WorldWideScience

Sample records for catalytic rna cleavage

  1. Structural and functional basis for RNA cleavage by Ire1

    Directory of Open Access Journals (Sweden)

    Stroud Robert M

    2011-07-01

    Full Text Available Abstract Background The unfolded protein response (UPR controls the protein folding capacity of the endoplasmic reticulum (ER. Central to this signaling pathway is the ER-resident bifunctional transmembrane kinase/endoribonuclease Ire1. The endoribonuclease (RNase domain of Ire1 initiates a non-conventional mRNA splicing reaction, leading to the production of a transcription factor that controls UPR target genes. The mRNA splicing reaction is an obligatory step of Ire1 signaling, yet its mechanism has remained poorly understood due to the absence of substrate-bound crystal structures of Ire1, the lack of structural similarity between Ire1 and other RNases, and a scarcity of quantitative enzymological data. Here, we experimentally define the active site of Ire1 RNase and quantitatively evaluate the contribution of the key active site residues to catalysis. Results This analysis and two new crystal structures suggest that Ire1 RNase uses histidine H1061 and tyrosine Y1043 as the general acid-general base pair contributing ≥ 7.6 kcal/mol and 1.4 kcal/mol to transition state stabilization, respectively, and asparagine N1057 and arginine R1056 for coordination of the scissile phosphate. Investigation of the stem-loop recognition revealed that additionally to the stem-loops derived from the classic Ire1 substrates HAC1 and Xbp1 mRNA, Ire1 can site-specifically and rapidly cleave anticodon stem-loop (ASL of unmodified tRNAPhe, extending known substrate specificity of Ire1 RNase. Conclusions Our data define the catalytic center of Ire1 RNase and suggest a mechanism of RNA cleavage: each RNase monomer apparently contains a separate catalytic apparatus for RNA cleavage, whereas two RNase subunits contribute to RNA stem-loop docking. Conservation of the key residues among Ire1 homologues suggests that the mechanism elucidated here for yeast Ire1 applies to Ire1 in metazoan cells, and to the only known Ire1 homologue RNase L.

  2. Short RNA guides cleavage by eukaryotic RNase III.

    Directory of Open Access Journals (Sweden)

    Bruno Lamontagne

    Full Text Available In eukaryotes, short RNAs guide a variety of enzymatic activities that range from RNA editing to translation repression. It is hypothesized that pre-existing proteins evolved to bind and use guide RNA during evolution. However, the capacity of modern proteins to adopt new RNA guides has never been demonstrated. Here we show that Rnt1p, the yeast orthologue of the bacterial dsRNA-specific RNase III, can bind short RNA transcripts and use them as guides for sequence-specific cleavage. Target cleavage occurred at a constant distance from the Rnt1p binding site, leaving the guide RNA intact for subsequent cleavage. Our results indicate that RNase III may trigger sequence-specific RNA degradation independent of the RNAi machinery, and they open the road for a new generation of precise RNA silencing tools that do not trigger a dsRNA-mediated immune response.

  3. Drosha regulates gene expression independently of RNA cleavage function

    DEFF Research Database (Denmark)

    Gromak, Natalia; Dienstbier, Martin; Macias, Sara

    2013-01-01

    Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription......-dependent manner. This binding is not associated with miRNA production or RNA cleavage. Drosha knockdown in HeLa cells downregulated nascent gene transcription, resulting in a reduction of polyadenylated mRNA produced from these gene regions. Furthermore, we show that this function of Drosha is dependent on its N......-terminal protein-interaction domain, which associates with the RNA-binding protein CBP80 and RNA Polymerase II. Consequently, we uncover a previously unsuspected RNA cleavage-independent function of Drosha in the regulation of human gene expression....

  4. Cleavage of influenza RNA by using a human PUF-based artificial RNA-binding protein–staphylococcal nuclease hybrid

    International Nuclear Information System (INIS)

    Mori, Tomoaki; Nakamura, Kento; Masaoka, Keisuke; Fujita, Yusuke; Morisada, Ryosuke; Mori, Koichi; Tobimatsu, Takamasa; Sera, Takashi

    2016-01-01

    Various viruses infect animals and humans and cause a variety of diseases, including cancer. However, effective methodologies to prevent virus infection have not yet been established. Therefore, development of technologies to inactivate viruses is highly desired. We have already demonstrated that cleavage of a DNA virus genome was effective to prevent its replication. Here, we expanded this methodology to RNA viruses. In the present study, we used staphylococcal nuclease (SNase) instead of the PIN domain (PilT N-terminus) of human SMG6 as an RNA-cleavage domain and fused the SNase to a human Pumilio/fem-3 binding factor (PUF)-based artificial RNA-binding protein to construct an artificial RNA restriction enzyme with enhanced RNA-cleavage rates for influenzavirus. The resulting SNase-fusion nuclease cleaved influenza RNA at rates 120-fold greater than the corresponding PIN-fusion nuclease. The cleaving ability of the PIN-fusion nuclease was not improved even though the linker moiety between the PUF and RNA-cleavage domain was changed. Gel shift assays revealed that the RNA-binding properties of the PUF derivative used was not as good as wild type PUF. Improvement of the binding properties or the design method will allow the SNase-fusion nuclease to cleave an RNA target in mammalian animal cells and/or organisms. - Highlights: • A novel RNA restriction enzyme using SNase was developed tor cleave viral RNA. • Our enzyme cleaved influenza RNA with rates >120-fold higher rates a PIN-fusion one. • Our artificial enzyme with the L5 linker showed the highest RNA cleavage rate. • Our artificial enzyme site-selectively cleaved influenza RNA in vitro.

  5. Programmable RNA recognition and cleavage by CRISPR/Cas9.

    Science.gov (United States)

    O'Connell, Mitchell R; Oakes, Benjamin L; Sternberg, Samuel H; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A

    2014-12-11

    The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA-DNA complementarity to identify target sites for sequence-specific double-stranded DNA (dsDNA) cleavage. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, known as the protospacer adjacent motif (PAM), next to and on the strand opposite the twenty-nucleotide target site in dsDNA. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in a large range of prokaryotic and eukaryotic cell types, and in whole organisms, but it has been thought to be incapable of targeting RNA. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalysed DNA cleavage. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous messenger RNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable transcript recognition without the need for tags.

  6. Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations

    Science.gov (United States)

    Zuo, Zhicheng; Liu, Jin

    2016-11-01

    The CRISPR-associated endonuclease Cas9 from Streptococcus pyogenes (spCas9) along with a single guide RNA (sgRNA) has emerged as a versatile toolbox for genome editing. Despite recent advances in the mechanism studies on spCas9-sgRNA-mediated double-stranded DNA (dsDNA) recognition and cleavage, it is still unclear how the catalytic Mg2+ ions induce the conformation changes toward the catalytic active state. It also remains controversial whether Cas9 generates blunt-ended or staggered-ended breaks with overhangs in the DNA. To investigate these issues, here we performed the first all-atom molecular dynamics simulations of the spCas9-sgRNA-dsDNA system with and without Mg2+ bound. The simulation results showed that binding of two Mg2+ ions at the RuvC domain active site could lead to structurally and energetically favorable coordination ready for the non-target DNA strand cleavage. Importantly, we demonstrated with our simulations that Cas9-catalyzed DNA cleavage produces 1-bp staggered ends rather than generally assumed blunt ends.

  7. SKI2 mediates degradation of RISC 5'-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis.

    Science.gov (United States)

    Branscheid, Anja; Marchais, Antonin; Schott, Gregory; Lange, Heike; Gagliardi, Dominique; Andersen, Stig Uggerhøj; Voinnet, Olivier; Brodersen, Peter

    2015-12-15

    Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20-24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5', but not 3'-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5' to the cleavage site, but several examples of 3'-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5'-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5'-cleavage fragments. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. SKI2 mediates degradation of RISC 5′-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis

    Science.gov (United States)

    Branscheid, Anja; Marchais, Antonin; Schott, Gregory; Lange, Heike; Gagliardi, Dominique; Andersen, Stig Uggerhøj; Voinnet, Olivier; Brodersen, Peter

    2015-01-01

    Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20–24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5′, but not 3′-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5′ to the cleavage site, but several examples of 3′-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5′-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5′-cleavage fragments. PMID:26464441

  9. Transcriptional down-regulation and rRNA cleavage in Dictyostelium discoideum mitochondria during Legionella pneumophila infection.

    Directory of Open Access Journals (Sweden)

    Chenyu Zhang

    2009-05-01

    Full Text Available Bacterial pathogens employ a variety of survival strategies when they invade eukaryotic cells. The amoeba Dictyostelium discoideum is used as a model host to study the pathogenic mechanisms that Legionella pneumophila, the causative agent of Legionnaire's disease, uses to kill eukaryotic cells. Here we show that the infection of D. discoideum by L. pneumophila results in a decrease in mitochondrial messenger RNAs, beginning more than 8 hours prior to detectable host cell death. These changes can be mimicked by hydrogen peroxide treatment, but not by other cytotoxic agents. The mitochondrial large subunit ribosomal RNA (LSU rRNA is also cleaved at three specific sites during the course of infection. Two LSU rRNA fragments appear first, followed by smaller fragments produced by additional cleavage events. The initial LSU rRNA cleavage site is predicted to be on the surface of the large subunit of the mitochondrial ribosome, while two secondary sites map to the predicted interface with the small subunit. No LSU rRNA cleavage was observed after exposure of D. discoideum to hydrogen peroxide, or other cytotoxic chemicals that kill cells in a variety of ways. Functional L. pneumophila type II and type IV secretion systems are required for the cleavage, establishing a correlation between the pathogenesis of L. pneumophila and D. discoideum LSU rRNA destruction. LSU rRNA cleavage was not observed in L. pneumophila infections of Acanthamoeba castellanii or human U937 cells, suggesting that L. pneumophila uses distinct mechanisms to interrupt metabolism in different hosts. Thus, L. pneumophila infection of D. discoideum results in dramatic decrease of mitochondrial RNAs, and in the specific cleavage of mitochondrial rRNA. The predicted location of the cleavage sites on the mitochondrial ribosome suggests that rRNA destruction is initiated by a specific sequence of events. These findings suggest that L. pneumophila specifically disrupts mitochondrial

  10. Stars and Symbiosis: MicroRNA- and MicroRNA*-Mediated Transcript Cleavage Involved in Arbuscular Mycorrhizal Symbiosis1[W][OA

    Science.gov (United States)

    Devers, Emanuel A.; Branscheid, Anja; May, Patrick; Krajinski, Franziska

    2011-01-01

    The majority of plants are able to form the arbuscular mycorrhizal (AM) symbiosis in association with AM fungi. During symbiosis development, plant cells undergo a complex reprogramming resulting in profound morphological and physiological changes. MicroRNAs (miRNAs) are important components of the regulatory network of plant cells. To unravel the impact of miRNAs and miRNA-mediated mRNA cleavage on root cell reprogramming during AM symbiosis, we carried out high-throughput (Illumina) sequencing of small RNAs and degradome tags of Medicago truncatula roots. This led to the annotation of 243 novel miRNAs. An increased accumulation of several novel and conserved miRNAs in mycorrhizal roots suggest a role of these miRNAs during AM symbiosis. The degradome analysis led to the identification of 185 root transcripts as mature miRNA and also miRNA*-mediated mRNA cleavage targets. Several of the identified miRNA targets are known to be involved in root symbioses. In summary, the increased accumulation of specific miRNAs and the miRNA-mediated cleavage of symbiosis-relevant genes indicate that miRNAs are an important part of the regulatory network leading to symbiosis development. PMID:21571671

  11. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi; Hidaka, Makoto; Masaki, Haruhiko, E-mail: amasaki@mail.ecc.u-tokyo.ac.jp

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.

  12. The influence of junction conformation on RNA cleavage by the hairpin ribozyme in its natural junction form.

    Science.gov (United States)

    Thomson, J B; Lilley, D M

    1999-01-01

    In the natural form of the hairpin ribozyme the two loop-carrying duplexes that comprise the majority of essential bases for activity form two adjacent helical arms of a four-way RNA junction. In the present work we have manipulated the sequence around the junction in a way known to perturb the global folding properties. We find that replacement of the junction by a different sequence that has the same conformational properties as the natural sequence gives closely similar reaction rate and Arrhenius activation energy for the substrate cleavage reaction. By comparison, rotation of the natural sequence in order to alter the three-dimensional folding of the ribozyme leads to a tenfold reduction in the kinetics of cleavage. Replacement with the U1 four-way junction that is resistant to rotation into the antiparallel structure required to allow interaction between the loops also gives a tenfold reduction in cleavage rate. The results indicate that the conformation of the junction has a major influence on the catalytic activity of the ribozyme. The results are all consistent with a role for the junction in the provision of a framework by which the loops are presented for interaction in order to create the active form of the ribozyme. PMID:10024170

  13. Base substitutions at scissile bond sites are sufficient to alter RNA-binding and cleavage activity of RNase III.

    Science.gov (United States)

    Kim, Kyungsub; Sim, Se-Hoon; Jeon, Che Ok; Lee, Younghoon; Lee, Kangseok

    2011-02-01

    RNase III, a double-stranded RNA-specific endoribonuclease, degrades bdm mRNA via cleavage at specific sites. To better understand the mechanism of cleavage site selection by RNase III, we performed a genetic screen for sequences containing mutations at the bdm RNA cleavage sites that resulted in altered mRNA stability using a transcriptional bdm'-'cat fusion construct. While most of the isolated mutants showed the increased bdm'-'cat mRNA stability that resulted from the inability of RNase III to cleave the mutated sequences, one mutant sequence (wt-L) displayed in vivo RNA stability similar to that of the wild-type sequence. In vivo and in vitro analyses of the wt-L RNA substrate showed that it was cut only once on the RNA strand to the 5'-terminus by RNase III, while the binding constant of RNase III to this mutant substrate was moderately increased. A base substitution at the uncleaved RNase III cleavage site in wt-L mutant RNA found in another mutant lowered the RNA-binding affinity by 11-fold and abolished the hydrolysis of scissile bonds by RNase III. Our results show that base substitutions at sites forming the scissile bonds are sufficient to alter RNA cleavage as well as the binding activity of RNase III. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. 3' RNA ligase mediated rapid amplification of cDNA ends for validating viroid induced cleavage at the 3' extremity of the host mRNA.

    Science.gov (United States)

    Adkar-Purushothama, Charith Raj; Bru, Pierrick; Perreault, Jean-Pierre

    2017-12-01

    5' RNA ligase-mediated rapid amplification of cDNA ends (5' RLM-RACE) is a widely-accepted method for the validation of direct cleavage of a target gene by a microRNA (miRNA) and viroid-derived small RNA (vd-sRNA). However, this method cannot be used if cleavage takes place in the 3' extremity of the target RNA, as this gives insufficient sequence length to design nested PCR primers for 5' RLM RACE. To overcome this hurdle, we have developed 3' RNA ligase-mediated rapid amplification of cDNA ends (3' RLM RACE). In this method, an oligonucleotide adapter having 5' adenylated and 3' blocked is ligated to the 3' end of the cleaved RNA followed by PCR amplification using gene specific primers. In other words, in 3' RLM RACE, 3' end is mapped using 5' fragment instead of small 3' fragment. The method developed here was verified by examining the bioinformatics predicted and parallel analysis of RNA ends (PARE) proved cleavage sites of chloride channel protein CLC-b-like mRNA in Potato spindle tuber viroid infected tomato plants. The 3' RLM RACE developed in this study has the potential to validate the miRNA and vd-sRNA mediated cleavage of mRNAs at its 3' untranslated region (3' UTR). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Detection of siRNA Mediated Target mRNA Cleavage Activities in Human Cells by a Novel Stem-Loop Array RT-PCR Analysis

    Science.gov (United States)

    2016-09-07

    sequences of the target mRNA, and a double stranded stem at the 5′ end that forms a stem -loop to function as a forceps to stabilize the secondary...E-mjournal homepage: www.elsevier.com/locate/bbrepDetection of siRNA-mediated target mRNA cleavage activities in human cells by a novel stem -loop...challenges for the accurate and efficient detection and verification of cleavage sites on target mRNAs. Here we used a sensitive stem -loop array reverse

  16. PRMT1 methylates the single Argonaute of Toxoplasma gondii and is important for the recruitment of Tudor nuclease for target RNA cleavage by antisense guide RNA

    Science.gov (United States)

    Musiyenko, Alla; Majumdar, Tanmay; Andrews, Joel; Adams, Brian; Barik, Sailen

    2013-01-01

    Summary Argonaute (Ago) plays a central role in RNA interference in metazoans, but its status in lower organisms remains ill-defined. We report on the Ago complex of the unicellular protozoan, Toxoplasma gondii (Tg), an obligatory pathogen of mammalian hosts. The PIWI-like domain of TgAgo lacked the canonical DDE/H catalytic triad, explaining its weak target RNA cleavage activity. However, TgAgo associated with a stronger RNA slicer, a Tudor staphylococcal nuclease (TSN), and with a protein Arg methyl transferase, PRMT1. Mutational analysis suggested that the N-terminal RGG-repeat domain of TgAgo was methylated by PRMT1, correlating with the recruitment of TSN. The slicer activity of TgAgo was Mg2+-dependent and required perfect complementarity between the guide RNA and the target. In contrast, the TSN activity was Ca2+-dependent and required an imperfectly paired guide RNA. Ago knockout parasites showed essentially normal growth, but in contrast, the PRMT1 knockouts grew abnormally. Chemical inhibition of Arg-methylation also had an anti-parasitic effect. These results suggest that the parasitic PRMT1 plays multiple roles, and its loss affects the recruitment of a more potent second slicer to the parasitic RNA silencing complex, the exact mechanism of which remains to be determined. PMID:22309152

  17. Targeted cleavage of hepatitis E virus 3' end RNA mediated by hammerhead ribozymes inhibits viral RNA replication

    International Nuclear Information System (INIS)

    Sriram, Bandi; Thakral, Deepshi; Panda, Subrat Kumar

    2003-01-01

    The 3' end of hepatitis E virus (HEV) contains cis-acting regulatory element, which plays an important role in viral replication. To develop specific replication inhibitor at the molecular level, mono- and di-hammerhead ribozymes (Rz) were designed and synthesized against the conserved 3' end sequences of HEV, which cleave at nucleotide positions 7125 and 7112/7125, respectively. Di-hammerhead ribozyme with two catalytic motifs in tandem was designed to cleave simultaneously at two sites spaced 13 nucleotides apart, which increases the overall cleavage efficiency and prevents the development of escape mutants. Specific cleavage products were obtained with both the ribozymes in vitro at physiological conditions. The inactive control ribozymes showed no cleavage. The ribozymes showed specific inhibition of HEV 3' end fused-luciferase reporter gene expression by ∼37 and ∼60%, respectively in HepG2 cells. These results demonstrate a feasible approach to inhibit the HEV replication to a limited extent by targeting the cis-acting 3' end of HEV with hammerhead ribozymes

  18. Insight into the recognition, binding, and reactivity of catalytic metallodrugs targeting stem loop IIb of hepatitis C IRES RNA.

    Science.gov (United States)

    Bradford, Seth S; Ross, Martin James; Fidai, Insiya; Cowan, James A

    2014-06-01

    The complex Cu-GGHYrFK-amide (1-Cu) was previously reported as a novel metallotherapeutic that catalytically inactivates stem loop IIb (SLIIb) of the hepatitis C virus (HCV) internal ribosomal entry site (IRES) RNA and demonstrates significant antiviral activity in a cellular HCV replicon assay. Herein we describe additional studies focused on understanding the cleavage mechanism as well as the relationship of catalyst configuration to structural recognition and site-selective cleavage of the structured RNA motif. These are advanced by use of a combination of MALDI-TOF mass spectrometry, melting temperature determinations, and computational analysis to develop a structural model for binding and reactivity toward SLIIb of the IRES RNA. In addition, the binding, reactivity, and structural chemistry of the all-D-amino acid form of this metallopeptide, complex 2-Cu, are reported and compared with those of complex 1-Cu. In vitro RNA binding and cleavage assays for complex 2-Cu show a KD value of 76 ± 3 nM, and Michaelis-Menten parameters of kcat =0.14 ± 0.01 min(-1) and KM =7.9 ± 1.2 μM, with a turnover number exceeding 40. In a luciferase-based cellular replicon assay Cu-GGhyrfk-amide shows activity similar to that of the 1-Cu parent peptide, with an IC50 value of 1.9 ± 0.4 μM and cytotoxicity exceeding 100 μM. RT-PCR experiments confirm a significant decrease in HCV RNA levels in replicon assays for up to nine days when treated with complex 1-Cu in three-day dosing increments. This study shows the influence that the α-carbon stereocenter has for this new class of compounds, while detailed mass spectrometry and computational analyses provide new insight into the mechanisms of recognition, binding, and reactivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The Conformational Dynamics of Cas9 Governing DNA Cleavage Are Revealed by Single-Molecule FRET.

    Science.gov (United States)

    Yang, Mengyi; Peng, Sijia; Sun, Ruirui; Lin, Jingdi; Wang, Nan; Chen, Chunlai

    2018-01-09

    Off-target binding and cleavage by Cas9 pose major challenges in its application. How the conformational dynamics of Cas9 govern its nuclease activity under on- and off-target conditions remains largely unknown. Here, using intra-molecular single-molecule fluorescence resonance energy transfer measurements, we revealed that Cas9 in apo, sgRNA-bound, and dsDNA/sgRNA-bound forms spontaneously transits among three major conformational states, mainly reflecting significant conformational mobility of the catalytic HNH domain. We also uncovered surprising long-range allosteric communication between the HNH domain and the RNA/DNA heteroduplex at the PAM-distal end to ensure correct positioning of the catalytic site, which demonstrated that a unique proofreading mechanism served as the last checkpoint before DNA cleavage. Several Cas9 residues were likely to mediate the allosteric communication and proofreading step. Modulating interactions between Cas9 and heteroduplex at the PAM-distal end by introducing mutations on these sites provides an alternative route to improve and optimize the CRISPR/Cas9 toolbox. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.

    Science.gov (United States)

    Lavoie, Mathieu; Abou Elela, Sherif

    2008-08-19

    Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.

  1. Two tandem RNase III cleavage sites determine betT mRNA stability in response to osmotic stress in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Minji Sim

    Full Text Available While identifying genes regulated by ribonuclease III (RNase III in Escherichia coli, we observed that steady-state levels of betT mRNA, which encodes a transporter mediating the influx of choline, are dependent on cellular concentrations of RNase III. In the present study, we also observed that steady-state levels of betT mRNA are dependent on RNase III activity upon exposure to osmotic stress, indicating the presence of cis-acting elements controlled by RNase III in betT mRNA. Primer extension analyses of betT mRNA revealed two tandem RNase III cleavage sites in its stem-loop region, which were biochemically confirmed via in vitro cleavage assays. Analyses of cleavage sites suggested the stochastic selection of cleavage sites by RNase III, and mutational analyses indicated that RNase III cleavage at either site individually is insufficient for efficient betT mRNA degradation. In addition, both the half-life and abundance of betT mRNA were significantly increased in association with decreased RNase III activity under hyper-osmotic stress conditions. Our findings demonstrate that betT mRNA stability is controlled by RNase III at the post-transcriptional level under conditions of osmotic stress.

  2. Deep Sequencing Insights in Therapeutic shRNA Processing and siRNA Target Cleavage Precision.

    Science.gov (United States)

    Denise, Hubert; Moschos, Sterghios A; Sidders, Benjamin; Burden, Frances; Perkins, Hannah; Carter, Nikki; Stroud, Tim; Kennedy, Michael; Fancy, Sally-Ann; Lapthorn, Cris; Lavender, Helen; Kinloch, Ross; Suhy, David; Corbau, Romu

    2014-02-04

    TT-034 (PF-05095808) is a recombinant adeno-associated virus serotype 8 (AAV8) agent expressing three short hairpin RNA (shRNA) pro-drugs that target the hepatitis C virus (HCV) RNA genome. The cytosolic enzyme Dicer cleaves each shRNA into multiple, potentially active small interfering RNA (siRNA) drugs. Using next-generation sequencing (NGS) to identify and characterize active shRNAs maturation products, we observed that each TT-034-encoded shRNA could be processed into as many as 95 separate siRNA strands. Few of these appeared active as determined by Sanger 5' RNA Ligase-Mediated Rapid Amplification of cDNA Ends (5-RACE) and through synthetic shRNA and siRNA analogue studies. Moreover, NGS scrutiny applied on 5-RACE products (RACE-seq) suggested that synthetic siRNAs could direct cleavage in not one, but up to five separate positions on targeted RNA, in a sequence-dependent manner. These data support an on-target mechanism of action for TT-034 without cytotoxicity and question the accepted precision of substrate processing by the key RNA interference (RNAi) enzymes Dicer and siRNA-induced silencing complex (siRISC).Molecular Therapy-Nucleic Acids (2014) 3, e145; doi:10.1038/mtna.2013.73; published online 4 February 2014.

  3. Catalytic diastereoselective tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts by C-C bond cleavage

    KAUST Repository

    Yang, Wenguo; Tan, Davin; Lee, Richmond; Li, Lixin; Pan, Yuanhang; Huang, Kuo-Wei; Tan, Choonhong; Jiang, Zhiyong

    2012-01-01

    Through the cleavage of the C-C bond, the first catalytic tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts has been presented. Various S N2′-like C-, S-, and P-allylic compounds could be obtained with exclusive E

  4. Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiayue; Lu, Lu; Zhao, Chen; Mei, Donghai; Lercher, Johannes A.

    2014-03-01

    Catalytic pathways for the cleavage of ether bonds in benzyl phenyl ether (BPE) in liquid phase using Ni- and zeolite-based catalysts are explored. In the absence of catalysts, the C-O bond is selectively cleaved in water by hydrolysis, forming phenol and benzyl alcohol as intermediates, followed by alkylation. The hydronium ions catalyzing the reactions are provided by the dissociation of water at 523 K. Upon addition of HZSM-5, rates of hydrolysis and alkylation are markedly increased in relation to proton concentrations. In the presence of Ni/SiO2, the selective hydrogenolysis dominates for cleaving the Caliphatic-O bond. Catalyzed by the dual-functional Ni/HZSM-5, hydrogenolysis occurs as the major route rather than hydrolysis (minor route). In apolar undecane, the non-catalytic thermal pyrolysis route dominates. Hydrogenolysis of BPE appears to be the major reaction pathway in undecane in the presence of Ni/SiO2 or Ni/HZSM-5, almost completely suppressing radical reactions. Density functional theory (DFT) calculations strongly support the proposed C-O bond cleavage mechanisms on BPE in aqueous and apolar phases. These calculations show that BPE is initially protonated and subsequently hydrolyzed in the aqueous phase. Finally, DFT calculations suggest that the radical reactions in non-polar solvents lead to primary benzyl and phenoxy radicals in undecane, which leads to heavier condensation products as long as metals are absent for providing dissociated hydrogen.

  5. RISC-interacting clearing 3'- 5' exoribonucleases (RICEs) degrade uridylated cleavage fragments to maintain functional RISC in Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Zhonghui; Hu, Fuqu; Sung, Min Woo; Shu, Chang; Castillo-González, Claudia; Koiwa, Hisashi; Tang, Guiliang; Dickman, Martin; Li, Pingwei; Zhang, Xiuren

    2017-05-02

    RNA-induced silencing complex (RISC) is composed of miRNAs and AGO proteins. AGOs use miRNAs as guides to slice target mRNAs to produce truncated 5' and 3' RNA fragments. The 5' cleaved RNA fragments are marked with uridylation for degradation. Here, we identified novel cofactors of Arabidopsis AGOs, named RICE1 and RICE2. RICE proteins specifically degraded single-strand (ss) RNAs in vitro; but neither miRNAs nor miRNA*s in vivo. RICE1 exhibited a DnaQ-like exonuclease fold and formed a homohexamer with the active sites located at the interfaces between RICE1 subunits. Notably, ectopic expression of catalytically-inactive RICE1 not only significantly reduced miRNA levels; but also increased 5' cleavage RISC fragments with extended uridine tails. We conclude that RICEs act to degrade uridylated 5' products of AGO cleavage to maintain functional RISC. Our study also suggests a possible link between decay of cleaved target mRNAs and miRNA stability in RISC.

  6. The Conformational Dynamics of Cas9 Governing DNA Cleavage Are Revealed by Single-Molecule FRET

    Directory of Open Access Journals (Sweden)

    Mengyi Yang

    2018-01-01

    Full Text Available Summary: Off-target binding and cleavage by Cas9 pose major challenges in its application. How the conformational dynamics of Cas9 govern its nuclease activity under on- and off-target conditions remains largely unknown. Here, using intra-molecular single-molecule fluorescence resonance energy transfer measurements, we revealed that Cas9 in apo, sgRNA-bound, and dsDNA/sgRNA-bound forms spontaneously transits among three major conformational states, mainly reflecting significant conformational mobility of the catalytic HNH domain. We also uncovered surprising long-range allosteric communication between the HNH domain and the RNA/DNA heteroduplex at the PAM-distal end to ensure correct positioning of the catalytic site, which demonstrated that a unique proofreading mechanism served as the last checkpoint before DNA cleavage. Several Cas9 residues were likely to mediate the allosteric communication and proofreading step. Modulating interactions between Cas9 and heteroduplex at the PAM-distal end by introducing mutations on these sites provides an alternative route to improve and optimize the CRISPR/Cas9 toolbox. : Yang et al. revealed significant conformational dynamics of Cas9 at global and local scales using single-molecule FRET. They uncovered surprising long-range allosteric communication between the HNH nuclease domain and the RNA/DNA heteroduplex at the PAM-distal end that serves as a proofreading checkpoint to govern the nuclease activity and specificity of Cas9. Keywords: CRISPR, Cas9, single-molecule, FRET, conformational dynamics, proofreading, off-target, allosteric communication, genome editing

  7. Essential Structural and Functional Roles of the Cmr4 Subunit in RNA Cleavage by the Cmr CRISPR-Cas Complex

    Directory of Open Access Journals (Sweden)

    Nancy F. Ramia

    2014-12-01

    Full Text Available Summary: The Cmr complex is the multisubunit effector complex of the type III-B clustered regularly interspaced short palindromic repeats (CRISPR-Cas immune system. The Cmr complex recognizes a target RNA through base pairing with the integral CRISPR RNA (crRNA and cleaves the target at multiple regularly spaced locations within the complementary region. To understand the molecular basis of the function of this complex, we have assembled information from electron microscopic and X-ray crystallographic structural studies and mutagenesis of a complete Pyrococcus furiosus Cmr complex. Our findings reveal that four helically packed Cmr4 subunits, which make up the backbone of the Cmr complex, act as a platform to support crRNA binding and target RNA cleavage. Interestingly, we found a hook-like structural feature associated with Cmr4 that is likely the site of target RNA binding and cleavage. Our results also elucidate analogies in the mechanisms of crRNA and target molecule binding by the distinct Cmr type III-A and Cascade type I-E complexes. : Ramia et al. show that the helical core of the type III-B Cmr CRISPR-Cas effector complex, made up of multiple Cmr4 subunits, forms the platform for a corresponding number of cleavages of the target RNA. Comparison with the type I-E Cascade structure reveals strikingly similar mechanisms of crRNA and target binding.

  8. RISC-interacting clearing 3’- 5’ exoribonucleases (RICEs) degrade uridylated cleavage fragments to maintain functional RISC in Arabidopsis thaliana

    Science.gov (United States)

    Zhang, Zhonghui; Hu, Fuqu; Sung, Min Woo; Shu, Chang; Castillo-González, Claudia; Koiwa, Hisashi; Tang, Guiliang; Dickman, Martin; Li, Pingwei; Zhang, Xiuren

    2017-01-01

    RNA-induced silencing complex (RISC) is composed of miRNAs and AGO proteins. AGOs use miRNAs as guides to slice target mRNAs to produce truncated 5' and 3' RNA fragments. The 5' cleaved RNA fragments are marked with uridylation for degradation. Here, we identified novel cofactors of Arabidopsis AGOs, named RICE1 and RICE2. RICE proteins specifically degraded single-strand (ss) RNAs in vitro; but neither miRNAs nor miRNA*s in vivo. RICE1 exhibited a DnaQ-like exonuclease fold and formed a homohexamer with the active sites located at the interfaces between RICE1 subunits. Notably, ectopic expression of catalytically-inactive RICE1 not only significantly reduced miRNA levels; but also increased 5' cleavage RISC fragments with extended uridine tails. We conclude that RICEs act to degrade uridylated 5’ products of AGO cleavage to maintain functional RISC. Our study also suggests a possible link between decay of cleaved target mRNAs and miRNA stability in RISC. DOI: http://dx.doi.org/10.7554/eLife.24466.001 PMID:28463111

  9. Effects of mutations in the VP2/VP4 cleavage site of Swine vesicular disease virus on RNA encapsidation and viral infectivity

    NARCIS (Netherlands)

    Rebel, J.M.J.; Leendertse, C.H.; Dekker, A.; Moormann, R.J.M.

    2003-01-01

    We studied VP0 cleavage of Swine vesicular disease virus (SVDV), a member of the Picornaviridae using a full-length cDNA copy of the Dutch SVDV isolate. The influences of mutations, introduced at the cleavage site of SVDV, on VP0 cleavage, RNA encapsidation and viral infection were studied. Double

  10. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.

    Science.gov (United States)

    Sternberg, Samuel H; Redding, Sy; Jinek, Martin; Greene, Eric C; Doudna, Jennifer A

    2014-03-06

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

  11. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9

    Science.gov (United States)

    Sternberg, Samuel H.; Redding, Sy; Jinek, Martin; Greene, Eric C.; Doudna, Jennifer A.

    2014-03-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

  12. Cell Death-Associated Ribosomal RNA Cleavage in Postmortem Tissues and Its Forensic Applications.

    Science.gov (United States)

    Kim, Ji Yeon; Kim, Yunmi; Cha, Hyo Kyeong; Lim, Hye Young; Kim, Hyungsub; Chung, Sooyoung; Hwang, Juck-Joon; Park, Seong Hwan; Son, Gi Hoon

    2017-06-30

    Estimation of postmortem interval (PMI) is a key issue in the field of forensic pathology. With the availability of quantitative analysis of RNA levels in postmortem tissues, several studies have assessed the postmortem degradation of constitutively expressed RNA species to estimate PMI. However, conventional RNA quantification as well as biochemical and physiological changes employed thus far have limitations related to standardization or normalization. The present study focuses on an interesting feature of the subdomains of certain RNA species, in which they are site-specifically cleaved during apoptotic cell death. We found that the D8 divergent domain of ribosomal RNA (rRNA) bearing cell death-related cleavage sites was rapidly removed during postmortem RNA degradation. In contrast to the fragile domain, the 5' terminal region of 28S rRNA was remarkably stable during the postmortem period. Importantly, the differences in the degradation rates between the two domains in mammalian 28S rRNA were highly proportional to increasing PMI with a significant linear correlation observed in mice as well as human autopsy tissues. In conclusion, we demonstrate that comparison of the degradation rates between domains of a single RNA species provides quantitative information on postmortem degradation states, which can be applied for the estimation of PMI.

  13. PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Gao, Pu; Rajashankar, Kanagalaghatta R.; Patel, Dinshaw J. (MSKCC); (Cornell); (Chinese Aca. Sci.)

    2016-12-01

    C2c1 is a newly identified guide RNA-mediated type V-B CRISPR-Cas endonuclease that site-specifically targets and cleaves both strands of target DNA. We have determined crystal structures of Alicyclobacillus acidoterrestris C2c1 (AacC2c1) bound to sgRNA as a binary complex and to target DNAs as ternary complexes, thereby capturing catalytically competent conformations of AacC2c1 with both target and non-target DNA strands independently positioned within a single RuvC catalytic pocket. Moreover, C2c1-mediated cleavage results in a staggered seven-nucleotide break of target DNA. crRNA adopts a pre-ordered five-nucleotide A-form seed sequence in the binary complex, with release of an inserted tryptophan, facilitating zippering up of 20-bp guide RNA:target DNA heteroduplex on ternary complex formation. Notably, the PAM-interacting cleft adopts a “locked” conformation on ternary complex formation. Structural comparison of C2c1 ternary complexes with their Cas9 and Cpf1 counterparts highlights the diverse mechanisms adopted by these distinct CRISPR-Cas systems, thereby broadening and enhancing their applicability as genome editing tools.

  14. Intermolecular cleavage by UmuD-like mutagenesis proteins

    Science.gov (United States)

    McDonald, John P.; Frank, Ekaterina G.; Levine, Arthur S.; Woodgate, Roger

    1998-01-01

    The activity of a number of proteins is regulated by self-processing reactions. Elegant examples are the cleavage of the prokaryotic LexA and λCI transcriptional repressors and the UmuD-like mutagenesis proteins. Various studies support the hypothesis that LexA and λCI cleavage reactions are predominantly intramolecular in nature. The recently described crystal structure of the Escherichia coli UmuD′ protein (the posttranslational cleavage product of the UmuD protein) suggests, however, that the region of the protein corresponding to the cleavage site is at least 50 Å away from the catalytic active site. We considered the possibility, therefore, that the UmuD-like proteins might undergo self-processing that, in contrast to LexA and λCI, occurs via an intermolecular rather than intramolecular reaction. To test this hypothesis, we introduced into E. coli compatible plasmids with mutations at either the cleavage or the catalytic site of three UmuD-like proteins. Cleavage of these proteins only occurs in the presence of both plasmids, indicating that the reaction is indeed intermolecular in nature. Furthermore, this intermolecular reaction is completely dependent upon the multifunctional RecA protein and leads to the restoration of cellular mutagenesis in nonmutable E. coli strains. Intermolecular cleavage of a biotinylated UmuD active site mutant was also observed in vitro in the presence of the wild-type UmuD′ protein, indicating that in addition to the intact UmuD protein, the normal cleavage product (UmuD′) can also act as a classical enzyme. PMID:9465040

  15. Cleavage of rRNA ensures translational cessation in sperm at fertilization

    Science.gov (United States)

    Johnson, G.D.; Sendler, E.; Lalancette, C.; Hauser, R.; Diamond, M.P.; Krawetz, S.A.

    2011-01-01

    Intact ribosomal RNAs (rRNAs) comprise the majority of somatic transcripts, yet appear conspicuously absent in spermatozoa, perhaps reflecting cytoplasmic expulsion during spermatogenesis. To discern their fate, total RNA retained in mature spermatozoa from three fertile donors was characterized by Next Generation Sequencing. In all samples, >75% of total sequence reads aligned to rRNAs. The distribution of reads along the length of these transcripts exhibited a high degree of non-uniformity that was reiterated between donors. The coverage of sequencing reads was inversely correlated with guanine-cytosine (GC)-richness such that sequences greater than ∼70% GC were virtually absent in all sperm RNA samples. To confirm the loss of sequence, the relative abundance of specific regions of the 28S transcripts in sperm was established by 7-Deaza-2′-deoxy-guanosine-5′-triphosphate RT–PCR. The inability to amplify specific regions of the 28S sequence from sperm despite the abundant representation of this transcript in the sequencing libraries demonstrates that approximately three-quarters of RNA retained in the mature male gamete are products of rRNA fragmentation. Hence, cleavage (not expulsion of the RNA component of the translational machinery) is responsible for preventing spurious translation following spermiogenesis. These results highlight the potential importance of those transcripts, including many mRNAs, which evade fragmentation and remain intact when sperm are delivered at fertilization. Sequencing data are deposited in GEO as: GSE29160. PMID:21831882

  16. Catalytic diastereoselective tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts by C-C bond cleavage

    KAUST Repository

    Yang, Wenguo

    2012-02-08

    Through the cleavage of the C-C bond, the first catalytic tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts has been presented. Various S N2′-like C-, S-, and P-allylic compounds could be obtained with exclusive E configuration in good to excellent yields. The Michael product could also be easily prepared by tuning the β-C-substituent group of the α-methylene ester under the same reaction conditions. Calculated relative energies of various transition states by DFT methods strongly support the observed chemoselectivity and diastereoselectivity. © 2012 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  17. Structure of the Cmr2 Subunit of the CRISPR-Cas RNA Silencing Complex

    Energy Technology Data Exchange (ETDEWEB)

    Cocozaki, Alexis I.; Ramia, Nancy F.; Shao, Yaming; Hale, Caryn R.; Terns, Rebecca M.; Terns, Michael P.; Li, Hong (FSU); (Georgia)

    2012-08-10

    Cmr2 is the largest and an essential subunit of a CRISPR RNA-Cas protein complex (the Cmr complex) that cleaves foreign RNA to protect prokaryotes from invading genetic elements. Cmr2 is thought to be the catalytic subunit of the effector complex because of its N-terminal HD nuclease domain. Here, however, we report that the HD domain of Cmr2 is not required for cleavage by the complex in vitro. The 2.3 {angstrom} crystal structure of Pyrococcus furiosus Cmr2 (lacking the HD domain) reveals two adenylyl cyclase-like and two {alpha}-helical domains. The adenylyl cyclase-like domains are arranged as in homodimeric adenylyl cyclases and bind ADP and divalent metals. However, mutagenesis studies show that the metal- and ADP-coordinating residues of Cmr2 are also not critical for cleavage by the complex. Our findings suggest that another component provides the catalytic function and that the essential role by Cmr2 does not require the identified ADP- or metal-binding or HD domains in vitro.

  18. Analysis of the in vitro cleavage products of the tomato black ring virus RNA-1-encoded 250K polyprotein.

    OpenAIRE

    Demangeat, Gerard; Greif, Charles; Hemmer, O; Fritsch, C

    1990-01-01

    Tomato black ring virus RNA-1 was translated in a rabbit reticulocyte lysate. The primary translation product of Mr 250K, which corresponds to its whole coding capacity, was synthesized within 45 min and, during further incubation in the translation medium, was proteolytically processed. Essentially, four cleavage products (P190, P120, P60 and P50) were detected and located within P250 by pulse-chase and immunoprecipitation experiments. P190 is an intermediate cleavage product which is furthe...

  19. Transcript levels, alternative splicing and proteolytic cleavage of TFIIIA control 5S rRNA accumulation during Arabidopsis thaliana development.

    Science.gov (United States)

    Layat, Elodie; Cotterell, Sylviane; Vaillant, Isabelle; Yukawa, Yasushi; Tutois, Sylvie; Tourmente, Sylvette

    2012-07-01

    Ribosome biogenesis is critical for eukaryotic cells and requires coordinated synthesis of the protein and rRNA moieties of the ribosome, which are therefore highly regulated. 5S ribosomal RNA, an essential component of the large ribosomal subunit, is transcribed by RNA polymerase III and specifically requires transcription factor IIIA (TFIIIA). To obtain insight into the regulation of 5S rRNA transcription, we have investigated the expression of 5S rRNA and the exon-skipped (ES) and exon-including (EI) TFIIIA transcripts, two transcript isoforms that result from alternative splicing of the TFIIIA gene, and TFIIIA protein amounts with respect to requirements for 5S rRNA during development. We show that 5S rRNA quantities are regulated through distinct but complementary mechanisms operating through transcriptional and post-transcriptional control of TFIIIA transcripts as well as at the post-translational level through proteolytic cleavage of the TFIIIA protein. During the reproductive phase, high expression of the TFIIIA gene together with low proteolytic cleavage contributes to accumulation of functional, full-length TFIIIA protein, and results in 5S rRNA accumulation in the seed. In contrast, just after germination, the levels of TFIIIA-encoding transcripts are low and stable. Full-length TFIIIA protein is undetectable, and the level of 5S rRNA stored in the embryo progressively decreases. After day 4, in correlation with the reorganization of 5S rDNA chromatin to a mature state, full-length TFIIIA protein with transcriptional activity accumulates and permits de novo transcription of 5S rRNA. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  20. Conserved and variable domains of RNase MRP RNA.

    Science.gov (United States)

    Dávila López, Marcela; Rosenblad, Magnus Alm; Samuelsson, Tore

    2009-01-01

    Ribonuclease MRP is a eukaryotic ribonucleoprotein complex consisting of one RNA molecule and 7-10 protein subunits. One important function of MRP is to catalyze an endonucleolytic cleavage during processing of rRNA precursors. RNase MRP is evolutionary related to RNase P which is critical for tRNA processing. A large number of MRP RNA sequences that now are available have been used to identify conserved primary and secondary structure features of the molecule. MRP RNA has structural features in common with P RNA such as a conserved catalytic core, but it also has unique features and is characterized by a domain highly variable between species. Information regarding primary and secondary structure features is of interest not only in basic studies of the function of MRP RNA, but also because mutations in the RNA give rise to human genetic diseases such as cartilage-hair hypoplasia.

  1. Mechanism of microRNA-target interaction: molecular dynamics simulations and thermodynamics analysis.

    Directory of Open Access Journals (Sweden)

    Yonghua Wang

    Full Text Available MicroRNAs (miRNAs are endogenously produced approximately 21-nt riboregulators that associate with Argonaute (Ago proteins to direct mRNA cleavage or repress the translation of complementary RNAs. Capturing the molecular mechanisms of miRNA interacting with its target will not only reinforce the understanding of underlying RNA interference but also fuel the design of more effective small-interfering RNA strands. To address this, in the present work the RNA-bound (Ago-miRNA, Ago-miRNA-target and RNA-free Ago forms were analyzed by performing both molecular dynamics simulations and thermodynamic analysis. Based on the principal component analysis results of the simulation trajectories as well as the correlation analysis in fluctuations of residues, we discover that: 1 three important (PAZ, Mid and PIWI domains exist in Argonaute which define the global dynamics of the protein; 2 the interdomain correlated movements are so crucial for the interaction of Ago-RNAs that they not only facilitate the relaxation of the interactions between residues surrounding the RNA binding channel but also induce certain conformational changes; and 3 it is just these conformational changes that expand the cavity of the active site and open putative pathways for both the substrate uptake and product release. In addition, by thermodynamic analysis we also discover that for both the guide RNA 5'-end recognition and the facilitated site-specific cleavage of the target, the presence of two metal ions (of Mg(2+ plays a predominant role, and this conclusion is consistent with the observed enzyme catalytic cleavage activity in the ternary complex (Ago-miRNA-mRNA. Our results find that it is the set of arginine amino acids concentrated in the nucleotide-binding channel in Ago, instead of the conventionally-deemed seed base-paring, that makes greater contributions in stabilizing the binding of the nucleic acids to Ago.

  2. Mechanism of microRNA-target interaction: molecular dynamics simulations and thermodynamics analysis.

    Science.gov (United States)

    Wang, Yonghua; Li, Yan; Ma, Zhi; Yang, Wei; Ai, Chunzhi

    2010-07-29

    MicroRNAs (miRNAs) are endogenously produced approximately 21-nt riboregulators that associate with Argonaute (Ago) proteins to direct mRNA cleavage or repress the translation of complementary RNAs. Capturing the molecular mechanisms of miRNA interacting with its target will not only reinforce the understanding of underlying RNA interference but also fuel the design of more effective small-interfering RNA strands. To address this, in the present work the RNA-bound (Ago-miRNA, Ago-miRNA-target) and RNA-free Ago forms were analyzed by performing both molecular dynamics simulations and thermodynamic analysis. Based on the principal component analysis results of the simulation trajectories as well as the correlation analysis in fluctuations of residues, we discover that: 1) three important (PAZ, Mid and PIWI) domains exist in Argonaute which define the global dynamics of the protein; 2) the interdomain correlated movements are so crucial for the interaction of Ago-RNAs that they not only facilitate the relaxation of the interactions between residues surrounding the RNA binding channel but also induce certain conformational changes; and 3) it is just these conformational changes that expand the cavity of the active site and open putative pathways for both the substrate uptake and product release. In addition, by thermodynamic analysis we also discover that for both the guide RNA 5'-end recognition and the facilitated site-specific cleavage of the target, the presence of two metal ions (of Mg(2+)) plays a predominant role, and this conclusion is consistent with the observed enzyme catalytic cleavage activity in the ternary complex (Ago-miRNA-mRNA). Our results find that it is the set of arginine amino acids concentrated in the nucleotide-binding channel in Ago, instead of the conventionally-deemed seed base-paring, that makes greater contributions in stabilizing the binding of the nucleic acids to Ago.

  3. Analysis of the in vitro cleavage products of the tomato black ring virus RNA-1-encoded 250K polyprotein.

    Science.gov (United States)

    Demangeat, G; Greif, C; Hemmer, O; Fritsch, C

    1990-08-01

    Tomato black ring virus RNA-1 was translated in a rabbit reticulocyte lysate. The primary translation product of Mr 250K, which corresponds to its whole coding capacity, was synthesized within 45 min and, during further incubation in the translation medium, was proteolytically processed. Essentially, four cleavage products (P190, P120, P60 and P50) were detected and located within P250 by pulse-chase and immunoprecipitation experiments. P190 is an intermediate cleavage product which is further cleaved to form P60 and P120. P120, which contains the region that has been assigned to the virus protease and the virus polymerase, was not further cleaved in vitro.

  4. Subcellular RNA profiling links splicing and nuclear DICER1 to alternative cleavage and polyadenylation.

    Science.gov (United States)

    Neve, Jonathan; Burger, Kaspar; Li, Wencheng; Hoque, Mainul; Patel, Radhika; Tian, Bin; Gullerova, Monika; Furger, Andre

    2016-01-01

    Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we used a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected to differential regulation and provided us with a platform to interrogate the molecular regulatory pathways that shape APA profiles in different subcellular locations. Here, we show that APA isoforms with shorter 3' UTRs tend to be overrepresented in the cytoplasm and appear to be cell-type-specific events. Nuclear retention of longer APA isoforms occurs and is partly a result of incomplete splicing contributing to the observed cytoplasmic bias of transcripts with shorter 3' UTRs. We demonstrate that the endoribonuclease III, DICER1, contributes to the establishment of subcellular APA profiles not only by expected cytoplasmic miRNA-mediated destabilization of APA mRNA isoforms, but also by affecting polyadenylation site choice. © 2016 Neve et al.; Published by Cold Spring Harbor Laboratory Press.

  5. DNA/RNA hybrid substrates modulate the catalytic activity of purified AID.

    Science.gov (United States)

    Abdouni, Hala S; King, Justin J; Ghorbani, Atefeh; Fifield, Heather; Berghuis, Lesley; Larijani, Mani

    2018-01-01

    Activation-induced cytidine deaminase (AID) converts cytidine to uridine at Immunoglobulin (Ig) loci, initiating somatic hypermutation and class switching of antibodies. In vitro, AID acts on single stranded DNA (ssDNA), but neither double-stranded DNA (dsDNA) oligonucleotides nor RNA, and it is believed that transcription is the in vivo generator of ssDNA targeted by AID. It is also known that the Ig loci, particularly the switch (S) regions targeted by AID are rich in transcription-generated DNA/RNA hybrids. Here, we examined the binding and catalytic behavior of purified AID on DNA/RNA hybrid substrates bearing either random sequences or GC-rich sequences simulating Ig S regions. If substrates were made up of a random sequence, AID preferred substrates composed entirely of DNA over DNA/RNA hybrids. In contrast, if substrates were composed of S region sequences, AID preferred to mutate DNA/RNA hybrids over substrates composed entirely of DNA. Accordingly, AID exhibited a significantly higher affinity for binding DNA/RNA hybrid substrates composed specifically of S region sequences, than any other substrates composed of DNA. Thus, in the absence of any other cellular processes or factors, AID itself favors binding and mutating DNA/RNA hybrids composed of S region sequences. AID:DNA/RNA complex formation and supporting mutational analyses suggest that recognition of DNA/RNA hybrids is an inherent structural property of AID. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Inhibition of Poliovirus-Induced Cleavage of Cellular Protein PCBP2 Reduces the Levels of Viral RNA Replication

    Science.gov (United States)

    Chase, Amanda J.; Daijogo, Sarah

    2014-01-01

    ABSTRACT Due to their small genome size, picornaviruses must utilize host proteins to mediate cap-independent translation and viral RNA replication. The host RNA-binding protein poly(rC) binding protein 2 (PCBP2) is involved in both processes in poliovirus infected cells. It has been shown that the viral proteinase 3CD cleaves PCBP2 and contributes to viral translation inhibition. However, cleaved PCBP2 remains active in viral RNA replication. This would suggest that both cleaved and intact forms of PCBP2 have a role in the viral RNA replication cycle. The picornavirus genome must act as a template for both translation and RNA replication. However, a template that is actively being translated cannot function as a template for RNA replication, suggesting that there is a switch in template usage from translation to RNA replication. We demonstrate that the cleavage of PCBP2 by the poliovirus 3CD proteinase is a necessary step for efficient viral RNA replication and, as such, may be important for mediating a switch in template usage from translation to RNA replication. IMPORTANCE Poliovirus, like all positive-strand RNA viruses that replicate in the cytoplasm of eukaryotic cells, uses its genomic RNA as a template for both viral protein synthesis and RNA replication. Given that these processes cannot occur simultaneously on the same template, poliovirus has evolved a mechanism(s) to facilitate the switch from using templates for translation to using them for RNA synthesis. This study explores one possible scenario for how the virus alters the functions of a host cell RNA binding protein to mediate, in part, this important transition. PMID:24371074

  7. Post-transcription cleavage generates the 3' end of F17R transcripts in vaccinia virus

    International Nuclear Information System (INIS)

    D'Costa, Susan M.; Antczak, James B.; Pickup, David J.; Condit, Richard C.

    2004-01-01

    Most vaccinia virus intermediate and late mRNAs possess 3' ends that are extremely heterogeneous in sequence. However, late mRNAs encoding the cowpox A-type inclusion protein (ATI), the second largest subunit of the RNA polymerase, and the late telomeric transcripts possess homogeneous 3' ends. In the case of the ATI mRNA, it has been shown that the homogeneous 3' end is generated by a post-transcriptional endoribonucleolytic cleavage event. We have determined that the F17R gene also produces homogeneous transcripts generated by a post-transcriptional cleavage event. Mapping of in vivo mRNA shows that the major 3' end of the F17R transcript maps 1262 nt downstream of the F17R translational start site. In vitro transcripts spanning the in vivo 3' end are cleaved in an in vitro reaction using extracts from virus infected cells, and the site of cleavage is the same both in vivo and in vitro. Cleavage is not observed using extract from cells infected in the presence of hydroxyurea; therefore, the cleavage factor is either virus-coded or virus-induced during the post-replicative phase of virus replication. The cis-acting sequence responsible for cleavage is orientation specific and the factor responsible for cleavage activity has biochemical properties similar to the factor required for cleavage of ATI transcripts. Partially purified cleavage factor generates cleavage products of expected size when either the ATI or F17R substrates are used in vitro, strongly suggesting that cleavage of both transcripts is mediated by the same factor

  8. AAU-Specific RNA Cleavage Mediated by MazF Toxin Endoribonuclease Conserved in Nitrosomonas europaea

    Directory of Open Access Journals (Sweden)

    Tatsuki Miyamoto

    2016-06-01

    Full Text Available Nitrosomonas europaea carries numerous toxin-antitoxin systems. However, despite the abundant representation in its chromosome, studies have not surveyed the underlying molecular functions in detail, and their biological roles remain enigmatic. In the present study, we found that a chromosomally-encoded MazF family member, predicted at the locus NE1181, is a functional toxin endoribonuclease, and constitutes a toxin-antitoxin system, together with its cognate antitoxin, MazE. Massive parallel sequencing provided strong evidence that this toxin endoribonuclease exhibits RNA cleavage activity, primarily against the AAU triplet. This sequence-specificity was supported by the results of fluorometric assays. Our results indicate that N. europaea alters the translation profile and regulates its growth using the MazF family of endoribonuclease under certain stressful conditions.

  9. Translation of Polioviral mRNA Is Inhibited by Cleavage of Polypyrimidine Tract-Binding Proteins Executed by Polioviral 3Cpro

    Science.gov (United States)

    Back, Sung Hoon; Kim, Yoon Ki; Kim, Woo Jae; Cho, Sungchan; Oh, Hoe Rang; Kim, Jung-Eun; Jang, Sung Key

    2002-01-01

    The translation of polioviral mRNA occurs through an internal ribosomal entry site (IRES). Several RNA-binding proteins, such as polypyrimidine tract-binding protein (PTB) and poly(rC)-binding protein (PCBP), are required for the poliovirus IRES-dependent translation. Here we report that a poliovirus protein, 3Cpro (and/or 3CDpro), cleaves PTB isoforms (PTB1, PTB2, and PTB4). Three 3Cpro target sites (one major target site and two minor target sites) exist in PTBs. PTB fragments generated by poliovirus infection are redistributed to the cytoplasm from the nucleus, where most of the intact PTBs are localized. Moreover, these PTB fragments inhibit polioviral IRES-dependent translation in a cell-based assay system. We speculate that the proteolytic cleavage of PTBs may contribute to the molecular switching from translation to replication of polioviral RNA. PMID:11836431

  10. Catalytic cleavage activities of 10–23 DNAzyme analogs functionalized with an amino group in its catalytic core

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2012-02-01

    Full Text Available Functionalization of the catalytic loop of 10–23 DNAzyme with an amino group was performed by incorporation of 7-(3-aminopropyl-8-aza-7-deaza-2′-deoxyadenosine in different single positions. Among the nine modified positions in the catalytic loop, A9 is the unique position with positive contribution by such modification. These results indicated that more efficient deoxyribozymes remain to be explored by introduction of exogenous functional groups in an appropriate position in the catalytic loop of 10–23 DNAzyme, such as the combination of 7-functional group substituted 8-aza-7-deaza-2′-deoxyadenosine analogs and A9 position.

  11. Relationship between synthesis and cleavage of poliovirus-specific proteins.

    OpenAIRE

    Thomas, A A; Voorma, H O; Boeye, A

    1983-01-01

    Poliovirus proteinase was studied in vitro in lysates from poliovirus-infected HeLa cells. Preincubation of these lysates caused (i) a reduction in poliovirus proteinase activity and (ii) a partial dependence on exogenous mRNA for optimal translation. Proteins translated from endogenous poliovirus RNA in preincubated extracts from virus-infected HeLa cells are poorly cleaved. This cleavage deficiency is alleviated by adding fresh poliovirus RNA to the translation system, thus, allowing re-ini...

  12. Thermodynamics and kinetics of RNA tertiary structure formation in the junctionless hairpin ribozyme.

    Science.gov (United States)

    White, Neil A; Hoogstraten, Charles G

    2017-09-01

    The hairpin ribozyme consists of two RNA internal loops that interact to form the catalytically active structure. This docking transition is a rare example of intermolecular formation of RNA tertiary structure without coupling to helix annealing. We have used temperature-dependent surface plasmon resonance (SPR) to characterize the thermodynamics and kinetics of RNA tertiary structure formation for the junctionless form of the ribozyme, in which loops A and B reside on separate molecules. We find docking to be strongly enthalpy-driven and to be accompanied by substantial activation barriers for association and dissociation, consistent with the structural reorganization of both internal loops upon complex formation. Comparisons with the parallel analysis of a ribozyme variant carrying a 2'-O-methyl modification at the self-cleavage site and with published data in other systems reveal a surprising diversity of thermodynamic signatures, emphasizing the delicate balance of contributions to the free energy of formation of RNA tertiary structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Downstream element determines RNase Y cleavage of the saePQRS operon in Staphylococcus aureus.

    Science.gov (United States)

    Marincola, Gabriella; Wolz, Christiane

    2017-06-02

    In gram-positive bacteria, RNase J1, RNase J2 and RNase Y are thought to be major contributors to mRNA degradation and maturation. In Staphylococcus aureus, RNase Y activity is restricted to regulating the mRNA decay of only certain transcripts. Here the saePQRS operon was used as a model to analyze RNase Y specificity in living cells. A RNase Y cleavage site is located in an intergenic region between saeP and saeQ. This cleavage resulted in rapid degradation of the upstream fragment and stabilization of the downstream fragment. Thereby, the expression ratio of the different components of the operon was shifted towards saeRS, emphasizing the regulatory role of RNase Y activity. To assess cleavage specificity different regions surrounding the sae CS were cloned upstream of truncated gfp, and processing was analyzed in vivo using probes up- and downstream of CS. RNase Y cleavage was not determined by the cleavage site sequence. Instead a 24-bp double-stranded recognition structure was identified that was required to initiate cleavage 6 nt upstream. The results indicate that RNase Y activity is determined by secondary structure recognition determinants, which guide cleavage from a distance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi.

    Science.gov (United States)

    Tsai, Hsin-Yue; Chen, Chun-Chieh G; Conte, Darryl; Moresco, James J; Chaves, Daniel A; Mitani, Shohei; Yates, John R; Tsai, Ming-Daw; Mello, Craig C

    2015-01-29

    Effective silencing by RNA-interference (RNAi) depends on mechanisms that amplify and propagate the silencing signal. In some organisms, small-interfering RNAs (siRNAs) are amplified from target mRNAs by RNA-dependent RNA polymerase (RdRP). Both RdRP recruitment and mRNA silencing require Argonaute proteins, which are generally thought to degrade RNAi targets by directly cleaving them. However, in C. elegans, the enzymatic activity of the primary Argonaute, RDE-1, is not required for silencing activity. We show that RDE-1 can instead recruit an endoribonuclease, RDE-8, to target RNA. RDE-8 can cleave RNA in vitro and is needed for the production of 3' uridylated fragments of target mRNA in vivo. We also find that RDE-8 promotes RdRP activity, thereby ensuring amplification of siRNAs. Together, our findings suggest a model in which RDE-8 cleaves target mRNAs to mediate silencing, while generating 3' uridylated mRNA fragments to serve as templates for the RdRP-directed amplification of the silencing signal. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Quasispecies-like behavior observed in catalytic RNA populations evolving in a test tube.

    Science.gov (United States)

    Díaz Arenas, Carolina; Lehman, Niles

    2010-03-23

    During the RNA World, molecular populations were probably very small and highly susceptible to the force of strong random drift. In conjunction with Muller's Ratchet, this would have imposed difficulties for the preservation of the genetic information and the survival of the populations. Mechanisms that allowed these nascent populations to overcome this problem must have been advantageous. Using continuous in vitro evolution experimentation with an increased mutation rate imposed by MnCl2, it was found that clonal 100-molecule populations of ribozymes clearly exhibit certain characteristics of a quasispecies. This is the first time this has been seen with a catalytic RNA. Extensive genotypic sampling from two replicate lineages was gathered and phylogenetic networks were constructed to elucidate the structure of the evolving RNA populations. A common distribution was found in which a mutant sequence was present at high frequency, surrounded by a cloud of mutant with lower frequencies. This is a typical distribution of quasispecies. Most of the mutants in these clouds were connected by short Hamming distance values, indicating their close relatedness. The quasispecies nature of mutant RNA clouds facilitates the recovery of genotypes under pressure of being removed from the population by random drift. The empirical populations therefore evolved a genotypic resiliency despite a high mutation rate by adopting the characteristics of quasispecies, implying that primordial RNA pools could have used this strategy to avoid extinction.

  16. Identification of Cleavage Sites Recognized by the 3C-Like Cysteine Protease within the Two Polyproteins of Strawberry Mottle Virus

    Directory of Open Access Journals (Sweden)

    Hélène Sanfaçon

    2017-04-01

    Full Text Available Strawberry mottle virus (SMoV, family Secoviridae, order Picornavirales is one of several viruses found in association with strawberry decline disease in Eastern Canada. The SMoV genome consists of two positive-sense single-stranded RNAs, each encoding one large polyprotein. The RNA1 polyprotein (P1 includes the domains for a putative helicase, a VPg, a 3C-like cysteine protease and an RNA-dependent RNA polymerase at its C-terminus, and one or two protein domains at its N-terminus. The RNA2 polyprotein (P2 is predicted to contain the domains for a movement protein (MP and one or several coat proteins at its N-terminus, and one or more additional domains for proteins of unknown function at its C-terminus. The RNA1-encoded 3C-like protease is presumed to cleave the two polyproteins in cis (P1 and in trans (P2. Using in vitro processing assays, we systematically scanned the two polyproteins for cleavage sites recognized by this protease. We identified five cis-cleavage sites in P1, with cleavage between the putative helicase and VPg domains being the most efficient. The presence of six protein domains in the SMoV P1, including two upstream of the putative helicase domain, is a feature shared with nepoviruses but not with comoviruses. Results from trans-cleavage assays indicate that the RNA1-encoded 3C-like protease recognized a single cleavage site, which was between the predicted MP and coat protein domains in the P2 polyprotein. The cleavage site consensus sequence for the SMoV 3C-like protease is AxE (E or Q/(G or S.

  17. A Defective mRNA Cleavage and Polyadenylation Complex Facilitates Expansions of Transcribed (GAAn Repeats Associated with Friedreich’s Ataxia

    Directory of Open Access Journals (Sweden)

    Ryan J. McGinty

    2017-09-01

    Full Text Available Expansions of microsatellite repeats are responsible for numerous hereditary diseases in humans, including myotonic dystrophy and Friedreich’s ataxia. Whereas the length of an expandable repeat is the main factor determining disease inheritance, recent data point to genomic trans modifiers that can impact the likelihood of expansions and disease progression. Detection of these modifiers may lead to understanding and treating repeat expansion diseases. Here, we describe a method for the rapid, genome-wide identification of trans modifiers for repeat expansion in a yeast experimental system. Using this method, we found that missense mutations in the endoribonuclease subunit (Ysh1 of the mRNA cleavage and polyadenylation complex dramatically increase the rate of (GAAn repeat expansions but only when they are actively transcribed. These expansions correlate with slower transcription elongation caused by the ysh1 mutation. These results reveal an interplay between RNA processing and repeat-mediated genome instability, confirming the validity of our approach.

  18. Atomistic Details of the Associative Phosphodiester Cleavage in Human Ribonuclease H

    International Nuclear Information System (INIS)

    Elsasser, Brigitta M.; Fels, Gregor

    2010-01-01

    During translation of the genetic information of DNA into proteins, mRNA is synthesized by RNA polymerase and after the transcription process degraded by RNase H. The endoribonuclease RNase H is a member of the nucleotidyl-transferase (NT) superfamily and is known to hydrolyze the phosphodiester bonds of RNA which is hybridized to DNA. Retroviral RNase H is part of the viral reverse transcriptase enzyme that is indispensable for the proliferation of retroviruses, such as HIV. Inhibitors of this enzyme could therefore provide new drugs against diseases like AIDS. In our study we investigated the molecular mechanism of RNA cleavage by human RNase H using a comprehensive high level DFT/B3LYP QM/MM theoretical method for the calculation of the stationary points and nudged elastic band (NEB) and free energy calculations to identify the transition state structures, the rate limiting step and the reaction barrier. Our calculations reveal that the catalytic mechanism proceeds in two steps and that the nature of the nucleophile is a water molecule. In the first step, the water attack on the scissile phosphorous is followed by a proton transfer from the water to the O2P oxygen and a trigonal bipyramidal pentacoordinated phosphorane is formed. Subsequently, in the second step the proton is shuttled to the O30 oxygen to generate the product state. During the reaction mechanism two Mg2+ ions support the formation of a stable associated in-line SN2-type phosphorane intermediate. Our calculated energy barrier of 19.3 kcal mol*1 is in excellent agreement with experimental findings (20.5 kcal mol*1). These results may contribute to the clarification and understanding of the RNase H reaction mechanism and of further enzymes from the RNase family.

  19. Quasispecies-like behavior observed in catalytic RNA populations evolving in a test tube

    Directory of Open Access Journals (Sweden)

    Lehman Niles

    2010-03-01

    Full Text Available Abstract Background During the RNA World, molecular populations were probably very small and highly susceptible to the force of strong random drift. In conjunction with Muller's Ratchet, this would have imposed difficulties for the preservation of the genetic information and the survival of the populations. Mechanisms that allowed these nascent populations to overcome this problem must have been advantageous. Results Using continuous in vitro evolution experimentation with an increased mutation rate imposed by MnCl2, it was found that clonal 100-molecule populations of ribozymes clearly exhibit certain characteristics of a quasispecies. This is the first time this has been seen with a catalytic RNA. Extensive genotypic sampling from two replicate lineages was gathered and phylogenetic networks were constructed to elucidate the structure of the evolving RNA populations. A common distribution was found in which a mutant sequence was present at high frequency, surrounded by a cloud of mutant with lower frequencies. This is a typical distribution of quasispecies. Most of the mutants in these clouds were connected by short Hamming distance values, indicating their close relatedness. Conclusions The quasispecies nature of mutant RNA clouds facilitates the recovery of genotypes under pressure of being removed from the population by random drift. The empirical populations therefore evolved a genotypic resiliency despite a high mutation rate by adopting the characteristics of quasispecies, implying that primordial RNA pools could have used this strategy to avoid extinction.

  20. rRNA fragmentation induced by a yeast killer toxin.

    Science.gov (United States)

    Kast, Alene; Klassen, Roland; Meinhardt, Friedhelm

    2014-02-01

    Virus like dsDNA elements (VLE) in yeast were previously shown to encode the killer toxins PaT and zymocin, which target distinct tRNA species via specific anticodon nuclease (ACNase) activities. Here, we characterize a third member of the VLE-encoded toxins, PiT from Pichia inositovora, and identify PiOrf4 as the cytotoxic subunit by conditional expression in Saccharomyces cerevisiae. In contrast to the tRNA targeting toxins, however, neither a change of the wobble uridine modification status by introduction of elp3 or trm9 mutations nor tRNA overexpression rescued from PiOrf4 toxicity. Consistent with a distinct RNA target, expression of PiOrf4 causes specific fragmentation of the 25S and 18S rRNA. A stable cleavage product comprising the first ∼ 130 nucleotides of the 18S rRNA was purified and characterized by linker ligation and subsequent reverse transcription; 3'-termini were mapped to nucleotide 131 and 132 of the 18S rRNA sequence, a region showing some similarity to the anticodon loop of tRNA(Glu)(UUC), the zymocin target. PiOrf4 residues Glu9 and His214, corresponding to catalytic sites Glu9 and His209 in the ACNase subunit of zymocin are essential for in vivo toxicity and rRNA fragmentation, raising the possibility of functionally conserved RNase modules in both proteins. © 2013 John Wiley & Sons Ltd.

  1. The helicase and RNaseIIIa domains of Arabidopsis Dicer-Like1 modulate catalytic parameters during MicroRNA biogenesis

    KAUST Repository

    Liu, Chenggang

    2012-04-03

    Dicer-Like1 (DCL1), an RNaseIII endonuclease, and Hyponastic Leaves1 (HYL1), a double-stranded RNA-binding protein, are core components of the plant microRNA (miRNA) biogenesis machinery. hyl1 mutants accumulate low levels of miRNAs and display pleiotropic developmental phenotypes. We report the identification of five new hyl1 suppressor mutants, all of which are alleles of DCL1. These new alleles affect either the helicase or the RNaseIIIa domains of DCL1, highlighting the critical functions of these domains. Biochemical analysis of the DCL1 suppressor variants reveals that they process the primary transcript (pri-miRNA) more efficiently than wild-type DCL1, with both higher Kcat and lower Km values. The DCL1 variants largely rescue wild-type miRNA accumulation levels in vivo, but do not rescue the MIRNA processing precision defects of the hyl1 mutant. In vitro, the helicase domain confers ATP dependence on DCL1-catalyzed MIRNA processing, attenuates DCL1 cleavage activity, and is required for precise MIRNA processing of some substrates. © 2012 American Society of Plant Biologists.

  2. A Single RNaseIII Domain Protein from Entamoeba histolytica Has dsRNA Cleavage Activity and Can Help Mediate RNAi Gene Silencing in a Heterologous System.

    Science.gov (United States)

    Pompey, Justine M; Foda, Bardees; Singh, Upinder

    2015-01-01

    Dicer enzymes process double-stranded RNA (dsRNA) into small RNAs that target gene silencing through the RNA interference (RNAi) pathway. Dicer enzymes are complex, multi-domain RNaseIII proteins, however structural minimalism of this protein has recently emerged in parasitic and fungal systems. The most minimal Dicer, Saccharomyces castellii Dicer1, has a single RNaseIII domain and two double stranded RNA binding domains. In the protozoan parasite Entamoeba histolytica 27nt small RNAs are abundant and mediate silencing, yet no canonical Dicer enzyme has been identified. Although EhRNaseIII does not exhibit robust dsRNA cleavage in vitro, it can process dsRNA in the RNAi-negative background of Saccharomyces cerevisiae, and in conjunction with S. castellii Argonaute1 can partially reconstitute the RNAi pathway. Thus, although EhRNaseIII lacks the domain architecture of canonical or minimal Dicer enzymes, it has dsRNA processing activity that contributes to gene silencing via RNAi. Our data advance the understanding of small RNA biogenesis in Entamoeba as well as broaden the spectrum of non-canonical Dicer enzymes that contribute to the RNAi pathway.

  3. A Single RNaseIII Domain Protein from Entamoeba histolytica Has dsRNA Cleavage Activity and Can Help Mediate RNAi Gene Silencing in a Heterologous System.

    Directory of Open Access Journals (Sweden)

    Justine M Pompey

    Full Text Available Dicer enzymes process double-stranded RNA (dsRNA into small RNAs that target gene silencing through the RNA interference (RNAi pathway. Dicer enzymes are complex, multi-domain RNaseIII proteins, however structural minimalism of this protein has recently emerged in parasitic and fungal systems. The most minimal Dicer, Saccharomyces castellii Dicer1, has a single RNaseIII domain and two double stranded RNA binding domains. In the protozoan parasite Entamoeba histolytica 27nt small RNAs are abundant and mediate silencing, yet no canonical Dicer enzyme has been identified. Although EhRNaseIII does not exhibit robust dsRNA cleavage in vitro, it can process dsRNA in the RNAi-negative background of Saccharomyces cerevisiae, and in conjunction with S. castellii Argonaute1 can partially reconstitute the RNAi pathway. Thus, although EhRNaseIII lacks the domain architecture of canonical or minimal Dicer enzymes, it has dsRNA processing activity that contributes to gene silencing via RNAi. Our data advance the understanding of small RNA biogenesis in Entamoeba as well as broaden the spectrum of non-canonical Dicer enzymes that contribute to the RNAi pathway.

  4. Bleomycin Can Cleave an Oncogenic Noncoding RNA.

    Science.gov (United States)

    Angelbello, Alicia J; Disney, Matthew D

    2018-01-04

    Noncoding RNAs are pervasive in cells and contribute to diseases such as cancer. A question in biomedical research is whether noncoding RNAs are targets of medicines. Bleomycin is a natural product that cleaves DNA; however, it is known to cleave RNA in vitro. Herein, an in-depth analysis of the RNA cleavage preferences of bleomycin A5 is presented. Bleomycin A5 prefers to cleave RNAs with stretches of AU base pairs. Based on these preferences and bioinformatic analysis, the microRNA-10b hairpin precursor was identified as a potential substrate for bleomycin A5. Both in vitro and cellular experiments demonstrated cleavage. Importantly, chemical cleavage by bleomycin A5 in the microRNA-10b hairpin precursors occurred near the Drosha and Dicer enzymatic processing sites and led to destruction of the microRNA. Evidently, oncogenic noncoding RNAs can be considered targets of cancer medicines and might elicit their pharmacological effects by targeting noncoding RNA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes

    Science.gov (United States)

    Ma, Enbo; Harrington, Lucas B.; O’Connell, Mitchell R.; Zhou, Kaihong; Doudna, Jennifer A.

    2015-01-01

    Summary Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9–guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide-RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA, and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family. PMID:26545076

  6. Calicivirus 3C-like proteinase inhibits cellular translation by cleavage of poly(A)-binding protein.

    Science.gov (United States)

    Kuyumcu-Martinez, Muge; Belliot, Gaël; Sosnovtsev, Stanislav V; Chang, Kyeong-Ok; Green, Kim Y; Lloyd, Richard E

    2004-08-01

    Caliciviruses are single-stranded RNA viruses that cause a wide range of diseases in both humans and animals, but little is known about the regulation of cellular translation during infection. We used two distinct calicivirus strains, MD145-12 (genus Norovirus) and feline calicivirus (FCV) (genus Vesivirus), to investigate potential strategies used by the caliciviruses to inhibit cellular translation. Recombinant 3C-like proteinases (r3CL(pro)) from norovirus and FCV were found to cleave poly(A)-binding protein (PABP) in the absence of other viral proteins. The norovirus r3CL(pro) PABP cleavage products were indistinguishable from those generated by poliovirus (PV) 3C(pro) cleavage, while the FCV r3CL(pro) products differed due to cleavage at an alternate cleavage site 24 amino acids downstream of one of the PV 3C(pro) cleavage sites. All cleavages by calicivirus or PV proteases separated the C-terminal domain of PABP that binds translation factors eIF4B and eRF3 from the N-terminal RNA-binding domain of PABP. The effect of PABP cleavage by the norovirus r3CL(pro) was analyzed in HeLa cell translation extracts, and the presence of r3CL(pro) inhibited translation of both endogenous and exogenous mRNAs. Translation inhibition was poly(A) dependent, and replenishment of the extracts with PABP restored translation. Analysis of FCV-infected feline kidney cells showed that the levels of de novo cellular protein synthesis decreased over time as virus-specific proteins accumulated, and cleavage of PABP occurred in virus-infected cells. Our data indicate that the calicivirus 3CL(pro), like PV 3C(pro), mediates the cleavage of PABP as part of its strategy to inhibit cellular translation. PABP cleavage may be a common mechanism among certain virus families to manipulate cellular translation.

  7. AID-induced decrease in topoisomerase 1 induces DNA structural alteration and DNA cleavage for class switch recombination.

    Science.gov (United States)

    Kobayashi, Maki; Aida, Masatoshi; Nagaoka, Hitoshi; Begum, Nasim A; Kitawaki, Yoko; Nakata, Mikiyo; Stanlie, Andre; Doi, Tomomitsu; Kato, Lucia; Okazaki, Il-mi; Shinkura, Reiko; Muramatsu, Masamichi; Kinoshita, Kazuo; Honjo, Tasuku

    2009-12-29

    To initiate class switch recombination (CSR) activation-induced cytidine deaminase (AID) induces staggered nick cleavage in the S region, which lies 5' to each Ig constant region gene and is rich in palindromic sequences. Topoisomerase 1 (Top1) controls the supercoiling of DNA by nicking, rotating, and religating one strand of DNA. Curiously, Top1 reduction or AID overexpression causes the genomic instability. Here, we report that the inactivation of Top1 by its specific inhibitor camptothecin drastically blocked both the S region cleavage and CSR, indicating that Top1 is responsible for the S region cleavage in CSR. Surprisingly, AID expression suppressed Top1 mRNA translation and reduced its protein level. In addition, the decrease in the Top1 protein by RNA-mediated knockdown augmented the AID-dependent S region cleavage, as well as CSR. Furthermore, Top1 reduction altered DNA structure of the Smu region. Taken together, AID-induced Top1 reduction alters S region DNA structure probably to non-B form, on which Top1 can introduce nicks but cannot religate, resulting in S region cleavage.

  8. RNA synthesis during cleavage of the Lymnaea egg

    NARCIS (Netherlands)

    Biggelaar, J.A.M. van den

    In eggs of Lymnaea RNA synthesis can be detected autoradiographically from the 8- to the 16-cell stage. From the 16- to the 24-cell stage distinct nucleoli reappear which are immediately engaged in RNA synthesis.

  9. Mutant allele of rna14 in fission yeast affects pre-mRNA splicing

    Indian Academy of Sciences (India)

    transcript. Rna14 protein in budding yeast has been implicated in cleavage and ... Subsequently, genetic interaction of Rna14 with prp1 and physical .... molecular yeast techniques as described by Moreno et al. ..... To elucidate the role of Rna14 in splicing, RT-PCR analysis ..... design principles of a dynamic RNP machine.

  10. Fluorescence-based high-throughput screening of dicer cleavage activity.

    Science.gov (United States)

    Podolska, Katerina; Sedlak, David; Bartunek, Petr; Svoboda, Petr

    2014-03-01

    Production of small RNAs by ribonuclease III Dicer is a key step in microRNA and RNA interference pathways, which employ Dicer-produced small RNAs as sequence-specific silencing guides. Further studies and manipulations of microRNA and RNA interference pathways would benefit from identification of small-molecule modulators. Here, we report a study of a fluorescence-based in vitro Dicer cleavage assay, which was adapted for high-throughput screening. The kinetic assay can be performed under single-turnover conditions (35 nM substrate and 70 nM Dicer) in a small volume (5 µL), which makes it suitable for high-throughput screening in a 1536-well format. As a proof of principle, a small library of bioactive compounds was analyzed, demonstrating potential of the assay.

  11. Effect of apolipoprotein B mRNA-editing catalytic polypeptide-like protein-3G in cervical cancer.

    Science.gov (United States)

    Xu, Yanhua; Leng, Junhong; Xue, Fang; Dong, Ruiqian

    2015-01-01

    Cervical cancer is one of the most common gynecologic cancers. The role of apolipoprotein B mRNA-editing catalytic polypeptide-like protein-3G (APCBEC-3G) in cervical cancer has yet to be elucidated. This study intends to explore the effect of APCBEC-3G on cervical cancer cell proliferation and invasion. In vitro, the cervical cancer cell line Hela was transfected by APCBEC-3G plasmid. The mRNA and protein expression levels of APCBEC-3G were detected by Real-time PCR and Western blot, respectively. Cervical cancer cell proliferation was determined by MTT. Transwell assay was applied to measure the effect of APCBEC-3G on cell invasion. APCBEC-3G mRNA and protein increased significantly after transfection (P3G serves as a suppressor of cervical cancer cell proliferation and invasion. Our research provides theoretical basis for further investigation APOBEC-3G effect in cervical cancer occurrence and development.

  12. Dissecting the interactions of SERRATE with RNA and DICER-LIKE 1 in Arabidopsis microRNA precursor processing

    KAUST Repository

    Iwata, Yuji; Takahashi, Masateru; Fedoroff, Nina V.; Hamdan, Samir

    2013-01-01

    ). In the present study, we examined primary miRNA precursor (pri-miRNA) processing by highly purified recombinant DCL1 and SE proteins and found that SE is integral to pri-miRNA processing by DCL1. SE stimulates DCL1 cleavage of the pri-miRNA in an ionic strength

  13. KLONING GEN PUTATIVE CLEAVAGE PROTEIN 1 (PCP-1 PADA UDANG VANAME (Litopenaeus vannamei YANG TERSERANG INFECTIOUS MYONECROSIS VIRUS

    Directory of Open Access Journals (Sweden)

    Hessy Novita

    2016-12-01

    Full Text Available Penanggulangan penyakit ikan dapat dilakukan dengan cara meningkatkan kekebalan tubuh ikan melalui program vaksinasi. Namun vaksinasi tidak tepat untuk udang, karena udang tidak mempunyai immunological memory seperti ikan. Oleh karena itu, perlindungan udang terhadap serangan penyakit viral dengan menggunakan RNA interference (RNAi. Teknologi RNAi digunakan untuk menghalangi (interfere proses replikasi infectious myonecrosis virus (IMNV pada udang vaname dengan cara menon-aktifkan gen putative cleavage protein 1 (PCP-1, yang berfungsi dalam pembentukan capsid dan proses transkripsi RNA IMNV. Penelitian ini bertujuan untuk melakukan kloning gen putative cleavage protein 1 dalam rangka perakitan teknologi RNAi untuk pengendalian penyakit IMNV pada udang vaname. Tahapan penelitian meliputi koleksi sampel, isolasi RNA, sintesis cDNA, amplifikasi PCR, purifikasi DNA, transformasi, isolasi plasmid, serta sekuensing dan analisis data. Hasil isolasi plasmid cDNA PCP-1 memperlihatkan semua koloni bakteri terseleksi ternyata membawa plasmid hasil insersi DNA gen PCP–1, hasil sekuen dengan nilai homologinya mencapai 100% dan 99% yang dibandingkan dengan sekuen di Genebank. Hasil penelitian menunjukkan bahwa kloning gen putative cleavage protein 1 (PCP-1 dari udang vaname yang terserang Infectious Myonecrosis Virus berhasil dikloning yang nantinya digunakan untuk perakitan RNAi. The prevention of fish diseases can be done by increasing of the fish immune through vaccination programs. However, the vaccination can not be done for the shrimp,due to the absence of  immunological memory. Therefore, the protection of shrimp against viral diseases was done by using of RNA interference (RNAi. RNAi technology is used to interfere infectious myonecrosis virus (IMNV replication process on white shrimp by disabling of putative cleavage protein 1 (PCP-1gene, which functions in capsid formation and RNA transcription process. The study was conducted to perform putative

  14. Reversible Heterolytic Cleavage of the H-H Bond by Molybdenum Complexes: Controlling the Dynamics of Exchange Between Proton and Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaoguang; Appel, Aaron M.; Bullock, R. Morris

    2017-05-18

    Controlling the heterolytic cleavage of the H-H bond of dihydrogen is critically important in catalytic hydrogenations and in the catalytic oxidation of H2. We show how the rate of reversible heterolytic cleavage of H2 can be controlled over nearly four orders of magnitude at 25 °C, from 2.1 × 103 s-1 to ≥107 s-1. Bifunctional Mo complexes, [CpMo(CO)(κ3-P2N2)]+ (P2N2 = 1,5-diaza-3,7-diphosphacyclooctane with alkyl/aryl groups on N and P), have been developed for heterolytic cleavage of H2 into a proton and a hydride, akin to Frustrated Lewis Pairs. The H-H bond cleavage is enabled by the basic amine in the second coordination sphere. The products of heterolytic cleavage of H2, Mo hydride complexes bearing protonated amines, [CpMo(H)(CO)(P2N2H)]+, were characterized by spectroscopic studies and by X-ray crystallography. Variable temperature 1H, 15N and 2-D 1H-1H ROESY NMR spectra indicated rapid exchange of the proton and hydride. The exchange rates are in the order [CpMo(H)(CO)(PPh2NPh2H)]+ > [CpMo(H)(CO)(PtBu2NPh2H)]+ > [CpMo(H)(CO)(PPh2NBn2H)]+ > [CpMo(H)(CO)(PtBu2NBn2H)]+ > [CpMo(H)(CO)(PtBu2NtBu2H)]+. The pKa values determined in acetonitrile range from 9.3 to 17.7, and show a linear correlation with the logarithm of the exchange rates. Thus the exchange dynamics are controlled through the relative acidity of the [CpMo(H)(CO)(P2N2H)]+ and [CpMo(H2)(CO)(P2N2)]+ isomers, providing a design principle for controlling heterolytic cleavage of H2.

  15. Sensing miRNA: Signal Amplification by Cognate RISC for Intracellular Detection of miRNA in Live Cells.

    Science.gov (United States)

    Kavishwar, Amol; Medarova, Zdravka

    2016-01-01

    The ability to detect miRNA expression in live cells would leave these cells available for further manipulation or culture. Here, we describe the design of a miRNA sensor oligonucleotide whose sequence mimics the target mRNA. The sensor has a fluorescent label on one end of the oligo and a quencher on the other. When inside the cell, the sensor is recognized by its cognate miRNA-RISC and gets cleaved, setting the fluorophore free from its quencher. This results in fluorescence "turn on." Since cleavage by the RISC complex is an enzymatic process, the described approach has a very high level of sensitivity (nM). The rate of nonspecific cleavage of the sensor is very slow permitting the collection of meaningful signal over a long period of time.

  16. Detecting deletions, insertions, and single nucleotide substitutions in cloned β-globin genes and new polymorphic nucleotide substitutions in β-globin genes in a Japanese population using ribonuclease cleavage at mismatches in RNA: DNA duplexes

    International Nuclear Information System (INIS)

    Hiyama, Keiko; Kodaira, Mieko; Satoh, Chiyoko.

    1990-08-01

    The applicability of ribonuclease (RNase) cleavage at mismatches in RNA:DNA duplexes (the RNase cleavage method) for determining nucleotide variant rates was examined in a Japanese population. DNA segments of various lengths obtained from four different regions of one normal and three thalassemic cloned human β-globin genes were inserted into transcription vectors. Sense and antisense RNA probes uniformly labeled with 32 P were prepared. When RNA probes of 771 nucleotides (nt) or less were hybridized with cloned DNAs and the resulting duplexes were treated with a mixture of RNases A and T1, the length of products agreed with theoretical values. Twelve possible mismatches were examined. Since both sense and antisense probes were used, uncleavable mismatches such as G:T and G:G which were made from one combination of RNA and DNA strands could be converted to the cleavable C:A and C:C mismatches, respectively, by using the opposite combination. Deletions and insertions of one (G), four(TTCT), five (ATTTT), and 10 (ATTTTATTTT) nt were easily detected. A polymorphic substitution of T to C at position 666 of the second intervening sequence (IVS2-666) of the β-globin gene was detected using genomic DNAs from cell lines established from the peripheral B lymphocytes of 59 unrelated Japanese from Hiroshima or those amplified by polymerase chain reaction (PCR). The frequency of the gene with C at the IVS2-666 (allele C) was 0.48 and that of the gene with T (allene T) was 0.52. Two new polymorphic substitutions of C to A and A to T were detected at nucleotide positions 1789 and 1945 from the capping site, respectively, using genomic DNAs amplified by PCR. We conclude that it would be feasible to use the RNase cleavage method combined with PCR for large-scale screening of variation in chromosomal DNA. (J.P.N.)

  17. Small catalytic RNA: Structure, function and application

    Energy Technology Data Exchange (ETDEWEB)

    Monforte, Joseph Albert [Univ. of California, Berkeley, CA (United States)

    1991-04-01

    We have utilized a combination of photochemical cross-linking techniques and site-directed mutagenesis to obtain secondary and tertiary structure information for the self-cleaving, self-ligating subsequence of RNA from the negative strand of Satellite Tobacco Ringspot Virus. We have found that the helical regions fold about a hinge to promoting four different possible tertiary interactions, creating a molecular of similar shape to a paperclip. A model suggesting that the ``paperclip`` and ``hammerhead`` RNAs share a similar three dimensional structure is proposed. We have used a self-cleaving RNA molecule related to a subsequence of plant viroids, a ``hammerhead,`` to study the length-dependent folding of RNA produced during transcription by RNA polymerase. We have used this method to determine the length of RNA sequestered within elongating E. coli and T7 RNA polymerase complexes. The data show that for E. coli RNA polymerase 121±s are sequestered within the ternary complex, which is consistent with the presence of an RNA-DNA hybrid within the transcription bubble, as proposed by others. The result for T7 RNA polymerase differs from E. coli RNA polymerase, with only 10{plus_minus}1 nucleotides sequestered within the ternary complex, setting a new upper limit for the minimum RNA-DNA required for a stable elongating complex. Comparisons between E. coli and T7 RNA polymerase are made. The relevance of the results to models or transcription termination, abortive initiation, and initiation to elongation mode transitions are discussed.

  18. Pressure modulates the self-cleavage step of the hairpin ribozyme

    Science.gov (United States)

    Schuabb, Caroline; Kumar, Narendra; Pataraia, Salome; Marx, Dominik; Winter, Roland

    2017-03-01

    The ability of certain RNAs, denoted as ribozymes, to not only store genetic information but also catalyse chemical reactions gave support to the RNA world hypothesis as a putative step in the development of early life on Earth. This, however, might have evolved under extreme environmental conditions, including the deep sea with pressures in the kbar regime. Here we study pressure-induced effects on the self-cleavage of hairpin ribozyme by following structural changes in real-time. Our results suggest that compression of the ribozyme leads to an accelerated transesterification reaction, being the self-cleavage step, although the overall process is retarded in the high-pressure regime. The results reveal that favourable interactions between the reaction site and neighbouring nucleobases are strengthened under pressure, resulting therefore in an accelerated self-cleavage step upon compression. These results suggest that properly engineered ribozymes may also act as piezophilic biocatalysts in addition to their hitherto known properties.

  19. Small catalytic RNA: Structure, function and application

    Energy Technology Data Exchange (ETDEWEB)

    Monforte, J.A.

    1991-04-01

    We have utilized a combination of photochemical cross-linking techniques and site-directed mutagenesis to obtain secondary and tertiary structure information for the self-cleaving, self-ligating subsequence of RNA from the negative strand of Satellite Tobacco Ringspot Virus. We have found that the helical regions fold about a hinge to promoting four different possible tertiary interactions, creating a molecular of similar shape to a paperclip. A model suggesting that the paperclip'' and hammerhead'' RNAs share a similar three dimensional structure is proposed. We have used a self-cleaving RNA molecule related to a subsequence of plant viroids, a hammerhead,'' to study the length-dependent folding of RNA produced during transcription by RNA polymerase. We have used this method to determine the length of RNA sequestered within elongating E. coli and T7 RNA polymerase complexes. The data show that for E. coli RNA polymerase 12{plus minus}1 nucleotides are sequestered within the ternary complex, which is consistent with the presence of an RNA-DNA hybrid within the transcription bubble, as proposed by others. The result for T7 RNA polymerase differs from E. coli RNA polymerase, with only 10{plus minus}1 nucleotides sequestered within the ternary complex, setting a new upper limit for the minimum RNA-DNA required for a stable elongating complex. Comparisons between E. coli and T7 RNA polymerase are made. The relevance of the results to models or transcription termination, abortive initiation, and initiation to elongation mode transitions are discussed.

  20. 3' fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex with RISC and SGS3.

    Science.gov (United States)

    Yoshikawa, Manabu; Iki, Taichiro; Tsutsui, Yasuhiro; Miyashita, Kyoko; Poethig, R Scott; Habu, Yoshiki; Ishikawa, Masayuki

    2013-03-05

    trans-acting small interfering RNAs (tasiRNAs) are plant-specific endogenous siRNAs produced via a unique pathway whose first step is the microRNA (miRNA)-programmed RNA-induced silencing complex (RISC)-mediated cleavage of tasiRNA gene (TAS) transcripts. One of the products is subsequently transformed into tasiRNAs by a pathway that requires several factors including SUPPRESSOR OF GENE SILENCING3 (SGS3) and RNA-DEPENDENT RNA POLYMERASE6. Here, using in vitro assembled ARGONAUTE (AGO)1-RISCs, we show that SGS3 is recruited onto RISCs only when they bind target RNA. Following cleavage by miRNA173 (miR173)-programmed RISC, SGS3 was found in complexes containing cleaved TAS2 RNA and RISC. The 3' cleavage fragment (the source of tasiRNAs) was protected from degradation in this complex. Depletion of SGS3 did not affect TAS2 RNA cleavage by miR173-programmed RISC, but did affect the stability of the 3' cleavage fragment. When the 3' nucleotide of 22-nt miR173 was deleted or the corresponding nucleotide in TAS2 RNA was mutated, the complex was not observed and the 3' cleavage fragment was degraded. Importantly, these changes in miR173 or TAS2 RNA are known to lead to a loss of tasiRNA production in vivo. These results suggest that (i) SGS3 associates with AGO1-RISC via the double-stranded RNA formed by the 3'-terminal nucleotides of 22-nt miR173 and corresponding target RNA, which probably protrudes from the AGO1-RISC molecular surface, (ii) SGS3 protects the 3' cleavage fragment of TAS2 RNA from degradation, and (iii) the observed SGS3-dependent stabilization of the 3' fragment of TAS2 RNA is key to tasiRNA production.

  1. Kinetic analysis of the effects of target structure on siRNA efficiency

    Science.gov (United States)

    Chen, Jiawen; Zhang, Wenbing

    2012-12-01

    RNAi efficiency for target cleavage and protein expression is related to the target structure. Considering the RNA-induced silencing complex (RISC) as a multiple turnover enzyme, we investigated the effect of target mRNA structure on siRNA efficiency with kinetic analysis. The 4-step model was used to study the target cleavage kinetic process: hybridization nucleation at an accessible target site, RISC-mRNA hybrid elongation along with mRNA target structure melting, target cleavage, and enzyme reactivation. At this model, the terms accounting for the target accessibility, stability, and the seed and the nucleation site effects are all included. The results are in good agreement with that of experiments which show different arguments about the structure effects on siRNA efficiency. It shows that the siRNA efficiency is influenced by the integrated factors of target's accessibility, stability, and the seed effects. To study the off-target effects, a simple model of one siRNA binding to two mRNA targets was designed. By using this model, the possibility for diminishing the off-target effects by the concentration of siRNA was discussed.

  2. Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage

    DEFF Research Database (Denmark)

    Stella, Stefano; Alcón, Pablo; Montoya, Guillermo

    2017-01-01

    involved in DNA unwinding to form a CRISPR RNA (crRNA)-DNA hybrid and a displaced DNA strand. The protospacer adjacent motif (PAM) is recognized by the PAM-interacting domain. The loop-lysine helix-loop motif in this domain contains three conserved lysine residues that are inserted in a dentate manner...... and the crRNA-DNA hybrid, avoiding DNA re-annealing. Mutations in key residues reveal a mechanism linking the PAM and DNA nuclease sites. Analysis of the Cpf1 structures proposes a singular working model of RNA-guided DNA cleavage, suggesting new avenues for redesign of Cpf1....

  3. Catalytic properties of RNA polymerases IV and V: accuracy, nucleotide incorporation and rNTP/dNTP discrimination.

    Science.gov (United States)

    Marasco, Michelle; Li, Weiyi; Lynch, Michael; Pikaard, Craig S

    2017-11-02

    All eukaryotes have three essential nuclear multisubunit RNA polymerases, abbreviated as Pol I, Pol II and Pol III. Plants are remarkable in having two additional multisubunit RNA polymerases, Pol IV and Pol V, which synthesize noncoding RNAs that coordinate RNA-directed DNA methylation for silencing of transposons and a subset of genes. Based on their subunit compositions, Pols IV and V clearly evolved as specialized forms of Pol II, but their catalytic properties remain undefined. Here, we show that Pols IV and V differ from one another, and Pol II, in nucleotide incorporation rate, transcriptional accuracy and the ability to discriminate between ribonucleotides and deoxyribonucleotides. Pol IV transcription is considerably more error-prone than Pols II or V, which may be tolerable in its synthesis of short RNAs that serve as precursors for siRNAs targeting non-identical members of transposon families. By contrast, Pol V exhibits high fidelity transcription, similar to Pol II, suggesting a need for Pol V transcripts to faithfully reflect the DNA sequence of target loci to which siRNA-Argonaute silencing complexes are recruited. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Toxin MqsR Cleaves Single-Stranded mRNA with Various 5 Ends

    Science.gov (United States)

    2016-08-24

    either protein ORIGINAL RESEARCH Toxin MqsR cleaves single- stranded mRNA with various 5’ ends Nityananda Chowdhury1,*, Brian W. Kwan1,*, Louise C...in which a single 5′- GCU site was predicted to be single- stranded (ssRNA), double- stranded (dsRNA), in the loop of a stem - loop (slRNA), or in a...single- stranded 5′- GCU sites since cleavage was approximately 20- fold higher than cleavage seen with the 5′- GCU site in the stem - loop and

  5. Mechanism of C-C and C-H bond cleavage in ethanol oxidation reaction on Cu2O(111): a DFT-D and DFT+U study.

    Science.gov (United States)

    Xu, Han; Miao, Bei; Zhang, Minhua; Chen, Yifei; Wang, Lichang

    2017-10-04

    The performance of transition metal catalysts for ethanol oxidation reaction (EOR) in direct ethanol fuel cells (DEFCs) may be greatly affected by their oxidation. However, the specific effect and catalytic mechanism for EOR of transition metal oxides are still unclear and deserve in-depth exploitation. Copper as a potential anode catalyst can be easily oxidized in air. Thus, in this study, we investigated C-C and C-H bond cleavage reactions of CH x CO (x = 1, 2, 3) species in EOR on Cu 2 O(111) using PBE+U calculations, as well as the specific effect of +U correction on the process of adsorption and reaction on Cu 2 O(111). It was revealed that the catalytic performance of Cu 2 O(111) for EOR was restrained compared with that of Cu(100). Except for the C-H cleavage of CH 2 CO, all the reaction barriers for C-C and C-H cleavage were higher than those on Cu(100). The most probable pathway for CH 3 CO to CHCO on Cu 2 O(111) was the continuous dehydrogenation reaction. Besides, the barrier for C-C bond cleavage increased due to the loss of H atoms in the intermediate. Moreover, by the comparison of the traditional GGA/PBE method and the PBE+U method, it could be concluded that C-C cleavage barriers would be underestimated without +U correction, while C-H cleavage barriers would be overestimated. +U correction was proved to be necessary, and the reaction barriers and the values of the Hubbard U parameter had a proper linear relationship.

  6. Stimulation of topoisomerase II mediated DNA cleavage at specific sequence elements by the 2-nitroimidazole Ro 15-0216

    International Nuclear Information System (INIS)

    Sorensen, B.S.; Jensen, P.S.; Andersen, A.H.; Christiansen, K.; Alsner, J.; Thomsen, B.; Westergaard, O.

    1990-01-01

    The effect of the 2-nitroimidazole Ro 15-0216 upon the interaction between purified topoisomerase II and its DNA substrate was investigated. The cleavage reaction in the presence of this DNA-nonintercalative drug took place with the hallmarks of a regular topoisomerase II mediated cleavage reaction, including covalent linkage of the enzyme to the cleaved DNA. In the presence of Ro 15-0216, topoisomerase II mediated cleavage was extensively stimulated at major cleavage sites of which only one existed in the 4363 base pair pBR322 molecule. The sites stimulated by Ro 15-0216 shared a pronounced sequence homology, indicating that a specific nucleotide sequence is crucial for the action of this drug. The effect of Ro 15-0216 thus differs from that of the clinically important topoisomerase II targeted agents such as mAMSA, VM26, and VP16, which enhance enzyme-mediated cleavage at a multiple number of sites. In contrast to the previous described drugs, Ro 15-0216 did not exert any inhibitory effect on the enzyme's catalytic activity. This observation might be ascribed to the low stability of the cleavage complexes formed in the presence of Ro 15-0216 as compared to the stability of the ones formed in the presence of traditional topoisomerase II targeted drugs

  7. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.

    Directory of Open Access Journals (Sweden)

    Tina Y Liu

    Full Text Available CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus Type III-A Csm complex (TthCsm with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.

  8. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.

    Science.gov (United States)

    Liu, Tina Y; Iavarone, Anthony T; Doudna, Jennifer A

    2017-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.

  9. Efficient Construction of Energetic Materials via Nonmetallic Catalytic Carbon-Carbon Cleavage/Oxime-Release-Coupling Reactions.

    Science.gov (United States)

    Zhao, Gang; He, Chunlin; Yin, Ping; Imler, Gregory H; Parrish, Damon A; Shreeve, Jean'ne M

    2018-03-14

    The exploitation of C-C activation to facilitate chemical reactions is well-known in organic chemistry. Traditional strategies in homogeneous media rely upon catalyst-activated or metal-mediated C-C bonds leading to the design of new processes for applications in organic chemistry. However, activation of a C-C bond, compared with C-H bond activation, is a more challenging process and an underdeveloped area because thermodynamics does not favor insertion into a C-C bond in solution. Carbon-carbon bond cleavage through loss of an oxime moiety has not been reported. In this paper, a new observation of self-coupling via C-C bond cleavage with concomitant loss of oxime in the absence of metals (either metal-complex mediation or catalysis) results in dihydroxylammonium 5,5-bistetrazole-1,10-diolate (TKX-50) as well as N, N'-([3,3'-bi(1,2,4-oxadiazole)]-5,5'-diyl)dinitramine, a potential candidate for a new generation of energetic materials.

  10. Regulatory RNAs derived from transfer RNA?

    Science.gov (United States)

    Pederson, Thoru

    2010-10-01

    Four recent studies suggest that cleavages of transfer RNAs generate products with microRNA-like features, with some evidence of function. If their regulatory functions were to be confirmed, these newly revealed RNAs would add to the expanding repertoire of small noncoding RNAs and would also provide new perspectives on the coevolution of transfer RNA and messenger RNA.

  11. The 25 kDa subunit of cleavage factor Im Is a RNA-binding protein that interacts with the poly(A polymerase in Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Marisol Pezet-Valdez

    Full Text Available In eukaryotes, polyadenylation of pre-mRNA 3' end is essential for mRNA export, stability and translation. Taking advantage of the knowledge of genomic sequences of Entamoeba histolytica, the protozoan responsible for human amoebiasis, we previously reported the putative polyadenylation machinery of this parasite. Here, we focused on the predicted protein that has the molecular features of the 25 kDa subunit of the Cleavage Factor Im (CFIm25 from other organisms, including the Nudix (nucleoside diphosphate linked to another moiety X domain, as well as the RNA binding domain and the PAP/PAB interacting region. The recombinant EhCFIm25 protein (rEhCFIm25 was expressed in bacteria and used to generate specific antibodies in rabbit. Subcellular localization assays showed the presence of the endogenous protein in nuclear and cytoplasmic fractions. In RNA electrophoretic mobility shift assays, rEhCFIm25 was able to form specific RNA-protein complexes with the EhPgp5 mRNA 3´ UTR used as probe. In addition, Pull-Down and LC/ESI-MS/MS tandem mass spectrometry assays evidenced that the putative EhCFIm25 was able to interact with the poly(A polymerase (EhPAP that is responsible for the synthesis of the poly(A tail in other eukaryotic cells. By Far-Western experiments, we confirmed the interaction between the putative EhCFIm25 and EhPAP in E. histolytica. Taken altogether, our results showed that the putative EhCFIm25 is a conserved RNA binding protein that interacts with the poly(A polymerase, another member of the pre-mRNA 3' end processing machinery in this protozoan parasite.

  12. 3′ fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex with RISC and SGS3

    Science.gov (United States)

    Yoshikawa, Manabu; Iki, Taichiro; Tsutsui, Yasuhiro; Miyashita, Kyoko; Poethig, R. Scott; Habu, Yoshiki; Ishikawa, Masayuki

    2013-01-01

    trans-acting small interfering RNAs (tasiRNAs) are plant-specific endogenous siRNAs produced via a unique pathway whose first step is the microRNA (miRNA)-programmed RNA-induced silencing complex (RISC)–mediated cleavage of tasiRNA gene (TAS) transcripts. One of the products is subsequently transformed into tasiRNAs by a pathway that requires several factors including SUPPRESSOR OF GENE SILENCING3 (SGS3) and RNA-DEPENDENT RNA POLYMERASE6. Here, using in vitro assembled ARGONAUTE (AGO)1–RISCs, we show that SGS3 is recruited onto RISCs only when they bind target RNA. Following cleavage by miRNA173 (miR173)-programmed RISC, SGS3 was found in complexes containing cleaved TAS2 RNA and RISC. The 3′ cleavage fragment (the source of tasiRNAs) was protected from degradation in this complex. Depletion of SGS3 did not affect TAS2 RNA cleavage by miR173-programmed RISC, but did affect the stability of the 3′ cleavage fragment. When the 3′ nucleotide of 22-nt miR173 was deleted or the corresponding nucleotide in TAS2 RNA was mutated, the complex was not observed and the 3′ cleavage fragment was degraded. Importantly, these changes in miR173 or TAS2 RNA are known to lead to a loss of tasiRNA production in vivo. These results suggest that (i) SGS3 associates with AGO1–RISC via the double-stranded RNA formed by the 3′-terminal nucleotides of 22-nt miR173 and corresponding target RNA, which probably protrudes from the AGO1–RISC molecular surface, (ii) SGS3 protects the 3′ cleavage fragment of TAS2 RNA from degradation, and (iii) the observed SGS3-dependent stabilization of the 3′ fragment of TAS2 RNA is key to tasiRNA production. PMID:23417299

  13. RNA decay by messenger RNA interferases

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Mikkel; Overgaard, Martin; Winther, Kristoffer Skovbo

    2008-01-01

    Two abundant toxin-antitoxin (TA) gene families, relBE and mazEF, encode mRNA cleaving enzymes whose ectopic overexpression abruptly inhibits translation and thereby induces a bacteriostatic condition. Here we describe and discuss protocols for the overproduction, purification, and analysis of mR...... cleaving enzymes such as RelE of Escherichia coli and the corresponding antitoxin RelB. In particular, we describe a set of plasmid vectors useful for the detailed analysis of cleavage sites in model mRNAs.......Two abundant toxin-antitoxin (TA) gene families, relBE and mazEF, encode mRNA cleaving enzymes whose ectopic overexpression abruptly inhibits translation and thereby induces a bacteriostatic condition. Here we describe and discuss protocols for the overproduction, purification, and analysis of mRNA...

  14. Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9.

    Science.gov (United States)

    Raper, Austin T; Stephenson, Anthony A; Suo, Zucai

    2018-02-28

    The discovery of prokaryotic adaptive immunity prompted widespread use of the RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) endonuclease Cas9 for genetic engineering. However, its kinetic mechanism remains undefined, and details of DNA cleavage are poorly characterized. Here, we establish a kinetic mechanism of Streptococcus pyogenes Cas9 from guide-RNA binding through DNA cleavage and product release. Association of DNA to the binary complex of Cas9 and guide-RNA is rate-limiting during the first catalytic turnover, while DNA cleavage from a pre-formed ternary complex of Cas9, guide-RNA, and DNA is rapid. Moreover, an extremely slow release of DNA products essentially restricts Cas9 to be a single-turnover enzyme. By simultaneously measuring the contributions of the HNH and RuvC nuclease activities of Cas9 to DNA cleavage, we also uncovered the kinetic basis by which HNH conformationally regulates the RuvC cleavage activity. Together, our results provide crucial kinetic and functional details regarding Cas9 which will inform gene-editing experiments, guide future research to understand off-target DNA cleavage by Cas9, and aid in the continued development of Cas9 as a biotechnological tool.

  15. Phylogenetic footprinting of non-coding RNA: hammerhead ribozyme sequences in a satellite DNA family of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae

    Directory of Open Access Journals (Sweden)

    Venanzetti Federica

    2010-01-01

    Full Text Available Abstract Background The great variety in sequence, length, complexity, and abundance of satellite DNA has made it difficult to ascribe any function to this genome component. Recent studies have shown that satellite DNA can be transcribed and be involved in regulation of chromatin structure and gene expression. Some satellite DNAs, such as the pDo500 sequence family in Dolichopoda cave crickets, have a catalytic hammerhead (HH ribozyme structure and activity embedded within each repeat. Results We assessed the phylogenetic footprints of the HH ribozyme within the pDo500 sequences from 38 different populations representing 12 species of Dolichopoda. The HH region was significantly more conserved than the non-hammerhead (NHH region of the pDo500 repeat. In addition, stems were more conserved than loops. In stems, several compensatory mutations were detected that maintain base pairing. The core region of the HH ribozyme was affected by very few nucleotide substitutions and the cleavage position was altered only once among 198 sequences. RNA folding of the HH sequences revealed that a potentially active HH ribozyme can be found in most of the Dolichopoda populations and species. Conclusions The phylogenetic footprints suggest that the HH region of the pDo500 sequence family is selected for function in Dolichopoda cave crickets. However, the functional role of HH ribozymes in eukaryotic organisms is unclear. The possible functions have been related to trans cleavage of an RNA target by a ribonucleoprotein and regulation of gene expression. Whether the HH ribozyme in Dolichopoda is involved in similar functions remains to be investigated. Future studies need to demonstrate how the observed nucleotide changes and evolutionary constraint have affected the catalytic efficiency of the hammerhead.

  16. Poliovirus RNA synthesis in vitro: structural elements and antibody inhibition

    International Nuclear Information System (INIS)

    Semler, B.L.; Hanecak, R.; Dorner, L.F.; Anderson, C.W.; Wimmer, E.

    1983-01-01

    The poliovirus RNA polymerase complex has been analyzed by immunoautoradiography using antibody probes derived from purified replicase (P3) region viral polypeptides. Antibody preparations made against the polio RNA polymerase, P3-4b, detected a previously unreported cellular protein that copurifies with the RNA polymerase. An IgG fraction purified from rabbit antiserum to polypeptide P3-2, a precursor fo the RNA polymerase, specifically inhibits poliovirus RNA synthesis in vitro. The authors have also immunoprecipitated a 60,000-dalton protein (P3-4a) with antiserum to protein P3-4b and have determined the precise genomic map position of this protein by automated Edman degradation. Protein P3-4a originates by cleavage of the RNA polymerase precursor at a glutamine-glucine amino acid pair not previously reported to be a viral cleavage site

  17. RDE-4 preferentially binds long dsRNA and its dimerization is necessary for cleavage of dsRNA to siRNA.

    Science.gov (United States)

    Parker, Greg S; Eckert, Debra M; Bass, Brenda L

    2006-05-01

    In organisms ranging from Arabidopsis to humans, Dicer requires dsRNA-binding proteins (dsRBPs) to carry out its roles in RNA interference (RNAi) and micro-RNA (miRNA) processing. In Caenorhabditis elegans, the dsRBP RDE-4 acts with Dicer during the initiation of RNAi, when long dsRNA is cleaved to small interfering RNAs (siRNAs). RDE-4 is not required in subsequent steps, and how RDE-4 distinguishes between long dsRNA and short siRNA is unclear. We report the first detailed analysis of RDE-4 binding, using purified recombinant RDE-4 and various truncated proteins. We find that, similar to other dsRBPs, RDE-4 is not sequence-specific. However, consistent with its in vivo roles, RDE-4 binds with higher affinity to long dsRNA. We also observe that RDE-4 is a homodimer in solution, and that the C-terminal domain of the protein is required for dimerization. Using extracts from wild-type and rde-4 mutant C. elegans, we show that the C-terminal dimerization domain is required for the production of siRNA. Our findings suggest a model for RDE-4 function during the initiation of RNAi.

  18. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.

    Directory of Open Access Journals (Sweden)

    Jiangning Song

    Full Text Available The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s. Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate

  19. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation.

    Science.gov (United States)

    Liu, Ying; Ye, Xuecheng; Jiang, Feng; Liang, Chunyang; Chen, Dongmei; Peng, Junmin; Kinch, Lisa N; Grishin, Nick V; Liu, Qinghua

    2009-08-07

    The catalytic engine of RNA interference (RNAi) is the RNA-induced silencing complex (RISC), wherein the endoribonuclease Argonaute and single-stranded small interfering RNA (siRNA) direct target mRNA cleavage. We reconstituted long double-stranded RNA- and duplex siRNA-initiated RISC activities with the use of recombinant Drosophila Dicer-2, R2D2, and Ago2 proteins. We used this core reconstitution system to purify an RNAi regulator that we term C3PO (component 3 promoter of RISC), a complex of Translin and Trax. C3PO is a Mg2+-dependent endoribonuclease that promotes RISC activation by removing siRNA passenger strand cleavage products. These studies establish an in vitro RNAi reconstitution system and identify C3PO as a key activator of the core RNAi machinery.

  20. Multiple RNA processing defects and impaired chloroplast function in plants deficient in the organellar protein-only RNase P enzyme.

    Directory of Open Access Journals (Sweden)

    Wenbin Zhou

    Full Text Available Transfer RNA (tRNA precursors undergo endoribonucleolytic processing of their 5' and 3' ends. 5' cleavage of the precursor transcript is performed by ribonuclease P (RNase P. While in most organisms RNase P is a ribonucleoprotein that harbors a catalytically active RNA component, human mitochondria and the chloroplasts (plastids and mitochondria of seed plants possess protein-only RNase P enzymes (PRORPs. The plant organellar PRORP (PRORP1 has been characterized to some extent in vitro and by transient gene silencing, but the molecular, phenotypic and physiological consequences of its down-regulation in stable transgenic plants have not been assessed. Here we have addressed the function of the dually targeted organellar PRORP enzyme in vivo by generating stably transformed Arabidopsis plants in which expression of the PRORP1 gene was suppressed by RNA interference (RNAi. PRORP1 knock-down lines show defects in photosynthesis, while mitochondrial respiration is not appreciably affected. In both plastids and mitochondria, the effects of PRORP1 knock-down on the processing of individual tRNA species are highly variable. The drastic reduction in the levels of mature plastid tRNA-Phe(GAA and tRNA-Arg(ACG suggests that these two tRNA species limit plastid gene expression in the PRORP1 mutants and, hence, are causally responsible for the mutant phenotype.

  1. Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL)

    Science.gov (United States)

    2015-12-01

    event. The discovery that transformed and rapidly proliferating cells use alternative cleavage and polyadenylation ( APA ) to shorten the 3´UTR of their... APA . However, the mechanism that APA is still unknown. The goal of this project is to identify the mechanism of cyclin D1 APA regulation in cancer...for APA in MCL. In addition, by using RNA Seq. CFIm25 has been identified as an important global regulator of shortening of cyclin D1 mRNA and other

  2. Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs using PICS with proteome-derived peptide libraries.

    Directory of Open Access Journals (Sweden)

    Olivier Barré

    Full Text Available Type II transmembrane serine proteases (TTSPs are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors.To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS. Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin to simultaneously determine sequence preferences on the N-terminal non-prime (P and C-terminal prime (P' sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1' position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived.Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1' positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.

  3. Identification of Rbd2 as a candidate protease for sterol regulatory element binding protein (SREBP) cleavage in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinsil; Ha, Hye-Jeong [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Kim, Sujin [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Choi, Ah-Reum [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Sook-Jeong [Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Hoe, Kwang-Lae, E-mail: kwanghoe@cnu.ac.kr [Department of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Kim, Dong-Uk, E-mail: kimdongu@kribb.re.kr [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2015-12-25

    Lipid homeostasis in mammalian cells is regulated by sterol regulatory element-binding protein (SREBP) transcription factors that are activated through sequential cleavage by Golgi Site-1 and Site-2 proteases. Fission yeast SREBP, Sre1, engages a different mechanism involving the Golgi Dsc E3 ligase complex, but it is not clearly understood exactly how Sre1 is proteolytically cleaved and activated. In this study, we screened the Schizosaccharomyces pombe non-essential haploid deletion collection to identify missing components of the Sre1 cleavage machinery. Our screen identified an additional component of the SREBP pathway required for Sre1 proteolysis named rhomboid protein 2 (Rbd2). We show that an rbd2 deletion mutant fails to grow under hypoxic and hypoxia-mimetic conditions due to lack of Sre1 activity and that this growth phenotype is rescued by Sre1N, a cleaved active form of Sre1. We found that the growth inhibition phenotype under low oxygen conditions is specific to the strain with deletion of rbd2, not any other fission yeast rhomboid-encoding genes. Our study also identified conserved residues of Rbd2 that are required for Sre1 proteolytic cleavage. All together, our results suggest that Rbd2 is a functional SREBP protease with conserved residues required for Sre1 cleavage and provide an important piece of the puzzle to understand the mechanisms for Sre1 activation and the regulation of various biological and pathological processes involving SREBPs. - Highlights: • An rbd2-deleted yeast strain shows defects in growth in response to low oxygen levels. • rbd2-deficient cells fail to generate cleaved Sre1 (Sre1N) under hypoxic conditions. • Expression of Sre1N rescues the rbd2 deletion mutant growth phenotype. • Rbd2 contains conserved residues potentially critical for catalytic activity. • Mutation of the conserved Rbd2 catalytic residues leads to defects in Sre1 cleavage.

  4. Single-Molecule Analysis for RISC Assembly and Target Cleavage.

    Science.gov (United States)

    Sasaki, Hiroshi M; Tadakuma, Hisashi; Tomari, Yukihide

    2018-01-01

    RNA-induced silencing complex (RISC) is a small RNA-protein complex that mediates silencing of complementary target RNAs. Biochemistry has been successfully used to characterize the molecular mechanism of RISC assembly and function for nearly two decades. However, further dissection of intermediate states during the reactions has been warranted to fill in the gaps in our understanding of RNA silencing mechanisms. Single-molecule analysis with total internal reflection fluorescence (TIRF) microscopy is a powerful imaging-based approach to interrogate complex formation and dynamics at the individual molecule level with high sensitivity. Combining this technique with our recently established in vitro reconstitution system of fly Ago2-RISC, we have developed a single-molecule observation system for RISC assembly. In this chapter, we summarize the detailed protocol for single-molecule analysis of chaperone-assisted assembly of fly Ago2-RISC as well as its target cleavage reaction.

  5. Prokaryotic Argonautes - variations on the RNA interference theme

    Science.gov (United States)

    van der Oost, John; Swarts, Daan C.; Jore, Matthijs M.

    2014-01-01

    The discovery of RNA interference (RNAi) has been a major scientific breakthrough. This RNA-guided RNA interference system plays a crucial role in a wide range of regulatory and defense mechanisms in eukaryotes. The key enzyme of the RNAi system is Argonaute (Ago), an endo-ribonuclease that uses a small RNA guide molecule to specifically target a complementary RNA transcript. Two functional classes of eukaryotic Ago have been described: catalytically active Ago that cleaves RNA targets complementary to its guide, and inactive Ago that uses its guide to bind target RNA to down-regulate translation efficiency. A recent comparative genomics study has revealed that Argonaute-like proteins are also encoded by prokaryotic genomes. Interestingly, there is a lot of variation among these prokaryotic Argonaute (pAgo) proteins with respect to domain architecture: some resemble the eukaryotic Ago (long pAgo) containing a complete or disrupted catalytic site, while others are truncated versions (short pAgo) that generally contain an incomplete catalytic site. Prokaryotic Agos with an incomplete catalytic site often co-occur with (predicted) nucleases. Based on this diversity, and on the fact that homologs of other RNAi-related protein components (such as Dicer nucleases) have never been identified in prokaryotes, it has been predicted that variations on the eukaryotic RNAi theme may occur in prokaryotes. PMID:28357239

  6. Respective Functions of Two Distinct Siwi Complexes Assembled during PIWI-Interacting RNA Biogenesis in Bombyx Germ Cells

    Directory of Open Access Journals (Sweden)

    Kazumichi M. Nishida

    2015-01-01

    Full Text Available PIWI-interacting RNA (piRNA biogenesis consists of two sequential steps: primary piRNA processing and the ping-pong cycle that depends on reciprocal Slicer-mediated RNA cleavage by PIWI proteins. However, the molecular functions of the factors involved remain elusive. Here, we show that RNAs cleaved by a Bombyx mori PIWI, Siwi, remain bound to the protein upon cleavage but are released by a DEAD box protein BmVasa. BmVasa copurifies with Siwi but not another PIWI BmAgo3. A lack of BmVasa does not affect primary piRNA processing but abolishes the ping-pong cycle. Siwi also forms a complex with BmSpn-E and BmQin. This complex is physically separable from the Siwi/BmVasa complex. BmSpn-E, unlike BmVasa, is necessary for primary piRNA production. We propose a model for piRNA biogenesis, where the BmSpn-E/BmQin dimer binds Siwi to function in primary piRNA processing, whereas BmVasa, by associating with Siwi, ensures target RNA release upon cleavage to facilitate the ping-pong cycle.

  7. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex.

    Science.gov (United States)

    Jiang, F; Kumar, R A; Jones, R A; Patel, D J

    1996-07-11

    The catalytic properties of RNA and its well known role in gene expression and regulation are the consequence of its unique solution structures. Identification of the structural determinants of ligand recognition by RNA molecules is of fundamental importance for understanding the biological functions of RNA, as well as for the rational design of RNA Sequences with specific catalytic activities. Towards this latter end, Szostak et al. used in vitro selection techniques to isolate RNA sequences ('aptamers') containing a high-affinity binding site for ATP, the universal currency of cellular energy, and then used this motif to engineer ribozymes with polynucleotide kinase activity. Here we present the solution structure, as determined by multidimensional NMR spectroscopy and molecular dynamics calculations, of both uniformly and specifically 13C-, 15N-labelled 40-mer RNA containing the ATP-binding motif complexed with AMP. The aptamer adopts an L-shaped structure with two nearly orthogonal stems, each capped proximally by a G x G mismatch pair, binding the AMP ligand at their junction in a GNRA-like motif.

  8. miRNA-like duplexes as RNAi triggers with improved specificity

    Directory of Open Access Journals (Sweden)

    Juan G. Betancur

    2012-07-01

    Full Text Available siRNA duplexes, the most common triggers of RNA interference, are first loaded into an Argonaute (Ago protein and then undergo unwinding via passenger strand cleavage, which requires the slicer activity of the Ago protein. In mammals, only Ago2 out of the four Ago proteins possesses such slicer activity. In contrast, miRNA/miRNA* duplexes often contain central mismatches that prevent slicer-dependent unwinding. Instead, mismatches in specific regions (seed and 3´-mid regions promote efficient slicer-independent unwinding by any of the four mammalian Ago proteins. Both slicer-dependent and slicer-independent unwinding mechanisms produce guide-containing RNA-induced silencing complex (RISC, which silences target mRNAs by cleavage, translational repression, and/or deadenylation that leads to mRNA decay. In this review, we summarize our current knowledge of the RISC assembly pathways, and describe a simple method to rationally design artificial miRNA/miRNA*-like duplexes and highlight its benefits to reduce the unwanted off-target effects without compromising the specific target silencing activity.

  9. The dynamics and efficacy of antiviral RNA silencing: A model study

    Directory of Open Access Journals (Sweden)

    Hogeweg Paulien

    2008-03-01

    Full Text Available Abstract Background Mathematical modeling is important to provide insight in the complicated pathway of RNA silencing. RNA silencing is an RNA based mechanism that is widely used by eukaryotes to fight viruses, and to control gene expression. Results We here present the first mathematical model that combines viral growth with RNA silencing. The model involves a plus-strand RNA virus that replicates through a double-strand RNA intermediate. The model of the RNA silencing pathway consists of cleavage of viral RNA into siRNA by Dicer, target cleavage of viral RNA via the RISC complex, and a secondary response. We found that, depending on the strength of the silencing response, different viral growth patterns can occur. Silencing can decrease viral growth, cause oscillations, or clear the virus completely. Our model can explain various observed phenomena, even when they seem contradictory at first: the diverse responses to the removal of RNA dependent RNA polymerase; different viral growth curves; and the great diversity in observed siRNA ratios. Conclusion The model presented here is an important step in the understanding of the natural functioning of RNA silencing in viral infections.

  10. Accurate placement of substrate RNA by Gar1 in H/ACA RNA-guided pseudouridylation.

    Science.gov (United States)

    Wang, Peng; Yang, Lijiang; Gao, Yi Qin; Zhao, Xin Sheng

    2015-09-03

    H/ACA RNA-guided ribonucleoprotein particle (RNP), the most complicated RNA pseudouridylase so far known, uses H/ACA guide RNA for substrate capture and four proteins (Cbf5, Nop10, L7Ae and Gar1) for pseudouridylation. Although it was shown that Gar1 not only facilitates the product release, but also enhances the catalytic activity, the chemical role that Gar1 plays in this complicated machinery is largely unknown. Kinetics measurement on Pyrococcus furiosus RNPs at different temperatures making use of fluorescence anisotropy showed that Gar1 reduces the catalytic barrier through affecting the activation entropy instead of enthalpy. Site-directed mutagenesis combined with molecular dynamics simulations demonstrated that V149 in the thumb loop of Cbf5 is critical in placing the target uridine to the right position toward catalytic D85 of Cbf5. The enzyme elegantly aligns the position of uridine in the catalytic site with the help of Gar1. In addition, conversion of uridine to pseudouridine results in a rigid syn configuration of the target nucleotide in the active site and causes Gar1 to pull out the thumb. Both factors guarantee the efficient release of the product. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Chemical fidelity of an RNA polymerase ribozyme

    DEFF Research Database (Denmark)

    Attwater, J.; Tagami, S.; Kimoto, M.

    2013-01-01

    for function. Here we have explored the chemical fidelity, i.e. substrate selectivity and specificity for both single and multiple catalytic steps of the Z RNA polymerase ribozyme-a modern day analogue of the primordial RNA replicase. Using a wide range of nucleotide analogues and ionic conditions, we observe......The emergence of catalytically active RNA enzymes (ribozymes) is widely believed to have been an important transition in the origin of life. In the context of a likely heterogeneous chemical environment, substrate specificity and selectivity of these primordial enzymes would have been critical...

  12. Targeting Micrornas With Small Molecules: A Novel Approach to Treating Breast Cancer

    Science.gov (United States)

    2010-10-01

    DNAzyme, or deoxyribozyme, is a catalytic DNA that site-specifically cleaves the target RNA Watson – Crick base pairing to a complementary target...conserved antiparallel RNA A-helix fold among the selected pre- miRNA targets (Fig. 1a). Furthermore, 3D characteristics including Watson - Crick base pairs... Watson – Crick binding, leading to RNAse-H- mediated cleavage of the mRNA of the target gene. The ASOs also inhibit transcription, splicing, and

  13. In-vivo quantification of primary microRNA processing by Drosha with a luciferase based system

    International Nuclear Information System (INIS)

    Allegra, Danilo; Mertens, Daniel

    2011-01-01

    Research highlights: → Posttranscriptional regulation of miRNA processing is difficult to quantify. → Our in-vivo processing assay can quantify Drosha cleavage in live cells. → It is based on luciferase reporters fused with pri-miRNAs. → The assay validates the processing defect caused by a mutation in pri-16-1. → It is a sensitive method to quantify pri-miRNA cleavage by Drosha in live cells. -- Abstract: The RNAse III Drosha is responsible for the first step of microRNA maturation, the cleavage of primary miRNA to produce the precursor miRNA. Processing by Drosha is finely regulated and influences the amount of mature microRNA in a cell. We describe in the present work a method to quantify Drosha processing activity in-vivo, which is applicable to any microRNA. With respect to other methods for measuring Drosha activity, our system is faster and scalable, can be used with any cellular system and does not require cell sorting or use of radioactive isotopes. This system is useful to study regulation of Drosha activity in physiological and pathological conditions.

  14. RNase MRP is required for entry of 35S precursor rRNA into the canonical processing pathway.

    Science.gov (United States)

    Lindahl, Lasse; Bommankanti, Ananth; Li, Xing; Hayden, Lauren; Jones, Adrienne; Khan, Miriam; Oni, Tolulope; Zengel, Janice M

    2009-07-01

    RNase MRP is a nucleolar RNA-protein enzyme that participates in the processing of rRNA during ribosome biogenesis. Previous experiments suggested that RNase MRP makes a nonessential cleavage in the first internal transcribed spacer. Here we report experiments with new temperature-sensitive RNase MRP mutants in Saccharomyces cerevisiae that show that the abundance of all early intermediates in the processing pathway is severely reduced upon inactivation of RNase MRP. Transcription of rRNA continues unabated as determined by RNA polymerase run-on transcription, but the precursor rRNA transcript does not accumulate, and appears to be unstable. Taken together, these observations suggest that inactivation of RNase MRP blocks cleavage at sites A0, A1, A2, and A3, which in turn, prevents precursor rRNA from entering the canonical processing pathway (35S > 20S + 27S > 18S + 25S + 5.8S rRNA). Nevertheless, at least some cleavage at the processing site in the second internal transcribed spacer takes place to form an unusual 24S intermediate, suggesting that cleavage at C2 is not blocked. Furthermore, the long form of 5.8S rRNA is made in the absence of RNase MRP activity, but only in the presence of Xrn1p (exonuclease 1), an enzyme not required for the canonical pathway. We conclude that RNase MRP is a key enzyme for initiating the canonical processing of precursor rRNA transcripts, but alternative pathway(s) might provide a backup for production of small amounts of rRNA.

  15. Iron-catalysed fluoroaromatic coupling reactions under catalytic modulation with 1,2-bis(diphenylphosphino)benzene.

    Science.gov (United States)

    Hatakeyama, Takuji; Kondo, Yoshiyuki; Fujiwara, Yu-Ichi; Takaya, Hikaru; Ito, Shingo; Nakamura, Eiichi; Nakamura, Masaharu

    2009-03-14

    A catalytic amount of 1,2-bis(diphenylphosphino)benzene (DPPBz) achieves selective cleavage of sp(3)-carbon-halogen bond in the iron-catalysed cross-coupling between polyfluorinated arylzinc reagents and alkyl halides, which was unachievable with a stoichiometric modifier such as TMEDA; the selective iron-catalysed fluoroaromatic coupling provides easy and practical access to polyfluorinated aromatic compounds.

  16. High octane gasoline components from catalytic cracking gasoline, propylene, and isobutane by disproportionation, clevage and alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Banks, R.

    1980-07-08

    A process is described for producing high octane value gasoline which comprises in a disproportionation zone subjecting propylene and a mixture of propylene and ethylene obtained as hereinafter delineated to disproportionation conditions to produce a stream containing ethylene and a stream containing butenes, passing the ethylene-containing stream from said disproportionation zone together with a catalytic cracking gasoline to a cleavage zone under disproportionation conditions and subjecting the mixture of hydrocarbons therin to cleavage to produce said mixture of propylene and ethylene, a C/sub 5//sup +/ gasoline-containing product and butenes and wherein the butenes obtained in the overall operation of the disproportionation zone and the cleavage zone are passed to an alkylation zone wherein said butenes are used to alkylate an isoparaffin to produce additional high octane value product.

  17. A transcript cleavage factor of Mycobacterium tuberculosis important for its survival.

    Directory of Open Access Journals (Sweden)

    Arnab China

    Full Text Available After initiation of transcription, a number of proteins participate during elongation and termination modifying the properties of the RNA polymerase (RNAP. Gre factors are one such group conserved across bacteria. They regulate transcription by projecting their N-terminal coiled-coil domain into the active center of RNAP through the secondary channel and stimulating hydrolysis of the newly synthesized RNA in backtracked elongation complexes. Rv1080c is a putative gre factor (MtbGre in the genome of Mycobacterium tuberculosis. The protein enhanced the efficiency of promoter clearance by lowering abortive transcription and also rescued arrested and paused elongation complexes on the GC rich mycobacterial template. Although MtbGre is similar in domain organization and shares key residues for catalysis and RNAP interaction with the Gre factors of Escherichia coli, it could not complement an E. coli gre deficient strain. Moreover, MtbGre failed to rescue E. coli RNAP stalled elongation complexes, indicating the importance of specific protein-protein interactions for transcript cleavage. Decrease in the level of MtbGre reduced the bacterial survival by several fold indicating its essential role in mycobacteria. Another Gre homolog, Rv3788 was not functional in transcript cleavage activity indicating that a single Gre is sufficient for efficient transcription of the M. tuberculosis genome.

  18. Switch in Site of Inhibition: A Strategy for Structure-Based Discovery of Human Topoisomerase IIα Catalytic Inhibitors

    Science.gov (United States)

    2015-01-01

    A study of structure-based modulation of known ligands of hTopoIIα, an important enzyme involved in DNA processes, coupled with synthesis and in vitro assays led to the establishment of a strategy of rational switch in mode of inhibition of the enzyme’s catalytic cycle. 6-Arylated derivatives of known imidazopyridine ligands were found to be selective inhibitors of hTopoIIα, while not showing TopoI inhibition and DNA binding. Interestingly, while the parent imidazopyridines acted as ATP-competitive inhibitors, arylated derivatives inhibited DNA cleavage similar to merbarone, indicating a switch in mode of inhibition from ATP-hydrolysis to the DNA-cleavage stage of catalytic cycle of the enzyme. The 6-aryl-imidazopyridines were relatively more cytotoxic than etoposide in cancer cells and less toxic to normal cells. Such unprecedented strategy will encourage research on “choice-based change” in target-specific mode of action for rapid drug discovery. PMID:25941559

  19. Enzymatic synthesis of tRNA-peptide conjugates and spectroscopic studies of fluorine-modified RNA

    International Nuclear Information System (INIS)

    Graber, D.

    2010-01-01

    possess the naturally occurring nucleoside modifications. Hence, an alternative process for access to 5'-fragments containing these modifications was needed. Starting from wild-type tRNA, a DNA-enzyme mediated position-specific cleavage at the desired cleavage site was elaborated. For quantitative cleavage, the introduction of repeated temperature cycles was inevitable. Dephosphorylation of the so obtained 2',3'-cyclophosphate cleavage products had to be performed prior to ligating the wild-type 5'-fragment by T4 RNA ligase to the chimeric 3'-fragment yielding the fully modified tRNA-peptide conjugate. The broad applicability of that approach was demonstrated by successful ligation of various tRNA, and tRNA from different species. In the second part of this thesis fluorinated nucleic acids were applied to 19F NMR spectroscopic investigations. One subproject concerned fluorinated nucleic acids for probing secondary structures. For that reason, a 2,4-difluorotoluyl-ribofuranose phosphoramidite was synthesized and site-specifically incorporated into oligonucleotides. As a proof of principle, the differentiation between monomolecular and bimolecular melting transitions was demonstrated by monitoring the temperature dependent alterations in the chemical shift signatures. It was also shown that oligonucleotides of self-complementary sequences - which simultaneously adopt different secondary structures - can be analyzed in terms of quantification of the coexisting populations. Moreover, melting temperatures determined by 19F NMR spectroscopy were in excellent accordance with those found using traditional UV-techniques. In another subproject, the interaction of tRNA pseudouridine synthase (TruB) with its TΨC loop tRNA substrate was studied using 19F NMR spectroscopy. So far, published contributions have focused on 5-fluorouridine substrate/enzyme reactions which were expected to result in a stable covalently linked RNA-enzyme complex. However, the enzyme was capable of

  20. Uncoupling of Protease trans-Cleavage and Helicase Activities in Pestivirus NS3.

    Science.gov (United States)

    Zheng, Fengwei; Lu, Guoliang; Li, Ling; Gong, Peng; Pan, Zishu

    2017-11-01

    The nonstructural protein NS3 from the Flaviviridae family is a multifunctional protein that contains an N-terminal protease and a C-terminal helicase, playing essential roles in viral polyprotein processing and genome replication. Here we report a full-length crystal structure of the classical swine fever virus (CSFV) NS3 in complex with its NS4A protease cofactor segment (PCS) at a 2.35-Å resolution. The structure reveals a previously unidentified ∼2,200-Å 2 intramolecular protease-helicase interface comprising three clusters of interactions, representing a "closed" global conformation related to the NS3-NS4A cis -cleavage event. Although this conformation is incompatible with protease trans -cleavage, it appears to be functionally important and beneficial to the helicase activity, as the mutations designed to perturb this conformation impaired both the helicase activities in vitro and virus production in vivo Our work reveals important features of protease-helicase coordination in pestivirus NS3 and provides a key basis for how different conformational states may explicitly contribute to certain functions of this natural protease-helicase fusion protein. IMPORTANCE Many RNA viruses encode helicases to aid their RNA genome replication and transcription by unwinding structured RNA. Being naturally fused to a protease participating in viral polyprotein processing, the NS3 helicases encoded by the Flaviviridae family viruses are unique. Therefore, how these two enzyme modules coordinate in a single polypeptide is of particular interest. Here we report a previously unidentified conformation of pestivirus NS3 in complex with its NS4A protease cofactor segment (PCS). This conformational state is related to the protease cis -cleavage event and is optimal for the function of helicase. This work provides an important basis to understand how different enzymatic activities of NS3 may be achieved by the coordination between the protease and helicase through different

  1. MicroRNA-triggered, cascaded and catalytic self-assembly of functional ``DNAzyme ferris wheel'' nanostructures for highly sensitive colorimetric detection of cancer cells

    Science.gov (United States)

    Zhou, Wenjiao; Liang, Wenbin; Li, Xin; Chai, Yaqin; Yuan, Ruo; Xiang, Yun

    2015-05-01

    The construction of DNA nanostructures with various sizes and shapes has significantly advanced during the past three decades, yet the application of these DNA nanostructures for solving real problems is still in the early stage. On the basis of microRNA-triggered, catalytic self-assembly formation of the functional ``DNAzyme ferris wheel'' nanostructures, we show here a new signal amplification platform for highly sensitive, label-free and non-enzyme colorimetric detection of a small number of human prostate cancer cells. The microRNA (miR-141), which is catalytically recycled and reused, triggers isothermal self-assembly of a pre-designed, G-quadruplex sequence containing hairpin DNAs into ``DNAzyme ferris wheel''-like nanostructures (in association with hemin) with horseradish peroxidase mimicking activity. These DNAzyme nanostructures catalyze an intensified color transition of the probe solution for highly sensitive detection of miR-141 down to 0.5 pM with the naked eye, and the monitoring of as low as 283 human prostate cancer cells can also, theoretically, be achieved in a colorimetric approach. The work demonstrated here thus offers new opportunities for the construction of functional DNA nanostructures and for the application of these DNA nanostructures as an effective signal amplification means in the sensitive detection of nucleic acid biomarkers.

  2. Insights into the Reaction Mechanism of Aromatic Ring Cleavage by Homogentisate Dioxygenase: A Quantum Mechanical/Molecular Mechanical Study.

    Science.gov (United States)

    Qi, Yue; Lu, Jiarui; Lai, Wenzhen

    2016-05-26

    To elucidate the reaction mechanism of the ring cleavage of homogentisate by homogentisate dioxygenase, quantum mechanical/molecular mechanical (QM/MM) calculations were carried out by using two systems in different protonation states of the substrate C2 hydroxyl group. When the substrate C2 hydroxyl group is ionized (the ionized pathway), the superoxo attack on the substrate is the rate-limiting step in the catalytic cycle, with a barrier of 15.9 kcal/mol. Glu396 was found to play an important role in stabilizing the bridge species and its O-O cleavage product by donating a proton via a hydrogen-bonded water molecule. When the substrate C2 hydroxyl group is not ionized (the nonionized pathway), the O-O bond cleavage of the bridge species is the rate-limiting step, with a barrier of 15.3 kcal/mol. The QM/MM-optimized geometries for the dioxygen and alkylperoxo complexes using the nonionized model (for the C2 hydroxyl group) are in agreement with the experimental crystal structures, suggesting that the C2 hydroxyl group is more likely to be nonionized.

  3. Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis.

    Science.gov (United States)

    Senger, Moritz; Stripp, Sven T; Soboh, Basem

    2017-07-14

    Metalloenzymes catalyze complex and essential processes, such as photosynthesis, respiration, and nitrogen fixation. For example, bacteria and archaea use [NiFe]-hydrogenases to catalyze the uptake and release of molecular hydrogen (H 2 ). [NiFe]-hydrogenases are redox enzymes composed of a large subunit that harbors a NiFe(CN) 2 CO metallo-center and a small subunit with three iron-sulfur clusters. The large subunit is synthesized with a C-terminal extension, cleaved off by a specific endopeptidase during maturation. The exact role of the C-terminal extension has remained elusive; however, cleavage takes place exclusively after assembly of the [NiFe]-cofactor and before large and small subunits form the catalytically active heterodimer. To unravel the functional role of the C-terminal extension, we used an enzymatic in vitro maturation assay that allows synthesizing functional [NiFe]-hydrogenase-2 of Escherichia coli from purified components. The maturation process included formation and insertion of the NiFe(CN) 2 CO cofactor into the large subunit, endoproteolytic cleavage of the C-terminal extension, and dimerization with the small subunit. Biochemical and spectroscopic analysis indicated that the C-terminal extension of the large subunit is essential for recognition by the maturation machinery. Only upon completion of cofactor insertion was removal of the C-terminal extension observed. Our results indicate that endoproteolytic cleavage is a central checkpoint in the maturation process. Here, cleavage temporally orchestrates cofactor insertion and protein assembly and ensures that only cofactor-containing protein can continue along the assembly line toward functional [NiFe]-hydrogenase. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Structure and catalytic regulatory function of ubiquitin specific protease 11 N-terminal and ubiquitin-like domains.

    Science.gov (United States)

    Harper, Stephen; Gratton, Hayley E; Cornaciu, Irina; Oberer, Monika; Scott, David J; Emsley, Jonas; Dreveny, Ingrid

    2014-05-13

    The ubiquitin specific protease 11 (USP11) is implicated in DNA repair, viral RNA replication, and TGFβ signaling. We report the first characterization of the USP11 domain architecture and its role in regulating the enzymatic activity. USP11 consists of an N-terminal "domain present in USPs" (DUSP) and "ubiquitin-like" (UBL) domain, together referred to as DU domains, and the catalytic domain harboring a second UBL domain. Crystal structures of the DU domains show a tandem arrangement with a shortened β-hairpin at the two-domain interface and altered surface characteristics compared to the homologues USP4 and USP15. A conserved VEVY motif is a signature feature at the two-domain interface that shapes a potential protein interaction site. Small angle X-ray scattering and gel filtration experiments are consistent with the USP11DU domains and full-length USP11 being monomeric. Unexpectedly, we reveal, through kinetic assays of a series of deletion mutants, that the catalytic activity of USP11 is not regulated through intramolecular autoinhibition or activation by the N-terminal DU or UBL domains. Moreover, ubiquitin chain cleavage assays with all eight linkages reveal a preference for Lys(63)-, Lys(6)-, Lys(33)-, and Lys(11)-linked chains over Lys(27)-, Lys(29)-, and Lys(48)-linked and linear chains consistent with USP11's function in DNA repair pathways that is mediated by the protease domain. Our data support a model whereby USP11 domains outside the catalytic core domain serve as protein interaction or trafficking modules rather than a direct regulatory function of the proteolytic activity. This highlights the diversity of USPs in substrate recognition and regulation of ubiquitin deconjugation.

  5. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  6. Processing of nuclear viroids in vivo: an interplay between RNA conformations.

    Directory of Open Access Journals (Sweden)

    María-Eugenia Gas

    2007-11-01

    Full Text Available Replication of viroids, small non-protein-coding plant pathogenic RNAs, entails reiterative transcription of their incoming single-stranded circular genomes, to which the (+ polarity is arbitrarily assigned, cleavage of the oligomeric strands of one or both polarities to unit-length, and ligation to circular RNAs. While cleavage in chloroplastic viroids (family Avsunviroidae is mediated by hammerhead ribozymes, where and how cleavage of oligomeric (+ RNAs of nuclear viroids (family Pospiviroidae occurs in vivo remains controversial. Previous in vitro data indicated that a hairpin capped by a GAAA tetraloop is the RNA motif directing cleavage and a loop E motif ligation. Here we have re-examined this question in vivo, taking advantage of earlier findings showing that dimeric viroid (+ RNAs of the family Pospiviroidae transgenically expressed in Arabidopsis thaliana are processed correctly. Using this methodology, we have mapped the processing site of three members of this family at equivalent positions of the hairpin I/double-stranded structure that the upper strand and flanking nucleotides of the central conserved region (CCR can form. More specifically, from the effects of 16 mutations on Citrus exocortis viroid expressed transgenically in A. thaliana, we conclude that the substrate for in vivo cleavage is the conserved double-stranded structure, with hairpin I potentially facilitating the adoption of this structure, whereas ligation is determined by loop E and flanking nucleotides of the two CCR strands. These results have deep implications on the underlying mechanism of both processing reactions, which are most likely catalyzed by enzymes different from those generally assumed: cleavage by a member of the RNase III family, and ligation by an RNA ligase distinct from the only one characterized so far in plants, thus predicting the existence of at least a second plant RNA ligase.

  7. Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery.

    Science.gov (United States)

    Donovan, Jesse; Rath, Sneha; Kolet-Mandrikov, David; Korennykh, Alexei

    2017-11-01

    Mammalian cells respond to double-stranded RNA (dsRNA) by activating a translation-inhibiting endoribonuclease, RNase L. Consensus in the field indicates that RNase L arrests protein synthesis by degrading ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs). However, here we provide evidence for a different and far more efficient mechanism. By sequencing abundant RNA fragments generated by RNase L in human cells, we identify site-specific cleavage of two groups of noncoding RNAs: Y-RNAs, whose function is poorly understood, and cytosolic tRNAs, which are essential for translation. Quantitative analysis of human RNA cleavage versus nascent protein synthesis in lung carcinoma cells shows that RNase L stops global translation when tRNAs, as well as rRNAs and mRNAs, are still intact. Therefore, RNase L does not have to degrade the translation machinery to stop protein synthesis. Our data point to a rapid mechanism that transforms a subtle RNA cleavage into a cell-wide translation arrest. © 2017 Donovan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  8. Characterization of ribonuclease III from Brucella.

    Science.gov (United States)

    Wu, Chang-Xian; Xu, Xian-Jin; Zheng, Ke; Liu, Fang; Yang, Xu-Dong; Chen, Chuang-Fu; Chen, Huan-Chun; Liu, Zheng-Fei

    2016-04-01

    Bacterial ribonuclease III (RNase III) is a highly conserved endonuclease, which plays pivotal roles in RNA maturation and decay pathways by cleaving double-stranded structure of RNAs. Here we cloned rncS gene from the genomic DNA of Brucella melitensis, and analyzed the cleavage properties of RNase III from Brucella. We identified Brucella-encoding small RNA (sRNA) by high-throughput sequencing and northern blot, and found that sRNA of Brucella and Homo miRNA precursor (pre-miRNA) can be bound and cleaved by B.melitensis ribonuclease III (Bm-RNase III). Cleavage activity of Bm-RNase III is bivalent metal cations- and alkaline buffer-dependent. We constructed several point mutations in Bm-RNase III, whose cleavage activity indicated that the 133th Glutamic acid residue was required for catalytic activity. Western blot revealed that Bm-RNase III was differently expressed in Brucella virulence strain 027 and vaccine strain M5-90. Collectively, our data suggest that Brucella RNase III can efficiently bind and cleave stem-loop structure of small RNA, and might participate in regulation of virulence in Brucella. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Role of RNase MRP in viral RNA degradation and RNA recombination.

    Science.gov (United States)

    Jaag, Hannah M; Lu, Qiasheng; Schmitt, Mark E; Nagy, Peter D

    2011-01-01

    RNA degradation, together with RNA synthesis, controls the steady-state level of viral RNAs in infected cells. The endoribonucleolytic cleavage of viral RNA is important not only for viral RNA degradation but for RNA recombination as well, due to the participation of some RNA degradation products in the RNA recombination process. To identify host endoribonucleases involved in degradation of Tomato bushy stunt virus (TBSV) in a Saccharomyces cerevisiae model host, we tested eight known endoribonucleases. Here we report that downregulation of SNM1, encoding a component of the RNase MRP, and a temperature-sensitive mutation in the NME1 gene, coding for the RNA component of RNase MRP, lead to reduced production of the endoribonucleolytically cleaved TBSV RNA in yeast. We also show that the highly purified yeast RNase MRP cleaves the TBSV RNA in vitro, resulting in TBSV RNA degradation products similar in size to those observed in yeast cells. Knocking down the NME1 homolog in Nicotiana benthamiana also led to decreased production of the cleaved TBSV RNA, suggesting that in plants, RNase MRP is involved in TBSV RNA degradation. Altogether, this work suggests a role for the host endoribonuclease RNase MRP in viral RNA degradation and recombination.

  10. Modulation of RNA function by aminoglycoside antibiotics.

    Science.gov (United States)

    Schroeder, R; Waldsich, C; Wank, H

    2000-01-04

    One of the most important families of antibiotics are the aminoglycosides, including drugs such as neomycin B, paromomycin, gentamicin and streptomycin. With the discovery of the catalytic potential of RNA, these antibiotics became very popular due to their RNA-binding capacity. They serve for the analysis of RNA function as well as for the study of RNA as a potential therapeutic target. Improvements in RNA structure determination recently provided first insights into the decoding site of the ribosome at high resolution and how aminoglycosides might induce misreading of the genetic code. In addition to inhibiting prokaryotic translation, aminoglycosides inhibit several catalytic RNAs such as self-splicing group I introns, RNase P and small ribozymes in vitro. Furthermore, these antibiotics interfere with human immunodeficiency virus (HIV) replication by disrupting essential RNA-protein contacts. Most exciting is the potential of many RNA-binding antibiotics to stimulate RNA activities, conceiving small-molecule partners for the hypothesis of an ancient RNA world. SELEX (systematic evolution of ligands by exponential enrichment) has been used in this evolutionary game leading to small synthetic RNAs, whose NMR structures gave valuable information on how aminoglycosides interact with RNA, which could possibly be used in applied science.

  11. Increasing on-target cleavage efficiency for CRISPR/Cas9-induced large fragment deletion in Myxococcus xanthus.

    Science.gov (United States)

    Yang, Ying-Jie; Wang, Ye; Li, Zhi-Feng; Gong, Ya; Zhang, Peng; Hu, Wen-Chao; Sheng, Duo-Hong; Li, Yue-Zhong

    2017-08-16

    The CRISPR/Cas9 system is a powerful tool for genome editing, in which the sgRNA binds and guides the Cas9 protein for the sequence-specific cleavage. The protocol is employable in different organisms, but is often limited by cell damage due to the endonuclease activity of the introduced Cas9 and the potential off-target DNA cleavage from incorrect guide by the 20 nt spacer. In this study, after resolving some critical limits, we have established an efficient CRISPR/Cas9 system for the deletion of large genome fragments related to the biosynthesis of secondary metabolites in Myxococcus xanthus cells. We revealed that the high expression of a codon-optimized cas9 gene in M. xanthus was cytotoxic, and developed a temporally high expression strategy to reduce the cell damage from high expressions of Cas9. We optimized the deletion protocol by using the tRNA-sgRNA-tRNA chimeric structure to ensure correct sgRNA sequence. We found that, in addition to the position-dependent nucleotide preference, the free energy of a 20 nt spacer was a key factor for the deletion efficiency. By using the developed protocol, we achieved the CRISPR/Cas9-induced deletion of large biosynthetic gene clusters for secondary metabolites in M. xanthus DK1622 and its epothilone-producing mutant. The findings and the proposals described in this paper were suggested to be workable in other organisms, for example, other Gram negative bacteria with high GC content.

  12. Sequence-specific RNA Photocleavage by Single-stranded DNA in Presence of Riboflavin

    Science.gov (United States)

    Zhao, Yongyun; Chen, Gangyi; Yuan, Yi; Li, Na; Dong, Juan; Huang, Xin; Cui, Xin; Tang, Zhuo

    2015-10-01

    Constant efforts have been made to develop new method to realize sequence-specific RNA degradation, which could cause inhibition of the expression of targeted gene. Herein, by using an unmodified short DNA oligonucleotide for sequence recognition and endogenic small molecue, vitamin B2 (riboflavin) as photosensitizer, we report a simple strategy to realize the sequence-specific photocleavage of targeted RNA. The DNA strand is complimentary to the target sequence to form DNA/RNA duplex containing a G•U wobble in the middle. The cleavage reaction goes through oxidative elimination mechanism at the nucleoside downstream of U of the G•U wobble in duplex to obtain unnatural RNA terminal, and the whole process is under tight control by using light as switch, which means the cleavage could be carried out according to specific spatial and temporal requirements. The biocompatibility of this method makes the DNA strand in combination with riboflavin a promising molecular tool for RNA manipulation.

  13. TRAIL-induced cleavage and inactivation of SPAK sensitizes cells to apoptosis

    International Nuclear Information System (INIS)

    Polek, Tara C.; Talpaz, Moshe; Spivak-Kroizman, Taly R.

    2006-01-01

    Ste20-related proline-alanine-rich kinase (SPAK) has been linked to various cellular processes, including proliferation, differentiation, and ion transport regulation. Recently, we showed that SPAK mediates signaling by the TNF receptor, RELT. The presence of a caspase cleavage site in SPAK prompted us to study its involvement in apoptotic signaling induced by another TNF member, TRAIL. We show that TRAIL stimulated caspase 3-like proteases that cleaved SPAK at two distinct sites. Cleavage had little effect on the activity of SPAK but removed its substrate-binding domain. In addition, TRAIL reduced the activity of SPAK in HeLa cells in a caspase-independent manner. Thus, TRAIL inhibited SPAK by two mechanisms: activation of caspases, which removed its substrate-binding domain, and caspase-independent down-regulation of SPAK activity. Furthermore, reducing the amount of SPAK by siRNA increased the sensitivity of HeLa cells to TRAIL-induced apoptosis. Thus, TRAIL down-regulation of SPAK is an important event that enhances its apoptotic effects

  14. The L7Ae protein binds to two kink-turns in the Pyrococcus furiosus RNase P RNA

    Science.gov (United States)

    Lai, Stella M.; Lai, Lien B.; Foster, Mark P.; Gopalan, Venkat

    2014-01-01

    The RNA-binding protein L7Ae, known for its role in translation (as part of ribosomes) and RNA modification (as part of sn/oRNPs), has also been identified as a subunit of archaeal RNase P, a ribonucleoprotein complex that employs an RNA catalyst for the Mg2+-dependent 5′ maturation of tRNAs. To better understand the assembly and catalysis of archaeal RNase P, we used a site-specific hydroxyl radical-mediated footprinting strategy to pinpoint the binding sites of Pyrococcus furiosus (Pfu) L7Ae on its cognate RNase P RNA (RPR). L7Ae derivatives with single-Cys substitutions at residues in the predicted RNA-binding interface (K42C/C71V, R46C/C71V, V95C/C71V) were modified with an iron complex of EDTA-2-aminoethyl 2-pyridyl disulfide. Upon addition of hydrogen peroxide and ascorbate, these L7Ae-tethered nucleases were expected to cleave the RPR at nucleotides proximal to the EDTA-Fe–modified residues. Indeed, footprinting experiments with an enzyme assembled with the Pfu RPR and five protein cofactors (POP5, RPP21, RPP29, RPP30 and L7Ae–EDTA-Fe) revealed specific RNA cleavages, localizing the binding sites of L7Ae to the RPR's catalytic and specificity domains. These results support the presence of two kink-turns, the structural motifs recognized by L7Ae, in distinct functional domains of the RPR and suggest testable mechanisms by which L7Ae contributes to RNase P catalysis. PMID:25361963

  15. Essential role of cyclophilin A for hepatitis C virus replication and virus production and possible link to polyprotein cleavage kinetics.

    Directory of Open Access Journals (Sweden)

    Artur Kaul

    2009-08-01

    Full Text Available Viruses are obligate intracellular parasites and therefore their replication completely depends on host cell factors. In case of the hepatitis C virus (HCV, a positive-strand RNA virus that in the majority of infections establishes persistence, cyclophilins are considered to play an important role in RNA replication. Subsequent to the observation that cyclosporines, known to sequester cyclophilins by direct binding, profoundly block HCV replication in cultured human hepatoma cells, conflicting results were obtained as to the particular cyclophilin (Cyp required for viral RNA replication and the underlying possible mode of action. By using a set of cell lines with stable knock-down of CypA or CypB, we demonstrate in the present work that replication of subgenomic HCV replicons of different genotypes is reduced by CypA depletion up to 1,000-fold whereas knock-down of CypB had no effect. Inhibition of replication was rescued by over-expression of wild type CypA, but not by a mutant lacking isomerase activity. Replication of JFH1-derived full length genomes was even more sensitive to CypA depletion as compared to subgenomic replicons and virus production was completely blocked. These results argue that CypA may target an additional viral factor outside of the minimal replicase contributing to RNA amplification and assembly, presumably nonstructural protein 2. By selecting for resistance against the cyclosporine analogue DEBIO-025 that targets CypA in a dose-dependent manner, we identified two mutations (V2440A and V2440L close to the cleavage site between nonstructural protein 5A and the RNA-dependent RNA polymerase in nonstructural protein 5B that slow down cleavage kinetics at this site and reduce CypA dependence of viral replication. Further amino acid substitutions at the same cleavage site accelerating processing increase CypA dependence. Our results thus identify an unexpected correlation between HCV polyprotein processing and CypA dependence

  16. Essential role of cyclophilin A for hepatitis C virus replication and virus production and possible link to polyprotein cleavage kinetics.

    Science.gov (United States)

    Kaul, Artur; Stauffer, Sarah; Berger, Carola; Pertel, Thomas; Schmitt, Jennifer; Kallis, Stephanie; Zayas, Margarita; Lopez, Margarita Zayas; Lohmann, Volker; Luban, Jeremy; Bartenschlager, Ralf

    2009-08-01

    Viruses are obligate intracellular parasites and therefore their replication completely depends on host cell factors. In case of the hepatitis C virus (HCV), a positive-strand RNA virus that in the majority of infections establishes persistence, cyclophilins are considered to play an important role in RNA replication. Subsequent to the observation that cyclosporines, known to sequester cyclophilins by direct binding, profoundly block HCV replication in cultured human hepatoma cells, conflicting results were obtained as to the particular cyclophilin (Cyp) required for viral RNA replication and the underlying possible mode of action. By using a set of cell lines with stable knock-down of CypA or CypB, we demonstrate in the present work that replication of subgenomic HCV replicons of different genotypes is reduced by CypA depletion up to 1,000-fold whereas knock-down of CypB had no effect. Inhibition of replication was rescued by over-expression of wild type CypA, but not by a mutant lacking isomerase activity. Replication of JFH1-derived full length genomes was even more sensitive to CypA depletion as compared to subgenomic replicons and virus production was completely blocked. These results argue that CypA may target an additional viral factor outside of the minimal replicase contributing to RNA amplification and assembly, presumably nonstructural protein 2. By selecting for resistance against the cyclosporine analogue DEBIO-025 that targets CypA in a dose-dependent manner, we identified two mutations (V2440A and V2440L) close to the cleavage site between nonstructural protein 5A and the RNA-dependent RNA polymerase in nonstructural protein 5B that slow down cleavage kinetics at this site and reduce CypA dependence of viral replication. Further amino acid substitutions at the same cleavage site accelerating processing increase CypA dependence. Our results thus identify an unexpected correlation between HCV polyprotein processing and CypA dependence of HCV

  17. Vertebrate Embryonic Cleavage Pattern Determination.

    Science.gov (United States)

    Hasley, Andrew; Chavez, Shawn; Danilchik, Michael; Wühr, Martin; Pelegri, Francisco

    2017-01-01

    The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.

  18. RNA signal amplifier circuit with integrated fluorescence output.

    Science.gov (United States)

    Akter, Farhima; Yokobayashi, Yohei

    2015-05-15

    We designed an in vitro signal amplification circuit that takes a short RNA input that catalytically activates the Spinach RNA aptamer to produce a fluorescent output. The circuit consists of three RNA strands: an internally blocked Spinach aptamer, a fuel strand, and an input strand (catalyst), as well as the Spinach aptamer ligand 3,5-difluoro-4-hydroxylbenzylidene imidazolinone (DFHBI). The input strand initially displaces the internal inhibitory strand to activate the fluorescent aptamer while exposing a toehold to which the fuel strand can bind to further displace and recycle the input strand. Under a favorable condition, one input strand was able to activate up to five molecules of the internally blocked Spinach aptamer in 185 min at 30 °C. The simple RNA circuit reported here serves as a model for catalytic activation of arbitrary RNA effectors by chemical triggers.

  19. Nuclear Export of Messenger RNA

    Directory of Open Access Journals (Sweden)

    Jun Katahira

    2015-03-01

    Full Text Available Transport of messenger RNA (mRNA from the nucleus to the cytoplasm is an essential step of eukaryotic gene expression. In the cell nucleus, a precursor mRNA undergoes a series of processing steps, including capping at the 5' ends, splicing and cleavage/polyadenylation at the 3' ends. During this process, the mRNA associates with a wide variety of proteins, forming a messenger ribonucleoprotein (mRNP particle. Association with factors involved in nuclear export also occurs during transcription and processing, and thus nuclear export is fully integrated into mRNA maturation. The coupling between mRNA maturation and nuclear export is an important mechanism for providing only fully functional and competent mRNA to the cytoplasmic translational machinery, thereby ensuring accuracy and swiftness of gene expression. This review describes the molecular mechanism of nuclear mRNA export mediated by the principal transport factors, including Tap-p15 and the TREX complex.

  20. Nuclear Export of Messenger RNA

    Science.gov (United States)

    Katahira, Jun

    2015-01-01

    Transport of messenger RNA (mRNA) from the nucleus to the cytoplasm is an essential step of eukaryotic gene expression. In the cell nucleus, a precursor mRNA undergoes a series of processing steps, including capping at the 5' ends, splicing and cleavage/polyadenylation at the 3' ends. During this process, the mRNA associates with a wide variety of proteins, forming a messenger ribonucleoprotein (mRNP) particle. Association with factors involved in nuclear export also occurs during transcription and processing, and thus nuclear export is fully integrated into mRNA maturation. The coupling between mRNA maturation and nuclear export is an important mechanism for providing only fully functional and competent mRNA to the cytoplasmic translational machinery, thereby ensuring accuracy and swiftness of gene expression. This review describes the molecular mechanism of nuclear mRNA export mediated by the principal transport factors, including Tap-p15 and the TREX complex. PMID:25836925

  1. Magnetic bead/capture DNA/glucose-loaded nanoliposomes for amplifying the glucometer signal in the rapid screening of hepatitis C virus RNA.

    Science.gov (United States)

    Tu, Haijian; Lin, Kun; Lun, Yongzhi; Yu, Liuming

    2018-06-01

    A digital detection strategy based on a portable personal glucometer (PGM) was developed for the simple, rapid, and sensitive detection of hepatitis C virus (HCV) RNA, involving the release of glucose-loaded nanoliposomes due to coupling-site-specific cleavage by the endonuclease BamHI. The glucose-loaded nanoliposomes were synthesized using a reversed-phase evaporation method and provided an amplified signal at the PGM in the presence of HCV RNA. Initially, a 21-mer oligonucleotide complementary to HCV RNA was covalently conjugated to a magnetic bead through the amino group at the 5' end of the oligonucleotide, and then bound to a glucose-loaded liposome by typical carbodiimide coupling at its 3' end. In the presence of the target HCV RNA, the target hybridized with the oligonucleotide to form double-stranded DNA. The symmetrical duplex sequence 5'-GGATCC-3' between guanines was then catalytically cleaved by BamHI, which detached the glucose-loaded liposome from the magnetic bead. Following magnetic separation of the bead, the detached glucose-loaded liposome was lysed using Triton X-100 to release the glucose molecules within it, which were then detected as an amplified signal at the digital PGM. Under optimal conditions, the PGM signal increased with increasing HCV RNA, and displayed a strongly linear dependence on the level of HCV RNA for concentrations ranging from 10 pM to 1.0 μM. The detection limit (LOD) of the system was 1.9 pM. Good reproducibility and favorable specificity were achieved in the analysis of the target HCV RNA. Human serum samples containing HCV RNA were analyzed using this strategy, and the developed sensing platform was observed to yield satisfactory results based on a comparison with the corresponding results from a Cobas ® Amplicor HCV Test Analyzer. Graphical abstract A digital detection strategy utilizing a personal glucometer was developed for the detection of hepatitis C virus RNA. The strategy involved the use of the

  2. Cloning and sequencing of full-length cDNAs of RNA1 and RNA2 of a Tomato black ring virus isolate from Poland.

    Science.gov (United States)

    Jończyk, M; Le Gall, O; Pałucha, A; Borodynko, N; Pospieszny, H

    2004-04-01

    Full-length cDNA clones corresponding to the RNA1 and RNA2 of the Polish isolate MJ of Tomato black ring virus (TBRV, genus Nepovirus) were obtained using a direct recombination strategy in yeast, and their complete nucleotide sequences were established. RNA1 is 7358 nucleotides and RNA2 is 4633 nucleotides in length, excluding the poly(A) tails. Both RNAs contain a single open reading frame encoding polyproteins of 254 kDa and 149 kDa for RNA1 and RNA2 respectively. Putative cleavage sites were identified, and the relationships between TBRV and related nepoviruses were studied by sequence comparison.

  3. Involvement of the catalytic subunit of protein kinase A and of HA95 in pre-mRNA splicing

    International Nuclear Information System (INIS)

    Kvissel, Anne-Katrine; Orstavik, Sigurd; Eikvar, Sissel; Brede, Gaute; Jahnsen, Tore; Collas, Philippe; Akusjaervi, Goeran; Skalhegg, Bjorn Steen

    2007-01-01

    Protein kinase A (PKA) is a holoenzyme consisting of two catalytic (C) subunits bound to a regulatory (R) subunit dimer. Stimulation by cAMP dissociates the holoenzyme and causes translocation to the nucleus of a fraction of the C subunit. Apart from transcription regulation, little is known about the function of the C subunit in the nucleus. In the present report, we show that both Cα and Cβ are localized to spots in the mammalian nucleus. Double immunofluorescence analysis of splicing factor SC35 with the C subunit indicated that these spots are splicing factor compartments (SFCs). Using the E1A in vivo splicing assay, we found that catalytically active C subunits regulate alternative splicing and phosphorylate several members of the SR-protein family of splicing factors in vitro. Furthermore, nuclear C subunits co-localize with the C subunit-binding protein homologous to AKAP95, HA95. HA95 also regulates E1A alternative splicing in vivo, apparently through its N-terminal domain. Localization of the C subunit to SFCs and the E1A splicing pattern were unaffected by cAMP stimulation. Our findings demonstrate that the nuclear PKA C subunit co-locates with HA95 in SFCs and regulates pre-mRNA splicing, possibly through a cAMP-independent mechanism

  4. Viperin mRNA is a novel target for the human RNase MRP/RNase P endoribonuclease.

    Science.gov (United States)

    Mattijssen, Sandy; Hinson, Ella R; Onnekink, Carla; Hermanns, Pia; Zabel, Bernhard; Cresswell, Peter; Pruijn, Ger J M

    2011-07-01

    RNase MRP is a conserved endoribonuclease, in humans consisting of a 267-nucleotide RNA associated with 7-10 proteins. Mutations in its RNA component lead to several autosomal recessive skeletal dysplasias, including cartilage-hair hypoplasia (CHH). Because the known substrates of mammalian RNase MRP, pre-ribosomal RNA, and RNA involved in mitochondrial DNA replication are not likely involved in CHH, we analyzed the effects of RNase MRP (and the structurally related RNase P) depletion on mRNAs using DNA microarrays. We confirmed the upregulation of the interferon-inducible viperin mRNA by RNAi experiments and this appeared to be independent of the interferon response. We detected two cleavage sites for RNase MRP/RNase P in the coding sequence of viperin mRNA. This is the first study providing direct evidence for the cleavage of a mRNA by RNase MRP/RNase P in human cells. Implications for the involvement in the pathophysiology of CHH are discussed.

  5. Rare Drosha Splice Variants Are Deficient in MicroRNA Processing but Do Not Affect General MicroRNA Expression in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Stefanie E. Grund

    2012-03-01

    Full Text Available Drosha is a key enzyme in microRNA biogenesis, generating the precursor miRNA (pre-miRNA by excising the stem-loop embedded in the primary transcripts (pri-miRNA. The specificity for the pri-miRNAs and determination of the cleavage site are provided by its binding partner DGCR8, which is necessary for efficient processing. The crucial Drosha domains for pri-miRNA cleavage are the middle part, the two enzymatic RNase III domains (RIIID, and the dsRNA binding domain (dsRBD in the C-terminus. Here, we identify alternatively spliced transcripts in human melanoma and NT2 cell lines, encoding C-terminally truncated Drosha proteins lacking part of the RIIIDb and the entire dsRBD. Proteins generated from these alternative splice variants fail to bind to DGCR8 but still interact with Ewing sarcoma protein (EWS. In vitro as well as in vivo, the Drosha splice variants are deficient in pri-miRNA processing. However, the aberrant transcripts in melanoma cells do not consistently reduce mature miRNA levels compared with melanoma cell lines lacking those splice variants, possibly owing to their limited abundance. Our findings show that alternative processing-deficient Drosha splice variants exist in melanoma cells. In elevated amounts, these alternatively spliced transcripts could provide one potential mechanism accounting for the deregulation of miRNAs in cancer cells. On the basis of our results, the search for alternative inactive splice variants might be fruitful in different tumor entities to unravel the molecular basis of the previously observed decreased microRNA processing efficiency in cancer.

  6. Tyrosyl-DNA Phosphodiesterase I Catalytic Mutants Reveal an Alternative Nucleophile That Can Catalyze Substrate Cleavage*

    Science.gov (United States)

    Comeaux, Evan Q.; Cuya, Selma M.; Kojima, Kyoko; Jafari, Nauzanene; Wanzeck, Keith C.; Mobley, James A.; Bjornsti, Mary-Ann; van Waardenburg, Robert C. A. M.

    2015-01-01

    Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the repair of 3′-DNA adducts, such as the 3′-phosphotyrosyl linkage of DNA topoisomerase I to DNA. Tdp1 contains two conserved catalytic histidines: a nucleophilic His (Hisnuc) that attacks DNA adducts to form a covalent 3′-phosphohistidyl intermediate and a general acid/base His (Hisgab), which resolves the Tdp1-DNA linkage. A Hisnuc to Ala mutant protein is reportedly inactive, whereas the autosomal recessive neurodegenerative disease SCAN1 has been attributed to the enhanced stability of the Tdp1-DNA intermediate induced by mutation of Hisgab to Arg. However, here we report that expression of the yeast HisnucAla (H182A) mutant actually induced topoisomerase I-dependent cytotoxicity and further enhanced the cytotoxicity of Tdp1 Hisgab mutants, including H432N and the SCAN1-related H432R. Moreover, the HisnucAla mutant was catalytically active in vitro, albeit at levels 85-fold less than that observed with wild type Tdp1. In contrast, the HisnucPhe mutant was catalytically inactive and suppressed Hisgab mutant-induced toxicity. These data suggest that the activity of another nucleophile when Hisnuc is replaced with residues containing a small side chain (Ala, Asn, and Gln), but not with a bulky side chain. Indeed, genetic, biochemical, and mass spectrometry analyses show that a highly conserved His, immediately N-terminal to Hisnuc, can act as a nucleophile to catalyze the formation of a covalent Tdp1-DNA intermediate. These findings suggest that the flexibility of Tdp1 active site residues may impair the resolution of mutant Tdp1 covalent phosphohistidyl intermediates and provide the rationale for developing chemotherapeutics that stabilize the covalent Tdp1-DNA intermediate. PMID:25609251

  7. Positioning the 5'-flap junction in the active site controls the rate of flap endonuclease-1-catalyzed DNA cleavage

    KAUST Repository

    Song, Bo

    2018-02-09

    Flap endonucleases catalyze cleavage of single-stranded DNA flaps formed during replication, repair and recombination, and are therefore essential for genome processing and stability. Recent crystal structures of DNA-bound human flap endonuclease (hFEN1) offer new insights into how conformational changes in the DNA and hFEN1 may facilitate the reaction mechanism. For example, previous biochemical studies of DNA conformation performed under non-catalytic conditions with Ca2+ have suggested that base unpairing at the 5\\'-flap:template junction is an important step in the reaction, but the new structural data suggest otherwise. To clarify the role of DNA changes in the kinetic mechanism, we measured a series of transient steps - from substrate binding to product release - during the hFEN1-catalyzed reaction in the presence of Mg2+. We found that while hFEN1 binds and bends DNA at a fast, diffusion-limited rate, much slower Mg2+-dependent conformational changes in DNA around the active site are subsequently necessary and rate-limiting for 5\\'-flap cleavage. These changes are reported overall by fluorescence of 2-aminopurine at the 5\\'-flap:template junction, indicating that local DNA distortion (e.g., disruption of base stacking observed in structures), associated with positioning the 5\\'-flap scissile phosphodiester bond in the hFEN1 active site, controls catalysis. hFEN1 residues with distinct roles in the catalytic mechanism, including those binding metal ions (Asp-34, Asp-181), steering the 5\\'-flap through the active site and binding the scissile phosphate (Lys-93, Arg-100), and stacking against the base 5\\' to the scissile phosphate (Tyr-40), all contribute to these rate-limiting conformational changes, ensuring efficient and specific cleavage of 5\\'-flaps.

  8. Positioning the 5'-flap junction in the active site controls the rate of flap endonuclease-1-catalyzed DNA cleavage

    KAUST Repository

    Song, Bo; Hamdan, Samir; Hingorani, Manju M

    2018-01-01

    Flap endonucleases catalyze cleavage of single-stranded DNA flaps formed during replication, repair and recombination, and are therefore essential for genome processing and stability. Recent crystal structures of DNA-bound human flap endonuclease (hFEN1) offer new insights into how conformational changes in the DNA and hFEN1 may facilitate the reaction mechanism. For example, previous biochemical studies of DNA conformation performed under non-catalytic conditions with Ca2+ have suggested that base unpairing at the 5'-flap:template junction is an important step in the reaction, but the new structural data suggest otherwise. To clarify the role of DNA changes in the kinetic mechanism, we measured a series of transient steps - from substrate binding to product release - during the hFEN1-catalyzed reaction in the presence of Mg2+. We found that while hFEN1 binds and bends DNA at a fast, diffusion-limited rate, much slower Mg2+-dependent conformational changes in DNA around the active site are subsequently necessary and rate-limiting for 5'-flap cleavage. These changes are reported overall by fluorescence of 2-aminopurine at the 5'-flap:template junction, indicating that local DNA distortion (e.g., disruption of base stacking observed in structures), associated with positioning the 5'-flap scissile phosphodiester bond in the hFEN1 active site, controls catalysis. hFEN1 residues with distinct roles in the catalytic mechanism, including those binding metal ions (Asp-34, Asp-181), steering the 5'-flap through the active site and binding the scissile phosphate (Lys-93, Arg-100), and stacking against the base 5' to the scissile phosphate (Tyr-40), all contribute to these rate-limiting conformational changes, ensuring efficient and specific cleavage of 5'-flaps.

  9. The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP.

    Science.gov (United States)

    Sardana, Richa; White, Joshua P; Johnson, Arlen W

    2013-06-01

    Bud23 is responsible for the conserved methylation of G1575 of 18S rRNA, in the P-site of the small subunit of the ribosome. bud23Δ mutants have severely reduced small subunit levels and show a general failure in cleavage at site A2 during rRNA processing. Site A2 is the primary cleavage site for separating the precursors of 18S and 25S rRNAs. Here, we have taken a genetic approach to identify the functional environment of BUD23. We found mutations in UTP2 and UTP14, encoding components of the SSU processome, as spontaneous suppressors of a bud23Δ mutant. The suppressors improved growth and subunit balance and restored cleavage at site A2. In a directed screen of 50 ribosomal trans-acting factors, we identified strong positive and negative genetic interactions with components of the SSU processome and strong negative interactions with components of RNase MRP. RNase MRP is responsible for cleavage at site A3 in pre-rRNA, an alternative cleavage site for separating the precursor rRNAs. The strong negative genetic interaction between RNase MRP mutants and bud23Δ is likely due to the combined defects in cleavage at A2 and A3. Our results suggest that Bud23 plays a role at the time of A2 cleavage, earlier than previously thought. The genetic interaction with the SSU processome suggests that Bud23 could be involved in triggering disassembly of the SSU processome, or of particular subcomplexes of the processome.

  10. Artificial hammerhead ribozymes: engineering and applications

    International Nuclear Information System (INIS)

    Vorobjeva, M A; Davydova, A S; Venyaminova, Aliya G

    2011-01-01

    The properties of hammerhead ribozymes are described. Various hammerhead ribozyme constructs for target RNA cleavage were considered. Approaches to enhancement of the stability of artificial ribozymes in biological media and to regulation of the catalytic activity of hammerhead ribozymes using effector molecules are described. The effect of ribozymes on extended structured natural RNAs is discussed. Applications of artificial hammerhead ribozymes as inhibitors of gene expression at matrix RNA level were considered.

  11. Catalytic properties of ADAM12 and its domain deletion mutants

    DEFF Research Database (Denmark)

    Jacobsen, Jonas; Visse, Robert; Sørensen, Hans Peter

    2008-01-01

    of pro, catalytic, disintegrin, cysteine-rich, and EGF domains. Here we present a novel activity of recombinant ADAM12-S and its domain deletion mutants on S-carboxymethylated transferrin (Cm-Tf). Cleavage of Cm-Tf occurred at multiple sites, and N-terminal sequencing showed that the enzyme exhibits...... restricted specificity but a consensus sequence could not be defined as its subsite requirements are promiscuous. Kinetic analysis revealed that the noncatalytic C-terminal domains are important regulators of Cm-Tf activity and that ADAM12-PC consisting of the pro domain and catalytic domain is the most...... active on this substrate. It was also observed that NaCl inhibits ADAM12. Among the tissue inhibitors of metalloproteinases (TIMP) examined, the N-terminal domain of TIMP-3 (N-TIMP-3) inhibits ADAM12-S and ADAM12-PC with low nanomolar Ki(app) values while TIMP-2 inhibits them with a slightly lower...

  12. Theoretical Proposal for the Whole Phosphate Diester Hydrolysis Mechanism Promoted by a Catalytic Promiscuous Dinuclear Copper(II) Complex.

    Science.gov (United States)

    Esteves, Lucas F; Rey, Nicolás A; Dos Santos, Hélio F; Costa, Luiz Antônio S

    2016-03-21

    The catalytic mechanism that involves the cleavage of the phosphate diester model BDNPP (bis(2,4-dinitrophenyl) phosphate) catalyzed through a dinuclear copper complex is investigated in the current study. The metal complex was originally designed to catalyze catechol oxidation, and it showed an interesting catalytic promiscuity case in biomimetic systems. The current study investigates two different reaction mechanisms through quantum mechanics calculations in the gas phase, and it also includes the solvent effect through PCM (polarizable continuum model) single-point calculations using water as solvent. Two mechanisms are presented in order to fully describe the phosphate diester hydrolysis. Mechanism 1 is of the S(N)2 type, which involves the direct attack of the μ-OH bridge between the two copper(II) ions toward the phosphorus center, whereas mechanism 2 is the process in which hydrolysis takes place through proton transfer between the oxygen atom in the bridging hydroxo ligand and the other oxygen atom in the phosphate model. Actually, the present theoretical study shows two possible reaction paths in mechanism 1. Its first reaction path (p1) involves a proton transfer that occurs immediately after the hydrolytic cleavage, so that the proton transfer is the rate-determining step, which is followed by the entry of two water molecules. Its second reaction path (p2) consists of the entry of two water molecules right after the hydrolytic cleavage, but with no proton transfer; thus, hydrolytic cleavage is the rate-limiting step. The most likely catalytic path occurs in mechanism 1, following the second reaction path (p2), since it involves the lowest free energy activation barrier (ΔG(⧧) = 23.7 kcal mol(-1), in aqueous solution). A kinetic analysis showed that the experimental k(obs) value of 1.7 × 10(-5) s(-1) agrees with the calculated value k1 = 2.6 × 10(-5) s(-1); the concerted mechanism is kinetically favorable. The KIE (kinetic isotope effect) analysis

  13. Cleavage sites in the polypeptide precursors of poliovirus protein P2-X

    International Nuclear Information System (INIS)

    Selmer, B.L.; Hanecak, R.; Anderson, C.W.; Wimmer, E.

    1981-01-01

    Partial amino-terminal sequence analysis has been performed on the three major polypeptide products (P2-3b, P2-5b, and P2-X) from the central region (P2) of the poliovirus polyprotein, and this analysis precisely locates the amino termini of these products with respect to the nucleotide sequence of the poliovirus RNA genome. Like most of the products of the replicase region (P3), the amino termini of P2-5b and P2-X are generated by cleavage between glutamine and glycine residues. Thus, P2-5b and P2-X are probably both produced by the action of a singly (virus-encoded.) proteinase. The amino terminus of P2-3b, on the other hand, is produced by a cleavage between the carboxy-terminal tyrosine of VP1 and the glycine encoded by nucleotides 3381-3383. This result may suggest that more than one proteolytic activity is required for the complete processing of the poliovirus polyprotein

  14. Identification of RNA molecules by specific enzyme digestion and mass spectrometry: software for and implementation of RNA mass mapping

    DEFF Research Database (Denmark)

    Matthiesen, Rune; Kirpekar, Finn

    2009-01-01

    The idea of identifying or characterizing an RNA molecule based on a mass spectrum of specifically generated RNA fragments has been used in various forms for well over a decade. We have developed software-named RRM for 'RNA mass mapping'-which can search whole prokaryotic genomes or RNA FASTA...... sequence databases to identify the origin of a given RNA based on a mass spectrum of RNA fragments. As input, the program uses the masses of specific RNase cleavage of the RNA under investigation. RNase T1 digestion is used here as a demonstration of the usability of the method for RNA identification....... The concept for identification is that the masses of the digestion products constitute a specific fingerprint, which characterize the given RNA. The search algorithm is based on the same principles as those used in peptide mass fingerprinting, but has here been extended to work for both RNA sequence databases...

  15. Cleavage and creep fracture of rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Munson, D.E.; Bodner, S.R.

    1996-01-01

    The dominant failure mechanism in rock salt at ambient temperature is either cleavage or creep fracture. Since the transition of creep fracture to cleavage in a compressive stress field is not well understood, failure of rock salt by cleavage and creep fracture is analyzed in this paper to elucidate the effect of stress state on the competition between these two fracture mechanisms. For cleavage fracture, a shear crack is assumed to cause the formation and growth of a symmetric pair of wing cracks in a predominantly compressive stress field. The conditions for wing-crack instability are derived and presented as the cleavage fracture boundary in the fracture mechanism map. Using an existing creep fracture model, stress conditions for the onset of creep fracture and isochronous failure curves of specified times-to-rupture are calculated and incorporated into the fracture mechanism map. The regimes of dominance by cleavage and creep fracture are established and compared with experimental data. The result indicates that unstable propagation of cleavage cracks occurs only in the presence of tensile stress. The onset of creep fracture is promoted by a tensile stress, but can be totally suppressed by a high confining pressure. Transition of creep fracture to cleavage occurs when critical conditions of stress difference and tensile stress for crack instability are exceeded

  16. Dissecting the interactions of SERRATE with RNA and DICER-LIKE 1 in Arabidopsis microRNA precursor processing

    KAUST Repository

    Iwata, Yuji

    2013-08-05

    Efficient and precise microRNA (miRNA) biogenesis in Arabidopsis is mediated by the RNaseIII-family enzyme DICER-LIKE 1 (DCL1), double-stranded RNA-binding protein HYPONASTIC LEAVES 1 and the zinc-finger (ZnF) domain-containing protein SERRATE (SE). In the present study, we examined primary miRNA precursor (pri-miRNA) processing by highly purified recombinant DCL1 and SE proteins and found that SE is integral to pri-miRNA processing by DCL1. SE stimulates DCL1 cleavage of the pri-miRNA in an ionic strength-dependent manner. SE uses its N-terminal domain to bind to RNA and requires both N-terminal and ZnF domains to bind to DCL1. However, when DCL1 is bound to RNA, the interaction with the ZnF domain of SE becomes indispensible and stimulates the activity of DCL1 without requiring SE binding to RNA. Our results suggest that the interactions among SE, DCL1 and RNA are a potential point for regulating pri-miRNA processing. 2013 The Author(s) 2013.

  17. Conserved generation of short products at piRNA loci

    Directory of Open Access Journals (Sweden)

    Khorshid Mohsen

    2011-01-01

    Full Text Available Abstract Background The piRNA pathway operates in animal germ lines to ensure genome integrity through retrotransposon silencing. The Piwi protein-associated small RNAs (piRNAs guide Piwi proteins to retrotransposon transcripts, which are degraded and thereby post-transcriptionally silenced through a ping-pong amplification process. Cleavage of the retrotransposon transcript defines at the same time the 5' end of a secondary piRNA that will in turn guide a Piwi protein to a primary piRNA precursor, thereby amplifying primary piRNAs. Although several studies provided evidence that this mechanism is conserved among metazoa, how the process is initiated and what enzymatic activities are responsible for generating the primary and secondary piRNAs are not entirely clear. Results Here we analyzed small RNAs from three mammalian species, seeking to gain further insight into the mechanisms responsible for the piRNA amplification loop. We found that in all these species piRNA-directed targeting is accompanied by the generation of short sequences that have a very precisely defined length, 19 nucleotides, and a specific spatial relationship with the guide piRNAs. Conclusions This suggests that the processing of the 5' product of piRNA-guided cleavage occurs while the piRNA target is engaged by the Piwi protein. Although they are not stabilized through methylation of their 3' ends, the 19-mers are abundant not only in testes lysates but also in immunoprecipitates of Miwi and Mili proteins. They will enable more accurate identification of piRNA loci in deep sequencing data sets.

  18. Statistical Use of Argonaute Expression and RISC Assembly in microRNA Target Identification

    Science.gov (United States)

    Stanhope, Stephen A.; Sengupta, Srikumar; den Boon, Johan; Ahlquist, Paul; Newton, Michael A.

    2009-01-01

    MicroRNAs (miRNAs) posttranscriptionally regulate targeted messenger RNAs (mRNAs) by inducing cleavage or otherwise repressing their translation. We address the problem of detecting m/miRNA targeting relationships in homo sapiens from microarray data by developing statistical models that are motivated by the biological mechanisms used by miRNAs. The focus of our modeling is the construction, activity, and mediation of RNA-induced silencing complexes (RISCs) competent for targeted mRNA cleavage. We demonstrate that regression models accommodating RISC abundance and controlling for other mediating factors fit the expression profiles of known target pairs substantially better than models based on m/miRNA expressions alone, and lead to verifications of computational target pair predictions that are more sensitive than those based on marginal expression levels. Because our models are fully independent of exogenous results from sequence-based computational methods, they are appropriate for use as either a primary or secondary source of information regarding m/miRNA target pair relationships, especially in conjunction with high-throughput expression studies. PMID:19779550

  19. Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a).

    Science.gov (United States)

    Singh, Digvijay; Mallon, John; Poddar, Anustup; Wang, Yanbo; Tippana, Ramreddy; Yang, Olivia; Bailey, Scott; Ha, Taekjip

    2018-05-22

    CRISPR-Cas9, which imparts adaptive immunity against foreign genomic invaders in certain prokaryotes, has been repurposed for genome-engineering applications. More recently, another RNA-guided CRISPR endonuclease called Cpf1 (also known as Cas12a) was identified and is also being repurposed. Little is known about the kinetics and mechanism of Cpf1 DNA interaction and how sequence mismatches between the DNA target and guide-RNA influence this interaction. We used single-molecule fluorescence analysis and biochemical assays to characterize DNA interrogation, cleavage, and product release by three Cpf1 orthologs. Our Cpf1 data are consistent with the DNA interrogation mechanism proposed for Cas9. They both bind any DNA in search of protospacer-adjacent motif (PAM) sequences, verify the target sequence directionally from the PAM-proximal end, and rapidly reject any targets that lack a PAM or that are poorly matched with the guide-RNA. Unlike Cas9, which requires 9 bp for stable binding and ∼16 bp for cleavage, Cpf1 requires an ∼17-bp sequence match for both stable binding and cleavage. Unlike Cas9, which does not release the DNA cleavage products, Cpf1 rapidly releases the PAM-distal cleavage product, but not the PAM-proximal product. Solution pH, reducing conditions, and 5' guanine in guide-RNA differentially affected different Cpf1 orthologs. Our findings have important implications on Cpf1-based genome engineering and manipulation applications.

  20. Conjugation and Evaluation of Triazole?Linked Single Guide RNA for CRISPR?Cas9 Gene Editing

    OpenAIRE

    He, Kaizhang; Chou, Eldon T.; Begay, Shawn; Anderson, Emily M.; van?Brabant?Smith, Anja

    2016-01-01

    Abstract The CRISPR?Cas9 gene editing system requires Cas9 endonuclease and guide RNAs (either the natural dual RNA consisting of crRNA and tracrRNA or a chimeric single guide RNA) that direct site?specific double?stranded DNA cleavage. This communication describes a click ligation approach that uses alkyne?azide cycloaddition to generate a triazole?linked single guide RNA (sgRNA). The conjugated sgRNA shows efficient and comparable genome editing activity to natural dual RNA and unmodified s...

  1. Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA

    Science.gov (United States)

    Zhu, Yanglong; Stribinskis, Vilius; Ramos, Kenneth S.; Li, Yong

    2006-01-01

    RNase MRP is a eukaryote-specific endoribonuclease that generates RNA primers for mitochondrial DNA replication and processes precursor rRNA. RNase P is a ubiquitous endoribonuclease that cleaves precursor tRNA transcripts to produce their mature 5′ termini. We found extensive sequence homology of catalytic domains and specificity domains between their RNA subunits in many organisms. In Candida glabrata, the internal loop of helix P3 is 100% conserved between MRP and P RNAs. The helix P8 of MRP RNA from microsporidia Encephalitozoon cuniculi is identical to that of P RNA. Sequence homology can be widely spread over the whole molecule of MRP RNA and P RNA, such as those from Dictyostelium discoideum. These conserved nucleotides between the MRP and P RNAs strongly support the hypothesis that the MRP RNA is derived from the P RNA molecule in early eukaryote evolution. PMID:16540690

  2. Functional requirements of AID's higher order structures and their interaction with RNA-binding proteins.

    Science.gov (United States)

    Mondal, Samiran; Begum, Nasim A; Hu, Wenjun; Honjo, Tasuku

    2016-03-15

    Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. Although both the N and C termini of AID have unique functions in DNA cleavage and recombination, respectively, during SHM and CSR, their molecular mechanisms are poorly understood. Using a bimolecular fluorescence complementation (BiFC) assay combined with glycerol gradient fractionation, we revealed that the AID C terminus is required for a stable dimer formation. Furthermore, AID monomers and dimers form complexes with distinct heterogeneous nuclear ribonucleoproteins (hnRNPs). AID monomers associate with DNA cleavage cofactor hnRNP K whereas AID dimers associate with recombination cofactors hnRNP L, hnRNP U, and Serpine mRNA-binding protein 1. All of these AID/ribonucleoprotein associations are RNA-dependent. We propose that AID's structure-specific cofactor complex formations differentially contribute to its DNA-cleavage and recombination functions.

  3. Probing the Catalytic Mechanism of S-Ribosylhomocysteinase (LuxS) with Catalytic Intermediates and Substrate Analogues

    Energy Technology Data Exchange (ETDEWEB)

    Gopishetty, Bhaskar; Zhu, Jinge; Rajan, Rakhi; Sobczak, Adam J.; Wnuk, Stanislaw F.; Bell, Charles E.; Pei, Dehua; (OSU); (FIU)

    2009-05-12

    S-Ribosylhomocysteinase (LuxS) cleaves the thioether bond in S-ribosylhomocysteine (SRH) to produce homocysteine (Hcys) and 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor of the type II bacterial quorum sensing molecule (AI-2). The catalytic mechanism of LuxS comprises three distinct reaction steps. The first step involves carbonyl migration from the C1 carbon of ribose to C2 and the formation of a 2-ketone intermediate. The second step shifts the C=O group from the C2 to C3 position to produce a 3-ketone intermediate. In the final step, the 3-ketone intermediate undergoes a {beta}-elimination reaction resulting in the cleavage of the thioether bond. In this work, the 3-ketone intermediate was chemically synthesized and shown to be chemically and kinetically competent in the LuxS catalytic pathway. Substrate analogues halogenated at the C3 position of ribose were synthesized and reacted as time-dependent inhibitors of LuxS. The time dependence was caused by enzyme-catalyzed elimination of halide ions. Examination of the kinetics of halide release and decay of the 3-ketone intermediate catalyzed by wild-type and mutant LuxS enzymes revealed that Cys-84 is the general base responsible for proton abstraction in the three reaction steps, whereas Glu-57 likely facilitates substrate binding and proton transfer during catalysis.

  4. Missed cleavage opportunities by FEN1 lead to Okazaki fragment maturation via the long-flap pathway

    KAUST Repository

    Zaher, Manal S.; Rashid, Fahad; Song, Bo; Joudeh, Luay I; Sobhy, Mohamed Abdelmaboud; Tehseen, Muhammad; Hingorani, Manju M; Hamdan, Samir

    2018-01-01

    RNA-DNA hybrid primers synthesized by low fidelity DNA polymerase α to initiate eukaryotic lagging strand synthesis must be removed efficiently during Okazaki fragment (OF) maturation to complete DNA replication. In this process, each OF primer is displaced and the resulting 5'-single-stranded flap is cleaved by structure-specific 5'-nucleases, mainly Flap Endonuclease 1 (FEN1), to generate a ligatable nick. At least two models have been proposed to describe primer removal, namely short- and long-flap pathways that involve FEN1 or FEN1 along with Replication Protein A (RPA) and Dna2 helicase/nuclease, respectively. We addressed the question of pathway choice by studying the kinetic mechanism of FEN1 action on short- and long-flap DNA substrates. Using single molecule FRET and rapid quench-flow bulk cleavage assays, we showed that unlike short-flap substrates, which are bound, bent and cleaved within the first encounter between FEN1 and DNA, long-flap substrates can escape cleavage even after DNA binding and bending. Notably, FEN1 can access both substrates in the presence of RPA, but bending and cleavage of long-flap DNA is specifically inhibited. We propose that FEN1 attempts to process both short and long flaps, but occasional missed cleavage of the latter allows RPA binding and triggers the long-flap OF maturation pathway.

  5. Missed cleavage opportunities by FEN1 lead to Okazaki fragment maturation via the long-flap pathway

    KAUST Repository

    Zaher, Manal S.

    2018-01-27

    RNA-DNA hybrid primers synthesized by low fidelity DNA polymerase α to initiate eukaryotic lagging strand synthesis must be removed efficiently during Okazaki fragment (OF) maturation to complete DNA replication. In this process, each OF primer is displaced and the resulting 5\\'-single-stranded flap is cleaved by structure-specific 5\\'-nucleases, mainly Flap Endonuclease 1 (FEN1), to generate a ligatable nick. At least two models have been proposed to describe primer removal, namely short- and long-flap pathways that involve FEN1 or FEN1 along with Replication Protein A (RPA) and Dna2 helicase/nuclease, respectively. We addressed the question of pathway choice by studying the kinetic mechanism of FEN1 action on short- and long-flap DNA substrates. Using single molecule FRET and rapid quench-flow bulk cleavage assays, we showed that unlike short-flap substrates, which are bound, bent and cleaved within the first encounter between FEN1 and DNA, long-flap substrates can escape cleavage even after DNA binding and bending. Notably, FEN1 can access both substrates in the presence of RPA, but bending and cleavage of long-flap DNA is specifically inhibited. We propose that FEN1 attempts to process both short and long flaps, but occasional missed cleavage of the latter allows RPA binding and triggers the long-flap OF maturation pathway.

  6. Distinct functions for the Drosophila piRNA pathway in genome maintenance and telomere protection.

    Directory of Open Access Journals (Sweden)

    Jaspreet S Khurana

    2010-12-01

    Full Text Available Transposons and other selfish DNA elements can be found in all phyla, and mobilization of these elements can compromise genome integrity. The piRNA (PIWI-interacting RNA pathway silences transposons in the germline, but it is unclear if this pathway has additional functions during development. Here we show that mutations in the Drosophila piRNA pathway genes, armi, aub, ago3, and rhi, lead to extensive fragmentation of the zygotic genome during the cleavage stage of embryonic divisions. Additionally, aub and armi show defects in telomere resolution during meiosis and the cleavage divisions; and mutations in lig-IV, which disrupt non-homologous end joining, suppress these fusions. By contrast, lig-IV mutations enhance chromosome fragmentation. Chromatin immunoprecipitation studies show that aub and armi mutations disrupt telomere binding of HOAP, which is a component of the telomere protection complex, and reduce expression of a subpopulation of 19- to 22-nt telomere-specific piRNAs. Mutations in rhi and ago3, by contrast, do not block HOAP binding or production of these piRNAs. These findings uncover genetically separable functions for the Drosophila piRNA pathway. The aub, armi, rhi, and ago3 genes silence transposons and maintain chromosome integrity during cleavage-stage embryonic divisions. However, the aub and armi genes have an additional function in assembly of the telomere protection complex.

  7. Targeted CRISPR disruption reveals a role for RNase MRP RNA in human preribosomal RNA processing.

    Science.gov (United States)

    Goldfarb, Katherine C; Cech, Thomas R

    2017-01-01

    MRP RNA is an abundant, essential noncoding RNA whose functions have been proposed in yeast but are incompletely understood in humans. Mutations in the genomic locus for MRP RNA cause pleiotropic human diseases, including cartilage hair hypoplasia (CHH). Here we applied CRISPR-Cas9 genome editing to disrupt the endogenous human MRP RNA locus, thereby attaining what has eluded RNAi and RNase H experiments: elimination of MRP RNA in the majority of cells. The resulting accumulation of ribosomal RNA (rRNA) precursor-analyzed by RNA fluorescent in situ hybridization (FISH), Northern blots, and RNA sequencing-implicates MRP RNA in pre-rRNA processing. Amelioration of pre-rRNA imbalance is achieved through rescue of MRP RNA levels by ectopic expression. Furthermore, affinity-purified MRP ribonucleoprotein (RNP) from HeLa cells cleaves the human pre-rRNA in vitro at at least one site used in cells, while RNP isolated from cells with CRISPR-edited MRP loci loses this activity, and ectopic MRP RNA expression restores cleavage activity. Thus, a role for RNase MRP in human pre-rRNA processing is established. As demonstrated here, targeted CRISPR disruption is a valuable tool for functional studies of essential noncoding RNAs that are resistant to RNAi and RNase H-based degradation. © 2017 Goldfarb and Cech; Published by Cold Spring Harbor Laboratory Press.

  8. Primary structure, gene organization and polypeptide expression of poliovirus RNA

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, N. (State Univ. of New York, Stony Brook); Semler, B.L.; Rothberg, P.G.

    1981-06-18

    The primary structure of the poliovirus genome has been determined. The RNA molecule is 7433 nucleotides long, polyadenylated at the 3' terminus, and covalently linked to a small protein (VPg) at the 5' terminus. An open reading frame of 2207 consecutive triplets spans over 89% of the nucleotide sequence and codes for the viral polyprotein NCVPOO. Twelve viral polypeptides have been mapped by amino acid sequence analysis and were found to be proteolytic cleavage products of the polyprotein, cleavages occurring predominantly at Gln-Gly pairs.

  9. Mutational analysis of Sep-tRNA:Cys-tRNA synthase reveals critical residues for tRNA-dependent cysteine formation.

    Science.gov (United States)

    Helgadóttir, Sunna; Sinapah, Sylvie; Söll, Dieter; Ling, Jiqiang

    2012-01-02

    In methanogenic archaea, Sep-tRNA:Cys-tRNA synthase (SepCysS) converts Sep-tRNA(Cys) to Cys-tRNA(Cys). The mechanism of tRNA-dependent cysteine formation remains unclear due to the lack of functional studies. In this work, we mutated 19 conserved residues in Methanocaldococcus jannaschii SepCysS, and employed an in vivo system to determine the activity of the resulting variants. Our results show that three active-site cysteines (Cys39, Cys42 and Cys247) are essential for SepCysS activity. In addition, combined with structural modeling, our mutational and functional analyses also reveal multiple residues that are important for the binding of PLP, Sep and tRNA. Our work thus represents the first systematic functional analysis of conserved residues in archaeal SepCysSs, providing insights into the catalytic and substrate binding mechanisms of this poorly characterized enzyme. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Microstructure and cleavage in lath martensitic steels

    International Nuclear Information System (INIS)

    Morris, John W Jr; Kinney, Chris; Pytlewski, Ken; Adachi, Y

    2013-01-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified ‘classic’ lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov–Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage. (paper)

  11. Molecular cloning and characterization of cDNAs encoding carotenoid cleavage dioxygenase in bitter melon (Momordica charantia).

    Science.gov (United States)

    Tuan, Pham Anh; Park, Sang Un

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are a family of enzymes that catalyze the oxidative cleavage of carotenoids at various chain positions to form a broad spectrum of apocarotenoids, including aromatic substances, pigments and phytohormones. Using the rapid amplification of cDNA ends (RACE) PCR method, we isolated three cDNA-encoding CCDs (McCCD1, McCCD4, and McNCED) from Momordica charantia. Amino acid sequence alignments showed that they share high sequence identity with other orthologous genes. Quantitative real-time RT PCR (reverse transcriptase PCR) analysis revealed that the expression of McCCD1 and McCCD4 was highest in flowers, and lowest in roots and old leaves (O-leaves). During fruit maturation, the two genes displayed differential expression, with McCCD1 peaking at mid-stage maturation while McCCD4 showed the lowest expression at that stage. The mRNA expression level of McNCED, a key enzyme involved in abscisic acid (ABA) biosynthesis, was high during fruit maturation and further increased at the beginning of seed germination. When first-leaf stage plants of M. charantia were exposed to dehydration stress, McNCED mRNA expression was induced primarily in the leaves and, to a lesser extend, in roots and stems. McNCED expression was also induced by high temperature and salinity, while treatment with exogenous ABA led to a decrease. These results should be helpful in determining the substrates and cleavage sites catalyzed by CCD genes in M. charantia, and also in defining the roles of CCDs in growth and development, and in the plant's response to environmental stress. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Exploration of alternate catalytic mechanisms and optimization strategies for retroaldolase design.

    Science.gov (United States)

    Bjelic, Sinisa; Kipnis, Yakov; Wang, Ling; Pianowski, Zbigniew; Vorobiev, Sergey; Su, Min; Seetharaman, Jayaraman; Xiao, Rong; Kornhaber, Gregory; Hunt, John F; Tong, Liang; Hilvert, Donald; Baker, David

    2014-01-09

    Designed retroaldolases have utilized a nucleophilic lysine to promote carbon-carbon bond cleavage of β-hydroxy-ketones via a covalent Schiff base intermediate. Previous computational designs have incorporated a water molecule to facilitate formation and breakdown of the carbinolamine intermediate to give the Schiff base and to function as a general acid/base. Here we investigate an alternative active-site design in which the catalytic water molecule was replaced by the side chain of a glutamic acid. Five out of seven designs expressed solubly and exhibited catalytic efficiencies similar to previously designed retroaldolases for the conversion of 4-hydroxy-4-(6-methoxy-2-naphthyl)-2-butanone to 6-methoxy-2-naphthaldehyde and acetone. After one round of site-directed saturation mutagenesis, improved variants of the two best designs, RA114 and RA117, exhibited among the highest kcat (>10(-3)s(-1)) and kcat/KM (11-25M(-1)s(-1)) values observed for retroaldolase designs prior to comprehensive directed evolution. In both cases, the >10(5)-fold rate accelerations that were achieved are within 1-3 orders of magnitude of the rate enhancements reported for the best catalysts for related reactions, including catalytic antibodies (kcat/kuncat=10(6) to 10(8)) and an extensively evolved computational design (kcat/kuncat>10(7)). The catalytic sites, revealed by X-ray structures of optimized versions of the two active designs, are in close agreement with the design models except for the catalytic lysine in RA114. We further improved the variants by computational remodeling of the loops and yeast display selection for reactivity of the catalytic lysine with a diketone probe, obtaining an additional order of magnitude enhancement in activity with both approaches. © 2013.

  13. Catalytic aerobic oxidation of bio-renewable chemicals

    DEFF Research Database (Denmark)

    Gorbanev, Yury

    , EDS, XRF and other methods. Supported gold and ruthenium hydroxide catalyst systems were explored for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDA), a potential polymer building block for the plastic industry, or its dimethyl ester (FDMC). High product......-free conditions. Moreover, a detailed study on the performance and stability of the ruthenium hydroxide catalysts on magnesium-containing supports under reaction conditions was conducted. The aerobic oxidation of HMF to form another value-added chemical, 2,5-diformylfuran (DFF), was also investigated......Ox deposited on various metal oxides. Furthermore, this thesis presents the results of the catalytic aerobic oxidative degradation of higher alcohols over supported ruthenium hydroxide catalysts. A very efficient oxidative cleavage of vic-diols to form respective acids was also shown under examined conditions...

  14. Modeling and inferring cleavage patterns in proliferating epithelia.

    Directory of Open Access Journals (Sweden)

    Ankit B Patel

    2009-06-01

    Full Text Available The regulation of cleavage plane orientation is one of the key mechanisms driving epithelial morphogenesis. Still, many aspects of the relationship between local cleavage patterns and tissue-level properties remain poorly understood. Here we develop a topological model that simulates the dynamics of a 2D proliferating epithelium from generation to generation, enabling the exploration of a wide variety of biologically plausible cleavage patterns. We investigate a spectrum of models that incorporate the spatial impact of neighboring cells and the temporal influence of parent cells on the choice of cleavage plane. Our findings show that cleavage patterns generate "signature" equilibrium distributions of polygonal cell shapes. These signatures enable the inference of local cleavage parameters such as neighbor impact, maternal influence, and division symmetry from global observations of the distribution of cell shape. Applying these insights to the proliferating epithelia of five diverse organisms, we find that strong division symmetry and moderate neighbor/maternal influence are required to reproduce the predominance of hexagonal cells and low variability in cell shape seen empirically. Furthermore, we present two distinct cleavage pattern models, one stochastic and one deterministic, that can reproduce the empirical distribution of cell shapes. Although the proliferating epithelia of the five diverse organisms show a highly conserved cell shape distribution, there are multiple plausible cleavage patterns that can generate this distribution, and experimental evidence suggests that indeed plants and fruitflies use distinct division mechanisms.

  15. Multifaceted catalytic hydrogenation of amides via diverse activation of a sterically confined bipyridine-ruthenium framework.

    Science.gov (United States)

    Miura, Takashi; Naruto, Masayuki; Toda, Katsuaki; Shimomura, Taiki; Saito, Susumu

    2017-05-16

    Amides are ubiquitous and abundant in nature and our society, but are very stable and reluctant to salt-free, catalytic chemical transformations. Through the activation of a "sterically confined bipyridine-ruthenium (Ru) framework (molecularly well-designed site to confine adsorbed H 2 in)" of a precatalyst, catalytic hydrogenation of formamides through polyamide is achieved under a wide range of reaction conditions. Both C=O bond and C-N bond cleavage of a lactam became also possible using a single precatalyst. That is, catalyst diversity is induced by activation and stepwise multiple hydrogenation of a single precatalyst when the conditions are varied. The versatile catalysts have different structures and different resting states for multifaceted amide hydrogenation, but the common structure produced upon reaction with H 2 , which catalyzes hydrogenation, seems to be "H-Ru-N-H."

  16. Flock House virus subgenomic RNA3 is replicated and its replication correlates with transactivation of RNA2

    International Nuclear Information System (INIS)

    Eckerle, Lance D.; Albarino, Cesar G.; Ball, L. Andrew.

    2003-01-01

    The nodavirus Flock House virus has a bipartite genome composed of RNAs 1 and 2, which encode the catalytic component of the RNA-dependent RNA polymerase (RdRp) and the capsid protein precursor, respectively. In addition to catalyzing replication of the viral genome, the RdRp also transcribes from RNA1 a subgenomic RNA3, which is both required for and suppressed by RNA2 replication. Here, we show that in the absence of RNA1 replication, FHV RdRp replicated positive-sense RNA3 transcripts fully and copied negative-sense RNA3 transcripts into positive strands. The two nonstructural proteins encoded by RNA3 were dispensable for replication, but sequences in the 3'-terminal 58 nucleotides were required. RNA3 variants that failed to replicate also failed to transactivate RNA2. These results imply that RNA3 is naturally produced both by transcription from RNA1 and by subsequent RNA1-independent replication and that RNA3 replication may be necessary for transactivation of RNA2

  17. Dynamic Contacts of U2, RES, Cwc25, Prp8 and Prp45 Proteins with the Pre-mRNA Branch-Site and 3' Splice Site during Catalytic Activation and Step 1 Catalysis in Yeast Spliceosomes.

    Directory of Open Access Journals (Sweden)

    Cornelius Schneider

    Full Text Available Little is known about contacts in the spliceosome between proteins and intron nucleotides surrounding the pre-mRNA branch-site and their dynamics during splicing. We investigated protein-pre-mRNA interactions by UV-induced crosslinking of purified yeast B(act spliceosomes formed on site-specifically labeled pre-mRNA, and analyzed their changes after conversion to catalytically-activated B* and step 1 C complexes, using a purified splicing system. Contacts between nucleotides upstream and downstream of the branch-site and the U2 SF3a/b proteins Prp9, Prp11, Hsh49, Cus1 and Hsh155 were detected, demonstrating that these interactions are evolutionarily conserved. The RES proteins Pml1 and Bud13 were shown to contact the intron downstream of the branch-site. A comparison of the B(act crosslinking pattern versus that of B* and C complexes revealed that U2 and RES protein interactions with the intron are dynamic. Upon step 1 catalysis, Cwc25 contacts with the branch-site region, and enhanced crosslinks of Prp8 and Prp45 with nucleotides surrounding the branch-site were observed. Cwc25's step 1 promoting activity was not dependent on its interaction with pre-mRNA, indicating it acts via protein-protein interactions. These studies provide important insights into the spliceosome's protein-pre-mRNA network and reveal novel RNP remodeling events during the catalytic activation of the spliceosome and step 1 of splicing.

  18. Domain motions of Argonaute, the catalytic engine of RNA interference

    Directory of Open Access Journals (Sweden)

    Wall Michael E

    2007-11-01

    Full Text Available Abstract Background The Argonaute protein is the core component of the RNA-induced silencing complex, playing the central role of cleaving the mRNA target. Visual inspection of static crystal structures already has enabled researchers to suggest conformational changes of Argonaute that might occur during RNA interference. We have taken the next step by performing an all-atom normal mode analysis of the Pyrococcus furiosus and Aquifex aeolicus Argonaute crystal structures, allowing us to quantitatively assess the feasibility of these conformational changes. To perform the analysis, we begin with the energy-minimized X-ray structures. Normal modes are then calculated using an all-atom molecular mechanics force field. Results The analysis reveals low-frequency vibrations that facilitate the accommodation of RNA duplexes – an essential step in target recognition. The Pyrococcus furiosus and Aquifex aeolicus Argonaute proteins both exhibit low-frequency torsion and hinge motions; however, differences in the overall architecture of the proteins cause the detailed dynamics to be significantly different. Conclusion Overall, low-frequency vibrations of Argonaute are consistent with mechanisms within the current reaction cycle model for RNA interference.

  19. Involvement of a cytosine side chain in proton transfer in the rate-determining step of ribozyme self-cleavage

    Science.gov (United States)

    Shih, I-hung; Been, Michael D.

    2001-01-01

    Ribozymes of hepatitis delta virus have been proposed to use an active-site cytosine as an acid-base catalyst in the self-cleavage reaction. In this study, we have examined the role of cytosine in more detail with the antigenomic ribozyme. Evidence that proton transfer in the rate-determining step involved cytosine 76 (C76) was obtained from examining cleavage activity of the wild-type and imidazole buffer-rescued C76-deleted (C76Δ) ribozymes in D2O and H2O. In both reactions, a similar kinetic isotope effect and shift in the apparent pKa indicate that the buffer is functionally substituting for the side chain in proton transfer. Proton inventory of the wild-type reaction supported a mechanism of a single proton transfer at the transition state. This proton transfer step was further characterized by exogenous base rescue of a C76Δ mutant with cytosine and imidazole analogues. For the imidazole analogues that rescued activity, the apparent pKa of the rescue reaction, measured under kcat/KM conditions, correlated with the pKa of the base. From these data a Brønsted coefficient (β) of 0.51 was determined for the base-rescued reaction of C76Δ. This value is consistent with that expected for proton transfer in the transition state. Together, these data provide strong support for a mechanism where an RNA side chain participates directly in general acid or general base catalysis of the wild-type ribozyme to facilitate RNA cleavage. PMID:11171978

  20. In vitro processing of the RNA-2-encoded polyprotein of two nepoviruses: tomato black ring virus and grapevine chrome mosaic virus.

    Science.gov (United States)

    Demangeat, G; Hemmer, O; Fritsch, C; Le Gall, O; Candresse, T

    1991-02-01

    In vitro translation of RNA-2 of each of two closely related nepoviruses, tomato black ring virus (TBRV) and grapevine chrome mosaic virus (GCMV), in a rabbit reticulocyte lysate resulted in the synthesis of single polypeptides of 150K and 146K respectively. Processing of these polyproteins occurred after the addition of translation products of homologous RNA-1. The positions of the cleavage products within the polyproteins were determined. From the N to the C terminus, Mr values for the proteins were 50K, 46K and 59K for TBRV and 44K, 46K and 56K for GCMV. TBRV RNA-1 translation products also cleaved the polyproteins encoded by GCMV RNA-2 which suggests that the cleavage sites in the two polyproteins are similar.

  1. Electrocatalytic miRNA Detection Using Cobalt Porphyrin-Modified Reduced Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Camille De Souza

    2014-06-01

    Full Text Available Metalated porphyrins have been described to bind nucleic acids. Additionally, cobalt porphyrins present catalytic properties towards oxygen reduction. In this work, a carboxylic acid-functionalized cobalt porphyrin was physisorbed on reduced graphene oxide, then immobilized on glassy carbon electrodes. The carboxylic groups were used to covalently graft amino-terminated oligonucleotide probes which are complementary to a short microRNA target. It was shown that the catalytic oxygen electroreduction on cobalt porphyrin increases upon hybridization of miRNA strand (“signal-on” response. Current changes are amplified compared to non-catalytic amperometric system. Apart from oxygen, no added reagent is necessary. A limit of detection in the sub-nanomolar range was reached. This approach has never been described in the literature.

  2. Analysis of the Proteolytic Processing of ABCA3: Identification of Cleavage Site and Involved Proteases.

    Directory of Open Access Journals (Sweden)

    Nicole Hofmann

    Full Text Available ABCA3 is a lipid transporter in the limiting membrane of lamellar bodies in alveolar type II cells. Mutations in the ABCA3 gene cause respiratory distress syndrome in new-borns and childhood interstitial lung disease. ABCA3 is N-terminally cleaved by an as yet unknown protease, a process believed to regulate ABCA3 activity.The exact site where ABCA3 is cleaved was localized using mass spectrometry (MS. Proteases involved in ABCA3 processing were identified using small molecule inhibitors and siRNA mediated gene knockdown. Results were verified by in vitro digestion of a synthetic peptide substrate mimicking ABCA3's cleavage region, followed by MS analysis.We found that cleavage of ABCA3 occurs after Lys174 which is located in the proteins' first luminal loop. Inhibition of cathepsin L and, to a lesser extent, cathepsin B resulted in attenuation of ABCA3 cleavage. Both enzymes showed activity against the ABCA3 peptide in vitro with cathepsin L being more active.We show here that, like some other proteins of the lysosomal membrane, ABCA3 is a substrate of cathepsin L. Therefore, cathepsin L may represent a potential target to therapeutically influence ABCA3 activity in ABCA3-associated lung disease.

  3. StarScan: a web server for scanning small RNA targets from degradome sequencing data.

    Science.gov (United States)

    Liu, Shun; Li, Jun-Hao; Wu, Jie; Zhou, Ke-Ren; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu

    2015-07-01

    Endogenous small non-coding RNAs (sRNAs), including microRNAs, PIWI-interacting RNAs and small interfering RNAs, play important gene regulatory roles in animals and plants by pairing to the protein-coding and non-coding transcripts. However, computationally assigning these various sRNAs to their regulatory target genes remains technically challenging. Recently, a high-throughput degradome sequencing method was applied to identify biologically relevant sRNA cleavage sites. In this study, an integrated web-based tool, StarScan (sRNA target Scan), was developed for scanning sRNA targets using degradome sequencing data from 20 species. Given a sRNA sequence from plants or animals, our web server performs an ultrafast and exhaustive search for potential sRNA-target interactions in annotated and unannotated genomic regions. The interactions between small RNAs and target transcripts were further evaluated using a novel tool, alignScore. A novel tool, degradomeBinomTest, was developed to quantify the abundance of degradome fragments located at the 9-11th nucleotide from the sRNA 5' end. This is the first web server for discovering potential sRNA-mediated RNA cleavage events in plants and animals, which affords mechanistic insights into the regulatory roles of sRNAs. The StarScan web server is available at http://mirlab.sysu.edu.cn/starscan/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Regioselectivity in the Reductive Bond Cleavage of Diarylalkylsulfonium Salts

    DEFF Research Database (Denmark)

    Kampmeier, Jack; Mansurul Hoque, AKM; D. Saeva, Franklin

    2009-01-01

    products vary from regiospecific alkyl cleavage to predominant aryl cleavage as a function of the potential of the reducing agent. We conclude that differences between the reductive cleavages of mono- and diarylsulfonium salts are direct consequences of the structures of the sulfuranyl radical......- tolylethylsulfonium and di-4-tolyl-2-phenylethylsulfonium salts by a variety of one-electron reducing agents ranging in potential from -0.77 to +2.5 eV (vs SCE) and including thermal reductants, indirect electrolyses mediated by a series of cyanoaromatics, and excited singlet states. We report that the cleavage...... intermediates and the bond dissociation energies of the alkyl and aryl bonds. Competitions between the rates of cleavage and oxidation of the intermediate sulfuranyl radicals and between concerted and stepwise mechanisms are discussed to explain the variations in bond cleavage products as a function...

  5. Cleavage/alteration of interleukin-8 by matrix metalloproteinase-9 in the female lower genital tract.

    Science.gov (United States)

    Zariffard, M Reza; Anastos, Kathryn; French, Audrey L; Munyazesa, Elisaphane; Cohen, Mardge; Landay, Alan L; Spear, Gregory T

    2015-01-01

    Interleukin-8 (IL-8, CXCL8) plays important roles in immune responses at mucosal sites including in the lower genital tract. Since several types of bacteria produce proteases that cleave IL-8 and many types of bacteria can be present in lower genital tract microbiota, we assessed genital fluids for IL-8 cleavage/alteration. Genital fluids collected by lavage from 200 women (23 HIV-seronegative and 177 HIV-seropositive) were tested for IL-8 cleavage/alteration by ELISA. IL-8 cleaving/altering activity was observed in fluids from both HIV-positive (28%) and HIV-negative women (35%). There was no clear relationship between the activity and the types of bacteria present in the lower genital tract as determined by high-throughput sequencing of the 16S rRNA gene. Protease inhibitors specific for matrix metalloproteinases (MMPs) reduced the activity and a multiplex assay that detects both inactive and active MMPs showed the presence of multiple MMPs, including MMP-1, -3, -7, -8, -9, -10 and -12 in genital secretions from many of the women. The IL-8-cleaving/altering activity significantly correlated with active MMP-9 as well as with cleavage of a substrate that is acted on by several active MMPs. These studies show that multiple MMPs are present in the genital tract of women and strongly suggest that MMP-9 in genital secretions can cleave IL-8 at this mucosal site. These studies suggest that MMP-mediated cleavage of IL-8 can modulate inflammatory responses in the lower genital tract.

  6. Characterization of the catalytic center of the Ebola virus L polymerase.

    Science.gov (United States)

    Schmidt, Marie Luisa; Hoenen, Thomas

    2017-10-01

    Ebola virus (EBOV) causes a severe hemorrhagic fever in humans and non-human primates. While no licensed therapeutics are available, recently there has been tremendous progress in developing antivirals. Targeting the ribonucleoprotein complex (RNP) proteins, which facilitate genome replication and transcription, and particularly the polymerase L, is a promising antiviral approach since these processes are essential for the virus life cycle. However, until now little is known about L in terms of its structure and function, and in particular the catalytic center of the RNA-dependent RNA polymerase (RdRp) of L, which is one of the most promising molecular targets, has never been experimentally characterized. Using multiple sequence alignments with other negative sense single-stranded RNA viruses we identified the putative catalytic center of the EBOV RdRp. An L protein with mutations in this center was then generated and characterized using various life cycle modelling systems. These systems are based on minigenomes, i.e. miniature versions of the viral genome, in which the viral genes are exchanged against a reporter gene. When such minigenomes are coexpressed with RNP proteins in mammalian cells, the RNP proteins recognize them as authentic templates for replication and transcription, resulting in reporter activity reflecting these processes. Replication-competent minigenome systems indicated that our L catalytic domain mutant was impaired in genome replication and/or transcription, and by using replication-deficient minigenome systems, as well as a novel RT-qPCR-based genome replication assay, we showed that it indeed no longer supported either of these processes. However, it still showed similar expression to wild-type L, and retained its ability to be incorporated into inclusion bodies, which are the sites of EBOV genome replication. We have experimentally defined the catalytic center of the EBOV RdRp, and thus a promising antiviral target regulating an essential

  7. Characterization of the catalytic center of the Ebola virus L polymerase.

    Directory of Open Access Journals (Sweden)

    Marie Luisa Schmidt

    2017-10-01

    Full Text Available Ebola virus (EBOV causes a severe hemorrhagic fever in humans and non-human primates. While no licensed therapeutics are available, recently there has been tremendous progress in developing antivirals. Targeting the ribonucleoprotein complex (RNP proteins, which facilitate genome replication and transcription, and particularly the polymerase L, is a promising antiviral approach since these processes are essential for the virus life cycle. However, until now little is known about L in terms of its structure and function, and in particular the catalytic center of the RNA-dependent RNA polymerase (RdRp of L, which is one of the most promising molecular targets, has never been experimentally characterized.Using multiple sequence alignments with other negative sense single-stranded RNA viruses we identified the putative catalytic center of the EBOV RdRp. An L protein with mutations in this center was then generated and characterized using various life cycle modelling systems. These systems are based on minigenomes, i.e. miniature versions of the viral genome, in which the viral genes are exchanged against a reporter gene. When such minigenomes are coexpressed with RNP proteins in mammalian cells, the RNP proteins recognize them as authentic templates for replication and transcription, resulting in reporter activity reflecting these processes. Replication-competent minigenome systems indicated that our L catalytic domain mutant was impaired in genome replication and/or transcription, and by using replication-deficient minigenome systems, as well as a novel RT-qPCR-based genome replication assay, we showed that it indeed no longer supported either of these processes. However, it still showed similar expression to wild-type L, and retained its ability to be incorporated into inclusion bodies, which are the sites of EBOV genome replication.We have experimentally defined the catalytic center of the EBOV RdRp, and thus a promising antiviral target

  8. The human 64-kDa polyadenylylation factor contains a ribonucleoprotein-type RNA binding domain and unusual auxiliary motifs

    International Nuclear Information System (INIS)

    Takagaki, Yoshio; Manley, J.L.; MacDonald, C.C.; Shenk, T.

    1992-01-01

    Cleavage stimulation factor is one of the multiple factors required for 3'-end cleavage of mammalian pre-mRNAs. The authors have shown previously that this factor is composed of three subunits with estimated molecular masses of 77, 64, and 50 kDa and that the 64-kDa subunit can be UV-cross linked to RNA in a polyadenylylation signal (AAUAAA)-dependent manner. They have now isolated cDNAs encoding the 64-kDa subunit of human cleavage stimulation factor. The 64-kDa subunit contains a ribonucleoprotein-type RNA binding domain in the N-terminal region and a repeat structure in the C-terminal region in which a pentapeptide sequence (consensus MEARA/G) is repeated 12 times and the formation of a long α-helix stabilized by salt bridges is predicted. An ∼270-amino acid segment surrounding this repeat structure is highly enriched in proline and glycine residues (∼20% for each). When cloned 64-kDa subunit was expressed in Escherichia coli, an N-terminal fragment containing the RNA binding domain bound to RNAs in a polyadenylylation-signal-independent manner, suggesting that the RNA binding domain is directly involved in the binding of the 64-kDa subunit to pre-mRNAs

  9. Secondary isotope effects on alpha-cleavage reactions

    International Nuclear Information System (INIS)

    Ingemann, S.; Hammerum, S.

    1980-01-01

    Kinetic deuterium isotope effects on mass spectral reactions have in several instances been utilized to provide structural information and to answer mechanistic questions. Typically, the influence of the deuterium label on the rate of one of a number of competing reactions has been studied. Secondary isotope effects have usually been assumed to be relatively insignificant in comparison with the observed kinetic effects, even though various workers have shown that secondary isotope effects may indeed exert a considerable influence on the rates of competing simple cleavages. Recent studies have provided quantitative data to show that the mere presence of deuterium atoms up to six bonds away may influence the rate of a simple cleavage reaction. In relation to an investigation of rearrangements accompanying simple cleavage reactions, a semi-quantitative measure was needed of the variation of the secondary isotope effect with the number of bonds between the deuterium label and the point of rupture. The influence has therefore been examined of the presence of remote deuterium atoms on a typical simple cleavage reaction, the α-cleavage of aliphatic amines. As a model compound, N-methyldipentylamine was chosen, systematically labelled with deuterium. (author)

  10. Metallo-deuteroporphyrin as a biomimetic catalyst for the catalytic oxidation of lignin to aromatics.

    Science.gov (United States)

    Zhu, Chenjie; Ding, Weiwei; Shen, Tao; Tang, Chenglun; Sun, Chenguo; Xu, Shichao; Chen, Yong; Wu, Jinglan; Ying, Hanjie

    2015-05-22

    A series of metallo-deuteroporphyrins derived from hemin were prepared as models of the cytochrome P450 enzyme. With the aid of the highly active Co(II) deuteroporphyrin complex, the catalytic oxidation system was applied for the oxidation of several lignin model compounds, and high yields of monomeric products were obtained under mild reaction conditions. It was found that the modified cobalt deuteroporphyrin that has no substituents at the meso sites but does have the disulfide linkage in the propionate side chains at the β sites exhibited much higher activity and stability than the synthetic tetraphenylporphyrin. The changes in the propionate side chains can divert the reactivity of cobalt deuteroporphyrins from the typical CC bond cleavage to CO bond cleavage. Furthermore, this novel oxidative system can convert enzymolysis lignin into depolymerized products including a significant portion of well-defined aromatic monomers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Unusual reactions of diazocarbonyl compounds with α,β-unsaturated δ-amino esters: Rh(II-catalyzed Wolff rearrangement and oxidative cleavage of N–H-insertion products

    Directory of Open Access Journals (Sweden)

    Valerij A. Nikolaev

    2016-08-01

    Full Text Available Rh(II-сatalyzed reactions of aroyldiazomethanes, diazoketoesters and diazodiketones with α,β-unsaturated δ-aminoesters, in contrast to reactions of diazomalonates and other diazoesters, give rise to the Wolff rearrangement and/or oxidative cleavage of the initially formed N–H-insertion products. These oxidation processes are mediated by Rh(II catalysts possessing perfluorinated ligands. The formation of pyrrolidine structures, characteristic for catalytic reactions of diazoesters, was not observed in these processes at all.

  12. N-Methylamino Pyrimidyl Amides (MAPA): Highly Reactive, Electronically-Activated Amides in Catalytic N-C(O) Cleavage.

    Science.gov (United States)

    Meng, Guangrong; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2017-09-01

    Despite recent progress in catalytic cross-coupling technologies, the direct activation of N-alkyl-N-aryl amides has been a challenging transformation. Here, we report the first Suzuki cross-coupling of N-methylamino pyrimidyl amides (MAPA) enabled by the controlled n N → π Ar conjugation and the resulting remodeling of the partial double bond character of the amide bond. The new mode of amide activation is suitable for generating acyl-metal intermediates from unactivated primary and secondary amides.

  13. Clay catalyzed RNA synthesis under Martian conditions: Application for Mars return samples.

    Science.gov (United States)

    Joshi, Prakash C; Dubey, Krishna; Aldersley, Michael F; Sausville, Meaghen

    2015-06-26

    Catalysis by montmorillonites clay minerals is regarded as a feasible mechanism for the abiotic production and polymerization of key biomolecules on early Earth. We have investigated a montmorillonite-catalyzed reaction of the 5'-phosphorimidazolide of nucleosides as a model to probe prebiotic synthesis of RNA-type oligomers. Here we show that this model is specific for the generation of RNA oligomers despite deoxy-mononucleotides adsorbing equally well onto the montmorillonite catalytic surfaces. Optimum catalytic activity was observed over a range of pH (6-9) and salinity (1 ± 0.2 M NaCl). When the weathering steps of early Earth that generated catalytic montmorillonite were modified to meet Martian soil conditions, the catalytic activity remained intact without altering the surface layer charge. Additionally, the formation of oligomers up to tetramer was detected using as little as 0.1 mg of Na⁺-montmorillonite, suggesting that the catalytic activity of a Martian clay return sample can be investigated with sub-milligram scale samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The DNA topoisomerase II catalytic inhibitor merbarone is genotoxic and induces endoreduplication

    International Nuclear Information System (INIS)

    Pastor, Nuria; Domínguez, Inmaculada; Orta, Manuel Luís; Campanella, Claudia; Mateos, Santiago; Cortés, Felipe

    2012-01-01

    In the last years a number of reports have shown that the so-called topoisomerase II (topo II) catalytic inhibitors are able to induce DNA and chromosome damage, an unexpected result taking into account that they do not stabilize topo II-DNA cleavable complexes, a feature of topo II poisons such as etoposide and amsacrine. Merbarone inhibits the catalytic activity of topo II by blocking DNA cleavage by the enzyme. While it was first reported that merbarone does not induce genotoxic effects in mammalian cells, this has been challenged by reports showing that the topo II inhibitor induces efficiently chromosome and DNA damage, and the question as to a possible behavior as a topo II poison has been put forward. Given these contradictory results, and the as yet incomplete knowledge of the molecular mechanism of action of merbarone, in the present study we have tried to further characterize the mechanism of action of merbarone on cell proliferation, cell cycle, as well as chromosome and DNA damage in cultured CHO cells. Merbarone was cytotoxic as well as genotoxic, inhibited topo II catalytic activity, and induced endoreduplication. We have also shown that merbarone-induced DNA damage depends upon ongoing DNA synthesis. Supporting this, inhibition of DNA synthesis causes reduction of DNA damage and increased cell survival.

  15. Single-molecule fluorescence measurements reveal the reaction mechanisms of the core RISC, composed of human Argonaute 2 and a guide RNA.

    Science.gov (United States)

    Jo, Myung Hyun; Song, Ji-Joon; Hohng, Sungchul

    2015-12-01

    In eukaryotes, small RNAs play important roles in both gene regulation and resistance to viral infection. Argonaute proteins have been identified as a key component of the effector complexes of various RNA-silencing pathways, but the mechanistic roles of Argonaute proteins in these pathways are not clearly understood. To address this question, we performed single-molecule fluorescence experiments using an RNA-induced silencing complex (core-RISC) composed of a small RNA and human Argonaute 2. We found that target binding of core-RISC starts at the seed region of the guide RNA. After target binding, four distinct reactions followed: target cleavage, transient binding, stable binding, and Argonaute unloading. Target cleavage required extensive sequence complementarity and accelerated core-RISC dissociation for recycling. In contrast, the stable binding of core-RISC to target RNAs required seed-match only, suggesting a potential explanation for the seed-match rule of microRNA (miRNA) target selection.

  16. G-Quadruplexes influence pri-microRNA processing.

    Science.gov (United States)

    Rouleau, Samuel G; Garant, Jean-Michel; Bolduc, François; Bisaillon, Martin; Perreault, Jean-Pierre

    2018-02-01

    RNA G-Quadruplexes (G4) have been shown to possess many biological functions, including the regulation of microRNA (miRNA) biogenesis and function. However, their impact on pri-miRNA processing remains unknown. We identified G4 located near the Drosha cleavage site in three distinct pri-miRNAs: pri-mir200c, pri-mir451a, and pri-mir497. The folding of the potential G4 motifs was determined in solution. Subsequently, mutations disrupting G4 folding led to important changes in the mature miRNAs levels in cells. Moreover, using small antisense oligonucleotides binding to the pri-miRNA, it was possible to modulate, either positively or negatively, the mature miRNA levels. Together, these data demonstrate that G4 motifs could contribute to the regulation of pri-mRNA processing, a novel role for G4. Considering that bio-informatics screening indicates that between 9% and 50% of all pri-miRNAs contain a putative G4, these structures possess interesting potential as future therapeutic targets.

  17. The inhibitory effect of apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) and its family members on the activity of cellular microRNAs.

    Science.gov (United States)

    Zhang, Hui

    2010-01-01

    The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G or APOBEC3G) and its fellow cytidine deaminase family members are potent restrictive factors for human immunodeficiency virus type 1 (HIV-1) and many other retroviruses. However, the cellular function of APOBEC3G remains to be further clarified. It has been reported that APOBEC3s can restrict the mobility of endogenous retroviruses and LTR-retrotransposons, suggesting that they can maintain stability in host genomes. However, APOBEC3G is normally cytoplasmic. Further studies have demonstrated that it is associated with an RNase-sensitive high molecular mass (HMM) and located in processing bodies (P-bodies) of replicating T-cells, indicating that the major cellular function of APOBEC3G seems to be related to P-body-related RNA processing and metabolism. As the function of P-body is closely related to miRNA activity, APOBEC3G could affect the miRNA function. Recent studies have demonstrated that APOBEC3G and its family members counteract miRNA-mediated repression of protein translation. Further, APOBEC3G enhances the association of miRNA-targeted mRNA with polysomes, and facilitates the dissociation of miRNA-targeted mRNA from P-bodies. As such, APOBEC3G regulate the activity of cellular miRNAs. Whether this function is related to its potent antiviral activity remains to be further determined.

  18. RNA2 of grapevine fanleaf virus: sequence analysis and coat protein cistron location.

    Science.gov (United States)

    Serghini, M A; Fuchs, M; Pinck, M; Reinbolt, J; Walter, B; Pinck, L

    1990-07-01

    The nucleotide sequence of the genomic RNA2 (3774 nucleotides) of grapevine fanleaf virus strain F13 was determined from overlapping cDNA clones and its genetic organization was deduced. Two rapid and efficient methods were used for cDNA cloning of the 5' region of RNA2. The complete sequence contained only one long open reading frame of 3555 nucleotides (1184 codons, 131K product). The analysis of the N-terminal sequence of purified coat protein (CP) and identification of its C-terminal residue have allowed the CP cistron to be precisely positioned within the polyprotein. The CP produced by proteolytic cleavage at the Arg/Gly site between residues 680 and 681 contains 504 amino acids (Mr 56019) and has hydrophobic properties. The Arg/Gly cleavage site deduced by N-terminal amino acid sequence analysis is the first for a nepovirus coat protein and for plant viruses expressing their genomic RNAs by polyprotein synthesis. Comparison of GFLV RNA2 with M RNA of cowpea mosaic comovirus and with RNA2 of two closely related nepoviruses, tomato black ring virus and Hungarian grapevine chrome mosaic virus, showed strong similarities among the 3' non-coding regions but less similarity among the 5' end non-coding sequences than reported among other nepovirus RNAs.

  19. Yeast screens identify the RNA polymerase II CTD and SPT5 as relevant targets of BRCA1 interaction.

    Directory of Open Access Journals (Sweden)

    Craig B Bennett

    2008-01-01

    Full Text Available BRCA1 has been implicated in numerous DNA repair pathways that maintain genome integrity, however the function responsible for its tumor suppressor activity in breast cancer remains obscure. To identify the most highly conserved of the many BRCA1 functions, we screened the evolutionarily distant eukaryote Saccharomyces cerevisiae for mutants that suppressed the G1 checkpoint arrest and lethality induced following heterologous BRCA1 expression. A genome-wide screen in the diploid deletion collection combined with a screen of ionizing radiation sensitive gene deletions identified mutants that permit growth in the presence of BRCA1. These genes delineate a metabolic mRNA pathway that temporally links transcription elongation (SPT4, SPT5, CTK1, DEF1 to nucleopore-mediated mRNA export (ASM4, MLP1, MLP2, NUP2, NUP53, NUP120, NUP133, NUP170, NUP188, POM34 and cytoplasmic mRNA decay at P-bodies (CCR4, DHH1. Strikingly, BRCA1 interacted with the phosphorylated RNA polymerase II (RNAPII carboxy terminal domain (P-CTD, phosphorylated in the pattern specified by the CTDK-I kinase, to induce DEF1-dependent cleavage and accumulation of a RNAPII fragment containing the P-CTD. Significantly, breast cancer associated BRCT domain defects in BRCA1 that suppressed P-CTD cleavage and lethality in yeast also suppressed the physical interaction of BRCA1 with human SPT5 in breast epithelial cells, thus confirming SPT5 as a relevant target of BRCA1 interaction. Furthermore, enhanced P-CTD cleavage was observed in both yeast and human breast cells following UV-irradiation indicating a conserved eukaryotic damage response. Moreover, P-CTD cleavage in breast epithelial cells was BRCA1-dependent since damage-induced P-CTD cleavage was only observed in the mutant BRCA1 cell line HCC1937 following ectopic expression of wild type BRCA1. Finally, BRCA1, SPT5 and hyperphosphorylated RPB1 form a complex that was rapidly degraded following MMS treatment in wild type but not BRCA1

  20. Diverging affinity of tospovirus RNA silencing suppressor proteins, NSs, for various RNA duplex molecules.

    Science.gov (United States)

    Schnettler, Esther; Hemmes, Hans; Huismann, Rik; Goldbach, Rob; Prins, Marcel; Kormelink, Richard

    2010-11-01

    The tospovirus NSs protein was previously shown to suppress the antiviral RNA silencing mechanism in plants. Here the biochemical analysis of NSs proteins from different tospoviruses, using purified NSs or NSs containing cell extracts, is described. The results showed that all tospoviral NSs proteins analyzed exhibited affinity to small double-stranded RNA molecules, i.e., small interfering RNAs (siRNAs) and micro-RNA (miRNA)/miRNA* duplexes. Interestingly, the NSs proteins from tomato spotted wilt virus (TSWV), impatiens necrotic spot virus (INSV), and groundnut ringspot virus (GRSV) also showed affinity to long double-stranded RNA (dsRNA), whereas tomato yellow ring virus (TYRV) NSs did not. The TSWV NSs protein was shown to be capable of inhibiting Dicer-mediated cleavage of long dsRNA in vitro. In addition, it suppressed the accumulation of green fluorescent protein (GFP)-specific siRNAs during coinfiltration with an inverted-repeat-GFP RNA construct in Nicotiana benthamiana. In vivo interference of TSWV NSs in the miRNA pathway was shown by suppression of an enhanced GFP (eGFP) miRNA sensor construct. The ability to stabilize miRNA/miRNA* by different tospovirus NSs proteins in vivo was demonstrated by increased accumulation and detection of both miRNA171c and miRNA171c* in tospovirus-infected N. benthamiana. All together, these data suggest that tospoviruses interfere in the RNA silencing pathway by sequestering siRNA and miRNA/miRNA* molecules before they are uploaded into their respective RNA-induced silencing complexes. The observed affinity to long dsRNA for only a subset of the tospoviruses studied is discussed in light of evolutional divergence and their ancestral relation to the animal-infecting members of the Bunyaviridae.

  1. Locked nucleoside analogues expand the potential of DNAzymes to cleave structured RNA targets

    Directory of Open Access Journals (Sweden)

    Wengel Jesper

    2006-06-01

    Full Text Available Abstract Background DNAzymes cleave at predetermined sequences within RNA. A prerequisite for cleavage is that the DNAzyme can gain access to its target, and thus the DNAzyme must be capable of unfolding higher-order structures that are present in the RNA substrate. However, in many cases the RNA target sequence is hidden in a region that is too tightly structured to be accessed under physiological conditions by DNAzymes. Results We investigated how incorporation of LNA (locked nucleic acid monomers into DNAzymes improves their ability to gain access and cleave at highly-structured RNA targets. The binding arms of DNAzymes were varied in length and were substituted with up to three LNA and α-L-LNA monomers (forming LNAzymes. For one DNAzyme, the overall cleavage reaction proceeded fifty times faster after incorporation of two α-L-LNA monomers per binding arm (kobs increased from 0.014 min-1 to 0.78 min-1. Conclusion The data demonstrate how hydrolytic performance can be enhanced by design of LNAzymes, and indicate that there are optimal lengths for the binding arms and for the number of modified LNA monomers.

  2. Mechanism for Coordinated RNA Packaging and Genome Replication by Rotavirus Polymerase VP1

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaohui; McDonald, Sarah M.; Tortorici, M. Alejandra; Tao, Yizhi Jane; Vasquez-Del Carpio, Rodrigo; Nibert, Max L.; Patton, John T.; Harrison, Stephen C. (Harvard-Med); (NIH); (CH-Boston)

    2009-04-08

    Rotavirus RNA-dependent RNA polymerase VP1 catalyzes RNA synthesis within a subviral particle. This activity depends on core shell protein VP2. A conserved sequence at the 3' end of plus-strand RNA templates is important for polymerase association and genome replication. We have determined the structure of VP1 at 2.9 {angstrom} resolution, as apoenzyme and in complex with RNA. The cage-like enzyme is similar to reovirus {lambda}3, with four tunnels leading to or from a central, catalytic cavity. A distinguishing characteristic of VP1 is specific recognition, by conserved features of the template-entry channel, of four bases, UGUG, in the conserved 3' sequence. Well-defined interactions with these bases position the RNA so that its 3' end overshoots the initiating register, producing a stable but catalytically inactive complex. We propose that specific 3' end recognition selects rotavirus RNA for packaging and that VP2 activates the autoinhibited VP1/RNA complex to coordinate packaging and genome replication.

  3. Quantification of DNA cleavage specificity in Hi-C experiments.

    Science.gov (United States)

    Meluzzi, Dario; Arya, Gaurav

    2016-01-08

    Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles.

    Science.gov (United States)

    Lemos, Brenda R; Kaplan, Adam C; Bae, Ji Eun; Ferrazzoli, Alexander E; Kuo, James; Anand, Ranjith P; Waterman, David P; Haber, James E

    2018-02-27

    Harnessing CRISPR-Cas9 technology provides an unprecedented ability to modify genomic loci via DNA double-strand break (DSB) induction and repair. We analyzed nonhomologous end-joining (NHEJ) repair induced by Cas9 in budding yeast and found that the orientation of binding of Cas9 and its guide RNA (gRNA) profoundly influences the pattern of insertion/deletions (indels) at the site of cleavage. A common indel created by Cas9 is a 1-bp (+1) insertion that appears to result from Cas9 creating a 1-nt 5' overhang that is filled in by a DNA polymerase and ligated. The origin of +1 insertions was investigated by using two gRNAs with PAM sequences located on opposite DNA strands but designed to cleave the same sequence. These templated +1 insertions are dependent on the X-family DNA polymerase, Pol4. Deleting Pol4 also eliminated +2 and +3 insertions, which are biased toward homonucleotide insertions. Using inverted PAM sequences, we also found significant differences in overall NHEJ efficiency and repair profiles, suggesting that the binding of the Cas9:gRNA complex influences subsequent NHEJ processing. As with events induced by the site-specific HO endonuclease, CRISPR-Cas9-mediated NHEJ repair depends on the Ku heterodimer and DNA ligase 4. Cas9 events are highly dependent on the Mre11-Rad50-Xrs2 complex, independent of Mre11's nuclease activity. Inspection of the outcomes of a large number of Cas9 cleavage events in mammalian cells reveals a similar templated origin of +1 insertions in human cells, but also a significant frequency of similarly templated +2 insertions.

  5. Dataset of cocoa aspartic protease cleavage sites

    Directory of Open Access Journals (Sweden)

    Katharina Janek

    2016-09-01

    Full Text Available The data provide information in support of the research article, “The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors” (Janek et al., 2016 [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. Keywords: Aspartic protease, Cleavage sites, Cocoa, In-vitro proteolysis, Mass spectrometry, Peptides

  6. Distinct roles for RDE-1 and RDE-4 during RNA interference in Caenorhabditis elegans.

    Science.gov (United States)

    Parrish, S; Fire, A

    2001-10-01

    RNA interference (RNAi) is a cellular defense mechanism that uses double-stranded RNA (dsRNA) as a sequence-specific trigger to guide the degradation of homologous single-stranded RNAs. RNAi is a multistep process involving several proteins and at least one type of RNA intermediate, a population of small 21-25 nt RNAs (called siRNAs) that are initially derived from cleavage of the dsRNA trigger. Genetic screens in Caenorhabditis elegans have identified numerous mutations that cause partial or complete loss of RNAi. In this work, we analyzed cleavage of injected dsRNA to produce the initial siRNA population in animals mutant for rde-1 and rde-4, two genes that are essential for RNAi but that are not required for organismal viability or fertility. Our results suggest distinct roles for RDE-1 and RDE-4 in the interference process. Although null mutants lacking rde-1 show no phenotypic response to dsRNA, the amount of siRNAs generated from an injected dsRNA trigger was comparable to that of wild-type. By contrast, mutations in rde-4 substantially reduced the population of siRNAs derived from an injected dsRNA trigger. Injection of chemically synthesized 24- or 25-nt siRNAs could circumvent RNAi resistance in rde-4 mutants, whereas no bypass was observed in rde-1 mutants. These results support a model in which RDE-4 is involved before or during production of siRNAs, whereas RDE-1 acts after the siRNAs have been formed.

  7. Deep Sequence Analysis of AgoshRNA Processing Reveals 3' A Addition and Trimming.

    Science.gov (United States)

    Harwig, Alex; Herrera-Carrillo, Elena; Jongejan, Aldo; van Kampen, Antonius Hubertus; Berkhout, Ben

    2015-07-14

    The RNA interference (RNAi) pathway, in which microprocessor and Dicer collaborate to process microRNAs (miRNA), was recently expanded by the description of alternative processing routes. In one of these noncanonical pathways, Dicer action is replaced by the Argonaute2 (Ago2) slicer function. It was recently shown that the stem-length of precursor-miRNA or short hairpin RNA (shRNA) molecules is a major determinant for Dicer versus Ago2 processing. Here we present the results of a deep sequence study on the processing of shRNAs with different stem length and a top G·U wobble base pair (bp). This analysis revealed some unexpected properties of these so-called AgoshRNA molecules that are processed by Ago2 instead of Dicer. First, we confirmed the gradual shift from Dicer to Ago2 processing upon shortening of the hairpin length. Second, hairpins with a stem larger than 19 base pair are inefficiently cleaved by Ago2 and we noticed a shift in the cleavage site. Third, the introduction of a top G·U bp in a regular shRNA can promote Ago2-cleavage, which coincides with a loss of Ago2-loading of the Dicer-cleaved 3' strand. Fourth, the Ago2-processed AgoshRNAs acquire a short 3' tail of 1-3 A-nucleotides (nt) and we present evidence that this product is subsequently trimmed by the poly(A)-specific ribonuclease (PARN).

  8. Cleavage events and sperm dynamics in chick intrauterine embryos.

    Directory of Open Access Journals (Sweden)

    Hyung Chul Lee

    Full Text Available This study was undertaken to elucidate detailed event of early embryogenesis in chicken embryos using a noninvasive egg retrieval technique before oviposition. White Leghorn intrauterine eggs were retrieved from 95 cyclic hens aged up to 54-56 weeks and morphogenetic observation was made under both bright field and fluorescent image in a time course manner. Differing from mammals, asymmetric cleavage to yield preblastodermal cells was observed throughout early embryogenesis. The first two divisions occurred synchronously and four polarized preblastodermal cells resulted after cruciform cleavage. Then, asynchronous cleavage continued in a radial manner and overall cell size in the initial cleavage region was smaller than that in the distal area. Numerous sperms were visible, regardless of zygotic nuclei formation. Condensed sperm heads were present mainly in the perivitelline space and cytoplasm, and rarely in the yolk region, while decondensed sperm heads were only visible in the yolk. In conclusion, apparent differences in sperm dynamics and early cleavage events compared with mammalian embryos were detected in chick embryo development, which demonstrated polarized cleavage with penetrating supernumerary sperm into multiple regions.

  9. Structural Analyses of Avocado sunblotch viroid Reveal Differences in the Folding of Plus and Minus RNA Strands

    Directory of Open Access Journals (Sweden)

    Clémentine Delan-Forino

    2014-01-01

    Full Text Available Viroids are small pathogenic circular single-stranded RNAs, present in two complementary sequences, named plus and minus, in infected plant cells. A high degree of complementarities between different regions of the RNAs allows them to adopt complex structures. Since viroids are naked non-coding RNAs, interactions with host factors appear to be closely related to their structural and catalytic characteristics. Avocado sunblotch viroid (ASBVd, a member of the family Avsunviroidae, replicates via a symmetric RNA-dependant rolling-circle process, involving self-cleavage via hammerhead ribozymes. Consequently, it is assumed that ASBVd plus and minus strands adopt similar structures. Moreover, by computer analyses, a quasi-rod-like secondary structure has been predicted. Nevertheless, secondary and tertiary structures of both polarities of ASBVd remain unsolved. In this study, we analyzed the characteristic of each strand of ASBVd through biophysical analyses. We report that ASBVd transcripts of plus and minus polarities exhibit differences in electrophoretic mobility under native conditions and in thermal denaturation profiles. Subsequently, the secondary structures of plus and minus polarities of ASBVd were probed using the RNA-selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE method. The models obtained show that both polarities fold into different structures. Moreover, our results suggest the existence of a kissing-loop interaction within the minus strand that may play a role in in vivo viroid life cycle.

  10. New Insight into the Cleavage Reaction of Nostoc sp. Strain PCC 7120 Carotenoid Cleavage Dioxygenase in Natural and Nonnatural Carotenoids

    Science.gov (United States)

    Heo, Jinsol; Kim, Se Hyeuk

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8′-carotenal at 3 positions, C-13C-14, C-15C-15′, and C-13′C-14′, revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4′-diaponeurosporene, 4,4′-diaponeurosporen-4′-al, 4,4′-diaponeurosporen-4′-oic acid, 4,4′-diapotorulene, and 4,4′-diapotorulen-4′-al to generate novel cleavage products (apo-14′-diaponeurosporenal, apo-13′-diaponeurosporenal, apo-10′-diaponeurosporenal, apo-14′-diapotorulenal, and apo-10′-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro. PMID:23524669

  11. An expedient procedure for the oxidative cleavage of olefinic bonds with PhI(OAc)2, NMO, and catalytic OsO4.

    Science.gov (United States)

    Nicolaou, K C; Adsool, Vikrant A; Hale, Christopher R H

    2010-04-02

    PhI(OAc)(2) in the presence of OsO(4) (cat.) and 2,6-lutidine cleaves olefinic bonds to yield the corresponding carbonyl compounds, albeit, in some cases, with alpha-hydroxy ketones as byproduct. A more practical and clean protocol to effect oxidative cleavage of olefinic bonds involves NMO, OsO(4) (cat.), 2,6-lutidine, and PhI(OAc)(2).

  12. Intrinsic noise of microRNA-regulated genes and the ceRNA hypothesis.

    Directory of Open Access Journals (Sweden)

    Javad Noorbakhsh

    Full Text Available MicroRNAs are small noncoding RNAs that regulate genes post-transciptionally by binding and degrading target eukaryotic mRNAs. We use a quantitative model to study gene regulation by inhibitory microRNAs and compare it to gene regulation by prokaryotic small non-coding RNAs (sRNAs. Our model uses a combination of analytic techniques as well as computational simulations to calculate the mean-expression and noise profiles of genes regulated by both microRNAs and sRNAs. We find that despite very different molecular machinery and modes of action (catalytic vs stoichiometric, the mean expression levels and noise profiles of microRNA-regulated genes are almost identical to genes regulated by prokaryotic sRNAs. This behavior is extremely robust and persists across a wide range of biologically relevant parameters. We extend our model to study crosstalk between multiple mRNAs that are regulated by a single microRNA and show that noise is a sensitive measure of microRNA-mediated interaction between mRNAs. We conclude by discussing possible experimental strategies for uncovering the microRNA-mRNA interactions and testing the competing endogenous RNA (ceRNA hypothesis.

  13. In vivo analysis of the Notch receptor S1 cleavage.

    Directory of Open Access Journals (Sweden)

    Robert J Lake

    2009-08-01

    Full Text Available A ligand-independent cleavage (S1 in the extracellular domain of the mammalian Notch receptor results in what is considered to be the canonical heterodimeric form of Notch on the cell surface. The in vivo consequences and significance of this cleavage on Drosophila Notch signaling remain unclear and contradictory. We determined the cleavage site in Drosophila and examined its in vivo function by a transgenic analysis of receptors that cannot be cleaved. Our results demonstrate a correlation between loss of cleavage and loss of in vivo function of the Notch receptor, supporting the notion that S1 cleavage is an in vivo mechanism of Notch signal control.

  14. Interactions of a Pop5/Rpp1 heterodimer with the catalytic domain of RNase MRP.

    Science.gov (United States)

    Perederina, Anna; Khanova, Elena; Quan, Chao; Berezin, Igor; Esakova, Olga; Krasilnikov, Andrey S

    2011-10-01

    Ribonuclease (RNase) MRP is a multicomponent ribonucleoprotein complex closely related to RNase P. RNase MRP and eukaryotic RNase P share most of their protein components, as well as multiple features of their catalytic RNA moieties, but have distinct substrate specificities. While RNase P is practically universally found in all three domains of life, RNase MRP is essential in eukaryotes. The structural organizations of eukaryotic RNase P and RNase MRP are poorly understood. Here, we show that Pop5 and Rpp1, protein components found in both RNase P and RNase MRP, form a heterodimer that binds directly to the conserved area of the putative catalytic domain of RNase MRP RNA. The Pop5/Rpp1 binding site corresponds to the protein binding site in bacterial RNase P RNA. Structural and evolutionary roles of the Pop5/Rpp1 heterodimer in RNases P and MRP are discussed.

  15. Benchmarking CRISPR on-target sgRNA design.

    Science.gov (United States)

    Yan, Jifang; Chuai, Guohui; Zhou, Chi; Zhu, Chenyu; Yang, Jing; Zhang, Chao; Gu, Feng; Xu, Han; Wei, Jia; Liu, Qi

    2017-02-15

    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based gene editing has been widely implemented in various cell types and organisms. A major challenge in the effective application of the CRISPR system is the need to design highly efficient single-guide RNA (sgRNA) with minimal off-target cleavage. Several tools are available for sgRNA design, while limited tools were compared. In our opinion, benchmarking the performance of the available tools and indicating their applicable scenarios are important issues. Moreover, whether the reported sgRNA design rules are reproducible across different sgRNA libraries, cell types and organisms remains unclear. In our study, a systematic and unbiased benchmark of the sgRNA predicting efficacy was performed on nine representative on-target design tools, based on six benchmark data sets covering five different cell types. The benchmark study presented here provides novel quantitative insights into the available CRISPR tools. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Selective blockade of microRNA processing by Lin-28

    Science.gov (United States)

    Viswanathan, Srinivas R.; Daley, George Q.; Gregory, Richard I.

    2012-01-01

    MicroRNAs (miRNAs) play critical roles in development, and dysregulation of miRNA expression has been observed in human malignancies. Recent evidence suggests that the processing of several primary miRNA transcripts (pri-miRNAs) is blocked post-transcriptionally in embryonic stem (ES) cells, embryonal carcinoma (EC) cells, and primary tumors. Here we show that Lin-28, a developmentally regulated RNA-binding protein, selectively blocks the processing of pri-let-7 miRNAs in embryonic cells. Using in vitro and in vivo studies, we demonstrate that Lin-28 is necessary and sufficient for blocking Microprocessor-mediated cleavage of pri-let-7 miRNAs. Our results identify Lin-28 as a negative regulator of miRNA biogenesis and suggest that Lin-28 may play a central role in blocking miRNA-mediated differentiation in stem cells and certain cancers. PMID:18292307

  17. In vitro measurement of beta-carotene cleavage activity : methodological considerations and the effect of other carotenoids on beta-carotene cleavage

    NARCIS (Netherlands)

    Vliet, T. van; Schaik, F. van; Schreurs, W.H.P.; Berg, H. van den

    1996-01-01

    In view of controversies about assessment of the β-carotene cleavage activity, methodological aspects and problems of the dioxygenase assay are described. Using rat and hamster intestinal preparations the method was optimized on retinal formation, the only cleavage product we could demonstrate. It

  18. Redox status affects the catalytic activity of glutamyl-tRNA synthetase

    DEFF Research Database (Denmark)

    Katz, Assaf; Banerjee, Rajat; de Armas, Merly

    2010-01-01

    Glutamyl-tRNA synthetases (GluRS) provide Glu-tRNA for different processes including protein synthesis, glutamine transamidation and tetrapyrrole biosynthesis. Many organisms contain multiple GluRSs, but whether these duplications solely broaden tRNA specificity or also play additional roles in t...... inactivation by hemin plus hydrogen peroxide. The sensitivity to oxidation of A. ferrooxidans GluRS1 might provide a means to regulate tetrapyrrole and protein biosynthesis in response to extreme changes in both the redox and heme status of the cell via a single enzyme....

  19. RNase MRP cleaves pre-tRNASer-Met in the tRNA maturation pathway.

    Science.gov (United States)

    Saito, Yuichiro; Takeda, Jun; Adachi, Kousuke; Nobe, Yuko; Kobayashi, Junya; Hirota, Kouji; Oliveira, Douglas V; Taoka, Masato; Isobe, Toshiaki

    2014-01-01

    Ribonuclease mitochondrial RNA processing (RNase MRP) is a multifunctional ribonucleoprotein (RNP) complex that is involved in the maturation of various types of RNA including ribosomal RNA. RNase MRP consists of a potential catalytic RNA and several protein components, all of which are required for cell viability. We show here that the temperature-sensitive mutant of rmp1, the gene for a unique protein component of RNase MRP, accumulates the dimeric tRNA precursor, pre-tRNA(Ser-Met). To examine whether RNase MRP mediates tRNA maturation, we purified the RNase MRP holoenzyme from the fission yeast Schizosaccharomyces pombe and found that the enzyme directly and selectively cleaves pre-tRNA(Ser-Met), suggesting that RNase MRP participates in the maturation of specific tRNA in vivo. In addition, mass spectrometry-based ribonucleoproteomic analysis demonstrated that this RNase MRP consists of one RNA molecule and 11 protein components, including a previously unknown component Rpl701. Notably, limited nucleolysis of RNase MRP generated an active catalytic core consisting of partial mrp1 RNA fragments, which constitute "Domain 1" in the secondary structure of RNase MRP, and 8 proteins. Thus, the present study provides new insight into the structure and function of RNase MRP.

  20. Deep Sequence Analysis of AgoshRNA Processing Reveals 3’ A Addition and Trimming

    Directory of Open Access Journals (Sweden)

    Alex Harwig

    2015-01-01

    Full Text Available The RNA interference (RNAi pathway, in which microprocessor and Dicer collaborate to process microRNAs (miRNA, was recently expanded by the description of alternative processing routes. In one of these noncanonical pathways, Dicer action is replaced by the Argonaute2 (Ago2 slicer function. It was recently shown that the stem-length of precursor-miRNA or short hairpin RNA (shRNA molecules is a major determinant for Dicer versus Ago2 processing. Here we present the results of a deep sequence study on the processing of shRNAs with different stem length and a top G·U wobble base pair (bp. This analysis revealed some unexpected properties of these so-called AgoshRNA molecules that are processed by Ago2 instead of Dicer. First, we confirmed the gradual shift from Dicer to Ago2 processing upon shortening of the hairpin length. Second, hairpins with a stem larger than 19 base pair are inefficiently cleaved by Ago2 and we noticed a shift in the cleavage site. Third, the introduction of a top G·U bp in a regular shRNA can promote Ago2-cleavage, which coincides with a loss of Ago2-loading of the Dicer-cleaved 3’ strand. Fourth, the Ago2-processed AgoshRNAs acquire a short 3’ tail of 1–3 A-nucleotides (nt and we present evidence that this product is subsequently trimmed by the poly(A-specific ribonuclease (PARN.

  1. Structural and catalytic effects of an invariant purine substitution in the hammerhead ribozyme: implications for the mechanism of acid–base catalysis

    Science.gov (United States)

    Schultz, Eric P.; Vasquez, Ernesto E.; Scott, William G.

    2014-01-01

    The hammerhead ribozyme catalyzes RNA cleavage via acid–base catalysis. Whether it does so by general acid–base catalysis, in which the RNA itself donates and abstracts protons in the transition state, as is typically assumed, or by specific acid–base catalysis, in which the RNA plays a structural role and proton transfer is mediated by active-site water molecules, is unknown. Previous biochemical and crystallographic experiments implicate an invariant purine in the active site, G12, as the general base. However, G12 may play a structural role consistent with specific base catalysis. To better understand the role of G12 in the mechanism of hammerhead catalysis, a 2.2 Å resolution crystal structure of a hammerhead ribozyme from Schistosoma mansoni with a purine substituted for G12 in the active site of the ribozyme was obtained. Comparison of this structure (PDB entry 3zd4), in which A12 is substituted for G, with three previously determined structures that now serve as important experimental controls, allows the identification of structural perturbations that are owing to the purine substitution itself. Kinetic measurements for G12 purine-substituted schistosomal hammerheads confirm a previously observed dependence of rate on the pK a of the substituted purine; in both cases inosine, which is similar to G in pK a and hydrogen-bonding properties, is unexpectedly inactive. Structural comparisons indicate that this may primarily be owing to the lack of the exocyclic 2-amino group in the G12A and G12I substitutions and its structural effect upon both the nucleotide base and phosphate of A9. The latter involves the perturbation of a previously identified and well characterized metal ion-binding site known to be catalytically important in both minimal and full-length hammerhead ribozyme sequences. The results permit it to be suggested that G12 plays an important role in stabilizing the active-site structure. This result, although not inconsistent with the

  2. Structural and catalytic effects of an invariant purine substitution in the hammerhead ribozyme: implications for the mechanism of acid-base catalysis.

    Science.gov (United States)

    Schultz, Eric P; Vasquez, Ernesto E; Scott, William G

    2014-09-01

    The hammerhead ribozyme catalyzes RNA cleavage via acid-base catalysis. Whether it does so by general acid-base catalysis, in which the RNA itself donates and abstracts protons in the transition state, as is typically assumed, or by specific acid-base catalysis, in which the RNA plays a structural role and proton transfer is mediated by active-site water molecules, is unknown. Previous biochemical and crystallographic experiments implicate an invariant purine in the active site, G12, as the general base. However, G12 may play a structural role consistent with specific base catalysis. To better understand the role of G12 in the mechanism of hammerhead catalysis, a 2.2 Å resolution crystal structure of a hammerhead ribozyme from Schistosoma mansoni with a purine substituted for G12 in the active site of the ribozyme was obtained. Comparison of this structure (PDB entry 3zd4), in which A12 is substituted for G, with three previously determined structures that now serve as important experimental controls, allows the identification of structural perturbations that are owing to the purine substitution itself. Kinetic measurements for G12 purine-substituted schistosomal hammerheads confirm a previously observed dependence of rate on the pK(a) of the substituted purine; in both cases inosine, which is similar to G in pK(a) and hydrogen-bonding properties, is unexpectedly inactive. Structural comparisons indicate that this may primarily be owing to the lack of the exocyclic 2-amino group in the G12A and G12I substitutions and its structural effect upon both the nucleotide base and phosphate of A9. The latter involves the perturbation of a previously identified and well characterized metal ion-binding site known to be catalytically important in both minimal and full-length hammerhead ribozyme sequences. The results permit it to be suggested that G12 plays an important role in stabilizing the active-site structure. This result, although not inconsistent with the potential

  3. Pripper: prediction of caspase cleavage sites from whole proteomes

    Directory of Open Access Journals (Sweden)

    Salmi Jussi

    2010-06-01

    Full Text Available Abstract Background Caspases are a family of proteases that have central functions in programmed cell death (apoptosis and inflammation. Caspases mediate their effects through aspartate-specific cleavage of their target proteins, and at present almost 400 caspase substrates are known. There are several methods developed to predict caspase cleavage sites from individual proteins, but currently none of them can be used to predict caspase cleavage sites from multiple proteins or entire proteomes, or to use several classifiers in combination. The possibility to create a database from predicted caspase cleavage products for the whole genome could significantly aid in identifying novel caspase targets from tandem mass spectrometry based proteomic experiments. Results Three different pattern recognition classifiers were developed for predicting caspase cleavage sites from protein sequences. Evaluation of the classifiers with quality measures indicated that all of the three classifiers performed well in predicting caspase cleavage sites, and when combining different classifiers the accuracy increased further. A new tool, Pripper, was developed to utilize the classifiers and predict the caspase cut sites from an arbitrary number of input sequences. A database was constructed with the developed tool, and it was used to identify caspase target proteins from tandem mass spectrometry data from two different proteomic experiments. Both known caspase cleavage products as well as novel cleavage products were identified using the database demonstrating the usefulness of the tool. Pripper is not restricted to predicting only caspase cut sites, but it gives the possibility to scan protein sequences for any given motif(s and predict cut sites once a suitable cut site prediction model for any other protease has been developed. Pripper is freely available and can be downloaded from http://users.utu.fi/mijopi/Pripper. Conclusions We have developed Pripper, a tool for

  4. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    International Nuclear Information System (INIS)

    Lu, Yi

    2003-01-01

    The goals of the project are to develop new catalytic DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides and metal ions, and apply the sensors for on-site, real-time assessment of concentration, speciation and stability of the individual contaminants during and after bioremediation. A negative selection strategy was tested and validated. In vitro selection was shown to yield highly active and specific transition metal ion-dependent catalytic DNA/RNA. A fluorescence resonance energy transfer (FRET) study of in vitro selected DNA demonstrated that the trifluorophore labeled system is a simple and powerful tool in studying complex biomolecules structure and dynamics, and is capable of revealing new sophisticated structural changes. New fluorophore/quenchers in a single fluorosensor yielded improved signal to noise ratio in detection, identification and quantification of metal contaminants. Catalytic DNA fluorescent and colorimetric sensors were shown useful in sensing lead in lake water and in leaded paint. Project results were described in two papers and two patents, and won an international prize

  5. Quantitative characterization of cleavage and hydrogen-assisted quasi-cleavage fracture surfaces with the use of confocal laser scanning microscopy

    International Nuclear Information System (INIS)

    Merson, E.; Kudrya, A.V.; Trachenko, V.A.; Merson, D.; Danilov, V.; Vinogradov, A.

    2016-01-01

    “True” cleavage (TC) and quasi-cleavage (QC) fracture surfaces of low-carbon steel specimens tested in liquid nitrogen and after hydrogen charging respectively were investigated by quantitative confocal laser scanning microscopy (CLSM) and conventional scanning electron microscopy (SEM) with electron-backscattered diffraction (EBSD). Topological and crystallographic features of the TC fracture surface are found in good agreement with the generally accepted cleavage mechanism: TC facets diameters correspond to those of grains; the crack path strictly follows the crystallographic orientation of grains and the most of the cleavage cracks are parallel to {100} planes. On the 2D SEM images, the QC facets appeared resembling the TC ones in terms of river line patterns, shapes and sizes. However, the substantial differences between the topography of these two kinds of fracture surfaces were revealed by 3D CLSM: the average misorientation angle between QC facets and the roughness of the QC fracture surface were much lower than those measured for TC. It is demonstrated that all these features are attributed to the specific fracture mechanism operating during hydrogen-assisted cracking.

  6. Quantitative characterization of cleavage and hydrogen-assisted quasi-cleavage fracture surfaces with the use of confocal laser scanning microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merson, E. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Kudrya, A.V.; Trachenko, V.A. [Department of Physical Metallurgy and the Physics of Strength, NUST MISiS, Moscow 119490 (Russian Federation); Merson, D. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Laboratory for Advanced Materials, Kazan Federal University, Naberezhnye Chelny 423812, Republic of Tatarstan (Russian Federation); Danilov, V. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Vinogradov, A. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Department of Engineering Design and Materials, Norwegian University of Science and Technology – NTNU, N-7491 Trondheim (Norway)

    2016-05-17

    “True” cleavage (TC) and quasi-cleavage (QC) fracture surfaces of low-carbon steel specimens tested in liquid nitrogen and after hydrogen charging respectively were investigated by quantitative confocal laser scanning microscopy (CLSM) and conventional scanning electron microscopy (SEM) with electron-backscattered diffraction (EBSD). Topological and crystallographic features of the TC fracture surface are found in good agreement with the generally accepted cleavage mechanism: TC facets diameters correspond to those of grains; the crack path strictly follows the crystallographic orientation of grains and the most of the cleavage cracks are parallel to {100} planes. On the 2D SEM images, the QC facets appeared resembling the TC ones in terms of river line patterns, shapes and sizes. However, the substantial differences between the topography of these two kinds of fracture surfaces were revealed by 3D CLSM: the average misorientation angle between QC facets and the roughness of the QC fracture surface were much lower than those measured for TC. It is demonstrated that all these features are attributed to the specific fracture mechanism operating during hydrogen-assisted cracking.

  7. Dicer uses distinct modules for recognizing dsRNA termini.

    Science.gov (United States)

    Sinha, Niladri K; Iwasa, Janet; Shen, Peter S; Bass, Brenda L

    2018-01-19

    Invertebrates rely on Dicer to cleave viral double-stranded RNA (dsRNA), and Drosophila Dicer-2 distinguishes dsRNA substrates by their termini. Blunt termini promote processive cleavage, while 3' overhanging termini are cleaved distributively. To understand this discrimination, we used cryo-electron microscopy to solve structures of Drosophila Dicer-2 alone and in complex with blunt dsRNA. Whereas the Platform-PAZ domains have been considered the only Dicer domains that bind dsRNA termini, unexpectedly, we found that the helicase domain is required for binding blunt, but not 3' overhanging, termini. We further showed that blunt dsRNA is locally unwound and threaded through the helicase domain in an adenosine triphosphate-dependent manner. Our studies reveal a previously unrecognized mechanism for optimizing antiviral defense and set the stage for the discovery of helicase-dependent functions in other Dicers. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Targeted Catalytic Inactivation of Angiotensin Converting Enzyme by Lisinopril-Coupled Transition Metal Chelates

    Science.gov (United States)

    Joyner, Jeff C.; Hocharoen, Lalintip; Cowan, J. A.

    2012-01-01

    A series of compounds that target reactive transition metal chelates to somatic Angiotensin Converting Enzyme (sACE-1) have been synthesized. Half maximal inhibitory concentrations (IC50) and rate constants for both inactivation and cleavage of full length sACE-1 have been determined and evaluated in terms of metal-chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediamine-tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine sidechain of lisinopril by EDC/NHS coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following pre-incubation with metal-chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal-chelate-lisinopril complexes revealed IC50 values ranging from 44 nM to 4,500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal-chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second order rate constants as high as 150,000 M−1min−1 (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primary from sidechain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the metal center was poised near 1000 mV, reflecting the difficulty of protein

  9. Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates.

    Science.gov (United States)

    Joyner, Jeff C; Hocharoen, Lalintip; Cowan, J A

    2012-02-22

    A series of compounds that target reactive transition-metal chelates to somatic angiotensin converting enzyme (sACE-1) have been synthesized. Half-maximal inhibitory concentrations (IC(50)) and rate constants for both inactivation and cleavage of full-length sACE-1 have been determined and evaluated in terms of metal chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine side chain of lisinopril by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride/N-hydroxysuccinimide coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel, and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following preincubation with metal chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal chelate-lisinopril complexes revealed IC(50) values ranging from 44 to 4500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second-order rate constants as high as 150,000 M(-1) min(-1) (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primarily from side chain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the

  10. Genome-Wide Analysis of miRNA targets in Brachypodium and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Green, Pamela J. [Univ. of Delaware, Newark, DE (United States)

    2015-08-11

    MicroRNAs (miRNAs) contribute to the control of numerous biological processes through the regulation of specific target mRNAs. Although the identities of these targets are essential to elucidate miRNA function, the targets are much more difficult to identify than the small RNAs themselves. Before this work, we pioneered the genome-wide identification of the targets of Arabidopsis miRNAs using an approach called PARE (German et al., Nature Biotech. 2008; Nature Protocols, 2009). Under this project, we applied PARE to Brachypodium distachyon (Brachypodium), a model plant in the Poaceae family, which includes the major food grain and bioenergy crops. Through in-depth global analysis and examination of specific examples, this research greatly expanded our knowledge of miRNAs and target RNAs of Brachypodium. New regulation in response to environmental stress or tissue type was found, and many new miRNAs were discovered. More than 260 targets of new and known miRNAs with PARE sequences at the precise sites of miRNA-guided cleavage were identified and characterized. Combining PARE data with the small RNA data also identified the miRNAs responsible for initiating approximately 500 phased loci, including one of the novel miRNAs. PARE analysis also revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. The project included generation of small RNA and PARE resources for bioenergy crops, to facilitate ongoing discovery of conserved miRNA-target RNA regulation. By associating specific miRNA-target RNA pairs with known physiological functions, the research provides insights about gene regulation in different tissues and in response to environmental stress. This, and release of new PARE and small RNA data sets should contribute basic knowledge to enhance breeding and may suggest new strategies for improvement of biomass energy crops.

  11. Integration of the Pokeweed miRNA and mRNA Transcriptomes Reveals Targeting of Jasmonic Acid-Responsive Genes

    Directory of Open Access Journals (Sweden)

    Kira C. M. Neller

    2018-05-01

    Full Text Available The American pokeweed plant, Phytolacca americana, displays broad-spectrum resistance to plant viruses and is a heavy metal hyperaccumulator. However, little is known about the regulation of biotic and abiotic stress responses in this non-model plant. To investigate the control of miRNAs in gene expression, we sequenced the small RNA transcriptome of pokeweed treated with jasmonic acid (JA, a hormone that mediates pathogen defense and stress tolerance. We predicted 145 miRNAs responsive to JA, most of which were unique to pokeweed. These miRNAs were low in abundance and condition-specific, with discrete expression change. Integration of paired mRNA-Seq expression data enabled us to identify correlated, novel JA-responsive targets that mediate hormone biosynthesis, signal transduction, and pathogen defense. The expression of approximately half the pairs was positively correlated, an uncommon finding that we functionally validated by mRNA cleavage. Importantly, we report that a pokeweed-specific miRNA targets the transcript of OPR3, novel evidence that a miRNA regulates a JA biosynthesis enzyme. This first large-scale small RNA study of a Phytolaccaceae family member shows that miRNA-mediated control is a significant component of the JA response, associated with widespread changes in expression of genes required for stress adaptation.

  12. The catalytic chain of human complement subcomponent C1r. Purification and N-terminal amino acid sequences of the major cyanogen bromide-cleavage fragments.

    Science.gov (United States)

    Arlaud, G J; Gagnon, J; Porter, R R

    1982-01-01

    1. The a- and b-chains of reduced and alkylated human complement subcomponent C1r were separated by high-pressure gel-permeation chromatography and isolated in good yield and in pure form. 2. CNBr cleavage of C1r b-chain yielded eight major peptides, which were purified by gel filtration and high-pressure reversed-phase chromatography. As determined from the sum of their amino acid compositions, these peptides accounted for a minimum molecular weight of 28 000, close to the value 29 100 calculated from the whole b-chain. 3. N-Terminal sequence determinations of C1r b-chain and its CNBr-cleavage peptides allowed the identification of about two-thirds of the amino acids of C1r b-chain. From our results, and on the basis of homology with other serine proteinases, an alignment of the eight CNBr-cleavage peptides from C1r b-chain is proposed. 4. The residues forming the 'charge-relay' system of the active site of serine proteinases (His-57, Asp-102 and Ser-195 in the chymotrypsinogen numbering) are found in the corresponding regions of C1r b-chain, and the amino acid sequence around these residues has been determined. 5. The N-terminal sequence of C1r b-chain has been extended to residue 60 and reveals that C1r b-chain lacks the 'histidine loop', a disulphide bond that is present in all other known serine proteinases.

  13. Selenoglutathione Diselenide: Unique Redox Reactions in the GPx-Like Catalytic Cycle and Repairing of Disulfide Bonds in Scrambled Protein.

    Science.gov (United States)

    Shimodaira, Shingo; Asano, Yuki; Arai, Kenta; Iwaoka, Michio

    2017-10-24

    Selenoglutathione (GSeH) is a selenium analogue of naturally abundant glutathione (GSH). In this study, this water-soluble small tripeptide was synthesized in a high yield (up to 98%) as an oxidized diselenide form, i.e., GSeSeG (1), by liquid-phase peptide synthesis (LPPS). Obtained 1 was applied to the investigation of the glutathione peroxidase (GPx)-like catalytic cycle. The important intermediates, i.e., GSe - and GSeSG, besides GSeO 2 H were characterized by 77 Se NMR spectroscopy. Thiol exchange of GSeSG with various thiols, such as cysteine and dithiothreitol, was found to promote the conversion to GSe - significantly. In addition, disproportionation of GSeSR to 1 and RSSR, which would be initiated by heterolytic cleavage of the Se-S bond and catalyzed by the generated selenolate, was observed. On the basis of these redox behaviors, it was proposed that the heterolytic cleavage of the Se-S bond can be facilitated by the interaction between the Se atom and an amino or aromatic group, which is present at the GPx active site. On the other hand, when a catalytic amount of 1 was reacted with scrambled 4S species of RNase A in the presence of NADPH and glutathione reductase, native protein was efficiently regenerated, suggesting a potential use of 1 to repair misfolded proteins through reduction of the non-native SS bonds.

  14. Functional analysis of coordinated cleavage in V(D)J recombination.

    Science.gov (United States)

    Kim, D R; Oettinger, M A

    1998-08-01

    V(D)J recombination in vivo requires a pair of signals with distinct spacer elements of 12 and 23 bp that separate conserved heptamer and nonamer motifs. Cleavage in vitro by the RAG1 and RAG2 proteins can occur at individual signals when the reaction buffer contains Mn2+, but cleavage is restricted to substrates containing two signals when Mg2+ is the divalent cation. By using a novel V(D)J cleavage substrate, we show that while the RAG proteins alone establish a moderate preference for a 12/23 pair versus a 12/12 pair, a much stricter dependence of cleavage on the 12/23 signal pair is produced by the inclusion of HMG1 and competitor double-stranded DNA. The competitor DNA serves to inhibit the cleavage of substrates carrying a 12/12 or 23/23 pair, as well as the cutting at individual signals in 12/23 substrates. We show that a 23/33 pair is more efficiently recombined than a 12/33 pair, suggesting that the 12/23 rule can be generalized to a requirement for spacers that differ from each other by a single helical turn. Furthermore, we suggest that a fixed spatial orientation of signals is required for cleavage. In general, the same signal variants that can be cleaved singly can function under conditions in which a signal pair is required. However, a chemically modified substrate with one noncleavable signal enables us to show that formation of a functional cleavage complex is mechanistically separable from the cleavage reaction itself and that although cleavage requires a pair of signals, cutting does not have to occur simultaneously at both. The implications of these results are discussed with respect to the mechanism of V(D)J recombination and the generation of chromosomal translocations.

  15. Microprocessor Activity Controls Differential miRNA Biogenesis In Vivo

    Directory of Open Access Journals (Sweden)

    Thomas Conrad

    2014-10-01

    Full Text Available In miRNA biogenesis, pri-miRNA transcripts are converted into pre-miRNA hairpins. The in vivo properties of this process remain enigmatic. Here, we determine in vivo transcriptome-wide pri-miRNA processing using next-generation sequencing of chromatin-associated pri-miRNAs. We identify a distinctive Microprocessor signature in the transcriptome profile from which efficiency of the endogenous processing event can be accurately quantified. This analysis reveals differential susceptibility to Microprocessor cleavage as a key regulatory step in miRNA biogenesis. Processing is highly variable among pri-miRNAs and a better predictor of miRNA abundance than primary transcription itself. Processing is also largely stable across three cell lines, suggesting a major contribution of sequence determinants. On the basis of differential processing efficiencies, we define functionality for short sequence features adjacent to the pre-miRNA hairpin. In conclusion, we identify Microprocessor as the main hub for diversified miRNA output and suggest a role for uncoupling miRNA biogenesis from host gene expression.

  16. Mammalian α-polymerase: cloning of partial complementary DNA and immunobinding of catalytic subunit in crude homogenate protein blots

    International Nuclear Information System (INIS)

    SenGupta, D.N.; Kumar, P.; Zmudzka, B.Z.; Coughlin, S.; Vishwanatha, J.K.; Robey, F.A.; Parrott, C.; Wilson, S.H.

    1987-01-01

    A new polyclonal antibody against the α-polymerase catalytic polypeptide was prepared by using homogeneous HeLa cellα-polymerase. The antibody neutralized α-polymerase activity and was strong and specific for the α-polymerase catalytic polypeptide (M/sub r/ 183,000) in Western blot analysis of crude extracts of HeLa cells. The antibody was used to screen a cDNA library of newborn rat brain poly(A+) RNA in λgt11. A positive phage was identified and plaque purified. This phage, designated λpolα1.2, also was found to be positive with an antibody against Drosophila α-polymerase. The insert in λpolα1.2 (1183 base pairs) contained a poly(A) sequence at the 3' terminus and a short in-phase open reading frame at the 5' terminus. A synthetic oligopeptide (eight amino acids) corresponding to the open reading frame was used to raise antiserum in rabbits. Antibody affinity purified from this serum was found to be immunoreactive against purified α-polymerase by enzyme-linked immunosorbent assay and was capable of immunoprecipitating α-polymerase. This indicated the λpolα1.2 insert encoded an α-polymerase epitope and suggested that the cDNA corresponded to an α-polymerase mRNA. This was confirmed in hybrid selection experiments using pUC9 containing the cDNA insert and poly(A+) RNA from newborn rat brain; the insert hybridized to mRNA capable of encoding α-polymerase catalytic polypeptides. Northern blot analysis of rat brain poly(A+) RNA revealed that this mRNA is ∼5.4 kilobases

  17. Biochemical analyses indicate that binding and cleavage specificities define the ordered processing of human Okazaki fragments by Dna2 and FEN1.

    Science.gov (United States)

    Gloor, Jason W; Balakrishnan, Lata; Campbell, Judith L; Bambara, Robert A

    2012-08-01

    In eukaryotic Okazaki fragment processing, the RNA primer is displaced into a single-stranded flap prior to removal. Evidence suggests that some flaps become long before they are cleaved, and that this cleavage involves the sequential action of two nucleases. Strand displacement characteristics of the polymerase show that a short gap precedes the flap during synthesis. Using biochemical techniques, binding and cleavage assays presented here indicate that when the flap is ∼ 30 nt long the nuclease Dna2 can bind with high affinity to the flap and downstream double strand and begin cleavage. When the polymerase idles or dissociates the Dna2 can reorient for additional contacts with the upstream primer region, allowing the nuclease to remain stably bound as the flap is further shortened. The DNA can then equilibrate to a double flap that can bind Dna2 and flap endonuclease (FEN1) simultaneously. When Dna2 shortens the flap even more, FEN1 can displace the Dna2 and cleave at the flap base to make a nick for ligation.

  18. Catalytic mechanism of Sep-tRNA:Cys-tRNA synthase: sulfur transfer is mediated by disulfide and persulfide.

    Science.gov (United States)

    Liu, Yuchen; Dos Santos, Patricia C; Zhu, Xiang; Orlando, Ron; Dean, Dennis R; Söll, Dieter; Yuan, Jing

    2012-02-17

    Sep-tRNA:Cys-tRNA synthase (SepCysS) catalyzes the sulfhydrylation of tRNA-bound O-phosphoserine (Sep) to form cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) in methanogens that lack the canonical cysteinyl-tRNA synthetase (CysRS). A crystal structure of the Archaeoglobus fulgidus SepCysS apoenzyme provides information on the binding of the pyridoxal phosphate cofactor as well as on amino acid residues that may be involved in substrate binding. However, the mechanism of sulfur transfer to form cysteine was not known. Using an in vivo Escherichia coli complementation assay, we showed that all three highly conserved Cys residues in SepCysS (Cys(64), Cys(67), and Cys(272) in the Methanocaldococcus jannaschii enzyme) are essential for the sulfhydrylation reaction in vivo. Biochemical and mass spectrometric analysis demonstrated that Cys(64) and Cys(67) form a disulfide linkage and carry a sulfane sulfur in a portion of the enzyme. These results suggest that a persulfide group (containing a sulfane sulfur) is the proximal sulfur donor for cysteine biosynthesis. The presence of Cys(272) increased the amount of sulfane sulfur in SepCysS by 3-fold, suggesting that this Cys residue facilitates the generation of the persulfide group. Based upon these findings, we propose for SepCysS a sulfur relay mechanism that recruits both disulfide and persulfide intermediates.

  19. Expedited quantification of mutant ribosomal RNA by binary deoxyribozyme (BiDz) sensors.

    Science.gov (United States)

    Gerasimova, Yulia V; Yakovchuk, Petro; Dedkova, Larisa M; Hecht, Sidney M; Kolpashchikov, Dmitry M

    2015-10-01

    Mutations in ribosomal RNA (rRNA) have traditionally been detected by the primer extension assay, which is a tedious and multistage procedure. Here, we describe a simple and straightforward fluorescence assay based on binary deoxyribozyme (BiDz) sensors. The assay uses two short DNA oligonucleotides that hybridize specifically to adjacent fragments of rRNA, one of which contains a mutation site. This hybridization results in the formation of a deoxyribozyme catalytic core that produces the fluorescent signal and amplifies it due to multiple rounds of catalytic action. This assay enables us to expedite semi-quantification of mutant rRNA content in cell cultures starting from whole cells, which provides information useful for optimization of culture preparation prior to ribosome isolation. The method requires less than a microliter of a standard Escherichia coli cell culture and decreases analysis time from several days (for primer extension assay) to 1.5 h with hands-on time of ∼10 min. It is sensitive to single-nucleotide mutations. The new assay simplifies the preliminary analysis of RNA samples and cells in molecular biology and cloning experiments and is promising in other applications where fast detection/quantification of specific RNA is required. © 2015 Gerasimova et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  20. Modified beacon probe assisted dual signal amplification for visual detection of microRNA.

    Science.gov (United States)

    Sun, Xiuwei; Ying, Na; Ju, Chuanjing; Li, Zhongyi; Xu, Na; Qu, Guijuan; Liu, Wensen; Wan, Jiayu

    2018-04-21

    In a recent study, we reported a novel assay for the detection of microRNA-21 based on duplex-specific nuclease (DSN)-assisted isothermal cleavage and hybridization chain reaction (HCR) dual signal amplification. The Fam modified double-stranded DNA products were generated after the HCR, another biotin modified probe was digested by DSN and released from the magnetic beads after the addition of the target miRNA. The released sequence was then combined with HCR products to form a double-tagging dsDNA, which can be recognized by the lateral flow strips. In this study, we introduced a 2-OMethyl-RNA modified beacon probe (2-OMe-MB) to make some improvements based on the previous study. Firstly, the substitution of modified probe combined on magnetic beads avoids the fussy washing steps for the separation of un-reacted probes. Furthermore, the modification of 2-OMe on the stem of the probe avoided the unnecessary cleavage by DSN, which greatly reduce the background signal. Compared to the previous work, these improvements save us a lot of steps but possess the comparable sensitivity and selectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Programmed self-assembly of DNA/RNA for biomedical applications

    Science.gov (United States)

    Wang, Pengfei

    Three self-assembly strategies were utilized for assembly of novel functional DNA/RNA nanostructures. RNA-DNA hybrid origami method was developed to fabricate nano-objects (ribbon, rectangle, and triangle) with precisely controlled geometry. Unlike conventional DNA origami which use long DNA single strand as scaffold, a long RNA single strand was used instead, which was folded by short DNA single strands (staples) into prescribed objects through sequence specific hybridization between RNA and DNA. Single stranded tiles (SST) and RNA-DNA hybrid origami were utilized to fabricate a variety of barcode-like nanostructures with unique patterns by expanding a plain rectangle via introducing spacers (10-bp dsDNA segment) between parallel duplexes. Finally, complex 2D array and 3D polyhedrons with multiple patterns within one structure were assembled from simple DNA motifs. Two demonstrations of biomedical applications of DNA nanotechnology were presented. Firstly, lambda-DNA was used as template to direct the fabrication of multi-component magnetic nanoparticle chains. Nuclear magnetic relaxation (NMR) characterization showed superb magnetic relaxativity of the nanoparticle chains which have large potential to be utilized as MRI contrast agents. Secondly, DNA nanotechnology was introduced into the conformational study of a routinely used catalytic DNAzyme, the RNA-cleaving 10-23 DNAzyme. The relative angle between two flanking duplexes of the catalytic core was determined (94.8°), which shall be able to provide a clue to further understanding of the cleaving mechanism of this DNAzyme from a conformational perspective.

  2. Cleavage sites within the poliovirus capsid protein precursors

    International Nuclear Information System (INIS)

    Larsen, G.R.; Anderson, C.W.; Dorner, A.J.; Semler, B.L.; Wimmer, E.

    1982-01-01

    Partial amino-terminal sequence analysis was performed on radiolabeled poliovirus capsid proteins VP1, VP2, and VP3. A computer-assisted comparison of the amino acid sequences obtained with that predicted by the nucleotide sequence of the poliovirus genome allows assignment of the amino terminus of each capsid protein to a unique position within the virus polyprotein. Sequence analysis of trypsin-digested VP4, which has a blocked amino terminus, demonstrates that VP4 is encoded at or very near to the amino terminus of the polyprotein. The gene order of the capsid proteins is VP4-VP2-VP3-VP1. Cleavage of VP0 to VP4 and VP2 is shown to occur between asparagine and serine, whereas the cleavages that separate VP2/VP3 and VP3/VP1 occur between glutamine and glycine residues. This finding supports the hypothesis that the cleavage of VP0, which occurs during virion morphogenesis, is distinct from the cleavages that separate functional regions of the polyprotein

  3. A new cultural cleavage in post-modern society

    Directory of Open Access Journals (Sweden)

    Jan-Erik Lane

    2007-09-01

    Full Text Available The attitudes towards gender and homosexuality tend to be linked at the micro level (individuals, which explains the political saliency of this newly emerging cleavage. At the macro level (country, the main finding is that the value orientations towards gender and homosexuality are strongly embedded in the basic cultural or civilisation differences among countries. As developing countries modernise and enter post-modernity, they will also experience the gender cleavage, especially when they adhere to an individualistic culture. Cultural cleavages in the post-modern society, whether in rich or developing countries, can only be properly researched by the survey method. It opens up a large area for both micro and macro analyses in the social sciences.

  4. Unexpected tolerance of alpha-cleavage of the prion protein to sequence variations.

    Directory of Open Access Journals (Sweden)

    José B Oliveira-Martins

    Full Text Available The cellular form of the prion protein, PrP(C, undergoes extensive proteolysis at the alpha site (109K [see text]H110. Expression of non-cleavable PrP(C mutants in transgenic mice correlates with neurotoxicity, suggesting that alpha-cleavage is important for PrP(C physiology. To gain insights into the mechanisms of alpha-cleavage, we generated a library of PrP(C mutants with mutations in the region neighbouring the alpha-cleavage site. The prevalence of C1, the carboxy adduct of alpha-cleavage, was determined for each mutant. In cell lines of disparate origin, C1 prevalence was unaffected by variations in charge and hydrophobicity of the region neighbouring the alpha-cleavage site, and by substitutions of the residues in the palindrome that flanks this site. Instead, alpha-cleavage was size-dependently impaired by deletions within the domain 106-119. Almost no cleavage was observed upon full deletion of this domain. These results suggest that alpha-cleavage is executed by an alpha-PrPase whose activity, despite surprisingly limited sequence specificity, is dependent on the size of the central region of PrP(C.

  5. Comparative and phylogenetic perspectives of the cleavage process in tailed amphibians.

    Science.gov (United States)

    Desnitskiy, Alexey G; Litvinchuk, Spartak N

    2015-10-01

    The order Caudata includes about 660 species and displays a variety of important developmental traits such as cleavage pattern and egg size. However, the cleavage process of tailed amphibians has never been analyzed within a phylogenetic framework. We use published data on the embryos of 36 species concerning the character of the third cleavage furrow (latitudinal, longitudinal or variable) and the magnitude of synchronous cleavage period (up to 3-4 synchronous cell divisions in the animal hemisphere or a considerably longer series of synchronous divisions followed by midblastula transition). Several species from basal caudate families Cryptobranchidae (Andrias davidianus and Cryptobranchus alleganiensis) and Hynobiidae (Onychodactylus japonicus) as well as several representatives from derived families Plethodontidae (Desmognathus fuscus and Ensatina eschscholtzii) and Proteidae (Necturus maculosus) are characterized by longitudinal furrows of the third cleavage and the loss of synchrony as early as the 8-cell stage. By contrast, many representatives of derived families Ambystomatidae and Salamandridae have latitudinal furrows of the third cleavage and extensive period of synchronous divisions. Our analysis of these ontogenetic characters mapped onto a phylogenetic tree shows that the cleavage pattern of large, yolky eggs with short series of synchronous divisions is an ancestral trait for the tailed amphibians, while the data on the orientation of third cleavage furrows seem to be ambiguous with respect to phylogeny. Nevertheless, the midblastula transition, which is characteristic of the model species Ambystoma mexicanum (Caudata) and Xenopus laevis (Anura), might have evolved convergently in these two amphibian orders.

  6. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen.

    Science.gov (United States)

    Jia, Hong-Peng; Quadrelli, Elsje Alessandra

    2014-01-21

    Dinitrogen cleavage and hydrogenation by transition-metal centers to produce ammonia is central in industry and in Nature. After an introductory section on the thermodynamic and kinetic challenges linked to N2 splitting, this tutorial review discusses three major classes of transition-metal systems (homogeneous, heterogeneous and biological) capable of achieving dissociation and hydrogenation of dinitrogen. Molecular complexes, solid-state Haber-Bosch catalytic systems, silica-supported tantalum hydrides and nitrogenase will be discussed. Emphasis is focused on the reaction mechanisms operating in the process of dissociation and hydrogenation of dinitrogen, and in particular on the key role played by metal hydride bonds and by dihydrogen in such reactions.

  7. Approaches to Validate and Manipulate RNA Targets with Small Molecules in Cells.

    Science.gov (United States)

    Childs-Disney, Jessica L; Disney, Matthew D

    2016-01-01

    RNA has become an increasingly important target for therapeutic interventions and for chemical probes that dissect and manipulate its cellular function. Emerging targets include human RNAs that have been shown to directly cause cancer, metabolic disorders, and genetic disease. In this review, we describe various routes to obtain bioactive compounds that target RNA, with a particular emphasis on the development of small molecules. We use these cases to describe approaches that are being developed for target validation, which include target-directed cleavage, classic pull-down experiments, and covalent cross-linking. Thus, tools are available to design small molecules to target RNA and to identify the cellular RNAs that are their targets.

  8. Kininogen Cleavage Assay: Diagnostic Assistance for Kinin-Mediated Angioedema Conditions.

    Directory of Open Access Journals (Sweden)

    Rémi Baroso

    Full Text Available Angioedema without wheals (AE is a symptom characterised by localised episodes of oedema presumably caused by kinin release from kininogen cleavage. It can result from a hereditary deficiency in C1 Inhibitor (C1Inh, but it can present with normal level of C1Inh. These forms are typically difficult to diagnose although enhanced kinin production is suspected or demonstrated in some cases.We wanted to investigate bradykinin overproduction in all AE condition with normal C1Inh, excluding cases with enhanced kinin catabolism, and to propose this parameter as a disease biomarker.We retrospectively investigated high molecular weight kininogen (HK cleavage pattern, using gel electrophoresis and immunorevelation. Plasma samples were drawn using the same standardised procedure from blood donors or AE patients with normal C1Inh conditions, normal kinin catabolism, and without prophylaxis.Circulating native HK plasma concentrations were similar in the healthy men (interquartile range: 98-175μg/mL, n = 51 and in healthy women (90-176μg/mL, n = 74, while HK cleavage was lower (p14.4% HK cleavage for men; 33.0% HK cleavage for women, with >98% specificity achieved for all parameters. In plasma from patients undergoing recovery two months after oestrogen/progestin combination withdrawal (n = 13 or two weeks after AE attack (n = 2, HK cleavage was not fully restored, suggesting its use as a post-attack assay.As a diagnostic tool, HK cleavage can offer physicians supportive arguments for kinin production in suspected AE cases and improve patient follow-up in clinical trials or prophylactic management.

  9. Detection of nucleic acid sequences by invader-directed cleavage

    Science.gov (United States)

    Brow, Mary Ann D.; Hall, Jeff Steven Grotelueschen; Lyamichev, Victor; Olive, David Michael; Prudent, James Robert

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The 5' nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based by charge.

  10. Catalytic mechanism and inhibition of tRNA (Uracil-5-)methyltransferase: evidence for covalent catalysis

    International Nuclear Information System (INIS)

    Santi, D.V.; Hardy, L.W.

    1987-01-01

    tRNA (Ura-5-) methyltransferase catalyzes the transfer of a methyl group from S-adenosylmethionine (AdoMet) to the 5-carbon of a specific Urd residue in tRNA. This results in stoichiometric release of tritium from [5- 3 H] Urd-labeled substrate tRNA isolated from methyltransferase-deficient Escherichia coli. The enzyme also catalyzes an AdoMet-independent exchange reaction between [5- 3 H]-Urd-labeled substrate tRNA and protons of water at a rate that is about 1% that of the normal methylation reaction, but with identical stoichiometry. S-Adenosylhomocysteine inhibits the rate of the exchange reaction by 2-3-fold, whereas an analog having the sulfur of AdoMet replaced by nitrogen accelerates the exchange reaction 9-fold. In the presence (but not absence) of AdoMet, 5-fluorouracil-substituted tRNA (FUra-tRNA) leads to the first-order inactivation of the enzyme. This is accompanied by the formation of a stable covalent complex containing the enzyme, FUra-tRNA, and the methyl group AdoMet. A mechanism for catalysis is proposed that explains both the 5-H exchange reaction and the inhibition by FUra-tRNA: the enzyme forms a covalent Michael adduct with substrate or inhibitor tRNA by attack of a nucleophilic group of the enzyme at carbon 6 of the pyrimidine residue to be modified. As a result, an anion equivalent is generated at carbon 5 that is sufficiently reactive to be methylated by AdoMet. Preliminary experiments and precedents suggest that the nucleophilic catalyst of the enzyme is a thiol group of cysteine. The potent irreversible inhibition by FUra-tRNA suggest that a mechanism for the RNA effects of FUra may also involve irreversible inhibition of RNA-modifying enzymes

  11. Controllable laser thermal cleavage of sapphire wafers

    Science.gov (United States)

    Xu, Jiayu; Hu, Hong; Zhuang, Changhui; Ma, Guodong; Han, Junlong; Lei, Yulin

    2018-03-01

    Laser processing of substrates for light-emitting diodes (LEDs) offers advantages over other processing techniques and is therefore an active research area in both industrial and academic sectors. The processing of sapphire wafers is problematic because sapphire is a hard and brittle material. Semiconductor laser scribing processing suffers certain disadvantages that have yet to be overcome, thereby necessitating further investigation. In this work, a platform for controllable laser thermal cleavage was constructed. A sapphire LED wafer was modeled using the finite element method to simulate the thermal and stress distributions under different conditions. A guide groove cut by laser ablation before the cleavage process was observed to guide the crack extension and avoid deviation. The surface and cross section of sapphire wafers processed using controllable laser thermal cleavage were characterized by scanning electron microscopy and optical microscopy, and their morphology was compared to that of wafers processed using stealth dicing. The differences in luminous efficiency between substrates prepared using these two processing methods are explained.

  12. Catalytic ring opening of decalin. Biofunctional versus hydrogenolytic pathways

    Energy Technology Data Exchange (ETDEWEB)

    Weitkamp, J.; Rabl, S.; Haas, A.; Santi, D. [Stuttgart Univ. (Germany). Inst. of Chemical Technology; Ferrari, M.; Calemma, V. [Eni R and M Div., San Donato Milanese (Italy)

    2010-12-30

    Ir/silica, Pt/La-X and Rh/H-Beta were prepared and tested in the hydroconversion of cisdecalin at different temperatures. The catalytic tests were carried out under hydrogen in a high-pressure flow-type apparatus at 5.2 MPa. On the three catalysts open-chain decane yields up to 20 % were achieved, which is much higher than the yields reported so far in the literature. Pt/La-X and Rh/H-Beta behave as bifunctional catalysts with a high tendency for skeletal isomerization. On these catalysts the so-called paring reaction via carbenium ions occurs, leading to iso-butane and methylcyclopentane as main hydrocracked products. On Ir/SiO{sub 2}, carbon-carbon bond cleavage occurs through hydrogenolysis on the noble metal without prior isomerization. As a consequence the product spectrum is less complex than on the bifunctional catalysts which makes the system particularly amenable to mechanistic studies. (orig.)

  13. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action.

    Science.gov (United States)

    Abadi, Shiran; Yan, Winston X; Amar, David; Mayrose, Itay

    2017-10-01

    The adaptation of the CRISPR-Cas9 system as a genome editing technique has generated much excitement in recent years owing to its ability to manipulate targeted genes and genomic regions that are complementary to a programmed single guide RNA (sgRNA). However, the efficacy of a specific sgRNA is not uniquely defined by exact sequence homology to the target site, thus unintended off-targets might additionally be cleaved. Current methods for sgRNA design are mainly concerned with predicting off-targets for a given sgRNA using basic sequence features and employ elementary rules for ranking possible sgRNAs. Here, we introduce CRISTA (CRISPR Target Assessment), a novel algorithm within the machine learning framework that determines the propensity of a genomic site to be cleaved by a given sgRNA. We show that the predictions made with CRISTA are more accurate than other available methodologies. We further demonstrate that the occurrence of bulges is not a rare phenomenon and should be accounted for in the prediction process. Beyond predicting cleavage efficiencies, the learning process provides inferences regarding patterns that underlie the mechanism of action of the CRISPR-Cas9 system. We discover that attributes that describe the spatial structure and rigidity of the entire genomic site as well as those surrounding the PAM region are a major component of the prediction capabilities.

  14. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action.

    Directory of Open Access Journals (Sweden)

    Shiran Abadi

    2017-10-01

    Full Text Available The adaptation of the CRISPR-Cas9 system as a genome editing technique has generated much excitement in recent years owing to its ability to manipulate targeted genes and genomic regions that are complementary to a programmed single guide RNA (sgRNA. However, the efficacy of a specific sgRNA is not uniquely defined by exact sequence homology to the target site, thus unintended off-targets might additionally be cleaved. Current methods for sgRNA design are mainly concerned with predicting off-targets for a given sgRNA using basic sequence features and employ elementary rules for ranking possible sgRNAs. Here, we introduce CRISTA (CRISPR Target Assessment, a novel algorithm within the machine learning framework that determines the propensity of a genomic site to be cleaved by a given sgRNA. We show that the predictions made with CRISTA are more accurate than other available methodologies. We further demonstrate that the occurrence of bulges is not a rare phenomenon and should be accounted for in the prediction process. Beyond predicting cleavage efficiencies, the learning process provides inferences regarding patterns that underlie the mechanism of action of the CRISPR-Cas9 system. We discover that attributes that describe the spatial structure and rigidity of the entire genomic site as well as those surrounding the PAM region are a major component of the prediction capabilities.

  15. Modulation of microRNA activity by semi-microRNAs (smiRNAs

    Directory of Open Access Journals (Sweden)

    Isabelle ePlante

    2012-06-01

    Full Text Available The ribonuclease Dicer plays a central role in the microRNA pathway by catalyzing the formation of 19 to 24-nucleotide (nt long microRNAs. Subsequently incorporated into Ago2 effector complexes, microRNAs are known to regulate messenger RNA (mRNA translation. Whether shorter RNA species derived from microRNAs exist and play a role in mRNA regulation remains unknown. Here, we report the serendipitous discovery of a 12-nt long RNA species corresponding to the 5’ region of the microRNA let-7, and tentatively termed semi-microRNA, or smiRNA. Using a smiRNA derived from the precursor of miR-223 as a model, we show that 12-nt long smiRNA species are devoid of any direct mRNA regulatory activity, as assessed in a reporter gene activity assay in transfected cultured human cells. However, smiR-223 was found to modulate the ability of the microRNA from which it derives to mediate translational repression or cleavage of reporter mRNAs. Our findings suggest that smiRNAs may be generated along the microRNA pathway and participate to the control of gene expression by regulating the activity of the related full-length mature microRNA in vivo.

  16. Session 6: Catalytic hydro-dehalogenation of halon 1211 (CBrClF{sub 2}) over carbon supported Pd-Fe, Pd-Co and Pd-Ni bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Yu; Kennedy, E.M.; Md Azhar, Uddin; Dlugogorski, B.Z. [Newcastle Univ., Process Safety and Environment Protection Group, School of Engineering, Callaghan, NSW (Australia)

    2004-07-01

    In the current study, we present the result of our investigation on the hydro-dehalogenation of halon 1211 with hydrogen over carbon supported Pd-Fe, Pd-Co and Pd-Ni bimetallic catalysts. In addition to dissociatively adsorbing hydrogen, Fe, Co and Ni themselves can facilitate cleavage of C-halogen bonds. The effect of the interaction of a second metal (Fe, Co and Ni) with Pd on the conversion of halon 1211 and selectivity to CH{sub 2}F{sub 2} for the catalytic hydro-dehalogenation of halon 1211 is discussed. Activated carbon is chosen as support in order to minimize the interaction of support with the metals. The obtained experimental results show that the introduction of Fe, Co and Ni to Pd catalysts has a significant influence on the catalytic hydro-dehalogenation of halon 1211, especially with respect to the selectivity to CH{sub 2}F{sub 2}. The presence of Fe increases the amount of halon 1211 adsorbed on the surface of catalysts and enhances the cleavage of C-halogen bonds in halon 1211, resulting in a higher halon 1211 conversion level and selectivity to hydrocarbons. Higher selectivity to CHBrF{sub 2} is ascribed to the secondary reaction: CF{sub 2} + HBr {yields} CHBrF{sub 2}. (authors)

  17. Adenylylation of small RNA sequencing adapters using the TS2126 RNA ligase I.

    Science.gov (United States)

    Lama, Lodoe; Ryan, Kevin

    2016-01-01

    Many high-throughput small RNA next-generation sequencing protocols use 5' preadenylylated DNA oligonucleotide adapters during cDNA library preparation. Preadenylylation of the DNA adapter's 5' end frees from ATP-dependence the ligation of the adapter to RNA collections, thereby avoiding ATP-dependent side reactions. However, preadenylylation of the DNA adapters can be costly and difficult. The currently available method for chemical adenylylation of DNA adapters is inefficient and uses techniques not typically practiced in laboratories profiling cellular RNA expression. An alternative enzymatic method using a commercial RNA ligase was recently introduced, but this enzyme works best as a stoichiometric adenylylating reagent rather than a catalyst and can therefore prove costly when several variant adapters are needed or during scale-up or high-throughput adenylylation procedures. Here, we describe a simple, scalable, and highly efficient method for the 5' adenylylation of DNA oligonucleotides using the thermostable RNA ligase 1 from bacteriophage TS2126. Adapters with 3' blocking groups are adenylylated at >95% yield at catalytic enzyme-to-adapter ratios and need not be gel purified before ligation to RNA acceptors. Experimental conditions are also reported that enable DNA adapters with free 3' ends to be 5' adenylylated at >90% efficiency. © 2015 Lama and Ryan; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  18. [Studies on photo-electron-chemical catalytic degradation of the malachite green].

    Science.gov (United States)

    Li, Ming-yu; Diao, Zeng-hui; Song, Lin; Wang, Xin-le; Zhang, Yuan-ming

    2010-07-01

    A novel two-compartment photo-electro-chemical catalytic reactor was designed. The TiO2/Ti thin film electrode thermally formed was used as photo-anode, and graphite as cathode and a saturated calomel electrode (SCE) as the reference electrode in the reactor. The anode compartment and cathode compartment were connected with the ionic exchange membrane in this reactor. Effects of initial pH, initial concentration of malachite green and connective modes between the anode compartment and cathode compartment on the decolorization efficiency of malachite green were investigated. The degradation dynamics of malachite green was studied. Based on the change of UV-visible light spectrum, the degradation process of malachite green was discussed. The experimental results showed that, during the time of 120 min, the decolouring ratio of the malachite green was 97.7% when initial concentration of malachite green is 30 mg x L(-1) and initial pH is 3.0. The catalytic degradation of malachite green was a pseudo-first order reaction. In the degradation process of malachite green the azo bond cleavage and the conjugated system of malachite green were attacked by hydroxyl radical. Simultaneity, the aromatic ring was oxidized. Finally, malachite green was degraded into other small molecular compounds.

  19. Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells

    International Nuclear Information System (INIS)

    Cheng, Jin; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Wang, Bin; Zhao, Jiqing; Sai, Yan; Zou, Zhongmin

    2016-01-01

    Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O 6 -methylguanine–DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1 h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24 h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair. - Highlights: • Nitrogen mustard-induced MGMT-DNA cross-linking was detected in a living cell. • Concentration- and time-dependent manners of MGMT-DNA cross-linking were revealed. • Proteolysis played an important role in protein (MGMT)-DNA cross-linking repair. • DVC1 acts as a proteolytic enzyme in cross-linking repair in a p

  20. Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination

    Science.gov (United States)

    Ma, Chien-Hui; Rowley, Paul A; Macieszak, Anna; Guga, Piotr; Jayaram, Makkuni

    2009-01-01

    Water, acting as a rogue nucleophile, can disrupt transesterification steps of important phosphoryl transfer reactions in DNA and RNA. We have unveiled this risk, and identified safeguards instituted against it, during strand cleavage and joining by the tyrosine site-specific recombinase Flp. Strand joining is threatened by a latent Flp endonuclease activity (type I) towards the 3′-phosphotyrosyl intermediate resulting from strand cleavage. This risk is not alleviated by phosphate electrostatics; neutralizing the negative charge on the scissile phosphate through methylphosphonate (MeP) substitution does not stimulate type I endonuclease. Rather, protection derives from the architecture of the recombination synapse and conformational dynamics within it. Strand cleavage is protected against water by active site electrostatics. Replacement of the catalytic Arg-308 of Flp by alanine, along with MeP substitution, elicits a second Flp endonuclease activity (type II) that directly targets the scissile phosphodiester bond in DNA. MeP substitution, combined with appropriate active site mutations, will be useful in revealing anti-hydrolytic mechanisms engendered by systems that mediate DNA relaxation, DNA transposition, site-specific recombination, telomere resolution, RNA splicing and retrohoming of mobile introns. PMID:19440204

  1. Functional characterization of the proteolytic activity of the tomato black ring nepovirus RNA-1-encoded polyprotein.

    Science.gov (United States)

    Hemmer, O; Greif, C; Dufourcq, P; Reinbolt, J; Fritsch, C

    1995-01-10

    Translation of tomato black ring virus (TBRV) RNA-1 in a rabbit reticulocyte lysate leads to the synthesis of a 250K polyprotein which cleaves itself into smaller proteins of 50, 60, 120, and 190K. Polypeptides synthesized from synthetic transcripts corresponding to different regions of TBRV RNA-1 are processed only when they encode the 23K protein delimited earlier by sequence homology with the cowpea mosaic virus 24K protease. The proteolytic activity of this protein is completely lost by mutating residues C170 (to I) or L188 (to H), residues which align with conserved residues of the viral serine-like proteases. The 120K protein is generated by cleavage of the dipeptide K/A localized in front of the VPg but is not further cleaved in vitro at the K/S site (at the C terminus of the VPg) or between the protease and polymerase domains. However, both the protein VPgProPol (120K) and the protein ProPol (117K) produced in vitro from synthetic transcripts can cleave in trans the RNA-2-encoded 150K polyprotein, but they cannot cleave in trans polypeptides containing a cleavage site expressed from RNA-1 transcripts in which the protease cistron is absent or modified.

  2. Catalytic conversion of light alkanes. Quarterly progress report, April 1--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  3. The Structure of the RNA m5C Methyltransferase YebU from Escherichia coli Reveals a C-terminal RNA-recruiting PUA Domain

    DEFF Research Database (Denmark)

    Hallberg, B. Martin; Ericsson, Ulrika B.; Johnson, Kenneth A

    2006-01-01

    potential that differ from other RNA-MTase structures, suggesting that YebU interacts with its RNA target in a different manner. Docking of YebU onto the 30 S subunit indicates that the PUA and MTase domains make several contacts with 16 S rRNA as well as with the ribosomal protein S12. The ribosomal...... protein interactions would explain why the assembled 30 S subunit, and not naked 16 S rRNA, is the preferred substrate for YebU....... by X-ray crystallography, and we present a molecular model for how YebU specifically recognizes, binds and methylates its ribosomal substrate. The YebU protein has an N-terminal SAM-binding catalytic domain with structural similarity to the equivalent domains in several other m(5)C RNA MTases including...

  4. Full Length Research Paper Curcumin induces cleavage of -catenin ...

    African Journals Online (AJOL)

    β-Catenin/Tcf-4 signaling pathway plays important roles in colorectal tumorigenesis. RT-PCR, western blotting and immunoprecipitation were used to study the effects of curcumin on β-catenin/Tcf-4 signaling pathway in HT-29 cells. Treatment of curcumin could induce cleavage of β-catenin and the cleavage could be ...

  5. Photoreactivation of RNA in UV-irradiated insect eggs (Smittia SP., Chironomidae, Diptera)

    International Nuclear Information System (INIS)

    Jaeckle, H.; Kalthoff, K.

    1978-01-01

    Irradiation of Smittia eggs with UV during intravitelline cleavage causes the formation of pyrimidine dimers in the (largely ribosomal) RNA of the eggs. The yield of dimers is wavelength-dependent in a way that strongly suggests the involvement of photosensitizing egg components. Illumination of UV-irradiated eggs with light (380 or 400 nm) causes both photoreactivation of the eggs and monomerization of the pyrimidine dimers in their RNA. The photoreactivable sector of the biological damage is correlated with the amount of pyrimidine dimers present in the RNA after inactivation of the eggs with UV of different wavelengths. The data are regarded as the first direct evidence that the photoreactivation of a eukaryotic organism is correlated with the light-dependent (and apparently enzymatic) monomerization of pyrimidine dimers in RNA. (author)

  6. HIV-1 nef suppression by virally encoded microRNA

    Directory of Open Access Journals (Sweden)

    Brisibe Ebiamadon

    2004-12-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are 21~25-nucleotides (nt long and interact with mRNAs to trigger either translational repression or RNA cleavage through RNA interference (RNAi, depending on the degree of complementarity with the target mRNAs. Our recent study has shown that HIV-1 nef dsRNA from AIDS patients who are long-term non-progressors (LTNPs inhibited the transcription of HIV-1. Results Here, we show the possibility that nef-derived miRNAs are produced in HIV-1 persistently infected cells. Furthermore, nef short hairpin RNA (shRNA that corresponded to a predicted nef miRNA (~25 nt, miR-N367 can block HIV-1 Nef expression in vitro and the suppression by shRNA/miR-N367 would be related with low viremia in an LTNP (15-2-2. In the 15-2-2 model mice, the weight loss, which may be rendered by nef was also inhibited by shRNA/miR-N367 corresponding to suppression of nef expression in vivo. Conclusions These data suggest that nef/U3 miRNAs produced in HIV-1-infected cells may suppress both Nef function and HIV-1 virulence through the RNAi pathway.

  7. Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction

    Science.gov (United States)

    Mir, Aamir; Chen, Ji; Robinson, Kyle; Lendy, Emma; Goodman, Jaclyn; Neau, David; Golden, Barbara L.

    2016-01-01

    The hammerhead ribozyme is a self-cleaving RNA broadly dispersed across all kingdoms of life. Although it was the first of the small, nucleolytic ribozymes discovered, the mechanism by which it catalyzes its reaction remains elusive. The nucleobase of G12 is well positioned to be a general base, but it is unclear if or how this guanine base becomes activated for proton transfer. Metal ions have been implicated in the chemical mechanism, but no interactions between divalent metal ions and the cleavage site have been observed crystallographically. To better understand how this ribozyme functions, we have solved crystal structures of wild-type and G12A mutant ribozymes. We observe a pH-dependent conformational change centered around G12, consistent with this nucleotide becoming deprotonated. Crystallographic and kinetic analysis of the G12A mutant reveals a Zn2+ specificity switch suggesting a direct interaction between a divalent metal ion and the purine at position 12. The metal ion specificity switch and the pH–rate profile of the G12A mutant suggest that the minor imino tautomer of A12 serves as the general base in the mutant ribozyme. We propose a model in which the hammerhead ribozyme rearranges prior to the cleavage reaction, positioning two divalent metal ions in the process. The first metal ion, positioned near G12, becomes directly coordinated to the O6 keto oxygen, to lower the pKa of the general base and organize the active site. The second metal ion, positioned near G10.1, bridges the N7 of G10.1 and the scissile phosphate and may participate directly in the cleavage reaction. PMID:26398724

  8. dsRNA binding properties of RDE-4 and TRBP reflect their distinct roles in RNAi.

    Science.gov (United States)

    Parker, Greg S; Maity, Tuhin Subhra; Bass, Brenda L

    2008-12-26

    Double-stranded RNA (dsRNA)-binding proteins facilitate Dicer functions in RNA interference. Caenorhabditis elegans RDE-4 facilitates cleavage of long dsRNA to small interfering RNA (siRNA), while human trans-activation response RNA-binding protein (TRBP) functions downstream to pass siRNA to the RNA-induced silencing complex. We show that these distinct in vivo roles are reflected in in vitro binding properties. RDE-4 preferentially binds long dsRNA, while TRBP binds siRNA with an affinity that is independent of dsRNA length. These properties are mechanistically based on the fact that RDE-4 binds cooperatively, via contributions from multiple domains, while TRBP binds noncooperatively. Our studies offer a paradigm for how dsRNA-binding proteins, which are not sequence specific, discern dsRNA length. Additionally, analyses of the ability of RDE-4 deletion constructs and RDE-4/TRBP chimeras to reconstitute Dicer activity suggest RDE-4 promotes activity using its dsRNA-binding motif 2 to bind dsRNA, its linker region to interact with Dicer, and its C-terminus for Dicer activation.

  9. Generation and Development of RNA Ligase Ribozymes with Modular Architecture Through “Design and Selection”

    Directory of Open Access Journals (Sweden)

    Yuki Fujita

    2010-08-01

    Full Text Available In vitro selection with long random RNA libraries has been used as a powerful method to generate novel functional RNAs, although it often requires laborious structural analysis of isolated RNA molecules. Rational RNA design is an attractive alternative to avoid this laborious step, but rational design of catalytic modules is still a challenging task. A hybrid strategy of in vitro selection and rational design has been proposed. With this strategy termed “design and selection,” new ribozymes can be generated through installation of catalytic modules onto RNA scaffolds with defined 3D structures. This approach, the concept of which was inspired by the modular architecture of naturally occurring ribozymes, allows prediction of the overall architectures of the resulting ribozymes, and the structural modularity of the resulting ribozymes allows modification of their structures and functions. In this review, we summarize the design, generation, properties, and engineering of four classes of ligase ribozyme generated by design and selection.

  10. Deletion of the thrombin cleavage domain of osteopontin mediates breast cancer cell adhesion, proteolytic activity, tumorgenicity, and metastasis

    International Nuclear Information System (INIS)

    Beausoleil, Michel S; Schulze, Erika B; Goodale, David; Postenka, Carl O; Allan, Alison L

    2011-01-01

    Osteopontin (OPN) is a secreted phosphoprotein often overexpressed at high levels in the blood and primary tumors of breast cancer patients. OPN contains two integrin-binding sites and a thrombin cleavage domain located in close proximity to each other. To study the role of the thrombin cleavage site of OPN, MDA-MB-468 human breast cancer cells were stably transfected with either wildtype OPN (468-OPN), mutant OPN lacking the thrombin cleavage domain (468-ΔTC) or an empty vector (468-CON) and assessed for in vitro and in vivo functional differences in malignant/metastatic behavior. All three cell lines were found to equivalently express thrombin, tissue factor, CD44, αvβ5 integrin and β1 integrin. Relative to 468-OPN and 468-CON cells, 468-ΔTC cells expressing OPN with a deleted thrombin cleavage domain demonstrated decreased cell adhesion (p < 0.001), decreased mRNA expression of MCAM, maspin and TRAIL (p < 0.01), and increased uPA expression and activity (p < 0.01) in vitro. Furthermore, injection of 468-ΔTC cells into the mammary fat pad of nude mice resulted in decreased primary tumor latency time (p < 0.01) and increased primary tumor growth and lymph node metastatic burden (p < 0.001) compared to 468-OPN and 468-CON cells. The results presented here suggest that expression of thrombin-uncleavable OPN imparts an early tumor formation advantage as well as a metastatic advantage for breast cancer cells, possibly due to increased proteolytic activity and decreased adhesion and apoptosis. Clarification of the mechanisms responsible for these observations and the translation of this knowledge into the clinic could ultimately provide new therapeutic opportunities for combating breast cancer

  11. Molecular phylogenetics and comparative modeling of HEN1, a methyltransferase involved in plant microRNA biogenesis

    Directory of Open Access Journals (Sweden)

    Obarska Agnieszka

    2006-01-01

    Full Text Available Abstract Background Recently, HEN1 protein from Arabidopsis thaliana was discovered as an essential enzyme in plant microRNA (miRNA biogenesis. HEN1 transfers a methyl group from S-adenosylmethionine to the 2'-OH or 3'-OH group of the last nucleotide of miRNA/miRNA* duplexes produced by the nuclease Dicer. Previously it was found that HEN1 possesses a Rossmann-fold methyltransferase (RFM domain and a long N-terminal extension including a putative double-stranded RNA-binding motif (DSRM. However, little is known about the details of the structure and the mechanism of action of this enzyme, and about its phylogenetic origin. Results Extensive database searches were carried out to identify orthologs and close paralogs of HEN1. Based on the multiple sequence alignment a phylogenetic tree of the HEN1 family was constructed. The fold-recognition approach was used to identify related methyltransferases with experimentally solved structures and to guide the homology modeling of the HEN1 catalytic domain. Additionally, we identified a La-like predicted RNA binding domain located C-terminally to the DSRM domain and a domain with a peptide prolyl cis/trans isomerase (PPIase fold, but without the conserved PPIase active site, located N-terminally to the catalytic domain. Conclusion The bioinformatics analysis revealed that the catalytic domain of HEN1 is not closely related to any known RNA:2'-OH methyltransferases (e.g. to the RrmJ/fibrillarin superfamily, but rather to small-molecule methyltransferases. The structural model was used as a platform to identify the putative active site and substrate-binding residues of HEN and to propose its mechanism of action.

  12. C-terminal cleavage of DeltaNp63alpha is associated with TSA-induced apoptosis in immortalized corneal epithelial cells.

    Science.gov (United States)

    Robertson, Danielle M; Ho, Su-Inn; Cavanagh, H Dwight

    2010-08-01

    In the central human corneal epithelium, loss of DeltaNp63 occurs in all surface epithelial cells preparing to undergo desquamation, suggesting a potential role for DeltaNp63 isoforms in mediating surface cell apoptotic shedding. In this study, the authors investigated a role for DeltaNp63 isoforms in caspase-mediated apoptosis in a telomerase-immortalized corneal epithelial cell line. For in vitro studies, hTCEpi cells were cultured in KGM-2 serum-free culture media containing 0.15 mM calcium. To assess dynamic protein interactions among individual DeltaNp63 isoforms, DeltaNp63-EGFP expression plasmids were transiently expressed in hTCEpi cells and evaluated by FRAP. Trichostatin-A (TSA; 3.31 muM) was used to induce cell death as measured by caspase activity. Cleavage and loss of endogenous DeltaNp63alpha, DeltaNp63-EGFP expression plasmids, and p53 were assessed after treatment with TSA and siRNA. Transient expression of DeltaNp63-EGFP alpha and beta isoforms resulted in the formation of a smaller isoform similar in size to DeltaNp63gamma-EGFP. FRAP demonstrated that DeltaNp63alpha-EGFP has greater immobile fraction than beta or gamma. TSA induced caspase-mediated apoptotic pathways; caspase induction was accompanied by a decrease in endogenous DeltaNp63alpha and p53. TSA upregulated DeltaNp63-EGFP plasmid expression; this was accompanied by a selective increase in cleavage of DeltaNp63alpha-EGFP. siRNA knockdown of DeltaNp63alpha correlated with a reduction in p53 independently of TSA. DeltaNp63alpha is the dominant active isoform in corneal epithelial cell nuclei. Loss of DeltaNp63alpha occurs during apoptotic signaling by cleavage at the C terminus. The corresponding loss of p53 suggests that a significant relationship appears to exist between these two regulatory proteins.

  13. Unravelling the complexity of microRNA-mediated gene regulation in black pepper (Piper nigrum L.) using high-throughput small RNA profiling.

    Science.gov (United States)

    Asha, Srinivasan; Sreekumar, Sweda; Soniya, E V

    2016-01-01

    Analysis of high-throughput small RNA deep sequencing data, in combination with black pepper transcriptome sequences revealed microRNA-mediated gene regulation in black pepper ( Piper nigrum L.). Black pepper is an important spice crop and its berries are used worldwide as a natural food additive that contributes unique flavour to foods. In the present study to characterize microRNAs from black pepper, we generated a small RNA library from black pepper leaf and sequenced it by Illumina high-throughput sequencing technology. MicroRNAs belonging to a total of 303 conserved miRNA families were identified from the sRNAome data. Subsequent analysis from recently sequenced black pepper transcriptome confirmed precursor sequences of 50 conserved miRNAs and four potential novel miRNA candidates. Stem-loop qRT-PCR experiments demonstrated differential expression of eight conserved miRNAs in black pepper. Computational analysis of targets of the miRNAs showed 223 potential black pepper unigene targets that encode diverse transcription factors and enzymes involved in plant development, disease resistance, metabolic and signalling pathways. RLM-RACE experiments further mapped miRNA-mediated cleavage at five of the mRNA targets. In addition, miRNA isoforms corresponding to 18 miRNA families were also identified from black pepper. This study presents the first large-scale identification of microRNAs from black pepper and provides the foundation for the future studies of miRNA-mediated gene regulation of stress responses and diverse metabolic processes in black pepper.

  14. Altered cleavage patterns in human tripronuclear embryos and their association to fertilization method

    DEFF Research Database (Denmark)

    Joergensen, Mette Warming; Agerholm, Inge; Hindkjaer, Johnny

    2014-01-01

    PURPOSE: To analyze the cleavage patterns in dipronuclear (2PN) and tripronuclear (3PN) embryos in relation to fertilization method. METHOD: Time-lapse analysis. RESULTS: Compared to 2PN, more 3PN IVF embryos displayed early cleavage into 3 cells (p ... stage (p embryos, the 2nd and 3rd cleavage cycles were completed within the expected time frame. However, timing of the cell divisions within the cleavage cycles differed between the two groups. In contrast......, the completion of the 1st, 2nd, and 3rd cleavage cycle was delayed, but with a similar division pattern for 3PN ICSI compared with the 2PN ICSI embryos. 3PN, more often than 2PN ICSI embryos, displayed early cleavage into 3 cells (p = 0.03) and arrested development from the compaction stage and onwards (p = 0...

  15. Depletion of key protein components of the RISC pathway impairs pre-ribosomal RNA processing.

    Science.gov (United States)

    Liang, Xue-Hai; Crooke, Stanley T

    2011-06-01

    Little is known about whether components of the RNA-induced silencing complex (RISC) mediate the biogenesis of RNAs other than miRNA. Here, we show that depletion of key proteins of the RISC pathway by antisense oligonucleotides significantly impairs pre-rRNA processing in human cells. In cells depleted of Drosha or Dicer, different precursors to 5.8S rRNA strongly accumulated, without affecting normal endonucleolytic cleavages. Moderate yet distinct processing defects were also observed in Ago2-depleted cells. Physical links between pre-rRNA and these proteins were identified by co-immunoprecipitation analyses. Interestingly, simultaneous depletion of Dicer and Drosha led to a different processing defect, causing slower production of 28S rRNA and its precursor. Both Dicer and Ago2 were detected in the nuclear fraction, and reduction of Dicer altered the structure of the nucleolus, where pre-rRNA processing occurs. Together, these results suggest that Drosha and Dicer are implicated in rRNA biogenesis.

  16. RecA-mediated cleavage reaction of Lambda repressor and DNA ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... hydrolyze ATP at all, but fulfills RecA functions such as cleavage of Lambda repressor and strand .... DNA binding properties of RecA and may result in an in- .... AMP-PNP there is no cleavage of Lambda repressor (Figure.

  17. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    International Nuclear Information System (INIS)

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik; Whittaker, Gary R.

    2012-01-01

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  18. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States); Whittaker, Gary R., E-mail: grw7@cornell.edu [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States)

    2012-12-05

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  19. Overaccumulation of the chloroplast antisense RNA AS5 is correlated with decreased abundance of 5S rRNA in vivo and inefficient 5S rRNA maturation in vitro

    Science.gov (United States)

    Sharwood, Robert E.; Hotto, Amber M.; Bollenbach, Thomas J.; Stern, David B.

    2011-01-01

    Post-transcriptional regulation in the chloroplast is exerted by nucleus-encoded ribonucleases and RNA-binding proteins. One of these ribonucleases is RNR1, a 3′-to-5′ exoribonuclease of the RNase II family. We have previously shown that Arabidopsis rnr1-null mutants exhibit specific abnormalities in the expression of the rRNA operon, including the accumulation of precursor 23S, 16S, and 4.5S species and a concomitant decrease in the mature species. 5S rRNA transcripts, however, accumulate to a very low level in both precursor and mature forms, suggesting that they are unstable in the rnr1 background. Here we demonstrate that rnr1 plants overaccumulate an antisense RNA, AS5, that is complementary to the 5S rRNA, its intergenic spacer, and the downstream trnR gene, which encodes tRNAArg, raising the possibility that AS5 destabilizes 5S rRNA or its precursor and/or blocks rRNA maturation. To investigate this, we used an in vitro system that supports 5S rRNA and trnR processing. We show that AS5 inhibits 5S rRNA maturation from a 5S-trnR precursor, and shorter versions of AS5 demonstrate that inhibition requires intergenic sequences. To test whether the sense and antisense RNAs form double-stranded regions in vitro, treatment with the single-strand-specific mung bean nuclease was used. These results suggest that 5S–AS5 duplexes interfere with a sense-strand secondary structure near the endonucleolytic cleavage site downstream from the 5S rRNA coding region. We hypothesize that these duplexes are degraded by a dsRNA-specific ribonuclease in vivo, contributing to the 5S rRNA deficiency observed in rnr1. PMID:21148395

  20. Systematic profiling of poly(A+ transcripts modulated by core 3' end processing and splicing factors reveals regulatory rules of alternative cleavage and polyadenylation.

    Directory of Open Access Journals (Sweden)

    Wencheng Li

    2015-04-01

    Full Text Available Alternative cleavage and polyadenylation (APA results in mRNA isoforms containing different 3' untranslated regions (3'UTRs and/or coding sequences. How core cleavage/polyadenylation (C/P factors regulate APA is not well understood. Using siRNA knockdown coupled with deep sequencing, we found that several C/P factors can play significant roles in 3'UTR-APA. Whereas Pcf11 and Fip1 enhance usage of proximal poly(A sites (pAs, CFI-25/68, PABPN1 and PABPC1 promote usage of distal pAs. Strong cis element biases were found for pAs regulated by CFI-25/68 or Fip1, and the distance between pAs plays an important role in APA regulation. In addition, intronic pAs are substantially regulated by splicing factors, with U1 mostly inhibiting C/P events in introns near the 5' end of gene and U2 suppressing those in introns with features for efficient splicing. Furthermore, PABPN1 inhibits expression of transcripts with pAs near the transcription start site (TSS, a property possibly related to its role in RNA degradation. Finally, we found that groups of APA events regulated by C/P factors are also modulated in cell differentiation and development with distinct trends. Together, our results support an APA code where an APA event in a given cellular context is regulated by a number of parameters, including relative location to the TSS, splicing context, distance between competing pAs, surrounding cis elements and concentrations of core C/P factors.

  1. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference.

    Science.gov (United States)

    Hochstrasser, Megan L; Taylor, David W; Bhat, Prashant; Guegler, Chantal K; Sternberg, Samuel H; Nogales, Eva; Doudna, Jennifer A

    2014-05-06

    In bacteria, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) DNA-targeting complex Cascade (CRISPR-associated complex for antiviral defense) uses CRISPR RNA (crRNA) guides to bind complementary DNA targets at sites adjacent to a trinucleotide signature sequence called the protospacer adjacent motif (PAM). The Cascade complex then recruits Cas3, a nuclease-helicase that catalyzes unwinding and cleavage of foreign double-stranded DNA (dsDNA) bearing a sequence matching that of the crRNA. Cascade comprises the CasA-E proteins and one crRNA, forming a structure that binds and unwinds dsDNA to form an R loop in which the target strand of the DNA base pairs with the 32-nt RNA guide sequence. Single-particle electron microscopy reconstructions of dsDNA-bound Cascade with and without Cas3 reveal that Cascade positions the PAM-proximal end of the DNA duplex at the CasA subunit and near the site of Cas3 association. The finding that the DNA target and Cas3 colocalize with CasA implicates this subunit in a key target-validation step during DNA interference. We show biochemically that base pairing of the PAM region is unnecessary for target binding but critical for Cas3-mediated degradation. In addition, the L1 loop of CasA, previously implicated in PAM recognition, is essential for Cas3 activation following target binding by Cascade. Together, these data show that the CasA subunit of Cascade functions as an essential partner of Cas3 by recognizing DNA target sites and positioning Cas3 adjacent to the PAM to ensure cleavage.

  2. Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a

    NARCIS (Netherlands)

    Swarts, Daan C.; Oost, van der John; Jinek, Martin

    2017-01-01

    The CRISPR-associated protein Cas12a (Cpf1), which has been repurposed for genome editing, possesses two distinct nuclease activities: endoribonuclease activity for processing its own guide RNAs and RNA-guided DNase activity for target DNA cleavage. To elucidate the molecular basis of both

  3. Catalytic constructive deoxygenation of lignin-derived phenols: new C-C bond formation processes from imidazole-sulfonates and ether cleavage reactions.

    Science.gov (United States)

    Leckie, Stuart M; Harkness, Gavin J; Clarke, Matthew L

    2014-10-09

    As part of a programme aimed at exploiting lignin as a chemical feedstock for less oxygenated fine chemicals, several catalytic C-C bond forming reactions utilising guaiacol imidazole sulfonate are demonstrated. These include the cross-coupling of a Grignard, a non-toxic cyanide source, a benzoxazole, and nitromethane. A modified Meyers reaction is used to accomplish a second constructive deoxygenation on a benzoxazole functionalised anisole.

  4. Biochemical and single-molecule analyses of the RNA silencing suppressing activity of CrPV-1A.

    Science.gov (United States)

    Watanabe, Mariko; Iwakawa, Hiro-Oki; Tadakuma, Hisashi; Tomari, Yukihide

    2017-10-13

    Viruses often encode viral silencing suppressors (VSSs) to counteract the hosts' RNA silencing activity. The cricket paralysis virus 1A protein (CrPV-1A) is a unique VSS that binds to a specific Argonaute protein (Ago)-the core of the RNA-induced silencing complex (RISC)-in insects to suppress its target cleavage reaction. However, the precise molecular mechanism of CrPV-1A action remains unclear. Here we utilized biochemical and single-molecule imaging approaches to analyze the effect of CrPV-1A during target recognition and cleavage by Drosophila Ago2-RISC. Our results suggest that CrPV-1A obstructs the initial target searching by Ago2-RISC via base pairing in the seed region. The combination of biochemistry and single-molecule imaging may help to pave the way for mechanistic understanding of VSSs with diverse functions. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Multiple isoforms for the catalytic subunit of PKA in the basal fungal lineage Mucor circinelloides.

    Science.gov (United States)

    Fernández Núñez, Lucas; Ocampo, Josefina; Gottlieb, Alexandra M; Rossi, Silvia; Moreno, Silvia

    2016-12-01

    Protein kinase A (PKA) activity is involved in dimorphism of the basal fungal lineage Mucor. From the recently sequenced genome of Mucor circinelloides we could predict ten catalytic subunits of PKA. From sequence alignment and structural prediction we conclude that the catalytic core of the isoforms is conserved, and the difference between them resides in their amino termini. This high number of isoforms is maintained in the subdivision Mucoromycotina. Each paralogue, when compared to the ones form other fungi is more homologous to one of its orthologs than to its paralogs. All of these fungal isoforms cannot be included in the class I or II in which fungal protein kinases have been classified. mRNA levels for each isoform were measured during aerobic and anaerobic growth. The expression of each isoform is differential and associated to a particular growth stage. We reanalyzed the sequence of PKAC (GI 20218944), the only cloned sequence available until now for a catalytic subunit of M. circinelloides. PKAC cannot be classified as a PKA because of its difference in the conserved C-tail; it shares with PKB a conserved C2 domain in the N-terminus. No catalytic activity could be measured for this protein nor predicted bioinformatically. It can thus be classified as a pseudokinase. Its importance can not be underestimated since it is expressed at the mRNA level in different stages of growth, and its deletion is lethal. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Studies on the catalytic rate constant of ribosomal peptidyltransferase.

    Science.gov (United States)

    Synetos, D; Coutsogeorgopoulos, C

    1987-02-20

    A detailed kinetic analysis of a model reaction for the ribosomal peptidyltransferase is described, using fMet-tRNA or Ac-Phe-tRNA as the peptidyl donor and puromycin as the acceptor. The initiation complex (fMet-tRNA X AUG X 70 S ribosome) or (Ac-Phe-tRNA X poly(U) X 70 S ribosome) (complex C) is isolated and then reacted with excess puromycin (S) to give fMet-puromycin or Ac-Phe-puromycin. This reaction (puromycin reaction) is first order at all concentrations of S tested. An important asset of this kinetic analysis is the fact that the relationship between the first order rate constant kobs and [S] shows hyperbolic saturation and that the value of kobs at saturating [S] is a measure of the catalytic rate constant (k cat) of peptidyltransferase in the puromycin reaction. With fMet-tRNA as the donor, this kcat of peptidyltransferase is 8.3 min-1 when the 0.5 M NH4Cl ribosomal wash is present, compared to 3.8 min-1 in its absence. The kcat of peptidyltransferase is 2.0 min-1 when Ac-Phe-tRNA replaces fMet-tRNA in the presence of the ribosomal wash and decreases to 0.8 min-1 in its absence. This kinetic procedure is the best method available for evaluating changes in the activity of peptidyltransferase in vitro. The results suggest that peptidyltransferase is subjected to activation by the binding of fMet-tRNA to the 70 S initiation complex.

  7. How short RNAs impact the human ribonuclease Dicer activity: putative regulatory feedback-loops and other RNA-mediated mechanisms controlling microRNA processing.

    Science.gov (United States)

    Koralewska, Natalia; Hoffmann, Weronika; Pokornowska, Maria; Milewski, Marek; Lipinska, Andrea; Bienkowska-Szewczyk, Krystyna; Figlerowicz, Marek; Kurzynska-Kokorniak, Anna

    2016-01-01

    Ribonuclease Dicer plays a pivotal role in RNA interference pathways by processing long double-stranded RNAs and single-stranded hairpin RNA precursors into small interfering RNAs (siRNAs) and microRNAs (miRNAs), respectively. While details of Dicer regulation by a variety of proteins are being elucidated, less is known about non-protein factors, e.g. RNA molecules, that may influence this enzyme's activity. Therefore, we decided to investigate the question of whether the RNA molecules can function not only as Dicer substrates but also as its regulators. Our previous in vitro studies indicated that the activity of human Dicer can be influenced by short RNA molecules that either bind to Dicer or interact with its substrates, or both. Those studies were carried out with commercial Dicer preparations. Nevertheless, such preparations are usually not homogeneous enough to carry out more detailed RNA-binding studies. Therefore, we have established our own system for the production of human Dicer in insect cells. In this manuscript, we characterize the RNA-binding and RNA-cleavage properties of the obtained preparation. We demonstrate that Dicer can efficiently bind single-stranded RNAs that are longer than ~20-nucleotides. Consequently, we revisit possible scenarios of Dicer regulation by single-stranded RNA species ranging from ~10- to ~60-nucleotides, in the context of their binding to this enzyme. Finally, we show that siRNA/miRNA-sized RNAs may affect miRNA production either by binding to Dicer or by participating in regulatory feedback-loops. Altogether, our studies suggest a broad regulatory role of short RNAs in Dicer functioning.

  8. AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system.

    Science.gov (United States)

    Schuck, Jana; Gursinsky, Torsten; Pantaleo, Vitantonio; Burgyán, Jozsef; Behrens, Sven-Erik

    2013-05-01

    AGO/RISC-mediated antiviral RNA silencing, an important component of the plant's immune response against RNA virus infections, was recapitulated in vitro. Cytoplasmic extracts of tobacco protoplasts were applied that supported Tombusvirus RNA replication, as well as the formation of RNA-induced silencing complexes (RISC) that could be functionally reconstituted with various plant ARGONAUTE (AGO) proteins. For example, when RISC containing AGO1, 2, 3 or 5 were programmed with exogenous siRNAs that specifically targeted the viral RNA, endonucleolytic cleavages occurred and viral replication was inhibited. Antiviral RNA silencing was disabled by the viral silencing suppressor p19 when this was present early during RISC formation. Notably, with replicating viral RNA, only (+)RNA molecules were accessible to RISC, whereas (-)RNA replication intermediates were not. The vulnerability of viral RNAs to RISC activity also depended on the RNA structure of the target sequence. This was most evident when we characterized viral siRNAs (vsiRNAs) that were particularly effective in silencing with AGO1- or AGO2/RISC. These vsiRNAs targeted similar sites, suggesting that accessible parts of the viral (+)RNA may be collectively attacked by different AGO/RISC. The in vitro system was, hence, established as a valuable tool to define and characterize individual molecular determinants of antiviral RNA silencing.

  9. Structural insights into RNA processing by the human RISC-loading complex.

    Science.gov (United States)

    Wang, Hong-Wei; Noland, Cameron; Siridechadilok, Bunpote; Taylor, David W; Ma, Enbo; Felderer, Karin; Doudna, Jennifer A; Nogales, Eva

    2009-11-01

    Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2.

  10. Ku-mediated coupling of DNA cleavage and repair during programmed genome rearrangements in the ciliate Paramecium tetraurelia.

    Directory of Open Access Journals (Sweden)

    Antoine Marmignon

    2014-08-01

    Full Text Available During somatic differentiation, physiological DNA double-strand breaks (DSB can drive programmed genome rearrangements (PGR, during which DSB repair pathways are mobilized to safeguard genome integrity. Because of their unique nuclear dimorphism, ciliates are powerful unicellular eukaryotic models to study the mechanisms involved in PGR. At each sexual cycle, the germline nucleus is transmitted to the progeny, but the somatic nucleus, essential for gene expression, is destroyed and a new somatic nucleus differentiates from a copy of the germline nucleus. In Paramecium tetraurelia, the development of the somatic nucleus involves massive PGR, including the precise elimination of at least 45,000 germline sequences (Internal Eliminated Sequences, IES. IES excision proceeds through a cut-and-close mechanism: a domesticated transposase, PiggyMac, is essential for DNA cleavage, and DSB repair at excision sites involves the Ligase IV, a specific component of the non-homologous end-joining (NHEJ pathway. At the genome-wide level, a huge number of programmed DSBs must be repaired during this process to allow the assembly of functional somatic chromosomes. To understand how DNA cleavage and DSB repair are coordinated during PGR, we have focused on Ku, the earliest actor of NHEJ-mediated repair. Two Ku70 and three Ku80 paralogs are encoded in the genome of P. tetraurelia: Ku70a and Ku80c are produced during sexual processes and localize specifically in the developing new somatic nucleus. Using RNA interference, we show that the development-specific Ku70/Ku80c heterodimer is essential for the recovery of a functional somatic nucleus. Strikingly, at the molecular level, PiggyMac-dependent DNA cleavage is abolished at IES boundaries in cells depleted for Ku80c, resulting in IES retention in the somatic genome. PiggyMac and Ku70a/Ku80c co-purify as a complex when overproduced in a heterologous system. We conclude that Ku has been integrated in the Paramecium

  11. Systematic Profiling of Poly(A)+ Transcripts Modulated by Core 3’ End Processing and Splicing Factors Reveals Regulatory Rules of Alternative Cleavage and Polyadenylation

    Science.gov (United States)

    Li, Wencheng; You, Bei; Hoque, Mainul; Zheng, Dinghai; Luo, Wenting; Ji, Zhe; Park, Ji Yeon; Gunderson, Samuel I.; Kalsotra, Auinash; Manley, James L.; Tian, Bin

    2015-01-01

    Alternative cleavage and polyadenylation (APA) results in mRNA isoforms containing different 3’ untranslated regions (3’UTRs) and/or coding sequences. How core cleavage/polyadenylation (C/P) factors regulate APA is not well understood. Using siRNA knockdown coupled with deep sequencing, we found that several C/P factors can play significant roles in 3’UTR-APA. Whereas Pcf11 and Fip1 enhance usage of proximal poly(A) sites (pAs), CFI-25/68, PABPN1 and PABPC1 promote usage of distal pAs. Strong cis element biases were found for pAs regulated by CFI-25/68 or Fip1, and the distance between pAs plays an important role in APA regulation. In addition, intronic pAs are substantially regulated by splicing factors, with U1 mostly inhibiting C/P events in introns near the 5’ end of gene and U2 suppressing those in introns with features for efficient splicing. Furthermore, PABPN1 inhibits expression of transcripts with pAs near the transcription start site (TSS), a property possibly related to its role in RNA degradation. Finally, we found that groups of APA events regulated by C/P factors are also modulated in cell differentiation and development with distinct trends. Together, our results support an APA code where an APA event in a given cellular context is regulated by a number of parameters, including relative location to the TSS, splicing context, distance between competing pAs, surrounding cis elements and concentrations of core C/P factors. PMID:25906188

  12. Effect of microstructure on the cleavage fracture strength of low carbon Mn-Ni-Mo bainitic steels

    International Nuclear Information System (INIS)

    Im, Young-Roc; Lee, Byeong-Joo; Oh, Yong Jun; Hong, Jun Hwa; Lee, Hu-Chul

    2004-01-01

    The effects of the microstructure on the cleavage fracture strength of low carbon Mn-Ni-Mo bainitic steels were examined. A four-point bend test and double-notched bend specimens were used to measure the cleavage fracture strength of the alloys and identify the cleavage initiating micro-cracks, respectively. The cleavage fracture strength and DBTT of Mn-Ni-Mo bainitic steels were strongly affected by the alloy carbon content. The decrease in the alloy carbon content resulted in a decrease in the inter-lath cementite-crowded layers and higher cleavage fracture strength. Micro-cracks that formed across the inter-lath cementite-crowded layers were observed to initiate cleavage fracture. The width of these inter-lath cementite-crowded layers was accepted as a cleavage initiating micro-crack size in the micro-mechanical modeling of the cleavage fracture, and the measured cleavage strength values of the bainitic Mn-Ni-Mo steels were well represented by the modified Griffith relationship

  13. The Oxygenase CAO-1 of Neurospora crassa Is a Resveratrol Cleavage Enzyme

    KAUST Repository

    Diaz-Sanchez, V.; F. Estrada, A.; Limon, M. C.; Al-Babili, Salim; Avalos, J.

    2013-01-01

    The genome of the ascomycete Neurospora crassa encodes CAO-1 and CAO-2, two members of the carotenoid cleavage oxygenase family that target double bonds in different substrates. Previous studies demonstrated the role of CAO-2 in cleaving the C40 carotene torulene, a key step in the synthesis of the C35 apocarotenoid pigment neurosporaxanthin. In this work, we investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving β-carotene. For this purpose, we tested CAO-1 activity with carotenoid substrates that were, however, not converted. In contrast and consistent with its sequence similarity to family members that act on stilbenes, CAO-1 cleaved the interphenyl Cα-Cβ double bond of resveratrol and its derivative piceatannol. CAO-1 did not convert five other similar stilbenes, indicating a requirement for a minimal number of unmodified hydroxyl groups in the stilbene background. Confirming its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them. Targeted Δcao-1 mutants were not impaired by the presence of resveratrol, a phytoalexin active against different fungi, which did not significantly affect the growth and development of wild-type Neurospora. However, under partial sorbose toxicity, the Δcao-1 colonies exhibited faster radial growth than control strains in the presence of resveratrol, suggesting a moderate toxic effect of resveratrol cleavage products.

  14. The Oxygenase CAO-1 of Neurospora crassa Is a Resveratrol Cleavage Enzyme

    KAUST Repository

    Diaz-Sanchez, V.

    2013-07-26

    The genome of the ascomycete Neurospora crassa encodes CAO-1 and CAO-2, two members of the carotenoid cleavage oxygenase family that target double bonds in different substrates. Previous studies demonstrated the role of CAO-2 in cleaving the C40 carotene torulene, a key step in the synthesis of the C35 apocarotenoid pigment neurosporaxanthin. In this work, we investigated the activity of CAO-1, assuming that it may provide retinal, the chromophore of the NOP-1 rhodopsin, by cleaving β-carotene. For this purpose, we tested CAO-1 activity with carotenoid substrates that were, however, not converted. In contrast and consistent with its sequence similarity to family members that act on stilbenes, CAO-1 cleaved the interphenyl Cα-Cβ double bond of resveratrol and its derivative piceatannol. CAO-1 did not convert five other similar stilbenes, indicating a requirement for a minimal number of unmodified hydroxyl groups in the stilbene background. Confirming its biological function in converting stilbenes, adding resveratrol led to a pronounced increase in cao-1 mRNA levels, while light, a key regulator of carotenoid metabolism, did not alter them. Targeted Δcao-1 mutants were not impaired by the presence of resveratrol, a phytoalexin active against different fungi, which did not significantly affect the growth and development of wild-type Neurospora. However, under partial sorbose toxicity, the Δcao-1 colonies exhibited faster radial growth than control strains in the presence of resveratrol, suggesting a moderate toxic effect of resveratrol cleavage products.

  15. Characterization of SNARE Cleavage Products Generated by Formulated Botulinum Neurotoxin Type-A Drug Products

    Directory of Open Access Journals (Sweden)

    Jack Xie

    2010-08-01

    Full Text Available The study evaluated substrate cleavage product(s generated by three botulinum neurotoxin serotype A (BoNT/A medicinal drug products utilizing a novel and highly specific, light-chain activity, high-performance liquid chromatography (LCA-HPLC method. Samples were reacted with a commercially available BoNT/A fluorescent substrate derived from the SNAP-25 sequence. Reaction products were separated by reversed-phase HPLC. The method detected an atypical cleavage pattern by one of the formulated drug products. IncobotulinumtoxinA produced two cleavage fragments rather than the single fragment typically generated by BoNT/A. Identification confirmed the secondary cleavage at a position corresponding to SNAP-25 Arg198–Ala199 (normal BoNT/A cleavage is Gln197–Arg198. Arg198–Ala199 is also the cleavage site for trypsin and serotype C toxin. Normal cleavage was observed for all other BoNT/A drug product samples, as well as 900-kD and 150-kD bulk toxin BoNT/A. The reason for this unexpected secondary cleavage pattern by one formulated BoNT/A drug product is unknown. Possible explanations include a contaminating protease and/or damage to the 150-kD type-A toxin causing nonspecific substrate recognition and subsequent cleavage uncharacteristic of type-A toxin. The BoNT/A drug products were also analyzed via the LCA-HPLC assay using a commercial BoNT/C fluorescent substrate derived from the syntaxin sequence. Cleavage of the serotype C substrate by incobotulinumtoxinA was also confirmed whilst neither of the other drug products cleaved the syntaxin substrate.

  16. MicroRNA and tasiRNA diversity in mature pollen of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hafidh Said

    2009-12-01

    Full Text Available Abstract Background New generation sequencing technology has allowed investigation of the small RNA populations of flowering plants at great depth. However, little is known about small RNAs in their reproductive cells, especially in post-meiotic cells of the gametophyte generation. Pollen - the male gametophyte - is the specialised haploid structure that generates and delivers the sperm cells to the female gametes at fertilisation. Whether development and differentiation of the male gametophyte depends on the action of microRNAs and trans-acting siRNAs guiding changes in gene expression is largely unknown. Here we have used 454 sequencing to survey the various small RNA populations present in mature pollen of Arabidopsis thaliana. Results In this study we detected the presence of 33 different microRNA families in mature pollen and validated the expression levels of 17 selected miRNAs by Q-RT-PCR. The majority of the selected miRNAs showed pollen-enriched expression compared with leaves. Furthermore, we report for the first time the presence of trans-acting siRNAs in pollen. In addition to describing new patterns of expression for known small RNAs in each of these classes, we identified 7 putative novel microRNAs. One of these, ath-MIR2939, targets a pollen-specific F-box transcript and we demonstrate cleavage of its target mRNA in mature pollen. Conclusions Despite the apparent simplicity of the male gametophyte, comprising just two different cell types, pollen not only utilises many miRNAs and trans-acting siRNAs expressed in the somatic tissues but also expresses novel miRNAs.

  17. Structural explanation for the role of Mn2+ in the activity of phi6 RNA-dependent RNA polymerase.

    Science.gov (United States)

    Poranen, Minna M; Salgado, Paula S; Koivunen, Minni R L; Wright, Sam; Bamford, Dennis H; Stuart, David I; Grimes, Jonathan M

    2008-11-01

    The biological role of manganese (Mn(2+)) has been a long-standing puzzle, since at low concentrations it activates several polymerases whilst at higher concentrations it inhibits. Viral RNA polymerases possess a common architecture, reminiscent of a closed right hand. The RNA-dependent RNA polymerase (RdRp) of bacteriophage 6 is one of the best understood examples of this important class of polymerases. We have probed the role of Mn(2+) by biochemical, biophysical and structural analyses of the wild-type enzyme and of a mutant form with an altered Mn(2+)-binding site (E491 to Q). The E491Q mutant has much reduced affinity for Mn(2+), reduced RNA binding and a compromised elongation rate. Loss of Mn(2+) binding structurally stabilizes the enzyme. These data and a re-examination of the structures of other viral RNA polymerases clarify the role of manganese in the activation of polymerization: Mn(2+) coordination of a catalytic aspartate is necessary to allow the active site to properly engage with the triphosphates of the incoming NTPs. The structural flexibility caused by Mn(2+) is also important for the enzyme dynamics, explaining the requirement for manganese throughout RNA polymerization.

  18. Towards Antiviral shRNAs Based on the AgoshRNA Design.

    Directory of Open Access Journals (Sweden)

    Ying Poi Liu

    Full Text Available RNA interference (RNAi can be induced by intracellular expression of a short hairpin RNA (shRNA. Processing of the shRNA requires the RNaseIII-like Dicer enzyme to remove the loop and to release the biologically active small interfering RNA (siRNA. Dicer is also involved in microRNA (miRNA processing to liberate the mature miRNA duplex, but recent studies indicate that miR-451 is not processed by Dicer. Instead, this miRNA is processed by the Argonaute 2 (Ago2 protein, which also executes the subsequent cleavage of a complementary mRNA target. Interestingly, shRNAs that structurally resemble miR-451 can also be processed by Ago2 instead of Dicer. The key determinant of these "AgoshRNA" molecules is a relatively short basepaired stem, which avoids Dicer recognition and consequently allows alternative processing by Ago2. AgoshRNA processing yields a single active RNA strand, whereas standard shRNAs produce a duplex with guide and passenger strands and the latter may cause adverse off-target effects. In this study, we converted previously tested active anti-HIV-1 shRNA molecules into AgoshRNA. We tested several designs that could potentially improve AgoshRNA activity, including extension of the complementarity between the guide strand and the mRNA target and reduction of the thermodynamic stability of the hairpins. We demonstrate that active AgoshRNAs can be generated. However, the RNAi activity is reduced compared to the matching shRNAs. Despite reduced RNAi activity, comparison of an active AgoshRNA and the matching shRNA in a sensitive cell toxicity assay revealed that the AgoshRNA is much less toxic.

  19. Footprinting analysis of interactions between the largest eukaryotic RNase P/MRP protein Pop1 and RNase P/MRP RNA components.

    Science.gov (United States)

    Fagerlund, Robert D; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S

    2015-09-01

    Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA-RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P. © 2015 Fagerlund et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  20. Role of RNA structure and RNA binding activity of foot-and-mouth disease virus 3C protein in VPg uridylylation and virus replication

    DEFF Research Database (Denmark)

    Nayak, A.; Goodfellow, I. G.; Woolaway, K. E.

    2006-01-01

    The uridylylation of the VPg peptide primer is the first stage in the replication of picornavirus RNA. This process can be achieved in vitro using purified components, including 3B (VPg) with the RNA dependent RNA polymerase (3D(pol)), the precursor 3CD, and an RNA template containing the cre....../bus. We show that certain RNA sequences within the foot-and-mouth disease virus (FMDV) 5' untranslated region but outside of the cre/bus can enhance VPg uridylylation activity. Furthermore, we have shown that the FMDV X protein alone can substitute for 3CD, albeit less efficiently. In addition, the VPg...... precursors, 3B(3)3C and 3B(123)3C, can function as substrates for uridylylation in the absence of added 3C or 3CD. Residues within the FMDV 3C protein involved in interaction with the cre/bus RNA have been identified and are located on the face of the protein opposite from the catalytic site. These residues...

  1. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes.

    Science.gov (United States)

    Iwasaki, Shintaro; Kobayashi, Maki; Yoda, Mayuko; Sakaguchi, Yuriko; Katsuma, Susumu; Suzuki, Tsutomu; Tomari, Yukihide

    2010-07-30

    Small silencing RNAs--small interfering RNAs (siRNAs) or microRNAs (miRNAs)--direct posttranscriptional gene silencing of their mRNA targets as guides for the RNA-induced silencing complex (RISC). Both siRNAs and miRNAs are born double stranded. Surprisingly, loading these small RNA duplexes into Argonaute proteins, the core components of RISC, requires ATP, whereas separating the two small RNA strands within Argonaute does not. Here we show that the Hsc70/Hsp90 chaperone machinery is required to load small RNA duplexes into Argonaute proteins, but not for subsequent strand separation or target cleavage. We envision that the chaperone machinery uses ATP and mediates a conformational opening of Ago proteins so that they can receive bulky small RNA duplexes. Our data suggest that the chaperone machinery may serve as the driving force for the RISC assembly pathway. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Four RNA families with functional transient structures.

    Science.gov (United States)

    Zhu, Jing Yun A; Meyer, Irmtraud M

    2015-01-01

    Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5' flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5' UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All

  3. Sea urchin akt activity is Runx-dependent and required for post-cleavage stage cell division

    KAUST Repository

    Robertson, Anthony J.

    2013-03-25

    In animal development following the initial cleavage stage of embryogenesis, the cell cycle becomes dependent on intercellular signaling and controlled by the genomically encoded ontogenetic program. Runx transcription factors are critical regulators of metazoan developmental signaling, and we have shown that the sea urchin Runx gene runt-1, which is globally expressed during early embryogenesis, functions in support of blastula stage cell proliferation and expression of the mitogenic genes pkc1, cyclinD, and several wnts. To obtain a more comprehensive list of early runt-1 regulatory targets, we screened a Strongylocentrotus purpuratus microarray to identify genes mis-expressed in mid-blastula stage runt-1 morphants. This analysis showed that loss of Runx function perturbs the expression of multiple genes involved in cell division, including the pro-growth and survival kinase Akt (PKB), which is significantly underexpressed in runt-1 morphants. Further genomic analysis revealed that Akt is encoded by two genes in the S. purpuratus genome, akt-1 and akt-2, both of which contain numerous canonical Runx target sequences. The transcripts of both genes accumulate several fold during blastula stage, contingent on runt-1 expression. Inhibiting Akt expression or activity causes blastula stage cell cycle arrest, whereas overexpression of akt-1 mRNA rescues cell proliferation in runt-1 morphants. These results indicate that post-cleavage stage cell division requires Runx-dependent expression of akt.

  4. Sea urchin akt activity is Runx-dependent and required for post-cleavage stage cell division

    KAUST Repository

    Robertson, Anthony J.; Coluccio, Alison; Jensen, Sarah; Rydlizky, Katarina; Coffman, James A.

    2013-01-01

    In animal development following the initial cleavage stage of embryogenesis, the cell cycle becomes dependent on intercellular signaling and controlled by the genomically encoded ontogenetic program. Runx transcription factors are critical regulators of metazoan developmental signaling, and we have shown that the sea urchin Runx gene runt-1, which is globally expressed during early embryogenesis, functions in support of blastula stage cell proliferation and expression of the mitogenic genes pkc1, cyclinD, and several wnts. To obtain a more comprehensive list of early runt-1 regulatory targets, we screened a Strongylocentrotus purpuratus microarray to identify genes mis-expressed in mid-blastula stage runt-1 morphants. This analysis showed that loss of Runx function perturbs the expression of multiple genes involved in cell division, including the pro-growth and survival kinase Akt (PKB), which is significantly underexpressed in runt-1 morphants. Further genomic analysis revealed that Akt is encoded by two genes in the S. purpuratus genome, akt-1 and akt-2, both of which contain numerous canonical Runx target sequences. The transcripts of both genes accumulate several fold during blastula stage, contingent on runt-1 expression. Inhibiting Akt expression or activity causes blastula stage cell cycle arrest, whereas overexpression of akt-1 mRNA rescues cell proliferation in runt-1 morphants. These results indicate that post-cleavage stage cell division requires Runx-dependent expression of akt.

  5. Picornavirus RNA is protected from cleavage by ribonuclease during virion uncoating and transfer across cellular and model membranes.

    Science.gov (United States)

    Groppelli, Elisabetta; Levy, Hazel C; Sun, Eileen; Strauss, Mike; Nicol, Clare; Gold, Sarah; Zhuang, Xiaowei; Tuthill, Tobias J; Hogle, James M; Rowlands, David J

    2017-02-01

    Picornaviruses are non-enveloped RNA viruses that enter cells via receptor-mediated endocytosis. Because they lack an envelope, picornaviruses face the challenge of delivering their RNA genomes across the membrane of the endocytic vesicle into the cytoplasm to initiate infection. Currently, the mechanism of genome release and translocation across membranes remains poorly understood. Within the enterovirus genus, poliovirus, rhinovirus 2, and rhinovirus 16 have been proposed to release their genomes across intact endosomal membranes through virally induced pores, whereas one study has proposed that rhinovirus 14 releases its RNA following disruption of endosomal membranes. For the more distantly related aphthovirus genus (e.g. foot-and-mouth disease viruses and equine rhinitis A virus) acidification of endosomes results in the disassembly of the virion into pentamers and in the release of the viral RNA into the lumen of the endosome, but no details have been elucidated as how the RNA crosses the vesicle membrane. However, more recent studies suggest aphthovirus RNA is released from intact particles and the dissociation to pentamers may be a late event. In this study we have investigated the RNase A sensitivity of genome translocation of poliovirus using a receptor-decorated-liposome model and the sensitivity of infection of poliovirus and equine-rhinitis A virus to co-internalized RNase A. We show that poliovirus genome translocation is insensitive to RNase A and results in little or no release into the medium in the liposome model. We also show that infectivity is not reduced by co-internalized RNase A for poliovirus and equine rhinitis A virus. Additionally, we show that all poliovirus genomes that are internalized into cells, not just those resulting in infection, are protected from RNase A. These results support a finely coordinated, directional model of viral RNA delivery that involves viral proteins and cellular membranes.

  6. Picornavirus RNA is protected from cleavage by ribonuclease during virion uncoating and transfer across cellular and model membranes.

    Directory of Open Access Journals (Sweden)

    Elisabetta Groppelli

    2017-02-01

    Full Text Available Picornaviruses are non-enveloped RNA viruses that enter cells via receptor-mediated endocytosis. Because they lack an envelope, picornaviruses face the challenge of delivering their RNA genomes across the membrane of the endocytic vesicle into the cytoplasm to initiate infection. Currently, the mechanism of genome release and translocation across membranes remains poorly understood. Within the enterovirus genus, poliovirus, rhinovirus 2, and rhinovirus 16 have been proposed to release their genomes across intact endosomal membranes through virally induced pores, whereas one study has proposed that rhinovirus 14 releases its RNA following disruption of endosomal membranes. For the more distantly related aphthovirus genus (e.g. foot-and-mouth disease viruses and equine rhinitis A virus acidification of endosomes results in the disassembly of the virion into pentamers and in the release of the viral RNA into the lumen of the endosome, but no details have been elucidated as how the RNA crosses the vesicle membrane. However, more recent studies suggest aphthovirus RNA is released from intact particles and the dissociation to pentamers may be a late event. In this study we have investigated the RNase A sensitivity of genome translocation of poliovirus using a receptor-decorated-liposome model and the sensitivity of infection of poliovirus and equine-rhinitis A virus to co-internalized RNase A. We show that poliovirus genome translocation is insensitive to RNase A and results in little or no release into the medium in the liposome model. We also show that infectivity is not reduced by co-internalized RNase A for poliovirus and equine rhinitis A virus. Additionally, we show that all poliovirus genomes that are internalized into cells, not just those resulting in infection, are protected from RNase A. These results support a finely coordinated, directional model of viral RNA delivery that involves viral proteins and cellular membranes.

  7. Snapshots of Dynamics in Synthesizing N6-isopentenyladenosine at tRNA Anticodon†,‡

    Science.gov (United States)

    Chimnaronk, Sarin; Forouhar, Farhad; Sakai, Junichi; Yao, Min; Tron, Cecile M.; Atta, Mohamed; Fontecave, Marc; Hunt, John F.; Tanaka, Isao

    2009-01-01

    Bacterial and eukaryotic transfer RNAs that decode codons starting with uridine have a hydrophobically-hypermodified adenosine at the position 37 (A37) adjacent to the 3′-end of the anticodon, which is essential for efficient and highly accurate protein translation by the ribosome. However, it remains unclear how the corresponding tRNAs are selected to be modified by alkylation at the correct position of the adenosine base. We have determined a series of the crystal structures of bacterial tRNA isopentenyltransferase (MiaA) in apo- and tRNA-bound forms, which completely render snapshots of substrate selections during modification of RNA. A compact evolutionary inserted domain (herein ‘swinging domain’) in MiaA that exhibits as a highly mobile entity moves around the catalytic domain as likely to reach and trap the tRNA substrate. Thereby, MiaA clamps the anticodon stem loop of tRNA substrate between the catalytic and swinging domains, where the two conserved elongated residues from the swinging domain pinch the two flanking A36 and A38 together to squeeze out A37 into the reaction tunnel. The site-specific isopentenylation of RNA is thus ensured by a characteristic pinch-and-flip mechanism and by a reaction tunnel to confine the substrate selection. Furthermore, combining information from soaking experiments with structural comparisons, we propose a mechanism for the ordered substrate-binding of MiaA. PMID:19435325

  8. Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology

    Directory of Open Access Journals (Sweden)

    Blom Nikolaj

    2004-06-01

    Full Text Available Abstract Background Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS, efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins such as the cystic fibrosis transmembrane conductance regulator (CFTR, transcription factors CREB-RP and OCT-1, and components of the ubiquitin pathway. Conclusions Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified which might be important to elucidate coronavirus pathology. Furthermore, the method might assist in design of proteinase inhibitors for treatment of SARS and possible future diseases caused by coronaviruses. It is made available for public use at our website: http://www.cbs.dtu.dk/services/NetCorona/.

  9. Duration of the first steps of the human rRNA processing

    Czech Academy of Sciences Publication Activity Database

    Popov, A.; Smirnov, E.; Kováčik, L.; Raška, O.; Hagen, G.; Stixová, Lenka; Raška, I.

    2013-01-01

    Roč. 4, č. 2 (2013), s. 134-141 ISSN 1949-1034 R&D Projects: GA ČR(CZ) GBP302/12/G157; GA MŠk(CZ) EE2.3.30.0030 Grant - others:GA ČR(CZ) GAP302/12/1885 Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : rRNA processing * cleavage * half-life time Subject RIV: BO - Biophysics Impact factor: 3.148, year: 2013

  10. Prediction of proteasome cleavage motifs by neural networks

    DEFF Research Database (Denmark)

    Kesimir, C.; Nussbaum, A.K.; Schild, H.

    2002-01-01

    physiological conditions. Our algorithm has been trained not only on in vitro data, but also on MHC Class I ligand data, which reflect a combination of immunoproteasome and constitutive proteasome specificity. This feature, together with the use of neural networks, a non-linear classification technique, make...... the prediction of MHC Class I ligand boundaries more accurate: 65% of the cleavage sites and 85% of the non-cleavage sites are correctly determined. Moreover, we show that the neural networks trained on the constitutive proteasome data learns a specificity that differs from that of the networks trained on MHC...

  11. Remarkable weakness against cleavage stress for YBCO-coated conductors and its effect on the YBCO coil performance

    International Nuclear Information System (INIS)

    Yanagisawa, Y.; Nakagome, H.; Takematsu, T.; Takao, T.; Sato, N.; Takahashi, M.; Maeda, H.

    2011-01-01

    Cleavage strength for YBCO-coated conductor is extremely low, typically 0.5 MPa. The remarkable weakness is due to cracks on the slit edge of the conductor. The cleavage stress appears on YBCO double pancake coils impregnated with epoxy. The cleavage stress should be avoided in the coil winding. Cleavage strength for an YBCO-coated conductor at 77 K was investigated with a model experiment. The nominal cleavage strength for an YBCO-coated conductor is extremely low, typically 0.5 MPa. This low nominal cleavage strength is due to stress concentration on a small part of the YBCO-coated conductor in cleavage fracture. Debonding by the cleavage stress occurs at the interface between the buffer layer and the Hastelloy substrate. The nominal cleavage strength for a slit edge of the conductor is 2.5-times lower than that for the original edge of the conductor; cracks and micro-peel existing over the slit edge reduce the cleavage strength for the slit edge. Cleavage stress and peel stress should be avoided in coil winding, as they easily delaminate the YBCO-coated conductor, resulting in substantial degradation of coil performance. These problems are especially important for epoxy impregnated YBCO-coated conductor coils. It appears that effect of cleavage stress and peel stress are mostly negligible for paraffin impregnated YBCO-coated conductor coils or dry wound YBCO-coated conductor coils.

  12. The origin and effect of small RNA signaling in plants

    Directory of Open Access Journals (Sweden)

    Jean-Sébastien eParent

    2012-08-01

    Full Text Available Given their sessile condition, land plants need to integrate environmental cues rapidly and send signal throughout the organism to modify their metabolism accordingly. Small RNA (sRNA molecules are among the messengers that plant cells use to carry such signals. These molecules originate from fold-back stem-loops transcribed from endogenous loci or from perfect double-stranded RNA produced through the action of RNA-dependent RNA polymerases. Once produced, sRNAs associate with Argonaute and other proteins to form the RNA-induced silencing complex (RISC that executes silencing of complementary RNA molecules. Depending on the nature of the RNA target and the Argonaute protein involved, RISC triggers either DNA methylation and chromatin modification (leading to transcriptional gene silencing, TGS or RNA cleavage or translational inhibition (leading to post-transcriptional gene silencing, PTGS. In some cases, sRNAs move to neighboring cells and/or to the vascular tissues for long-distance trafficking. Many genes are involved in the biogenesis of sRNAs and recent studies have shown that both their origin and their protein partners have great influence on their activity and range. Here we summarize the work done to uncover the mode of action of the different classes of small RNA with special emphasis on their movement and how plants can take advantage of their mobility. We also review the various genetic requirements needed for production, movement and perception of the silencing signal.

  13. Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5.

    Science.gov (United States)

    Ehsani, Ali; Saetrom, Pål; Zhang, Jane; Alluin, Jessica; Li, Haitang; Snøve, Ola; Aagaard, Lars; Rossi, John J

    2010-04-01

    Small-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) are distinguished by their modes of action. SiRNAs serve as guides for sequence-specific cleavage of complementary mRNAs and the targets can be in coding or noncoding regions of the target transcripts. MiRNAs inhibit translation via partially complementary base-pairing to 3' untranslated regions (UTRs) and are generally ineffective when targeting coding regions of a transcript. In this study, we deliberately designed siRNAs that simultaneously direct cleavage and translational suppression of HIV RNAs, or cleavage of the mRNA encoding the HIV coreceptor CCR5 and suppression of translation of HIV. These bifunctional siRNAs trigger inhibition of HIV infection and replication in cell culture. The design principles have wide applications throughout the genome, as about 90% of genes harbor sites that make the design of bifunctional siRNAs possible.

  14. Cooperative RNP assembly: Complementary rescue of structural defects by protein and RNA subunits of archaeal RNase P

    Science.gov (United States)

    Chen, Wen-Yi; Xu, Yiren; Cho, I-Ming; Oruganti, Sri Vidya; Foster, Mark P.; Gopalan, Venkat

    2011-01-01

    RNase P is a ribonucleoprotein (RNP) complex that utilizes a Mg2+-dependent RNA catalyst to cleave the 5′-leader of precursor tRNAs (pre-tRNAs) and generate mature tRNAs. The bacterial RNase P protein (RPP) aids RNase P RNA (RPR) catalysis by promoting substrate binding, Mg2+ coordination, and product release. Archaeal RNase P comprises an RPR and at least four RPPs, which have eukaryal homologs and function as two binary complexes (POP5•RPP30 and RPP21•RPP29). In this study, we employed a previously characterized substrate-enzyme conjugate [pre-tRNATyr-Methanocaldococcus jannaschii (Mja) RPR] to investigate the functional role of a universally conserved uridine in a bulge-helix structure in archaeal RPRs. Deletion of this bulged uridine resulted in an 80-fold decrease in the self-cleavage rate of pre-tRNATyr-MjaΔU RPR compared to the wildtype, and this defect was partially ameliorated upon addition of either RPP pair. The catalytic defect in the archaeal mutant RPR mirrors that reported in a bacterial RPR and highlights a parallel in their active sites. Furthermore, an N-terminal deletion mutant of Pyrococcus furiosus (Pfu) RPP29 that is defective in assembling with its binary partner RPP21, as assessed by isothermal titration calorimetry and NMR spectroscopy, is functional when reconstituted with the cognate Pfu RPR. Collectively, these results indicate that archaeal RPPs are able to compensate for structural defects in their cognate RPR and vice-versa, and provide striking examples of the cooperative subunit interactions critical for driving archaeal RNase P towards its functional conformation. (236 words) PMID:21683084

  15. Flanking signal and mature peptide residues influence signal peptide cleavage

    Directory of Open Access Journals (Sweden)

    Ranganathan Shoba

    2008-12-01

    Full Text Available Abstract Background Signal peptides (SPs mediate the targeting of secretory precursor proteins to the correct subcellular compartments in prokaryotes and eukaryotes. Identifying these transient peptides is crucial to the medical, food and beverage and biotechnology industries yet our understanding of these peptides remains limited. This paper examines the most common type of signal peptides cleavable by the endoprotease signal peptidase I (SPase I, and the residues flanking the cleavage sites of three groups of signal peptide sequences, namely (i eukaryotes (Euk (ii Gram-positive (Gram+ bacteria, and (iii Gram-negative (Gram- bacteria. Results In this study, 2352 secretory peptide sequences from a variety of organisms with amino-terminal SPs are extracted from the manually curated SPdb database for analysis based on physicochemical properties such as pI, aliphatic index, GRAVY score, hydrophobicity, net charge and position-specific residue preferences. Our findings show that the three groups share several similarities in general, but they display distinctive features upon examination in terms of their amino acid compositions and frequencies, and various physico-chemical properties. Thus, analysis or prediction of their sequences should be separated and treated as distinct groups. Conclusion We conclude that the peptide segment recognized by SPase I extends to the start of the mature protein to a limited extent, upon our survey of the amino acid residues surrounding the cleavage processing site. These flanking residues possibly influence the cleavage processing and contribute to non-canonical cleavage sites. Our findings are applicable in defining more accurate prediction tools for recognition and identification of cleavage site of SPs.

  16. Staggering in the cleavage pattern of E. coli ABC-excinuclease

    International Nuclear Information System (INIS)

    Myles, G.M.; Van Houten, B.; Sancar, A.

    1986-01-01

    E. coli ABC excinuclease is a complex of three proteins encoded by the uvrA, uvrB, and uvrC genes. The enzyme repairs DNA mono and diadducts by the single strand cleavage of DNA eight phosphodiester bond 5' and four or five phosphodiester bonds 3' to a DNA lesion and facilitates the removal of the resulting twelve or thirteen nucleotide fragment. In this study, the authors have investigated the excision pattern for ultraviolet (UV) induced diadducts, i.e. cyclobutane pyrimidine dimers and pyrimidine-pyrimidone (6-4) photoproducts. Terminally (5' or 3') labeled DNA was irradiated with 254nm UV and treated with ABC excinuclease before and after photoreactivation of cyclobutane dimers by E. coli DNA photolyase. In this way, the authors were able to differentiate between the cleavage pattern of pyrimidine dimers and of (6-4) photoproducts. Their results show that certain TT cyclobutane dimers and rare TT (6-4) photoproducts are excised by cleavage seven and, less frequently, six phosphodiester bonds to the 5' side of the DNA lesion in addition to the primary cutting site at the eight 5' phosphodiester bond. The 3' cleavage sites are maintained at the fourth and fifth phosphodiester bonds for the these UV induced lesions. These data indicate that the cleavage pattern of the ABC excinuclease may be dependent upon both the type of DNA lesion as well as it surrounding nucleotide sequence. In addition, the authors analysis shows that (6-4) photoproducts are much better substrates for ABC excinuclease than are pyrimidine dimers

  17. A Structural Overview of RNA-Dependent RNA Polymerases from the Flaviviridae Family

    Directory of Open Access Journals (Sweden)

    Jiqin Wu

    2015-06-01

    Full Text Available RNA-dependent RNA polymerases (RdRPs from the Flaviviridae family are representatives of viral polymerases that carry out RNA synthesis through a de novo initiation mechanism. They share a ≈ 600-residue polymerase core that displays a canonical viral RdRP architecture resembling an encircled right hand with palm, fingers, and thumb domains surrounding the active site. Polymerase catalytic motifs A–E in the palm and motifs F/G in the fingers are shared by all viral RdRPs with sequence and/or structural conservations regardless of the mechanism of initiation. Different from RdRPs carrying out primer-dependent initiation, Flaviviridae and other de novo RdRPs utilize a priming element often integrated in the thumb domain to facilitate primer-independent initiation. Upon the transition to the elongation phase, this priming element needs to undergo currently unresolved conformational rearrangements to accommodate the growth of the template-product RNA duplex. In the genera of Flavivirus and Pestivirus, the polymerase module in the C-terminal part of the RdRP protein may be regulated in cis by the N-terminal region of the same polypeptide. Either being a methyltransferase in Flavivirus or a functionally unclarified module in Pestivirus, this region could play auxiliary roles for the canonical folding and/or the catalysis of the polymerase, through defined intra-molecular interactions.

  18. Computational Insights into the High-Fidelity Catalysis of Aminoacyl-tRNA Synthetases

    Science.gov (United States)

    Aboelnga, Mohamed M.

    Obtaining insights into the catalytic function of enzymes is an important area of research due to their widespread applications in the biotechnology and pharmaceutical industries. Among these enzymes, the aminoacyl-tRNA synthetases (aaRSs) are known for their remarkable fidelity in catalyzing the aminoacylation reactions of tRNA in protein biosynthesis. Despite the exceptional execution of this critical function, mechanistic details of the reactions catalyzed by aminoacyl-tRNA synthetases remain elusive demonstrating the obvious need to explore their remarkable chemistry. During the PhD studies reported in this thesis the mechanism of aminoacylation, pre?transfer editing and post?transfer editing catalyzed by different aaRS have been established using multi-scale computational enzymology. In the first two chapters a detailed information about aaRS and the addressed questions was given in addition to an overview of the used computational methodology currently used to investigate the enzymatic mechanisms. The aminoacylation mechanism of threonine by Threonyl-tRNA synthetases, glutamine by Glutaminyl-tRNA synthetases and glutamate by Glutamyl-tRNA synthetases have been clearly unveiled in chapter 3 and 4. Also, valuable information regarding the role of cofactors and active site residues has been obtained. While investigating the post-transfer editing mechanisms, which proceed in a remote and distinct active site, two different scenarios were experimentally suggested for two types of threonyl-tRNA synthetase species to correct the misacylation of the structurally related serine. We explored these two mechanisms as in chapters 5 and 6. Moreover, the synthetic site in which the aminoacylation reaction is catalyzed, is also responsible for a second type of proofreading reaction called pre-transfer editing mechanism. In chapter 7, this latter mechanism has been elucidated for both Seryl-tRNA synthetases and Isoleucyl-tRNA synthetases against their non-cognate substrates

  19. Protein cleavage strategies for an improved analysis of the membrane proteome

    Directory of Open Access Journals (Sweden)

    Poetsch Ansgar

    2006-03-01

    Full Text Available Abstract Background Membrane proteins still remain elusive in proteomic studies. This is in part due to the distribution of the amino acids lysine and arginine, which are less frequent in integral membrane proteins and almost absent in transmembrane helices. As these amino acids are cleavage targets for the commonly used protease trypsin, alternative cleavage conditions, which should improve membrane protein analysis, were tested by in silico digestion for the three organisms Saccharomyces cerevisiae, Halobacterium sp. NRC-1, and Corynebacterium glutamicum as hallmarks for eukaryotes, archea and eubacteria. Results For the membrane proteomes from all three analyzed organisms, we identified cleavage conditions that achieve better sequence and proteome coverage than trypsin. Greater improvement was obtained for bacteria than for yeast, which was attributed to differences in protein size and GRAVY. It was demonstrated for bacteriorhodopsin that the in silico predictions agree well with the experimental observations. Conclusion For all three examined organisms, it was found that a combination of chymotrypsin and staphylococcal peptidase I gave significantly better results than trypsin. As some of the improved cleavage conditions are not more elaborate than trypsin digestion and have been proven useful in practice, we suppose that the cleavage at both hydrophilic and hydrophobic amino acids should facilitate in general the analysis of membrane proteins for all organisms.

  20. Cleavage and Cell Adhesion Properties of Human Epithelial Cell Adhesion Molecule (HEPCAM)*

    Science.gov (United States)

    Tsaktanis, Thanos; Kremling, Heidi; Pavšič, Miha; von Stackelberg, Ricarda; Mack, Brigitte; Fukumori, Akio; Steiner, Harald; Vielmuth, Franziska; Spindler, Volker; Huang, Zhe; Jakubowski, Jasmine; Stoecklein, Nikolas H.; Luxenburger, Elke; Lauber, Kirsten; Lenarčič, Brigita; Gires, Olivier

    2015-01-01

    Human epithelial cell adhesion molecule (HEPCAM) is a tumor-associated antigen frequently expressed in carcinomas, which promotes proliferation after regulated intramembrane proteolysis. Here, we describe extracellular shedding of HEPCAM at two α-sites through a disintegrin and metalloprotease (ADAM) and at one β-site through BACE1. Transmembrane cleavage by γ-secretase occurs at three γ-sites to generate extracellular Aβ-like fragments and at two ϵ-sites to release human EPCAM intracellular domain HEPICD, which is efficiently degraded by the proteasome. Mapping of cleavage sites onto three-dimensional structures of HEPEX cis-dimer predicted conditional availability of α- and β-sites. Endocytosis of HEPCAM warrants acidification in cytoplasmic vesicles to dissociate protein cis-dimers required for cleavage by BACE1 at low pH values. Intramembrane cleavage sites are accessible and not part of the structurally important transmembrane helix dimer crossing region. Surprisingly, neither chemical inhibition of cleavage nor cellular knock-out of HEPCAM using CRISPR-Cas9 technology impacted the adhesion of carcinoma cell lines. Hence, a direct function of HEPCAM as an adhesion molecule in carcinoma cells is not supported and appears to be questionable. PMID:26292218

  1. Cytoplasmic viral RNA-dependent RNA polymerase disrupts the intracellular splicing machinery by entering the nucleus and interfering with Prp8.

    Directory of Open Access Journals (Sweden)

    Yen-Chin Liu

    2014-06-01

    Full Text Available The primary role of cytoplasmic viral RNA-dependent RNA polymerase (RdRp is viral genome replication in the cellular cytoplasm. However, picornaviral RdRp denoted 3D polymerase (3D(pol also enters the host nucleus, where its function remains unclear. In this study, we describe a novel mechanism of viral attack in which 3D(pol enters the nucleus through the nuclear localization signal (NLS and targets the pre-mRNA processing factor 8 (Prp8 to block pre-mRNA splicing and mRNA synthesis. The fingers domain of 3D(pol associates with the C-terminal region of Prp8, which contains the Jab1/MPN domain, and interferes in the second catalytic step, resulting in the accumulation of the lariat form of the splicing intermediate. Endogenous pre-mRNAs trapped by the Prp8-3D(pol complex in enterovirus-infected cells were identified and classed into groups associated with cell growth, proliferation, and differentiation. Our results suggest that picornaviral RdRp disrupts pre-mRNA splicing processes, that differs from viral protease shutting off cellular transcription and translation which contributes to the pathogenesis of viral infection.

  2. Characterization of a Non-Canonical Signal Peptidase Cleavage Site in a Replication Protein from Tomato Ringspot Virus.

    Directory of Open Access Journals (Sweden)

    Ting Wei

    Full Text Available The NTB-VPg polyprotein from tomato ringspot virus is an integral membrane replication protein associated with endoplasmic reticulum membranes. A signal peptidase (SPase cleavage was previously detected in the C-terminal region of NTB-VPg downstream of a 14 amino acid (aa-long hydrophobic region (termed TM2. However, the exact location of the cleavage site was not determined. Using in vitro translation assays, we show that the SPase cleavage site is conserved in the NTB-VPg protein from various ToRSV isolates, although the rate of cleavage varies from one isolate to another. Systematic site-directed mutagenesis of the NTB-VPg SPase cleavage sites of two ToRSV isolates allowed the identification of sequences that affect cleavage efficiency. We also present evidence that SPase cleavage in the ToRSV-Rasp2 isolate occurs within a GAAGG sequence likely after the AAG (GAAG/G. Mutation of a downstream MAAV sequence to AAAV resulted in SPase cleavage at both the natural GAAG/G and the mutated AAA/V sequences. Given that there is a distance of seven aa between the two cleavage sites, this indicates that there is flexibility in the positioning of the cleavage sites relative to the inner surface of the membrane and the SPase active site. SPase cleavage sites are typically located 3-7 aa downstream of the hydrophobic region. However, the NTB-VPg GAAG/G cleavage site is located 17 aa downstream of the TM2 hydrophobic region, highlighting unusual features of the NTB-VPg SPase cleavage site. A putative 11 aa-long amphipathic helix was identified immediately downstream of the TM2 region and five aa upstream of the GAAG/G cleavage site. Based on these results, we present an updated topology model in which the hydrophobic and amphipathic domains form a long tilted helix or a bent helix in the membrane lipid bilayer, with the downstream cleavage site(s oriented parallel to the membrane inner surface.

  3. Assessment of intravenous pbi-shRNA PDX1 nanoparticle (OFHIRNA-PDX1) in yucatan swine.

    Science.gov (United States)

    Jay, C M; Ruoff, C; Kumar, P; Maass, H; Spanhel, B; Miller, M; Arrington, A; Montalvo, N; Gresham, V; Rao, D D; Evans, C; Wang, Z; Brunicardi, F C; Liu, S-H; Zhou, G; Senzer, N; Nemunaitis, J; King, L; Weeks, B; Clubb, F J; Fossum, T W; Maples, P B

    2013-12-01

    PDX1 (pancreatic and duodenal homeobox 1) is overexpressed in pancreatic cancer, and its reduction results in tumor regression. Bi-functional pbi-shRNA PDX1 nanoparticle (OFHIRNA-PDX1) utilizes the endogenous micro-RNA biogenesis pathway to effect cleavage- and non-cleavage-dependent degradation of PDX1 mRNA. We have shown that OFHIRNA-PDX1 reduces pancreatic tumor volume in xenograft models. Thus, we are now exploring biorelevant large animal safety of OFHIRNA-PDX1. Mini pigs were chosen as the biorelevant species based on the similarity of human and pig PDX1 target sequence. In the initial study, animals developed fever, lethargy, hyporexia and cutaneous hyperemia following administration of OFHIRNA-PDX1. Twenty-one days later, the same animals demonstrated less toxicity with a second OFHIRNA-PDX1 infusion in conjunction with a prophylactic regimen involving dexamethasone, diphenhydramine, Indocin and ranitidine. In a new group of animals, PDX1 protein (31 kDa) expression in the pancreas was significantly repressed at 48 and 72 h (85%, P=0.018 and 88%, P=0.013; respectively) following a single infusion of OFHIRNA-PDX1 but recovered to normal state within 7 days. In conclusion, a single intravenous infusion of OFHIRNA-PDX1 in conjunction with premedication in pigs was well tolerated and demonstrated significant PDX1 knockdown.

  4. Transcriptome profiles of embryos before and after cleavage in Eriocheir sinensis: identification of developmental genes at the earliest stages

    Science.gov (United States)

    Hui, Min; Cui, Zhaoxia; Liu, Yuan; Song, Chengwen

    2017-07-01

    In crab, embryogenesis is a complicated developmental program marked by a series of critical events. RNA-Sequencing technology offers developmental biologists a way to identify many more developmental genes than ever before. Here, we present a comprehensive analysis of the transcriptomes of Eriocheir sinensis oosperms (Os) and embryos at the 2-4 cell stage (Cs), which are separated by a cleavage event. A total of 18 923 unigenes were identified, and 403 genes matched with gene ontology (GO) terms related to developmental processes. In total, 432 differentially expressed genes (DEGs) were detected between the two stages. Nine DEGs were specifically expressed at only one stage. These DEGs may be relevant to stage-specific molecular events during development. A number of DEGs related to `hedgehog signaling pathway', `Wnt signaling pathway' `germplasm', `nervous system', `sensory perception' and `segment polarity' were identified as being up-regulated at the Cs stage. The results suggest that these embryonic developmental events begin before the early cleavage event in crabs, and that many of the genes expressed in the two transcriptomes might be maternal genes. Our study provides ample information for further research on the molecular mechanisms underlying crab development.

  5. Alfalfa dwarf cytorhabdovirus P protein is a local and systemic RNA silencing supressor which inhibits programmed RISC activity and prevents transitive amplification of RNA silencing.

    Science.gov (United States)

    Bejerman, Nicolás; Mann, Krin S; Dietzgen, Ralf G

    2016-09-15

    Plants employ RNA silencing as an innate defense mechanism against viruses. As a counter-defense, plant viruses have evolved to express RNA silencing suppressor proteins (RSS), which target one or more steps of the silencing pathway. In this study, we show that the phosphoprotein (P) encoded by the negative-sense RNA virus alfalfa dwarf virus (ADV), a species of the genus Cytorhabdovirus, family Rhabdoviridae, is a suppressor of RNA silencing. ADV P has a relatively weak local RSS activity, and does not prevent siRNA accumulation. On the other hand, ADV P strongly suppresses systemic RNA silencing, but does not interfere with the short-distance spread of silencing, which is consistent with its lack of inhibition of siRNA accumulation. The mechanism of suppression appears to involve ADV P binding to RNA-induced silencing complex proteins AGO1 and AGO4 as shown in protein-protein interaction assays when ectopically expressed. In planta, we demonstrate that ADV P likely functions by inhibiting miRNA-guided AGO1 cleavage and prevents transitive amplification by repressing the production of secondary siRNAs. As recently described for lettuce necrotic yellows cytorhabdovirus P, but in contrast to other viral RSS known to disrupt AGO activity, ADV P sequence does not contain any recognizable GW/WG or F-box motifs, which suggests that cytorhabdovirus P proteins may use alternative motifs to bind to AGO proteins. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  6. Differential distribution of calcineurin Aα isoenzyme mRNA's in rat brain

    NARCIS (Netherlands)

    Buttini, M.; Limonta, S.; Luyten, M.; Boddeke, H.

    1993-01-01

    Specific antisense oligonucleotide probes for the α isoforms of the catalytic subunit (A-subunit) of calcineurin were prepared and the distribution of Aα1 and Aα2 mRNA's has been studied in rat brain using in situ hybridization histochemistry. Clear regional differences have been observed for the

  7. A catalytic metal ion interacts with the cleavage site G•U wobble in the HDV ribozyme†

    Science.gov (United States)

    Chen, Jui-Hui; Gong, Bo; Bevilacqua, Philip C.; Carey, Paul R.; Golden, Barbara L.

    2009-01-01

    The HDV ribozyme self-cleaves by a chemical mechanism involving general acid-base catalysis to generate a 2′,3′-cyclic phosphate and a 5′-hydroxyl termini. Biochemical studies from several laboratories have implicated C75 as the general acid and hydrated magnesium as the general base. We have previously shown that C75 has a pKa shifted > 2 pH units toward neutrality [Gong, B., Chen, J. H., Chase, E., Chadalavada, D. M., Yajima, R., Golden, B. L., Bevilacqua, P. C., and Carey, P. R. (2007) J. Am. Chem. Soc. 129, 13335–13342.], while in crystal structures, it is well-positioned for proton transfer. However no crystallographic evidence for a hydrated magnesium poised to serve as a general base in the reaction has been observed in high-resolution crystal structures of various reaction states and mutants. Herein, we use solution kinetic experiments and parallel Raman crystallographic studies to examine the effects of pH on rate and Mg2+-binding properties of wild-type and 7-deazaguanosine mutants of the HDV ribozyme. These data suggest that a previously-unobserved hydrated magnesium ion interacts with the N7 of the cleavage site G•U wobble base pair. Integrating this metal ion binding site with the available crystal structures provides a new three-dimensional model for the active site of the ribozyme that accommodates all available biochemical data and appears competent for catalysis. The position of this metal is consistent with a role of a magnesium-bound hydroxide as a general base as dictated by biochemical data. PMID:19178151

  8. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls

    KAUST Repository

    Bruno, Mark

    2015-04-01

    Down-regulation of the potato carotenoid cleavage dioxygenase 4 (StCCD4) transcript level led to tubers with altered morphology and sprouting activity, which also accumulated higher levels of violaxanthin and lutein leading to elevated carotenoid amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating Escherichia coli strains and by performing in vitro assays with heterologously expressed enzyme. StCCD4 catalyzed the cleavage of all-. trans-β-carotene at the C9\\'-C10\\' double bond, leading to β-ionone and all-. trans-β-apo-10\\'-carotenal, both in vivo and in vitro. The enzyme also cleaved β,β-cryptoxanthin, zeaxanthin and lutein either at the C9\\'-C10\\' or the C9-C10 double bond in vitro. In contrast, we did not observe any conversion of violaxanthin and only traces of activity with 9-. cis-β-carotene, which led to 9-. cis-β-apo-10\\'-carotenal. Our data indicate that all-. trans-β-carotene is the likely substrate of StCCD4 in planta, and that this carotene may be precursor of an unknown compound involved in tuber development.

  9. Active Center Control of Termination by RNA Polymerase III and tRNA Gene Transcription Levels In Vivo.

    Directory of Open Access Journals (Sweden)

    Keshab Rijal

    2016-08-01

    Full Text Available The ability of RNA polymerase (RNAP III to efficiently recycle from termination to reinitiation is critical for abundant tRNA production during cellular proliferation, development and cancer. Yet understanding of the unique termination mechanisms used by RNAP III is incomplete, as is its link to high transcription output. We used two tRNA-mediated suppression systems to screen for Rpc1 mutants with gain- and loss- of termination phenotypes in S. pombe. 122 point mutation mutants were mapped to a recently solved 3.9 Å structure of yeast RNAP III elongation complex (EC; they cluster in the active center bridge helix and trigger loop, as well as the pore and funnel, the latter of which indicate involvement of the RNA cleavage domain of the C11 subunit in termination. Purified RNAP III from a readthrough (RT mutant exhibits increased elongation rate. The data strongly support a kinetic coupling model in which elongation rate is inversely related to termination efficiency. The mutants exhibit good correlations of terminator RT in vitro and in vivo, and surprisingly, amounts of transcription in vivo. Because assessing in vivo transcription can be confounded by various parameters, we used a tRNA reporter with a processing defect and a strong terminator. By ruling out differences in RNA decay rates, the data indicate that mutants with the RT phenotype synthesize more RNA than wild type cells, and than can be accounted for by their increased elongation rate. Finally, increased activity by the mutants appears unrelated to the RNAP III repressor, Maf1. The results show that the mobile elements of the RNAP III active center, including C11, are key determinants of termination, and that some of the mutations activate RNAP III for overall transcription. Similar mutations in spontaneous cancer suggest this as an unforeseen mechanism of RNAP III activation in disease.

  10. Nonlinear physics approach to RNA cross-replication: Marginal stability, generalized logistic growth, and impacts of degradation

    Energy Technology Data Exchange (ETDEWEB)

    Frank, T.D., E-mail: till.frank@ucd.ie [UCD School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Systems Biology Ireland, University College Dublin, Belfield, Dublin 4 (Ireland); Center for the Ecological Study of Perception and Action, Department of Psychology, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269 (United States)

    2011-10-24

    Highlights: → RNA cross-replication is a marginally stable but not asymptotically stable process. → RNA enzymes exhibits a generalized logistic growth pattern with exponent equal to 2. → Degradation results in non-symmetric saturation levels of cross-replicating RNAs. -- Abstract: It is nowadays believed that the evolution of life involved as an intermediate step an RNA world. In such an RNA world RNA molecules replicate themselves in catalytic reactions. Recent experiments on cross-replicating RNA support the RNA world hypothesis. We derive a nonlinear mass-action kinetics model to explain logistic growth patterns and non-symmetric saturation levels observed in those experiments. We also demonstrate that fixed points of the RNA growth process are only marginally stable rather than asymptotically stable.

  11. [Recent knowledge about intestinal absorption and cleavage of carotenoids].

    Science.gov (United States)

    Borel, P; Drai, J; Faure, H; Fayol, V; Galabert, C; Laromiguière, M; Le Moël, G

    2005-01-01

    Our knowledge about intestinal absorption and cleavage of carotenoids has rapidly grown during the last years. New facts about carotenoid absorption have emerged while some controversies about cleavage are close to end. The knowledge of the absorption and conversion processes is indispensable to understand and interpret the perturbations that can occur in the metabolism of carotenoids and vitamin A. Recently, it has been shown that the absorption of certain carotenoids is not passive - as believed for a long time - but is a facilitated process that requires, at least for lutein, the class B-type 1 scavenger receptor (SR-B1). Various epidemiological and clinical studies have shown wide variations in carotenoid absorption from one subject to another, such differences are now explained by the structure of the concerned carotenoid, by the nature of the food that is absorbed with the carotenoid, by diverse exogenous factors like the intake of medicines or interfering components, by diet factors, by genetic factors, and by the nutritional status of the subject. Recently, the precise mechanism of beta-carotene cleavage by betabeta-carotene 15,15' monooxygenase (EC 1.14.99.36) - formerly called beta-carotene 15,15' dioxygenase (ex EC 1.13.11.21) - has been discovered, and a second enzyme which cleaves asymmetrically the beta-carotene molecule has been found. beta-carotene 15,15' monooxygenase only acts on the 15,15' bond, thus forming two molecules of retinal from one molecule of beta-carotene by central cleavage. Even though the betabeta-carotene 15,15' monooxygenase is much more active on the beta-carotene molecule, a study has shown that it can act on all carotenoids. Searchers now agree that other enzymes that can catalyse an eccentric cleavage of carotenoids probably exist, but under physiological conditions the betabeta-carotene 15,15' monooxygenase is by far the most active, and it is mainly effective in the small bowel mucosa and in the liver. However the

  12. Enterovirus 71 3C protease cleaves a novel target CstF-64 and inhibits cellular polyadenylation.

    Directory of Open Access Journals (Sweden)

    Kuo-Feng Weng

    2009-09-01

    Full Text Available Identification of novel cellular proteins as substrates to viral proteases would provide a new insight into the mechanism of cell-virus interplay. Eight nuclear proteins as potential targets for enterovirus 71 (EV71 3C protease (3C(pro cleavages were identified by 2D electrophoresis and MALDI-TOF analysis. Of these proteins, CstF-64, which is a critical factor for 3' pre-mRNA processing in a cell nucleus, was selected for further study. A time-course study to monitor the expression levels of CstF-64 in EV71-infected cells also revealed that the reduction of CstF-64 during virus infection was correlated with the production of viral 3C(pro. CstF-64 was cleaved in vitro by 3C(pro but neither by mutant 3C(pro (in which the catalytic site was inactivated nor by another EV71 protease 2A(pro. Serial mutagenesis was performed in CstF-64, revealing that the 3C(pro cleavage sites are located at position 251 in the N-terminal P/G-rich domain and at multiple positions close to the C-terminus of CstF-64 (around position 500. An accumulation of unprocessed pre-mRNA and the depression of mature mRNA were observed in EV71-infected cells. An in vitro assay revealed the inhibition of the 3'-end pre-mRNA processing and polyadenylation in 3C(pro-treated nuclear extract, and this impairment was rescued by adding purified recombinant CstF-64 protein. In summing up the above results, we suggest that 3C(pro cleavage inactivates CstF-64 and impairs the host cell polyadenylation in vitro, as well as in virus-infected cells. This finding is, to our knowledge, the first to demonstrate that a picornavirus protein affects the polyadenylation of host mRNA.

  13. Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography.

    Science.gov (United States)

    Sauguet, Ludovic; Raia, Pierre; Henneke, Ghislaine; Delarue, Marc

    2016-08-22

    Archaeal replicative DNA polymerase D (PolD) constitute an atypical class of DNA polymerases made of a proofreading exonuclease subunit (DP1) and a larger polymerase catalytic subunit (DP2), both with unknown structures. We have determined the crystal structures of Pyrococcus abyssi DP1 and DP2 at 2.5 and 2.2 Å resolution, respectively, revealing a catalytic core strikingly different from all other known DNA polymerases (DNAPs). Rather, the PolD DP2 catalytic core has the same 'double-psi β-barrel' architecture seen in the RNA polymerase (RNAP) superfamily, which includes multi-subunit transcriptases of all domains of life, homodimeric RNA-silencing pathway RNAPs and atypical viral RNAPs. This finding bridges together, in non-viral world, DNA transcription and DNA replication within the same protein superfamily. This study documents further the complex evolutionary history of the DNA replication apparatus in different domains of life and proposes a classification of all extant DNAPs.

  14. Endocytic down-regulation of ErbB2 is stimulated by cleavage of its C-terminus

    DEFF Research Database (Denmark)

    Lerdrup, Mads; Bruun, Silas; Grandal, Michael Vibo

    2007-01-01

    inhibition of HSP90 with geldanamycin this cleavage is accompanied by proteasome-dependent endocytosis of ErbB2. However, it is unknown whether C-terminal cleavage is linked to endocytosis. To study ErbB2 cleavage and endocytic trafficking, we fused yellow fluorescent protein (YFP) and cyan fluorescent...

  15. Effects of S-adenosylmethionine decarboxylase, polyamines, amino acids, and weak bases (amines and ammonia) on development and ribosomal RNA synthesis in Xenopus embryos.

    Science.gov (United States)

    Shiokawa, Koichiro; Aso, Mai; Kondo, Takeshi; Takai, Jun-Ichi; Yoshida, Junki; Mishina, Takamichi; Fuchimukai, Kota; Ogasawara, Tsukasa; Kariya, Taro; Tashiro, Kosuke; Igarashi, Kazuei

    2010-02-01

    We have been studying control mechanisms of gene expression in early embryogenesis in a South African clawed toad Xenopus laevis, especially during the period of midblastula transition (MBT), or the transition from the phase of active cell division (cleavage stage) to the phase of extensive morphogenesis (post-blastular stages). We first found that ribosomal RNA synthesis is initiated shortly after MBT in Xenopus embryos and those weak bases, such as amines and ammonium ion, selectively inhibit the initiation and subsequent activation of rRNA synthesis. We then found that rapidly labeled heterogeneous mRNA-like RNA is synthesized in embryos at pre-MBT stage. We then performed cloning and expression studies of several genes, such as those for activin receptors, follistatin and aldolases, and then reached the studies of S-adenosylmethionine decarboxylase (SAMDC), a key enzyme in polyamine metabolism. Here, we cloned a Xenopus SAMDC cDNA and performed experiments to overexpress the in vitro-synthesized SAMDC mRNA in Xenopus early embryos, and found that the maternally preset program of apoptosis occurs in cleavage stage embryos, which is executed when embryos reach the stage of MBT. In the present article, we first summarize results on SAMDC and the maternal program of apoptosis, and then describe our studies on small-molecular-weight substances like polyamines, amino acids, and amines in Xenopus embryos. Finally, we summarize our studies on weak bases, especially on ammonium ion, as the specific inhibitor of ribosomal RNA synthesis in Xenopus embryonic cells.

  16. Effects of Cysteamine on Sheep Embryo Cleavage Rates

    Directory of Open Access Journals (Sweden)

    Sinem Ö. ENGİNLER

    2015-01-01

    Full Text Available Oxidative stress during in vitro culture leads to defects in development of gametes and embryos. Several antioxidants such as cysteamine, L-ascorbic acid, beta mercaptoethanol, cysteine, glutathione, proteins, vitamins have been used to supplement culture media to counter the oxidative stress. This study was conducted to detect the effect of adding cysteamine to the maturation medium to subsequent cleavage rates of sheep embryos. Totally 604 ovaries were obtained by ten replica and 2060 oocytes were collected. The cumulus oocyte complexes were recovered by the slicing method. A total of 1818 selected oocytes were divided into two groups and used for maturation (88.25%. The first group was created as supplemented with cysteamine (Group A and second group (Group B, control without cysteamine in TCM-199. The two groups were incubated for 24 h at 38.8 °C in an atmosphere of 5% CO2 in humidified air for in vitro maturation (IVM. After IVM, oocytes were fertilized with 50 x 107 / mL fresh ram semen in BSOF medium for 18 h. After fertilization, maturation groups were divided into two subgroups with different culture media: Group AI-SOF (Synthetic Oviduct Fluid medium, Group AII-CR1aa (Charles Rosencrans medium, Group BI-SOF and Group BII-CR1aa were achieved. Cleavage rates were evaluated at day 2. post insemination. The rates of cleavage were detected as 59.54% (184/309, 55.44% (173/312, 65.34% (215/329, 59.34% (200/337 respectively, with showing no statistically significant difference between the groups at the level of P>0.05. In conclusion, supplementing cysteamine to maturation media in TCM-199 did not affect the cleavage rates of sheep embryos in SOF and CR1aa culture media.

  17. Variable context Markov chains for HIV protease cleavage site prediction.

    Science.gov (United States)

    Oğul, Hasan

    2009-06-01

    Deciphering the knowledge of HIV protease specificity and developing computational tools for detecting its cleavage sites in protein polypeptide chain are very desirable for designing efficient and specific chemical inhibitors to prevent acquired immunodeficiency syndrome. In this study, we developed a generative model based on a generalization of variable order Markov chains (VOMC) for peptide sequences and adapted the model for prediction of their cleavability by certain proteases. The new method, called variable context Markov chains (VCMC), attempts to identify the context equivalence based on the evolutionary similarities between individual amino acids. It was applied for HIV-1 protease cleavage site prediction problem and shown to outperform existing methods in terms of prediction accuracy on a common dataset. In general, the method is a promising tool for prediction of cleavage sites of all proteases and encouraged to be used for any kind of peptide classification problem as well.

  18. Steam reformer with catalytic combustor

    Science.gov (United States)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  19. Comparison of dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells.

    Directory of Open Access Journals (Sweden)

    Jaclyn C Scott

    2010-10-01

    Full Text Available The exogenous RNA interference (RNAi pathway is an important antiviral defense against arboviruses in mosquitoes, and virus-specific small interfering (siRNAs are key components of this pathway. Understanding the biogenesis of siRNAs in mosquitoes could have important ramifications in using RNAi to control arbovirus transmission. Using deep sequencing technology, we characterized dengue virus type 2 (DENV2-specific small RNAs produced during infection of Aedes aegypti mosquitoes and A. aegypti Aag2 cell cultures and compared them to those produced in the C6/36 Aedes albopictus cell line. We show that the size and mixed polarity of virus-specific small RNAs from DENV-infected A. aegypti cells indicate that they are products of Dicer-2 (Dcr2 cleavage of long dsRNA, whereas C6/36 cells generate DENV2-specific small RNAs that are longer and predominantly positive polarity, suggesting that they originate from a different small RNA pathway. Examination of virus-specific small RNAs after infection of the two mosquito cell lines with the insect-only flavivirus cell fusing agent virus (CFAV corroborated these findings. An in vitro assay also showed that Aag2 A. aegypti cells are capable of siRNA production, while C6/36 A. albopictus cells exhibit inefficient Dcr2 cleavage of long dsRNA. Defective expression or function of Dcr2, the key initiator of the RNAi pathway, might explain the comparatively robust growth of arthropod-borne viruses in the C6/36 cell line, which has been used frequently as a surrogate for studying molecular interactions between arboviruses and cells of their mosquito hosts.

  20. Changes in Contact Area in Meniscus Horizontal Cleavage Tears Subjected to Repair and Resection.

    Science.gov (United States)

    Beamer, Brandon S; Walley, Kempland C; Okajima, Stephen; Manoukian, Ohan S; Perez-Viloria, Miguel; DeAngelis, Joseph P; Ramappa, Arun J; Nazarian, Ara

    2017-03-01

    To assess the changes in tibiofemoral contact pressure and contact area in human knees with a horizontal cleavage tear before and after treatment. Ten human cadaveric knees were tested. Pressure sensors were placed under the medial meniscus and the knees were loaded at twice the body weight for 20 cycles at 0°, 10°, and 20° of flexion. Contact area and pressure were recorded for the intact meniscus, the meniscus with a horizontal cleavage tear, after meniscal repair, after partial meniscectomy (single leaflet), and after subtotal meniscectomy (double leaflet). The presence of a horizontal cleavage tear significantly increased average peak contact pressure and reduced effective average tibiofemoral contact area at all flexion angles tested compared with the intact state (P contact pressure after creation of the horizontal cleavage tear. Repairing the horizontal cleavage tear restored peak contact pressures and areas to within 15% of baseline, statistically similar to the intact state at all angles tested (P contact pressure and reduced average contact area at all degrees of flexion compared with the intact state (P contact area and a significant elevation in contact pressure. These changes may accelerate joint degeneration. A suture-based repair of these horizontal cleavage tears returns the contact area and contact pressure to nearly normal, whereas both partial and subtotal meniscectomy lead to significant reductions in contact area and significant elevations in contact pressure within the knee. Repairing horizontal cleavage tears may lead to improved clinical outcomes by preserving meniscal tissue and the meniscal function. Understanding contact area and peak contact pressure resulting from differing strategies for treating horizontal cleavage tears will allow the surgeon to evaluate the best strategy for treating his or her patients who present with this meniscal pathology. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier

  1. Oxidative cleavage of erucic acid for the synthesis of brassylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed J. Nasrullah; Pooja Thapliyal; Erica N. Pfarr; Nicholas S. Dusek; Kristofer L. Schiele; James A. Bahr

    2010-10-29

    The main focus of this work is to synthesize Brassylic Acid (BA) using oxidative cleavage of Erucic Acid (EA). Crambe (Crambe abyssinica) is an industrial oilseed grown in North Dakota. Crambe has potential as an industrial fatty acid feedstock as a source of Erucic acid (EA). It has approximately 50-60 % of EA, a C{sub 22} monounsaturated fatty acid. Oxidative cleavage of unsaturated fatty acids derived from oilseeds produces long chain (9, 11, and 13 carbon atoms) dibasic and monobasic acids. These acids are known commercial feedstocks for the preparation of nylons, polyesters, waxes, surfactants, and perfumes. Other sources of EA are Rapeseed seed oil which 50-60 % of EA. Rapeseed is grown outside USA. The oxidative cleavage of EA was done using a high throughput parallel pressure reactor system. Kinetics of the reaction shows that BA yields reach a saturation at 12 hours. H{sub 2}WO{sub 4} was found to be the best catalyst for the oxidative cleavage of EA. High yields of BA were obtained at 80 C with bubbling of O{sub 2} or 10 bar of O{sub 2} for 12 hours.

  2. Caspase-Dependent Apoptosis Induced by Telomere Cleavage and TRF2 Loss

    Directory of Open Access Journals (Sweden)

    Asha S. Multani

    2000-07-01

    Full Text Available Chromosomal abnormalities involving telomeric associations (TAs often precede replicative senescence and abnormal chromosome configurations. We report here that telomere cleavage following exposure to proapoptotic agents is an early event in apoptosis. Exposure of human and murine cancer cells to a variety of pro-apoptotic stimuli (staurosporine, thapsigargin, anti-Fas antibody, cancer chemotherapeutic agents resulted in telomere cleavage and aggregation, finally their extrusion from the nuclei. Telomere loss was associated with arrest of cells in G2/M phase and preceded DNA fragmentation. Telomere erosion and subsequent large-scale chromatin cleavage were inhibited by overexpression of the anti -apoptotic protein, bcl-2, two peptide caspase inhibitors (BACMK and zVADfmk, indicating that both events are regulated by caspase activation. The results demonstrate that telomere cleavage is an early chromatin alteration detected in various cancer cell lines leading to drug-induced apoptosis, suggest that this event contributes to mitotic catastrophe and induction of cell death. Results also suggest that the decrease of telomeric-repeat binding factor 2 (TRF2 may be the earliest event in the ara-C-induced telomere shortening, induction of endoreduplication and chromosomal fragmentation leading to cell death.

  3. An anti-HIV-1 compound that increases steady-state expression of apoplipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G.

    Science.gov (United States)

    Ejima, Tomohiko; Hirota, Mayuko; Mizukami, Tamio; Otsuka, Masami; Fujita, Mikako

    2011-10-01

    Human apoplipoprotein B mRNA-editing enzyme-catalytic polypeptide-like (APOBEC) 3G (A3G) is an antiviral protein that blocks HIV-1 replication. However, the antiviral activity of A3G is overcome by the HIV-1 protein Vif. This inhibitory function of Vif is related to its ability to degrade A3G in the proteasome. This finding prompted us to examine the activities of 4-(dimethylamino)-2,6-bis[(N-(2-[(2-nitrophenyl)dithio]ethyl)amino)methyl]pyridine (SN-2) and SN-3. We found that 5 µM SN-2 increases the expression of A3G to a level much higher than that observed in the absence of Vif, without affecting the level of Vif expression. The proteasome inhibitor MG-132 increased the level of both A3G and Vif expression. These results demonstrate that A3G is ubiquitinated and degraded in the proteasome by a factor other than Vif, and that SN-2 selectively inhibits these processes. Furthermore, 5 µM SN-2 significantly inhibited the MAGI cell infectivity of wild-type HIV-1. These findings may contribute to the development of a novel anti-HIV-1 drug.

  4. Theoretical studies on sRNA-mediated regulation in bacteria

    Science.gov (United States)

    Chang, Xiao-Xue; Xu, Liu-Fang; Shi, Hua-Lin

    2015-12-01

    Small RNA(sRNA)-mediated post-transcriptional regulation differs from protein-mediated regulation. Through base-pairing, sRNA can regulate the target mRNA in a catalytic or stoichiometric manner. Some theoretical models were built for comparison of the protein-mediated and sRNA-mediated modes in the steady-state behaviors and noise properties. Many experiments demonstrated that a single sRNA can regulate several mRNAs, which causes crosstalk between the targets. Here, we focus on some models in which two target mRNAs are silenced by the same sRNA to discuss their crosstalk features. Additionally, the sequence-function relationship of sRNA and its role in the kinetic process of base-pairing have been highlighted in model building. Project supported by the National Basic Research Program of China (Grant No. 2013CB834100), the National Natural Science Foundation of China (Grant Nos. 11121403 and 11274320), the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Grant No. Y4KF171CJ1), the National Natural Science Foundation for Young Scholar of China (Grant No. 11304115), and the China Postdoctoral Science Foundation (Grant No. 2013M541282).

  5. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls.

    Science.gov (United States)

    Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2015-04-15

    Down-regulation of the potato carotenoid cleavage dioxygenase 4 (StCCD4) transcript level led to tubers with altered morphology and sprouting activity, which also accumulated higher levels of violaxanthin and lutein leading to elevated carotenoid amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating Escherichia coli strains and by performing in vitro assays with heterologously expressed enzyme. StCCD4 catalyzed the cleavage of all-trans-β-carotene at the C9'-C10' double bond, leading to β-ionone and all-trans-β-apo-10'-carotenal, both in vivo and in vitro. The enzyme also cleaved β,β-cryptoxanthin, zeaxanthin and lutein either at the C9'-C10' or the C9-C10 double bond in vitro. In contrast, we did not observe any conversion of violaxanthin and only traces of activity with 9-cis-β-carotene, which led to 9-cis-β-apo-10'-carotenal. Our data indicate that all-trans-β-carotene is the likely substrate of StCCD4 in planta, and that this carotene may be precursor of an unknown compound involved in tuber development. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Computational analysis of siRNA recognition by the Ago2 PAZ domain and identification of the determinants of RNA-induced gene silencing.

    Directory of Open Access Journals (Sweden)

    Mahmoud Kandeel

    Full Text Available RNA interference (RNAi is a highly specialized process of protein-siRNA interaction that results in the regulation of gene expression and cleavage of target mRNA. The PAZ domain of the Argonaute proteins binds to the 3' end of siRNA, and during RNAi the attaching end of the siRNA switches between binding and release from its binding pocket. This biphasic interaction of the 3' end of siRNA with the PAZ domain is essential for RNAi activity; however, it remains unclear whether stronger or weaker binding with PAZ domain will facilitate or hinder the overall RNAi process. Here we report the correlation between the binding of modified siRNA 3' overhang analogues and their in vivo RNAi efficacy. We found that higher RNAi efficacy was associated with the parameters of lower Ki value, lower total intermolecular energy, lower free energy, higher hydrogen bonding, smaller total surface of interaction and fewer van der Waals interactions. Electrostatic interaction was a minor contributor to compounds recognition, underscoring the presence of phosphate groups in the modified analogues. Thus, compounds with lower binding affinity are associated with better gene silencing. Lower binding strength along with the smaller interaction surface, higher hydrogen bonding and fewer van der Waals interactions were among the markers for favorable RNAi activity. Within the measured parameters, the interaction surface, van der Waals interactions and inhibition constant showed a statistically significant correlation with measured RNAi efficacy. The considerations provided in this report will be helpful in the design of new compounds with better gene silencing ability.

  7. Rate turnover in mechano-catalytic coupling: A model and its microscopic origin

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Mahua; Grazioli, Gianmarc; Andricioaei, Ioan, E-mail: andricio@uci.edu [Department of Chemistry, University of California, Irvine, California 92697 (United States)

    2015-07-28

    A novel aspect in the area of mechano-chemistry concerns the effect of external forces on enzyme activity, i.e., the existence of mechano-catalytic coupling. Recent experiments on enzyme-catalyzed disulphide bond reduction in proteins under the effect of a force applied on the termini of the protein substrate reveal an unexpected biphasic force dependence for the bond cleavage rate. Here, using atomistic molecular dynamics simulations combined with Smoluchowski theory, we propose a model for this behavior. For a broad range of forces and systems, the model reproduces the experimentally observed rates by solving a reaction-diffusion equation for a “protein coordinate” diffusing in a force-dependent effective potential. The atomistic simulations are used to compute, from first principles, the parameters of the model via a quasiharmonic analysis. Additionally, the simulations are also used to provide details about the microscopic degrees of freedom that are important for the underlying mechano-catalysis.

  8. Rate turnover in mechano-catalytic coupling: A model and its microscopic origin

    International Nuclear Information System (INIS)

    Roy, Mahua; Grazioli, Gianmarc; Andricioaei, Ioan

    2015-01-01

    A novel aspect in the area of mechano-chemistry concerns the effect of external forces on enzyme activity, i.e., the existence of mechano-catalytic coupling. Recent experiments on enzyme-catalyzed disulphide bond reduction in proteins under the effect of a force applied on the termini of the protein substrate reveal an unexpected biphasic force dependence for the bond cleavage rate. Here, using atomistic molecular dynamics simulations combined with Smoluchowski theory, we propose a model for this behavior. For a broad range of forces and systems, the model reproduces the experimentally observed rates by solving a reaction-diffusion equation for a “protein coordinate” diffusing in a force-dependent effective potential. The atomistic simulations are used to compute, from first principles, the parameters of the model via a quasiharmonic analysis. Additionally, the simulations are also used to provide details about the microscopic degrees of freedom that are important for the underlying mechano-catalysis

  9. A multi-step strategy to obtain crystals of the dengue virus RNA-dependent RNA polymerase that diffract to high resolution

    International Nuclear Information System (INIS)

    Yap, Thai Leong; Chen, Yen Liang; Xu, Ting; Wen, Daying; Vasudevan, Subhash G.; Lescar, Julien

    2007-01-01

    Crystals of the RNA-dependent RNA polymerase catalytic domain from the dengue virus NS5 protein have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration. These crystals diffract to 1.85 Å resolution and are thus suitable for a structure-based drug-design program. Dengue virus, a member of the Flaviviridae genus, causes dengue fever, an important emerging disease with several million infections occurring annually for which no effective therapy exists. The viral RNA-dependent RNA polymerase NS5 plays an important role in virus replication and represents an interesting target for the development of specific antiviral compounds. Crystals that diffract to 1.85 Å resolution that are suitable for three-dimensional structure determination and thus for a structure-based drug-design program have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration

  10. A multi-step strategy to obtain crystals of the dengue virus RNA-dependent RNA polymerase that diffract to high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Thai Leong [Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos Building, Singapore 138670 (Singapore); School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Chen, Yen Liang; Xu, Ting; Wen, Daying; Vasudevan, Subhash G. [Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos Building, Singapore 138670 (Singapore); Lescar, Julien, E-mail: julien@ntu.edu.sg [Novartis Institute for Tropical Diseases, 10 Biopolis Road, Chromos Building, Singapore 138670 (Singapore); School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)

    2007-02-01

    Crystals of the RNA-dependent RNA polymerase catalytic domain from the dengue virus NS5 protein have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration. These crystals diffract to 1.85 Å resolution and are thus suitable for a structure-based drug-design program. Dengue virus, a member of the Flaviviridae genus, causes dengue fever, an important emerging disease with several million infections occurring annually for which no effective therapy exists. The viral RNA-dependent RNA polymerase NS5 plays an important role in virus replication and represents an interesting target for the development of specific antiviral compounds. Crystals that diffract to 1.85 Å resolution that are suitable for three-dimensional structure determination and thus for a structure-based drug-design program have been obtained using a strategy that included expression screening of naturally occurring serotype variants of the protein, the addition of divalent metal ions and crystal dehydration.

  11. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  12. Copper(II) and Zinc(II) Complexes of Conformationally Constrained Polyazamacrocycles as Efficient Catalysts for RNA Model Substrate Cleavage in Aqueous Solution at Physiological pH

    Czech Academy of Sciences Publication Activity Database

    Bím, Daniel; Svobodová, E.; Eigner, V.; Rulíšek, Lubomír; Hodačová, J.

    2016-01-01

    Roč. 22, č. 30 (2016), s. 10426-10437 ISSN 0947-6539 R&D Projects: GA ČR(CZ) GA14-31419S Institutional support: RVO:61388963 Keywords : cleavage reactions * density functional calculations * ligand design * macrocyclic ligands * reaction mechanisms Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.317, year: 2016

  13. Computational analysis and modeling of cleavage by the immunoproteasome and the constitutive proteasome

    Directory of Open Access Journals (Sweden)

    Lafuente Esther M

    2010-09-01

    Full Text Available Abstract Background Proteasomes play a central role in the major histocompatibility class I (MHCI antigen processing pathway. They conduct the proteolytic degradation of proteins in the cytosol, generating the C-terminus of CD8 T cell epitopes and MHCI-peptide ligands (P1 residue of cleavage site. There are two types of proteasomes, the constitutive form, expressed in most cell types, and the immunoproteasome, which is constitutively expressed in mature dendritic cells. Protective CD8 T cell epitopes are likely generated by the immunoproteasome and the constitutive proteasome, and here we have modeled and analyzed the cleavage by these two proteases. Results We have modeled the immunoproteasome and proteasome cleavage sites upon two non-overlapping sets of peptides consisting of 553 CD8 T cell epitopes, naturally processed and restricted by human MHCI molecules, and 382 peptides eluted from human MHCI molecules, respectively, using N-grams. Cleavage models were generated considering different epitope and MHCI-eluted fragment lengths and the same number of C-terminal flanking residues. Models were evaluated in 5-fold cross-validation. Judging by the Mathew's Correlation Coefficient (MCC, optimal cleavage models for the proteasome (MCC = 0.43 ± 0.07 and the immunoproteasome (MCC = 0.36 ± 0.06 were obtained from 12-residue peptide fragments. Using an independent dataset consisting of 137 HIV1-specific CD8 T cell epitopes, the immunoproteasome and proteasome cleavage models achieved MCC values of 0.30 and 0.18, respectively, comparatively better than those achieved by related methods. Using ROC analyses, we have also shown that, combined with MHCI-peptide binding predictions, cleavage predictions by the immunoproteasome and proteasome models significantly increase the discovery rate of CD8 T cell epitopes restricted by different MHCI molecules, including A*0201, A*0301, A*2402, B*0702, B*2705. Conclusions We have developed models that are specific

  14. HuD Regulates Coding and Noncoding RNA to Induce APP→Aβ Processing

    Directory of Open Access Journals (Sweden)

    Min-Ju Kang

    2014-06-01

    Full Text Available The primarily neuronal RNA-binding protein HuD is implicated in learning and memory. Here, we report the identification of several HuD target transcripts linked to Alzheimer’s disease (AD pathogenesis. HuD interacted with the 3′ UTRs of APP mRNA (encoding amyloid precursor protein and BACE1 mRNA (encoding β-site APP-cleaving enzyme 1 and increased the half-lives of these mRNAs. HuD also associated with and stabilized the long noncoding (lncRNA BACE1AS, which partly complements BACE1 mRNA and enhances BACE1 expression. Consistent with HuD promoting production of APP and APP-cleaving enzyme, the levels of APP, BACE1, BACE1AS, and Aβ were higher in the brain of HuD-overexpressing mice. Importantly, cortex (superior temporal gyrus from patients with AD displayed significantly higher levels of HuD and, accordingly, elevated APP, BACE1, BACE1AS, and Aβ than did cortical tissue from healthy age-matched individuals. We propose that HuD jointly promotes the production of APP and the cleavage of its amyloidogenic fragment, Aβ.

  15. CRISPR-Cas9 Structures and Mechanisms.

    Science.gov (United States)

    Jiang, Fuguo; Doudna, Jennifer A

    2017-05-22

    Many bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems employ the dual RNA-guided DNA endonuclease Cas9 to defend against invading phages and conjugative plasmids by introducing site-specific double-stranded breaks in target DNA. Target recognition strictly requires the presence of a short protospacer adjacent motif (PAM) flanking the target site, and subsequent R-loop formation and strand scission are driven by complementary base pairing between the guide RNA and target DNA, Cas9-DNA interactions, and associated conformational changes. The use of CRISPR-Cas9 as an RNA-programmable DNA targeting and editing platform is simplified by a synthetic single-guide RNA (sgRNA) mimicking the natural dual trans-activating CRISPR RNA (tracrRNA)-CRISPR RNA (crRNA) structure. This review aims to provide an in-depth mechanistic and structural understanding of Cas9-mediated RNA-guided DNA targeting and cleavage. Molecular insights from biochemical and structural studies provide a framework for rational engineering aimed at altering catalytic function, guide RNA specificity, and PAM requirements and reducing off-target activity for the development of Cas9-based therapies against genetic diseases.

  16. The fission yeast RNA binding protein Mmi1 regulates meiotic genes by controlling intron specific splicing and polyadenylation coupled RNA turnover.

    Directory of Open Access Journals (Sweden)

    Huei-Mei Chen

    Full Text Available The polyA tails of mRNAs are monitored by the exosome as a quality control mechanism. We find that fission yeast, Schizosaccharomyces pombe, adopts this RNA quality control mechanism to regulate a group of 30 or more meiotic genes at the level of both splicing and RNA turnover. In vegetative cells the RNA binding protein Mmi1 binds to the primary transcripts of these genes. We find the novel motif U(U/C/GAAAC highly over-represented in targets of Mmi1. Mmi1 can specifically regulate the splicing of particular introns in a transcript: it inhibits the splicing of introns that are in the vicinity of putative Mmi1 binding sites, while allowing the splicing of other introns that are far from such sites. In addition, binding of Mmi1, particularly near the 3' end, alters 3' processing to promote extremely long polyA tails of up to a kilobase. The hyperadenylated transcripts are then targeted for degradation by the nuclear exonuclease Rrp6. The nuclear polyA binding protein Pab2 assists this hyperadenylation-mediated RNA decay. Rrp6 also targets other hyperadenylated transcripts, which become hyperadenylated in an unknown, but Mmi1-independent way. Thus, hyperadenylation may be a general signal for RNA degradation. In addition, binding of Mmi1 can affect the efficiency of 3' cleavage. Inactivation of Mmi1 in meiosis allows meiotic expression, through splicing and RNA stabilization, of at least 29 target genes, which are apparently constitutively transcribed.

  17. Structure-function analysis of Staphylococcus aureus amidase reveals the determinants of peptidoglycan recognition and cleavage.

    Science.gov (United States)

    Büttner, Felix Michael; Zoll, Sebastian; Nega, Mulugeta; Götz, Friedrich; Stehle, Thilo

    2014-04-18

    The bifunctional major autolysin AtlA of Staphylococcus aureus cleaves the bacterium's peptidoglycan network (PGN) at two distinct sites during cell division. Deletion of the enzyme results in large cell clusters with disordered division patterns, indicating that AtlA could be a promising target for the development of new antibiotics. One of the two functions of AtlA is performed by the N-acetylmuramyl-l-alanine amidase AmiA, which cleaves the bond between the carbohydrate and the peptide moieties of PGN. To establish the structural requirements of PGN recognition and the enzymatic mechanism of cleavage, we solved the crystal structure of the catalytic domain of AmiA (AmiA-cat) in complex with a peptidoglycan-derived ligand at 1.55 Å resolution. The peptide stem is clearly visible in the structure, forming extensive contacts with protein residues by docking into an elongated groove. Less well defined electron density and the analysis of surface features indicate likely positions of the carbohydrate backbone and the pentaglycine bridge. Substrate specificity analysis supports the importance of the pentaglycine bridge for fitting into the binding cleft of AmiA-cat. PGN of S. aureus with l-lysine tethered with d-alanine via a pentaglycine bridge is completely hydrolyzed, whereas PGN of Bacillus subtilis with meso-diaminopimelic acid directly tethered with d-alanine is not hydrolyzed. An active site mutant, H370A, of AmiA-cat was completely inactive, providing further support for the proposed catalytic mechanism of AmiA. The structure reported here is not only the first of any bacterial amidase in which both the PGN component and the water molecule that carries out the nucleophilic attack on the carbonyl carbon of the scissile bond are present; it is also the first peptidoglycan amidase complex structure of an important human pathogen.

  18. Structure-Function Analysis of Staphylococcus aureus Amidase Reveals the Determinants of Peptidoglycan Recognition and Cleavage*

    Science.gov (United States)

    Büttner, Felix Michael; Zoll, Sebastian; Nega, Mulugeta; Götz, Friedrich; Stehle, Thilo

    2014-01-01

    The bifunctional major autolysin AtlA of Staphylococcus aureus cleaves the bacterium's peptidoglycan network (PGN) at two distinct sites during cell division. Deletion of the enzyme results in large cell clusters with disordered division patterns, indicating that AtlA could be a promising target for the development of new antibiotics. One of the two functions of AtlA is performed by the N-acetylmuramyl-l-alanine amidase AmiA, which cleaves the bond between the carbohydrate and the peptide moieties of PGN. To establish the structural requirements of PGN recognition and the enzymatic mechanism of cleavage, we solved the crystal structure of the catalytic domain of AmiA (AmiA-cat) in complex with a peptidoglycan-derived ligand at 1.55 Å resolution. The peptide stem is clearly visible in the structure, forming extensive contacts with protein residues by docking into an elongated groove. Less well defined electron density and the analysis of surface features indicate likely positions of the carbohydrate backbone and the pentaglycine bridge. Substrate specificity analysis supports the importance of the pentaglycine bridge for fitting into the binding cleft of AmiA-cat. PGN of S. aureus with l-lysine tethered with d-alanine via a pentaglycine bridge is completely hydrolyzed, whereas PGN of Bacillus subtilis with meso-diaminopimelic acid directly tethered with d-alanine is not hydrolyzed. An active site mutant, H370A, of AmiA-cat was completely inactive, providing further support for the proposed catalytic mechanism of AmiA. The structure reported here is not only the first of any bacterial amidase in which both the PGN component and the water molecule that carries out the nucleophilic attack on the carbonyl carbon of the scissile bond are present; it is also the first peptidoglycan amidase complex structure of an important human pathogen. PMID:24599952

  19. Structure determination of an 11-subunit exosome in complex with RNA by molecular replacement

    International Nuclear Information System (INIS)

    Makino, Debora Lika; Conti, Elena

    2013-01-01

    The crystallographic steps towards the structure determination of a complete eukaryotic exosome complex bound to RNA are presented. Phasing of this 11-protein subunit complex was carried out via molecular replacement. The RNA exosome is an evolutionarily conserved multi-protein complex involved in the 3′ degradation of a variety of RNA transcripts. In the nucleus, the exosome participates in the maturation of structured RNAs, in the surveillance of pre-mRNAs and in the decay of a variety of noncoding transcripts. In the cytoplasm, the exosome degrades mRNAs in constitutive and regulated turnover pathways. Several structures of subcomplexes of eukaryotic exosomes or related prokaryotic exosome-like complexes are known, but how the complete assembly is organized to fulfil processive RNA degradation has been unclear. An atomic snapshot of a Saccharomyces cerevisiae 420 kDa exosome complex bound to an RNA substrate in the pre-cleavage state of a hydrolytic reaction has been determined. Here, the crystallographic steps towards the structural elucidation, which was carried out by molecular replacement, are presented

  20. Group I-like ribozymes with a novel core organization perform obligate sequential hydrolytic cleavages at two processing sites

    DEFF Research Database (Denmark)

    Einvik, C; Nielsen, Henrik; Westhof, E

    1998-01-01

    A new category of self-splicing group I introns with conserved structural organization and function is found among the eukaryotic microorganisms Didymium and Naegleria. These complex rDNA introns contain two distinct ribozymes with different functions: a regular group I splicing...... available GIR1 sequences and propose a common RNA secondary structure resembling that of group I splicing-ribozymes, but with some important differences. The GIR1s lack most peripheral sequence components, as well as a P1 segment, and, at approximately 160-190 nt, they are the smallest functional group I...... ribozymes known from nature. All GIR1s were found to contain a novel 6-bp pseudoknot (P15) within their catalytic core region. Experimental support of the proposed structure was obtained from the Didymium GIR1 by RNA structure probing and site-directed mutagenesis. Three-dimensional modeling indicates...

  1. RNase MRP and the RNA processing cascade in the eukaryotic ancestor.

    Science.gov (United States)

    Woodhams, Michael D; Stadler, Peter F; Penny, David; Collins, Lesley J

    2007-02-08

    Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.

  2. On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels

    Science.gov (United States)

    Qian, Guian; Lei, Wei-Sheng; Niffenegger, M.; González-Albuixech, V. F.

    2018-04-01

    The work relates to the effect of temperature on the model parameters in local approaches (LAs) to cleavage fracture. According to a recently developed LA model, the physical consensus of plastic deformation being a prerequisite to cleavage fracture enforces any LA model of cleavage fracture to observe initial yielding of a volume element as its threshold stress state to incur cleavage fracture in addition to the conventional practice of confining the fracture process zone within the plastic deformation zone. The physical consistency of the new LA model to the basic LA methodology and the differences between the new LA model and other existing models are interpreted. Then this new LA model is adopted to investigate the temperature dependence of LA model parameters using circumferentially notched round tensile specimens. With the published strength data as input, finite element (FE) calculation is conducted for elastic-perfectly plastic deformation and the realistic elastic-plastic hardening, respectively, to provide stress distributions for model calibration. The calibration results in temperature independent model parameters. This leads to the establishment of a 'master curve' characteristic to synchronise the correlation between the nominal strength and the corresponding cleavage fracture probability at different temperatures. This 'master curve' behaviour is verified by strength data from three different steels, providing a new path to calculate cleavage fracture probability with significantly reduced FE efforts.

  3. Design and kinetic analysis of hammerhead ribozyme and DNAzyme that specifically cleave TEL-AML1 chimeric mRNA

    International Nuclear Information System (INIS)

    Choi, Woo-Hyung; Choi, Bo-Ra; Kim, Jae Hyun; Yeo, Woon-Seok; Oh, Sangtaek; Kim, Dong-Eun

    2008-01-01

    In order to develop the oligonucleotides to abolish an expression of TEL-AML1 chimeric RNA, which is a genetic aberration that causes the acute lymphoblastic leukemia (ALL), hammerhead ribozymes and deoxyoligoribozymes that can specifically cleave TEL-AML1 fusion RNA were designed. Constructs of the deoxyribozyme with an asymmetric substrate binding arm (Dz26) and the hammerhead ribozyme with a 4 nt-bulged substrate binding arm in the stem III (buRz28) were able to cleave TEL-AML1 chimeric RNA specifically at sites close to the junction in vitro, without cleaving the normal TEL and AML1 RNA. Single-turnover kinetic analysis under enzyme-excess condition revealed that the buRz28 is superior to the Dz26 in terms of substrate binding and RNA-cleavage. In conjunction with current progress in a gene-delivery technology, the designed oligonucleotides that specifically cleave the TEL-AML1 chimeric mRNA are hoped to be applicable for the treatment of ALL in vivo

  4. The basic tilted helix bundle domain of the prolyl isomerase FKBP25 is a novel double-stranded RNA binding module

    Science.gov (United States)

    Dilworth, David; Bonnafous, Pierre; Edoo, Amiirah Bibi; Bourbigot, Sarah; Pesek-Jardim, Francy; Gudavicius, Geoff; Serpa, Jason J.; Petrotchenko, Evgeniy V.; Borchers, Christoph H.

    2017-01-01

    Abstract Prolyl isomerases are defined by a catalytic domain that facilitates the cis–trans interconversion of proline residues. In most cases, additional domains in these enzymes add important biological function, including recruitment to a set of protein substrates. Here, we report that the N-terminal basic tilted helix bundle (BTHB) domain of the human prolyl isomerase FKBP25 confers specific binding to double-stranded RNA (dsRNA). This binding is selective over DNA as well as single-stranded oligonucleotides. We find that FKBP25 RNA-association is required for its nucleolar localization and for the vast majority of its protein interactions, including those with 60S pre-ribosome and early ribosome biogenesis factors. An independent mobility of the BTHB and FKBP catalytic domains supports a model by which the N-terminus of FKBP25 is anchored to regions of dsRNA, whereas the FKBP domain is free to interact with neighboring proteins. Apart from the identification of the BTHB as a new dsRNA-binding module, this domain adds to the growing list of auxiliary functions used by prolyl isomerases to define their primary cellular targets. PMID:29036638

  5. Fractographic observations of cleavage initiation in the ductile-brittle transition region of a reactor-pressure-vessel steel

    International Nuclear Information System (INIS)

    Rosenfield, A.R.; Shetty, D.K.; Skidmore, A.J.

    1983-01-01

    This note reports the results of a fractographic study conducted on a group of 1T compact fracture toughness specimens of a heavy-section A508 steel denoted TSE6 tested in the ductile-brittle transition region (22 and 82 0 C). The fatigue-precracked specimens were loaded at a rapid rate (760 or 550 mm per second) to promote cleavage-crack growth and lower-bound toughness behavior. All specimens experienced unstable cleavage fracture prior to reaching a maximum in the load displacement curve. Some ductile crack growth occurred in half of the specimens. The objective of fractographic examinations was to understand the observed statistical variations in cleavage initiation by (a) locating the origins of unstable cleavage fracture in the vicinity of the fatigue-precrack or ductilerupture crack fronts, (b) identifying microstructural features associated with the triggering of cleavage, and (c) documenting characteristic fracture surface dimensions such as the extent of stable-crack growth prior to unstable cleavage (Δα) and the distance of the cleavage origin from the ductilerupture front, /chi/ (or fatigue-crack front when Δα = 0)

  6. RNase MRP RNA and RNase P activity in plants are associated with a Pop1p containing complex.

    Science.gov (United States)

    Krehan, Mario; Heubeck, Christian; Menzel, Nicolas; Seibel, Peter; Schön, Astrid

    2012-09-01

    RNase P processes the 5'-end of tRNAs. An essential catalytic RNA has been demonstrated in Bacteria, Archaea and the nuclei of most eukaryotes; an organism-specific number of proteins complement the holoenzyme. Nuclear RNase P from yeast and humans is well understood and contains an RNA, similar to the sister enzyme RNase MRP. In contrast, no protein subunits have yet been identified in the plant enzymes, and the presence of a nucleic acid in RNase P is still enigmatic. We have thus set out to identify and characterize the subunits of these enzymes in two plant model systems. Expression of the two known Arabidopsis MRP RNA genes in vivo was verified. The first wheat MRP RNA sequences are presented, leading to improved structure models for plant MRP RNAs. A novel mRNA encoding the central RNase P/MRP protein Pop1p was identified in Arabidopsis, suggesting the expression of distinct protein variants from this gene in vivo. Pop1p-specific antibodies precipitate RNase P activity and MRP RNAs from wheat extracts. Our results provide evidence that in plants, Pop1p is associated with MRP RNAs and with the catalytic subunit of RNase P, either separately or in a single large complex.

  7. Sensitive and fast mutation detection by solid phase chemical cleavage

    DEFF Research Database (Denmark)

    Hansen, Lise Lotte; Justesen, Just; Kruse, Torben A

    1996-01-01

    We have developed a solid phase chemical cleavage method (SpCCM) for screening large DNA fragments for mutations. All reactions can be carried out in microtiterwells from the first amplification of the patient (or test) DNA through the search for mutations. The reaction time is significantly...... reduced compared to the conventional chemical cleavage method (CCM), and even by using a uniformly labelled probe, the exact position and nature of the mutation can be revealed. The SpCCM is suitable for automatization using a workstation to carry out the reactions and a fluorescent detection-based DNA...

  8. Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice.

    Science.gov (United States)

    Judge, Adam D; Robbins, Marjorie; Tavakoli, Iran; Levi, Jasna; Hu, Lina; Fronda, Anna; Ambegia, Ellen; McClintock, Kevin; MacLachlan, Ian

    2009-03-01

    siRNAs that specifically silence the expression of cancer-related genes offer a therapeutic approach in oncology. However, it remains critical to determine the true mechanism of their therapeutic effects. Here, we describe the preclinical development of chemically modified siRNA targeting the essential cell-cycle proteins polo-like kinase 1 (PLK1) and kinesin spindle protein (KSP) in mice. siRNA formulated in stable nucleic acid lipid particles (SNALP) displayed potent antitumor efficacy in both hepatic and subcutaneous tumor models. This was correlated with target gene silencing following a single intravenous administration that was sufficient to cause extensive mitotic disruption and tumor cell apoptosis. Our siRNA formulations induced no measurable immune response, minimizing the potential for nonspecific effects. Additionally, RNAi-specific mRNA cleavage products were found in tumor cells, and their presence correlated with the duration of target mRNA silencing. Histological biomarkers confirmed that RNAi-mediated gene silencing effectively inhibited the target's biological activity. This report supports an RNAi-mediated mechanism of action for siRNA antitumor effects, suggesting a new methodology for targeting other key genes in cancer development with siRNA-based therapeutics.

  9. Slicer-independent mechanism drives small-RNA strand separation during human RISC assembly.

    Science.gov (United States)

    Park, June Hyun; Shin, Chanseok

    2015-10-30

    Small RNA silencing is mediated by the effector RNA-induced silencing complex (RISC) that consists of an Argonaute protein (AGOs 1-4 in humans). A fundamental step during RISC assembly involves the separation of two strands of a small RNA duplex, whereby only the guide strand is retained to form the mature RISC, a process not well understood. Despite the widely accepted view that 'slicer-dependent unwinding' via passenger-strand cleavage is a prerequisite for the assembly of a highly complementary siRNA into the AGO2-RISC, here we show by careful re-examination that 'slicer-independent unwinding' plays a more significant role in human RISC maturation than previously appreciated, not only for a miRNA duplex, but, unexpectedly, for a highly complementary siRNA as well. We discovered that 'slicer-dependency' for the unwinding was affected primarily by certain parameters such as temperature and Mg(2+). We further validate these observations in non-slicer AGOs (1, 3 and 4) that can be programmed with siRNAs at the physiological temperature of humans, suggesting that slicer-independent mechanism is likely a common feature of human AGOs. Our results now clearly explain why both miRNA and siRNA are found in all four human AGOs, which is in striking contrast to the strict small-RNA sorting system in Drosophila. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels

    Energy Technology Data Exchange (ETDEWEB)

    Martin, May L.; Fenske, Jamey A.; Liu, Grace S.; Sofronis, Petros [University of Illinois, Dept. of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801 (United States); Robertson, Ian M., E-mail: ianr@illinois.edu [University of Illinois, Dept. of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801 (United States)

    2011-02-15

    Quasi-cleavage, a common feature of hydrogen-induced fracture surfaces, is generally taken as being cleavage-like but not along a known cleavage plane. Despite the frequency with which this surface is observed, the relationship to the underlying microstructure remains unknown. Through a combination of topographical reconstruction of secondary electron microscope fractographs and a transmission electron microscopy study of the microstructure from site-specific locations, it will be shown that the features on quasi-cleavage surfaces are ridges that can be correlated with sub-surface intense and highly localized deformation bands. It will be demonstrated that the fracture surface arises from the growth and coalescence of voids that initiate at and extend along slip band intersections. This mechanism and process is fully consistent with hydrogen enhancing and localizing plastic processes.

  11. In C. elegans, high levels of dsRNA allow RNAi in the absence of RDE-4.

    Science.gov (United States)

    Habig, Jeffrey W; Aruscavage, P Joseph; Bass, Brenda L

    2008-01-01

    C. elegans Dicer requires an accessory double-stranded RNA binding protein, RDE-4, to enact the first step of RNA interference, the cleavage of dsRNA to produce siRNA. While RDE-4 is typically essential for RNAi, we report that in the presence of high concentrations of trigger dsRNA, rde-4 deficient animals are capable of silencing a transgene. By multiple criteria the silencing occurs by the canonical RNAi pathway. For example, silencing is RDE-1 dependent and exhibits a decrease in the targeted mRNA in response to an increase in siRNA. We also find that high concentrations of dsRNA trigger lead to increased accumulation of primary siRNAs, consistent with the existence of a rate-limiting step during the conversion of primary to secondary siRNAs. Our studies also revealed that transgene silencing occurs at low levels in the soma, even in the presence of ADARs, and that at least some siRNAs accumulate in a temperature-dependent manner. We conclude that an RNAi response varies with different conditions, and this may allow an organism to tailor a response to specific environmental signals.

  12. In C. elegans, high levels of dsRNA allow RNAi in the absence of RDE-4.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Habig

    Full Text Available C. elegans Dicer requires an accessory double-stranded RNA binding protein, RDE-4, to enact the first step of RNA interference, the cleavage of dsRNA to produce siRNA. While RDE-4 is typically essential for RNAi, we report that in the presence of high concentrations of trigger dsRNA, rde-4 deficient animals are capable of silencing a transgene. By multiple criteria the silencing occurs by the canonical RNAi pathway. For example, silencing is RDE-1 dependent and exhibits a decrease in the targeted mRNA in response to an increase in siRNA. We also find that high concentrations of dsRNA trigger lead to increased accumulation of primary siRNAs, consistent with the existence of a rate-limiting step during the conversion of primary to secondary siRNAs. Our studies also revealed that transgene silencing occurs at low levels in the soma, even in the presence of ADARs, and that at least some siRNAs accumulate in a temperature-dependent manner. We conclude that an RNAi response varies with different conditions, and this may allow an organism to tailor a response to specific environmental signals.

  13. On the distinction of the mechanisms of DNA cleavage by restriction enzymes—The I-, II-, and III-type molecular motors

    Science.gov (United States)

    Pikin, S. A.

    2008-09-01

    A comparative physical description is given for the functioning of various restriction enzymes and for their processes of DNA cleavage. The previously proposed model system of kinetic equations is applied to the I-and III-type enzymes, which use ATP molecules as an energy source, while the II-type enzymes work thanks to catalytic reactions with participation of an electric field. All the enzymes achieved bending and twisting DNA, providing for either the linear motion of the II-type enzyme along the DNA chain or the DNA translocation by the I-and III-type enzymes due to moving chiral kinks. A comparative estimation of the considered linear and angular velocities is performed. The role of stalling forces for enzyme-DNA complexes, which induce the observed cutting of the DNA either inside the enzyme (II) or in some “weak” places outside enzymes I and III, which results in the supercoiling of the DNA, is shown. The role of ionic screening for the described processes is discussed.

  14. Non-thermal plasmas for non-catalytic and catalytic VOC abatement

    International Nuclear Information System (INIS)

    Vandenbroucke, Arne M.; Morent, Rino; De Geyter, Nathalie; Leys, Christophe

    2011-01-01

    Highlights: → We review the current status of catalytic and non-catalytic VOC abatement based on a vast number of research papers. → The underlying mechanisms of plasma-catalysis for VOC abatement are discussed. → Critical process parameters that determine the influent are discussed and compared. - Abstract: This paper reviews recent achievements and the current status of non-thermal plasma (NTP) technology for the abatement of volatile organic compounds (VOCs). Many reactor configurations have been developed to generate a NTP at atmospheric pressure. Therefore in this review article, the principles of generating NTPs are outlined. Further on, this paper is divided in two equally important parts: plasma-alone and plasma-catalytic systems. Combination of NTP with heterogeneous catalysis has attracted increased attention in order to overcome the weaknesses of plasma-alone systems. An overview is given of the present understanding of the mechanisms involved in plasma-catalytic processes. In both parts (plasma-alone systems and plasma-catalysis), literature on the abatement of VOCs is reviewed in close detail. Special attention is given to the influence of critical process parameters on the removal process.

  15. Alternative Polyadenylation and Nonsense-Mediated Decay Coordinately Regulate the Human HFE mRNA Levels

    Science.gov (United States)

    Martins, Rute; Proença, Daniela; Silva, Bruno; Barbosa, Cristina; Silva, Ana Luísa; Faustino, Paula; Romão, Luísa

    2012-01-01

    Nonsense-mediated decay (NMD) is an mRNA surveillance pathway that selectively recognizes and degrades defective mRNAs carrying premature translation-termination codons. However, several studies have shown that NMD also targets physiological transcripts that encode full-length proteins, modulating their expression. Indeed, some features of physiological mRNAs can render them NMD-sensitive. Human HFE is a MHC class I protein mainly expressed in the liver that, when mutated, can cause hereditary hemochromatosis, a common genetic disorder of iron metabolism. The HFE gene structure comprises seven exons; although the sixth exon is 1056 base pairs (bp) long, only the first 41 bp encode for amino acids. Thus, the remaining downstream 1015 bp sequence corresponds to the HFE 3′ untranslated region (UTR), along with exon seven. Therefore, this 3′ UTR encompasses an exon/exon junction, a feature that can make the corresponding physiological transcript NMD-sensitive. Here, we demonstrate that in UPF1-depleted or in cycloheximide-treated HeLa and HepG2 cells the HFE transcripts are clearly upregulated, meaning that the physiological HFE mRNA is in fact an NMD-target. This role of NMD in controlling the HFE expression levels was further confirmed in HeLa cells transiently expressing the HFE human gene. Besides, we show, by 3′-RACE analysis in several human tissues that HFE mRNA expression results from alternative cleavage and polyadenylation at four different sites – two were previously described and two are novel polyadenylation sites: one located at exon six, which confers NMD-resistance to the corresponding transcripts, and another located at exon seven. In addition, we show that the amount of HFE mRNA isoforms resulting from cleavage and polyadenylation at exon seven, although present in both cell lines, is higher in HepG2 cells. These results reveal that NMD and alternative polyadenylation may act coordinately to control HFE mRNA levels, possibly varying its

  16. Catalytic distillation process

    Science.gov (United States)

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  17. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls

    KAUST Repository

    Bruno, Mark; Beyer, Peter D.; Al-Babili, Salim

    2015-01-01

    amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating

  18. Attenuation in the rph-pyrE operon of Escherichia coli and processing of the dicistronic mRNA

    DEFF Research Database (Denmark)

    Poulsen, Peter; Jensen, Kaj Frank

    1992-01-01

    We have substituted on a plasmid the native promoter of the Escherichia coli rph-pyrE operon with an inducible transcription-initiation signal. The plasmid was used to study the mRNA chains derived from the operon at different intracellular concentrations of UTP and as a function of time following...... induction of transcription. The results showed that dicistronic rph-pyrE mRNA was formed when the UTP pool was low, and that a monocistronic rph mRNA was the major transcription product in high-UTP pools, thus supporting an UTP-controlled attenuation mechanism for regulation of pyrE gene expression. However......, the dicistronic rph-pyrE transcript was rapidly processed into two monocistronic mRNA units, and a cleavage site was mapped near the attenuator in the intercistronic region, close to the site where transcription was terminated in high-UTP pools. Furthermore, the major 3' end of the pyrE mRNA was mapped near...

  19. Numerical modeling of ductile tearing effects on cleavage fracture toughness

    International Nuclear Information System (INIS)

    Dodds, R.H. Jr.; Tang, M.; Anderson, T.L.

    1994-05-01

    Experimental studies demonstrate a significant effect of specimen size, a/W ratio and prior ductile tearing on cleavage fracture toughness values (J c ) measured in the ductile-to-brittle transition region of ferritic materials. In the lower-transition region, cleavage fracture often occurs under conditions of large-scale yielding but without prior ductile crack extension. The increased toughness develops when plastic zones formed at the crack tip interact with nearby specimen surfaces which relaxes crack-tip constraint (stress triaxiality). In the mid-to-upper transition region, small amounts of ductile crack extension (often c -values. Previous work by the authors described a micromechanics fracture model to correct measured J c -values for the mechanistic effects of large-scale yielding. This new work extends the model to also include the influence of ductile crack extension prior to cleavage. The paper explores development of the new model, provides necessary graphs and procedures for its application and demonstrates the effects of the model on fracture data sets for two pressure vessel steels (A533B and A515)

  20. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Science.gov (United States)

    Prashar, Vishal; Bihani, Subhash; Das, Amit; Ferrer, Jean-Luc; Hosur, Madhusoodan

    2009-11-17

    It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS). In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product) peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product) has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  1. Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein.

    Science.gov (United States)

    Welch, Brett D; Liu, Yuanyuan; Kors, Christopher A; Leser, George P; Jardetzky, Theodore S; Lamb, Robert A

    2012-10-09

    The paramyxovirus parainfluenza virus 5 (PIV5) enters cells by fusion of the viral envelope with the plasma membrane through the concerted action of the fusion (F) protein and the receptor binding protein hemagglutinin-neuraminidase. The F protein folds initially to form a trimeric metastable prefusion form that is triggered to undergo large-scale irreversible conformational changes to form the trimeric postfusion conformation. It is thought that F refolding couples the energy released with membrane fusion. The F protein is synthesized as a precursor (F0) that must be cleaved by a host protease to form a biologically active molecule, F1,F2. Cleavage of F protein is a prerequisite for fusion and virus infectivity. Cleavage creates a new N terminus on F1 that contains a hydrophobic region, known as the FP, which intercalates target membranes during F protein refolding. The crystal structure of the soluble ectodomain of the uncleaved form of PIV5 F is known; here we report the crystal structure of the cleavage-activated prefusion form of PIV5 F. The structure shows minimal movement of the residues adjacent to the protease cleavage site. Most of the hydrophobic FP residues are buried in the uncleaved F protein, and only F103 at the newly created N terminus becomes more solvent-accessible after cleavage. The conformational freedom of the charged arginine residues that compose the protease recognition site increases on cleavage of F protein.

  2. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  3. Critical cleavage fracture stress characterization of A508 nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Wu, Sujun; Jin, Huijin; Sun, Yanbin; Cao, Luowei

    2014-01-01

    The critical cleavage fracture stress of SA508 Gr.4N and SA508 Gr.3 low alloy reactor pressure vessel (RPV) steels was studied through the combination of experiments and finite element method (FEM) analysis. The results showed that the value of the local cleavage fracture stress, σ F , of SA508 Gr.4N steel was significantly higher than that of SA508 Gr.3 steel. Detailed microstructural analysis was carried out using FEGSEM which revealed much smaller grains, finer and more homogenous carbide particles formed in SA508 Gr.4N steel. Compared with the SA508 Gr.3 steel currently used in the nuclear industry, the SA508 Gr.4N steel possesses higher strength and notch toughness as well as improved cleavage fracture behavior, and is considered a better candidate RPV steel for the next generation nuclear reactors. - Highlights: • Critical cleavage fracture stress was calculated through experiments and FEM. • Effects of both grain and carbide particle sizes on σ F were discussed. • The SA508 Gr.4N steel is a better candidate for the next generation nuclear reactors

  4. A set of simple cell processes is sufficient to model spiral cleavage.

    Science.gov (United States)

    Brun-Usan, Miguel; Marín-Riera, Miquel; Grande, Cristina; Truchado-Garcia, Marta; Salazar-Ciudad, Isaac

    2017-01-01

    During cleavage, different cellular processes cause the zygote to become partitioned into a set of cells with a specific spatial arrangement. These processes include the orientation of cell division according to: an animal-vegetal gradient; the main axis (Hertwig's rule) of the cell; and the contact areas between cells or the perpendicularity between consecutive cell divisions (Sachs' rule). Cell adhesion and cortical rotation have also been proposed to be involved in spiral cleavage. We use a computational model of cell and tissue biomechanics to account for the different existing hypotheses about how the specific spatial arrangement of cells in spiral cleavage arises during development. Cell polarization by an animal-vegetal gradient, a bias to perpendicularity between consecutive cell divisions (Sachs' rule), cortical rotation and cell adhesion, when combined, reproduce the spiral cleavage, whereas other combinations of processes cannot. Specifically, cortical rotation is necessary at the 8-cell stage to direct all micromeres in the same direction. By varying the relative strength of these processes, we reproduce the spatial arrangement of cells in the blastulae of seven different invertebrate species. © 2017. Published by The Company of Biologists Ltd.

  5. Crystallographic and Modeling Studies of RNase III Suggest a Mechanism for Double-Stranded RNA Cleavage | Center for Cancer Research

    Science.gov (United States)

    Background: Ribonuclease III belongs to the family of Mg2+-dependent endonucleases that show specificity for double-stranded RNA (dsRNA). RNase III is conserved in all known bacteria and eukaryotes and has 1–2 copies of a 9-residue consensus sequence, known as the RNase III signature motif. The bacterial RNase III proteins are the simplest, consisting of two domains: an

  6. Boron-doped diamond electrodes for the electrochemical oxidation and cleavage of peptides.

    Science.gov (United States)

    Roeser, Julien; Alting, Niels F A; Permentier, Hjalmar P; Bruins, Andries P; Bischoff, Rainer

    2013-07-16

    Electrochemical oxidation of peptides and proteins is traditionally performed on carbon-based electrodes. Adsorption caused by the affinity of hydrophobic and aromatic amino acids toward these surfaces leads to electrode fouling. We compared the performance of boron-doped diamond (BDD) and glassy carbon (GC) electrodes for the electrochemical oxidation and cleavage of peptides. An optimal working potential of 2000 mV was chosen to ensure oxidation of peptides on BDD by electron transfer processes only. Oxidation by electrogenerated OH radicals took place above 2500 mV on BDD, which is undesirable if cleavage of a peptide is to be achieved. BDD showed improved cleavage yield and reduced adsorption for a set of small peptides, some of which had been previously shown to undergo electrochemical cleavage C-terminal to tyrosine (Tyr) and tryptophan (Trp) on porous carbon electrodes. Repeated oxidation with BDD electrodes resulted in progressively lower conversion yields due to a change in surface termination. Cathodic pretreatment of BDD at a negative potential in an acidic environment successfully regenerated the electrode surface and allowed for repeatable reactions over extended periods of time. BDD electrodes are a promising alternative to GC electrodes in terms of reduced adsorption and fouling and the possibility to regenerate them for consistent high-yield electrochemical cleavage of peptides. The fact that OH-radicals can be produced by anodic oxidation of water at elevated positive potentials is an additional advantage as they allow another set of oxidative reactions in analogy to the Fenton reaction, thus widening the scope of electrochemistry in protein and peptide chemistry and analytics.

  7. Cleavage mechanoluminescence in elemental and III-V semiconductors

    International Nuclear Information System (INIS)

    Chandra, B.P.; Patel, R.P.; Gour, Anubha S.; Chandra, V.K.; Gupta, R.K.

    2003-01-01

    The present paper reports the theory of mechanoluminescence (ML) produced during cleavage of elemental and III-V semiconductors. It seems that the formation of crack-induced localized states is responsible for the ML excitation produced during the cleavage of elemental and III-V semiconductors. According to this mechanism, as the atoms are drawn away from each other in an advancing crack tip, the decreasing wave function overlap across the crack may result in localized states which is associated with increasing electron energy. If the energy of these localized states approach that of the conduction band, transition to the conduction band via tunnelling would be possible, creating minority carriers, and consequently the electron-hole recombination may give rise to mechanoluminescence. When an elemental or III-V semiconductor is cleaved, initially the ML intensity increases with time, attains a peak value I m at the time t m corresponding to completion of the cleavage of the semiconductor, and then it decreases following power law decay. Expressions are derived for the ML intensity I m corresponding to the peak of the ML intensity versus time curve and for the total ML intensity I T . It is shown that both I m and I T should increase directly with the area of the newly created surfaces of the crystals. From the measurements of the ML intensity, the velocity of crack propagation in material can be determined by using the relation v=H/t m

  8. Structure of Drosophila Oskar reveals a novel RNA binding protein

    Science.gov (United States)

    Yang, Na; Yu, Zhenyu; Hu, Menglong; Wang, Mingzhu; Lehmann, Ruth; Xu, Rui-Ming

    2015-01-01

    Oskar (Osk) protein plays critical roles during Drosophila germ cell development, yet its functions in germ-line formation and body patterning remain poorly understood. This situation contrasts sharply with the vast knowledge about the function and mechanism of osk mRNA localization. Osk is predicted to have an N-terminal LOTUS domain (Osk-N), which has been suggested to bind RNA, and a C-terminal hydrolase-like domain (Osk-C) of unknown function. Here, we report the crystal structures of Osk-N and Osk-C. Osk-N shows a homodimer of winged-helix–fold modules, but without detectable RNA-binding activity. Osk-C has a lipase-fold structure but lacks critical catalytic residues at the putative active site. Surprisingly, we found that Osk-C binds the 3′UTRs of osk and nanos mRNA in vitro. Mutational studies identified a region of Osk-C important for mRNA binding. These results suggest possible functions of Osk in the regulation of stability, regulation of translation, and localization of relevant mRNAs through direct interaction with their 3′UTRs, and provide structural insights into a novel protein–RNA interaction motif involving a hydrolase-related domain. PMID:26324911

  9. The RNA Exosome Channeling and Direct Access Conformations Have Distinct In Vivo Functions

    Directory of Open Access Journals (Sweden)

    Jaeil Han

    2016-09-01

    Full Text Available The RNA exosome is a 3′–5′ ribonuclease complex that is composed of nine core subunits and an essential catalytic subunit, Rrp44. Two distinct conformations of Rrp44 were revealed in previous structural studies, suggesting that Rrp44 may change its conformation to exert its function. In the channeling conformation, (Rrp44ch, RNA accesses the active site after traversing the central channel of the RNA exosome, whereas in the other conformation, (Rrp44da, RNA gains direct access to the active site. Here, we show that the Rrp44da exosome is important for nuclear function of the RNA exosome. Defects caused by disrupting the direct access conformation are distinct from those caused by channel-occluding mutations, indicating specific functions for each conformation. Our genetic analyses provide in vivo evidence that the RNA exosome employs a direct-access route to recruit specific substrates, indicating that the RNA exosome uses alternative conformations to act on different RNA substrates.

  10. Implementation of a combinatorial cleavage and deprotection scheme

    DEFF Research Database (Denmark)

    Nielsen, John; Rasmussen, Palle H.

    1996-01-01

    Phthalhydrazide libraries are synthesized in solution from substituted hydrazines and phthalimides in several different library formats including single compounds, indexed sub-libraries and a full library. When carried out during solid-phase synthesis, this combinatorial cleavage and deprotection...

  11. Thermal catalytic oxidation of octachloronaphthalene over anatase TiO2 nanomaterial and its hypothesized mechanism

    Science.gov (United States)

    Su, Guijin; Li, Qianqian; Lu, Huijie; Zhang, Lixia; Huang, Linyan; Yan, Li; Zheng, Minghui

    2015-12-01

    As an environmentally-green technology, thermal catalytic oxidation of octachloronaphthalene (CN-75) over anatase TiO2 nanomaterials was investigated at 300 °C. A wide range of oxidation intermediates, which were investigated using various techniques, could be of three types: naphthalene-ring, single-benzene-ring, and completely ring-opened products. Reactive oxygen species on anatase TiO2 surface, such as O2-• and O2-, contributed to oxidative degradation. Based on these findings, a novel oxidation degradation mechanism was proposed. The reaction at (101) surface of anatase TiO2 was used as a model. The naphthalene-ring oxidative products with chloronaphthols and hydroxyl-pentachloronaphthalene-dione, could be formed via attacking the carbon of naphthalene ring at one or more positions by nucleophilic O2-. Lateral cleavage of the naphthalene ring at different C1-C10 and C4-C9, C1-C2 and C4-C9, C1-C2 or and C3-C4 bond positions by electrophilic O2-• could occur. This will lead to the formation of tetrachlorophenol, tetrachloro-benzoic acid, tetrachloro-phthalaldehyde, and tetrachloro-acrolein-benzoic acid, partially with further transformation into tetrachlorobenzene-dihydrodiol and tetrachloro-salicylic acid. Unexpectedly, the symmetric half section of CN-75 could be completely remained with generating the intricate oxidative intermediates characteristically containing tetrachlorobenzene structure. Complete cleavage of naphthalene ring could produce the ring-opened products, such as formic and acetic acids.

  12. Transcription elongation rate has a tissue-specific impact on alternative cleavage and polyadenylation in Drosophila melanogaster.

    Science.gov (United States)

    Liu, Xiaochuan; Freitas, Jaime; Zheng, Dinghai; Oliveira, Marta S; Hoque, Mainul; Martins, Torcato; Henriques, Telmo; Tian, Bin; Moreira, Alexandra

    2017-12-01

    Alternative polyadenylation (APA) is a mechanism that generates multiple mRNA isoforms with different 3'UTRs and/or coding sequences from a single gene. Here, using 3' region extraction and deep sequencing (3'READS), we have systematically mapped cleavage and polyadenylation sites (PASs) in Drosophila melanogaster , expanding the total repertoire of PASs previously identified for the species, especially those located in A-rich genomic sequences. Cis -element analysis revealed distinct sequence motifs around fly PASs when compared to mammalian ones, including the greater enrichment of upstream UAUA elements and the less prominent presence of downstream UGUG elements. We found that over 75% of mRNA genes in Drosophila melanogaster undergo APA. The head tissue tends to use distal PASs when compared to the body, leading to preferential expression of APA isoforms with long 3'UTRs as well as with distal terminal exons. The distance between the APA sites and intron location of PAS are important parameters for APA difference between body and head, suggesting distinct PAS selection contexts. APA analysis of the RpII215 C4 mutant strain, which harbors a mutant RNA polymerase II (RNAPII) with a slower elongation rate, revealed that a 50% decrease in transcriptional elongation rate leads to a mild trend of more usage of proximal, weaker PASs, both in 3'UTRs and in introns, consistent with the "first come, first served" model of APA regulation. However, this trend was not observed in the head, suggesting a different regulatory context in neuronal cells. Together, our data expand the PAS collection for Drosophila melanogaster and reveal a tissue-specific effect of APA regulation by RNAPII elongation rate. © 2017 Liu et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Catalytic bioreactors and methods of using same

    Science.gov (United States)

    Worden, Robert Mark; Liu, Yangmu Chloe

    2017-07-25

    Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.

  14. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction.

    Science.gov (United States)

    Thiebaut, Flávia; Rojas, Cristian A; Grativol, Clícia; Calixto, Edmundo P da R; Motta, Mariana R; Ballesteros, Helkin G F; Peixoto, Barbara; de Lima, Berenice N S; Vieira, Lucas M; Walter, Maria Emilia; de Armas, Elvismary M; Entenza, Júlio O P; Lifschitz, Sergio; Farinelli, Laurent; Hemerly, Adriana S; Ferreira, Paulo C G

    2017-12-20

    Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae . Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae , while the siRNAs were repressed in the presence of A. avenae . Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408-a copper-microRNA-was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5'RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly.

  15. Host apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3G is an innate defensive factor and drug target against hepatitis C virus.

    Science.gov (United States)

    Peng, Zong-Gen; Zhao, Zhi-Yun; Li, Yan-Ping; Wang, Yu-Ping; Hao, Lan-Hu; Fan, Bo; Li, Yu-Huan; Wang, Yue-Ming; Shan, Yong-Qiang; Han, Yan-Xing; Zhu, Yan-Ping; Li, Jian-Rui; You, Xue-Fu; Li, Zhuo-Rong; Jiang, Jian-Dong

    2011-04-01

    Host cellular factor apolipoprotein B messenger RNA (mRNA)-editing enzyme catalytic polypeptide-like 3G (hA3G) is a cytidine deaminase that inhibits a group of viruses including human immunodeficiency virus-1 (HIV-1). In the continuation of our research on hA3G, we found that hA3G stabilizing compounds significantly inhibited hepatitis C virus (HCV) replication. Therefore, this study investigated the role of hA3G in HCV replication. Introduction of external hA3G into HCV-infected Huh7.5 human hepatocytes inhibited HCV replication; knockdown of endogenous hA3G enhanced HCV replication. Exogenous HIV-1 virion infectivity factor (Vif) decreased intracellular hA3G and therefore enhanced HCV proliferation, suggesting that the presence of Vif might be an explanation for the HIV-1/HCV coinfection often observed in HIV-1(+) individuals. Treatment of the HCV-infected Huh7.5 cells with RN-5 or IMB-26, two known hA3G stabilizing compounds, increased intracellular hA3G and accordingly inhibited HCV replication. The compounds inhibit HCV through increasing the level of hA3G incorporated into HCV particles, but not through inhibiting HCV enzymes. However, G/A hypermutation in the HCV genome were not detected, suggesting a new antiviral mechanism of hA3G in HCV, different from that in HIV-1. Stabilization of hA3G by RN-5 was safe in vivo. hA3G appears to be a cellular restrict factor against HCV and could be a potential target for drug discovery. 2011 American Association for the Study of Liver Diseases.

  16. Dinuclear NHC-palladium complexes containing phosphine spacers: synthesis, X-ray structures and their catalytic activities towards the Hiyama coupling reaction.

    Science.gov (United States)

    Yang, Jin; Li, Pinhua; Zhang, Yicheng; Wang, Lei

    2014-05-21

    Six dinuclear N-heterocyclic carbene (NHC) palladium complexes, [PdCl2(IMes)]2(μ-dppe) (1), [PdCl2(IPr)]2(μ-dppe) (2), [PdCl2(IMes)]2(μ-dppb) (3), [PdCl2(IPr)]2(μ-dppb) (4), [PdCl2(IMes)]2(μ-dpph) (5), and [PdCl2(IPr)]2(μ-dpph) (6) [IMes = N,N'-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene; IPr = N,N'-bis-(2,6-di(iso-propyl)phenyl)imidazol-2-ylidene; dppe = 1,2-bis(diphenylphosphino)ethane, dppb = 1,4-bis(diphenylphosphino)butane; and dpph = 1,6-bis(diphenylphosphino)hexane], have been synthesized through bridge-cleavage reactions of chloro-bridged dimeric compounds, [Pd(μ-Cl)(Cl)(NHC)]2, with the corresponding diphosphine ligands. The obtained compounds were fully characterized by (1)H NMR, (13)C NMR and (31)P NMR spectroscopy, FT-IR, elemental analysis and single-crystal X-ray crystallography. Moreover, further explorations of the catalytic potential of the dinuclear carbene palladium complexes as catalysts for the Pd-catalyzed transformations have been performed under microwave irradiation conditions, and the complexes exhibited moderate to good catalytic activity in the Hiyama coupling reaction of trimethoxyphenylsilane with aryl chlorides.

  17. Mutation in Spike Protein Cleavage Site and Pathogenesis of Feline Coronavirus

    Science.gov (United States)

    Licitra, Beth N.; Millet, Jean K.; Regan, Andrew D.; Hamilton, Brian S.; Rinaldi, Vera D.; Duhamel, Gerald E.

    2013-01-01

    Feline coronaviruses (FCoV) exist as 2 biotypes: feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV). FECV causes subclinical infections; FIPV causes feline infectious peritonitis (FIP), a systemic and fatal disease. It is thought that mutations in FECV enable infection of macrophages, causing FIP. However, the molecular basis for this biotype switch is unknown. We examined a furin cleavage site in the region between receptor-binding (S1) and fusion (S2) domains of the spike of serotype 1 FCoV. FECV sequences were compared with FIPV sequences. All FECVs had a conserved furin cleavage motif. For FIPV, there was a correlation with the disease and >1 substitution in the S1/S2 motif. Fluorogenic peptide assays confirmed that the substitutions modulate furin cleavage. We document a functionally relevant S1/S2 mutation that arises when FIP develops in a cat. These insights into FIP pathogenesis may be useful in development of diagnostic, prevention, and treatment measures against coronaviruses. PMID:23763835

  18. Trichomonas vaginalis Metalloproteinase Induces mTOR Cleavage of SiHa Cells

    Science.gov (United States)

    Quan, Juan-Hua; Choi, In-Wook; Yang, Jung-Bo; Zhou, Wei; Cha, Guang-Ho; Zhou, Yu; Ryu, Jae-Sook

    2014-01-01

    Trichomonas vaginalis secretes a number of proteases which are suspected to be the cause of pathogenesis; however, little is understood how they manipulate host cells. The mammalian target of rapamycin (mTOR) regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. We detected various types of metalloproteinases including GP63 protein from T. vaginalis trophozoites, and T. vaginalis GP63 metalloproteinase was confirmed by sequencing and western blot. When SiHa cells were stimulated with live T. vaginalis, T. vaginalis excretory-secretory products (ESP) or T. vaginalis lysate, live T. vaginalis and T. vaginalis ESP induced the mTOR cleavage in both time- and parasite load-dependent manner, but T. vaginalis lysate did not. Pretreatment of T. vaginalis with a metalloproteinase inhibitor, 1,10-phenanthroline, completely disappeared the mTOR cleavage in SiHa cells. Collectively, T. vaginalis metallopeptidase induces host cell mTOR cleavage, which may be related to survival of the parasite. PMID:25548410

  19. RDE-2 interacts with MUT-7 to mediate RNA interference in Caenorhabditis elegans.

    Science.gov (United States)

    Tops, Bastiaan B J; Tabara, Hiroaki; Sijen, Titia; Simmer, Femke; Mello, Craig C; Plasterk, Ronald H A; Ketting, René F

    2005-01-01

    In Caenorhabditis elegans, the activity of transposable elements is repressed in the germline. One of the mechanisms involved in this repression is RNA interference (RNAi), a process in which dsRNA targets cleavage of mRNAs in a sequence-specific manner. The first gene found to be involved in RNAi and transposon silencing in C.elegans is mut-7, a gene encoding a putative exoribonuclease. Here, we show that the MUT-7 protein resides in complexes of approximately 250 kDa in the nucleus and in the cytosol. In addition, we find that upon triggering of RNAi the cytosolic MUT-7 complex increases in size. This increase is independent of the presence of target RNA, but does depend on the presence of RDE-1 and RDE-4, two proteins involved in small interfering RNA (siRNA) production. Finally, using a yeast two-hybrid screen, we identified RDE-2/MUT-8 as one of the other components of this complex. This protein is encoded by the rde-2/mut-8 locus, previously implicated in RNAi and transposon silencing. Using genetic complementation analysis, we show that the interaction between these two proteins is required for efficient RNAi in vivo. Together these data support a role for the MUT-7/RDE-2 complex downstream of siRNA formation, but upstream of siRNA mediated target RNA recognition, possibly indicating a role in the siRNA amplification step.

  20. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.

    Directory of Open Access Journals (Sweden)

    Hongtao Hu

    Full Text Available MicroRNAs (miRNAs and secondary small interfering RNAs (principally phased siRNAs or trans-acting siRNAs are two distinct subfamilies of small RNAs (sRNAs that are emerging as key regulators of posttranscriptional gene expression in plants. Both miRNAs and secondary-siRNAs (sec-siRNAs are processed from longer RNA precursors by DICER-LIKE proteins (DCLs. Gossypium arboreum L., also known as tree cotton or Asian cotton, is a diploid, possibly ancestral relative of tetraploid Gossypium hirsutum L., the predominant type of commercially grown cotton worldwide known as upland cotton. To understand the biological significance of these gene regulators in G. arboreum, a bioinformatics analysis was performed on G. arboreum small RNAs produced from G. arboreum leaf, flower, and boll tissues. Consequently, 263 miRNAs derived from 353 precursors, including 155 conserved miRNAs (cs-miRNAs and 108 novel lineage-specific miRNAs (ls-miRNAs. Along with miRNAs, 2,033 miRNA variants (isomiRNAs were identified as well. Those isomiRNAs with variation at the 3'-miRNA end were expressed at the highest levels, compared to other types of variants. In addition, 755 pha-siRNAs derived 319 pha-siRNA gene transcripts (PGTs were identified, and the potential pha-siRNA initiators were predicted. Also, 2,251 non-phased siRNAs were found as well, of which 1,088 appeared to be produced by so-called cis- or trans-cleavage of the PGTs observed at positions differing from pha-siRNAs. Of those sRNAs, 148 miRNAs/isomiRNAs and 274 phased/non-phased siRNAs were differentially expressed in one or more pairs of tissues examined. Target analysis revealed that target genes for both miRNAs and pha-siRNAs are involved a broad range of metabolic and enzymatic activities. We demonstrate that secondary siRNA production could result from initial cleavage of precursors by both miRNAs or isomiRNAs, and that subsequently produced phased and unphased siRNAs could result that also serve as triggers

  1. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.

    Science.gov (United States)

    Hu, Hongtao; Rashotte, Aaron M; Singh, Narendra K; Weaver, David B; Goertzen, Leslie R; Singh, Shree R; Locy, Robert D

    2015-01-01

    MicroRNAs (miRNAs) and secondary small interfering RNAs (principally phased siRNAs or trans-acting siRNAs) are two distinct subfamilies of small RNAs (sRNAs) that are emerging as key regulators of posttranscriptional gene expression in plants. Both miRNAs and secondary-siRNAs (sec-siRNAs) are processed from longer RNA precursors by DICER-LIKE proteins (DCLs). Gossypium arboreum L., also known as tree cotton or Asian cotton, is a diploid, possibly ancestral relative of tetraploid Gossypium hirsutum L., the predominant type of commercially grown cotton worldwide known as upland cotton. To understand the biological significance of these gene regulators in G. arboreum, a bioinformatics analysis was performed on G. arboreum small RNAs produced from G. arboreum leaf, flower, and boll tissues. Consequently, 263 miRNAs derived from 353 precursors, including 155 conserved miRNAs (cs-miRNAs) and 108 novel lineage-specific miRNAs (ls-miRNAs). Along with miRNAs, 2,033 miRNA variants (isomiRNAs) were identified as well. Those isomiRNAs with variation at the 3'-miRNA end were expressed at the highest levels, compared to other types of variants. In addition, 755 pha-siRNAs derived 319 pha-siRNA gene transcripts (PGTs) were identified, and the potential pha-siRNA initiators were predicted. Also, 2,251 non-phased siRNAs were found as well, of which 1,088 appeared to be produced by so-called cis- or trans-cleavage of the PGTs observed at positions differing from pha-siRNAs. Of those sRNAs, 148 miRNAs/isomiRNAs and 274 phased/non-phased siRNAs were differentially expressed in one or more pairs of tissues examined. Target analysis revealed that target genes for both miRNAs and pha-siRNAs are involved a broad range of metabolic and enzymatic activities. We demonstrate that secondary siRNA production could result from initial cleavage of precursors by both miRNAs or isomiRNAs, and that subsequently produced phased and unphased siRNAs could result that also serve as triggers of a second

  2. Condensed tannins: A novel rearrangement of procyanidins and prodelphinidins in thiolytic cleavage

    Science.gov (United States)

    G. Wayne McGraw; Jan P. Steynberg; Richard W. Hemingway

    1993-01-01

    Conditions commonly used for the thiolytic cleavage of interflavanoid bonds of condensed tannins also result in cleavage of the C4 to C10 bond of flavan units. Subsequenet lectrophilic attack of the C4 carbocation on the C2' or C6' of the B-ring, and loss of phloroglucinol (the A-ring), result in the formation of a mixture of 1,3-dithiobenzyl-2,4,s,6-...

  3. Catalytic process for tritium exchange reaction

    International Nuclear Information System (INIS)

    Hansoo Lee; Kang, H.S.; Paek, S.W.; Hongsuk Chung; Yang Geun Chung; Sook Kyung Lee

    2001-01-01

    The catalytic activities for a hydrogen isotope exchange were measured through the reaction of a vapor and gas mixture. The catalytic activity showed to be comparable with the published data. Since the gas velocity is relatively low, the deactivation was not found clearly during the 5-hour experiment. Hydrogen isotope transfer experiments were also conducted through the liquid phase catalytic exchange reaction column that consisted of a catalytic bed and a hydrophilic bed. The efficiencies of both the catalytic and hydrophilic beds were higher than 0.9, implying that the column performance was excellent. (author)

  4. High-throughput sequencing of RNA silencing-associated small RNAs in olive (Olea europaea L..

    Directory of Open Access Journals (Sweden)

    Livia Donaire

    Full Text Available Small RNAs (sRNAs of 20 to 25 nucleotides (nt in length maintain genome integrity and control gene expression in a multitude of developmental and physiological processes. Despite RNA silencing has been primarily studied in model plants, the advent of high-throughput sequencing technologies has enabled profiling of the sRNA component of more than 40 plant species. Here, we used deep sequencing and molecular methods to report the first inventory of sRNAs in olive (Olea europaea L.. sRNA libraries prepared from juvenile and adult shoots revealed that the 24-nt class dominates the sRNA transcriptome and atypically accumulates to levels never seen in other plant species, suggesting an active role of heterochromatin silencing in the maintenance and integrity of its large genome. A total of 18 known miRNA families were identified in the libraries. Also, 5 other sRNAs derived from potential hairpin-like precursors remain as plausible miRNA candidates. RNA blots confirmed miRNA expression and suggested tissue- and/or developmental-specific expression patterns. Target mRNAs of conserved miRNAs were computationally predicted among the olive cDNA collection and experimentally validated through endonucleolytic cleavage assays. Finally, we use expression data to uncover genetic components of the miR156, miR172 and miR390/TAS3-derived trans-acting small interfering RNA (tasiRNA regulatory nodes, suggesting that these interactive networks controlling developmental transitions are fully operational in olive.

  5. Polycystin-1 C-terminal Cleavage Is Modulated by Polycystin-2 Expression*

    Science.gov (United States)

    Bertuccio, Claudia A.; Chapin, Hannah C.; Cai, Yiqiang; Mistry, Kavita; Chauvet, Veronique; Somlo, Stefan; Caplan, Michael J.

    2009-01-01

    Autosomal dominant polycystic kidney disease is caused by mutations in the genes encoding polycystin-1 (PC-1) and polycystin-2 (PC-2). PC-1 cleavage releases its cytoplasmic C-terminal tail (CTT), which enters the nucleus. To determine whether PC-1 CTT cleavage is influenced by PC-2, a quantitative cleavage assay was utilized, in which the DNA binding and activation domains of Gal4 and VP16, respectively, were appended to PC-1 downstream of its CTT domain (PKDgalvp). Cells cotransfected with the resultant PKDgalvp fusion protein and PC-2 showed an increase in luciferase activity and in CTT expression, indicating that the C-terminal tail of PC-1 is cleaved and enters the nucleus. To assess whether CTT cleavage depends upon Ca2+ signaling, cells transfected with PKDgalvp alone or together with PC-2 were incubated with several agents that alter intracellular Ca2+ concentrations. PC-2 enhancement of luciferase activity was not altered by any of these treatments. Using a series of PC-2 C-terminal truncated mutations, we identified a portion of the PC-2 protein that is required to stimulate PC-1 CTT accumulation. These data demonstrate that release of the CTT from PC-1 is influenced and stabilized by PC-2. This effect is independent of Ca2+ but is regulated by sequences contained within the PC-2 C-terminal tail, suggesting a mechanism through which PC-1 and PC-2 may modulate a novel signaling pathway. PMID:19491093

  6. Restriction enzyme cleavage of ultraviolet-damaged Simian virus 40 and pBR322 DNA

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1983-01-01

    Cleavage of specific DNA sequences by the restriction enzymes EcoRI, HindIII and TaqI was prevented when the DNA was irradiated with ultraviolet light. Most of the effects were attributed to cyclobutane pyrimidine dimers in the recognition sequences; the effectiveness of irradiation was directly proportional to the number of potential dimer sites in the DNA. Combining EcoRI with dimer-specific endonuclease digestion revealed that pyrimidine dimers blocked cleavage within one base-pair on the strand opposite to the dimer but did not block cleavage three to four base-pairs away on the same strand. These are the probable limits for the range of influence of pyrimidine dimers along the DNA, at least for this enzyme. The effect of irradiation on cleavage by TaqI seemed far greater than expected for the cyclobutane dimer yield, possibly because of effects from photoproducts flanking the tetranucleotide recognition sequence and the effect of non-cyclobutane (6-4)pyrimidine photoproducts involving adjacent T and C bases. (author)

  7. Photoreversible UV-inactivation of messenger RNA in an insect embryo (Smittia spec., chironomidae, diptera)

    International Nuclear Information System (INIS)

    Jaeckle, H.; Kalthoff, K.

    1980-01-01

    Smittia embryos were UV-irradiated during intravitelline cleavage while nuclei are heavily shielded by yolk-rich cytoplasm and do not synthesize detectable amounts of RNA. Irradiation at 265, 285 and 295 nm wavelength caused biological inactivation, and pyrimidine dimer formation in maternal RNA. Marked effects on protein synthesis were also observed: (1) the overall rate of 35 S-methionine incorporation in vivo was reduced to less than half of the normal rate, (2) two dimensional gel electrophoresis revealed quantitative variations in the synthetic rate of some polypeptides and the appearance of new ones in UV-irradiated embryos, (3) translation of polyadenylated RNA from Smittia embryos in a cell-free system was inhibited by UV-irradiation in vivo, (4) the apparent degradation during early embryogenesis, of maternal polyadenylated RNA was retarded in UV-irradiated embryos. Exposure to light (400 nm) after UV caused partial photoreversal of all UV effects observed. This is the first data showing that animal mRNA, after UV-irradiation, can be photoreactivated in vivo. The results also strongly suggest that the photorepairable lesions consist of pyrimidine dimers generated in a photosensitized reaction. (author)

  8. Contributions to the theory of catalytic titrations-III Neutralization catalytic titrations.

    Science.gov (United States)

    Gaál, F F; Abramović, B F

    1985-07-01

    Neutralization catalytic titrations of weak monoprotic adds and bases with both volumetric and coulometric addition of the titrant (strong base/acid) have been simulated by taking into account the equilibrium concentration of the catalyst during the titration. The influence of several factors on the shape of the simulated catalytic titration curve has been investigated and is discussed.

  9. Control of extracellular cleavage of ProBDNF by high frequency neuronal activity

    OpenAIRE

    Nagappan, Guhan; Zaitsev, Eugene; Senatorov, Vladimir V.; Yang, Jianmin; Hempstead, Barbara L.; Lu, Bai

    2009-01-01

    Pro- and mature neurotrophins often elicit opposing biological effects. For example, mature brain-derived neurotrophic factor (mBDNF) is critical for long-term potentiation induced by high-frequency stimulation, whereas proBDNF facilitate long-term depression induced by low-frequency stimulation. Because mBDNF is derived from proBDNF by endoproteolytic cleavage, mechanisms regulating the cleavage of proBDNF may control the direction of BDNF regulation. Using methods that selectively detect pr...

  10. Circular RNA (circRNA) was an important bridge in the switch from the RNA world to the DNA world.

    Science.gov (United States)

    Soslau, Gerald

    2018-06-14

    The concept that life on Earth began as an RNA world has been built upon extensive experimentation demonstrating that many of the building blocks required for living cells could be synthesized in the laboratory under conditions approximating our primordial world. Many of the building blocks for life have also been found in meteorites indicating that meteors may have been a source for these molecules, or more likely, that they represent the chemical library present in most/all bodies in the universe after the big bang. Perhaps the most important support for the concept comes from the fact that some RNA species possess catalytic activity, ribozymes, and that RNA could be reverse transcribe to DNA. The thrust of numerous papers on this topic has been to explore how the available molecules on Earth, at its birth, gave rise to life as we know it today. This paper focuses more on a reverse view of the topic. The "how" molecular building blocks were synthesized is not addressed nor how the "first" RNA molecules were synthesized. We can clearly speculate on the variable environmental conditions and chemistry available on Earth billions of years ago. However, we can never truly replicate the changing conditions or know the chemical composition of Earth at the beginning of time. We can, however, confirm that over millions, perhaps billions of years the basic building blocks for life accumulated sufficiently to initiate evolution to an RNA world followed by our RNA/DNA world. Here we are attempting to take the information from our current knowledge of biology and by inference and extrapolation work backward to hypothesize biological events in the march forward from RNA to DNA. It is proposed that the primordial replicating RNA cell, the ribocyte, evolved from liposomes encompassing required reactants and products for "life" and that ribonucleopeptide complexes formed membrane pores to support bidirectional ion and molecular transport to maintain biological functions and

  11. The microRNA effector RNA-induced silencing complex in hidradenitis suppurativa: a significant dysregulation within active inflammatory lesions.

    Science.gov (United States)

    Hessam, S; Sand, M; Skrygan, M; Bechara, Falk G

    2017-09-01

    Recently, we could show that the expression levels of the key regulators of the microRNA (miRNA) maturation and transport were dysregulated in inflamed hidradenitis suppurativa (HS) tissue (Heyam et al. in Wiley Interdiscip Rev RNA 6:271-289, 2015). The RNA-induced silencing complex (RISC) is the central element of the miRNA pathway and regulates miRNA formation and function. We investigated the expression of the RISC components, namely transactivation-responsive RNA-binding protein-1 (TRBP1), TRBP2, protein activator (PACT) of the interferon-induced protein kinase R, Argonaute RISC Catalytic Component-1 (AGO1) and Component-2 (AGO2), metadherin, and staphylococcal nuclease and Tudor domain-containing-1 (SND1) in inflamed HS tissue compared to healthy and psoriatic controls by real-time reverse transcription polymerase chain reaction. Expression levels of all investigated components were significantly lower in lesional HS skin (n = 18) compared to healthy controls (n = 10). TRBP1, PACT, AGO1, AGO2, and SND1 expression levels were significantly down-regulated in lesional HS skin compared to healthy-appearing perilesional skin (n = 7). TRBP2 and SND1 expression levels were significantly lower in healthy-appearing perilesional skin compared to healthy controls. In lesional HS skin, expression levels of PACT, AGO1, and AGO2 were significantly lower compared to psoriatic skin (n = 10). In summary, our data showed that all investigated components of RISC are dysregulated in the skin of HS patients, providing support for the hypothesis that miRNAs may have a pathological role in the inflammatory pathogenesis of HS.

  12. Naked mole-rat has increased translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage.

    Science.gov (United States)

    Azpurua, Jorge; Ke, Zhonghe; Chen, Iris X; Zhang, Quanwei; Ermolenko, Dmitri N; Zhang, Zhengdong D; Gorbunova, Vera; Seluanov, Andrei

    2013-10-22

    The naked mole-rat (Heterocephalus glaber) is a subterranean eusocial rodent with a markedly long lifespan and resistance to tumorigenesis. Multiple data implicate modulation of protein translation in longevity. Here we report that 28S ribosomal RNA (rRNA) of the naked mole-rat is processed into two smaller fragments of unequal size. The two breakpoints are located in the 28S rRNA divergent region 6 and excise a fragment of 263 nt. The excised fragment is unique to the naked mole-rat rRNA and does not show homology to other genomic regions. Because this hidden break site could alter ribosome structure, we investigated whether translation rate and amino acid incorporation fidelity were altered. We report that naked mole-rat fibroblasts have significantly increased translational fidelity despite having comparable translation rates with mouse fibroblasts. Although we cannot directly test whether the unique 28S rRNA structure contributes to the increased fidelity of translation, we speculate that it may change the folding or dynamics of the large ribosomal subunit, altering the rate of GTP hydrolysis and/or interaction of the large subunit with tRNA during accommodation, thus affecting the fidelity of protein synthesis. In summary, our results show that naked mole-rat cells produce fewer aberrant proteins, supporting the hypothesis that the more stable proteome of the naked mole-rat contributes to its longevity.

  13. Stimulation of NADH-dependent microsomal DNA strand cleavage by rifamycin SV.

    Science.gov (United States)

    Kukiełka, E; Cederbaum, A I

    1995-04-15

    Rifamycin SV is an antibiotic anti-bacterial agent used in the treatment of tuberculosis. This drug can autoxidize, especially in the presence of metals, and generate reactive oxygen species. A previous study indicated that rifamycin SV can increase NADH-dependent microsomal production of reactive oxygen species. The current study evaluated the ability of rifamycin SV to interact with iron and increase microsomal production of hydroxyl radical, as detected by conversion of supercoiled plasmid DNA into the relaxed open circular state. The plasmid used was pBluescript II KS(-), and the forms of DNA were separated by agarose-gel electrophoresis. Incubation of rat liver microsomes with plasmid plus NADH plus ferric-ATP caused DNA strand cleavage. The addition of rifamycin SV produced a time- and concentration-dependent increase in DNA-strand cleavage. No stimulation by rifamycin SV occurred in the absence of microsomes, NADH or ferric-ATP. Stimulation occurred with other ferric complexes besides ferric-ATP, e.g. ferric-histidine, ferric-citrate, ferric-EDTA, and ferric-(NH4)2SO4. Rifamycin SV did not significantly increase the high rates of DNA strand cleavage found with NADPH as the microsomal reductant. The stimulation of NADH-dependent microsomal DNA strand cleavage was completely blocked by catalase, superoxide dismutase, GSH and a variety of hydroxyl-radical-scavenging agents, but not by anti-oxidants that prevent microsomal lipid peroxidation. Redox cycling agents, such as menadione and paraquat, in contrast with rifamycin SV, stimulated the NADPH-dependent reaction; menadione and rifamycin SV were superior to paraquat in stimulating the NADH-dependent reaction. These results indicate that rifamycin SV can, in the presence of an iron catalyst, increase microsomal production of reactive oxygen species which can cause DNA-strand cleavage. In contrast with other redox cycling agents, the stimulation by rifamycin SV is more pronounced with NADH than with NADPH as the

  14. Structural Insights into the Methylation of C1402 in 16S rRNA by Methyltransferase RsmI.

    Directory of Open Access Journals (Sweden)

    Mohan Zhao

    Full Text Available RsmI and RsmH are conserved S-Adenosylmethionine (AdoMet-dependent methyltransferases (MTases that are responsible for the 2'-O-methylation and N4-methylation of C1402 in bacterial 16S rRNA, respectively. Methylation of m4Cm1402 plays a role in fine-tuning the shape and functions of the P-site to increase the decoding fidelity, and was recently found to contribute to the virulence of Staphylococcus aureus in host animals. Here we report the 2.20-Å crystal structure of homodimeric RsmI from Escherichia coli in complex with the cofactor AdoMet. RsmI consists of an N-terminal putative RNA-binding domain (NTD and a C-terminal catalytic domain (CTD with a Rossmann-like fold, and belongs to the class III MTase family. AdoMet is specifically bound into a negatively charged deep pocket formed by both domains by making extensive contacts. Structure-based mutagenesis and isothermal titration calorimetry (ITC assays revealed Asp100 and Ala124 are vital for AdoMet-binding. Although the overall fold of RsmI shows remarkable similarities to the characterized MTases involved in vitamin B12 biosynthesis, it exhibits a distinct charge distribution especially around the AdoMet-binding pocket because of different substrate specificity. The docking model of RsmI-AdoMet-RNA ternary complex suggested a possible base-flipping mechanism of the substrate RNA that has been observed in several known RNA MTases. Our structural and biochemical studies provide novel insights into the catalytic mechanism of C1402 methylation in 16S rRNA.

  15. Crosstalk between Wnt Signaling and RNA Processing in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Michael Bordonaro

    2013-01-01

    Full Text Available RNA processing involves a variety of processes affecting gene expression, including the removal of introns through RNA splicing, as well as 3' end processing (cleavage and polyadenylation. Alternative RNA processing is fundamentally important for gene regulation, and aberrant processing is associated with the initiation and progression of cancer. Deregulated Wnt signaling, which is the initiating event in the development of most cases of human colorectal cancer (CRC, has been linked to modified RNA processing, which may contribute to Wnt-mediated colonic carcinogenesis. Crosstalk between Wnt signaling and alternative RNA splicing with relevance to CRC includes effects on the expression of Rac1b, an alternatively spliced gene associated with tumorigenesis, which exhibits alternative RNA splicing that is influenced by Wnt activity. In addition, Tcf4, a crucial component of Wnt signaling, also exhibits alternative splicing, which is likely involved in colonic tumorigenesis. Modulation of 3' end formation, including of the Wnt target gene COX-2, also can influence the neoplastic process, with implications for CRC. While many human genes are dependent on introns and splicing for normal levels of gene expression, naturally intronless genes exist with a unique metabolism that allows for intron-independent gene expression. Effects of Wnt activity on the RNA metabolism of the intronless Wnt-target gene c-jun is a likely contributor to cancer development. Further, butyrate, a breakdown product of dietary fiber and a histone deacetylase inhibitor, upregulates Wnt activity in CRC cells, and also modulates RNA processing; therefore, the interplay between Wnt activity, the modulation of this activity by butyrate, and differential RNA metabolism in colonic cells can significantly influence tumorigenesis. Determining the role played by altered RNA processing in Wnt-mediated neoplasia may lead to novel interventions aimed at restoring normal RNA metabolism for

  16. Crosstalk between Wnt Signaling and RNA Processing in Colorectal Cancer.

    Science.gov (United States)

    Bordonaro, Michael

    2013-01-01

    RNA processing involves a variety of processes affecting gene expression, including the removal of introns through RNA splicing, as well as 3' end processing (cleavage and polyadenylation). Alternative RNA processing is fundamentally important for gene regulation, and aberrant processing is associated with the initiation and progression of cancer. Deregulated Wnt signaling, which is the initiating event in the development of most cases of human colorectal cancer (CRC), has been linked to modified RNA processing, which may contribute to Wnt-mediated colonic carcinogenesis. Crosstalk between Wnt signaling and alternative RNA splicing with relevance to CRC includes effects on the expression of Rac1b, an alternatively spliced gene associated with tumorigenesis, which exhibits alternative RNA splicing that is influenced by Wnt activity. In addition, Tcf4, a crucial component of Wnt signaling, also exhibits alternative splicing, which is likely involved in colonic tumorigenesis. Modulation of 3' end formation, including of the Wnt target gene COX-2, also can influence the neoplastic process, with implications for CRC. While many human genes are dependent on introns and splicing for normal levels of gene expression, naturally intronless genes exist with a unique metabolism that allows for intron-independent gene expression. Effects of Wnt activity on the RNA metabolism of the intronless Wnt-target gene c-jun is a likely contributor to cancer development. Further, butyrate, a breakdown product of dietary fiber and a histone deacetylase inhibitor, upregulates Wnt activity in CRC cells, and also modulates RNA processing; therefore, the interplay between Wnt activity, the modulation of this activity by butyrate, and differential RNA metabolism in colonic cells can significantly influence tumorigenesis. Determining the role played by altered RNA processing in Wnt-mediated neoplasia may lead to novel interventions aimed at restoring normal RNA metabolism for therapeutic benefit

  17. Bridge helix bending promotes RNA polymerase II backtracking through a critical and conserved threonine residue

    KAUST Repository

    Da, Lin-Tai; Pardo-Avila, Fá tima; Xu, Liang; Silva, Daniel-Adriano; Zhang, Lu; Gao, Xin; Wang, Dong; Huang, Xuhui

    2016-01-01

    The dynamics of the RNA polymerase II (Pol II) backtracking process is poorly understood. We built a Markov State Model from extensive molecular dynamics simulations to identify metastable intermediate states and the dynamics of backtracking at atomistic detail. Our results reveal that Pol II backtracking occurs in a stepwise mode where two intermediate states are involved. We find that the continuous bending motion of the Bridge helix (BH) serves as a critical checkpoint, using the highly conserved BH residue T831 as a sensing probe for the 3′-terminal base paring of RNA:DNA hybrid. If the base pair is mismatched, BH bending can promote the RNA 3′-end nucleotide into a frayed state that further leads to the backtracked state. These computational observations are validated by site-directed mutagenesis and transcript cleavage assays, and provide insights into the key factors that regulate the preferences of the backward translocation.

  18. Bridge helix bending promotes RNA polymerase II backtracking through a critical and conserved threonine residue

    KAUST Repository

    Da, Lin-Tai

    2016-04-19

    The dynamics of the RNA polymerase II (Pol II) backtracking process is poorly understood. We built a Markov State Model from extensive molecular dynamics simulations to identify metastable intermediate states and the dynamics of backtracking at atomistic detail. Our results reveal that Pol II backtracking occurs in a stepwise mode where two intermediate states are involved. We find that the continuous bending motion of the Bridge helix (BH) serves as a critical checkpoint, using the highly conserved BH residue T831 as a sensing probe for the 3′-terminal base paring of RNA:DNA hybrid. If the base pair is mismatched, BH bending can promote the RNA 3′-end nucleotide into a frayed state that further leads to the backtracked state. These computational observations are validated by site-directed mutagenesis and transcript cleavage assays, and provide insights into the key factors that regulate the preferences of the backward translocation.

  19. The helicase and RNaseIIIa domains of Arabidopsis Dicer-Like1 modulate catalytic parameters during MicroRNA biogenesis

    KAUST Repository

    Liu, Chenggang; Axtell, Michael J.; Fedoroff, Nina V.

    2012-01-01

    Dicer-Like1 (DCL1), an RNaseIII endonuclease, and Hyponastic Leaves1 (HYL1), a double-stranded RNA-binding protein, are core components of the plant microRNA (miRNA) biogenesis machinery. hyl1 mutants accumulate low levels of miRNAs and display

  20. Nature of the Nucleosomal Barrier to RNA Polymerase II | Center for Cancer Research

    Science.gov (United States)

    In the cell, RNA polymerase II (pol II) efficiently transcribes DNA packaged into nucleosomes, but in vitro encounters with the nucleosomes induce catalytic inactivation (arrest) of the pol II core enzyme. To determine potential mechanisms making nucleosomes transparent to transcription in vivo, we analyzed the nature of the nucleosome-induced arrest. We found that the arrests

  1. Proximity-activated nanoparticles: in vitro performance of specific structural modification by enzymatic cleavage

    Science.gov (United States)

    Adam Smith, R; Sewell, Sarah L; Giorgio, Todd D

    2008-01-01

    The development and in vitro performance of a modular nanoscale system capable of specific structural modification by enzymatic activity is described in this work. Due to its small physical size and adaptable characteristics, this system has the potential for utilization in targeted delivery systems and biosensing. Nanoparticle probes were synthesized containing two distinct fluorescent species including a quantum dot base particle and fluorescently labeled cleavable peptide substrate. Activity of these probes was monitored by gel electrophoresis with quantitative cleavage measurements made by fluorometric analysis. The model proximity-activated nanoparticles studied here exhibit significant susceptibility to cleavage by matrix metalloprotease-7 (MMP-7) at physiologically relevant concentrations, with nearly complete cleavage of available substrate molecules after 24 hours. This response is specific to MMP-7 enzyme activity, as cleavage is completely inhibited with the addition of EDTA. Utilization of enzyme-specific modification is a sensitive approach with broad applications for targeted therapeutics and biosensing. The versatility of this nanoparticle system is highlighted in its modular design, as it has the capability to integrate characteristics for detection, biosensing, targeting, and payload delivery into a single, multifunctional nanoparticle structure. PMID:18488420

  2. Phage T4 SegB protein is a homing endonuclease required for the preferred inheritance of T4 tRNA gene region occurring in co-infection with a related phage.

    Science.gov (United States)

    Brok-Volchanskaya, Vera S; Kadyrov, Farid A; Sivogrivov, Dmitry E; Kolosov, Peter M; Sokolov, Andrey S; Shlyapnikov, Michael G; Kryukov, Valentine M; Granovsky, Igor E

    2008-04-01

    Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3' 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TpsiC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages.

  3. Catalytic distillation structure

    Science.gov (United States)

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  4. Complete sequence of RNA1 of grapevine Anatolian ringspot virus.

    Science.gov (United States)

    Digiaro, Michele; Nahdi, Sabrine; Elbeaino, Toufic

    2012-10-01

    The nucleotide sequence of RNA1 of grapevine Anatolian ringspot virus (GARSV), a nepovirus of subgroup B, was determined from cDNA clones. It is 7,288 nucleotides in length excluding the 3' terminal poly(A) tail and contains a large open reading frame (ORF), extending from nucleotides 272 to 7001, encoding a polypeptide of 2,243 amino acids with a predicted molecular mass of 250 kDa. The primary structure of the polyprotein, compared with that of other viral polyproteins, revealed the presence of all the characteristic domains of members of the order Picornavirales, i.e., the NTP-binding protein (1B(Hel)), the viral genome-linked protein (1C(VPg)), the proteinase (1D(Prot)), the RNA-dependent RNA polymerase (1E(Pol)), and of the protease cofactor (1A(Pro-cof)) shared by members of the subfamily Comovirinae within the family Secoviridae. The cleavage sites predicted within the polyprotein were found to be in agreement with those previously reported for nepoviruses of subgroup B, processing from 1A to 1E proteins of 67, 64, 3, 23 and 92 kDa, respectively. The RNA1-encoded polyprotein (p1) shared the highest amino acid sequence identity (66 %) with tomato black ring virus (TBRV) and beet ringspot virus (BRSV). The 5'- and 3'-noncoding regions (NCRs) of GARSV-RNA1 shared 89 % and 95 % nucleotide sequence identity respectively with the corresponding regions in RNA2. Phylogenetic analysis confirmed the close relationship of GARSV to members of subgroup B of the genus Nepovirus.

  5. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    NARCIS (Netherlands)

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid

  6. Detection of the argonaute protein Ago2 and microRNAs in the RNA induced silencing complex (RISC) using a monoclonal antibody.

    Science.gov (United States)

    Ikeda, Keigo; Satoh, Minoru; Pauley, Kaleb M; Fritzler, Marvin J; Reeves, Westley H; Chan, Edward K L

    2006-12-20

    MicroRNAs (miRNAs) are short RNA molecules responsible for post-transcriptional gene silencing by the degradation or translational inhibition of their target messenger RNAs (mRNAs). This process of gene silencing, known as RNA interference (RNAi), is mediated by highly conserved Argonaute (Ago) proteins which are the key components of the RNA induced silencing complex (RISC). In humans, Ago2 is responsible for the endonuclease cleavage of targeted mRNA and it interacts with the mRNA-binding protein GW182, which is a marker for cytoplasmic foci referred to as GW bodies (GWBs). We demonstrated that the anti-Ago2 monoclonal antibody 4F9 recognized GWBs in a cell cycle dependent manner and was capable of capturing miRNAs associated with Ago2. Since Ago2 protein is the effector protein of RNAi, anti-Ago2 monoclonal antibody may be useful in capturing functional miRNAs.

  7. Catalytic site identification—a web server to identify catalytic site structural matches throughout PDB

    Science.gov (United States)

    Kirshner, Daniel A.; Nilmeier, Jerome P.; Lightstone, Felice C.

    2013-01-01

    The catalytic site identification web server provides the innovative capability to find structural matches to a user-specified catalytic site among all Protein Data Bank proteins rapidly (in less than a minute). The server also can examine a user-specified protein structure or model to identify structural matches to a library of catalytic sites. Finally, the server provides a database of pre-calculated matches between all Protein Data Bank proteins and the library of catalytic sites. The database has been used to derive a set of hypothesized novel enzymatic function annotations. In all cases, matches and putative binding sites (protein structure and surfaces) can be visualized interactively online. The website can be accessed at http://catsid.llnl.gov. PMID:23680785

  8. Signal peptide discrimination and cleavage site identification using SVM and NN.

    Science.gov (United States)

    Kazemian, H B; Yusuf, S A; White, K

    2014-02-01

    About 15% of all proteins in a genome contain a signal peptide (SP) sequence, at the N-terminus, that targets the protein to intracellular secretory pathways. Once the protein is targeted correctly in the cell, the SP is cleaved, releasing the mature protein. Accurate prediction of the presence of these short amino-acid SP chains is crucial for modelling the topology of membrane proteins, since SP sequences can be confused with transmembrane domains due to similar composition of hydrophobic amino acids. This paper presents a cascaded Support Vector Machine (SVM)-Neural Network (NN) classification methodology for SP discrimination and cleavage site identification. The proposed method utilises a dual phase classification approach using SVM as a primary classifier to discriminate SP sequences from Non-SP. The methodology further employs NNs to predict the most suitable cleavage site candidates. In phase one, a SVM classification utilises hydrophobic propensities as a primary feature vector extraction using symmetric sliding window amino-acid sequence analysis for discrimination of SP and Non-SP. In phase two, a NN classification uses asymmetric sliding window sequence analysis for prediction of cleavage site identification. The proposed SVM-NN method was tested using Uni-Prot non-redundant datasets of eukaryotic and prokaryotic proteins with SP and Non-SP N-termini. Computer simulation results demonstrate an overall accuracy of 0.90 for SP and Non-SP discrimination based on Matthews Correlation Coefficient (MCC) tests using SVM. For SP cleavage site prediction, the overall accuracy is 91.5% based on cross-validation tests using the novel SVM-NN model. © 2013 Published by Elsevier Ltd.

  9. Isoform-specific interactions between meprin metalloproteases and the catalytic subunit of protein kinase A: significance in acute and chronic kidney injury

    Science.gov (United States)

    Niyitegeka, Jean-Marie V.; Bastidas, Adam C.; Newman, Robert H.; Taylor, Susan S.

    2014-01-01

    Meprin metalloproteases are abundantly expressed in the brush-border membranes of kidney proximal tubules. Meprins are implicated in ischemia-reperfusion (IR)-induced renal injury and diabetic nephropathy. The protein kinase A (PKA) signaling pathway modulates extracellular matrix metabolism in diabetic kidneys. The present study evaluated isoform-specific interactions between the catalytic subunit of PKA (PKA C) and meprins. To this end, cytosolic-enriched kidney proteins from meprin αβ double knockout mice, and purified forms of recombinant mouse PKA Cα, Cβ1, and Cβ2, were incubated with activated forms of either homomeric meprin A or meprin B. The cleaved protein products were subjected to SDS-PAGE and analyzed by Coomassie staining and Western blot analysis. While meprin A only cleaved PKA Cβ1, meprin B cleaved all three PKA C isoforms. Analysis of the proteolytic fragments by mass spectrometry revealed that meprin A and B cleave the PKA C isoforms at defined sites, resulting in unique cleavage products. Michaelis-Menten enzyme kinetics demonstrated that meprin B-mediated cleavage of PKA Cα occurs at a rate consistent with that of other physiologically relevant meprin substrates. Meprin cleavage decreased the kinase activity of PKA Cα, Cβ1, and Cβ2. PKA C levels were higher in diabetic kidneys, with evidence of in vivo fragmentation in wild-type diabetic kidneys. Confocal microscopy showed localization of meprin A in the glomeruli of diabetic kidneys. At 3 h post-IR, PKA C levels in proximal tubules decreased compared with distal tubules, which lack meprins. These data suggest that meprins may impact kidney injury, in part, via modulation of PKA signaling pathways. PMID:25354939

  10. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the othersa

    Directory of Open Access Journals (Sweden)

    Bernhardt Harold S

    2012-07-01

    Full Text Available Abstract The problems associated with the RNA world hypothesis are well known. In the following I discuss some of these difficulties, some of the alternative hypotheses that have been proposed, and some of the problems with these alternative models. From a biosynthetic – as well as, arguably, evolutionary – perspective, DNA is a modified RNA, and so the chicken-and-egg dilemma of “which came first?” boils down to a choice between RNA and protein. This is not just a question of cause and effect, but also one of statistical likelihood, as the chance of two such different types of macromolecule arising simultaneously would appear unlikely. The RNA world hypothesis is an example of a ‘top down’ (or should it be ‘present back’? approach to early evolution: how can we simplify modern biological systems to give a plausible evolutionary pathway that preserves continuity of function? The discovery that RNA possesses catalytic ability provides a potential solution: a single macromolecule could have originally carried out both replication and catalysis. RNA – which constitutes the genome of RNA viruses, and catalyzes peptide synthesis on the ribosome – could have been both the chicken and the egg! However, the following objections have been raised to the RNA world hypothesis: (i RNA is too complex a molecule to have arisen prebiotically; (ii RNA is inherently unstable; (iii catalysis is a relatively rare property of long RNA sequences only; and (iv the catalytic repertoire of RNA is too limited. I will offer some possible responses to these objections in the light of work by our and other labs. Finally, I will critically discuss an alternative theory to the RNA world hypothesis known as ‘proteins first’, which holds that proteins either preceded RNA in evolution, or – at the very least – that proteins and RNA coevolved. I will argue that, while theoretically possible, such a hypothesis is probably unprovable, and that the RNA

  11. Sequence specificity of DNA cleavage by Micrococcus luteus γ endonuclease

    International Nuclear Information System (INIS)

    Hentosh, P.; Henner, W.D.; Reynolds, R.J.

    1985-01-01

    DNA fragments of defined sequence have been used to determine the sites of cleavage by γ-endonuclease activity in extracts prepared from Micrococcus luteus. End-labeled DNA restriction fragments of pBR322 DNA that had been irradiated under nitrogen in the presence of potassium iodide or t-butanol were treated with M. luteus γ endonuclease and analyzed on irradiated DNA preferentially at the positions of cytosines and thymines. DNA cleavage occurred immediately to the 3' side of pyrimidines in irradiated DNA and resulted in fragments that terminate in a 5'-phosphoryl group. These studies indicate that both altered cytosines and thymines may be important DNA lesions requiring repair after exposure to γ radiation

  12. Domestication of transposable elements into MicroRNA genes in plants.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Transposable elements (TE usually take up a substantial portion of eukaryotic genome. Activities of TEs can cause genome instability or gene mutations that are harmful or even disastrous to the host. TEs also contribute to gene and genome evolution at many aspects. Part of miRNA genes in mammals have been found to derive from transposons while convincing evidences are absent for plants. We found that a considerable number of previously annotated plant miRNAs are identical or homologous to transposons (TE-MIR, which include a small number of bona fide miRNA genes that conform to generally accepted plant miRNA annotation rules, and hairpin derived siRNAs likely to be pre-evolved miRNAs. Analysis of these TE-MIRs indicate that transitions from the medium to high copy TEs into miRNA genes may undergo steps such as inverted repeat formation, sequence speciation and adaptation to miRNA biogenesis. We also identified initial target genes of the TE-MIRs, which contain homologous sequences in their CDS as consequence of cognate TE insertions. About one-third of the initial target mRNAs are supported by publicly available degradome sequencing data for TE-MIR sRNA induced cleavages. Targets of the TE-MIRs are biased to non-TE related genes indicating their penchant to acquire cellular functions during evolution. Interestingly, most of these TE insertions span boundaries between coding and non-coding sequences indicating their incorporation into CDS through alteration of splicing or translation start or stop signals. Taken together, our findings suggest that TEs in gene rich regions can form foldbacks in non-coding part of transcripts that may eventually evolve into miRNA genes or be integrated into protein coding sequences to form potential targets in a "temperate" manner. Thus, transposons may supply as resources for the evolution of miRNA-target interactions in plants.

  13. Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase.

    Science.gov (United States)

    Appleby, Todd C; Perry, Jason K; Murakami, Eisuke; Barauskas, Ona; Feng, Joy; Cho, Aesop; Fox, David; Wetmore, Diana R; McGrath, Mary E; Ray, Adrian S; Sofia, Michael J; Swaminathan, S; Edwards, Thomas E

    2015-02-13

    Nucleotide analog inhibitors have shown clinical success in the treatment of hepatitis C virus (HCV) infection, despite an incomplete mechanistic understanding of NS5B, the viral RNA-dependent RNA polymerase. Here we study the details of HCV RNA replication by determining crystal structures of stalled polymerase ternary complexes with enzymes, RNA templates, RNA primers, incoming nucleotides, and catalytic metal ions during both primed initiation and elongation of RNA synthesis. Our analysis revealed that highly conserved active-site residues in NS5B position the primer for in-line attack on the incoming nucleotide. A β loop and a C-terminal membrane-anchoring linker occlude the active-site cavity in the apo state, retract in the primed initiation assembly to enforce replication of the HCV genome from the 3' terminus, and vacate the active-site cavity during elongation. We investigated the incorporation of nucleotide analog inhibitors, including the clinically active metabolite formed by sofosbuvir, to elucidate key molecular interactions in the active site. Copyright © 2015, American Association for the Advancement of Science.

  14. DNA Cleavage Activity of Diazonium Salts: Chemical Nucleases

    OpenAIRE

    KIZIL, Murat

    2014-01-01

    4-Fenoldiazonium tetrafluoroborate and 4-benzoicaciddiazonium tetrafluoroborate was prepared and was shown to be an effective DNA cleavage agent in the presence of the 1-electron donor copper(II) chloride. Its mechanism involves the generation of the aryl radical cleaving DNA by hydrogen atom abstraction from deoxyribose sugar.

  15. Investigation of a miRNA-Induced Gene Silencing Technique in Petunia Reveals Alterations in miR173 Precursor Processing and the Accumulation of Secondary siRNAs from Endogenous Genes.

    Directory of Open Access Journals (Sweden)

    Yao Han

    Full Text Available MIGS (miRNA-induced gene silencing is a straightforward and efficient gene silencing technique in Arabidopsis. It works by exploiting miR173 to trigger the production of phasiRNAs (phased small interfering RNAs. MIGS can be used in plant species other than Arabidopsis by co-expression of miR173 and target gene fragments fused to an upstream miR173 target site. However, the efficiency and technical mechanisms have not been thoroughly investigated in other plants. In this work, two vectors, pMIGS-chs and pMIGS-pds, were constructed and transformed into petunia plants. The transgenic plants showed CHS (chalcone synthase and PDS (phytoene desaturase gene-silencing phenotypes respectively, indicating that MIGS functions in petunia. MIGS-chs plants were used to investigate the mechanisms of this technique in petunia. Results of 5'- RACE showed that the miR173 target site was cleaved at the expected position and that endogenous CHS genes were cut at multiple positions. Small RNA deep sequencing analysis showed that the processing of Arabidopsis miR173 precursors in MIGS-chs transgenic petunia plants did not occur in exactly the same way as in Arabidopsis, suggesting differences in the machinery of miRNA processing between plant species. Small RNAs in-phase with the miR173 cleavage register were produced immediately downstream from the cleavage site and out-of-phase small RNAs were accumulated at relatively high levels from processing cycle 5 onwards. Secondary siRNAs were generated from multiple sites of endogenous CHS-A and CHS-J genes, indicating that miR173 cleavage induced siRNAs have the same ability to initiate siRNA transitivity as the siRNAs functioning in co-suppression and hpRNA silencing. On account of the simplicity of vector construction and the transitive amplification of signals from endogenous transcripts, MIGS is a good alternative gene silencing method for plants, especially for silencing a cluster of homologous genes with redundant

  16. Investigation of a miRNA-Induced Gene Silencing Technique in Petunia Reveals Alterations in miR173 Precursor Processing and the Accumulation of Secondary siRNAs from Endogenous Genes.

    Science.gov (United States)

    Han, Yao; Zhang, Bin; Qin, Xiaoting; Li, Mingyang; Guo, Yulong

    2015-01-01

    MIGS (miRNA-induced gene silencing) is a straightforward and efficient gene silencing technique in Arabidopsis. It works by exploiting miR173 to trigger the production of phasiRNAs (phased small interfering RNAs). MIGS can be used in plant species other than Arabidopsis by co-expression of miR173 and target gene fragments fused to an upstream miR173 target site. However, the efficiency and technical mechanisms have not been thoroughly investigated in other plants. In this work, two vectors, pMIGS-chs and pMIGS-pds, were constructed and transformed into petunia plants. The transgenic plants showed CHS (chalcone synthase) and PDS (phytoene desaturase) gene-silencing phenotypes respectively, indicating that MIGS functions in petunia. MIGS-chs plants were used to investigate the mechanisms of this technique in petunia. Results of 5'- RACE showed that the miR173 target site was cleaved at the expected position and that endogenous CHS genes were cut at multiple positions. Small RNA deep sequencing analysis showed that the processing of Arabidopsis miR173 precursors in MIGS-chs transgenic petunia plants did not occur in exactly the same way as in Arabidopsis, suggesting differences in the machinery of miRNA processing between plant species. Small RNAs in-phase with the miR173 cleavage register were produced immediately downstream from the cleavage site and out-of-phase small RNAs were accumulated at relatively high levels from processing cycle 5 onwards. Secondary siRNAs were generated from multiple sites of endogenous CHS-A and CHS-J genes, indicating that miR173 cleavage induced siRNAs have the same ability to initiate siRNA transitivity as the siRNAs functioning in co-suppression and hpRNA silencing. On account of the simplicity of vector construction and the transitive amplification of signals from endogenous transcripts, MIGS is a good alternative gene silencing method for plants, especially for silencing a cluster of homologous genes with redundant functions.

  17. Introduction of a leucine half-zipper engenders multiple high-quality crystals of a recalcitrant tRNA synthetase

    International Nuclear Information System (INIS)

    Guo, Min; Shapiro, Ryan; Schimmel, Paul; Yang, Xiang-Lei

    2010-01-01

    E. coli alanyl-tRNA synthetase is recalcitrant to crystallization. A group of leucine substitutions has transformed the protein. Although Escherichia coli alanyl-tRNA synthetase was among the first tRNA synthetases to be sequenced and extensively studied by functional analysis, it has proved to be recalcitrant to crystallization. This challenge remained even for crystallization of the catalytic fragment. By mutationally introducing three stacked leucines onto the solvent-exposed side of an α-helix, an engineered catalytic fragment of the synthetase was obtained that yielded multiple high-quality crystals and cocrystals with different ligands. The engineered α-helix did not form a leucine zipper that interlocked with the same α-helix from another molecule. Instead, using the created hydrophobic spine, it interacted with other surfaces of the protein as a leucine half-zipper (LHZ) to enhance the crystal lattice interactions. The LHZ made crystal lattice contacts in all crystals of different space groups. These results illustrate the power of introducing an LHZ into helices to facilitate crystallization. The authors propose that the method can be unified with surface-entropy reduction and can be broadly used for protein-surface optimization in crystallization

  18. Autoactivation of mouse trypsinogens is regulated by chymotrypsin C via cleavage of the autolysis loop.

    Science.gov (United States)

    Németh, Balázs Csaba; Wartmann, Thomas; Halangk, Walter; Sahin-Tóth, Miklós

    2013-08-16

    Chymotrypsin C (CTRC) is a proteolytic regulator of trypsinogen autoactivation in humans. CTRC cleavage of the trypsinogen activation peptide stimulates autoactivation, whereas cleavage of the calcium binding loop promotes trypsinogen degradation. Trypsinogen mutations that alter these regulatory cleavages lead to increased intrapancreatic trypsinogen activation and cause hereditary pancreatitis. The aim of this study was to characterize the regulation of autoactivation of mouse trypsinogens by mouse Ctrc. We found that the mouse pancreas expresses four trypsinogen isoforms to high levels, T7, T8, T9, and T20. Only the T7 activation peptide was cleaved by mouse Ctrc, causing negligible stimulation of autoactivation. Surprisingly, mouse Ctrc poorly cleaved the calcium binding loop in all mouse trypsinogens. In contrast, mouse Ctrc readily cleaved the Phe-150-Gly-151 peptide bond in the autolysis loop of T8 and T9 and inhibited autoactivation. Mouse chymotrypsin B also cleaved the same peptide bond but was 7-fold slower. T7 was less sensitive to chymotryptic regulation, which involved slow cleavage of the Leu-149-Ser-150 peptide bond in the autolysis loop. Modeling indicated steric proximity of the autolysis loop and the activation peptide in trypsinogen, suggesting the cleaved autolysis loop may directly interfere with activation. We conclude that autoactivation of mouse trypsinogens is under the control of mouse Ctrc with some notable differences from the human situation. Thus, cleavage of the trypsinogen activation peptide or the calcium binding loop by Ctrc is unimportant. Instead, inhibition of autoactivation via cleavage of the autolysis loop is the dominant mechanism that can mitigate intrapancreatic trypsinogen activation.

  19. Probes of eukaryotic DNA-dependent RNA polymerase II-I. Binding of 9-beta-D-arabinofuranosyl-6-mercaptopurine to the elongation subsite.

    Science.gov (United States)

    Cho, J M; Kimball, A P

    1982-08-15

    9-beta-D-Arabinofuranosyl-6-mercaptopurine (ara-6-MP) was used to affinity-label wheat germ DNA-dependent RNA polymerase II (or B) (nucleosidetriphosphate:RNA nucleotidyltransferase, EC 2.7.7.6). This nucleoside analogue was found to be a competitive inhibitor with respect to [3H]UMP incorporation. Natural substrates protected the enzyme from inactivation by ara-6-MP when the enzyme was preincubated with excess concentrations of substrates, suggesting that the inhibitor binds at the elongation subsite. The inhibitor bound the catalytic center of the enzyme with a stoichiometry of 0.6:1. The sulfhydryl reagent, dithiothreitol, reversed the inhibition by ara-6-MP, suggesting that the 6-thiol group of the inhibitor was interacting closely with an essential cysteine residue in the catalytic center of the enzyme. Chromatographic analysis of the pronase-digestion products of the RNA polymerase II-ara-6-MP complex also showed that ara-6-MP had bound a cysteine residue. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the denatured [6-35S]ara-6-MP-labeled RNA polymerase II revealed that over 80% of the radioactivity was associated with the IIb subunit of the enzyme.

  20. Analysis by the reductive-cleavage method of linkage positions in a polysaccharide containing 4-linked D-glucopyranosyluronic residues.

    Science.gov (United States)

    Vodonik, S A; Gray, G R

    1988-04-01

    The fate of 4-linked D-glucopyranosyluronic residues under reductive-cleavage conditions was investigated by using the Klebsiella aerogenes type 54 strain A3 capsular polysaccharide. Treatment of the fully methylated polysaccharide with triethylsilane and trimethylsilyl trifluoromethanesulfonate in dichloromethane, followed by in situ acetylation, yielded 1,5-anhydro-2,3,4,6-tetra-O-methyl-D-glucitol, 3,4-di-O-acetyl-1,5-anhydro-2,6-di-O-methyl-D-glucitol, and 3-O-acetyl-1,5-anhydro-2,4-di-O-methyl-L-fucitol, as expected, but the expected product of reductive cleavage of the 4-linked D-glucopyranosyluronic residue, namely, methyl 3-O-acetyl-2,6-anhydro-4,5-di-O-methyl-L-gulonate, was not observed. Instead, methyl 2-O-acetyl-3,6-anhydro-4,5-di-O-methyl-L-gulonate (6) was identified as the sole product of reductive cleavage of the 4-linked D-glucopyranosyluronic residue. That compound 6 arose as a result of rearrangement during reductive cleavage rather than by reductive cleavage of a 5-linked D-glucofuranosyluronic residue, was established by reductive cleavage of the fully methylated polysaccharide following reduction of its ester groups with either lithium aluminum hydride or lithium aluminum deuteride. The products of the latter reductive cleavage were the same as before, except for the absence of 6 and the presence of 4,6-di-O-acetyl-1,5-anhydro-2,3-di-O-methyl-D-glucitol, or its 6,6-dideuterio isomer. Although the reductive-cleavage technique is suitable for the direct analysis of polysaccharides containing 4-linked D-glucopyranosyluronic residues, it does not establish whether the uronic residue is a 4-linked pyranoside or a 5-linked furanoside. The expected product is, however, derived from the 4-linked D-glucopyranosyluronic residue after sequential methylation, reduction of its ester group and reductive cleavage.

  1. The evolution of catalytic function

    Science.gov (United States)

    Maurel, Marie-Christine; Ricard, Jacques

    2006-03-01

    It is very likely that the main driving force of enzyme evolution is the requirement to improve catalytic and regulatory efficiency which results from the intrinsic performance as well as from the spatial and functional organization of enzymes in living cells. Kinetic co-operativity may occur in simple monomeric proteins if they display “slow” conformational transitions, at the cost of catalytic efficiency. Oligomeric enzymes on the other hand can be both efficient and co-operative. We speculate that the main reason for the emergence of co-operative oligomeric enzymes is the need for catalysts that are both cooperative and efficient. As it is not useful for an enzyme to respond to a change of substrate concentration in a complex kinetic way, the emergence of symmetry has its probable origin in a requirement for “functional simplicity”. In a living cell, enzyme are associated with other macromolecules and membranes. The fine tuning of their activity may also be reached through mutations of the microenvironment. Our hypothesis is that these mutations are related to the vectorial transport of molecules, to achieve the hysteresis loops of enzyme reactions generated by the coupling of reaction and diffusion, through the co-operativity brought about by electric interactions between a charged substrate and a membrane, and last but not least, through oscillations. As the physical origins of these effects are very simple and do not require complex molecular devices, it is very likely that the functional advantage generated by the spatial and functional organization of enzyme molecules within the cell have appeared in prebiotic catalysis or very early during the primeval stages of biological evolution. We shall began this paper by presenting the nature of the probable earliest catalysts in the RNA world.

  2. Comparison of the catalytic properties of the botulinum neurotoxin subtypes A1 and A5.

    Science.gov (United States)

    Wang, Dongxia; Krilich, Joan; Pellett, Sabine; Baudys, Jakub; Tepp, William H; Barr, John R; Johnson, Eric A; Kalb, Suzanne R

    2013-12-01

    Clostridium botulinum neurotoxins (BoNTs) cause the life-threatening disease botulism through the inhibition of neurotransmitter release by cleaving essential SNARE proteins. There are seven serologically distinctive types of BoNTs and many subtypes within a serotype have been identified. BoNT/A5 is a recently discovered subtype of type A botulinum neurotoxin which possesses a very high degree of sequence similarity and identity to the well-studied A1 subtype. In the present study, we examined the endopeptidase activity of these two BoNT/A subtypes and our results revealed significant differences in substrate binding and cleavage efficiency between subtype A5 and A1. Distinctive hydrolysis efficiency was observed between the two toxins during cleavage of the native substrate SNAP-25 versus a shortened peptide mimic. N-terminal truncation studies demonstrated that a key region of the SNAP-25, including the amino acid residues at 151 through 154 located in the remote binding region of the substrate, contributed to the differential catalytic properties between A1 and A5. Elevated binding affinity of the peptide substrate resulted from including these important residues and enhanced BoNT/A5's hydrolysis efficiency. In addition, mutations of these amino acid residues affect the proteolytic performance of the two toxins in different ways. This study provides a better understanding of the biological activity of these toxins, their performance characteristics in the Endopep-MS assay to detect BoNT in clinical samples and foods, and is useful for the development of peptide substrates. © 2013. Published by Elsevier B.V. All rights reserved.

  3. Implications of caspase-dependent proteolytic cleavage of cyclin A1 in DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Hyeok; Seo, Sung-Keum [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); An, Sungkwan; Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)

    2014-10-24

    Highlights: • Caspase-1 mediates doxorubicin-induced downregulation of cyclin A1. • Active caspase-1 effectively cleaved cyclin A1 at D165. • Cyclin A1 expression is involved in DNA damage-induced cell death. - Abstract: Cyclin A1 is an A-type cyclin that directly binds to CDK2 to regulate cell-cycle progression. In the present study, we found that doxorubicin decreased the expression of cyclin A1 at the protein level in A549 lung cancer cells, while markedly downregulating its mRNA levels. Interestingly, doxorubicin upregulated caspase-1 in a concentration-dependent manner, and z-YAVD-fmk, a specific inhibitor of caspase-1, reversed the doxorubicin-induced decrease in cyclin A1 in A549 lung cancer and MCF7 breast cancer cells. Active caspase-1 effectively cleaved cyclin A1 at D165 into two fragments, which in vitro cleavage assays showed were further cleaved by caspase-3. Finally, we found that overexpression of cyclin A1 significantly reduced the cytotoxicity of doxorubicin, and knockdown of cyclin A1 by RNA interference enhanced the sensitivity of cells to ionizing radiation. Our data suggest a new mechanism for the downregulation of cyclin A1 by DNA-damaging stimuli that could be intimately involved in the cell death induced by DNA damage-inducing stimuli, including doxorubicin and ionizing radiation.

  4. Conservation of a proteinase cleavage site between an insect retrovirus (gypsy) Env protein and a baculovirus envelope fusion protein

    International Nuclear Information System (INIS)

    Pearson, Margot N.; Rohrmann, George F.

    2004-01-01

    The predicted Env protein of insect retroviruses (errantiviruses) is related to the envelope fusion protein of a major division of the Baculoviridae. The highest degree of homology is found in a region that contains a furin cleavage site in the baculovirus proteins and an adjacent sequence that has the properties of a fusion peptide. In this investigation, the homologous region in the Env protein of the gypsy retrovirus of Drosophila melanogaster (DmegypV) was investigated. Alteration of the predicted DmegypV Env proteinase cleavage site from RIAR to AIAR significantly reduced cleavage of Env in both Spodoptera frugiperda (Sf-9) and D. melanogaster (S2) cell lines. When the predicted DmegypV Env cleavage site RIAR was substituted for the cleavage sequence RRKR in the Lymantria dispar nucleopolyhedrovirus fusion protein (LD130) sequence, cleavage of the hybrid LD130 molecules still occurred, although at a reduced level. The conserved 21-amino acid sequence just downstream of the cleavage site, which is thought to be the fusion peptide in LD130, was also characterized. When this sequence from DmegypV Env was substituted for the homologous sequence in LD130, cleavage still occurred, but no fusion was observed in either cell type. In addition, although a DmegypV-Env-green fluorescent protein construct localized to cell membranes, no cell fusion was observed

  5. Polycystin-1 Cleavage and the Regulation of Transcriptional Pathways

    Science.gov (United States)

    Merrick, David; Bertuccio, Claudia A.; Chapin, Hannah C.; Lal, Mark; Chauvet, Veronique; Caplan, Michael J.

    2013-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic cause of end stage renal disease, affecting ~1 in 1,000 people. The disease is characterized by the development of numerous large fluid filled renal cysts over the course of decades. These cysts compress the surrounding renal parenchyma and impair its function. Mutations in two genes are responsible for ADPKD. The protein products of both of these genes, polycystin-1 and polycystin-2, localize to the primary cilium and participate in a wide variety of signaling pathways. Polycystin-1 undergoes several proteolytic cleavages that produce fragments that manifest biological activities. Recent results suggest that the production of polycystin-1 cleavage fragments is necessary and sufficient to account for at least some, although certainly not all, of the physiological functions of the parent protein. PMID:23824180

  6. Cell-surface acceleration of urokinase-catalyzed receptor cleavage

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Ploug, M; Behrendt, N

    1997-01-01

    by a prior incubation of the cells with uPA inactivated by diisopropyl fluorophosphate, demonstrating a requirement for specific receptor binding of the active uPA to obtain the high-efficiency cleavage of cell-bound uPAR. Furthermore, amino-terminal sequence analysis revealed that uPAR(2+3), purified from U...

  7. The modeled structure of the RNA dependent RNA polymerase of GBV-C Virus suggests a role for motif E in Flaviviridae RNA polymerases

    Directory of Open Access Journals (Sweden)

    Dutartre Hélène

    2005-10-01

    Full Text Available Abstract Background The Flaviviridae virus family includes major human and animal pathogens. The RNA dependent RNA polymerase (RdRp plays a central role in the replication process, and thus is a validated target for antiviral drugs. Despite the increasing structural and enzymatic characterization of viral RdRps, detailed molecular replication mechanisms remain unclear. The hepatitis C virus (HCV is a major human pathogen difficult to study in cultured cells. The bovine viral diarrhea virus (BVDV is often used as a surrogate model to screen antiviral drugs against HCV. The structure of BVDV RdRp has been recently published. It presents several differences relative to HCV RdRp. These differences raise questions about the relevance of BVDV as a surrogate model, and cast novel interest on the "GB" virus C (GBV-C. Indeed, GBV-C is genetically closer to HCV than BVDV, and can lead to productive infection of cultured cells. There is no structural data for the GBV-C RdRp yet. Results We show in this study that the GBV-C RdRp is closest to the HCV RdRp. We report a 3D model of the GBV-C RdRp, developed using sequence-to-structure threading and comparative modeling based on the atomic coordinates of the HCV RdRp structure. Analysis of the predicted structural features in the phylogenetic context of the RNA polymerase family allows rationalizing most of the experimental data available. Both available structures and our model are explored to examine the catalytic cleft, allosteric and substrate binding sites. Conclusion Computational methods were used to infer evolutionary relationships and to predict the structure of a viral RNA polymerase. Docking a GTP molecule into the structure allows defining a GTP binding pocket in the GBV-C RdRp, such as that of BVDV. The resulting model suggests a new proposition for the mechanism of RNA synthesis, and may prove useful to design new experiments to implement our knowledge on the initiation mechanism of RNA

  8. Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication.

    Science.gov (United States)

    Herod, Morgan R; Ferrer-Orta, Cristina; Loundras, Eleni-Anna; Ward, Joseph C; Verdaguer, Nuria; Rowlands, David J; Stonehouse, Nicola J

    2016-08-01

    The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within

  9. Fetal hemoglobin is much less prone to DNA cleavage compared to the adult protein

    Directory of Open Access Journals (Sweden)

    Sandeep Chakane

    2017-08-01

    Full Text Available Hemoglobin (Hb is well protected inside the red blood cells (RBCs. Upon hemolysis and when free in circulation, Hb can be involved in a range of radical generating reactions and may thereby attack several different biomolecules. In this study, we have examined the potential damaging effects of cell-free Hb on plasmid DNA (pDNA. Hb induced cleavage of supercoiled pDNA (sc pDNA which was proportional to the concentration of Hb applied. Almost 70% of sc pDNA was converted to open circular or linear DNA using 10 µM of Hb in 12 h. Hb can be present in several different forms. The oxy (HbO2 and met forms are most reactive, while the carboxy-protein shows only low hydrolytic activity. Hemoglobin A (HbA could easily induce complete pDNA cleavage while fetal hemoglobin (HbF was three-fold less reactive. By inserting, a redox active cysteine residue on the surface of the alpha chain of HbF by site-directed mutagenesis, the DNA cleavage reaction was enhanced by 82%. Reactive oxygen species were not directly involved in the reaction since addition of superoxide dismutase and catalase did not prevent pDNA cleavage. The reactivity of Hb with pDNA can rather be associated with the formation of protein based radicals. Keywords: Adult hemoglobin, Fetal hemoglobin, Supercoiled plasmid DNA, DNA cleavage, Cysteine, Protein radicals

  10. Abyssal fiction: common shares, colonial cleavages

    Directory of Open Access Journals (Sweden)

    Alexandre Montaury

    2016-12-01

    Full Text Available The paper aims to develop a reflection on the interaction between the legacies of colonialism and traditional symbolic and cultural practices in African Portuguese-speaking spaces. From a preliminary analysis of fictional texts of wide circulation in Brazil, aims to examine the cleavages, or “abyssal lines” that constitute experiences printed in the daily life of the former Portuguese colony of Cape Verde, Mozambique and Angola.---DOI: http://dx.doi.org/10.21881/abriluff.2016n17a378

  11. RNA Thermodynamic Structural Entropy.

    Directory of Open Access Journals (Sweden)

    Juan Antonio Garcia-Martin

    Full Text Available Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs. However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  12. RNA Thermodynamic Structural Entropy.

    Science.gov (United States)

    Garcia-Martin, Juan Antonio; Clote, Peter

    2015-01-01

    Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs). However, the numerical value of derivational entropy depends heavily on the chosen context free grammar and on the training set used to estimate rule probabilities. Using data from the Rfam database, we determine that both of our thermodynamic methods, which agree in numerical value, are substantially faster than the SCFG method. Thermodynamic structural entropy is much smaller than derivational entropy, and the correlation between length-normalized thermodynamic entropy and derivational entropy is moderately weak to poor. In applications, we plot the structural entropy as a function of temperature for known thermoswitches, such as the repression of heat shock gene expression (ROSE) element, we determine that the correlation between hammerhead ribozyme cleavage activity and total free energy is improved by including an additional free energy term arising from conformational entropy, and we plot the structural entropy of windows of the HIV-1 genome. Our software RNAentropy can compute structural entropy for any user-specified temperature, and supports both the Turner'99 and Turner'04 energy parameters. It follows that RNAentropy is state-of-the-art software to compute RNA secondary structure conformational entropy. Source code is available at https://github.com/clotelab/RNAentropy/; a full web server is available at http

  13. The Comparison of Hydrochloric Acid and Phosphoric Acid Treatments in the Preparation of Montmorillonite Catalysts for RNA Synthesis

    Science.gov (United States)

    Aldersley, Michael Frank; Joshi, Prakash C.; Huang, Yixing

    2017-09-01

    The treatment of clay minerals with a preliminary acid wash and titration to pH 7 has proven to generate catalysts for the most interesting of oligomerization reactions in which activated RNA-nucleotides generate oligomers up to 40-mers. Significantly, not all clay minerals become catalytic following this treatment and none are catalytic in the absence of such treatment. The washing procedure has been modified and explored further using phosphoric acid and the outcomes are compared to those obtained when clay samples are prepared following a hydrochloric acid wash.

  14. Method of fabricating a catalytic structure

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  15. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion

    International Nuclear Information System (INIS)

    Pozan, Gulin Selda

    2012-01-01

    Highlights: ► α-Al 2 O 3 , obtained from Bohmite, as a support for enhancing of the activity. ► The support material for catalytic oxidation. ► The manganese state and oxygen species effect on the catalytic combustion reaction. - Abstract: The aim of this work was to study combustion of toluene (1000 ppm) over MnO 2 modified with different supports. α-Al 2 O 3 and γ-Al 2 O 3 obtained from Boehmite, γ-Al 2 O 3 (commercial), SiO 2 , TiO 2 and ZrO 2 were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO 2 was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO 2 /α-Al 2 O 3 (B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289 °C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity.

  16. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction

    Science.gov (United States)

    Grativol, Clícia; Motta, Mariana R.; Ballesteros, Helkin G. F.; Peixoto, Barbara; Vieira, Lucas M.; Walter, Maria Emilia; de Armas, Elvismary M.; Entenza, Júlio O. P.; Lifschitz, Sergio; Farinelli, Laurent; Hemerly, Adriana S.

    2017-01-01

    Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae. Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae, while the siRNAs were repressed in the presence of A. avenae. Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408—a copper-microRNA—was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5′RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly. PMID:29657296

  17. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction

    Directory of Open Access Journals (Sweden)

    Flávia Thiebaut

    2017-12-01

    Full Text Available Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae. Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae, while the siRNAs were repressed in the presence of A. avenae. Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR. Among these miRNAs, miR408—a copper-microRNA—was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5′RACE (rapid amplification of cDNA ends assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly.

  18. Cleavage strain in the Variscan fold belt, County Cork, Ireland, estimated from stretched arsenopyrite rosettes

    Science.gov (United States)

    Ford, M.; Ferguson, C.C.

    1985-01-01

    In south-west Ireland, hydrothermally formed arsenopyrite crystals in a Devonian mudstone have responded to Variscan deformation by brittle extension fracture and fragment separation. The interfragment gaps and terminal extension zones of each crystal are infilled with fibrous quartz. Stretches within the cleavage plane have been calculated by the various methods available, most of which can be modified to incorporate terminal extension zones. The Strain Reversal Method is the most accurate currently available but still gives a minimum estimate of the overall strain. The more direct Hossain method, which gives only slightly lower estimates with this data, is more practical for field use. A strain ellipse can be estimated from each crystal rosette composed of three laths (assuming the original interlimb angles were all 60??) and, because actual rather than relative stretches are estimated, this provides a lower bound to the area increase in the plane of cleavage. Based on the average of our calculated strain ellipses this area increase is at least 114% and implies an average shortening across the cleavage of at least 53%. However, several lines of evidence suggest that the cleavage deformation was more intense and more oblate than that calculated, and we argue that a 300% area increase in the cleavage plane and 75% shortening across the cleavage are more realistic estimates of the true strain. Furthermore, the along-strike elongation indicated is at least 80%, which may be regionally significant. Estimates of orogenic contraction derived from balanced section construction should therefore take into account the possibility of a substantial strike elongation, and tectonic models that can accommodate such elongations need to be developed. ?? 1985.

  19. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Directory of Open Access Journals (Sweden)

    Vishal Prashar

    Full Text Available BACKGROUND: It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS. In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. PRINCIPAL FINDINGS: We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. CONCLUSIONS/SIGNIFICANCE: The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  20. The Vasa Homolog RDE-12 engages target mRNA and multiple argonaute proteins to promote RNAi in C. elegans.

    Science.gov (United States)

    Shirayama, Masaki; Stanney, William; Gu, Weifeng; Seth, Meetu; Mello, Craig C

    2014-04-14

    Argonaute (AGO) proteins are key nuclease effectors of RNAi. Although purified AGOs can mediate a single round of target RNA cleavage in vitro, accessory factors are required for small interfering RNA (siRNA) loading and to achieve multiple-target turnover. To identify AGO cofactors, we immunoprecipitated the C. elegans AGO WAGO-1, which engages amplified small RNAs during RNAi. These studies identified a robust association between WAGO-1 and a conserved Vasa ATPase-related protein RDE-12. rde-12 mutants are deficient in RNAi, including viral suppression, and fail to produce amplified secondary siRNAs and certain endogenous siRNAs (endo-siRNAs). RDE-12 colocalizes with WAGO-1 in germline P granules and in cytoplasmic and perinuclear foci in somatic cells. These findings and our genetic studies suggest that RDE-12 is first recruited to target mRNA by upstream AGOs (RDE-1 and ERGO-1), where it promotes small RNA amplification and/or WAGO-1 loading. Downstream of these events, RDE-12 forms an RNase-resistant (target mRNA-independent) complex with WAGO-1 and may thus have additional functions in target mRNA surveillance and silencing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Change in radiosensitivity of sea-urchin eggs during early cleavage stages

    International Nuclear Information System (INIS)

    Nakamura, I.

    1977-01-01

    When sea-urchin eggs were irradiated with 137 Cs γ-rays, their radiosensitivity, expressed by the percentage which formed pluteus larvae, fluctuated during the early cleavage cycle. Split-dose irradiations were made both in the sensitive and resistant phases. For eggs in the sensitive phase, the effect of the first exposure of 500 rad was not diminished during the interval before the second exposure. Eggs irradiated in the resistant phase were only slightly damaged. Results implied that fluctuations in radiosensitivity of sea-urchin eggs were caused mainly by different degrees of non-repairable damage in each phase of cleavage rather than by different recovery abilities. (author)

  2. Crystal Structure of the HEAT Domain from the Pre-mRNA Processing Factor Symplekin

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Sarah A.; Frazier, Monica L.; Steiniger, Mindy; Mast, Ann M.; Marzluff, William F.; Redinbo, Matthew R.; (UNC)

    2010-09-30

    The majority of eukaryotic pre-mRNAs are processed by 3'-end cleavage and polyadenylation, although in metazoa the replication-dependent histone mRNAs are processed by 3'-end cleavage but not polyadenylation. The macromolecular complex responsible for processing both canonical and histone pre-mRNAs contains the {approx} 1160-residue protein Symplekin. Secondary-structural prediction algorithms identified putative HEAT domains in the 300 N-terminal residues of all Symplekins of known sequence. The structure and dynamics of this domain were investigated to begin elucidating the role Symplekin plays in mRNA maturation. The crystal structure of the Drosophila melanogaster Symplekin HEAT domain was determined to 2.4 {angstrom} resolution with single-wavelength anomalous dispersion phasing methods. The structure exhibits five canonical HEAT repeats along with an extended 31-amino-acid loop (loop 8) between the fourth and fifth repeat that is conserved within closely related Symplekin sequences. Molecular dynamics simulations of this domain show that the presence of loop 8 dampens correlated and anticorrelated motion in the HEAT domain, therefore providing a neutral surface for potential protein-protein interactions. HEAT domains are often employed for such macromolecular contacts. The Symplekin HEAT region not only structurally aligns with several established scaffolding proteins, but also has been reported to contact proteins essential for regulating 3'-end processing. Together, these data support the conclusion that the Symplekin HEAT domain serves as a scaffold for protein-protein interactions essential to the mRNA maturation process.

  3. MicroRNA-Mediated Gene Silencing in Plant Defense and Viral Counter-Defense

    Directory of Open Access Journals (Sweden)

    Sheng-Rui Liu

    2017-09-01

    Full Text Available MicroRNAs (miRNAs are non-coding RNAs of approximately 20–24 nucleotides in length that serve as central regulators of eukaryotic gene expression by targeting mRNAs for cleavage or translational repression. In plants, miRNAs are associated with numerous regulatory pathways in growth and development processes, and defensive responses in plant–pathogen interactions. Recently, significant progress has been made in understanding miRNA-mediated gene silencing and how viruses counter this defense mechanism. Here, we summarize the current knowledge and recent advances in understanding the roles of miRNAs involved in the plant defense against viruses and viral counter-defense. We also document the application of miRNAs in plant antiviral defense. This review discusses the current understanding of the mechanisms of miRNA-mediated gene silencing and provides insights on the never-ending arms race between plants and viruses.

  4. Inhibition of hepatitis B virus replication via HBV DNA cleavage by Cas9 from Staphylococcus aureus.

    Science.gov (United States)

    Liu, Yu; Zhao, Miaoxian; Gong, Mingxing; Xu, Ying; Xie, Cantao; Deng, Haohui; Li, Xueying; Wu, Hongkai; Wang, Zhanhui

    2018-04-01

    Chronic hepatitis B virus (HBV) infection is difficult to cure due to the presence of covalently closed circular DNA (cccDNA). Accumulating evidence indicates that the CRISPR/Cas9 system effectively disrupts HBV genome, including cccDNA, in vitro and in vivo. However, efficient delivery of CRISPR/Cas9 system to the liver or hepatocytes using an adeno-associated virus (AAV) vector remains challenging due to the large size of Cas9 from Streptococcus pyogenes (Sp). The recently identified Cas9 protein from Staphylococcus aureus (Sa) is smaller than SpCas9 and thus is able to be packaged into the AAV vector. To examine the efficacy of SaCas9 system on HBV genome destruction, we designed 5 guide RNAs (gRNAs) that targeted different HBV genotypes, 3 of which were shown to be effective. The SaCas9 system significantly reduced HBV antigen expression, as well as pgRNA and cccDNA levels, in Huh7, HepG2.2.15 and HepAD38 cells. The dual expression of gRNAs/SaCas9 in these cell lines resulted in more efficient HBV genome cleavage. In the mouse model, hydrodynamic injection of gRNA/SaCas9 plasmids resulted in significantly lower levels of HBV protein expression. We also delivered the SaCas9 system into mice with persistent HBV replication using an AAV vector. Both the AAV vector and the mRNA of Cas9 could be detected in the C3H mouse liver cells. Decreased hepatitis B surface antigen (HBsAg), HBV DNA and pgRNA levels were observed when a higher titer of AAV was injected, although this decrease was not significantly different from the control. In summary, the SaCas9 system accurately and efficiently targeted the HBV genome and inhibited HBV replication both in vitro and in vivo. The system was delivered by an AAV vector and maybe used as a novel therapeutic strategy against chronic HBV infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Caspase Cleavages of the Lymphocyte-oriented Kinase Prevent Ezrin, Radixin, and Moesin Phosphorylation during Apoptosis*

    Science.gov (United States)

    Leroy, Catherine; Belkina, Natalya V.; Long, Thavy; Deruy, Emeric; Dissous, Colette; Shaw, Stephen; Tulasne, David

    2016-01-01

    The lymphocyte-oriented kinase (LOK), also called serine threonine kinase 10 (STK10), is synthesized mainly in lymphocytes. It is involved in lymphocyte migration and polarization and can phosphorylate ezrin, radixin, and moesin (the ERM proteins). In a T lymphocyte cell line and in purified human lymphocytes, we found LOK to be cleaved by caspases during apoptosis. The first cleavage occurs at aspartic residue 332, located between the kinase domain and the coiled-coil regulation domain. This cleavage generates an N-terminal fragment, p50 N-LOK, containing the kinase domain and a C-terminal fragment, which is further cleaved during apoptosis. Although these cleavages preserve the entire kinase domain, p50 N-LOK displays no kinase activity. In apoptotic lymphocytes, caspase cleavages of LOK are concomitant with a decrease in ERM phosphorylation. When non-apoptotic lymphocytes from mice with homozygous and heterozygous LOK knockout were compared, the latter showed a higher level of ERM phosphorylation, but when apoptosis was induced, LOK−/− and LOK+/− lymphocytes showed the same low level, confirming in vivo that LOK-induced ERM phosphorylation is prevented during lymphocyte apoptosis. Our results demonstrate that cleavage of LOK during apoptosis abolishes its kinase activity, causing a decrease in ERM phosphorylation, crucial to the role of the ERM proteins in linking the plasma membrane to actin filaments. PMID:26945071

  6. Caspase Cleavages of the Lymphocyte-oriented Kinase Prevent Ezrin, Radixin, and Moesin Phosphorylation during Apoptosis.

    Science.gov (United States)

    Leroy, Catherine; Belkina, Natalya V; Long, Thavy; Deruy, Emeric; Dissous, Colette; Shaw, Stephen; Tulasne, David

    2016-05-06

    The lymphocyte-oriented kinase (LOK), also called serine threonine kinase 10 (STK10), is synthesized mainly in lymphocytes. It is involved in lymphocyte migration and polarization and can phosphorylate ezrin, radixin, and moesin (the ERM proteins). In a T lymphocyte cell line and in purified human lymphocytes, we found LOK to be cleaved by caspases during apoptosis. The first cleavage occurs at aspartic residue 332, located between the kinase domain and the coiled-coil regulation domain. This cleavage generates an N-terminal fragment, p50 N-LOK, containing the kinase domain and a C-terminal fragment, which is further cleaved during apoptosis. Although these cleavages preserve the entire kinase domain, p50 N-LOK displays no kinase activity. In apoptotic lymphocytes, caspase cleavages of LOK are concomitant with a decrease in ERM phosphorylation. When non-apoptotic lymphocytes from mice with homozygous and heterozygous LOK knockout were compared, the latter showed a higher level of ERM phosphorylation, but when apoptosis was induced, LOK(-/-) and LOK(+/-) lymphocytes showed the same low level, confirming in vivo that LOK-induced ERM phosphorylation is prevented during lymphocyte apoptosis. Our results demonstrate that cleavage of LOK during apoptosis abolishes its kinase activity, causing a decrease in ERM phosphorylation, crucial to the role of the ERM proteins in linking the plasma membrane to actin filaments. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Predicting human miRNA target genes using a novel evolutionary methodology

    KAUST Repository

    Aigli, Korfiati; Kleftogiannis, Dimitrios A.; Konstantinos, Theofilatos; Spiros, Likothanassis; Athanasios, Tsakalidis; Seferina, Mavroudi

    2012-01-01

    The discovery of miRNAs had great impacts on traditional biology. Typically, miRNAs have the potential to bind to the 3'untraslated region (UTR) of their mRNA target genes for cleavage or translational repression. The experimental identification of their targets has many drawbacks including cost, time and low specificity and these are the reasons why many computational approaches have been developed so far. However, existing computational approaches do not include any advanced feature selection technique and they are facing problems concerning their classification performance and their interpretability. In the present paper, we propose a novel hybrid methodology which combines genetic algorithms and support vector machines in order to locate the optimal feature subset while achieving high classification performance. The proposed methodology was compared with two of the most promising existing methodologies in the problem of predicting human miRNA targets. Our approach outperforms existing methodologies in terms of classification performances while selecting a much smaller feature subset. © 2012 Springer-Verlag.

  8. Predicting human miRNA target genes using a novel evolutionary methodology

    KAUST Repository

    Aigli, Korfiati

    2012-01-01

    The discovery of miRNAs had great impacts on traditional biology. Typically, miRNAs have the potential to bind to the 3\\'untraslated region (UTR) of their mRNA target genes for cleavage or translational repression. The experimental identification of their targets has many drawbacks including cost, time and low specificity and these are the reasons why many computational approaches have been developed so far. However, existing computational approaches do not include any advanced feature selection technique and they are facing problems concerning their classification performance and their interpretability. In the present paper, we propose a novel hybrid methodology which combines genetic algorithms and support vector machines in order to locate the optimal feature subset while achieving high classification performance. The proposed methodology was compared with two of the most promising existing methodologies in the problem of predicting human miRNA targets. Our approach outperforms existing methodologies in terms of classification performances while selecting a much smaller feature subset. © 2012 Springer-Verlag.

  9. Caspase-2 cleavage of tau reversibly impairs memory.

    Science.gov (United States)

    Zhao, Xiaohui; Kotilinek, Linda A; Smith, Benjamin; Hlynialuk, Chris; Zahs, Kathleen; Ramsden, Martin; Cleary, James; Ashe, Karen H

    2016-11-01

    In Alzheimer's disease (AD) and other tauopathies, the tau protein forms fibrils, which are believed to be neurotoxic. However, fibrillar tau has been dissociated from neuron death and network dysfunction, suggesting the involvement of nonfibrillar species. Here we describe a novel pathological process in which caspase-2 cleavage of tau at Asp314 impairs cognitive and synaptic function in animal and cellular models of tauopathies by promoting the missorting of tau to dendritic spines. The truncation product, Δtau314, resists fibrillation and is present at higher levels in brains from cognitively impaired mice and humans with AD. The expression of tau mutants that resisted caspase-2 cleavage prevented tau from infiltrating spines, dislocating glutamate receptors and impairing synaptic function in cultured neurons, and it prevented memory deficits and neurodegeneration in mice. Decreasing the levels of caspase-2 restored long-term memory in mice that had existing deficits. Our results suggest an overall treatment strategy for re-establishing synaptic function and restoring memory in patients with AD by preventing tau from accumulating in dendritic spines.

  10. Monitoring of an RNA Multistep Folding Pathway by Isothermal Titration Calorimetry

    OpenAIRE

    Reymond, Cédric; Bisaillon, Martin; Perreault, Jean-Pierre

    2009-01-01

    Isothermal titration calorimetry was used to monitor the energetic landscape of a catalytic RNA, specifically that of the hepatitis delta virus ribozyme. Using mutants that isolated various tertiary interactions, the thermodynamic parameters of several ribozyme-substrate intermediates were determined. The results shed light on the impact of several tertiary interactions on the global structure of the ribozyme. In addition, the data indicate that the formation of the P1.1 pseudoknot is the lim...

  11. Patterns of proteolytic cleavage and carbodiimide derivatization in sarcoplasmic reticulum adenosinetriphosphatase

    International Nuclear Information System (INIS)

    de Ancos, J.G.; Inesi, G.

    1988-01-01

    Two series of experiments were carried out to characterize (a) peptide fragments of sarcoplasmic reticulum (SR) ATPase, based on proteolysis with different enzymes and distribution of known labels, and (b) specific labeling and functional inactivation patterns, following ATPase derivatization with dicyclohexylcarbodiimide (DCCD) under various conditions. Digestion with trypsin or chymotrypsin results in the initial cleavage of the SR ATPase in two fragments of similar size and then into smaller fragments, while subtilisin and thermolysin immediately yield smaller fragments. Peptide fragments were assigned to segments of the protein primary structure and to functionally relevant domains, such as those containing the 32 P at the active site and the fluorescein isothiocyanate at the nucleotide site. ATPase derivatization with [ 14 C]DCCD under mild conditions produced selective inhibition of ATPase hydrolytic catalysis without significant incorporation of the 14 C radioactive label. This effect is attributed to blockage of catalytically active residues by reaction of the initial DCCD adduct with endogenous or exogenous nucleophiles. ATPase derivatization with [ 14 C]DCCD under more drastic conditions produced inhibition of calcium binding, 14 C radioactive labeling of tryptic fragments A 1 and A 2 (but not of B), and extensive cross-linking. The presence of calcium during derivatization prevented functional inactivation, radioactive labeling of fragment A 2 , and internal cross-linking of fragment A 1 . It is proposed that both A 1 and A 2 fragments participate in formation of the calcium binding domain and that the labeled residues of fragment A 2 are directly involved in calcium complexation. A diagram is constructed, representing the relative positions of labels and functional domains within the ATPase protein

  12. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius.

    Science.gov (United States)

    Ningrum, Andriati; Schreiner, Matthias

    2014-11-01

    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β-carotene and β-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β-carotene than β-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β-carotene and β-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  13. Caspase activation increases beta-amyloid generation independently of caspase cleavage of the beta-amyloid precursor protein (APP).

    Science.gov (United States)

    Tesco, Giuseppina; Koh, Young Ho; Tanzi, Rudolph E

    2003-11-14

    The amyloid precursor protein (APP) undergoes "alternative" proteolysis mediated by caspases. Three major caspase recognition sites have been identified in the APP, i.e. one at the C terminus (Asp720) and two at the N terminus (Asp197 and Asp219). Caspase cleavage at Asp720 has been suggested as leading to increased production of Abeta. Thus, we set out to determine which putative caspase sites in APP, if any, are cleaved in Chinese hamster ovary cell lines concurrently with the increased Abeta production that occurs during apoptosis. We found that cleavage at Asp720 occurred concurrently with caspase 3 activation and the increased production of total secreted Abeta and Abeta1-42 in association with staurosporine- and etoposide-induced apoptosis. To investigate the contribution of caspase cleavage of APP to Abeta generation, we expressed an APP mutant truncated at Asp720 that mimics APP caspase cleavage at the C-terminal site. This did not increase Abeta generation but, in contrast, dramatically decreased Abeta production in Chinese hamster ovary cells. Furthermore, the ablation of caspase-dependent cleavage at Asp720, Asp197, and Asp219 (by site-directed mutagenesis) did not prevent enhanced Abeta production following etoposide-induced apoptosis. These findings indicate that the enhanced Abeta generation associated with apoptosis does not require cleavage of APP at its C-terminal (Asp720) and/or N-terminal caspase sites.

  14. The Comparison of Hydrochloric Acid and Phosphoric Acid Treatments in the Preparation of Montmorillonite Catalysts for RNA Synthesis.

    Science.gov (United States)

    Aldersley, Michael Frank; Joshi, Prakash C; Huang, Yixing

    2017-09-01

    The treatment of clay minerals with a preliminary acid wash and titration to pH 7 has proven to generate catalysts for the most interesting of oligomerization reactions in which activated RNA-nucleotides generate oligomers up to 40-mers. Significantly, not all clay minerals become catalytic following this treatment and none are catalytic in the absence of such treatment. The washing procedure has been modified and explored further using phosphoric acid and the outcomes are compared to those obtained when clay samples are prepared following a hydrochloric acid wash.

  15. Structural studies on an internal loop from a hairpin ribozyme

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Z.; SantaLucia, J. Jr.; Tinoco, I. Jr. [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Ribozymes, RNA enzymes, catalyze site-specific RNA cleavage and ligation reactions. We are studying the three-dimensional structure of a hairpin ribozyme derived from the minus strand of tobacco ring spot virus satellite RNA ((-)sTRSV), which has been engineering to specifically cleave the HIV-1 RNA. The minimum structure for the catalytic reaction involves a 50-nucleotide ribozyme and a 14-nucleotide substrate. The proposed secondary structure of the ribozyme-substrate complex consists of four short helices separated by two internal loops. The relatively large size (64-nucleotide) of the ribozyme-substrate complex presents formidable problems in solving the structure using NMR. Therefore we are studying smaller structural subunits of the complex. We are determining the high resolution structure of the symmetric internal loop involving the cleavage site and the flanking helices. One strand of the internal loop was selectively {sup 13}C-labeled at C8 of each purine and C6 of each pyrimidine. By using {sup 13}C-edited two-dimensional NMR, the proton NOESY spectrum was greatly simplified. This allowed unambiguous sequential proton resonance assignments along each strand. Three-dimensional {sup 1}-{sup 13}C HMQC-NOESY was used to further facilitate resonance assignments. We are also enzymatically synthesizing the entire 50-nucleotide ribozyme and will combine it with the {sup 13}C-labeled substrate. Through comparison of the NOE connectivities of the labeled nucleotides from the internal loop alone with those from the entire complex, the differences between the two structures can be elucidated.

  16. Mutations in the catalytic core or the C-terminus of murine leukemia virus (MLV) integrase disrupt virion infectivity and exert diverse effects on reverse transcription

    International Nuclear Information System (INIS)

    Steinrigl, Adolf; Nosek, Dagmara; Ertl, Reinhard; Guenzburg, Walter H.; Salmons, Brian; Klein, Dieter

    2007-01-01

    Understanding of the structures and functions of the retroviral integrase (IN), a key enzyme in the viral replication cycle, is essential for developing antiretroviral treatments and facilitating the development of safer gene therapy vehicles. Thus, four MLV IN-mutants were constructed in the context of a retroviral vector system, harbouring either a substitution in the catalytic centre, deletions in the C-terminus, or combinations of both modifications. IN-mutants were tested for their performance in different stages of the viral replication cycle: RNA-packaging; RT-activity; transient and stable infection efficiency; dynamics of reverse transcription and nuclear entry. All mutant vectors packaged viral RNA with wild-type efficiencies and displayed only slight reductions in RT-activity. Deletion of either the IN C-terminus alone, or in addition to part of the catalytic domain exerted contrasting effects on intracellular viral DNA levels, implying that IN influences reverse transcription in more than one direction

  17. Nuclei of aged myofibres undergo structural and functional changes suggesting impairment in RNA processing

    Directory of Open Access Journals (Sweden)

    C Pellicciari

    2009-06-01

    Full Text Available Advancing adult age is associated with a progressive decrease in skeletal muscle mass, strength and quality known as sarcopenia. The mechanisms underlying age-related skeletal muscle wasting and weakness are manifold and still remain to be fully elucidated. Despite the increasing evidence that the progress of muscle diseases leading to muscle atrophy/dystrophy may be related to defective RNA processing, no data on the morpho-functional features of skeletal muscle nuclei in sarcopenia are available at present. In this view, we have investigated, by combining morphometry and immunocytochemistry at light and electron microscopy, the fine structure of myonuclei as well as the distribution and amount of RNA processing factors in skeletal myofibres of biceps brachii and quadriceps femoris from adult and old rats. Results demonstrate that the myonuclei of aged type II fibres show an increased amount of condensed chromatin and lower amounts of phosphorylated polymerase II and DNA/RNA hybrid molecules, clearly indicating a decrease in pre-mRNA transcription rate compared to adult animals. In addition, myonuclei of aged fibres show decreased amounts of nucleoplasmic splicing factors and an accumulation of cleavage factors, polyadenilated RNA and perichromatin granules, suggesting a reduction in the processing and transport rate of premRNA. During ageing, it seems therefore that in rat myonuclei the entire production chain of mRNA, from synthesis to cytoplasmic export, is less efficient. This failure likely contributes to the reduced responsiveness of muscle cells to anabolic stimuli in the elderly.

  18. RISC-Target Interaction: Cleavage and Translational Suppression

    Science.gov (United States)

    van den Berg, Arjen; Mols, Johann; Han, Jiahuai

    2008-01-01

    Summary Small RNA molecules have been known and utilized to suppress gene expression for more than a decade. The discovery that these small RNA molecules are endogenously expressed in many organisms and have a critical role in controlling gene expression have led to the arising of a whole new field of research. Termed small interfering RNA (siRNA) or microRNA (miRNA) these ~22 nt RNA molecules have the capability to suppress gene expression through various mechanisms once they are incorporated in the multi-protein RNA-Induced Silencing Complex (RISC) and interact with their target mRNA. This review introduces siRNAs and microRNAs in a historical perspective and focuses on the key molecules in RISC, structural properties and mechanisms underlying the process of small RNA regulated post-transcriptional suppression of gene expression. PMID:18692607

  19. SOCIAL CLEAVAGES IN THE AMERICAN SOCIETY AS A FACTOR OF 2016 PRESIDENTIAL CAMPAIGN

    Directory of Open Access Journals (Sweden)

    P. S. Kanevskiy

    2017-01-01

    Full Text Available Current article is dedicated to analysis of social cleavages in the American elections and the ways they influenced on presidential election in 2016. Originally developed by S. Rokkan and S.M. Lipset, social cleavages became a classic theme for contemporary political sociology. However, despite the fact that the theory has been developing primarily by Americans, it has been rarely used to analyze electoral system in the USA. Traditionally it’s been aimed at European and developing countries where electoral fragmentation is seen more clearly. But recent changes in the American society and the political system demonstrate the emergence of social cleavages that had not been inherent before. The article shows how American electoral space transformed since the 1980s and how it became more fragmented under the influence of social, economic and ideological factors. Elections in 2016 became a watershed for social cleavages that accumulated through time and aggravated even more considering internal crises in the Democratic and more so in the Republican parties. Donald Trump’s victory is an impersonation of the American party system crisis and of the mainstream politicians’ inability to find proper explanation of the changing electorate. Author shows that American society today is polarized even more than many European countries while group identification determines vectors of political change.

  20. Electrostatic instability of some jellium model lattices of high symmetry to their plane cleavage

    International Nuclear Information System (INIS)

    Kholopov, Eugene V; Kalashnikova, Vita V

    2007-01-01

    Jellium model structures composed of regular lattices of equal point charges immersed in a neutralizing uniform background are considered. The symmetric description eliminating the effect of potentials without transverse structural modulation is extended to the events specified by alternating distances between point-charge planes. Based on modulated potentials typical of plane-wise lattice summation, the energy of interaction between two semi-infinite hemi-crystals divided by a plane is obtained for cubic and hexagonal crystals, where all the characteristic orientations of the cleavage plane are taken into account. We found that simple cubic and hexagonal lattices, as well as cubic and hexagonal diamond structures, turn out to be unstable for certain cleavage planes. The most favourable cleavage planes for the bcc, fcc and hcp structures are also emphasized

  1. Distributed biotin-streptavidin transcription roadblocks for mapping cotranscriptional RNA folding.

    Science.gov (United States)

    Strobel, Eric J; Watters, Kyle E; Nedialkov, Yuri; Artsimovitch, Irina; Lucks, Julius B

    2017-07-07

    RNA folding during transcription directs an order of folding that can determine RNA structure and function. However, the experimental study of cotranscriptional RNA folding has been limited by the lack of easily approachable methods that can interrogate nascent RNA structure at nucleotide resolution. To address this, we previously developed cotranscriptional selective 2΄-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq) to simultaneously probe all intermediate RNA transcripts during transcription by stalling elongation complexes at catalytically dead EcoRIE111Q roadblocks. While effective, the distribution of elongation complexes using EcoRIE111Q requires laborious PCR using many different oligonucleotides for each sequence analyzed. Here, we improve the broad applicability of cotranscriptional SHAPE-Seq by developing a sequence-independent biotin-streptavidin (SAv) roadblocking strategy that simplifies the preparation of roadblocking DNA templates. We first determine the properties of biotin-SAv roadblocks. We then show that randomly distributed biotin-SAv roadblocks can be used in cotranscriptional SHAPE-Seq experiments to identify the same RNA structural transitions related to a riboswitch decision-making process that we previously identified using EcoRIE111Q. Lastly, we find that EcoRIE111Q maps nascent RNA structure to specific transcript lengths more precisely than biotin-SAv and propose guidelines to leverage the complementary strengths of each transcription roadblock in cotranscriptional SHAPE-Seq. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. An integrated computational validation approach for potential novel miRNA prediction

    Directory of Open Access Journals (Sweden)

    Pooja Viswam

    2017-12-01

    Full Text Available MicroRNAs (miRNAs are short, non-coding RNAs between 17bp-24bp length that regulate gene expression by targeting mRNA molecules. The regulatory functions of miRNAs are known to be majorly associated with disease phenotypes such as cancer, cell signaling, cell division, growth and other metabolisms. Novel miRNAs are defined as sequences which does not have any similarity with the existing known sequences and void of any experimental evidences. In recent decades, the advent of next-generation sequencing allows us to capture the small RNA molecules form the cells and developing methods to estimate their expression levels. Several computational algorithms are available to predict the novel miRNAs from the deep sequencing data. In this work, we integrated three novel miRNA prediction programs miRDeep, miRanalyzer and miRPRo to compare and validate their prediction efficiency. The dicer cleavage sites, alignment density, seed conservation, minimum free energy, AU-GC percentage, secondary loop scores, false discovery rates and confidence scores will be considered for comparison and evaluation. Efficiency to identify isomiRs and base pair mismatches in a strand specific manner will also be considered for the computational validation. Further, the criteria and parameters for the identification of the best possible novel miRNA with minimal false positive rates were deduced.

  3. Kinetics of phycocyanobilin cleavage from C-phycocyanin by methanolysis

    DEFF Research Database (Denmark)

    Malwade, Chandrakant Ramkrishna; Roda Serrat, Maria Cinta; Christensen, Knud Villy

    2016-01-01

    Phycocyanobilin (PCB) is an important linear tetrapyrrolic molecule for food as well as pharmaceutical industry. It is obtained from blue-green algae, where it is attached covalently to phycobiliproteins (C-PC and APC) present in the light harvesting complexes. In this work, cleavage of PCB from...

  4. The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain

    Science.gov (United States)

    Hilbert, Brendan J.; Hayes, Janelle A.; Stone, Nicholas P.; Xu, Rui-Gang

    2017-01-01

    Abstract Many viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the adenosine triphosphatase (ATPase) that powers DNA translocation and an endonuclease that cleaves the concatemeric genome at both initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage remains mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nuclease activity. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of DNA cleavage suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the capsid upon completion of packaging unlocks the nuclease domains to cleave DNA. PMID:28082398

  5. cis-Apa: a practical linker for the microwave-assisted preparation of cyclic pseudopeptides via RCM cyclative cleavage.

    Science.gov (United States)

    Baron, Alice; Verdié, Pascal; Martinez, Jean; Lamaty, Frédéric

    2011-02-04

    A new linker cis-5-aminopent-3-enoic acid (cis-Apa) was prepared for the synthesis of cyclic pseudopeptides by cyclization-cleavage by using ring-closing methatesis (RCM). We developed a new synthetic pathway for the preparation of the cis-Apa linker that was tested in the cyclization-cleavage process of different RGD peptide sequences. Different macrocyclic peptidomimetics were prepared by using this integrated microwave-assisted method, showing that the readily available cis-Apa amino acid is well adapted as a linker in the cyclization-cleavage process.

  6. Ire1 Has Distinct Catalytic Mechanisms for XBP1/HAC1 Splicing and RIDD

    Directory of Open Access Journals (Sweden)

    Arvin B. Tam

    2014-11-01

    Full Text Available An evolutionarily conserved unfolded protein response (UPR component, IRE1, cleaves XBP1/HAC1 introns in order to generate spliced mRNAs that are translated into potent transcription factors. IRE1 also cleaves endoplasmic-reticulum-associated RNAs leading to their decay, an activity termed regulated IRE1-dependent decay (RIDD; however, the mechanism by which IRE1 differentiates intron cleavage from RIDD is not well understood. Using in vitro experiments, we found that IRE1 has two different modes of action: XBP1/HAC1 is cleaved by IRE1 subunits acting cooperatively within IRE1 oligomers, whereas a single subunit of IRE1 performs RIDD without cooperativity. Furthermore, these distinct activities can be separated by complementation of catalytically inactive IRE1 RNase and mutations at oligomerization interfaces. Using an IRE1 RNase inhibitor, STF-083010, selective inhibition of XBP1 splicing indicates that XBP1 promotes cell survival, whereas RIDD leads to cell death, revealing modulation of IRE1 activities as a drug-development strategy.

  7. The Conserved ATM Kinase RAG2-S365 Phosphorylation Site Limits Cleavage Events in Individual Cells Independent of Any Repair Defect

    Directory of Open Access Journals (Sweden)

    Susannah L. Hewitt

    2017-10-01

    Full Text Available Many DNA lesions associated with lymphoid malignancies are linked to off-target cleavage by the RAG1/2 recombinase. However, off-target cleavage has mostly been analyzed in the context of DNA repair defects, confounding any mechanistic understanding of cleavage deregulation. We identified a conserved SQ phosphorylation site on RAG2 365 to 366 that is involved in feedback control of RAG cleavage. Mutation of serine 365 to a non-phosphorylatable alanine permits bi-allelic and bi-locus RAG-mediated breaks in the same cell, leading to reciprocal translocations. This phenomenon is analogous to the phenotype we described for ATM kinase inactivation. Here, we establish deregulated cleavage itself as a driver of chromosomal instability without the associated repair defect. Intriguingly, a RAG2-S365E phosphomimetic rescues the deregulated cleavage of ATM inactivation, reducing the incidence of reciprocal translocations. These data support a model in which feedback control of cleavage and maintenance of genome stability involves ATM-mediated phosphorylation of RAG2.

  8. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  9. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease.

    Science.gov (United States)

    Wolf, Myles; White, Kenneth E

    2014-07-01

    High levels of fibroblast growth factor 23 (FGF23) cause the rare disorders of hypophosphatemic rickets and are a risk factor for cardiovascular disease and death in patients with chronic kidney disease (CKD). Despite major advances in understanding FGF23 biology, fundamental aspects of FGF23 regulation in health and in CKD remain mostly unknown. Autosomal dominant hypophosphatemic rickets (ADHR) is caused by gain-of-function mutations in FGF23 that prevent its proteolytic cleavage, but affected individuals experience a waxing and waning course of phosphate wasting. This led to the discovery that iron deficiency is an environmental trigger that stimulates FGF23 expression and hypophosphatemia in ADHR. Unlike osteocytes in ADHR, normal osteocytes couple increased FGF23 production with commensurately increased FGF23 cleavage to ensure that normal phosphate homeostasis is maintained in the event of iron deficiency. Simultaneous measurement of FGF23 by intact and C-terminal assays supported these breakthroughs by providing minimally invasive insight into FGF23 production and cleavage in bone. These findings also suggest a novel mechanism of FGF23 elevation in patients with CKD, who are often iron deficient and demonstrate increased FGF23 production and decreased FGF23 cleavage, consistent with an acquired state that mimics the molecular pathophysiology of ADHR. Iron deficiency stimulates FGF23 production, but normal osteocytes couple increased FGF23 production with increased cleavage to maintain normal circulating levels of biologically active hormone. These findings uncover a second level of FGF23 regulation within osteocytes, failure of which culminates in elevated levels of biologically active FGF23 in ADHR and perhaps CKD.

  10. Developing a capillary electrophoresis based method for dynamically monitoring enzyme cleavage activity using quantum dots-peptide assembly.

    Science.gov (United States)

    Wang, Jianhao; Fan, Jie; Liu, Li; Ding, Shumin; Liu, Xiaoqian; Wang, Jianpeng; Gao, Liqian; Chattopadhaya, Souvik; Miao, Peng; Xia, Jiang; Qiu, Lin; Jiang, Pengju

    2017-10-01

    Herein, a novel assay has been developed for monitoring PreScission protease (His-PSP) mediated enzyme cleavage of ATTO 590 labeled peptide substrate (ATTO-LEV). This novel method is based on combining the use of capillary electrophoresis and fluorescence detection (CE-FL) to dynamically monitor the enzyme cleavage activity. A multivalent peptide substrate was first constructed by immobilizing His-tagged ATTO 590 labeled peptide substrate (ATTO-LEVH6) onto the surface of CdSe/ZnS quantum dots (QDs). Once successfully immobilized, the novel multivalent peptide substrate resulted in the Förster resonance energy transfer (FRET) from QDs to ATTO 590. The ATTO-LEVH6-QD assembly was then incubated with His-PSP to study the proteolytic cleavage of surface bound ATTO-LEVH6 by CE-FL. Our data suggests that PreScission-mediated proteolytic cleavage is enzyme concentration- and incubation time-dependent. By combining capillary electrophoresis, QDs and FRET, our study herein not only provides a new method for the detection and dynamically monitoring of PSP enzyme cleavage activity, but also can be extended to the detection of many other enzymes and proteases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2005-10-01

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been the focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.

  12. The RNA World as a Model System to Study the Origin of Life.

    Science.gov (United States)

    Pressman, Abe; Blanco, Celia; Chen, Irene A

    2015-10-05

    Understanding how life arose is a fundamental problem of biology. Much progress has been made by adopting a synthetic and mechanistic perspective on originating life. We present a current view of the biochemistry of the origin of life, focusing on issues surrounding the emergence of an RNA World in which RNA dominated informational and functional roles. There is cause for optimism on this difficult problem: the prebiotic chemical inventory may not have been as nightmarishly complex as previously thought; the catalytic repertoire of ribozymes continues to expand, approaching the goal of self-replicating RNA; encapsulation in protocells provides evolutionary and biophysical advantages. Nevertheless, major issues remain unsolved, such as the origin of a genetic code. Attention to this field is particularly timely given the accelerating discovery and characterization of exoplanets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Kinetic and catalytic performance of a BI-porous composite material in catalytic cracking and isomerisation reactions

    KAUST Repository

    Al-Khattaf, S.

    2012-01-10

    Catalytic behaviour of pure zeolite ZSM-5 and a bi-porous composite material (BCM) were investigated in transformation of m-xylene, while zeolite HY and the bi-porous composite were used in the cracking of 1,3,5-triisopropylbenzene (TIPB). The micro/mesoporous material was used to understand the effect of the presence of mesopores on these reactions. Various characterisation techniques, that is, XRD, SEM, TGA, FT-IR and nitrogen sorption measurements were applied for complete characterisation of the catalysts. Catalytic tests using CREC riser simulator showed that the micro/mesoporous composite catalyst exhibited higher catalytic activity as compared with the conventional microporous ZSM-5 and HY zeolite for transformation of m-xylene and for the catalytic cracking of TIPB, respectively. The outstanding catalytic reactivity of m-xylene and TIPB molecules were mainly attributed to the easier access of active sites provided by the mesopores. Apparent activation energies for the disappearance of m-xylene and TIPB over all catalysts were found to decrease in the order: EBCM>EZSM-5 and EBCM>EHY, respectively. © 2012 Canadian Society for Chemical Engineering.

  14. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview

    Science.gov (United States)

    2018-01-01

    With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA–ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field. PMID:29297679

  15. RNA Processing Factor 5 is required for efficient 5' cleavage at a processing site conserved in RNAs of three different mitochondrial genes in Arabidopsis thaliana.

    Science.gov (United States)

    Hauler, Aron; Jonietz, Christian; Stoll, Birgit; Stoll, Katrin; Braun, Hans-Peter; Binder, Stefan

    2013-05-01

    The 5' ends of many mitochondrial transcripts are generated post-transcriptionally. Recently, we identified three RNA PROCESSING FACTORs required for 5' end maturation of different mitochondrial mRNAs in Arabidopsis thaliana. All of these factors are pentatricopeptide repeat proteins (PPRPs), highly similar to RESTORERs OF FERTILTY (RF), that rescue male fertility in cytoplasmic male-sterile lines from different species. Therefore, we suggested a general role of these RF-like PPRPs in mitochondrial 5' processing. We now identified RNA PROCESSING FACTOR 5, a PPRP not classified as an RF-like protein, required for the efficient 5' maturation of the nad6 and atp9 mRNAs as well as 26S rRNA. The precursor molecules of these RNAs share conserved sequence elements, approximately ranging from positions -50 to +9 relative to mature 5' mRNA termini, suggesting these sequences to be at least part of the cis elements required for processing. The knockout of RPF5 has only a moderate influence on 5' processing of atp9 mRNA, whereas the generation of the mature nad6 mRNA and 26S rRNA is almost completely abolished in the mutant. The latter leads to a 50% decrease of total 26S rRNA species, resulting in an imbalance between the large rRNA and 18S rRNA. Despite these severe changes in RNA levels and in the proportion between the 26S and 18S rRNAs, mitochondrial protein levels appear to be unaltered in the mutant, whereas seed germination capacity is markedly reduced. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  16. Catalytic modification of cellulose and hemicellulose - Sugarefine

    Energy Technology Data Exchange (ETDEWEB)

    Repo, T. [Helsinki Univ. (Finland),Laboratory of Inorganic Chemistry], email: timo.repo@helsinki.fi

    2012-07-01

    The main goal of the project is to develop catalytic methods for the modification of lignocellulose-based saccharides in the biorefineries. The products of these reactions could be used for example as biofuel components, raw materials for the chemical industry, solvents and precursors for biopolymers. The catalyst development aims at creating efficient, selective and green catalytic methods for profitable use in biorefineries. The project is divided in three work packages: In WP1 (Catalytic dehydration of cellulose) the aim is at developing non-toxic, efficient methods for the catalytic dehydration of cellulose the target molecule being here 5-hydroxymethylfurfural (5-HMF). 5-HMF is an interesting platform chemical for the production of fuel additives, solvents and polymers. In WP2 (Catalytic reduction), the objective of the catalytic reduction studies is to produce commercially interesting monofunctional chemicals, such as 1-butanol or 2-methyltetrahydrofuran (2-MeTHF). In WP3 (Catalytic oxidation), the research focuses on developing a green and efficient oxidation method for producing acids. Whereas acetic and formic acids are bulk chemicals, diacids such as glucaric and xylaric acids are valuable specialty chemicals for detergent, polymer and food production.

  17. Direct application of radioiodinated aminoacyl tRNA for radiolabeling nascent proteins

    International Nuclear Information System (INIS)

    Scherberg, N.H.; Barokas, K.; Murata, Y.; Refetoff, S.

    1985-01-01

    A two-step procedure to incorporate 125 I-iodotyrosine into protein synthesized in a reticulocyte lysate is described. In the first step, the iodination of tyrosyl tRNA was catalyzed by a solid-state glycouril compound. More than one-third of 200 microCi of radioiodine became bound to 70 micrograms of aminoacyl tRNA after 15 min at 0 degrees C. The isotope was distributed in a three-to-one ratio of monoiodotyrosine to di-iodotyrosine. In the second step, the soluble product of the radioiodination was transferred directly into a nuclease-treated reticulocyte lysate coded with RNA isolated from the human hepatoma cell line Hep G2. Fractional recovery of radioiodine in nascent protein was maximally 7.6%. Reaction of the product of translation with antibody against alpha-antitrypsin separated an 125 I-containing protein having a molecular weight estimated as 47,000. The synthesis of unprocessed alpha-antitrypsin was confirmed by cleavage of the labeled protein with leader peptidase and by its displacement from immunocomplex formation with purified alpha-antitrypsin. The amount of 125 I incorporated into alpha-antitrypsin was proportionate to iodinated tRNA additions up to a concentration of 70 micrograms/ml. The synthesis of alpha-antitrypsin as detected in radioautograms after gel electrophoresis was more than twice as sensitive using radioiodinated aminoacyl tRNA as compared with [ 35 S]methionine. Iodine labeling of thyroxine-binding globulin was also demonstrated in the translation product of Hep G2 RNA. Since the specific activity of the radioiodine is high and the means for detection of the isotope efficient, the method described can facilitate the demonstration of quantitatively minor translation products

  18. Small Molecule Binding, Docking, and Characterization of the Interaction between Pth1 and Peptidyl-tRNA

    Directory of Open Access Journals (Sweden)

    Mary C. Hames

    2013-11-01

    Full Text Available Bacterial Pth1 is essential for viability. Pth1 cleaves the ester bond between the peptide and nucleotide of peptidyl-tRNA generated from aborted translation, expression of mini-genes, and short ORFs. We have determined the shape of the Pth1:peptidyl-tRNA complex using small angle neutron scattering. Binding of piperonylpiperazine, a small molecule constituent of a combinatorial synthetic library common to most compounds with inhibitory activity, was mapped to Pth1 via NMR spectroscopy. We also report computational docking results, modeling piperonylpiperazine binding based on chemical shift perturbation mapping. Overall these studies promote Pth1 as a novel antibiotic target, contribute to understanding how Pth1 interacts with its substrate, advance the current model for cleavage, and demonstrate feasibility of small molecule inhibition.

  19. Structural organizations of yeast RNase P and RNase MRP holoenzymes as revealed by UV-crosslinking studies of RNA-protein interactions.

    Science.gov (United States)

    Khanova, Elena; Esakova, Olga; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S

    2012-04-01

    Eukaryotic ribonuclease (RNase) P and RNase MRP are closely related ribonucleoprotein complexes involved in the metabolism of various RNA molecules including tRNA, rRNA, and some mRNAs. While evolutionarily related to bacterial RNase P, eukaryotic enzymes of the RNase P/MRP family are much more complex. Saccharomyces cerevisiae RNase P consists of a catalytic RNA component and nine essential proteins; yeast RNase MRP has an RNA component resembling that in RNase P and 10 essential proteins, most of which are shared with RNase P. The structural organizations of eukaryotic RNases P/MRP are not clear. Here we present the results of RNA-protein UV crosslinking studies performed on RNase P and RNase MRP holoenzymes isolated from yeast. The results indicate locations of specific protein-binding sites in the RNA components of RNase P and RNase MRP and shed light on the structural organizations of these large ribonucleoprotein complexes.

  20. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is ...