WorldWideScience

Sample records for catalytic reactions experiments

  1. Catalytic process for tritium exchange reaction

    International Nuclear Information System (INIS)

    Hansoo Lee; Kang, H.S.; Paek, S.W.; Hongsuk Chung; Yang Geun Chung; Sook Kyung Lee

    2001-01-01

    The catalytic activities for a hydrogen isotope exchange were measured through the reaction of a vapor and gas mixture. The catalytic activity showed to be comparable with the published data. Since the gas velocity is relatively low, the deactivation was not found clearly during the 5-hour experiment. Hydrogen isotope transfer experiments were also conducted through the liquid phase catalytic exchange reaction column that consisted of a catalytic bed and a hydrophilic bed. The efficiencies of both the catalytic and hydrophilic beds were higher than 0.9, implying that the column performance was excellent. (author)

  2. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is ...

  3. Catalytic Wittig and aza-Wittig reactions

    Directory of Open Access Journals (Sweden)

    Zhiqi Lao

    2016-11-01

    Full Text Available This review surveys the literature regarding the development of catalytic versions of the Wittig and aza-Wittig reactions. The first section summarizes how arsenic and tellurium-based catalytic Wittig-type reaction systems were developed first due to the relatively easy reduction of the oxides involved. This is followed by a presentation of the current state of the art regarding phosphine-catalyzed Wittig reactions. The second section covers the field of related catalytic aza-Wittig reactions that are catalyzed by both phosphine oxides and phosphines.

  4. A kinetic study on non-catalytic reactions in hydroprocessing Boscan crude oil

    Energy Technology Data Exchange (ETDEWEB)

    A. Marafi; E. Kam; A. Stanislaus [Kuwait Institute for Scientific Research, Safat (Kuwait). Petroleum Refining Department, Petroleum Research and Studies Center

    2008-08-15

    Non-catalytic hydrothermal cracking reactions are known to associate with catalytic hydrocracking reactions. In a recent study on hydroprocessing of Boscan crude over a specific catalyst system containing three distinct catalysts, it was found that hydrodesulfurization (HDS) and hydrodemetallation (HDM) reactions continued even when the catalyst is severely deactivated. Since the reactor was packed with considerable amount of inert material besides the three catalysts, it will be advantage to determine if the inert materials can also facilitate hydroprocessing reactions. A series of kinetic experiments for the inert particles was undertaken under different space velocity and temperature conditions. The extent of catalytic and non-catalytic hydroprocessing reactions was assessed. Through statistical analysis, the initial reaction rate constant, reaction order and activation energy for various hydroprocessing reactions were then determined. The absolute average deviations (AAD) of the kinetics values obtained for inert materials are less than 10%. 25 refs., 7 figs., 4 tabs.

  5. Recent developments in research on catalytic reaction networks

    Directory of Open Access Journals (Sweden)

    Roberto Serra

    2013-09-01

    Full Text Available Over the last years, analyses performed on a stochastic model of catalytic reaction networks have provided some indications about the reasons why wet-lab experiments hardly ever comply with the phase transition typically predicted by theoretical models with regard to the emergence of collectively self-replicating sets of molecule (also defined as autocatalytic sets, ACSs, a phenomenon that is often observed in nature and that is supposed to have played a major role in the emergence of the primitive forms of life. The model at issue has allowed to reveal that the emerging ACSs are characterized by a general dynamical fragility, which might explain the difficulty to observe them in lab experiments. In this work, the main results of the various analyses are reviewed, with particular regard to the factors able to affect the generic properties of catalytic reactions network, for what concerns, not only the probability of ACSs to be observed, but also the overall activity of the system, in terms of production of new species, reactions and matter.

  6. Forced thermal cycling of catalytic reactions: experiments and modelling

    DEFF Research Database (Denmark)

    Jensen, Søren; Olsen, Jakob Lind; Thorsteinsson, Sune

    2007-01-01

    Recent studies of catalytic reactions subjected to fast forced temperature oscillations have revealed a rate enhancement increasing with temperature oscillation frequency. We present detailed studies of the rate enhancement up to frequencies of 2.5 Hz. A maximum in the rate enhancement is observed...... at about 1 Hz. A model for the rate enhancement that includes the surface kinetics and the dynamic partial pressure variations in the reactor is introduced. The model predicts a levelling off of the rate enhancement with frequency at about 1 Hz. The experimentally observed decrease above 1 Hz is explained...

  7. Including lateral interactions into microkinetic models of catalytic reactions

    DEFF Research Database (Denmark)

    Hellman, Anders; Honkala, Johanna Karoliina

    2007-01-01

    In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three differ...... different approximations are investigated: site, mean-field, and quasichemical approximations. The obtained results are compared to accurate Monte Carlo numbers. In the end, we apply the approximations to a real catalytic reaction, namely, ammonia synthesis....

  8. Catalytic activation of molecular hydrogen in alkyne hydrogenation reactions by lanthanide metal vapor reaction products

    International Nuclear Information System (INIS)

    Evans, W.J.; Bloom, I.; Engerer, S.C.

    1983-01-01

    A rotary metal vapor was used in the synthesis of Lu, Er, Nd, Sm, Yb, and La alkyne, diene, and phosphine complexes. A typical catalytic hydrogenation experiment is described. The lanthanide metal vapor product is dissolved in tetrahydrofuran or toluene and placed in a pressure reaction vessel 3-hexyne (or another substrate) is added, the chamber attached to a high vacuum line, cooled to -196 0 C, evacuated, warmed to ambient temperature and hydrogen is added. The solution is stirred magnetically while the pressure in monitored. The reaction products were analyzed by gas chromatography. Rates and products of various systems are listed. This preliminary survey indicates that catalytic reaction chemistry is available to these metals in a wide range of coordination environments. Attempts to characterize these compounds are hampered by their paramagnetic nature and their tendency to polymerize

  9. Research of Hydrogen Preparation with Catalytic Steam-Carbon Reaction Driven by Photo-Thermochemistry Process

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2013-01-01

    Full Text Available An experiment of hydrogen preparation from steam-carbon reaction catalyzed by K2CO3 was carried out at 700°C, which was driven by the solar reaction system simulated with Xenon lamp. It can be found that the rate of reaction with catalyst is 10 times more than that without catalyst. However, for the catalytic reaction, there is no obvious change for the rate of hydrogen generation with catalyst content range from 10% to 20%. Besides, the conversion efficiency of solar energy to chemical energy is more than 13.1% over that by photovoltaic-electrolysis route. An analysis to the mechanism of catalytic steam-carbon reaction with K2CO3 is given, and an explanation to the nonbalanced [H2]/[CO + 2CO2] is presented, which is a phenomenon usually observed in experiment.

  10. Catalytic Organometallic Reactions of Ammonia

    Science.gov (United States)

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  11. Catalytic enantioselective Reformatsky reaction with ketones

    NARCIS (Netherlands)

    Fernandez-Ibanez, M. Angeles; Macia, Beatriz; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    Chiral tertiary alcohols were obtained with good yields and enantioselectivities via a catalytic Reformatsky reaction with ketones, including the challenging diaryl ketones, using chiral BINOL derivatives.

  12. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  13. Heterogeneous-catalytic redox reactions in nitrate - formate systems

    International Nuclear Information System (INIS)

    Ananiev, A.V.; Shilov, V.P.; Tananaev, I.G.; Brossard, Ph.; Broudic, J.Ch.

    2000-01-01

    It was found that an intensive destruction of various organic and mineral substances - usual components of aqueous waste solutions (oxalic acid, complexones, urea, hydrazine, ammonium nitrate, etc.) takes place under the conditions of catalytic denitration. Kinetics and mechanisms of urea and ammonium nitrate decomposition in the system HNO 3 - HCOOH - Pt/SiO 2 are comprehensively investigated. The behaviour of uranium, neptunium and plutonium under the conditions of catalytic denitration is studied. It is shown, that under the certain conditions the formic acid is an effective reducer of the uranium (VI), neptunium (VI, V) and plutonium (VI, IV) ions. Kinetics of heterogeneous-catalytic red-ox reactions of uranium (VI), neptunium (VI, V) and plutonium (VI, IV) with formic acid are investigated. The mechanisms of the appropriate reactions are evaluated. (authors)

  14. Direct catalytic asymmetric aldol-Tishchenko reaction.

    Science.gov (United States)

    Gnanadesikan, Vijay; Horiuchi, Yoshihiro; Ohshima, Takashi; Shibasaki, Masakatsu

    2004-06-30

    A direct catalytic asymmetric aldol reaction of propionate equivalent was achieved via the aldol-Tishchenko reaction. Coupling an irreversible Tishchenko reaction to a reversible aldol reaction overcame the retro-aldol reaction problem and thereby afforded the products in high enantio and diastereoselectivity using 10 mol % of the asymmetric catalyst. A variety of ketones and aldehydes, including propyl and butyl ketones, were coupled efficiently, yielding the corresponding aldol-Tishchenko products in up to 96% yield and 95% ee. Diastereoselectivity was generally below the detection limit of 1H NMR (>98:2). Preliminary studies performed to clarify the mechanism revealed that the aldol products were racemic with no diastereoselectivity. On the other hand, the Tishchenko products were obtained in a highly enantiocontrolled manner.

  15. Substrate-Directed Catalytic Selective Chemical Reactions.

    Science.gov (United States)

    Sawano, Takahiro; Yamamoto, Hisashi

    2018-05-04

    The development of highly efficient reactions at only the desired position is one of the most important subjects in organic chemistry. Most of the reactions in current organic chemistry are reagent- or catalyst-controlled reactions, and the regio- and stereoselectivity of the reactions are determined by the inherent nature of the reagent or catalyst. In sharp contrast, substrate-directed reaction determines the selectivity of the reactions by the functional group on the substrate and can strictly distinguish sterically and electronically similar multiple reaction sites in the substrate. In this Perspective, three topics of substrate-directed reaction are mainly reviewed: (1) directing group-assisted epoxidation of alkenes, (2) ring-opening reactions of epoxides by various nucleophiles, and (3) catalytic peptide synthesis. Our newly developed synthetic methods with new ligands including hydroxamic acid derived ligands realized not only highly efficient reactions but also pinpointed reactions at the expected position, demonstrating the substrate-directed reaction as a powerful method to achieve the desired regio- and stereoselective functionalization of molecules from different viewpoints of reagent- or catalyst-controlled reactions.

  16. Learning the Fundamentals of Kinetics and Reaction Engineering with the Catalytic Oxidation of Methane

    Science.gov (United States)

    Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-01-01

    Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…

  17. Lattice Boltzmann simulation of endothermal catalytic reaction in catalyst porous media

    International Nuclear Information System (INIS)

    Li Xunfeng; Cai Jun; Xin Fang; Huai Xiulan; Guo Jiangfeng

    2013-01-01

    Gas catalytic reaction in a fixed bed reactor is a general process in chemical industry. The chemical reaction process involves the complex multi-component flow, heat and mass transfer coupling chemical reaction in the catalyst porous structure. The lattice Boltzmann method is developed to simulate the complex process of the surface catalytic reaction in the catalyst porous media. The non-equilibrium extrapolation method is used to treat the boundaries. The porous media is structured by Sierpinski carpet fractal structure. The velocity correction is adopted on the reaction surface. The flow, temperature and concentration fields calculated by the lattice Boltzmann method are compared with those computed by the CFD software. The effects of the inlet velocity, porosity and inlet components ratio on the conversion are also studied. Highlights: ► LBM is developed to simulate the surface catalytic reaction. ► The Sierpinski carpet structure is used to construct the porous media. ► The LBM results are in agreement with the CFD predictions. ► Velocity, temperature and concentration fields are obtained. ► Effects of the velocity, porosity and concentration on conversion are analyzed.

  18. Electrochemical Promotion of Catalytic Reactions Using

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cleemann, Lars Nilausen

    2007-01-01

    This paper presents the results of a study on electrochemical promotion (EP) of catalytic reactions using Pt/C/polybenzimidazole(H3PO4)/Pt/C fuel cell performed by the Energy and Materials Science Group (Technical University of Denmark) during the last 6 years[1-4]. The development of our...... understanding of the nature of the electrochemical promotion is also presented....

  19. Tuning Catalytic Performance through a Single or Sequential Post-Synthesis Reaction(s) in a Gas Phase

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Junjun [Department; Department; Zhang, Shiran [Department; Department; Choksi, Tej [Department; Nguyen, Luan [Department; Department; Bonifacio, Cecile S. [Department; Li, Yuanyuan [Department; Zhu, Wei [Department; Department; College; Tang, Yu [Department; Department; Zhang, Yawen [College; Yang, Judith C. [Department; Greeley, Jeffrey [Department; Frenkel, Anatoly I. [Department; Tao, Franklin [Department; Department

    2016-12-05

    Catalytic performance of a bimetallic catalyst is determined by geometric structure and electronic state of the surface or even the near-surface region of the catalyst. Here we report that single and sequential postsynthesis reactions of an as-synthesized bimetallic nanoparticle catalyst in one or more gas phases can tailor surface chemistry and structure of the catalyst in a gas phase, by which catalytic performance of this bimetallic catalyst can be tuned. Pt–Cu regular nanocube (Pt–Cu RNC) and concave nanocube (Pt–Cu CNC) are chosen as models of bimetallic catalysts. Surface chemistry and catalyst structure under different reaction conditions and during catalysis were explored in gas phase of one or two reactants with ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The newly formed surface structures of Pt–Cu RNC and Pt–Cu CNC catalysts strongly depend on the reactive gas(es) used in the postsynthesis reaction(s). A reaction of Pt–Cu RNC-as synthesized with H2 at 200 °C generates a near-surface alloy consisting of a Pt skin layer, a Cu-rich subsurface, and a Pt-rich deep layer. This near-surface alloy of Pt–Cu RNC-as synthesized-H2 exhibits a much higher catalytic activity in CO oxidation in terms of a low activation barrier of 39 ± 4 kJ/mol in contrast to 128 ± 7 kJ/mol of Pt–Cu RNC-as synthesized. Here the significant decrease of activation barrier demonstrates a method to tune catalytic performances of as-synthesized bimetallic catalysts. A further reaction of Pt–Cu RNC-as synthesized-H2 with CO forms a Pt–Cu alloy surface, which exhibits quite different catalytic performance in CO oxidation. It suggests the capability of generating a different surface by using another gas. The capability of tuning surface chemistry and structure of bimetallic catalysts was also demonstrated in restructuring of Pt–Cu CNC-as synthesized.

  20. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    Science.gov (United States)

    Tsotsis, T. T.; Sane, R. C.

    1987-01-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  1. Emergence of traveling wave endothermic reaction in a catalytic fixed bed under microwave heating

    International Nuclear Information System (INIS)

    Gerasev, Alexander P.

    2017-01-01

    This paper presents a new phenomenon in a packed bed catalytic reactor under microwave heating - traveling wave (moving reaction zones) endothermic chemical reaction. A two-phase model is developed to simulate the nonlinear dynamic behavior of the packed bed catalytic reactor with an irreversible first-order chemical reaction. The absorbed microwave power was obtained from Lambert's law. The structure of traveling wave endothermic chemical reaction was explored. The effects of the gas velocity and microwave power on performance of the packed bed catalytic reactor were presented. Finally, the effects of the change in the location of the microwave source at the packed bed reactor was demonstrated. - Highlights: • A new phenomenon - traveling waves of endothermic reaction - is predicted. • The physical and mathematical model of a packed bed catalytic reactor under microwave heating is presented. • The structure of the traveling waves is explored. • The configuration of heating the packed bed reactor via microwave plays a key role.

  2. Kinetics of heterogeneous catalytic reactions

    CERN Document Server

    Boudart, Michel

    2014-01-01

    This book is a critical account of the principles of the kinetics of heterogeneous catalytic reactions in the light of recent developments in surface science and catalysis science. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase acc

  3. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology

    2011-07-01

    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  4. Practical approaches to the ESI-MS analysis of catalytic reactions.

    Science.gov (United States)

    Yunker, Lars P E; Stoddard, Rhonda L; McIndoe, J Scott

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a soft ionization technique commonly coupled with liquid or gas chromatography for the identification of compounds in a one-time view of a mixture (for example, the resulting mixture generated by a synthesis). Over the past decade, Scott McIndoe and his research group at the University of Victoria have developed various methodologies to enhance the ability of ESI-MS to continuously monitor catalytic reactions as they proceed. The power, sensitivity and large dynamic range of ESI-MS have allowed for the refinement of several homogenous catalytic mechanisms and could potentially be applied to a wide range of reactions (catalytic or otherwise) for the determination of their mechanistic pathways. In this special feature article, some of the key challenges encountered and the adaptations employed to counter them are briefly reviewed. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Polymer and Membrane Design for Low Temperature Catalytic Reactions

    KAUST Repository

    Villalobos, Luis Francisco; Xie, Yihui; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2016-01-01

    Catalytically active asymmetric membranes have been developed with high loadings of palladium nanoparticles located solely in the membrane's ultrathin skin layer. The manufacturing of these membranes requires polymers with functional groups, which can form insoluble complexes with palladium ions. Three polymers have been synthesized for this purpose and a complexation/nonsolvent induced phase separation followed by a palladium reduction step is carried out to prepare such membranes. Parameters to optimize the skin layer thickness and porosity, the palladium loading in this layer, and the palladium nanoparticles size are determined. The catalytic activity of the membranes is verified with the reduction of a nitro-compound and with a liquid phase Suzuki-Miyaura coupling reaction. Very low reaction times are observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Polymer and Membrane Design for Low Temperature Catalytic Reactions

    KAUST Repository

    Villalobos, Luis Francisco

    2016-02-29

    Catalytically active asymmetric membranes have been developed with high loadings of palladium nanoparticles located solely in the membrane\\'s ultrathin skin layer. The manufacturing of these membranes requires polymers with functional groups, which can form insoluble complexes with palladium ions. Three polymers have been synthesized for this purpose and a complexation/nonsolvent induced phase separation followed by a palladium reduction step is carried out to prepare such membranes. Parameters to optimize the skin layer thickness and porosity, the palladium loading in this layer, and the palladium nanoparticles size are determined. The catalytic activity of the membranes is verified with the reduction of a nitro-compound and with a liquid phase Suzuki-Miyaura coupling reaction. Very low reaction times are observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An Adaptor Domain-Mediated Auto-Catalytic Interfacial Kinase Reaction

    Science.gov (United States)

    Liao, Xiaoli; Su, Jing; Mrksich, Milan

    2010-01-01

    This paper describes a model system for studying the auto-catalytic phosphorylation of an immobilized substrate by a kinase enzyme. This work uses self-assembled monolayers (SAMs) of alkanethiolates on gold to present the peptide substrate on a planar surface. Treatment of the monolayer with Abl kinase results in phosphorylation of the substrate. The phosphorylated peptide then serves as a ligand for the SH2 adaptor domain of the kinase and thereby directs the kinase activity to nearby peptide substrates. This directed reaction is intramolecular and proceeds with a faster rate than does the initial, intermolecular reaction, making this an auto-catalytic process. The kinetic non-linearity gives rise to properties that have no counterpart in the corresponding homogeneous phase reaction: in one example, the rate for phosphorylation of a mixture of two peptides is faster than the sum of the rates for phosphorylation of each peptide when presented alone. This work highlights the use of an adaptor domain in modulating the activity of a kinase enzyme for an immobilized substrate and offers a new approach for studying biochemical reactions in spatially inhomogeneous settings. PMID:19821459

  8. GC of catalytic reactions products involved in the promising fuel synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zheivot, V.; Sazonova, N. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Boreskov Inst. of Catalysis

    2012-09-15

    Catalytic reactions involved in the synthesis of the promising kinds of novel fuel and products formed in these reactions were systematized according to the resulting fuel type. Generalization of the retention of the substances comprising these products is presented. Chromatograms exhibiting their separation on chromatographic materials with the surface of different chemical properties are summarized. We propose procedures for gas-chromatographic analysis of the catalytic reactions products formed in the synthesis of hydrogen, methanol, dimethyl ether and hydrocarbons as a new generation of fuel alternative to petroleum and coal. For partial oxidation of methane into synthesis gas, on-line determination of the components obtained in the reaction was carried out by gas chromatography and gas analyzer based on different physicochemical methods (IR spectroscopy and electrochemical methods). Similarity of the results obtained using these methods is demonstrated. (orig.)

  9. Studies of Catalytic Properties of Inorganic Rock Matrices in Redox Reactions

    Directory of Open Access Journals (Sweden)

    Nikolay M. Dobrynkin

    2017-09-01

    Full Text Available Intrinsic catalytic properties of mineral matrices of various kinds (basalts, clays, sandstones were studied, which are of interest for in-situ heavy oil upgrading (i.e., underground to create advanced technologies for enhanced oil recovery. The elemental, surface and phase composition and matrix particle morphology, surface and acidic properties were studied using elemental analysis, X-ray diffraction, adsorption and desorption of nitrogen and ammonia. The data on the catalytic activity of inorganic matrices in ammonium nitrate decomposition (reaction with a large gassing, oxidation of hydrocarbons and carbon monoxide, and hydrocracking of asphaltenes into maltenes (the conversion of heavy hydrocarbons into more valuable light hydrocarbons were discussed. In order to check their applicability for the asphaltenes hydrocracking catalytic systems development, basalt and clay matrices were used as supports for iron/basalt, nickel/basalt and iron/clay catalysts. The catalytic activity of the matrices in the reactions of the decomposition of ammonium nitrate, oxidation of hydrocarbons and carbon monoxide, and hydrocracking of asphaltens was observed for the first time.

  10. (Gold core) at (ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light

    KAUST Repository

    Wang, Jianfang; Li, Benxia; Gu, Ting; Ming, Tian; Wang, Junxin; Wang, Peng; Yu, Jimmy C.

    2014-01-01

    Driving catalytic reactions with sunlight is an excellent example of sustainable chemistry. A prerequisite of solar-driven catalytic reactions is the development of photocatalysts with high solar-harvesting efficiencies and catalytic activities. Herein, we describe a general approach for uniformly coating ceria on monometallic and bimetallic nanocrystals through heterogeneous nucleation and growth. The method allows for control of the shape, size, and type of the metal core as well as the thickness of the ceria shell. The plasmon shifts of the Au@CeO2 nanostructures resulting from the switching between Ce(IV) and Ce(III) are observed. The selective oxidation of benzyl alcohol to benzaldehyde, one of the fundamental reactions for organic synthesis, performed under both broad-band and monochromatic light, demonstrates the visible-light-driven catalytic activity and reveals the synergistic effect on the enhanced catalysis of the Au@CeO2 nanostructures. © 2014 American Chemical Society.

  11. (Gold core) at (ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light

    KAUST Repository

    Wang, Jianfang

    2014-08-26

    Driving catalytic reactions with sunlight is an excellent example of sustainable chemistry. A prerequisite of solar-driven catalytic reactions is the development of photocatalysts with high solar-harvesting efficiencies and catalytic activities. Herein, we describe a general approach for uniformly coating ceria on monometallic and bimetallic nanocrystals through heterogeneous nucleation and growth. The method allows for control of the shape, size, and type of the metal core as well as the thickness of the ceria shell. The plasmon shifts of the Au@CeO2 nanostructures resulting from the switching between Ce(IV) and Ce(III) are observed. The selective oxidation of benzyl alcohol to benzaldehyde, one of the fundamental reactions for organic synthesis, performed under both broad-band and monochromatic light, demonstrates the visible-light-driven catalytic activity and reveals the synergistic effect on the enhanced catalysis of the Au@CeO2 nanostructures. © 2014 American Chemical Society.

  12. Kinetic and catalytic performance of a BI-porous composite material in catalytic cracking and isomerisation reactions

    KAUST Repository

    Al-Khattaf, S.

    2012-01-10

    Catalytic behaviour of pure zeolite ZSM-5 and a bi-porous composite material (BCM) were investigated in transformation of m-xylene, while zeolite HY and the bi-porous composite were used in the cracking of 1,3,5-triisopropylbenzene (TIPB). The micro/mesoporous material was used to understand the effect of the presence of mesopores on these reactions. Various characterisation techniques, that is, XRD, SEM, TGA, FT-IR and nitrogen sorption measurements were applied for complete characterisation of the catalysts. Catalytic tests using CREC riser simulator showed that the micro/mesoporous composite catalyst exhibited higher catalytic activity as compared with the conventional microporous ZSM-5 and HY zeolite for transformation of m-xylene and for the catalytic cracking of TIPB, respectively. The outstanding catalytic reactivity of m-xylene and TIPB molecules were mainly attributed to the easier access of active sites provided by the mesopores. Apparent activation energies for the disappearance of m-xylene and TIPB over all catalysts were found to decrease in the order: EBCM>EZSM-5 and EBCM>EHY, respectively. © 2012 Canadian Society for Chemical Engineering.

  13. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    International Nuclear Information System (INIS)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H.

    2000-01-01

    Experiments on aqueous TiO 2 photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO 2 photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  14. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2000-01-01

    Experiments on aqueous TiO{sub 2} photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO{sub 2} photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  15. Time behaviour of the reaction front in the catalytic A + B → B + C reaction-diffusion processes

    International Nuclear Information System (INIS)

    Nicolini, F.G.; Rodriguez, M.A.; Wio, H.S.

    1994-07-01

    The problem of the time evolution of the position and width of a reaction front between initially separated reactants for the catalytic reaction A + B → B + C (C inert) is treated within a recently introduced Galanin-like scheme. (author). 6 refs

  16. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy.

    Science.gov (United States)

    Lin, Han; Chen, Yu; Shi, Jianlin

    2018-03-21

    Tumour chemotherapy employs highly cytotoxic chemodrugs, which kill both cancer and normal cells by cellular apoptosis or necrosis non-selectively. Catalysing/triggering the specific chemical reactions only inside tumour tissues can generate abundant and special chemicals and products locally to initiate a series of unique biological and pathologic effects, which may enable tumour-specific theranostic effects to combat cancer without bringing about significant side effects on normal tissues. Nevertheless, chemical reaction-initiated selective tumour therapy strongly depends on the advances in chemistry, materials science, nanotechnology and biomedicine. This emerging cross-disciplinary research area is substantially different from conventional cancer-theranostic modalities in clinics. In response to the fast developments in cancer theranostics based on intratumoural catalytic chemical reactions, this tutorial review summarizes the very-recent research progress in the design and synthesis of representative nanoplatforms with intriguing nanostructures, compositions, physiochemical properties and biological behaviours for versatile catalytic chemical reaction-enabled cancer treatments, mainly by either endogenous tumour microenvironment (TME) triggering or exogenous physical irradiation. These unique intratumoural chemical reactions can be used in tumour-starving therapy, chemodynamic therapy, gas therapy, alleviation of tumour hypoxia, TME-responsive diagnostic imaging and stimuli-responsive drug release, and even externally triggered versatile therapeutics. In particular, the challenges and future developments of such a novel type of cancer-theranostic modality are discussed in detail to understand the future developments and prospects in this research area as far as possible. It is highly expected that this kind of unique tumour-specific therapeutics by triggering specific in situ catalytic chemical reactions inside tumours would provide a novel but efficient

  17. Orion EFT-1 Catalytic Tile Experiment Overview and Flight Measurements

    Science.gov (United States)

    Salazar, Giovanni; Amar, Adam; Hyatt, Andrew; Rezin, Marc D.

    2016-01-01

    This paper describes the design and results of a surface catalysis flight experiment flown on the Orion Multipurpose Crew Vehicle during Exploration Flight Test 1 (EFT1). Similar to previous Space Shuttle catalytic tile experiments, the present test consisted of a highly catalytic coating applied to an instrumented TPS tile. However, the present catalytic tile experiment contained significantly more instrumentation in order to better resolve the heating overshoot caused by the change in surface catalytic efficiency at the interface between two distinct materials. In addition to collecting data with unprecedented spatial resolution of the "overshoot" phenomenon, the experiment was also designed to prove if such a catalytic overshoot would be seen in turbulent flow in high enthalpy regimes. A detailed discussion of the results obtained during EFT1 is presented, as well as the challenges associated with data interpretation of this experiment. Results of material testing carried out in support of this flight experiment are also shown. Finally, an inverse heat conduction technique is employed to reconstruct the flight environments at locations upstream and along the catalytic coating. The data and analysis presented in this work will greatly contribute to our understanding of the catalytic "overshoot" phenomenon, and have a significant impact on the design of future spacecraft.

  18. Catalytic reaction in a porous solid subject to a boundary layer flow

    Energy Technology Data Exchange (ETDEWEB)

    Mihail, R; Teddorescu, C

    1978-01-01

    A mathematical model of a boundary layer flowing past a catalytic slab was developed which included an analysis of the coupled mass and heat transfer and the heterogeneous chemical reaction. The porous flat plate was used to illustrate the interaction of boundary layer flow with chemical reaction within a porous catalytic body. The model yielded systems of transcendental equations which were solved numerically by means of a superposition integral in connection with a norm reduction procedure. A parametric study was conducted and an analysis of the possible multiplicity of steady states was developed and illustrated for the extreme case of infinite solid thermal conductivity. Tables, diagrams, graphs, and 12 references.

  19. Procedure for the preparation of catalysts for application in catalytic gas phase reactions

    International Nuclear Information System (INIS)

    1976-01-01

    The invention describes the preparation of catalysts to be used in catalytic reactions in the gaseous phase. The catalytic material is disposed at the surface of a ceramic or carbon substrate (av. particle size 0.1 μ - 0.5 cm, surface area smaller than 20 m 2 /g) by bombardment of the catalytic material (Pt, Rh, Pd, Ru, Os, Ir) with energetic ions (Ne, Ar, Kr, Xe) in the vicinity of the substrate in medium vacuum

  20. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes

    Directory of Open Access Journals (Sweden)

    Carmen Moreno-Marrodan

    2017-04-01

    Full Text Available The catalytic partial hydrogenation of substituted alkynes to alkenes is a process of high importance in the manufacture of several market chemicals. The present paper shortly reviews the heterogeneous catalytic systems engineered for this reaction under continuous flow and in the liquid phase. The main contributions appeared in the literature from 1997 up to August 2016 are discussed in terms of reactor design. A comparison with batch and industrial processes is provided whenever possible.

  1. Synergetic mechanism of methanol–steam reforming reaction in a catalytic reactor with electric discharges

    International Nuclear Information System (INIS)

    Kim, Taegyu; Jo, Sungkwon; Song, Young-Hoon; Lee, Dae Hoon

    2014-01-01

    Highlights: • Methanol–steam reforming was performed on Cu catalysts under an electric discharge. • Discharge had a synergetic effect on the catalytic reaction for methanol conversion. • Discharge lowered the temperature for catalyst activation or light off. • Discharge controlled the yield and selectivity of species in a reforming process. • Adsorption triggered by a discharge was a possible mechanism for a synergetic effect. - Abstract: Methanol–steam reforming was performed on Cu/ZnO/Al 2 O 3 catalysts under an electric discharge. The discharge occurred between the electrodes where the catalysts were packed. The electric discharge was characterized by the discharge voltage and electric power to generate the discharge. The existence of a discharge had a synergetic effect on the catalytic reaction for methanol conversion. The electric discharge provided modified reaction paths resulting in a lower temperature for catalyst activation or light off. The discharge partially controlled the yield and selectivity of species in a reforming process. The aspect of control was examined in view of the reaction kinetics. The possible mechanisms for the synergetic effect between the catalytic reaction and electric discharge on methanol–steam reforming were addressed. A discrete reaction path, particularly adsorption triggered by an electric discharge, was suggested to be the most likely mechanism for the synergetic effect. These results are expected to provide a guide for understanding the plasma–catalyst hybrid reaction

  2. Catalytic Upgrading of Biomass-Derived Compounds via C-C Coupling Reactions. Computational and Experimental Studies of Acetaldehyde and Furan Reactions in HZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong [Argonne National Lab. (ANL), Argonne, IL (United States); Evans, Tabitha J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cheng, Lei [Argonne National Lab. (ANL), Argonne, IL (United States); Nimlos, Mark R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mukarakate, Calvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robichaud, David J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Assary, Rajeev S. [Argonne National Lab. (ANL), Argonne, IL (United States); Curtiss, Larry A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-10-02

    These catalytic C–C coupling and deoxygenation reactions are essential for upgrading of biomass-derived oxygenates to fuel-range hydrocarbons. Detailed understanding of mechanistic and energetic aspects of these reactions is crucial to enabling and improving the catalytic upgrading of small oxygenates to useful chemicals and fuels. Using periodic density functional theory (DFT) calculations, we have investigated the reactions of furan and acetaldehyde in an HZSM-5 zeolite catalyst, a representative system associated with the catalytic upgrading of pyrolysis vapors. Comprehensive energy profiles were computed for self-reactions (i.e., acetaldehyde coupling and furan coupling) and cross-reactions (i.e., acetaldehyde + furan) of this representative mixture. Major products proposed from the computations are further confirmed using temperature controlled mass spectra measurements. Moreover, the computational results show that furan interacts with acetaldehyde in HZSM-5 via an alkylation mechanism, which is more favorable than the self-reactions, indicating that mixing furans with aldehydes could be a promising approach to maximize effective C–C coupling and dehydration while reducing the catalyst deactivation (e.g., coke formation) from aldehyde condensation.

  3. Reaction mechanisms of CO2 activation and catalytic reduction

    International Nuclear Information System (INIS)

    Wolff, Niklas von

    2016-01-01

    The use of CO 2 as a C1 chemical feedstock for the fine chemical industry is interesting both economically and ecologically, as CO 2 is non-toxic, abundant and cheap. Nevertheless, transformations of CO 2 into value-added products is hampered by its high thermodynamic stability and its inertness toward reduction. In order to design new catalysts able to overcome this kinetic challenge, a profound understanding of the reaction mechanisms at play in CO 2 reduction is needed. Using novel N/Si+ frustrated Lewis pairs (FLPs), the influence of CO 2 adducts and different hydro-borane reducing agents on the reaction mechanism in the catalytic hydroboration of CO 2 were investigated, both by DFT calculations and experiments. In a second step, the reaction mechanism of a novel reaction for the creation of C-C bonds from CO 2 and pyridyl-silanes (C 5 H 4 N-SiMe 3 ) was analyzed by DFT calculations. It was shown that CO 2 plays a double role in this transformation, acting both as a catalyst and a C1-building block. The fine understanding of this transformation then led to the development of a novel approach for the synthesis of sulfones and sulfonamides. Starting from SO 2 and aromatic silanes/amine silanes, these products were obtained in a single step under metal-free conditions. Noteworthy, sulfones and sulfonamides are common motifs in organic chemistry and found in a variety of highly important drugs. Finally, this concept was extended to aromatic halides as coupling partners, and it was thus shown for the first time that a sulfonylative Hiyama reaction is a possible approach to the synthesis of sulfones. (author) [fr

  4. Reaction Current Phenomenon in Bifunctional Catalytic Metal-Semiconductor Nanostructures

    Science.gov (United States)

    Hashemian, Mohammad Amin

    Energy transfer processes accompany every elementary step of catalytic chemical processes on material surface including molecular adsorption and dissociation on atoms, interactions between intermediates, and desorption of reaction products from the catalyst surface. Therefore, detailed understanding of these processes on the molecular level is of great fundamental and practical interest in energy-related applications of nanomaterials. Two main mechanisms of energy transfer from adsorbed particles to a surface are known: (i) adiabatic via excitation of quantized lattice vibrations (phonons) and (ii) non-adiabatic via electronic excitations (electron/hole pairs). Electronic excitations play a key role in nanocatalysis, and it was recently shown that they can be efficiently detected and studied using Schottky-type catalytic nanostructures in the form of measureable electrical currents (chemicurrents) in an external electrical circuit. These nanostructures typically contain an electrically continuous nanocathode layers made of a catalytic metal deposited on a semiconductor substrate. The goal of this research is to study the direct observations of hot electron currents (chemicurrents) in catalytic Schottky structures, using a continuous mesh-like Pt nanofilm grown onto a mesoporous TiO2 substrate. Such devices showed qualitatively different and more diverse signal properties, compared to the earlier devices using smooth substrates, which could only be explained on the basis of bifunctionality. In particular, it was necessary to suggest that different stages of the reaction are occurring on both phases of the catalytic structure. Analysis of the signal behavior also led to discovery of a formerly unknown (very slow) mode of the oxyhydrogen reaction on the Pt/TiO2(por) system occurring at room temperature. This slow mode was producing surprisingly large stationary chemicurrents in the range 10--50 microA/cm2. Results of the chemicurrent measurements for the bifunctional

  5. Electrochemistry as a Tool for Study, Delvelopment and Promotion of Catalytic Reactions

    DEFF Research Database (Denmark)

    Petrushina, Irina

    of Fermi level by electrochemical production of promoters, reducing or oxidizing current carriers of the catalyst support (O2-, H+, Na+). This type1 was abbreviated as EEPP. In Capters 4-7, the results of my research are given as examples of use of electrochemistry as a tool for study, promotion...... be measured and changed by polarization in electrochemical experiment. In Chapter 3 the nature of the electrochemical heterogeneous catalytic reactions is dicussed, including the new theory of electrochemical promotion. This theory is based on electrochemical change of the Fermi level of the catalyst. It also...... states that that there are two types of electrochemical promotion: First type is based on change of the Fermi level through the charge of the electric double layer (EDL) between catalyst and its support without electrochemical reaction. This effect was abbreviated as EDLE. Second type is based on change...

  6. Triangular Diagrams Teach Steady and Dynamic Behaviour of Catalytic Reactions.

    Science.gov (United States)

    Klusacek, K.; And Others

    1989-01-01

    Illustrates how triangular diagrams can aid in presenting some of the rather complex transient interactions that occur among gas and surface species during heterogeneous catalytic reactions. The basic equations and numerical examples are described. Classroom use of the triangular diagram is discussed. Several diagrams and graphs are provided. (YP)

  7. Electro-catalytic activity of Ni–Co-based catalysts for oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hua [School of Urban Rail Transportation, Soochow University, Suzhou 215006 (China); Li, Zhihu [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China); Xu, Yanhui, E-mail: xuyanhui@suda.edu.cn [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China)

    2015-04-15

    Graphical abstract: The electro-catalytic activity of different electro-catalysts with a porous electrode structure was compared considering the real electrode area that was evaluated by cyclic measurement. - Highlights: • Ni–Co-based electro-catalysts for OER have been studied and compared. • The real electrode area is calculated and used for assessing the electro-catalysts. • Exchange current and reaction rate constant are estimated. • Ni is more useful for OER reaction than Co. - Abstract: In the present work, Ni–Co-based electrocatalysts (Ni/Co = 0:6, 1:5, 2:4, 3:3, 4:2, 5:1 and 6:0) have been studied for oxygen evolution reaction. The phase structure has been analyzed by X-ray diffraction technique. Based on the XRD and SEM results, it is believed that the synthesized products are poorly crystallized. To exclude the disturbance of electrode preparation technology on the evaluation of electro-catalytic activity, the real electrode surface area is calculated based on the cyclic voltammetry data, assumed that the specific surface capacitance is 60 μF cm{sup −2} for metal oxide electrode. The real electrode area data are used to calculate the current density. The reaction rate constant of OER at different electrodes is also estimated based on basic reaction kinetic equations. It is found that the exchange current is 0.05–0.47 mA cm{sup −2} (the real surface area), and the reaction rate constant has an order of magnitude of 10{sup −7}–10{sup −6} cm s{sup −1}. The influence of the electrode potential on OER rate has been also studied by electrochemical impedance spectroscopy (EIS) technique. Our investigation has shown that the nickel element has more contribution than the cobalt; the nickel oxide has the best electro-catalytic activity toward OER.

  8. Preparation, Characterization, and Catalytic Activity of MoCo/USY Catalyst on Hydrodeoxygenation Reaction of Anisole

    Science.gov (United States)

    Nugrahaningtyas, K. D.; Suharbiansah, R. S. R.; Rahmawati, F.

    2018-03-01

    This research aims to prepare, characterize, and study the catalytic activity of Molybdenum (Mo) and Cobalt (Co) metal with supporting material Ultra Stable Y-Zeolite (USY), to produce catalysts with activity in hydrotreatment reaction and in order to eliminate impurities compounds that containing unwanted groups heteroatoms. The bimetallic catalysts MoCo/USY were prepared by wet impregnation method with weight variation of Co metal 0%, 2%, 4%, 6%, 8%, and Mo metal 8% (w/w), respectively. Activation method of the catalyst included calcination, oxidation, reduction and the crystallinity was characterized using X-ray diffraction (XRD), the acidity of the catalyst was analyzed using Fourier Transform Infrared Spectroscopy (FT-IR) and gravimetry method, minerals present in the catalyst was analyzed using X-Ray Fluorescence (XRF), and surface of the catalyst was analyzed using Surface Area Analyzer (SAA). Catalytic activity test (benzene yield product) of MoCo/USY on hydrodeoxigenation reaction of anisole aimed to determine the effect of Mo-Co/USY for catalytic activity in the reaction hydrodeoxigenation (HDO) anisole. Based on characterization and test of catalytic activity, it is known that catalytic of MoCo/USY 2% (catalyst B) shows best activities with acidity of 10.209 mmol/g, specific area of catalyst of 426.295 m2/g, pore average of 14.135 Å, total pore volume 0.318 cc/g, and total yield of HDO products 6.06%.

  9. Effect of surface structure on catalytic reactions: A sum frequency generation surface vibrational spectroscopy study

    International Nuclear Information System (INIS)

    McCrea, Keith R.

    2001-01-01

    In the results discussed above, it is clear that Sum Frequency Generation (SFG) is a unique tool that allows the detection of vibrational spectra of adsorbed molecules present on single crystal surfaces under catalytic reaction conditions. Not only is it possible to detect active surface intermediates, it is also possible to detect spectator species which are not responsible for the measured turnover rates. By correlating high-pressure SFG spectra under reaction conditions and gas chromatography (GC) kinetic data, it is possible to determine which species are important under reaction intermediates. Because of the flexibility of this technique for studying surface intermediates, it is possible to determine how the structures of single crystal surfaces affect the observed rates of catalytic reactions. As an example of a structure insensitive reaction, ethylene hydrogenation was explored on both Pt(111) and Pt(100). The rates were determined to be essentially the same. It was observed that both ethylidyne and di-(sigma) bonded ethylene were present on the surface under reaction conditions on both crystals, although in different concentrations. This result shows that these two species are not responsible for the measured turnover rate, as it would be expected that one of the two crystals would be more active than the other, since the concentration of the surface intermediate would be different on the two crystals. The most likely active intermediates are weakly adsorbed molecules such as(pi)-bonded ethylene and ethyl. These species are not easily detected because their concentration lies at the detection limit of SFG. The SFG spectra and GC data essentially show that ethylene hydrogenation is structure insensitive for Pt(111) and Pt(100). SFG has proven to be a unique and excellent technique for studying adsorbed species on single crystal surfaces under high-pressure catalytic reactions. Coupled with kinetic data obtained from gas chromatography measurements, it can

  10. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-12-31

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  11. Catalytic conversion reactions mediated by single-file diffusion in linear nanopores: hydrodynamic versus stochastic behavior.

    Science.gov (United States)

    Ackerman, David M; Wang, Jing; Wendel, Joseph H; Liu, Da-Jiang; Pruski, Marek; Evans, James W

    2011-03-21

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice-gas model for this reaction-diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.

  12. Kinetic investigation of heterogeneous catalytic reactions by means of the kinetic isotope method

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, F; Dermietzel, J [Akademie der Wissenschaften der DDR, Leipzig. Zentralinstitut fuer Isotopen- und Strahlenforschung

    1978-09-01

    The application of the kinetic isotope method to heterogeneous catalytic processes is possible for surface compounds by using the steady-state relation. However, the characterization of intermediate products becomes ambiguous if sorption rates are of the same order of magnitude as surface reactions rates. The isotopic exchange reaction renders possible the estimation of sorption rates.

  13. Characterization of catalytic supports based in mixed oxides for control reactions of NO and N2O

    International Nuclear Information System (INIS)

    Garcia C, M.A.; Perez H, R.; Gomez C, A.; Diaz, G.

    1999-01-01

    The catalytic supports Al 2 O 3 , La 2 O 3 and Al 2 O 3 -La 2 O 3 were prepared by the Precipitation and Coprecipitation techniques. The catalytic supports Al 2 O 3 , La 2 O 3 and Al 2 O 3 -La 2 O 3 were characterized by several techniques to determine: texture (Bet), crystallinity (XRD), chemical composition (Sem)(Ftir) and it was evaluated their total acidity by reaction with 2-propanol. The investigation will be continued with the cobalt addition and this will be evaluated for its catalytic activity in control reactions of N O and N 2 O. (Author)

  14. Preparation of Pd-Diimine@SBA-15 and Its Catalytic Performance for the Suzuki Coupling Reaction

    Directory of Open Access Journals (Sweden)

    Jiahuan Yu

    2016-11-01

    Full Text Available A highly efficient and stable Pd-diimine@SBA-15 catalyst was successfully prepared by immobilizing Pd onto diimine-functionalized mesoporous silica SBA-15. With the help of diimine functional groups grafted onto the SBA-15, Pd could be anchored on a support with high dispersion. Pd-diimine@SBA-15 catalyst exhibited excellent catalytic performance for the Suzuki coupling reaction of electronically diverse aryl halides and phenylboronic acid under mild conditions with an ultralow amount of Pd (0.05 mol % Pd. When the catalyst amount was increased, it could catalyze the coupling reaction of chlorinated aromatics with phenylboronic acid. Compared with the catalytic performances of Pd/SBA-15 and Pd-diimine@SiO2 catalysts, the Pd-diimine@SBA-15 catalyst exhibited higher hydrothermal stability and could be repeatedly used four times without a significant decrease of its catalytic activity.

  15. Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling.

    Science.gov (United States)

    Habershon, Scott

    2016-04-12

    In a recent article [ J. Chem. Phys. 2015 , 143 , 094106 ], we introduced a novel graph-based sampling scheme which can be used to generate chemical reaction paths in many-atom systems in an efficient and highly automated manner. The main goal of this work is to demonstrate how this approach, when combined with direct kinetic modeling, can be used to determine the mechanism and phenomenological rate law of a complex catalytic cycle, namely cobalt-catalyzed hydroformylation of ethene. Our graph-based sampling scheme generates 31 unique chemical products and 32 unique chemical reaction pathways; these sampled structures and reaction paths enable automated construction of a kinetic network model of the catalytic system when combined with density functional theory (DFT) calculations of free energies and resultant transition-state theory rate constants. Direct simulations of this kinetic network across a range of initial reactant concentrations enables determination of both the reaction mechanism and the associated rate law in an automated fashion, without the need for either presupposing a mechanism or making steady-state approximations in kinetic analysis. Most importantly, we find that the reaction mechanism which emerges from these simulations is exactly that originally proposed by Heck and Breslow; furthermore, the simulated rate law is also consistent with previous experimental and computational studies, exhibiting a complex dependence on carbon monoxide pressure. While the inherent errors of using DFT simulations to model chemical reactivity limit the quantitative accuracy of our calculated rates, this work confirms that our automated simulation strategy enables direct analysis of catalytic mechanisms from first principles.

  16. Catalytic distillation process

    Science.gov (United States)

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  17. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  18. Structural analysis of CuO / CeO2-based catalytic materials intended for PROX reaction: Part I

    International Nuclear Information System (INIS)

    Neiva, L.S.; Simoes, A.N.; Bispo, A.; Ribeiro, M.A.; Gama, L.

    2011-01-01

    This work relates the synthesis process of CuO/CeO 2 catalytic materials by a combustion reaction method as well as it introduces a structural analysis of the developed material, this structural analysis had as main focus to evaluate the influence of the doping substance (CuO) when being incorporated in the hostess matrix structure that is CeO 2 . The CuO/CeO catalytic materials developed in this work are destined to preferential oxidation of CO reaction (PROX). The developed materials were characterized by XRD, SEM and textural complete analysis by the BET method. According to the results, the CuO incorporation changed crystallinity of the structure of the catalytic materials. On the other hand, the morphologic and textural characteristics did not showed significant differences regarding the presence of the doping substance (CuO) in the structure of the developed materials. The porosity of the structures of the developed catalytic materials belongs to the type macroporous. (author)

  19. Aziridine- and Azetidine-Pd Catalytic Combinations. Synthesis and Evaluation of the Ligand Ring Size Impact on Suzuki-Miyaura Reaction Issues

    Directory of Open Access Journals (Sweden)

    Hamza Boufroura

    2017-01-01

    Full Text Available The synthesis of new vicinal diamines based on aziridine and azetidine cores as well as the comparison of their catalytic activities as ligand in the Suzuki-Miyaura coupling reaction are described in this communication. The synthesis of three- and four-membered ring heterocycles substituted by a methylamine pendant arm is detailed from the parent nitrile derivatives. Complexation to palladium under various conditions has been examined affording vicinal diamines or amine-imidate complexes. The efficiency of four new catalytic systems is compared in the preparation of variously substituted biaryls. Aziridine- and azetidine-based catalytic systems allowed Suzuki-Miyaura reactions from aryl halides including chlorides with catalytic loadings until 0.001% at temperatures ranging from 100 °C to r.t. The evolution of the Pd-metallacycle ring strain moving from azetidine to aziridine in combination with a methylamine or an imidate pendant arm impacted the Suzuki-Miyaura reaction issue.

  20. CATALYTIC PERFORMANCES OF Fe2O3/TS-1 CATALYST IN PHENOL HYDROXYLATION REACTION

    Directory of Open Access Journals (Sweden)

    Didik Prasetyoko

    2010-07-01

    Full Text Available Hydroxylation reaction of phenol into diphenol, such as hydroquinone and catechol, has a great role in many industrial applications. Phenol hydroxylation reaction can be carried out using Titanium Silicalite-1 (TS-1 as catalyst and H2O2 as an oxidant. TS-1 catalyst shows high activity and selectivity for phenol hydroxylation reaction. However, its hydrophobic sites lead to slow H2O2 adsorption toward the active site of TS-1. Consequently, the reaction rate of phenol hydroxylation reaction is tends to be low. Addition of metal oxide Fe2O3 enhanced hydrophilicity of TS-1 catalyst. Liquid phase catalytic phenol hydroxylation using hydrogen peroxide as oxidant was carried out over iron (III oxide-modified TS-1 catalyst (Fe2O3/TS-1, that were prepared by impregnation method using iron (III nitrate as precursor and characterized by X-ray diffraction, infrared spectroscopy, nitrogen adsorption, pyridine adsorption, and hydrophilicity techniques. Catalysts 1Fe2O3/TS-1 showed maximum catalytic activity of hydroquinone product. In this research, the increase of hydroquinone formation rate is due to the higher hydrophilicity of Fe2O3/TS-1 catalysts compare to the parent catalyst, TS-1.   Keywords: Fe2O3/TS-1, hydrophilic site, phenol hydroxylation

  1. Interrogating the catalytic mechanism of nanoparticle mediated Stille coupling reactions employing bio-inspired Pd nanocatalysts

    Science.gov (United States)

    Pacardo, Dennis B.; Slocik, Joseph M.; Kirk, Kyle C.; Naik, Rajesh R.; Knecht, Marc R.

    2011-05-01

    To address issues concerning the global environmental and energy state, new catalytic technologies must be developed that translate ambient and efficient conditions to heavily used reactions. To achieve this, the structure/function relationship between model catalysts and individual reactions must be critically discerned to identify structural motifs responsible for the reactivity. This is especially true for nanoparticle-based systems where this level of information remains limited. Here we present evidence indicating that peptide-capped Pd nanoparticles drive Stille C-C coupling reactions via Pd atom leaching. Through a series of reaction studies, the materials are shown to be optimized for reactivity under ambient conditions where increases in temperature or catalyst concentration deactivate reactivity due to the leaching process. A quartz crystal microbalance analysis demonstrates that Pd leaching occurs during the initial oxidative addition step at the nanoparticle surface by aryl halides. Together, this suggests that peptide-based materials may be optimally suited for use as model systems to isolate structural motifs responsible for the generation of catalytically reactive materials under ambient synthetic conditions.

  2. Interrogating the catalytic mechanism of nanoparticle mediated Stille coupling reactions employing bio-inspired Pd nanocatalysts.

    Science.gov (United States)

    Pacardo, Dennis B; Slocik, Joseph M; Kirk, Kyle C; Naik, Rajesh R; Knecht, Marc R

    2011-05-01

    To address issues concerning the global environmental and energy state, new catalytic technologies must be developed that translate ambient and efficient conditions to heavily used reactions. To achieve this, the structure/function relationship between model catalysts and individual reactions must be critically discerned to identify structural motifs responsible for the reactivity. This is especially true for nanoparticle-based systems where this level of information remains limited. Here we present evidence indicating that peptide-capped Pd nanoparticles drive Stille C-C coupling reactions via Pd atom leaching. Through a series of reaction studies, the materials are shown to be optimized for reactivity under ambient conditions where increases in temperature or catalyst concentration deactivate reactivity due to the leaching process. A quartz crystal microbalance analysis demonstrates that Pd leaching occurs during the initial oxidative addition step at the nanoparticle surface by aryl halides. Together, this suggests that peptide-based materials may be optimally suited for use as model systems to isolate structural motifs responsible for the generation of catalytically reactive materials under ambient synthetic conditions. © The Royal Society of Chemistry 2011

  3. Exploring the learnings derived from catalytic experiences in a leadership context

    OpenAIRE

    Daphna S. Horowitz; René van Eeden

    2015-01-01

    Orientation: Personal leadership comprises self-awareness, authenticity, inspiration and passion. The concept of personal leadership was explored together with its relationship with leadership-related learnings derived from a catalytic experience. Research purpose: The objective of the study was to explore the leadership-related learnings derived from a catalytic experience and any connection between these learnings, personal leadership and leadership in an organisational context. Mot...

  4. Catalytic asymmetric diels-alder reaction of quinone imine ketals: a site-divergent approach.

    Science.gov (United States)

    Hashimoto, Takuya; Nakatsu, Hiroki; Maruoka, Keiji

    2015-04-07

    The catalytic asymmetric Diels-Alder reaction of quinone imine ketals with diene carbamates catalyzed by axially chiral dicarboxylic acids is reported herein. A variety of primary and secondary alkyl-substituted quinone derivatives which have not been applied in previous asymmetric quinone Diels-Alder reactions could be employed using this method. More importantly, we succeeded in developing a strategy to divert the reaction site in unsymmetrical 3-alkyl quinone imine ketals from the inherently favored unsubstituted C=C bond to the disfavored alkyl-substituted C=C bond. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  6. Catalytic Hydrotreatment of Fast Pyrolysis Oil: Model Studies on Reaction Pathways for the Carbohydrate Fraction

    OpenAIRE

    Wildschut, J.; Arentz, J.; Rasrendra, C. B.; Venderbosch, R. H.; Heeres, H. J.

    2009-01-01

    Fast pyrolysis oil can be upgraded by a catalytic hydrotreatment (250-400 degrees C, 100-200 bar) using heterogeneous catalysts such as Ru/C to hydrocarbon-like products that can serve as liquid transportation fuels. Insight into the complex reaction pathways of the various component fractions during hydrotreatment is desirable to reduce the formation of by-products such as char and gaseous components. This paper deals with the catalytic hydrotreatment of representative model components for t...

  7. Design of a facility for the in situ measurement of catalytic reaction by neutron scattering spectroscopy

    Science.gov (United States)

    Tan, Shuai; Cheng, Yongqiang; Daemen, Luke L.; Lutterman, Daniel A.

    2018-01-01

    Catalysis is a critical enabling science for future energy needs. The next frontier of catalysis is to evolve from catalyst discovery to catalyst design, and for this next step to be realized, we must develop new techniques to better understand reaction mechanisms. To do this, we must connect catalytic reaction rates and selectivities to the kinetics, energetics, and dynamics of individual elementary steps and relate these to the structure and dynamics of the catalytic sites involved. Neutron scattering spectroscopies offer unique capabilities that are difficult or impossible to match by other techniques. The current study presents the development of a compact and portable instrumental design that enables the in situ investigation of catalytic samples by neutron scattering techniques. The developed apparatus was tested at the Spallation Neutron Source (SNS) in Oak Ridge National Laboratory and includes a gas handling panel that allows for computer hookups to control the panel externally and online measurement equipment such as coupled GC-FID/TCD (Gas Chromatography-Flame Ionization Detector/Thermal Conductivity Detector) and MS (Mass Spectrometry) to characterize offgassing while the sample is in the neutron scattering spectrometer. This system is flexible, modular, compact, and portable enabling its use for many types of gas-solid and liquid-solid reactions at the various beamlines housed at the SNS.

  8. Catalytic Asymmetric Total Synthesis of (+)- and (-)-Paeoveitol via a Hetero-Diels-Alder Reaction.

    Science.gov (United States)

    Li, Tian-Ze; Geng, Chang-An; Yin, Xiu-Juan; Yang, Tong-Hua; Chen, Xing-Long; Huang, Xiao-Yan; Ma, Yun-Bao; Zhang, Xue-Mei; Chen, Ji-Jun

    2017-02-03

    The first catalytic asymmetric total synthesis of (+)- and (-)-paeoveitol has been accomplished in 42% overall yield via a biomimetic hetero-Diels-Alder reaction. The chiral phosphoric acid catalyzed hetero-Diels-Alder reaction showed excellent diastereo- and enantioselectivity (>99:1 dr and 90% ee); two rings and three stereocenters were constructed in a single step to produce (-)-paeoveitol on a scale of 452 mg. This strategy enabled us to selectively synthesize both paeoveitol enantiomers from the same substrates by simply changing the enantiomer of the catalyst.

  9. Process Intensification. Continuous Two-Phase Catalytic Reactions in a Table-Top Centrifugal Contact Separator

    NARCIS (Netherlands)

    Kraai, Gerard N.; Schuur, Boelo; van Zwol, Floris; Haak, Robert M.; Minnaard, Adriaan J.; Feringa, Ben L.; Heeres, Hero J.; de Vries, Johannes G.; Prunier, ML

    2009-01-01

    Production of fine chemicals is mostly performed in batch reactors. Use of continuous processes has many advantages which may reduce the cost of production. We have developed the use of centrifugal contact separators (CCSs) for continuous two-phase catalytic reactions. This equipment has previously

  10. Steam reformer with catalytic combustor

    Science.gov (United States)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  11. Possibility of increasing the average rate of heterogeneous catalytic reactions by operating in the self-oscillating regime

    Energy Technology Data Exchange (ETDEWEB)

    Chumakov, G A; Slinko, M G

    1979-05-01

    The possibility of increasing the average rate of heterogeneous catalytic reactions by operating in the self-oscillating regime was demonstrated by analyzing a kinetic model of hydrogen interaction with oxygen over a metallic catalyst. Within a certain interval of partial pressures of oxygen, the average reaction rate over a period of oscillation may be over five times that of the steady-state reaction.

  12. Exploring the learnings derived from catalytic experiences in a leadership context

    Directory of Open Access Journals (Sweden)

    Daphna S. Horowitz

    2015-06-01

    Full Text Available Orientation: Personal leadership comprises self-awareness, authenticity, inspiration and passion. The concept of personal leadership was explored together with its relationship with leadership-related learnings derived from a catalytic experience. Research purpose: The objective of the study was to explore the leadership-related learnings derived from a catalytic experience and any connection between these learnings, personal leadership and leadership in an organisational context. Motivation for the study: Measurement of leaders’ performance remains largely focused on the results achieved. The importance of personal leadership in the corporate environment is often ignored and even questioned. Recognising that there is a relationship between personal leadership and professional leadership enables leaders to connect who they are being and what they are doing. This can enhance their leadership. Research design, approach and method: The study was conducted using a qualitative approach, specifically narrative enquiry. The sample comprised seven leaders who have had catalytic experiences in their lives. In-depth interviews were conducted and thematic analysis was used to identify themes on the leadership-related learnings gained from the leaders’catalytic experiences. Main findings: Elements of personal leadership and the processes involved in the development of personal leadership were identified. It was furthermore shown that challenging experiences serve as learning opportunities and that time for reflection is essential in this learning process. Practical/managerial implications: Leadership lessons are best learnt through experience.Using challenging experiences as learning opportunities may assist leaders in their growth and development. Contribution: Leadership effectiveness and organisational effectiveness may be enhanced by a more holistic view of leadership that includes elements of personal leadership.

  13. Pi-activated alcohols: an emerging class of alkylating agents for catalytic Friedel-Crafts reactions.

    Science.gov (United States)

    Bandini, Marco; Tragni, Michele

    2009-04-21

    The direct functionalization of aromatic compounds, via Friedel-Crafts alkylation reactions with alcohols, is one of the cornerstones in organic chemistry. The present emerging area deals with the recent advances in the use of pi-activated alcohols in the catalytic and stereoselective construction of benzylic stereocenters.

  14. Exponential growth for self-reproduction in a catalytic reaction network: relevance of a minority molecular species and crowdedness

    Science.gov (United States)

    Kamimura, Atsushi; Kaneko, Kunihiko

    2018-03-01

    Explanation of exponential growth in self-reproduction is an important step toward elucidation of the origins of life because optimization of the growth potential across rounds of selection is necessary for Darwinian evolution. To produce another copy with approximately the same composition, the exponential growth rates for all components have to be equal. How such balanced growth is achieved, however, is not a trivial question, because this kind of growth requires orchestrated replication of the components in stochastic and nonlinear catalytic reactions. By considering a mutually catalyzing reaction in two- and three-dimensional lattices, as represented by a cellular automaton model, we show that self-reproduction with exponential growth is possible only when the replication and degradation of one molecular species is much slower than those of the others, i.e., when there is a minority molecule. Here, the synergetic effect of molecular discreteness and crowding is necessary to produce the exponential growth. Otherwise, the growth curves show superexponential growth because of nonlinearity of the catalytic reactions or subexponential growth due to replication inhibition by overcrowding of molecules. Our study emphasizes that the minority molecular species in a catalytic reaction network is necessary for exponential growth at the primitive stage of life.

  15. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia

    DEFF Research Database (Denmark)

    Janssens, Ton V.W.; Falsig, Hanne; Lundegaard, Lars Fahl

    2015-01-01

    For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling of the ac...... for standard SCR. Finally, the role of a nitrate/nitrite equilibrium and the possible in uence of Cu dimers and Brønsted sites are discussed, and an explanation is offered as to how a catalyst can be effective for SCR, while being a poor catalyst for NO oxidation to NO2....... spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the standard SCR cycle. The calculated activation energy by density functional theory (DFT) indicates that the oxidation of an NO molecule by O2 to a bidentate nitrate ligand is rate determining...

  16. Electrochemical promotion of catalytic reactions with Pt/C (or Pt/Ru/C)//PBI catalysts

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Bandur, Viktor

    2007-01-01

    The paper is an overview of the results of the investigation on electrochemical promotion of three catalytic reactions: methane oxidation with oxygen, NO reduction with hydrogen at 135 degrees C and Fischer-Tropsch synthesis (FTS) at 170 degrees C in the [CH4/O-2(or NO/H-2 or CO/H-2)/Ar//Pt(or Pt....../Ru)//PBI(H3PO4)/H-2, Ar] fuel cell. It has been shown that the partial methane oxidation to C2H2 and the C-2 selectivity were electrochemically promoted by the negative catalyst polarization. This was also the case in NO reduction with hydrogen for low NO and H-2 partial pressures. In both cases the catalytic...... reactions have been promoted by the electrochemically produced hydrogen. It has been found that the NO reduction with hydrogen on the Pt/PBI strongly depends on NO and hydrogen partial pressures in the working gas mixture. At higher NO and H-2 partial pressures the catalysis is promoted...

  17. Catalytic performance of Metal‐Organic‐Frameworks vs. extra‐large pore zeolite UTL incondensation reactions

    Directory of Open Access Journals (Sweden)

    Mariya eShamzhy

    2013-08-01

    Full Text Available Catalytic behavior of isomorphously substituted B‐, Al‐, Ga‐, and Fe‐containing extra‐large pore UTLzeolites was investigated in Knoevenagel condensation involving aldehydes, Pechmann condensationof 1‐naphthol with ethylacetoacetate, and Prins reaction of β‐pinene with formaldehyde andcompared with large‐pore aluminosilicate zeolite BEA and representative Metal‐Organic‐FrameworksCu3(BTC2 and Fe(BTC. The yield of the target product over the investigated catalysts in Knoevenagelcondensation increases in the following sequence: (AlBEA < (AlUTL < (GaUTL < (FeUTL < Fe(BTC <(BUTL < Cu3(BTC2 being mainly related to the improving selectivity with decreasing strength ofactive sites of the individual catalysts. The catalytic performance of Fe(BTC, containing the highestconcentration of Lewis acid sites of the appropriate strength is superior over large‐pore zeolite(AlBEA and B‐, Al‐, Ga‐, Fe‐substituted extra‐large pore zeolites UTL in Prins reaction of β‐pinene withformaldehyde and Pechmann condensation of 1‐naphthol with ethylacetoacetate.

  18. Morphological effects on the selectivity of intramolecular versus intermolecular catalytic reaction on Au nanoparticles.

    Science.gov (United States)

    Wang, Dan; Sun, Yuanmiao; Sun, Yinghui; Huang, Jing; Liang, Zhiqiang; Li, Shuzhou; Jiang, Lin

    2017-06-14

    It is hard for metal nanoparticle catalysts to control the selectivity of a catalytic reaction in a simple process. In this work, we obtain active Au nanoparticle catalysts with high selectivity for the hydrogenation reaction of aromatic nitro compounds, by simply employing spine-like Au nanoparticles. The density functional theory (DFT) calculations further elucidate that the morphological effect on thermal selectivity control is an internal key parameter to modulate the nitro hydrogenation process on the surface of Au spines. These results show that controlled morphological effects may play an important role in catalysis reactions of noble metal NPs with high selectivity.

  19. COMPARISON OF CATALYTIC ACTIVITIES BOTH FOR SELECTIVE OXIDATION AND DECOMPOSITION OF AMMONIA OVER Fe/HZβ CATALYST

    Directory of Open Access Journals (Sweden)

    YELİZ ÇETİN

    2016-11-01

    Full Text Available Ammonia is one of the syngas contaminants that must be removed before using the syngas downstream applications. The most promising hot-gas clean-up techniques of ammonia are selective catalytic oxidation (SCO and catalytic decomposition. In this study, the catalytic activities over Zeolite Hβ supported iron catalyst (Fe/HZβ were compared both for the two catalytic routes. For SCO experiments; temperature (300-550 °C, O2 (2000-6000 ppmv and (0-10% H2 concentrations were investigated with the presence of 800 ppm NH3 in each of the final gas mixture. In the second route, catalytic ammonia decomposition experiments were carried out with H2 in balance N2 (0-30% containing 800 ppm NH3 at 700°C and 800°C. In the SCO, NH3 conversions were increased with increasing reaction temperatures with the absence of H2 in the reaction mixture. With 10% H2, it was shown that NH3 conversions increased with decreasing the reaction temperature. This was interpreted as the competing H2 and NH3 oxidations over the catalyst. On the other hand, in the catalytic decomposition, thermodynamic equilibrium conversion of almost 100% was attained at both 700 and 800 °C. Upon H2 addition, all conversions decreased. The decrease in conversion seemed to be linear with inlet hydrogen concentration. Hydrogen was seen to inhibit ammonia decomposition reaction. It was shown that Fe/HZβ catalyst is better to use for catalytic decomposition of NH3 in syngas rather than SCO of NH3 in spite of higher reaction temperatures needed in the decomposition reaction.

  20. Pd@[nBu₄][Br] as a Simple Catalytic System for N-Alkylation Reactions with Alcohols.

    Science.gov (United States)

    Cacciuttolo, Bastien; Pascu, Oana; Aymonier, Cyril; Pucheault, Mathieu

    2016-08-10

    Palladium nanoparticles, simply and briefly generated in commercial and cheap onium salts using supercritical carbon dioxide, have been found to be an effective catalytic system for additive free N-alkylation reaction using alcohols via cascade oxidation/condensation/reduction steps.

  1. Catalytic distillation structure

    Science.gov (United States)

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  2. Asymmetric Catalytic Aza-Diels-Alder/Ring-Closing Cascade Reaction Forming Bicyclic Azaheterocycles by Trienamine Catalysis.

    Science.gov (United States)

    Li, Yang; Barløse, Casper; Jørgensen, Julie; Carlsen, Bjørn Dreiø; Jørgensen, Karl Anker

    2017-01-01

    An asymmetric catalytic aza-Diels-Alder/ring-closing cascade reaction between acylhydrazones and in situ formed trienamines is presented. The reaction proceeds through a formal aza-Diels-Alder cycloaddition, followed by a ring-closing reaction forming the hemiaminal ring leading to chiral bicyclic azaheterocycles in moderate to good yield (up to 71 %), good enantio- (up to 92 % ee) and diastereoselectivity (up to >20:1 d.r.). Furthermore, transformations are presented to show the potential application of the formed product. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Generalized hydrodynamic treatment of the interplay between restricted transport and catalytic reactions in nanoporous materials.

    Science.gov (United States)

    Ackerman, David M; Wang, Jing; Evans, James W

    2012-06-01

    Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations (RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The RDE elucidate the nonexponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth.

  4. Non-universal spreading exponents in a catalytic reaction model

    International Nuclear Information System (INIS)

    De Andrade, Marcelo F; Figueiredo, W

    2011-01-01

    We investigated the dependence of the spreading critical exponents and the ultimate survival probability exponent on the initial configuration of a nonequilibrium catalytic reaction model. The model considers the competitive reactions between two different monomers, A and B, where we take into account the energy couplings between nearest neighbor monomers, and the adsorption energies, as well as the temperature T of the catalyst. For each value of T the model shows distinct absorbing states, with different concentrations of the two monomers. Employing an epidemic analysis, we established the behavior of the spreading exponents as we started the Monte Carlo simulations with different concentrations of the monomers. The exponents were determined as a function of the initial concentration ρ A, ini of A monomers. We have also considered initial configurations with correlations for a fixed concentration of A monomers. From the determination of three spreading exponents, and the ultimate survival probability exponent, we checked the validity of the generalized hyperscaling relation for a continuous set of initial states, random and correlated, which are dependent on the temperature of the catalyst

  5. Enhancement in the Catalytic Activity of Pd/USY in the Heck Reaction Induced by H2 Bubbling

    Directory of Open Access Journals (Sweden)

    Miki Niwa

    2010-12-01

    Full Text Available Pd was loaded on ultra stable Y (USY zeolites prepared by steaming NH4-Y zeolite under different conditions. Heck reactions were carried out over the prepared Pd/USY. We found that H2 bubbling was effective in improving not only the catalytic activity of Pd/USY, but also that of other supported Pd catalysts and Pd(OAc2. Moreover, the catalytic activity of Pd/USY could be optimized by choosing appropriate steaming conditions for the preparation of the USY zeolites; Pd loaded on USY prepared at 873 K with 100% H2O gave the highest activity (TOF = 61,000 h−1, which was higher than that of Pd loaded on other kinds of supports. The prepared Pd/USY catalysts were applicable to the Heck reactions using various kinds of substrates including bromo- and chloro-substituted aromatic and heteroaromatic compounds. Characterization of the acid properties of the USY zeolites revealed that the strong acid site (OHstrong generated as a result of steaming had a profound effect on the catalytic activity of Pd.

  6. Enhancement in the catalytic activity of Pd/USY in the heck reaction induced by H2 bubbling.

    Science.gov (United States)

    Okumura, Kazu; Tomiyama, Takuya; Moriyama, Sayaka; Nakamichi, Ayaka; Niwa, Miki

    2010-12-24

    Pd was loaded on ultra stable Y (USY) zeolites prepared by steaming NH(4)-Y zeolite under different conditions. Heck reactions were carried out over the prepared Pd/USY. We found that H₂ bubbling was effective in improving not only the catalytic activity of Pd/USY, but also that of other supported Pd catalysts and Pd(OAc)₂. Moreover, the catalytic activity of Pd/USY could be optimized by choosing appropriate steaming conditions for the preparation of the USY zeolites; Pd loaded on USY prepared at 873 K with 100% H₂O gave the highest activity (TOF = 61,000 h⁻¹), which was higher than that of Pd loaded on other kinds of supports. The prepared Pd/USY catalysts were applicable to the Heck reactions using various kinds of substrates including bromo- and chloro-substituted aromatic and heteroaromatic compounds. Characterization of the acid properties of the USY zeolites revealed that the strong acid site (OH(strong)) generated as a result of steaming had a profound effect on the catalytic activity of Pd.

  7. Study of the dynamics of the MoO2-Mo2C system for catalytic partial oxidation reactions

    Science.gov (United States)

    Cuba Torres, Christian Martin

    On a global scale, the energy demand is largely supplied by the combustion of non-renewable fossil fuels. However, their rapid depletion coupled with environmental and sustainability concerns are the main drivers to seek for alternative energetic strategies. To this end, the sustainable generation of hydrogen from renewable resources such as biodiesel would represent an attractive alternative solution to fossil fuels. Furthermore, hydrogen's lower environmental impact and greater independence from foreign control make it a strong contender for solving this global problem. Among a wide variety of methods for hydrogen production, the catalytic partial oxidation offers numerous advantages for compact and mobile fuel processing systems. For this reaction, the present work explores the versatility of the Mo--O--C catalytic system under different synthesis methods and reforming conditions using methyl oleate as a surrogate biodiesel. MoO2 exhibits good catalytic activity and exhibits high coke-resistance even under reforming conditions where long-chain oxygenated compounds are prone to form coke. Moreover, the lattice oxygen present in MoO2 promotes the Mars-Van Krevelen mechanism. Also, it is introduced a novel beta-Mo2C synthesis by the in-situ formation method that does not utilize external H2 inputs. Herein, the MoO 2/Mo2C system maintains high catalytic activity for partial oxidation while the lattice oxygen serves as a carbon buffer for preventing coke formation. This unique feature allows for longer operation reforming times despite slightly lower catalytic activity compared to the catalysts prepared by the traditional temperature-programmed reaction method. Moreover, it is demonstrated by a pulse reaction technique that during the phase transformation of MoO2 to beta-Mo2C, the formation of Mo metal as an intermediate is not responsible for the sintering of the material wrongly assumed by the temperature-programmed method.

  8. Catalytic Hydrotreatment of Fast Pyrolysis Oil : Model Studies on Reaction Pathways for the Carbohydrate Fraction

    NARCIS (Netherlands)

    Wildschut, J.; Arentz, J.; Rasrendra, C. B.; Venderbosch, R. H.; Heeres, H. J.

    2009-01-01

    Fast pyrolysis oil can be upgraded by a catalytic hydrotreatment (250-400 degrees C, 100-200 bar) using heterogeneous catalysts such as Ru/C to hydrocarbon-like products that can serve as liquid transportation fuels. Insight into the complex reaction pathways of the various component fractions

  9. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    126, No. 2, March 2014, pp. 341–351. c Indian Academy of Sciences. ... enhancement was realized by catalyst design, appropriate choice of reactor, better injection and .... Gas–liquid and liquid–solid transport processes in catalytic reactors.5.

  10. Effect of reaction time on the characteristics of catalytically grown boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Ahmad, Pervaiz, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Saheed, Mohamed Shuaib Mohamed, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Burhanudin, Zainal Arif, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my [Center of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Tronoh, Perak (Malaysia)

    2014-10-24

    The paper reports on the growth of boron nitride nanotube (BNNTs) on Si substrate by catalytic chemical vapor deposition technique and the effect of reaction time and temperature on the size and purity were investigated. Scanning electron microscopy image revealed the bamboo-like BNNTs of multiwalled type with interlayer spacing of 0.34 nm. EDX analysis described the presence of a small percentage of Mg in the sample, indicating the combination of base-tip growth model for the sample synthesized at 1200°C. The reaction time has an effect of extending the length of the BNNTs until the catalyst is oxidized or covered by growth precursor.

  11. Effect of reaction time on the characteristics of catalytically grown boron nitride nanotubes

    International Nuclear Information System (INIS)

    Mohamed, Norani Muti; Ahmad, Pervaiz; Saheed, Mohamed Shuaib Mohamed; Burhanudin, Zainal Arif

    2014-01-01

    The paper reports on the growth of boron nitride nanotube (BNNTs) on Si substrate by catalytic chemical vapor deposition technique and the effect of reaction time and temperature on the size and purity were investigated. Scanning electron microscopy image revealed the bamboo-like BNNTs of multiwalled type with interlayer spacing of 0.34 nm. EDX analysis described the presence of a small percentage of Mg in the sample, indicating the combination of base-tip growth model for the sample synthesized at 1200°C. The reaction time has an effect of extending the length of the BNNTs until the catalyst is oxidized or covered by growth precursor

  12. In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Zhang, Kaige; Li, Gongke; Hu, Yuling

    2015-10-28

    The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn(2+) linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes.

  13. Pd@[nBu4][Br] as a Simple Catalytic System for N-Alkylation Reactions with Alcohols

    Directory of Open Access Journals (Sweden)

    Bastien Cacciuttolo

    2016-08-01

    Full Text Available Palladium nanoparticles, simply and briefly generated in commercial and cheap onium salts using supercritical carbon dioxide, have been found to be an effective catalytic system for additive free N-alkylation reaction using alcohols via cascade oxidation/condensation/reduction steps.

  14. Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.

    Science.gov (United States)

    Collins, Gillian; Holmes, Justin D

    2016-07-01

    Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Yongki Choi

    2011-12-01

    Full Text Available Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1 the thermodynamics of the system using electrochemical setup and 2 the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed a dependence on the gating voltage in the presence of hydrogen peroxide, indicating a controllable reduction reaction. The measured kinetic parameters of the bio-catalytic reduction showed nonlinear dependences on the gating voltage as the result of modified interfacial electron tunnel due to the field induced at the microperoxidase-11-electrode interface. Our results indicate that the kinetics of the reduction of hydrogen peroxide can be controlled by a gating voltage and illustrate the operation of a field-effect bio-catalytic transistor, whose current-generating mechanism is the conversion of hydrogen peroxide to water with the current being controlled by the gating voltage.

  16. First-principles quantum-mechanical investigations: The role of water in catalytic conversion of furfural on Pd(111)

    Science.gov (United States)

    Xue, Wenhua; Borja, Miguel Gonzalez; Resasco, Daniel E.; Wang, Sanwu

    2015-03-01

    In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of water has attracted wide attention. Recent experiments showed that the proportion of alcohol product from catalytic reactions of furfural conversion with palladium in the presence of water is significantly increased, when compared with other solvent including dioxane, decalin, and ethanol. We investigated the microscopic mechanism of the reactions based on first-principles quantum-mechanical calculations. We particularly identified the important role of water and the liquid/solid interface in furfural conversion. Our results provide atomic-scale details for the catalytic reactions. Supported by DOE (DE-SC0004600). This research used the supercomputer resources at NERSC, of XSEDE, at TACC, and at the Tandy Supercomputing Center.

  17. Upward Trend in Catalytic Efficiency of Rare-Earth Triflate Catalysts in Friedel-Crafts Aromatic Sulfonylation Reactions

    DEFF Research Database (Denmark)

    Duus, Fritz; Le, Thach Ngoc; Nguyen, Vo Thu An

    2014-01-01

    A series of 14 lanthanide (Ln) triflates were investigated as sustainable catalysts for aromatic sulfonylation reactions under microwave irradiation. The catalytic efficiency of the early triflates La(OTf)3–Eu(OTf)3 is good for long irradiation times. For the later lanthanides, yields reaching over...... 90 % were achieved for short irradiation periods. This was the case especially for Tm(OTf)3, Yb(OTf)3, and Lu(OTf)3, of which Yb(OTf)3 was the most efficient. The upward trend in catalytic efficiency therefore correlates with the lanthanide sequence in the periodic table. The results can be explained...

  18. Reactivity of nanoaggregations of platinum on supports of different nature in reactions of catalytic decomposition of hydrazine in acid media

    International Nuclear Information System (INIS)

    Anan'ev, A.V.; Boltoeva, M.Yu.; Grigor'ev, M.S.; Shilov, V.P.; Sharygin, L.M.

    2006-01-01

    Platinized catalysts on the basis of supports of different chemical nature are tested in reactions of catalytic hydrazine decomposition in perchloric and nitric acid solutions. In perchloric acid catalytic activity of catalysts on the basis of ceramic materials of Termoksid brand is higher of activity of catalysts on the basis of amorphous silica gel. In nitric acid solutions opposite dependence is observed. Tendency of ceramic supports to peptization in acid solutions is pointed out. Results obtained are interpreted using conceptions of energetic heterogeneity of surface atoms and hydrazine catalytic decomposition mechanisms in different media [ru

  19. Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions.

    Science.gov (United States)

    Ferrini, Paola; Rinaldi, Roberto

    2014-08-11

    Through catalytic hydrogen transfer reactions, a new biorefining method results in the isolation of depolymerized lignin--a non-pyrolytic lignin bio-oil--in addition to pulps that are amenable to enzymatic hydrolysis. Compared with organosolv lignin, the lignin bio-oil is highly susceptible to further hydrodeoxygenation under low-severity conditions and therefore establishes a unique platform for lignin valorization by heterogeneous catalysis. Overall, the potential of a catalytic biorefining method designed from the perspective of lignin utilization is reported. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis of magnetically recyclable ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts and their catalytic performance for Knoevenagel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingyuan; Jiang, Sai; Ji, Shengfu, E-mail: jisf@mail.buct.edu.cn; Ammar, Muhammad; Zhang, Qingmin; Yan, Junlei

    2015-03-15

    Novel magnetic ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts were synthesized by encapsulating magnetic SiO{sub 2}@Fe{sub 3}O{sub 4} nanoparticles into ZIF-8 through in situ method. The structures of the catalysts were characterized by TEM, SEM, XRD, FT-IR, VSM, N{sub 2} adsorption/desorption and CO{sub 2}-TPD technology. The catalytic activity and recovery properties of the catalysts for the Knoevenagel reaction of p-chlorobenzaldehyde with malononitrile were evaluated. The results showed that the magnetic ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts had the larger surface areas, the suitable superparamagnetism, and good catalytic activity for Knoevenagel reaction. The conversion of p-chlorobenzaldehyde can reach ~98% and the selectivity of the production can reach ~99% over35.8%ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} (MZC-5) catalyst under the reaction condition of 25 °C and 4 h. The magnetic ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts also had good substrates adaptation. After reaction, the catalyst can be easily separated from the reaction mixture by an external magnet. The recovery catalyst can be reused five times and the conversion of p-chlorobenzaldehyde can be kept over 90%. - Graphical abstract: Novel magnetically recyclable ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts were synthesized by encapsulating magnetic SiO{sub 2}@Fe{sub 3}O{sub 4} nanoparticles into ZIF-8 and the as-synthesized catalysts exhibited a good catalytic activity for the Knoevenagel reaction. - Highlights: • A series of novel magnetic ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts were synthesized. • The catalysts had the larger surface areas and the suitable superparamagnetism. • The catalysts exhibited good catalytic activity for the Knoevenagel reaction. • After reaction the catalyst can be easily separated by an external magnet. • The recovery catalyst can be reused five times and can keep its catalytic activity.

  1. Long-time experience in catalytic flue gas cleaning and catalytic NO{sub x} reduction in biofueled boilers

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, M [Tampella Power Inc., Tampere (Finland)

    1997-12-31

    NO emissions are reduced by primary or secondary methods. Primary methods are based on NO reduction in the combustion zone and secondary methods on flue gas cleaning. The most effective NO reduction method is selective catalytic reduction (SCR). It is based on NO reduction by ammonia on the surface of a catalyst. Reaction products are water and nitrogen. A titanium-dioxide-based catalyst is very durable and selective in coal-fired power plants. It is not poisoned by sulphur dioxide and side reactions with ammonia and sulphur dioxide hardly occur. The long time experience and suitability of a titanium-dioxide-based catalyst for NO reduction in biofuel-fired power plants was studied. The biofuels were: peat, wood and bark. It was noticed that deactivation varied very much due to the type of fuel and content of alkalinities in fuel ash. The deactivation in peat firing was moderate, close to the deactivation noticed in coal firing. Wood firing generally had a greater deactivation effect than peat firing. Fuel and fly ash were analyzed to get more information on the flue gas properties. The accumulation of alkali and alkaline earth metals and sulphates was examined together with changes in the physical composition of the catalysts. In the cases where the deactivation was the greatest, the amount of alkali and alkaline earth metals in fuels and fly ashes and their accumulation were very significant. (author) (3 refs.)

  2. Long-time experience in catalytic flue gas cleaning and catalytic NO{sub x} reduction in biofueled boilers

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, M. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    NO emissions are reduced by primary or secondary methods. Primary methods are based on NO reduction in the combustion zone and secondary methods on flue gas cleaning. The most effective NO reduction method is selective catalytic reduction (SCR). It is based on NO reduction by ammonia on the surface of a catalyst. Reaction products are water and nitrogen. A titanium-dioxide-based catalyst is very durable and selective in coal-fired power plants. It is not poisoned by sulphur dioxide and side reactions with ammonia and sulphur dioxide hardly occur. The long time experience and suitability of a titanium-dioxide-based catalyst for NO reduction in biofuel-fired power plants was studied. The biofuels were: peat, wood and bark. It was noticed that deactivation varied very much due to the type of fuel and content of alkalinities in fuel ash. The deactivation in peat firing was moderate, close to the deactivation noticed in coal firing. Wood firing generally had a greater deactivation effect than peat firing. Fuel and fly ash were analyzed to get more information on the flue gas properties. The accumulation of alkali and alkaline earth metals and sulphates was examined together with changes in the physical composition of the catalysts. In the cases where the deactivation was the greatest, the amount of alkali and alkaline earth metals in fuels and fly ashes and their accumulation were very significant. (author) (3 refs.)

  3. Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hui; Li, Mengyang; Zhang, Guanghui; Gallagher, James R.; Huang, Zhiliang; Sun, Yu; Luo, Zhong; Chen, Hongzhong; Miller, Jeffrey T.; Zou, Ruqiang; Lei, Aiwen; Zhao, Yanli

    2015-01-01

    ABSTRACT: The development of organometallic single-site catalysts (SSCs) has inspired the designs of new heterogeneous catalysts with high efficiency. Nevertheless, the application of SSCs in certain modern organic reactions, such as C-C bond formation reactions, has still been less investigated. In this study, a single-site Pd(II) catalyst was developed, where 2,2'-bipyridine-grafted periodic mesoporous organosilica (PMO) was employed as the support of a Pd(II) complex. The overall performance of the single-site Pd(II) catalyst in the oxidative Heck reaction was then investigated. The investigation results show that the catalyst displays over 99% selectivity for the product formation with high reaction yield. Kinetic profiles further confirm its high catalytic efficiency, showing that the rate constant is nearly 40 times higher than that for the free Pd(II) salt. X-ray absorption spectroscopy reveals that the catalyst has remarkable lifetime and recyclability.

  4. Preparation of Low Molecular Weight Heparin by Microwave Discharge Electrodeless Lamp/TiO2 Photo-Catalytic Reaction.

    Science.gov (United States)

    Lee, Do-Jin; Kim, Byung Hoon; Kim, Sun-Jae; Kim, Jung-Sik; Lee, Heon; Jung, Sang-Chul

    2015-01-01

    An MDEL/TiO2 photo-catalyst hybrid system was applied, for the first time, for the production of low molecular weight heparin. The molecular weight of produed heparin decreased with increasing microwave intensity and treatment time. The abscission of the chemical bonds between the constituents of heparin by photo-catalytic reaction did not alter the characteristics of heparin. Formation of by-products due to side reaction was not observed. It is suggested that heparin was depolymerized by active oxygen radicals produced during the MDEL/TiO2 photo-chemical reaction.

  5. Photo catalytic reduction of benzophenone on TiO2: Effect of preparation method and reaction conditions

    International Nuclear Information System (INIS)

    Albiter E, E.; Valenzuela Z, M. A.; Alfaro H, S.; Flores V, S. O.; Rios B, O.; Gonzalez A, V. J.; Cordova R, I.

    2010-01-01

    The photo catalytic reduction of benzophenone was studied focussing on improving the yield to benzhydrol. TiO 2 was synthesized by means of a hydrothermal technique. TiO 2 (Degussa TiO 2 -P25) was used as a reference. Catalysts were characterized by X-ray diffraction and nitrogen physisorption. The photo catalytic reduction was carried out in a batch reactor at 25 C under nitrogen atmosphere, acetonitrile as solvent and isopropanol as electron donor. A 200 W Xe-Hg lamp (λ= 360 nm) was employed as irradiation source. The chemical composition of the reaction system was determined by HPLC. Structural and textural properties of the synthesized TiO 2 depended on the type of acid used during sol formation step. Using HCl, a higher specific surface area and narrower pore size distribution of TiO 2 was obtained in comparison with acetic acid. As expected, the photochemical reduction of benzophenone yielded benzopinacol as main product, whereas, benzhydrol is only produced in presence of TiO 2 (i.e. photo catalytic route). In general, the hydrothermally synthesized catalysts were less active and with a lower yield to benzhydrol. The optimal reaction conditions to highest values of benzhydrol yield (70-80%) were found at 2 g/L (catalyst loading) and 0.5 m M of initial concentration of benzophenone, using commercial TiO 2 -P25. (Author)

  6. Site-specific growth of Au-Pd alloy horns on Au nanorods: A platform for highly sensitive monitoring of catalytic reactions by surface enhancement raman spectroscopy

    KAUST Repository

    Huang, Jianfeng

    2013-06-12

    Surface-enhanced Raman scattering (SERS) is a highly sensitive probe for molecular detection. The aim of this study was to develop an efficient platform for investigating the kinetics of catalytic reactions with SERS. To achieve this, we synthesized a novel Au-Pd bimetallic nanostructure (HIF-AuNR@AuPd) through site-specific epitaxial growth of Au-Pd alloy horns as catalytic sites at the ends of Au nanorods. Using high-resolution electron microscopy and tomography, we successfully reconstructed the complex three-dimensional morphology of HIF-AuNR@AuPd and identified that the horns are bound with high-index {11l} (0.25 < l < 0.43) facets. With an electron beam probe, we visualized the distribution of surface plasmon over the HIF-AuNR@AuPd nanorods, finding that strong longitudinal surface plasmon resonance concentrated at the rod ends. This unique crystal morphology led to the coupling of high catalytic activity with a strong SERS effect at the rod ends, making HIF-AuNR@AuPd an excellent bifunctional platform for in situ monitoring of surface catalytic reactions. Using the hydrogenation of 4-nitrothiophenol as a model reaction, we demonstrated that its first-order reaction kinetics could be accurately determined from this platform. Moreover, we clearly identified the superior catalytic activity of the rod ends relative to that of the rod bodies, owing to the different SERS activities at the two positions. In comparison with other reported Au-Pd bimetallic nanostructures, HIF-AuNR@AuPd offered both higher catalytic activity and greater detection sensitivity. © 2013 American Chemical Society.

  7. Catalytic CO Oxidation over Au Nanoparticles Loaded Nanoporous Nickel Phosphate Composite

    Directory of Open Access Journals (Sweden)

    Xiaonan Leng

    2015-01-01

    Full Text Available Au/nickel phosphate-5 (Au/VSB-5 composite with the noble metal loading amount of 1.43 wt.% is prepared by using microporous VSB-5 nanocrystals as the support. Carbon monoxide (CO oxidation reaction is carried out over the sample with several catalytic cycles. Complete conversion of CO is achieved at 238°C over the catalyst at the first catalytic cycle. The catalytic activity improved greatly at the second cycle with the complete conversion fulfilled at 198°C and preserved for the other cycles. A series of experiments such as X-ray diffraction (XRD, high resolution transmission electron microscopy (HRTEM, ultraviolet-visible (UV-vis spectroscopy, and X-ray photoelectron spectroscopy (XPS are carried out to characterize the catalysts before and after the reaction to study the factors influencing this promotion at the second cycle.

  8. Method of fabricating a catalytic structure

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  9. MECHANISMS OF THE COMPLEX FORMATION BY d-METALS ON POROUS SUPPORTS AND THE CATALYTIC ACTIVITY OF THE FORMED COMPLEXES IN REDOX REACTIONS

    Directory of Open Access Journals (Sweden)

    T. L. Rakitskaya

    2015-11-01

    Full Text Available The catalytic activity of supported complexes of d metals in redox reactions with participation of gaseous toxicants, PH3, CO, O3, and SO2, depends on their composition. Owing to the variety of physicochemical and structural-adsorption properties of available supports, their influence on complex formation processes, the composition and catalytic activity of metal complexes anchored on them varies over a wide range. The metal complex formation on sup-ports with weak ion-exchanging properties is similar to that in aqueous solutions. In this case, the support role mainly adds up to the ability to reduce the activity of water adsorbed on them. The interaction between a metal complex and a support surface occurs through adsorbed water molecules. Such supports can also affect complex formation processes owing to protolytic reactions on account of acidic properties of sorbents used as supports. The catalytic activity of metal complexes supported on polyphase natural sorbents considerably depends on their phase relationship. In the case of supports with the nonsimple structure and pronounced ion-exchanging properties, for instance, zeolites and laminar silicates, it is necessary to take into account the variety of places where metal ions can be located. Such location places determine distinctions in the coordination environment of the metal ions and the strength of their bonding with surface adsorption sites and, therefore, the catalytic activity of surface complexes formed by theses metal ions. Because of the energy surface inhomogeneity, it is important to determine a relationship between the strength of a metal complex bonding with a support surface and its catalytic activity. For example, bimetallic complexes are catalytically active in the reactions of oxidation of the above gaseous toxicants. In particular, in the case of carbon monoxide oxidation, the most catalytic activity is shown by palladium-copper complexes in which copper(II is strongly

  10. alpha,beta-unsaturated 2-acyl imidazoles as a practical class of dienophiles for the DNA-Based catalytic asymmetric diels-alder reaction in water

    NARCIS (Netherlands)

    Boersma, A.J.; Feringa, B.L.; Roelfes, G.

    2007-01-01

    alpha,beta-Unsaturated 2-acyl imidazoles are a novel and practical class of dienophiles for the DNA-based catalytic asymmetric Diels-Alder reaction in water. The Diels-Alder products are obtained with very high diastereoselectivities and enantioselectivities in the range of 83-98%. The catalytic

  11. Stereoselectivity in catalytic reactions: CO oxidation on Pd(100) by rotationally aligned O2 molecules

    Science.gov (United States)

    Vattuone, L.; Gerbi, A.; Savio, L.; Cappelletti, D.; Pirani, F.; Rocca, M.

    2010-05-01

    We report on stereodynamical effects in heterogeneous catalytic reactions as measured by molecular beam-surface experiments. Specifically for CO oxidation on Pd(100) we find that the rotational alignment of the incoming O2 at low (Θ = 0.04 ML) and at intermediate (ΘCO = 0.17 ML) CO pre-coverage, causes a higher reactivity of molecules in high and in low helicity states, respectively (corresponding to helicoptering and cartwheeling motion of O2). In first approximation, at low CO pre-coverage the difference in reactivity is determined by the different location of the O atoms generated in the dissociation process by the different parent molecules, while at intermediate CO pre-coverage the reactivity is influenced also by the different ability of cartwheeling and helicoptering O2 to penetrate through the CO adlayer. In accord with this the total amount of CO2 produced is always largest for helicopters which generate supersurface O atoms at least in the low CO pre-coverage limit. A deeper inspection of the data indicates, however, that the dynamics is more complex, two different pathways being present for the reaction with O generated by helicopters and one for O generated by cartwheels. Moreover, cartwheels generated oxygen influences the reactivity of subsequently arriving helicopters.

  12. Catalytic conversion of 11C-labeled methanol over Cs-ZSM-5 zeolite

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.; Kumar, N.; Salmi, T.; Murzin, D.Yu.

    2004-01-01

    Reaction mechanism of the conversion of 11 C labeled methanol over basic Cs-ZSM-5 zeolite catalyst was investigated and the reaction products obtained were compared with that of H-ZSM-5 acidic catalyst. The catalytic experiments were carried out by passing 11 C-labeled methanol with He as a carrier gas over Cs-ZSM-5 packed in a micro reactor. After adsorption of the radio methanol, the catalyst was heated up to 330 deg C. The products of the catalytic conversion of the 11 C-labeled methanol were analyzed by radio-gas chromatography (gas chromatograph with thermal conductivity detector on-line coupled with a radioactivity detector). (N.T.)

  13. Catalytic diastereoselective tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts by C-C bond cleavage

    KAUST Repository

    Yang, Wenguo; Tan, Davin; Lee, Richmond; Li, Lixin; Pan, Yuanhang; Huang, Kuo-Wei; Tan, Choonhong; Jiang, Zhiyong

    2012-01-01

    Through the cleavage of the C-C bond, the first catalytic tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts has been presented. Various S N2′-like C-, S-, and P-allylic compounds could be obtained with exclusive E

  14. Kinetics of catalytic reactions solutions manual

    CERN Document Server

    Vannice, M Albert

    2005-01-01

    Including countless exercises and worked examples, this advanced reference work and textbook will be extremely useful for the work of many industrial scientists. It teaches readers to design kinetic experiments involving heterogeneous catalysts, to characterize these catalysts, to acquire rate data, to find heat and mass transfer limitations in these data, to select reaction models, to derive rate expressions based on these models, and to assess the consistency of these rate equations.

  15. Metal–Organic Frameworks Stabilize Mono(phosphine)–Metal Complexes for Broad-Scope Catalytic Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, Takahiro; Lin, Zekai; Boures, Dean; An, Bing; Wang, Cheng; Lin, Wenbin (UC); (Xiamen)

    2016-08-10

    Mono(phosphine)–M (M–PR3; M = Rh and Ir) complexes selectively prepared by postsynthetic metalation of a porous triarylphosphine-based metal–organic framework (MOF) exhibited excellent activity in the hydrosilylation of ketones and alkenes, the hydrogenation of alkenes, and the C–H borylation of arenes. The recyclable and reusable MOF catalysts significantly outperformed their homogeneous counterparts, presumably via stabilizing M–PR3 intermediates by preventing deleterious disproportionation reactions/ligand exchanges in the catalytic cycles.

  16. Catalytic activity of catalysts for steam reforming reaction. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Hirofumi; Inagaki, Yoshiyuki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2003-05-01

    Japan Atomic Energy Research Institute has been developing a hydrogen production system by means of steam reforming of methane (chemical reation: CH{sub 4} + H{sub 2}O = CO + 3H{sub 2}) coupling with High Temperature Engineering Test Reactor (HTTR) to demonstrate effectiveness of high-temperature nuclear heat utilization. Prior to construction of HTTR hydrogen production system, a mock-up test facility with a full-scale reaction tube was constructed to investigate transient behavior of the hydrogen production system an establish system controllability. In order to predict transient behavior and hydrogen productivity of the hydrogen production system, it is important to estimate the reaction characteristics under the same temperature and pressure conditions as those of HTTR hydrogen production system. For the purpose of investigate an apparent activation energy of catalysts, catalytic activity test using small apparatus was carried out under the condition of methane flow rate from 1.18 x 10{sup -3} to 3.19 x 10{sup -3} mol/s, temperature from 500 to 900degC, pressure from 1.1 to 4.1MPa, and mol ratio of steam to methane from 2.5 to 3.5. It was confirmed that apparent activation energies of two kinds of Ni catalysts which are to be used in the mock-up test were 51.7 and 57.4kJ/mol, respectively, and reaction rate constants were propositional to the value from P{sup -0.15} to P{sup -0.33}. (author)

  17. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  18. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2013-01-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  19. COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER; FINAL

    International Nuclear Information System (INIS)

    Phillip E. Savage

    1999-01-01

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, we examined the oxidation of phenol over a commercial catalyst and over bulk MnO(sub 2), bulk TiO(sub 2), and CuO supported on Al(sub 2) O(sub 3). We used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which we can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO(sub 2) yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that we could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, we performed experiments with bulk transition metal oxides. The bulk MnO(sub 2) and TiO(sub 2) catalysts enhance both the phenol disappearance and CO(sub 2) formation rates during SCWO. MnO(sub 2) does not affect the selectivity to CO(sub 2), or to the phenol dimers at a given phenol conversion. However, the selectivities to CO(sub 2) are increased and the selectivities to phenol dimers are decreased in the presence of TiO(sub 2) , which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of

  20. First-principles quantum mechanical investigations: Catalytic reactions of furfural on Pd(111) and at the water/Pd(111) interface

    Science.gov (United States)

    Xue, Wenhua

    Bio-oils have drawn more and more attention from scientists as a promising new clean, cheap energy source. One of the most interesting relevant issues is the effect of catalysts on the catalytic reactions that are used for producing bio-oils. Furfural, as a very important intermediate during these reactions, has attracted significant studies. However, the effect of catalysts, including particularly the liquid/solid interface formed by a metal catalyst and liquid water, in the catalytic reactions involving furfural still remains elusive. In this research, we performed ab initio molecular dynamics simulations and first-principles density-functional theory calculations to investigate the atomic-scale mechanisms of catalytic hydrogenation of furfural on the palladium surface and at the liquid/state interface formed by the palladium surface and liquid water. We studied all the possible mechanisms that lead to formation of furfuryl alcohol (FOL), formation of tetrahydrofurfural (THFAL), and formation of tetrahydrofurfurfuryl alcohol (THFOL). We found that liquid water plays a significant role in the hydrogenation reactions. During the reaction in the presence of water and the palladium catalyst, in particular, water directly participates in the hydrogenation of the aldehyde group of furfural and facilitates the formation of FOL by reducing the activation energy. Our calculations show that water provides hydrogen for the hydrogenation of the aldehyde group, and at the same time, a pre-existing hydrogen atom, which is resulted from dissociation of molecular hydrogen (experimentally, molecular hydrogen is always supplied for hydrogenation) on the palladium surface, is bonded to water, making the water molecule intact in structure. In the absence of water, on the other hand, formation of FOL and THFAL on the palladium surface involves almost the same energy barriers, suggesting a comparable selectivity. Overall, as water reduces the activation energy for the formation of FOL

  1. Catalytic EC′ reaction at a thin film modified electrode

    International Nuclear Information System (INIS)

    Gerbino, Leandro; Baruzzi, Ana M.; Iglesias, Rodrigo A.

    2013-01-01

    Numerical simulations of cyclic voltammograms corresponding to a catalytic EC′ reaction taking place at a thin film modified electrode are performed by way of finite difference method. Besides considering the chemical kinetic occurring inside the thin film, the model takes into account the different diffusion coefficients for each species at each of the involved phases, i.e. the thin film layer and bulk solution. The theoretical formulation is given in terms of dimensionless model parameters but a brief discussion of each of these parameters and their relationship to experimental variables is presented. Special emphasis is given to the use of working curve characteristics to quantify diffusion coefficient, homogeneous kinetic constant and thickness of the thin layer in a real system. Validation of the model is made by comparison of experimental results corresponding to the electron charge transfer of Ru(NH 3 ) 6 3+ /Ru(NH 3 ) 6 2+ hemi-couple at a thin film of a cross-linked chitosan film containing an immobilized redox dye

  2. Factors Controlling the Redox Activity of Oxygen in Perovskites: From Theory to Application for Catalytic Reactions

    Directory of Open Access Journals (Sweden)

    Chunzhen Yang

    2017-05-01

    Full Text Available Triggering the redox reaction of oxygens has become essential for the development of (electro catalytic properties of transition metal oxides, especially for perovskite materials that have been envisaged for a variety of applications such as the oxygen evolution or reduction reactions (OER and ORR, respectively, CO or hydrocarbons oxidation, NO reduction and others. While the formation of ligand hole for perovskites is well-known for solid state physicists and/or chemists and has been widely studied for the understanding of important electronic properties such as superconductivity, insulator-metal transitions, magnetoresistance, ferroelectrics, redox properties etc., oxygen electrocatalysis in aqueous media at low temperature barely scratches the surface of the concept of oxygen ions oxidation. In this review, we briefly explain the electronic structure of perovskite materials and go through a few important parameters such as the ionization potential, Madelung potential, and charge transfer energy that govern the oxidation of oxygen ions. We then describe the surface reactivity that can be induced by the redox activity of the oxygen network and the formation of highly reactive surface oxygen species before describing their participation in catalytic reactions and providing mechanistic insights and strategies for designing new (electro catalysts. Finally, we give a brief overview of the different techniques that can be employed to detect the formation of such transient oxygen species.

  3. Dynamic structural change of the self-assembled lanthanum complex induced by lithium triflate for direct catalytic asymmetric aldol-Tishchenko reaction.

    Science.gov (United States)

    Horiuchi, Yoshihiro; Gnanadesikan, Vijay; Ohshima, Takashi; Masu, Hyuma; Katagiri, Kosuke; Sei, Yoshihisa; Yamaguchi, Kentaro; Shibasaki, Masakatsu

    2005-09-05

    The development of a direct catalytic asymmetric aldol-Tishchenko reaction and the nature of its catalyst are described. An aldol-Tishchenko reaction of various propiophenone derivatives with aromatic aldehydes was promoted by [LaLi3(binol)3] (LLB), and reactivity and enantioselectivity were dramatically enhanced by the addition of lithium trifluoromethanesulfonate (LiOTf). First, we observed a dynamic structural change of LLB by the addition of LiOTf using 13C NMR spectroscopy, electronspray ionization mass spectrometry (ESI-MS), and cold-spray ionization mass spectrometry (CSI-MS). X-ray crystallography revealed that the structure of the newly generated self-assembled complex was a binuclear [La2Li4(binaphthoxide)5] complex 6. A reverse structural change of complex 6 to LLB by the addition of one equivalent of Li2(binol) was also confirmed by ESI-MS and experimental results. The drastic concentration effects on the direct catalytic asymmetric aldol-Tishchenko reaction suggested that the addition of LiOTf to LLB generated an active oligomeric catalyst species.

  4. Amorphous saturated Cerium-Tungsten-Titanium oxide nanofibers catalysts for NOx selective catalytic reaction

    DEFF Research Database (Denmark)

    Dankeaw, Apiwat; Gualandris, Fabrizio; Silva, Rafael Hubert

    2018-01-01

    experiments at the best working conditions (dry and in absence of SO2) are performed to characterize the intrinsic catalytic behavior of the new catalysts. At temeprature lower than 300 °C, superior NOx conversion properties of the amorphous TiOx nanofibers over the crystallized TiO2 (anatase) nanofibers......Herein for the first time, Ce0.184W0.07Ti0.748O2-δ nanofibers are prepared by electrospinning to serve as catalyst in the selective catalytic reduction (SCR) process. The addition of cerium is proven to inhibit crystallization of TiO2, yielding an amorphous TiOx-based solid solution stable up...... temperatures (catalysts in a wide range...

  5. Spectrophotometric determination of nitrite based on its catalytic effect on the reaction of nuclear fast red and potassium bromate

    Directory of Open Access Journals (Sweden)

    HASSAN ZAVVAR MOUSAVI

    2009-08-01

    Full Text Available A highly selective and sensitive catalytic spectrophotometric method was developed for the determination of nitrite in water samples. The method is based on its catalytic effect on the nuclear fast red–potassium bromate redox reaction in acidic medium. The reaction was followed spectrophotometrically by measuring the change in the absorbance at 518 nm of nuclear fast red 5 min after initiation of the reaction. In this study, the experimental parameters were optimized and the effects of other cations and anions on the determination of nitrite were examined. The calibration graph was linear in the range 2.0–45 µg mL-1 of nitrite. The relative standard deviations for the determination of 15 and 30 µg mL-1 of nitrite were 3.1 and 1.75 %, respectively (n = 8. The detection limit calculated from three times the standard deviation of the blank 3Sb was 0.7 µg mL-1. The method was successfully applied to the determination of nitrite in spiked tap, natural and wastewater samples.

  6. On-line Analysis of Catalytic Reaction Products Using a High-Pressure Tandem Micro-reactor GC/MS.

    Science.gov (United States)

    Watanabe, Atsushi; Kim, Young-Min; Hosaka, Akihiko; Watanabe, Chuichi; Teramae, Norio; Ohtani, Hajime; Kim, Seungdo; Park, Young-Kwon; Wang, Kaige; Freeman, Robert R

    2017-01-01

    When a GC/MS system is coupled with a pressurized reactor, the separation efficiency and the retention time are directly affected by the reactor pressure. To keep the GC column flow rate constant irrespective of the reaction pressure, a restrictor capillary tube and an open split interface are attached between the GC injection port and the head of a GC separation column. The capability of the attached modules is demonstrated for the on-line GC/MS analysis of catalytic reaction products of a bio-oil model sample (guaiacol), produced under a pressure of 1 to 3 MPa.

  7. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  8. Enantioselective syntheses and biological studies of aeruginosin 298-A and its analogs: application of catalytic asymmetric phase-transfer reaction.

    Science.gov (United States)

    Fukuta, Yuhei; Ohshima, Takashi; Gnanadesikan, Vijay; Shibuguchi, Tomoyuki; Nemoto, Tetsuhiro; Kisugi, Takaya; Okino, Tatsufumi; Shibasaki, Masakatsu

    2004-04-13

    Aeruginosin 298-A was isolated from the freshwater cyanobacterium Microcystis aeruginosa (NIES-298) and is an equipotent thrombin and trypsin inhibitor. A variety of analogs were synthesized to gain insight into the structure-activity relations. We developed a versatile synthetic process for aeruginosin 298-A as well as several attractive analogs, in which all stereocenters were controlled by catalytic asymmetric phase-transfer reaction promoted by two-center asymmetric catalysts and catalytic asymmetric epoxidation promoted by a lanthanide-BINOL complex. Furthermore, serine protease inhibitory activities of aeruginosin 298-A and its analogs were examined.

  9. Oxygen Reduction Reaction for Generating H2 O2 through a Piezo-Catalytic Process over Bismuth Oxychloride.

    Science.gov (United States)

    Shao, Dengkui; Zhang, Ling; Sun, Songmei; Wang, Wenzhong

    2018-02-09

    Oxygen reduction reaction (ORR) for generating H 2 O 2 through green pathways have gained much attention in recent years. Herein, we introduce a piezo-catalytic approach to obtain H 2 O 2 over bismuth oxychloride (BiOCl) through an ORR pathway. The piezoelectric response of BiOCl was directly characterized by piezoresponse force microscopy (PFM). The BiOCl exhibits efficient catalytic performance for generating H 2 O 2 (28 μmol h -1 ) only from O 2 and H 2 O, which is above the average level of H 2 O 2 produced by solar-to-chemical processes. A piezo-catalytic mechanism was proposed: with ultrasonic waves, an alternating electric field will be generated over BiOCl, which can drive charge carriers (electrons) to interact with O 2 and H 2 O, then to form H 2 O 2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Boosting Chemical Stability, Catalytic Activity, and Enantioselectivity of Metal-Organic Frameworks for Batch and Flow Reactions.

    Science.gov (United States)

    Chen, Xu; Jiang, Hong; Hou, Bang; Gong, Wei; Liu, Yan; Cui, Yong

    2017-09-27

    A key challenge in heterogeneous catalysis is the design and synthesis of heterogeneous catalysts featuring high catalytic activity, selectivity, and recyclability. Here we demonstrate that high-performance heterogeneous asymmetric catalysts can be engineered from a metal-organic framework (MOF) platform by using a ligand design strategy. Three porous chiral MOFs with the framework formula [Mn 2 L(H 2 O) 2 ] are prepared from enantiopure phosphono-carboxylate ligands of 1,1'-biphenol that are functionalized with 3,5-bis(trifluoromethyl)-, bismethyl-, and bisfluoro-phenyl substituents at the 3,3'-position. For the first time, we show that not only chemical stability but also catalytic activity and stereoselectivity of the MOFs can be tuned by modifying the ligand structures. Particularly, the MOF incorporated with -CF 3 groups on the pore walls exhibits enhanced tolerance to water, weak acid, and base compared with the MOFs with -F and -Me groups. Under both batch and flow reaction systems, the CF 3 -containing MOF demonstrated excellent reactivity, selectivity, and recyclability, affording high yields and enantioselectivities for alkylations of indoles and pyrrole with a range of ketoesters or nitroalkenes. In contrast, the corresponding homogeneous catalysts gave low enantioselectivity in catalyzing the tested reactions.

  11. Catalytic Aminohalogenation of Alkenes and Alkynes.

    Science.gov (United States)

    Chemler, Sherry R; Bovino, Michael T

    2013-06-07

    Catalytic aminohalogenation methods enable the regio- and stereoselective vicinal difunctionalization of alkynes, allenes and alkenes with amine and halogen moieties. A range of protocols and reaction mechanisms including organometallic, Lewis base, Lewis acid and Brønsted acid catalysis have been disclosed, enabling the regio- and stereoselective synthesis of halogen-functionalized acyclic amines and nitrogen heterocycles. Recent advances including aminofluorination and catalytic enantioselective aminohalogenation reactions are summarized in this review.

  12. Photo catalytic reduction of benzophenone on TiO{sub 2}: Effect of preparation method and reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Albiter E, E.; Valenzuela Z, M. A.; Alfaro H, S.; Flores V, S. O.; Rios B, O.; Gonzalez A, V. J.; Cordova R, I., E-mail: mavalenz@ipn.m [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Laboratorio de Catalisis y Materiales, Zacatenco, 07738 Mexico D. F. (Mexico)

    2010-07-01

    The photo catalytic reduction of benzophenone was studied focussing on improving the yield to benzhydrol. TiO{sub 2} was synthesized by means of a hydrothermal technique. TiO{sub 2} (Degussa TiO{sub 2}-P25) was used as a reference. Catalysts were characterized by X-ray diffraction and nitrogen physisorption. The photo catalytic reduction was carried out in a batch reactor at 25 C under nitrogen atmosphere, acetonitrile as solvent and isopropanol as electron donor. A 200 W Xe-Hg lamp ({lambda}= 360 nm) was employed as irradiation source. The chemical composition of the reaction system was determined by HPLC. Structural and textural properties of the synthesized TiO{sub 2} depended on the type of acid used during sol formation step. Using HCl, a higher specific surface area and narrower pore size distribution of TiO{sub 2} was obtained in comparison with acetic acid. As expected, the photochemical reduction of benzophenone yielded benzopinacol as main product, whereas, benzhydrol is only produced in presence of TiO{sub 2} (i.e. photo catalytic route). In general, the hydrothermally synthesized catalysts were less active and with a lower yield to benzhydrol. The optimal reaction conditions to highest values of benzhydrol yield (70-80%) were found at 2 g/L (catalyst loading) and 0.5 m M of initial concentration of benzophenone, using commercial TiO{sub 2}-P25. (Author)

  13. Combustion of hydrogen-air in micro combustors with catalytic Pt layer

    Energy Technology Data Exchange (ETDEWEB)

    Yang Wang; Zhijun Zhou; Weijuan Yang; Junhu Zhou; Jianzhong Liu; Zhihua Wang; Cen, Kefa [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2010-06-15

    Micro power generators have high power density. However, their key components micro combustors have low stability. In this experiment, catalyst is applied to improve the stability. The catalytic micro combustor is made from an alumina ceramic tube. It has inner diameter of 1 mm, outer diameter of 2.02 mm and length of 24.5 mm. It is prepared through impregnation of aqueous solution of H{sub 2}PtCl{sub 6}. The flammability limits and surface temperatures under different operation conditions are measured. The flow rates range from 0.08 to 0.4 L/min. According to the experimental results, catalyst is effective to inhibit extinction. For example, At 0.8 L/min, the stability limit is 0.193-14.9 in the non-catalytic combustor. After applying catalyst, the lean limit is near 0, and the rich limit is 29.3. But catalyst is less effective to inhibit blow out. Increasing flow rates also inhibits extinction. In the non-catalytic combustor, while the flow rates increase from 0.08 to 0.2 L/min, the lean stability limit decreases from 0.193 to 0.125. The experimental results indicate that catalyst induces shift downstream in the stoichiometric and rich cases. The numeric simulation verifies that the heterogeneous reaction weakens the homogeneous reaction through consuming fuels. Thus, the insufficient heat recirculation makes the reaction region shift downstream. However, lean mixture has intense reaction in the catalytic combustor. It is attributed to the high mass diffusion and low thermal diffusion of lean mixture. (author)

  14. Combustion of hydrogen-air in micro combustors with catalytic Pt layer

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yang; Zhou Zhijun [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China); Yang Weijuan, E-mail: 10508107@zju.edu.c [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhou Junhu; Liu Jianzhong; Wang Zhihua; Cen Kefa [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2010-06-15

    Micro power generators have high power density. However, their key components micro combustors have low stability. In this experiment, catalyst is applied to improve the stability. The catalytic micro combustor is made from an alumina ceramic tube. It has inner diameter of 1 mm, outer diameter of 2.02 mm and length of 24.5 mm. It is prepared through impregnation of aqueous solution of H{sub 2}PtCl{sub 6}. The flammability limits and surface temperatures under different operation conditions are measured. The flow rates range from 0.08 to 0.4 L/min. According to the experimental results, catalyst is effective to inhibit extinction. For example, At 0.8 L/min, the stability limit is 0.193-14.9 in the non-catalytic combustor. After applying catalyst, the lean limit is near 0, and the rich limit is 29.3. But catalyst is less effective to inhibit blow out. Increasing flow rates also inhibits extinction. In the non-catalytic combustor, while the flow rates increase from 0.08 to 0.2 L/min, the lean stability limit decreases from 0.193 to 0.125. The experimental results indicate that catalyst induces shift downstream in the stoichiometric and rich cases. The numeric simulation verifies that the heterogeneous reaction weakens the homogeneous reaction through consuming fuels. Thus, the insufficient heat recirculation makes the reaction region shift downstream. However, lean mixture has intense reaction in the catalytic combustor. It is attributed to the high mass diffusion and low thermal diffusion of lean mixture.

  15. Combustion of hydrogen-air in micro combustors with catalytic Pt layer

    International Nuclear Information System (INIS)

    Wang Yang; Zhou Zhijun; Yang Weijuan; Zhou Junhu; Liu Jianzhong; Wang Zhihua; Cen Kefa

    2010-01-01

    Micro power generators have high power density. However, their key components micro combustors have low stability. In this experiment, catalyst is applied to improve the stability. The catalytic micro combustor is made from an alumina ceramic tube. It has inner diameter of 1 mm, outer diameter of 2.02 mm and length of 24.5 mm. It is prepared through impregnation of aqueous solution of H 2 PtCl 6 . The flammability limits and surface temperatures under different operation conditions are measured. The flow rates range from 0.08 to 0.4 L/min. According to the experimental results, catalyst is effective to inhibit extinction. For example, At 0.8 L/min, the stability limit is 0.193-14.9 in the non-catalytic combustor. After applying catalyst, the lean limit is near 0, and the rich limit is 29.3. But catalyst is less effective to inhibit blow out. Increasing flow rates also inhibits extinction. In the non-catalytic combustor, while the flow rates increase from 0.08 to 0.2 L/min, the lean stability limit decreases from 0.193 to 0.125. The experimental results indicate that catalyst induces shift downstream in the stoichiometric and rich cases. The numeric simulation verifies that the heterogeneous reaction weakens the homogeneous reaction through consuming fuels. Thus, the insufficient heat recirculation makes the reaction region shift downstream. However, lean mixture has intense reaction in the catalytic combustor. It is attributed to the high mass diffusion and low thermal diffusion of lean mixture.

  16. Catalytic constructive deoxygenation of lignin-derived phenols: new C-C bond formation processes from imidazole-sulfonates and ether cleavage reactions.

    Science.gov (United States)

    Leckie, Stuart M; Harkness, Gavin J; Clarke, Matthew L

    2014-10-09

    As part of a programme aimed at exploiting lignin as a chemical feedstock for less oxygenated fine chemicals, several catalytic C-C bond forming reactions utilising guaiacol imidazole sulfonate are demonstrated. These include the cross-coupling of a Grignard, a non-toxic cyanide source, a benzoxazole, and nitromethane. A modified Meyers reaction is used to accomplish a second constructive deoxygenation on a benzoxazole functionalised anisole.

  17. From thermometric to spectrophotometric kinetic-catalytic methods of analysis. A review.

    Science.gov (United States)

    Cerdà, Víctor; González, Alba; Danchana, Kaewta

    2017-05-15

    Kinetic-catalytic analytical methods have proved to be very easy and highly sensitive strategies for chemical analysis, that rely on simple instrumentation [1,2]. Molecular absorption spectrophotometry is commonly used as the detection technique. However, other detection systems, like electrochemical or thermometric ones, offer some interesting possibilities since they are not affected by the color or turbidity of the samples. In this review some initial experience with thermometric kinetic-catalytic methods is described, up to our current experience exploiting spectrophotometric flow techniques to automate this kind of reactions, including the use of integrated chips. Procedures for determination of inorganic and organic species in organic and inorganic matrices are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Kinetic catalytic studies of scorpion's hemocyanin

    International Nuclear Information System (INIS)

    Queinnec, E.; Vuillaume, M.; Gardes-Albert, M.; Ferradini, C.; Ducancel, F.

    1991-01-01

    Hemocyanins are copper proteins which function as oxygen carriers in the haemolymph of Molluscs and Arthropods. They possess enzymatic properties: peroxidatic and catalatic activities, although they have neither iron nor porphyrin ring at the active site. The kinetics of the catalytic reaction is described. The reaction of superoxide anion with hemocyanin has been studied using pulse radiolysis at pH 9. The catalytic rate constant is 3.5 X 10 7 mol -1 .l.s -1 [fr

  19. Experiment and modeling of low-concentration methane catalytic combustion in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Yang, Zhongqing; Yang, Peng; Zhang, Li; Guo, Mingnv; Ran, Jingyu

    2016-01-01

    Highlights: • The catalytic combustion of 0.15~3 vol. % low concentration methane in a fluidized bed was studied. • A mathematical model was proposed on the basis of gas–solid flow theory. • A comparative analysis of the established model with plug flow, mixed flow and K-L models was carried out. • The axial methane profile along fluidized bed was predicted by using the mathematical model. • The bed temperature has greater impact on methane conversion than fluidized velocity. - Abstract: This study undertakes a theoretical analysis and an experimental investigation into the characteristics of low-concentration methane catalytic combustion in a bubbling fluidized bed reactor using 0.5 wt.% Pd/Al_2O_3 as catalytic particles. A mathematical model is established based on gas–solid flow theory and is used to study the effects of bed temperature and fluidized velocity on methane catalytic combustion, and predict the dimensionless methane concentration axial profile in reactor. It is shown that methane conversion increases with bed temperature, but decreases with increasing fluidized velocity. These theoretical results are found to correlate well with the experimental measurement, with a deviation within 5%. A comparative analysis of the developed model with plug flow, mixed flow and K-L models is also carried out, and this further verifies that the established model better reflects the characteristics of low-concentration methane catalytic combustion in a bubbling fluidized bed. Using this reaction model, it was found that the difference in methane conversion between dense and freeboard zones gradually increases with bed temperature; the dense zone reaction levels off at 650 °C, thereby minimizing the difference between the dense and freeboard regions to around 15%. With an increase in bed temperature, the dimensionless methane concentration in the dense zone decreases exponentially, while in the splash zone, it varies from an exponential decay to a slow

  20. A Review on Catalytic Membranes Production and Applications

    Directory of Open Access Journals (Sweden)

    Heba Abdallah

    2017-05-01

    Full Text Available The development of the chemical industry regarding reducing the production cost and obtaining a high-quality product with low environmental impact became the essential requirements of the world in these days. The catalytic membrane is considered as one of the new alternative solutions of catalysts problems in the industries, where the reaction and separation can be amalgamated in one unit. The catalytic membrane has numerous advantages such as breaking the thermodynamic equilibrium limitation, increasing conversion rate, reducing the recycle and separation costs. But the limitation or most disadvantages of catalytic membranes related to the high capital costs for fabrication or the fact that manufacturing process is still under development. This review article summarizes the most recent advances and research activities related to preparation, characterization, and applications of catalytic membranes. In this article, various types of catalytic membranes are displayed with different applications and explained the positive impacts of using catalytic membranes in various reactions. Copyright © 2017 BCREC Group. All rights reserved. Received: 1st April 2016; Revised: 14th February 2017; Accepted: 22nd February 2017 How to Cite: Abdallah, H. (2017. A Review on Catalytic Membranes Production and Applications. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 136-156 (doi:10.9767/bcrec.12.2.462.136-156 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.462.136-156

  1. Anodically-grown TiO_2 nanotubes: Effect of the crystallization on the catalytic activity toward the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Sacco, Adriano; Garino, Nadia; Lamberti, Andrea; Pirri, Candido Fabrizio; Quaglio, Marzia

    2017-01-01

    Highlights: • Anodically-grown TiO_2 nanotubes as catalysts for the oxygen reduction reaction. • Amorphous NTs compared to thermal- and vapor-treated crystalline nanostructures. • The selection of the crystallization conditions leads to performance similar to Pt. - Abstract: In this work we investigated the behavior of TiO_2 nanotube (NT) arrays, grown by anodic oxidation of Ti foil, as catalysts for the oxygen reduction reaction (ORR) in alkaline water solution. In particular, as-grown amorphous NTs were compared to crystalline anatase nanostructures, obtained following two different procedures, namely thermal and vapor-induced crystallizations. The catalytic activity of these materials toward the ORR was evaluated by cyclic voltammetry measurements. ORR polarization curves, combined with the rotating disk technique, indicated a predominant four-electrons reduction path, especially for crystalline samples. The effect of the structural characteristics of the investigated materials on the catalytic activity was analyzed in details by electrochemical impedance spectroscopy. The catalytic performance of the crystalline NTs is only slightly lower with respect to the reference material for fuel cell applications, namely platinum, but is in line with other cost-effective catalysts recently proposed in the literature. However, if compared to the larger part of these low-cost catalysts, anodically-grown TiO_2 NTs are characterized by a synthesis route which is highly reproducible and easily up-scalable.

  2. Synthesis and catalytic activity of N-heterocyclic silylene (NHSi) cobalt hydride for Kumada coupling reactions.

    Science.gov (United States)

    Qi, Xinghao; Sun, Hongjian; Li, Xiaoyan; Fuhr, Olaf; Fenske, Dieter

    2018-02-20

    The electron-rich silylene Co(i) chloride 5 was obtained through the reaction of CoCl(PMe 3 ) 3 with chlorosilylene. Complex 5 reacted with 1,3-siladiazole HSiMe(NCH 2 PPh 2 ) 2 C 6 H 4 to give the silylene Co(iii) hydride 6 through chelate-assisted Si-H activation. To the best of our knowledge, complex 6 is the first example of Co(iii) hydride supported by N-heterocyclic silylene. Complexes 5 and 6 were fully characterized by spectroscopic methods and X-ray diffraction analysis. Complex 6 was used as an efficient precatalyst for Kumada cross-coupling reactions. Compared with the related complex 3 supported by only trimethylphosphine, complex 6 as a catalyst supported by both chlorosilylene and trimethylphosphine exhibits a more efficient performance for the Kumada cross-coupling reactions. A novel catalytic radical mechanism was suggested and experimentally verified. As an intermediate silylene cobalt(ii) chloride 6d was isolated and structurally characterized.

  3. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion

    International Nuclear Information System (INIS)

    Pozan, Gulin Selda

    2012-01-01

    Highlights: ► α-Al 2 O 3 , obtained from Bohmite, as a support for enhancing of the activity. ► The support material for catalytic oxidation. ► The manganese state and oxygen species effect on the catalytic combustion reaction. - Abstract: The aim of this work was to study combustion of toluene (1000 ppm) over MnO 2 modified with different supports. α-Al 2 O 3 and γ-Al 2 O 3 obtained from Boehmite, γ-Al 2 O 3 (commercial), SiO 2 , TiO 2 and ZrO 2 were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO 2 was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO 2 /α-Al 2 O 3 (B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289 °C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity.

  4. Ab initio molecular dynamics simulations for the role of hydrogen in catalytic reactions of furfural on Pd(111)

    Science.gov (United States)

    Xue, Wenhua; Dang, Hongli; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2014-03-01

    In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of hydrogen has attracted wide attention. We report ab initio molecular dynamics simulations for furfural and hydrogen on the Pd(111) surface at finite temperatures. The simulations demonstrate that the presence of hydrogen is important in promoting furfural conversion. In particular, hydrogen molecules dissociate rapidly on the Pd(111) surface. As a result of such dissociation, atomic hydrogen participates in the reactions with furfural. The simulations also provide detailed information about the possible reactions of hydrogen with furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.

  5. Development of a process for continuous, radiation-chemically initiated, catalytic hydrocarboxylation

    International Nuclear Information System (INIS)

    Laege, J.

    1980-01-01

    In the general part are treated technical preparation of aliphatic carboxylic acids and their economical importance, the hydrocarboxylation reaction and general aspects of radiation chemistry. The chapter on results of discontinuous experiments contains experiments of radiochemically initiated catalytical hydroesterification of oct-1-ene and buteneoxide. The chapter on development and arrangement of the continuously working hydrocarboxylation plant deals with the disposition of process flow sheet, single elements of and description of the plant. The chapter on results of continuous experiments describes residence time behaviour of the tube reactor, investigations on the mixing behaviour of educts, influence of residence time and reaction pressure on continuous thermal and thermal-radiochemical hydrocarboxylation. The next chapter proposes a procedure of continuous hydrobarboxylation and esterification at high pressure on an industrial scale. The experimental part presents starting materials, preparation on catalysts and reference substances, performance of discontinuous autoclave experiments, work up and investigation of reaction products, performance of continuous high pressure experiments, Co-60-source, Fricke-dosimetry and analytics. (SPI)

  6. Theory of potentiostatic current transients for coupled catalytic reaction at random corrugated fractal electrode

    International Nuclear Information System (INIS)

    Jha, Shailendra K.; Kant, Rama

    2010-01-01

    We developed a mathematical model for the first order homogeneous catalytic chemical reaction coupled with an electron transfer (EC') on a rough working electrode. Results are obtained for the various roughness models of electrode corrugations, viz., (i) roughness as an exact periodic function, (ii) roughness as a random function with known statistical properties, and (iii) roughness as a random function with statistical self-affine fractality over a finite range of length scales. Method of Green's function is used in the formulation to obtain second-order perturbation (in roughness profile) expressions for the concentration, the local current density and the current transients. A general operator structure between these quantities and arbitrary roughness profile is emphasized. The statistically averaged (randomly rough) electrode response is obtained by an ensemble averaging over all possible surface configurations. An elegant mathematical formula between the average electrochemical current transient and surface structure factor or power-spectrum of roughness is obtained. This formula is used to obtain an explicit equation for the current on an approximately self-affine (or realistic) fractal electrode with a limited range of length scales of irregularities. This description of realistic fractal is obtained by cutoff power law power-spectrum of roughness. The realistic fractal power-spectrum consists of four physical characteristics, viz., the fractal dimension (D H ), lower (l) and upper (L) cutoff length scales of fractality and a proportionality factor (μ), which is related to the topothesy or strength of fractality. Numerical calculations are performed on final results to understand the effect of catalytic reaction and fractal morphological characteristics on potentiostatic current transients.

  7. Ionic Liquids: The Synergistic Catalytic Effect in the Synthesis of Cyclic Carbonates

    Directory of Open Access Journals (Sweden)

    Flora T.T. Ng

    2013-10-01

    Full Text Available This review presents the synergistic effect in the catalytic system of ionic liquids (ILs for the synthesis of cyclic carbonate from carbon dioxide and epoxide. The emphasis of this review is on three aspects: the catalytic system of metal-based ionic liquids, the catalytic system of hydrogen bond-promoted ionic liquids and supported ionic liquids. Metal and ionic liquids show a synergistic effect on the cycloaddition reactions of epoxides. The cations and anions of ionic liquids show a synergistic effect on the cycloaddition reactions. The functional groups in cations or supports combined with the anions have a synergistic effect on the cycloaddition reactions. Synergistic catalytic effects of ILs play an important role of promoting the cycloaddition reactions of epoxides. The design of catalytic system of ionic liquids will be possible if the synergistic effect on a molecular level is understood.

  8. Selective oxidations in microstructured catalytic reactions - A review and an overview of own work on fuel processing for fuel cells

    NARCIS (Netherlands)

    Hessel, V.; Kolb, G.A.; Cominos, V.; Loewe, H.; Nikolaidis, G.; Zapf, R.; Ziogas, A.; Schouten, J.C.; Delsman, E.R.; Croon, de M.H.J.M.; Santamaria, J.; Iglesia, de la O.; Mallada, R.

    2006-01-01

    This review is concerned about catalytic gas-phase oxidation reactions in microreactors, typically being performed in wall-coated microchannels. Not included are liquid and gas-liquid oxidations which are typically done in reactor designs different from the ones considered here. The first part of

  9. Kinetic Parameters of Non-Isothermal Thermogravimetric Non-Catalytic and Catalytic Pyrolysis of Empty Fruit Bunch with Alumina by Kissinger and Ozawa Methods

    Science.gov (United States)

    Rahayu Mohamed, Alina; Li, Nurfahani; Sohaimi, Khairunissa Syairah Ahmad; Izzati Iberahim, Nur; Munirah Rohaizad, Nor; Hamzah, Rosniza

    2018-03-01

    The non-isothermal thermogravimetric non-catalytic and catalytic empty fruit bunch (EFB) pyrolysis with alumina were performed at different heating rates of 10, 15, 20, 25, 30 and 40 K/min under nitrogen atmosphere at a flow rate of 100 ml/min under dynamic conditions from 301 K to 1273 K. The activation energy were calculated based on Kissinger and Ozawa methods. Both reactions followed first order reactions. By Kissinger method, the activation energy and Ln A values for non-catalytic and catalytic EFB pyrolysis with alumina were 188.69 kJ mol-1 and 201.67 kJ/mol respectively. By Ozawa method, the activation energy values for non-catalytic and catalytic EFB pyrolysis with alumina were 189.13 kJ/mol and 201.44 kJ/mol respectively. The presence of catalyst increased the activation energy values for EFB pyrolysis as calculated by Kissinger and Ozawa methods.

  10. Enantioselective syntheses of aeruginosin 298-A and its analogues using a catalytic asymmetric phase-transfer reaction and epoxidation.

    Science.gov (United States)

    Ohshima, Takashi; Gnanadesikan, Vijay; Shibuguchi, Tomoyuki; Fukuta, Yuhei; Nemoto, Tetsuhiro; Shibasaki, Masakatsu

    2003-09-17

    We developed a versatile synthetic process for aeruginosin 298-A as well as several attractive analogues, in which all stereocenters were controlled by a catalytic asymmetric phase-transfer reaction and epoxidation. Furthermore, drastic counteranion effects in phase-transfer catalysis were observed for the first time, making it possible to three-dimensionally fine-tune the catalyst (ketal part, aromatic part, and counteranion).

  11. Zeolite-Y entrapped Ru(III and Fe(III complexes as heterogeneous catalysts for catalytic oxidation of cyclohexane reaction

    Directory of Open Access Journals (Sweden)

    Chetan K. Modi

    2017-02-01

    Full Text Available Catalysis is probably one of the greatest contributions of chemistry to both economic growth and environmental protection. Herein we report the catalytic behavior of zeolite-Y entrapped Ru(III and Fe(III complexes with general formulae [M(VTCH2·2H2O]+-Y and [M(VFCH2·2H2O]+-Y [where, VTCH = vanillin thiophene-2-carboxylic hydrazone and VFCH = vanillin furoic-2-carboxylic hydrazone] over the oxidation of cyclohexane forming cyclohexanone and cyclohexanol. The samples were corroborated by various physico-chemical techniques. These zeolite-Y based complexes are stable and recyclable under current reaction conditions. Amongst them, [Ru(VTCH2⋅2H2O]+-Y showed higher catalytic activity (41.1% with cyclohexanone (84.6% selectivity.

  12. Catalytic diastereoselective tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts by C-C bond cleavage

    KAUST Repository

    Yang, Wenguo

    2012-02-08

    Through the cleavage of the C-C bond, the first catalytic tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts has been presented. Various S N2′-like C-, S-, and P-allylic compounds could be obtained with exclusive E configuration in good to excellent yields. The Michael product could also be easily prepared by tuning the β-C-substituent group of the α-methylene ester under the same reaction conditions. Calculated relative energies of various transition states by DFT methods strongly support the observed chemoselectivity and diastereoselectivity. © 2012 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  13. Fluid catalytic cracking : Feedstocks and reaction mechanism

    NARCIS (Netherlands)

    Dupain, X.

    2006-01-01

    The Fluid Catalytic Cracking (FCC) process is one of the key units in a modern refinery. Traditionally, its design is primarily aimed for the production of gasoline from heavy oil fractions, but as co-products also diesel blends and valuable gasses (e.g. propene and butenes) are formed in

  14. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  15. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  16. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: kinetics and biodegradability enhancement.

    Science.gov (United States)

    Suárez-Ojeda, María Eugenia; Kim, Jungkwon; Carrera, Julián; Metcalfe, Ian S; Font, Josep

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15 bar of oxygen partial pressure (P(O2)) and at 180, 200 and 220 degrees C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P(O2) were 140-160 degrees C and 2-9 bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160 degrees C and 2 bar of P(O2), which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD(RB)) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.

  17. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: Kinetics and biodegradability enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Ojeda, Maria Eugenia [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalonia (Spain); Departament d' Enginyeria Quimica, Edifici Q-ETSE, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain); Kim, Jungkwon [Chemical Engineering and Analytical Sciences Department, University of Manchester, Manchester (United Kingdom); Carrera, Julian [Departament d' Enginyeria Quimica, Edifici Q-ETSE, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain); Metcalfe, Ian S. [Chemical Engineering and Advanced Materials Department, University of Newcastle upon Tyne, Newcastle upon Tyne (United Kingdom); Font, Josep [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalonia (Spain)]. E-mail: jose.font@urv.cat

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15bar of oxygen partial pressure (P{sub O{sub 2}}) and at 180, 200 and 220deg. C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P{sub O{sub 2}} were 140-160deg. C and 2-9bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160deg. C and 2 bar of P{sub O{sub 2}}, which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD{sub RB}) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.

  18. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: Kinetics and biodegradability enhancement

    International Nuclear Information System (INIS)

    Suarez-Ojeda, Maria Eugenia; Kim, Jungkwon; Carrera, Julian; Metcalfe, Ian S.; Font, Josep

    2007-01-01

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15bar of oxygen partial pressure (P O 2 ) and at 180, 200 and 220deg. C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P O 2 were 140-160deg. C and 2-9bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160deg. C and 2 bar of P O 2 , which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD RB ) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture

  19. Heterobimetallic transition metal/rare earth metal bifunctional catalysis: a Cu/Sm/Schiff base complex for syn-selective catalytic asymmetric nitro-Mannich reaction.

    Science.gov (United States)

    Handa, Shinya; Gnanadesikan, Vijay; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2010-04-07

    The full details of a catalytic asymmetric syn-selective nitro-Mannich reaction promoted by heterobimetallic Cu/Sm/dinucleating Schiff base complexes are described, demonstrating the effectiveness of the heterobimetallic transition metal/rare earth metal bifunctional catalysis. The first-generation system prepared from Cu(OAc)(2)/Sm(O-iPr)(3)/Schiff base 1a = 1:1:1 with an achiral phenol additive was partially successful for achieving the syn-selective catalytic asymmetric nitro-Mannich reaction. The substrate scope and limitations of the first-generation system remained problematic. After mechanistic studies on the catalyst prepared from Sm(O-iPr)(3), we reoptimized the catalyst preparation method, and a catalyst derived from Sm(5)O(O-iPr)(13) showed broader substrate generality as well as higher reactivity and stereoselectivity compared to Sm(O-iPr)(3). The optimal system with Sm(5)O(O-iPr)(13) was applicable to various aromatic, heteroaromatic, and isomerizable aliphatic N-Boc imines, giving products in 66-99% ee and syn/anti = >20:1-13:1. Catalytic asymmetric synthesis of nemonapride is also demonstrated using the catalyst derived from Sm(5)O(O-iPr)(13).

  20. Fast and quantitative differentiation of single-base mismatched DNA by initial reaction rate of catalytic hairpin assembly.

    Science.gov (United States)

    Li, Chenxi; Li, Yixin; Xu, Xiao; Wang, Xinyi; Chen, Yang; Yang, Xiaoda; Liu, Feng; Li, Na

    2014-10-15

    The widely used catalytic hairpin assembly (CHA) amplification strategy generally needs several hours to accomplish one measurement based on the prevailingly used maximum intensity detection mode, making it less practical for assays where high throughput or speed is desired. To make the best use of the kinetic specificity of toehold domain for circuit reaction initiation, we developed a mathematical model and proposed an initial reaction rate detection mode to quantitatively differentiate the single-base mismatch. Using the kinetic mode, assay time can be reduced substantially to 10 min for one measurement with the comparable sensitivity and single-base mismatch differentiating ability as were obtained by the maximum intensity detection mode. This initial reaction rate based approach not only provided a fast and quantitative differentiation of single-base mismatch, but also helped in-depth understanding of the CHA system, which will be beneficial to the design of highly sensitive and specific toehold-mediated hybridization reactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Application of near ambient pressure gas-phase X-ray photoelectron spectroscopy to the investigation of catalytic properties of copper in methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Prosvirin, Igor P., E-mail: prosvirin@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Bukhtiyarov, Andrey V., E-mail: avb@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva ave. 5, 630090 Novosibirsk (Russian Federation); Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Bluhm, Hendrik, E-mail: hbluhm@lbl.gov [Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Bukhtiyarov, Valerii I., E-mail: vib@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation)

    2016-02-15

    Graphical abstract: - Highlights: • Selective oxidation of CH{sub 3}OH to CH{sub 2}O over a Cu foil has been studied by in situ gas phase XPS. • C1s and O1s spectra were used for identification of reagents and reaction products in a gas phase. • Catalytic data (conversions and reaction products yields) calculated from XPS spectra are in a good agreement with QMS results. • The possible reasons of the observed variations in reaction mechanism have been discussed. - Abstract: Application of near ambient pressure (NAP) X-ray photoelectron spectroscopy for characterization of catalytic properties of a heterogeneous catalyst through measurement and analysis of the core-level spectra from gas phase constituents, which become measurable in submillibar pressure range, has been demonstrated for the reaction of methanol oxidation over polycrystalline copper foil. To improve the accuracy of quantitative analysis of the gas phase signals for the routine XPS spectrometer with double Al/Mg anode used in these experiments, the sample was removed from XPS analysis zone, but it was still located in high-pressure gas cell. As consequence, only gas phase peaks from reagents and reaction products have been observed in XPS spectra. Quantitative analysis of the spectra has allowed us to calculate conversions of the reagents and yields of the reaction products, or, other words, to characterize the catalytic properties of the catalyst and to track their changes with temperature. Further comparison of the catalytic properties with concentration of the surface species measured by in situ XPS in separate experiments, but under the same conditions, gives a possibility to discuss the reaction mechanisms.

  2. Non-Catalytic and MgSO4 - Catalyst based Degradation of Glycerol in Subcritical and Supercritical Water Media

    Directory of Open Access Journals (Sweden)

    Mahfud Mahfud

    2011-02-01

    Full Text Available This research aims to study the glycerol degradation reaction in subcritical and supercritical water media. The degradation of glycerol into other products was performed both with sulphate salt catalysts and without catalyst. The reactant was made from glycerol and water with the mass ratio of 1:10. The experiments were carried out using a batch reactor at a constant pressure of 250 kgf/cm2, with the temperature range of 200-400oC, reaction time of 30 minutes, and catalyst mol ratio in glycerol of 1:10 and 1:8. The products of the non-catalytic glycerol degradation were acetaldehyde, methanol, and ethanol. The use of sulphate salt as catalyst has high selectivity to acetaldehyde and still allows the formation alcohol product in small quantities. The mechanism of ionic reaction and free radical reaction can occur at lower temperature in hydrothermal area or subcritical water. Conversion of glycerol on catalytic reaction showed a higher yield when compared with the reaction performed without catalyst

  3. Catalytic reduction of hexaminecobalt(III) by pitch-based spherical activated carbon (PBSAC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu; Mao, Yan-Peng; Zhu, Hai-Song; Cheng, Jing-Yi; Long, Xiang-Li; Yuan, Wei-Kang [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai (China)

    2010-07-15

    The wet ammonia (NH{sub 3}) desulfurization process can be retrofitted to remove nitric oxide (NO) and sulfur dioxide (SO{sub 2}) simultaneously by adding soluble cobalt(II) salt into the aqueous ammonia solution. Activated carbon is used as a catalyst to regenerate hexaminecobalt(II), Co(NH{sub 3}){sub 6}{sup 2+}, so that NO removal efficiency can be maintained at a high level for a long time. In this study, the catalytic performance of pitch-based spherical activated carbon (PBSAC) in the simultaneous removal of NO and SO{sub 2} with this wet ammonia scrubbing process has been studied systematically. Experiments have been performed in a batch stirred cell to test the catalytic characteristics of PBSAC in the catalytic reduction of hexaminecobalt(III), Co(NH{sub 3}){sub 6}{sup 3+}. The experimental results show that PBSAC is a much better catalyst in the catalytic reduction of Co(NH{sub 3}){sub 6}{sup 3+} than palm shell activated carbon (PSAC). The Co(NH{sub 3}){sub 6}{sup 3+} reduction reaction rate increases with PBSAC when the PBSAC dose is below 7.5 g/L. The Co(NH{sub 3}){sub 6}{sup 3+} reduction rate increases with its initial concentration. Best Co(NH{sub 3}){sub 6}{sup 3+} conversion is gained at a pH range of 2.0-6.0. A high temperature is favorable to such reaction. The intrinsic activation energy of 51.00 kJ/mol for the Co(NH{sub 3}){sub 6}{sup 3+} reduction catalyzed by PBSAC has been obtained. The experiments manifest that the simultaneous elimination of NO and SO{sub 2} by the hexaminecobalt solution coupled with catalytic regeneration of hexaminecobalt(II) can maintain a NO removal efficiency of 90% for a long time. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. Pop-It Beads to Introduce Catalysis of Reaction Rate and Substrate Depletion Effects

    Science.gov (United States)

    Gehret, Austin U.

    2017-01-01

    A kinesthetic classroom activity was designed to help students understand enzyme activity and catalysis of reaction rate. Students served the role of enzymes by manipulating Pop-It Beads as the catalytic event. This activity illuminates the relationship between reaction rate and reaction progress by allowing students to experience first-hand the…

  5. Anodically-grown TiO{sub 2} nanotubes: Effect of the crystallization on the catalytic activity toward the oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Adriano, E-mail: adriano.sacco@iit.it [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Garino, Nadia [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Lamberti, Andrea, E-mail: andrea.lamberti@polito.it [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Pirri, Candido Fabrizio [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Quaglio, Marzia [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy)

    2017-08-01

    Highlights: • Anodically-grown TiO{sub 2} nanotubes as catalysts for the oxygen reduction reaction. • Amorphous NTs compared to thermal- and vapor-treated crystalline nanostructures. • The selection of the crystallization conditions leads to performance similar to Pt. - Abstract: In this work we investigated the behavior of TiO{sub 2} nanotube (NT) arrays, grown by anodic oxidation of Ti foil, as catalysts for the oxygen reduction reaction (ORR) in alkaline water solution. In particular, as-grown amorphous NTs were compared to crystalline anatase nanostructures, obtained following two different procedures, namely thermal and vapor-induced crystallizations. The catalytic activity of these materials toward the ORR was evaluated by cyclic voltammetry measurements. ORR polarization curves, combined with the rotating disk technique, indicated a predominant four-electrons reduction path, especially for crystalline samples. The effect of the structural characteristics of the investigated materials on the catalytic activity was analyzed in details by electrochemical impedance spectroscopy. The catalytic performance of the crystalline NTs is only slightly lower with respect to the reference material for fuel cell applications, namely platinum, but is in line with other cost-effective catalysts recently proposed in the literature. However, if compared to the larger part of these low-cost catalysts, anodically-grown TiO{sub 2} NTs are characterized by a synthesis route which is highly reproducible and easily up-scalable.

  6. A model of protocell based on the introduction of a semi-permeable membrane in a stochastic model of catalytic reaction networks

    Directory of Open Access Journals (Sweden)

    Marco Villani

    2013-09-01

    Full Text Available In this work we introduce some preliminary analyses on the role of a semi-permeable membrane in the dynamics of a stochastic model of catalytic reaction sets (CRSs of molecules. The results of the simulations performed on ensembles of randomly generated reaction schemes highlight remarkable differences between this very simple protocell description model and the classical case of the continuous stirred-tank reactor (CSTR. In particular, in the CSTR case, distinct simulations with the same reaction scheme reach the same dynamical equilibrium, whereas, in the protocell case, simulations with identical reaction schemes can reach very different dynamical states, despite starting from the same initial conditions.

  7. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  8. High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics

    DEFF Research Database (Denmark)

    Pinilla-Herrero, Irene; Borfecchia, Elisa; Holzinger, Julian

    2018-01-01

    suggest that catalytic activity is associated with [Zn(H2O)n(OH)]+ species located in the exchange positions of the materials with little or no contribution of ZnO or metallic Zn. The effect of Zn/Al ratio on their catalytic performance in methanol conversion to aromatics has been investigated. In all...... cases, higher Zn content causes an increase in the yield of aromatics while keeping the production of alkanes low. For similar Zn contents, high densities of Al sites favour the hydrogen transfer reactions and alkane formation whereas in samples with low Al contents, and thus higher Zn/Al ratio...

  9. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun [Pusan National University, Busan (Korea, Republic of)

    2012-01-15

    The ruthenium(II) complex [Ru(bpy){sub 2}-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus.

  10. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    International Nuclear Information System (INIS)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun

    2012-01-01

    The ruthenium(II) complex [Ru(bpy) 2 -(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus

  11. Computer assisted optimization of sensitivity of the catalytic polarography wave of uranly/nitrate system

    International Nuclear Information System (INIS)

    Betteridge, D.; Wade, A.P.; Neves, E.A.; Gutz, I.

    1982-01-01

    The utilization of 'Simplex' optimization program, writes in Basic language, used to the study of catalytic polarographic wave procedure the reaction of uranium (III) with nitrate in acidic medium at the mercury electrode/solution interface is described. This 'Simplex' optimization requires a much smaller number of experiments to reach an improved condition without increase of the number of trial and error experiments. (C.G.C.) [pt

  12. Heterogeneous kinetic modeling of the catalytic conversion of cycloparaffins

    Science.gov (United States)

    Al-Sabawi, Mustafa N.

    The limited availability of high value light hydrocarbon feedstocks along with the rise in crude prices has resulted in the international recognition of the vast potential of Canada's oil sands. With the recent expansion of Canadian bitumen production come, however, many technical challenges, one of which is the significant presence of aromatics and cycloparaffins in bitumen-derived feedstocks. In addition to their negative environmental impact, aromatics limit fluid catalytic cracking (FCC) feedstock conversion, decrease the yield and quality of valuable products such as gasoline and middle distillates, increase levels of polyaromatic hydrocarbons prone to form coke on the catalyst, and ultimately compromise the FCC unit performance. Although cycloparaffins do not have such negative impacts, they are precursors of aromatics as they frequently undergo hydrogen transfer reactions. However, cycloparaffin cracking chemistry involves other competing reactions that are complex and need much investigation. This dissertation provides insights and understanding of the fundamentals of the catalytic cracking of cycloparaffins using carefully selected model compounds such as methylcyclohexane (MCH) and decalin. Thermal and catalytic cracking of these cycloparaffins on FCC-type catalysts are carried out using the CREC Riser Simulator under operating conditions similar to those of the industrial FCC units in terms of temperature, reaction time, reactant partial pressure and catalyst-to-hydrocarbon ratio. The crystallite size of the supported zeolites is varied between 0.4 and 0.9 microns, with both activity and selectivity being monitored. Catalytic conversions ranged between 4 to 16 wt% for MCH and between 8 to 27 wt% for decalin. Reaction pathways of cycloparaffins are determined, and these include ring-opening, protolytic cracking, isomerization, hydrogen transfer and transalkylation. The yields and selectivities of over 60 and 140 products, formed during MCH and decalin

  13. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  14. SHORT COMMUNICATION CATALYTIC KINETIC ...

    African Journals Online (AJOL)

    IV) catalyzes the discoloring reaction of DBS-arsenazo oxidized by potassium bromate, a new catalytic kinetic spectrophotometric method for the determination of trace titanium (IV) was developed. The linear range of the determination of ...

  15. Significant Improvement of Catalytic Efficiencies in Ionic Liquids

    International Nuclear Information System (INIS)

    Song, Choong Eui; Yoon, Mi Young; Choi, Doo Seong

    2005-01-01

    The use of ionic liquids as reaction media can confer many advantages upon catalytic reactions over reactions in organic solvents. In ionic liquids, catalysts having polar or ionic character can easily be immobilized without additional structural modification and thus the ionic solutions containing the catalyst can easily be separated from the reagents and reaction products, and then, be reused. More interestingly, switching from an organic solvent to an ionic liquid often results in a significant improvement in catalytic performance (e.g., rate acceleration, (enantio)selectivity improvement and an increase in catalyst stability). In this review, some recent interesting results which can nicely demonstrate these positive 'ionic liquid effect' on catalysis are discussed

  16. Numerical simulation of hydrogen-air reacting flows in rectangular channels with catalytic surface reactions

    Science.gov (United States)

    Amano, Ryoichi S.; Abou-Ellail, Mohsen M.; Elhaw, Samer; Saeed Ibrahim, Mohamed

    2013-09-01

    In this work a prediction was numerically modeled for a catalytically stabilized thermal combustion of a lean homogeneous mixture of air and hydrogen. The mixture flows in a narrow rectangular channel lined with a thin coating of platinum catalyst. The solution using an in-house code is based on the steady state partial differential continuity, momentum and energy conservation equations for the mixture and species involved in the reactions. A marching technique is used along the streamwise direction to solve the 2-D plane-symmetric laminar flow of the gas. Two chemical kinetic reaction mechanisms were included; one for the gas phase reactions consisting of 17 elementary reactions; of which 7 are forward-backward reactions while the other mechanism is for the surface reactions—which are the prime mover of the combustion under a lean mixture condition—consisting of 16 elementary reactions. The results were compared with a former congruent experimental work where temperature was measured using thermocouples, while using PLIF laser for measuring water and hydrogen mole fractions. The comparison showed good agreement. More results for the velocities, mole fractions of other species were carried out across the transverse and along the streamwise directions providing a complete picture of overall mechanism—gas and surface—and on the production, consumptions and travel of the different species. The variations of the average OH mole fraction with the streamwise direction showed a sudden increase in the region where the ignition occurred. Also the rate of reactions of the entire surface species were calculated along the streamwise direction and a surface water production flux equation was derived by calculating the law of mass action's constants from the concentrations of hydrogen, oxygen and the rate of formation of water near the surface.

  17. Effects of metal ions on the catalytic degradation of dicofol by cellulase.

    Science.gov (United States)

    Zhai, Zihan; Yang, Ting; Zhang, Boya; Zhang, Jianbo

    2015-07-01

    A new technique whereby cellulase immobilized on aminated silica was applied to catalyze the degradation of dicofol, an organochlorine pesticide. In order to evaluate the performance of free and immobilized cellulase, experiments were carried out to measure the degradation efficiency. The Michaelis constant, Km, of the reaction catalyzed by immobilized cellulase was 9.16 mg/L, and the maximum reaction rate, Vmax, was 0.40 mg/L/min, while that of free cellulase was Km=8.18 mg/L, and Vmax=0.79 mg/L/min, respectively. The kinetic constants of catalytic degradation were calculated to estimate substrate affinity. Considering that metal ions may affect enzyme activity, the effects of different metal ions on the catalytic degradation efficiency were explored. The results showed that the substrate affinity decreased after immobilization. Monovalent metal ions had no effect on the reaction, while divalent metal ions had either positive or inhibitory effects, including activation by Mn2+, reversible competition with Cd2+, and irreversible inhibition by Pb2+. Ca2+ promoted the catalytic degradation of dicofol at low concentrations, but inhibited it at high concentrations. Compared with free cellulase, immobilized cellulase was affected less by metal ions. This work provided a basis for further studies on the co-occurrence of endocrine-disrupting chemicals and heavy metal ions in the environment. Copyright © 2015. Published by Elsevier B.V.

  18. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yuting [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xiong, Ya; Tian, Shuanghong [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275 (China); Kong, Lingjun [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Descorme, Claude, E-mail: claude.descorme@ircelyon.univ-lyon1.fr [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2014-07-15

    Highlights: • A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared. • FeSC exhibited high catalytic activity in the wet air oxidation of 2-chlorophenol. • A strong correlation was observed between the 2-CP conversion, the iron leaching and the pH. • Using an acetate buffer, the iron leaching was suppressed while keeping some catalytic activity. • A simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst. - Abstract: A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pH{sub PZC}, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120 °C under 0.9 MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5 h and 90% Total Organic Carbon (TOC) was removed after 24 h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  19. Catalytic conversion of ethanol on H-Y zeolite

    Directory of Open Access Journals (Sweden)

    Čegar Nedeljko

    2005-01-01

    Full Text Available The catalytic activity of the H-form of synthetic zeolite NaY was examined in this study. The catalytic activity was determined according to the rate of ethanol conversion in a gas phase in the static system. In the conversion of ethanol on synthetic NaY zeolite at 585, 595, and 610 K, on which the reaction develops at an optimal rate, ethene and diethyl ether are evolved in approximately the same quantity. After transforming the NaY zeolite into the H-form, its catalytic activity was extremely increases so, the reaction develops at a significantly lower temperature with a very large increase in the reaction rate. The distribution of the products also changes, so that at lower temperatures diethyl ether is elvolved in most cases, and the development of ethene is favored at higher ones, and after a certain period of time there is almost complete conversion of ethanol into ethene. The increase in catalytic activity, as well as the change of selectivity of conversion of ethanol on the H-form of zeolite, is the result of removing Na+ cations in the NaY zeolite, so that more acidic catalyst is obtained which contains a number of acidic catalytically active centers, as well as a more powerful one compared to the original NaY zeolite.

  20. Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in bioelectrochemical systems

    Science.gov (United States)

    Costa de Oliveira, Maida Aysla; Mecheri, Barbara; D'Epifanio, Alessandra; Placidi, Ernesto; Arciprete, Fabrizio; Valentini, Federica; Perandini, Alessando; Valentini, Veronica; Licoccia, Silvia

    2017-07-01

    We report the development of electrocatalysts based on iron phthalocyanine (FePc) supported on graphene oxide (GO), obtained by electrochemical oxidation of graphite in aqueous solution of LiCl, LiClO4, and NaClO4. Structure, surface chemistry, morphology, and thermal stability of the prepared materials were investigated by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, atomic force microscopy (AFM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The catalytic activity toward oxygen reduction reaction (ORR) at neutral pH was evaluated by cyclic voltammetry. The experimental results demonstrate that the oxidation degree of GO supports affects the overall catalytic activity of FePc/GO, due to a modulation effect of the interaction between FePc and the basal plane of GO. On the basis of electrochemical, spectroscopic, and morphological investigations, FePc/GO_LiCl was selected to be assembled at the cathode side of a microbial fuel cell prototype, demonstrating a good electrochemical performance in terms of voltage and power generation.

  1. Effect of Drying Conditions on the Catalytic Performance, Structure, and Reaction Rates over the Fe-Co-Mn/MgO Catalyst for Production of Light Olefins

    Directory of Open Access Journals (Sweden)

    Majid Abdouss

    2018-01-01

    How to Cite: Abdouss, M., Arsalanfar, M., Mirzaei, N., Zamani, Y. (2018. Effect of Drying Conditions on the Catalytic Performance, Structure, and Reaction Rates over the Fe-Co-Mn/MgO Catalyst for Production of Light Olefins. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 97-112 (doi:10.9767/bcrec.13.1.1222.97-112

  2. synthesis, characterization, electrical and catalytic studies of some

    African Journals Online (AJOL)

    B. S. Chandravanshi

    catalytic activity of the VO(IV) and Mn(III) complexes have been tested in the epoxidation reaction of styrene ... Vanadyl sulfate pentahydrate, chromium chloride hexahydrate, anhydrous ferric ..... The catalytic oxidation of styrene gives the products styrene oxide, benzaldehyde, benzoic acid, ... bond via a radical mechanism.

  3. Basic research for nuclear energy : a study on photo-catalytic decomposition reactions of organics dissolved in water

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K. W.; Na, J. W.; Cho, Y. H.; Kim, K. R

    1999-01-01

    In an experiment on TiO{sub 2} photo-catalysis of five nitrogen-containing organic compounds, the changes of pH and total carbon contents were measured, and the dependence of their photo-catalytic characteristic upon their chemical structures were investigated. -- calculation of the effect of ionic carbon species in an aqueous solution on thermodynamic equilibrium, pH and conductivity showed a small quantity of organics could lead conductivity increase and pH reduction. -- Based on the results of photo-catalytic experiment of ethylamine, phenylhydrazine, pyridine, urea or EDTA, irradiated for 180 minutes after adsorption onto titanium dioxide for 60 minutes, relationship between nitrogen atomic charge and the first-order rate constant was as the following: R (1st - order rate constant) = {delta} ({epsilon} - a ){sup 1/3} + b where, {epsilon} : atomic charge of nitrogen in a molecular, {delta}, a and b : corrective coefficients.

  4. Catalytic Activity of μ-Carbido-Dimeric Iron(IV) Octapropylporphyrazinate in the 3,5,7,2',4'-Pentahydroxyflavone Oxidation Reaction with tert-Butyl Hydroperoxide

    Science.gov (United States)

    Tyurin, D. V.; Zaitseva, S. V.; Kudrik, E. V.

    2018-05-01

    It is found for the first time that μ-carbido-dimeric iron(IV) octapropylporphyrazinate displays catalytic activity in the oxidation reaction of natural flavonol morin with tert-butyl hydroperoxide, with the catalyst being stable under conditions of the reaction. The kinetics of this reaction are studied. It is shown the reaction proceeds via tentative formation of a complex between the catalyst and the oxidant, followed by O‒O bond homolytic cleavage. The kinetics of the reaction is described in the coordinates of the Michaelis-Menten equation. A linear dependence of the apparent reaction rate constant on the concentration of the catalyst is observed, testifying to its participation in the limiting reaction step. The equilibrium constants and rates of interaction are found. A mechanism is proposed for the reaction on the basis of the experimental data.

  5. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction

    International Nuclear Information System (INIS)

    Vallet, Ana; Ovejero, Gabriel; Rodríguez, Araceli; Peres, José A.; García, Juan

    2013-01-01

    Highlights: ► Ni supported over hydrotalcite calcined precursors as catalyst. ► Catalytic wet air oxidation in trickle bed reactor for Chromotrope 2R removal. ► Dye removal depends on temperature, initial dye concentration and flow rate. ► The catalyst proved to bare-usable after in situ regeneration. -- Abstract: Active nickel catalysts (7 wt%) supported over Mg–Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min −1 and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min −1 , respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T r = 0.098 g Ni min mL −1 . After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T r = 0.098 g Ni min mL −1 , attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity

  6. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction

    Energy Technology Data Exchange (ETDEWEB)

    Vallet, Ana [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Ovejero, Gabriel, E-mail: govejero@quim.ucm.es [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Rodríguez, Araceli [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Peres, José A. [Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal); García, Juan, E-mail: juangcia@quim.ucm.es [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain)

    2013-01-15

    Highlights: ► Ni supported over hydrotalcite calcined precursors as catalyst. ► Catalytic wet air oxidation in trickle bed reactor for Chromotrope 2R removal. ► Dye removal depends on temperature, initial dye concentration and flow rate. ► The catalyst proved to bare-usable after in situ regeneration. -- Abstract: Active nickel catalysts (7 wt%) supported over Mg–Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min{sup −1} and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min{sup −1}, respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T{sub r} = 0.098 g{sub Ni} min mL{sup −1}. After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T{sub r} = 0.098 g{sub Ni} min mL{sup −1}, attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity.

  7. Design parameters for measurements of local catalytic activity on surfaces

    DEFF Research Database (Denmark)

    Johansson, Martin; Johannessen, Tue; Jørgensen, Jan Hoffmann

    2006-01-01

    Computational fluid dynamics in combination with experiments is used to characterize a gas sampling device for measurements of the local catalytic activity on surfaces. The device basically consists of a quartz capillary mounted concentrically inside an aluminum tube. Reactant gas is blown toward......, the limits of the range in reaction rate, which can be Studied are estimated. (c) 2005 Elsevier B.V. All rights reserved.......Computational fluid dynamics in combination with experiments is used to characterize a gas sampling device for measurements of the local catalytic activity on surfaces. The device basically consists of a quartz capillary mounted concentrically inside an aluminum tube. Reactant gas is blown toward...... limit for the lateral resolution of the measurement, and that a flow rate of the order of 240 (ml/min)(n) is sufficient to achieve this resolution. The sensitivity is reasonable also with high flow rates, due to the presence of a pocket of stagnant gas under the tip of the capillary. Furthermore...

  8. Formalization of hydrocarbon conversion scheme of catalytic cracking for mathematical model development

    Science.gov (United States)

    Nazarova, G.; Ivashkina, E.; Ivanchina, E.; Kiseleva, S.; Stebeneva, V.

    2015-11-01

    The issue of improving the energy and resource efficiency of advanced petroleum processing can be solved by the development of adequate mathematical model based on physical and chemical regularities of process reactions with a high predictive potential in the advanced petroleum refining. In this work, the development of formalized hydrocarbon conversion scheme of catalytic cracking was performed using thermodynamic parameters of reaction defined by the Density Functional Theory. The list of reaction was compiled according to the results of feedstock structural-group composition definition, which was done by the n-d-m-method, the Hazelvuda method, qualitative composition of feedstock defined by gas chromatography-mass spectrometry and individual composition of catalytic cracking gasoline fraction. Formalized hydrocarbon conversion scheme of catalytic cracking will become the basis for the development of the catalytic cracking kinetic model.

  9. Catalytic burners in larger boiler appliances

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik; Persson, Mikael (Catator AB, Lund (Sweden))

    2009-02-15

    This project focuses on the scale up of a Catator's catalytic burner technology to enable retrofit installation in existing boilers and the design of new innovative combinations of catalytic burners and boilers. Different design approaches are discussed and evaluated in the report and suggestions are made concerning scale-up. Preliminary test data, extracted from a large boiler installation are discussed together with an accurate analysis of technical possibilities following an optimization of the boiler design to benefit from the advantages of catalytic combustion. The experimental work was conducted in close collaboration with ICI Caldaie (ICI), located in Verona, Italy. ICI is a leading European boiler manufacturer in the effect segment ranging from about 20 kWt to several MWt. The study shows that it is possibly to scale up the burner technology and to maintain low emissions. The boilers used in the study were designed around conventional combustion and were consequently not optimized for implementation of catalytic burners. From previous experiences it stands clear that the furnace volume can be dramatically decreased when applying catalytic combustion. In flame combustion, this volume is normally dimensioned to avoid flame impingement on cold surfaces and to facilitate completion of the gas-phase reactions. The emissions of nitrogen oxides can be reduced by decreasing the residence time in the furnace. Even with the over-dimensioned furnace used in this study, we easily reached emission values close to 35 mg/kWh. The emissions of carbon monoxide and unburned hydrocarbons were negligible (less than 5 ppmv). It is possible to decrease the emissions of nitrogen oxides further by designing the furnace/boiler around the catalytic burner, as suggested in the report. Simultaneously, the size of the boiler installation can be reduced greatly, which also will result in material savings, i.e. the production cost can be reduced. It is suggested to optimize the

  10. An Improved Protocol for the Aldehyde Olefination Reaction Using (bmim ( as Reaction Medium

    Directory of Open Access Journals (Sweden)

    Vivek Srivastava

    2013-01-01

    Full Text Available [Ru(CODCl2]/CuCl2·2H2O/LiCl catalytic system works efficiently in ionic liquid media for aldehyde olefination reaction. It offers good yield and selectivity with the added advantage of 5 times recyclability for [Ru(CODCl2] /CuCl2·2H2O/LiCl catalytic system. We also successfully reduced the reaction time from 12 hours to 9 hours for the aldehyde olefination reaction.

  11. The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts

    Directory of Open Access Journals (Sweden)

    Wan Azelee Wan Abu Bakar

    2015-09-01

    Full Text Available Carbon dioxide (CO2 in sour natural gas can be removed using green technology via catalytic methanation reaction by converting CO2 to methane (CH4 gas. Using waste to wealth concept, production of CH4 would increase as well as creating environmental friendly approach for the purification of natural gas. In this research, a series of alumina supported manganese–nickel oxide based catalysts doped with noble metals such as ruthenium and palladium were prepared by wetness impregnation method. The prepared catalysts were run catalytic screening process using in-house built micro reactor coupled with Fourier Transform Infra Red (FTIR spectroscopy to study the percentage CO2 conversion and CH4 formation analyzed by GC. Ru/Mn/Ni(5:35:60/Al2O3 calcined at 1000 °C was found to be the potential catalyst which gave 99.74% of CO2 conversion and 72.36% of CH4 formation at 400 °C reaction temperature. XRD diffractogram illustrated that the supported catalyst was in polycrystalline with some amorphous state at 1000 °C calcination temperature with the presence of NiO as active site. According to FESEM micrographs, both fresh and used catalysts displayed spherical shape with small particle sizes in agglomerated and aggregated mixture. Nitrogen Adsorption analysis revealed that both catalysts were in mesoporous structures with BET surface area in the range of 46–60 m2/g. All the impurities have been removed at 1000 °C calcination temperature as presented by FTIR, TGA–DTA and EDX data.

  12. Fabrication and characterisation of gold nano-particle modified polymer monoliths for flow-through catalytic reactions and their application in the reduction of hexacyanoferrate

    International Nuclear Information System (INIS)

    Floris, Patrick; Twamley, Brendan; Nesterenko, Pavel N.; Paull, Brett; Connolly, Damian

    2014-01-01

    Polymer monoliths in capillary (100 μm i.d.) and polypropylene pipette tip formats (vol: 20 μL) were modified with gold nano-particles (AuNP) and subsequently used for flow-through catalytic reactions. Specifically, methacrylate monoliths were modified with amine-reactive monomers using a two-step photografting method and then reacted with ethylenediamine to provide amine attachment sites for the subsequent immobilisation of 4 nm, 7 nm or 16 nm AuNP. This was achieved by flushing colloidal suspensions of gold nano-particles through each aminated polymer monolith which resulted in a multi-point covalent attachment of gold via the lone pair of electrons on the nitrogen of the free amine groups. Field emission scanning electron microscopy and scanning capacitively coupled conductivity detection was used to characterise the surface coverage of AuNP on the monoliths. The catalytic activity of AuNP immobilised on the polymer monoliths in both formats was then demonstrated using the reduction of Fe(III) to Fe(II) by sodium borohydride as a model reaction by monitoring the reduction in absorbance of the hexacyanoferrate (III) complex at 420 nm. Catalytic activity was significantly enhanced on monoliths modified with smaller AuNP with almost complete reduction (95 %) observed when using monoliths agglomerated with 7 nm AuNPs. (author)

  13. Catalytic Activity of Urchin-like Ni nanoparticles Prepared by Solvothermal Method for Hydrogen Evolution Reaction in Alkaline Solution

    International Nuclear Information System (INIS)

    Abbas, Syed Asad; Iqbal, Muhammad Ibrahim; Kim, Seong-Hoon; Jung, Kwang-Deog

    2017-01-01

    Highlights: • Urchin-like Ni is prepared in solvothermal reaction. • Urchin-like Ni is formed via Ni(OH) 2 aggregates in ethanol and oleylamine. • Exchange current density of urchin-like Ni is 0.191 mA cm −2 . • Urchin-like Ni exceeds the catalytic performance of commercial Pt/C in HER. - Abstract: Ni nanoparticles with different morphologies were synthesized for hydrogen evolution reaction (HER) in alkaline solution. Here, Ni(acac) 2 was converted into Ni metal nanoparticles in solvothermal reactions with simple alcohols and oleylamine (OAm). The morphology of the resulting Ni nanoparticles was dependent mainly on the OAm/Ni molar ratio in alcohol solvent. Aggregates of spherical Ni nanoparticles (NiEt-OAm1) were observed at the OAm/Ni molar ratio of 1.0, whereas two echinoid Ni nanoparticles (NiEt-OAm4 and NiEt-OAm6) could be prepared in ethanol at the OAm/Ni molar ratios of 4.0 and 6.0. Ni(OH) 2 formed in ethanol during a reaction time of 5 h was then reduced into echinoid Ni nanoparticles after 8 h. Echinoid Ni nanoparticles were formed by atomic addition on the tops of the multipod Ni particles formed via Ni(OH) 2 /NiO aggregates. Webbed feet-like particles (NiIPA-OAm4) with plate edges were also observed in isopropanol under the same reaction conditions. The catalytic activities of the prepared Ni nanoparticles for the hydrogen evolution reaction were evaluated in alkaline solution. The NiEt-OAm4 with urchin-like morphology was much more active than the NiIPA-OAm4 with webbed feet-like morphology. The exchange current density of Ni catalysts was increased with increasing the OAm/Ni molar ratio. The NiEt-OAm6 exhibited an exchange current of 0.191 mA cm −2 and the NiEt-OAm4 exceeded electrocatalytic performance of a commercial Pt catalysts (40% Pt on Vulcan XC 72) in a stability test for 100 kiloseconds at −1.5 V (vs. Hg/HgO) in 1.0 M NaOH due to its high stability.

  14. Evaluation of catalytic ferrispinel MFe_2O_4 (M = Cu, Co, Mn and Ni) in transesterification reaction

    International Nuclear Information System (INIS)

    Pereira, Kleberson Ricardo de Oliveira; Dantas, Joelda; Costa, Ana Cristina Figueiredo de Melo; Silva, Adriano Sant'Ana; Cornejo, Daniel Reinaldo

    2014-01-01

    Among the existing biofuels, biodiesel has achieved great economic and technological, for its potential to replace petroleum diesel and being biodegradable, have low emission of gaseous and be from renewable sources highlighted. In this context we propose to evaluate the performance of ferrispinel type MFe_2O_4, where M represents divalent metals (Cu, Co, Ni and Mn) in methyl transesterification reaction of soybean oil. The ferrispinel were synthesized by combustion reaction and characterized by XRD, FTIR and magnetic measurements. The results indicate that the synthesis is conducive to the production of ferrispinel with magnetization values ranging from 11.0 to 58.0 emu/g. The conversion values were 53; 55; 57 and 52 %, respectively, concluding that the type of divalent metal affects the morphology and hence the catalytic conversion. (author)

  15. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction

    International Nuclear Information System (INIS)

    Xu, Ling; Wang, Chunhua; Guan, Jingqi

    2014-01-01

    Acid-base bifunctional mesoporous catalysts Al-KIT-6-NH 2 containing different aluminum content have been synthesized through post synthetic grafting method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH 3 -TPD and TG analysis. The characterization results indicated that the pore structure of KIT-6 was well kept after the addition of aluminum and grafting of aminopropyl groups. The acid amount of Al-KIT-6 increased with enhancing aluminum content. Catalytic results showed that weak acid and weak base favor the Knoevenagel reaction, while catalysts with strong acid and weak base exhibited worse catalytic behavior. - Graphical abstract: The postulated steps of mechanism for the acid-base catalyzed process are as follows: (1) the aldehyde gets activated by the surface acidic sites which allow the amine undergoes nucleophilic to attack the carbonyl carbon of benzaldehyde. (2) Water is released in the formation of imine intermediate. (3) The ethyl cyanoacetate reacts with the intermediate. (4) The benzylidene ethyl cyanoacetate is formed and the amine is regenerated. - Highlights: • KIT-6 and Al-KIT-6-NH 2 with different Si/Al ratios has been successfully prepared. • 79.4% Yield was obtained over 46-Al-KIT-6-NH 2 within 20 min in Knoevenagel reaction. • Low Al-content Al-KIT-6-NH 2 shows better catalytic stability than high Al-content catalysts. • There is acid-base synergistic effect in Knoevenagel reaction

  16. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ling [College of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities, Tongliao 028000 (China); Wang, Chunhua [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130023 (China)

    2014-05-01

    Acid-base bifunctional mesoporous catalysts Al-KIT-6-NH{sub 2} containing different aluminum content have been synthesized through post synthetic grafting method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH{sub 3}-TPD and TG analysis. The characterization results indicated that the pore structure of KIT-6 was well kept after the addition of aluminum and grafting of aminopropyl groups. The acid amount of Al-KIT-6 increased with enhancing aluminum content. Catalytic results showed that weak acid and weak base favor the Knoevenagel reaction, while catalysts with strong acid and weak base exhibited worse catalytic behavior. - Graphical abstract: The postulated steps of mechanism for the acid-base catalyzed process are as follows: (1) the aldehyde gets activated by the surface acidic sites which allow the amine undergoes nucleophilic to attack the carbonyl carbon of benzaldehyde. (2) Water is released in the formation of imine intermediate. (3) The ethyl cyanoacetate reacts with the intermediate. (4) The benzylidene ethyl cyanoacetate is formed and the amine is regenerated. - Highlights: • KIT-6 and Al-KIT-6-NH{sub 2} with different Si/Al ratios has been successfully prepared. • 79.4% Yield was obtained over 46-Al-KIT-6-NH{sub 2} within 20 min in Knoevenagel reaction. • Low Al-content Al-KIT-6-NH{sub 2} shows better catalytic stability than high Al-content catalysts. • There is acid-base synergistic effect in Knoevenagel reaction.

  17. Catalytic Activities of Noble Metal Phosphides for Hydrogenation and Hydrodesulfurization Reactions

    Directory of Open Access Journals (Sweden)

    Yasuharu Kanda

    2018-04-01

    Full Text Available In this work, the development of a highly active noble metal phosphide (NMXPY-based hydrodesulfurization (HDS catalyst with a high hydrogenating ability for heavy oils was studied. NMXPY catalysts were obtained by reduction of P-added noble metals (NM-P, NM: Rh, Pd, Ru supported on SiO2. The order of activities for the hydrogenation of biphenyl was Rh-P > NiMoS > Pd-P > Ru-P. This order was almost the same as that of the catalytic activities for the HDS of dibenzothiophene. In the HDS of 4,6-dimethyldibenzothiophene (4,6-DMDBT, the HDS activity of the Rh-P catalyst increased with increasing reaction temperature, but the maximum HDS activity for the NiMoS catalyst was observed at 270 °C. The Rh-P catalyst yielded fully hydrogenated products with high selectivity compared with the NiMoS catalyst. Furthermore, XRD analysis of the spent Rh-P catalysts revealed that the Rh2P phase possessed high sulfur tolerance and resistance to sintering.

  18. Dinuclear NHC-palladium complexes containing phosphine spacers: synthesis, X-ray structures and their catalytic activities towards the Hiyama coupling reaction.

    Science.gov (United States)

    Yang, Jin; Li, Pinhua; Zhang, Yicheng; Wang, Lei

    2014-05-21

    Six dinuclear N-heterocyclic carbene (NHC) palladium complexes, [PdCl2(IMes)]2(μ-dppe) (1), [PdCl2(IPr)]2(μ-dppe) (2), [PdCl2(IMes)]2(μ-dppb) (3), [PdCl2(IPr)]2(μ-dppb) (4), [PdCl2(IMes)]2(μ-dpph) (5), and [PdCl2(IPr)]2(μ-dpph) (6) [IMes = N,N'-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene; IPr = N,N'-bis-(2,6-di(iso-propyl)phenyl)imidazol-2-ylidene; dppe = 1,2-bis(diphenylphosphino)ethane, dppb = 1,4-bis(diphenylphosphino)butane; and dpph = 1,6-bis(diphenylphosphino)hexane], have been synthesized through bridge-cleavage reactions of chloro-bridged dimeric compounds, [Pd(μ-Cl)(Cl)(NHC)]2, with the corresponding diphosphine ligands. The obtained compounds were fully characterized by (1)H NMR, (13)C NMR and (31)P NMR spectroscopy, FT-IR, elemental analysis and single-crystal X-ray crystallography. Moreover, further explorations of the catalytic potential of the dinuclear carbene palladium complexes as catalysts for the Pd-catalyzed transformations have been performed under microwave irradiation conditions, and the complexes exhibited moderate to good catalytic activity in the Hiyama coupling reaction of trimethoxyphenylsilane with aryl chlorides.

  19. Direct catalytic cross-coupling of organolithium compounds

    NARCIS (Netherlands)

    Giannerini, Massimo; Fananas Mastral, Martin; Feringa, Ben L.

    Catalytic carbon-carbon bond formation based on cross-coupling reactions plays a central role in the production of natural products, pharmaceuticals, agrochemicals and organic materials. Coupling reactions of a variety of organometallic reagents and organic halides have changed the face of modern

  20. Catalytic methanol dissociation

    International Nuclear Information System (INIS)

    Alcinikov, Y.; Fainberg, V.; Garbar, A.; Gutman, M.; Hetsroni, G.; Shindler, Y.; Tatrtakovsky, L.; Zvirin, Y.

    1998-01-01

    Results of the methanol dissociation study on copper/potassium catalyst with alumina support at various temperatures are presented. The following gaseous and liquid products at. The catalytic methanol dissociation is obtained: hydrogen, carbon monoxide, carbon dioxide, methane, and dimethyl ether. Formation rates of these products are discussed. Activation energies of corresponding reactions are calculated

  1. Performance of a Novel Hydrophobic Mesoporous Material for High Temperature Catalytic Oxidation of Naphthalene

    Directory of Open Access Journals (Sweden)

    Guotao Zhao

    2014-01-01

    Full Text Available A high surface area, hydrophobic mesoporous material, MFS, has been successfully synthesized by a hydrothermal synthesis method using a perfluorinated surfactant, SURFLON S-386, as the single template. N2 adsorption and TEM were employed to characterize the pore structure and morphology of MFS. Static water adsorption test indicates that the hydrophobicity of MFS is significantly higher than that of MCM-41. XPS and Py-GC/MS analysis confirmed the existence of perfluoroalkyl groups in MFS which led to its high hydrophobicity. MFS was used as a support for CuO in experiments of catalytic combustion of naphthalene, where it showed a significant advantage over MCM-41 and ZSM-5. SEM was helpful in understanding why CuO-MFS performed so well in the catalytic combustion of naphthalene. Experimental results indicated that MFS was a suitable support for catalytic combustion of large molecular organic compounds, especially for some high temperature catalytic reactions when water vapor was present.

  2. The Catalytic Activity of Modified Zeolite Lanthanum on the Catalytic Cracking of Al-Duara Atmospheric Distillation Residue

    Directory of Open Access Journals (Sweden)

    Karim Khalifa Esgair

    2016-03-01

    Full Text Available Atmospheric residue fluid catalytic cracking was selected as a probe reaction to test the catalytic performance of modified NaY zeolites and prepared NaY zeolites. Modified NaY zeolites have been synthesized by simple ion exchange methods. Three samples of modified zeolite Y have been obtained by replacing the sodium ions in the original sample with lanthanum and the weight percent added are 0.28, 0.53, and 1.02 respectively. The effects of addition of lanthanum to zeolite Y in different weight percent on the cracking catalysts were investigated using an experimental laboratory plant scale of fluidized bed reactor. The experiments have been performed with weight hourly space velocity (WHSV range of 6 to 24 h-1, and the range of temperature from 450 to 510 oC. The activity of the catalyst with 1.02 wt% lanthanum has been shown to be much greater than that of the sample parent NaY. Also it was observed that the addition of the lanthanum causes an increase in the thermal stability of the zeolite.

  3. Ultraviolet-Visible (UV-Vis) Microspectroscopic System Designed for the In Situ Characterization of the Dehydrogenation Reaction Over Platinum Supported Catalytic Microchannel Reactor.

    Science.gov (United States)

    Suarnaba, Emee Grace Tabares; Lee, Yi Fuan; Yamada, Hiroshi; Tagawa, Tomohiko

    2016-11-01

    An ultraviolet visible (UV-Vis) microspectroscopic system was designed for the in situ characterization of the activity of the silica supported platinum (Pt) catalyst toward the dehydrogenation of 1-methyl-1,4-cyclohexadiene carried out in a custom-designed catalytic microreactor cell. The in situ catalytic microreactor cell (ICMC) with inlet/outlet ports was prepared using quartz cover as the optical window to facilitate UV-Vis observation. A fabricated thermometric stage was adapted to the UV-Vis microspectrophotometer to control the reaction temperature inside the ICMC. The spectra were collected by focusing the UV-Vis beam on a 30 × 30 µm area at the center of ICMC. At 393 K, the sequential measurement of the spectra recorded during the reaction exhibited a broad absorption peak with maximum absorbance at 260 nm that is characteristic for gaseous toluene. This result indicates that the silica supported Pt catalyst is active towards the dehydrogenation of 1-methyl-1,4-cyclohexadiene at the given experimental conditions. The onset of coke formation was also detected based on the appearance of absorption bands at 300 nm. The UV-Vis microspectroscopic system developed can be used further in studying the mechanism of the dehydrogenation reaction. © The Author(s) 2016.

  4. The application of Cu/SiO2 catalytic system in chemical mechanical planarization based on the stability of SiO2 sol

    International Nuclear Information System (INIS)

    Li Yan; Liu Yuling; Wang Aochen; Yang Zhixin; Sun Mingbin; Cheng Chuan; Zhang Yufeng; Zhang Nannan

    2014-01-01

    through the removal rate of copper film, infrared spectrum and AFM diagrams in different pH conditions. Finally it is concluded that the SiO 2 sol used in the experiment possesses stable performance; in the CMP process it is directly involved in the chemical reaction by creating the intermediate of the catalytic reaction (CuSiO 3 ) whose yield is proportional to the pH value, which accelerates the removal of copper film. (semiconductor technology)

  5. Catalytic Reforming of Oxygenates: State of the Art and Future Prospects.

    Science.gov (United States)

    Li, Di; Li, Xinyu; Gong, Jinlong

    2016-10-12

    This Review describes recent advances in the design, synthesis, reactivity, selectivity, structural, and electronic properties of the catalysts for reforming of a variety of oxygenates (e.g., from simple monoalcohols to higher polyols, then to sugars, phenols, and finally complicated mixtures like bio-oil). A comprehensive exploration of the structure-activity relationship in catalytic reforming of oxygenates is carried out, assisted by state-of-the-art characterization techniques and computational tools. Critical emphasis has been given on the mechanisms of these heterogeneous-catalyzed reactions and especially on the nature of the active catalytic sites and reaction pathways. Similarities and differences (reaction mechanisms, design and synthesis of catalysts, as well as catalytic systems) in the reforming process of these oxygenates will also be discussed. A critical overview is then provided regarding the challenges and opportunities for research in this area with a focus on the roles that systems of heterogeneous catalysis, reaction engineering, and materials science can play in the near future. This Review aims to present insights into the intrinsic mechanism involved in catalytic reforming and provides guidance to the development of novel catalysts and processes for the efficient utilization of oxygenates for energy and environmental purposes.

  6. Self-assembly growth of alloyed NiPt nanocrystals with holothuria-like shape for oxygen evolution reaction with enhanced catalytic activity

    Directory of Open Access Journals (Sweden)

    Tao Ding

    2016-01-01

    Full Text Available Self-assembly growth of alloyed NiPt nanocrystals with holothuria-like wire shape has been achieved via a facile and moderate hydrothermal process at 120 °C for 1 h from the reaction of nickel nitrate and chloroplatinic acid in alkaline solution in the presence of ethanediamine and hydrazine hydrate. The holothuria-like alloyed NiPt wires are Ni-rich in composition (Ni23.6Pt and uniform in diameter with many tiny tips outstretched from the wires surface. The holothuria-like wires are assembled from granular subunits with the assistance of capping molecular of ethanediamine and the wires display an improved oxygen evolution reaction catalytic activity.

  7. Site-specific growth of Au-Pd alloy horns on Au nanorods: A platform for highly sensitive monitoring of catalytic reactions by surface enhancement raman spectroscopy

    KAUST Repository

    Huang, Jianfeng; Zhu, Yihan; Lin, Ming; Wang, Qingxiao; Zhao, Lan; Yang, Yang; Yao, Kexin; Han, Yu

    2013-01-01

    Surface-enhanced Raman scattering (SERS) is a highly sensitive probe for molecular detection. The aim of this study was to develop an efficient platform for investigating the kinetics of catalytic reactions with SERS. To achieve this, we synthesized

  8. Endotoxin Removal from Water Using Heterogenus Catalytic Ozonation by Bone Char

    Directory of Open Access Journals (Sweden)

    Abas Rezaee

    2011-10-01

    Full Text Available The endotoxin is one of pollutants with lipopolysaccharide structure which release from gram negative bacteria and cyanobacters. The aim of this study was removal of endotoxin from water using catalytic ozonation by bone char. The endotoxin for experiments have extracted from Escherichia coli bacterium cell wall by Stefan and Jan method. Chromogenic limulus ambusite lysate method in 405-410 nm wave length was used for analysing of endotoxin. The ozone have analysed by potassium iodine method. Results: Results of the research shown endotoxin removal rates using heterogenous catalytic ozonation were 6.0 Eu/ml.min and 0.5 Eu/ml.min for grey bone char and white bone char, respectively. The efficency of the process was found eighty percent. Primary concentration of basic compounds had no effect on endotoxin removal rate. Therefore, endotoxin removal kinetic of reaction is a zero order reaction. This study revealed that ozonation process using bone char is more efficient than other proposed methods such as ozonation or chlorination and can be used successfully for endotoxin removal from water as a efficient method.

  9. Kinetic particularities of strained alicyclic compounds formation in catalytic methanol to hydrocarbon transformation process

    OpenAIRE

    Doluda V.; Brovko R.; Giniatullina N.; Sulman M.

    2017-01-01

    The catalytic transformation of methanol into hydrocarbons is a complex chemical process, accompanied by chain parallel chemical transformation reactions. The most valuable products of the methanol to hydrocarbons catalytic transformation reaction are the strained hydrocarbons — cyclopropane derivatives. These compounds can be used as a high-energy fuel, and also as a valuable chemical raw material. However, the yield of strained compounds in methanol to hydrocarbons catalytic transformation ...

  10. Chemically-modified cellulose paper as a microstructured catalytic reactor.

    Science.gov (United States)

    Koga, Hirotaka; Kitaoka, Takuya; Isogai, Akira

    2015-01-15

    We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  11. Chemically-Modified Cellulose Paper as a Microstructured Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Hirotaka Koga

    2015-01-01

    Full Text Available We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  12. Millisecond dynamics in glutaredoxin during catalytic turnover is dependent on substrate binding and absent in the resting states

    DEFF Research Database (Denmark)

    Jensen, Kristine Steen; Winther, Jakob R; Teilum, Kaare

    2011-01-01

    to the glutathione exchange rate was observed for 23 residues. Binding of reduced glutathione resulted in competitive inhibition of the reduced enzyme having kinetics similar to that of the reaction. This observation couples the motions observed during catalysis directly to substrate binding. Backbone motions......Conformational dynamics is important for enzyme function. Which motions of enzymes determine catalytic efficiency and whether the same motions are important for all enzymes, however, are not well understood. Here we address conformational dynamics in glutaredoxin during catalytic turnover...... with a combination of NMR magnetization transfer, R(2) relaxation dispersion, and ligand titration experiments. Glutaredoxins catalyze a glutathione exchange reaction, forming a stable glutathinoylated enzyme intermediate. The equilibrium between the reduced state and the glutathionylated state was biochemically...

  13. Catalytic effects of inorganic acids on the decomposition of ammonium nitrate.

    Science.gov (United States)

    Sun, Jinhua; Sun, Zhanhui; Wang, Qingsong; Ding, Hui; Wang, Tong; Jiang, Chuansheng

    2005-12-09

    In order to evaluate the catalytic effects of inorganic acids on the decomposition of ammonium nitrate (AN), the heat releases of decomposition or reaction of pure AN and its mixtures with inorganic acids were analyzed by a heat flux calorimeter C80. Through the experiments, the different reaction mechanisms of AN and its mixtures were analyzed. The chemical reaction kinetic parameters such as reaction order, activation energy and frequency factor were calculated with the C80 experimental results for different samples. Based on these parameters and the thermal runaway models (Semenov and Frank-Kamenestkii model), the self-accelerating decomposition temperatures (SADTs) of AN and its mixtures were calculated and compared. The results show that the mixtures of AN with acid are more unsteady than pure AN. The AN decomposition reaction is catalyzed by acid. The calculated SADTs of AN mixtures with acid are much lower than that of pure AN.

  14. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would

  15. Catalytic cracking of hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1940-09-12

    A process is described for the vapor phase catalytic cracking of hydrocarbon oils boiling substantially in the gas oil range. The reaction takes place in the presence of a solid catalyst between 700 to 900/sup 0/F under pressure between atmospheric and 400 psi. A gas containing between 20 and 90 mol % of free hydrogen is used. The reaction is allowed to proceed until consumption of the free begins. The reaction is discontinued at that point and the catalyst is regenerated for further use.

  16. Catalytic Oxidation of Allylic Alcohols to Methyl Esters

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata; Kotni, Rama Krishna; Nielsen, Martin

    2017-01-01

    Aerobic oxidation of allylic alcohols to methyl esters using gold nanoparticles supported on different metal oxide carriers has been performed successfully under mild conditions (room temperature, 0.1 MPa O2) without significant loss of catalytic activity. The effects of different reaction...... parameters are studied to find the suitable reaction conditions. All catalysts are characterised by XRD, XRF and TEM. Among these catalysts, Au/TiO2 showed the most efficient catalytic activity towards the selective oxidation of allylic alcohols to the corresponding esters. Moreover, the same Au/TiO2...... to synthesize methyl esters from allylic alcohols....

  17. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Gun Hong [Kyungwon E-C Co., Seongnam (Korea, Republic of)

    2014-10-15

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  18. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    International Nuclear Information System (INIS)

    Kim, Jongtae; Hong, Seong-Wan; Kim, Gun Hong

    2014-01-01

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  19. Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Lin, Shih-Cheng

    2015-01-01

    The reaction phenomena of CPOM (catalytic partial oxidation of methane) in a Swiss-roll reactor are studied numerically where a rhodium-based catalyst bed is embedded at the center of the reactor. CO 2 is added into the feed gas and excess enthalpy recovery is performed to evaluate their influences on CPOM performance. In the study, the mole ratio of O 2 to CH 4 (O 2 /CH 4 ratio) is fixed at 0.5 and the mole ratio of CO 2 to O 2 (CO 2 /O 2 ratio) is in the range of 0–2. The results reveal that CO 2 addition into the influent has a slight effect on methane combustion, but significantly enhances dry reforming and suppresses steam reforming. The reaction extents of steam reforming and dry reforming in CPOM without heat recovery and CO 2 addition are in a comparable state. Once CO 2 is added into the feed gas, the dry reforming is enhanced, thereby dominating CH 4 consumption. Compared to the reactor without excess enthalpy recovery, heat recirculation drastically increases the maximum reaction temperature and CH 4 conversion in the catalyst bed; it also intensifies the H 2 selectivity, H 2 yield, CO 2 conversion, and syngas production rate. The predictions indicate that the heat recirculation is able to improve the syngas formation up to 45%. - Highlights: • Catalytic partial oxidation of methane with CO 2 addition and heat recovery is studied. • CO 2 addition has a slight effect on methane combustion. • CO 2 addition significantly enhances dry reforming and suppresses steam reforming. • Dry reforming dominates CH 4 consumption when CO 2 addition is large. • Heat recirculation can improve the syngas formation up to 45%

  20. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction.

    Science.gov (United States)

    Vallet, Ana; Ovejero, Gabriel; Rodríguez, Araceli; Peres, José A; García, Juan

    2013-01-15

    Active nickel catalysts (7 wt%) supported over Mg-Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min(-1) and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min(-1), respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T(r)=0.098 g(Ni) min mL(-1). After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T(r)=0.098 g(Ni) min mL(-1), attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Biogasoline Production from Palm Oil Via Catalytic Hydrocracking over Gamma-Alumina Catalyst

    Directory of Open Access Journals (Sweden)

    Anondho Wijanarko

    2010-10-01

    Full Text Available Bio gasoline conversion from palm oil is an alternative energy resources method which can be substituted fossil fuel base energy utilization. Previous research resulted that palm oil can be converted into hydrocarbon by catalytic cracking reaction with γ-alumina catalyst. In this research, catalytic cracking reaction of palm oil by γ-alumina catalyst is done in  a stirrer batch reactor with the oil/catalyst weight ratio variation of 100:1, 75:1, and 50:1; at suhue variation of 260 to 340oC and reaction time variation of 1 to 2 hour. Post cracking reaction, bio gasoline yield could be obtained after 2 steps batch distillation. Physical property test result such as density and viscosity of this cracking reaction product and commercial gasoline tended a closed similarity. According to result of the cracking product's density, viscosity and FTIR, it  can conclude that optimum yield of the palm oil catalytic cracking reaction could be occurred when oil/catalyst weight  ratio 100:1 at 340 oC in 1.5 hour and base on this bio gasoline's FTIR, GC and GC-MS identification results, its  hydrocarbons content was resembled to the commercial  gasoline. This palm oil catalytic cracking reaction shown 11.8% (v/v in yield and 28.0% (v/v in conversion concern to feed palm oil base and produced a 61.0 octane number's biogasoline.

  2. Catalytic Cracking of Used Palm Oil using Composite Zeolite

    International Nuclear Information System (INIS)

    Chang, W.H.; Tye, C.T.

    2013-01-01

    The rapid expansion of human society implies greater energy demand and environmental issues. In face of depletion energy resources, research is being carried out widely in order to convert the plant oil into biofuel. In this research, the production of liquid biofuels via catalytic cracking of used palm oil in the presence of composite zeolite was studied. The performance of composite zeolite of different properties in the reaction has been evaluated. The catalytic cracking reactions were carried out in a batch reactor at reaction temperature of 350 degree Celsius for an hour. In the present study, adjusting the ratio of meso porous coating to microporous zeolite and magnesium loading on composite zeolite catalyst were found to be able to increase the gasoline fraction and overall conversion of the reaction. (author)

  3. Enhanced catalytic behavior of Ni alloys in steam methane reforming

    Science.gov (United States)

    Yoon, Yeongpil; Kim, Hanmi; Lee, Jaichan

    2017-08-01

    The dissociation process of methane on Ni and Ni alloys are investigated by density functional theory (DFT) in terms of catalytic efficiency and carbon deposition. Examining the dissociation to CH3, CH2, CH, C, and H is not sufficient to properly predict the catalytic efficiency and carbon deposition, and further investigation of the CO gas-evolving reaction is required to completely understand methane dissociation in steam. The location of alloying element in Ni alloy needed be addressed from the results of ab-inito molecular dynamics (MD). The reaction pathway of methane dissociation associated with CO gas evolution is traced by performing first-principles calculations of the adsorption and activation energies of each dissociation step. During the dissociation process, two alternative reaction steps producing adsorbed C and H or adsorbed CO are critically important in determining coking inhibition as well as H2 gas evolution (i.e., the catalytic efficiency). The theoretical calculations presented here suggest that alloying Ni with Ru is an effective way to reduce carbon deposition and enhance the catalytic efficiency of H2 fueling in solid oxide fuel cells (SOFCs).

  4. Simulation and calculation of three-reactor system of catalytic reforming

    International Nuclear Information System (INIS)

    Rikalovska, Tatjana; Markovska, Liljana; Meshko, Vera; Poposka, Filimena

    1999-01-01

    The process of catalytic reforming has been operated for quite a long time, one can not always find real data for the kinetics and thermodynamics of the reactions that take place during the catalytic reforming process in order to facilitate the designing of reactor system or its simulation in a wide:ran e of process parameters. Kinetic and thermodynamic data have been collected for the reactions that take place during the catalytic reforming process. The stress has been pointed on four major reactions: dehydrogenation of naphthenes (aromatization), dehydrocyclization of paraffins and hydrocracking of naphthenes and paraffins. On the base of such a kinetic model, the reforming process has been described with a system of differential equations. For the purpose of solving these equations computer programs for simulation of a three-reactor system for adiabatic operation of the reactors. The computer simulation of the mathematical model of this three-reactor system has been accomplished by use of the ISIM-dynamic simulator. The results obtained out of the simulation agree very good with the data of the real process of catalytic reforming in OKTA Crude Oil Refinery in Skopje, Macedonia. (Author)

  5. Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rosal, Roberto, E-mail: roberto.rosal@uah.es [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain); Gonzalo, Maria S.; Rodriguez, Antonio; Garcia-Calvo, Eloy [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain)

    2010-11-15

    The catalytic ozonation of fenofibric acid was studied using activated alumina and alumina-supported manganese oxide in a semicontinuous reactor. The rate constants at 20 deg. C for the non-catalytic reaction of fenofibric acid with ozone and hydroxyl radicals were 3.43 {+-} 0.20 M{sup -1} s{sup -1} and (6.55 {+-} 0.33) x 10{sup 9} M{sup -1} s{sup -1}, respectively. The kinetic constant for the catalytic reaction between fenofibric acid and hydroxyl radicals did not differ significantly from that of homogeneous ozonation, either using Al{sub 2}O{sub 3} or MnO{sub x}/Al{sub 2}O{sub 3}. The results showed a considerable increase in the generation of hydroxyl radicals due to the use of catalysts even in the case of catalytic runs performed using a real wastewater matrix. Both catalysts promoted the decomposition of ozone in homogeneous phase, but the higher production of hydroxyl radicals corresponded to the catalyst with more activity in terms of ozone decomposition. We did not find evidence of the catalysts having any effect on rate constants, which suggests that the reaction may not involve the adsorption of organics on catalyst surface.

  6. Key Feature of the Catalytic Cycle of TNF-α Converting Enzyme Involves Communication Between Distal Protein Sites and the Enzyme Catalytic Core

    International Nuclear Information System (INIS)

    Solomon, A.; Akabayov, B.; Frenkel, A.; Millas, M.; Sagi, I.

    2007-01-01

    Despite their key roles in many normal and pathological processes, the molecular details by which zinc-dependent proteases hydrolyze their physiological substrates remain elusive. Advanced theoretical analyses have suggested reaction models for which there is limited and controversial experimental evidence. Here we report the structure, chemistry and lifetime of transient metal-protein reaction intermediates evolving during the substrate turnover reaction of a metalloproteinase, the tumor necrosis factor-α converting enzyme (TACE). TACE controls multiple signal transduction pathways through the proteolytic release of the extracellular domain of a host of membrane-bound factors and receptors. Using stopped-flow x-ray spectroscopy methods together with transient kinetic analyses, we demonstrate that TACE's catalytic zinc ion undergoes dynamic charge transitions before substrate binding to the metal ion. This indicates previously undescribed communication pathways taking place between distal protein sites and the enzyme catalytic core. The observed charge transitions are synchronized with distinct phases in the reaction kinetics and changes in metal coordination chemistry mediated by the binding of the peptide substrate to the catalytic metal ion and product release. Here we report key local charge transitions critical for proteolysis as well as long sought evidence for the proposed reaction model of peptide hydrolysis. This study provides a general approach for gaining critical insights into the molecular basis of substrate recognition and turnover by zinc metalloproteinases that may be used for drug design

  7. Study of isotopic exchange reactions of azidothymidine with tritium

    International Nuclear Information System (INIS)

    Sidorov, G.V.; Zverkov, Yu.B.; Myasoedov, N.F.

    2003-01-01

    Different reactions of isotopic exchange of azidothymidine (3 - azido-3 - desoxythymidine) with tritium, such as solid- and liquid-phase catalytic isotopic exchange with gaseous tritium and isotopic exchange in solution with tritium water, are investigated. It is determined that catalytic reactions of azidothymidine with gaseous tritium in solution lead to practically full reduction of azido group up to amino group. In reactions of solid-phase catalytic hydrogenation this process takes place too and 3 - azido-3 - desoxythymidine yield is from 20 to 70 %. Molar radioactivity of labelled with tritium azidothymidine prepared in reactions of solid-phase catalytic isotopic exchange with gaseous tritium and so by isotopic exchange in solution with tritium water does not exceed 0.5 Cu/mmol [ru

  8. An empirical study on the preparation of the modified coke and its catalytic oxidation properties

    Science.gov (United States)

    Liu, Hao; Jiang, Wenqiang

    2017-05-01

    T As a methyl acrylic ester fungicide, pyraclostrobin has the advantages of high activity, wide sterilization spectrum and high safety level comparing with the traditional fungicide. Due to less toxicity and side effects on human and environment, the use of pyraclostrobin and its mixture in agriculture is increasing. The heavy use of pyraclostrobin will inevitably cause pollution to the biological and abiotic environment. Therefore, it is of great significance to do the research on the degradation of pyraclostrobin. In this study, coke, as matrix, was modified by chemical modification. The modified coke was used as the catalyst and the pyraclostrobin was used as the degradation object. The degradation experiment of pyraclostrobin was carried out by using catalytic oxidation. The catalytic oxidation performance of modified coke was studied. The result showed that in the catalytic oxidation system of using modified coke as catalyst and H2O2 as oxidant, the best reaction condition is as following: The modified coke which is modified by using 70% concentration nitric acid is used as catalyst; The dosage of the catalyst is10g; The dosage of H2O2 is 0.6ml; The reaction time is 6 hours.

  9. Investigation on CO catalytic oxidation reaction kinetics of faceted perovskite nanostructures loaded with Pt

    KAUST Repository

    Yin, S. M.

    2017-01-18

    Perovskite lead titanate nanostructures with specific {111}, {100} and {001} facets exposed, have been employed as supports to investigate the crystal facet effect on the growth and CO catalytic activity of Pt nanoparticles. The size, distribution and surface chemical states of Pt on the perovskite supports have been significantly modified, leading to a tailored conversion temperature and catalytic kinetics towards CO catalytic oxidation.

  10. Investigation on CO catalytic oxidation reaction kinetics of faceted perovskite nanostructures loaded with Pt

    KAUST Repository

    Yin, S. M.; Duanmu, J. J.; Zhu, Yihan; Yuan, Y. F.; Guo, S. Y.; Yang, J. L.; Ren, Z. H.; Han, G. R.

    2017-01-01

    Perovskite lead titanate nanostructures with specific {111}, {100} and {001} facets exposed, have been employed as supports to investigate the crystal facet effect on the growth and CO catalytic activity of Pt nanoparticles. The size, distribution and surface chemical states of Pt on the perovskite supports have been significantly modified, leading to a tailored conversion temperature and catalytic kinetics towards CO catalytic oxidation.

  11. Hydrogen removal from LWR containments by catalytic-coated thermal insulation elements (THINCAT)

    International Nuclear Information System (INIS)

    Fischer, K.; Broeckerhoff, P.; Ahlers, G.; Gustavsson, V.; Herranz, L.; Polo, J.; Dominguez, T.; Royl, P.

    2003-01-01

    In the THINCAT project, an alternative concept for hydrogen mitigation in a light water reactor (LWR) containment is being developed. Based on catalytic coated thermal insulation elements of the main coolant loop components, it could be considered either as an alternative to backfitting passive autocatalytic recombiner devices, or as a reinforcement of their preventive effect. The present paper summarises the results achieved at about project mid-term. Potential advantages of catalytic thermal insulation studied in the project are:-reduced risk of unintended ignition,;-no work space obstruction in the containment,;-no need for seismic qualification of additional equipment,;-improved start-up behaviour of recombination reaction. Efforts to develop a suitable catalytic layer resulted in the identification of a coating procedure that ensures high chemical reactivity and mechanical stability. Test samples for use in forthcoming experiments with this coating were produced. Models to predict the catalytic rates were developed, validated and applied in a safety analysis study. Results show that an overall hydrogen concentration reduction can be achieved which is comparable to the reduction obtained using conventional recombiners. Existing experimental information supports the argument of a reduced ignition risk

  12. Construction of Polarized Carbon-Nickel Catalytic Surfaces for Potent, Durable, and Economic Hydrogen Evolution Reactions.

    Science.gov (United States)

    Zhou, Min; Weng, Qunhong; Popov, Zakhar I; Yang, Yijun; Antipina, Liubov Yu; Sorokin, Pavel B; Wang, Xi; Bando, Yoshio; Golberg, Dmitri

    2018-05-22

    Electrocatalytic hydrogen evolution reaction (HER) in alkaline solution is hindered by its sluggish kinetics toward water dissociation. Nickel-based catalysts, as low-cost and effective candidates, show great potentials to replace platinum (Pt)-based materials in the alkaline media. The main challenge regarding this type of catalysts is their relatively poor durability. In this work, we conceive and construct a charge-polarized carbon layer derived from carbon quantum dots (CQDs) on Ni 3 N nanostructure (Ni 3 N@CQDs) surfaces, which simultaneously exhibit durable and enhanced catalytic activity. The Ni 3 N@CQDs shows an overpotential of 69 mV at a current density of 10 mA cm -2 in a 1 M KOH aqueous solution, lower than that of Pt electrode (116 mV) at the same conditions. Density functional theory (DFT) simulations reveal that Ni 3 N and interfacial oxygen polarize charge distributions between originally equal C-C bonds in CQDs. The partially negatively charged C sites become effective catalytic centers for the key water dissociation step via the formation of new C-H bond (Volmer step) and thus boost the HER activity. Furthermore, the coated carbon is also found to protect interior Ni 3 N from oxidization/hydroxylation and therefore guarantees its durability. This work provides a practical design of robust and durable HER electrocatalysts based on nonprecious metals.

  13. A study on naphtha catalytic reforming reactor simulation and analysis.

    Science.gov (United States)

    Liang, Ke-min; Guo, Hai-yan; Pan, Shi-wei

    2005-06-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation unit data.

  14. A study on naphtha catalytic reforming reactor simulation and analysis

    OpenAIRE

    Liang, Ke-min; Guo, Hai-yan; Pan, Shi-wei

    2005-01-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation uni...

  15. High-Pressure Catalytic Reactions of C6 Hydrocarbons on PlatinumSingle-Crystals and nanoparticles: A Sum Frequency Generation VibrationalSpectroscopic and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Bratlie, Kaitlin [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Catalytic reactions of cyclohexene, benzene, n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene on platinum catalysts were monitored in situ via sum frequency generation (SFG) vibrational spectroscopy and gas chromatography (GC). SFG is a surface specific vibrational spectroscopic tool capable of monitoring submonolayer coverages under reaction conditions without gas-phase interference. SFG was used to identify the surface intermediates present during catalytic processes on Pt(111) and Pt(100) single-crystals and on cubic and cuboctahedra Pt nanoparticles in the Torr pressure regime and at high temperatures (300K-450K). At low pressures (<10-6 Torr), cyclohexene hydrogenated and dehydrogenates to form cyclohexyl (C6H11) and π-allyl C6H9, respectively, on Pt(100). Increasing pressures to 1.5 Torr form cyclohexyl, π-allyl C6H9, and 1,4-cyclohexadiene, illustrating the necessity to investigate catalytic reactions at high-pressures. Simultaneously, GC was used to acquire turnover rates that were correlated to reactive intermediates observed spectroscopically. Benzene hydrogenation on Pt(111) and Pt(100) illustrated structure sensitivity via both vibrational spectroscopy and kinetics. Both cyclohexane and cyclohexene were produced on Pt(111), while only cyclohexane was formed on Pt(100). Additionally, π-allyl c-C6H9 was found only on Pt(100), indicating that cyclohexene rapidly dehydrogenates on the (100) surface. The structure insensitive production of cyclohexane was found to exhibit a compensation effect and was analyzed using the selective energy transfer (SET) model. The SET model suggests that the Pt-H system donates energy to the E2u mode of free benzene, which leads to catalysis. Linear C6 (n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene) hydrocarbons were also investigated in the presence and absence of excess hydrogen on Pt

  16. The development of catalytic nucleophilic additions of terminal alkynes in water.

    Science.gov (United States)

    Li, Chao-Jun

    2010-04-20

    One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C-C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to C=N bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in

  17. Production of Organic Grain Coatings by Surface-Mediated Reactions and the Consequences of This Process for Meteoritic Constituents

    Science.gov (United States)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2011-01-01

    When hydrogen, nitrogen and CO are exposed to amorphous iron silicate surfaces at temperatures between 500 - 900K, a carbonaceous coating forms via Fischer-Tropsch type reactions. Under normal circumstances such a catalytic coating would impede or stop further reaction. However, we find that this coating is a better catalyst than the amorphous iron silicates that initiate these reactions. The formation of a self-perpetuating catalytic coating on grain surfaces could explain the rich deposits of macromolecular carbon found in primitive meteorites and would imply that protostellar nebulae should be rich in organic material. Many more experiments are needed to understand this chemical system and its application to protostellar nebulae.

  18. Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities.

    Science.gov (United States)

    Aboelfetoh, Eman F; El-Shenody, Rania A; Ghobara, Mohamed M

    2017-07-01

    Stable colloidal silver nanoparticles (AgNPs) were synthesized using Caulerpa serrulata (green marine algae) aqueous extract as an efficient reducing and stabilizing agent. This method is considered to be a sustainable alternate to the more complicated chemical procedures. To achieve the optimization synthesis of AgNPs, several effects such as extract concentration, contact time, pH values, and temperature were examined. The synthesized AgNPs were characterized by UV-Vis spectroscopy, FT-IR, XRD, and HR-TEM. The synthesized AgNPs showed an intense surface plasmon resonance band at 412 nm at the optimal conditions (20% (v/v) extract and 95 °C). TEM reveal that higher extract concentration and higher temperature leading to the formation of spherical AgNPs with an average particle size of 10 ± 2 nm. The synthesized AgNPs showed excellent catalytic reduction activity of Congo red (CR) dye from aqueous solutions. The degradation percentage of CR with AgNPs accelerated by increasing either NaBH 4 concentration or catalytic dosage. The AgNPs synthesized at higher temperature (e.g., 10Ag-95) exhibited the highest catalytic activity. The reaction kinetics was found to be pseudo first order with respect to the dye concentration. Moreover, the AgNPs displayed antibacterial activity at lower concentration against Staphylococcus aureus, Pseudomonas aeruginosa, Shigella sp., Salmonella typhi, and Escherichia coli and may be a good alternative therapeutic approach. The outcomes of the current study confirmed that the synthesized AgNPs had an awesome guarantee for application in catalysis and wastewater treatment.

  19. Oxidation of Borneol to Camphor Using Oxone and Catalytic Sodium Chloride: A Green Experiment for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Lang, Patrick T.; Harned, Andrew M.; Wissinger, Jane E.

    2011-01-01

    A new green oxidation procedure was developed for the undergraduate organic teaching laboratories using Oxone and a catalytic quantity of sodium chloride for the conversion of borneol to camphor. This simple 1 h, room temperature reaction afforded high quality and yield of product, was environmentally friendly, and produced negligible quantities…

  20. Catalytic modification of cellulose and hemicellulose - Sugarefine

    Energy Technology Data Exchange (ETDEWEB)

    Repo, T. [Helsinki Univ. (Finland),Laboratory of Inorganic Chemistry], email: timo.repo@helsinki.fi

    2012-07-01

    The main goal of the project is to develop catalytic methods for the modification of lignocellulose-based saccharides in the biorefineries. The products of these reactions could be used for example as biofuel components, raw materials for the chemical industry, solvents and precursors for biopolymers. The catalyst development aims at creating efficient, selective and green catalytic methods for profitable use in biorefineries. The project is divided in three work packages: In WP1 (Catalytic dehydration of cellulose) the aim is at developing non-toxic, efficient methods for the catalytic dehydration of cellulose the target molecule being here 5-hydroxymethylfurfural (5-HMF). 5-HMF is an interesting platform chemical for the production of fuel additives, solvents and polymers. In WP2 (Catalytic reduction), the objective of the catalytic reduction studies is to produce commercially interesting monofunctional chemicals, such as 1-butanol or 2-methyltetrahydrofuran (2-MeTHF). In WP3 (Catalytic oxidation), the research focuses on developing a green and efficient oxidation method for producing acids. Whereas acetic and formic acids are bulk chemicals, diacids such as glucaric and xylaric acids are valuable specialty chemicals for detergent, polymer and food production.

  1. Kinetic and catalytic performance of a BI-porous composite material in catalytic cracking and isomerisation reactions

    KAUST Repository

    Al-Khattaf, S.; Odedairo, T.; Balasamy, R. J.

    2012-01-01

    Catalytic behaviour of pure zeolite ZSM-5 and a bi-porous composite material (BCM) were investigated in transformation of m-xylene, while zeolite HY and the bi-porous composite were used in the cracking of 1,3,5-triisopropylbenzene (TIPB). The micro

  2. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  3. Catalytic isotope exchange reaction between deuterium gas and water pre-adsorbed on platinum/alumina

    International Nuclear Information System (INIS)

    Iida, Itsuo; Kato, Junko; Tamaru, Kenzi.

    1976-01-01

    The catalytic isotope exchange reaction between deuterium gas and the water pre-adsorbed on Pt/Al 2 O 3 was studied. At reaction temperatures above 273 K, the exchange rate was proportional to the deuterium pressure and independent of the amount of adsorbed water, which suggests that the rate determining step is the supply of deuterium from the gas phase. Its apparent activation energy was 38 kJ mol -1 . Below freezing point of water, the kinetic behaviour was different from that above freezing point. At higher deuterium pressures the rate dropped abruptly at 273 K. Below the temperature the apparent activation energy was 54 kJ mol -1 and the exchange rate depended not on the deuterium pressure but on the amount of the pre-adsorbed water. At lower pressures, however, the kinetic behaviour was the same as the above 273 K, till the rate of the supply of deuterium from the gas phase exceeded the supply of hydrogen from adsorbed water to platinum surface. These results suggest that below 273 K the supply of hydrogen is markedly retarded, the state of the adsorbed water differing from that above 273 K. It was also demonstrated that when the adsorbed water is in the state of capillary condensation, the exchange rate becomes very small. (auth.)

  4. In-situ high-pressure measurements and detailed numerical predictions of the catalytic reactivity of methane over platinum

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, M.; Mantzaras, I.; Schaeren, R.; Bombach, R.; Inauen, A.; Schenker, S.

    2003-03-01

    The catalytic reactivity of methane over platinum at pressures of up to 14 bar was evaluated with in-situ Raman measurements and detailed numerical predictions from two different heterogeneous chemical reaction schemes. The best agreement to the measurements was achieved with Deutschmann's reaction scheme that yielded the correct trend for the pressure dependence of the catalytic reactivity, although in absolute terms the reactivity was overpredicted. The catalytic reactivity was consistently underpredicted at all pressures with the reaction scheme of Vlachos. (author)

  5. Chemistry and engineering of catalytic hydrodesulfurization

    NARCIS (Netherlands)

    Schuit, G.C.A.; Gates, B.C.

    1973-01-01

    A review with 74 refs. on catalytic hydrodesulfurization of pure compds. and petroleum feedstocks, with emphasis on reaction intermediates and structures of Al2O3-supported Ni-W and Co-Mo catalysts. [on SciFinder (R)

  6. Atomically Precise Metal Nanoclusters for Catalytic Application

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Rongchao [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-11-18

    The central goal of this project is to explore the catalytic application of atomically precise gold nanoclusters. By solving the total structures of ligand-protected nanoclusters, we aim to correlate the catalytic properties of metal nanoclusters with their atomic/electronic structures. Such correlation unravel some fundamental aspects of nanocatalysis, such as the nature of particle size effect, origin of catalytic selectivity, particle-support interactions, the identification of catalytically active centers, etc. The well-defined nanocluster catalysts mediate the knowledge gap between single crystal model catalysts and real-world conventional nanocatalysts. These nanoclusters also hold great promise in catalyzing certain types of reactions with extraordinarily high selectivity. These aims are in line with the overall goals of the catalytic science and technology of DOE and advance the BES mission “to support fundamental research to understand, predict, and ultimately control matter and energy at the level of electrons, atoms, and molecules”. Our group has successfully prepared different sized, robust gold nanoclusters protected by thiolates, such as Au25(SR)18, Au28(SR)20, Au38(SR)24, Au99(SR)42, Au144(SR)60, etc. Some of these nanoclusters have been crystallographically characterized through X-ray crystallography. These ultrasmall nanoclusters (< 2 nm diameter) exhibit discrete electronic structures due to quantum size effect, as opposed to quasicontinuous band structure of conventional metal nanoparticles or bulk metals. The available atomic structures (metal core plus surface ligands) of nanoclusters serve as the basis for structure-property correlations. We have investigated the unique catalytic properties of nanoclusters (i.e. not observed in conventional nanogold catalysts) and revealed the structure-selectivity relationships. Highlights of our

  7. On the study of catalytic membrane reactor for water detritiation: Modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Liger, Karine, E-mail: karine.liger@cea.fr [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France); Mascarade, Jérémy [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France); Joulia, Xavier; Meyer, Xuan-Mi [Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique, 4, Allée Emile Monso, Toulouse F-31030 (France); CNRS, Laboratoire de Génie Chimique, Toulouse F-31030 (France); Troulay, Michèle; Perrais, Christophe [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France)

    2016-11-01

    Highlights: • Experimental results for the conversion of tritiated water (using deuterium as a simulant of tritium) by means of a catalytic membrane reactor in view of tritium recovery. • Phenomenological 2D model to represent catalytic membrane reactor behavior including the determination of the compositions of gaseous effluents. • Good agreement between the simulation results and experimental measurements performed on the dedicated facility. • Explanation of the unexpected behavior of the catalytic membrane reactor by the modeling results and in particular the gas composition estimation. - Abstract: In the framework of tritium recovery from tritiated water, efficiency of packed bed membrane reactors have been successfully demonstrated. Thanks to protium isotope swamping, tritium bonded water can be recovered under the valuable Q{sub 2} form (Q = H, D or T) by means of isotope exchange reactions occurring on catalyst surface. The use of permselective Pd-based membrane allows withdrawal of reactions products all along the reactor, and thus limits reverse reaction rate to the benefit of the direct one (shift effect). The reactions kinetics, which are still little known or unknown, are generally assumed to be largely greater than the permeation ones so that thermodynamic equilibriums of isotope exchange reactions are generally assumed. This paper proposes a new phenomenological 2D model to represent catalytic membrane reactor behavior with the determination of gas effluents compositions. A good agreement was obtained between the simulation results and experimental measurements performed on a dedicated facility. Furthermore, the gas composition estimation permits to interpret unexpected behavior of the catalytic membrane reactor. In the next future, further sensitivity analysis will be performed to determine the limits of the model and a kinetics study will be conducted to assess the thermodynamic equilibrium of reactions.

  8. On the study of catalytic membrane reactor for water detritiation: Modeling approach

    International Nuclear Information System (INIS)

    Liger, Karine; Mascarade, Jérémy; Joulia, Xavier; Meyer, Xuan-Mi; Troulay, Michèle; Perrais, Christophe

    2016-01-01

    Highlights: • Experimental results for the conversion of tritiated water (using deuterium as a simulant of tritium) by means of a catalytic membrane reactor in view of tritium recovery. • Phenomenological 2D model to represent catalytic membrane reactor behavior including the determination of the compositions of gaseous effluents. • Good agreement between the simulation results and experimental measurements performed on the dedicated facility. • Explanation of the unexpected behavior of the catalytic membrane reactor by the modeling results and in particular the gas composition estimation. - Abstract: In the framework of tritium recovery from tritiated water, efficiency of packed bed membrane reactors have been successfully demonstrated. Thanks to protium isotope swamping, tritium bonded water can be recovered under the valuable Q_2 form (Q = H, D or T) by means of isotope exchange reactions occurring on catalyst surface. The use of permselective Pd-based membrane allows withdrawal of reactions products all along the reactor, and thus limits reverse reaction rate to the benefit of the direct one (shift effect). The reactions kinetics, which are still little known or unknown, are generally assumed to be largely greater than the permeation ones so that thermodynamic equilibriums of isotope exchange reactions are generally assumed. This paper proposes a new phenomenological 2D model to represent catalytic membrane reactor behavior with the determination of gas effluents compositions. A good agreement was obtained between the simulation results and experimental measurements performed on a dedicated facility. Furthermore, the gas composition estimation permits to interpret unexpected behavior of the catalytic membrane reactor. In the next future, further sensitivity analysis will be performed to determine the limits of the model and a kinetics study will be conducted to assess the thermodynamic equilibrium of reactions.

  9. The ab initio study of the catalytic hydrogenation of the oxirene

    Directory of Open Access Journals (Sweden)

    J.B. Mensah

    2008-04-01

    Full Text Available The oxirene is an unsaturated heterocyclic molecule with one oxygen atom and two carbon atoms. Its hydrogenation has been performed on two catalytic site based on molybdenum disulfide (MoS2 and tungsten disulfide (WS2 of MoS3H3+ and WS3H3+ type, respectively. The calculations were carried out using the SCF and MP2 methods and B3LYP functional calculations. The results obtained showed that the hydrogenation of the oxirene is possible on these two kinds of catalytic sites on the one hand, and the reaction product is the acetaldehyde molecule, on the other hand. The reaction process study that led to the results showed that the catalytic hydrogenation of the oxirene is a dissociative process. On the basis of the variation of some parameters during the process, a mechanism of the reaction has been proposed.

  10. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction

    Science.gov (United States)

    Xu, Haoran; Chen, Bin; Zhang, Houcheng; Tan, Peng; Yang, Guangming; Irvine, John T. S.; Ni, Meng

    2018-04-01

    In this paper, 2D models for direct carbon solid oxide fuel cells (DC-SOFCs) with in situ catalytic steam-carbon gasification reaction are developed. The simulation results are found to be in good agreement with experimental data. The performance of DC-SOFCs with and without catalyst are compared at different operating potential, anode inlet gas flow rate and operating temperature. It is found that adding suitable catalyst can significantly speed up the in situ steam-carbon gasification reaction and improve the performance of DC-SOFC with H2O as gasification agent. The potential of syngas and electricity co-generation from the fuel cell is also evaluated, where the composition of H2 and CO in syngas can be adjusted by controlling the anode inlet gas flow rate. In addition, the performance DC-SOFCs and the percentage of fuel in the outlet gas are both increased with increasing operating temperature. At a reduced temperature (below 800 °C), good performance of DC-SOFC can still be obtained with in-situ catalytic carbon gasification by steam. The results of this study form a solid foundation to understand the important effect of catalyst and related operating conditions on H2O-assisted DC-SOFCs.

  11. Catalytic hydroprocessing of heavy oil feedstocks

    International Nuclear Information System (INIS)

    Okunev, A G; Parkhomchuk, E V; Lysikov, A I; Parunin, P D; Semeikina, V S; Parmon, V N

    2015-01-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references

  12. Catalytic hydroprocessing of heavy oil feedstocks

    Science.gov (United States)

    Okunev, A. G.; Parkhomchuk, E. V.; Lysikov, A. I.; Parunin, P. D.; Semeikina, V. S.; Parmon, V. N.

    2015-09-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references.

  13. On the Structural Context and Identification of Enzyme Catalytic Residues

    Directory of Open Access Journals (Sweden)

    Yu-Tung Chien

    2013-01-01

    Full Text Available Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The results show that catalytic residues have distinct structural features and context. Their neighboring residues, whether sequence or structure neighbors within specific range, are usually structurally more rigid than those of noncatalytic residues. The structural context feature is combined with support vector machine to identify catalytic residues from enzyme structure. The prediction results are better or comparable to those of recent structure-based prediction methods.

  14. Fe/Ni-N-CNFs electrochemical catalyst for oxygen reduction reaction/oxygen evolution reaction in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhuang [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Li, Mian [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Fan, Liquan; Han, Jianan [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xiong, Yueping, E-mail: ypxiong@hit.edu.cn [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-04-15

    Highlights: • Novel Fe/Ni-N-CNFs electrocatalysts are prepared by electrospinning technique. • The Fe1Ni1-N-CNFs catalyst exhibits the excellent ORR and OER catalytic activity. • Synergy of Fe/Ni alloy is responsible for the excellent catalytic performance. - Abstract: The novel of iron, nickel and nitrogen doped carbon nanofibers (Fe/Ni-N-CNFs) as bifunctional electrocatalysts are prepared by electrospinning technique. In alkaline media, the Fe/Ni-N-CNFs catalysts (especially for Fe1Ni1-N-CNFs) exhibit remarkable electrocatalytic performances of oxygen reduction reaction (ORR)/oxygen evolution reaction (OER). For ORR catalytic activity, Fe1Ni1-N-CNFs catalyst offers a higher onset potential of 0.903 V, a similar four-electron reaction pathway, and excellent stability. For OER catalytic activity, Fe1Ni1-N-CNFs catalyst possesses a lower onset potential of 1.528 V and a smaller charge transfer resistance of 48.14 Ω. The unparalleled catalytic activity of ORR and OER for the Fe1Ni1-N-CNFs is attributed to the 3D porous cross-linked microstructures of carbon nanofibers with Fe/Ni alloy, N dopant, and abundant M-N{sub x} and NiOOH as catalytic active sites. Thus, Fe1Ni1-N-CNFs catalyst can be acted as one of the efficient and inexpensive catalysts of metal-air batteries.

  15. Optimizing the Production of Renewable Aromatics via Crop Oil Catalytic Cracking

    Directory of Open Access Journals (Sweden)

    Clancy Kadrmas

    2015-04-01

    Full Text Available While HZSM-5 catalytic cracking of crop oil toward aromatics have been well documented, this work adds to this body of knowledge with a full acid byproduct analysis that provides improved mass balance closure along with a design of experiment optimization of reaction conditions. Fatty acids are an inevitable byproduct when converting any triglyceride oil, but are most often overlooked; despite the impact fatty acids have on downstream processing. Acid analysis verified that only short chain fatty acids, mainly acetic acid, were present in low quantities when all feed oil was reacted. When relatively high fatty acid amounts were present, these were mainly uncracked C16 and C18 fatty acids. Optimization is a balance of aromatics formation vs. unwanted gas products, coke and residual fatty acids. A design of experiments approach was used to provide insight into where the optimal reaction conditions reside for HZSM-5 facilitated reactions. These conditions can then form the basis for further development into a commercially viable process for the production of renewable aromatics and other byproducts.

  16. A new experimental setup for high-pressure catalytic activity measurements on surface deposited mass-selected Pt clusters

    International Nuclear Information System (INIS)

    Watanabe, Yoshihide; Isomura, Noritake

    2009-01-01

    A new experimental setup to study catalytic and electronic properties of size-selected clusters on metal oxide substrates from the viewpoint of cluster-support interaction and to formulate a method for the development of heterogeneous catalysts such as automotive exhaust catalysts has been developed. The apparatus consists of a size-selected cluster source, a photoemission spectrometer, a scanning tunneling microscope (STM), and a high-pressure reaction cell. The high-pressure reaction cell measurements provided information on catalytic properties in conditions close to practical use. The authors investigated size-selected platinum clusters deposited on a TiO 2 (110) surface using a reaction cell and STM. Catalytic activity measurements showed that the catalytic activities have a cluster-size dependency.

  17. Lumping procedure for a kinetic model of catalytic naphtha reforming

    Directory of Open Access Journals (Sweden)

    H. M. Arani

    2009-12-01

    Full Text Available A lumping procedure is developed for obtaining kinetic and thermodynamic parameters of catalytic naphtha reforming. All kinetic and deactivation parameters are estimated from industrial data and thermodynamic parameters are calculated from derived mathematical expressions. The proposed model contains 17 lumps that include the C6 to C8+ hydrocarbon range and 15 reaction pathways. Hougen-Watson Langmuir-Hinshelwood type reaction rate expressions are used for kinetic simulation of catalytic reactions. The kinetic parameters are benchmarked with several sets of plant data and estimated by the SQP optimization method. After calculation of deactivation and kinetic parameters, plant data are compared with model predictions and only minor deviations between experimental and calculated data are generally observed.

  18. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15.

    Science.gov (United States)

    Sun, Qiangqiang; Wang, Yu; Li, Laisheng; Bing, Jishuai; Wang, Yingxin; Yan, Huihua

    2015-04-09

    Comparative experiments were conducted to investigate the catalytic ability of MnO(x)/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O3/MnO(x)/SBA-15). Adsorption of CA and its intermediates by MnO(x)/SBA-15 was proved unimportant in O3/MnO(x)/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO3) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO(x)/SBA-15 facilitated the generation of hydroxyl radicals (OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO(x) on SBA-15 were believed to be the main active component in MnO(x)/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more OH. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  20. Insights into the catalytic activity of [Pd(NHC)(cin)Cl] (NHC = IPr, IPrCl, IPrBr) complexes in the Suzuki-Miyaura reaction

    KAUST Repository

    Nolan, Steven Patrick

    2017-09-06

    The influence of C4,5-halogenation on palladium N-heterocyclic carbene complexes and their activity in the Suzuki-Miyaura reaction have been investigated. Two [Pd(NHC)(cin)Cl] complexes bearing IPrCl and IPrBr ligands were synthesized. After determining electronic and steric properties of these ligands, their properties were compared to those of [Pd(IPr)(cin)Cl]. The three palladium complexes were studied using DFT calculations to delineate their behaviour in the activation step leading to the putative 12-electron active catalyst. Experimentally, their catalytic activity in the Suzuki-Miyaura reaction involving a wide range of coupling partners (30 entries) at low catalyst loading was studied.

  1. A catalytic distillation process for light gas oil hydrodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Villamil, F.D.; Marroquin, J.O.; Paz, C. de la; Rodriguez, E. [Prog. de Matematicas Aplicadas y Computacion, Prog. de Tratamiento de Crudo Maya, Instituto Mexicano del Petroleo, Mexico City, DF (Mexico)

    2004-07-01

    A light gas oil hydrodesulfurization process via catalytic distillation is developed and compared to a conventional process. By integrating the separation and reaction into a single unit, the catalytic distillation may produce a diesel with low concentration of sulfur compounds at a lower cost than the traditional reaction/separation process. The process proposed in this work is compared to an optimised conventional hydrodesulfurization unit which represents fairly well a plant that belongs to the National System of Refineries. During the optimisation of the conventional process, a compromise is established among the production of diesel and naphtha and the operating costs. The results show that the light gas oil hydrodesulfurization via catalytic distillation is as or more efficient than the conventional process. However, the removal of the sulfur compounds is carried out under less rigorous conditions. This design reduces the fix and operational costs. (author)

  2. Non Catalytic Transesterification of Vegetables Oil to Biodiesel in Sub-and Supercritical Methanol: A Kinetic’s Study

    OpenAIRE

    Nyoman Puspa Asri; Siti Machmudah; W. Wahyudiono; S. Suprapto; Kusno Budikarjono; Achmad Roesyadi; Motonobu Goto

    2013-01-01

    Non catalytic transesterification in sub and supercritical methanol have been used to produce biodiesel from palm oil and soybean oil. A kinetic study was done under reaction condition with temperature and time control. The experiments were carried out in a batch type reactor at reaction temperatures from 210 °C (subcritical condition) to 290 °C (the supercritical state) in the interval ranges of temperature of 20 °C and at various molar ratios of oil to methanol. The rate constants of the re...

  3. Flowthrough Reductive Catalytic Fractionation of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Eric M.; Stone, Michael L.; Katahira, Rui; Reed, Michelle; Beckham, Gregg T.; Román-Leshkov, Yuriy

    2017-11-01

    Reductive catalytic fractionation (RCF) has emerged as a leading biomass fractionation and lignin valorization strategy. Here, flowthrough reactors were used to investigate RCF of poplar. Most RCF studies to date have been conducted in batch, but a flow-based process enables the acquisition of intrinsic kinetic and mechanistic data essential to accelerate the design, optimization, and scale-up of RCF processes. Time-resolved product distributions and yields obtained from experiments with different catalyst loadings were used to identify and deconvolute events during solvolysis and hydrogenolysis. Multi-bed RCF experiments provided unique insights into catalyst deactivation, showing that leaching, sintering, and surface poisoning are causes for decreased catalyst performance. The onset of catalyst deactivation resulted in higher concentrations of unsaturated lignin intermediates and increased occurrence of repolymerization reactions, producing high-molecular-weight species. Overall, this study demonstrates the concept of flowthrough RCF, which will be vital for realistic scale-up of this promising approach.

  4. Computational Study of Pincer Iridium Catalytic Systems: C-H, N-H, and C-C Bond Activation and C-C Coupling Reactions

    Science.gov (United States)

    Zhou, Tian

    Computational chemistry has achieved vast progress in the last decades in the field, which was considered to be only experimental before. DFT (density functional theory) calculations have been proven to be able to be applied to large systems, while maintaining high accuracy. One of the most important achievements of DFT calculations is in exploring the mechanism of bond activation reactions catalyzed by organometallic complexes. In this dissertation, we discuss DFT studies of several catalytic systems explored in the lab of Professor Alan S. Goldman. Headlines in the work are: (1) (R4PCP)Ir alkane dehydrogenation catalysts are highly selective and different from ( R4POCOP)Ir catalysts, predicting different rate-/selectivity-determining steps; (2) The study of the mechanism for double C-H addition/cyclometalation of phenanthrene or biphenyl by (tBu4PCP)Ir(I) and ( iPr4PCP)Ir illustrates that neutral Ir(III) C-H addition products can undergo a very facile second C-H addition, particularly in the case of sterically less-crowded Ir(I) complexes; (3) (iPr4PCP)Ir pure solid phase catalyst is highly effective in producing high yields of alpha-olefin products, since the activation enthalpy for dehydrogenation is higher than that for isomerization via an allyl pathway; higher temperatures favor the dehydrogenation/isomerization ratio; (4) (PCP)Ir(H)2(N2H4) complex follows a hydrogen transfer mechanism to undergo both dehydrogenation to form N 2 and H2, as well as hydrogen transfer followed by N-N bond cleavage to form NH3, N2, and H2; (5) The key for the catalytic effect of solvent molecule in CO insertion reaction for RMn(CO)5 is hydrogen bond assisted interaction. The basicity of the solvent determines the strength of the hydrogen bond interaction during the catalytic path and determines the catalytic power of the solvent; and (6) Dehydrogenative coupling of unactivated C-H bonds (intermolecular vinyl-vinyl, intramolecular vinyl-benzyl) is catalyzed by precursors of the

  5. Effect of Ni-Co Ternary Molten Salt Catalysts on Coal Catalytic Pyrolysis Process

    Science.gov (United States)

    Cui, Xin; Qi, Cong; Li, Liang; Li, Yimin; Li, Song

    2017-08-01

    In order to facilitate efficient and clean utilization of coal, a series of Ni-Co ternary molten salt crystals are explored and the catalytic pyrolysis mechanism of Datong coal is investigated. The reaction mechanisms of coal are achieved by thermal gravimetric analyzer (TGA), and a reactive kinetic model is constructed. The microcosmic structure and macerals are observed by scanning electron microscope (SEM). The catalytic effects of ternary molten salt crystals at different stages of pyrolysis are analyzed. The experimental results show that Ni-Co ternary molten salt catalysts have the capability to bring down activation energy required by pyrolytic reactions at its initial phase. Also, the catalysts exert a preferable catalytic action on macromolecular structure decomposition and free radical polycondensation reactions. Furthermore, the high-temperature condensation polymerization is driven to decompose further with a faster reaction rate by the additions of Ni-Co ternary molten salt crystal catalysts. According to pyrolysis kinetic research, the addition of catalysts can effectively decrease the activation energy needed in each phase of pyrolysis reaction.

  6. Toward a catalytic site in DNA

    DEFF Research Database (Denmark)

    Jakobsen, Ulla; Rohr, Katja; Vogel, Stefan

    2007-01-01

    A number of functionalized polyaza crown ether building blocks have been incorporated into DNA-conjugates as catalytic Cu(2+) binding sites. The effect of the DNA-conjugate catalyst on the stereochemical outcome of a Cu(2+)-catalyzed Diels-Alder reaction will be presented....

  7. Catalytic transformation of methyl benzenes over zeolite catalysts

    KAUST Repository

    Al-Khattaf, S.

    2011-02-01

    Catalytic transformation of three methyl benzenes (toluene, m-xylene, and 1,2,4-trimethyl benzene) has been investigated over ZSM-5, TNU-9, mordenite and SSZ-33 catalysts in a novel riser simulator at different operating conditions. Catalytic experiments were carried out in the temperature range of 300-400 °C to understand the transformation of these alkyl benzenes over large pore (mordenite and SSZ-33) in contrast to medium-pore (ZSM-5 and TNU-9) zeolite-based catalysts. The effect of reaction conditions on the isomerization to disproportionation product ratio, distribution of trimethylbenzene (TMB) isomers, and p-xylene/o-xylene ratios are reported. The sequence of reactivity of the three alkyl benzenes depends upon the pore structure of zeolites. The zeolite structure controls primarily the diffusion of reactants and products while the acidity of these zeolites is of a secondary importance. In the case of medium pore zeolites, the order of conversion was m-xylene > 1,2,4-TMB > toluene. Over large pore zeolites the order of reactivity was 1,2,4-TMB > m-xylene > toluene for SSZ-33 catalyst, and m-xylene ∼ 1,2,4-TMB > toluene over mordenite. Significant effect of pore size between ZSM-5 and TNU-9 was observed; although TNU-9 is also 3D 10-ring channel system, its slightly larger pores compared with ZSM-5 provide sufficient reaction space to behave like large-pore zeolites in transformation of aromatic hydrocarbons. We have also carried out kinetic studies for these reactions and activation energies for all three reactants over all zeolite catalysts under study have been calculated. © 2011 Elsevier B.V.

  8. Catalytic applications of bio-inspired nanomaterials

    Science.gov (United States)

    Pacardo, Dennis Kien Balaong

    The biomimetic synthesis of Pd nanoparticles was presented using the Pd4 peptide, TSNAVHPTLRHL, isolated from combinatorial phage display library. Using this approach, nearly monodisperse and spherical Pd nanoparticles were generated with an average diameter of 1.9 +/- 0.4 nm. The peptide-based nanocatalyst were employed in the Stille coupling reaction under energy-efficient and environmentally friendly reaction conditions of aqueous solvent, room temperature and very low catalyst loading. To this end, the Pd nanocatalyst generated high turnover frequency (TOF) value and quantitative yields using ≥ 0.005 mol% Pd as well as catalytic activities with different aryl halides containing electron-withdrawing and electron-donating groups. The Pd4-capped Pd nanoparticles followed the atom-leaching mechanism and were found to be selective with respect to substrate identity. On the other hand, the naturally-occurring R5 peptide (SSKKSGSYSGSKGSKRRIL) was employed in the synthesis of biotemplated Pd nanomaterials which showed morphological changes as a function of Pd:peptide ratio. TOF analysis for hydrogenation of olefinic alcohols showed similar catalytic activity regardless of nanomorphology. Determination of catalytic properties of these bio-inspired nanomaterials are important as they serve as model system for alternative green catalyst with applications in industrially important transformations.

  9. [Mechanism of catalytic ozonation for the degradation of paracetamol by activated carbon].

    Science.gov (United States)

    Wang, Jia-Yu; Dai, Qi-Zhou; Yu, Jie; Yan, Yi-Zhou; Chen, Jian-Meng

    2013-04-01

    The degradation of paracetamol (APAP) in aqueous solution was studied with ozonation integrated with activated carbon (AC). The synergistic effect of ozonation/AC process was explored by comparing the degradation efficiency of APAP in three processes (ozonation alone, activated carbon alone and ozonation integrated with activated carbon). The operational parameters that affected the reaction rate were carefully optimized. Based on the intermediates detected, the possible pathway for catalytic degradation was discussed and the reaction mechanism was also investigated. The results showed that the TOC removal reached 55.11% at 60 min in the AC/O3 system, and was significantly better than the sum of ozonation alone (20.22%) and activated carbon alone (27.39%), showing the great synergistic effect. And the BOD5/COD ratio increased from 0.086 (before reaction) to 0.543 (after reaction), indicating that the biodegradability was also greatly improved. The effects of the initial concentration of APAP, pH value, ozone dosage and AC dosage on the variation of reaction rate were carefully discussed. The catalytic reaction mechanism was different at different pH values: the organic pollutions were removed by adsorption and direct ozone oxidation at acidic pH, and mainly by catalytic ozonation at alkaline pH.

  10. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.

    Science.gov (United States)

    Almonacid, Daniel E; Yera, Emmanuel R; Mitchell, John B O; Babbitt, Patricia C

    2010-03-12

    Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine

  11. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.

    Directory of Open Access Journals (Sweden)

    Daniel E Almonacid

    2010-03-01

    Full Text Available Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3 show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1 catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56% suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to

  12. Synthesis, characterization and catalytic properties of nanocrystaline Y2O3-coated TiO2 in the ethanol dehydration reaction

    International Nuclear Information System (INIS)

    Fajardo, Humberto Vieira; Longo, Elson; Leite, Edson Roberto; Libanori, Rafael; Probst, Luiz Fernando Dias; Carreno, Neftali Lenin Villarreal

    2012-01-01

    In the present study, TiO 2 nano powder was partially coated with Y 2 O 3 precursors generated by a sol-gel modified route. The system of nanocoated particles formed an ultra thin structure on the TiO 2 surfaces. The modified nanoparticles were characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD) analysis, Zeta potential and surface area through N 2 physisorption measurements. Bioethanol dehydration was used as a probe reaction to investigate the modifications on the nanoparticles surface. The process led to the obtainment of nanoparticles with important surface characteristics and catalytic behavior in the bioethanol dehydration reaction, with improved activity and particular selectivity in comparison to their non-coated analogs. The ethylene production was disfavored and selectivity toward acetaldehyde, hydrogen and ethane increased over modified nanoparticles. (author)

  13. A microcatalytic flow reactor for the study of heterogeneous catalytic reactions at elevated pressures

    Energy Technology Data Exchange (ETDEWEB)

    Belyi, A S; Fomichev, Yu V; Duplyakin, V K; Alfeev, V S

    1977-07-01

    A microcatalytic flow reactor for the study of heterogeneous catalytic reactions at elevated pressures (i.e., up to 40 atm) and nearly isothermal conditions up to 600/sup 0/C was designed for the conversion of small quantities of petrochemical feeds or feed mixtures at uniform, controllable flow rates of 0.5-5.0 cc/hr, for direct gas-chromatographic analysis of product samples at the reactor outlet, and for continuous monitoring of the degree of conversion in processes that evolve or absorb hydrogen. The device includes a feed injection system with a unique sealing feature that ensures a constant flow of liquid from a feed buret under positive displacement by a counterweight piston at very low rates into a tubular reactor of the perfect mixing type, a highly efficient vaporizer-mixer, and a two-channel sampler leading to the chromatograph. The apparatus has proved reliable, accurate, and convenient in two years of regular use. Diagrams.

  14. Identifying systematic DFT errors in catalytic reactions

    DEFF Research Database (Denmark)

    Christensen, Rune; Hansen, Heine Anton; Vegge, Tejs

    2015-01-01

    Using CO2 reduction reactions as examples, we present a widely applicable method for identifying the main source of errors in density functional theory (DFT) calculations. The method has broad applications for error correction in DFT calculations in general, as it relies on the dependence...... of the applied exchange–correlation functional on the reaction energies rather than on errors versus the experimental data. As a result, improved energy corrections can now be determined for both gas phase and adsorbed reaction species, particularly interesting within heterogeneous catalysis. We show...... that for the CO2 reduction reactions, the main source of error is associated with the C[double bond, length as m-dash]O bonds and not the typically energy corrected OCO backbone....

  15. [Kinetics of catalytic wet air oxidation of phenol in trickle bed reactor].

    Science.gov (United States)

    Li, Guang-ming; Zhao, Jian-fu; Wang, Hua; Zhao, Xiu-hua; Zhou, Yang-yuan

    2004-05-01

    By using a trickle bed reactor which was designed by the authors, the catalytic wet air oxidation reaction of phenol on CuO/gamma-Al2O3 catalyst was studied. The results showed that in mild operation conditions (at temperature of 180 degrees C, pressure of 3 MPa, liquid feed rate of 1.668 L x h(-1) and oxygen feed rate of 160 L x h(-1)), the removal of phenol can be over 90%. The curve of phenol conversion is similar to "S" like autocatalytic reaction, and is accordance with chain reaction of free radical. The kinetic model of pseudo homogenous reactor fits the catalytic wet air oxidation reaction of phenol. The effects of initial concentration of phenol, liquid feed rate and temperature for reaction also were investigated.

  16. Kinetics of catalytic reforming with Pt-Sn catalyst; Modelisation cinetique du reformage catalytique sur catalyseur Pt-Sn/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Cochegrue, H.

    2001-04-01

    Catalytic Reforming is one of the key processes for petrol refining as it produces gasoline with a high octane number and it is a main source of hydrogen. Refiners are asking for more accurate models in order to optimise their plants. An innovative methodology called 'Single Events' is very different from the classical empirical models because it takes into account the various reaction intermediates and reaction pathways. Some hypotheses based on the relative stability of the carbo-cations allow to get a small number of parameters, which are independent of the composition of the feedstock used. The main target of this work was to apply this methodology to the Catalytic Reforming. The single event network had to be first reduced to a late lumped reaction scheme, which incorporates the detailed knowledge of the elementary network while the intermediates and the reaction pathways are reduced: it can be applied now to naphtha feedstock, although the detailed composition is not yet well known. A pilot unit of Catalytic Reforming, which is representative of the industrial processes, was first designed for the kinetic experiments. Experiments with technical heptane were conducted with a fresh catalyst, which was cocked first, and with a used catalyst from a refinery plant. This latter was difficult to use because of its fast deactivation. However, the results obtained allowed to study the influence of the experimental parameters and of the poisoning by iron, and to estimate some of the main kinetic parameters of the model. (author)

  17. A thermogravimetric analysis (TGA) method to determine the catalytic conversion of cellulose from carbon-supported hydrogenolysis process

    International Nuclear Information System (INIS)

    Leal, Glauco F.; Ramos, Luiz A.; Barrett, Dean H.; Curvelo, Antonio Aprígio S.; Rodella, Cristiane B.

    2015-01-01

    Graphical abstract: - Highlights: • A new method to determine the catalytic conversion of cellulose using TGA has been developed. • TGA is able to differentiate between carbon from cellulose and carbon from the catalyst. • Building an analytical curve from TGA results enables the accurate determination of cellulose conversion. - Abstract: The ability to determine the quantity of solid reactant that has been transformed after a catalytic reaction is fundamental in accurately defining the conversion of the catalyst. This quantity is also central when investigating the recyclability of a solid catalyst as well as process control in an industrial catalytic application. However, when using carbon-supported catalysts for the conversion of cellulose this value is difficult to obtain using only a gravimetric method. The difficulty lies in weighing errors caused by loss of the solid mixture (catalyst and non-converted cellulose) after the reaction and/or moisture adsorption by the substrate. These errors are then propagated into the conversion calculation giving erroneous results. Thus, a quantitative method using thermogravimetric analysis (TGA) has been developed to determine the quantity of cellulose after a catalytic reaction by using a tungsten carbide catalyst supported on activated carbon. Stepped separation of TGA curves was used for quantitative analysis where three thermal events were identified: moisture loss, cellulose decomposition and CO/CO 2 formation. An analytical curve was derived and applied to quantify the residual cellulose after catalytic reactions which were performed at various temperatures and reaction times. The catalytic conversion was calculated and compared to the standard gravimetric method. Results showed that catalytic cellulose conversion can be determined using TGA and exhibits lower uncertainty (±2%) when compared to gravimetric determination (±5%). Therefore, it is a simple and relatively inexpensive method to determine catalytic

  18. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor

    NARCIS (Netherlands)

    Wang, Jiaobing; Feringa, B.L.

    2011-01-01

    Enzymes and synthetic chiral catalysts have found widespread application to produce single enantiomers, but in situ switching of the chiral preference of a catalytic system is very difficult to achieve. Here, we report on a light-driven molecular motor with integrated catalytic functions in which

  19. Characterization of catalytic supports based in mixed oxides for control reactions of NO and N{sub 2}O; Caracterizacion de soportes cataliticos basados en oxidos mixtos para reacciones de control de NO y N{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, M.A.; Perez H, R.; Gomez C, A.; Diaz, G. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The catalytic supports Al{sub 2}O{sub 3}, La{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-La{sub 2}O{sub 3} were prepared by the Precipitation and Coprecipitation techniques. The catalytic supports Al{sub 2}O{sub 3}, La{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-La{sub 2}O{sub 3} were characterized by several techniques to determine: texture (Bet), crystallinity (XRD), chemical composition (Sem)(Ftir) and it was evaluated their total acidity by reaction with 2-propanol. The investigation will be continued with the cobalt addition and this will be evaluated for its catalytic activity in control reactions of N O and N{sub 2}O. (Author)

  20. A study on the photocatalytic reaction of the metals and organics

    International Nuclear Information System (INIS)

    Nah, Jung Won; Cho, Yung Hyun; Sung, Ki Woong; Kim, Yong Ik; Hong, Kwang Bum; Kang, Heui Suk; Koo, Je Hyoo; Kim, Kwang Lak; Paek, Seung Woo; Lee, Han Soo; Chung, Heung Suk; Chung, Yong Won

    1994-12-01

    Lead metal ion was selected as the model one in the experiment for photo catalytic reaction containing EDTA. Disappearance rate of lead ion in solution was analyzed with control variables of initial pH value, concentration of chelating agent, and concentration ratio of metal ion and chelating agent. 31 figs, 6 tabs, 67 refs. (Author)

  1. A study on the photocatalytic reaction of the metals and organics

    Energy Technology Data Exchange (ETDEWEB)

    Nah, Jung Won; Cho, Yung Hyun; Sung, Ki Woong; Kim, Yong Ik; Hong, Kwang Bum; Kang, Heui Suk; Koo, Je Hyoo; Kim, Kwang Lak; Paek, Seung Woo; Lee, Han Soo; Chung, Heung Suk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Chung, Yong Won [In Hah Univ., Inchun (Korea, Republic of)

    1994-12-01

    Lead metal ion was selected as the model one in the experiment for photo catalytic reaction containing EDTA. Disappearance rate of lead ion in solution was analyzed with control variables of initial pH value, concentration of chelating agent, and concentration ratio of metal ion and chelating agent. 31 figs, 6 tabs, 67 refs. (Author).

  2. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    Science.gov (United States)

    Park, Jisu; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-06-01

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of -41.98 mV for the gold nanoparticles and -53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV-visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7-99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  3. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jisu [Inje University, College of Pharmacy (Korea, Republic of); Cha, Song-Hyun; Cho, Seonho [Seoul National University, Department of Naval Architecture and Ocean Engineering (Korea, Republic of); Park, Youmie, E-mail: youmiep@inje.ac.kr [Inje University, College of Pharmacy (Korea, Republic of)

    2016-06-15

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of −41.98 mV for the gold nanoparticles and −53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV–visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7–99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  4. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    International Nuclear Information System (INIS)

    Park, Jisu; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-01-01

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of −41.98 mV for the gold nanoparticles and −53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV–visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7–99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  5. Modeling of catalytically active metal complex species and intermediates in reactions of organic halides electroreduction.

    Science.gov (United States)

    Lytvynenko, Anton S; Kolotilov, Sergey V; Kiskin, Mikhail A; Eremenko, Igor L; Novotortsev, Vladimir M

    2015-02-28

    The results of quantum chemical modeling of organic and metal-containing intermediates that occur in electrocatalytic dehalogenation reactions of organic chlorides are presented. Modeling of processes that take place in successive steps of the electrochemical reduction of representative C1 and C2 chlorides - CHCl3 and Freon R113 (1,1,2-trifluoro-1,2,2-trichloroethane) - was carried out by density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2). It was found that taking solvation into account using an implicit solvent model (conductor-like screening model, COSMO) or considering explicit solvent molecules gave similar results. In addition to modeling of simple non-catalytic dehalogenation, processes with a number of complexes and their reduced forms, some of which were catalytically active, were investigated by DFT. Complexes M(L1)2 (M = Fe, Co, Ni, Cu, Zn, L1H = Schiff base from 2-pyridinecarbaldehyde and the hydrazide of 4-pyridinecarboxylic acid), Ni(L2) (H2L2 is the Schiff base from salicylaldehyde and 1,2-ethylenediamine, known as salen) and Co(L3)2Cl2, representing a fragment of a redox-active coordination polymer [Co(L3)Cl2]n (L3 is the dithioamide of 1,3-benzenedicarboxylic acid), were considered. Gradual changes in electronic structure in a series of compounds M(L1)2 were observed, and correlations between [M(L1)2](0) spin-up and spin-down LUMO energies and the relative energies of the corresponding high-spin and low-spin reduced forms, as well as the shape of the orbitals, were proposed. These results can be helpful for determination of the nature of redox-processes in similar systems by DFT. No specific covalent interactions between [M(L1)2](-) and the R113 molecule (M = Fe, Co, Ni, Zn) were found, which indicates that M(L1)2 electrocatalysts act rather like electron transfer mediators via outer-shell electron transfer. A relaxed surface scan of the adducts {M(L1)2·R113}(-) (M = Ni or Co) versus the distance between the

  6. Characterization and reaction studies of dimeric molybdenum(III) complexes with bridging dithiolate ligands. Catalytic reduction of acetylene to ethylene

    International Nuclear Information System (INIS)

    DuBois, M.R.; Haltiwanger, R.C.; Miller, D.J.; Glatzmaier, G.

    1979-01-01

    The complexes [C 5 H 5 MoSC/sub n/H/sub 2n/S] 2 (where n = 2 and 3) have been prepared by the reaction of ethylene sulfide and propylene sulfide, respectively, with C 5 H 5 MoH(CO) 3 or with [C 5 H 5 Mo(CO) 3 ] 2 . Cyclic voltammetry shows that each complex undergoes two reversible oxidations at 0.13 and 0.79 V vs. SCE (in acetonitrile with 0.1 M Bu 4 NBF 4 ). Both the one-electron and two-electron oxidation products have been synthesized and characterized by spectral and magnetic data. Electrochemical data for the oxidized complexes support the conclusion that the complexes have the same gross structural features in all three oxidation states. A single crystal of the monocation [C 5 H 5 MoSC 3 H 6 S] 2 BF 4 has been characterized by an x-ray diffraction study. The compound crystallizes in the space group C2/c with a = 18.266 (1) A, b = 9.206 (4) A, c = 12.911 (5) A, β = 100.83 (3) 0 , and V = 2128 A 3 . The metal ions of the cation are bridged by two 1,2-propanedithiolate ligands. The four sulfur atoms of these ligands form a plane which bisects the metal-metal distance. The neutral dimeric complexes undergo a unique reaction with alkenes and alkynes in which the hydrocarbon portion of the bridging dithiolate ligands is exchanged. The reaction has been characterized with olefinswith both electron-withdrawing and electron-donating substituents. When [C 5 H 5 MoSC 2 H 4 S] 2 (1) is reacted with acetylene at 25 0 C, ethene is produced and the complex [C 5 H 5 MoSC 2 H 2 S] 2 is isolated. The latter complex is reduced by hydrogen (2 atm) at 60 0 C to re-form 1. The utility of these reactions in the catalytic reduction of acetylene to ethylene has been investigated. The role of the sulfur ligands in this catalytic cycle is discussed. 50 references, 2 figures, 5 tables

  7. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion.

    Science.gov (United States)

    Pozan, Gulin Selda

    2012-06-30

    The aim of this work was to study combustion of toluene (1000ppm) over MnO(2) modified with different supports. α-Al(2)O(3) and γ-Al(2)O(3) obtained from Boehmite, γ-Al(2)O(3) (commercial), SiO(2), TiO(2) and ZrO(2) were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO(2) was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO(2)/α-Al(2)O(3)(B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289°C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Catalytic pyrolysis of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Vail' eva, N A; Buyanov, R A

    1979-01-01

    Catalytic pyrolysis of petroleum fractions (undecane) was performed with the object of clarifying such questions as the mechanism of action of the catalyst, the concepts of activity and selectivity of the catalyst, the role of transport processes, the temperature ranges and limitations of the catalytic process, the effect of the catalyst on secondary processes, and others. Catalysts such as quartz, MgO, Al/sub 2/O/sub 3/, were used. Analysis of the experimental findings and the fact that the distribution of products is independent of the nature of the surface, demonstrate that the pyrolysis of hydrocarbons in the presence of catalysts is based on the heterogeneous-homogeneous radical-chain mechanism of action, and that the role of the catalysts reduces to increasing the concentration of free radicals. The concept of selectivity cannot be applied to catalysts here, since they do not affect the mechanism of the unfolding of the process of pyrolysis and their role consists solely in initiating the process. In catalytic pyrolysis the concepts of kinetic and diffusive domains of unfolding of the catalytic reaction do not apply, and only the outer surface of the catalyst is engaged, whereas the inner surface merely promotes deletorious secondary processes reducing the selectivity of the process and the activity of the catalyst. 6 references, 2 figures.

  9. Halide-Enhanced Catalytic Activity of Palladium Nanoparticles Comes at the Expense of Catalyst Recovery

    Directory of Open Access Journals (Sweden)

    Azzedine Bouleghlimat

    2017-09-01

    Full Text Available In this communication, we present studies of the oxidative homocoupling of arylboronic acids catalyzed by immobilised palladium nanoparticles in aqueous solution. This reaction is of significant interest because it shares a key transmetallation step with the well-known Suzuki-Miyaura cross-coupling reaction. Additives can have significant effects on catalysis, both in terms of reaction mechanism and recovery of catalytic species, and our aim was to study the effect of added halides on catalytic efficiency and catalyst recovery. Using kinetic studies, we have shown that added halides (added as NaCl and NaBr can increase the catalytic activity of the palladium nanoparticles more than 10-fold, allowing reactions to be completed in less than half a day at 30 °C. However, this increased activity comes at the expense of catalyst recovery. The results are in agreement with a reaction mechanism in which, under conditions involving high concentrations of chloride or bromide, palladium leaching plays an important role. Considering the evidence for analogous reactions occurring on the surface of palladium nanoparticles under different reaction conditions, we conclude that additives can exert a significant effect on the mechanism of reactions catalyzed by nanoparticles, including switching from a surface reaction to a solution reaction. The possibility of this switch in mechanism may also be the cause for the disagreement on this topic in the literature.

  10. Investigations on the heterogenous catalytic hydrogenation using isotope effect and gamma- and neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kudlacek, R; Cabicar, J [Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Katedra Jaderne Chemie

    1976-01-01

    The kinetic and solvent isotope effects during the maleic acid heterogeneous catalytic hydrogenation and deuteration in light and heavy water have been studied. Also the effect of the gamma and neutron irradiation on the Ni-ZnO catalysts (with various ratios of components) on the reaction kinetics and mechanism has been measured, as well as the effect of pH on the adsorption behaviour of maleic acid and the temperature dependence of the reaction rate. Existence of different adsorption centers for hydrogen and maleic acid could be deduced from these experiments. A reaction mechanism based on the two-dimensional diffusion of components in the surface is proposed. The catalyst is formed from Ni and ZnO-microspheres. Hydrogen is bound to nickel and maleic acid is adsorbed on the ZnO-microspheres. The reaction takes place on the boundary layers of these microspheres.

  11. Memorable Experiences with Sad Music—Reasons, Reactions and Mechanisms of Three Types of Experiences

    Science.gov (United States)

    Peltola, Henna-Riikka

    2016-01-01

    Reactions to memorable experiences of sad music were studied by means of a survey administered to a convenience (N = 1577), representative (N = 445), and quota sample (N = 414). The survey explored the reasons, mechanisms, and emotions of such experiences. Memorable experiences linked with sad music typically occurred in relation to extremely familiar music, caused intense and pleasurable experiences, which were accompanied by physiological reactions and positive mood changes in about a third of the participants. A consistent structure of reasons and emotions for these experiences was identified through exploratory and confirmatory factor analyses across the samples. Three types of sadness experiences were established, one that was genuinely negative (Grief-Stricken Sorrow) and two that were positive (Comforting Sorrow and Sweet Sorrow). Each type of emotion exhibited certain individual differences and had distinct profiles in terms of the underlying reasons, mechanisms, and elicited reactions. The prevalence of these broad types of emotional experiences suggested that positive experiences are the most frequent, but negative experiences were not uncommon in any of the samples. The findings have implications for measuring emotions induced by music and fiction in general, and call attention to the non-pleasurable aspects of these experiences. PMID:27300268

  12. Study on solar chemical heat pump system. Basic experiment on falling film reaction for dehydrogenation of 2-propanol; Solar chemical heat pump no kenkyu. 2-propanol bunkai hanno ni okeru ryuka ekimakushiki hanno jikken

    Energy Technology Data Exchange (ETDEWEB)

    Doi, T; Ando, Y; Tanaka, T; Takashima, T [Electrochemical Laboratory, Tsukuba (Japan); Nomura, T; Kamoshida, J [Shibaura Institute of Technology, Tokyo (Japan)

    1996-10-27

    An experiment and the examination were carried out in order to elucidate the optimum conditions in the falling liquid film reaction method, in the conversion of solar energy using the decomposition reaction of 2-propanol. The device for the experiment was constituted of a reaction container, tubular pump, cooling pipe, sampling container for effluent from the upper and lower part of the reaction container, and gas burette. Examined in the experiment were various factors such as a fibrous activated carbon (catalyst support), ratio for carrying catalyst, catalytic composition and heating temperature. In the experiment, with the temperature inside the reaction container fully stabilized under prescribed conditions, measurement was done for the hydrogen generation by the gas burette for 10 minutes as well as for the sampling of effluent. The experiment revealed that the heat utilization ratio reached the maximum of about 27% when the heating temperature was 90{degree}C using a catalyst with the ratio of RU and Pt 1 to 1 and the ratio for carrying catalyst 10wt%, so that a great improvement was obtained in the heat utilization ratio at a low temperature. Also obtained was a large inversion ratio of about 15%. 4 refs., 6 figs., 5 tabs.

  13. Catalytic asymmetric synthesis of the alkaloid (+)-myrtine

    NARCIS (Netherlands)

    Pizzuti, Maria Gabriefla; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    A new protocol for the asymmetric synthesis of trans-2,6-disubstituted-4-piperidones has been developed using a catalytic enantioselective conjugate addition reaction in combination with a diastereoselective lithiation-substitution sequence; an efficient synthesis of (+)-myrtine has been achieved

  14. In situ NMR studies of reactions on catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Haw, James F [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry

    1994-12-31

    Zeolites are useful in the synthesis of fine chemicals. The systematic understanding of organic chemistry of zeolite catalysis may contribute to: the elucidation of reaction mechanisms of existing catalytic processes; the discovery of new catalytic reactions; the application of zeolite catalysis to the synthesis of fine chemicals. This work presents species of zeolites identified by in situ NMR; reactions of organic chemicals on zeolites and proposes mechanisms as well as reactivity trends 3 refs., 7 tabs.

  15. A Dynamic Supramolecular System Exhibiting Substrate Selectivity in the Catalytic Epoxidation of Olefins

    DEFF Research Database (Denmark)

    Jonsson, Stefan; Odille, Fabrice G. J.; Norrby, Per-Ola

    2005-01-01

    A dynamic supramolecular system involving hydrogen bonding between a Mn(III) salen catalyst and a Zn(II) porphyrin receptor exhibits selectivity for pyridine appended cis-beta-substituted styrene derivatives over phenyl appended derivatives in a catalytic epoxidation reaction.......A dynamic supramolecular system involving hydrogen bonding between a Mn(III) salen catalyst and a Zn(II) porphyrin receptor exhibits selectivity for pyridine appended cis-beta-substituted styrene derivatives over phenyl appended derivatives in a catalytic epoxidation reaction....

  16. A new surface catalytic model for silica-based thermal protection material for hypersonic vehicles

    Directory of Open Access Journals (Sweden)

    Li Kai

    2015-10-01

    Full Text Available Silica-based materials are widely employed in the thermal protection system for hypersonic vehicles, and the investigation of their catalytic characteristics is crucially important for accurate aerothermal heating prediction. By analyzing the disadvantages of Norman’s high and low temperature models, this paper combines the two models and proposes an eight-reaction combined surface catalytic model to describe the catalysis between oxygen and silica surface. Given proper evaluation of the parameters according to many references, the recombination coefficient obtained shows good agreement with experimental data. The catalytic mechanisms between oxygen and silica surface are then analyzed. Results show that with the increase of the wall temperature, the dominant reaction contributing to catalytic coefficient varies from Langmuir–Hinshelwood (LH recombination (TW  1350 K. The surface coverage of chemisorption areas varies evidently with the dominant reactions in the high temperature (HT range, while the surface coverage of physisorption areas varies within quite low temperature (LT range (TW < 250 K. Recommended evaluation of partial parameters is also given.

  17. Synthesis, characterization and catalytic properties of nanocrystaline Y2O3-coated TiO2 in the ethanol dehydration reaction

    Directory of Open Access Journals (Sweden)

    Humberto Vieira Fajardo

    2012-04-01

    Full Text Available In the present study, TiO2 nanopowder was partially coated with Y2O3 precursors generated by a sol-gel modified route. The system of nanocoated particles formed an ultra thin structure on the TiO2 surfaces. The modified nanoparticles were characterized by high resolution transmission electron microscopy (HR-TEM, X-ray diffraction (XRD analysis, Zeta potential and surface area through N2 fisisorption measurements. Bioethanol dehydration was used as a probe reaction to investigate the modifications on the nanoparticles surface. The process led to the obtainment of nanoparticles with important surface characteristics and catalytic behavior in the bioethanol dehydration reaction, with improved activity and particular selectivity in comparison to their non-coated analogs. The ethylene production was disfavored and selectivity toward acetaldehyde, hydrogen and ethane increased over modified nanoparticles.

  18. Hybrid plasma-catalytic reforming of ethanol aerosol

    International Nuclear Information System (INIS)

    Solomenko, O.V.; Nedybaliuk, O.A.; Chernyak, V.Ya.; Iukhymenko, V.V.; Veremii, Iu.P.; Iukhymenko, K.V.; Martysh, E.V.; Fedirchyk, I.I.; Demchina, V.P.; Levko, D.S.; Tsymbalyuk, O.M.; Liptuga, A.I.; Dragnev, S.V.

    2015-01-01

    Hybrid plasma-catalytic reforming of the ethanol aerosol with plasma activation of only the oxidant (air) was studied. Part of the oxidant (∼20%) was activated by means of rotational gliding arc with solid electrodes and injected into the reaction (pyrolytic) chamber as a plasma torch. This part of the oxidant interacted with a mixture of hydrocarbons and the rest of the oxidant (∼80%) in the reaction chamber. Temperature changes in the reaction chamber, the composition of the synthesis-gas and the products of synthesis-gas combustion were analyzed

  19. Understanding organometallic reaction mechanisms and catalysis experimental and computational tools computational and experimental tools

    CERN Document Server

    Ananikov, Valentin P

    2014-01-01

    Exploring and highlighting the new horizons in the studies of reaction mechanisms that open joint application of experimental studies and theoretical calculations is the goal of this book. The latest insights and developments in the mechanistic studies of organometallic reactions and catalytic processes are presented and reviewed. The book adopts a unique approach, exemplifying how to use experiments, spectroscopy measurements, and computational methods to reveal reaction pathways and molecular structures of catalysts, rather than concentrating solely on one discipline. The result is a deeper

  20. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  1. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  2. Catalytic Conversion of Cellulose to Levulinic Acid by Metal Chlorides

    Directory of Open Access Journals (Sweden)

    Beixiao Zhang

    2010-08-01

    Full Text Available The catalytic performance of various metal chlorides in the conversion of cellulose to levulinic acid in liquid water at high temperatures was investigated. The effects of reaction parameters on the yield of levulinic acid were also explored. The results showed that alkali and alkaline earth metal chlorides were not effective in conversion of cellulose, while transition metal chlorides, especially CrCl3, FeCl3 and CuCl2 and a group IIIA metal chloride (AlCl3, exhibited high catalytic activity. The catalytic performance was correlated with the acidity of the reaction system due to the addition of the metal chlorides, but more dependent on the type of metal chloride. Among those metal chlorides, chromium chloride was found to be exceptionally effective for the conversion of cellulose to levulinic acid, affording an optimum yield of 67 mol % after a reaction time of 180 min, at 200 °C, with a catalyst dosage of 0.02 M and substrate concentration of 50 wt %. Chromium metal, most of which was present in its oxide form in the solid sample and only a small part in solution as Cr3+ ion, can be easily separated from the resulting product mixture and recycled. Finally, a plausible reaction scheme for the chromium chloride catalyzed conversion of cellulose in water was proposed.

  3. Kinetic equation of heterogeneous catalytic isotope exchange

    Energy Technology Data Exchange (ETDEWEB)

    Trokhimets, A I [AN Belorusskoj SSR, Minsk. Inst. Fiziko-Organicheskoj Khimii

    1979-12-01

    A kinetic equation is derived for the bimolecular isotope exchange reaction between AXsub(n)sup(*) and BXsub(m)sup(o), all atoms of element X in each molecule being equivalent. The equation can be generalized for homogeneous and heterogeneous catalytic isotope exchange.

  4. Effect of radioactive radiation on catalytic properties of solid materials

    Energy Technology Data Exchange (ETDEWEB)

    Sokol' skii, D V; Kuzembaev, K K; Kel' man, I V [AN Kazakhskoj SSR, Alma-Ata. Inst. Organicheskogo Kataliza i Ehlektrokhimii

    1977-05-01

    General survey is made of the problem of radiation modification of the action of solid catalysts with respect to the various types of heterogeneous catalytic reactions. Consideration is given to the key mechanisms responsible for radiation damage in the interaction of high-energy radiation with a solid body. The effect of ionizing radiation on the adsorption capacity and catalytic activity of solid bodies is discussed.

  5. Computational Chemical Kinetics for the Reaction of Criegee Intermediate CH2OO with HNO3 and Its Catalytic Conversion to OH and HCO.

    Science.gov (United States)

    Raghunath, P; Lee, Yuan-Pern; Lin, M C

    2017-05-25

    The kinetics and mechanisms for the reaction of the Criegee intermediate CH 2 OO with HNO 3 and the unimolecular decomposition of its reaction product CH 2 (O)NO 3 are important in atmospheric chemistry. The potential-energy profile of the reactions predicted with the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ method shows that the initial association yields a prereaction complex that isomerizes by H migration to yield excited intermediate nitrooxymethyl hydroperoxide NO 3 CH 2 OOH* with internal energy ∼44 kcal mol -1 . A fragmentation of this excited intermediate produces CH 2 (O)NO 3 + OH with its transition state located 5.0 kcal mol -1 below that of the reactants. Further decomposition of CH 2 (O)NO 3 produces HCO + HNO 3 , forming a catalytic cycle for destruction of CH 2 OO by HNO 3 . The rate coefficients and product-branching ratios were calculated in the temperature range 250-700 K at pressure 20-760 Torr (N 2 ) using the variational-transition-state and Rice-Ramsperger-Kassel-Marcus (RRKM) theories. The predicted total rate coefficient for reaction CH 2 OO + HNO 3 at 295 K, 5.1 × 10 -10 cm 3 molecule -1 s -1 , agrees satisfactorily with the experimental value, (5.4 ± 1.0) × 10 -10 cm 3 molecule -1 s -1 . The predicted branching ratios at 295 K are 0.21 for the formation of NO 3 CH 2 OOH and 0.79 for CH 2 (O)NO 3 + OH at a pressure of 40 Torr (N 2 ), and 0.79 for the formation of NO 3 CH 2 OOH and 0.21 for CH 2 (O)NO 3 + OH at 760 Torr (N 2 ). This new catalytic conversion of CH 2 OO to HCO + OH by HNO 3 might have significant impact on atmospheric chemistry.

  6. Redox and Lewis acid relay catalysis: a titanocene/zinc catalytic platform in the development of multicomponent coupling reactions.

    Science.gov (United States)

    Gianino, Joseph B; Campos, Catherine A; Lepore, Antonio J; Pinkerton, David M; Ashfeld, Brandon L

    2014-12-19

    A titanocene-catalyzed multicomponent coupling is described herein. Using catalytic titanocene, phosphine, and zinc dust, zinc acetylides can be generated from the corresponding iodoalkynes to affect sequential nucleophilic additions to aromatic aldehydes. The intermediate propargylic alkoxides are trapped in situ with acetic anhydride, which are susceptible to a second nucleophilic displacement upon treatment with a variety of electron-rich species, including acetylides, allyl silanes, electron-rich aromatics, silyl enol ethers, and silyl ketene acetals. Additionally, employing cyclopropane carboxaldehydes led to ring-opened products resulting from iodine incorporation. Taken together, these results form the basis for a new mode of three-component coupling reactions, which allows for rapid access to value added products in a single synthetic operation.

  7. In situ formed catalytically active ruthenium nanocatalyst in room temperature dehydrogenation/dehydrocoupling of ammonia-borane from Ru(cod)(cot) precatalyst.

    Science.gov (United States)

    Zahmakiran, Mehmet; Ayvalı, Tuğçe; Philippot, Karine

    2012-03-20

    The development of simply prepared and effective catalytic materials for dehydrocoupling/dehydrogenation of ammonia-borane (AB; NH(3)BH(3)) under mild conditions remains a challenge in the field of hydrogen economy and material science. Reported herein is the discovery of in situ generated ruthenium nanocatalyst as a new catalytic system for this important reaction. They are formed in situ during the dehydrogenation of AB in THF at 25 °C in the absence of any stabilizing agent starting with homogeneous Ru(cod)(cot) precatalyst (cod = 1,5-η(2)-cyclooctadiene; cot = 1,3,5-η(3)-cyclooctatriene). The preliminary characterization of the reaction solutions and the products was done by using ICP-OES, ATR-IR, TEM, XPS, ZC-TEM, GC, EA, and (11)B, (15)N, and (1)H NMR, which reveal that ruthenium nanocatalyst is generated in situ during the dehydrogenation of AB from homogeneous Ru(cod)(cot) precatalyst and B-N polymers formed at the initial stage of the catalytic reaction take part in the stabilization of this ruthenium nanocatalyst. Moreover, following the recently updated approach (Bayram, E.; et al. J. Am. Chem. Soc.2011, 133, 18889) by performing Hg(0), CS(2) poisoning experiments, nanofiltration, time-dependent TEM analyses, and kinetic investigation of active catalyst formation to distinguish single metal or in the present case subnanometer Ru(n) cluster-based catalysis from polymetallic Ru(0)(n) nanoparticle catalysis reveals that in situ formed Ru(n) clusters (not Ru(0)(n) nanoparticles) are kinetically dominant catalytically active species in our catalytic system. The resulting ruthenium catalyst provides 120 total turnovers over 5 h with an initial turnover frequency (TOF) value of 35 h(-1) at room temperature with the generation of more than 1.0 equiv H(2) at the complete conversion of AB to polyaminoborane (PAB; [NH(2)BH(2)](n)) and polyborazylene (PB; [NHBH](n)) units.

  8. Catalytic conversion of CO, NO and SO2 on supported sulfide catalysts. Part 2. Catalytic reduction of NO and SO2 by CO

    International Nuclear Information System (INIS)

    Zhuang, S.-X.; Yamazaki, M.; Omata, K.; Takahashi, Y.; Yamada, M.

    2001-01-01

    To investigate the possibility of simultaneous catalytic reduction of NO and SO 2 by CO, reactions of NO, NO-CO, and NO-SO 2 -CO were performed on γ-alumina-supported sulfides of transition metals including Co, Mo, CoMo and FeMo. NO was decomposed into N 2 O and N 2 accompanied with the formation of SO 2 ; this serious oxidation of lattice sulfur resulted in the deactivation of the catalysts. The addition of CO to the NO stream suppressed SO 2 formation and yielded COS instead. A stoichiometric conversion of NO and CO to N 2 and CO 2 was observed above 350C on the CoMo and the FeMo catalysts. Although the CO addition lengthened catalyst life, it was not enough to maintain activity. After the NO-CO reaction, an XPS analysis showed the growth of Mo 6+ and SO 4 2- peaks, especially for the sulfided FeMo/Al 2 O 3 ; the FeMo catalyst underwent strong oxidation in the NO-CO reaction. The NO and the NO-CO reactions proceeded non-catalytically, consuming catalyst lattice sulfur to yield SO 2 or COS. The addition of SO 2 in the NO-CO system enabled in situ regeneration of the catalysts; the catalysts oxidized through abstraction of lattice sulfur experienced anew reduction and sulfurization through the SO 2 -CO reaction at higher temperature. NO and SO 2 were completely and catalytically converted at 400C on the sulfided CoMo/Al 2 O 3 . By contrast, the sulfided FeMo/Al 2 O 3 was easily oxidized by NO and hardly re-sulfided under the test conditions. Oxidation states of the metals before and after the reactions were determined. Silica and titania-supported CoMo catalysts were also evaluated to study support effects

  9. Highly enantioselective catalytic cross-dehydrogenative coupling of N-carbamoyl tetrahydroisoquinolines and terminal alkynes.

    Science.gov (United States)

    Sun, Shutao; Li, Chengkun; Floreancig, Paul E; Lou, Hongxiang; Liu, Lei

    2015-04-03

    The first catalytic asymmetric cross-dehydrogenative coupling of cyclic carbamates and terminal alkynes has been established. The reaction features high enantiocontrol and excellent functional group tolerance and displays a wide range of structurally and electronically diverse carbamates as well as terminal alkynes. N-Acyl hemiaminals were identified as the reactive intermediates through preliminary control experiments. Employing readily removable carbamates as substrates rather than traditionally adopted N-aryl amines allows applications in complex molecule synthesis and therefore advances the C-H functionalization strategy to a synthetically useful level.

  10. Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction

    Science.gov (United States)

    Wang, Hongjing; Yu, Hongjie; Li, Yinghao; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-04-01

    The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.

  11. Solid strong base K-Pt/NaY zeolite nano-catalytic system for completed elimination of formaldehyde at room temperature

    Science.gov (United States)

    Song, Shaoqing; Wu, Xi; Lu, Changhai; Wen, Meicheng; Le, Zhanggao; Jiang, Shujuan

    2018-06-01

    Solid strong base nano-catalytic system of K-modification NaY zeolite supported 0.08% Pt (K-Pt/NaY) were constructed for eliminating HCHO at room temperature. In the catalytic process, activation energy over K-Pt/NaY nano-catalytic system was greatly decreased along with the enhanced reaction rate. Characterization and catalytic tests revealed the surface electron structure of K-Pt/NaY was improved, as reflected by the enhanced HCHO adsorption capability, high sbnd OH concentration, and low-temperature reducibility. Therefore, the optimal K-Pt/NaY showed high catalytic efficiency and strong H2O tolerance for HCHO elimination by directly promoting the reaction between active sbnd OH and formate species. These results may suggest a new way for probing the advanced solid strong base nano-catalytic system for the catalytic elimination of indoor HCHO.

  12. Probing the Catalytic Mechanism of S-Ribosylhomocysteinase (LuxS) with Catalytic Intermediates and Substrate Analogues

    Energy Technology Data Exchange (ETDEWEB)

    Gopishetty, Bhaskar; Zhu, Jinge; Rajan, Rakhi; Sobczak, Adam J.; Wnuk, Stanislaw F.; Bell, Charles E.; Pei, Dehua; (OSU); (FIU)

    2009-05-12

    S-Ribosylhomocysteinase (LuxS) cleaves the thioether bond in S-ribosylhomocysteine (SRH) to produce homocysteine (Hcys) and 4,5-dihydroxy-2,3-pentanedione (DPD), the precursor of the type II bacterial quorum sensing molecule (AI-2). The catalytic mechanism of LuxS comprises three distinct reaction steps. The first step involves carbonyl migration from the C1 carbon of ribose to C2 and the formation of a 2-ketone intermediate. The second step shifts the C=O group from the C2 to C3 position to produce a 3-ketone intermediate. In the final step, the 3-ketone intermediate undergoes a {beta}-elimination reaction resulting in the cleavage of the thioether bond. In this work, the 3-ketone intermediate was chemically synthesized and shown to be chemically and kinetically competent in the LuxS catalytic pathway. Substrate analogues halogenated at the C3 position of ribose were synthesized and reacted as time-dependent inhibitors of LuxS. The time dependence was caused by enzyme-catalyzed elimination of halide ions. Examination of the kinetics of halide release and decay of the 3-ketone intermediate catalyzed by wild-type and mutant LuxS enzymes revealed that Cys-84 is the general base responsible for proton abstraction in the three reaction steps, whereas Glu-57 likely facilitates substrate binding and proton transfer during catalysis.

  13. Catalytic properties of niobium compounds

    International Nuclear Information System (INIS)

    Tanabe, K.; Iizuka, T.

    1983-04-01

    The catalytic activity and selectivity of niobium compounds including oxides, salts, organometallic compounds and others are outlined. The application of these compounds as catalysts to diversified reactions is reported. The nature and action of niobium catalysts are characteristic and sometimes anomalous, suggesting the necessity of basic research and the potential use as catalysts for important processes in the chemical industry. (Author) [pt

  14. Comparative study on catalytic behavior of polynuclear Mg-Mo-complex and FeMo-co-factor of nitrogenase in reactions with C2H2, N2 and CO

    International Nuclear Information System (INIS)

    Bardina, N.V.; Bazhenova, T.A.; Petrova, G.N.; Shilova, A.K.; Shilov, A.E.

    2006-01-01

    Catalytic reduction kinetics of C 2 H 2 in the presence of the Mg-Mo-cluster {[Mg 2 Mo 8 O 22 (MeO) 6 (MeOH) 4 ] 2- [Mg(MeOH) 6 ] 2+ }·6MeOH 1 is studied. Several interdependent coordinating centers are active in reference to substrates and inhibitors in the polynuclear Mg-Mo-complex, as in the reduced by europium amalgam (μ 6 -N)MoFe 7 S 9 ·homocitrate (FeMoco, 2). Comparison of regularities in reduction mechanism of C 2 H 2 , N 2 and CO with the participation of synthetic polynuclear complex 1 and natural cluster 2 is conducted. Regularities of the studied reactions in the systems involving natural catalytic cluster FeMoco and the synthetic Mg-Mo-complex modelling of its effect are noted to be similar. The main variations the systems show as regards to the reaction with molecular nitrogen [ru

  15. Structural analysis of CuO / CeO{sub 2}-based catalytic materials intended for PROX reaction: Part I; Analise estrutural de materiais cataliticos a base de CuO/CeO{sub 2} destinados a reacao de PROX: parte I

    Energy Technology Data Exchange (ETDEWEB)

    Neiva, L.S.; Simoes, A.N.; Bispo, A.; Ribeiro, M.A.; Gama, L., E-mail: lsoutoneiva@yahoo.com.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Aademica de Engenharia de Materiais

    2011-07-01

    This work relates the synthesis process of CuO/CeO{sub 2} catalytic materials by a combustion reaction method as well as it introduces a structural analysis of the developed material, this structural analysis had as main focus to evaluate the influence of the doping substance (CuO) when being incorporated in the hostess matrix structure that is CeO{sub 2}. The CuO/CeO catalytic materials developed in this work are destined to preferential oxidation of CO reaction (PROX). The developed materials were characterized by XRD, SEM and textural complete analysis by the BET method. According to the results, the CuO incorporation changed crystallinity of the structure of the catalytic materials. On the other hand, the morphologic and textural characteristics did not showed significant differences regarding the presence of the doping substance (CuO) in the structure of the developed materials. The porosity of the structures of the developed catalytic materials belongs to the type macroporous. (author)

  16. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution

    Science.gov (United States)

    Salem, Mohamed A.; Bakr, Eman A.; El-Attar, Heba G.

    2018-01-01

    Platinum/silver (Pt@Ag) and palladium/silver (Pd@Ag) core/shell NPs have been synthesized in two steps reaction using the citrate method. The progress of nanoparticle formation was followed by the UV/Vis spectroscopy. Transmission electron microscopy revealed spherical shaped core/shell nanoparticles with average particle diameter 32.17 nm for Pt@Ag and 8.8 nm for Pd@Ag. The core/shell NPs were further characterized by FT-IR and XRD. Reductive degradation of the Congo red dye was chosen to demonstrate the excellent catalytic activity of these core/shell nanostructures. The nanocatalysts act as electron mediators for the transfer of electrons from the reducing agent (NaBH4) to the dye molecules. Effect of reaction parameters such as nanocatalyst dose, dye and NaBH4 concentrations on the dye degradation was investigated. A comparison between the catalytic activities of both nanocatalysts was made to realize which of them the best in catalytic performance. Pd@Ag was the higher in catalytic activity over Pt@Ag. Such greater activity is originated from the smaller particle size and larger surface area. Pd@Ag nanocatalyst was catalytically stable through four subsequent reaction runs under the utilized reaction conditions. These findings can thus be considered as possible economical alternative for environmental safety against water pollution by dyes.

  17. Catalytic site interactions in yeast OMP synthase

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Barr, Eric W.; Jensen, Kaj Frank

    2014-01-01

    45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal...

  18. The Catalytic Enantioselective Total Synthesis of (+)‐Liphagal

    DEFF Research Database (Denmark)

    Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.

    2011-01-01

    Ring a ding: The first catalytic enantioselective total synthesis of the meroterpenoid natural product (+)-liphagal is disclosed. The approach showcases a variety of technology including enantioselective enolate alkylation, a photochemical alkyne-alkene [2+2] reaction, microwaveassisted metal...

  19. Self-catalytic stabilized Ag-Cu nanoparticles with tailored SERS response for plasmonic photocatalysis

    Science.gov (United States)

    He, Lili; Liu, Changqing; Tang, Jia; Zhou, Youchen; Yang, Hui; Liu, Ruiyu; Hu, Jiugang

    2018-03-01

    In-situ SERS monitoring of direct plasmon-driven photocatalysis was achieved using relatively earth-abundant Cu NPs following their decoration with tiny amounts of silver, which promoted excellent SERS and high catalytic activity. The SERS and catalytic performance of the Ag-Cu NPs can be tuned by changing their composition. In particular, it was found that the surface oxidation state of copper could be switched to its metallic state via self-plasmon catalysis under laser irradiation, highlighting the potential of air-unstable copper NPs as stable plasmonic catalysts. These dual functional Ag-Cu NPs were used for SERS real-time monitoring of plasmon-driven photocatalysis reactions involving the degradation of Rhodamine 6G and the dimerization of 4-nitrothiophenol. The corresponding catalytic reaction mechanisms were discussed.

  20. Catalytic Synthesis of Nitriles in Continuous Flow

    DEFF Research Database (Denmark)

    Nordvang, Emily Catherine

    The objective of this thesis is to report the development of a new, alternative process for the flexible production of nitrile compounds in continuous flow. Nitriles are an important class of compounds that find applications as solvents, chemical intermediates and pharmaceutical compounds......, alternative path to acetonitrile from ethanol via the oxidative dehydrogenation of ethylamine. The catalytic activity and product ratios of the batch and continuous flow reactions are compared and the effect of reaction conditions on the reaction is investigated. The effects of ammonia in the reaction...... dehydrogenation of ethylamine and post-reaction purging.Chapter 4 outlines the application of RuO2/Al2O3 catalysts to the oxidative dehydrogenation of benzylamine in air, utilizing a new reaction setup. Again, batch and continuous flow reactions are compared and the effects of reaction conditions, ammonia...

  1. Novel Metal Nanomaterials and Their Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Jiaqing Wang

    2015-09-01

    Full Text Available In the rapidly developing areas of nanotechnology, nano-scale materials as heterogeneous catalysts in the synthesis of organic molecules have gotten more and more attention. In this review, we will summarize the synthesis of several new types of noble metal nanostructures (FePt@Cu nanowires, Pt@Fe2O3 nanowires and bimetallic Pt@Ir nanocomplexes; Pt-Au heterostructures, Au-Pt bimetallic nanocomplexes and Pt/Pd bimetallic nanodendrites; Au nanowires, CuO@Ag nanowires and a series of Pd nanocatalysts and their new catalytic applications in our group, to establish heterogeneous catalytic system in “green” environments. Further study shows that these materials have a higher catalytic activity and selectivity than previously reported nanocrystal catalysts in organic reactions, or show a superior electro-catalytic activity for the oxidation of methanol. The whole process might have a great impact to resolve the energy crisis and the environmental crisis that were caused by traditional chemical engineering. Furthermore, we hope that this article will provide a reference point for the noble metal nanomaterials’ development that leads to new opportunities in nanocatalysis.

  2. Bimetallic Nanoparticles in Alternative Solvents for Catalytic Purposes

    Directory of Open Access Journals (Sweden)

    Trung Dang-Bao

    2017-07-01

    Full Text Available Bimetallic nanoparticles represent attractive catalytic systems thanks to the synergy between both partners at the atomic level, mainly induced by electronic effects which in turn are associated with the corresponding structures (alloy, core-shell, hetero-dimer. This type of engineered material can trigger changes in the kinetics of catalyzed processes by variations on the electrophilicity/nucleophilicity of the metal centers involved and also promote cooperative effects to foster organic transformations, including multi-component and multi-step processes. Solvents become a crucial factor in the conception of catalytic processes, not only due to their environmental impact, but also because they can preserve the bimetallic structure during the catalytic reaction and therefore increase the catalyst life-time. In this frame, the present review focuses on the recent works described in the literature concerning the synthesis of bimetallic nanoparticles in non-conventional solvents, i.e., other than common volatile compounds, for catalytic applications.

  3. Catalytic oxidation of cyclohexane to cyclohexanone

    Indian Academy of Sciences (India)

    ... a precursor and characterized by chemical analysis using the ICP–AES method, XRD, TEM, FTIR and BET surface area determination. The oxidation reaction was carried out at 70°C under atmospheric pressure. The results showed the catalytic performance of Pt/Al2O3 as being very high in terms of turnover frequency.

  4. Size control and catalytic activity of bio-supported palladium nanoparticles.

    Science.gov (United States)

    Søbjerg, Lina Sveidal; Lindhardt, Anders T; Skrydstrup, Troels; Finster, Kai; Meyer, Rikke Louise

    2011-07-01

    The development of nanoparticles has greatly improved the catalytic properties of metals due to the higher surface to volume ratio of smaller particles. The production of nanoparticles is most commonly based on abiotic processes, but in the search for alternative protocols, bacterial cells have been identified as excellent scaffolds of nanoparticle nucleation, and bacteria have been successfully employed to recover and regenerate platinum group metals from industrial waste. We report on the formation of bio-supported palladium (Pd) nanoparticles on the surface of two bacterial species with distinctly different surfaces: the gram positive Staphylococcus sciuri and the gram negative Cupriavidus necator. We investigated how the type of bacterium and the amount of biomass affected the size and catalytic properties of the nanoparticles formed. By increasing the biomass:Pd ratio, we could produce bio-supported Pd nanoparticles smaller than 10nm in diameter, whereas lower biomass:Pd ratios resulted in particles ranging from few to hundreds of nm. The bio-supported Pd nanoparticle catalytic properties were investigated towards the Suzuki-Miyaura cross coupling reaction and hydrogenation reactions. Surprisingly, the smallest nanoparticles obtained at the highest biomass:Pd ratio showed no reactivity towards the test reactions. The lack of reactivity appears to be caused by thiol groups, which poison the catalyst by binding strongly to Pd. Different treatments intended to liberate particles from the biomass, such as burning or rinsing in acetone, did not re-establish their catalytic activity. Sulphur-free biomaterials should therefore be explored as more suitable scaffolds for Pd(0) nanoparticle formation. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Predicting CYP2C19 Catalytic Parameters for Enantioselective Oxidations Using Artificial Neural Networks and a Chirality Code

    Science.gov (United States)

    Hartman, Jessica H.; Cothren, Steven D.; Park, Sun-Ha; Yun, Chul-Ho; Darsey, Jerry A.; Miller, Grover P.

    2013-01-01

    Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (kcat, Km, and kcat/Km), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (kcat and Km) were more consistent with experimental values than those for catalytic efficiency (kcat/Km). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds. PMID:23673224

  6. Hydrogenation of o-cresol on platinum catalyst: Catalytic experiments and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaping [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104 (United States); Liu, Zhimin [School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 (United States); Xue, Wenhua [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104 (United States); Crossley, Steven P.; Jentoft, Friederike C. [School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 (United States); Wang, Sanwu, E-mail: sanwu-wang@utulsa.edu [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104 (United States)

    2017-01-30

    Highlights: • Hydrogenation of o-cresol over Pt results in formation of two products. • Dissociation of hydrogen from the −OH group involves a low activation energy. • Following hydrogenation of the aromatic ring forms 2-methyl-cyclohexanone. • Further hydrogenation produces the final product, 2-methyl-cyclohexanol. - Abstract: Catalytic experiments were performed for the hydrogenation of o-cresol in n-dodecane over a platinum catalyst. Batch reactions analyzed with an in-situ ATR IR probe suggest that the hydrogenation results in the formation of the final product, 2-methyl-cyclohexanol, with 2-methyl-cyclohexanone as the intermediate product. Ab initio density-functional theory was employed to investigate the atomic-scale mechanism of o-cresol hydrogenation on the Pt(111) surface. The formation of 2-methyl-cyclohexanone was found to involve two steps. The first step is a hydrogen abstraction, that is, the H atom in the hydroxyl group migrates to the Pt surface. The second step is hydrogenation, that is, the pre-existing H atoms on Pt react with the carbon atoms in the aromatic ring. On the other hand, 2-methyl-cyclohexanonol may be produced through two paths, with activation energies slightly greater than that for the formation of 2-methyl-cyclohexanone. One path involves direct hydrogenation of the aromatic ring. Another path involves three steps, with the partial hydrogenation of the ring as the first step, hydrogen abstraction of the −OH group as the second, and hydrogenation of remaining C atoms and the O atom the last.

  7. Catalytic dehydration of ethanol using transition metal oxide catalysts.

    Science.gov (United States)

    Zaki, T

    2005-04-15

    The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.

  8. High Pressure Scanning Tunneling Microscopy Studies of Adsorbate Structure and Mobility during Catalytic Reactions. Novel Design of an Ultra High Pressure, High Temperature Scanning Tunneling Microscope System for Probing Catalytic Conversions

    International Nuclear Information System (INIS)

    Tang, David Chi-Wai

    2005-01-01

    The aim of the work presented therein is to take advantage of scanning tunneling microscope's (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 C). The design of a high pressure, high temperature scanning tunneling microscope system, that is capable of monitoring reactions in situ at conditions from UHV and ambient temperature up to 1 atm and 250 C, is briefly presented along with vibrational and thermal analysis, as this system serves as a template to improve upon during the design of the new ultra high pressure, high temperature STM. Using this existing high pressure scanning tunneling microscope we monitored the co-adsorption of hydrogen, ethylene and carbon dioxide on platinum (111) and rhodium (111) crystal faces in the mTorr pressure range at 300 K in equilibrium with the gas phase. During the catalytic hydrogenation of ethylene to ethane in the absence of CO the metal surfaces are covered by an adsorbate layer that is very mobile on the time scale of STM imaging. We found that the addition of CO poisons the hydrogenation reaction and induces ordered structures on the single crystal surfaces. Several ordered structures were observed upon CO addition to the surfaces pre-covered with hydrogen and ethylene: a rotated (√19 x √19)R23.4 o on Pt(111), and domains of c(4 x 2)-CO+C 2 H 3 , previously unobserved (4 x 2)-CO+3C 2 H 3 , and (2 x 2)-3CO on Rh(111). A mechanism for CO poisoning of ethylene hydrogenation on the metal single crystals was proposed, in which CO blocks surface metal sites and reduces adsorbate mobility to limit adsorption and reaction rate of ethylene and hydrogen. In order to observe heterogeneous catalytic reactions that occur well above ambient pressure and temperature that more closely

  9. Asymmetric Diels-Alder reactions with 5-menthyloxy-2(5H)-furanones

    NARCIS (Netherlands)

    Jong, Johannes Cornelis de

    2006-01-01

    At the beginning of the reseach described in this thesis the catalytic asymmetric Diels-Alder reaction had scarcely been investigated. No good catalytic processes with high enantiomeric excess were known at that time. At the same time the Diels-Alder reactions with chiral dienophiles needed further

  10. Quantum catalysis : the modelling of catalytic transition states

    NARCIS (Netherlands)

    Hall, M.B.; Margl, P.; Naray-Szabo, G.; Schramm, Vern; Truhlar, D.G.; Santen, van R.A.; Warshel, A.; Whitten, J.L.; Truhlar, D.G.; Morokuma, K.

    1999-01-01

    A review with 101 refs.; we present an introduction to the computational modeling of transition states for catalytic reactions. We consider both homogeneous catalysis and heterogeneous catalysis, including organometallic catalysts, enzymes, zeolites and metal oxides, and metal surfaces. We summarize

  11. Investigation on catalytic gasification of high-ash coal with mixing-gas in a small-scale fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Zhang, J.; Lin, J. [Fuzhou University, Fuzhou (China)

    2005-10-15

    The experimental study on the Yangquan high-ash coal catalytic gasification with mixing gas by using solid alkali or waste liquid of viscose fiber as the catalyst in a small-scale fluidized bed with 28 mm i.d. was carried out. The loading saturation levels of two catalysts in Yangquan high-ash coal are about 6%. Under the gasification temperature ranging from 830 to 900{sup o}C and from 900 to 920{sup o}C, the apparent reaction order of Yangquan high-ash coal with respect to the unreacted carbon fraction approximates to 2.3 and 1/3 for the non-catalyst case, respectively. Also, the different values of apparent reaction order in the two temperature ranges are presented for the case with 3% solid alkali catalyst loaded. At the low temperature ranging from 830 to 860{sup o}C, the apparent reaction order of catalytic gasification is 1 since enough active carbon sites on the coal surface are formed during the catalytic gasification by solid alkali. But at the high temperature ranging from 860 to 920{sup o}C, the sodium carbonate produced by the reaction of solid alkali with carbon dioxide can be easily fused, transferred and re-distributed, which affects the gasification reaction rate, and the apparent reaction order of catalytic gasification is reduced to 1.3. 10 refs., 9 figs., 4 tab s.

  12. Immersion calorimetry as a tool to evaluate the catalytic performance of titanosilicate materials in the epoxidation of cyclohexene.

    Science.gov (United States)

    Vernimmen, Jarian; Guidotti, Matteo; Silvestre-Albero, Joaquin; Jardim, Erika O; Mertens, Myrjam; Lebedev, Oleg I; Van Tendeloo, Gustaaf; Psaro, Rinaldo; Rodríguez-Reinoso, Francisco; Meynen, Vera; Cool, Pegie

    2011-04-05

    Different types of titanosilicates are synthesized, structurally characterized, and subsequently catalytically tested in the liquid-phase epoxidation of cyclohexene. The performance of three types of combined zeolitic/mesoporous materials is compared with that of widely studied Ti-grafted-MCM-41 molecular sieve and the TS-1 microporous titanosilicate. The catalytic test results are correlated with the structural characteristics of the different catalysts. Moreover, for the first time, immersion calorimetry with the same substrate molecule as in the catalytic test reaction is applied as an extra means to interpret the catalytic results. A good correlation between catalytic performance and immersion calorimetry results is found. This work points out that the combination of catalytic testing and immersion calorimetry can lead to important insights into the influence of the materials structural characteristics on catalysis. Moreover, the potential of using immersion calorimetry as a screening tool for catalysts in epoxidation reactions is shown.

  13. Hydrophobic and hydrophilic nanosheet catalysts with high catalytic activity and recycling stability through control of the outermost ligand

    Science.gov (United States)

    Ko, Younji; Kim, Donghee; Kwon, Cheong Hoon; Cho, Jinhan

    2018-04-01

    In this study, we introduce hydrophobic and hydrophilic graphene oxide nanosheet (GON) catalysts prepared by consecutive ligand replacement of hydrophobically stabilized magnetic and catalytic nanoparticles (NPs); it exhibits high catalytic activity, fast magnetic response, and good dispersion in both nonpolar and aqueous media, allowing high loading amount of magnetic and catalytic NPs onto GON sheets. More specifically, these GON catalysts showed a high product yield of 66-99% and notable recyclability (93% of the initial product yield after 10 reaction cycles) in a Suzuki-Miyaura reaction in nonpolar media, outperforming the performance of the conventional hydrophilic GON catalysts. Additional coating of a hydrophilic layer onto GON catalysts also showed the notable performance (product yield ∼99%) in catalytic reactions performed in aqueous media. Given that ligand-controlled catalytic NPs adsorbed onto 2D nanosheets can be used as hydrophobic and hydrophilic stabilizers as well as catalysts, our approach can provide a tool for developing and designing 2D-nanosheet catalysts with high performance in nonpolar and polar media.

  14. Nano-Fe 3 O 4 /O 2 : Green, Magnetic and Reusable Catalytic ...

    African Journals Online (AJOL)

    , efficient, heterogeneous and reusable catalytic system for the synthesis of benzimidazoles via the reactions of o-phenylenediamine (1 eq) with aryl aldehydes (1 eq) in excellentyields (85–97 %) and short reaction times (30–100 min) with a ...

  15. Catalytic Transformation of Ethylbenzene over Y-Zeolite-based Catalysts

    KAUST Repository

    Al-Khattaf, Sulaiman

    2008-01-01

    Catalytic transformation of ethylbenzene (EB) has been investigated over ultrastable Y (USY)-zeolite-based catalysts in a novel riser simulator at different operating conditions. The effect of reaction conditions on EB conversion is reported

  16. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH₃ at low temperature.

    Science.gov (United States)

    Wang, Peng; Sun, Hong; Quan, Xie; Chen, Shuo

    2016-01-15

    The development of catalysts for selective catalytic reduction (SCR) reactions that are highly active at low temperatures and show good resistance to SO2 and H2O is still a challenge. In this study, we have designed and developed a high-performance SCR catalyst based on nano-sized ceria encapsulated inside the pores of MIL-100(Fe) that combines excellent catalytic power with a metal organic framework architecture synthesized by the impregnation method (IM). Transmission electron microscopy (TEM) revealed the encapsulation of ceria in the cavities of MIL-100(Fe). The prepared IM-CeO2/MIL-100(Fe) catalyst shows improved catalytic activity both at low temperatures and throughout a wide temperature window. The temperature window for 90% NOx conversion ranges from 196 to 300°C. X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) analysis indicated that the nano-sized ceria encapsulated inside MIL-100(Fe) promotes the production of chemisorbed oxygen on the catalyst surface, which greatly enhances the formation of the NO2 species responsible for fast SCR reactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Mechanistic and kinetic study on the catalytic hydrolysis of COS in small clusters of sulfuric acid.

    Science.gov (United States)

    Li, Kai; Song, Xin; Zhu, Tingting; Wang, Chi; Sun, Xin; Ning, Ping; Tang, Lihong

    2018-01-01

    The catalytic hydrolysis of carbonyl sulfide (COS) and the effect of small clusters of H 2 O and H 2 SO 4 have been studied by theoretical calculations. The addition of H 2 SO 4 could increase the enthalpy change (ΔHhydrolysis reaction changed from an endothermic reaction to an exothermic reaction. Further, H 2 SO 4 decreases the energy barrier by 5.25 kcal/mol, and it enhances the catalytic hydrolysis through the hydrogen transfer effect. The (COS + H 2 SO 4 -H 2 O) reaction has the lowest energy barrier of 29.97 kcal/mol. Although an excess addition of H 2 O and H 2 SO 4 increases the energy barrier, decreases the catalytic hydrolysis, which is consistent with experimental observations. The order of the energy barriers for the three reactions from low to high are as follows: COS + H 2 SO 4 -H 2 O hydrolysis of COS both kinetically and thermodynamically. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Study of hydrogen consumption reaction catalyzed by Pd ions in the simulated high-level liquid waste

    International Nuclear Information System (INIS)

    Kodama, Takashi

    2013-01-01

    To ensure the safety for storage of high-level liquid waste (HLLW) in tanks is one of the most important safety issues in a reprocessing plant since almost all radioactive materials under processing are collected in these tanks. Accordingly the behavior of radiolytically formed hydrogen (H 2 ) in these tanks is one of key issues and has been studied by several researchers because it might cause an explosion. They reported that not all of H 2 formed in HLLW comes out in the gas phase because H 2 is consumed by some un-clarified secondary reaction which may be caused by the irradiation and/or by the catalytic effect of certain fission product (FP) in HLLW. In order to clarify such effect, we carried out the experiments using the simulated high level liquid waste (SHLLW) with and without palladium (Pd) group ions under irradiation and non-irradiation conditions. As a result, it was found that H 2 consumption reaction is not caused by radiation as was understood so far but is caused by a catalytic effect of Pd ion in SHLLW. That is, H 2 is reacting with HNO 3 and forming H 2 O and NOx. Using the catalytic reaction rate constant measured in the experiments, the analysis showed that the H 2 concentration in the gas phase of an HLLW tank does not reach its explosion limit of 4% even if the sweeping air stops for a long time. (authors)

  19. Redox non-innocent ligands: versatile new tools to control catalytic reactions

    NARCIS (Netherlands)

    Lyaskovskyy, V.; de Bruin, B.

    2012-01-01

    In this (tutorial overview) perspective we highlight the use of "redox non-innocent" ligands in catalysis. Two main types of reactivity in which the redox non-innocent ligand is involved can be specified: (A) The redox active ligand participates in the catalytic cycle only by accepting/donating

  20. Direct instrumental identification of catalytically active surface sites

    Science.gov (United States)

    Pfisterer, Jonas H. K.; Liang, Yunchang; Schneider, Oliver; Bandarenka, Aliaksandr S.

    2017-09-01

    The activity of heterogeneous catalysts—which are involved in some 80 per cent of processes in the chemical and energy industries—is determined by the electronic structure of specific surface sites that offer optimal binding of reaction intermediates. Directly identifying and monitoring these sites during a reaction should therefore provide insight that might aid the targeted development of heterogeneous catalysts and electrocatalysts (those that participate in electrochemical reactions) for practical applications. The invention of the scanning tunnelling microscope (STM) and the electrochemical STM promised to deliver such imaging capabilities, and both have indeed contributed greatly to our atomistic understanding of heterogeneous catalysis. But although the STM has been used to probe and initiate surface reactions, and has even enabled local measurements of reactivity in some systems, it is not generally thought to be suited to the direct identification of catalytically active surface sites under reaction conditions. Here we demonstrate, however, that common STMs can readily map the catalytic activity of surfaces with high spatial resolution: we show that by monitoring relative changes in the tunnelling current noise, active sites can be distinguished in an almost quantitative fashion according to their ability to catalyse the hydrogen-evolution reaction or the oxygen-reduction reaction. These data allow us to evaluate directly the importance and relative contribution to overall catalyst activity of different defects and sites at the boundaries between two materials. With its ability to deliver such information and its ready applicability to different systems, we anticipate that our method will aid the rational design of heterogeneous catalysts.

  1. Project of CO{sub 2} fixation and utilization using catalytic hydrogenation reaction for coping with the global environment issues

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Discussions were given on a carbon dioxide fixing and utilizing project utilizing hydrogenating reaction by means of a catalytic method. In the discussions, development was made on such foundation technologies as CO2 separation by using Cardo type CO2 membrane, a technology to synthesize methanol through hydrogen addition by means of the catalytic method, and an electrolytic technology of membrane-electrode mixed type, as well as a methanol synthesis bench test of 50 kg/d scale. In order to develop this result into specific applications, demonstration tests are required that use methanol synthesizing pilot plants of 4 t/d and 80 t/d capacities. In addition, for the electric power to produce a huge amount of hydrogen, development is necessary on a solar energy utilizing technology of large scale and low cost. Furthermore, from the economic and social viewpoints, the achievements of this project are regarded to depend on understanding of the necessity of a policy of putting a large number of methanol fuel cell automobiles into use, and dealing with the global warming problem. Energy required to change CO2 into useful chemical substance requires five times as much energy as has been produced, hence prevention of the global warming through this channel is difficult. (NEDO)

  2. Reaction kinetics in open reactors and serial transfers between closed reactors

    Science.gov (United States)

    Blokhuis, Alex; Lacoste, David; Gaspard, Pierre

    2018-04-01

    Kinetic theory and thermodynamics of reaction networks are extended to the out-of-equilibrium dynamics of continuous-flow stirred tank reactors (CSTR) and serial transfers. On the basis of their stoichiometry matrix, the conservation laws and the cycles of the network are determined for both dynamics. It is shown that the CSTR and serial transfer dynamics are equivalent in the limit where the time interval between the transfers tends to zero proportionally to the ratio of the fractions of fresh to transferred solutions. These results are illustrated with a finite cross-catalytic reaction network and an infinite reaction network describing mass exchange between polymers. Serial transfer dynamics is typically used in molecular evolution experiments in the context of research on the origins of life. The present study is shedding a new light on the role played by serial transfer parameters in these experiments.

  3. Catalytic Activity of a Bifunctional Catalyst for Hydrotreatment of Jatropha curcas L. Seed Oil

    Directory of Open Access Journals (Sweden)

    J. García-Dávila

    2018-01-01

    Full Text Available The hydrotreating process of vegetable oils (HPVO involves the transformation of vegetable oil triglycerides into straight chain alkanes, which are carried out by deoxygenation reactions, generating multiple hydrocarbon compounds, cuts similar to heavy vacuum oil. The HPVO is applied to Jatropha curcas oil on USY zeolite supported with gamma alumina and platinum deposition on the catalytic as hydrogenation component. The acid of additional activity of the supports allows the development of catalytic routes that the intervention of catalytic centers of different nature reaches the desired product. The products of the hydrotreating reaction with Jatropha curcas seed oil triglycerides were identified by Fourier transform infrared spectroscopy and by mass spectroscopy to identify and analyze the generated intermediate and final hydrocarbon compounds.

  4. Reactivity of organic compounds in catalytic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Minachev, Kh M; Bragin, O V

    1978-01-01

    A comprehensive review of 1976 Soviet research on catalysis delivered to the 1977 annual session of the USSR Academy of Science Council on Catalysis (Baku 6/16-20/77) covers hydrocarbon reactions, including hydrogenation and hydrogenolysis, dehydrogenation, olefin dimerization and disproportionation, and cyclization and dehydrocyclization (e.g., piperylene cyclization and ethylene cyclotrimerization); catalytic and physicochemical properties of zeolites, including cracking, dehydrogenation, and hydroisomerization catalytic syntheses and conversion of heterocyclic and functional hydrocarbon derivatives, including partial and total oxidation (e.g., of o-xylene to phthalic anhydride); syntheses of thiophenes from alkanes and hydrogen sulfide over certain dehydrogenation catalysts; catalytic syntheses involving carbon oxides ( e.g., the development of a new heterogeneous catalyst for hydroformylation of olefins), and of Co-MgO zeolitic catalysts for synthesis of aliphatic hydrocarbons from carbon dioxide and hydrogen, and fabrication of high-viscosity lubricating oils over bifunctional aluminosilicate catalysts.

  5. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15

    International Nuclear Information System (INIS)

    Sun, Qiangqiang; Wang, Yu; Li, Laisheng; Bing, Jishuai; Wang, Yingxin; Yan, Huihua

    2015-01-01

    Highlights: • Clofibric acid (CA) is efficiently mineralized by O 3 /MnO x /SBA-15. • Adsorption of CA and its intermediates on MnO x /SBA-15 is proved unimportant. • Initiation of hydroxyl radicals (·OH) is enhanced in O 3 /MnO x /SBA-15. • Uniformly distributed MnO x accounts for the high activity of MnO x /SBA-15. • Degradation routes of CA in ozonation alone and catalytic ozonation are proposed. - Abstract: Comparative experiments were conducted to investigate the catalytic ability of MnO x /SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O 3 /MnO x /SBA-15). Adsorption of CA and its intermediates by MnO x /SBA-15 was proved unimportant in O 3 /MnO x /SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO 3 ) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO x /SBA-15 facilitated the generation of hydroxyl radicals (·OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO x on SBA-15 were believed to be the main active component in MnO x /SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more ·OH

  6. Quantitative Analysis of Homogeneous Electrocatalytic Reactions at IDA Electrodes: The Example of [Ni(PPh2NBn2)2]2+

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fei; Parkinson, B. A.; Divan, Ralu; Roberts, John; Liang, Yanping

    2016-12-01

    Interdigitated array (IDA) electrodes have been applied to study the EC’ (electron transfer reaction followed by a catalytic reaction) reactions and a new method of quantitative analysis of IDA results was developed. In this new method, currents on IDA generator and collector electrodes for an EC’ mechanism are derived from the number of redox cycles and the contribution of non-catalytic current. And the fractions of bipotential recycling species and catalytic-active species are calculated, which helps understanding the catalytic reaction mechanism. The homogeneous hydrogen evolution reaction catalyzed by [Ni(PPh2NBn2)2]2+ (where PPh2NBn2 is 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) electrocatalyst was examined and analyzed with IDA electrodes. Besides, the existence of reaction intermediates in the catalytic cycle is inferred from the electrochemical behavior of a glassy carbon disk electrodes and carbon IDA electrodes. This quantitative analysis of IDA electrode cyclic voltammetry currents can be used as a simple and straightforward method for determining reaction mechanism in other catalytic systems as well.

  7. Quantitative Analysis of Homogeneous Electrocatalytic Reactions at IDA Electrodes: The Example of [Ni(PPh2NBn2)2]2+

    International Nuclear Information System (INIS)

    Liu, Fei; Parkinson, B.A.; Divan, Ralu; Roberts, John; Liang, Yanping

    2016-01-01

    Interdigitated array (IDA) electrodes have been applied to study the EC’ (electron transfer reaction followed by a catalytic reaction) reactions and a new method of quantitative analysis of IDA results was developed. In this new method, currents on IDA generator and collector electrodes for an EC’ mechanism are derived from the number of redox cycles and the contribution of non-catalytic current. And the fractions of bipotential recycling species and catalytic-active species are calculated, which helps understanding the catalytic reaction mechanism. The homogeneous hydrogen evolution reaction catalyzed by [Ni(P Ph 2 N Bn 2 ) 2 ] 2+ (where P Ph 2 N Bn 2 is 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) electrocatalyst was examined and analyzed with IDA electrodes. Besides, the existence of reaction intermediates in the catalytic cycle is inferred from the electrochemical behavior of a glassy carbon disk electrodes and carbon IDA electrodes. This quantitative analysis of IDA electrode cyclic voltammetry currents can be used as a simple and straightforward method for determining reaction mechanism in other catalytic systems as well.

  8. Determination of the gas-to-membrane mass transfer coefficient in a catalytic membrane reactor

    NARCIS (Netherlands)

    Veldsink, J.W.; Versteeg, G.F.; Swaaij, W.P.M. van

    1995-01-01

    A novel method to determine the external mass transfer coefficient in catalytic membrane reactors (Sloot et al., 1992a, b) was presented in this study. In a catalytically active membrane reactor, in which a very fast reaction occurs, the external transfer coefficient can conveniently be measured by

  9. Large-scale synthesis of hierarchical-structured weissite (Cu2−xTe) flake arrays and their catalytic properties

    International Nuclear Information System (INIS)

    Cao, Xinjiang; Yan, Shancheng; Ortiz, Lazarus Santiago; Liang, Gaofeng; Sun, Bo; Huang, Ningping; Xiao, Zhongdang

    2014-01-01

    Graphical abstract: - Highlights: • Large-scale Cu 2−x Te flake arrays grown on copper foam were synthesized. • They possess superior catalytic efficiency on methylene blue with the assistance of H 2 O 2 . • The effects of preparing conditions on the growth of Cu 2−x Te flake arrays were investigated. - Abstract: Large-scale weissite (Cu 2−x Te) flake arrays with three-dimensional (3D) hierarchical structure have been successfully fabricated via a facile one-step solution-phase strategy through the reaction of tellurium powder and copper foam. At the end of the reaction Cu 2−x Te flakes were distributed evenly on the surface of a porous solid copper substrate. Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis showed the abundance of flakes grown on the 3D porous copper architecture, while X-ray diffraction (XRD) and energy-dispersive X-ray spectra (EDS) were used to determine the crystal structure and phase composition of these products. A series of experiments discovered that the size and morphology of the products could be affected by some reactive parameters including the reaction time, synthesis temperature and volume ratio of absolute ethanol/deionized water. Catalysis experiments using the in situ synthesized of Cu 2−x Te flakes to catalyze the degradation of methylene blue (MB) demonstrated the strong catalytic ability of these flakes

  10. A Sustainable Nanocomposite Au(Salen)@CC for Catalytic Degradation of Eosin Y and Chromotrope 2R Dyes.

    Science.gov (United States)

    Mayani, Vishal J; Mayani, Suranjana V; Kim, Sang Wook

    2017-08-03

    Up to now, a very few catalysts have been developed approaching the heterogeneous catalytic degradation of Eosin Y and Chromotrope 2R dyes (Acid Red 29). The present study provides a complete perspective of recyclable nanocomposite Au(Salen)@CC for catalytic degradation of hazardous water pollutant dyes viz., Eosin Y & Chromotrope 2R using mild reaction conditions. New gold Salen complex doped carbon nanocomposite Au(Salen)@CC was developed by easy methodology using nano carbon cage (CC) prepared from low-priced Pyrolysis fuel oil (PFO) residue based Pitch. The UV-Vis adsorption spectroscopy results of Eosin Y and Chromotrope 2R dyes indicated complete degradation into acidic compounds which can be further mineralized to CO 2 and H 2 O under mild reaction conditions. The heterogeneous catalyst recycled and reused successfully for four repeated experiments without loss in its adequate performance. This new sustainable and eco-friendly catalyst delivered significant degradation activity compared to existing reports and it can be further utilized for new multifunctional applications such as, radiopharmaceutical activities, heterogeneous catalysis and chiral resolution.

  11. Catalytic activity of metal borides in the reaction of decomposition

    International Nuclear Information System (INIS)

    Labodi, I.; Korablev, L.I.; Tavadyan, L.A.; Blyumberg, Eh.A.

    1982-01-01

    Catalytic effect of CoB, MoB 2 , ZrB 2 and NbB 2 , prepared by the method of self-propagating high-temperature synthesis, on decomposition of tertiary butyl hydroperoxide has been studied. A technigue of determination of action mechanism of heterogeneous catalysts in liquid-phase process is suggested. It is established that CoB in contrast to other metal borides catalyzes only hydroperoxide decomposition into radicals

  12. Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays.

    Science.gov (United States)

    Krutpijit, Chadaporn; Jongsomjit, Bunjerd

    2016-01-01

    In the present study, the catalytic dehydration of ethanol to obtain ethylene over montmorillonite clays (MMT) with mineral acid activation including H2SO4 (SA-MMT), HCl (HA-MMT) and HNO3 (NA-MMT) was investigated at temperature range of 200 to 400°C. It revealed that HA-MMT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. At 400°C, the HA-MMT yielded 82% of ethanol conversion having 78% of ethylene yield. At lower temperature (i.e. 200 to 300°C), diethyl ether (DEE) was a major product. The highest activity obtained from HA-MMT can be attributed to an increase of weak acid sites and acid density by the activation of MMT with HCl. It can be also proven by various characterization techniques that in most case, the main structure of MMT did not alter by acid activation (excepted for NA-MMT). Upon the stability test for 72 h during the reaction, the MMT and HA-MMT showed only slight deactivation due to carbon deposition. Hence, the acid activation of MMT by HCl is promising to enhance the catalytic dehydration of ethanol.

  13. Catalytic Cracking of Triglyceride-Rich Biomass toward Lower Olefins over a Nano-ZSM-5/SBA-15 Analog Composite

    Directory of Open Access Journals (Sweden)

    Xuan Hoan Vu

    2015-10-01

    Full Text Available The catalytic cracking of triglyceride-rich biomass toward C2–C4 olefins was evaluated over a hierarchically textured nano-ZSM-5/SBA-15 analog composite (ZSC-24 under fluid catalytic cracking (FCC conditions. The experiments were performed on a fully automated Single-Receiver Short-Contact-Time Microactivity Test unit (SR-SCT-MAT, Grace Davison at 550 °C and different catalyst-to-oil mass ratios (0–1.2 g∙g−1. The ZSC-24 catalyst is very effective for transformation of triglycerides to valuable hydrocarbons, particularly lower olefins. The selectivity to C2–C4 olefins is remarkably high (>90% throughout the investigated catalyst-to-oil ratio range. The superior catalytic performance of the ZSC-24 catalyst can be attributed to the combination of its medium acid site amount and improved molecular transport provided by the bimodal pore system, which effectively suppresses the secondary reactions of primarily formed lower olefins.

  14. Catalytic activity of metall-like carbides in carbon oxide oxidation reaction

    International Nuclear Information System (INIS)

    Kharlamov, A.I.; Kosolapova, T.Ya.; Rafal, A.N.; Kirillova, N.V.

    1980-01-01

    Kinetics of carbon oxide oxidation upon carbides of hafnium, niobium, tantalum, molybdenum, zirconium and chromium is studied. Probable mechanism of the catalysts action is suggested. The established character of the change of the carbide catalytic activity is explained by the change of d-electron contribution to the metal-metal interaction

  15. Quantum-chemical study of hydride transfer in catalytic transformation of paraffins on zeolites

    NARCIS (Netherlands)

    Kazansky, V.B.; Frash, M.V.; Santen, van R.A.; Chon, H.; Ihm, S.-K.; Uh, Y.S.

    1997-01-01

    Ab initio quantum-chemical cluster calculations demonstrate that the activated complexes of hydride transfer reaction in catalytic transformation of paraffins on zeolites very much resembles adsorbed nonclassical carbonium ions. The calculated activation energies for reactions involving propane and

  16. Synthesis of imine bond containing insoluble polymeric ligand and its transition metal complexes, structural characterization and catalytic activity on esterification reaction.

    Science.gov (United States)

    Gönül, İlyas; Ay, Burak; Karaca, Serkan; Saribiyik, Oguz Yunus; Yildiz, Emel; Serin, Selahattin

    2017-01-01

    In this study, synthesis of insoluble polymeric ligand (L) and its transition metal complexes [Cu(L)Cl 2 ]·2H 2 O (1) , [Co(L)Cl 2 (H 2 O) 2 ] (2) and [Ni(L)Cl 2 (H 2 O) 2 ] (3) , having the azomethine groups, were synthesized by the condensation reactions of the diamines and dialdehydes. The structural properties were characterized by the analytical and spectroscopic methods using by elemental analysis, Fourier Transform Infrared, Thermo Gravimetric Analysis, Powder X-ray Diffraction, magnetic susceptibility and Inductively Coupled Plasma. The solubilities of the synthesized polymeric materials were also investigated and found as insoluble some organic and inorganic solvents. Additionally, their catalytic performance was carried out for the esterification reaction of acetic acid and butyl acetate. The highest conversion rate is 75.75% by using catalyst 1 . The esterification of butanol gave butyl acetate with 100% selectivity.

  17. Catalytic Upgrading of Biomass-Derived Furfuryl Alcohol to Butyl Levulinate Biofuel over Common Metal Salts

    Directory of Open Access Journals (Sweden)

    Lincai Peng

    2016-09-01

    Full Text Available Levulinate ester has been identified as a promising renewable fuel additive and platform chemical. Here, the use of a wide range of common metal salts as acid catalysts for catalytic upgrading of biomass-derived furfuryl alcohol to butyl levulinate was explored by conventional heating. Both alkali and alkaline earth metal chlorides did not lead effectively to the conversion of furfuryl alcohol, while several transition metal chlorides (CrCl3, FeCl3, and CuCl2 and AlCl3 exhibited catalytic activity for the synthesis of butyl levulinate. For their sulfates (Cr(III, Fe(III, Cu(II, and Al(III, the catalytic activity was low. The reaction performance was correlated with the Brønsted acidity of the reaction system derived from the hydrolysis/alcoholysis of cations, but was more dependent on the Lewis acidity from the metal salts. Among these investigated metal salts, CuCl2 was found to be uniquely effective, leading to the conversion of furfuryl alcohol to butyl levulinate with an optimized yield of 95%. Moreover, CuCl2 could be recovered efficiently from the resulting reaction mixture and remained with almost unchanged catalytic activity in multiple recycling runs.

  18. Chemical reactions on platinum-group metal surfaces studied by synchrotron-radiation-based spectroscopy

    International Nuclear Information System (INIS)

    Kondoh, Hiroshi; Nakai, Ikuyo; Nagasaka, Masanari; Amemiya, Kenta; Ohta, Toshiaki

    2009-01-01

    A new version of synchrotron-radiation-based x-ray spectroscopy, wave-length-dispersive near-edge x-ray absorption fine structure (dispersive-NEXAFS), and fast x-ray photoelectron spectroscopy have been applied to mechanistic studies on several surface catalytic reactions on platinum-group-metal surfaces. In this review, our approach using above techniques to understand the reaction mechanism and actual application studies on three well-known catalytic surface reactions, CO oxidation on Pt(111) and Pd(111), NO reduction on Rh(111), and H 2 O formation on Pt(111), are introduced. Spectroscopic monitoring of the progress of the surface reactions enabled us to detect reaction intermediates and analyze the reaction kinetics quantitatively which provides information on reaction order, rate constant, pre-exponential factor, activation energy and etc. Such quantitative analyses combined with scanning tunneling microscopy and kinetic Monte Carlo simulations revealed significant contribution of the adsorbate configurations and their dynamic changes to the reaction mechanisms of the above fundamental catalytic surface reactions. (author)

  19. A QM/MM study of the catalytic mechanism of nicotinamidase.

    Science.gov (United States)

    Sheng, Xiang; Liu, Yongjun

    2014-02-28

    Nicotinamidase (Pnc1) is a member of Zn-dependent amidohydrolases that hydrolyzes nicotinamide (NAM) to nicotinic acid (NA), which is a key step in the salvage pathway of NAD(+) biosynthesis. In this paper, the catalytic mechanism of Pnc1 has been investigated by using a combined quantum-mechanical/molecular-mechanical (QM/MM) approach based on the recently obtained crystal structure of Pnc1. The reaction pathway, the detail of each elementary step, the energetics of the whole catalytic cycle, and the roles of key residues and Zn-binding site are illuminated. Our calculation results indicate that the catalytic water molecule comes from the bulk solvent, which is then deprotonated by residue D8. D8 functions as a proton transfer station between C167 and NAM, while the activated C167 serves as the nucleophile. The residue K122 only plays a role in stabilizing intermediates and transition states. The oxyanion hole formed by the amide backbone nitrogen atoms of A163 and C167 has the function to stabilize the hydroxyl anion of nicotinamide. The Zn-binding site rather than a single Zn(2+) ion acts as a Lewis acid to influence the reaction. Two elementary steps, the activation of C167 in the deamination process and the decomposition of catalytic water in the hydrolysis process, correspond to the large energy barriers of 25.7 and 28.1 kcal mol(-1), respectively, meaning that both of them contribute a lot to the overall reaction barrier. Our results may provide useful information for the design of novel and efficient Pnc1 inhibitors and related biocatalytic applications.

  20. Tritium stripping by a catalytic exchange stripper

    International Nuclear Information System (INIS)

    Heung, L.K.; Gibson, G.W.; Ortman, M.S.

    1991-01-01

    A catalytic exchange process for stripping elemental tritium from gas streams has been demonstrated. The process uses a catalyzed isotopic exchange reaction between tritium in the gas phase and protium or deuterium in the solid phase on alumina. The reaction is catalyzed by platinum deposited on the alumina. The process has been tested with both tritium and deuterium. Decontamination factors (ration of inlet and outlet tritium concentrations) as high as 1000 have been achieved, depending on inlet concentration. The test results and some demonstrated applications are presented

  1. Nanolithographic Fabrication and Heterogeneous Reaction Studies ofTwo-Dimensional Platinum Model Catalyst Systems

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Anthony Marshall [Univ. of California, Berkeley, CA (United States)

    2006-05-20

    In order to better understand the fundamental components that govern catalytic activity, two-dimensional model platinum nanocatalyst arrays have been designed and fabricated. These catalysts arrays are meant to model the interplay of the metal and support important to industrial heterogeneous catalytic reactions. Photolithography and sub-lithographic techniques such as electron beam lithography, size reduction lithography and nanoimprint lithography have been employed to create these platinum nanoarrays. Both in-situ and ex-situ surface science techniques and catalytic reaction measurements were used to correlate the structural parameters of the system to catalytic activity.

  2. XPS-UPS, ISS characterization studies and the effect of Pt and K addition on the catalytic properties of MoO2-x(OH)y deposited on TiO2

    International Nuclear Information System (INIS)

    Al-Kandari, H.; Mohamed, A.M.; Al-Kharafi, F.; Katrib, A.

    2011-01-01

    Highlights: → Surface electronic structure-catalytic activity correlation is presented in this research work. → In situ characterization by XPS-UPS and ISS techniques were employed at the same experimental conditions applied for catalytic reactions. → Catalytic reactions of Mo deposited on titanium oxide for the isomerization and hydrogenation reactions using 1-hexene and n-hexane were studied. → The bifunctional properties of the molybdenum dioxide phase were modified by the addition of potassium. - Abstract: Characterization by XPS-UPS, ISS surface techniques of MoO 3 /TiO 2 catalysts before and after addition of Pt (PtMo) 2.5% by weight of MoO 3 and potassium (KMo) enabled to identify different chemical species present on the outermost surface layer at different reduction temperatures. Catalytic activities of these systems using 1-hexene and n-hexane reactants were studied. Correlation between catalytic activity and surface electronic structure enabled us to identify the chemical species, active site(s), responsible for specific catalytic reaction(s).

  3. Bubble Driven Quasioscillatory Translational Motion of Catalytic Micromotors

    Science.gov (United States)

    Manjare, Manoj; Yang, Bo; Zhao, Y.-P.

    2012-09-01

    A new quasioscillatory translational motion has been observed for big Janus catalytic micromotors with a fast CCD camera. Such motional behavior is found to coincide with both the bubble growth and burst processes resulting from the catalytic reaction, and the competition of the two processes generates a net forward motion. Detailed physical models have been proposed to describe the above processes. It is suggested that the bubble growth process imposes a growth force moving the micromotor forward, while the burst process induces an instantaneous local pressure depression pulling the micromotor backward. The theoretic predictions are consistent with the experimental data.

  4. On the Catalytic Effect of Water in the Intramolecular Diels–Alder Reaction of Quinone Systems: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Renato Contreras

    2012-11-01

    Full Text Available The mechanism of the intramolecular Diels–Alder (IMDA reaction of benzoquinone 1, in the absence and in the presence of three water molecules, 1w, has been studied by means of density functional theory (DFT methods, using the M05-2X and B3LYP functionals for exploration of the potential energy surface (PES. The energy and geometrical results obtained are complemented with a population analysis using the NBO method, and an analysis based on the global, local and group electrophilicity and nucleophilicity indices. Both implicit and explicit solvation emphasize the increase of the polarity of the reaction and the reduction of activation free energies associated with the transition states (TSs of this IMDA process. These results are reinforced by the analysis of the reactivity indices derived from the conceptual DFT, which show that the increase of the electrophilicity of the quinone framework by the hydrogen-bond formation correctly explains the high polar character of this intramolecular process. Large polarization at the TSs promoted by hydrogen-bonds and implicit solvation by water together with a high electrophilicity-nucleophilicity difference consistently explains the catalytic effects of water molecules.

  5. Highly active and non-corrosive catalytic systems for the coupling reactions of ethylene oxide and CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuyao; Jin, So Jeong; Kim, Young Jin; Lee, Je Seung; Kim, Hoon Sik [Dept. of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, Seoul (Korea, Republic of); Hong, Jongki; Lee, Won Woong [College of Pharmacy, Kyung Hee University, Seoul (Korea, Republic of); Ryu, Jung Bok [R and D Center, Chuncheon (Korea, Republic of)

    2017-02-15

    Lithium halide-based molten salts (LiX-[BMIm]Br) synthesized from the reactions of lithium halides (LiX, X = Cl or Br) with 1-butyl-3-methylimidazolium bromide ([BMIm]Br), and their catalytic performances and corrosivities were tested for the coupling reactions of ethylene oxide with carbon dioxide to produce ethylene carbonate. The activity of a molten salt was influenced with the change of halide ion. At a fixed molar amount of LiX, the activity of LiX-[BMIm]Br increased with increasing molar ratio of LiX/[BMIm]Br up to 1–1.25, and then decreased thereafter. Fast atom bombardment mass spectral analysis of LiBr-[BMIm]Br, obtained by dissolving LiBr in [BMIm]Br in a 1:1 molar ratio, implies that [Li{sub a} X{sub a+1}]{sup −} are active species for the carboxylation of ethylene oxide with LiX-[BMIm]Br. The corrosion test toward carbon steel coupons demonstrates that all the Cl-containing molten salts are corrosive, whereas the salts without containing Cl{sup −} are non-corrosive under the carboxylation condition.

  6. Direct Hysteresis Heating of Catalytically Active Ni–Co Nanoparticles as Steam Reforming Catalyst

    DEFF Research Database (Denmark)

    Mortensen, Peter Mølgaard; Engbæk, Jakob Soland; Vendelbo, Søren Bastholm

    2017-01-01

    We demonstrated a proof-of-concept catalytic steam reforming flow reactor system heated only by supported magnetic nickel–cobalt nanoparticles in an oscillating magnetic field. The heat transfer was facilitated by the hysteresis heating in the nickel–cobalt nanoparticles alone. This produced...... a sufficient power input to equilibrate the reaction at above 780 °C with more than 98% conversion of methane. The high conversion of methane indicated that Co-rich nanoparticles with a high Curie temperature provide sufficient heat to enable the endothermic reaction, with the catalytic activity facilitated...... by the Ni content in the nanoparticles. The magnetic hysteresis losses obtained from temperature-dependent hysteresis measurements were found to correlate well with the heat generation in the system. The direct heating of the catalytic system provides a fast heat transfer and thereby overcomes the heat...

  7. Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-01-01

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize ‘‘food versus fuel’’ concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  8. Catalytic Ozonation of Phenolic Wastewater: Identification and Toxicity of Intermediates

    Directory of Open Access Journals (Sweden)

    Mahdi Farzadkia

    2014-01-01

    Full Text Available A new strategy in catalytic ozonation removal method for degradation and detoxification of phenol from industrial wastewater was investigated. Magnetic carbon nanocomposite, as a novel catalyst, was synthesized and then used in the catalytic ozonation process (COP and the effects of operational conditions such as initial pH, reaction time, and initial concentration of phenol on the degradation efficiency and the toxicity assay have been investigated. The results showed that the highest catalytic potential was achieved at optimal neutral pH and the removal efficiency of phenol and COD is 98.5% and 69.8%, respectively. First-order modeling demonstrated that the reactions were dependent on the initial concentration of phenol, with kinetic constants varying from 0.038 min−1  ([phenol]o = 1500 mg/L to 1.273 min−1 ([phenol]o = 50 mg/L. Bioassay analysis showed that phenol was highly toxic to Daphnia magna (LC50 96 h=5.6 mg/L. Comparison of toxicity units (TU of row wastewater (36.01 and the treated effluent showed that TU value, after slightly increasing in the first steps of ozonation for construction of more toxic intermediates, severely reduced at the end of reaction (2.23. Thus, COP was able to effectively remove the toxicity of intermediates which were formed during the chemical oxidation of phenolic wastewaters.

  9. Contact structure for use in catalytic distillation

    Science.gov (United States)

    Jones, E.M. Jr.

    1984-03-27

    A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  10. Particle size effects in the catalytic electroreduction of CO₂ on Cu nanoparticles.

    Science.gov (United States)

    Reske, Rulle; Mistry, Hemma; Behafarid, Farzad; Roldan Cuenya, Beatriz; Strasser, Peter

    2014-05-14

    A study of particle size effects during the catalytic CO2 electroreduction on size-controlled Cu nanoparticles (NPs) is presented. Cu NP catalysts in the 2-15 nm mean size range were prepared, and their catalytic activity and selectivity during CO2 electroreduction were analyzed and compared to a bulk Cu electrode. A dramatic increase in the catalytic activity and selectivity for H2 and CO was observed with decreasing Cu particle size, in particular, for NPs below 5 nm. Hydrocarbon (methane and ethylene) selectivity was increasingly suppressed for nanoscale Cu surfaces. The size dependence of the surface atomic coordination of model spherical Cu particles was used to rationalize the experimental results. Changes in the population of low-coordinated surface sites and their stronger chemisorption were linked to surging H2 and CO selectivities, higher catalytic activity, and smaller hydrocarbon selectivity. The presented activity-selectivity-size relations provide novel insights in the CO2 electroreduction reaction on nanoscale surfaces. Our smallest nanoparticles (~2 nm) enter the ab initio computationally accessible size regime, and therefore, the results obtained lend themselves well to density functional theory (DFT) evaluation and reaction mechanism verification.

  11. Highly efficient catalytic systems based on Pd-coated microbeads

    Science.gov (United States)

    Lim, Jin Hyun; Cho, Ahyoung; Lee, Seung Hwan; Park, Bumkyo; Kang, Dong Woo; Koo, Chong Min; Yu, Taekyung; Park, Bum Jun

    2018-01-01

    The efficiency of two prototype catalysis systems using palladium (Pd)-coated microparticles was investigated with regard to the recovery and recyclability of the catalytic particles. One such system was the interface-adsorption method, in which polymer particles coated with Pd nanoparticles strongly and irreversibly attach to the oil-water interface. Due to the irreversible adsorption of the catalytic particles to the interface, particle loss was completely prevented while mixing the aqueous solution and while collecting the products. The other system was based on the magnetic field-associated particle recovery method. The use of polymeric microparticles containing Pd nanoparticles and magnetite nanoparticles accelerated the sedimentation of the particles in the aqueous phase by applying a strong magnetic field, consequently suppressing drainage of the particles from the reactor along the product stream. Upon multiple runs of the catalytic reactions, it was found that conversion does not change significantly, demonstrating the excellent recyclability and performance efficiency in the catalytic processes.

  12. Removal of nitrogen compounds from gasification gas by selective catalytic or non-catalytic oxidation; Typpiyhdisteiden poisto kaasutuskaasusta selektiivisellae katalyyttisellae ja ei-katalyyttisellae hapetuksella

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-01

    In gasification reactive nitrogenous compounds are formed from fuel nitrogen, which may form nitrogen oxides in gas combustion. In fluidized bed gasification the most important nitrogenous compound is ammonia (NH{sub 3}). If ammonia could be decomposed to N{sub 2} already before combustion, the emissions if nitrogen oxides could be reduced significantly. One way of increasing the decomposition rate of NH{sub 3} could be the addition of suitable reactants to the gas, which would react with NH{sub 3} and produce N{sub 2}. The aim of this research is to create basic information, which can be used to develop a new method for removal of nitrogen compounds from gasification gas. The reactions of nitrogen compounds and added reactants are studied in reductive atmosphere in order to find conditions, in which nitrogen compounds can be oxidized selectively to N{sub 2}. The project consists of following subtasks: (1) Selective non-catalytic oxidation (SNCO): Reactions of nitrogen compounds and oxidizers in the gas phase, (2) Selective catalytic oxidation (SCO): Reactions of nitrogen compounds and oxidizers on catalytically active surfaces, (3) Kinetic modelling of experimental results in co-operation with the Combustion Chemistry Research Group of Aabo Akademi University. The most important finding has been that NH{sub 3} can be made to react selectively with the oxidizers even in the presence of large amounts of CO and H{sub 2}. Aluminium oxides were found to be the most effective materials promoting selectivity. (author)

  13. Catalytic hydrogen recombination for nuclear containments

    International Nuclear Information System (INIS)

    Koroll, G.W.; Lau, D.W.P.; Dewit, W.A.; Graham, W.R.C.

    1994-01-01

    Catalytic recombiners appear to be a credible option for hydrogen mitigation in nuclear containments. The passive operation, versatility and ease of back fitting are appealing for existing stations and new designs. Recently, a generation of wet-proofed catalyst materials have been developed at AECL which are highly specific to H 2 -O 2 , are active at ambient temperatures and are being evaluated for containment applications. Two types of catalytic recombiners were evaluated for hydrogen removal in containments based on the AECL catalyst. The first is a catalytic combustor for application in existing air streams such as provided by fans or ventilation systems. The second is an autocatalytic recombiner which uses the enthalpy of reaction to produce natural convective flow over the catalyst elements. Intermediate-scale results obtained in 6 m 3 and 10 m 3 spherical and cylindrical vessels are given to demonstrate self-starting limits, operating limits, removal capacity, scaling parameters, flow resistance, mixing behaviour in the vicinity of an operating recombiner and sensitivity to poisoning, fouling and radiation. (author). 13 refs., 10 figs

  14. A new approach for crystallization of copper(ii) oxide hollow nanostructures with superior catalytic and magnetic response

    Science.gov (United States)

    Singh, Inderjeet; Landfester, Katharina; Chandra, Amreesh; Muñoz-Espí, Rafael

    2015-11-01

    We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism.We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism. Electronic supplementary information (ESI) available: Associated structural and morphological analysis, XPS characterization, BET surface area, catalytic measurements, recycle tests of the catalyst, and magnetic characterizations. See DOI: 10.1039/c5nr05579b

  15. Catalytic oligomerization of terminal alkynes promoted by organo-f-complexes

    International Nuclear Information System (INIS)

    Straub, T.; Haskel, A.; Eisen, M.S.

    1995-01-01

    Organoactinides of the type Cp* 2 AcMe 2 (Cp*=C 5 Me 5 ; Ac=Th, U) are active catalyst precursors for the oligomerization of terminal alkynes HC triple-bond CR (R=alkyl, aryl, SiMe 3 ). The regioselectivity and the extent of oligomerization strongly depend on the alkyne substituent R, whereas the catalytic reactivity is similar for 1 and 2. In the presence of one of these organoactinides, for example, HCCSiMe 3 regioselectively oligomerizes to the head-to-tail dimer 3 (5%) and the trimer 4 (95%). 1 and 2 react with the terminal alkynes, releasing methane, to the corresponding bisacetylide complexes which are active species and in the catalytic reactions. The bisacetylide complex (η 5 -C 5 Me 5 ) 2 U(CCPh) 2 was identified by proton NMR spectroscopy. Subsequent insertion of alkyne molecules in the actinide-carbon σ-bonds leads to the formation of actinide-alkenyl complexes. The turnover limiting step is the release of the organic oligomer from the actinide-organyl complex. A species of the latter has been spectroscopically characterized in the trimerization reaction of HCCSiMe 3 . In this poster, the catalytic reactivity of the actinide alkyls 1 and 2 with various mono-substituted alkynes as well as the spectroscopic characterization of the key organometallic intermediate complexes in the catalytic cycle and a detailed mechanistic discussion are given

  16. Tunable preparation of ruthenium nanoparticles with superior size-dependent catalytic hydrogenation properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuan; Luo, Yaodong; Yang, Xuan; Yang, Yaxin; Song, Qijun, E-mail: qsong@jiangnan.edu.cn

    2017-06-15

    Highlights: • A facile and efficient strategy is firstly developed for the synthesis of Ru NPs. • Ru NPs are stable and uniform with the controllable sizes from 2.6 to 51.5 nm. • Ru NPs exhibit size-dependent and superior catalytic hydrogenation activity. - Abstract: Ruthenium (Ru) featured with an unusual catalytic behavior is of great significance in several heterogeneous and electro-catalytic reactions. The preparation of tractable Ru nanocatalysts and the building of highly active catalytic system at ambient temperature remains a grand challenge. Herein, a facile strategy is developed for the controllable preparation of Ru nanoparticles (NPs) with the sizes ranging from 2.6 to 51.5 nm. Ru NPs show superior size-dependent catalytic performance with the best kinetic rate constant as high as −1.52 min{sup −1}, which could far surpass the other traditional noble metals. Ru NPs exert exceedingly efficient low-temperature catalytic activity and good recyclability in the catalytic reduction of nitroaromatic compounds (NACs) and azo dyes. The developed catalytic system provides a distinguishing insight for the artificial preparation of Ru NPs with desired sizes, and allows for the development of rational design rules for exploring catalysts with superior catalytic performances, potentially broadening the applications of metallic NP-enabled catalytic analysis.

  17. Reaction intermediates in the catalytic Gif-type oxidation from nuclear inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, S., E-mail: rajagopalan78@hotmail.com [Indira Gandhi Centre for Atomic Research, Materials Science Group (India); Asthalter, T., E-mail: t.asthalter@web.de [Universität Stuttgart, Institute of Physical Chemistry (Germany); Rabe, V.; Laschat, S. [Universität Stuttgart, Institute of Organic Chemistry (Germany)

    2016-12-15

    Nuclear inelastic scattering (NIS) of synchrotron radiation, also known as nuclear resonant vibrational spectroscopy (NRVS), has been shown to provide valuable insights into metal-centered vibrations at Mössbauer-active nuclei. We present a study of the iron-centered vibrational density of states (VDOS) during the first step of the Gif-type oxidation of cyclohexene with a novel trinuclear Fe{sub 3}(μ{sub 3}-O) complex as catalyst precursor. The experiments were carried out on shock-frozen solutions for different combinations of reactants: Fe{sub 3}(μ{sub 3}-O) in pyridine solution, Fe{sub 3}(μ{sub 3}-O) plus Zn/acetic acid in pyridine without and with addition of either oxygen or cyclohexene, and Fe{sub 3}(μ{sub 3}-O)/Zn/acetic acid/pyridine/cyclohexene (reaction mixture) for reaction times of 1 min, 5 min, and 30 min. The projected VDOS of the Fe atoms was calculated on the basis of pseudopotential density functional calculations. Two possible reaction intermediates were identified as [Fe{sup (III)}(C{sub 5}H{sub 5}N){sub 2}(O{sub 2}CCH{sub 3}){sub 2}]{sup +} and Fe{sup (II)}(C{sub 5}H{sub 5}N){sub 4}(O{sub 2}CCH{sub 3}){sub 2}, yielding evidence that NIS (NRVS) allows to identify the presence of iron-centered intermediates also in complex reaction mixtures.

  18. Influence of the milling process on the structure and morphology of ZnAl_2O_4 and catalytic performance in the methyl transesterification reaction of soybean oil

    International Nuclear Information System (INIS)

    Feitosa, A.C.; Dantas, B.B.; Santana, A.; Costa, A.C.M.F.; Costa, D.B.

    2012-01-01

    This work aimed to evaluate the effect of milling time over the structure and morphology of ZnAl_2O_4, synthesized by combustion reaction, and study the effect of milled samples over the methyl transesterification reaction of soy bean oil. ZnAl_2O_4 was synthesizing, by means combustion reaction, using a electrical resistance plate. The powder was milled over 15, 30, 45 and 60 minutes and the samples were characterized by X-ray diffraction, scanning electron micrograph, particle size distribution and N_2 adsorption isotherms. Milling process promoted changes over the agglomerate size and textural characteristics of the samples. Catalytic tests were conducted at 160 deg C, with 1% of catalyst, with molar ratio oil:methanol of 1:6 and reaction time of 1 hour. According the results, the sample milled over 30 minutes showed the highest conversion. (author)

  19. Direct catalytic conversion of brown seaweed-derived alginic acid to furfural using 12-tungstophosphoric acid catalyst in tetrahydrofuran/water co-solvent

    International Nuclear Information System (INIS)

    Park, Geonu; Jeon, Wonjin; Ban, Chunghyeon; Woo, Hee Chul; Kim, Do Heui

    2016-01-01

    Highlights: • Furfural was produced by catalytic conversion of macroalgae-derived alginic acid. • 12-Tungstophosphoric acid (H_3PW_1_2O_4_0) showed remarkable catalytic performance. • Tetrahydrofuran (THF) as a reaction medium significantly enhanced production of furfural. - Abstract: Furfural, a biomass-derived platform chemical, was produced by acid-catalyzed reaction of alginic acid extracted from brown seaweed. Three acid catalysts, H_2SO_4, Amberlyst15 and 12-tungstophosphoric acid (H_3PW_1_2O_4_0), were compared to evaluate their catalytic performance for the alginic acid conversion. The H_3PW_1_2O_4_0 catalyst showed the highest catalytic activity, yielding the maximum furfural yield (33.8%) at 180 °C for 30 min in tetrahydrofuran/water co-solvent. Higher reaction temperature promoted the conversion of alginic acid to furfural, but the transformation of furfural to humin was also accelerated. To our knowledge, this is the highest furfural yield among studies about the direct catalytic conversion of alginic acid. Furthermore, products distribution with time-on-stream was investigated in detail, which led us to propose a reaction pathway.

  20. A Kinetic Study of the Diels-Alder Reaction. An Experiment Illustrating Simple Second-Order Reaction Kinetics.

    Science.gov (United States)

    Silvestri, Michael G.; Dills, Charles E.

    1989-01-01

    Describes an organic chemistry experiment for teaching the basic concepts of chemical kinetics. Provides background information about first- and second-order reactions, experimental procedures of the Diels-Alder reaction between cyclopentadiene and dimethyl fumarate, and the experimental results. (YP)

  1. Kinetic Study on Catalytic Cracking of Rubber Seed (Hevea brasiliensis Oil to Liquid Fuels

    Directory of Open Access Journals (Sweden)

    Wara Dyah Pita Rengga

    2015-03-01

    Full Text Available Reaction kinetics of catalytic cracking of rubber seed oil to liquid fuels has been investigated. The reac-tion was performed with sulfuric acid as catalyst at temperatures of 350-450 oC and the ratio of oil-catalyst of 0-2 wt.% for 30-90 minutes. Kinetics was studied using the model of 6-lump parameters. The parameters were rubber seed oil, gasoline, kerosene, diesel, gas, and coke. Analysis of experimen-tal data using regression models to obtain reaction rate constants. Activation energies and pre-exponential factors were then calculated based on the Arrhenius equation. The simulation result illus-trated that the six-lump kinetic model can well predict the product yields of rubber seed oil catalytic cracking. The product has high selectivity for gasoline fraction as liquid fuel and the smallest amount of coke. The constant indicates that secondary reactions occurred in diesel products compared to gaso-line and kerosene. The predicted results indicate that catalytic cracking of rubber seed oil had better be conducted at 450 oC for 90 minutes using 0.5 wt.% catalyst. © 2015 BCREC UNDIP. All rights reservedReceived: 3rd December 2013; Revised: 5th December 2014; Accepted: 7th December 2014How to Cite: Rengga, W.D.P., Handayani, P.A., Kadarwati, S., Feinnudin, A.(2015. Kinetic Study on Catalytic Cracking of Rubber Seed (Hevea brasiliensis Oil  to Liquid Fuels. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 50-60. (doi:10.9767/bcrec.10.1.5852.50-60Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.5852.50-60

  2. Breaking the regioselectivity rule for acrylate insertion in the Mizoroki-Heck reaction.

    Science.gov (United States)

    Wucher, Philipp; Caporaso, Lucia; Roesle, Philipp; Ragone, Francesco; Cavallo, Luigi; Mecking, Stefan; Göttker-Schnetmann, Inigo

    2011-05-31

    In modern methods for the preparation of small molecules and polymers, the insertion of substrate carbon-carbon double bonds into metal-carbon bonds is a fundamental step of paramount importance. This issue is illustrated by Mizoroki-Heck coupling as the most prominent example in organic synthesis and also by catalytic insertion polymerization. For unsymmetric substrates H(2)C = CHX the regioselectivity of insertion is decisive for the nature of the product formed. Electron-deficient olefins insert selectively in a 2,1-fashion for electronic reasons. A means for controlling this regioselectivity is lacking to date. In a combined experimental and theoretical study, we now report that, by destabilizing the transition state of 2,1-insertion via steric interactions, the regioselectivity of methyl acrylate insertion into palladium-methyl and phenyl bonds can be inverted entirely to yield the opposite "regioirregular" products in stoichiometric reactions. Insights from these experiments will aid the rational design of complexes which enable a catalytic and regioirregular Mizoroki-Heck reaction of electron-deficient olefins.

  3. Large-scale synthesis of hierarchical-structured weissite (Cu{sub 2−x}Te) flake arrays and their catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xinjiang [State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Nanjing 210096 (China); Yan, Shancheng [School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); Ortiz, Lazarus Santiago; Liang, Gaofeng; Sun, Bo; Huang, Ningping [State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Nanjing 210096 (China); Xiao, Zhongdang, E-mail: zdxiao@seu.edu.cn [State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2#, Nanjing 210096 (China)

    2014-03-01

    Graphical abstract: - Highlights: • Large-scale Cu{sub 2−x}Te flake arrays grown on copper foam were synthesized. • They possess superior catalytic efficiency on methylene blue with the assistance of H{sub 2}O{sub 2}. • The effects of preparing conditions on the growth of Cu{sub 2−x}Te flake arrays were investigated. - Abstract: Large-scale weissite (Cu{sub 2−x}Te) flake arrays with three-dimensional (3D) hierarchical structure have been successfully fabricated via a facile one-step solution-phase strategy through the reaction of tellurium powder and copper foam. At the end of the reaction Cu{sub 2−x}Te flakes were distributed evenly on the surface of a porous solid copper substrate. Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis showed the abundance of flakes grown on the 3D porous copper architecture, while X-ray diffraction (XRD) and energy-dispersive X-ray spectra (EDS) were used to determine the crystal structure and phase composition of these products. A series of experiments discovered that the size and morphology of the products could be affected by some reactive parameters including the reaction time, synthesis temperature and volume ratio of absolute ethanol/deionized water. Catalysis experiments using the in situ synthesized of Cu{sub 2−x}Te flakes to catalyze the degradation of methylene blue (MB) demonstrated the strong catalytic ability of these flakes.

  4. The reaction of unirradiated and irradiated nuclear graphites with water vapor in helium

    International Nuclear Information System (INIS)

    Imai, Hisashi; Nomura, Shinzo; Kurosawa, Takeshi; Fujii, Kimio; Sasaki, Yasuichi

    1980-10-01

    Nuclear graphites more than 10 brands were oxidized with water vapor in helium and then some selected graphites were irradiated with fast neutron in the Japan Materials Testing Reactor to clarify the effect of radiation damage of graphite on their reaction behaviors. The reaction was carried out under a well defined condition in the temperature range 800 -- 1000 0 C at concentrations of water vapor 0.38 -- 1.30 volume percent in helium flow of total pressure of 1 atm. The chemical reactivity of graphite irradiated at 1000 +- 50 0 C increased linearly with neutron fluence until irradiation of 3.2 x 10 21 n/cm 2 . The activation energy for the reaction was found to decrease with neutron fluence for almost all the graphites, except for a few ones. The order of reaction increased from 0.5 for the unirradiated graphite to 1.0 for the graphite irradiated up to 6.0 x 10 20 n/cm 2 . Experiment was also performed to study a superposed effect between the influence of radiation damage of graphite and the catalytic action of barium on the reaction rate, as well as the effect of catalyser of barium. It was shown that these effects were not superposed upon each other, although barium had a strong catalytic action on the reaction. (author)

  5. Catalytic steam methane reforming over Ir/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-x}: resistance to coke formation and sulfur poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Postole, G.; Girona, K.; Kaddouri, A.; Gelin, P. [Institut de Recherches sur la Catalyse et l' Environnement de Lyon, Universite Lyon 1, CNRS, UMR 5256, IRCELYON, F-69626 Villeurbanne Cedex (France); Toyir, J. [Institut de Recherches sur la Catalyse et l' Environnement de Lyon, Universite Lyon 1, CNRS, UMR 5256, IRCELYON, F-69626 Villeurbanne Cedex (France); Universite Sidi Mohamed Ben Abdellah Fes, FP-Taza, B.P. 1223 Taza (Morocco)

    2012-04-15

    This work investigates the catalytic properties of Ir/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-x} (Ir/CGO) catalyst and CGO support in steam reforming of methane in the absence or presence of H{sub 2}S (50 ppm) for further application in a solid oxide fuel cell (SOFC) working under methane at intermediate temperatures and integrating a gradual internal reforming concept. The catalytic activity was measured at 750 C by using a 50 mol.% CH{sub 4}/5 mol.% H{sub 2}O/45 mol.% N{sub 2} mixture and a 10 mol.% CH{sub 4}/90 mol.% N{sub 2} mixture. The addition of Ir to CGO improves the catalytic activity in hydrogen production by two orders of magnitude with respect to that of CGO alone. Temperature programmed oxidation experiments were performed after reaction in both types of mixtures to study the eventual formation of carbon deposits. Over Ir/CGO, carbon formed in little amounts (even in the absence of H{sub 2}O in the feed), being highly reactive toward O{sub 2}. Upon H{sub 2}S addition, the CGO support exhibited surprisingly an improved catalytic activity on the contrary to Ir/CGO which partly deactivated. Upon suppression of H{sub 2}S in the feed the initial catalytic activity was fully restored for both catalysts. The catalytic behavior of CGO in the presence of H{sub 2}S was discussed, based upon temperature programmed reaction of CH{sub 4}. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Catalytic activity of metallic nanoisland coatings. The influence of size effects on the recombination properties

    International Nuclear Information System (INIS)

    Tomilina, O A; Berzhansky, V N; Shaposhnikov, A N; Tomilin, S V

    2016-01-01

    The results of investigations of the quantum-size effects influence on selective properties of heterogeneous nanocatalysts are presents. As etalon exothermic reaction was used the reaction of atomic hydrogen recombination. The nanostructured Pd and Pt films on Teflon substrate were used as a samples of heterogeneous nanocatalysts. It was shown that for nanoparticles with various sizes the catalytic activity has the periodic dependence. It has been found that for certain sizes of nanoparticles their catalytic activity is less than that of Teflon substrate. (paper)

  7. Catalytic oxidation of albendazole using molybdenum supported on carbon nanotubes as catalyst

    International Nuclear Information System (INIS)

    Sun-Kou, Maria del Rosario; Vega Carrasco, Edgar R.; Picasso Escobar, Gino I.

    2013-01-01

    The catalytic oxidation reaction of the thioether group (-S-) in the structure to the drug albendazole (C 12 H 15 N 3 O 2 S) was studied in order to obtain a pharmacologically active molecule known as albendazole sulfoxide. With this purpose, three heterogeneous catalysts were prepared using molybdenum (Mo) as active phase and carbon nanotubes as a multiple-layer catalyst support. The incorporation of the active phase was performed by wet impregnation, with subsequent calcination for 4 hours at 400 o C. For the catalytic oxidation reaction was employed hydrogen peroxide-urea (H 2 NCONH 2 ·H 2 O 2 ) as oxidizing agent and methanol (CH 3 OH) as reaction medium. The textural and morphology characterization of carbon nanoparticles and catalysts was carried out by adsorption-desorption of N 2 (BET) and scanning electron microscopy (SEM). The identification and quantification of the reaction products were followed by Fourier transform infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC), respectively. With the yield, selectivity and conversion higher than 90% after 60 minutes of reaction, albendazole sulphoxide was obtained as major product of oxidation reaction. (author)

  8. Catalytic hot gas cleaning of gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The aim of this work was to study the catalytic cleaning of gasification gas from tars and ammonia. In addition, factors influencing catalytic activity in industrial applications were studied, as well as the effects of different operation conditions and limits. Also the catalytic reactions of tar and ammonia with gasification gas components were studied. The activities of different catalyst materials were measured with laboratory-scale reactors fed by slip streams taken from updraft and fluid bed gasifiers. Carbonate rocks and nickel catalysts proved to be active tar decomposing catalysts. Ammonia decomposition was in turn facilitated by nickel catalysts and iron materials like iron sinter and iron dolomite. Temperatures over 850 deg C were required at 2000{sup -1} space velocity at ambient pressure to achieve almost complete conversions. During catalytic reactions H{sub 2} and CO were formed and H{sub 2}O was consumed in addition to decomposing hydrocarbons and ammonia. Equilibrium gas composition was almost achieved with nickel catalysts at 900 deg C. No deactivation by H{sub 2}S or carbon took place in these conditions. Catalyst blocking by particulates was avoided by using a monolith type of catalyst. The apparent first order kinetic parameters were determined for the most active materials. The activities of dolomite, nickel catalyst and reference materials were measured in different gas atmospheres using laboratory apparatus. This consisted of nitrogen carrier, toluene as tar model compound, ammonia and one of the components H{sub 2}, H{sub 2}O, CO, CO{sub 2}, CO{sub 2}+H{sub 2}O or CO+CO{sub 2}. Also synthetic gasification gas was used. With the dolomite and nickel catalyst the highest toluene decomposition rates were measured with CO{sub 2} and H{sub 2}O. In gasification gas, however, the rate was retarded due to inhibition by reaction products (CO, H{sub 2}, CO{sub 2}). Tar decomposition over dolomite was modelled by benzene reactions with CO{sub 2}, H

  9. Synthesis and Characterization of Graphene and Graphene Oxide Based Palladium Nanocomposites and Their Catalytic Applications in Carbon-Carbon Cross-Coupling Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minjae [Kunsan National Univ., Gunsan (Korea, Republic of); Kim, Bohyun; Lee, Yuna; Kim, Beomtae; Park, Joon B. [Chonbuk National Univ., Jeonju (Korea, Republic of)

    2014-07-15

    We have developed an efficient method to generate highly active Pd and PdO nanoparticles (NPs) dispersed on graphene and graphene oxide (GO) by an impregnation method combined with thermal treatments in H{sub 2} and O{sub 2} gas flows, respectively. The Pd NPs supported on graphene (Pd/G) and the PdO NPs supported on GO (PdO/GO) demonstrated excellent carbon-carbon cross-coupling reactions under a solvent-free, environmentally-friendly condition. The morphological and chemical structures of PdO/GO and Pd/G were fully characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). We found that the remarkable reactivity of the Pd/G and PdO/GO catalysts toward the cross-coupling reaction is attributed to the high degree of dispersion of the Pd and PdO NPs while the oxidative states of Pd and the oxygen functionalities of graphene oxide are not critical for their catalytic performance.

  10. Synthesis and Characterization of Graphene and Graphene Oxide Based Palladium Nanocomposites and Their Catalytic Applications in Carbon-Carbon Cross-Coupling Reactions

    International Nuclear Information System (INIS)

    Lee, Minjae; Kim, Bohyun; Lee, Yuna; Kim, Beomtae; Park, Joon B.

    2014-01-01

    We have developed an efficient method to generate highly active Pd and PdO nanoparticles (NPs) dispersed on graphene and graphene oxide (GO) by an impregnation method combined with thermal treatments in H 2 and O 2 gas flows, respectively. The Pd NPs supported on graphene (Pd/G) and the PdO NPs supported on GO (PdO/GO) demonstrated excellent carbon-carbon cross-coupling reactions under a solvent-free, environmentally-friendly condition. The morphological and chemical structures of PdO/GO and Pd/G were fully characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). We found that the remarkable reactivity of the Pd/G and PdO/GO catalysts toward the cross-coupling reaction is attributed to the high degree of dispersion of the Pd and PdO NPs while the oxidative states of Pd and the oxygen functionalities of graphene oxide are not critical for their catalytic performance

  11. Non Catalytic Transesterification of Vegetables Oil to Biodiesel in Sub-and Supercritical Methanol: A Kinetic’s Study

    Directory of Open Access Journals (Sweden)

    Nyoman Puspa Asri

    2013-03-01

    Full Text Available Non catalytic transesterification in sub and supercritical methanol have been used to produce biodiesel from palm oil and soybean oil. A kinetic study was done under reaction condition with temperature and time control. The experiments were carried out in a batch type reactor at reaction temperatures from 210 °C (subcritical condition to 290 °C (the supercritical state in the interval ranges of temperature of 20 °C and at various molar ratios of oil to methanol. The rate constants of the reaction were determined by employing a simple method, with the overall chemical reaction followed the pseudo-first–order reaction. Based on the results, the rate constants of vegetables oil were significantly influenced by reaction temperature, which were gradually increased at subcritical temperature, but sharply increased in the supercritical state. However, the rate constants of soybean oil were slightly higher than that of palm oil. The activation energy for transesterification of soybean oil was 89.32 and 79.05 kJ/mole for palm oil. Meanwhile, the frequency factor values of both oils were 72462892 and 391210 min-1, respectively. The rate reaction for both of oil were expressed as -rTG = 72462892 exp(-89.32/RTCTG for soybean oil and -rTG = 391210 exp(-79.05/RTCTG for palm oil. © 2013 BCREC UNDIP. All rights reservedReceived: 18th October 2012; Revised: 14th December 2012; Accepted: 16th December 2012[How to Cite: N.P. Asri, S. Machmudah, W. Wahyudiono, S. Suprapto, K. Budikarjono, A. Roesyadi, M. Goto, (2013. Non Catalytic Transesterification of Vegetables Oil to Biodiesel in Sub-and Supercritical Methanol: A Kinetic’s Study. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 215-223. (doi:10.9767/bcrec.7.3.4060.215-223][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4060.215-223 ] View in  |

  12. Hydrocarbon conversion with an attenuated superactive multimetallic catalytic composite

    International Nuclear Information System (INIS)

    Antos, G.J.

    1981-01-01

    Hydrocarbons are converted by contacting them at hydrocarbon conversion conditions with a novel attenuated superactive multimetallic catalytic composite comprising a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of a platinum group component, which is maintained in the elemental metallic state during the incorporation and pyrolysis of the rhenium carbonyl component, and of an iron component. In a highly preferred embodiment, this novel catalytic composite also contains a catalytically effective amount of a halogen component. The platinum group component, pyrolyzed rhenium carbonyl component, iron component and optional halogen component are preferably present in the multimetallic catalytic composite in amounts, calculated on an elemental basis, corresponding to about 0.01 to about 2 wt. % platinum group metal, about 0.01 to about 5 wt. % rhenium, about 0.005 to about 4 wt. % iron and about 0.1 to about 5 wt. % halogen. A key feature associated with the preparation of the subject catalytic composite is reaction of a rhenium carbonyl complex with a porous carrier material containing a uniform dispersion of an iron component and of a platinum group component maintained in the elemental state, whereby the interaction of the rhenium moiety with the platinum group moiety is maximized due to the platinophilic (i.e., platinum-seeking) propensities of the carbon monoxide ligands associated with the rhenium reagent. A specific example of the type of hydrocarbon conversion process disclosed herein is a process for the catalytic reforming of a low octane gasoline fraction wherein the gasoline fraction and a hydrogen stream are contacted with the attenuated superactive multimetallic catalytic composite at reforming conditions

  13. Fundamental study of manganese dioxide for catalytic recombustion of exhaust gas of motor car

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyamada, T

    1974-01-01

    The catalytic activities of five manganese dioxide preparations were tested in a pulse reactor to assess their carbon monoxide-oxidizing capability in relation to the catalytic afterburning of automobile exhaust gases. Catalysts prepared from manganese sulfate showed diminished catalytic activity as a result of sulfate poisoning. Higher oxidation activity was obtained with a catalyst prepared by precipitating the permanganate salt in acidic solution. Two forms of carbon monoxide adsorption were demonstrated, each with a characteristic activation energy and reaction temperature.

  14. Slow, Wet and Catalytic Pyrolysis of Fowl Manure

    OpenAIRE

    Renzo Carta; Mario Cruccu; Francesco Desogus

    2012-01-01

    This work presents the experimental results obtained at a pilot plant which works with a slow, wet and catalytic pyrolysis process of dry fowl manure. This kind of process mainly consists in the cracking of the organic matrix and in the following reaction of carbon with water, which is either already contained in the organic feed or added, to produce carbon monoxide and hydrogen. Reactions are conducted in a rotating reactor maintained at a temperature of 500°C; the requi...

  15. Properties and application of noble metal catalysts for heterogeneous catalytic hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Horn, G; Frohning, C D; Cornils, B [Ruhrchemie A.G., Oberhausen (Germany, F.R.)

    1976-07-01

    The special properties of the six platinum group elements - ruthenium, rhodium, palladium, osmium, iridium, platinum - make them useful as active metals for catalytic reactions. Especially valuable is their property of favouring a single reaction even when the possibility of a number of parallel reactions exists under certain reaction conditions. This selectivity of the noble metal catalyst may be directed or enhanced through appropriate choise of the metal, the reaction conditions, the duration of the reaction, the amount of hydrogen etc. Even the physical state of the catalyst - supported or unsupported - is of influence when using noble metal catalysts as described in this report.

  16. Key parameters controlling the performance of catalytic motors

    Energy Technology Data Exchange (ETDEWEB)

    Esplandiu, Maria J.; Afshar Farniya, Ali [Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona (Spain); Reguera, David, E-mail: dreguera@ub.edu [Departament de Física Fonamental, Universitat de Barcelona, C/Martí i Franquès 1, 08028 Barcelona (Spain)

    2016-03-28

    The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.

  17. Effect of Solvents on the Product Distribution and Reaction Rate of a Buchwald-Hartwig Amination Reaction

    DEFF Research Database (Denmark)

    Christensen, H.; Kiil, Søren; Dam-Johansen, Kim

    2006-01-01

    The Buchwald-Hartwig amination reaction between p-bromotoluene and piperazine in the presence of the homogeneous catalytic system Pd(dba)(2)/(+/-)-BINAP and the base NaO-t-Bu was investigated in two different classes of solvents: aprotic, nonpolar and aprotic, polar. The reaction was carried out...... solvent for the Buchwald-Hartwig amination reaction under the conditions applied was m-xylene....

  18. Partial catalytic oxidation of CH{sub 4} to synthesis gas for power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Schneider, A.

    2006-03-15

    The partial oxidation of methane to synthesis gas over rhodium catalysts has been investigated experimentally and numerically in the pressure range of 4 to 10 bar. The methane/oxidizer feed has been diluted with large amounts of H{sub 2}O and CO{sub 2} (up to 70% vol.) in order to simulate new power generation cycles with large exhaust gas recycle. Experiments were carried out in an optically accessible channel-flow reactor that facilitated laser-based in situ measurements, and also in a subscale gas-turbine catalytic reactor. Full-elliptic steady and transient two-dimensional numerical codes were used, which included elementary hetero-/homogeneous chemical reaction schemes. The following are the key conclusions: a) Heterogeneous (catalytic) and homogeneous (gas-phase) schemes have been validated for the partial catalytic oxidation of methane with large exhaust gas recycle. b) The impact of added H{sub 2}O and CO{sub 2} has been elucidated. The added H{sub 2}O increased the methane conversion and hydrogen selectivity, while it decreased the CO selectivity. The chemical impact of CO{sub 2} (dry reforming) was minimal. c) The numerical model reproduced the measured catalytic ignition times. It was further shown that the chemical impact of H{sub 2}O and CO{sub 2} on the catalytic ignition delay times was minimal. d) The noble metal dispersion increased with different support materials, in the order Rh/{alpha}-Al{sub 2}O{sub 3}, Rh/ZrO{sub 2}, and Rh/Ce-ZrO{sub 2}. An evident relationship was established between the noble metal dispersion and the catalytic behavior. (authors)

  19. PEEM microscopy and DFT calculations of catalytically active platinum surfaces and interfaces

    International Nuclear Information System (INIS)

    Spiel, C.

    2012-01-01

    CO, pO2, T) in one of both steady states depending on the system's prehistory. The bistable reaction kinetics can be studied globally with QMS, and the positions of the global transition points τ A and τ B in parameter space can be obtained this way. Based on a series of experiments, a global kinetic phase diagram can be established that is a useful tool to characterize the average behavior of a heterogeneous sample. In turn, using PEEM the kinetic phase transition points can also be obtained in a laterally-resolved way for each individual surface domain by analyzing local PEEM intensity variations. In the present work, QMS and PEEM experiments were performed, from which both global and laterally-resolved kinetic phase diagrams of polycrystalline platinum foil and, correspondingly, its [100]-, [110]- and [111]-oriented domains were obtained. The kinetic phase diagrams were measured both for constant oxygen partial pressure and varying temperatures as well as for constant temperature and varying oxygen partial pressure. Besides that, kinetic transitions that trigger catalytic ignition and extinction of the CO oxidation reaction were also studied in situ on the same sample and compared to results from experiments using field ion microscopy (FIM). The second part of this thesis consisted of a theoretical study of CeO 2 monolayers adsorbed on the Pt(111) surface. For this purpose, density functional theory (DFT) was applied in the implementation of the WIEN2k software package. (author) [de

  20. Catalytic Decomposition of Hydroxylammonium Nitrate Ionic Liquid: Enhancement of NO Formation

    Science.gov (United States)

    2017-04-24

    decomposition due to reduction in the acidity (i.e., [HNO3]) in the mixture. Reaction 2 has an activation barrier of Ea = 105 kJ/mol and is dominant at low...Propellants. Appl . Catal., B 2006, 62, 217−225. (15) Amariei, D.; Courtheóux, L.; Rossignol, S.; Kappenstein, C. Catalytic and Thermal Decomposition...Monopropellants: Thermal and Catalytic Decom- position Processes. Appl . Catal., B 2012, 127, 121−128. (19) Amrousse, R.; Katsumi, T.; Itouyama, N.; Azuma

  1. Lamellar zirconium phosphates to host metals for catalytic purposes.

    Science.gov (United States)

    Ballesteros-Plata, Daniel; Infantes-Molina, Antonia; Rodríguez-Aguado, Elena; Braos-García, Pilar; Rodríguez-Castellón, Enrique

    2018-02-27

    In the present study a porous lamellar zirconium phosphate heterostructure (PPH) formed from zirconium(iv) phosphate expanded with silica galleries (P/Zr molar ratio equal to 2 and (Si + Zr)/P equal to 3) was prepared to host noble metals. Textural and structural characterization of PPH-noble metal materials was carried out in order to elucidate the location and dispersion of the metallic particles and the properties of the resulting material to be used in catalytic processes. In the present paper, their activity in the catalytic hydrodeoxygenation (HDO) reaction of dibenzofuran (DBF) was evaluated. X-ray diffraction (XRD), solid state nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) evidenced that the structure of the pillared zirconium phosphate material was not modified by the incorporation of Pt and Pd. Moreover, transmission electron microscopy (TEM) showed a different dispersion of the noble metal. The acidity of the resulting PPH-noble metal materials also changed, although in all cases the acidity was of weak nature, and the incorporation of noble metals affected Brønsted acid sites as observed from 31 P NMR spectra. In general, the textural, structural and acidic properties of the resulting materials suggest that PPH can be considered a good candidate to be used as a catalytic support. Thus, the catalytic results of the PPH-noble metal samples indicated that the Pd sample showed a stable behavior probably ascribed to a high dispersion of the active phase. However, the Pt sample suffered from fast deactivation. The selectivity to the reaction products was strongly dependent on the noble metal employed.

  2. Synthesis, characterization and catalytic properties of nanocrystaline Y{sub 2}O{sub 3}-coated TiO{sub 2} in the ethanol dehydration reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Humberto Vieira [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Departamento de Quimica; Longo, Elson [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Departamento de Fisico-Quimica; Leite, Edson Roberto; Libanori, Rafael [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica; Probst, Luiz Fernando Dias [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Departamento de Quimica; Carreno, Neftali Lenin Villarreal [Universidade Federal de Pelotas (UFPel), RS (Brazil). Departamento de Quimica Analitica e Inorganica

    2012-03-15

    In the present study, TiO{sub 2} nano powder was partially coated with Y{sub 2}O{sub 3} precursors generated by a sol-gel modified route. The system of nanocoated particles formed an ultra thin structure on the TiO{sub 2} surfaces. The modified nanoparticles were characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD) analysis, Zeta potential and surface area through N{sub 2} physisorption measurements. Bioethanol dehydration was used as a probe reaction to investigate the modifications on the nanoparticles surface. The process led to the obtainment of nanoparticles with important surface characteristics and catalytic behavior in the bioethanol dehydration reaction, with improved activity and particular selectivity in comparison to their non-coated analogs. The ethylene production was disfavored and selectivity toward acetaldehyde, hydrogen and ethane increased over modified nanoparticles. (author)

  3. Synthesis of carbon nanofibers by catalytic CVD of chlorobenzene over bulk nickel alloy

    Science.gov (United States)

    Kenzhin, Roman M.; Bauman, Yuri I.; Volodin, Alexander M.; Mishakov, Ilya V.; Vedyagin, Aleksey A.

    2018-01-01

    Catalytic chemical vapor deposition (CCVD) of chlorobenzene over bulk nickel alloy (nichrome) was studied. The bulk Ni-containing samples being exposed to a contact with aggressive reaction medium undergo self-disintegration followed by growth of carbon nanofibers. This process, also known as a metal dusting, requires the simultaneous presence of chlorine and hydrogen sources in the reaction mixture. Molecule of chlorobenzene complies with these requirements. The experiments on CCVD were performed in a flow-through reactor system. The initial stages of nickel disintegration process were investigated in a closed system under Autogenic Pressure at Elevated Temperature (RAPET) conditions. Scanning and transmission electron microscopies and ferromagnetic resonance spectroscopy were applied to examine the samples after their interaction with chlorobenzene. Introduction of additional hydrogen into the flow-through system was shown to affect the morphology of grown carbon nanofibers.

  4. Pyrolysis-GCMS Analysis of Solid Organic Products from Catalytic Fischer-Tropsch Synthesis Experiments

    Science.gov (United States)

    Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.

    2015-01-01

    Abiotic synthesis of complex organic compounds in the early solar nebula that formed our solar system is hypothesized to occur via a Fischer-Tropsch type (FTT) synthesis involving the reaction of hydrogen and carbon monoxide gases over metal and metal oxide catalysts. In general, at low temperatures (less than 200 C), FTT synthesis is expected to form abundant alkane compounds while at higher temperatures (greater than 200 C) it is expected to product lesser amounts of n-alkanes and greater amounts of alkene, alcohol, and polycyclic aromatic hydrocarbons (PAHs). Experiments utilizing a closed-gas circulation system to study the effects of FTT reaction temperature, catalysts, and number of experimental cycles on the resulting solid insoluble organic products are being performed in the laboratory at NASA Goddard Space Flight Center. These experiments aim to determine whether or not FTT reactions on grain surfaces in the protosolar nebula could be the source of the insoluble organic matter observed in meteorites. The resulting solid organic products are being analyzed at NASA Johnson Space Center by pyrolysis gas chromatography mass spectrometry (PY-GCMS). PY-GCMS yields the types and distribution of organic compounds released from the insoluble organic matter generated from the FTT reactions. Previously, exploratory work utilizing PY-GCMS to characterize the deposited organic materials from these reactions has been reported. Presented here are new organic analyses using magnetite catalyst to produce solid insoluble organic FTT products with varying reaction temperatures and number of experimental cycles.

  5. XPS-UPS, ISS characterization studies and the effect of Pt and K addition on the catalytic properties of MoO{sub 2-x}(OH){sub y} deposited on TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kandari, H. [Public Authority of Applied Education and Training (Kuwait); Mohamed, A.M.; Al-Kharafi, F. [Kuwait University, Department of Chemistry, P.O. Box 5969, Safat 13060 (Kuwait); Katrib, A., E-mail: ali.katrib@ku.edu.kw [Kuwait University, Department of Chemistry, P.O. Box 5969, Safat 13060 (Kuwait)

    2011-11-15

    Highlights: {yields} Surface electronic structure-catalytic activity correlation is presented in this research work. {yields} In situ characterization by XPS-UPS and ISS techniques were employed at the same experimental conditions applied for catalytic reactions. {yields} Catalytic reactions of Mo deposited on titanium oxide for the isomerization and hydrogenation reactions using 1-hexene and n-hexane were studied. {yields} The bifunctional properties of the molybdenum dioxide phase were modified by the addition of potassium. - Abstract: Characterization by XPS-UPS, ISS surface techniques of MoO{sub 3}/TiO{sub 2} catalysts before and after addition of Pt (PtMo) 2.5% by weight of MoO{sub 3} and potassium (KMo) enabled to identify different chemical species present on the outermost surface layer at different reduction temperatures. Catalytic activities of these systems using 1-hexene and n-hexane reactants were studied. Correlation between catalytic activity and surface electronic structure enabled us to identify the chemical species, active site(s), responsible for specific catalytic reaction(s).

  6. Catalytic steam reforming of ethanol for hydrogen production: Brief status

    Directory of Open Access Journals (Sweden)

    Bineli Aulus R.R.

    2016-01-01

    Full Text Available Hydrogen represents a promising fuel since it is considered as a cleanest energy carrier and also because during its combustion only water is emitted. It can be produced from different kinds of renewable feedstocks, such as ethanol, in this sense hydrogen could be treated as biofuel. Three chemical reactions can be used to achieve this purpose: the steam reforming (SR, the partial oxidation (POX and the autothermal reforming (ATR. In this study, the catalysts implemented in steam reforming of ethanol were reviewed. A wide variety of elements can be used as catalysts for this reaction, such as base metals (Ni, Cu and Co or noble metals (Rh, Pt and Ru usually deposited on a support material that increases surface area and improves catalytic function. The use of Rh, Ni and Pt supported or promoted with CeO2, and/or La2O3 shows excellent performance in ethanol SR catalytic process. The ratio of water to ethanol, reaction temperatures, catalysts loadings, selectivity and activity are also discussed as they are extremely important for high hydrogen yields.

  7. Silver nanowires as catalytic cathodes for stabilizing lithium-oxygen batteries

    Science.gov (United States)

    Kwak, Won-Jin; Jung, Hun-Gi; Lee, Seon-Hwa; Park, Jin-Bum; Aurbach, Doron; Sun, Yang-Kook

    2016-04-01

    Silver nanowires have been investigated as a catalytic cathode material for lithium-oxygen batteries. Their high aspect ratio contributes to the formation of a corn-shaped layer structure of the poorly crystalline lithium peroxide (Li2O2) nanoparticles produced by oxygen reduction in poly-ether based electrolyte solutions. The nanowire morphology seems to provide the necessary large contact area and facile electron supply for a very effective oxygen reduction reaction. The unique morphology and structure of the Li2O2 deposits and the catalytic nature of the silver nano-wires promote decomposition of Li2O2 at low potentials (below 3.4 V) upon the oxygen evolution. This situation avoids decomposition of the solution species and oxidation of the electrodes during the anodic (charge) reactions, leading to high electrical efficiently of lithium-oxygen batteries.

  8. The study of biodiesel production using CaO as a heterogeneous catalytic reaction

    Directory of Open Access Journals (Sweden)

    Kamila Colombo

    2017-06-01

    Full Text Available With the aim of developing a process of biodiesel production that is environmentally benign much interest has been focused on the use of solid base catalysts, such as calcium oxide, for the transesterification of vegetable oils with methanol. In the study reported herein a recycling reactor was used in bench scale, with the capacity to produce 3 L of biodiesel. The reactor was designed especially for this research study. A full 23 factorial plan was used to evaluate the process parameters related to this study, in particular, the catalyst concentration, the alcohol to oil molar ratio and the reaction time. Using this equipment for the transesterification reaction resulted in the recovery of the excess alcohol. The reaction products were characterized using gas chromatography and liquid analysis to determine the ester and calcium concentrations, respectively. The main conclusions drawn were that the best conversion percentage (100% of biodiesel was reached when the methanol:oil molar ratio was 6:1, the reaction time was 75 min and the catalyst mass was 3% in relation to the oil mass used in this process. The CaO concentration determined exceeded the limit of concentration defined by legislation and thus a secondary operation was carried out to purify the reaction products obtained. The results of this study showed a high performance, and the proposed experiment could be used as a new and innovative way to produce biodiesel in the future.

  9. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    Science.gov (United States)

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  10. Meteorites, Organics and Fischer-Tropsch Type Reaction: Production and Destruction

    Science.gov (United States)

    Johnson, Natasha M.; Burton, A. S.; Nurth, J. A., III

    2011-01-01

    There has been an ongoing debate about the relative importance about the various chemical reactions that fonned organics in the early solar system. One proposed method that has long been recognized as a potential source of organics is Fischer-Tropsch type (FTT) synthesis. This process is commonly used in industry to produce fuels (i.e., complex hydrocarbons) by catalytic hydrogenation of carbon monoxide. Hill and Nuth were the first to publish results of FTT experiments that also included Haber-Bosch (HB) processes (hydrogenation of nitrogen. Their findings included the production of nitrilebearing compounds as well as trace amounts of methyl amine. Previous experience with these reactions revealed that the organic coating deposited on the grains is also an efficient catalyst and that the coating is composed of insoluble organic matter (10M) and could be reminiscent of the organic matrix found in some meteorites. This current set of FTT-styled experiments tracks the evolution of a set of organics, amino acids, in detail.

  11. Reactivating Catalytic Surface: Insights into the Role of Hot Holes in Plasmonic Catalysis.

    Science.gov (United States)

    Peng, Tianhuan; Miao, Junjian; Gao, Zhaoshuai; Zhang, Linjuan; Gao, Yi; Fan, Chunhai; Li, Di

    2018-03-01

    Surface plasmon resonance of coinage metal nanoparticles is extensively exploited to promote catalytic reactions via harvesting solar energy. Previous efforts on elucidating the mechanisms of enhanced catalysis are devoted to hot electron-induced photothermal conversion and direct charge transfer to the adsorbed reactants. However, little attention is paid to roles of hot holes that are generated concomitantly with hot electrons. In this work, 13 nm spherical Au nanoparticles with small absorption cross-section are employed to catalyze a well-studied glucose oxidation reaction. Density functional theory calculation and X-ray absorption spectrum analysis reveal that hot holes energetically favor transferring catalytic intermediates to product molecules and then desorbing from the surface of plasmonic catalysts, resulting in the recovery of their catalytic activities. The studies shed new light on the use of the synergy of hot holes and hot electrons for plasmon-promoted catalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Supercritical CO{sub 2} mediated synthesis and catalytic activity of graphene/Pd nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lulu [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeoungbuk 712-749 (Korea, Republic of); Nguyen, Van Hoa [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeoungbuk 712-749 (Korea, Republic of); Department of Chemistry, Nha Trang University, 2 Nguyen Dinh Chieu, Nha Trang (Viet Nam); Shim, Jae-Jin, E-mail: jjshim@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeoungbuk 712-749 (Korea, Republic of)

    2015-11-15

    Highlights: • RGO/Pd composite was efficiently prepared via a facile method in supercritical CO{sub 2}. • Graphene sheets were coated uniformly with Pd nanoparticles with a size of ∼8 nm. • Composites exhibited excellent catalytic activity in the Suzuki reaction even after 10 cycles. - Abstract: Graphene sheets were decorated with palladium nanoparticles using a facile and efficient method in supercritical CO{sub 2}. The nanoparticles were formed on the graphene sheets by the simple hydrogen reduction of palladium(II) hexafluoroacetylacetonate precursor in supercritical CO{sub 2}. The product was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Highly dispersed nanoparticles with various sizes and shapes adhered well to the graphene sheets. The composites showed high catalytic activities for the Suzuki reaction under aqueous and aerobic conditions within 5 min. The effects of the different Pd precursor loadings on the catalytic activities of the composites were also examined.

  13. Catalytic micromotor generating self-propelled regular motion through random fluctuation

    Science.gov (United States)

    Yamamoto, Daigo; Mukai, Atsushi; Okita, Naoaki; Yoshikawa, Kenichi; Shioi, Akihisa

    2013-07-01

    Most of the current studies on nano/microscale motors to generate regular motion have adapted the strategy to fabricate a composite with different materials. In this paper, we report that a simple object solely made of platinum generates regular motion driven by a catalytic chemical reaction with hydrogen peroxide. Depending on the morphological symmetry of the catalytic particles, a rich variety of random and regular motions are observed. The experimental trend is well reproduced by a simple theoretical model by taking into account of the anisotropic viscous effect on the self-propelled active Brownian fluctuation.

  14. Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods.

    Science.gov (United States)

    Qi, Wei; Yan, Pengqiang; Su, Dang Sheng

    2018-03-20

    Sustainable and environmentally benign catalytic processes are vital for the future to supply the world population with clean energy and industrial products. The replacement of conventional metal or metal oxide catalysts with earth abundant and renewable nonmetallic materials has attracted considerable research interests in the field of catalysis and material science. The stable and efficient catalytic performance of nanocarbon materials was discovered at the end of last century, and these materials are considered as potential alternatives for conventional metal-based catalysts. With its rapid development in the past 20 years, the research field of carbon catalysis has been experiencing a smooth transition from the discovery of novel nanocarbon materials or related new reaction systems to the atomistic-level mechanistic understanding on the catalytic process and the subsequent rational design of the practical catalytic reaction systems. In this Account, we summarize the recent progress in the kinetic and mechanistic studies on nanocarbon catalyzed alkane oxidative dehydrogenation (ODH) reactions. The paper attempts to extract general concepts and basic regularities for carbon catalytic process directing us on the way for rational design of novel efficient metal-free catalysts. The nature of the active sites for ODH reactions has been revealed through microcalorimetric analysis, ambient pressure X-ray photoelectron spectroscopy (XPS) measurement, and in situ chemical titration strategies. The detailed kinetic analysis and in situ catalyst structure characterization suggests that carbon catalyzed ODH reactions involve the redox cycles of the ketonic carbonyl-hydroxyl pairs, and the key physicochemical parameters (activation energy, reaction order, and rate/equilibrium constants, etc.) of the carbon catalytic systems are proposed and compared with conventional transition metal oxide catalysts. The proposal of the intrinsic catalytic activity (TOF) provides the

  15. Carboxylic acid-grafted mesoporous material and its high catalytic activity in one-pot three-component coupling reaction

    Directory of Open Access Journals (Sweden)

    Ruth Gomes

    2014-11-01

    Full Text Available A new carboxylic acid functionalized mesoporous organic polymer has been synthesized via in situ radical polymerization of divinylbenzene and acrylic acid using a mesoporous silica as a seed during the polymerization process under solvothermal conditions. The mesoporous material MPDVAA-1 has been thoroughly characterized employing powder XRD, solid state 13C cross polarization magic angle spinning-nuclear magnetic resonance, FT-IR spectroscopy, N2 sorption, HR-TEM, and NH3 temperature programmed desorption-thermal conductivity detector (TPD-TCD analysis to understand its porosity, chemical environment, bonding, and surface properties. The mesoporous polymer was used as a catalyst for a three comp onent Biginelli condensation between various aldehydes, β-keto esters, and urea/thioureas to give 3,4-dihydropyrimidine-2(1H-ones. The reactions were carried out under conventional heating as well as solvent-free microwave irradiation of solid components, and in both the cases, the mesoporous polymer MPDVAA-1 proved to be a powerful, robust, and reusable catalyst with high catalytic efficiency.

  16. Catalytic Cracking of Palm Oil Over Zeolite Catalysts: Statistical Approach

    Directory of Open Access Journals (Sweden)

    F. A. A. Twaiq and S. Bhatia

    2012-08-01

    Full Text Available The catalytic cracking of palm oil was conducted in a fixed bed micro-reactor over HZSM-5, zeolite ? and ultrastable Y (USY zeolite catalysts. The objective of the present investigation was to study the effect of cracking reaction variables such as temperature, weight hourly space velocity, catalyst pore size and type of palm oil feed of different molecular weight on the conversion, yield of hydrocarbons in gasoline boiling range and BTX aromatics in the organic liquid product.  Statistical Design of Experiment (DOE with 24 full factorial design was used in experimentation at the first stage.  The nonlinear model and Response Surface Methodology (RSM were utilized in the second stage of experimentation to obtain the optimum values of the variables for maximum yields of hydrocarbons in gasoline boiling range and aromatics.  The HZSM-5 showed the best performance amongst the three catalysts tested.  At 623 K and WHSV of 1 h-1, the highest experimental yields of gasoline and aromatics were 28.3 wt.% and 27 wt.%, respectively over the HZSM-5 catalyst.  For the same catalyst, the statistical model predicted that the optimum yield of gasoline was 28.1 wt.% at WHSV of 1.75 h-1 and 623 K.  The predicted optimum yield of gasoline was 25.5 wt.% at 623 K and WHSV of 1 h-1.KEY WORDS: Catalytic Cracking, Palm Oil, Zeolite, Design Of Experiment, Response Surface Methodology.

  17. Process for forming a homogeneous oxide solid phase of catalytically active material

    Science.gov (United States)

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  18. Metal-Free Catalytic Asymmetric Fluorination of Keto Esters Using a Combination of Hydrogen Fluoride (HF) and Oxidant: Experiment and Computation

    KAUST Repository

    Pluta, Roman

    2018-02-09

    A chiral iodoarene organocatalyst for the catalytic asymmetric fluorination has been developed. The catalyst was used in the asymmetric fluorination of carbonyl compounds, providing the products with a quaternary stereocenter with high enantioselectivities. Chiral hypervalent iodine difluoride intermediates were generated in situ by treatment of the catalyst with an oxidant and hydrogen fluoride as fluoride source. As such, the α-fluorination of a carbonyl compound was achieved with a nucleophilic fluorine source. A combined computational and experimental approach provided insight into the reaction mechanism and the origin of enantioselectivity.

  19. Metal-Free Catalytic Asymmetric Fluorination of Keto Esters Using a Combination of Hydrogen Fluoride (HF) and Oxidant: Experiment and Computation

    KAUST Repository

    Pluta, Roman; Krach, Patricia E.; Cavallo, Luigi; Falivene, Laura; Rueping, Magnus

    2018-01-01

    A chiral iodoarene organocatalyst for the catalytic asymmetric fluorination has been developed. The catalyst was used in the asymmetric fluorination of carbonyl compounds, providing the products with a quaternary stereocenter with high enantioselectivities. Chiral hypervalent iodine difluoride intermediates were generated in situ by treatment of the catalyst with an oxidant and hydrogen fluoride as fluoride source. As such, the α-fluorination of a carbonyl compound was achieved with a nucleophilic fluorine source. A combined computational and experimental approach provided insight into the reaction mechanism and the origin of enantioselectivity.

  20. The Influence of Mixing in High Temperature Gas Phase Reactions

    DEFF Research Database (Denmark)

    Østberg, Martin

    1996-01-01

    by injection of NH3 with carrier gas into the flue gas. NH3 can react with NO and form N2, but a competing reaction path is the oxidation of NH3 to NO.The SNR process is briefly described and it is shown by chemical kinetic modelling that OH radicals under the present conditions will initiate the reaction......The objective of this thesis is to describe the mixing in high temperature gas phase reactions.The Selective Non-Catalytic Reduction of NOx (referred as the SNR process) using NH3 as reductant was chosen as reaction system. This in-furnace denitrification process is made at around 1200 - 1300 K...... diffusion. The SNR process is simulated using the mixing model and an empirical kinetic model based on laboratory experiments.A bench scale reactor set-up has been built using a natural gas burner to provide the main reaction gas. The set-up has been used to perform an experimental investigation...

  1. Reactions of ethyl diazoacetate catalyzed by methylrhenium trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.; Espenson, H. [Iowa State Univ., Ames, IA (United States)

    1995-11-03

    Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) has found wise use in catalysis, including the epoxidation and metathesis of olefins, aldehyde olefination, and oxygen transfer. Extensive reports have now appeared in the area of MTO-catalyzed substrate oxidations with hydrogen peroxide. Certain catalytic applications of MTO for organic reactions that do not utilize peroxide have now been realized. In particular, a catalytic amount of MTO with ethyl diazoacetate (EDA) will convert aromatic imines to aziridines and convert aldehydes and ketones to epoxides. The aziridine preparation proceeds in high yields under anaerobic conditions more conveniently than with existing methods. Compounds with a three-membered heterocyclic ring can be obtained with the EDA/MTO catalytic system. Aromatic imines undergo cycloaddition reactions to give aziridines under mild conditions.

  2. Chemical and catalytic effects of ion implantation

    International Nuclear Information System (INIS)

    Wolf, G.K.

    1982-01-01

    Energetic particles are used for inducing chemical reactions as well as for modifying the properties of materials with regard to their bulk and surface chemical behavior. The effects are partly caused by radiation damage or phase intermixing, partly by the chemical properties of the individual bombarding particles. In this contribution a survey of relevant applications of these techniques is presented: (1) Chemical reactions of implanted and recoil atoms and their use for syntheses, doping and labeling of compounds. (2) The formation of thin films by decomposing chemical compounds with ion beams. 3) Catalytic effects on substrates treated by sputtering or ion implantation. Recent results with nonmetallic substrates are reviewed. Mainly hydrogenation reactions at a solid/gas interface or redox reactions at an electrified solid/liquid interface are mentioned. The present status and future prospects of these kinds of investigations will be discussed. (author)

  3. Thermal and non-thermal lattice gas models for a dimer-trimer surface catalytic reaction: a Monte-Carlo simulation study

    International Nuclear Information System (INIS)

    Iqbal, K.; Khand, P.A.

    2012-01-01

    The kinetics of an irreversible dimer-trimer reaction of the type 2 A/sub 3/ +3 B/sub 2/ -- 6 AB by considering the precursor motion of the dimer (B/sub 2) on a square, as well as on a hexagonal surface, by using a Monte Carlo simulation have been studied. When the movement of precursors is limited to the first nearest neighborhood, the model gives reactive window widths of the order of 0.22 and 0.29 for the square and the hexagonal lattices, respectively, which are quite large compared to those predicted by the LH model. In our model, the reactive window width for a square lattice increases significantly as compared to that for the LH models of the same system on square and hexagonal lattices. The width of the reactive region increases when the precursor motion is extended to the second and the third nearest neighborhood. The continuous transition disappears when the precursor motion is extended to the third nearest neighborhood. The diffusion of B atoms does not change the situation qualitatively for both the precursor and the LH models. However, desorption of the dimer changes the situation significantly; i.e., the width of the reactive window shows an exponential growth with respect to the desorption probability of the dimer for both the precursor and the LH models. In our opinion, the inclusion of precursors in the LH model of the dimer-trimer reactions leads to a better and more realistic description of the heterogeneous catalytic reactions. Consequently, further numerical and theoretical activity in this field will be very useful for understanding complex heterogeneous reactions. (orig./A.B.)

  4. Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: past, present, and future

    International Nuclear Information System (INIS)

    Begum, Robina; Rehan, Rida; Farooqi, Zahoor H.; Butt, Zonarah; Ashraf, Sania

    2016-01-01

    The catalytic reduction of nitroarenes under various catalytic systems has been widely reported in the flood of publications during last twenty years. This reaction has become a benchmark for testing catalytic activity of inorganic nanoparticles stabilized in various systems. This tutorial review presents design and classification of inorganic nanocatalysts along with their stabilizing agents used for catalytic reduction of nitroarenes. The techniques used for characterization of catalysts have been highlighted in this review. The mechanism of catalytic reduction has been described in a tutorial way. Factors affecting the rate of reduction of nitroarenes in the presence of metal nanoparticles stabilized in polyelectrolyte brushes, polyionic liquids, micelles, dendrimers, and microgels have been discussed for further development in this area.Graphical abstract

  5. Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: past, present, and future

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Robina [University of the Punjab, Centre for Undergraduate Studies (Pakistan); Rehan, Rida; Farooqi, Zahoor H., E-mail: zhfarooqi@gmail.com; Butt, Zonarah; Ashraf, Sania [University of the Punjab, Institute of Chemistry (Pakistan)

    2016-08-15

    The catalytic reduction of nitroarenes under various catalytic systems has been widely reported in the flood of publications during last twenty years. This reaction has become a benchmark for testing catalytic activity of inorganic nanoparticles stabilized in various systems. This tutorial review presents design and classification of inorganic nanocatalysts along with their stabilizing agents used for catalytic reduction of nitroarenes. The techniques used for characterization of catalysts have been highlighted in this review. The mechanism of catalytic reduction has been described in a tutorial way. Factors affecting the rate of reduction of nitroarenes in the presence of metal nanoparticles stabilized in polyelectrolyte brushes, polyionic liquids, micelles, dendrimers, and microgels have been discussed for further development in this area.Graphical abstract.

  6. Catalytic Intermolecular Cross-Couplings of Azides and LUMO-Activated Unsaturated Acyl Azoliums

    KAUST Repository

    Li, Wenjun

    2017-02-15

    An example for the catalytic synthesis of densely functionalized 1,2,3-triazoles through a LUMO activation mode has been developed. The protocol is enabled by intermolecular cross coupling reactions of azides with in situ-generated alpha,beta-unsaturated acyl azoliums. High yields and broad scope as well as the investigation of reaction mechanism are reported.

  7. Designing new catalytic C-C and C-N bond formations promoted by organoactinides

    International Nuclear Information System (INIS)

    Eisen, M.S.; Straub, T.; Haskel, A.

    1998-01-01

    Organoactinides of the type Cp 2 * AcMe 2 (Cp * =C 5 Me 5 ; Ac=Th; U) are active catalytic precursors for the oligomerization of terminal alkynes HC≡CR (R=alkyl, aryl, SiMe 3 ). The regioselectivity and the extent of oligomerization depend strongly on the alkyne substituent R, whereas the catalytic reactivity is similar for both organoactinides. Reaction with tert-butylacetylene yields regioselectively the E-2,4-disubstituted 1-buten-3-yne dimer whereas trimethylsilylacetylene is regioselective trimerized to the E,E-1,4,6-tris(trimethylsilyl)-1,3-hexa diene-5-yne, with small amounts (3-5%) of the corresponding E-2,4-disubstituted 1-buten-3-yne dimer. Oligomerization with less bulky alkyl and aryl substituted alkynes produces a mixture of higher oligomers with no regioselectivity. Using the Cp 2 * ThMe 2 catalyst, we have recently developed a strategic method to control the extent and in some cases the regioselectivity of the catalyzed oligomerization of nonbulky terminal alkynes to dimers and/or trimers. The metallocene catalytic precursors ensure the selective synthesis of small oligomers by the addition of specific amines. Catalytic ''tailoring'' to dimer and trimers can be achieved by using small or bulky amines, respectively. Kinetic and mechanistic data for the controlling experiments argue that the turnover-limiting step involves the acetylide actinide complex formation with the rapid insertion of the alkyne and protonolysis by the amine. The analog Cp 2 * UMe 2 in the presence of primary amines induce the selective C-N bond formation, producing enamines which are tautomerized to the corresponding imines. (orig.)

  8. Catalytic hydrogenation of carbon monoxide

    International Nuclear Information System (INIS)

    Wayland, B.B.

    1993-12-01

    Focus of this project is on developing new approaches for hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. The strategies to accomplish CO reduction are based on favorable thermodynamics manifested by rhodium macrocycles for producing a series of intermediates implicated in the catalytic hydrogenation of CO. Metalloformyl complexes from reactions of H 2 and CO, and CO reductive coupling to form metallo α-diketone species provide alternate routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics are promising candidates for future development

  9. Mechanistic insights into the hydrocyanation reaction

    NARCIS (Netherlands)

    Bini, L.

    2009-01-01

    The hydrocyanation of an alkene is a catalytic carbon-carbon bond formation reaction and the obtained nitriles can be converted into a variety of valuable products. The investigation of this reaction has mainly focused on the DuPont adiponitrile (AdN) process. This process is so far the only example

  10. Theoretical study of catalytic hydrogenation of oxirane and its methyl ...

    African Journals Online (AJOL)

    C3H6O) is its methyl derivative. Theoretical studies on catalytic hydrogenation of both compounds, in presence of aluminium chloride (AlCl3) catalyst, are carried out. The products of reactions are ethanol and propan-1-ol from oxirane and ...

  11. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Luan; Tao, Franklin, E-mail: franklin.tao.2011@gmail.com [Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045 (United States)

    2016-06-15

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  12. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    International Nuclear Information System (INIS)

    Nguyen, Luan; Tao, Franklin

    2016-01-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  13. Heterogeneously Catalyzed Oxidation Reactions Using Molecular Oxygen

    DEFF Research Database (Denmark)

    Beier, Matthias Josef

    Heterogeneously catalyzed selective oxidation reactions have attracted a lot of attention in recent time. The first part of the present thesis provides an overview over heterogeneous copper and silver catalysts for selective oxidations in the liquid phase and compared the performance and catalytic...... that both copper and silver can function as complementary catalyst materials to gold showing different catalytic properties and being more suitable for hydrocarbon oxidation reactions. Potential opportunities for future research were outlined. In an experimental study, the potential of silver as a catalyst...... revealed that all catalysts were more active in combination with ceria nanoparticles and that under the tested reaction conditions silver was equally or even more efficient than the gold catalysts. Calcination at 900 °C of silver on silica prepared by impregnation afforded a catalyst which was used...

  14. Three-Dimensional Structure and Catalytic Mechanism of Cytosine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    R Hall; A Fedorov; C Xu; E Fedorov; S Almo; F Raushel

    2011-12-31

    Cytosine deaminase (CDA) from E. coli is a member of the amidohydrolase superfamily. The structure of the zinc-activated enzyme was determined in the presence of phosphonocytosine, a mimic of the tetrahedral reaction intermediate. This compound inhibits the deamination of cytosine with a K{sub i} of 52 nM. The zinc- and iron-containing enzymes were characterized to determine the effect of the divalent cations on activation of the hydrolytic water. Fe-CDA loses activity at low pH with a kinetic pKa of 6.0, and Zn-CDA has a kinetic pKa of 7.3. Mutation of Gln-156 decreased the catalytic activity by more than 5 orders of magnitude, supporting its role in substrate binding. Mutation of Glu-217, Asp-313, and His-246 significantly decreased catalytic activity supporting the role of these three residues in activation of the hydrolytic water molecule and facilitation of proton transfer reactions. A library of potential substrates was used to probe the structural determinants responsible for catalytic activity. CDA was able to catalyze the deamination of isocytosine and the hydrolysis of 3-oxauracil. Large inverse solvent isotope effects were obtained on k{sub cat} and k{sub cat}/K{sub m}, consistent with the formation of a low-barrier hydrogen bond during the conversion of cytosine to uracil. A chemical mechanism for substrate deamination by CDA was proposed.

  15. Large-Scale Analysis Exploring Evolution of Catalytic Machineries and Mechanisms in Enzyme Superfamilies.

    Science.gov (United States)

    Furnham, Nicholas; Dawson, Natalie L; Rahman, Syed A; Thornton, Janet M; Orengo, Christine A

    2016-01-29

    Enzymes, as biological catalysts, form the basis of all forms of life. How these proteins have evolved their functions remains a fundamental question in biology. Over 100 years of detailed biochemistry studies, combined with the large volumes of sequence and protein structural data now available, means that we are able to perform large-scale analyses to address this question. Using a range of computational tools and resources, we have compiled information on all experimentally annotated changes in enzyme function within 379 structurally defined protein domain superfamilies, linking the changes observed in functions during evolution to changes in reaction chemistry. Many superfamilies show changes in function at some level, although one function often dominates one superfamily. We use quantitative measures of changes in reaction chemistry to reveal the various types of chemical changes occurring during evolution and to exemplify these by detailed examples. Additionally, we use structural information of the enzymes active site to examine how different superfamilies have changed their catalytic machinery during evolution. Some superfamilies have changed the reactions they perform without changing catalytic machinery. In others, large changes of enzyme function, in terms of both overall chemistry and substrate specificity, have been brought about by significant changes in catalytic machinery. Interestingly, in some superfamilies, relatives perform similar functions but with different catalytic machineries. This analysis highlights characteristics of functional evolution across a wide range of superfamilies, providing insights that will be useful in predicting the function of uncharacterised sequences and the design of new synthetic enzymes. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Reaction-transport simulations of non-oxidative methane conversion with continuous hydrogen removal: Homogeneous-heterogeneous methane reaction pathways

    International Nuclear Information System (INIS)

    Li, Lin; Borry, Richard W.; Iglesia, Enrique

    2000-01-01

    Detailed kinetic-transport models were used to explore thermodynamic and kinetic barriers in the non-oxidative conversion of CH4 via homogeneous and homogeneous-heterogeneous pathways and the effects of continuous hydrogen removal and of catalytic sites on attainable yields of useful C2-C10 products. The homogeneous kinetic model combines separately developed models for low-conversion pyrolysis and for chain growth to form large aromatics and carbon. The H2 formed in the reaction decreases CH4 pyrolysis rates and equilibrium conversions and it favors the formation of lighter products. The removal of H2 along tubular reactors with permeable walls increases reaction rates and equilibrium CH4 conversions. C2-C10 yields reach values greater than 90 percent at intermediate values of dimensionless transport rates (delta=1-10), defined as the ratio hydrogen transport and methane conversion rates. Homogeneous reactions require impractical residence times, even with H2 removal, because of slow initiation and chain transfer rates. The introduction of heterogeneous chain initiation pathways using surface sites that form methyl radicals eliminates the induction period without influencing the homogeneous product distribution. Methane conversion, however, occurs predominately in the chain transfer regime, within which individual transfer steps and the formation of C2 intermediates become limited by thermodynamic constraints. Catalytic sites alone cannot overcome these constraints. Catalytic membrane reactors with continuous H2 removal remove these thermodynamic obstacles and decrease the required residence time. Reaction rates become limited by homogeneous reactions of C2 products to form C6+ aromatics. Higher delta values lead to subsequent conversion of the desired C2-C10 products to larger polynuclear aromatics. We conclude that catalytic methane pyrolysis at the low temperatures required for restricted chain growth and the elimination of thermodynamics constraints via

  17. Magnetic bimetallic nanoparticles supported reduced graphene oxide nanocomposite: Fabrication, characterization and catalytic capability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Wu, Tao; Xu, Xiaoyang; Xia, Fengling; Na, Heya [School of Science, Tianjin University, Tianjin 300072 (China); Liu, Yu, E-mail: liuyuls@163.com [School of Science, Tianjin University, Tianjin 300072 (China); Qiu, Haixia [School of Science, Tianjin University, Tianjin 300072 (China); Wang, Wei [School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Gao, Jianping, E-mail: jianpinggao2012@126.com [School of Science, Tianjin University, Tianjin 300072 (China)

    2015-04-15

    Highlights: • Ni and Ag nanoparticles loaded on RGO (Ni–Ag@RGO) were fabricated in a one-pot reaction. • The Ni–Ag@RGO were excellent catalysts for the reduction of 4-nitrophenol. • The Ni–Ag@RGO showed superior catalytic activity for photodegradation of methyl orange. • The Ni–Ag@RGO exhibit good reusability in a magnetic field. - Abstract: A facile method for preparing Ni–Ag bimetallic nanoparticles supported on reduced graphene oxide (Ni–Ag@RGO hybrid) has been established. Hydrazine hydrate was used as the reducing agent to reduce the graphene oxide, Ni{sup 2+} and Ag{sup +} to form Ni–Ag@RGO hybrid. The prepared hybrid was further characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, and transmission electron microscopy. Interestingly, the prepared material shown good magnetic properties, which were determined by vibrating sample magnetometer. In addition, the Ni–Ag@RGO hybrid exhibited excellent catalytic activity for the reduction of 4-nitrophenol and the photodegradation of methyl orange. The catalytic process was monitored by determining the change in the concentration of the reactants with time using ultraviolet–visible absorption spectroscopy. After completion of the reaction, the catalyst can be separated from the reaction system simply under a magnet field and shows good recyclability.

  18. Study on the correlation between the surface active species of Pd/cordierite monolithic catalyst and its catalytic activity

    International Nuclear Information System (INIS)

    Liao, Hengcheng; Zuo, Peiyuan; Liu, Miaomiao

    2016-01-01

    Two Pd-loading routes and three Pd-precursor matters were adopted to prepare Pd/(Ce,Y)O_2/γ-Al_2O_3/cordierite monolithic catalyst. The surface active species on the catalyst were characterized by XPS, and its catalytic activity for methane combustion was tested, and the dynamics of the catalytic combustion reaction was also discussed. Pd-loading route and Pd-precursor mass have a significant influence on the catalytic activity and surface active species. The sol dipping method is more advanced than the aqueous solution impregnating method. PN-sol catalyst, by sol dipping combined with Pd(NO_3)_2-precursor, has the best catalytic activity. The physical reason is the unique active Pd phase coexisting with active PdO phase on the surface, and thus the Pd3d_5_/_2 binding energy of surface species and apparent activation energy of combustion reaction are considerably decreased. The catalytic activity index, Pd3d_5_/_2 binding energy and apparent activation energy are highly tied each other with exponential relations.

  19. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  20. Promoting Effect of CeO2 Addition on Activity and Catalytic Stability in Steam Reforming of Methane over Ni/Al2O3

    International Nuclear Information System (INIS)

    Rakib, A.; Gennequin, C.; Ringot, S.; Aboukais, A.; Abi-Aad, E.; Dhainaut, T.

    2011-01-01

    Hydrogen production by steam reforming of methane was studied over Ni catalysts supported on CeO 2 , Al 2 O 3 and CeO 2 -Al 2 O 3 . These catalysts were prepared using the impregnation method and characterized by XRD. The effect of CeO2 promoter on the catalytic performance of Ni/Al 2 O 3 catalyst for methane steam reforming reaction was investigated. In fact, CeO 2 had a positive effect on the catalytic activity in this reaction. Experimental results demonstrated that Ni/CeO 2 -Al 2 O 3 catalyst showed excellent catalytic activity and high reaction performance. In addition, the effects of reaction temperature and metal content on the conversion of CH 4 and H 2 /CO ratio were also investigated. Results indicated that CH4 conversion increased significantly with the increase of the reaction temperature and metal content. (author)

  1. Synthesis of E- and Z-trisubstituted alkenes by catalytic cross-metathesis

    Science.gov (United States)

    Nguyen, Thach T.; Koh, Ming Joo; Mann, Tyler J.; Schrock, Richard R.; Hoveyda, Amir H.

    2017-12-01

    Catalytic cross-metathesis is a central transformation in chemistry, yet corresponding methods for the stereoselective generation of acyclic trisubstituted alkenes in either the E or the Z isomeric forms are not known. The key problems are a lack of chemoselectivity—namely, the preponderance of side reactions involving only the less hindered starting alkene, resulting in homo-metathesis by-products—and the formation of short-lived methylidene complexes. By contrast, in catalytic cross-coupling, substrates are more distinct and homocoupling is less of a problem. Here we show that through cross-metathesis reactions involving E- or Z-trisubstituted alkenes, which are easily prepared from commercially available starting materials by cross-coupling reactions, many desirable and otherwise difficult-to-access linear E- or Z-trisubstituted alkenes can be synthesized efficiently and in exceptional stereoisomeric purity (up to 98 per cent E or 95 per cent Z). The utility of the strategy is demonstrated by the concise stereoselective syntheses of biologically active compounds, such as the antifungal indiacen B and the anti-inflammatory coibacin D.

  2. Selective catalytic oxidation of hydrocarbons as a challenge to the chemical engineer

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G [Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Lehrstuhl fuer Technische Chemie 1

    1978-08-01

    Selective catalytic oxidation is beginning to play a more and more significant role in the process of converting the most important chemical raw materials, crude oil and natural gas, into intermediate and end products. In many cases, this technique makes it possible to replace old processes consisting of many steps by more economical single-step reactions. The typical example of oxidation or ammoxidation of propylene demonstrates the problems which must be solved by the chemical engineer during the development of a heterogeneous catalytic oxidation process. The particular importance of a systematic development of a catalyst is emphasized. General aspects relating to the design of new catalytic processes, or the improvement of existing ones are also discussed.

  3. Catalytic cracking of bio-oil to organic liquid product (OLP).

    Science.gov (United States)

    Hew, K L; Tamidi, A M; Yusup, S; Lee, K T; Ahmad, M M

    2010-11-01

    The main objective of this paper is to find the optimum operating condition to upgrade the EFB-derived pyrolysis oil (bio-oil) to liquid fuel, mainly gasoline using Taguchi Method. From the analysis that has been done, it is found that the optimum operating condition for heterogeneous catalytic cracking process is at 400 degrees C, 15min of reaction time using 30g of catalyst weight where operating at this condition produced the highest yield of gasoline fraction which is 91.67 wt.%. This observation proves that EFB-derived pyrolysis oil could be upgraded via heterogeneous catalytic cracking to produce gasoline.

  4. Catalytic synthesis of aromatic diisocyanates by means of carbonylation of nitrocompounds with carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Nefedov, B K; Manov-Yuvenskii, V I; Khoshdurdev, Kh O; Novikov, S S [AN SSSR, Moscow. Inst. Organicheskoj Khimii

    1977-02-11

    The development of an active and selective heterogeneous catalyst for synthesis of aromatic diisocyanates has been studied. The catalytic ability of the catalyst PdO-MoO/sub 3/-Fe/sub 2/O/sub 3/ deposited on ..gamma..-Al/sub 2/O/sub 3/ has been investigated in the reactions of carbonylation of aromatic dinitrocompounds with carbon oxide. The effect of the catalyst composition, method of catalyst production, reaction temperature and pressure on the catalytic ability have been studied. It has been established that the catalyst PdO-MoO/sub 3/-Fe/sub 2/O/sub 3/(2-6:1:1) deposited on ..gamma..-Al/sub 2/O/sub 3/ is highly active and selective in the reactions of carbonilation of aromatic dinitrocompounds at 210 deg and 300 atm. It has been used for synthesis of aromatic diisocyanates in yield 32-75%.

  5. Development and test of a new catalytic converter for natural gas ...

    Indian Academy of Sciences (India)

    catalytic converter and a new natural gas engine such as compressed natural gas. (CNG) direct ..... bility to store oxygen from random gas flow within the substrate in comparison to flow through ..... and behaviour in the water–gas shift reaction.

  6. A highly sensitive technique for detecting catalytically active nanoparticles against a background of general workplace aerosols

    International Nuclear Information System (INIS)

    Neubauer, N; Weis, F; Seipenbusch, M; Kasper, G; Binder, A

    2011-01-01

    A new measurement technique was studied using catalysis to specifically detect airborne nanoparticles in presence of background particles in the workplace air. Catalytically active nanoparticles produced by spark discharge were used as aerosol catalysts. According to these particles suitable catalytic test reactions were chosen and investigated by two different approaches: catalysis on airborne nanoparticles and catalysis on deposited nanoparticles. The results indicate that catalysis is applicable for the specific measurement of nanoparticles in the workplace air. Catalysis on airborne particles is suitable for the specific detection of very active nanoparticles, e.g. platinum or nickel, at high concentrations of about 10 7 /cm 3 . The approach of catalysis on deposited particles is better suited for nanoparticle aerosols at low concentrations, for slow catalytic reactions or less active nanoparticles like iron oxide (Fe 2 O 3 ). On the basis of the experimental results detection limits in the range of μg or even ng were calculated which assure the good potential of catalysis for the specific detection of nanoparticles in the workplace air based on their catalytic activity.

  7. High-Temperature Compatible Nickel Silicide Thermometer And Heater For Catalytic Chemical Microreactors

    DEFF Research Database (Denmark)

    Jensen, Søren; Quaade, U.J.; Hansen, Ole

    2005-01-01

    Integration of heaters and thermometers is important for agile and accurate control and measurement of the thermal reaction conditions in microfabricated chemical reactors (microreactors). This paper describes development and operation of nickel silicide heaters and temperature sensors...... for temperatures exceeding 700 °C. The heaters and thermometers are integrated with chemical microreactors for heterogeneous catalytic conversion of gasses, and thermally activated catalytic conversion of CO to CO2 in the reactors is demonstrated. The heaters and thermometers are shown to be compatible...

  8. Enantioselective catalytic fluorinative aza-semipinacol rearrangement.

    Science.gov (United States)

    Romanov-Michailidis, Fedor; Pupier, Marion; Besnard, Céline; Bürgi, Thomas; Alexakis, Alexandre

    2014-10-03

    An efficient and highly stereoselective fluorinative aza-semipinacol rearrangement is described. The catalytic reaction requires use of Selectfluor in combination with the chiral, enantiopure phosphate anion derived from acid L3. Under optimized conditions, cyclopropylamines A were transformed into β-fluoro cyclobutylimines B in good yields and high levels of diastereo- and enantiocontrol. Furthermore, the optically active cyclobutylimines were reduced diastereoselectively with L-Selectride in the corresponding fluorinated amines C, compounds of significant interest in the pharmacological industry.

  9. Preparation, structural characterization, and catalytic performance of Pd(II) and Pt(II) complexes derived from cellulose Schiff base

    Science.gov (United States)

    Baran, Talat; Yılmaz Baran, Nuray; Menteş, Ayfer

    2018-05-01

    In this study, we reported production, characterization, and catalytic behavior of two novel heterogeneous palladium(II) and platinum(II) catalysts derived from cellulose biopolymer. In order to eliminate the use of toxic organic or inorganic solvents and to reduce the use of excess energy in the coupling reactions, we have developed a very simple, rapid, and eco-friendly microwave irradiation protocol. The developed microwave-assisted method of Suzuki cross coupling reactions produced excellent reaction yields in the presence of cellulose supported palladium and platinum (II) catalysts. Moreover, the catalysts easily regenerated after simple filtration, and they gave good reusability. This study revealed that the designed catalysts and method provide clean, simple, rapid, and impressive catalytic performance for Suzuki coupling reactions.

  10. Reaction Mechanism for the Formation of Nitrogen Oxides (NO x ) During Coke Oxidation in Fluidized Catalytic Cracking Units

    KAUST Repository

    Chaparala, Sree Vidya

    2015-06-11

    Fluidized catalytic cracking (FCC) units in refineries process heavy feedstock obtained from crude oil distillation. While cracking feed, catalysts get deactivated due to coke deposition. During catalyst regeneration by burning coke in air, nitrogen oxides (NOx) are formed. The increase in nitrogen content in feed over time has resulted in increased NOx emissions. To predict NOx concentration in flue gas, a reliable model for FCC regenerators is needed that requires comprehensive understanding and accurate kinetics for NOx formation. Based on the nitrogen-containing functional groups on coke, model molecules are selected to study reactions between coke-bound nitrogen and O2 to form NO and NO2 using density functional theory. The reaction kinetics for the proposed pathways are evaluated using transition state theory. It is observed that the addition of O2 on coke is favored only when the free radical is present on the carbon atom instead of nitrogen atom. Thus, NOx formation during coke oxidation does not result from the direct attack by O2 on N atoms of coke, but from the transfer of an O atom to N from a neighboring site. The low activation energies required for NO formation indicate that it is more likely to form than NO2 during coke oxidation. The favorable pathways for NOx formation that can be used in FCC models are identified. Copyright © 2015 Taylor & Francis Group, LLC.

  11. Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

    International Nuclear Information System (INIS)

    Khan, Gulzar; Kim, Young Kwang; Choi, Sung Kyu; Han, Dong Suk; Abdelwahab, Ahmed; Park, Hyunwoong

    2013-01-01

    TiO 2 composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of H 2 production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher H 2 production as compared to bare TiO 2 . Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of TiO 2 are discussed in terms of physicochemical properties of carbon materials, coupling states of TiO 2 /carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors

  12. Catalytic Activity Control via Crossover between Two Different Microstructures

    KAUST Repository

    Zhou, Yuheng

    2017-09-08

    Metal nanocatalysts hold great promise for a wide range of heterogeneous catalytic reactions, while the optimization strategy of catalytic activity is largely restricted by particle size or shape control. Here, we demonstrate that a reversible microstructural control through the crossover between multiply-twinned nanoparticle (MTP) and single crystal (SC) can be readily achieved by solvent post-treatment on gold nanoparticles (AuNPs). Polar solvents (e.g. water, methanol) direct the transformation from MTP to SC accompanied by the disappearance of twinning and stacking faults. A reverse transformation from SC to MTP is achieved in non-polar solvent (e.g. toluene) mixed with thiol ligands. The transformation between two different microstructures is directly observed by in-situ TEM and leads to a drastic modulation of catalytic activity towards the gas-phase selective oxidation of alcohols. There is a quasi-linear relationship between TOFs and MTP concentrations. Based on the combined experimental and theoretical investigations of alcohol chemisorption on these nanocatalysts, we propose that the exposure of {211}-like microfacets associated with twin boundaries and stack faults accounts for the strong chemisorption of alcohol molecules on MTP AuNPs and thus the exceptionally high catalytic activity.

  13. Highly efficient conversion of terpenoid biomass to jet-fuel range cycloalkanes in a biphasic tandem catalytic process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaokun [Univ. of Nevada, Reno, NV (United States); Li, Teng [Washington State Univ., Pullman, WA (United States); Tang, Kan [Washington State Univ., Pullman, WA (United States); Zhou, Xinpei [Univ. of Nevada, Reno, NV (United States); Lu, Mi [Univ. of Nevada, Reno, NV (United States); Ounkham, Whalmany L. [Univ. of Nevada, Reno, NV (United States); Spain, Stephen M. [Univ. of Nevada, Reno, NV (United States); Frost, Brian J. [Univ. of Nevada, Reno, NV (United States); Lin, Hongfei [Washington State Univ., Pullman, WA (United States)

    2017-06-12

    The demand for bio-jet fuels to reduce carbon emissions is increasing substantially in the aviation sector, while the scarcity of high-density jet fuel components limits the use of bio-jet fuels in high-performance aircrafts compared with conventional jet fuels. In this paper, we report a novel biphasic tandem catalytic process (biTCP) for synthesizing cycloalkanes from renewable terpenoid biomass, such as 1,8-cineole. Multistep tandem reactions, including C–O ring opening by hydrolysis, dehydration, and hydrogenation, were carried out in the “one-pot” biTCP. 1,8-Cineole was efficiently converted to p-menthane at high yields (>99%) in the biTCP under mild reaction conditions. Finally, the catalytic reaction mechanism is discussed.

  14. LaMn1-xFe xO3 and LaMn0.1-xFe0.90Mo x O3 perovskites: synthesis, characterization and catalytic activity in H2O2 reactions

    Directory of Open Access Journals (Sweden)

    Fabiano Magalhães

    2008-09-01

    Full Text Available In this work two perovskites were prepared: LaMn1-xFe xO3, and LaMn0.1-x Fe0.90Mo xO3. XRD and Mössbauer spectroscopy suggest the formation of pure phase perovskite with the incorporation of Fe and Mo in the structure. The catalytic activity of these materials was studied in two reactions with H2O2: the decomposition to O2, and the oxidation of the model organic contaminant methylene blue. The perovskite composition strongly affects the catalytic activity, while Fe decreases the H2O2 decomposition Mo strongly improves dye oxidation.

  15. The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation

    Science.gov (United States)

    Hou, Jingtao; Li, Yuanzhi; Mao, Mingyang; Zhao, Xiujian; Yue, Yuanzheng

    2014-11-01

    The nanostructure of Ce doped OMS-2 plays a very important role in its catalytic property. We demonstrate by density functional theory (DFT) calculations that the unique nanostructure of the Ce ion substituted OMS-2 with Mn vacancy in the framework is beneficial for the improvement of catalytic activity, while the nanostructure of the Ce ion substituted OMS-2 without defects are detrimental to the catalytic activity. We establish a novel and facile strategy of synthesizing these unique Ce ion substituted OMS-2 nanostructure with Mn vacancies in the framework by hydrothermal redox reaction between Ce(NO3)3 and KMnO4 with KMnO4/Ce(NO3)3 at a molar ratio of 3 : 1 at 120 °C. Compared to pure OMS-2, the produced catalyst of Ce ion substituted OMS-2 ultrathin nanorods exhibits an enormous enhancement in the catalytic activity for benzene oxidation, which is evidenced by a significant decrease (ΔT50 = 100 °C, ΔT90 = 129 °C) in the reaction temperature of T50 and T90 (corresponding to the benzene conversion = 50% and 90%), which is considerably more efficient than the expensive supported noble metal catalyst (Pt/Al2O3). We combine both theoretical and experimental evidence to provide a new physical insight into the significant effect due to the defects induced by the Ce ion substitution on the catalytic activity of OMS-2. The formation of unique Ce ion substituted OMS-2 nanostructure with Mn vacancies in the framework leads to a significant enhancement of the lattice oxygen activity, thus tremendously increasing the catalytic activity.The nanostructure of Ce doped OMS-2 plays a very important role in its catalytic property. We demonstrate by density functional theory (DFT) calculations that the unique nanostructure of the Ce ion substituted OMS-2 with Mn vacancy in the framework is beneficial for the improvement of catalytic activity, while the nanostructure of the Ce ion substituted OMS-2 without defects are detrimental to the catalytic activity. We establish a novel

  16. Preparation of Cu@Cu₂O Nanocatalysts by Reduction of HKUST-1 for Oxidation Reaction of Catechol.

    Science.gov (United States)

    Jang, Seongwan; Yoon, Chohye; Lee, Jae Myung; Park, Sungkyun; Park, Kang Hyun

    2016-11-02

    HKUST-1, a copper-based metal organic framework (MOF), has been investigated as a catalyst in various reactions. However, the HKUST-1 shows low catalytic activity in the oxidation of catechol. Therefore, we synthesized Fe₃O₄@HKUST-1 by layer-by layer assembly strategy and Cu@Cu₂O by reduction of HKUST-1 for enhancement of catalytic activity. Cu@Cu₂O nanoparticles exhibited highly effective catalytic activity in oxidation of 3,5-di- tert -butylcatechol. Through this method, MOF can maintain the original core-shell structure and be used in various other reactions with enhanced catalytic activity.

  17. Catalytic Steam Reforming of Toluene as a Model Compound of Biomass Gasification Tar Using Ni-CeO2/SBA-15 Catalysts

    Directory of Open Access Journals (Sweden)

    Erik Dahlquist

    2013-07-01

    Full Text Available Nickel supported on SBA-15 doped with CeO2 catalysts (Ni-CeO2/SBA-15 was prepared, and used for steam reforming of toluene which was selected as a model compound of biomass gasification tar. A fixed-bed lab-scale set was designed and employed to evaluate the catalytic performances of the Ni-CeO2/SBA-15 catalysts. Experiments were performed to reveal the effects of several factors on the toluene conversion and product gas composition, including the reaction temperature, steam/carbon (S/C ratio, and CeO2 loading content. Moreover, the catalysts were subjected to analysis of their carbon contents after the steam reforming experiments, as well as to test the catalytic stability over a long experimental period. The results indicated that the Ni-CeO2/SBA-15 catalysts exhibited promising capabilities on the toluene conversion, anti-coke deposition and catalytic stability. The toluene conversion reached as high as 98.9% at steam reforming temperature of 850 °C and S/C ratio of 3 using the Ni-CeO2(3wt%/SBA-15 catalyst. Negligible coke formation was detected on the used catalyst. The gaseous products mainly consisted of H2 and CO, together with a little CO2 and CH4.

  18. One-pot synthesis of Cu/ZnO/ZnAl2O4 catalysts and their catalytic performance in glycerol hydrogenolysis

    KAUST Repository

    Tan, Hua

    2013-01-01

    In this work, a series of Cu/ZnO/ZnAl2O4 catalysts with different metal molar fractions (Cu:Zn:Al) were successfully prepared using a one-pot method via the evaporation-induced self-assembly (EISA) of Pluronic P123 and the corresponding metal precursors. The catalysts were characterized using N2 adsorption, H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectra (XPS). The catalytic properties of the resulting Cu/ZnO/ZnAl2O4 with different molar fractions of metals were investigated for the selective hydrogenolysis of glycerol to 1,2-propanediol (1,2-PDO). It was observed that the ZnAl2O 4 support exerts a strong positive effect on the catalytic activity of the copper-based catalysts, and the presence of ZnO further improves the catalytic activity of the Cu/ZnAl2O4 catalysts. The Cu/ZnO/ZnAl2O4 catalyst (Cu10Zn 30Al60, Cu/Zn/Al molar ratio is 10:30:60), which was the best catalyst, exhibited the highest yield (79%) of 1,2-PDO with 85.8% glycerol conversion and 92.1% 1,2-PDO selectivity at 180 °C reaction temperature in 80 wt% glycerol aqueous solution over 10 h reaction time. The high catalytic activity was attributed to the presence of the ZnAl2O4 support, the strong interaction between ZnO and Cu nanoparticles and the small particle size of ZnO and Cu. Moreover, the Cu/ZnO/ZnAl2O4 catalysts exhibited higher stability than Cu/ZnO and Cu/ZnO/Al2O 3 catalysts prepared by a co-precipitation method during consecutive cycling experiments, which is due to the high chemical and thermal stability of crystalline ZnAl2O4 under harsh reaction conditions. This journal is © The Royal Society of Chemistry.

  19. Thermal stability and microstructure of catalytic alumina composite support with lanthanum species

    Science.gov (United States)

    Ozawa, Masakuni; Nishio, Yoshitoyo

    2016-09-01

    Lanthanum (La) modified γ-alumina composite was examined for application toward thermostable catalytic support at elevated temperature. La added alumina was prepared through an aqueous process using lanthanum (III) nitrate and then characterized by surface area measurement, X-ray powder diffraction (XRD), differential thermal analysis (DTA), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoemission spectroscopy (XPS) and surface desorption of CO2. It was found that the properties depended on the La content and heat treatment temperatures. The characterization of the surface, structural and chemical properties of La-Al2O3 showed the existence of a strong interaction between the La species and alumina via formation of new phase and modified surface in Al2O3 samples. LaAlO3 nanoparticle formed among alumina particles by the solid phase reaction of Al2O3 and La2O3. The increase of the surface basicity of La modified alumina was demonstrated using CO2 temperature programmed desorption experiments. The controlled surface interaction between La oxide and alumina provide the unique surface and structural properties of the resulting mixed oxides as catalysts and catalytic supports.

  20. Oxidative C-H/C-H Cross-Coupling Reactions between N-Acylanilines and Benzamides Enabled by a Cp*-Free RhCl3/TFA Catalytic System.

    Science.gov (United States)

    You, Jingsong; Shi, Yang; Zhang, Luoqiang; Lan, Jingbo; Zhang, Min; Zhou, Fulin; Wei, Wenlong

    2018-06-03

    Using the dual chelation-assisted strategy, a completely regiocontrolled oxidative C-H/C-H cross-coupling reaction between an N-acylaniline and a benzamide has been accomplished for the first time, which enables a step-economical and highly efficient pathway to 2-amino-2'-carboxybiaryl scaffolds from readily available substrates. A Cp*-free RhCl3/TFA catalytic system has been developed to replace the generally used [Cp*RhCl2]2/AgSbF6 (Cp* = pentamethyl cyclopentadienyl) in oxidative C-H/C-H cross-coupling reactions between two (hetero)arenes. The RhCl3/TFA system avoids the use of expensive Cp* ligand and AgSbF6. As an illustrative example, the protocol developed herein greatly streamlines access to naturally occurring benzo[c]phenanthridine alkaloid oxynitidine in an excellent overall yield. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. CATALYTIC WET PEROXIDE OXIDATION OF HYDROQUINONE WITH Co(II)/ACTIVE CARBON CATALYST LOADED IN STATIC BED

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Catalysts based on Co(II) supported on active carbon were prepared and loaded in static bed. The hydroquinone would be degraded completely after treated by Catalytic wet peroxide oxidation method with Co(II)/active carbon catalyst. After activate treatment, the active carbon was immerged in cobaltous nitrate solution, then put into a drying oven, Co(II) could be loaded on the micro-surface of carbon. Taking the static bed as the equipment, the absorption of active carbon and catalysis of Co(II) was used to reduce activation energy of hydroquinone. Thus hydroquinone could be drastically degraded and the effluent can be drained under the standard. Referring to Fenton reaction mechanism, experiment had been done to study the heterogeneous catalyzed oxidation mechanism of Co(II). The degradation rate of hydroquinone effluent could be achieved to 92% when treated in four columns at H2O2 concentration 10%, reaction temperature 40℃ , pH 5 and reaction time 2.5h.

  2. Water-dispersable hybrid Au-Pd nanoparticles as catalysts in ethanol oxidation, aqueous phase Suzuki-Miyaura and Heck reactions

    KAUST Repository

    Song, Hyon Min

    2012-01-01

    The catalytic activities of water-dispersable Au@Pd core-shell nanoparticles (NPs) and Au-Pd alloy NPs were examined. There is growing interest in Au-Pd hybridized NPs in a supported matrix or non-supported forms as catalysts in various reactions that are not limited to conventional Pd-related reactions. Four different Au@Pd core-shell NPs in this study were prepared at room temperature with help from the emulsion phase surrounding the Au core NPs. Au-Pd alloy NPs were prepared over 90 °C, and underwent phase transfer to aqueous medium for their catalytic use. Au@Pd core-shell NPs show catalytic activity in ethanol oxidation reactions as electrocatalysts, and both core-shell and alloy NPs are good to excellent catalysts in various Suzuki-Miyaura and Heck reactions as heterogeneous catalysts. Specifically, Au@Pd core-shell NPs with sharp branched arms show the highest yield in the reactions tested in this study. A relatively small amount (0.25 mol%) was used throughout the catalytic reactions. © 2012 The Royal Society of Chemistry.

  3. New L-Serine Derivative Ligands as Cocatalysts for Diels-Alder Reaction

    Science.gov (United States)

    Sousa, Carlos A. D.; Rodríguez-Borges, José E.; Freire, Cristina

    2013-01-01

    New L-serine derivative ligands were prepared and tested as cocatalyst in the Diels-Alder reactions between cyclopentadiene (CPD) and methyl acrylate, in the presence of several Lewis acids. The catalytic potential of the in situ formed complexes was evaluated based on the reaction yield. Bidentate serine ligands showed good ability to coordinate medium strength Lewis acids, thus boosting their catalytic activity. The synthesis of the L-serine ligands proved to be highly efficient and straightforward. PMID:24383009

  4. Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites

    International Nuclear Information System (INIS)

    Velinov, N.; Petrova, T.; Tsoncheva, T.; Genova, I.; Koleva, K.; Kovacheva, D.; Mitov, I.

    2016-01-01

    Spinel ferrites with nominal composition Cu _0_._5Mn _0_._5Fe _2O_4 and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe _5C_2 were observed by the influence of the reaction medium.

  5. Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Velinov, N., E-mail: nikivelinov@ic.bas.bg; Petrova, T. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria); Tsoncheva, T.; Genova, I. [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences (Bulgaria); Koleva, K. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria); Kovacheva, D. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences (Bulgaria); Mitov, I. [Institute of Catalysis, Bulgarian Academy of Sciences (Bulgaria)

    2016-12-15

    Spinel ferrites with nominal composition Cu {sub 0.5}Mn {sub 0.5}Fe {sub 2}O{sub 4} and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe {sub 5}C{sub 2} were observed by the influence of the reaction medium.

  6. Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnO{sub x}/SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qiangqiang; Wang, Yu [School of Chemistry & Environment, South China Normal University, Guangzhou 510006 (China); Li, Laisheng, E-mail: llsh@scnu.edu.cn [School of Chemistry & Environment, South China Normal University, Guangzhou 510006 (China); Bing, Jishuai [Key Laboratory of Aquatic Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Wang, Yingxin; Yan, Huihua [School of Chemistry & Environment, South China Normal University, Guangzhou 510006 (China)

    2015-04-09

    Highlights: • Clofibric acid (CA) is efficiently mineralized by O{sub 3}/MnO{sub x}/SBA-15. • Adsorption of CA and its intermediates on MnO{sub x}/SBA-15 is proved unimportant. • Initiation of hydroxyl radicals (·OH) is enhanced in O{sub 3}/MnO{sub x}/SBA-15. • Uniformly distributed MnO{sub x} accounts for the high activity of MnO{sub x}/SBA-15. • Degradation routes of CA in ozonation alone and catalytic ozonation are proposed. - Abstract: Comparative experiments were conducted to investigate the catalytic ability of MnO{sub x}/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O{sub 3}/MnO{sub x}/SBA-15). Adsorption of CA and its intermediates by MnO{sub x}/SBA-15 was proved unimportant in O{sub 3}/MnO{sub x}/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO{sub 3}) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO{sub x}/SBA-15 facilitated the generation of hydroxyl radicals (·OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO{sub x} on SBA-15 were believed to be the main active component in MnO{sub x}/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more ·OH.

  7. A conserved residue of l-alanine dehydrogenase from Bacillus pseudofirmus, Lys-73, participates in the catalytic reaction through hydrogen bonding.

    Science.gov (United States)

    He, Guangzheng; Xu, Shujing; Wang, Shanshan; Zhang, Qing; Liu, Dong; Chen, Yuling; Ju, Jiansong; Zhao, Baohua

    2018-03-01

    A multiple protein sequence alignment of l-alanine dehydrogenases from different bacterial species revealed that five highly conserved amino acid residues Arg-15, Lys-73, Lys-75, His-96 and Asp-269 are potential catalytic residues of l-alanine dehydrogenase from Bacillus pseudofirmus OF4. In this study, recombinant OF4Ald and its mutants of five conserved residues were constructed, expressed in Escherichia coli, purified by His 6 -tag affinity column and gel filtration chromatography, structure homology modeling, and characterized. The purified protein OF4Ald displayed high specificity to l-alanine (15Umg -1 ) with an optimal temperature and pH of 40°C and 10.5, respectively. Enzymatic assay and activity staining in native gels showed that mutations at four conserved residue Arg-15, Lys-75, His-96 and Asp-269 (except residue Lys-73) resulted in a complete loss in enzymatic activity, which signified that these predicted active sites are indispensable for OF4Ald activity. In contrast, the mutant K73A resulted in 6-fold improvement in k cat /K m towards l-alanine as compared to the wild type protein. Further research of the residue Lys-73 substituted by various amino acids and structural modeling revealed that residue Lys-73 might be involved in the catalytic reaction of the enzyme by influencing the enzyme-substrate binding through the hydrogen-bonding interaction with conserved residue Lys-75. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Catalytic Deoxydehydration of Carbohydrates and Polyols to Chemicals and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Kenneth M. [Univ. of Oklahoma, Norman, OK (United States)

    2016-01-15

    As the world's fossil fuel resources are being depleted and their costs increase, there is an urgent need to discover and develop new processes for the conversion of renewable, biomass resources into fuels and chemical feedstocks. Research and development in this area have been given high priority by both governmental agencies and industry. To increase the energy content and decrease the boiling points of biomass-derived carbohydrates and polyols to the useful liquid range it is necessary to chemically remove water (dehydrate) and, preferably, oxygen (deoxygenate/reduce). The poly-hydroxylic nature of carbohydrates is attractive for their use as functionalized chemical building blocks, but it presents a daunting challenge for their selective conversion to single product chemicals or fuels. The long term, practical objective of this project is to develop catalytic processes for the deoxydehydration (DODH) of biomass-derived carbohydrates and polyols to produce unsaturated alcohols and hydrocarbons of value as chemical feedstocks and fuels; DODH: polyol + reductant --(LMOx catalyst)--> unsaturate + oxidized reductant + H2O. Limited prior studies have established the viability of the DODH process with expensive phosphine reductants and rhenium-catalysts. Initial studies in the PI's laboratory have now demonstrated: 1) the moderately efficient conversion of glycols to olefins by the economical sulfite salts is catalyzed by MeReO3 and Z+ReO4-; 2) effective phosphine-based catalytic DODH of representative glycols to olefins by cheap LMoO2 complexes; and 3) computational studies (with K. Houk, UCLA) have identified several Mo-, W-, and V-oxo complexes that are likely to catalyze glycol DODH. Seeking practically useful DODH reactions of complex polyols and new understanding of the reactivity of polyoxo-metal species with biomass-oxygenates we will employ a two-pronged approach: 1) investigate experimentally the reactivity, both stoichiometric and catalytic, of

  9. Catalytic and thermal cracking processes of waste cooking oil for bio-gasoline synthesis

    Science.gov (United States)

    Dewanto, Muhammad Andry Rizki; Januartrika, Aulia Azka; Dewajani, Heny; Budiman, Arief

    2017-03-01

    Non-renewable energy resources such as fossil fuels, and coal were depleted as the increase of global energy demand. Moreover, environmental aspect becomes a major concern which recommends people to utilize bio-based resources. Waste cooking oil is one of the economical sources for biofuel production and become the most used raw material for biodiesel production. However, the products formed during frying, can affect the trans-esterification reaction and the biodiesel properties. Therefore, it needs to convert low-quality cooking oil directly into biofuel by both thermal and catalytic cracking processes. Thermal and catalytic cracking sometimes are regarded as prospective bio-energy conversion processes. This research was carried out in the packed bed reactor equipped with 2 stages preheater with temperature of reactor was variated in the range of 450-550°C. At the same temperature, catalytic cracking had been involved in this experiment, using activated ZSM-5 catalyst with 1 cm in length. The organic liquid product was recovered by three stages of double pipe condensers. The composition of cracking products were analyzed using GC-MS instrument and the caloric contents were analyzed using Bomb calorimeter. The results reveal that ZSM-5 was highly selective toward aromatic and long aliphatic compounds formation. The percentage recovery of organic liquid product from the cracking process varies start from 8.31% and the optimal results was 54.08%. The highest heating value of liquid product was resulted from catalytic cracking process at temperature of 450°C with value of 10880.48 cal/gr and the highest product yield with 54.08% recovery was achieved from thermal cracking process with temperature of 450°C.

  10. Selective catalytic reduction of sulfur dioxide to elemental sulfur. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1995-06-01

    This project has investigated new metal oxide catalysts for the single stage selective reduction of SO{sub 2} to elemental sulfur by a reductant, such as CO. Significant progress in catalyst development has been made during the course of the project. We have found that fluorite oxides, CeO{sub 2} and ZrO{sub 2}, and rare earth zirconates such as Gd{sub 2}Zr{sub 2}O{sub 7} are active and stable catalysts for reduction Of SO{sub 2} by CO. More than 95% sulfur yield was achieved at reaction temperatures about 450{degrees}C or higher with the feed gas of stoichiometric composition. Reaction of SO{sub 2} and CO over these catalysts demonstrated a strong correlation of catalytic activity with the catalyst oxygen mobility. Furthermore, the catalytic activity and resistance to H{sub 2}O and CO{sub 2} poisoning of these catalysts were significantly enhanced by adding small amounts of transition metals, such as Co, Ni, Co, etc. The resulting transition metal-fluorite oxide composite catalyst has superior activity and stability, and shows promise in long use for the development of a greatly simplified single-step sulfur recovery process to treat variable and dilute SO{sub 2} concentration gas streams. Among various active composite catalyst systems the Cu-CeO{sub 2} system has been extensively studied. XRD, XPS, and STEM analyses of the used Cu-CeO{sub 2} catalyst found that the fluorite crystal structure of ceria was stable at the present reaction conditions, small amounts of copper was dispersed and stabilized on the ceria matrix, and excess copper oxide particles formed copper sulfide crystals of little contribution to catalytic activity. A working catalyst consisted of partially sulfated cerium oxide surface and partially sulfided copper clusters. The overall reaction kinetics were approximately represented by a first order equation.

  11. Catalytic Intermolecular Cross-Couplings of Azides and LUMO-Activated Unsaturated Acyl Azoliums

    KAUST Repository

    Li, Wenjun; Ajitha, Manjaly John; Lang, Ming; Huang, Kuo-Wei; Wang, Jian

    2017-01-01

    An example for the catalytic synthesis of densely functionalized 1,2,3-triazoles through a LUMO activation mode has been developed. The protocol is enabled by intermolecular cross coupling reactions of azides with in situ-generated alpha

  12. Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives

    KAUST Repository

    Hisatomi, Takashi

    2014-10-16

    Abstract: Some particulate semiconductors loaded with nanoparticulate catalysts exhibit photocatalytic activity for the water-splitting reaction. The photocatalysis is distinct from the thermal catalysis because photocatalysis involves photophysical processes in particulate semiconductors. This review article presents a brief introduction to photocatalysis, followed by kinetic aspects of the photocatalytic water-splitting reaction.Graphical Abstract: [Figure not available: see fulltext.

  13. Direct nuclear reaction experiments for stellar nucleosynthesis

    International Nuclear Information System (INIS)

    Cherubini, S.

    2016-01-01

    During the last two decades indirect methods where proposed and used in many experiments in order to measure nuclear cross sections between charged particles at stellar energies. These are among the lowest to be measured in nuclear physics. One of these methods, the Trojan Horse method, is based on the Quasi- Free reaction mechanism and has proved to be particularly flexible and reliable. It allowed for the measurement of the cross sections of various reactions of astrophysical interest using stable beams. The use and reliability of indirect methods become even more important when reactions induced by Radioactive Ion Beams are considered, given the much lower intensity generally available for these beams. The first Trojan Horse measurement of a process involving the use of a Radioactive Ion Beam dealt with the "1"8F(p,α)"1"5O process in Nova conditions. To obtain pieces of information on this process, in particular about its cross section at Nova energies, the Trojan Horse method was applied to the "1"8F(d,α "1"5O)n three body reaction. In order to establish the reliability of the Trojan Horse method approach, the Treiman-Yang criterion is an important test and it will be addressed briefly in this paper.

  14. Catalytic Palladium Film Deposited by Scalable Low-Temperature Aqueous Combustion.

    Science.gov (United States)

    Voskanyan, Albert A; Li, Chi-Ying Vanessa; Chan, Kwong-Yu

    2017-09-27

    This article describes a novel method for depositing a dense, high quality palladium thin film via a one-step aqueous combustion process which can be easily scaled up. Film deposition of Pd from aqueous solutions by conventional chemical or electrochemical methods is inhibited by hydrogen embrittlement, thus resulting in a brittle palladium film. The method outlined in this work allows a direct aqueous solution deposition of a mirror-bright, durable Pd film on substrates including glass and glassy carbon. This simple procedure has many advantages including a very high deposition rate (>10 cm 2 min -1 ) and a relatively low deposition temperature (250 °C), which makes it suitable for large-scale industrial applications. Although preparation of various high-quality oxide films has been successfully accomplished via solution combustion synthesis (SCS) before, this article presents the first report on direct SCS production of a metallic film. The mechanism of Pd film formation is discussed with the identification of a complex formed between palladium nitrate and glycine at low temperature. The catalytic properties and stability of films are successfully tested in alcohol electrooxidation and electrochemical oxygen reduction reaction. It was observed that combustion deposited Pd film on a glassy carbon electrode showed excellent catalytic activity in ethanol oxidation without using any binder or additive. We also report for the first time the concept of a reusable "catalytic flask" as illustrated by the Suzuki-Miyaura cross-coupling reaction. The Pd film uniformly covers the inner walls of the flask and eliminates the catalyst separation step. We believe the innovative concept of a reusable catalytic flask is very promising and has the required features to become a commercial product in the future.

  15. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogen-Doped Carbon-Supported Iron Catalysts.

    Science.gov (United States)

    Li, Jiang; Liu, Jun-Ling; Zhou, Hong-Jun; Fu, Yao

    2016-06-08

    Iron-based heterogeneous catalysts, which were generally prepared by pyrolysis of iron complexes on supports at elevated temperature, were found to be capable of catalyzing the transfer hydrogenation of furfural (FF) to furfuryl alcohol (FFA). The effects of metal precursor, nitrogen precursor, pyrolysis temperature, and support on catalytic performance were examined thoroughly, and a comprehensive study of the reaction parameters was also performed. The highest selectivity of FFA reached 83.0 % with a FF conversion of 91.6 % under the optimal reaction condition. Catalyst characterization suggested that iron cations coordinated by pyridinic nitrogen functionalities were responsible for the enhanced catalytic activity. The iron catalyst could be recycled without significant loss of catalytic activity for five runs, and the destruction of the nitrogen-iron species, the presence of crystallized Fe2 O3 phase, and the pore structure change were the main reasons for catalyst deactivation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Investigation into catalytic activity of chelates of transition elements with azomethine in connection with their bacteriostatic action

    Energy Technology Data Exchange (ETDEWEB)

    Aptekar' , M D; Gordeev, Yu M [Voroshilovgradskij Mashinostroitel' nyj Inst. (USSR)

    1975-07-01

    By gas-volumimetric methods catalytic activity of VKS Co(2), Ni(2), Cu(2), Zn(2) and Cd(2) on the o-oxyarylazometine basis in the hydroperoxide decomposition and ascorbic acid oxidation reactions was studied. Dependence of catalytic activity of VKS on nature of central atom, aldehyde and amine fragments structure of ligands, complex stability was determined. It was shown that some similarity exist between catalytic activity of studied VKS and their bacteriostatic influence on E.coli,Staph. aureus,B.subtilis.

  17. Materials and Mechanisms of Photo-Assisted Chemical Reactions under Light and Dark Conditions: Can Day-Night Photocatalysis Be Achieved?

    Science.gov (United States)

    Sakar, M; Nguyen, Chinh-Chien; Vu, Manh-Hiep; Do, Trong-On

    2018-03-09

    The photoassisted catalytic reaction, conventionally known as photocatalysis, is expanding into the field of energy and environmental applications. It is widely known that the discovery of TiO 2 -assisted photochemical reactions has led to several unique applications, such as degradation of pollutants in water and air, hydrogen production through water splitting, fuel conversion, cancer treatment, antibacterial activity, self-cleaning glasses, and concrete. These multifaceted applications of this phenomenon can be enriched and expanded further if this process is equipped with more tools and functions. The term "photoassisted" catalytic reactions clearly emphasizes that photons are required to activate the catalyst; this can be transcended even into the dark if electrons are stored in the material for the later use to continue the catalytic reactions in the absence of light. This can be achieved by equipping the photocatalyst with an electron-storage material to overcome current limitations in photoassisted catalytic reactions. In this context, this article sheds lights on the materials and mechanisms of photocatalytic reactions under light and dark conditions. The manifestation of such systems could be an unparalleled technology in the near future that could influence all spheres of the catalytic sciences. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis of propylene carbonate from urea and propylene glycol over zinc oxide: A homogeneous reaction

    Directory of Open Access Journals (Sweden)

    Dengfeng Wang

    2014-11-01

    Full Text Available In this work, several metal oxides and zinc salts were used to catalyze propylene carbonate (PC synthesis from urea and propylene glycol (PG. According to the results of catalytic test and characterization, the catalytic pattern of ZnO was different from that of other metal oxides such as CaO, MgO and La2O3, but similar to that of zinc salts. In fact, the leaching of Zn species took place during reaction for ZnO. And ZnO was found to be the precursor of homogenous catalyst for reaction of urea and PG. Thus, the relationship between the amount of dissolved zinc species and the catalytic performance of employed ZnO was revealed. In addition, a possible reaction mechanism over ZnO was discussed based on the catalytic runs and the characterization of XRD, FTIR, and element analysis.

  19. Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Grass, M.E.; Kuhn, J.N.; Tao, F.; Habas, S.E.; Huang, W.; Yang, P.; Somorjai, G.A.

    2009-02-21

    Synthesis of monodisperse and shape-controlled colloidal inorganic nanocrystals (NCs) is of increasing scientific interest and technological significance. Recently, shape control of Pt, Pd, Ag, Au, and Rh NCs has been obtained by tuning growth kinetics in various solution-phase approaches, including modified polyol methods, seeded growth by polyol reduction, thermolysis of organometallics, and micelle techniques. Control of reduction kinetics of the noble metal precursors and regulation of the relative growth rates of low-index planes (i.e. {l_brace}100{r_brace} and {l_brace}111{r_brace}) via selective adsorption of selected chemical species are two keys for achieving shape modification of noble metal NCs. One application for noble metal NCs of well-defined shape is in understanding how NC faceting (determines which crystallographic planes are exposed) affects catalytic performance. Rh NCs are used in many catalytic reactions, including hydrogenation, hydroformylation, hydrocarbonylation, and combustion reactions. Shape manipulation of Rh NCs may be important in understanding how faceting on the nanoscale affects catalytic properties, but such control is challenging and there are fewer reports on the shape control of Rh NCs compared to other noble metals. Xia and coworkers obtained Rh multipods exhibiting interesting surface plasmonic properties by a polyol approach. The Somorjai and Tilley groups synthesized crystalline Rh multipods, cubes, horns and cuboctahedra, via polyol seeded growth. Son and colleagues prepared catalytically active monodisperse oleylamine-capped tetrahedral Rh NCs for the hydrogenation of arenes via an organometallic route. More recently, the Somorjai group synthesized sizetunable monodisperse Rh NCs using a one-step polyol technique. In this Communication, we report the highly selective synthesis of catalytically active, monodisperse Rh nanocubes of < 10 nm by a seedless polyol method. In this approach, Br{sup -} ions from trimethyl

  20. Determination of trace platinum by supramolecular catalytic kinetic spectrofluorimetry of {beta}-cyclodextrin-platinum-KBrO{sub 3}-salicylaldehyde furfuralhydrazone

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Bo; Zhang, Ning; Chen, Zhen-Zhen; Kong, Qing-Cheng [Shandong Normal University, College of Chemistry, Chemical Engineering and Materials Science, Jinan (China)

    2006-02-01

    A supramolecular catalytic kinetic spectrofluorimetric method was developed for the determination of platinum(IV) and the possible mechanism of catalytic reaction was discussed. The method was based on the fluorescence-enhancing reaction of salicylaldehyde furfuralhydrazone (SAFH) with potassium bromate, which was catalysed by platinum(IV) in a water-ethanol medium. {beta}-Cyclodextrin ({beta}-CD) obviously sensitized the determination at pH 5.20 and 25 C. Under optimum conditions, the {beta}-CD-platinum-KBrO{sub 3}-SAFH supramolecular kinetic catalytic reaction system had excitation and emission maxima at 372 and 461 nm, respectively. The linear range of this method was 0.60-180 ng ml{sup -1} with a relative standard deviation of 1.2%, and the detection limit was 0.18 ng ml{sup -1}. Investigation of the mechanism and the effects of interferences is presented. The proposed method was applied successfully to determine trace platinum(IV) in the chemotherapeutic drug cisplatin and serum from patients with satisfactory results. (orig.)

  1. Palladium Nanoparticle-Loaded Cellulose Paper: A Highly Efficient, Robust, and Recyclable Self-Assembled Composite Catalytic System.

    Science.gov (United States)

    Zheng, Guangchao; Kaefer, Katharina; Mourdikoudis, Stefanos; Polavarapu, Lakshminarayana; Vaz, Belén; Cartmell, Samantha E; Bouleghlimat, Azzedine; Buurma, Niklaas J; Yate, Luis; de Lera, Ángel R; Liz-Marzán, Luis M; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge

    2015-01-15

    We present a novel strategy based on the immobilization of palladium nanoparticles (Pd NPs) on filter paper for development of a catalytic system with high efficiency and recyclability. Oleylamine-capped Pd nanoparticles, dispersed in an organic solvent, strongly adsorb on cellulose filter paper, which shows a great ability to wick fluids due to its microfiber structure. Strong van der Waals forces and hydrophobic interactions between the particles and the substrate lead to nanoparticle immobilization, with no desorption upon further immersion in any solvent. The prepared Pd NP-loaded paper substrates were tested for several model reactions such as the oxidative homocoupling of arylboronic acids, the Suzuki cross-coupling reaction, and nitro-to-amine reduction, and they display efficient catalytic activity and excellent recyclability and reusability. This approach of using NP-loaded paper substrates as reusable catalysts is expected to open doors for new types of catalytic support for practical applications.

  2. Effects of electric current upon catalytic steam reforming of biomass gasification tar model compounds to syngas

    International Nuclear Information System (INIS)

    Tao, Jun; Lu, Qiang; Dong, Changqing; Du, Xiaoze; Dahlquist, Erik

    2015-01-01

    Highlights: • ECR technique was proposed to convert biomass gasification tar model compounds. • Electric current enhanced the reforming efficiency remarkably. • The highest toluene conversion reached 99.9%. • Ni–CeO 2 /γ-Al 2 O 3 exhibited good stability during the ECR performance. - Abstract: Electrochemical catalytic reforming (ECR) technique, known as electric current enhanced catalytic reforming technique, was proposed to convert the biomass gasification tar into syngas. In this study, Ni–CeO 2 /γ-Al 2 O 3 catalyst was prepared, and toluene was employed as the major feedstock for ECR experiments using a fixed-bed lab-scale setup where thermal electrons could be generated and provided to the catalyst. Several factors, including the electric current intensity, reaction temperature and steam/carbon (S/C) ratio, were investigated to reveal their effects on the conversion of toluene as well as the composition of the gas products. Moreover, toluene, two other tar model compounds (benzene and 1-methylnaphthalene) and real tar (tar-containing wastewater) were subjected to the long period catalytic stability tests. All the used catalysts were analyzed to determine their carbon contents. The results indicated that the presence of electric current enhanced the catalytic performance remarkably. The toluene conversion reached 99.9% under the electric current of 4 A, catalytic temperature of 800 °C and S/C ratio of 3. Stable conversion performances of benzene, 1-methylnaphthalene and tar-containing wastewater were also observed in the ECR process. H 2 and CO were the major gas products, while CO 2 and CH 4 were the minor ones. Due to the promising capability, the ECR technique deserves further investigation and application for efficient tar conversion

  3. Catalytic reduction of nitric oxide with ammonia over transition metal ion-exchanged Y zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Sciyama, T; Arakawa, T; Matsuda, T; Yamazoe, N; Takita, Y

    1975-01-01

    The catalytic reduction of nitric oxide with ammonia was studied over transition metal ion-exchanged Y zeolite (Me-Y) catalysts. The reaction products are nitrogen, nitrous oxide, and water in all cases. Selectivities to N/sub 2/ are 60 to 80% on all the cation exchanged zeolite catalysts exhibiting a relatively minor variation with the cationic species exchanged. The copper (II)-Y catalyst exhibits low temperature activity and has an unusual catalytic activity-temperature profile with a maximum at 120/sup 0/C. The catalytic activity is enhanced considerably when a second cation, especially cobalt (II) or iron (III) is coexchanged together with Cu (II) in Y zeolite.

  4. A DFT-Based Computational-Experimental Methodology for Synthetic Chemistry: Example of Application to the Catalytic Opening of Epoxides by Titanocene.

    Science.gov (United States)

    Jaraíz, Martín; Enríquez, Lourdes; Pinacho, Ruth; Rubio, José E; Lesarri, Alberto; López-Pérez, José L

    2017-04-07

    A novel DFT-based Reaction Kinetics (DFT-RK) simulation approach, employed in combination with real-time data from reaction monitoring instrumentation (like UV-vis, FTIR, Raman, and 2D NMR benchtop spectrometers), is shown to provide a detailed methodology for the analysis and design of complex synthetic chemistry schemes. As an example, it is applied to the opening of epoxides by titanocene in THF, a catalytic system with abundant experimental data available. Through a DFT-RK analysis of real-time IR data, we have developed a comprehensive mechanistic model that opens new perspectives to understand previous experiments. Although derived specifically from the opening of epoxides, the prediction capabilities of the model, built on elementary reactions, together with its practical side (reaction kinetics simulations of real experimental conditions) make it a useful simulation tool for the design of new experiments, as well as for the conception and development of improved versions of the reagents. From the perspective of the methodology employed, because both the computational (DFT-RK) and the experimental (spectroscopic data) components can follow the time evolution of several species simultaneously, it is expected to provide a helpful tool for the study of complex systems in synthetic chemistry.

  5. Catalytic partial oxidation of pyrolysis oils

    Science.gov (United States)

    Rennard, David Carl

    2009-12-01

    This thesis explores the catalytic partial oxidation (CPO) of pyrolysis oils to syngas and chemicals. First, an exploration of model compounds and their chemistries under CPO conditions is considered. Then CPO experiments of raw pyrolysis oils are detailed. Finally, plans for future development in this field are discussed. In Chapter 2, organic acids such as propionic acid and lactic acid are oxidized to syngas over Pt catalysts. Equilibrium production of syngas can be achieved over Rh-Ce catalysts; alternatively mechanistic evidence is derived using Pt catalysts in a fuel rich mixture. These experiments show that organic acids, present in pyrolysis oils up to 25%, can undergo CPO to syngas or for the production of chemicals. As the fossil fuels industry also provides organic chemicals such as monomers for plastics, the possibility of deriving such species from pyrolysis oils allows for a greater application of the CPO of biomass. However, chemical production is highly dependent on the originating molecular species. As bio oil comprises up to 400 chemicals, it is essential to understand how difficult it would be to develop a pure product stream. Chapter 3 continues the experimentation from Chapter 2, exploring the CPO of another organic functionality: the ester group. These experiments demonstrate that equilibrium syngas production is possible for esters as well as acids in autothermal operation with contact times as low as tau = 10 ms over Rh-based catalysts. Conversion for these experiments and those with organic acids is >98%, demonstrating the high reactivity of oxygenated compounds on noble metal catalysts. Under CPO conditions, esters decompose in a predictable manner: over Pt and with high fuel to oxygen, non-equilibrium products show a similarity to those from related acids. A mechanism is proposed in which ethyl esters thermally decompose to ethylene and an acid, which decarbonylates homogeneously, driven by heat produced at the catalyst surface. Chapter 4

  6. Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper-Palladium Catalysts.

    Science.gov (United States)

    Chang, Xin; Liu, An-Feng; Cai, Bo; Luo, Jin-Yue; Pan, Hui; Huang, Yao-Bing

    2016-12-08

    The catalytic transfer hydrogenation of furfural to the fuel additives 2-methylfuran (2-MF) and 2-methyltetrahydrofuran (2-MTHF) was investigated over various bimetallic catalysts in the presence of the hydrogen donor 2-propanol. Of all the as-prepared catalysts, bimetallic Cu-Pd catalysts showed the highest catalytic activities towards the formation of 2-MF and 2-MTHF with a total yield of up to 83.9 % yield at 220 °C in 4 h. By modifying the Pd ratios in the Cu-Pd catalyst, 2-MF or 2-MTHF could be obtained selectively as the prevailing product. The other reaction conditions also had a great influence on the product distribution. Mechanistic studies by reaction monitoring and intermediate conversion revealed that the reaction proceeded mainly through the hydrogenation of furfural to furfuryl alcohol, which was followed by deoxygenation to 2-MF in parallel to deoxygenation/ring hydrogenation to 2-MTHF. Finally, the catalyst showed a high reactivity and stability in five catalyst recycling runs, which represents a significant step forward toward the catalytic transfer hydrogenation of furfural. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Oxyfuel combustion using a catalytic ceramic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiaoyao; Li, K. [Department of Chemical Engineering, Imperial College London, University of London, South Kensington, London SW7 2AZ (United Kingdom); Thursfield, A.; Metcalfe, I.S. [School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2008-02-29

    Membrane catalytic combustion (MCC) is an environmentally friendly technique for heat and power generation from methane. This work demonstrates the performances of a MCC perovskite hollow fibre membrane reactor for the catalytic combustion of methane. The ionic-electronic La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{alpha}} (LSCF6428) mixed conductor, in the form of an oxygen-permeable hollow fibre membrane, has been prepared successfully by means of a phase-inversion spinning/sintering technique. For this process polyethersulfone (PESf) was used as a binder, N-methyl-2-pyrrollidone (NMP) as solvent and polyvinylpyrrolidone (PVP, K16-18) as an additive. With the prepared LSCF6428 hollow fibre membranes packed with catalyst, hollow fibre membrane reactors (HFMRs) have been assembled to perform the catalytic combustion of methane. A simple mathematical model that combines the local oxygen permeation rate with approximate catalytic reaction kinetics has been developed and can be used to predict the performance of the HFMRs for methane combustion. The effects of operating temperature and methane and air feed flow rates on the performance of the HFMR have been investigated both experimentally and theoretically. Both the methane conversion and oxygen permeation rate can be improved by means of coating platinum on the air side of the hollow fibre membranes. (author)

  8. Metal-Free Oxidation of Primary Amines to Nitriles through Coupled Catalytic Cycles.

    Science.gov (United States)

    Lambert, Kyle M; Bobbitt, James M; Eldirany, Sherif A; Kissane, Liam E; Sheridan, Rose K; Stempel, Zachary D; Sternberg, Francis H; Bailey, William F

    2016-04-04

    Synergism among several intertwined catalytic cycles allows for selective, room temperature oxidation of primary amines to the corresponding nitriles in 85-98% isolated yield. This metal-free, scalable, operationally simple method employs a catalytic quantity of 4-acetamido-TEMPO (ACT; TEMPO=2,2,6,6-tetramethylpiperidine N-oxide) radical and the inexpensive, environmentally benign triple salt oxone as the terminal oxidant under mild conditions. Simple filtration of the reaction mixture through silica gel affords pure nitrile products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Carbon-Increasing Catalytic Strategies for Upgrading Biomass into Energy-Intensive Fuels and Chemicals

    DEFF Research Database (Denmark)

    Li, Hu; Riisager, Anders; Saravanamurugan, Shunmugavel

    2017-01-01

    Lignocellulosic biomass is the most abundant organic carbon source and has received a great deal of interest as renewable and sustainable feedstock for the production of potential biofuels and value-added chemicals with a wide range of designed catalytic systems. However, those natural polymeric...... materials are composed of short-chain monomers (typically C6 and C5 sugars) and complex lignin molecules containing plenty of oxygen, resulting in products during the downstream processing having low-grade fuel properties or limited applications in organic syntheses. Accordingly, approaches to increase...... corresponding key intermediates or final products are also reviewed. The effects of catalyst structure/type and reaction parameters on the catalytic performance along with relevant reaction mechanisms are in detail discussed. Apart from this, the formation of other useful compounds containing C-X bonds (X = O...

  10. Electro-catalytic oxidation of ethanol on platinum-iridium mixtures supported on glassy carbon

    International Nuclear Information System (INIS)

    Rodriguez, Henry; Hoyos Bibian

    2004-01-01

    Electro-catalytic oxidation of ethanol on platinum-iridium mixtures supported on glassy carbon was studied, in acid media at different temperatures and concentrations. During the maturation time of deposited iridium, the surface is covered by an irreversible oxide formation, which affects the behavior of the catalytic mixture. The Pt 7 0 Ir 3 0 and Pt 9 0 Ir 1 0 mixtures seem to be a little more active than the Pt/C electrode at potentials below 800 mV (vs. HRE). In all electrodes appears two reactions: partial ethanol oxidation to produce acetaldehyde (main path of reaction at low temperatures and high electrode coverage with ethanol adsorption residues) and the total oxidation to carbon dioxide which is considerable at potential above 800 mV and it is increased with increasing temperature

  11. Catalytic Tandem Reaction for the Production of Jet and Diesel Fuel Range Alkanes

    DEFF Research Database (Denmark)

    Li, Hu; Gui, Zhenyou; Yang, Song

    2018-01-01

    Jet and diesel fuels are typically composed of C9-C14 and C12-C20 hydrocarbons, respectively, but the carbon-chain length of sugar-derived aldehydes and furanic compounds is no longer than C6. Here, a cascade catalytic process involving alkylation and hydrodeoxygenation (HDO) of 2-methylfuran (2-MF...

  12. Electrochemical reaction rates in a dye-sensitised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, L.; West, K.; Winther-Jensen, B.

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide/tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide....../tri-iodide couple should be fast at the counter electrode, i.e. this electrode must have a high catalytic activity towards the redox couple, and the same reaction must be slow on the photo electrode. The catalytic activity is investigated for platinum, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole (PPy......), and polyaniline (PANI)-all deposited onto fluorine-doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrodes in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  13. Electrochemical reaction rates in a dye sentisised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Winter-Jensen, Bjørn

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide / tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide / tri......-iodide couple should be fast at the counter electrode, i.e. this electrode must have a high catalytic activity towards the redox couple, and the same reaction must be slow on the photo electrode. The catalytic activity is investigated for platinum, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole (PPy......), and polyaniline (PANI) - all deposited onto fluorine doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrode in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  14. Catalytic activity of oxide cerium-molybdenum-tellurium catalysts in oxidation ammonolysis

    International Nuclear Information System (INIS)

    Dzhordano, N.; Bart, D.; Madzhori, R.

    1984-01-01

    A commercial catalyst containing a mixture of Ce-, Mo-, Te oxides deposited on SiO 2 is shown to manifest a high efficiency in oxidative ammonolysis of propylene (C 3 - ) to acrylonitrile (AN). The dependence of the catalytic properties on the catalyst composition and reaction conditions is studied. It is established that three-component mixtures are more active and selective than the systems with a lesser number of components. Using the catalyst with the optimum ratio of constituent oxides in a microreactor at 440 deg enabled one to achieve initial selectivity in terms of AN equal to 82.5% at 97% conversion of C 3 - . Acrolein, acetonitrile, HCN and nitrogen oxides are the reaction by-products. A supposition is made that the reaction proceeds via the formation of π-compleXes on the centres of Te(4). Setective oxidation occurs on oxygen atoms bonded with the Mo(6) ions. Tellurium enhances the molybdenum reducibleness due to delocalization of electrons, whereas the cerium addition to the mixture of tellurium- and molybdenum oxides increases the rate of molybdenum reoxidation and thus enhances the catalytic system stability

  15. The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation.

    Science.gov (United States)

    Ali, Sajjad; Fu Liu, Tian; Lian, Zan; Li, Bo; Sheng Su, Dang

    2017-08-23

    The mechanism of CO oxidation by O 2 on a single Au atom supported on pristine, mono atom vacancy (m), di atom vacancy (di) and the Stone Wales defect (SW) on single walled carbon nanotube (SWCNT) surface is systematically investigated theoretically using density functional theory. We determine that single Au atoms can be trapped effectively by the defects on SWCNTs. The defects on SWCNTs can enhance both the binding strength and catalytic activity of the supported single Au atom. Fundamental aspects such as adsorption energy and charge transfer are elucidated to analyze the adsorption properties of CO and O 2 and co-adsorption of CO and O 2 molecules. It is found that CO binds stronger than O 2 on Au supported SWCNT. We clearly demonstrate that the defected SWCNT surface promotes electron transfer from the supported single Au atom to O 2 molecules. On the other hand, this effect is weaker for pristine SWCNTs. It is observed that the high density of spin-polarized states are localized in the region of the Fermi level due to the strong interactions between Au (5d orbital) and the adjacent carbon (2p orbital) atoms, which influence the catalytic performance. In addition, we elucidate both the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms of CO oxidation by O 2 . For the LH pathway, the barriers of the rate-limiting step are calculated to be 0.02 eV and 0.05 eV for Au/m-SWCNT and Au/di-SWCNT, respectively. To regenerate the active sites, an ER-like reaction occurs to form a second CO 2 molecule. The ER pathway is observed on Au/m-SWCNT, Au/SW-SWCNT and Au/SWCNT in which the Au/m-SWCNT has a smaller barrier. The comparison with a previous study (Lu et al., J. Phys. Chem. C, 2009, 113, 20156-20160.) indicates that the curvature effect of SWCNTs is important for the catalytic property of the supported single Au. Overall, Au/m-SWCNT is identified as the most active catalyst for CO oxidation compared to pristine SWCNT, SW-SWCNT and di-SWCNT. Our findings give a

  16. Catalytic oxidation for treatment of ECLSS and PMMS waste streams. [Process Material Management Systems

    Science.gov (United States)

    Akse, James R.; Thompson, John; Scott, Bryan; Jolly, Clifford; Carter, Donald L.

    1992-01-01

    Catalytic oxidation was added to the baseline multifiltration technology for use on the Space Station Freedom in order to convert low-molecular weight organic waste components such as alcohols, aldehydes, ketones, amides, and thiocarbamides to CO2 at low temperature (121 C), thereby reducing the total organic carbon (TOC) to below 500 ppb. The rate of reaction for the catalytic oxidation of aqueous organics to CO2 and water depends primarily upon the catalyst, temperature, and concentration of reactants. This paper describes a kinetic study conducted to determine the impact of each of these parameters upon the reaction rate. The results indicate that a classic kinetic model, the Langmuir-Hinshelwood rate equation for heterogeneous catalysis, can accurately represent the functional dependencies of this rate.

  17. Simulation on Toxic Gases in Vehicle Exhaust Equipped with Modified Catalytic Converter : A Review

    Directory of Open Access Journals (Sweden)

    Leman A.M.

    2016-01-01

    Full Text Available Air pollution and global warming is a major issue nowadays. One of the main contributors to be the emission of harmful gases produced by vehicle exhausts lines. The harmful gases like NOx, CO, unburned HC and particulate matter increases the global warming, so catalytic converter plays a vital role in reducing harmful gases. Catalytic converters are used on most vehicles on the road today. This research deals with the gas emission flow in the catalytic converter involving the heat transfer, velocity flow, back pressure and others chemical reaction in the modified catalytic converter by using FeCrAl as a substrate that is treated using the ultrasonic bath and electroplating techniques. The objective of this study is to obtain a quantitative description of the gas emission in the catalytic converter system of automobile exhaust gas using ANSYS Software. The description of the gas emission in the catalytic converter system of automobile exhaust gas using ANSYS Software was simulated in this research in order to provide better efficiency and ease the reusability of the catalytic converter by comparing experimental data with software analysing data. The result will be expected to demonstrate a good approximation of gas emission in the modified catalytic converter simulation data compared to experimental data in order to verify the effectiveness of modified catalytic converter. Therefore studies on simulation of flow through the modified catalytic converter are very important to increase the accuracy of the obtained emission result.

  18. Monitoring mass transport in heterogeneously catalyzed reactions by field-gradient NMR for assessing reaction efficiency in a single pellet

    Science.gov (United States)

    Buljubasich, L.; Blümich, B.; Stapf, S.

    2011-09-01

    An important aspect in assessing the performance of a catalytically active reactor is the accessibility of the reactive sites inside the individual pellets, and the mass transfer of reactants and products to and from these sites. Optimal design often requires a suitable combination of micro- and macropores in order to facilitate mass transport inside the pellet. In an exothermic reaction, fluid exchange between the pellet and the surrounding medium is enhanced by convection, and often by the occurrence of gas bubbles. Determining mass flow in the vicinity of a pellet thus represents a parameter for quantifying the reaction efficiency and its dependence on time or external reaction conditions. Field gradient Nuclear Magnetic Resonance (NMR) methods are suggested as a tool for providing parameters sensitive to this mass flow in a contact-free and non-invasive way. For the example of bubble-forming hydrogen peroxide decomposition in an alumina pellet, the dependence of the mean-squared displacement of fluid molecules on spatial direction, observation time and reaction time is presented, and multi-pulse techniques are employed in order to separate molecular displacements from coherent and incoherent motion on the timescale of the experiment. The reaction progress is followed until the complete decomposition of H 2O 2.

  19. Understanding and Improvement of an Experiment Measuring Chemical Reaction Rates by Monitoring Volume Change of a Gas: On the Reaction between HCl(aq) and Mg(s)

    International Nuclear Information System (INIS)

    Bang, Jeong Ah; Yoon, Hee Sook; Jeong, Dae Hong; Choi, Won Ho

    2006-01-01

    In this study we analyzed and improved an experiment measuring chemical reaction rates introduced in the high school science textbooks through an understanding of the phenomena observed in carrying out the experiment. For this purpose, the contents of textbooks related to the experiment were analyzed, and the problems observed in carrying out the experiment were addressed through experimental analysis. When the experiment was carried out by the method of aquatic transposition presented in textbooks, the observed volume change of H 2 gas was delayed and chemical reaction rate was increased in the early stage of reaction period. To resolve these problems, an improved method for measuring the reaction rates was suggested. In the improved experiment the reaction rate was measured to be constant on time, which was interpreted in terms of the concentration of H + and the surface area of magnesium

  20. Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony

    2012-04-13

    This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.