of ethosomes as compared to that of ethanol or plain liposomes. Skin permeation profile of the developed formulation further assessed by confocal laser scanning microscopy (CLSM) revealed an enhanced permeation of Rhodamine Red (RR) loaded formulations to the deeper layers of the skin (240 microm). Further, a better skin tolerability of ethosomal suspension on rabbit skin suggested that ethosomes may offer a suitable approach for transdermal delivery of melatonin. PMID:17452098

  2. Factorial design studies of antiretroviral drug-loaded stealth liposomal injectable: PEGylation, lyophilization and pharmacokinetic studies

    Sudhakar, Beeravelli; Krishna, Mylangam Chaitanya; Murthy, Kolapalli Venkata Ramana


    The aim of the present study was to formulate and evaluate the ritonavir-loaded stealth liposomes by using 32 factorial design and intended to delivered by parenteral delivery. Liposomes were prepared by ethanol injection method using 32 factorial designs and characterized for various physicochemical parameters such as drug content, size, zeta potential, entrapment efficiency and in vitro drug release. The optimization process was carried out using desirability and overlay plots. The selected formulation was subjected to PEGylation using 10 % PEG-10000 solution. Stealth liposomes were characterized for the above-mentioned parameters along with surface morphology, Fourier transform infrared spectrophotometer, differential scanning calorimeter, stability and in vivo pharmacokinetic studies in rats. Stealth liposomes showed better result compared to conventional liposomes due to effect of PEG-10000. The in vivo studies revealed that stealth liposomes showed better residence time compared to conventional liposomes and pure drug solution. The conventional liposomes and pure drug showed dose-dependent pharmacokinetics, whereas stealth liposomes showed long circulation half-life compared to conventional liposomes and pure ritonavir solution. The results of statistical analysis showed significance difference as the p value is (<0.05) by one-way ANOVA. The result of the present study revealed that stealth liposomes are promising tool in antiretroviral therapy.

  3. Anti-Cancer Efficacy of Paclitaxel Loaded in pH Triggered Liposomes.

    Jiang, Lei; He, Bin; Pan, Dayi; Luo, Kui; Yi, Qiangying; Gu, Zhongwei


    Smart liposomes that are responsive to the microenvironment of tumor tissue have been utilized to enhance chemotherapeutic efficiency. Here, we reported a novel liposome called Trojan horse liposome, which has a pH response, to enhance drug accumulation in tumor sites and intercellular uptake. L-lysine was used as a linker to connect 2,3-dimethylmaleic anhydride (DMA) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) to yield a DSPE-Lys-DMA (DLD) lipid. The pH-responsive DLD was mixed with other commercially available lipids to form liposomes. The size, morphology and zeta potential of the DLD liposomes (DLD-Lip) were measured. Paclitaxel (PTX) was loaded in the liposomes. The release profile, cellular uptake, in vitro and in vivo anticancer activity of the PTX-loaded liposomes were investigated. The results showed that the mean diameter of the liposomes was less than 200 nm. The zeta potential of the liposomes was negative at pH 7.4. However, it was transferred to positive at weak acidic pH values with the cleavage of DMA amide. The charge reversion of DMA in acidic environments facilitated the cellular internalization and endosome escape of DLD-Lip, which inhibited the proliferation of 4T1 cancer cells in vitro. The pH-responsive "Trojan horse"-like liposomes also exhibited efficient anticancer activity in the xenograft breast cancer model in vivo. PMID:27301174

  4. Effect of Cholesterol on the Properties of Spray-Dried Lysozyme-Loaded Liposomal Powders

    Charnvanich, Dusadee; Vardhanabhuti, Nontima; Kulvanich, Poj


    The influence of cholesterol (Chol) in the liposomal bilayer on the properties of inhalable protein-loaded liposomal powders prepared by spray-drying technique was investigated. Lysozyme (LSZ) was used as a model protein. Feed solution for spray drying was prepared by direct mixing of aqueous solution of LSZ with mannitol solution and empty liposome dispersions composed of hydrogenated phosphatidylcholine and Chol at various molar ratios. The spray-dried powders were characterized with respec...

  5. Microfluidic Remote Loading for Rapid Single-Step Liposomal Drug Preparation

    Hood, R. R.; Vreeland, W. N.; DeVoe, D. L.


    Microfluidic-directed formation of liposomes is combined with in-line sample purification and remote drug loading for single step, continuous-flow synthesis of nanoscale vesicles containing high concentrations of stably loaded drug compounds. Using an on-chip microdialysis element, the system enables rapid formation of large transmembrane pH and ion gradients, followed by immediate introduction of amphipathic drug for real-time remote loading into the liposomes. The microfluidic process enabl...

  6. Formulation and Characterization of Tamoxifen Loaded Stealth Liposomes for Breast Cance

    Mali Deepak


    Full Text Available The present study deals with the formulation and in-vitro characterization of tamoxifen loaded stealth liposomes. Passive targeting by stealth liposomes, once combined with efficient intracellular delivery, may be a very useful strategy to improve the antitumor efficacy for the anticancer agents. Stealth liposomes were prepared by using Cholesterol, DMPC, DSPC, and Polyethylene Glycol 4000 (PEG 4000 in order to achieve prolonged circulation time and sustained release. The prepared liposomes were evaluated for size, shape, profile, degree of drug entrapment, and in-vitro release efficiency. The effect of various formulation and drug release was investigated.

  7. Sorafenib and gadolinium co-loaded liposomes for drug delivery and MRI-guided HCC treatment.

    Xiao, Yanan; Liu, Yongjun; Yang, Shaomei; Zhang, Bo; Wang, Tianqi; Jiang, Dandan; Zhang, Jing; Yu, Dexin; Zhang, Na


    To improve the poor water solubility of sorafenib and to monitor its distribution and the early feedback effects on its in vivo treatment efficacy in a precise manner, sorafenib (SF) and gadolinium (Gd) co-loaded liposomes (SF/Gd-liposomes) were prepared. The simultaneous imaging and therapy efficacies of the SF/Gd-liposomes were tested. The solubility of SF in SF/Gd-liposomes was significantly increased from 0.21μg/mL to 250μg/mL. The imaging capability of SF/Gd-liposomes were tested by in-vitro and the in-vivo imaging ability tests and the results confirmed that SF/Gd-liposomes could be served as an effective contrast agent. The design of SF/Gd-liposomes allowed the MRI-guided in vivo visualization of the delivery and biodistribution of liposome. In the in vivo antitumor studies, SF/Gd-liposomes had better antitumor effects in H22 tumor-bearing mice than SF solution (oral or i.v. administration) (P<0.05). These findings indicated that the SF/Gd-liposomes could be used as the promising nano-carriers for the MRI-guided in vivo visualization of the delivery and HCC treatment. PMID:26844644

  8. Cationic liposomes formulated with DMPC and a gemini surfactant traverse the cell membrane without causing a significant bio-damage.

    Stefanutti, E; Papacci, F; Sennato, S; Bombelli, C; Viola, I; Bonincontro, A; Bordi, F; Mancini, G; Gigli, G; Risuleo, G


    Cationic liposomes have been intensively studied both in basic and applied research because of their promising potential as non-viral molecular vehicles. This work was aimed to gain more information on the interactions between the plasmamembrane and liposomes formed by a natural phospholipid and a cationic surfactant of the gemini family. The present work was conducted with the synergistic use of diverse experimental approaches: electro-rotation measurements, atomic force microscopy, ζ-potential measurements, laser scanning confocal microscopy and biomolecular/cellular techniques. Electro-rotation measurements pointed out that the interaction of cationic liposomes with the cell membrane alters significantly its dielectric and geometric parameters. This alteration, being accompanied by significant changes of the membrane surface roughness as measured by atomic force microscopy, suggests that the interaction with the liposomes causes locally substantial modifications to the structure and morphology of the cell membrane. However, the results of electrophoretic mobility (ζ-potential) experiments show that upon the interaction the electric charge exposed on the cell surface does not vary significantly, pointing out that the simple adhesion on the cell surface of the cationic liposomes or their fusion with the membrane is to be ruled out. As a matter of fact, confocal microscopy images directly demonstrated the penetration of the liposomes inside the cell and their diffusion within the cytoplasm. Electro-rotation experiments performed in the presence of endocytosis inhibitors suggest that the internalization is mediated by, at least, one specific pathway. Noteworthy, the liposome uptake by the cell does not cause a significant biological damage. PMID:25017801

  9. One Step Encapsulation of Small Molecule Drugs in Liposomes via Electrospray-Remote Loading.

    Duong, Anthony D; Collier, Michael A; Bachelder, Eric M; Wyslouzil, Barbra E; Ainslie, Kristy M


    Resiquimod is a Toll-like receptor (TLR) 7/8 agonist that has previously been used as a vaccine adjuvant, as a topical treatment of viral lesions and skin cancer, and as an antiviral treatment. We report on the combined application of remote loading and electrospray to produce liposomal resiquimod, with the broader goals of improving drug encapsulation efficiency and scalability of liposome production methods. Drug loading in liposomes increased from less than 1% to greater that 3% by mass when remote loading was used, whether the liposomes were generated by thin-film hydration or electrospray methods. Dynamic light scattering (DLS) determined mean vesicle diameters of 137 ± 11 nm and 103 ± 4 for the thin-film and electrospray methods, respectively. Transmission electron microscopy (TEM) images showed spherical vesicles with sizes consistent with the DLS measurements. In vitro drug release profiles found that most of the drug remained within the liposomes at both pH 5.5 and 7.4. The in vitro bioactivity of the liposomal drug was also demonstrated by the increase in nitrite production when RAW macrophages were exposed to the drug. Our findings indicate that the remotely loaded liposomes formed via the scalable electrospray method have characteristics comparable to those produced via conventional batch methods. The methods discussed here are not limited to the enhanced delivery of resiquimod. Rather, they should be readily adaptable to other compounds compatible with remote loading. PMID:26568143

  10. Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV.

    Ron-Doitch, Sapir; Sawodny, Beate; Kühbacher, Andreas; David, Mirjam M Nordling; Samanta, Ayan; Phopase, Jaywant; Burger-Kentischer, Anke; Griffith, May; Golomb, Gershon; Rupp, Steffen


    Cationic antimicrobial peptides (AMPs) are part of the innate immunity, and act against a wide variety of pathogenic microorganisms by perturbation of the microorganism's plasma membrane. Although attractive for clinical applications, these agents suffer from limited stability and activity in vivo, as well as non-specific interaction with host biological membranes, leading to cytotoxic adverse effects. We hypothesized that encapsulation of AMPs within liposomes could result in reduced cytotoxicity, and with enhanced stability as well as bioactivity against herpes simplex virus 1 (HSV-1). We formulated nano-sized liposomal formulations of LL-37 and indolicidin, and their physicochemical properties, cellular uptake, in vitro cytotoxicity and antiviral efficacy have been determined. Lower cytotoxicity of LL-37 liposomes was found in comparison to indolicidin liposomes attributed to the superior physicochemical properties, and to the different degree of interaction with the liposomal membrane. The disc-like shaped LL-37 liposomes (106.8±10.1nm, shelf-life stability of >1year) were taken up more rapidly and to a significantly higher extent than the free peptide by human keratinocyte cell line (HaCaT), remained intact within the cells, followed by release of the active peptide within the cytoplasm and migration of the vesicles' lipids to the plasma membrane. LL-37 liposomes were found significantly less toxic than both the free agent and liposomal indolicidin. In the new 3D epidermis model (immortalized primary keratinocytes) liposomal LL-37 treatment (>20μM), but not free LL-37, efficiently protected the epidermis, inhibiting HSV-1 infection. This positive antiviral effect was obtained with no cytotoxicity even at very high concentrations (400μM). Thus, the antiviral activity of encapsulated LL-37 was significantly improved, expanding its therapeutic window. Liposomal LL-37 appears to be a promising delivery system for HSV therapy. PMID:27012977

  11. Cationic liposomes modified with non-ionic surfactants as effective non-viral carrier for gene transfer.

    Huang, Yong-Zhuo; Gao, Jian-Qing; Chen, Jin-Liang; Liang, Wen-Quan


    A defined change in formulation components affects the physical and chemical characteristics of cationic liposomes (CLs) carriers in many ways. Therefore, a great degree of control can be exercised over the structure by modifying the CLs with various materials, leading to new innovations for carrier improvement. In the present study, surface modifications of cationic liposomes with non-ionic surfactants--sorbitan monoesters serials (Span 85, 80, 40 and 20) were carried out for developing a new gene transfer carrier. Span modified cationic liposomes (Sp-CLs) were prepared by reverse phase evaporation method (RPV) and self-assemble complexes of antisense oligonucleotides/surfactant modifying cationic liposomes were prepared by auto-coacervation through electrostatic effect. Characterization of Sp-CLs and the self-assembled complex was performed by electron microscope, particle size, zeta potential, turbidity and agarose electrophoresis. Furthermore, in vitro cellular uptake experiment showed that Span plays a role in enhancing the cellular uptake of encapsulated oligonucleotides mediated by Sp-CLs by the endocytosis-dependent route. CLs modified with Span 40 significantly facilitated the cellular uptake by COS-7 cells and HeLa cells; also showed some positive effect on gene expression. That suggests it is a potential non-viral carrier for efficient gene transfer. PMID:16626948

  12. α, ω-Cholesterol-Functionalized Low Molecular Weight Polyethylene Glycol as a Novel Modifier of Cationic Liposomes for Gene Delivery

    Cui-Cui Ma


    Full Text Available Here, three novel cholesterol (Ch/low molecular weight polyethylene glycol (PEG conjugates, termed α, ω-cholesterol-functionalized PEG (Ch2-PEGn, were successfully synthesized using three kinds of PEG with different average molecular weight (PEG600, PEG1000 and PEG2000. The purpose of the study was to investigate the potential application of novel cationic liposomes (Ch2-PEGn-CLs containing Ch2-PEGn in gene delivery. The introduction of Ch2-PEGn affected both the particle size and zeta potential of cationic liposomes. Ch2-PEG2000 effectively compressed liposomal particles and Ch2-PEG2000-CLs were of the smallest size. Ch2-PEG1000 and Ch2-PEG2000 significantly decreased zeta potentials of Ch2-PEGn-CLs, while Ch2-PEG600 did not alter the zeta potential due to the short PEG chain. Moreover, the in vitro gene transfection efficiencies mediated by different Ch2-PEGn-CLs also differed, in which Ch2-PEG600-CLs achieved the strongest GFP expression than Ch2-PEG1000-CLs and Ch2-PEG2000-CLs in SKOV-3 cells. The gene delivery efficacy of Ch2-PEGn-CLs was further examined by addition of a targeting moiety (folate ligand in both folate-receptor (FR overexpressing SKOV-3 cells and A549 cells with low expression of FR. For Ch2-PEG1000-CLs and Ch2-PEG2000-CLs, higher molar ratios of folate ligand resulted in enhanced transfection efficacies, but Ch2-PEG600-CLs had no similar in contrast. Additionally, MTT assay proved the reduced cytotoxicities of cationic liposomes after modification by Ch2-PEGn. These findings provide important insights into the effects of Ch2-PEGn on cationic liposomes for delivering genes, which would be beneficial for the development of Ch2-PEGn-CLs-based gene delivery system.

  13. Enhanced Ehrlich tumor inhibition using DOX-NP™ and gold nanoparticles loaded liposomes

    Mady, M. M.; Al-Shaikh, F. H.; Al-Farhan, F. F.; Aly, A. A.; Al-Mohanna, M. A.; Ghannam, M. M.


    Treatment with doxorubicin (DOX) is a common regime in treating various types of cancer. DOX-NP™ is one of a well established marketed liposomal formulation for DOX. It offers distinct advantages over conventional DOX in reducing the cardiac toxicity and increasing the tolerability and efficacy. Gold nanoparticles (GNPs), a typical biocompatible nanomaterial, have been widely used in biomedical engineering and bioanalytical applications such as biomedical imaging and biosensors. Ehrlich tumors were grown in female balb mice by subcutaneous injection of Ehrlich ascites carcinoma cells. Mice bearing Ehrlich tumor were injected with saline, free doxorubicin (DOX) in solution, gold nanoparticles loaded liposomes and commercial liposomal encapsulated doxorubicin (DOX-NP™). The results showed that GNPs loaded liposomes could enhance the antitumor activity of commercial liposomal formulation (DOX-NP™) and displayed significantly decreased systemic toxicity compared with free DOX and commercial liposomal formulation (DOX-NP™) at the equivalent dose. So the combination of GNPs and liposomes is expected to significantly increase the likelihood of cell killing and make it a promising new approach to cancer therapy.

  14. Glycyl-L-Histidyl-L-Liysine-Cu(2+) loaded liposome formulations

    Setenay Erdem; Murat Türkoğlu


    Enhancement of collagen synthesis by glycyl-l-histidyl-l-lysine-Cu2+ (GHK-Cu) derivatives is well known. The different activities of GHK-Cu would be of interest for cosmetic applications. Liposomes provide many benefits as topical drug delivery systems. Structure of double layer and lipid composition of liposomes keep the active substance longer in skin and provide regularly release to the deeper skin layers. Our aim in this study was to prepare GHK-Cu loaded liposomes and characterize them t...


    Prakash Goudanavar


    Full Text Available The present work describes the preparation of Perindopril erbumine ethosomes and study of effect of alcohol and phospholipid on transdermal delivery. Perindopril erbumine is an ACE inhibitor which slowly inhibits the activity of the enzyme ACE, which decreases the production of angiotensin II, is being involved in the blood pressure regulation. Perindopril erbumine loaded ethanolic Liposomes were prepared by an hot - cold method using different concentrations of Alcohol and Soya lecithin in different ratios and propylene glycol. The prepared ethosomal formulations were subjected to Vesicle size analysis, Morphological studies, Entrapment efficiency, In vitro release, Stability studies, In vitro permeation study and kinetic data analysis. The vesicle size of ethosomes varied between 1.96±0.003 to 4.56±0.008 µm (Without sonication and from 1.62±1.31 to 1.99±1.02 µm (With sonication, Entrapment efficiency between 43.91±0.57 to 78.04±0.30%. FT-IR, DSC and Zetapotential studies revealed the integrity of the drug in the formulations. In vitro release profiles indicated that the highest % of drug release is 95.22±0.35 over period of 24 hrs with 30% alcohol & 2% phospholipid (ETH8 compared to other formulations. The in vitro permeation across rat abdominal skin for the optimized formulations ETH3 and ETH8 after 24 hrs was found to be 79.63% and 85.33% respectively. Stability studies indicated that, the prepared ethosomes remained stable at refrigeration (4-8˚C and room (25±2˚C temperature. The prepared ethosomes showed promising results under in vitro conditions.

  16. Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes.

    Irma Pujol-Autonell

    Full Text Available The development of new therapies to induce self-tolerance has been an important medical health challenge in type 1 diabetes. An ideal immunotherapy should inhibit the autoimmune attack, avoid systemic side effects and allow β-cell regeneration. Based on the immunomodulatory effects of apoptosis, we hypothesized that apoptotic mimicry can help to restore tolerance lost in autoimmune diabetes.To generate a synthetic antigen-specific immunotherapy based on apoptosis features to specifically reestablish tolerance to β-cells in type 1 diabetes.A central event on the surface of apoptotic cells is the exposure of phosphatidylserine, which provides the main signal for efferocytosis. Therefore, phosphatidylserine-liposomes loaded with insulin peptides were generated to simulate apoptotic cells recognition by antigen presenting cells. The effect of antigen-specific phosphatidylserine-liposomes in the reestablishment of peripheral tolerance was assessed in NOD mice, the spontaneous model of autoimmune diabetes. MHC class II-peptide tetramers were used to analyze the T cell specific response after treatment with phosphatidylserine-liposomes loaded with peptides.We have shown that phosphatidylserine-liposomes loaded with insulin peptides induce tolerogenic dendritic cells and impair autoreactive T cell proliferation. When administered to NOD mice, liposome signal was detected in the pancreas and draining lymph nodes. This immunotherapy arrests the autoimmune aggression, reduces the severity of insulitis and prevents type 1 diabetes by apoptotic mimicry. MHC class II tetramer analysis showed that peptide-loaded phosphatidylserine-liposomes expand antigen-specific CD4+ T cells in vivo. The administration of phosphatidylserine-free liposomes emphasizes the importance of phosphatidylserine in the modulation of antigen-specific CD4+ T cell expansion.We conclude that this innovative immunotherapy based on the use of liposomes constitutes a promising strategy for

  17. Effective transcutaneous immunization by antigen-loaded flexible liposome in vivo

    Li N


    Full Text Available Ni Li1, Li-Hua Peng1, Xi Chen1, Shinsaku Nakagawa2, Jian-Qing Gao11Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; 2Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, JapanBackground: Transcutaneous vaccines have received wide attention due to their easy-to-use, needle-free, noninvasive delivery. However, the novel barrier function of stratum corneum hinders the transport of antigen and adjuvant in transcutaneous immunization. Novel nanoscale delivery systems employing, for example, liposomes and nanoparticles, have been widely investigated to overcome the penetration barrier of stratum corneum for effective transcutaneous immunization.Objective: The objective of this study was to prepare two types of flexible liposomes and determine their efficacies for the transcutaneous delivery of antigen and the subsequent immune response induced in vivo.Methods: Ovalbumin (OVA liposome-based transcutaneous vaccines were prepared using reverse-phase evaporation and film-dispersion methods. Particle sizes and antigen encapsulating efficiency were then evaluated. After application to bare mouse skin, topical sites were examined for the presence of fluorescence-labeled liposome. The efficacy of the transcutaneously delivered OVA-loaded flexible liposome in activating the immune responses was investigated by detecting serum immunoglobulin G levels. The influence of an adjuvant, imiquimod, in the transcutaneous immunization was also tested.Results: Two flexible liposomes with well-encapsulated OVA were successfully prepared by film-dispersion or reverse-phase evaporation methods. The sizes of the prepared flexible liposomes ranged from 200 to 400 nm. In vivo, the fluorescence-labeled liposome was detected in hair-follicle ducts, indicating that the flexible liposome can penetrate the skin barrier through the hair

  18. Complexes containing cationic and anionic pH-sensitive liposomes: comparative study of factors influencing plasmid DNA gene delivery to tumors

    Chen Y


    Full Text Available Yan Chen,* Ji Sun,* Ying Lu, Chun Tao, Jingbin Huang, He Zhang, Yuan Yu, Hao Zou, Jing Gao, Yanqiang Zhong Department of Pharmaceutical Science, School of Pharmacy, The Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: pH-sensitive liposomes represent an effective gene vector in cancer therapy. However, their use is greatly hampered by their relatively low transfection efficiency. To improve the transfection efficiency of pH-sensitive liposomes, we prepared complexes containing 3β-[N-(N',N'-dimethylaminoethane carbamoyl] cholesterol (DC-Chol and dioleoylphosphatidyl ethanolamine (DOPE liposomes and pH-sensitive liposomes composed of cholesteryl hemisuccinate (CHEMS and DOPE, and evaluated the influence of various factors on plasmid DNA (pDNA transfection efficiency. All DC-Chol/DOPE liposome/pDNA and pH-sensitive liposome complexes showed similarly potent pH sensitivity. In the presence of serum-containing medium, two optimized complexes of DC-Chol/DOPE liposomes/pDNA and pH-sensitive PEGylated liposomes showed high transfection efficiency of 22.94% and 20.07%, respectively. Notably, DC-Chol/DOPE (2:3 liposomes/pH-sensitive PEGylated (1% liposome complexes with a charge ratio of 1:1 (m/m [+/-] showed enhanced accumulation in tumors in vivo. Our results show the influence of various factors on pDNA transfection efficiency in complexes of DC-Chol/DOPE liposomes and pH-sensitive PEGylated liposomes. Understanding of such mechanisms will lead to better design of complexes of DC-Chol/DOPE liposomes and pH-sensitive liposomes for gene therapy. Keywords: cationic liposomes, pH-sensitive liposomes, pDNA, transfection, PEGylated


    M. Yasmin Begum


    Full Text Available CLX (celecoxib is a highly hydrophobic non-steroidal anti-inflammatory drug with high plasma protein binding. We describe here the encapsulation of CLX in MLVs composed of SPC and variable amounts of cholesterol. The influence of drug – lipid ratio was studied and amount of the drug could be encapsulated was optimized. The effect of cholesterol and other process parameters were studied to obtain the liposomal vesicles with desired quality. All the prepared formulations were characterized for their physico chemical properties such as appearance, vesicle size, vesicle size distribution and percentage drug entrapment. Stability of the liposomes in terms of their drug leakage and drug retention behaviour was studied by storing the liposomal formulations under different conditions for the period of 30 days. The optimized formulation parameters and process parameters resulted the liposomes with mean vesicle diameter of 4.81μ. The maximum percentage drug entrapment was achieved with the formulation CL3 which contains the drug – lipid ratio of 1:10%W/W and the percentage drug entrapment is equal to 72.33±0.64 (%. In vitro release data showed that release profile follows zero order kinetics. Celecoxib liposomes with good stability and appreciable controlled drug release with good retention of the drug even after 24 hours were prepared successfully.

  20. Optimization and modeling of the remote loading of luciferin into liposomes.

    Hansen, Anders Højgaard; Lomholt, Michael A; Hansen, Per Lyngs; Mouritsen, Ole G; Arouri, Ahmad


    We carried out a mechanistic study to characterize and optimize the remote loading of luciferin into preformed liposomes of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPC/DPPG) 7:3 mixtures. The influence of the loading agent (acetate, propionate, butyrate), the metal counterion (Na(+), K(+), Ca(+2), Mg(+2)), and the initial extra-liposomal amount of luciferin (nL(add)) on the luciferin Loading Efficiency (LE%) and luciferin-to-lipid weight ratio, i.e., Loading Capacity (LC), in the final formulation was determined. In addition, the effect of the loading process on the colloidal stability and phase behavior of the liposomes was monitored. Based on our experimental results, a theoretical model was developed to describe the course of luciferin remote loading. It was found that the highest luciferin loading was obtained with magnesium acetate. The use of longer aliphatic carboxylates or inorganic proton donors pronouncedly reduced luciferin loading, whereas the effect of the counterion was modest. The remote-loading process barely affected the colloidal stability and drug retention of the liposomes, albeit with moderate luciferin-induced membrane perturbations. The correlation between luciferin loading, expressed as LE% and LC, and nL(add) was established, and under our conditions the maximum LC was attained using an nL(add) of around 2.6μmol. Higher amounts of luciferin tend to pronouncedly perturb the liposome stability and luciferin retention. Our theoretical model furnishes a fair quantitative description of the correlation between nL(add) and luciferin loading, and a membrane permeability coefficient for uncharged luciferin of 1×10(-8)cm/s could be determined. We believe that our study will prove very useful to optimize the remote-loading strategies of moderately polar carboxylic acid drugs in general. PMID:27163524

  1. Quick-and-easy preparation and purification of quantum dot-loaded liposomes

    Hansen, Morten B.; Emmerik, Clara van [Radboud University Nijmegen, Department of Organic Chemistry, Institute for Molecules and Materials (Netherlands); Gaal, Ethlinn van; Storm, Gert [Utrecht University, Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (Netherlands); Hest, Jan C. M. van; Loewik, Dennis W. P. M., E-mail: [Radboud University Nijmegen, Department of Organic Chemistry, Institute for Molecules and Materials (Netherlands)


    Quantum dots are very attractive as fluorescent markers because of their excellent optical properties. For this reason, they have also been used to label liposomes by means of encapsulation, though their feasibility as liposome labels is often hampered by the presence of unencapsulated quantum dots. Until now, laborious gradient ultracentrifugation or less efficient size exclusion chromatography has been the methods of choice to remove unencapsulated quantum dots. Of these two strategies, size exclusion chromatography is most commonly used, despite the known poor separation. Consequently, this prompts for a choice between purification methods yielding high-purity quantum dot-loaded liposomes but low yields or vice versa. Herein, we present a novel high-yield and high-purity methodology to remove unencapsulated quantum dots in a quick and efficient manner based on electrostatic binding of quantum dots to ion-exchange beads. This was accomplished either by means of short column chromatography or via a simple pull-down approach. The purification efficiency was easily assessed via analytical gel electrophoresis, and by copper-mediated quenching of quantum dot fluorescence, it was established that the quantum dots were not adhered to the liposomes but encapsulated inside these. Furthermore, the recovery degree of quantum dot-loaded liposomes after ion-exchange purification was found to be excellent compared with size exclusion chromatography. Lastly, a method is presented to quantify the number of quantum dots encapsulated in the liposomes by the combined efforts of particle counting and inductively coupled plasma mass spectrometry.

  2. Design and characterization of anionic PEGylated liposomal formulation loaded with paclitax for ovarian cancer

    K Makwana


    Full Text Available Despite its strong antitumor activity, paclitaxel (Taxol® has limited clinical applications due to its low aqueous solubility and hypersensitivity caused by cremophor EL and ethanol which is the vehicle used in the current commercial product. In an attempt to develop a pharmaceutically acceptable formulation that could replace Taxol® , we have prepared PEGylated liposomes containing paclitaxel to improve its solubility and physicochemical stability. Its percent drug entrapment (PDE, mean particle size, zeta potential and in vitro release profile were determined. The optimized PEGylated liposomes provided high percent entrapment efficiency (64.29% and mean particle size of 228.6 nm. The electroflocculation method showed 5 mol% of DSPE-mPEG2000 was required to obtain maximum stability for PEGylated liposome. In vitro release data showed its long circulating characteristic. Paclitaxel loaded PEGylated liposomes can be considered a promising long circulating paclitaxel delivery with absence of side effects related to Taxol® .

  3. Preparation and physicochemical characterization of topical chitosan-based film containing griseofulvin-loaded liposomes

    Bavarsad, Neda; Kouchak, Maryam; Mohamadipour, Pardis; Sadeghi-Nejad, Batool


    Griseofulvin is an antifungal drug and is available as oral dosage forms. Development of topical treatment could be advantageous for superficial fungal infections of the skin. In this study, films prepared from the incorporation of griseofulvin-loaded liposomes in chitosan film for topical drug delivery in superficial fungal infections. The properties of the films were characterized regarding mechanical properties, swelling, ability to transmit vapor, drug release, thermal behavior, and antifungal efficacy against Microsporum gypseum and Epidermophyton floccosum. The presence of liposomes led to decreased mechanical properties but lower swelling ratio. Higher amount of drug permeation and rate of flux were obtained by liposomes incorporated in films compared to liposomal formulations. Antifungal efficacy of formulations was confirmed against two species of dermatophytes in vitro. Therefore, two concepts of using vesicular carrier systems and biopolymeric films have been combined and this topical novel composite film has the potential for griseofulvin delivery to superficial fungal infections. PMID:27429928

  4. Glycyl-L-Histidyl-L-Liysine-Cu(2+ loaded liposome formulations

    Setenay Erdem


    Full Text Available Enhancement of collagen synthesis by glycyl-l-histidyl-l-lysine-Cu2+ (GHK-Cu derivatives is well known. The different activities of GHK-Cu would be of interest for cosmetic applications. Liposomes provide many benefits as topical drug delivery systems. Structure of double layer and lipid composition of liposomes keep the active substance longer in skin and provide regularly release to the deeper skin layers. Our aim in this study was to prepare GHK-Cu loaded liposomes and characterize them to use in a cosmetic formulation. UV spectrophotometric method was used to detect the GHK-Cu in aqueous medium and FTIR spectrums were taken to determine the absorption bands. In stability studies, it was observed that aqueous solutions of GHK-Cu samples maintained their stability at 4oC for 4 months and the FTIR absorption bands of powdered GHK-Cu did not change when stored under the same stability conditions with aqueous samples. Different liposome formulations were prepared by lipid film hydration technique using different kinds of phospholipids (dipalmitoylphosphatidylcholine (DPPC-5911, Epicuron 100H, and Epicuron 200SH. The particle size and shape of liposomes were determined using microscope, SEM, and laser diffraction method. The average particle size was found to be 13μm. In the percent entrapment studies of GHK-Cu in liposomes, it was found that the highest entrapment was achieved with the liposomes prepared with Epicuron 100H. It was concluded that diffusion of GHK-Cu from liposomes prepared with Epicuron 100H was higher and more steady than that of liposomes prepared with DPPC and Epicuron 200SH in diffusion studies where a dialysis tubing was used.

  5. Gemcitabine-loaded liposomes: rationale, potentialities and future perspectives

    Federico C


    Full Text Available Cinzia Federico, Valeria M Morittu, Domenico Britti, Elena Trapasso, Donato CoscoDepartment of Health Sciences, Building of BioSciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, Germaneto, ItalyAbstract: This review describes the strategies used in recent years to improve the biopharmaceutical properties of gemcitabine, a nucleoside analog deoxycytidine antimetabolite characterized by activity against many kinds of tumors, by means of liposomal devices. The main limitation of using this active compound is the rapid inactivation of deoxycytidine deaminase following administration in vivo. Consequently, different strategies based on its encapsulation/complexation in innovative vesicular colloidal carriers have been investigated, with interesting results in terms of increased pharmacological activity, plasma half-life, and tumor localization, in addition to decreased side effects. This review focuses on the specific approaches used, based on the encapsulation of gemcitabine in liposomes, with particular attention to the results obtained during the last 5 years. These approaches represent a valid starting point in the attempt to obtain a novel, commercializable drug formulation as already achieved for liposomal doxorubicin (Doxil®, Caelyx®.Keywords: gemcitabine, liposomes, multidrug, poly(ethylene glycol, tumors

  6. Cationic liposome-nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing.

    Majzoub, Ramsey N; Ewert, Kai K; Safinya, Cyrus R


    Cationic liposomes (CLs) are synthetic carriers of nucleic acids in gene delivery and gene silencing therapeutics. The introduction will describe the structures of distinct liquid crystalline phases of CL-nucleic acid complexes, which were revealed in earlier synchrotron small-angle X-ray scattering experiments. When mixed with plasmid DNA, CLs containing lipids with distinct shapes spontaneously undergo topological transitions into self-assembled lamellar, inverse hexagonal, and hexagonal CL-DNA phases. CLs containing cubic phase lipids are observed to readily mix with short interfering RNA (siRNA) molecules creating double gyroid CL-siRNA phases for gene silencing. Custom synthesis of multivalent lipids and a range of novel polyethylene glycol (PEG)-lipids with attached targeting ligands and hydrolysable moieties have led to functionalized equilibrium nanoparticles (NPs) optimized for cell targeting, uptake or endosomal escape. Very recent experiments are described with surface-functionalized PEGylated CL-DNA NPs, including fluorescence microscopy colocalization with members of the Rab family of GTPases, which directly reveal interactions with cell membranes and NP pathways. In vitro optimization of CL-DNA and CL-siRNA NPs with relevant primary cancer cells is expected to impact nucleic acid therapeutics in vivoThis article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. PMID:27298431

  7. Nonviral Gene Delivery to Mesenchymal Stem Cells Using Cationic Liposomes for Gene and Cell Therapy

    C. Madeira


    Full Text Available Mesenchymal stem cells (MSCs hold a great promise for application in several therapies due to their unique biological characteristics. In order to harness their full potential in cell-or gene-based therapies it might be advantageous to enhance some of their features through gene delivery strategies. Accordingly, we are interested in developing an efficient and safe methodology to genetically engineer human bone marrow MSC (BM MSC, enhancing their therapeutic efficacy in Regenerative Medicine. The plasmid DNA delivery was optimized using a cationic liposome-based reagent. Transfection efficiencies ranged from ~2% to ~35%, resulting from using a Lipid/DNA ratio of 1.25 with a transgene expression of 7 days. Importantly, the number of plasmid copies in different cell passages was quantified for the first time and ~20,000 plasmid copies/cell were obtained independently of cell passage. As transfected MSC have shown high viabilities (>90% and recoveries (>52% while maintaining their multipotency, this might be an advantageous transfection strategy when the goal is to express a therapeutic gene in a safe and transient way.

  8. Terbinafine hydrochloride loaded liposome film formulation for treatment of onychomycosis: in vitro and in vivo evaluation.

    Tuncay Tanrıverdi, Sakine; Hilmioğlu Polat, Süleyha; Yeşim Metin, Dilek; Kandiloğlu, Gülşen; Özer, Özgen


    Onychomycosis is a fungal infection of nail unit that is caused by dermatophytes. Oral Terbinafine hydrochloride (TBF-HCl) is being used for the treatment of onychomycosis since 24 years. The side effects caused by the systemic application and limitations of topical administration of this drug regarding the diffusion through nail lead to the development of a new formulation based on, TBF-HCl-loaded liposome. The newly obtained film formulations were prepared and characterized via several parameters, such as physical appearance, drug content, thickness, bioadhesive properties and tensile strength. In vitro and ex vivo permeation studies were performed to select an optimum film formulation for antifungal activity to show the efficiency of formulations regarding the treatment of onychomycosis. The in vitro release percentages of drug were found 71.6 ± 3.28, 54.4 ± 4.26, 56.1 ± 7.48 and 46.0 ± 2.43 for liposome loaded pullulan films (LI-P, LII-P) and liposome loaded Eudragit films (LI-E, LII-E), respectively. The accumulated drug in the nail plates were found 31.16 ± 4.22, 24.81 ± 5.35, 8.17 ± 1.81 and 8.92 ± 3.37 for LI-P, LII-P, LI-E and LII-E, respectively, which within therapeutic range for all film formulations. The accumulated drug in the nail plate was found within therapeutic range for all film formulations. The efficacy of the selected TBF-HCl-loaded liposome film formulation was compared with TBF-HCl-loaded liposome, ethosome, liposome poloxamer gel and ethosome chitosan gel formulations. It was found that TBF-HCl-loaded liposome film formulation had better antifungal activity on fungal nails which make this liposome film formulation promising for ungual therapy of fungal nail infection. PMID:26226352

  9. Comparison of BCG, MPL and cationic liposome adjuvant systems in leishmanial antigen vaccine formulations against murine visceral leishmaniasis

    Bhowmick Sudipta


    Full Text Available Abstract Background The development of an effective vaccine against visceral leishmaniasis (VL caused by Leishmania donovani is an essential aim for controlling the disease. Use of the right adjuvant is of fundamental importance in vaccine formulations for generation of effective cell-mediated immune response. Earlier we reported the protective efficacy of cationic liposome-associated L. donovani promastigote antigens (LAg against experimental VL. The aim of the present study was to compare the effectiveness of two very promising adjuvants, Bacille Calmette-Guerin (BCG and Monophosphoryl lipid A (MPL plus trehalose dicorynomycolate (TDM with cationic liposomes, in combination with LAg, to confer protection against murine VL. Results All the three formulations afforded significant protection against L. donovani in both the visceral organs, liver and spleen. Although comparable level of protection was observed in BCG+LAg and MPL-TDM+LAg immunized mice, highest level of protection was exhibited by the liposomal LAg immunized group. Significant increase in anti-LAg IgG levels were detected in both MPL-TDM+LAg and liposomal LAg immunized animals with higher levels of IgG2a than IgG1. But BCG+LAg failed to induce any antibody response. As an index of cell-mediated immunity DTH responses were measured and significant response was observed in mice vaccinated with all the three different formulations. However, highest responses were observed with liposomal vaccine immunization. Comparative evaluation of IFN-γ and IL-4 responses in immunized mice revealed that MPL-TDM+LAg group produced the highest level of IFN-γ but lowest IL-4 level, while BCG+LAg demonstrated generation of suboptimum levels of both IFN-γ and IL-4 response. Elicitation of moderate levels of prechallenge IFN-γ along with optimum IL-4 corresponds with successful vaccination with liposomal LAg. Conclusion This comparative study reveals greater effectiveness of the liposomal vaccine for

  10. Utilization of thin film method for preparation of celecoxib loaded liposomes

    Eskandar Moghimipour


    Full Text Available Purpose: Celecoxib is nonsteroiddal anti-inflammatory drug that has been used extensively to treat patients with arthritis. The aim of the present study was to formulate and characterize liposomal vesicles loaded with celecoxib. Methods: Liposomes were prepared by thin film method using soya lecithin and cholesterol. The release of drug was determined using a dialysis membrane method. Liposomes were characterized by Differential Scanning Calorimetery (DSC, Transmission Electron Microscopy (TEM and their particle size was also determined. Results: The results showed that the drug encapsulation efficiency was 67.34% and there was 67.16% release after 0.5, 1, 2, 3, 4, 5, 6, 7, 8 and 24 h. Results of particle size determination showed a mean size of 677nm and nanoparticles were spherical as shown by TEM. The DSC curve of lecithin, cholesterol and celecoxib were different from celecoxib containing liposome. Conclusion: The results of characterization of the vesicles indicated the potential application of celecoxib loaded liposome as carrier system.

  11. Non-ionic surfactant modified cationic liposomes mediated gene transfection in vitro and in the mouse lung.

    Ding, Wuxiao; Izumisawa, Tomohiro; Hattori, Yoshiyuki; Qi, Xianrong; Kitamoto, Dai; Maitani, Yoshie


    As reported previously, cationic liposomes formulated with dioleoylphosphatidylethanolamine (DOPE) and N,N-methyl hydroxyethyl aminopropane carbamoyl cholesterol (MHAPC-liposomes) achieved efficient gene transfection in the mouse lung following intratracheal injection. We have studied here the role of surfactants, mannosylerythritol lipid-A (MEL-A) and polysorbate 80 (Tween 80), in affecting gene transfection of MHAPC-lipoplexes (complex with pCMV-luc DNA) in A549 cells and in the mouse lung. MEL-A increased gene transfection of MHAPC-lipoplexes significantly in vitro and slightly in the mouse lung, while Tween 80 decreased it both in vitro and in vivo. As assessed by confocal laser scanning microscopy and fluorescence imaging, MEL-A might faciliate gene dissociation from MHAPC-lipoplexes with fluorescein-labeled oligodeoxynucleotide (FITC-ODN) after internalization into the cells and retained the lipoplexes in the mouse lung for prolonged time, while Tween 80 was inefficient to deliver foreign gene into target cells and in the lung. These results demonstrated that MEL-A is advantageous to Tween 80 in the modification of cationic liposomes as gene delivery vectors in the lung. PMID:19182397

  12. Liposome size and charge optimization for intraarterial delivery to gliomas.

    Joshi, Shailendra; Cooke, Johann R N; Chan, Darren K W; Ellis, Jason A; Hossain, Shaolie S; Singh-Moon, Rajinder P; Wang, Mei; Bigio, Irving J; Bruce, Jeffrey N; Straubinger, Robert M


    Nanoparticles such as liposomes may be used as drug delivery vehicles for brain tumor therapy. Particle geometry and electrostatic properties have been hypothesized to be important determinants of effective tumor targeting after intraarterial injection. In this study, we investigate the combined roles of liposome size and surface charge on the effectiveness of delivery to gliomas after intraarterial injection. Intracarotid injection of liposomes was performed in separate cohorts of both healthy and C6 glioma-bearing Sprague Dawley rats after induction of transient cerebral hypoperfusion. Large (200 nm) and small (60-80 nm) fluorescent dye-loaded liposomes that were either cationic or neutral in surface charge were utilized. Delivery effectiveness was quantitatively measured both with real-time, in vivo and postmortem diffuse reflectance spectroscopy. Semi-quantitative multispectral fluorescence imaging was also utilized to assess the pattern and extent of liposome targeting within tumors. Large cationic liposomes demonstrated the most effective hemispheric and glioma targeting of all the liposomes tested. Selective large cationic liposome retention at the site of glioma growth was observed. The liposome deposition pattern within tumors after intraarterial injection was variable with both core penetration and peripheral deposition observed in specific tumors. This study provides evidence that liposome size and charge are important determinants of effective brain and glioma targeting after intraarterial injection. Our results support the future development of 200-nm cationic liposomal formulations of candidate intraarterial anti-glioma agents for further pre-clinical testing. PMID:27091339

  13. Sucrose ester based cationic liposomes as effective non-viral gene vectors for gene delivery.

    Zhao, Yinan; Zhu, Jie; Zhou, Hengjun; Guo, Xin; Tian, Tian; Cui, Shaohui; Zhen, Yuhong; Zhang, Shubiao; Xu, Yuhong


    As sucrose esters (SEs) are natural and biodegradable excipients with excellent drug dissolution and drug absorption/permeation in controlled release systems, we firstly incorporated SE into liposomes for gene delivery in this article. A peptide-based lipid (CDO14), Gemini-based quaternary ammonium-based lipid (CTA14), and mono-head quaternary ammonium lipid (CPA14), and SE as helper lipid, were prepared into liposomes which could enhance the interactions between liposomes and pDNA. Most importantly, the liposomes with helper lipid SE showed higher transfection and lower cytotoxicity than those without SE in Hela and A549 cells. It was also found that the transfection efficiency increased with the increase of SE content. The selected liposome, CDO14/SE, was able to deliver siRNA against luciferase for silencing gene in lung tumors of mice, with little in vivo toxicity. The results convincingly demonstrated SEs could be highly desirable candidates for gene delivery systems. PMID:27232309

  14. The Effects of Salt on the Physicochemical Properties and Immunogenicity of Protein Based Vaccine Formulated in Cationic Liposome

    Yan, Weili; Huang, Leaf


    Recently, we have developed a simple and potent therapeutic cancer vaccine consisting of a cationic lipid and a peptide antigen. In this report, we expanded the utility of this formulation to a protein based vaccine. First, we formulated the human papillomavirus (HPV) 16 E7 protein (E7) in different doses of DOTAP liposome. The results showed that these formulations failed to regress an established tumor. However, when sodium chloride (30 mM) was added to the DOTAP (100 nmol) / E7 (20 μg) for...

  15. Double-loaded liposomes encapsulating Quercetin and Quercetin beta-cyclodextrin complexes: Preparation, characterization and evaluation

    Jessy Shaji


    Full Text Available Beta-cyclodextrin (CD inclusion complexes of Quercetin were formed and characterized by Differential scanning calorimetry (DSC and Fourier transform infra-red spectroscopy (FTIR spectroscopy. Plain Quercetin liposomes using phosphatidylcholine and cholesterol were prepared and optimized. Factors such as ratio of lipids employed, drug:lipid ratio, etc. were fine tuned and optimized to achieve maximum entrapment of the Quercetin into the bilayer. Entrapment was further enhanced by double loading the liposomes. These were prepared by incorporating Quercetin as a plain drug as well as the inclusion complexes within the lipid bilayer and the aqueous compartment, respectively, of the liposomes using the thin film hydration technique. The highest entrapment was achieved with a lipid ratio of 9:1, and the amount of plain drug entering the bilayer was 1/10 th the amount of lipid employed. Double loading increased this value to one part of drug per five parts of lipid when Quercetin-beta-CD (1:1 mol/mol was entrapped. The release of Quercetin from liposomes was highest when the drug was entrapped in the form of a complex with beta cylodextrin. The high entrapment ability of Quercetin in the form of plain drug as well as beta cylodextrin-Quercetin complexes in comparison with plain drug is an indubitable advantage of this approach.

  16. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery

    Yao Y


    Full Text Available Yao Yao, Zhihui Su, Yanchao Liang, Na Zhang School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, People’s Republic of China Abstract: Combination of chemotherapeutic drug and small interfering RNA (siRNA can affect multiple disease pathways and has been proven effective in suppressing tumor progression. Co-delivery of drug and siRNA within a same nanocarrier is a vital means in this field. The present study aimed at the development of a pH-sensitive liposome to co-deliver drug and siRNA to tumor region. Driven by the electrostatic interaction, the pH-sensitive material, carboxymethyl chitosan (CMCS, was coated onto the surface of the cationic liposome (CL preloaded with sorafenib (Sf and siRNA (Si. To evaluate whether the resulting CMCS-modified Sf and siRNA co-delivery cationic liposome (CMCS-SiSf-CL enhanced antitumor efficiency after systematic administration, in vitro and in vivo experiments were evaluated in HepG2 cells and the H22 cells-bearing Kunming mice model. The experimental results demonstrated that CMCS-SiSf-CL was able to condense siRNA efficiently and protect siRNA from being degraded by serum and RNase. The release rate of Sf from CMCS-modified liposome exhibited pH-sensitive release behavior. Furthermore, in vitro cellular uptake results showed that CMCS-SiSf-CL yielded higher fluorescence intensity at pH 6.5 than at pH 7.4, and that siRNA could be delivered to tumor site by CMCS-SiSf-CL in vivo. The in vivo antitumor efficacy showed that CMCS-Sf-CL inhibits tumor growth effectively when compared with free Sf solution. In current experimental conditions, this liposomal formulation did not show significant toxicity both in vitro and in vivo. Therefore, co-delivering Sf with siRNA by CMCS-SiSf-CL might provide a promising approach for tumor therapy. Keywords: co-delivery, sorafenib, gene, charge conversion, cancer therapy

  17. Phospholipid liposomes acquire apolipoprotein E in atherogenic plasma and block cholesterol loading of cultured macrophages.

    Williams, K J; Tall, A.R.; Bisgaier, C; Brocia, R


    A single infusion of phospholipid liposomes promptly and persistently abolished the ability of hypercholesterolemic rabbit plasma to cause cholesteryl ester loading in cultured macrophages. This phospholipid enrichment of plasma caused moderate stimulation of cellular cholesterol efflux and, unexpectedly, almost complete inhibition of cellular uptake of beta-very low density lipoprotein (beta-VLDL), the major cholesteryl ester-rich particle in hypercholesterolemic rabbit plasma. Cell viabilit...

  18. Effect of the preparation procedure on the structural properties of oligonucleotide/cationic liposome complexes (lipoplexes) studied by electron spin resonance and Zeta potential.

    Ciani, Laura; Ristori, Sandra; Bonechi, Claudia; Rossi, Claudio; Martini, Giacomo


    Lipoplexes with different surface charge were prepared from a short oligonucleotide (20 mer, dsAT) inserted into liposomes of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE). The starting liposomes were prepared by two different procedures, i.e. progressive dsAT addition starting from plain liposomes (titration) and direct mixing of dsAT with pure liposomes (point to point preparation). Lipoplexes were characterized from a molecular point of view by Electron Spin Resonance (ESR) of a cationic spin probe and by Nuclear Magnetic Resonance. Structural and surface features were analysed by Zeta potential (zeta) measurements and Cryo-TEM micrographs. The complete set of results allowed to demonstrate that: i) the interactions between dsAT and cationic lipids were strong and occurred at the liposome surface; ii) the overall shape and physicochemical properties of liposomes did not change when short nucleic acid fragments were added before surface charge neutralization; iii) the bilayer structure of the lipids in lipoplexes was substantially preserved at all charge ratios; iv) the physical status of lipoplexes with electrical charge far from neutrality did not depend on the preparation method. PMID:17950520

  19. Enhanced non-inflammasome mediated immune responses by mannosylated zwitterionic-based cationic liposomes for HIV DNA vaccines.

    Qiao, Chenmeng; Liu, Jiandong; Yang, Jun; Li, Yan; Weng, Jie; Shao, Yiming; Zhang, Xin


    Human immunodeficiency virus (HIV) DNA vaccine can induce cellular and humoral immunity. A safe and effective HIV DNA vaccine is urgent need to prevent the spread of acquired immune deficiency syndrome (AIDS). The major drawback of DNA vaccines is the low immunogenicity, which is caused by the poor delivery to antigen presenting cells and insufficient antigen expression. Sparked by the capability of endosomal/lysosomal escape of the zwitterionic lipid distearoyl phosphoethanol-amine-polycarboxybetaine (DSPE-PCB), we attempted to develop a zwitterionic-based cationic liposome with enhanced immunogenicity of DNA vaccines. The mannosylated zwitterionic-based cationic liposome (man-ZCL) was constructed as a DNA vaccine adjuvant for HIV vaccination. Man-ZCL could complex with DNA antigens to form a tight structure and protect them from nuclei enzyme degradation. Benefited from the capability of the specific mannose receptor mediated antigen processing cells targeting and enhanced endosomal/lysosomal escape, the man-ZCL lipoplexes were supposed to promote antigen presentation and the immunogenicity of DNA vaccines. In vitro and in vivo results revealed that man-ZCL lipoplexes showed enhanced anti-HIV immune responses and lower toxicity compared with CpG/DNA and Lipo2k/DNA, and triggered a Th1/Th2 mixed immunity. An antigen-depot effect was observed in the administration site, and this resulted in enhanced retention of DNA antigens in draining lymph nodes. Most importantly, the man-ZCL could assist to activate T cells through a non-inflammasome pathway. These findings suggested that the man-ZCL could be potentially applied as a safe and efficient DNA adjuvant for HIV vaccines. PMID:26851653

  20. Analysis of plasma protein adsorption onto DC-Chol-DOPE cationic liposomes by HPLC-CHIP coupled to a Q-TOF mass spectrometer

    Capriotti, Anna Laura


    Plasma protein adsorption is regarded as a key factor in the in vivo organ distribution of intravenously administered drug carriers, and strongly depends on vector surface characteristics. The present study aimed to characterize the "protein corona" absorbed onto DC-Chol-DOPE cationic liposomes. This system was chosen because it is one of the most efficient and widely used non-viral formulations in vitro and a potential candidate for in vivo transfection of genetic material. After incubation of human plasma with cationic liposomes, nanoparticle-protein complex was separated from plasma by centrifugation. An integrated approach based on protein separation by one-dimensional 12% polyacrylamide gel electrophoresis followed by the automated HPLC-Chip technology coupled to a high-resolution mass spectrometer was employed for protein corona characterization. Thirty gel lanes, approximately 2 mm, were cut, digested and analyzed by HPLC-MS/MS. Fifty-eight human plasma proteins adsorbed onto DC-Chol-DOPE cationic liposomes were identified. The knowledge of the interactions of proteins with liposomes can be exploited for future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins in body fluids. © 2010 Springer-Verlag.

  1. The Effectiveness of Raloxifene-Loaded Liposomes and Cochleates in Breast Cancer Therapy.

    Ağardan, N Başaran Mutlu; Değim, Zelihagül; Yılmaz, Şükran; Altıntaş, Levent; Topal, Turgut


    Liposome (spherical vesicles) and cochleate (multilayer crystalline, spiral structure) formulations containing raloxifene have been developed having dimethyl-β-cyclodextrin (DM-β-CD) or sodium taurocholate (NaTC). Raloxifene was approved initially for the treatment of osteoporosis but it is also effective on breast tissue and endometrial cells. Raloxifene inhibits matrix metalloproteinase-2 (MMP-2) enzyme, which is known to be responsible for tumor invasion and the initiation of angiogenesis during the tumor growth. Therefore, raloxifene was selected as a model drug. A series of raloxifene-loaded liposome and cochleate formulations were prepared. In vitro release studies and in vivo tests were performed. Breast cancer cell lines (MCF-7) were also used to find the most effective formulation. Highest antitumor activity was observed, and MMP-2 enzyme was also found to be inhibited with raloxifene-loaded cochleates containing DM-β-CD. These developed formulations can be helpful for further treatment alternatives and new strategies for cancer therapy. PMID:26729527

  2. Enhanced antimicrobial activity of nisin-loaded liposomal nanoparticles against foodborne pathogens.

    Zou, Yunyun; Lee, Hyeon-Yong; Seo, Yong-Chang; Ahn, Juhee


    This study was designed to evaluate the prolonged antimicrobial stability of nisin-loaded liposome (LipoN) nanoparticles against Listeria monocytogenes and Staphylococcus aureus. The sizes of bare liposomes and LipoN were uniformly distributed between 114 and 125 nm. The nanoparticles were homogeneously dispersed in water with less than 0.2 of polydispersity index. The zeta potential value of LipoN was +17.1 mV due to the positive charged nisin, attaining 70% of loading efficiency. The minimum inhibitory concentration of LipoN against L. monocytogenes and S. aureus was 320 international unit/mL. The LipoN significantly enhanced the antimicrobial stability in brain heart infusion agar compared to free nisin. The numbers of L. monocytogenes and S. aureus exposed to LipoN were effectively reduced by more than 6 log colony-forming unit/mL after 48 and 72 h of incubation, respectively. These results provide useful information for the development of antimicrobial delivery system to improve food safety. PMID:22329855

  3. Microbubbles coupled to methotrexate-loaded liposomes for ultrasound-mediated delivery of methotrexate across the blood–brain barrier

    Wang X


    Full Text Available Xiang Wang,1 Ping Liu,1 Weixiao Yang,1 Lu Li,1 Peijing Li,2 Zheng Liu,1 Zhongxiong Zhuo,1 Yunhua Gao1 1Department of Ultrasound, Xinqiao Hospital of the Third Military Medical University, Chongqing, 2Department of Ultrasound, General Hospital of the Jinan Military Area, Jinan, People’s Republic of China Abstract: Methotrexate (MTX is the single most effective agent for the treatment of primary central nervous system lymphoma. Currently, the delivery of MTX to the brain is achieved by high systemic doses, which cause severe long-term neurotoxicity, or intrathecal administration, which is highly invasive and may lead to infections or hemorrhagic complications. Acoustically active microbubbles have been developed as drug carriers for the noninvasive and brain-targeted delivery of therapeutics. However, their application is limited by their low drug-loading capacity. To overcome this limitation, we prepared microbubbles coupled to MTX-loaded liposomes using ZHIFUXIAN, a novel type of microbubbles with a superior safety profile and long circulation time. MTX-liposome-coupled microbubbles had a high drug-loading capacity of 8.91%±0.86%, and their size (2.64±0.93 µm in diameter was suitable for intravenous injection. When used with ultrasound, they showed more potent in vitro cytotoxicity against Walker-256 cancer cells than MTX alone or MTX-loaded liposomes. When Sprague-Dawley rats were exposed to sonication, administration of these MTX-liposome-coupled microbubbles via the tail vein led to targeted disruption of the blood–brain barrier without noticeable tissue or capillary damage. High-performance liquid chromatography analysis of the brain MTX concentration showed that MTX delivery to the brain followed the order of MTX-liposome-coupled microbubbles + ultrasound (25.3±2.4 µg/g > unmodified ZHIFUXIAN + MTX + ultrasound (18.6±2.2 µg/g > MTX alone (6.97±0.75 µg/g > MTX-liposome-coupled microbubbles (2.92±0.39 µg/g. Therefore

  4. Cholesterol Derivatives Based Charged Liposomes for Doxorubicin Delivery: Preparation, In Vitro and In Vivo Characterization

    Yu Nie, Li Ji, Hong Ding, Li Xie, Li Li, Bin He, Yao Wu, Zhongwei Gu


    Full Text Available Cholesterol plays a critical role in liposome composition. It has great impact on the behavior of liposome in vitro and in vivo. In order to verify the possible effects from cholesterol charge, surface shielding and chemical nature, two catalogs of liposomes with charged and PEGylated cholesterols were synthesized. Anionic liposomes (AL and cationic liposomes (CL were prepared, with charges from hemisuccinate and lysine in cholesterol derivatives, respectively. Characteristics of different formulated liposomes were investigated after doxorubicin encapsulation, using neutral liposomes (NL as control. Results showed that after PEGylation, AL and CL liposomes displayed prolonged retention release profile, while kept similar size distribution, encapsulation efficiency, low cytotoxicity and hemolysis comparing with NL. Confocal laser scanning microscopy and flow cytometry experiments confirmed the significantly higher cell uptake from AL and CL vesicles than the NL in mouse breast carcinoma and melanoma cells, human epithelial carcinoma and hepatoma cells. It was in accordance with our corresponding cellular mortality studies of DOX-loaded liposomes. The in vivo anti-tumor effect experiments from charged liposomes also presented much higher tumor inhibition effect (70% vs 45%, p < 0.05 than NL liposomes. This is the first time reporting anti-cancer effect from charged cholesterol liposome with/without PEGylation. It may give deeper understanding on the liposome formulation which is critical for liposome associated drug research and development.

  5. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy.

    Eloy, Josimar O; Petrilli, Raquel; Topan, José Fernando; Antonio, Heriton Marcelo Ribeiro; Barcellos, Juliana Palma Abriata; Chesca, Deise L; Serafini, Luciano Neder; Tiezzi, Daniel G; Lee, Robert J; Marchetti, Juliana Maldonado


    Paclitaxel and rapamycin have been reported to act synergistically to treat breast cancer. Albeit paclitaxel is available for breast cancer treatment, the most commonly used formulation in the clinic presents side effects, limiting its use. Furthermore, both drugs present pharmacokinetics drawbacks limiting their in vivo efficacy and clinic combination. As an alternative, drug delivery systems, particularly liposomes, emerge as an option for drug combination, able to simultaneously deliver co-loaded drugs with improved therapeutic index. Therefore, the purpose of this study is to develop and characterize a co-loaded paclitaxel and rapamycin liposome and evaluate it for breast cancer efficacy both in vitro and in vivo. Results showed that a SPC/Chol/DSPE-PEG (2000) liposome was able to co-encapsulate paclitaxel and rapamycin with suitable encapsulation efficiency values, nanometric particle size, low polydispersity and neutral zeta potential. Taken together, FTIR and thermal analysis evidenced drug conversion to the more bioavailable molecular and amorphous forms, respectively, for paclitaxel and rapamycin. The pegylated liposome exhibited excellent colloidal stability and was able to retain drugs encapsulated, which were released in a slow and sustained fashion. Liposomes were more cytotoxic to 4T1 breast cancer cell line than the free drugs and drugs acted synergistically, particularly when co-loaded. Finally, in vivo therapeutic evaluation carried out in 4T1-tumor-bearing mice confirmed the in vitro results. The co-loaded paclitaxel/rapamycin pegylated liposome better controlled tumor growth compared to the solution. Therefore, we expect that the formulation developed herein might be a contribution for future studies focusing on the clinical combination of paclitaxel and rapamycin. PMID:26836480

  6. A novel approach for lung delivery of rifampicin-loaded liposomes in dry powder form for the treatment of tuberculosis

    Jagadevappa S Patil


    Full Text Available Background: Lung administration of antibiotics by nebulization is promising for improved treatment efficiency for pulmonary infections, as it increases drug concentration at sites of infection while minimizing systemic side effects. For poorly soluble molecules like rifampicin, lipid particulate system may improve lung delivery. Materials and Methods: We investigated rifampicin-loaded freeze-dried liposomes. Various formulations were prepared with different drug lipid ratios and one formulation was optimized. Optimized colloidal liposome formulation was freeze-dried and subsequently subjected for various evaluation and characterization parameters such as in-vitro dissolution, in-vitro antitubercular activity, aerodynamic characters, surface morphology, and thermal behavior. The optimized formulation of rifampicin-loaded freeze-dried liposome and free rifampicin was subjected for the in-vivo drug disposition study in Wister rat model by intra-tracheal instillation in comparison with an oral route of administration. Results: The results of pharmacokinetic study for both free drug and the formulation suggested that liposomes released the drug in a controlled manner for a longer period of time. The enhanced efficiency of drug incorporated into liposomes suggested that the delivery of encapsulated drugs to macrophages was more rapid than that of free drug. Conclusion: Therefore, the pharmacokinetic and drug disposition studies provided a sound basis for predicting the successful treatment for tuberculosis.

  7. Optimization of Fabrication Parameters to Prepare Tea Catechin-Loaded Liposomes using Response Surface Methodology

    Jianjun Fang


    Full Text Available The purpose of this study was to optimize the formulation of tea catechin-loaded nano-liposomes using response surface methodology. Response surface methodology based on central composite rotatable design has been successfully used to model and optimize biochemical and biotechnological processes. The mass ratio of phosphatidylcholine and cholesterol (1-3, catechin concentration (3-5 mg/mL, pH values of phosphate buffer solution (6-7 and the volume ratio of organic phase and aqueous phase (2-4 were selected as independent variables with encapsulation efficiency and particle size as dependent variables. For each response, a second-order polynomial model was developed using multiple linear regression analysis. Applying a desirability function method the optimum parameters were: phosphatidylcholine to cholesterol mass ratio of 2.17, catechin concentration of 5 mg/mL, pH values of phosphate buffer solution of 6.62 and organic phase to aqueous phase volume ratio of 3.05. At this optimum point, particle size and encapsulation efficiency were found to be 220 nm and 60.18%, respectively. Furthermore, leakage ratio of nano-liposomes was used to determine the influence of storage period.

  8. Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes.

    Ewert, Kai K; Kotamraju, Venkata Ramana; Majzoub, Ramsey N; Steffes, Victoria M; Wonder, Emily A; Teesalu, Tambet; Ruoslahti, Erkki; Safinya, Cyrus R


    Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles. PMID:26874401

  9. On-chip microreactor system for the production of nano-emulsion loaded liposomes: towards targeted delivery of lipophilic drugs

    Langelaan, M.L.P.; Emmelkamp, J.; Segers, M.J.A.; Lenting, H.B.M.


    An on-chip microreactor system for the production of novel nano-biodevices is presented. This nano-biodevice consists of a nano-emulsion loaded with lipophilic drugs, entrapped in liposomes. These nano-biodevices can be equipped with targeting molecules for higher drug efficiency. The microreactor s

  10. ATP-loaded Liposomes Effectively Protect Mechanical Functions of the Myocardium from Global Ischemia in an Isolated Rat Heart Model

    Verma, D.D.; Levchenko, T.S.; Bernstein, E.A.; Torchilin, V.P


    ATP-loaded liposomes (ATP-L) infused into Langendorff-instrumented isolated rat hearts protect the mechanical functions of the myocardium during ischemia/reperfusion. The left ventricular developed pressure (LVDP) at the end of the reperfusion in the ATP-L group recovered to 72% of the baseline (preservation of the systolic function) compared to 26%, 40%, and 51% in the groups treated with Krebs-Henseleit (KH) buffer, empty liposomes (EL), and free ATP (F-ATP), respectively. The ATP-L-treated...

  11. Development of monodispersed and functional magnetic polymeric liposomes via simple liposome method

    We are reporting a simple and rapid method to prepare superparamagnetic, controlled size, and monodispersed magnetic cationic polymeric liposomes (MCPL) by octadecyl quaternized carboxymethyl chitosan (OQCMC) and cholesterol. The whole process is only about 25 min with simple thin-film dispersion and solvent evaporation method. Hydrophilic magnetic nanoparticles (LM) and hydrophobic magnetic nanoparticles (BM) can be encapsulated into these cationic polymeric liposomes, simultaneously or respectively. A model hydrophobic drug indomethacin can be successfully filled in MCPL with high drug loading capacity 22%. MCPL encapsulating BM also showed strong DNA (pEGFP) binding ability. Drug-loaded MCPL have a long and controlled sustained release profile by changing the number of polymeric lipid layer. These functional MCPL nanospheres can be allowed to serve as ideal candidates for many biomedical applications.Graphical AbstractA simple and rapid liposome method was reported to prepare superparamagnetic, controlled size, and monodispersed magnetic cationic polymeric liposomes (MCPL) by polymeric surfactant, octadecyl quaternized carboxymethyl chitosan (OQCMC), and cholesterol. Hydrophilic Fe3O4 ferrofluid and hydrophobic magnetic nanoparticles can be encapsulated into these cationic polymeric liposomes, simultaneously or respectively. Hydrophobic drug indomethacin can be encapsulated into this MCPL with high encapsulating efficiency and with controlled release profile by changing the number of polymeric lipid layer.

  12. Development of monodispersed and functional magnetic polymeric liposomes via simple liposome method

    Liang Xiaofei; Wang Hanjie [Tianjin University and Tianjin Key Laboratory of Composites and Functional Materials, Institute of Nanobiotechnology, School of Materials Science and Engineering (China); Jiang Xinguo [Fudan University, School of Pharmacy (China); Chang Jin, E-mail: [Tianjin University and Tianjin Key Laboratory of Composites and Functional Materials, Institute of Nanobiotechnology, School of Materials Science and Engineering (China)


    We are reporting a simple and rapid method to prepare superparamagnetic, controlled size, and monodispersed magnetic cationic polymeric liposomes (MCPL) by octadecyl quaternized carboxymethyl chitosan (OQCMC) and cholesterol. The whole process is only about 25 min with simple thin-film dispersion and solvent evaporation method. Hydrophilic magnetic nanoparticles (LM) and hydrophobic magnetic nanoparticles (BM) can be encapsulated into these cationic polymeric liposomes, simultaneously or respectively. A model hydrophobic drug indomethacin can be successfully filled in MCPL with high drug loading capacity 22%. MCPL encapsulating BM also showed strong DNA (pEGFP) binding ability. Drug-loaded MCPL have a long and controlled sustained release profile by changing the number of polymeric lipid layer. These functional MCPL nanospheres can be allowed to serve as ideal candidates for many biomedical applications.Graphical AbstractA simple and rapid liposome method was reported to prepare superparamagnetic, controlled size, and monodispersed magnetic cationic polymeric liposomes (MCPL) by polymeric surfactant, octadecyl quaternized carboxymethyl chitosan (OQCMC), and cholesterol. Hydrophilic Fe{sub 3}O{sub 4} ferrofluid and hydrophobic magnetic nanoparticles can be encapsulated into these cationic polymeric liposomes, simultaneously or respectively. Hydrophobic drug indomethacin can be encapsulated into this MCPL with high encapsulating efficiency and with controlled release profile by changing the number of polymeric lipid layer.

  13. Large-scale preparation of clove essential oil and eugenol-loaded liposomes using a membrane contactor and a pilot plant.

    Sebaaly, Carine; Greige-Gerges, Hélène; Agusti, Géraldine; Fessi, Hatem; Charcosset, Catherine


    Based on our previous study where optimal conditions were defined to encapsulate clove essential oil (CEO) into liposomes at laboratory scale, we scaled-up the preparation of CEO and eugenol (Eug)-loaded liposomes using a membrane contactor (600 mL) and a pilot plant (3 L) based on the principle of ethanol injection method, both equipped with a Shirasu Porous Glass membrane for injection of the organic phase into the aqueous phase. Homogenous, stable, nanometric-sized and multilamellar liposomes with high phospholipid, Eug loading rates and encapsulation efficiency of CEO components were obtained. Saturation of phospholipids and drug concentration in the organic phase may control the liposome stability. Liposomes loaded with other hydrophobic volatile compounds could be prepared at large scale using the ethanol injection method and a membrane for injection. PMID:26099849

  14. 'One-component' ultrathin multilayer films based on poly(vinyl alcohol) as stabilizing coating for phenytoin-loaded liposomes.

    Zasada, Katarzyna; Łukasiewicz-Atanasov, Magdalena; Kłysik, Katarzyna; Lewandowska-Łańcucka, Joanna; Gzyl-Malcher, Barbara; Puciul-Malinowska, Agnieszka; Karewicz, Anna; Nowakowska, Maria


    Ultrathin "one-component" multilayer polymeric films for potential biomedical applications were designed based on polyvinyl alcohol,-a non-toxic, fully degradable synthetic polymer. Good uniformity of the obtained film and adequate adsorption properties of the polymeric layers were achieved by functional modification of the polymer, which involved synthesis of cationic and anionic derivatives. Synthesized polymers were characterized by FTIR, NMR spectroscopy, dynamic light scattering measurements and elemental analysis. The layer by layer assembly technique was used to build up a multilayer film and this process was followed using UV-Vis spectroscopy and ellipsometry. The morphology and thickness of the obtained multilayered film material was evaluated by atomic force microscopy (AFM). Preliminary studies on the application of the obtained multilayer film for coating of liposomal nanocarriers containing phenytoin, an antiarrhythmic drug, were performed. The coating effectively stabilizes liposomes and the effect increases with an increasing number of deposited layers until the polymeric film reaches the optimal thickness. The obtained release profiles suggest that bilayer-coated liposomes release phenytoin less rapidly than uncoated ones. The cytotoxicity studies performed for all obtained nanocarriers confirmed that none of them has negative effect on cell viability. All of the performed experiments suggest that liposomes coated with ultrathin film obtained from PVA derivatives can be attractive drug nanocarriers. PMID:26253533

  15. Physico-chemical characterisation of cationic DOTAP liposomes as drug delivery system for a hydrophilic decapeptide before and after freeze-drying.

    Wieber, Alena; Selzer, Torsten; Kreuter, Jörg


    In the present study, positively charged 1,2-dioleoyloxy-3-trimethylammoniumpropane (DOTAP) liposomes as a delivery system for a hydrophilic decapeptide were developed. The main objective was the preparation of a stable, highly loaded, lyophilised formulation to yield the basis for an acceptable shelf life. The influences of addition of cholesterol, pH value, amounts of lipid and peptide, type and amount of sugar-based cryoprotective agent (trehalose and sucrose), and time point for cryoprotector addition as well as the freeze-drying process parameters were investigated. The collapse temperatures of the liposome dispersions in the presence of the disaccharides trehalose and sucrose were determined using a freeze-drying microscope (Lyostat 2). The liposome morphology before freeze-drying was determined by transmission electron microscopy (TEM). The evidence of intact liposomes after freeze-drying was shown by scanning electron microscope (SEM) imaging. In summary, this study demonstrated the successful development of DOTAP liposomes including their lyophilisation as a drug delivery system for small hydrophilic peptides. PMID:22119734

  16. Folate receptor-targeted liposomes loaded with a diacid metabolite of norcantharidin enhance antitumor potency for H22 hepatocellular carcinoma both in vitro and in vivo.

    Liu, Min-Chen; Liu, Lin; Wang, Xia-Rong; Shuai, Wu-Ping; Hu, Ying; Han, Min; Gao, Jian-Qing


    The diacid metabolite of norcantharidin (DM-NCTD) is clinically effective against hepatocellular carcinoma (HCC), but is limited by its short half-life and high incidence of adverse effects at high doses. We developed a DM-NCTD-loaded, folic acid (FA)-modified, polyethylene glycolated (DM-NCTD/FA-PEG) liposome system to enhance the targeting effect and antitumor potency for HCC at a moderate dose based on our previous study. The DM-NCTD/FA-PEG liposome system produced liposomes with regular spherical morphology, with mean particle size approximately 200 nm, and an encapsulation efficiency >80%. MTT cytotoxicity assays demonstrated that the DM-NCTD/FA-PEG liposomes showed significantly stronger cytotoxicity effects on the H22 hepatoma cell line than did PEG liposomes without the FA modification (Pkidney was higher than in the normal liposome group. With regard to in vivo antitumor activity, DM-NCTD/FA-PEG liposomes inhibited tumors in H22 tumor-bearing mice better than either free DM-NCTD or DM-NCTD/PEG liposomes (Pnormal mice, as shown by histopathological examination. All these results demonstrate that DM-NCTD-loaded FA-modified liposomes might have potential application for HCC-targeting therapy. PMID:27110110

  17. Indocyanine Green-Loaded Liposomes for Light-Triggered Drug Release.

    Lajunen, Tatu; Kontturi, Leena-Stiina; Viitala, Lauri; Manna, Moutusi; Cramariuc, Oana; Róg, Tomasz; Bunker, Alex; Laaksonen, Timo; Viitala, Tapani; Murtomäki, Lasse; Urtti, Arto


    Light-triggered drug delivery systems enable site-specific and time-controlled drug release. In previous work, we have achieved this with liposomes containing gold nanoparticles in the aqueous core. Gold nanoparticles absorb near-infrared light and release the energy as heat that increases the permeability of the liposomal bilayer, thus releasing the contents of the liposome. In this work, we replaced the gold nanoparticles with the clinically approved imaging agent indocyanine green (ICG). The ICG liposomes were stable at storage conditions (4-22 °C) and at body temperature, and fast near-infrared (IR) light-triggered drug release was achieved with optimized phospholipid composition and a 1:50 ICG-to-lipid molar ratio. Encapsulated small molecular calcein and FITC-dextran (up to 20 kDa) were completely released from the liposomes after light exposure for 15 s. Location of ICG in the PEG layer of the liposomes was simulated with molecular dynamics. ICG has important benefits as a light-triggering agent in liposomes: fast content release, improved stability, improved possibility of liposomal size control, regulatory approval to use in humans, and the possibility of imaging the in vivo location of the liposomes based on the fluorescence of ICG. Near-infrared light used as a triggering mechanism has good tissue penetration and safety. Thus, ICG liposomes are an attractive option for light-controlled and efficient delivery of small and large drug molecules. PMID:27097108

  18. Formulation Optimization of Asiaticoside Cationic Liposomes by Using Central Composite Design-response Surface Method%星点设计-响应面法优化积雪草苷阳离子脂质体的处方Δ

    任翔; 刘琨; 张莉


    OBJECTIVE:To optimize the formulation of Asiaticoside cationic liposomes,and to investigate the characteristics of drug release in vitro. METHODS:The thin film dispersion method was used to prepare liposome;using encapsulation efficiency and drug-loading amount as index,the formulation of Asiaticoside liposomes was optimized by central composite design-response surface method with the ratio of drug to lipid(X1),the ratio of cholesterol to lipid(X2)and the concentration of D-mannose(X3) as factors. Using sodium lauryl sulfate as medium,in vitro release characteristics of cationic liposomes prepared with 1%octadecyl-amine was investigated by bag filter method,and compared with those of Asiaticoside solution and common liposome. RESULTS:The optimal formulation was X1 0.07,X2 0.17 and X3 0.03 g/ml. The encapsulation efficiency was (75.529 ± 1.071)%,and drug-loading amount was(2.539±0.029)%(n=3);the deviation from the predicted values were -0.217% and 0.205%;1% oc-tadecylamine was add into formulation to obtain cationic liposomes,and the Zeta potential had changed from -5.6 mV to 20.8 mV. in vitro accumulative release rates of Asiaticoside solution,common liposomes and cationic liposomes were 89.13%(12 h), 87.58%(72 h) and 94.46%(72 h),and the latter was in line with Weibull model. CONCLUSIONS:Asiaticoside cationic lipo-somes have high encapsulation efficiency,and can releases for 72 h.%目的:优化积雪草苷阳离子脂质体的处方,并对其体外释药特性进行考察。方法:采用薄膜分散法制备脂质体;以包封率、载药量为指标,以积雪草苷与磷脂质量比(药脂比,X1)、胆固醇与磷脂质量比(X2)、D-甘露糖质量浓度(X3)为因素,采用星点设计-响应面法优化处方;以十二烷基硫酸钠为介质,采用透析袋法考察加入1%十八胺所制阳离子脂质体的体外释药特性,并与积雪草苷的溶液及普通脂质体进行比较。结果:最优处方为X10.07、X20

  19. Evaluation of the protective effects of curcuminoid (curcumin and bisdemethoxycurcumin-loaded liposomes against bone turnover in a cell-based model of osteoarthritis

    Yeh CC


    Full Text Available Chih-Chang Yeh,1,2 Yu-Han Su,3 Yu-Jhe Lin,3 Pin-Jyun Chen,3 Chung-Sheng Shi,1 Cheng-Nan Chen,3,* Hsin-I Chang3,* 1Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, Republic of China; 2Orthopaedic Department, Chiayi Branch, Taichung Veterans General Hospital, Chiayi, Taiwan, Republic of China; 3Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan, Republic of China *These authors contributed equally to this work Abstract: Curcumin (Cur and bisdemethoxycurcumin (BDMC, extracted from Curcuma longa, are poorly water-soluble polyphenol compounds that have shown anti-inflammatory potential for the treatment of osteoarthritis. To increase cellular uptake of Cur and BDMC in bone tissue, soybean phosphatidylcholines were used for liposome formulation. In this study, curcuminoid (Cur and BDMC-loaded liposomes were characterized in terms of particle size, encapsulation efficiency, liposome stability, and cellular uptake. The results show that there is about 70% entrapment efficiency of Cur and BDMC in liposomes and that particle sizes are stable after liposome formation. Both types of liposome can inhibit macrophage inflammation and osteoclast differential activities. In comparison with free drugs (Cur and BDMC, curcuminoid-loaded liposomes were less cytotoxic and expressed high cellular uptake of the drugs. Of note is that Cur-loaded liposomes can prevent liposome-dependent inhibition of osteoblast differentiation and mineralization, but BDMC-loaded liposomes could not. With interleukin (IL-1β stimulation, curcuminoid-loaded liposomes can successfully downregulate the expression of inflammatory markers on osteoblasts, and show a high osteoprotegerin (OPG/receptor activator of nuclear factor κB ligand (RANKL ratio to prevent osteoclastogenesis. In the present study, we demonstrated that Cur and BDMC can be successfully encapsulated in liposomes and

  20. Formulation and antifungal performance of natamycin-loaded liposomal suspensions: the benefits of sterol-enrichment.

    Bouaoud, Clotilde; Lebouille, Jérôme G J L; Mendes, Eduardo; De Braal, Henriette E A; Meesters, Gabriel M H


    The aim of this study is to develop and evaluate food-grade liposomal delivery systems for the antifungal compound natamycin. Liposomes made of various soybean lecithins are prepared by solvent injection, leading to small unilamellar vesicles (Fine-tuning of sterol concentration allows preparation of liposomal suspensions presenting modulated in vitro release kinetics rates and enhanced antifungal activity against the model yeast Saccharomyces cerevisiae. PMID:26009272

  1. A novel approach for lung delivery of rifampicin-loaded liposomes in dry powder form for the treatment of tuberculosis

    Jagadevappa S Patil; V Kusum Devi; Kshama Devi; Sarasija, S


    Background: Lung administration of antibiotics by nebulization is promising for improved treatment efficiency for pulmonary infections, as it increases drug concentration at sites of infection while minimizing systemic side effects. For poorly soluble molecules like rifampicin, lipid particulate system may improve lung delivery. Materials and Methods: We investigated rifampicin-loaded freeze-dried liposomes. Various formulations were prepared with different drug lipid ratios and one formulati...

  2. Liposomes Loaded with Hydrophobic Iron Oxide Nanoparticles: Suitable T2 Contrast Agents for MRI

    Martínez-González, Raquel; Estelrich, Joan; Busquets, Maria Antònia


    There has been a recent surge of interest in the use of superparamagnetic iron oxide nanoparticles (SPIONs) as contrast agents (CAs) for magnetic resonance imaging (MRI), due to their tunable properties and their low toxicity compared with other CAs such as gadolinium. SPIONs exert a strong influence on spin-spin T2 relaxation times by decreasing the MR signal in the regions to which they are delivered, consequently yielding darker images or negative contrast. Given the potential of these nanoparticles to enhance detection of alterations in soft tissues, we studied the MRI response of hydrophobic or hydrophilic SPIONs loaded into liposomes (magnetoliposomes) of different lipid composition obtained by sonication. These hybrid nanostructures were characterized by measuring several parameters such as size and polydispersity, and number of SPIONs encapsulated or embedded into the lipid systems. We then studied the influence of acyl chain length as well as its unsaturation, charge, and presence of cholesterol in the lipid bilayer at high field strength (7 T) to mimic the conditions used in preclinical assays. Our results showed a high variability depending on the nature of the magnetic particles. Focusing on the hydrophobic SPIONs, the cholesterol-containing samples showed a slight reduction in r2, while unsaturation of the lipid acyl chain and inclusion of a negatively charged lipid into the bilayer appeared to yield a marked increase in negative contrast, thus rendering these magnetoliposomes suitable candidates as CAs, especially as a liver CA. PMID:27472319

  3. Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging

    Wen CJ


    Full Text Available Chih-Jen Wen1,*, Li-Wen Zhang2,*, Saleh A Al-Suwayeh3, Tzu-Chen Yen1, Jia-You Fang2,4 1Molecular Imaging Center, Chang Gung Memorial Hospital, Gueishan, Taoyuan, Taiwan; 2Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Gueishan, Taoyuan, Taiwan; 3Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; 4Department of Cosmetic Science, Chang Gung University of Science and Technology, Gueishan, Taoyuan, Taiwan *These authors contributed equally to this workAbstract: Quantum dots (QDs and apomorphine were incorporated into liposomes to eliminate uptake by the liver and enhance brain targeting. We describe the preparation, physicochemical characterization, in vivo bioimaging, and brain endothelial cell uptake of the theranostic liposomes. QDs and the drug were mainly located in the bilayer membrane and inner core of the liposomes, respectively. Spherical vesicles with a mean diameter of ~140 nm were formed. QDs were completely encapsulated by the vesicles. Nearly 80% encapsulation percentage was achieved for apomorphine. A greater fluorescence intensity was observed in mouse brains treated with liposomes compared to free QDs. This result was further confirmed by ex vivo imaging of the organs. QD uptake by the heart and liver was reduced by liposomal incorporation. Apomorphine accumulation in the brain increased by 2.4-fold after this incorporation. According to a hyperspectral imaging analysis, multifunctional liposomes but not the aqueous solution carried QDs into the brain. Liposomes were observed to have been efficiently endocytosed into bEND3 cells. The mechanisms involved in the cellular uptake were clathrin- and caveola-mediated endocytosis, which were energy-dependent. To the best of our knowledge, our group is the first to develop liposomes with a QD-drug hybrid for the aim of imaging and treating brain disorders.Keywords: liposomes, quantum dots, apomorphine

  4. The anti-tumor effects of cordycepin-loaded liposomes on the growth of hepatoma 22 tumors in mice and human hepatoma BEL-7402 cells in culture.

    Wu, Peng-Kai; Tao, Zhi; Ouyang, Zhao; Cao, Jiang-Ye; Geng, Di; Liu, Jin; Wang, Chun-Mei


    Liposomes have successfully been used for decades to encapsulate and protect drugs that are prone to deactivation in the body. The present study aimed to demonstrate the use of liposomes to encapsulate cordycepin, an adenosine analog that quickly loses its activity in vivo. The cordycepin-loaded liposomes were prepared by the ammonium sulfate gradient approach, and its in vitro and in vivo antitumour activities were evaluated using BEL-7402 cells and hepatocellular carcinoma H22 transplanted tumors, respectively. An MTT assay was used to observe the cytotoxicity of cells treated with cordycepin and cordycepin-loaded liposomes in vitro. High-content screening (HSC) was carried out using Hoechst 33342 to detect apoptotic cells and the ratio of cells in different cell cycle stages. The data demonstrated that both the cordycepin and the cordycepin-loaded liposomes resulted in clear cytotoxicity with IC50 values of 18.97 and 29.39 μg/mL, respectively. The latter showed significantly strong inhibitory effects on H22 tumor growth in mice, while the former did not show any inhibitory effects on tumor growth. In addition, the HSC assay showed that the cordycepin-loaded liposomes resulted in a higher rate of apoptosis than the cordycepin alone in BEL-7402 cells. Further data analysis revealed that the cells treated with cordycepin-loaded liposomes were predominately arrested at the G2/M phase (p < 0.05), while those treated with cordycepin alone were arrested in the G0/G1 phase (p < 0.05). In conclusion, these results suggest that liposomes can enhance and maintain the in vivo anti-tumor activity of cordycepin. PMID:26984179

  5. Glutamine-Loaded Liposomes: Preliminary Investigation, Characterization, and Evaluation of Neutrophil Viability.

    Costa, Larissa Chaves; Souza, Bárbara Nayane Rosário Fernandes; Almeida, Fábio Fidélis; Lagranha, Cláudia Jacques; Cadena, Pabyton Gonçalves; Santos-Magalhães, Nereide Stela; Lira-Nogueira, Mariane Cajubá de Britto


    Glutamine has received attention due to its ability to ameliorate the immune system response. Once conventional liposomes are readily recognized and captured by immune system cells, the encapsulation of glutamine into those nanosystems could be an alternative to reduce glutamine dosage and target then to neutrophils. Our goals were to nanoencapsulate glutamine into conventional liposomes (Gln-L), develop an analytical high-performance liquid chromatography (HPLC) method for its quantification, and evaluate the viability of neutrophils treated with Gln-L. Liposomes were prepared using the thin-film hydration technique followed by sonication and characterized according to pH, mean size, zeta potential, and drug encapsulation efficiency (EE%). We also aimed to study the effect of liposomal constituent concentrations on liposomal characteristics. The viability of neutrophils was assessed using flow cytometry after intraperitoneal administration of free glutamine (Gln), Gln-L, unloaded-liposome (UL), and saline solution as control (C) in healthy Wistar rats. The selected liposomal formulation had a mean vesicle size of 114.65 ± 1.82 nm with a polydispersity index of 0.30 ± 0.00, a positive surface charge of 36.30 ± 1.38 mV, and an EE% of 39.49 ± 0.74%. The developed chromatographic method was efficient for the quantification of encapsulated glutamine, with a retention time at 3.8 min. A greater viability was observed in the group treated with glutamine encapsulated compared to the control group (17%), although neutrophils remain viable in all groups. Thus, glutamine encapsulated into liposomes was able to increase the number of viable neutrophils at low doses, thereby representing a promising strategy for the treatment of immunodeficiency conditions. PMID:26228746

  6. Transport of nanoparticles and tobramycin-loaded liposomes in Burkholderia cepacia complex biofilms.

    Anne-Sophie Messiaen

    Full Text Available Due to the intrinsic resistance of Burkholderia cepacia complex (Bcc to many antibiotics and the production of a broad range of virulence factors, lung infections by these bacteria, primarily occurring in cystic fibrosis (CF patients, are very difficult to treat. In addition, the ability of Bcc organisms to form biofilms contributes to their persistence in the CF lung. As Bcc infections are associated with poor clinical outcome, there is an urgent need for new effective therapies to treat these infections. In the present study, we investigated whether liposomal tobramycin displayed an increased anti-biofilm effect against Bcc bacteria compared to free tobramycin. Single particle tracking (SPT was used to study the transport of positively and negatively charged nanospheres in Bcc biofilms as a model for the transport of liposomes. Negatively charged nanospheres became immobilized in close proximity of biofilm cell clusters, while positively charged nanospheres interacted with fiber-like structures, probably eDNA. Based on these data, encapsulation of tobramycin in negatively charged liposomes appeared promising for targeted drug delivery. However, the anti-biofilm effect of tobramycin encapsulated into neutral or anionic liposomes did not increase compared to that of free tobramycin. Probably, the fusion of the anionic liposomes with the negatively charged bacterial surface of Bcc bacteria was limited by electrostatic repulsive forces. The lack of a substantial anti-biofilm effect of tobramycin encapsulated in neutral liposomes could be further investigated by increasing the liposomal tobramycin concentration. However, this was hampered by the low encapsulation efficiency of tobramycin in these liposomes.

  7. First In Vivo Evaluation of Liposome-encapsulated 223Ra as a Potential Alpha-particle-emitting Cancer Therapeutic Agent

    Jonasdottir, Thora J.; Fisher, Darrell R.; Borrebaek, Jorgen; Bruland, Oyvind S.; Larsen, Roy H.


    Liposomes carrying chemotherapeutics have had some success in cancer treatment and may be suitable carriers for therapeutic radionuclides. This study was designed to evaluate the biodistribution of and to estimate the radiation doses from the alpha emitter 223Ra loaded into pegylated liposomes in selected tissues. 223Ra was encapsulated in pegylated liposomal doxorubicin by ionophore-mediated loading. The biodistribution of liposomal 223Ra was compared to free cationic 223Ra in Balb/C mice. We showed that liposomal 223 Ra circulated in the blood with an initial half-time in excess of 24 hours, which agreed well with that reported for liposomal doxorubicin in rodents, while the blood half-time of cationic 223Ra was considerably less than one hour. When liposomal 223 Ra was catabolized, the released 223Ra was either excreted or taken up in the skeleton. This skeletal uptake increased up to 14 days after treatment, but did not reach the level seen with free 223Ra. Pre-treatment with non-radioactive liposomal doxorubicin 4 days in advance lessened the liver uptake of liposomal 223 Ra. Dose estimates showed that the spleen, followed by bone surfaces, received the highest absorbed doses. Liposomal 223 Ra was relatively stable in vivo and may have potential for radionuclide therapy and combination therapy with chemotherapeutic agents.

  8. Ocular and systemic bio-distribution of rhodamine-conjugated liposomes loaded with VIP injected into the vitreous of Lewis rats

    Camelo, S.; Lajavardi, L.; Bochot, A.; Goldenberg, B.; Naud, M.C.; Fattal, E; Behar-Cohen, F; de Kozak, Y.


    Purpose Local delivery of therapeutic molecules encapsulated within liposomes is a promising method to treat ocular inflammation. The purpose of the present study was to define the biodistribution of rhodamine-conjugated liposomes loaded with vasoactive intestinal peptide (VIP), an immunosuppressive neuropeptide, following their intravitreal (IVT) injection in normal rats. Methods Healthy seven- to eight-week-old Lewis male rats were injected into the vitreous with empty rhodamine-conjugated ...

  9. Folate receptor-targeted liposomes loaded with a diacid metabolite of norcantharidin enhance antitumor potency for H22 hepatocellular carcinoma both in vitro and in vivo

    Liu MC


    Full Text Available Min-Chen Liu,1 Lin Liu,1 Xia-Rong Wang,1 Wu-Ping Shuai,2 Ying Hu,3 Min Han,1 Jian-Qing Gao1 1Institute of Pharmaceutics, College of Pharmaceutical Sciences, 2First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 3Zhejiang Pharmaceutical College, Ningbo, People’s Republic of China Abstract: The diacid metabolite of norcantharidin (DM-NCTD is clinically effective against hepatocellular carcinoma (HCC, but is limited by its short half-life and high incidence of adverse effects at high doses. We developed a DM-NCTD-loaded, folic acid (FA-modified, polyethylene glycolated (DM-NCTD/FA-PEG liposome system to enhance the targeting effect and antitumor potency for HCC at a moderate dose based on our previous study. The DM-NCTD/FA-PEG liposome system produced liposomes with regular spherical morphology, with mean particle size approximately 200 nm, and an encapsulation efficiency >80%. MTT cytotoxicity assays demonstrated that the DM-NCTD/FA-PEG liposomes showed significantly stronger cytotoxicity effects on the H22 hepatoma cell line than did PEG liposomes without the FA modification (P<0.01. We used liquid chromatography–mass spectrometry for determination of DM-NCTD in tissues and tumors, and found it to be sensitive, rapid, and reliable. In addition, the biodistribution study showed that DM-NCTD liposomes improved tumor-targeting efficiency, and DM-NCTD/FA-PEG liposomes exhibited the highest efficiency of the treatments (P<0.01. Meanwhile, the results indicated that although the active liposome group had an apparently increased tumor-targeting efficiency of DM-NCTD, the risk to the kidney was higher than in the normal liposome group. With regard to in vivo antitumor activity, DM-NCTD/FA-PEG liposomes inhibited tumors in H22 tumor-bearing mice better than either free DM-NCTD or DM-NCTD/PEG liposomes (P<0.01, and induced considerably more significant cellular apoptosis in the tumors, with no obvious toxicity to the tissues

  10. An evaluation of the anti-tumor efficacy of oleanolic acid-loaded PEGylated liposomes

    The effective delivery of oleanolic acid (OA) to the target site has several benefits in therapy for different pathologies. However, the delivery of OA is challenging due to its poor aqueous solubility. The study aims to evaluate the tumor inhibition effect of the PEGylated OA nanoliposome on the U14 cervical carcinoma cell line. In our previous study, OA was successfully encapsulated into PEGylated liposome with the modified ethanol injection method. Oral administration of PEGylated OA liposome was demonstrated to be more efficient in inhibiting xenograft tumors. The results of organ index indicated that PEG liposome exhibited higher anti-tumor activity and lower cytotoxicity. It was also found that OA and OA liposomes induced tumor cell apoptosis detected by flow cytometry. Furthermore, effects of OA on the morphology of tumor and other tissues were observed by hematoxylin and eosin staining. The histopathology sections did not show pathological changes in kidney or liver in tested mice. In contrast, there was a significant difference in tumor tissues between treatment groups and the negative control group. These observations imply that PEGylated liposomes seem to have advantages for cancer therapy in terms of effective delivery of OA. (paper)

  11. Cytotoxicity of 5-fluorouracil-loaded pH-sensitive liposomal nanoparticles in colorectal cancer cell lines

    Udofot, Ofonime; Affram, Kevin; Israel, Bridg'ette; Agyare, Edward


    5-Fluorouracil (5-FU) is widely used in cancer therapy, either alone or in combination with other anti-cancer drugs. However, poor membrane permeability and a short half-life (5-20 min) due to rapid metabolism in the body necessitate the continuous administration of high doses of 5-FU to maintain the minimum therapeutic serum concentration. This is associated with significant side effects and a possibility of severe toxic effects. This study aimed to formulate 5-FU-loaded pH-sensitive liposom...

  12. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery

    Yao Y; Su ZH; Liang YC; Zhang N.


    Yao Yao, Zhihui Su, Yanchao Liang, Na Zhang School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, People’s Republic of China Abstract: Combination of chemotherapeutic drug and small interfering RNA (siRNA) can affect multiple disease pathways and has been proven effective in suppressing tumor progression. Co-delivery of drug and siRNA within a same nanocarrier is a vital means in this field. The present study aimed at the development of a pH-sensitive liposome t...

  13. Inhibition of B16BL6 tumor progression by coadministration of recombinant angiostatin K1-3 and endostatin genes with cationic liposomes.

    Kim, Keun Sik; Kim, Hong Sung; Park, Jin Seu; Kwon, Young Guen; Park, Yong Serk


    Transfection of the antiangiogenic angiostatin and endostatin genes was shown to be an alternative to high-dose administration of angiostatin or endostatin proteins for cancer therapy. We have systematically investigated whether coadministration of the mouse angiostatin kringle 1-3 gene (pFLAG-AngioK1/3) and the endostatin gene (pFLAG-Endo) complexed with cationic liposomes exhibits enhanced therapeutic efficacy. In vitro, the coexpressed mixture of angiostatin K1-3 and endostatin more effectively reduced angiogenesis in chorioallantoic membranes than either angiostatin K1-3 or endostatin alone. In vivo, subcutaneous co-administration of pFLAG-AngioK1/3 and pFLAG-Endo lipoplexes more effectively inhibited vascularization in Matrigel plugs implanted in mice than either one alone. Additionally, subcutaneous administration of these genes inhibited the growth and formation of pulmonary metastases of B16BL6 melanoma cells in mice. Compared to treatment with an empty vector, treatment with pFLAG-AngioK1/3 plus pFLAG-Endo inhibited 81% of tumor growth, while treatment with pFLAG-AngioK1/3 or pFLAG-Endo inhibited tumor growth 70 and 69%, respectively. Cotreatment with the two plasmids after primary tumor excision induced a 90% inhibition of pulmonary metastases versus 79% for pFLAG-AngioK1/3 or 80% for pFLAG-Endo individually. These results suggest that combined administration of angiostatin K1-3 and endostatin genes complexed with cationic liposomes may be an innovated antiangiogenic strategy for cancer therapy. PMID:15118757

  14. Baicalin loaded in folate-PEG modified liposomes for enhanced stability and tumor targeting

    Chen, Y.; Minh, L. V.; Liu, J.; Angelov, Borislav; Drechsler, M.; Garamus, V. M.; Willumeit-Römer, R.; Zou, A.


    Roč. 140, 1 April (2016), s. 74-82. ISSN 0927-7765 R&D Projects: GA ČR(CZ) GC15-10527J Institutional support: RVO:61389013 Keywords : baicalin * liposomes * folate receptor Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.152, year: 2014

  15. Cytotoxic effects of Gemcitabine-loaded liposomes in human anaplastic thyroid carcinoma cells

    Rotiroti Domenicoantonio


    Full Text Available Abstract Background Identification of effective systemic antineoplastic drugs against anaplastic thyroid carcinomas has particularly important implications. In fact, the efficacy of the chemotherapeutic agents presently used in these tumours, is strongly limited by their low therapeutic index. Methods In this study gemcitabine was entrapped within a pegylated liposomal delivery system to improve the drug antitumoral activity, thus exploiting the possibility to reduce doses to be administered in cancer therapy. The cytotoxic effects of free or liposome-entrapped gemcitabine was evaluated against a human thyroid tumour cell line. ARO cells, derived from a thyroid anaplastic carcinoma, were exposed to different concentrations of the drug. Liposomes formulations were made up of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol/1,2-distearoyl-sn-glycero-3-phosphoethanolamine-MPEG (8:3:1 molar ratio. Cell viability was assessed by both trypan bleu dye exclusion assay and fluorimetric analysis of cell DNA content. Results A cytotoxic effect of free gemcitabine was present only after 72 h incubation (ARO cell mortality increased of approximately 4 fold over control at 1 μM, 7 fold at 100 μM. When gemcitabine was encapsulated in liposomes, a significant effect was observed by using lower concentrations of the drug (increased cell mortality of 2.4 fold vs. control at 0.3 μM and earlier exposure time (24 h. Conclusion These findings show that, in vitro against human thyroid cancer cells, the gemcitabine incorporation within liposomes enhances the drug cytotoxic effect with respect to free gemcitabine, thus suggesting a more effective drug uptake inside the cells. This may allow the use of new formulations with lower dosages (side effect free for the treatment of anaplastic human thyroid tumours.

  16. Cytotoxic effects of Gemcitabine-loaded liposomes in human anaplastic thyroid carcinoma cells

    Identification of effective systemic antineoplastic drugs against anaplastic thyroid carcinomas has particularly important implications. In fact, the efficacy of the chemotherapeutic agents presently used in these tumours, is strongly limited by their low therapeutic index. In this study gemcitabine was entrapped within a pegylated liposomal delivery system to improve the drug antitumoral activity, thus exploiting the possibility to reduce doses to be administered in cancer therapy. The cytotoxic effects of free or liposome-entrapped gemcitabine was evaluated against a human thyroid tumour cell line. ARO cells, derived from a thyroid anaplastic carcinoma, were exposed to different concentrations of the drug. Liposomes formulations were made up of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol/ 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-MPEG (8:3:1 molar ratio). Cell viability was assessed by both trypan bleu dye exclusion assay and fluorimetric analysis of cell DNA content. A cytotoxic effect of free gemcitabine was present only after 72 h incubation (ARO cell mortality increased of approximately 4 fold over control at 1 μM, 7 fold at 100 μM). When gemcitabine was encapsulated in liposomes, a significant effect was observed by using lower concentrations of the drug (increased cell mortality of 2.4 fold vs. control at 0.3 μM) and earlier exposure time (24 h). These findings show that, in vitro against human thyroid cancer cells, the gemcitabine incorporation within liposomes enhances the drug cytotoxic effect with respect to free gemcitabine, thus suggesting a more effective drug uptake inside the cells. This may allow the use of new formulations with lower dosages (side effect free) for the treatment of anaplastic human thyroid tumours

  17. Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes

    Di Cola, Emanuela; Grillo, Isabelle; Ristori, Sandra


    Nanovectors, such as liposomes, micelles and lipid nanoparticles, are recognized as efficient platforms for delivering therapeutic agents, especially those with low solubility in water. Besides being safe and non-toxic, drug carriers with improved performance should meet the requirements of (i) appropriate size and shape and (ii) cargo upload/release with unmodified properties. Structural issues are of primary importance to control the mechanism of action of loaded vectors. Overall properties, such as mean diameter and surface charge, can be obtained using bench instruments (Dynamic Light Scattering and Zeta potential). However, techniques with higher space and time resolution are needed for in-depth structural characterization. Small-angle X-ray (SAXS) and neutron (SANS) scattering techniques provide information at the nanoscale and have therefore been largely used to investigate nanovectors loaded with drugs or other biologically relevant molecules. Here we revise recent applications of these complementary scattering techniques in the field of drug delivery in pharmaceutics and medicine with a focus to liposomal carriers. In particular, we highlight those aspects that can be more commonly accessed by the interested users. PMID:27043614

  18. Preparation of liposomes loaded with quantum dots, fluorescence resonance energy transfer studies, and near-infrared in-vivo imaging of mouse tissue

    We report on a simple, fast and convenient method to engineer lipid vesicles loaded with quantum dots (QDs) by incorporating QDs into a vesicle-type of lipid bilayer using a phase transfer reagent. Hydrophilic CdTe QDs and near-infrared (NIR) QDs of type CdHgTe were incorporated into liposomes by transferring the QDs from an aqueous solution into chloroform by addition of a surfactant. The QD-loaded liposomes display bright fluorescence, and the incorporation of the QDs into the lipid bilayer leads to enhanced storage stability and reduced sensitivity to UV irradiation. The liposomes containing the QD were applied to label living cells and to image mouse tissue in-vivo using a confocal laser scanning microscope, while NIR images of mouse tissue were acquired with an NIR fluorescence imaging system. We also report on the fluorescence resonance energy transfer (FRET) that occurs between the CdTe QDs (the donor) and the CdHgTe QDs (the acceptor), both contained in liposomes. Based on these data, this NIR FRET system shows promise as a tool that may be used to study the release of drug-loaded liposomes and their in vivo distribution. (author)

  19. A comparative evaluation of coenzyme Q10-loaded liposomes and solid lipid nanoparticles as dermal antioxidant carriers

    Gokce EH


    Full Text Available Evren H Gokce,1 Emrah Korkmaz,1 Sakine Tuncay-Tanriverdi,1 Eleonora Dellera,2 Giuseppina Sandri,2 M Cristina Bonferoni,2 Ozgen Ozer11Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ege, Izmir, Turkey; 2Department of Drug Sciences, University of Pavia, Pavia, ItalyBackground: The effective delivery of coenzyme Q10 (Q10 to the skin has several benefits in therapy for different skin pathologies. However, the delivery of Q10 to deeper layers of skin is challenging due to low aqueous solubility of Q10. Liposomes and solid lipid nanoparticles (SLN have many advantages to accomplish the requirements in topical drug delivery. This study aims to evaluate the influence of these nanosystems on the effective delivery of Q10 into the skin.Methods: Q10-loaded liposomes (LIPO-Q10 and SLNs (SLN-Q10 were prepared by thin film hydration and high shear homogenization methods, respectively. Particle size (PS, polydispersity index (PI, zeta potential (ZP, and drug entrapment efficiency were determined. Differential scanning calorimetry analysis and morphological transmission electron microscopy (TEM examination were conducted. Biocompatibility/cytotoxicity studies of Q10-loaded nanosystems were performed by means of cell culture (human fibroblasts under oxidative conditions. The protective effect of formulations against production of reactive oxygen species were comparatively evaluated by cytofluorometry studies.Results: PS of uniform SLN-Q10 and LIPO-Q10 were determined as 152.4 ± 7.9 nm and 301.1 ± 8.2 nm, respectively. ZPs were −13.67 ± 1.32 mV and −36.6 ± 0.85 mV in the same order. The drug entrapment efficiency was 15% higher in SLN systems. TEM studies confirmed the colloidal size. SLN-Q10 and LIPO-Q10 showed biocompatibility towards fibroblasts up to 50 µM of Q10, which was determined as suitable for cell proliferation. The mean fluorescence intensity % depending on ROS production determined in cytofluorometric studies

  20. LyP-1-conjugated doxorubicin-loaded liposomes suppress lymphatic metastasis by inhibiting lymph node metastases and destroying tumor lymphatics

    Yan Zhiqiang; Zhan Changyou; Wen Ziyi; Feng Linglin; Wang Fei; Liu Yu; Yang Xiangkun; Dong Qing; Liu Min; Lu Weiyue, E-mail: [Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203 (China)


    Lymphatic metastasis can be greatly promoted by metastases growth and lymphangiogenesis in lymph nodes (LNs). LyP-1, a cyclic peptide, is able to specifically bind with tumor cells and tumor lymphatics in metastatic LNs. This work aimed to use LyP-1-conjugated liposomes (L-LS) loaded with doxorubicin (DOX) (L-LS/DOX) to suppress lymphatic metastasis by inhibiting both metastases and tumor lymphatics in LNs. L-LS were prepared and exhibited sizes around 90 nm and spherical morphology as characterized by transmission electron microscopy. The in vitro cellular studies showed that LyP-1 modification obviously increased liposome uptake by MDA-MB-435 tumor cells and enhanced the cytotoxicity of liposomal DOX. A popliteal and iliac LN metastases model was successfully established by subcutaneous inoculation of tumor cells to nude mice. The immunofluorescence staining analysis indicated that LyP-1 modification enabled specific binding of liposome with tumor lymphatics and enhanced the destroying effect of liposomal DOX on tumor lymphatics. The in vivo fluorescence imaging and pharmacodynamic studies showed that LyP-1 modification increased liposome uptake by metastatic LNs and that L-LS/DOX significantly decreased metastatic LN growth and LN metastasis rate. These results suggested that L-LS/DOX were an effective delivery system for suppressing lymphatic metastasis by simultaneously inhibiting LN metastases and tumor lymphatics.

  1. Nitric Oxide Loaded Echogenic Liposomes for Nitric Oxide Delivery and Inhibition of Intimal Hyperplasia

    Huang, Shao-Ling; Kee, Patrick H.; Kim, Hyunggun; Moody, Melanie R.; Chrzanowski, Stephen M.; MacDonald, Robert C.; McPherson, David D.


    Objective To develop a new bioactive gas delivery method using echogenic liposomes (ELIP) as the gas carrier. Background Nitric oxide (NO) is a bioactive gas with potent therapeutic effects. Bioavailability of NO by systemic delivery is low with potential systemic effects. Methods Liposomes containing phospholipids and cholesterol were prepared using a new freezing under pressure method. The encapsulation and release profile of NO from NO containing-ELIP (NO-ELIP) or a mixture of NO/Argon (NO/Ar-ELIP was studied. Uptake of NO from NO-ELIP by cultured vascular smooth muscle cells (VSMC) both in the absence and presence of hemoglobin was determined. The effect of NO-ELIP delivery to attenuate intimal hyperplasia in a balloon-injured artery was determined. Results Coencapsulation of NO with argon (Ar) enabled the adjustment the amount of encapsulated NO. A total of 10 µl of gas can be encapsulated into 1 mg liposomes. The release profile of NO from NO-ELIP demonstrated an initial rapid release followed by a slower release over 8 hours. Sixty-eight percent of cells remained viable when incubated with 80 µg/ml of NO/Ar-ELIP for 4 hours. NO delivery to VSMC using NO/Ar-ELIP was 7-fold higher than unencapsulated NO. NO/Ar-ELIP remained effective NO delivery to VSMC even in the presence of hemoglobin. Local NO-ELIP administration to balloon-injured carotid arteries attenuated the development of intimal hyperplasia and reduced arterial wall thickening by 41±9%. Conclusions Liposomes can protect and deliver a bioactive gas to target tissues with the potential for both visualization of gas delivery and controlled therapeutic gas release. PMID:19660697

  2. Mechanistic study of decreased skin penetration using a combination of sonophoresis with sodium fluorescein-loaded PEGylated liposomes with D-limonene

    Rangsimawong W


    Full Text Available Worranan Rangsimawong, Praneet Opanasopit, Theerasak Rojanarata, Tanasait Ngawhirunpat Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand Abstract: The effect of low frequency sonophoresis (SN, 20 kHz on the skin transport of sodium fluorescein (NaFI-loaded liposomes was investigated. An in vitro skin penetration study in open and blocked hair follicles was performed, and confocal laser scanning microscopy and scanning electron microscopy were used to visualize the penetration pathways. The results showed that SN significantly increased the flux of NaFI solution, whereas it significantly decreased the flux of NaFI-loaded polyethylene glycol-coated (PEGylated liposomes with D-limonene (PL-LI. SN did not significantly affect the flux of NaFI-loaded conventional liposomes and PEGylated liposomes. In the blocked follicles, the flux of NaFI-loaded PL-LI both with and without SN decreased, indicating that NaFI-loaded PL-LI penetrated the skin via the transfollicular pathway. A confocal laser scanning microscopy image showed that in the skin without SN, the fluorescence intensity of NaFI-loaded PL-LI was observed in the skin and along the length of hair inside the skin, whereas in the skin with applied SN, the fluorescence intensity was detected only on the top of hair outside the skin. From scanning electron microscopy images, SN dislocated the corneocytes and reduced the deposition of PL-LI around hair follicles. These results revealed that SN may partially plug hair follicle orifices and reduce percutaneous absorption through the follicular pathway. Keywords: sonophoresis, PEGylated liposomes, hydrophilic compound, follicular pathway

  3. Construction of a novel cationic polymeric liposomes formed from PEGlated octadecyl-quaternized lysine modified chitosan/cholesterol for enhancing storage stability and cellular uptake efficiency.

    Wang, Hanjie; Zhao, Peiqi; Liang, Xiaofei; Song, Tao; Gong, Xiaoqun; Niu, Ruifang; Chang, Jin


    The design and construction of delivery vectors with high stability and effective cellular uptake efficiency is very important. In this study, a novel polymeric liposomes (PLs) formed from PEGlated octadecyl-quaternized lysine modified chitosan (OQLCS) and cholesterol with higher size stability and cellular uptake efficiency has been synthesized successfully. Compared to conventional liposomes (CLs; phosphatidyl choline/cholesterol), the calcein-loaded PLs exhibited a multi-lamellar structure with homogenous size diameter (200 nm) and high calcein encapsulation efficiency (about 92%). PLs could be stored at different temperature (25, 4, and -20 degrees C) and different medium (deionized water, phosphate-buffered saline, and human plasma solution) for up to 4 weeks without significant size change. The spectrophotometer fluorometry analysis and the flow cytometry analysis indicated that in comparison with CL, PLs with positive zeta potential facilitates the uptake of calcein by MCF-7 tumor cells. The data suggests that PLs may provide a new method to overcome the stability and enhance the uptake efficiency of CLs. PMID:20506161

  4. Remote Loading of 64Cu2+ into Liposomes without the Use of Ion Transport Enhancers

    Henriksen, Jonas Rosager; Petersen, Anncatrine Luisa; Hansen, Anders Elias;


    Due to low ion permeability of lipid bilayers, it has been and still is common practice to use transporter molecules such as ionophores or lipophilic chelators to increase transmembrane diffusion rates and loading efficiencies of radionuclides into liposomes. Here, we report a novel and very simple...

  5. Optimization of a cationic liposome-based gene delivery system for the application of miR-145 in anticancer therapeutics.

    Tao, Jin; Ding, Wei-Feng; Che, Xiao-Hang; Chen, Yi-Chen; Chen, Fang; Chen, Xiao-Dong; Ye, Xiao-Lei; Xiong, Su-Bin


    In order to improve the delivery efficiency of microRNA (miRNA or miR)-145, the present study examined several factors which may affect cationic liposome (CL)-based transfection, including the hydration medium used for the preparation of liposomes, the quantity of the plasmid, the molar ratio of N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP)/cholesterol (chol), or DOTAP/chol, and the weight ratio of DOTAP/DNA. In order to enhance the transfection efficiency, protamine was selected as a DNA-condensing agent to form liposome‑protamine‑DNA (LPD) ternary complexes. An agarose gel retardation assay was used to examine the DNA binding affinity of the CLs. Following transfection, GFP fluorescence images were captured and flow cytometry was performed to determine the transfection efficiency. Furthermore, an MTT assay was performed to determine the cytotoxicity of the liposome complexes. The final optimal conditions were as follows: 5% glucose as the hydration medium, a molar ratio of DOTAP/chol at 3:1 for the preparation of CLs, a weight ratio of DOTAP/protamine/DNA of 3:0.5:1, with 8 µg plasmid added for the preparation of the LPD complexes. In vitro, the LPD complexes exhibited an enhanced transfection efficiency and low cytotoxicity, which indicated that the presented LPD vector enhanced the transfection efficiency of the CLs. The HepG2 cells were found to have the lowest expression levels of miR‑145 out of the cell lines tested (A549, BGC-823, HepG2, HeLa, LoVo and MCF-7). Following the transient transfection of the HepG2 cells with miR‑145, the results revealed that the overexpression of miR‑145 inhibited the proliferation of the HepG2 cells and downregulated the expression of cyclin-dependent kinase 6 (CDK6), cyclinD1, c-myc, and Sp1 transcription factor (Sp1). In conclusion, in this study, we optimized a liposome‑based delivery system for the efficient delivery of miR‑145 into cancer cells. This may provide a foundation for

  6. Tretinoin-loaded liposomal formulations: from lab to comparative clinical study in acne patients.

    Rahman, Salwa Abdel; Abdelmalak, Nevine Shawky; Badawi, Alia; Elbayoumy, Tahany; Sabry, Nermeen; El Ramly, Amany


    Topical tretinoin is the most commonly used retinoid for acne. However, its irritative potential on the applied area and the barrier properties of the stratum corneum limit its use. The objective of the present study was to formulate tretinoin liposomal gel to obtain a formula with lower skin irritation potential and greater clinical effect. A statistical 2(4) factorial design was adopted. Sixteen formulae prepared and were properly evaluated. A candidate formula (F13G) prepared with 0.025% tretinoin, phospholipid- cholesterol-dicetylphosphate (9:1:0.01) and incorporated in 1% carbopol gel was selected for skin irritation test. Clinical study was conducted on acne patients and compared to marketed product. All liposomes formulations were spherical in shape. The addition of cholesterol in the film hydration method significantly decreased the vesicle size, and increased the percentage of incorporation efficiency at (p acne patients revealed that F13G showed significantly higher efficacy when compared to marketed product (p < 0.05). PMID:26004128

  7. Antiviral effect of HPMPC (Cidofovir (R)), entrapped in cationic liposomes: In vitro study on MDBK cell and BHV-1 virus

    Korvasová, Z.; Drašar, L.; Mašek, J.; Turánek Knotigová, P.; Kulich, P.; Matiašovic, J.; Kovařčík, K.; Bartheldyová, E.; Koudelka, Š.; Škrabalová, M.; Miller, A. D.; Holý, Antonín; Ledvina, Miroslav; Turánek, J.


    Roč. 160, č. 2 (2012), s. 330-338. ISSN 0168-3659 R&D Projects: GA ČR(CZ) GAP304/10/1951; GA AV ČR(CZ) KAN200520703; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z40550506 Keywords : cationic lipids * BHV-1 virus * Cidofovir * HPMC * antiviral drugs Subject RIV: CC - Organic Chemistry Impact factor: 7.633, year: 2012

  8. Development of gatifloxacin-loaded cationic polymeric nanoparticles for ocular drug delivery.

    Duxfield, Linda; Sultana, Rubab; Wang, Ruokai; Englebretsen, Vanessa; Deo, Samantha; Swift, Simon; Rupenthal, Ilva; Al-Kassas, Raida


    The present investigation aimed at improving the ocular bioavailability of gatifloxacin by prolonging its residence time in the eye and reducing problems associated with the drug re-crystallization after application through incorporation into cationic polymeric nanoparticles. Gatifloxacin-loaded nanoparticles were prepared via the nanoprecipitation and double emulsion techniques. A 50:50 Eudragit® RL and RS mixture was used as cationic polymer with other formulation parameters varied. Prepared nanoparticles were evaluated for size, zeta potential, and drug loading. An optimized formulation was selected and further characterized for in vitro drug release, cytotoxicity, and antimicrobial activity. The double emulsion method produced larger nanoparticles than the nanoprecipitation method (410 nm and 68 nm, respectively). Surfactant choice also affected particle size and zeta potential with Tween 80 producing smaller-sized particles with higher zeta potential than PVA. However, the zeta potential was positive at all experimental conditions investigated. The optimal formulation produced by double emulsion technique and has achieved 46% drug loading. This formulation had optimal physicochemical properties with acceptable cytotoxicity results, and very prolonged release rate. The particles antimicrobial activities of the selected formulation have been tested against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and showed prolonged antimicrobial effect for gatifloxacin. PMID:26794936

  9. A gold nanoshell with a silica inner shell synthesized using liposome templates for doxorubicin loading and near-infrared photothermal therapy

    Wu CY


    Full Text Available Congyu Wu1, Cong Yu1, Maoquan Chu1,21School of Life Science and Technology, 2The Institute for Advanced Materials and Nano Biomedicine, Tongji University, Shanghai, People's Republic of ChinaAbstract: Gold (Au nanoshells with solid silica cores have great potential for cancer photothermal therapy. However, this nanostructure cannot carry enough drugs. Here, we report a Au nanoshell with a hollow silica core for drug loading and cancer therapy. The silica shells were synthesized using nanoliposome templates, and then Au nanoshells were grown on the outer surface of the silica shells. Transmission-electron and scanning-electron microscopy showed that the Au nanoshells were successfully fabricated, and that the liposome/SiO2/Au core-shell nanocomposites were spherical with a narrow size distribution. Images of several broken spheres, and the fact that hollow templates (liposomes were used, suggest that the fabricated Au nanoshells were hollow. After doxorubicin (DOX was incorporated into liposome/SiO2/Au, the DOX-loaded Au nanoshells killed cancer cells with high therapeutic efficacy when irradiated with near-infrared light, suggesting that the Au nanoshells delivered both DOX chemotherapy and photothermal therapy with a synergistic effect.Keywords: gold nanoshell, liposome template, synthesis, doxorubicin, cancer therapy

  10. Penetration of tamoxifen citrate loaded ethosomes and liposomes across human skin: a comparative study with confocal laser scanning microscopy.

    Sarwa, Khomendra K; Suresh, Preeti K; Rudrapal, Mithun; Verma, Vinod K


    In the present study, ethosomal and liposomal formulations containing tamoxifen citrate were prepared and evaluated for their penetration properties in human cadaver skin using Franz diffusion cell and confocal laser scanning microscope (CLSM). The results clearly revealed that ethosomal vesicles showed a better drug permeation profile than that of liposomal vesicles. In addition, low fluorescence intensity in CLSM was recorded with liposomes as compared to ethosomes, indicating lower cumulative amount of drug permeation from liposomal vesicles. Furthermore, CLSM showed uniform fluorescence intensity across the entire depth of skin in ethosomal treatment, indicating high penetrability of ethosomal vesicles through human cadaver skin. In contrast, low penetrability of conventional liposomal vesicles was recorded as penetration was limited to the 7(th) section (i.e. upper epidermis layer) of skin as evident from visualization of intact liposomal vesicles in CLSM. PMID:24428443

  11. Electrostatically driven complexation of liposomes with a star-shaped polyelectrolyte to low-toxicity multi-liposomal assemblies.

    Yaroslavov, Alexander A; Sybachin, Andrey V; Zaborova, Olga V; Pergushov, Dmitry V; Zezin, Alexander B; Melik-Nubarov, Nikolay S; Plamper, Felix A; Müller, Axel H E; Menger, Frederic M


    Anionic liposomes are electrostatically complexed to a star-shaped cationic polyelectrolyte. Upon complexation, the liposomes retain their integrity and the resulting liposome-star complexes do not dissociate in a physiological solution with 0.15 M NaCl. This provides a multi-liposomal container for possible use as a high-capacity carrier. PMID:24243764

  12. Transferrin-loaded nido-carborane liposomes. Synthesis and intracellular targeting to solid tumors for boron neutron capture therapy

    The boron ion cluster lipids, as a double-tailed boron lipid synthesized from heptadecanol, formed stable liposomes at 25% molar ratio toward DSPC with cholesterol. Transferrin was able to be introduced on the surface of boron liposomes (Tf-PEG-CL liposomes) by the coupling of transferrin to the PEG-CO2H moieties of PEG-CL liposomes. The biodistribution of Tf-PEG-CL liposomes showed that Tf-PEG-CL liposomes accumulated in tumor tissues and stayed there for a sufficiently long time to increase tumor:blood concentration ratio. A 10B concentration of 22 ppm in tumor tissues was achieved by the injection of Tf-PEG-CL liposome at 7.2 mg/kg body weight 10B in tumor-bearing mice. After neutron irradiation, the average survival rate of mice not treated with Tf-PEG-CL liposomes was 21 days, whereas that of the treated mice was 31 days. Longer survival rates were observed in the mice treated with Tf-PEG-CL liposomes; one of them even survived for 52 days after BNCT. (author)

  13. Multi-liposomal containers.

    Yaroslavov, A A; Sybachin, A V; Zaborova, O V; Zezin, A B; Talmon, Y; Ballauff, M; Menger, F M


    Small unilamellar liposomes, 40-60 nm in diameter, composed of anionic diphosphatidylglycerol (cardiolipin, CL(2-)) or phosphatidylcerine (PS(1-)) and zwitter-ionic egg yolk lecithin (EL) or dipalmitoylphosphatidylcholine (DPPC), electrostatically complex with polystyrene microspheres, ca. 100 nm in diameter, grafted by polycationic chains ("spherical polycationic brushes", SPBs). Polymer/liposome binding studies were carried out using electrophoretic mobility (EPM), dynamic light scattering (DLS), fluorescence, conductometry, differential scanning calorimetry (DSC), and cryogenic transmission electron microscopy (cryo-TEM) as the main analytical tools. By these means a remarkably detailed picture emerges of molecular events inside a membrane. The following are among the most important conclusions that arose from the experiments: (a) binding of liposomes to SPBs is accompanied by flip-flop of anionic lipids from the inner to the outer leaflet of the liposomal membrane along with lateral lipid segregation into "islands". (b) The SPB-induced structural reorganization of the liposomal membrane, together with the geometry of anionic lipid molecules, determines the maximum molar fraction of anionic lipid (a key parameter designated as ν) that ensures the structural integrity of liposomes upon complexation: ν=0.3 for liposomes with conically-shaped CL(2-) and ν=0.5 for liposomes with anionic cylindrically-shaped PS(1-). (c) The number of intact liposomes per SPB particle varies from 40 for (ν=0.1) to 13 (ν=0.5). (d) By using a mixture of liposomes with variety of encapsulated substances, multi-liposomal complexes can be prepared with a high loading capacity and a controlled ratio of the contents. (e) In order to make the mixed anionic liposomes pH-sensitive, they are additionally modified by 30 mol% of a morpholinocyclohexanol-based lipid that undergoes a conformational flip when changing pH. Being complexed with SPBs, such liposomes rapidly release their contents

  14. Thrombolytic efficacy and enzymatic activity of rt-PA-loaded echogenic liposomes.

    Bader, Kenneth B; Bouchoux, Guillaume; Peng, Tao; Klegerman, Melvin E; McPherson, David D; Holland, Christy K


    Echogenic liposomes (ELIP), that can encapsulate both recombinant tissue-type plasminogen activator (rt-PA) and microbubbles, are under development to improve the treatment of thrombo-occlusive disease. However, the enzymatic activity, thrombolytic efficacy, and stable cavitation activity generated by this agent has yet to be evaluated and compared to another established ultrasound-enhanced thrombolytic scheme. A spectrophotometric method was used to compare the enzymatic activity of the rt-PA incorporated into ELIP (t-ELIP) to that of rt-PA. An in vitro flow model was employed to measure the thrombolytic efficacy and dose of ultraharmonic emissions from stable cavitation for 120-kHz ultrasound exposure of three treatment schemes: rt-PA, rt-PA and the perfluorocarbon-filled microbubble Definity(®), and t-ELIP. The enzymatic activity of rt-PA incorporated into t-ELIP was 28 % that of rt-PA. Thrombolytic efficacy of t-ELIP or rt-PA and Definity(®) was equivalent when the dose of t-ELIP was adjusted to produce comparable enzymatic activity. Sustained bubble activity was nucleated from Definity but not from t-ELIP exposed to 120-kHz ultrasound. These results emphasize the advantages of encapsulating a thrombolytic and the importance of incorporating an insoluble gas required to promote sustained, stable cavitation activity. PMID:25829338

  15. Novel 1,3-diacylamidopropane-2-[bis-(2-dimethylaminoethane)] carbamate pH-sensitive lipids for cationic liposome-mediated transfection

    Spelios, Michael G.

    A novel series of 1,3-diacylamidopropane-2-[bis(2-dimethylaminoethane)] carbamate analogs (1,3lb) were designed for cationic lipid-assisted transfection (lipofection). First, their physicochemical properties in self-assemblies with and without plasmid DNA (pDNA) were evaluated to examine the effects of hydrophobic tail length and degree of saturation on gene delivery and expression. Significant in vitro lipofection was induced at a nitrogen:phosphate ratio (N:P) of 4:1 by the dimyristoyl, dipalmitoyl, and dioleoyl analogs 1,3lb2, 1,3lb3, and 1,3lb5, respectively, without inclusion of neutral "lipofection enhancing" co-lipids in the cationic lipid formulations. Lipofection was reduced in the presence of co-lipids except for 1,3lb5 which maintained reporter gene expression levels at N:P 4:1 and yielded increased bioactivity at a lower NP of 2:1. Physicochemical characterization of the bioactive transfection agents (cytofectins) revealed: high hydration and in-plane elasticity of lipid monolayers by Langmuir film balance measurements; fluid lipid bilayers, with gel---liquid crystalline phase transitions below physiological temperature, by fluorescence anisotropy; lipid mixing with biomembrane-mimicking vesicles by fluorescence resonance energy transfer; efficient pDNA binding and compaction by ethidium bromide displacement; cationic liposome---nucleic acid complexes (lipoplexes) with large particle sizes (mean diameter ≥ 500 nm) and zeta potentials of positive values by dynamic light scattering and electrophoretic mobility, respectively. The results suggest that well hydrated and elastic cationic lipids forming fluid lamellar assemblies are extremely potent and minimally toxic cytofectins. Second, a comparison was made between 1,3lb2 and two derivatives, one an isomer with a shorter space between the myristoyl chains and the other the monovalent form, in an effort to delineate the biological effects of interchain distance and pH-induced polar headgroup expandability

  16. Mechanistic study of decreased skin penetration using a combination of sonophoresis with sodium fluorescein-loaded PEGylated liposomes with D-limonene

    Ngawhirunpat, Tanasait


    Worranan Rangsimawong, Praneet Opanasopit, Theerasak Rojanarata, Tanasait Ngawhirunpat Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand Abstract: The effect of low frequency sonophoresis (SN, 20 kHz) on the skin transport of sodium fluorescein (NaFI)-loaded liposomes was investigated. An in vitro skin penetration study in open and blocked hair follicles was performed, and confocal laser scanning microscopy and scanning electron microscopy were used to visualize the penetra...

  17. Rab11 and Lysotracker Markers Reveal Correlation between Endosomal Pathways and Transfection Efficiency of Surface-Functionalized Cationic Liposome-DNA Nanoparticles.

    Majzoub, Ramsey N; Wonder, Emily; Ewert, Kai K; Kotamraju, Venkata Ramana; Teesalu, Tambet; Safinya, Cyrus R


    Cationic liposomes (CLs) are widely studied as carriers of DNA and short-interfering RNA for gene delivery and silencing, and related clinical trials are ongoing. Optimization of transfection efficiency (TE) requires understanding of CL-nucleic acid nanoparticle (NP) interactions with cells, NP endosomal pathways, endosomal escape, and events leading to release of active nucleic acid from the lipid carrier. Here, we studied endosomal pathways and TE of surface-functionalized CL-DNA NPs in PC-3 prostate cancer cells displaying overexpressed integrin and neuropilin-1 receptors. The NPs contained RGD-PEG-lipid or RPARPAR-PEG-lipid, targeting integrin, and neuropilin-1 receptors, respectively, or control PEG-lipid. Fluorescence colocalization using Rab11-GFP and Lysotracker enabled simultaneous colocalization of NPs with recycling endosome (Rab11) and late endosome/lysosome (Rab7/Lysotracker) pathways at increasing mole fractions of pentavalent MVL5 (+5 e) at low (10 mol %), high (50 mol %), and very high (70 mol %) membrane charge density (σM). For these cationic NPs (lipid/DNA molar charge ratio, ρchg = 5), the influence of membrane charge density on pathway selection and transfection efficiency is similar for both peptide-PEG NPs, although, quantitatively, the effect is larger for RGD-PEG compared to RPARPAR-PEG NPs. At low σM, peptide-PEG NPs show preference for the recycling endosome over the late endosome/lysosome pathway. Increases in σM, from low to high, lead to decreases in colocalization with recycling endosomes and simultaneous increases in colocalization with the late endosome/lysosome pathway. Combining colocalization and functional TE data at low and high σM shows that higher TE correlates with a larger fraction of NPs colocalized with the late endosome/lysosome pathway while lower TE correlates with a larger fraction of NPs colocalized with the Rab11 recycling pathway. The findings lead to a hypothesis that increases in σM, leading to enhanced

  18. Degradation of functional group of cation exchange nuclear grade resin loaded with different metal ions due to gamma radiation exposure

    Ion exchange resins undergo degradation due to ionizing radiation while processing the radioactive water treatment. During this process, the cation resin used for this purpose gets loaded with various metal ions and presence of different metal ions in the resin may result into different degradation behaviors of functional group(s) (lowering the capacity). This work deals with the effect of few cations such as H+, Li+, Na+, Cs+ and Cu2+ on the degradation behavior of functional groups of strong acid cation resins exposed in different dose of 60Co gamma ray. Degradations were estimated by measuring the sulphate ion concentration in leach solution. (author)

  19. Innovatives liposomes for overcoming biological barriers

    Chessa, Maura


    In this thesis work were prepared and characterized liposomes and liposomes modified with a coating of chitosan called chitosomes. Through these structures were conveyed drugs of natural origin with anti-inflammatory and antioxidant properties: quercetin,phycocyanin and curcumin. The liposomes loading quercetin and phycocyanin are designed for a topical application and were tested on new born pig skin. Liposomes and chitosomes loading curcumin are designed for pulmonary delivery as a cure for...

  20. Preparation of a paclitaxel-loaded cationic nanoemulsome and its biodistribution via direct intratumoral injection.

    Xu, Yurui; Asghar, Sajid; Li, Hongying; Chen, Minglei; Su, Zhigui; Xu, Yangfan; Ping, Qineng; Xiao, Yanyu


    In this study, a nano-preparation based on nanoemulsome (NES) modified with cetyltrimethylammonium bromide (CTAB) loading paclitaxel (PTX) was designed, and its biodistribution were explored after intratumoral (i.t.) administration on Heps tumor-bearing mice. The PTX-loaded nanoemulsome (PTX-NES) was prepared by using a solvent evaporation method and CTAB, chosen as a cationic material, was absorbed onto the surface of the NES via electrostatic interaction to yield paclitaxel-loaded cationic nanoemulsome (PTX-CTAB-NES). The MTT results exhibited that PTX-CTAB-NES (IC50: 0.50±0.035μg/mL in MCF-7 cells and 0.13±0.048μg/mL in SMMC-7721 cells) had the strongest cytotoxicity compared to Taxol (IC50: 0.88±0.054μg/mL in MCF-7 and 0.15±0.011μg/mL in SMMC-7721) and PTX-NES (IC50: 1.93±0.062μg/mL in MCF-7 and 0.32±0.027μg/mL in SMMC-7721). Body distribution of PTX revealed that the percent of PTX retained in the tumor after i.t. administration of PTX-CTAB-NES (approximately 92.99% at 0.167h and 15.35% at 48h) was higher when compared to that after i.t. injection of Taxol (approximately 58.94% at 0.167h and 0.83% at 48h) or PTX-NES (approximately 83.63% at 0.167h and 6.52% at 48h). Moreover, less PTX accumulated in liver, spleen, kidney, lung and heart after i.t. administration of PTX-CTAB-NES when compared with that after i.v. administration of PTX-CTAB-NES. In conclusion, PTX-CTAB-NES was a prospective in-situ delivery system for the therapy of tumor. PMID:26938323

  1. A Novel Liposome-Based Nanocarrier Loaded with an LPS-dsRNA Cocktail for Fish Innate Immune System Stimulation

    Ruyra, Angels; Cano-Sarabia, Mary; MacKenzie, Simon A.; Maspoch, Daniel; Roher, Nerea


    Development of novel systems of vaccine delivery is a growing demand of the aquaculture industry. Nano- and micro- encapsulation systems are promising tools to achieve efficient vaccines against orphan vaccine fish diseases. In this context, the use of liposomal based-nanocarriers has been poorly explored in fish; although liposomal nanocarriers have successfully been used in other species. Here, we report a new ∼125 nm-in-diameter unilamellar liposome-encapsulated immunostimulant cocktail containing crude lipopolysaccharide (LPS) from E. coli and polyinosinic:polycytidylic acid [poly (I:C)], a synthetic analog of dsRNA virus, aiming to be used as a non-specific vaccine nanocarrier in different fish species. This liposomal carrier showed high encapsulation efficiencies and low toxicity not only in vitro using three different cellular models but also in vivo using zebrafish embryos and larvae. We showed that such liposomal LPS-dsRNA cocktail is able to enter into contact with zebrafish hepatocytes (ZFL cell line) and trout macrophage plasma membranes, being preferentially internalized through caveolae-dependent endocytosis, although clathrin-mediated endocytosis in ZFL cells and macropinocytocis in macrophages also contribute to liposome uptake. Importantly, we also demonstrated that this liposomal LPS-dsRNA cocktail elicits a specific pro-inflammatory and anti-viral response in both zebrafish hepatocytes and trout macrophages. The design of a unique delivery system with the ability to stimulate two potent innate immunity pathways virtually present in all fish species represents a completely new approach in fish health. PMID:24204616

  2. Targeted Liposomal Drug Delivery to Monocytes and Macrophages

    Ciara Kelly


    Full Text Available As the role of monocytes and macrophages in a range of diseases is better understood, strategies to target these cell types are of growing importance both scientifically and therapeutically. As particulate carriers, liposomes naturally target cells of the mononuclear phagocytic system (MPS, particularly macrophages. Loading drugs into liposomes can therefore offer an efficient means of drug targeting to MPS cells. Physicochemical properties including size, charge and lipid composition can have a very significant effect on the efficiency with which liposomes target MPS cells. MPS cells express a range of receptors including scavenger receptors, integrins, mannose receptors and Fc-receptors that can be targeted by the addition of ligands to liposome surfaces. These ligands include peptides, antibodies and lectins and have the advantages of increasing target specificity and avoiding the need for cationic lipids to trigger intracellular delivery. The goal for targeting monocytes/macrophages using liposomes includes not only drug delivery but also potentially a role in cell ablation and cell activation for the treatment of conditions including cancer, atherosclerosis, HIV, and chronic inflammation.

  3. Octreotide-modification enhances the delivery and targeting of doxorubicin-loaded liposomes to somatostatin receptors expressing tumor in vitro and in vivo

    Sun, Minjie; Wang, Yu; Shen, Jie; Xiao, Yanyu; Su, Zhigui; Ping, Qineng


    Octreotide is believed to be the ligand of somatostatin receptors (SSTRs) which are widely used in tumor diagnosis and clinical therapy. In the present work, a new targeting conjugate, octreotide-polyethylene glycol-phosphatidylethanolamine (Oct-PEG-PE), was developed for the assembling of liposome, and the effect of octreotide-modification on the enhancement of the delivery and targeting of doxorubicin-loaded liposomes was investigated in vitro and in vivo. Oct-PEG-PE was synthesized by a three-step reaction involving two derivative intermediate formations of bis (p-nitrophenyl carbonate)-PEG ((pNP)2-PEG) and pNP-PEG-PE. The Oct-modified and unmodified liposomes (DOX-OL and DOX-CL) were prepared by the ammonium sulfate gradient method. Both drug uptake assay and cell apoptosis assay suggested that DOX-OL noticeably increased the uptake of DOX in SMMC-7721 cells and showed a more significant cytotoxicity, compared with DOX-CL. The effect of DOX-OL was remarkably inhibited by free octreotide. In contrast, no significant difference in drug cytotoxicty was found between DOX-OL and DOX-CL in CHO cells without obvious expression of SSTRs. The study of ex vivo fluorescence tissues imaging of BALB/c mice and in vivo tissue distribution of B16 tumor-bearing mice indicated that DOX-OL caused remarkable accumulation of DOX in melanoma tumors and the pancreas, in which the SSTRs are highly expressed.

  4. In vitro evaluation of inhalable isoniazid-loaded surfactant liposomes as an adjunct therapy in pulmonary tuberculosis.

    Chimote, G; Banerjee, R


    In this study, exogenous pulmonary surfactant was evaluated as an inhalable drug carrier for antitubercular drug isoniazid (INH). Isoniazid-entrapped liposomes of dipalmitoylphosphatidylcholine (DPPC) (the most abundant lipid of lung surfactant and exogenous surfactant) were developed and evaluated for size, drug entrapment, release, in vitro alveolar deposition, biocompatibility, antimycobacterial activity, and pulmonary surfactant action. Isoniazid-entrapped DPPC liposomes were about 750 nm in diameter and had entrapment efficiency of 36.7% +/- 1.8%. Sustained release of INH from DPPC liposomes was observed over 24 h. In vitro alveolar deposition efficiency using the twin impinger exhibited approximately 25-27% INH deposition in the alveolar chamber upon one minute nebulization using a jet nebulizer. At 37 degrees C, the formulation had better pulmonary surfactant function with quicker reduction of surface tension on adsorption (36.7 +/- 0.4 mN/m) than DPPC liposomes (44.7 +/- 0.6 mN/m) and 87% airway patency was exhibited by the formulation in a capillary surfactometer. The formulation was biocompatible and had antimycobacterial activity. The isoniazid-entrapped DPPC liposomes could fulfill the dual purpose of pulmonary drug delivery and alveolar stabilization due to antiatelectatic effect of the surfactant action which can improve the reach of antitubercular drug INH to the alveoli. PMID:20524179

  5. Synthesis of diethylenetriaminepentaacetic acid conjugated inulin and utility for cellular uptake of liposomes

    The synthesis, binding of radioactive cations, liposomal encapsulation, and biodistribution of the oxidized-inulin reaction product with ethylenediamine and diethylenetriaminepentaacetic acid (4) are described. The four-step synthesis of the inulin derivative proceeded in a good overall yield of 72%. The complex of the inulin derivative with either 67Ga3+ or 111In3+ was stable in vivo and did not readily distribute into tissues, being excreted primarily in urine after intravenous administration to mice. The liposome-entrapped inulin derivative can be loaded with radioactive heavy metal cations by mobile ionophores in high radiochemical yields of 80-91%. Following the intravenous administration of the liposomal encapsulation of the indium-111-labeled inulin derivative, the entrapped compound had a biodistribution characteristic of liposomes and allowed an estimation of the extent of the intracellular uptake of liposomes. The ability of the inulin derivative to chelate many different types of metals will allow the use of this probe for studying subtle differences in tissue distribution resulting from different drug targeting or delivery protocols in the same animal by multiple labeling techniques. Moreover, the chelate-conjugated inulin permits studies of the applications of drug delivery systems in primates or human subjects by noninvasive techniques such as gamma-scintigraphic or nuclear magnetic resonance imaging methods

  6. Enhanced hypoglycemic effect of biotin-modified liposomes loading insulin: effect of formulation variables, intracellular trafficking, and cytotoxicity

    Zhang, Xingwang; Qi, Jianping; Lu, Yi; Hu, Xiongwei; He, Wei; Wu, Wei


    Peroral protein/peptide delivery has been one of the most challenging, but encouraging topics in pharmaceutics. This article was intended to explore the potential of biotin-modified liposomes (BLPs) as oral insulin delivery carriers. By incorporating biotin-DSPE into the lipid bilayer, we prepared BLPs using reverse evaporation/sonication method. We investigated hypoglycemic effects in normal rats after oral administration of BLPs, and the possible absorption mechanism by a series of in vitro tests. The relative pharmacological bioavailability of BLPs was up to 11.04% that was as much as 5.28 folds of conventional liposomes (CLPs). The results showed that the enhanced oral absorption of insulin mainly attributed to biotin ligand-mediated endocytosis. The results provided proof of BLPs as effective carriers for oral insulin delivery.

  7. Complexes containing cationic and anionic pH-sensitive liposomes: comparative study of factors influencing plasmid DNA gene delivery to tumors

    Chen Y; Sun J; Lu Y.; Tao C; Huang JB; Zhang H; Yu Y; Zou H; Gao J; Zhong YQ


    Yan Chen,* Ji Sun,* Ying Lu, Chun Tao, Jingbin Huang, He Zhang, Yuan Yu, Hao Zou, Jing Gao, Yanqiang Zhong Department of Pharmaceutical Science, School of Pharmacy, The Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: pH-sensitive liposomes represent an effective gene vector in cancer therapy. However, their use is greatly hampered by their relatively low transfection efficiency. To improve the transfectio...

  8. Complexes containing cationic and anionic pH-sensitive liposomes: comparative study of factors influencing plasmid DNA gene delivery to tumors

    Zhong, Yanqiang


    Yan Chen,* Ji Sun,* Ying Lu, Chun Tao, Jingbin Huang, He Zhang, Yuan Yu, Hao Zou, Jing Gao, Yanqiang Zhong Department of Pharmaceutical Science, School of Pharmacy, The Second Military Medical University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: pH-sensitive liposomes represent an effective gene vector in cancer therapy. However, their use is greatly hampered by their relatively low transfection efficiency. To improve the tran...

  9. HTGR fuel development: loading of uranium on carboxylic acid cation-exchange resins using solvent extraction of nitrate

    The reference fuel kernel for recycle of 233U to HTGR's (High-Temperature Gas-Cooled Reactors) is prepared by loading carboxylic acid cation-exchange resins with uranium and carbonizing at controlled conditions. The purified 233UO2(NO3)2 solution from a fuel reprocessing plant contains excess HNO3 (NO3-/U ratio of approximately 2.2). The reference flowsheet for a 233U recycle fuel facility at Oak Ridge uses solvent extraction of nitrate by a 0.3 M secondary amine in a hydrocarbon diluent to prepare acid-deficient uranyl nitrate. This nitrate extraction, along with resin loading and amine regeneration steps, was demonstrated in 14 runs. No significant operating difficulties were encountered. The process is controlled via in-line pH measurements for the acid-deficient uranyl nitrate solutions. Information was developed on pH values for uranyl nitrate solution vs NO3-/U mole ratios, resin loading kinetics, resin drying requirements, and other resin loading process parameters. Calculations made to estimate the capacities of equipment that is geometrically safe with respect to control of nuclear criticality indicate 100 kg/day or more of uranium for single nitrate extraction lines with one continuous resin loading contactor or four batch loading contactors. (auth)

  10. Non-invasive detection of macrophages in atheroma using a radiocontrast-loaded phosphatidylserine-containing liposomal contrast agent for computed tomography

    Kee, Patrick; Bagalkot, Vaishali; Johnson, Evan; Danila, Delia


    Purpose Macrophage plays an important role in plaque destabilization in atherosclerosis. By harnessing the affinity of macrophages to certain phospholipid species, a liposomal contrast agent containing phosphatidylserine (PS) and computed tomographic (CT) contrast agent was prepared and evaluated for CT imaging of plaque-associated macrophages in rabbit models of atherosclerosis. Procedures Liposomes containing PS and iodixanol were evaluated for their physicochemical characteristics, in vitro macrophage uptake, in vivo blood pool clearance and organ distribution. Plaque enhancement in the aorta was imaged with computed tomography (CT) in two atherosclerotic rabbit models. Results In vitro macrophage uptake of PS-liposomes increased with increasing amount of PS in the liposomes. Overall clearance of PS-liposomes was more rapid than control liposomes. Smaller PS-liposomes (d = 112 ± 4 nm) were more effective than control liposomes of similar size or larger control and PS-liposomes (d = 172 ± 17 nm) in enhancing aortic plaques in both rabbit models. Conclusions Proper liposomal surface modification and appropriate sizing are important determinant for CT-based molecular imaging of macrophages in atheroma. PMID:25301703

  11. Anti-inflammatory activity of cationic lipids

    Filion, Mario C; Phillips, Nigel C


    The effect of liposome phospholipid composition has been assumed to be relatively unimportant because of the presumed inert nature of phospholipids.We have previously shown that cationic liposome formulations used for gene therapy inhibit, through their cationic component, the synthesis by activated macrophages of the pro-inflammatory mediators nitric oxide (NO) and tumour necrosis factor-α (TNF-α).In this study, we have evaluated the ability of different cationic lipids to reduce footpad inf...

  12. Controllable labelling of stem cells with a novel superparamagnetic iron oxide-loaded cationic nanovesicle for MR imaging

    To investigate the feasibility of highly efficient and controllable stem cell labelling for cellular MRI. A new class of cationic, superparamagnetic iron oxide nanoparticle (SPION)-loaded nanovesicles was synthesised to label rat bone marrow mesenchymal stem cells without secondary transfection agents. The optimal labelling conditions and controllability were assessed, and the effect of labelling on cell viability, proliferation activity and multilineage differentiation was determined. In 18 rats, focal ischaemic cerebral injury was induced and the rats randomly injected with 1 x 106 cells labelled with 0-, 8- or 20-mV nanovesicles (n = 6 each). In vivo MRI was performed to follow grafted cells in contralateral striata, and results were correlated with histology. Optimal cell labelling conditions involved a concentration of 3.15 μg Fe/mL nanovesicles with 20-mV positive charge and 1-h incubation time. Labelling efficiency showed linear change with an increase in the electric potentials of nanovesicles. Labelling did not affect cell viability, proliferation activity or multilineage differentiation capacity. The distribution and migration of labelled cells could be detected by MRI. Histology confirmed that grafted cells retained the label and remained viable. Stem cells can be effectively and safely labelled with cationic, SPION-loaded nanovesicles in a controllable way for cellular MRI. (orig.)

  13. Liposomes Loaded with Paclitaxel and Modified with Novel Triphenylphosphonium-PEG-PE Conjugate Possess Low Toxicity, Target Mitochondria and Demonstrate Enhanced Antitumor Effects In Vitro and In Vivo

    Biswas, Swati; Dodwadkar, Namita S.; Deshpande, Pranali P.; Torchilin, Vladimir P.


    Previously, stearyl triphenylphosphonium (STPP)-modified liposomes (STPP-L) were reported to target mitochondria. To overcome a non-specific cytotoxicity of STPP-L, we synthesized a novel polyethylene glycol- phosphatidylethanolamine (PEG-PE) conjugate with the TPP group attached to the distal end of the PEG block (TPP-PEG-PE). This conjugate was incorporated into the liposomal lipid bilayer, and the modified liposomes were studied for their toxicity, mitochondrial targeting, and efficacy in ...

  14. In situ Delivery of Tumor Antigen- and Adjuvant-Loaded Liposomes Boosts Antigen-Specific T-Cell Responses by Human Dermal Dendritic Cells.

    Boks, Martine A; Bruijns, Sven C M; Ambrosini, Martino; Kalay, Hakan; van Bloois, Louis; Storm, Gert; de Gruijl, Tanja; van Kooyk, Yvette


    Dendritic cells (DCs) have an important role in tumor control via the induction of tumor-specific T-cell responses and are therefore an ideal target for immunotherapy. The human skin is an attractive site for tumor vaccination as it contains various DC subsets. The simultaneous delivery of tumor antigen with an adjuvant is beneficial for cross-presentation and the induction of tumor-specific T-cell responses. We therefore developed liposomes that contain the melanoma-associated antigen glycoprotein 100280-288 peptide and Toll-like receptor 4 (TLR4) ligand monophosphoryl lipid A (MPLA) as adjuvant. These liposomes are efficiently taken up by monocyte-derived DCs, and antigen presentation to CD8(+) T cells was significantly higher with MPLA-modified liposomes as compared with non-modified liposomes or the co-administration of soluble MPLA. We used a human skin explant model to evaluate the efficiency of intradermal delivery of liposomes. Liposomes were efficiently taken up by CD1a(+) and especially CD14(+) dermal DCs. Induction of CD8(+) T-cell responses by emigrated dermal DCs was significantly higher when MPLA was incorporated into the liposomes as compared with non-modified liposomes or co-administration of soluble MPLA. Thus, the modification of antigen-carrying liposomes with TLR ligand MPLA significantly enhances tumor-specific T-cell responses by dermal DCs and is an attractive vaccination strategy in human skin. PMID:26083554

  15. Remote loading of doxorubicin into liposomes by transmembrane pH gradient to reduce toxicity toward H9c2 cells

    Mohamed Alyane


    Full Text Available The use of doxorubicin (DOX is limited by its dose-dependent cardiotoxicity. Entrapped DOX in liposome has been shown to reduce cardiotoxicity. Results showed that about 92% of the total drug was encapsulated in liposome. The release experiments showed a weak DOX leakage in both culture medium and in PBS, more than 98% and 90% of the encapsulated DOX respectively was still retained in liposomes after 24 h of incubation. When the release experiments were carried out in phosphate buffer pH5.3, the leakage of DOX from liposomes reached 37% after 24 h of incubation. Evaluation of cellular uptake of the liposomal DOX indicated the possible endocytosis of liposomes because the majority of visible fluorescence of DOX was mainly in the cytoplasm, whereas the nuclear compartment showed a weak intensity. When using unloaded fluorescent-liposomes, the fluorescence was absent in nuclei suggests that liposomes cannot cross the nuclear membrane. MTT assay and measurement of LDH release suggest that necrosis is the form of cellular death predominates in H9c2 cells exposed to high doses of DOX, while for weak doses apoptosis could be the predominate form. Entrapped DOX reduced significantly DOX toxicity after 3 and 6 h of incubation, but after 20 h entrapped DOX is more toxic than free one.

  16. Removal of cationic and anionic dyes by immobilised titanium dioxide loaded activated carbon

    Combination of adsorption and photodegradation processes induces strong beneficial effects in dye removals. Adding high adsorption capacity activated carbon to photoactive titanium dioxide is an attractive solution due to their potential in removing dyes of diverse chemical characteristics. Recently, immobilisation has been an acceptable approach to overcome the drawbacks encountered with powder suspensions. The present study involves the removals of Victoria Blue R (VBR), a cationic dye and Indigo Carmine (IC), an anionic using approximately one gram of immobilised titanium dioxide (TiO2), activated carbon (AC) and mixture titanium dioxide/ activated carbon (TiO2/ AC) from 200 mL solution at the concentration of 20 ppm under UV illumination for 4 hours. Comparisons were made in terms of their removal efficiency by applying first-order kinetics model. Immobilised TiO2 showed total removal of IC in 40 minutes whereas only 44 % of VBR was removed in 2 hours. On the other hand, in the case of immobilised AC, about 87 % of VBR and 6 % of IC were removed in 2 hours. The results obtained using immobilised TiO2/ AC proved the prominence of this immobilised sample in dealing with VBR and IC by achieving 95 % and 62 % removal respectively in 2 hours. (author)

  17. Liposome-based delivery systems for ginsenoside Rh2: in vitro and in vivo comparisons

    Xu, Linqiang [China Pharmaceutical University, Department of Pharmaceutics, State Key Laboratory of Natural Medicines (China); Yu, Hua [University of Macao, Institute of Chinese Medical Sciences (China); Yin, Shaoping; Zhang, Ruixia; Zhou, Yudan; Li, Juan, E-mail: [China Pharmaceutical University, Department of Pharmaceutics, State Key Laboratory of Natural Medicines (China)


    The Ginsenoside Rh2 (Rh2) has been shown to possess anti-cancer properties both in vitro and in vivo. However, the poor bioavailability and fast plasma elimination limit the further clinical applications of Rh2 for cancer treatments. In the present study, three types of Rh2-loaded liposomes including Rh2-loaded normal liposome (Rh2-LP), Rh2-loaded cationic liposome (Rh2-CLP), and Rh2-loaded Methoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) liposome (Rh2-PLP) have been optimized and prepared with mean particle size of 80–125 nm. Compared to Rh2-LP, surface modifications with mPEG or octadecylamine significantly improve the physicochemical and biological properties both in vitro and in vivo. Moreover, PLP presented better tumor accumulation of the fluorescent cyanine dye, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide (DiR) in HepG2-xenografted nude mice than CLP (1.3-fold) or LP (1.6-fold) and prolong the resident time of DiR in tumor and organs (more than 24 h). The in vivo anti-cancer efficacy assessments indicate that Rh2-PLP presents the most activity on suppressing tumor growth in HepG2-xenografted mice than Rh2-LP and Rh2-CLP and without any significant toxicity. Our results indicate that mPEG-PLA modified liposome should be a potential and promising strategy to enhance the therapeutic index for anti-cancer agents.

  18. Liposome-based delivery systems for ginsenoside Rh2: in vitro and in vivo comparisons

    The Ginsenoside Rh2 (Rh2) has been shown to possess anti-cancer properties both in vitro and in vivo. However, the poor bioavailability and fast plasma elimination limit the further clinical applications of Rh2 for cancer treatments. In the present study, three types of Rh2-loaded liposomes including Rh2-loaded normal liposome (Rh2-LP), Rh2-loaded cationic liposome (Rh2-CLP), and Rh2-loaded Methoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) liposome (Rh2-PLP) have been optimized and prepared with mean particle size of 80–125 nm. Compared to Rh2-LP, surface modifications with mPEG or octadecylamine significantly improve the physicochemical and biological properties both in vitro and in vivo. Moreover, PLP presented better tumor accumulation of the fluorescent cyanine dye, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide (DiR) in HepG2-xenografted nude mice than CLP (1.3-fold) or LP (1.6-fold) and prolong the resident time of DiR in tumor and organs (more than 24 h). The in vivo anti-cancer efficacy assessments indicate that Rh2-PLP presents the most activity on suppressing tumor growth in HepG2-xenografted mice than Rh2-LP and Rh2-CLP and without any significant toxicity. Our results indicate that mPEG-PLA modified liposome should be a potential and promising strategy to enhance the therapeutic index for anti-cancer agents.

  19. Elaboration of Sterically Stabilized Liposomes for S-Nitrosoglutathione Targeting to Macrophages.

    Diab, R; Virriat, A S; Ronzani, C; Fontanay, S; Grandemange, S; Elaissari, A; Foliguet, B; Maincent, P; Leroy, P; Duvaj, R E; Rihn, B H; Joubert, O


    S-nitrosoglutathione (GSNO) is a potential therapeutic for infectious disease treatment because of its pivotal role in macrophage-mediated inflammatory responses and host defense in addition to direct antibacterial activities. In this study, sterically stabilized cationic liposomes (SSCL) and sterically stabilized anionic liposomes (SSAL) were developed as nanocarriers for macrophage targeting. Elaborated liposomes were characterized in terms of size, zeta potential, morphology, encapsulation efficiency, in vitro drug release behavior and cytotoxicity. Their versatility in targeting monocytes/macrophages was determined by confocal laser scanning microscopy and transmission electron microscopy. Flow cytometry revealed that cellular uptake of both SSCL and SSAL was governed by several endocytic clathrin- and caveolae-dependent mechanisms. Quantitative assessments of intracellular nitric oxide demonstrated highly efficient uptake of GSNO-loaded SSCL that was twenty-fold higher than that of GSNO-free molecules. GSNO-loaded SSCL displayed strong bacteriostatic effects on Staphylococcus aureus and Pseudomonas aeruginosa, which can be involved in pulmonary infectious diseases. These results reveal the potential of liposomal GSNO as an anti-infective therapeutic due to its macrophage targeting capacity and direct antibacterial effects. PMID:27301185

  20. A Review on Composite Liposomal Technologies for Specialized Drug Delivery

    Maluta S. Mufamadi


    Full Text Available The combination of liposomes with polymeric scaffolds could revolutionize the current state of drug delivery technology. Although liposomes have been extensively studied as a promising drug delivery model for bioactive compounds, there still remain major drawbacks for widespread pharmaceutical application. Two approaches for overcoming the factors related to the suboptimal efficacy of liposomes in drug delivery have been suggested. The first entails modifying the liposome surface with functional moieties, while the second involves integration of pre-encapsulated drug-loaded liposomes within depot polymeric scaffolds. This attempts to provide ingenious solutions to the limitations of conventional liposomes such as short plasma half-lives, toxicity, stability, and poor control of drug release over prolonged periods. This review delineates the key advances in composite technologies that merge the concepts of depot polymeric scaffolds with liposome technology to overcome the limitations of conventional liposomes for pharmaceutical applications.

  1. Engineering of an Inhalable DDA/TDB Liposomal Adjuvant

    Ingvarsson, Pall Thor; Yang, Mingshi; Mulvad, Helle;


    The purpose of this study was to identify and optimize spray drying parameters of importance for the design of an inhalable powder formulation of a cationic liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and trehalose-6,6'-dibehenate (TDB).......The purpose of this study was to identify and optimize spray drying parameters of importance for the design of an inhalable powder formulation of a cationic liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and trehalose-6,6'-dibehenate (TDB)....

  2. Nanoparticle Stabilized Liposomes for Acne Therapy

    Fu, Victoria

    Acne vulgaris is a common skin disease that affects over 40 million people in the United States alone. The main cause of acne vulgaris is Propionibacterium acnes (P. acnes), resides deep in the pores and follicles of the skin in order to feed on oil produced by the sebaceous glands. The liposome is a lipid based nanoparticle with numerous advantages over free drug molecules as an acne treatment alternative. Bare liposomes loaded with lauric acid (LipoLA) were found to show strong antimicrobial activity against P. acnes while generating minimal toxicity. However, the platform is limited by the spontaneous tendency of liposomes to fuse with each other. Attaching nanoparticles to the surface of liposomes can overcome this challenge by providing steric repulsion and reduce surface tension. Thus, carboxyl-functionalized gold nanoparticles (AuC) were attached to the surface of liposomes (AuC-liposomes) loaded with doxycycline, a general tetracycline antibiotic. These particles were found to have a diameter of 120 nm and a zeta potential of 20.0 mV. Both fluorescent and antimicrobial studies demonstrated that based on electrostatic interaction, negatively charged AuC attached to the liposome's positively charged surface and stabilized liposomes in a neutral pH environment (pH = 7.4). Upon entering the skin's acidic environment (pH = 4), AuC detached from the liposome's surface and liposomes could fuse with P. acnes residing in the pores. Furthermore, toxicity studies showed that AuC-liposomes did not induce any significant toxicity, while two of the leading over-the-counter therapies, benzoyl peroxide and salicylic acid, generated substantial skin irritation.

  3. The Effects of Lyophilization on the Physico-Chemical Stability of Sirolimus Liposomes

    Parvin Zakeri-Milani; Hadi Valizadeh; Saeed Ghanbarzadeh


    Purpose: The major limitation in the widespread use of liposome drug delivery system is its instability. Lyophilization is a promising approach to ensure the long-term stability of liposomes. The aim of this study was to prepare sirolimus-loaded liposomes, study their stability and investigate the effect of lyophilization either in the presence or in the absence of lyoprotectant on liposome properties. Methods: Two types of multi-lamellar liposomes, conventional and fusogenic, containing siro...

  4. 两亲性壳聚糖包覆紫杉醇脂质体的制备及体外释放研究%Preparation and in vitro Release of Paclitaxel Loaded Liposomes Modified with Amphiphilic Chitosan Derivatives

    刁雨辉; 霍美蓉; 吕霖; 周建平


    Objective: To prepare paclitaxel loaded liposomes modified with amphiphilic chitosan deirvatives (N-octyl-N,O-carboxymethyl chitosan, OCC), and investigate their characteristics and release behavior in vitro. Methods Paclitaxel loaded liposomes modified with or without OCC (PTX-LP, PTX-LP-OCC) were prepared using an ethanol-based proliposome technology. Particle size and zeta potential of the liposomes were determined with Zetasizer 3000HSa The morphology was observed by a transmission electron microscope (TEM) technology. Stability of liposomes was evaluated by determining the particle size and drug leakage from liposomes. Finally, the in vitro release profiles of paclitaxel from PTX-LP and PTX-LP-OCC were evaluated using the bulk-equilibrium reverse dialysis bag technique Results Paclitaxel loaded liposomes were successfully prepared with an average diameter of 2365 nm and zeta potential of -31.4mV. The encapsulation efficiency was 895%. After OCC modification, there was no significant change in encapsulation efficiency, but the particle size and zeta potential significantly increased. As compared to PTX-LP, PTX-LP-OCC possessed better stability and lower burst release Conclusion: Liposome modified with amphiphilic chitosan derivatives is a promising carrier for anticancer drug delivery.%目的:制备两亲性壳聚糖N-辛基-N,O-羧甲基壳聚糖包覆紫杉醇脂质体(PTX-LP-OCC),并考察其理化性质及体外释放行为.方法:采用基于乙醇的前体脂质体法制备紫杉醇脂质体并以OCC包覆,并以普通脂质体(PTX-LP)为对照,测定其包封率、粒径大小、电位,观测其形态及稳定性,然后采用全体液平衡反向透析法研究体外释放行为.结果:紫杉醇脂质体包封率为89.5%,粒径为236.5 nm,Zeta电位为-31.4 mV,多糖包覆修饰后药物包封率无显著变化,粒径及Zeta电位显著增加,脂质体稳定性显著提高,药物释放呈缓释特征,且突释显著降低.结论:两亲性壳聚糖包

  5. Reversal of the multidrug resistance by drug combination using multifunctional liposomes

    Patel, Niravkumar R.

    One of the major obstacles to the success of cancer chemotherapy is the multi-drug resistance (MDR) that results due mainly to the over-expression of drug efflux transporter pumps such as P-glycoprotein (P-gp). Highly efficacious third generation P-gp inhibitors, like tariquidar, have shown promising results against MDR. However, P-gp is also expressed in normal tissues like the blood-brain barrier, gastrointestinal tract, liver and kidney. It is therefore important to limit the exposure of P-gp inhibitors to normal tissues and increase their co-localization with anticancer agents in tumor tissues to maximize the efficacy of a P-gp inhibitor. To minimize non-specific binding and increase its delivery to tumor tissues, liposomes, self-assembling phospholipid vesicles, were chosen as a drug delivery vehicle. The liposome has been identified as a system capable of carrying molecules with diverse physicochemical properties. It can also alter the pharmacokinetic profile of loaded molecules which is a concern with both tariquidar and paclitaxel. Liposomes can easily be surface-modified rendering them cell-specific as well as organelle-specific. The main objective of present study was to develop an efficient liposomal delivery system which would deliver therapeutic molecules of interest to tumor tissues and avoid interaction with normal tissues. In this study, the co-delivery of tariquidar and paclitaxel into tumor cells to reverse the MDR using long-circulating cationic liposomes was investigated. SKOV-3TR, the resistant variant of SKOV-3 and MCF-7/ADR, the resistant variant of MCF-7 were used as model cell lines. Uniform liposomal formulations were generated with high incorporation efficiency and no apparent decrease in tariquidar potency towards P-gp. Tariquidar- and paclitaxel- co-loaded long-circulating liposomes showed significant re-sensitization of SKOV-3TR and MCF-7/ADR for paclitaxel in vitro. Further modification of these liposomes with antitumor 2C5 resulted

  6. Zinc ionophore activity of quercetin and epigallocatechin-gallate: from Hepa 1-6 cells to a liposome model.

    Dabbagh-Bazarbachi, Husam; Clergeaud, Gael; Quesada, Isabel M; Ortiz, Mayreli; O'Sullivan, Ciara K; Fernández-Larrea, Juan B


    Labile zinc, a tiny fraction of total intracellular zinc that is loosely bound to proteins and easily interchangeable, modulates the activity of numerous signaling and metabolic pathways. Dietary plant polyphenols such as the flavonoids quercetin (QCT) and epigallocatechin-gallate act as antioxidants and as signaling molecules. Remarkably, the activities of numerous enzymes that are targeted by polyphenols are dependent on zinc. We have previously shown that these polyphenols chelate zinc cations and hypothesized that these flavonoids might be also acting as zinc ionophores, transporting zinc cations through the plasma membrane. To prove this hypothesis, herein, we have demonstrated the capacity of QCT and epigallocatechin-gallate to rapidly increase labile zinc in mouse hepatocarcinoma Hepa 1-6 cells as well as, for the first time, in liposomes. In order to confirm that the polyphenols transport zinc cations across the plasma membrane independently of plasma membrane zinc transporters, QCT, epigallocatechin-gallate, or clioquinol (CQ), alone and combined with zinc, were added to unilamellar dipalmitoylphosphocholine/cholesterol liposomes loaded with membrane-impermeant FluoZin-3. Only the combinations of the chelators with zinc triggered a rapid increase of FluoZin-3 fluorescence within the liposomes, thus demonstrating the ionophore action of QCT, epigallocatechin-gallate, and CQ on lipid membrane systems. The ionophore activity of dietary polyphenols may underlay the raising of labile zinc levels triggered in cells by polyphenols and thus many of their biological actions. PMID:25050823

  7. Topical and mucosal liposomes for vaccine delivery.

    Romero, Eder Lilia; Morilla, Maria Jose


    Mucosal (and in minor extent transcutanous) stimulation can induce local or distant mucosa secretory IgA. Liposomes and other vesicles as mucosal and transcutaneous adjuvants are attractive alternatives to parenteral vaccination. Liposomes can be massively produced under good manufacturing practices and stored for long periods, at high antigen/vesicle mass ratios. However, their uptake by antigen-presenting cells (APC) at the inductive sites remains as a major challenge. As neurotoxicity is a major concern in intranasal delivery, complexes between archaeosomes and calcium as well as cationic liposomes complexed with plasmids encoding for antigenic proteins could safely elicit secretory and systemic antigen-specific immune responses. Oral bilosomes generate intense immune responses that remain to be tested against challenge, but the admixing with toxins or derivatives is mandatory to reduce the amount of antigen. Most of the current experimental designs, however, underestimate the mucus blanket 100- to 1000-fold thicker than a 100-nm diameter liposome, which has first to be penetrated to access the underlying M cells. Overall, designing mucoadhesive chemoenzymatic resistant liposomes, or selectively targeted to M cells, has produced less relevant results than tailoring the liposomes to make them mucus penetrating. Opposing, the nearly 10 µm thickness stratum corneum interposed between liposomes and underlying APC can be surpassed by ultradeformable liposomes (UDL), with lipid matrices that penetrate up to the limit with the viable epidermis. UDL made of phospholipids and detergents, proved to be better transfection agents than conventional liposomes and niosomes, without the toxicity of ethosomes, in the absence of classical immunomodulators. PMID:21360692

  8. Characterization of biosurfactant-containing liposomes and their efficiency for gene transfection.

    Ueno, Yoshinobu; Hirashima, Naohide; Inoh, Yoshikazu; Furuno, Tadahide; Nakanishi, Mamoru


    Recently we showed significance of biosurfactants in the field of non-viral vectors for gene transfection. There, a biosurfactant, mannosylerythritol lipid A (MEL-A), especially increased the efficiency of gene transfection mediated with cationic liposomes. However, the molecular mechanism has not been well-understood yet. Here, through the examination of the ability of cationic liposomes containing an MEL (MEL-A, MEL-B or MEL-C) for important transfectional processes of the DNA capsulation and the membrane fusion with anionic liposomes, we found that MEL-A-containing liposomes increased both processes, but that MEL-B and MEL-C-containing liposomes just increased either of them. The results indicated that these kinds of the physicochemical properties in MEL-A-containing liposomes are able to increase the efficiency of liposome-mediated gene transfection. PMID:17202680

  9. Liposomes of terbutaline sulphate: in vitro and in vivo studies.

    Joshi, M R; Misra, A N


    In vitro studies were conducted to understand the comparative drug diffusion pattern, across artificial membrane, of the drug and of the prepared liposomes of different liposomal membrane composition. In vivo studies were carried out to determine the extent and time-course of pulmonary tissue uptake of administered liposomes containing terbutaline sulphate(TER) on rat lungs. In vitro studies revealed that the drug released from the prepared liposomes obeys Higuchi's diffusion controlled model. Different loading doses and release patterns of drug from the liposomes can be obtained by altering the PC:CHOL ratio and incorporation of cholesterol was found to reduce permeability of the membrane. Similarly drug absorption in vivo in rat's lung following intratracheal instillation, prolonged over 12 hr by liposomal entrapment of TER. The findings of present investigation indicated that liposomally encapsulated TER can be used for pulmonary delivery for maximizing the therapeutic efficacy and reducing undesirable side effects. PMID:10687283

  10. Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): In vivo, in vitro and ex vivo studies.

    Fangueiro, Joana F; Calpena, Ana C; Clares, Beatriz; Andreani, Tatiana; Egea, Maria A; Veiga, Francisco J; Garcia, Maria L; Silva, Amélia M; Souto, Eliana B


    Cationic lipid nanoparticles (LNs) have been tested for sustained release and site-specific targeting of epigallocatechin gallate (EGCG), a potential polyphenol with improved pharmacological profile for the treatment of ocular pathologies, such as age-related macular edema, diabetic retinopathy, and inflammatory disorders. Cationic EGCG-LNs were produced by double-emulsion technique; the in vitro release study was performed in a dialysis bag, followed by the drug assay using a previously validated RP-HPLC method. In vitro HET-CAM study was carried out using chicken embryos to determine the potential risk of irritation of the developed formulations. Ex vivo permeation profile was assessed using rabbit cornea and sclera isolated and mounted in Franz diffusion cells. The results show that the use of cationic LNs provides a prolonged EGCG release, following a Boltzmann sigmoidal profile. In addition, EGCG was successfully quantified in both tested ocular tissues, demonstrating the ability of these formulations to reach both anterior and posterior segment of the eye. The pharmacokinetic study of the corneal permeation showed a first order kinetics for both cationic formulations, while EGCG-cetyltrimethylammonium bromide (CTAB) LNs followed a Boltzmann sigmoidal profile and EGCG-dimethyldioctadecylammonium bromide (DDAB) LNs a first order profile. Our studies also proved the safety and non-irritant nature of the developed LNs. Thus, loading EGCG in cationic LNs is recognised as a promising strategy for the treatment of ocular diseases related to anti-oxidant and anti-inflammatory pathways. PMID:26921515

  11. Liposomal nanoparticles encapsulating iloprost exhibit enhanced vasodilation in pulmonary arteries

    Jain PP


    Full Text Available Pritesh P Jain,1 Regina Leber,1,2 Chandran Nagaraj,1 Gerd Leitinger,3 Bernhard Lehofer,4 Horst Olschewski,1,5 Andrea Olschewski,1,6 Ruth Prassl,1,4 Leigh M Marsh11Ludwig Boltzmann Institute for Lung Vascular Research, 2Biophysics Division, Institute of Molecular Biosciences, University of Graz, 3Research Unit Electron Microscopic Techniques, Institute of Cell Biology, Histology, and Embryology, 4Institute of Biophysics, 5Division of Pulmonology, Department of Internal Medicine, 6Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, AustriaAbstract: Prostacyclin analogues are standard therapeutic options for vasoconstrictive diseases, including pulmonary hypertension and Raynaud’s phenomenon. Although effective, these treatment strategies are expensive and have several side effects. To improve drug efficiency, we tested liposomal nanoparticles as carrier systems. In this study, we synthesized liposomal nanoparticles tailored for the prostacyclin analogue iloprost and evaluated their pharmacologic efficacy on mouse intrapulmonary arteries, using a wire myograph. The use of cationic lipids, stearylamine, or 1,2-di-(9Z-octadecenoyl-3-trimethylammonium-propane (DOTAP in liposomes promoted iloprost encapsulation to at least 50%. The addition of cholesterol modestly reduced iloprost encapsulation. The liposomal nanoparticle formulations were tested for toxicity and pharmacologic efficacy in vivo and ex vivo, respectively. The liposomes did not affect the viability of human pulmonary artery smooth muscle cells. Compared with an equivalent concentration of free iloprost, four out of the six polymer-coated liposomal formulations exhibited significantly enhanced vasodilation of mouse pulmonary arteries. Iloprost that was encapsulated in liposomes containing the polymer polyethylene glycol exhibited concentration-dependent relaxation of arteries. Strikingly, half the concentration of iloprost in liposomes elicited

  12. Liposomes as a gene delivery system

    C. Ropert


    Full Text Available Gene therapy is an active field that has progressed rapidly into clinical trials in a relatively short time. The key to success for any gene therapy strategy is to design a vector able to serve as a safe and efficient gene delivery vehicle. This has encouraged the development of nonviral DNA-mediated gene transfer techniques such as liposomes. Many liposome-based DNA delivery systems have been described, including molecular components for targeting given cell surface receptors or for escaping from the lysosomal compartment. Another recent technology using cationic lipids has been evaluated and has generated substantial interest in this approach to gene transfer.

  13. Novel fluorescence method to visualize antibody-dependent hydrogen peroxide-associated "killing" of liposomes by phagocytes.

    Petty, H R; Francis, J W


    We have developed a new methodology to examine effector-cell-mediated immune attack using liposomes as targets. Hydrogen-peroxide-associated killing of liposomes was observed with fluorescence intensification microscopy. Liposomes were composed of 98-99 mol % egg phosphatidylcholine and 1-2 mol % dinitrophenyl lipid hapten. Anti-dinitrophenyl IgG antibody was used to opsonize liposomes. Liposomes were loaded with dihydroxymandelic acid (DHMA) and peroxidase. Macrophage- or neutrophil-mediated...

  14. Effect of Lipid Composition on In Vitro Release and Skin Deposition of Curcumin Encapsulated Liposomes

    Geethi Pamunuwa


    Full Text Available Liposomal encapsulation improves numerous physiochemical and biological properties of curcumin. The aim of this work was to impart slow release and skin delivery of curcumin via liposomal encapsulation. Liposomes were made using egg yolk phosphatidylcholine as the staple lipid while incorporating polysorbate 80 and stearylamine to prepare hybrid liposomes and positively charged liposomes, respectively. Negatively charged liposomes exhibited the highest encapsulation efficiencies (87.8±4.3% and loading capacities (3.4±0.2%. The sizes of all formulations were about 250 nm, while stearylamine increased the polydispersity index. Positively charged liposomes showed lower degradation temperatures than negatively charged liposomes by 10–15°C, attributable to the presence of stearylamine. The melting temperatures of positively charged liposomes (40–50°C were much higher than those of negatively charged liposomes (14-15°C, which may have affected release and skin deposition behavior of liposomes. The positively charged liposomes exhibited the slowest release of curcumin in phosphate buffered saline (pH 6.8 and the release profiles of all liposomal formulations conformed to the Gompertz model. The negatively charged liposomes facilitated the highest skin deposition of curcumin as revealed by studies conducted using excised pig ear skin. Concisely, positively and negatively charged liposomes were optimal for slow release and skin deposition of curcumin, respectively.

  15. Surface Modification of Liposomal Vaccines by Peptide Conjugation

    Hazra M2


    Full Text Available The aim of the present work was to prepare liposomal vaccine formulation by incorporating naked plasmid DNA that can trigger humoral and cell mediated protective immunity against infection. For these cationic lipids like dimyristoyl phosphatidylcholine (DMPC, dioleyl phosphatidyl ethanolamine (DOPE, [1, 2 – dioleyloxy -3-(trimethyl ammonium propane] (DOTAP, were taken in the ratio of 4:2:1 respectively. The liposomal formulations thus prepared were surface modified by peptide conjugation with the help of EDC and NHS. Physical characterization of liposomal formulationswas done by estimating the average size distribution, which gives an average liposomal size of 53.0nm. Concentration of peptide bound liposomes wasestimated by Lowry method which entails that bound protein concentration was 30.5 µg/ml.


    Prabhakar Vishvakrama


    Full Text Available The discovery of liposome or lipid vesicle emerged from self forming enclosed lipid bi-layer upon hydration. Liposome drug delivery systems have played a significant role in formulation of potent drug to improve therapeutics. Recently the liposome formulations are targeted to reduce toxicity and increase accumulation at the target site. There are several new methods of liposome preparation based on lipid drug interaction and liposome disposition mechanism including the inhibition of rapid clearance of liposome by controlling particle size, charge and surface hydration. Most clinical applications of liposomal drug delivery are targeting to tissue with or without expression of target recognition molecules on lipid membrane. The liposomes are characterized with respect to physical, chemical and biological parameters. The sizing of liposome is also critical parameter which helps characterize the liposome which is usually performed by sequential extrusion at relatively low pressure through polycarbonate membrane (PCM. This mode of drug delivery lends more safety and efficacy to administration of several classes of drugs like antiviral, antifungal, antimicrobial, vaccines, anti tubercular drugs and gene therapeutics. Present applications of the liposomes are in the immunology, dermatology, vaccine adjuvant, eye disorders, brain targeting, infective disease and in tumour therapy. The new developments in this field are the specific binding properties of a drug-carrying liposome to a target cell such as a tumor cell and specific molecules in the body (antibodies, proteins, peptides etc.; stealth liposomes which are especially being used as carriers for hydrophilic (water soluble anticancer drugs like doxorubicin, mitoxantrone; and bisphosphonate- liposome mediated depletion of macrophages. This review would be a help to the researchers working in the area of liposomal drug delivery.

  17. Preliminary Studies on X-Ray-sensitive Liposome

    MENG Fan-xu; XU Hua-ping; QI Yan-fei; XU Kun; SONG Xiu-ling; NIU Shu; LI Juan


    The synthesis of a new type of X-ray-sensitive compound “di-(1-hydroxylundecyl)diselenide” and its application in the preparation of a new type of liposome with X-ray sensitivity was reported.This new liposome was synthesized to encapsulate doxorubicin hydrochloride(Dox),with its physical and chemical properties,stability,and radiation sensitivity determined.Based on the pH-gradient method,liposomal Dox was prepared via ultrasonic emulsification and then purified on a Sephadex G50 mini-column.UV spectrophotometry and liquid chromatography were used to detect the encapsulation efficiency and radiation sensitivity of the Dox-loaded liposome.The results show that through changes in release rate,this liposome shows a relative radiosensitivity.In terms of radiation sensitivity,the drug leak rate of the X-ray-sensitive Dox-loaded liposome increased gradually and peaked at 65.4% under the X-ray radiation of a dose of 10 Gy or more than 10 Gy,which is significantly different from that of ordinary liposomes.Meanwhile,X-ray-sensitive Dox-loaded liposome has a good dispersion stability,with an average particle size of approximate 120 nm.The efficiency of this liposome encapsulating Dox was 75.84%,slightly lower than that of ordinary liposomes.The X-ray-sensitive Dox-loaded liposome exhibited suspension stability within 30 d of storage at 4 ℃,without visible precipitation.Di-(1-hydroxylundecyl)diselenide is safe and noncytotoxic and compared with those of synthetic phospholipids its synthesis is low cost and does not require complex conditions.

  18. Covalent immobilization of liposomes on plasma functionalized metallic surfaces.

    Mourtas, S; Kastellorizios, M; Klepetsanis, P; Farsari, E; Amanatides, E; Mataras, D; Pistillo, B R; Favia, P; Sardella, E; d'Agostino, R; Antimisiaris, S G


    A method was developed to functionalize biomedical metals with liposomes. The novelty of the method includes the plasma-functionalization of the metal surface with proper chemical groups to be used as anchor sites for the covalent immobilization of the liposomes. Stainless steel (SS-316) disks were processed in radiofrequency glow discharges fed with vapors of acrylic acid to coat them with thin adherent films characterized by surface carboxylic groups, where liposomes were covalently bound through the formation of amide bonds. For this, liposomes decorated with polyethylene glycol molecules bearing terminal amine-groups were prepared. After ensuring that the liposomes remain intact, under the conditions applying for immobilization; different attachment conditions were evaluated (incubation time, concentration of liposome dispersion) for optimization of the technique. Immobilization of calcein-entrapping liposomes was evaluated by monitoring the percent of calcein attached on the surfaces. Best results were obtained when liposome dispersions with 5mg/ml (liposomal lipid) concentration were incubated on each disk for 24h at 37°C. The method is proposed for developing drug-eluting biomedical materials or devices by using liposomes that have appropriate membrane compositions and are loaded with drugs or other bioactive agents. PMID:21273051

  19. Peptide-Coated Liposomal Fasudil Enhances Site Specific Vasodilation in Pulmonary Arterial Hypertension

    Nahar, Kamrun; Absar, Shahriar; Gupta, Nilesh; Kotamraju, Venkata Ramana; McMurtry, Ivan F.; Oka, Masahiko; Komatsu, Masanobu; Nozik-Grayck, Eva; Ahsan, Fakhrul


    This study sought to develop a liposomal delivery system of fasudil—an investigational drug for the treatment of pulmonary arterial hypertension (PAH)—that will preferentially accumulate in the PAH lungs. Liposomal fasudil was prepared by film-hydration method, and the drug was encapsulated by active loading. The liposome surface was coated with a targeting moiety, CARSKNKDC, a cyclic peptide; the liposomes were characterized for size, polydispersity index, zeta potential, and storage and neb...

  20. Tetanus toxoid-loaded cationic non-aggregated nanostructured lipid particles triggered strong humoral and cellular immune responses.

    Kaur, Amandeep; Jyoti, Kiran; Rai, Shweta; Sidhu, Rupinder; Pandey, Ravi Shankar; Jain, Upendra Kumar; Katyal, Anju; Madan, Jitender


    In the present investigation, non-aggregated cationic and unmodified nanoparticles (TT-C-NLPs4 and TT-NLPs1) were prepared of about 49.2 ± 6.8-nm and 40.8 ± 8.3-nm, respectively. In addition, spherical shape, crystalline architecture and cationic charge were also noticed. Furthermore, integrity and conformational stability of TT were maintained in both TT-C-NLPs4 and TT-NLPs1, as evidenced by symmetrical position of bands and superimposed spectra, respectively in SDS-PAGE and circular dichroism. Cellular uptake in RAW264.7 cells indicating the concentration-dependent internalisation of nanoparticles. Qualitatively, CLSM exhibited enhanced cellular uptake of non-aggregated TT-C-NLPs4 owing to interaction with negatively charged plasma membrane and clevaloe mediated/independent endocytosis. In last, in vivo immunisation with non-aggregated TT-C-NLPs4 elicited strong humoral (anti-TT IgG) and cellular (IFN-γ) immune responses at day 42, as compared to non-aggregated TT-NLPs1 and TT-Alum following booster immunisation at day 14 and 28. Thus, non-aggregated cationic lipid nanoparticles may be a potent immune-adjuvant for parenteral delivery of weak antigens. PMID:27056086

  1. Mannosylated liposomes for targeted gene delivery

    Kong F


    Full Text Available Fansheng Kong1, Fang Zhou1, Linfu Ge1, Ximin Liu1, Yong Wang21Department of Hematology, 2Department of Rehabilitation and Physiotherapy, General Hospital of Ji'nan Command, PLA, Ji'nan, People's Republic of ChinaBackground: Liposomes can be modified with different ligands to control their biological properties, such as longevity, targeting ability, and intracellular penetration, in a desired fashion. The aim of this study was to modify liposomes with a novel mannosylated polyethylene glycol-phosphatidylethanolamine (M-PEG-PE ligand to achieve active targeted gene delivery.Methods: Rat Kupffer cells were isolated and used as model cells for in vitro evaluation of cytotoxicity and transfection efficiency. The modified liposomes were intravenously injected into the rats, and Kupffer cells were isolated and analyzed by flow cytometry for in vivo gene delivery and expression.Results: The M-PEG-PE-modified liposome-enhanced green fluorescence protein plasmid (M-PEG-PE-Lipo-pEGFP complexes had a particle size of 237 nm and a loading efficiency of 90%. The M-PEG-PE-Lipo-pEGFP complexes displayed remarkably higher transfection efficiency than unmodified Lipo-pEGFP, both in vitro (51%–30% and in vivo (43%–27%.Conclusion: M-PEG-PE could function as an excellent active targeting ligand, and M-PEG-PE-modified liposomes could be promising active targeted drug delivery vectors.Keywords: gene delivery, active targeting, mannosylated, polyethylene glycol, phosphatidylethanolamine, liposomes

  2. A simple liposome assay for the screening of zinc ionophore activity of polyphenols.

    Clergeaud, Gael; Dabbagh-Bazarbachi, Husam; Ortiz, Mayreli; Fernández-Larrea, Juan B; O'Sullivan, Ciara K


    An efficient liposomal system for screening the zinc ionophore activity of a selected library consisting of the most relevant dietary polyphenols is presented. The zinc ionophore activity was demonstrated by exploring the use of zinc-specific fluorophore FluoZin-3 loaded liposomes as simple membrane tools that mimic the cell membrane. The zinc ionophore activity was demonstrated as the capacity of polyphenols to transport zinc cations across the liposome membrane and increase the zinc-specific fluorescence of the encapsulated fluorophore FluoZin-3. In addition, the zinc chelation strength of the polyphenols was also tested in a competition assay based on the fluorescence quenching of zinc-dependent fluorescence emitted by zinc-FluoZin-3 complex. Finally, the correlation between the chelation capacity and ionophore activity is demonstrated, thus underlining the sequestering or ionophoric activity that the phenolic compounds can display, thus, providing better knowledge of the importance of the structural conformation versus their biological activity. Furthermore, the assays developed can be used as tools for rapid, high-throughput screening of families of polyphenols towards different biometals. PMID:26617034

  3. Effect of High-Intensity Focused Ultrasound on Drug Release from Doxorubicin-Loaded PEGylated Liposomes and Therapeutic Effect in Colorectal Cancer Murine Models.

    Jeong, Hwan-Seok; Hwang, Hyosook; Oh, Phil-Sun; Kim, Eun-Mi; Lee, Tai Kyoung; Kim, Minjoo; Kim, Hyeon Soo; Lim, Seok Tae; Sohn, Myung-Hee; Jeong, Hwan-Jeong


    The goal of the study described here was to evaluate the use of high-intensity focused ultrasound (HIFU) in drug release and its application in cancer therapy. HIFU was set to minimize hyperthermia, particularly non-specific hyperthermia, of exposed areas. An in vitro temperature-sensitive hydrogel phantom model determined the parameters of HIFU under mild condition settings (spatial average temporal average intensity [ISATA] = 83.35 W/cm(2)). PEGylated liposomal indocyanine green (LCLP-ICG) and PEGylated liposomal doxorubicin (LCLP-Dox) were prepared with the same mole ratio to allow direct comparison of drug release in vitro and in vivo. We induced drug release with HIFU treatment using LCLP-ICG coupled with optical imaging in vitro and in vivo. The size distribution changes in LCLP-ICG in vitro and fluorescence intensity changes in ICG after intra-tumoral injection of LCLP-ICG into CT26 solid tumors in vivo followed by HIFU confirmed the feasibility of the system. We validated the therapeutic effect of HIFU treatment of the CT26 mouse tumor model. The tumor growth rate was significantly reduced (p HIFU treatment, and the chemotherapy of the CT26 solid tumors was found to be highly efficient. PMID:26795498

  4. Ion exchange behaviour of polymeric zirconium cations

    Polymeric zirconium cations formed in weakly acid solutions (pH2) are taken up strongly into macroporous cation exchange resins, while uptake into normal cation exchange resins (pore diameter about 1 nm) is low. Macroporous cation exchange resins loaded with polymeric Zr cations are shown to function as ligand exchange sorbents. (Authors)

  5. Effect of Lyophilization and Freeze-thawing on the Stability of siRNA-liposome Complexes

    Yadava, Preeti; Gibbs, Melissa; de Castro, Carlos; Hughes, Jeffrey A.


    The purpose of this research was to describe the application of lyophilization in the delivery of siRNA using cationic lipids by addressing the long-term formulation/stability issues associated with cationic lipids and to understand the mechanism of lyoprotection. siRNA liposomes complexes were formed in different potential cyro/lyoprotectants and subjected to either lyophilization or freeze thaw cycles. siRNA, liposomes and/or lipoplexes were tested for activity, SYBR Green I binding, cellul...

  6. Liposomal formulations for inhalation.

    Cipolla, David; Gonda, Igor; Chan, Hak-Kim


    No marketed inhaled products currently use sustained release formulations such as liposomes to enhance drug disposition in the lung, but that may soon change. This review focuses on the interaction between liposomal formulations and the inhalation technology used to deliver them as aerosols. There have been a number of dated reviews evaluating nebulization of liposomes. While the information they shared is still accurate, this paper incorporates data from more recent publications to review the factors that affect aerosol performance. Recent reviews have comprehensively covered the development of dry powder liposomes for aerosolization and only the key aspects of those technologies will be summarized. There are now at least two inhaled liposomal products in late-stage clinical development: ARIKACE(®) (Insmed, NJ, USA), a liposomal amikacin, and Pulmaquin™ (Aradigm Corp., CA, USA), a liposomal ciprofloxacin, both of which treat a variety of patient populations with lung infections. This review also highlights the safety of inhaled liposomes and summarizes the clinical experience with liposomal formulations for pulmonary application. PMID:23919478

  7. Significantly enhanced tumor cellular and lysosomal hydroxychloroquine delivery by smart liposomes for optimal autophagy inhibition and improved antitumor efficiency with liposomal doxorubicin.

    Wang, Yang; Shi, Kairong; Zhang, Li; Hu, Guanlian; Wan, Jingyu; Tang, Jiajing; Yin, Sheng; Duan, Jiandong; Qin, Ming; Wang, Neng; Xie, Dandan; Gao, Xinle; Gao, Huile; Zhang, Zhirong; He, Qin


    Hydroxychloroquine (HCQ) inhibits autophagy and therefore can sensitize some cancer cells to chemotherapy, but the high doses required limit its clinical use. Here we show that loading HCQ into liposomes (HCQ/Lip) decorated with a pH-sensitive TH-RGD targeting peptide (HCQ/Lip-TR) can concentrate HCQ in B16F10 tumor cells and lysosomes. HCQ/Lip-TR was efficiently internalized as a result of its ability to bind ITGAV-ITGB3/integrin αvβ3 receptors highly expressed on the tumor cell surface and to undergo charge reversal from anionic at pH 7.4 to cationic at pH 6.5. Studies in vitro at pH 6.5 showed that the intracellular HCQ concentration was 35.68-fold higher, and lysosomal HCQ concentration 32.22-fold higher, after treating cultures with HCQ/Lip-TR than after treating them with free HCQ. The corresponding enhancements observed in mice bearing B16F10 tumors were 15.16-fold within tumor cells and 14.10-fold within lysosomes. HCQ/Lip-TR was associated with milder anemia and milder myosuppressive reductions in white blood cell and platelet counts than free HCQ, as well as less accumulation in the small intestine, which may reduce risk of intestinal side effects. In addition, co-delivering HCQ/Lip-TR with either free doxorubicin (DOX) or liposomal DOX improved the ability of DOX to inhibit tumor growth. Biochemical, electron microscopy and immunofluorescence experiments confirmed that HCQ/Lip-TR blocked autophagic flux in tumor cells. Our results suggest that loading HCQ into Lip-TR liposomes may increase the effective concentration of the inhibitor in tumor cells, allowing less toxic doses to be used. PMID:27123811

  8. pH-sensitive liposomes: acid-induced liposome fusion.

    Connor, J.; Yatvin, M B; Huang, L.


    Sonicated unilamellar liposomes containing phosphatidylethanolamine and palmitoylhomocysteine fuse rapidly when the medium pH is lowered from 7 to 5. Liposome fusion was demonstrated by (i) mixing of the liposomal lipids as shown by resonance energy transfer, (ii) gel filtration, and (iii) electron microscopy. The pH-sensitive fusion of liposomes was observed only when palmitoylhomocysteine (greater than or equal to 20 mol%) was present in the liposomes. The presence of phosphatidyl-ethanolam...

  9. Liposomal cancer therapy: exploiting tumor characteristics

    Kaasgaard, Thomas; Andresen, Thomas Lars


    Importance of the field: More than 10 million people worldwide are diagnosed with cancer each year, and the development of effective cancer treatments is consequently of great significance. Cancer therapy is unfortunately hampered by severe dose-limiting side effects that reduce the efficacy of...... cancer treatments. In the search for more effective cancer treatments, nanoparticle- based drug delivery systems, such as liposomes, that are capable of delivering their drug payload selectively to cancer cells are among the most promising approaches. Areas covered in this review: This review provides an...... overview of current strategies for improving the different stages of liposomal cancer therapy, which involve transporting drug-loaded liposomes through the bloodstream, increasing tumor accumulation, and improving drug release and cancer cell uptake after accumulation at the tumor target site. What the...

  10. Preparation and anti-tumor activity of a novel liposome-loaded drug%RGD脂肪醇与17-AAG脂质体的制备及抗肿瘤活性研究

    李雪梅; 王玉记; 吴建辉; 崔纯莹


    Objective To prepare an Arg-Gly-Asp-Phe-fatty alcohol ( RGDFOC12 ) liposomes-loaded 17-allylamino-17-demethoxygeldanamycin(17-AAG). Methods RGDFOC12 liposomes-loaded 17-AAG(RLAs) was prepared by film dispersion method and evaluated by particle size analysis, Zeta potential, encapsulation efficiency, the release in vitro, plasma stability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide( MTT) assay and the anti-tumor activity in vivo. Results The RLAs was stable colloidal dispersion system in spherical shape of (130.6±0.6)nm in diameter and the Zeta potential was (-28.37±1.67)mV. The release of RLAs in vitro showed that the released percentage of RLAs in pH 5. 4 is more than that in pH 7. 4. The MTT assay proved that RLAs inhibited the proliferation of cancer cells. The anti-tumor assay showed that RLAs inhibited tumor growth and reduced the toxicity. Conclusion The RLAs were prepared by film dispersion method. RLAs showed anti-tumor activity in vivo and good potential in cancer therapy.%目的:制备一种新的精氨酸-甘氨酸-天冬氨酸-苯丙氨酸-脂肪醇( Arg-Gly-Asp-Phe-fatty alcohol,RGDFOC12)与17-丙烯氨基-17-去甲氧基格尔德霉素(17-allylamino-17-demethoxygeldanamycin,17-AAG)的脂质体(RGDFOC12 liposomes-loaded 17-AAG, RLAs)。方法采用薄膜分散-探头超声法制备;采用激光纳米粒度仪、透射电镜和扫描电镜测定粒径,Zeta电位和外观形态;采用动态透析法测定药物释放;采用四甲基偶氮唑盐[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide,MTT]考察其对5种人肿瘤细胞株增生的抑制作用;通过瘤质量、存活数、体质量、脏器指数比评价其在小鼠体内抗肿瘤效果。结果制备得到的RLAs的粒径为(130.6±0.6)nm,Zeta电位为(-28.37±1.67)mV,外观形态为球形,包封率为80%以上。 RLAs在pH 5.4环境的累积释放百分数大于在pH 7.4环境的累积释放百分数。 RLAs在血浆中可稳定存在,12 h

  11. Pharmacokinetic, biodistribution and therapeutic efficacy of 5-fluorouracil-loaded pH-sensitive PEGylated liposomal nanoparticles in HCT-116 tumor bearing mouse

    Udofot, Ofonime; Affram, Kevin; Smith, Taylor; Tshabe, Bulumko; Krishnan, Sunil; Sachdeva, Mandip; Agyare, Edward


    The objective of the study was to investigate the pharmacokinetics and efficacy of 5-FU entrapped pH-sensitive liposomal nanoparticles with surface-modified anti-epidermal growth factor receptor (EGFR) antibody (pHLNps-5-FU) delivery system. Cytotoxicity of 5-FU and pHLNps-5-FU was determined in vitro against HCT-116 cells. The biodistribution and pharmacokinetic parameters of the administered 5-FU and pHLNps-5-FU as well as efficacy of 5-FU and pHLNps-5-FU were determined in HCT-116 subcutaneous mouse model. Mean size of pHLNp-5-FU was 164.3 ± 8.4 nm with entrapment efficiency (E.E) of 54.17%. While cytotoxicity of 5-FU and pHLNps-5-FU showed a strong dose-dependent, pHLNps-5-FU proved to be more effective (2–3 fold high) than that of 5-FU against HCT-116 cells. Pharmacokinetic study showed a prolonged plasma circulation of pHLNps-5-FU and a more significant body exposure while accumulation of pHLNps-5-FU in tumor was significantly higher than that of free 5-FU. Further, the efficacy of pHLNps-5-FU, was greater than free 5-FU at equivalent 5-FU dose. The study suggests that pHLNps may be an effective drug delivery system to enhance the anticancer activity of 5-FU against colorectal tumor growth.

  12. Protein antigen adsorption to the DDA/TDB liposomal adjuvant

    Hamborg, Mette; Jorgensen, Lene; Bojsen, Anders Riber; Christensen, Dennis; Foged, Camilla


    Understanding the nature of adjuvant-antigen interactions is important for the future design of efficient and safe subunit vaccines, but remains an analytical challenge. We studied the interactions between three model protein antigens and the clinically tested cationic liposomal adjuvant composed...

  13. Liposomal nanoparticles as a drug delivery vehicle against osteosarcoma

    Dhule, Santosh Subhashrao

    The delivery of curcumin, a broad-spectrum anticancer drug, has been explored in the form of liposomal nanoparticles to treat osteosarcoma (OS). Curcumin is water insoluble and an effective delivery route is through encapsulation in cyclodextrins followed by a second encapsulation in liposomes. Liposomal curcumin's potential was evaluated against cancer models of mesenchymal (OS) and epithelial origin (breast cancer). The resulting 2-Hydroxypropyl-gamma-cyclodextrin/curcumin - liposome complex shows promising anticancer potential both in vitro and in vivo against KHOS OS cell line and MCF-7 breast cancer cell line. An interesting aspect is that liposomal curcumin initiates the caspase cascade that leads to apoptotic cell death in vitro in comparison with DMSO-curcumin induced autophagic cell death. In addition, the efficiency of the liposomal curcumin formulation was confirmed in vivo using a xenograft OS model. Curcumin-loaded gamma-cyclodextrin liposomes indicate significant potential as delivery vehicles for the treatment of cancers of different tissue origin. The second part of this study examines the anti-tumor potential of curcumin and C6 ceramide (C6) against osteosarcoma cell lines when both are encapsulated in the bilayer of liposomal nanoparticles. Curcumin in combination with C6 showed 1.5 times enhanced cytotoxic effect in the case of MG-63 and KHOS OS cell lines, in comparison with systems with curcumin alone. Interestingly, C6-curcumin liposomes were found to be less toxic on untransformed human cells in comparison to OS cell lines. In addition, cell cycle assays on a KHOS cell line after treatment revealed that curcumin only liposomes induced G 2/M arrest by upregulation of cyclin B1, while C6 only liposomes induced G1 arrest by downregulation of cyclin D1. C6-curcumin liposomes induced G2/M arrest and showed a combined effect in the expression levels of cyclin D1 and cyclin B1. Using pegylated liposomes to increase the plasma half-life and tagging

  14. Liposome-encapsulated polyethylenimine/oligonucleotide polyplexes prepared by reverse-phase evaporation technique.

    Ko, Young Tag; Bickel, Ulrich


    Liposome-encapsulated polyplex system represents a promising delivery system for oligonucleotide-based therapeutics such as siRNA and asODN. Here, we report a novel method to prepare liposome-encapsulated cationic polymer/oligonucleotide polyplexes based on the reverse-phase evaporation following organic extraction of the polyplexes. The polyplexes of polyethylenimine and oligonucleotide were first formed in aqueous buffer at an N/P ratio of 6. The overall positively charged polyplexes were then mixed with the anionic phospholipids in overall organic media. The overall organic environment and electrostatic interaction between anionic phospholipids and positively charged polyplexes resulted in inverted micelle-like particles with the polyplexes in the core. After phase separation, the hydrophobic particles were recovered in organic phase. Reverse-phase evaporation of the organic solvent in the presence of hydrophilic polymer-grafted lipids resulted in a stable aqueous dispersion of hydrophilic lipid-coated particles with the polyplex in the core. Transmission electron microscopy visualization revealed spherical structures with heavily stained polyplex cores surrounded by lightly stained lipid coats. The lipid-coated polyplex particles showed colloidal stability, complete protection of the loaded oligonucleotide molecules from enzymatic degradation, and high loading efficiency of more than 80%. Thus, this technique represents an alternative method to prepare lipid-coated polyplex particles as a delivery system of oligonucleotide therapeutics. PMID:22328240

  15. Preparation of novel capsosome with liposomal core by layer-by-Layer self-assembly of sodium hyaluronate and chitosan.

    Yoo, Cha Young; Seong, Joon Seob; Park, Soo Nam


    Multi-compartmentalized capsosomes are polyelectrolyte capsules with liposomes as cargo, and are prepared by combining liposomes and polymer capsules. They offer additional functionality while maintaining the advantages and compensating for the weak points of both systems. In this study, a polyelectrolyte multilayered liposome was prepared by alternating adsorption of negatively charged sodium hyaluronate (HA) and positively charged chitosan (CH) on the surface of a cationic core liposome (CL) via layer-by-layer (LbL) deposition. Then, smaller sized liposomes (L) were coated onto the multilayered liposome. Lastly, the particle surfaces were coated with HA as a capping layer to obtain a novel type of capsosome with a liposomal core. The amount of adsorbed liposome was measured for different pH values (pH 2-10) and with liposome solutions of different concentrations (1-3%). The highest liposome adsorption occurred at pH 10 in the 3% solution, respectively. Finally, capsosomes in the size range of 500nm to 2μm were observed and the attached liposomes were located both on the surface and within the polymer shell. In conclusion, the cell-mimicking, liposome-based capsosomes could have infinite applications in the field of medicine, pharmaceuticals, and cosmetics as compartmentalized microreactors, multi-drug delivery systems with controlled release, or functional artificial cells in the future. PMID:27085041

  16. Actinide cation-cation complexes

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO2+) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO2+; therefore, cation-cation complexes indicate something unique about AnO2+ cations compared to actinide cations in general. The first cation-cation complex, NpO2+·UO22+, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO2+ species, the cation-cation complexes of NpO2+ have been studied most extensively while the other actinides have not. The only PuO2+ cation-cation complexes that have been studied are with Fe3+ and Cr3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO2+·UO22+, NpO2+·Th4+, PuO2+·UO22+, and PuO2+·Th4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M-1

  17. Antigen-specific suppression of inflammatory arthritis using liposomes.

    Capini, Christelle; Jaturanpinyo, Montree; Chang, Hsin-I; Mutalik, Srinivas; McNally, Alice; Street, Shayna; Steptoe, Raymond; O'Sullivan, Brendan; Davies, Nigel; Thomas, Ranjeny


    Existing therapies for rheumatoid arthritis and other autoimmune diseases are not Ag specific, which increases the likelihood of systemic toxicity. We show that egg phosphatidylcholine liposomes loaded with Ag (OVA or methylated BSA) and a lipophilic NF-kappaB inhibitor (curcumin, quercetin, or Bay11-7082) suppress preexisting immune responses in an Ag-specific manner. We injected loaded liposomes into mice primed with Ag or into mice suffering from Ag-induced inflammatory arthritis. The liposomes targeted APCs in situ, suppressing the cells' responsiveness to NF-kappaB and inducing Ag-specific FoxP3(+) regulatory T cells. This regulatory mechanism suppressed effector T cell responses and the clinical signs of full-blown Ag-induced arthritis. Thus, liposomes encapsulate Ags and NF-kappaB inhibitors stably and efficiently and could be readily adapted to deliver Ags and inhibitors for Ag-specific suppression of other autoimmune and allergic diseases. PMID:19265134

  18. Targeted liposomal drug delivery to monocytes and macrophages.

    Ciara Kelly; Caroline Jefferies; Sally-Ann Cryan


    As the role of monocytes and macrophages in a range of diseases is better understood, strategies to target these cell types are of growing importance both scientifically and therapeutically. As particulate carriers, liposomes naturally target cells of the mononuclear phagocytic system (MPS), particularly macrophages. Loading drugs into liposomes can therefore offer an efficient means of drug targeting to MPS cells. Physicochemical properties including size, charge and lipid composition can ha...

  19. Improved Delivery of Caffeic Acid through Liposomal Encapsulation

    Katuwavila, Nuwanthi P.; A. D. L. Chandani Perera; V. Karunaratne; Gehan A. J. Amaratunga; D. Nedra Karunaratne


    Photoageing resulting from long term exposure of the skin to UV light can be minimized by scavenging the reactive photochemical intermediates with antioxidants. For effective photoprotection, the antioxidant must overcome the barrier properties of the skin and reach the target site in significant amounts. The present study aims to improve the skin penetration of caffeic acid, a very effective free radical scavenger, by encapsulating in liposomes. Caffeic acid loaded liposomes prepared using t...

  20. Liposome production by microfluidics: potential and limiting factors

    Dario Carugo; Elisabetta Bottaro; Joshua Owen; Eleanor Stride; Claudio Nastruzzi


    This paper provides an analysis of microfluidic techniques for the production of nanoscale lipid-based vesicular systems. In particular we focus on the key issues associated with the microfluidic production of liposomes. These include, but are not limited to, the role of lipid formulation, lipid concentration, residual amount of solvent, production method (including microchannel architecture), and drug loading in determining liposome characteristics. Furthermore, we propose microfluidic archi...

  1. Anti-inflammatory activity of cationic lipids.

    Filion, M C; Phillips, N C


    1. The effect of liposome phospholipid composition has been assumed to be relatively unimportant because of the presumed inert nature of phospholipids. 2. We have previously shown that cationic liposome formulations used for gene therapy inhibit, through their cationic component, the synthesis by activated macrophages of the pro-inflammatory mediators nitric oxide (NO) and tumour necrosis factor-alpha (TNF-alpha). 3. In this study, we have evaluated the ability of different cationic lipids to reduce footpad inflammation induced by carrageenan and by sheep red blood cell challenge. 4. Parenteral (i.p. or s.c) or local injection of the positively charged lipids dimethyldioctadecylammomium bromide (DDAB), dioleyoltrimethylammonium propane (DOTAP), dimyristoyltrimethylammonium propane (DMTAP) or dimethylaminoethanecarbamoyl cholesterol (DC-Chol) significantly reduced the inflammation observed in both models in a dose-dependent manner (maximum inhibition: 70-95%). 5. Cationic lipids associated with dioleyol- or dipalmitoyl-phosphatidylethanolamine retained their anti-inflammatory activity while cationic lipids associated with dipalmitoylphosphatidylcholine (DPPC) or dimyristoylphosphatidylglycerol (DMPG) showed no anti-inflammatory activity, indicating that the release of cationic lipids into the macrophage cytoplasm is a necessary step for anti-inflammatory activity. The anti-inflammatory activity of cationic lipids was abrogated by the addition of dipalmitoylphosphatidylethanolamine-poly(ethylene)glycol-2000 (DPPE-PEG2000) which blocks the interaction of cationic lipids with macrophages. 6. Because of the significant role of protein kinase C (PKC) in the inflammatory process we have determined whether the cationic lipids used in this study inhibit PKC activity. The cationic lipids significantly inhibited the activity of PKC but not the activity of a non-related protein kinase, PKA. The synthesis of interleukin-6 (IL-6), which is not dependent on PKC activity for its

  2. Tuftsin-bearing liposomes as rifampin vehicles in treatment of tuberculosis in mice.

    Agarwal, A.; Kandpal, H; Gupta, H. P.; N. B. Singh; Gupta, C M


    The antitubercular activity of rifampin was considerably increased when it was encapsulated in egg phosphatidylcholine liposomes. A further increase in the activity was observed when the macrophage activator tetrapeptide tuftsin was grafted on the surface of the drug-loaded liposomes. Intermittent treatments (twice weekly) with these preparations were significantly more effective than the continuous treatments. Rifampin delivered twice weekly for 2 weeks in tuftsin-bearing liposomes was at le...

  3. 硫酸长春新碱脂质体的质量评价研究%Quality evaluation of Vincristine Sulphate Liposomes

    张雪冰; 李文静; 王杏林; 杨志强; 吴溪


    Objective To evaluate the quality of Vincristine Sulphate Liposome.Methods Vincristine sulphate was encapsulated in the liposomes using the pH gradient-dependent remote loading technique. The morphological examination of liposomes was observed with transmission electron microscopy. The encapsulation efficiency was determined by cation exchange resin column. Their pH value, particle size, Zeta potential, stability, andin vitrodeliveryof vincristine sulphate were investigated.Results The morphology of Vincristine Sulphate Liposome showed that liposomes were uniformity, good roundness. The particle size of the liposomes was about 120 nm, the Zeta potential was about 10 mV, and the encapsulation efficiency was above 90%. Vincristine sulphate liposomes did not occur significant changes under the light condition and at 4℃, 18℃, and 25℃ conditions. At 40℃, the encapsulation efficiency decreased.Conclusion The method is accurate and simple to evaluate the quality of Vincristine Sulphate Liposomes.%目的:评价硫酸长春新碱脂质体的质量。方法采用pH梯度法制备硫酸长春新碱脂质体。透射电镜观察脂质体的外观形态,阳离子交换树脂柱法测定包封率,并考察其pH值、粒径、Zeta电位、稳定性及体外释放规律。结果形态学观察结果显示,脂质体均匀圆整度良好。硫酸长春新碱脂质体粒径为120 nm左右,Zeta电位约为10 mV,包封率均在90%以上。光照、4℃、18℃、25℃条件下,脂质体各项指标无显著变化。40℃条件下,包封率明显降低。结论本法准确,操作简便,可用于硫酸长春新碱脂质体的质量评价。

  4. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes

    Inoh, Yoshikazu; Furuno, Tadahide [School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650 (Japan); Hirashima, Naohide [Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603 (Japan); Kitamoto, Dai [National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1 Higashi, Tsukuba 305-8565 (Japan); Nakanishi, Mamoru, E-mail: [School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650 (Japan)


    Highlights: Black-Right-Pointing-Pointer We use MEL-A-containing cationic liposomes for siRNA delivery. Black-Right-Pointing-Pointer MEL-A-containing cationic liposomes can efficiently and rapidly deliver siRNA into the cytoplasm. Black-Right-Pointing-Pointer Rapid delivery of siRNA is due to the membrane fusion between liposomes and plasma membrane. -- Abstract: The downregulation of gene expression by RNA interference holds great potential for genetic analysis and gene therapy. However, a more efficient delivery system for small interfering RNA (siRNA) into the target cells is required for wide fields such as cell biology, physiology, and clinical application. Non-viral vectors are stronger candidates than viral vectors because they are safer and easier to prepare. We have previously used a new method for gene transfection by combining cationic liposomes with the biosurfactant mannosylerythritol lipid-A (MEL-A). The novel MEL-A-containing cationic liposomes rapidly delivered DNA (plasmids and oligonucleotides) into the cytosol and nucleus through membrane fusion between liposomes and the plasma membrane, and consequently, enhanced the gene transfection efficiency. In this study, we determined the efficiency of MEL-A-containing cationic liposomes for siRNA delivery. We observed that exogenous and endogenous protein expression was suppressed by approximately 60% at 24 h after brief (30 min) incubation of target cells with MEL-A-containing cationic liposome/siRNA complexes. Confocal microscopic analysis showed that suppression of protein expression was caused by rapid siRNA delivery into the cytosol. We found that the MEL-A-containing cationic liposomes directly delivered siRNA into the cytoplasm by the membrane fusion in addition to endocytotic pathway whereas Lipofectamine Trade-Mark-Sign RNAiMax delivered siRNA only by the endocytotic pathway. It seems that the ability to rapidly and directly deliver siRNA into the cytosol using MEL-A-containing cationic

  5. Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes.

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru


    The downregulation of gene expression by RNA interference holds great potential for genetic analysis and gene therapy. However, a more efficient delivery system for small interfering RNA (siRNA) into the target cells is required for wide fields such as cell biology, physiology, and clinical application. Non-viral vectors are stronger candidates than viral vectors because they are safer and easier to prepare. We have previously used a new method for gene transfection by combining cationic liposomes with the biosurfactant mannosylerythritol lipid-A (MEL-A). The novel MEL-A-containing cationic liposomes rapidly delivered DNA (plasmids and oligonucleotides) into the cytosol and nucleus through membrane fusion between liposomes and the plasma membrane, and consequently, enhanced the gene transfection efficiency. In this study, we determined the efficiency of MEL-A-containing cationic liposomes for siRNA delivery. We observed that exogenous and endogenous protein expression was suppressed by approximately 60% at 24h after brief (30 min) incubation of target cells with MEL-A-containing cationic liposome/siRNA complexes. Confocal microscopic analysis showed that suppression of protein expression was caused by rapid siRNA delivery into the cytosol. We found that the MEL-A-containing cationic liposomes directly delivered siRNA into the cytoplasm by the membrane fusion in addition to endocytotic pathway whereas Lipofectamine RNAiMax delivered siRNA only by the endocytotic pathway. It seems that the ability to rapidly and directly deliver siRNA into the cytosol using MEL-A-containing cationic liposomes is able to reduce immune responses, cytotoxicity, and other side effects caused by viral vectors in clinical applications. PMID:22001930

  6. Liposomal SLA co-incorporated with PO CpG ODNs or PS CpG ODNs induce the same protection against the murine model of leishmaniasis.

    Shargh, Vahid Heravi; Jaafari, Mahmoud Reza; Khamesipour, Ali; Jaafari, Iman; Jalali, Seyed Amir; Abbasi, Azam; Badiee, Ali


    First generation Leishmania vaccines consisting of whole killed parasites with or without adjuvants have reached phase 3 trial and failed to show enough efficacy mainly due to the lack of an appropriate adjuvant. In this study, the nuclease-resistant phosphorothioate CpG oligodeoxynucleotides (PS CpG) or nuclease-sensitive phosphodiester CpG ODNs (PO CpG) were used as adjuvants to enhance immunogenicity and rate of protection against leishmaniasis. Due to the susceptibility of PO CpG to nuclease degradation, an efficient liposomal delivery system was developed to protect them from degradation. 1, 2-dioleoyl-3-trimethylammonium-propane (DOTAP) as a cationic lipid was used because of its unique adjuvanticity and electrostatic interaction with negatively charged CpG ODNs. To evaluate the role of liposomal formulation in protection rate and enhanced immune response, BALB/c mice were immunized subcutaneously with liposomal soluble Leishmania antigens (SLA) co-incorporated with PO CpG (Lip-SLA-PO CpG), Lip-SLA-PS CpG, SLA+PO CpG, SLA+PS CpG, SLA or buffer. As criteria for protection, footpad swelling at the site of challenge, parasite loads, the levels of IFN-γ and IL-4, and the IgG subtypes were evaluated. The groups of mice receiving Lip-SLA-PO CpG or Lip-SLA-PS CpG showed a high protection rate compared with the control groups. In addition, there was no significant difference in immune response generation between mice immunized with PS CpG and the group receiving PO CpG when incorporated into the liposomes. The results suggested that liposomal form of PO CpG might be used instead of PS CpG in future vaccine formulations as an efficient adjuvant. PMID:22465747


    Sipai Altaf Bhai. M


    Full Text Available Drug development technologies constituting innovations at the formulation end in the Pharmaceutical industry has received a lot of attention in past two decades. Drug delivery as an opportunity to extend product life cycles has indeed proved its place in the market with significant advantages of therapeutic gains as well as commercial success. Carrier technology offers an intelligent approach for drug delivery by coupling the drug to a carrier particle such as liposomes, microspheres, nanoparticles, etc. which modulates the release and absorption characteristics of the drug. Liposomes are well known to alter the bio distribution of entrapped substances by protecting the enclosed material. They are widely used as vehicles to target the specific molecule to specific organ. During the last few decades liposomes have attracted great interest as ideal models for biological membranes as well as efficient carriers for drugs, diagnostics, vaccines, nutrients and other bioactive agents. Many techniques and methodologies have involved for the manufacture of liposomes, on small and large scales, since their introduction to the scientific community around 40 years ago. This article intends to provide an overview of the advantages and disadvantages of liposome preparation methods,their stability, bio distribution and their uses as drug delivery systems. The conventional method of preparing liposomes is basically for the multilamellar vesicles (MLVs. However, other methods are used to reduce the size of these MLVs to small unilamellar vesicles (SUVs so as to increase their plasma lifetime and consequently increase the possibility of achieving greater tissue localisation. Some of these methods of size reduction are sonication and high pressure extrusion. Each of these methods has its own advantages and disadvantages. Large unilamellar vesicles (LUVs, on the other hand, are prepared mainly by detergent removal method and reverse phase extrusion technique. There

  8. Polymer Chemistry and Liposome Technology

    Tirrell, David A.


    Polymer chemistry has a great deal to offer in the construction of synthetic liposomal membranes for use in biology and medicine. This chapter explores the preparation and properties of polymeric liposomes , with particular emphasis on the use of controlled polyelectrolyte adsorption to manipulate liposomal membrane properties.

  9. Preparation of protamine cationic nanobubbles and experimental study of their physical properties and in vivo contrast enhancement.

    Tong, Hai-Peng; Wang, Luo-Fu; Guo, Yan-Li; Li, Lang; Fan, Xiao-Zhou; Ding, Jun; Huang, Hai-Yun


    In this study, we aimed to prepare a novel type of microbubble (MB), protamine cationic nanobubble (NB), to provide a new vector for tumor gene therapy. We prepared cationic NBs with protamine and other lipid components using mechanical oscillation. The protamine cationic NBs had a mean diameter of 521.2 ± 37.57 nm, a zeta potential of +18.5 mV, and a gene-carrying capacity of 15.69 μg androgen receptor (AR) siRNA per 10(8) NBs. The cationic NBs exhibited superior contrast enhancement for in vivo imaging compared with SonoVue (Bracco, Geneva, Switzerland), and their physical properties did not change significantly after 1 wk; meanwhile, the transfection efficiency of the cationic NBs in androgen-independent prostate cancer cells mediated by ultrasound irradiation was better than that of liposomes (82.17 ± 7.4% vs. 55.04 ± 5.4%, p < 0.01). Therefore, the protamine cationic NB can be considered for use as a novel type of gene-loading MB for ultrasound imaging and MB-mediated gene therapy of tumors. PMID:23932278

  10. Liposomal delivery of radionuclides for cancer diagnostics and radiotherapy

    Petersen, Anncatrine Luisa

    loading experiments and isothermal titration calorimetry (ITC) measurements. Various chelators, ionophores and lipophilic chelators were tested at different pH and temperature conditions. Liposomes passively accumulate in tumors due to the enhanced permeability and retention (EPR) effect. In Article I...... of PEGylated 64Cu-liposomes with and without TATE, and their ability to image NE tumors in tumor-bearing mice using PET. Further, we compare the liposome tumor accumulation and imaging capability with that of the radiolabeled somatostatin analog 64Cu-DOTA-TATE. During the past 30 years, ionophores......, a so called “unassisted” loading, excluding any use of ionophores and lipophilic chelators. Project IV presents results from this invention (Patent II), where a presentation of various parameters affecting the efficiency of the unassisted loading method is given. Section 5 summarizes the regulatory...

  11. On the phase diagram of reentrant condensation in polyelectrolyte-liposome complexation

    Sennato, S.; Bordi, F.; Cametti, C.


    Complexation of polyions with oppositely charged spherical liposomes has been investigated by means of dynamic light scattering measurements and a well-defined reentrant condensation has been observed. The phase diagram of charge inversion, recently derived [T. T. Nguyen and B. I. Shklovskii, J. Chem. Phys. 115, 7298 (2001)] for the complexation of DNA with charged spherical macroions, has been employed in order to define the boundaries of the region where polyion-liposome complexes begin to condense, forming larger aggregates, and where aggregates dissolve again, towards isolated polyion-coated-liposome complexes. A reasonable good agreement is observed in the case of complexes formed by negatively charged polyacrylate sodium salt polyions and liposomes built up by cationic lipids (dioleoyltrimethylammoniumpropane), in an extended liposome concentration range.

  12. Liposomal encapsulation of dexamethasone modulates cytotoxicity, inflammatory cytokine response, and migratory properties of primary human macrophages

    Bartneck, M.; Peters, F.M.; Warzecha, K.T.; Bienert, M.; Bloois, van L.; Trautwein, C.; Lammers, T.G.G.M.; Tacke, F.


    The encapsulation of drugs into liposomes aims to enhance their efficacy and reduce their toxicity. Corticosteroid-loaded liposomes are currently being evaluated in patients suffering from rheumatoid arthritis, atherosclerosis, colitis, and cancer. Here, using several different fluorophore-labeled f

  13. Glycosaminoglycan-Mediated Selective Changes in the Aggregation States, Zeta Potentials, and Intrinsic Stability of Liposomes

    Nyren-Erickson, Erin K; Haldar, Manas K.; Totzauer, Jessica R.; Ceglowski, Riley; Patel, Dilipkumar S.; Daniel L. Friesner; Srivastava, D. K.; Mallik, Sanku


    Though the aggregation of glycosaminoglycans (GAGs) in the presence of liposomes and divalent cations has been previously reported, the effect of different GAG species, as well as minor changes in GAG composition on the aggregates formed is yet unknown. If minor changes in GAG composition produce observable changes in liposome aggregate diameter or zeta potential, such a phenomenon may be used to detect potentially dangerous over-sulfated contaminants in heparin. We studied the mechanism of t...

  14. Intranasal delivery of cationic PLGA nano/microparticles-loaded FMDV DNA vaccine encoding IL-6 elicited protective immunity against FMDV challenge.

    Gang Wang

    Full Text Available Mucosal vaccination has been demonstrated to be an effective means of eliciting protective immunity against aerosol infections of foot and mouth disease virus (FMDV and various approaches have been used to improve mucosal response to this pathogen. In this study, cationic PLGA (poly(lactide-co-glycolide nano/microparticles were used as an intranasal delivery vehicle as a means administering FMDV DNA vaccine encoding the FMDV capsid protein and the bovine IL-6 gene as a means of enhancing mucosal and systemic immune responses in animals. Three eukaryotic expression plasmids with or without bovine IL-6 gene (pc-P12A3C, pc-IL2AP12A3C and pc-P12AIL3C were generated. The two latter plasmids were designed with the IL-6 gene located either before or between the P12A and 3C genes, respectively, as a means of determining if the location of the IL-6 gene affected capsid assembly and the subsequent immune response. Guinea pigs and rats were intranasally vaccinated with the respective chitosan-coated PLGA nano/microparticles-loaded FMDV DNA vaccine formulations. Animals immunized with pc-P12AIL3C (followed by animals vaccinated with pc-P12A3C and pc-IL2AP12A3C developed the highest levels of antigen-specific serum IgG and IgA antibody responses and the highest levels of sIgA (secretory IgA present in mucosal tissues. However, the highest levels of neutralizing antibodies were generated in pc-IL2AP12A3C-immunized animals (followed by pc-P12AIL3C- and then in pc-P12A3C-immunized animals. pc-IL2AP12A3C-immunized animals also developed stronger cell mediated immune responses (followed by pc-P12AIL3C- and pc-P12A3C-immunized animals as evidenced by antigen-specific T-cell proliferation and expression levels of IFN-γ by both CD4+ and CD8+ splenic T cells. The percentage of animals protected against FMDV challenge following immunizations with pc-IL2AP12A3C, pc-P12AIL3C or pc-P12A3C were 3/5, 1/5 and 0/5, respectively. These data suggested that intranasal delivery

  15. Luteinizing hormone-releasing hormone receptor-mediated delivery of mitoxantrone using LHRH analogs modified with PEGylated liposomes

    Yingna He


    Full Text Available Yingna He, Linhua Zhang, Cunxian SongKey Laboratory of Biomedical Material of Tianjin, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, ChinaAbstract: A sterically stabilized, mitoxantrone-loaded liposome, tailored to target luteinizing hormone-releasing hormone (LHRH receptor overexpressing cells, was developed to promote the efficiency of intracellular delivery of mitoxantrone through receptor-mediated endocytosis. Liposomes were prepared by lipid film hydration and an ultrasound dispersion process. Thiolated gonadorelin with affinity for the LHRH receptor was chemically coupled to N-[(3-maleimide-1-oxopropyl aminopropyl polyethylene glycol-carbamyl] distearoyl-l-phosphatidyl-ethanolamine via a thioether bond and subsequently inserted into polyethylene glycol-grafted liposomes. The liposome was characterized in terms of its size, ligand density, drug loading, and leakage properties. The targeting nature and antitumor effects of the liposomes were evaluated in vitro using cultured MCF-7 breast cancer cells. A protein assay of ligand coupling to the liposomal surface indicated that more than 60% of the LHRH peptides were inserted into the liposome bilayer. Up to 1.0 mg/mL of stable liposomal mitoxantrone loading was achieved, with approximately 98% of this being entrapped within the liposomes. In vitro cell culture studies revealed that the gonadorelin-modified liposomes bound to their target cells had significantly higher affinity and better antitumor efficiency than generic drug-loaded liposomes. These events were presumed to occur through specific interactions of the LHRH with its cognate receptors on the cell surface. It was concluded that the targeting properties of the delivery system would potentially improve the therapeutic benefits of mitoxantrone, as compared with nontargeted liposomes.Keywords: mitoxantrone, liposome, luteinizing hormone-releasing hormone receptor

  16. Enhanced bactericidal potency of nanoliposomes by modification of the fusion activity between liposomes and bacterium

    Ma YF


    amount of negative charges in fluid liposomes reduces fluid liposomes-bacteria fusion when tested without calcium cations due to electric repulsion, but addition of calcium cations brings the fusion level of fluid liposomes to similar or higher levels. Among the negative phospholipids examined, DMPA gave the highest degree of fusion, DMPS and DMPG had intermediate fusion levels, and PI resulted in the lowest degree of fusion. Furthermore, the fluid liposomal encapsulated tobramycin was prepared, and the bactericidal effect occurred more quickly when bacteria were cultured with liposomal encapsulated tobramycin. Conclusion: The bactericidal potency of fluid liposomes is dramatically enhanced with respect to fusion ability when the fusogenic lipid, DOPE, is included. Regardless of changes in liposome composition, fluid liposomes-bacterium fusion is universally enhanced by calcium ions. The information obtained in this study will increase our understanding of fluid liposomal action mechanisms, and help in optimizing the new generation of fluid liposomal formulations for the treatment of pulmonary bacterial infections. Keywords: liposomes, fusion, bacteria, Pseudomonas aeruginosa, lipid composition

  17. Phototriggerable Liposomes: Current Research and Future Perspectives

    Anu Puri


    Full Text Available The field of cancer nanomedicine is considered a promising area for improved delivery of bioactive molecules including drugs, pharmaceutical agents and nucleic acids. Among these, drug delivery technology has made discernible progress in recent years and the areas that warrant further focus and consideration towards technological developments have also been recognized. Development of viable methods for on-demand spatial and temporal release of entrapped drugs from the nanocarriers is an arena that is likely to enhance the clinical suitability of drug-loaded nanocarriers. One such approach, which utilizes light as the external stimulus to disrupt and/or destabilize drug-loaded nanoparticles, will be the discussion platform of this article. Although several phototriggerable nanocarriers are currently under development, I will limit this review to the phototriggerable liposomes that have demonstrated promise in the cell culture systems at least (but not the last. The topics covered in this review include (i a brief summary of various phototriggerable nanocarriers; (ii an overview of the application of liposomes to deliver payload of photosensitizers and associated technologies; (iii the design considerations of photoactivable lipid molecules and the chemical considerations and mechanisms of phototriggering of liposomal lipids; (iv limitations and future directions for in vivo, clinically viable triggered drug delivery approaches and potential novel photoactivation strategies will be discussed.

  18. Molecular targeting of liposomal nanoparticles to tumor microenvironment

    Zhao G


    Full Text Available Gang Zhao,1,2 B Leticia Rodriguez21Institute of Materia Medica, Shandong Academy of Medical Science, Shandong, China; 2Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX, USAAbstract: Liposomes are biodegradable and can be used to deliver drugs at a much higher concentration in tumor tissues than in normal tissues. Both passive and active drug delivery by liposomal nanoparticles can significantly reduce the toxic side effects of anticancer drugs and enhance the therapeutic efficacy of the drugs delivered. Active liposomal targeting to tumors is achieved by recognizing specific tumor receptors through tumor-specific ligands or antibodies coupled onto the surface of the liposomes, or by stimulus-sensitive drug carriers such as acid-triggered release or enzyme-triggered drug release. Tumors are often composed of tumor cells and nontumor cells, which include endothelial cells, pericytes, fibroblasts, stromal, mesenchymal cells, innate, and adaptive immune cells. These nontumor cells thus form the tumor microenvironment, which could be targeted and modified so that it is unfavorable for tumor cells to grow. In this review, we briefly summarized articles that had taken advantage of liposomal nanoparticles as a carrier to deliver anticancer drugs to the tumor microenvironment, and how they overcame obstacles such as nonspecific uptake, interaction with components in blood, and toxicity. Special attention is devoted to the liposomal targeting of anticancer drugs to the endothelium of tumor neovasculature, tumor associated macrophages, fibroblasts, and pericytes within the tumor microenvironment.Keywords: tumor microenvironment, endothelium, neovasculature, tumor-associated macrophages, cationic liposomes, ligand- or antibody-mediated targeting

  19. Enhanced transfection of tumor cells in vivo using “Smart” pH-sensitive TAT-modified pegylated liposomes

    Kale, Amit A.; Torchilin, Vladimir P.


    Liposomes have been prepared loaded with DNA (plasmid encoding for the green fluorescent protein, GFP) and additionally modified with TATp and PEG, with PEG being attached to the liposome surface via both pH-sensitive hydrazone and non-pH-sensitive bonds. The pGFP-loaded liposomal preparations have been administered intratumorarly in tumor-bearing mice and the efficacy of tumor cell transfection was followed after 72 h. The administration of pGFP–TATp–liposomes with non-pH-sensitive PEG coati...

  20. Efficient intracellular drug-targeting of macrophages using stealth liposomes directed to the hemoglobin scavenger receptor CD163

    Etzerodt, Anders; Maniecki, Maciej Bogdan; Graversen, Jonas Heilskov;


    The hemoglobin scavenger receptor CD163 is exclusively expressed in the monocytic lineage and preferentially in tissue resident macrophages of the M2 phenotype and in macrophages in sites of inflammation and tumor growth. In the present study we have designed liposomes specifically targeting CD163...... by hydrophobic linkage of CD163-binding monoclonal antibodies to polyethylene glycol-coated liposomes ('stealth liposomes'). Targeting to the endocytic CD163 protein greatly increased the uptake of liposomes in CD163 transfected cells and macrophages as visualized by confocal microscopy and flow...... cytometry of cells exposed to CD163 targeting liposomes loaded with calcein. Strong cytotoxic effects were seen in CD163-expressing human monocytes by using the chemotherapeutic agent doxorubicin as cargo of the liposomes. In conclusion, the use of stealth liposomes modified to recognize CD163 is a...

  1. Silicone-stabilized liposomes as a possible novel nanostructural drug carrier.

    Lewandowska-Łańcucka, Joanna; Mystek, Katarzyna; Gilarska, Adriana; Kamiński, Kamil; Romek, Marek; Sulikowski, Bogdan; Nowakowska, Maria


    Development of silicone stabilized liposomes which can serve as novel drug nanocarriers is presented. Silicone precursor 1,3,5,7-tetramethylcyclotetrasiloxane (D4(H)) was introduced into the bilayer of the cationic liposomes prepared from egg yolk phosphatidylocholine (PC) and double-tailed dimethyldioctadecylammonium bromide (DODAB). The silicone material was created inside of the liposomal bilayer in the base-catalyzed polycondensation process of the D4(H) what was confirmed employing (29)Si solid-state MAS NMR and FTIR measurements. Surfactant lysis experiments revealed that resulted systems can be effectively stabilized. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements demonstrated that the silicone-stabilized liposomes have typical lipid vesicle's morphology and mean hydrodynamic diameters in the range of about 110nm. They have considerably lower tendency for aggregation than the pristine liposomes. The permeability of vesicles can be tuned by introducing various amounts of silicone precursor into the liposome bilayer, as confirmed in calcein-release studies. The effect of fetal bovine serum (FBS) on the stability of liposomes was also tested in in vitro studies. Biological studies revealed that resulted liposomes can be considered as possible drug nanocarriers because they are not toxic to human skin fibroblasts (HSFs) and mouse embryonic fibroblasts (MEFs). PMID:27022877

  2. The surface charge of liposomal adjuvants is decisive for their interactions with the Calu-3 and A549 airway epithelial cell culture models

    Ingvarsson, Pall Thor; Rasmussen, Ida Svahn; Viaene, Michelle; Irlik, Przemyslaw Jedrzej; Nielsen, Hanne Mørck; Foged, Camilla


    potential for mucosal vaccination via the airways. The purpose of this study was to investigate the importance of the liposomal surface charge on the interaction with lung epithelial cells. Thus, the cationic DDA in the liposomes was subjected to a step-wise replacement with the zwitterionic...

  3. Development of a liposomal nanodelivery system for nevirapine

    Krishnan Uma M


    Full Text Available Abstract Background The treatment of AIDS remains a serious challenge owing to high genetic variation of Human Immunodeficiency Virus type 1 (HIV-1. The use of different antiretroviral drugs (ARV is significantly limited by severe side-effects that further compromise the quality of life of the AIDS patient. In the present study, we have evaluated a liposome system for the delivery of nevirapine, a hydrophobic non-nucleoside reverse transcriptase inhibitor. Liposomes were prepared from egg phospholipids using thin film hydration. The parameters of the process were optimized to obtain spherical liposomes below 200 nm with a narrow polydispersity. The encapsulation efficiency of the liposomes was optimized at different ratios of egg phospholipid to cholesterol as well as drug to total lipid. The data demonstrate that encapsulation efficiency of 78.14% and 76.25% were obtained at egg phospholipid to cholesterol ratio of 9:1 and drug to lipid ratio of 1:5, respectively. We further observed that the size of the liposomes and the encapsulation efficiency of the drug increased concomitantly with the increasing ratio of drug and lipid and that maximum stability was observed at the physiological pH. Thermal analysis of the drug encapsulated liposomes indicated the formation of a homogenous drug-lipid system. The magnitude of drug release from the liposomes was examined under different experimental conditions including in phosphate buffered saline (PBS, Dulbecco's Modified Eagle's Medium (DMEM supplemented with 10% fetal bovine serum or in the presence of an external stimulus such as low frequency ultrasound. Within the first 20 minutes 40, 60 and 100% of the drug was released when placed in PBS, DMEM or when ultrasound was applied, respectively. We propose that nevirapine-loaded liposomal formulations reported here could improve targeted delivery of the anti-retroviral drugs to select compartments and cells and alleviate systemic toxic side effects as a

  4. Cholesterol derived cationic lipids as potential non-viral gene delivery vectors and their serum compatibility.

    Ju, Jia; Huan, Meng-Lei; Wan, Ning; Hou, Yi-Lin; Ma, Xi-Xi; Jia, Yi-Yang; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le


    Cholesterol derivatives M1-M6 as synthetic cationic lipids were designed and the biological evaluation of the cationic liposomes based on them as non-viral gene delivery vectors were described. Plasmid pEGFP-N1, used as model gene, was transferred into 293T cells by cationic liposomes formed with M1-M6 and transfection efficiency and GFP expression were tested. Cationic liposomes prepared with cationic lipids M1-M6 exhibited good transfection activity, and the transfection activity was parallel (M2 and M4) or superior (M1 and M6) to that of DC-Chol derived from the same backbone. Among them, the transfection efficiency of cationic lipid M6 was parallel to that of the commercially available Lipofectamine2000. The optimal formulation of M1 and M6 were found to be at a mol ratio of 1:0.5 for cationic lipid/DOPE, and at a N/P charge mol ratio of 3:1 for liposome/DNA. Under optimized conditions, the efficiency of M1 and M6 is greater than that of all the tested commercial liposomes DC-Chol and Lipofectamine2000, even in the presence of serum. The results indicated that M1 and M6 exhibited low cytotoxicity, good serum compatibility and efficient transfection performance, having the potential of being excellent non-viral vectors for gene delivery. PMID:27072908

  5. Incorporation of a selective sigma-2 receptor ligand enhances uptake of liposomes by multiple cancer cells

    Zhang Y


    Full Text Available Yifei Zhang,1,* Yixian Huang,1,* Peng Zhang,1 Xiang Gao,1 Robert B Gibbs,2 Song Li1 1Center for Pharmacogenetics, 2Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA*These authors contributed equally to this workBackground: The sigma-2 receptor is an attractive target for tumor imaging and targeted therapy because it is overexpressed in multiple types of solid tumors, including prostate cancer, breast cancer, and lung cancer. SV119 is a synthetic small molecule that binds to sigma-2 receptors with high affinity and specificity. This study investigates the utility of SV119 in mediating the selective targeting of liposomal vectors in various types of cancer cells.Methods: SV119 was covalently linked with polyethylene glycol-dioleyl amido aspartic acid conjugate (PEG-DOA to generate a novel functional lipid, SV119-PEG-DOA. This lipid was utilized for the preparation of targeted liposomes to enhance their uptake by cancer cells. Liposomes with various SV119 densities (0, 1, 3, and 5 mole% were prepared and their cellular uptake was investigated in several tumor cell lines. In addition, doxorubicin (DOX was loaded into the targeted and unmodified liposomes, and the cytotoxic effect on the DU-145 cells was evaluated by MTT assay.Results: Liposomes with or without SV119-PEG-DOA both have a mean diameter of approximately 90 nm and a neutral charge. The incorporation of SV119-PEG-DOA significantly increased the cellular uptake of liposomes by the DU-145, PC-3, A549, 201T, and MCF-7 tumor cells, which was shown by fluorescence microscopy and the quantitative measurement of fluorescence intensity. In contrast, the incorporation of SV119 did not increase the uptake of liposomes by the normal BEAS-2B cells. In a time course study, the uptake of SV119 liposomes by DU-145 cells was also significantly higher at each time point compared to the unmodified liposomes. Furthermore, the DOX-loaded SV119 liposomes

  6. Boronated liposome development and evaluation

    Hawthorne, M.F. [Univ. of California, Los Angeles, CA (United States)


    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  7. Composition Influence on Pulmonary Delivery of Rifampicin Liposomes

    Maria Letizia Manca


    Full Text Available The effects of lipid concentration and composition on the physicochemical properties, aerosol performance and in vitro toxicity activity of several rifampicin-loaded liposomes were investigated. To this purpose, six liposome formulations containing different amounts of soy phosphatidylcholine and hydrogenated soy phosphatidylcholine, with and without cholesterol and oleic acid, were prepared and fully characterized. Uni- or oligo-lamellar, small (~100 nm, negatively charged (~60 mV vesicles were obtained. Lipid composition affected aerosol delivery features of liposomal rifampicin; in particular, the highest phospholipid concentration led to a better packing of the vesicular bilayers with a consequent higher nebulization stability. The retention of drug in nebulized vesicles (NER% was higher for oleic acid containing vesicles (55% ± 1.4% than for the other samples (~47%. A549 cells were used to evaluate intracellular drug uptake and in vitro toxicity activity of rifampicin-loaded liposomes in comparison with the free drug. Cell toxicity was more evident when oleic acid containing liposomes were used.

  8. Preparation and evaluation of mafenide acetate liposomal formulation as eschar delivery system

    Behzad Sharif Makhmalzadeh


    Full Text Available Mafenide acetate is a commonly known antimicrobial agent for wound infection. Permeability of mafenide acetate through eschar is very high and it may lead to systemic toxicity after topical application. We wish to investigate whether topical use of mafenide acetate – including vesicles could result in drug trapping in rat skin, in comparison to mafenide acetate aqueous solution. In this study, liposomes were prepared with two techniques: Solvent evaporation and Microencapsulation vesicular (MCV. We applied full factorial design for experimental design and data analysis. Drug/lipid ratio, hydration time, aqueous phase volume and homogenizer rpm were considered as independent variable, on the other hand, liposome size, drug loading, stability, drug release and skin permeability parameters as responses. The results demonstrate that liposome were multilamellar and multivesicular. Particle size and drug loading percentage of MCV liposome indicated burst sustained release profile. Burst effect in solvent evaporation liposome was more than MCV liposome. In conclusion, solvent evaporation liposome improved mafenide acetate partitioning through rat skin and decrease diffusion coefficient with increase particle size of liposome.

  9. Improved oral bioavailability of capsaicin via liposomal nanoformulation: preparation, in vitro drug release and pharmacokinetics in rats.

    Zhu, Yuan; Wang, Miaomiao; Zhang, Jiajia; Peng, Wei; Firempong, Caleb Kesse; Deng, Wenwen; Wang, Qilong; Wang, Shicheng; Shi, Feng; Yu, Jiangnan; Xu, Ximing; Zhang, Weiming


    This study innovatively prepared an effective capsaicin-loaded liposome, a nanoformulation with fewer irritants, for oral administration. The in vitro and in vivo properties of the liposomal encapsulation were investigated and the potential possibility of oral administration evaluated. The liposomal agent composed of phospholipid, cholesterol, sodium cholate and isopropyl myristate was prepared using film-dispersion method. A level A in vitro-in vivo correlation (IVIVC) was established for the first time, which demonstrated an excellent IVIVC of both formulated and free capsaicin in oral administration. Physicochemical characterizations including mean particle size, zeta (ζ) potential and average encapsulation efficiency of capsaicin-loaded liposome were found to be 52.2 ± 1.3 nm, -41.5 ± 2.71 mv and 81.9 ± 2.43 %, respectively. In vivo, liposomal encapsulation allowed a 3.34-fold increase in relative bioavailability compared to free capsaicin. The gastric mucosa irritation studies indicated that the liposomal system was a safe carrier for oral administration. These results support the fact that capsaicin, an effective drug for the treatment of neuropathic pain, could be encapsulated in liposome for improved oral bioavailability. The excellent IVIVC of capsaicin-loaded liposome could also be a promising tool in liposomal formulation development with an added advantage of reduced animal testing. PMID:25231341

  10. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes

    Torchilin, Vladimir P.; Levchenko, Tatyana S.; Rammohan, Ram; Volodina, Natalia; Papahadjopoulos-Sternberg, Brigitte; D'Souza, Gerard G. M.


    Liposomes modified with TAT peptide (TATp-liposomes) showed fast and efficient translocation into the cell cytoplasm with subsequent migration into the perinuclear zone. TATp-liposomes containing a small quantity (10 mol %) of a cationic lipid formed firm noncovalent complexes with DNA. Here, we present results demonstrating both in vitro and in vivo transfection with TATp-liposome-DNA complexes. Mouse NIH/3T3 fibroblasts and rat H9C2 cardiomyocytes were transfected with such complexes in vitro. The transfection with the TATp-liposome-associated pEGFP-N1 plasmid encoding for the green fluorescent protein (GFP) was high, whereas the cytotoxicity was lower than that of commonly used cationic lipid-based gene-delivery systems. Intratumoral injection of TATp-liposome-DNA complexes into the Lewis lung carcinoma tumor of mice also resulted in an expression of GFP in tumor cells. This transfection system should be useful for various protocols of cell treatment in vitro or ex vivo as well as for localized in vivo gene therapy.

  11. Effects of the protein corona on liposome-liposome and liposome-cell interactions.

    Corbo, Claudia; Molinaro, Roberto; Taraballi, Francesca; Toledano Furman, Naama E; Sherman, Michael B; Parodi, Alessandro; Salvatore, Francesco; Tasciotti, Ennio


    A thorough understanding of interactions occurring at the interface between nanocarriers and biological systems is crucial to predict and interpret their biodistribution, targeting, and efficacy, and thus design more effective drug delivery systems. Upon intravenous injection, nanoparticles are coated by a protein corona (PC). This confers a new biological identity on the particles that largely determines their biological fate. Liposomes have great pharmaceutical versatility, so, as proof of concept, their PC has recently been implicated in the mechanism and efficiency of their internalization into the cell. In an attempt to better understand the interactions between nanocarriers and biological systems, we analyzed the plasma proteins adsorbed on the surface of multicomponent liposomes. Specifically, we analyzed the physical properties and ultrastructure of liposome/PC complexes and the aggregation process that occurs when liposomes are dispersed in plasma. The results of combined confocal microscopy and flow cytometry experiments demonstrated that the PC favors liposome internalization by both macrophages and tumor cells. This work provides insights into the effects of the PC on liposomes' physical properties and, consequently, liposome-liposome and liposome-cell interactions. PMID:27445473

  12. Serum insensitive, intranuclear protein delivery by the multipurpose cationic lipid SAINT-2

    van der Gun, Bemardina T. F.; Monami, Amlie; Laarmann, Sven; Rasko, Tamas; Slaska-Kiss, Krystyna; Weinhold, Elmar; Wasserkort, Reinhold; de Leij, Lou F. M. H.; Ruiters, Marcel H. J.; Kiss, Antal; McLaughlin, Pamela M. J.


    Cationic liposomal compounds are widely used to introduce DNA and siRNA into viable cells, but none of these compounds are also capable of introducing proteins. Here we describe the use of a cationic amphiphilic lipid SAINT-2:DOPE for the efficient delivery of proteins into cells (profection). Label

  13. Silica-Coated Liposomes for Insulin Delivery

    Neelam Dwivedi


    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  14. In vivo evaluation of PEGylated {sup 64}Cu-liposomes with theranostic and radiotherapeutic potential using micro PET/CT

    Petersen, Anncatrine Luisa; Andresen, Thomas Lars [Technical University of Denmark, Department of Micro- and Nanotechnology, Lyngby (Denmark); Technical University of Denmark, Center for Nanomedicine and Theranostics, Lyngby (Denmark); Henriksen, Jonas Rosager [Technical University of Denmark, Center for Nanomedicine and Theranostics, Lyngby (Denmark); Technical University of Denmark, Department of Chemistry, Lyngby (Denmark); Binderup, Tina; Hag, Anne Mette; Kjaer, Andreas [University of Copenhagen, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet and Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark); Elema, Dennis Ringkjoebing [Technical University of Denmark, Center for Nanomedicine and Theranostics, Lyngby (Denmark); Technical University of Denmark, Center for Nuclear Technologies, Hevesy Laboratory, Roskilde (Denmark); Rasmussen, Palle Hedengran [Technical University of Denmark, Center for Nuclear Technologies, Hevesy Laboratory, Roskilde (Denmark)


    The objective of this study was to evaluate the potential of PEGylated {sup 64}Cu-liposomes in clinical diagnostic positron emission tomography (PET) imaging and PEGylated {sup 177}Lu-liposomes in internal tumor radiotherapy through in vivo characterization and dosimetric analysis in a human xenograft mouse model. Liposomes with 5 and 10 mol% PEG were characterized with respect to size, charge, and {sup 64}Cu- and {sup 177}Lu-loading efficiency. The tumor imaging potential of {sup 64}Cu-loaded liposomes was evaluated in terms of in vivo biodistribution, tumor accumulation and tumor-to-muscle (T/M) ratios, using PET imaging. The potential of PEGylated liposomes for diagnostic and therapeutic applications was further evaluated through dosimetry analysis using OLINDA/EXM software. The {sup 64}Cu-liposomes were used as biological surrogates to estimate the organ and tumor kinetics of {sup 177}Lu-liposomes. High remote loading efficiency (>95 %) was obtained for both {sup 64}Cu and {sup 177}Lu radionuclides with PEGylated liposomes, and essentially no leakage of the encapsulated radionuclide was observed upon storage and after serum incubation for 24 h at 37 C. The 10 mol% PEG liposomes showed higher tumor accumulation (6.2 ± 0.2 %ID/g) than the 5 mol% PEG liposomes, as evaluated by PET imaging. The dosimetry analysis of the {sup 64}Cu-liposomes estimated an acceptable total effective dose of 3.3.10{sup -2} mSv/MBq for diagnostic imaging in patients. A high absorbed tumor dose (114 mGy/MBq) was estimated for the potential radiotherapeutic {sup 177}Lu-liposomes. The overall preclinical profile of PEGylated {sup 64}Cu-liposomes showed high potential as a new PET theranostic tracer for imaging in humans. Dosimetry results predicted that initial administered activity of 200 MBq of {sup 64}Cu-liposomes should be acceptable in patients. Work is in progress to validate the utility of PEGylated {sup 64}Cu-liposomes in a clinical research programme. The high absorbed tumor dose

  15. Biophysical characterization of V3-lipopeptide liposomes influencing HIV-1 infectivity

    The V3-loop of the HIV-1 gp120 alters host cell immune function and modulates infectivity. We investigated biophysical parameters of liposome constructs with embedded lipopeptides from the principle neutralizing domain of the V3-loop and their influence on viral infectivity. Dynamic light scattering measurements showed liposome supramolecular structures with hydrodynamic radius of the order of 900 and 1300 nm for plain and V3-lipopeptide liposomes. Electron paramagnetic resonance measurements showed almost identical local microenvironment. The difference in liposome hydrodynamic radius was attributed to the fluctuating ionic environment of the V3-lipopeptide liposomes. In vitro HIV-1 infectivity assays showed that plain liposomes reduced virus production in all cell cultures, probably due to the hydrophobic nature of the aggregates. Liposomes carrying V3-lipopeptides with different cationic potentials restored and even enhanced infectivity (p < 0.05). These results highlight the need for elucidation of the involvement of lipid bilayers as dynamic components in supramolecular structures and in HIV-1 fusion mechanisms

  16. Effects of Headgroups and Serum on Gene Transfection of Alkaline Amino Acid Based Cationic Lipids

    LI Li; YANG Yang; NIE Yu; HE Bin; GU Zhong-wei


    Three cationic lipids with lysylated(l), histidylated(2), and arginylated(3) headgroups and cholesterol hy-drophobic moiety were synthesized. The average sizes of liposomes and lipoplexes were around 100 and 160 nm, re-spectively. The gene transfection efficiency of the three lipoplexes loaded with pGL3 or pORF-LacZ was compared on 293T cells in the presence or the absence of serum. The transfection efficiency of the three lipoplexes in a se-rum-free medium was 2 to 3-fold higher than that of dioleoyl-trimethylammonium propane(DOTAP). In the presence of serum, however, most of the lipoplexes showed lower transfection activities; only lipoplex 3 retained its high transfection efficiency.

  17. Positron Emission Tomography Based Elucidation of the Enhanced Permeability and Retention Effect in Dogs with Cancer Using Copper-64 Liposomes

    Hansen, Anders Elias; Petersen, Anncatrine Luisa; Henriksen, Jonas Rosager; Børresen, Betina; Rasmussen, Palle; Elema, Dennis Ringkjøbing; Rosenschöld, Per Munck af; Kristensen, Annemarie T.; Kjær, Andreas; Andresen, Thomas Lars


    large animals and humans with spontaneously developed cancer. In the present paper, we describe a novel loading method of copper-64 into PEGylated liposomes and use these liposomes to evaluate the EPR-effect in 11 canine cancer patients with spontaneous solid tumors by PET/CT imaging. We thereby provide...

  18. In situ SAXS experiment during DNA and liposome complexation

    Gasperini, A.A.; Cavalcanti, L.P. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Balbino, T.A.; Torre, L.G. de la [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Oliveira, C.L.P. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil)


    Full text: Gene therapy is an exciting research area that allows the treatment of different diseases. Basically, an engineered DNA that codes a protein is the therapeutic drug that has to be delivered to the cell nucleus. After that, the DNA transfection process allows the protein production using the cell machinery. However, the efficient delivery needs DNA protection against nucleases and interstitial fluids. In this context, the use of cationic liposome/DNA complexes is a promising strategy for non-viral gene therapy. Liposomes are lipid systems that self-aggregate in bilayers and the use of cationic lipids allows the electrostatic complexation with DNA. In this work, we used SAXS technique to study the complexation kinetics between cationic liposomes and plasmid DNA and evaluate the liposome structural modifications in the presence of DNA. Liposomes were prepared according to [1] using as plasmid DNA vector model a modified version of pVAX1-GFP with luciferase as reporter gene [2]. The complexation was promoted in a SAXS sample holder containing a microchannel to get access to the compartment between two mica windows where the X-ray beam could cross through [3]. We obtained in situ complexation using such sample holder coupled to a fed-batch reactor through a peristaltic pump. The scattering curves were recorded each 30 seconds during the cycles. The DNA was added until a certain final ratio between surface charges previously determined. We studied the form and structure factor model for the liposome bilayer to fit the scattering curves [4]. Structural information such as the bilayer electronic density profiles, number of bilayers and fluidity were determined as a function of the complexation with DNA. These differences can reflect in singular in vitro and in vivo effects. [1] L. G. de la Torre et al. Colloids and Surfaces B: Biointerfaces, 73, 175 (2009) [2] A. R. Azzoni et al. The Journal of Gene Medicine, 9, 392 (2007) [3] L. P. Cavalcanti et al. Review of

  19. Functional coating of liposomes using a folate–polymer conjugate to target folate receptors

    Watanabe K


    Full Text Available Kazuo Watanabe, Makoto Kaneko, Yoshie MaitaniInstitute of Medical Chemistry, Hoshi University, Tokyo, JapanAbstract: Folate-polymer-coated liposomes were developed for targeted chemotherapy using doxorubicin (DXR as a model drug. Folate-poly(L-lysine (F–PLL conjugates with a folate modification degree of 16.7 mol% on epsilon amino groups of PLL were synthesized. DXR-loaded anionic liposomes were coated with F–PLL, and the cellular association of F–PLL-coated liposomes was evaluated by flow cytometry, and confocal microscopy in human nasopharyngeal carcinoma KB cells overexpressing folate receptors (FRs, and human lung adenocarcinoma A549 cells [FR (-]. The existence of a polymer layer on the surface of F–PLL-coated liposomes was confirmed by zeta potential analysis. The KB cellular association of F–PLL-coated liposomal DXR was increased compared with that of PLL-coated liposomes and was inhibited in the presence of free folic acid. Twofold higher cytotoxicity of F–PLL-coated liposomal DXR was observed compared with that of the PLL-coated liposomal DXR in KB cells, but not in A549 cells, suggesting the presence of FR-mediated endocytosis. These results indicated that folate-targeted liposomes were prepared successfully by coating the folate–polymer conjugate F–PLL. This novel preparation method of folate-targeted liposomes is expected to provide a powerful tool for the development of a folate-targeting drug nanodevice as coating with ligand–polymer conjugates can be applicable to many kinds of particles, as well as to lipid-based particles.Keywords: cellular association, folate-targeting, liposome, poly-L-lysine, polymer coating, tumor targeting

  20. Carcinogenesis response modulation induced by gelonin encapsulated in liposome.

    Alam, Anis; Nakhuru, K S; Singha, L I


    The effectiveness of gelonin to arrest protein synthesis, thereby limiting the growth of cancer cells was studied by encapsulating it into liposomes. The protein was extracted from the seeds of Indian plant Gelonium multiflorum by ammonium sulfate precipitation and purified using cation-exchange and gel-filtration chromatography. Biological activity of purified gelonin was determined using a rabbit reticulocyte lysate assay in the cell-free translational experiments. Gelonin was encapsulated in conventional liposomes prepared by the dry film method in order to retain biological activity of the entrapped protein. Carcinogenesis was induced in Swiss albino mice by intravenous administration of DBN (10 mg kg(-1) body weight) at weekly intervals. Marker enzyme assays (GGT, AChE, and GST), GSH levels, cell proliferation assay, hepatocyte DNA analysis, histological examination of micro sections of liver tissues were parameters used to monitor carcinogenesis induction, and regression in mice. From the in vitro experiments conducted, it was observed that gelonin upon its encapsulation into liposome, resulted in significant destruction of the transformed liver cells by its cytotoxic effects that arrest protein synthesis. Various parameters studied to monitor regression also suggested mass cell destruction to liver upon administration of liposomal gelonin in mice exposed to DBN. PMID:18500656

  1. Intranasal Delivery of Cationic PLGA Nano/Microparticles- Loaded FMDV DNA Vaccine Encoding IL-6 Elicited Protective Immunity against FMDV Challenge

    Gang Wang; Li Pan; Yongguang Zhang; Yonglu Wang; Zhongwang Zhang; Jianliang Lü; Peng Zhou; Yuzhen Fang; Shoutian Jiang


    Mucosal vaccination has been demonstrated to be an effective means of eliciting protective immunity against aerosol infections of foot and mouth disease virus (FMDV) and various approaches have been used to improve mucosal response to this pathogen. In this study, cationic PLGA (poly(lactide-co-glycolide)) nano/microparticles were used as an intranasal delivery vehicle as a means administering FMDV DNA vaccine encoding the FMDV capsid protein and the bovine IL-6 gene as a means of enhancing m...

  2. Cross-linkable liposomes stabilize a magnetic resonance contrast-enhancing polymeric fastener.

    Smith, Cartney E; Kong, Hyunjoon


    Liposomes are commonly used to deliver drugs and contrast agents to their target site in a controlled manner. One of the greatest obstacles in the performance of such delivery vehicles is their stability in the presence of serum. Here, we demonstrate a method to stabilize a class of liposomes that load gadolinium, a magnetic resonance (MR) contrast agent, as a model cargo on their surfaces. We hypothesized that the sequential adsorption of a gadolinium-binding chitosan fastener on the liposome surface followed by covalent cross-linking of the lipid bilayer would provide enhanced stability and improved MR signal in the presence of human serum. To investigate this hypothesis, liposomes composed of diyne-containing lipids were assembled and functionalized via chitosan conjugated with a hydrophobic anchor and diethylenetriaminepentaacetic acid (DTPA). This postadsorption cross-linking strategy served to stabilize the thermodynamically favorable association between liposome and polymeric fastener. Furthermore, the chitosan-coated, cross-linked liposomes proved more effective as delivery vehicles of gadolinium than uncross-linked liposomes due to the reduced liposome degradation and chitosan desorption. Overall, this study demonstrates a useful method to stabilize a broad class of particles used for systemic delivery of various molecular payloads. PMID:24635565

  3. Propulsion of liposomes using bacterial motors

    Here we describe the utilization of flagellated bacteria as actuators to propel spherical liposomes by attaching bacteria to the liposome surface. Bacteria were stably attached to liposomes using a cross-linking antibody. The effect of the number of attached bacteria on propulsion speed was experimentally determined. The effects of bacterial propulsion on the bacteria–antibody–liposome complex were stochastic. We demonstrated that liposomal mobility increased when bacteria were attached, and the propulsion speed correlated with the number of bacteria. (paper)

  4. Novel mucus-penetrating liposomes as a potential oral drug delivery system: preparation, in vitro characterization, and enhanced cellular uptake

    Li X


    Full Text Available Xiuying Li1, Dan Chen1, Chaoyi Le2, Chunliu Zhu1, Yong Gan1, Lars Hovgaard3, Mingshi Yang41Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; 2University of Toronto Mississauga Campus, Ontario, Canada; 3Oral Formulation Development, Novo Nordisk A/S, Maalov; 4Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Copenhagen, DenmarkBackground: The aim of this study was to investigate the intestinal mucus-penetrating properties and intestinal cellular uptake of two types of liposomes modified by Pluronic F127 (PF127.Methods: The two types of liposomes, ie, PF127-inlaid liposomes and PF127-adsorbed liposomes, were prepared by a thin-film hydration method followed by extrusion, in which coumarin 6 was loaded as a fluorescence marker. A modified Franz diffusion cell mounted with the intestinal mucus of rats was used to study the diffusion characteristics of the two types of PF127 liposomes. Cell uptake studies were conducted in Caco-2 cells and analyzed using confocal laser scanning microcopy as well as flow cytometry.Results: The diffusion efficiency of the two types of PF127-modified liposomes through intestinal rat mucus was 5–7-fold higher than that of unmodified liposomes. Compared with unmodified liposomes, PF127-inlaid liposomes showed significantly higher cellular uptake of courmarin 6. PF127-adsorbed liposomes showed a lower cellular uptake. Moreover, and interestingly, the two types of PF127-modified liposomes showed different cellular uptake mechanisms in Caco-2 cells.Conclusion: PF127-inlaid liposomes with improved intestinal mucus-penetrating ability and enhanced cellular uptake might be a potential carrier candidate for oral drug delivery.Keywords: Pluronic F127, mucus-penetrating, particles, liposomes, oral drug delivery

  5. Encapsulation of Liposomes within pH Responsive Microspheres for Oral Colonic Drug Delivery

    M. J. Barea


    Full Text Available A novel liposome-in-microsphere (LIM formulation has been created comprising drug-loaded liposomes within pH responsive Eudragit S100 microspheres. The liposomes contained the model drug 5-ASA and were coated with chitosan in order to protect them during encapsulation within the microspheres and to improve site-specific release characteristics. In vitro drug release studies showed that LIMs prevented drug release within simulated stomach and small intestine conditions with subsequent drug release occurring in large intestine conditions. The formulation therefore has potential for oral colonic drug delivery.

  6. Ligand-exchange chromatographic separation of polycyclic aromatic hydrocarbons and polycyclic aromatic sulfur heterocycles on a chelating silica gel loaded with palladium (II) or silver (I) cations

    Pyell, U.; Schober, S.; Stork, G. [Fachbereich Chemie der Philipps-Universitaet Marburg (Germany)


    2-Amino-1-cyclopentene-1-dithiocarboxylic acid silica gel (ACDA-SG) loaded with Ag(I) or Pd(II) ions has been examined for the group fractionation of polycyclic aromatic sulfur heterocycles (PASH) from polycyclic aromatic hydrocarbons (PAH) via ligand-exchange chromatography in the normal phase mode. It is shown that metal loading has a great impact on the selectivity of ACDA-SG for PASH and PAH. Pd(II) loaded ACDA-SG proved to be suitable for the group isolation of PASH from the aromatic fractions of petroleum mixtures (number of condensed rings{<=}3). (orig.) With 3 figs., 2 tabs., 14 refs.

  7. Comparative study of liposomes, transfersomes, ethosomes and cubosomes for transcutaneous immunisation

    Rattanapak, Teerawan; Young, Katie; Rades, Thomas;


    Objectives Lipid colloidal vaccines, including liposomes, transfersomes, ethosomes and cubosomes, were formulated, characterised and investigated for their ability to enhance penetration of a peptide vaccine through stillborn piglet skin in vitro. Methods Liposomes and transfersomes were formulated...... using a film-hydration method, ethosomes using a modified reverse phase method and cubosomes using a lipid precursor method. The size, zeta potential, peptide loading and interfacial behaviour of the formulations were characterised. Skin penetration studies were performed using Franz diffusion cells...

  8. Functional coating of liposomes using a folate–polymer conjugate to target folate receptors

    Watanabe K.; Kaneko M; Maitani Y


    Kazuo Watanabe, Makoto Kaneko, Yoshie MaitaniInstitute of Medical Chemistry, Hoshi University, Tokyo, JapanAbstract: Folate-polymer-coated liposomes were developed for targeted chemotherapy using doxorubicin (DXR) as a model drug. Folate-poly(L-lysine) (F–PLL) conjugates with a folate modification degree of 16.7 mol% on epsilon amino groups of PLL were synthesized. DXR-loaded anionic liposomes were coated with F–PLL, and the cellular association of F–PLL-coated l...

  9. Absorption and fluorescence studies of curcumin bound to liposomes and lymphocytes: effect of γ- irradiation

    Absorption and fluorescence spectral changes in curcumin were employed to follow its binding to liposomes and lymphocytes. The association constants indicated high affinity of curcumin to liposomes. Tumor lymphocytes show mere intense fluorescence of curcumin over the normal lymphocytes. The loss of curcumin in cells after γ-irradiation could be followed by reduction in curcumin fluorescence. The studies indicate that such fluorescence changes can be used as markers to understand the preferential loading of curcumin to cells. (author)

  10. Liposomes in biology and medicine

    Schwendener, R.


    Drug delivery systems (DDS) have become important tools for the specific delivery of a large number of drug molecules. Since their discovery in the 1960s liposomes were recognized as models to study biological membranes and as versatile DDS of both hydrophilic and lipophilic molecules. Liposomes--nanosized unilamellar phospholipid bilayer vesicles--undoubtedly represent the most extensively studied and advanced drug delivery vehicles. After a long period of research and development efforts, l...