WorldWideScience

Sample records for catalysts final technical

  1. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Glasser, Alan H. [Fusion Theory and Computation Inc., Kingston, WA (United States)

    2018-02-02

    Final technical report on DE-SC0016106. This is the final technical report for a portion of the multi-institutional CEMM project. This report is centered around 3 publications and a seminar presentation, which have been submitted to E-Link.

  2. Final Technical Report: Metal—Organic Surface Catalyst for Low-temperature Methane Oxidation: Bi-functional Union of Metal—Organic Complex and Chemically Complementary Surface

    Energy Technology Data Exchange (ETDEWEB)

    Tait, Steven L. [Indiana Univ., Bloomington, IN (United States)

    2016-10-01

    serve as easily tuned model systems for exploring the chemistry of single-site transition metals and tandem catalysts that could then be developed into a zeolite or other stable support structures. In this final technical report, three major advances our described that further these goals. The first is a study demonstrating the ability to tune the oxidation state of V single-site centers on a surface by design of the surrounding ligand field. The synthesis of the single-site centers was developed in a previous reporting period of this project and this new advance shows a distinct new ability of the systems to have a designed oxidation state of the metal center. Second, we demonstrate metal complexation at surfaces using vibrational spectroscopy and also show a metal replacement reaction on Ag surfaces. Third, we demonstrate a surface-catalyzed dehydrocyclization reaction important for metal-organic catalyst design at surfaces.

  3. Development of improved iron Fischer-Tropsch catalysts. Final technical report: Project 6464

    Energy Technology Data Exchange (ETDEWEB)

    Bukur, D.B.; Ledakowicz, S.; Koranne, M. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering] [and others

    1994-02-28

    Despite the current worldwide oil glut, the United States will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer Tropsch (FT) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Texas A&M University (TAMU) with sponsorship from the US Department of Energy, Center for Energy and Mineral Resources at TAMU, Texas Higher Education Coordinating Board, and Air Products and Chemicals, Inc., has been working on development of improved iron FT catalysts and characterization of hydrodynamic parameters in two- and three-phase bubble columns with FT derived waxes. Our previous studies have provided an improved understanding of the role of promoters (Cu and K), binders (silica) and pretreatment procedures on catalyst activity, selectivity and longevity (deactivation). The objective of the present contract was to develop improved catalysts with enhanced slurry phase activity and higher selectivity to liquid fuels and wax. This was accomplished through systematic studies of the effects of pretreatment procedures and variations in catalyst composition (promoters and binders). The major accomplishments and results in each of these two main areas of research are summarized here.

  4. Novel catalysts for upgrading coal-derived liquids. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.T.; Savage, P.E.; Briggs, D.E.

    1995-03-31

    Research described in this report was aimed at synthesizing and evaluating supported Mo oxynitrides and oxycarbides for the selective removal of nitrogen, sulfur and oxygen from model and authentic coal-derived liquids. The Al{sub 2}O{sub 3}-supported oxynitrides and oxycarbides were synthesized via the temperature programmed reaction of supported molybdenum oxides or hydrogen bronzes with NH{sub 3} or an equimolar mixture of CH{sub 4} and H{sub 2}. Phase constituents and composition were determined by X-ray diffraction, CHN analysis, and neutron activation analysis. Oxygen chemisorption was used to probe the surface structure of the catalysts. The reaction rate data was collected using specially designed micro-batch reactors. The Al{sub 2}O{sub 3}-supported Mo oxynitrides and oxycarbides were competitively active for quinoline hydrodenitrogenation (HDN), benzothiophene hydrodesulfurization (HDS) and benzofuran hydrodeoxygenation (HDO). In fact, the HDN and HDO specific reaction rates for several of the oxynitrides and oxycarbides were higher than those of a commercial Ni-Mo/Al{sub 2}O{sub 3} hydrotreatment catalyst. Furthermore, the product distributions indicated that the oxynitrides and oxycarbides were more hydrogen efficient than the sulfide catalysts. For HDN and HDS the catalytic activity was a strong inverse function of the Mo loading. In contrast, the benzofuran hydrodeoxygenation (HDO) activities did not appear to be affected by the Mo loading but were affected by the heating rate employed during nitridation or carburization. This observation suggested that HDN and HDS occurred on the same active sites while HDO was catalyzed by a different type of site.

  5. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    John Ross

    2003-04-30

    The Final Technical Report summarizes research accomplishments and Publications in the period of 5/1/99 to 4/30/03 done on the grant. Extensive progress was made in the period covered by this report in the areas of chemical kinetics of non-linear systems; spatial structures, reaction - diffusion systems, and thermodynamic and stochastic theory of electrochemical and general systems.

  6. Solvothermal conversion of technical lignins over NiMo catalysts

    DEFF Research Database (Denmark)

    Ghafarnejad Parto, Soheila; Christensen, Jakob Munkholt; Pedersen, Lars Saaby

    Scope: Lignin, cellulose and hemicellulose are the main constituents of plants cell walls. Lignin is an aromatic rich compound, composed of phenolic building blocks. Depending on the method used for isolation of lignin from cellulose and hemicellulose, several types of technical lignin are availa......Scope: Lignin, cellulose and hemicellulose are the main constituents of plants cell walls. Lignin is an aromatic rich compound, composed of phenolic building blocks. Depending on the method used for isolation of lignin from cellulose and hemicellulose, several types of technical lignin...... of the range of available technical lignins. In this work, catalytic conversion of different types of lignin using an alumina supported NiMo catalyst (provided by Haldor Topsøe A/S) is conducted in ethanol at 310 ˚C with initial hydrogen pressure of 25 barg. The reaction time was set to 3 hours. Proton......, attributed as ‘bio-oil’. GC-MS-FID analysis was used for identification and quantification of the bio-oil and ethanol rich light fraction. The molecular weight of the oil fraction was determined by size exclusion chromatography (SEC). Elemental analysis (Eurovector EuroEA3000) was conducted for measuring...

  7. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Spivey, James J. [Louisiana State Univ., Baton Rouge, LA (United States)

    2016-02-02

    The research summarized here has the goal of developing a fundamental understanding of how catalysts work. These materials are demonstrably essential to our daily life, from the cars we drive to the clothes we wear. Our Center advances the science behind how we prepare, analyze, and describe catalysts. This has been identified by one of the documents guiding Federal research objectives (Directing Matter and Energy: Five Challenges for Science and the Imagination): “Major challenges in heterogeneous catalysis are to more clearly define the nature of the active sites, to engineer at the molecular level catalysis with designed properties in three dimensions, and to create new catalysts for new transformations.” This directly addresses this objective.

  8. Catalyst-Free Biodiesel Production Methods: A Comparative Technical and Environmental Evaluation

    Directory of Open Access Journals (Sweden)

    Oseweuba Valentine Okoro

    2018-01-01

    Full Text Available In response to existing global focus on improved biodiesel production methods via highly efficient catalyst-free high temperature and high pressure technologies, this study considered the comparative study of catalyst-free technologies for biodiesel production as an important research area. In this study, therefore, catalyst-free integrated subcritical lipid hydrolysis and supercritical esterification and catalyst-free one step supercritical transesterification processes for biodiesel production have been evaluated via undertaking straight forward comparative energetic and environmental assessments. Energetic comparisons were undertaken after heat integration was performed since energy reduction has favourable effects on the environmental performance of chemical processes. The study confirmed that both processes are capable of producing biodiesel of high purity with catalyst-free integrated subcritical lipid hydrolysis and supercritical esterification characterised by a greater energy cost than catalyst-free one step supercritical transesterification processes for an equivalent biodiesel productivity potential. It was demonstrated that a one-step supercritical transesterification for biodiesel production presents an energetically more favourable catalyst-free biodiesel production pathway compared to the integrated subcritical lipid hydrolysis and supercritical esterification biodiesel production process. The one-step supercritical transesterification for biodiesel production was also shown to present an improved environmental performance compared to the integrated subcritical lipid hydrolysis and supercritical esterification biodiesel production process. This is because of the higher potential environment impact calculated for the integrated subcritical lipid hydrolysis and supercritical esterification compared to the potential environment impact calculated for the supercritical transesterification process, when all material and energy flows are

  9. 48 CFR 252.235-7011 - Final scientific or technical report.

    Science.gov (United States)

    2010-10-01

    ... technical report. 252.235-7011 Section 252.235-7011 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.235-7011 Final scientific or technical report. As prescribed in 235.072(d), use the following clause: Final Scientific or Technical Report (NOV 2004) The Contractor...

  10. Technical Report: Final

    Energy Technology Data Exchange (ETDEWEB)

    Lueking, Angela D.; Wang, Cheng-Yu

    2014-09-30

    The objective of this work was to develop catalyzed nanoporous materials that have superior hydrogen uptake between 300K and 400K and moderate pressures. Platinum nanoparticles were introduced to both activated carbons (ACs) and microporous metal organic frameworks (MMOFs) in order to dissociate molecular hydrogen into an active hydrogen species that diffuses from the catalyst to weakly chemisorbs to the AC/MMOF support; this combined sequence is referred to as the hydrogen spillover mechanism. For all materials studied, maximum excess hydrogen uptake was 1-1.4 wt% (excess) at 300K, falling short of DOE storage goals (5.5 wt% by 2015). Select Pt/AC materials (after in situ catalyst activation) had high uptake (up to 1.4 wt%) at low pressure which significantly exceeded that expected for physisorption. The uptake was not correlated to size of Pt catalyst, but appeared to be associated with high surface activity of the AC support and the methodology of catalyst doping. Multiple techniques were explored to introduce Pt nanoparticles into MMOFs, but most led to significant structural degradation. Ultimately, a ‘pre-bridge’ (PB) technique was used to introduce Pt/AC catalysts into MMOFs, as the PB technique led to virtually non-detectable changes in structure. At high pressure, hydrogen spillover of ~1 wt% (excess) to a PB-MMOF was very slow (i.e. >80 hours at 70-80 bar), which can be attributed to high diffusion barriers in a complex three-surface domain material (Pt, AC, MMOF) as well as unexpected evidence for mechanical instability of the undoped MMOF precursor. In a low-pressure comparison study of three PB-MMOFs, we found evidence that the doping technique may introduce defects which may contribute to enhanced adsorption at 300K. However, we could not rule out the effect of active Pt sites, as common predictors of adsorption generally favored the materials without Pt. Furthermore, spectroscopic evidence provided definitive evidence of weak hydrogen

  11. Guidelines for Preparing Final Technical Reports

    International Development Research Centre (IDRC) Digital Library (Canada)

    fdieudonne

    Prior to submitting the Final Technical Report, any outstanding issues related to dissemination in accordance with ... The report should be an opportunity to reflect on the management of the project from various perspectives: .... of poor quality.

  12. Final Technical Report for GO15052 Intematix: Combinatorial Synthesis and High Throughput Screening of Effective Catalysts for Chemical Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Melman, Jonathan [Intematix Corporation, Fremont, CA (United States)

    2017-02-22

    The objectives of this project are: to discover cost-effective catalysts for release of hydrogen from chemical hydrogen storage systems; and to discover cost-effective catalysts for the regeneration of spent chemical hydrogen storage materials.

  13. Technical evaluation report of the Fort St. Vrain final draft upgraded technical specifications

    International Nuclear Information System (INIS)

    Kimura, C.Y.

    1989-01-01

    This report is a technical evaluation of the final draft of the Fort St. Vrain (FSV) Upgraded Technical Specifications (UT/S) as issued by Public Service of Colorado (PSC) on May 27, 1988 with subsequent supplemental updates issued on June 15, 1988 and August 5, 1988. It has been compared for consistency, and safety conservatism with the Fort St. Vrain (FSV) Updated Final Safety Analysis Report (FSAR), the FSV Safety Evaluation Report (SER), the Facility Operating License, DPR-34, and all amendments to the Facility Operating License issued as of June 1, 1988, and Appendix A to the Operating License DPR-34, Technical Specifications. Because of the age of the plant, no supplements to the Fort St. Vrain SER have been issued since the original SER was not issued as a WASH or a NUREG report. This made it necessary to review all amendments to the Facility Operating License since they would contain the safety evaluations done to support changes to the Facility Operating License. The upgraded Fort St. Vrain Technical Specifications were also broadly compared with the latest Westinghouse Standard Technical Specifications (WSTS) to assure that what was proposed for Fort St. Vrain was consistent with the latest NRC staff practices for standard technical specifications

  14. Ethanol synthesis and water gas shift over bifunctional sulfide catalysts. Final technical progress report, September 12, 1991--December 11, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Deemer, M.; Richards-Babb, M.; Carr, T.

    1995-07-01

    The objective of this research was to investigate sulfur-resistant catalysts for the conversion of synthesis gas having H{sub 2}/CO {le} 1 into C{sub 1}--C{sub 4} alcohols, especially ethanol, by a highly selective and efficient pathway, while also promoting the water gas shift reaction (WGSR). The catalysts chosen are bifunctional, base-hydrogenation, sulfur-tolerant transition metal sulfides with heavy alkali, e.g. Cs{sup +}, promoter dispersed on their surfaces. The modes of activation of H{sub 2} and CO on MoS{sub 2} and alkali-doped MoS{sub 2} were considered, and computational analyses of the thermodynamic stability of transition metal sulfides and of the electronic structure of these sulfide catalysts were carried out. In the preparation of the cesium-promoted MoS{sub 2} catalysts, a variety of preparation methods using CsOOCH were examined. In all cases, doping with CsOOCH led to a lost of surface area. The undoped molybdenum disulfide catalyst only produced hydrocarbons. Cs-doped MoS{sub 2} catalysts all produced linear alcohols, along with smaller amounts of hydrocarbons. With a 20 wt% CsOOCH/MoS{sub 2} catalyst, temperature, pressure, and flow rate dependences of the synthesis reactions were investigated in the presence and absence of H{sub 2}S in the H{sub 2}/CO = 1/1 synthesis gas during short term testing experiments. It was shown that with a carefully prepared 10 wt% CsOOCH/MoS{sub 2} catalyst, reproducible and high alcohol synthesis activity could be obtained. For example, at 295 C with H{sub 2}/CO = 1 synthesis gas at 8.3 MPa and with GHSV = 7,760 l/kg cat/hr, the total alcohol space time yield was ca 300 g/kg cat/hr (accompanied with a hydrocarbon space time yield of ca 60 g/kg cat/hr). Over a testing period of ca 130 hr, no net deactivation of the catalyst was observed. 90 refs., 82 figs., 14 tabs.

  15. Assessment of research needs for advanced heterogeneous catalysts for energy applications. Final report: Volume 2, Topic reports

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G.A.

    1994-04-01

    This report assesses the direction, technical content, and priority of research needs judged to provide the best chance of yielding new and improved heterogeneous catalysts for energy-related applications over the period of 5-20 years. It addresses issues of energy conservation, alternate fuels and feedstocks, and the economics and applications that could alleviate pollution from energy processes. Recommended goals are defined in 3 research thrusts: catalytic science, environmental protection by catalysis, and industrial catalytic applications. This study was conducted by an 11-member panel of experts from industry and academia, including one each from Japan and Europe. This volume first presents an in-depth overview of the role of catalysis in future energy technology in chapter 1; then current catalytic research is critically reviewed and research recommended in 8 topic chapters: catalyst preparation (design and synthesis), catalyst characterization (structure/function), catalyst performance testing, reaction kinetics/reactor design, catalysis for industrial chemicals, catalysis for electrical applications (clean fuels, pollution remediation), catalysis for control of exhaust emissions, and catalysts for liquid transportation fuels from petroleum, coal, residual oil, and biomass.

  16. A Novel Slurry-Based Biomass Reforming Process Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Sean C. [United Technologies Research Center, East Hartford, CT (United States); Davis, Timothy D. [United Technologies Research Center, East Hartford, CT (United States); Peles, A. [United Technologies Research Center, East Hartford, CT (United States); She, Ying [United Technologies Research Center, East Hartford, CT (United States); Sheffel, Joshua [United Technologies Research Center, East Hartford, CT (United States); Willigan, Rhonda R. [United Technologies Research Center, East Hartford, CT (United States); Vanderspurt, Thomas H. [United Technologies Research Center, East Hartford, CT (United States); Zhu, Tianli [United Technologies Research Center, East Hartford, CT (United States)

    2011-09-30

    to hydrogen, methane, and carbon dioxide was repeatedly demonstrated in batch reactors varying in size from 50 mL to 7.6 L. The different wood sources (e.g., swamp maple, poplar, and commercial wood flour) were converted in the presence of a heterogeneous catalyst and base at relatively low temperatures (e.g., 310°C) at sub-critical pressures sufficient to maintain the liquid phase. Both precious metal and base metal catalysts were found to be active for the liquid phase hydrolysis and reforming of wood. Pt-based catalysts, particularly Pt-Re, were shown to be more selective toward breaking C-C bonds, resulting in a higher selectivity to hydrogen versus methane. Ni-based catalysts were found to prefer breaking C-O bonds, favoring the production of methane. The project showed that increasing the concentration of base (base to wood ratio) in the presence of Raney Ni catalysts resulted in greater selectivity toward hydrogen but at the expense of increasing the production of undesirable organic acids from the wood, lowering the amount of wood converted to gas. It was shown that by modifying Ni-based catalysts with dopants, it was possible to reduce the base concentration while maintaining the selectivity toward hydrogen and increasing wood conversion to gas versus organic acids. The final stage of the project was the construction and testing of a demonstration unit for H2 production. This continuous flow demonstration unit consisted of wood slurry and potassium carbonate feed pump systems, two reactors for hydrolysis and reforming, and a gas-liquid separation system. The technical challenges associated with unreacted wood fines and Raney Ni catalyst retention limited the demonstration unit to using a fixed bed Raney Ni catalyst form. The lower activity of the larger particle Raney Ni in turn limited the residence time and thus the wood mass flow feed rate to 50 g min-1 for a 1 wt% wood slurry. The project demonstrated continuous H2 yields with unmodified, fixed bed

  17. Final Report: Cathode Catalysis in Hydrogen/Oxygen Fuel Cells: New Catalysts, Mechanism, and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gewirth, Andrew A. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Kenis, Paul J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemical and Biomolecular Engineering; Nuzzo, Ralph G. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry; Rauchfuss, Thomas B. [Univ. of Illinois, Urbana, IL (United States). Dept. of Chemistry

    2016-01-18

    In this research, we prosecuted a comprehensive plan of research directed at developing new catalysts and new understandings relevant to the operation of low temperature hydrogen-oxygen fuel cells. The focal point of this work was one centered on the Oxygen Reduction Reaction (ORR), the electrochemical process that most fundamentally limits the technological utility of these environmentally benign energy conversion devices. Over the period of grant support, we developed new ORR catalysts, based on Cu dimers and multimers. In this area, we developed substantial new insight into design rules required to establish better ORR materials, inspired by the three-Cu active site in laccase which has the highest ORR onset potential of any material known. We also developed new methods of characterization for the ORR on conventional (metal-based) catalysts. Finally, we developed a new platform to study the rate of proton transfer relevant to proton coupled electron transfer (PCET) reactions, of which the ORR is an exemplar. Other aspects of work involved theory and prototype catalyst testing.

  18. Final technical report

    DEFF Research Database (Denmark)

    Juhl, Thomas Winther; Nielsen, Jakob Skov

    gas jet chamber and laser beam path from the final focusing mirror. The project consists of three phases: Phase 1: Fundamental studies of cutting front mechanisms, beam propagation, nozzle design and chemical reactions in the cut kerf with special emphasize on high laser powers and thick sections...... cutting nozzle which can be adjusted independently to the laser beam has been developed. The position of the focus relative the workpiece can be adjusted to cutting applications with relatively large processing windows, i.e. both mild and stainless steels, and of a broad thickness range. A build-in auto......This project entails research with the goal to extend laser cutting of steel based metals to thickness above 20 mm and laser powers in the 10 kW range, with adequate accuracy and economically viable cutting speeds. The technical approach is to develop mirror based cutting heads with truly coaxial...

  19. Systems study 'Alternative Entsorgung'. Final report. Technical annex 10

    International Nuclear Information System (INIS)

    Hartje, B.; Kronschnabel, H.; Mueller, W.F.W.

    1984-01-01

    There is an investigation whether accessibility can be produced to fuel elements stored in a salt mine. All solutions of the problem were followed up until the technically best one was found. Two conditions must be fulfilled for access to the final storage barrel: - There must be a climate which is suitable for people. The Mining Order is the basis for this. - The pit building must be fixed, in the convergence in the salt mine should not lead to it becoming impossible to reach part of the mine. Due to heat-producing waste, rock temperatures are caused in the salt mine, in which mining is no longer possible. Building on the idea of cooling the whole final storage area using concentric sections, the amount of heat to be removal was first estimated. Cooling of the whole final storage area proved to be technically unjustifiable and uninteresting at present. (orig./HP) [de

  20. 10 CFR 52.157 - Contents of applications; technical information in final safety analysis report.

    Science.gov (United States)

    2010-01-01

    ...; technical information in final safety analysis report. The application must contain a final safety analysis... 10 Energy 2 2010-01-01 2010-01-01 false Contents of applications; technical information in final safety analysis report. 52.157 Section 52.157 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES...

  1. 10 CFR 52.79 - Contents of applications; technical information in final safety analysis report.

    Science.gov (United States)

    2010-01-01

    ...; technical information in final safety analysis report. (a) The application must contain a final safety... 10 Energy 2 2010-01-01 2010-01-01 false Contents of applications; technical information in final safety analysis report. 52.79 Section 52.79 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES...

  2. 48 CFR 1852.235-73 - Final Scientific and Technical Reports.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Final Scientific and Technical Reports. 1852.235-73 Section 1852.235-73 Federal Acquisition Regulations System NATIONAL..., including recommendations and conclusions based on the experience and results obtained. The final report...

  3. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Aristos Aristidou Natureworks); Robert Kean (NatureWorks); Tom Schechinger (IronHorse Farms, Mat); Stuart Birrell (Iowa State); Jill Euken (Wallace Foundation & Iowa State)

    2007-10-01

    The two main objectives of this project were: 1) to develop and test technologies to harvest, transport, store, and separate corn stover to supply a clean raw material to the bioproducts industry, and 2) engineer fermentation systems to meet performance targets for lactic acid and ethanol manufacturers. Significant progress was made in testing methods to harvest corn stover in a “single pass” harvest mode (collect corn grain and stover at the same time). This is technically feasible on small scale, but additional equipment refinements will be needed to facilitate cost effective harvest on a larger scale. Transportation models were developed, which indicate that at a corn stover yield of 2.8 tons/acre and purchase price of $35/ton stover, it would be unprofitable to transport stover more than about 25 miles; thus suggesting the development of many regional collection centers. Therefore, collection centers should be located within about 30 miles of the farm, to keep transportation costs to an acceptable level. These collection centers could then potentially do some preprocessing (to fractionate or increase bulk density) and/or ship the biomass by rail or barge to the final customers. Wet storage of stover via ensilage was tested, but no clear economic advantages were evident. Wet storage eliminates fire risk, but increases the complexity of component separation and may result in a small loss of carbohydrate content (fermentation potential). A study of possible supplier-producer relationships, concluded that a “quasi-vertical” integration model would be best suited for new bioproducts industries based on stover. In this model, the relationship would involve a multiyear supply contract (processor with purchase guarantees, producer group with supply guarantees). Price will likely be fixed or calculated based on some formula (possibly a cost plus). Initial quality requirements will be specified (but subject to refinement).Producers would invest in harvest

  4. Discovery of technical methanation catalysts based on computational screening

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Kasper Emil; Kustov, Arkadii

    2007-01-01

    Methanation is a classical reaction in heterogeneous catalysis and significant effort has been put into improving the industrially preferred nickel-based catalysts. Recently, a computational screening study showed that nickel-iron alloys should be more active than the pure nickel catalyst and at ...

  5. DE-FG02-08ER64658 (OASIS) - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sharman, Jonathan

    2013-09-05

    Project OASIS (Operation of Advanced Structures, Interfaces and Sub-components for MEAs) was a 12 month project that ran from 1st September 2008 to 31st August 2009, and was managed by the Department of Energy Office of Science, Chicago Office, as Award No DE-FG02-08ER64658, with Johnson Matthey Fuel Cells Inc. as the sole contractor. The project was completed on schedule, with technical successes (details below) and payment of the full grant award made by DOE. The aim of the project was the development of membrane electrode assemblies (MEAs) for H2/air polymer electrolyte membrane (PEM) fuel cells that would give higher performance under hot/dry and dry operating conditions, ideally with no loss of performance under wet conditions. Reducing or eliminating the need for humidifying the incoming gases will allow significant system cost and size reduction for many fuel cell applications including automotive, stationary and back-up power, and portable systems. Portable systems are also of particular interest in military markets. In previous work Johnson Matthey Fuel Cells had developed very stable, corrosion-resistant catalysts suitable for resisting degradation by carbon corrosion in particular. These materials were applied within the OASIS project as they are considered necessary for systems such as automotive where multiple start-stop events are experienced. These catalysts were contrasted with more conventional materials in the design of catalyst layers and novel microporous layers (MPLs) and gas diffusion layer (GDL) combinations were also explored. Early on in the work it was shown how much more aggressive high temperature operation is than dry operation. At the same humidity, tests at 110?C caused much more dehydration than tests at 80?C and the high temperature condition was much more revealing of improvements made to MEA design. Alloy catalysts were introduced and compared with Pt catalysts with a range of particle sizes. It was apparent that the larger

  6. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  7. DOE final technical report 3/1997 to 2/2005

    International Nuclear Information System (INIS)

    Gross, Franz L.

    2005-01-01

    DOE final technical report 3/1997 to 2/2005 This grant supported basic theoretical research into the derivation (from relativistic field theories) of relativistic equations for few body systems, with practical applications to the properties of 2 and 3 nucleon systems and to the nature of few-quark systems

  8. 77 FR 47495 - Final Priority; Technical Assistance on State Data Collection, Analysis, and Reporting-National...

    Science.gov (United States)

    2012-08-08

    ... Priority; Technical Assistance on State Data Collection, Analysis, and Reporting--National IDEA Technical... 34 CFR Chapter III [CFDA Number 84.373Z] Final Priority; Technical Assistance on State Data Collection, Analysis, and Reporting--National IDEA Technical Assistance Center on Early Childhood...

  9. Technical area status report for low-level mixed waste final waste forms

    International Nuclear Information System (INIS)

    Mayberry, J.L.; DeWitt, L.M.; Darnell, R.

    1993-08-01

    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA's Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities

  10. 76 FR 18624 - Research, Technical Assistance and Training Programs: Notice of Final Circular

    Science.gov (United States)

    2011-04-04

    ... to FTA Circular 6100.1D, Research and Technical Assistance Training Program: Application Instructions... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Research, Technical Assistance and Training Programs: Notice of Final Circular AGENCY: Federal Transit Administration (FTA), DOT. ACTION...

  11. High-Activity Dealloyed Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kongkanand, Anusorn [General Motors LLC, Pontiac, MI (United States)

    2014-09-30

    Reduction of costly Pt usage in proton exchange membrane fuel cell electrodes is one of the major challenges towards development and commercialization of fuel cell vehicles. Although few have met the initial-kinetic activity requirements in a realistic fuel cell device, no catalyst material has ever met the demanding fuel cell durability targets set by DOE. In this project, a team of 4 universities and 2 companies came together to investigate a concept that appeared promising in preliminary non-fuel cell tests then to further develop the catalyst to a mature level ready for vehicle implementation. The team consists of academia with technical leadership in their respective areas, a catalyst supplier, and a fuel cell system integrator.The tightly collaborative project enabled development of a highly active and durable catalyst with performance that significantly exceeds that of previous catalysts and meets the DOE targets for the first time (Figure 1A). The catalyst was then further evaluated in full-active-area stack in a realistic vehicle operating condition (Figure 1B). This is the first public demonstration that one can realize the performance benefit and Pt cost reduction over a conventional pure Pt catalyst in a long-term realistic PEMFC system. Furthermore, systematic analyses of a range of catalysts with different performance after fuel cell testing allowed for correlation between catalyst microstructure and its electrocatalytic activity and durability. This will in turn aid future catalyst development.

  12. AIMES Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Daniel S [Univ. of Illinois, Urbana-Champaign, IL (United States). National Center for Supercomputing Applications (NCSA); Jha, Shantenu [Rutgers Univ., New Brunswick, NJ (United States); Weissman, Jon [Univ. of Minnesota, Minneapolis, MN (United States); Turilli, Matteo [Rutgers Univ., New Brunswick, NJ (United States)

    2017-01-31

    This is the final technical report for the AIMES project. Many important advances in science and engineering are due to large-scale distributed computing. Notwithstanding this reliance, we are still learning how to design and deploy large-scale production Distributed Computing Infrastructures (DCI). This is evidenced by missing design principles for DCI, and an absence of generally acceptable and usable distributed computing abstractions. The AIMES project was conceived against this backdrop, following on the heels of a comprehensive survey of scientific distributed applications. AIMES laid the foundations to address the tripartite challenge of dynamic resource management, integrating information, and portable and interoperable distributed applications. Four abstractions were defined and implemented: skeleton, resource bundle, pilot, and execution strategy. The four abstractions were implemented into software modules and then aggregated into the AIMES middleware. This middleware successfully integrates information across the application layer (skeletons) and resource layer (Bundles), derives a suitable execution strategy for the given skeleton and enacts its execution by means of pilots on one or more resources, depending on the application requirements, and resource availabilities and capabilities.

  13. NCSU reactor sharing program. Final technical report

    International Nuclear Information System (INIS)

    Perez, P.B.

    1997-01-01

    The Nuclear Reactor Program at North Carolina State University provides the PULSTAR Research Reactor and associated facilities to eligible institutions with support, in part, from the Department of Energy Reactor Sharing Program. Participation in the NCSU Reactor Sharing Program continues to increase steadily with visitors ranging from advance high school physics and chemistry students to Ph.D. level research from neighboring universities. This report is the Final Technical Report for the DOE award reference number DE-FG05-95NE38136 which covers the period September 30, 1995 through September 30, 1996

  14. Assessment of research needs for advanced heterogeneous catalysts for energy applications. Final report: Volume 1, Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G.A.

    1994-04-01

    This report assesses the direction, technical content, and priority of research needs judged to provide the best chance of yielding new and improved heterogeneous catalysts for energy-related applications over a period of 5--20 years. It addresses issues of energy conservation, alternate fuels and feedstocks, and the economics and applications that could alleviate pollution from energy processes. Recommended goals are defined in 3 major, closely linked research thrusts: catalytic science, environmental protection by catalysis, and industrial catalytic applications. This volume provides a comprehensive executive summary, including research recommendations.

  15. Nanoparticular metal oxide/anatase catalysts

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention concerns a method of preparation of nanoparticular metal oxide catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular metal oxide catalyst precursors comprising combustible crystallization seeds upon which...... the catalyst metai oxide is co-precipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step. The present invention also concerns processes wherein the nanoparticular metal oxide catalysts of the invention are used, such as SCR (deNOx) reactions...

  16. Catalyst dispersion and activity under conditions of temperature-staged liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275{degrees}C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  17. High energy physics research. Final technical report, 1957--1994

    International Nuclear Information System (INIS)

    Williams, H.H.

    1995-01-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development

  18. High energy physics research. Final technical report, 1957--1994

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.H.

    1995-10-01

    This is the final technical report to the Department of Energy on High Energy Physics at the University of Pennsylvania. It discusses research conducted in the following areas: neutrino astrophysics and cosmology; string theory; electroweak and collider physics; supergravity; cp violation and baryogenesis; particle cosmology; collider detector at Fermilab; the sudbury neutrino observatory; B-physics; particle physics in nuclei; and advanced electronics and detector development.

  19. Technical approach to finalizing sensible soil cleanup levels at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Carr, D.; Hertel, B.; Jewett, M.; Janke, R.; Conner, B.

    1996-01-01

    The remedial strategy for addressing contaminated environmental media was recently finalized for the US Department of Energy's (DOE) Fernald Environmental Management Project (FEMP) following almost 10 years of detailed technical analysis. The FEMP represents one of the first major nuclear facilities to successfully complete the Remedial Investigation/Feasibility Study (RI/FS) phase of the environmental restoration process. A critical element of this success was the establishment of sensible cleanup levels for contaminated soil and groundwater both on and off the FEMP property. These cleanup levels were derived based upon a strict application of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) regulations and guidance, coupled with positive input from the regulatory agencies and the local community regarding projected future land uses for the site. The approach for establishing the cleanup levels was based upon a Feasibility Study (FS) strategy that examined a bounding range of viable future land uses for the site. Within each land use, the cost and technical implications of a range of health-protective cleanup levels for the environmental media were analyzed. Technical considerations in driving these cleanup levels included: direct exposure routes to viable human receptors; cross- media impacts to air, surface water, and groundwater; technical practicality of attaining the levels; volume of affected media; impact to sensitive environmental receptors or ecosystems; and cost. This paper will discuss the technical approach used to support the finalization of the cleanup levels for the site. The final cleanup levels provide the last remaining significant piece to the puzzle of establishing a final site-wide remedial strategy for the FEMP, and positions the facility for the expedient completion of site-wide remedial activities

  20. Audit of Wolf Creek Generating Station, Unit 1 technical specifications. Final technical evaluation report

    International Nuclear Information System (INIS)

    Stromberg, H.M.

    1985-07-01

    This document was prepared for the Nuclear Regulatory Commission (NRC) to assist them in determining whether the Wolf Creek Generating Station Unit 1 Technical Specifications (T/S), which govern plant systems configurations and operations, are in conformance with the assumptions of the Final Safety Analysis Report (FSAR) as amended, the requirements of the Safety Evaluation Report (SER) as supplemented, and the Comments and Responses to the Wolf Creek Technical Specification Draft Inspection Report. A comparative audit of the FSAR as amended, the SER as supplemented, and the Draft Inspection Report was performed with the Wolf Creek T/S. Several discrepancies were identified and subsequently resolved through discussions with the cognizant NRC reviewer, NRC staff reviewers and/or utility representatives. The Wolf Creek Generating Station Unit 1 T/S, to the extent reviewed, are in conformance with the FSAR, SER, and Draft Inspection Report

  1. 78 FR 12955 - Final Requirements, Definitions, and Selection Criteria-Native American Career and Technical...

    Science.gov (United States)

    2013-02-26

    ... career and technical education programs (20 U.S.C. 2326(e)). This notice does not preclude us from... DEPARTMENT OF EDUCATION 34 CFR Chapter IV [Docket ID ED-2012-OVAE-0053] Final Requirements, Definitions, and Selection Criteria--Native American Career and Technical Education Program (NACTEP) [Catalog...

  2. Technical planning activity: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    In April 1985, the US Department of Energy's (DOE's) Office of Fusion Energy commissioned the Technical Planning Activity (TPA). The purpose of this activity was to develop a technical planning methodology and prepare technical plans in support of the strategic and policy framework of the Magnetic Fusion Program Plan issued by DOE in February 1985. Although this report represents the views of only the US magnetic fusion community, it is international in scope in the sense that the technical plans contained herein describe the full scope of the tasks that are prerequisites for the commercialization of fusion energy. The TPA has developed a well-structured methodology that includes detailed definitions of technical issues, definitions of program areas and elements, statements of research and development objectives, identification of key decision points and milestones, and descriptions of facility requirements.

  3. Technical planning activity: Final report

    International Nuclear Information System (INIS)

    1987-01-01

    In April 1985, the US Department of Energy's (DOE's) Office of Fusion Energy commissioned the Technical Planning Activity (TPA). The purpose of this activity was to develop a technical planning methodology and prepare technical plans in support of the strategic and policy framework of the Magnetic Fusion Program Plan issued by DOE in February 1985. Although this report represents the views of only the US magnetic fusion community, it is international in scope in the sense that the technical plans contained herein describe the full scope of the tasks that are prerequisites for the commercialization of fusion energy. The TPA has developed a well-structured methodology that includes detailed definitions of technical issues, definitions of program areas and elements, statements of research and development objectives, identification of key decision points and milestones, and descriptions of facility requirements

  4. Technical area status report for low-level mixed waste final waste forms. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Mayberry, J.L.; DeWitt, L.M. [Science Applications International Corp., Idaho Falls, ID (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-08-01

    The Final Waste Forms (FWF) Technical Area Status Report (TASR) Working Group, the Vitrification Working Group (WG), and the Performance Standards Working Group were established as subgroups to the FWF Technical Support Group (TSG). The FWF TASR WG is comprised of technical representatives from most of the major DOE sites, the Nuclear Regulatory Commission (NRC), the EPA Office of Solid Waste, and the EPA`s Risk Reduction Engineering Laboratory (RREL). The primary activity of the FWF TASR Working Group was to investigate and report on the current status of FWFs for LLNM in this TASR. The FWF TASR Working Group determined the current status of the development of various waste forms described above by reviewing selected articles and technical reports, summarizing data, and establishing an initial set of FWF characteristics to be used in evaluating candidate FWFS; these characteristics are summarized in Section 2. After an initial review of available information, the FWF TASR Working Group chose to study the following groups of final waste forms: hydraulic cement, sulfur polymer cement, glass, ceramic, and organic binders. The organic binders included polyethylene, bitumen, vinyl ester styrene, epoxy, and urea formaldehyde. Section 3 provides a description of each final waste form. Based on the literature review, the gaps and deficiencies in information were summarized, and conclusions and recommendations were established. The information and data presented in this TASR are intended to assist the FWF Production and Assessment TSG in evaluating the Technical Task Plans (TTPs) submitted to DOE EM-50, and thus provide DOE with the necessary information for their FWF decision-making process. This FWF TASR will also assist the DOE and the MWIP in establishing the most acceptable final waste forms for the various LLMW streams stored at DOE facilities.

  5. 77 FR 30512 - Native American Career and Technical Education Program; Final Waivers and Extension of Project...

    Science.gov (United States)

    2012-05-23

    ... DEPARTMENT OF EDUCATION Native American Career and Technical Education Program; Final Waivers and... American Career and Technical Education Program Catalog of Federal Domestic Assistance (CFDA) Number: 84... and Technical Education Program (NACTEP), the Secretary waives 34 CFR 75.250 and 75.261(c)(2) in order...

  6. Novel catalysts for hydrogen fuel cell applications:Final report (FY03-FY05).

    Energy Technology Data Exchange (ETDEWEB)

    Thornberg, Steven Michael; Coker, Eric Nicholas; Jarek, Russell L.; Steen, William Arthur

    2005-12-01

    The goal of this project was to develop novel hydrogen-oxidation electrocatalyst materials that contain reduced platinum content compared to traditional catalysts by developing flexible synthesis techniques to fabricate supported catalyst structures, and by verifying electrochemical performance in half cells and ultimately laboratory fuel cells. Synthesis methods were developed for making small, well-defined platinum clusters using zeolite hosts, ion exchange, and controlled calcination/reduction processes. Several factors influence cluster size, and clusters below 1 nm with narrow size distribution have been prepared. To enable electrochemical application, the zeolite pores were filled with electrically-conductive carbon via infiltration with carbon precursors, polymerization/cross-linking, and pyrolysis under inert conditions. The zeolite host was then removed by acid washing, to leave a Pt/C electrocatalyst possessing quasi-zeolitic porosity and Pt clusters of well-controlled size. Plotting electrochemical activity versus pyrolysis temperature typically produces a Gaussian curve, with a peak at ca. 800 C. The poorer relative performances at low and high temperature are due to low electrical conductivity of the carbon matrix, and loss of zeolitic structure combined with Pt sintering, respectively. Cluster sizes measured via adsorption-based methods were consistently larger than those observed by TEM and EXAFS, suggesting , that a fraction of the clusters were inaccessible to the fluid phase. Detailed EXAFS analysis has been performed on selected catalysts and catalyst precursors to monitor trends in cluster size evolution, as well as oxidation states of Pt. Experiments were conducted to probe the electroactive surface area of the Pt clusters. These Pt/C materials had as much as 110 m{sup 2}/g{sub pt} electroactive surface area, an almost 30% improvement over what is commercially (mfg. by ETEK) available (86 m{sup 2}/g{sub pt}). These Pt/C materials also perform

  7. "Type Ia Supernovae: Tools for Studying Dark Energy" Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, Stan [Lick Observatory, San Jose, CA (United States); Kasen, Dan [Univ. of California, Berkeley, CA (United States)

    2017-05-10

    Final technical report for project "Type Ia Supernovae: Tools for the Study of Dark Energy" awarded jointly to scientists at the University of California, Santa Cruz and Berkeley, for computer modeling, theory and data analysis relevant to the use of Type Ia supernovae as standard candles for cosmology.

  8. Key technical issues associated with a method of pulse compression. Final technical report

    International Nuclear Information System (INIS)

    Hunter, R.O. Jr.

    1980-06-01

    Key technical issues for angular multiplexing as a method of pulse compression in a 100 KJ KrF laser have been studied. Environmental issues studied include seismic vibrations man-made vibrations, air propagation, turbulence, and thermal gradient-induced density fluctuations. These studies have been incorporated in the design of mirror mounts and an alignment system, both of which are reported. A design study and performance analysis of the final amplifier have been undertaken. The pulse compression optical train has been designed and assessed as to its performance. Individual components are described and analytical relationships between the optical component size, surface quality, damage threshold and final focus properties are derived. The optical train primary aberrations are obtained and a method for aberration minimization is presented. Cost algorithms for the mirrors, mounts, and electrical hardware are integrated into a cost model to determine system costs as a function of pulse length, aperture size, and spot size

  9. The Michigan high-level radioactive waste program: Final technical progress report

    International Nuclear Information System (INIS)

    1987-01-01

    This report comprises the state of Michigan's final technical report on the location of a proposed high-level radioactive waste disposal site. Included are a list of Michigan's efforts to review the DOE proposal and a detailed report on the application of geographic information systems analysis techniques to the review process

  10. Final Technical Report, Wind Generator Project (Ann Arbor)

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Nathan [City of Ann Arbor, MI (United States)

    2017-03-20

    A Final Technical Report (57 pages) describing educational exhibits and devices focused on wind energy, and related outreach activities and programs. Project partnership includes the City of Ann Arbor, MI and the Ann Arbor Hands-on Museum, along with additional sub-recipients, and U.S. Department of Energy/Office of Energy Efficiency and Renewable Energy (EERE). Report relays key milestones and sub-tasks as well as numerous graphics and images of five (5) transportable wind energy demonstration devices and five (5) wind energy exhibits designed and constructed between 2014 and 2016 for transport and use by the Ann Arbor Hands-on Museum.

  11. Final Report - Durable Catalysts for Fuel Cell Protection during Transient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Atanasoski, Radoslav [3M Company, St. Paul, MN (United States); van der Vliet, Dennis [3M Company, St. Paul, MN (United States); Cullen, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Atanasoska, Ljiljana [3M Company, St. Paul, MN (United States)

    2015-01-26

    The objective of this project was to develop catalysts that will enable proton exchange membranes (PEM) fuel cell systems to weather the damaging conditions in the fuel cell at voltages beyond the thermodynamic stability of water during the transient periods of start-up/shut-down and fuel starvation. Such catalysts are required to make it possible for the fuel cell to satisfy the 2015 DOE targets for performance and durability. The project addressed a key issue of importance for successful transition of PEM fuel cell technology from development to pre-commercial phase. This issue is the failure of the catalyst and the other thermodynamically unstable membrane electrode assembly (MEA) components during start-up/shut-down and local fuel starvation at the anode, commonly referred to as transient conditions. During these periods the electrodes can reach potentials higher than the usual 1.23V upper limit during normal operation. The most logical way to minimize the damage from such transient events is to minimize the potential seen by the electrodes. At lower positive potentials, increased stability of the catalysts themselves and reduced degradation of the other MEA components is expected.

  12. Iowa Hill Pumped Storage Project Investigations - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, David [Sacramento Municipal Unitlity District, Sacramento, CA (United States)

    2016-07-01

    This Final Technical Report is a summary of the activities and outcome of the Department of Energy (DOE) Assistance Agreement DE-EE0005414 with the Sacramento Municipal Utility District (SMUD). The Assistance Agreement was created in 2012 to support investigations into the Iowa Hill Pumped-storage Project (Project), a new development that would add an additional 400 MW of capacity to SMUD’s existing 688MW Upper American River Hydroelectric Project (UARP) in the Sierra Nevada mountains east of Sacramento, California.

  13. Admiralty Inlet Pilot Tidal Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Collar, Craig [Public Utility District No. 1 of Snohomish County, Everett, WA (United States)

    2015-09-14

    This document represents the final report for the Admiralty Inlet Pilot Tidal Project, located in Puget Sound, Washington, United States. The Project purpose was to license, permit, and install a grid-connected deep-water tidal turbine array (two turbines) to be used as a platform to gather operational and environmental data on tidal energy generation. The data could then be used to better inform the viability of commercial tidal energy generation from technical, economic, social, and environmental standpoints. This data would serve as a critical step towards the responsible advancement of commercial scale tidal energy in the United States and around the world. In late 2014, Project activities were discontinued due to escalating costs, and the DOE award was terminated in early 2015. Permitting, licensing, and engineering design activities were completed under this award. Final design, deployment, operation, and monitoring were not completed. This report discusses the results and accomplishments achieved under the subject award.

  14. Volume 1, 1st Edition, Multiscale Tailoring of Highly Active and Stable Nanocomposite Catalysts, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Veser, Goetz

    2009-08-31

    Nanomaterials have gained much attention as catalysts since the discovery of exceptional CO oxidation activity of nanoscale gold by Haruta. However, many studies avoid testing nanomaterials at the high-temperatures relevant to reactions of interest for the production of clean energy (T > 700°C). The generally poor thermal stability of catalytically active noble metals has thus far prevented significant progress in this area. We have recently overcome the poor thermal stability of nanoparticles by synthesizing a platinum barium-hexaaluminate (Pt-BHA) nanocomposite which combines the high activity of noble metal nanoparticles with the thermal stability of hexaaluminates. This Pt-BHA nanocomposite demonstrates excellent activity, selectivity, and long-term stability in CPOM. Pt-BHA is anchored onto a variety of support structures in order to improve the accessibility, safety, and reactivity of the nanocatalyst. Silica felts prove to be particularly amenable to this supporting procedure, with the resulting supported nanocatalyst proving to be as active and stable for CPOM as its unsupported counterpart. Various pre-treatment conditions are evaluated to determine their effectiveness in removing residual surfactant from the active nanoscale platinum particles. The size of these particles is measured across a wide temperature range, and the resulting “plateau” of stability from 600-900°C can be linked to a particle caging effect due to the structure of the supporting ceramic framework. The nanocomposites are used to catalyze the combustion of a dilute methane stream, and the results indicate enhanced activity for both Pt-BHA as well as ceria-doped BHA, as well as an absence of internal mass transfer limitations at the conditions tested. In water-gas shift reaction, nanocomposite Pt-BHA shows stability during prolonged WGS reaction and no signs of deactivation during start-up/shut-down of the reactor. The chemical and thermal stability, low molecular weight, and

  15. 77 FR 30514 - Native Hawaiian Career and Technical Education Program; Final Waiver and Extension of Project Period

    Science.gov (United States)

    2012-05-23

    ... DEPARTMENT OF EDUCATION Native Hawaiian Career and Technical Education Program; Final Waiver and... Career and Technical Education Program Catalog of Federal Domestic Assistance (CFDA) Number: 84.259A... Technical Education Program (NHCTEP), the Secretary hereby waives 34 CFR 75.261(c)(2) in order to extend the...

  16. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Schuur, Edward [Northern Arizona Univ., Flagstaff, AZ (United States); Luo, Yiqi [Univ. of Oklahoma, Norman, OK (United States)

    2016-12-01

    This final grant report is a continuation of the final grant report submitted for DE-SC0006982 as the Principle Investigator (Schuur) relocated from the University of Florida to Northern Arizona University. This report summarizes the original project goals, as well as includes new project activities that were completed in the final period of the project.

  17. Tritium transfer process using the CRNL wetproof catalyst

    International Nuclear Information System (INIS)

    Chuang, K.T.; Holtslander, W.J.

    1980-01-01

    The recovery of tritium from heavy water in CANDU reactor systems requires the transfer of the tritium atoms from water to hydrogen molecules prior to tritium concentration by cryogenic distillation. Isotopic exchange between liquid water and hydrogen using the CRNL-developed wetproof catalyst provides an effective method for the tritium transfer process. The development of this process has required the translation of the technology from a laboratory demonstration of catalyst activity for the exchange reaction to proving and demonstration that the process will meet the practical restraints in a full-scale tritium recovery plant. This has led to a program to demonstrate acceptable performance of the catalyst at operating conditions that will provide data for design of large plants. Laboratory and pilot plant work has shown adequate catalyst lifetimes, demonstrated catalyst regeneration techniques and defined and required feedwater purification systems to ensure optimum catalyst performance. The ability of the catalyst to promote the exchange of hydrogen isotopes between water and hydrogen has been shown to be technically feasible for the tritium transfer process

  18. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E.; Kirby, S.; Song, Chunshan; Schobert, H.H.

    1994-04-01

    Development of new catalysts is a promising approach to more, efficient coal liquefaction. It has been recognized that dispersed catalysts can be superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires infinite contact between the catalyst and coal. The primary objective of this research is to explore the potential of bimetallic dispersed catalysts from heterometallic molecular precursors in their use in model compound liquefaction reactions. This quarterly report describes the use of three precursors in model compound reactions. The first catalyst is a heterometallic complex consisting of two transition metals, Mo and Ni, and sulfur in a single molecule. The second is a thiocubane type complex consisting of cobalt, molybdenum and sulfur. The third is a thiocubane type cluster consisting of iron and sulfur and the fourth, the pure inorganic salt ammonium tetrathiomolybdate (ATM). It was found that the structure and the ligands in the model complexes affect the activity of the resulting catalyst significantly. The optimum reaction at a pressure of 6.9 MPa hydrogen gas varied for different catalysts. The bimetallic catalysts generated in situ from the organometallic precursor are more active than monometallic catalysts like ATTM and the thiocubane type cluster Fe{sub 4}. Main products are hydrogenated phenanthrene derivatives, like DBP, THP, sym-OHP, cis- and trans-unsym-OHP with minor isomerization products such as sym-OHA. Our results indicate that other transition metal and ligand combinations in the organometallic precursors and the use of another model compound could result in substantially higher conversion activity.

  19. Characterization of the radon source in North-Central Florida. Final report part 1 -- Final project report; Final report part 2 -- Technical report

    International Nuclear Information System (INIS)

    1997-01-01

    This report contains two separate parts: Characterization of the Radon Source in North-Central Florida (final report part 1 -- final project report); and Characterization of the Radon Source in North-Central Florida (technical report). The objectives were to characterize the radon 222 source in a region having a demonstrated elevated indoor radon potential and having geology, lithology, and climate that are different from those in other regions of the U.S. where radon is being studied. Radon availability and transport in this region were described. Approaches for predicting the radon potential of lands in this region were developed

  20. Hydroprocessing using regenerated spent heavy hydrocarbon catalyst

    International Nuclear Information System (INIS)

    Clark, F.T.; Hensley, A.L. Jr.

    1992-01-01

    This patent describes a process for hydroprocessing a hydrocarbon feedstock. It comprises: contacting the feedstock with hydrogen under hydroprocessing conditions with a hydroprocessing catalyst wherein the hydroprocessing catalyst contains a total contaminant metals build-up of greater than about 4 wt. % nickel plus vanadium, a hydrogenation component selected from the group consisting of Group VIB metals and Group VIII metals and is regenerated spent hydroprocessing catalyst regenerated by a process comprising the steps: partially decoking the spent catalyst in an initial coke-burning step; impregnating the partially decoked catalyst with a Group IIA metal-containing impregnation solution; and decoking the impregnated catalyst in a final coke-burning step wherein the impregnated catalyst is contacted with an oxygen-containing gas at a temperature of about 600 degrees F to about 1400 degrees F

  1. Clean Energy Works Oregon Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Andria [City of Portland; Cyr, Shirley [Clean Energy Works

    2013-12-31

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  2. Energy Impact Illinois - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Daniel [Senior Energy Efficiency Planner; Plagman, Emily [Senior Energy Planner; Silberhorn, Joey-Lin [Energy Efficiency Program Assistant

    2014-02-18

    Energy Impact Illinois (EI2) is an alliance of government organizations, nonprofits, and regional utility companies led by the Chicago Metropolitan Agency for Planning (CMAP) that is dedicated to helping communities in the Chicago metropolitan area become more energy efficient. Originally organized as the Chicago Region Retrofit Ramp-Up (CR3), EI2 became part of the nationwide Better Buildings Neighborhood Program (BBNP) in May 2010 after receiving a $25 million award from the U.S. Department of Energy (DOE) authorized through the American Recovery and Reinvestment Act of 2009 (ARRA). The program’s primary goal was to fund initiatives that mitigate barriers to energy efficiency retrofitting activities across residential, multifamily, and commercial building sectors in the seven-county CMAP region and to help to build a sustainable energy efficiency marketplace. The EI2 Final Technical Report provides a detailed review of the strategies, implementation methods, challenges, lessons learned, and final results of the EI2 program during the initial grant period from 2010-2013. During the program period, EI2 successfully increased direct retrofit activity in the region and was able to make a broader impact on the energy efficiency market in the Chicago region. As the period of performance for the initial grant comes to an end, EI2’s legacy raises the bar for the region in terms of helping homeowners and building owners to take action on the continually complex issue of energy efficiency.

  3. Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose; Arora, Salil; Head, Megann; Trembly, Jason; Turk, Brian; Gupta, Raghubir

    2011-09-30

    The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-based catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a

  4. ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    The U.S. Department of Energy and EPRI co-funded this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project has investigated catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installations. Field tests were conducted to determine whether candidate catalyst materials remain active towards mercury oxidation after extended flue gas exposure. Catalyst life will have a large impact on the cost effectiveness of this potential process. A mobile catalyst test unit was used to test the activity of four different catalyst materials for a period of up to six months each at three utility sites. Catalyst testing was completed at the first site, which fires Texas lignite, in December 1998; at the second test site, which fires a Powder River Basin subbituminous coal, in November 1999; and at the third site, which fires a medium- to high-sulfur bituminous coal, in January 2001. Results of testing at each of the three sites were reported in previous technical notes. At Site 1, catalysts were tested only as powders dispersed in sand bed reactors. At Sites 2 and 3, catalysts were tested in two forms, including powders dispersed in sand and in commercially available forms such as extruded pellets and coated honeycomb structures. This final report summarizes and presents results from all three sites, for the various catalyst forms tested. Field testing was supported by laboratory tests to screen catalysts for activity at specific flue gas compositions, to investigate catalyst deactivation mechanisms and methods for regenerating spent catalysts. Laboratory results are also summarized and discussed in this report

  5. Shape-selective catalysts for Fischer-Tropsch chemistry. Final report: January 1, 2001 - December 31, 2008

    International Nuclear Information System (INIS)

    Cronauer, D.C.

    2011-01-01

    Argonne National Laboratory carried out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry-specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it was desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. It was desired that selectivity be directed toward producing diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. The original goal was to produce shape-selective catalysts that had the potential to limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' This cage would also restrict their loss by attrition during use in slurry-bed reactors. The first stage of this program was to prepare and evaluate iron-containing particulate catalysts. Such catalysts were prepared with silica-containing fractal cages. The activity and strength was essentially the same as that of catalysts without the cages. Since there was no improvement, the program plan was modified as discussed below. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those expected for

  6. Final Technical Report for DE-FG02-98ER45737

    Energy Technology Data Exchange (ETDEWEB)

    Ade, Harald W.

    2018-04-24

    Final Technical Report For DOE Grant No. DE-FG02-98ER45737 Development of a Scanning Transmission X-Ray Microscope Polymer Thin Films and Self Assembled Monolayers: Pattern Formation and Surface Interactions NEXAFS Microscopy and Resonant Scattering of Polymeric Materials Organic Heterojunction Devices: Structure, Composition, and Performance at <20 nm Resolution Fundamental Science of High Open Circuit Voltage Excitonic Solar Cells Control of Interface- and Mesoscopic Structure in High Performance Organic Solar Cells: Towards a Predictive Device Paradigm

  7. Summary report of the final technical meeting on 'International Reactor Dosimetry File: IRDF-2002'

    International Nuclear Information System (INIS)

    Griffin, Patrick J.; Paviotti-Corcuera, R.

    2003-10-01

    Presentations, recommendations and conclusions of the Final Technical Meeting on 'International Reactor Dosimetry File: IRDF-2002' are summarized in this report. The main aims of this meeting were to discuss scientific and technical matters related to reactor dosimetry and to assign responsibilities for the preparation of the final version of the IRDF- 2002 library and the associated TECDOC. Tasks were assigned and deadlines were agreed. Participants emphasized that accurate and complete nuclear data for reactor dosimetry are essential to improve the assessment accuracies for reactor pressure vessel service lifetimes in nuclear power plants, as well as for other neutron metrology applications such as boron neutron capture therapy, therapeutic use of medical isotopes, nuclear physics measurements, and reactor safety applications. (author)

  8. Monolitni katalizatori i reaktori: osnovne značajke, priprava i primjena (Monolith catalysts and reactors: preparation and applications

    Directory of Open Access Journals (Sweden)

    Tomašić, V.

    2004-12-01

    Full Text Available Monolithic (honeycomb catalysts are continuous unitary structures containing many narrow, parallel and usually straight channels (or passages. Catalytically active components are dispersed uniformly over the whole porous ceramic monolith structure (so-called incorporated monolithic catalysts or are in a layer of porous material that is deposited on the walls of channels in the monolith's structure (washcoated monolithic catalysts. The material of the main monolithic construction is not limited to ceramics but includes metals, as well. Monolithic catalysts are commonly used in gas phase catalytic processes, such as treatment of automotive exhaust gases, selective catalytic reduction of nitrogen oxides, catalytic removal of volatile organic compounds from industrial processes, etc. Monoliths continue to be the preferred support for environmental applications due to their high geometric surface area, different design options, low pressure drop, high temperature durability, mechanical strength, ease of orientation in a reactor and effectiveness as a support for a catalytic washcoat. As known, monolithic catalysts belong to the class of the structured catalysts and/or reactors (in some cases the distinction between "catalyst" and "reactor" has vanished. Structured catalysts can greatly intensify chemical processes, resulting in smaller, safer, cleaner and more energy efficient technologies. Monolith reactors can be considered as multifunctional reactors, in which chemical conversion is advantageously integrated with another unit operation, such as separation, heat exchange, a secondary reaction, etc. Finally, structured catalysts and/or reactors appear to be one of the most significant and promising developments in the field of heterogeneous catalysis and chemical engineering of the recent years. This paper gives a description of the background and perspectives for application and development of monolithic materials. Different methods and techniques

  9. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Eggeman, Tim [ZeaChem Inc., Lakewood, CO (United States); O' Neill, Brian [ZeaChem Inc., Lakewood, CO (United States)

    2016-08-17

    ZeaChem Inc. and US DOE successfully demonstrated the ZeaChem process for producing sugars and ethanol from high-impact biomass feedstocks. The project was executed over a 5-year period under a $31.25 million cooperative agreement (80:20 Federal:ZeaChem cost share). The project was managed by dividing it into three budget periods. Activities during Budget Period 1 were limited to planning, permitting, and other pre-construction planning. Budget Period 2 activities included engineering, procurement, construction, commissioning, start-up and initial operations through the Independent Engineer Test Runs. The scope of construction was limited to the Chem Frac and Hydrogenolysis units, as the Core Facility was already in place. Construction was complete in December 2012, and the first cellulosic ethanol was produced in February 2013. Additional operational test runs were conducted during Budget Period 3 (completed June 2015) using hybrid poplar, corn stover, and wheat straw feedstocks, resulting in the production of cellulosic ethanol and various other biorefinery intermediates. The research adds to the understanding of the Chem Frac and Hydrogenolysis technologies in that the technical performance of each unit was measured, and the resulting data and operational experience can be used as the basis for engineering designs, thus mitigating risks for deployment in future commercial facilities. The Chem Frac unit was initially designed to be operated as two-stage dilute acid hydrolysis, with first stage conditions selected to remove the hemicellulose fraction of the feedstock, and the second stage conditions selected to remove the cellulose fraction. While the Chem Frac unit met or exceeded the design capacity of 10 ton(dry)/day, the technical effectiveness of the Chem Frac unit was below expectations in its initial two-stage dilute acid configuration. The sugars yields were low, the sugars were dilute, and the sugars had poor fermentability caused by excessive inhibitors

  10. Congressionally Directed Project for Passive NOx Removal Catalysts Research

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William [Univ. of Notre Dame, IN (United States)

    2014-12-29

    The Recipient proposes to produce new scientific and technical knowledge and tools to enable the discovery and deployment of highly effective materials for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) from lean combustion exhaust. A second goal is to demonstrate a closely coupled experimental and computational approach to heterogeneous catalysis research. These goals will be met through the completion of four primary technical objectives: First, an in-depth kinetic analysis will be performed on two prominent classes of NOx SCR catalysts, Fe- and Cu-exchanged beta and ZSM-5 zeolites, over a wide range of catalyst formulation and under identical, high conversion conditions as a function of gas phase composition. Second, the nanoscale structure and adsorption chemistry of these high temperature (HT) and low temperature (LT) catalysts will be determined using in situ and operando spectroscopy under the same reaction conditions. Third, first-principles molecular simulations will be used to model the metal-zeolite active sites, their adsorption chemistry, and key steps in catalytic function. Fourth, this information will be integrated into chemically detailed mechanistic and kinetic descriptions and models of the operation of these well- defined NOx SCR catalysts under practically relevant reaction conditions. The new knowledge and models that derive from this work will be published in the scientific literature.

  11. DE-FG02-04ER63746 FinalTechnicalReport

    Energy Technology Data Exchange (ETDEWEB)

    Lidstrom, M.E.

    2009-09-05

    This is the final technical report for a project involving the study of stress response systems in the radiation-resistant bacterium, Deinococcus radiodurans. Three stresses of importance for a mixed waste treatment strain were studied, heat shock, solvent shock, and phosphate starvation. In each case, specific genes involved in the ability to survive the stress were identified using a systems biology approach, and analysis of mutants was used to understand mechanisms. This study has led to increased understanding of the ways in which a potential treatment strain could be manipulated to survive multiple stresses for treatment of mixed wastes.

  12. Shape-selective catalysts for Fischer-Tropsch chemistry. Final report : January 1, 2001 - December 31, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Cronauer, D. C. (Chemical Sciences and Engineering Division)

    2011-04-11

    Argonne National Laboratory carried out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry-specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it was desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. It was desired that selectivity be directed toward producing diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. The original goal was to produce shape-selective catalysts that had the potential to limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' This cage would also restrict their loss by attrition during use in slurry-bed reactors. The first stage of this program was to prepare and evaluate iron-containing particulate catalysts. Such catalysts were prepared with silica-containing fractal cages. The activity and strength was essentially the same as that of catalysts without the cages. Since there was no improvement, the program plan was modified as discussed below. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those

  13. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Gary [RTI International, Research Triangle Park, NC (United States); Albritton, John [RTI International, Research Triangle Park, NC (United States); Denton, David [RTI International, Research Triangle Park, NC (United States); Turk, Brian [RTI International, Research Triangle Park, NC (United States); Gupta, Raghubir [RTI International, Research Triangle Park, NC (United States)

    2018-01-31

    In September 2010, RTI and the DOE/NETL signed a cooperative agreement (DE-FE000489) to design, build, and operate a pre-commercial syngas cleaning system that would capture up to 90% of the CO2 in the syngas slipstream, and demonstrate the ability to reduce syngas contaminants to meet DOE’s specifications for chemical production application. This pre-commercial syngas cleaning system is operated at Tampa Electric Company’s (TEC) 250-MWe integrated gasification combined cycle (IGCC) plant at Polk Power Station (PPS), located near Tampa, Florida. The syngas cleaning system consists of the following units: Warm Gas Desulfurization Process (WDP) - this unit processes a syngas flow equivalent of 50 MWe of power (50 MWe equivalent corresponds to about 2.0 MM scfh of syngas on dry basis) to produce a desulfurized syngas with a total sulfur (H2S+COS) concentration ~ 10 ppmv. Water Gas Shift (WGS) Reactor - this unit converts sufficient CO into CO2 to enable 90% capture of the CO2 in the syngas slipstream. This reactor uses conventional commercial shift catalyst technologies. Low Temperature Gas Cooling (LTGC) - this unit cools the syngas for the low temperature activated MDEA process and separates any condensed water. Activated MDEA Process (aMDEA) - this unit employs a non-selective separation for the CO2 and H2S present in the raw syngas stream. Because of the selective sulfur removal by the upstream WDP unit, the CO2 capture target of 90% CO2 can be achieved with the added benefit that total sulfur concentration in the CO2 product is < 100 ppmv. An additional advantage of the activated MDEA process is that the non-selective sulfur removal from the treated syngas reduces sulfur in the treated gas to very low sub-ppmv concentrations, which are required for chemical production applications. Testing to date of this pre-commercial syngas cleaning system has shown that the

  14. Final Technical Report: Tandem and Bimetallic Catalysts for Oxidative Dehydrogenation of Light Hydrocarbon with Renewable Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Omar, Mahdi [Purdue Univ., West Lafayette, IN (United States)

    2017-01-06

    An estimated 490 million metric tons of lignocellulosic biomass is available annually from U.S. agriculture and forestry. With continuing concerns over greenhouse gas emission, the development of efficient catalytic processes for conversion of biomass derived compounds is an important area of research. Since carbohydrates and polyols are rich in oxygen, approximately one oxygen atom per carbon, removal of hydroxyl groups via deoxygenation is needed. The necessary hydrogen required for hydrodeoxygenation (HDO) would either come from reforming biomass itself or from steam reforming of natural gas. Both processes contribute to global CO2 emission. The hope is that eventually renewable sources such as wind and solar for hydrogen production will become more viable and economic in the future. In the meantime, unconventional natural gas production in North America has boomed. As a result, light hydrocarbons present an opportunity when coupled with biomass derived oxygenates to generate valuable products from both streams without co-production of carbon dioxide. This concept is the focus of our current funding period. The objective of the project requires coupling two different types of catalysis, HDO and dehydrogenation. Our hypothesis was formulated around our success in establishing oxorhenium catalysts for polyol HDO reactions and known literature precedence for the use of iridium hydrides in alkane dehydrogenation. To examine our hypothesis we set out to investigate the reaction chemistry of binuclear complexes of oxorhenium and iridium hydride.

  15. Structure-Reactivity Relationships in Multi-Component Transition Metal Oxide Catalysts FINAL Report

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Eric I. [Yale Univ., New Haven, CT (United States)

    2015-10-06

    The focus of the project was on developing an atomic-level understanding of how transition metal oxide catalysts function. Over the course of several renewals the specific emphases shifted from understanding how local structure and oxidation state affect how molecules adsorb and react on the surfaces of binary oxide crystals to more complex systems where interactions between different transition metal oxide cations in an oxide catalyst can affect reactivity, and finally to the impact of cluster size on oxide stability and reactivity. Hallmarks of the work were the use of epitaxial growth methods to create surfaces relevant to catalysis yet tractable for fundamental surface science approaches, and the use of scanning tunneling microscopy to follow structural changes induced by reactions and to pinpoint adsorption sites. Key early findings included the identification of oxidation and reduction mechanisms on a tungsten oxide catalyst surface that determine the sites available for reaction, identification of C-O bond cleavage as the rate limiting step in alcohol dehydration reactions on the tungsten oxide surface, and demonstration that reduction does not change the favored reaction pathway but rather eases C-O bond cleavage and thus reduces the reaction barrier. Subsequently, a new reconstruction on the anatase phase of TiO2 relevant to catalysis was discovered and shown to create sites with distinct reactivity compared to other TiO2 surfaces. Building on this work on anatase, the mechanism by which TiO2 enhances the reactivity of vanadium oxide layers was characterized and it was found that the TiO2 substrate can force thin vanadia layers to adopt structures they would not ordinarily form in the bulk which in turn creates differences in reactivity between supported layers and bulk samples. From there, the work progressed to studying well-defined ternary oxides where synergistic effects between the two cations can induce

  16. Mathematics Intensive Summer Session (MISS). Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This final technical report appears in two parts: the report for the 1995 summer MISS program and the report for the 1996 summer MISS program. Copies of the US Department of Energy Pre-Freshman Enrichment Program 1995 Entry Form and 1996 Entry Form completed by all participants were sent to the Oak Ridge Institute for Science and Education in the fall of 1995 and 1996 respectively. Those forms are on file should they be needed. Attached also is a copy of the Summary of ideas for panel discussions, problem-solving sessions, or small group discussions presented at the Department of Energy Oak Ridge Institute for Science and Education Pre-Freshman Enrichment Program Project Directors Meeting held in San Antonio, TX, November 12--14, 1995.

  17. Technical and economic assessment of solar hybrid repowering. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    Public Service Company of New Mexico (PNM) has performed a Technical and Economic Assessment of Solar Hybrid Repowering under funding by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), Western Energy Supply and Transmission (WEST) Associates, and a number of southwestern utilities. Solar hybrid repowering involves placement of solar hardware adjacent to and connected to existing gas- and oil-fueled electric generation units to displace some of or all the fossil fuel normally used during daylight hours. The subject study assesses the technical economic viability of the solar hybrid repowering concept within the southwestern United States and the PNM system. This document is a final report on the study and its results. The study was divided into the six primary tasks to allow a systematic investigation of the concept: (1) market survey and cost/benefit analysis, (2) study unit selection, (3) conceptual design and cost estimates, (4) unit economic analysis, (5) program planning, future phases, and (6) program management. Reeves Station No. 2 at Albuquerque, New Mexico, was selected for repowering with a design goal of 50 percent (25 MWe). The solar system design is based on the 10 MW solar central receiver pilot plant preliminary design for Barstow, California. SAN--1608-4-2 contains the technical drawings. (WHK)

  18. Productions of palm oil bio diesel whit heterogeneous basic catalysts compared to conventional homogeneous catalysts

    International Nuclear Information System (INIS)

    Rios, Luis A; Franco C, Alexander; Zuleta S, Ernesto

    2009-01-01

    The conventional process to produce biodiesel involves the presence of homogeneous basic catalysts. However, these catalysts have disadvantages associated to the need of purification steps, which increase the cost of the final product and generate pollution problems caused by the effluents. This paper compares different homogeneous and heterogeneous catalysts for the biodiesel production from palm oil. For this, heterogeneous catalysts supported on alumina were prepared and characterized by nitrogen adsorption, scanning electron microscopy, energy dispersive X ray spectroscopy and X ray diffraction. Transesterification of palm oil with methanol was accomplished at 60 celsius degrade and one hour, varying methanol/oil ratio, the type of catalyst and its concentration. Yields of the reaction and purity of the so obtained biodiesel were evaluated. Comparing the catalysts performance, based on the amount, was found that sodium methoxide (CH 3 ONa) and potassium carbonate supported on alumina (K 2 CO 3 /Al 2 O 3 ) were the catalysts that give the higher purity of biodiesel (96.8 and 95.85% respectively). When was determined the active site quality, by dividing the performance by each mole of active sites, it was found that calcined Na 2 SO 4 /Al 2 O 3 has the most active sites.

  19. University of Maryland component of the Center for Multiscale Plasma Dynamics: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dorland, William [University of Maryland

    2014-11-18

    The Center for Multiscale Plasma Dynamics (CMPD) was a five-year Fusion Science Center. The University of Maryland (UMD) and UCLA were the host universities. This final technical report describes the physics results from the UMD CMPD.

  20. Enhanced gasification of wood in the presence of mixed catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Weber, S. L.; Mudge, L. K.; Sealock, Jr., L. J.; Robertus, R. J.; Mitchell, D. E.

    Experimental results obtained in laboratory investigations of steam gasification of wood in the presence of mixed catalysts are presented. These studies are designed to test the technical feasibility of producing specific gaseous products from wood by enhancing its reactivity and product specificity through the use of combined catalysts. The desired products include substitute natural gas, hydrocarbon synthesis gas and ammonia synthesis gas. The gasification reactions are controlled through the use of specific catalyst combinations and operating parameters. A primary alkali carbonate gasification catalyst impregnated into the wood combined with specific commercially available secondary catalysts produced the desired products. A yield of 50 vol % methane was obtained with a randomly mixed combination of a commercial nickel methanation catalyst and silica-alumina cracking catalyst at a weight ratio of 3:1 respectively. Steam gasification of wood in the presence of a commercial Si-Al cracking catalyst produced the desired hydrocarbon synthesis gas. Hydrogen-to-carbon monoxide ratios needed for Fischer-Tropsch synthesis of hydrocarbons were obtained with this catalyst system. A hydrogen-to-nitrogen ratio of 3:1 for ammonia synthesis gas was achieved with steam-air gasification of wood in the presence of catalysts. The most effective secondary catalyst system employed to produce the ammonia synthesis gas included two commercially prepared catalysts formulated to promote the water-gas shift reaction.

  1. TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Davis, B.H.

    1998-07-22

    The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  2. Options and processes for spent catalyst handling and utilization.

    Science.gov (United States)

    Marafi, M; Stanislaus, A

    2003-07-18

    The quantity of spent hydroprocessing catalysts discarded as solid wastes in the petroleum refining industries has increased remarkably in recent years due to a rapid growth in the hydroprocessing capacity to meet the rising demand for low-sulfur fuels. Due to their toxic nature, spent hydroprocessing catalysts have been branded as hazardous wastes, and the refiners are experiencing pressure from environmental authorities to handle them safely. Several alternative methods such as reclamation of metals, rejuvenation and reuse, disposal in landfills and preparation of useful materials using spent catalysts as raw materials are available to deal with the spent catalyst problem. The technical feasibility as well as the environmental and economic aspects of these options are reviewed. In addition, details of two bench-scale processes, one for rejuvenation of spent hydroprocessing catalysts, and the other for producing non-leachable synthetic aggregate materials that were developed in this laboratory, are presented in this paper.

  3. Steam reforming of technical bioethanol for hydrogen production

    DEFF Research Database (Denmark)

    Rass-Hansen, Jeppe; Johansson, Roger; Møller, Martin Hulbek

    2008-01-01

    Essentially all work on ethanol steam reforming so far has been carried out using simulated bioethanol feedstocks, which means pure ethanol mixed with water. However, technical bioethanol consists of a lot of different components including sugars, which cannot be easily vaporized and steam reformed....... For ethanol steam reforming to be of practical interest, it is important to avoid the energy-intensive purification steps to fuel grade ethanol. Therefore, it is imperative to analyze how technical bioethanol, with the relevant impurities, reacts during the steam reforming process. We show how three different...... bioethanol will result in a faster catalyst deactivation than what is observed when using pure ethanol-water mixtures because of contaminants remaining in the feed. However, the initial activity of the catalysts are not affected by this, hence it is important to not only focus on catalyst activity but rather...

  4. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bohdan W. Oppenheim; Rudolf Marloth

    2007-10-26

    Executive Summary The document contains Final Technical Report on the Industrial Assessment Center Program at Loyola Marymount University in Los Angeles, covering the contract period of 9/1/2002 to 11/30/2006, under the contract DE-FC36-02GO 12073. The Report describes six required program tasks, as follows: TASK 1 is a summary of the assessments performed over the life of the award: 77 assessments were performed, 595 AR were recommended, covering a very broad range of manufacturing plants. TASK 2 is a description of the efforts to promote and increase the adoption of assessment recommendations and employ innovative methods to assist in accomplishing these goals. The LMU IAC has been very successful in accomplishing the program goals, including implemented savings of $5,141,895 in energy, $10,045,411 in productivity and $30,719 in waste, for a total of $15,218,025. This represents 44% of the recommended savings of $34,896,392. TASK 3 is a description of the efforts promoting the IAC Program and enhancing recruitment efforts for new clients and expanded geographic coverage. LMU IAC has been very successful recruiting new clients covering Southern California. Every year, the intended number of clients was recruited. TASK 4 describes the educational opportunities, training, and other related activities for IAC students. A total of 38 students graduated from the program, including 2-3 graduate students every semester, and the remainder undergraduate students, mostly from the Mechanical Engineering Department. The students received formal weekly training in energy (75%) and productivity (25). All students underwent extensive safety training. All students praised the IAC experience very highly. TASK 5 describes the coordination and integration of the Center activities with other Center and IAC Program activities, and DOE programs. LMU IAC worked closely with MIT, and SDSU IAC and SFSU IAC, and enthusiastically supported the SEN activities. TASK 6 describes other tasks

  5. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2014-09-01

    Catalysts are critical inputs for many pathways that convert biomass into biofuels. Energy consumption and greenhouse gas (GHG) emissions during the production of catalysts and chemical inputs influence the life-cycle energy consumption, and GHG emissions of biofuels and need to be considered in biofuel life-cycle analysis (LCA). In this report, we develop energy and material flows for the production of three different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5]) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module. They were selected because they are consumed in existing U.S. Department of Energy (DOE) analyses of biofuel processes. For example, a thermochemical ethanol production pathway (indirect gasification and mixed alcohol synthesis) developed by the National Renewable Energy Laboratory (NREL) uses olivine, DEPG, and tar reforming and alcohol synthesis catalysts (Dutta et al., 2011). ZSM-5 can be used in biofuel production pathways such as catalytic upgrading of sugars into hydrocarbons (Biddy and Jones, 2013). Other uses for these compounds and catalysts are certainly possible. In this report, we document the data sources and methodology we used to develop material and energy flows for the catalysts and compounds in the GREET catalyst module. In Section 2 we focus on compounds used in the model Dutta et al. (2011) developed. In Section 3, we report material and energy flows associated with ZSM-5 production. Finally, in Section 4, we report results.

  6. Final Report - Advanced Cathode Catalysts and Supports for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Debe, Mark

    2012-09-28

    The principal objectives of the program were development of a durable, low cost, high performance cathode electrode (catalyst and support), that is fully integrated into a fuel cell membrane electrode assembly with gas diffusion media, fabricated by high volume capable processes, and is able to meet or exceed the 2015 DOE targets. Work completed in this contract was an extension of the developments under three preceding cooperative agreements/grants Nos. DE-FC-02-97EE50473, DE-FC-99EE50582 and DE-FC36- 02AL67621 which investigated catalyzed membrane electrode assemblies for PEM fuel cells based on a fundamentally new, nanostructured thin film catalyst and support system, and demonstrated the feasibility for high volume manufacturability.

  7. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    International Nuclear Information System (INIS)

    Maisuls, S.E.

    2000-01-01

    Among the existing proposed solutions to reduce emission of NOx there is a promising alternative, the so-called (HC-SCR) selective catalytic reduction of NOx using hydrocarbons as reductant. This thesis is part of a worldwide effort devoted to gain knowledge on the selective catalytic reduction of NOx with hydrocarbons with the final goal to contribute to the development of suitable catalysts for the above mentioned process. Chapter 2 describes the details of the experimental set-up and of the analytical methods employed. Among the catalyst for HC-SCR, Co-based catalyst are known to be active and selective, thus, a study on a series of Co-based catalysts, supported on zeolites, was undertaken and the results are presented in Chapter 3. Correlation between catalytic characteristics and kinetic results are employed to understand the working catalyst and this is used as a basis for catalyst optimization. With the intention to prepare a multi-functional catalyst that will preserve the desired characteristics of the individual components, minimizing their negative aspects, catalysts based on Co-Pt, supported on ZSM-5, were investigated. In Chapter 4 the results of this study are discussed. A bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1 wt %) showed a synergistic effect by combining high stability and activity of Pt catalysts with the high N2 selectivity of Co catalysts. Furthermore, it was found to be sulfur- and water-tolerant. Its positive qualities brought us to study the mechanism that takes place over this catalyst during HC-SCR. The results of an in-situ i.r mechanistic study over this catalyst is reported in Chapter 5. From the results presented in Chapter 5 a mechanism operating over the Co-Pt/ZSM-5 catalyst is proposed. The modification of Co catalyst with Pt improved the catalysts. However, further improvement was found to be hindered by high selectivity to N2O. Since Rh catalysts are generally less selective to N2O, the modification of Co

  8. Study of Catalysts and Electrocatalysts for NO{sub x} Removal in Combustion Gases ELECTRONOX Project Final Report; Estudio de Catalizadores y Electrocatalizadores para la Eliminacion de NO{sub x} en Gases de Combustion. Informe Final Proyecto ELECTRONOX

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Martinez, E; Marono Bujan, M; Sanchez-Hervas, J M

    2009-12-11

    The final aim of the ELECTRONOX project was to develop new methodologies and technologies for NO{sub x} removal. To fulfil this objective, studies of selective catalytic reduction of NO{sub x} with hydrocarbons, both conventional and with electrochemical promotion, have been undertaken at pilot plant level, using appropriate catalyst/electrocatalysts configurations and in conditions similar to those required in their possible practical application. None of the catalysts/electrocatalysts studied is active and stable enough, under realistic conditions, to consider its possible industrial application, because the value of NO{sub x} conversion achieved by selective catalytic reduction with hydrocarbons, both conventional and with electrochemical promotion, decreases in presence of the different inhibitors and poisons present in the combustion gas, while the promotional effect on the catalytic activity and selectivity is more pronounced. In addition, the catalysts/electrocatalysts suffer from different deactivation processes, such as: sulphur poisoning, carbon deposition and sintering. However, the developed electrochemical catalyst looks promising for NO{sub x} removal in combustion gases, because it can be promoted under realistic operating conditions. (Author) 23 refs.

  9. Micelle-derived catalysts for extended Schulz-Flory. Technical progress report, July 1, 1986--September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Abrevaya, H.

    1986-12-31

    The objective of this program is to develop a synthesis gas conversion catalyst with higher selectivity to liquid fuels, while maintaining catalytic activity and stability at least equivalent relative to state-of-the-art precipitated iron catalysts. During this quarter, the emphasis in the program has been the investigation of the hydrocarbon cutoff hypothesis with supported ruthenium catalysts. An alumina-supported catalyst with smaller than 20{Angstrom} ruthenium particles was tested under conditions of maximal water gas shift activity. During this test more than 90% of the water made in the Fischer-Tropsch synthesis reaction was converted to H{sub 2}. However, the extent of ruthenium metal agglomeration was not reduced. Accordingly, it was not possible to conclude whether hydrocarbon cutoff occurs with smaller than 20{Angstrom} ruthenium particles on {gamma}-alumina. A ruthenium catalyst prepared on Y-type zeolite had 20{Angstrom} or smaller ruthenium particles according to STEM examination and a 15{Angstrom} average ruthenium metal particle size according to EXAFS examination. The ruthenium metal particle size was stable during the test with this catalyst. The hydrocarbon product distribution was Anderson-Schulz-Flory with no cutoff up to a carbon number of 160. A well-dispersed titania-supported ruthenium catalyst is going to be evaluated during the next quarter in order to determine whether hydrocarbon cutoff occurs.

  10. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Science.gov (United States)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-02-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption-desorption porosimetry (Brunauer-Emmett-Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96-99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  11. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Albayati, Talib M., E-mail: talib-albyati@yahoo.com [University of Technology, Department of Chemical Engineering (Iraq); Doyle, Aidan M., E-mail: a.m.doyle@mmu.ac.uk [Manchester Metropolitan University, Division of Chemistry and Environmental Science (United Kingdom)

    2015-02-15

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction.

  12. Encapsulated heterogeneous base catalysts onto SBA-15 nanoporous material as highly active catalysts in the transesterification of sunflower oil to biodiesel

    International Nuclear Information System (INIS)

    Albayati, Talib M.; Doyle, Aidan M.

    2015-01-01

    Alkali metals and their hydroxides, Na, NaOH, Li, and LiOH, were encapsulated onto SBA-15 nanoporous material as highly active catalysts for the production of biodiesel fuel from sunflower oil. The incipient wetness impregnation method was adopted for the prepared catalysts. The characterization properties of the catalysts and unmodified SBA-15 were determined using X-ray diffraction, scanning electron microscopy, EDAX, nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller), Fourier-transform infrared spectroscopy, and transmission electron microscopy. Transesterification was conducted in a batch reactor at atmospheric pressure and 65 °C. The catalysts were highly active with yields of fatty acid methyl ester (FAME) in the range 96–99 %. Na/SBA-15 catalyst was reused for seven consecutive cycles under the same reaction conditions; the yield to FAME on the final cycle was 96 %. This study shows that the alkali metals and their hydroxides supported on SBA-15-based catalyst are excellent catalysts for the biodiesel reaction

  13. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS): Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    de Boer, Gijs [Univ. of Colorado, Boulder, CO (United States); Lawrence, Dale [Univ. of Colorado, Boulder, CO (United States); Palo, Scott [Univ. of Colorado, Boulder, CO (United States); Argrow, Brian [Univ. of Colorado, Boulder, CO (United States); LoDolce, Gabriel [Univ. of Colorado, Boulder, CO (United States); Curry, Nathan [Univ. of Colorado, Boulder, CO (United States); Weibel, Douglas [Univ. of Colorado, Boulder, CO (United States); Finamore, William [Univ. of Colorado, Boulder, CO (United States); D' Amore, Phillip [Univ. of Colorado, Boulder, CO (United States); Borenstein, Steven [Univ. of Colorado, Boulder, CO (United States); Nichols, Tevis [Univ. of Colorado, Boulder, CO (United States); Elston, Jack [Blackswift Technologies, Boulder, CO (United States); Ivey, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bendure, Albert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schmid, Beat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Long, Charles [Univ. of Colorado, Boulder, CO (United States); Telg, Hagen [Univ. of Colorado, Boulder, CO (United States); Gao, Ru-Shan [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Hock, Terry [National Center for Atmospheric Research, Boulder, CO (United States); Bland, Geoff [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States)

    2017-03-29

    This final technical report details activities undertaken as part of the referenced project. Included is information on the preparation of aircraft for deployment to Alaska, summaries of the three deployments covered under this project, and a brief description of the dataset and science directions pursued. Additionally, we provide information on lessons learned, publications, and presentations resulting from this work.

  14. Final Technical Report for contract number DE-FG02-05ER15670

    Energy Technology Data Exchange (ETDEWEB)

    Glazebrook, Jane [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-02-29

    This is the final technical report for contract number DE-FG02-05ER15670. The project is now complete, and results of the project have been published. Two papers were published based on work done in the last three-year funding period. The DOIs of these papers are included below. The abstracts of the papers, providing summaries of the work, are included in the body of the report.

  15. An improved method of preparation of nanoparticular metal oxide catalysts

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns an improved method of preparation of nanoparticular vanadium oxide/anatase titania catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular vanadium oxide/anatase titania catalyst precursors comprising...... combustible crystallization seeds upon which the catalyst metal oxide is coprecipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step....

  16. Ammonia treated Mo/AC catalysts for CO hydrogenation with ...

    Indian Academy of Sciences (India)

    SHARIF F ZAMAN

    the influence of acid treated AC as a support with K-Ni-. Mo active ... K-Ni-Mo/AC catalyst was more selective to oxygenates. (>40% ... mineral impurities (K, Si, Sn and Fe) <1%. ...... edge technical support with thanks Science and Technology.

  17. Novel anode catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Basri, S; Kamarudin, S K; Daud, W R W; Yaakob, Z; Kadhum, A A H

    2014-01-01

    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.

  18. Technical and logistic provisions for the delivery of radioactive wastes in the final repository Konrad

    International Nuclear Information System (INIS)

    Poeppinghaus, Jens

    2013-01-01

    The beginning of radioactive waste delivery to the final repository Konrad is planned for 2019. The main issue for the technical and logistic provisions is the development of a concept for the transport of the licensed radioactive waste containers to the site, including a turning concept for cylindrical waste forms and planning, construction and manufacture of transport equipment. Further issues include a logistic concept considering specific boundary conditions as administrative processes, priorities, special features of the delivering institutions and technical requirements of the repository.

  19. Technology development for iron F-T catalysts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frame, R.R.; Gala, H.B.

    1994-08-01

    The objectives of this work were twofold. The first objective was to design and construct a pilot plant for preparing precipitated iron oxide F-T precursors and demonstrate that the rate of production from this plant is equivalent to 100 lbs/day of dried metal oxide. Secondly, these precipitates were to be used to prepare catalysts capable of achieving 88% CO + H{sub 2} conversion with {le} 5 mole percent selectivity to methane + ethane.

  20. Catalyst design for carbon nanotube growth using atomistic modeling

    International Nuclear Information System (INIS)

    Pint, Cary L; Bozzolo, Guillermo; Hauge, Robert

    2008-01-01

    The formation and stability of bimetallic catalyst particles, in the framework of carbon nanotube growth, is studied using the Bozzolo-Ferrante-Smith (BFS) method for alloys. Monte Carlo-Metropolis simulations with the BFS method are utilized in order to predict and study equilibrium configurations for nanoscale catalyst particles which are directly relevant to the catalyst state prior to growth of carbon nanotubes. At the forefront of possible catalyst combinations is the popular Fe-Mo bimetallic catalyst, which we have recently studied experimentally. We explain our experimental results, which indicate that the growth observed is dependent on the order of co-catalyst deposition, in the straightforward interpretation of BFS strain and chemical energy contributions toward the formation of Fe-Mo catalyst prior to growth. We find that the competition between the formation of metastable inner Mo cores and clusters of surface-segregated Mo atoms in Fe-Mo catalyst particles influences catalyst formation, and we investigate the role of Mo concentration and catalyst particle size in this process. Finally, we apply the same modeling approach to other prominent bimetallic catalysts and suggest that this technique can be a powerful tool to understand and manipulate catalyst design for highly efficient carbon nanotube growth

  1. Novel Anode Catalyst for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    S. Basri

    2014-01-01

    Full Text Available PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni and iron (Fe. Multiwalled carbon nanotubes (MWCNTs are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, and X-ray photoelectron spectroscopy (XPS, are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR. The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst.

  2. Correlated charge-changing uion-atom collisions. Final Technical Report

    International Nuclear Information System (INIS)

    John Tanis

    2005-01-01

    This document comprises the final technical report for atomic collisions research supported by DOE grant No. DE-FG02-87ER13778 from September 1, 2001 through August 31, 2004. The research involved the experimental investigation of excitation and charge-changing processes occurring in ion-atom and ion-molecule collisions. Major emphases of the study were: (1) interference effects resulting from coherent electron emission in H2, (2) production of doubly vacant K-shell (hollow ion) states due to electron correlation, and (3) formation of long-lived metastable states in electron transfer processes. During the period of the grant, this research resulted in 23 publications, 12 invited presentations, and 39 contributed presentations at national and international meetings and other institutions. Brief summaries of the completed research are presented below

  3. FERMI(at)Elettra FEL Design Technical Optimization Final Report

    International Nuclear Information System (INIS)

    Fawley, William; Penn, Gregory; Allaria, Enrico; De Ninno, Giovanni; Graves, William

    2006-01-01

    This is the final report of the FEL Design Group for the Technical Optimization Study for the FERMI(at)ELETTRA project. The FERMI(at)ELETTRA project is based on the principle of harmonic upshifting of an initial ''seed'' signal in a single pass, FEL amplifier employing multiple undulators. There are a number of FEL physics principles which underlie this approach to obtaining short wavelength output: (1) the energy modulation of the electron beam via the resonant interaction with an external laser seed (2) the use of a chromatic dispersive section to then develop a strong density modulation with large harmonic overtones (3) the production of coherent radiation by the microbunched beam in a downstream radiator. Within the context of the FERMI project, we discuss each of these elements in turn

  4. Development of Molecular Catalysts to Bridge the Gap between Heterogeneous and Homogeneous Catalysts

    Science.gov (United States)

    Ye, Rong

    be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g. pi-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g. oxidation states) of the catalysts and their activity. Moreover, we have demonstrated that supported DEMCs are also excellent catalysts for typical heterogeneous reactions, including hydrogenation and alkane isomerization. Critically, these investigations also confirmed that the supported DEMCs are heterogeneous and stable against leaching. Catalysts optimization is achieved through the modulation of various parameters. The clusters are oxidized (e.g., with PhICl2) or reduced (e.g., with H2) in situ. Changing the dendrimer properties (e.g., generation, terminal functional groups) is analogous to ligand modification in homogeneous catalysts, which affect both catalytic activity and selectivity. Similarly, pore size of the support is another factor in determining product distribution. In a flow reactor, the flow rate is adjusted to control the residence time of the starting material and intermediates, and thus the final product selectivity. Our approach to heterogeneous catalysis affords various advantages: (1) the catalyst system can tap into the reactivity typical to homogeneous catalysts, which conventional heterogeneous catalysts could not achieve; (2) unlike most homogeneous catalysts with comparable performance, the heterogenized homogeneous catalysts can be recycled; (3) improved activity or selectivity compared to conventional homogeneous catalysts is possible because of uniquely heterogeneous parameters for optimization. While localized surface plasmon resonance (LSPR) provides a

  5. SIMS study on statistics and environmental factors in health. Final technical report to Department of Energy

    International Nuclear Information System (INIS)

    1982-07-01

    This final technical report to DOE consists of five individual technical reports and one working paper by members of the SIMS Study at Stanford. Research topics include testing goodness-of-fit for the distribution of errors in regression models, mathematical models of cancer and their use in risk assessment, pollutant standards index (Psi), osteosarcomas among beagles exposed to 239 Plutonium, air pollution and respiratory disease, and models of human exposure to air pollution. Individual summaries of the six reports are indexed separately

  6. Green-House-Gas-Reduced Coal-and-Biomass-to-Liquid-Based Jet Fuel (GHGR-CBTL) Process - Final Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth [Altex Technologies Corporation, Sunnyvale, CA (United States); Imam, Thamina [Altex Technologies Corporation, Sunnyvale, CA (United States); Chevanan, Nehru [Altex Technologies Corporation, Sunnyvale, CA (United States); Namazian, Mehdi [Altex Technologies Corporation, Sunnyvale, CA (United States); Wang, Xiaoxing [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    2017-11-03

    This Final Technical Report describes the work and accomplishments of the project entitled, “Green-House-Gas-Reduced Coal-and-Biomass-to-Liquid-Based Jet Fuel (GHGR-CBTL) Process”. The main objective of the project was to raise the Technology Readiness Level (TRL) of the GHGR-CBTL fuel-production technology from TRL 4 to TRL 5 by producing a drop-in synthetic Jet Propellant 8 (JP-8) with a greenhouse-gas footprint less than or equal to petroleum-based JP-8 by utilizing mixtures of coal and biomass as the feedstock. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. While the system was not fabricated and tested, major efforts were expended to design the 1-TPD and a full-scale plant. The system was designed, a Block-Flow Diagram (BFD), a Process-Flow Diagram (PFD), and Piping-and-Instrumentation Diagrams (P&IDs) were produced, a Bill of Materials (BOM) and associated spec sheets were produced, commercially available components were selected and procured, custom components were designed and fabricated, catalysts were developed and screened for performance, and permitting activities were conducted. Optimization tests for JP-8 production using C2 olefin as the feed were performed over a range of temperatures, pressures and WHSVs. Liquid yields of between 63 to 65% with 65% JP-8 fraction (41-42% JP-8 yield) at 50 psig were achieved. Life-Cycle Analysis (LCA) was performed by Argonne National Laboratory (ANL), and a GHGR-CBTL module was added to the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. Based upon the experimental results, the plant design was reconfigured for zero natural-gas imports and minimal electricity imports. The LCA analysis of the reconfigured process utilizing the GREET model showed that if the char from the process was utilized to produce combined heat and power (CHP) then a feed containing 23 wt% biomass and

  7. RF Regional Technical Centers for MPC and A Sustainability Operations

    International Nuclear Information System (INIS)

    Lambert, L D; Toth, W J; Hendrickson, S

    2004-01-01

    The National Nuclear Security Administration (NNSA) programmatic vision to be a catalyst in Russia's assumption of responsibility for long-term system operation is exemplified in the sustainability cooperation with the RF Ministry of Defense (MOD). An identified goal for the MPC and A Program is to encourage the development of Russian Federation (RF) capabilities and commitments to operate and maintain safeguard improvements. The RF MOD Technical Support Center development fulfills the NNSA mission and MPC and A Program goal. The regional technical center concept involves a systematic approach to aid in the determination of the level of sustainability assistance required to transition operators, maintenance, training, and testing of MPC and A systems to the RF MOD. This paper describes the process used to create the RF MOD Technical support center. First are described the needs analyses conducted to determine the key system sustainability factors requiring support. These sustainability functions are then compiled to influence the form and ultimate physical design of the technical support center. Operational interfaces are described, in detail that show the benefit of the center to the individual sites. Finally, benefits relating to information accessibility and other economies of scale are described that highlight the central center concept's strengths

  8. Final Technical Report DOE/GO/13142-1

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Mulvihill; Quang Nguyen

    2010-09-15

    This research adds to the understanding of the areas of residual starch and biomass conversion to alcohol, by providing data from pilot plant equipment of larger scale than the minimum required to give commercially scalable data. Instrumentation and control is in place to capture the information produced, for economic and technical evaluation. The impact of rheology, recycle streams, and residence time distributions on the technical and economic performance can be assessed. Various processes can be compared technically and economically because the pilot plants are readily modifiable. Several technologies for residual starch yield improvement have been identified, implemented, and patent applications filed. Various biomass-to-ethanol processes have been compared and one selected for technical optimization and commercialization. The technical and economic feasibility of the current simplified biomass conversion process is being confirmed by intensive pilot plant efforts as of this writing. Optimization of the feedstock handling and pretreatment is occurring to increase the alcohol yield above the minimum commercially viable level already demonstrated. Samples of biomass residue and reactor blowdown condensate are being collected to determine the technical and economic performance of the high-water-recycle waste treatment system being considered for the process. The project is of benefit to the public because it is advancing the efforts to achieve low-cost fermentable substrates for conversion to transportation fuels. This process combines the hydrolysis of agricultural residues with novel enzymes and organisms to convert the sugars released to transportation fuels. The process development is taking place at a scale allowing commercial development to proceed at a rapid pace.

  9. Heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride degradation.

    Science.gov (United States)

    Meijide, Jessica; Pazos, Marta; Sanromán, Maria Ángeles

    2017-10-15

    The application of the electro-Fenton process for organic compound mineralisation has been widely reported over the past years. However, operational problems related to the use of soluble iron salt as a homogeneous catalyst involve the development of novel catalysts that are able to operate in a wide pH range. For this purpose, polyvinyl alcohol-alginate beads, containing goethite as iron, were synthesised and evaluated as heterogeneous electro-Fenton catalyst for 1-butylpyridinium chloride mineralisation. The influence of catalyst dosage and pH solution on ionic liquid degradation was analysed, achieving almost total oxidation after 60 min under optimal conditions (2 g/L catalyst concentration and pH 3). The results showed good catalyst stability and reusability, although its effectiveness decreases slightly after three successive cycles. Furthermore, a plausible mineralisation pathway was proposed based on the oxidation byproducts determined by chromatographic techniques. Finally, the Microtox® test revealed notable detoxification after treatment which demonstrates high catalyst ability for pyridinium-based ionic liquid degradation by the electro-Fenton process.

  10. Sodium Tetraphenylborate Catalyst Identification: Preliminary Studies Set 2

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1997-05-01

    This document details the results of these tests and represents the second report of the task designed to identify soluble NaTPB decomposition catalysts. This task, performed as part of the DNFSB Recommendation 96-1 Implementation Plan, partially fulfills the request by High Level Waste Engineering and the ITP Flow Sheet Team in task Technical Request HLW-TTR-97008

  11. Diesel Emission Control- Sulfur Effects (DECSE) Program- Phase II Summary Report: NOx Adsorber Catalysts; FINAL

    International Nuclear Information System (INIS)

    None

    2000-01-01

    The investigations performed in this project demonstrated the ability to develop a NO(sub x) regeneration strategy including both an improved lean/rich modulation cycle and rich engine calibration, which resulted in a high NO(sub x) conversion efficiency over a range of operating temperatures. A high-temperature cycle was developed to desulfurize the NO(sub x) absorber catalyst. The effectiveness of the desulfurization process was demonstrated on catalysts aged using two different sulfur level fuels. The major findings of this project are as follows: (1) The improved lean/rich engine calibration achieved as a part of this test project resulted in NO(sub x) conversion efficiencies exceeding 90% over a catalyst inlet operating temperature window of 300 C-450 C. This performance level was achieved while staying within the 4% fuel economy penalty target defined for the regeneration calibration. (2) The desulfurization procedure developed showed that six catalysts, which had been exposed to fuel sulfur levels of 3-, 16-, and 30-ppm for as long as 250 hours, could be recovered to greater than 85% NO(sub x) conversion efficiency over a catalyst inlet operating temperature window of 300 C-450 C, after a single desulfurization event. This performance level was achieved while staying within the 4% fuel economy penalty target defined for the regeneration calibration. (3) The desulfurization procedure developed has the potential to meet in-service engine operating conditions and provide acceptable driveability conditions. (4) Although aging with 78-ppm sulfur fuel reduced NO(sub x) conversion efficiency more than aging with 3-ppm sulfur fuel as a result of sulfur contamination, the desulfurization events restored the conversion efficiency to nearly the same level of performance. However, repeatedly exposing the catalyst to the desulfurization procedure developed in this program caused a continued decline in the catalyst's desulfurized performance. Additional work will be

  12. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  13. Moessbauer spectroscopic investigations of Fe/Mn-Fischer-Tropsch-catalysts

    International Nuclear Information System (INIS)

    Deppe, P.; Papp, H.; Rosenberg, M.

    1986-01-01

    The phase composition of Fe/Mn oxide catalysts of different compositions after 200 h of Fischer-Tropsch synthesis have been investigated by Moessbauer spectroscopy at room temperature, 77 K and 5 K. The final composition of the bulk catalysts depends strongly on the Mn content and the temperature of reduction before the synthesis. Catalytic activity and selectivity are partly correlated to this phase composition. (Auth.)

  14. DOE FINAL TECHNICAL REPORT RP

    Energy Technology Data Exchange (ETDEWEB)

    RUSS PETERMAN

    2012-01-01

    The City of Georgetown Utility Systems (GUS) patnered with the private sector, the American Public Power Association (APPA) and Southwestern University to design, construct, test and monitor a solar co-generation system directly connected to the GUS electric distribution system. This report consists of the Primary Technical Report and 3 attachments.

  15. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Resasco, Daniel [Univ. of Oklahoma, Norman, OK (United States). School of Chemical, Biological and Materials Engineering; Lobban, Lance [Univ. of Oklahoma, Norman, OK (United States); Crossley, Steven [Univ. of Oklahoma, Norman, OK (United States); Khanna, Vikas [Univ. of Pittsburgh, PA (United States); Maravelias, Christos [Univ. of Wisconsin, Madison, WI (United States); Petkovic, Lucia [Idaho National Lab. (INL), Idaho Falls, ID (United States); Duong, Nhung [Univ. of Oklahoma, Norman, OK (United States)

    2018-01-24

    The goal was to develop a biomass conversion process that optimizes fractionation and conversion to maximize Carbon efficiency and Hydrogen consumption to obtain drop-in fuels. Selective fractionation of raw biomass was obtained via multi-stage thermal fractionation to produce different streams that are enriched in a particular chemical family (acids, furanics or phenolics). These streams were later catalytically upgraded in both liquid and vapor phase to perform C-C bond formation and hydrodeoxygenation. Among various upgrading strategies investigated we have identified an effective path in which cyclopentanone is a crucial intermediate that can be derived from furfural and other furanics obtained in high concentrations from this thermal staged process. Cyclopentanone is a very versatile molecule, which can couple with itself to product high quality jet-fuel, or couple with phenolic or furanics to create long chain molecules. These (mono-oxygenated) compounds in the correct molecular weight fuel range can be hydrotreated to direct drop-in fuels. Interestingly, we have found that the conversion of furfural to cyclopentanone is not affected by the presence of acetic acid, and, more interestingly, it is enhanced by the presence of water. These are very significant findings, since water and acetic acid are always present in all streams from the primary conversion stage. These results have allowed to complete detailed life-cycle assessment and techno-economic analysis that have been back-fed to the experimentalists to refine the catalyst selection and process operations with the objective of maximizing C efficiency at minimum H utilization. These combined investigations have opened the possibility of an economically and technologically effective process that could result in commercial fuels produced from renewable sources at a cost that might be competitive with fossil fuels.

  16. Selective Oxidations using Nanostructured Heterogeneous Catalysts

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen

    and because they produce H2O as the only by-product. Chapter 1 gives a short introduction to basic concepts in heterogeneous catalysis and green chemistry. Furthermore, the chapter gives an overview of the most important strategies to synthesise functional nanostructured materials and highlights how detailed......The aim of this thesis is to investigate and develop new efficient methods to oxidise alcohols and amines using heterogeneous catalysts and either O2 or H2O2 as oxidants. From an economic and environmental point of view, these oxidants are ideal, because they are cheap and readily available...... understanding of size, shape and structure can help in the development of new and more efficient heterogeneous catalysts. The chapter is not intended to give a complete survey, but rather to introduce some of the recent developments in the synthesis of nanostructured heterogeneous catalysts. Finally...

  17. Technical support document for the surface disposal of sewage sludge. Final report

    International Nuclear Information System (INIS)

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the surface disposal of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in sewage sludge placed on surface disposal sites. The management practices associated with surface disposal are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through surface disposal are discussed

  18. Technical support document for the surface disposal of sewage sludge. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the surface disposal of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in sewage sludge placed on surface disposal sites. The management practices associated with surface disposal are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through surface disposal are discussed.

  19. Technical assistance contractor Management Plan. Final [report

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Technical Assistance Contractor (TAC) for the Uranium Mill Tailings Remedial Action (UMTRA) Project comprises Jacobs Engineering Group Inc. (JEG) and its major teaming partners [Roy F. Weston, Inc. (RFW), Sergent, Hauskins & Beckwith Agra, Inc. (SHB Agra), and Geraghty & Miller, Inc. (G&M)]. The first three companies have worked together effectively on the UMTRA Project for more than 10 years. With the initiation of the UMTRA Groundwater Project in April 1991, a need arose to increase the TAC`s groundwater technical breadth and depth, so G&M was brought in to augment the team`s capabilities. The TAC contract`s scope is to provide technical, analytical, environmental, engineering, design, inspection, and management support services to the US Department of Energy (DOE) for both surface and groundwater projects. The TAC team continues to support the DOE in completing surface remedial actions and initiating groundwater remediation work for start-up, characterization, design, construction oversight, and remedial operations. A key feature of the TAC`s management approach is the extensive set of communication systems implemented for the UMTRA Project. These systems assist all functional disciplines in performing UMTRA Project tasks associated with management, technical support, administrative support, and financial/project controls.

  20. Productions of sunflower oil biodiesel and used cooking oil through heterogeneous catalysts compared to conventional homogeneous catalysts

    International Nuclear Information System (INIS)

    Gutiérrez-Zapata, C A; Collazos, C A; Acuña, H E Castellanos; Fernandez, C P; Martínez, D Blanco; Cuervo, J A

    2017-01-01

    This document compares homogeneous and heterogeneous catalysts used by production of biodiesel of sunflower oil and cooking oil used in frying. For this, NaOH was used as a catalyst homogeneous, and K 2 CO 3 and Na 2 CO 3 supported in gamma-alumina (K 2 CO 3 /γ Al 2 O 3 y Na 2 CO 3 /γ-Al 2 O 3 ) were synthesized as heterogeneous catalysts, which were characterized by X-ray diffraction. The transesterification tests were carried out for the sunflower oil and used cooking oil, in a reflux system, to different molar relations methanol/oil, depending on the type of oil and characterization of the same. The reflux system is performed at a temperature of 55-60°C for one hour. Finally, biofuel was characterized and the yield of the reaction was calculated. (paper)

  1. Productions of sunflower oil biodiesel and used cooking oil through heterogeneous catalysts compared to conventional homogeneous catalysts

    Science.gov (United States)

    Gutiérrez-Zapata, C. A.; Blanco Martínez, D.; Collazos, C. A.; Castellanos Acuña, H. E.; Cuervo, J. A.; Fernandez, C. P.

    2017-01-01

    This document compares homogeneous and heterogeneous catalysts used by production of biodiesel of sunflower oil and cooking oil used in frying. For this, NaOH was used as a catalyst homogeneous, and K2CO3 and Na2CO3 supported in gamma-alumina (K2CO3/γ Al2O3 y Na2CO3 /γ-Al2O3) were synthesized as heterogeneous catalysts, which were characterized by X-ray diffraction. The transesterification tests were carried out for the sunflower oil and used cooking oil, in a reflux system, to different molar relations methanol/oil, depending on the type of oil and characterization of the same. The reflux system is performed at a temperature of 55-60°C for one hour. Finally, biofuel was characterized and the yield of the reaction was calculated.

  2. Experimental Program Final Technical Progress Report: 15 February 2007 to 30 September 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, Edward R. [University of Colorado, Boulder, CO

    2014-09-12

    This is the final technical report of the grant DE-FG02-04ER41301 to the University of Colorado at Boulder entitled "Intermediate Energy Nuclear Physics" and describes the results of our funded activities during the period 15 February 2007 to 30 September 2012. These activities were primarily carried out at Fermilab, RHIC, and the German lab DESY. Significant advances in these experiments were carried out by members of the Colorado group and are described in detail.

  3. Characterization of catalysts by Moessbauer spectroscopy: An application to the study of Fischer-Tropsch, hydrotreating and super Claus catalysts

    International Nuclear Information System (INIS)

    Kraan, A.M. van der; Boellaard, E.; Craje, M.W.J.

    1993-01-01

    Moessbauer spectroscopy is an excellent in-situ technique for the identification of phases present in catalysts. Applied to metallic iron catalysts used in the Fischer-Tropsch reaction it reveals a detailed picture of the carburization process and provides insight into the relation between the properties of the catalytic material and its activity. The influence of a support and the effect of alloying iron with an (in)active metal on the catalytic performance is discussed for Fe, Cu-Fe and Ni-Fe systems. In addition, Moessbauer spectroscopy is used for the identification of 'Co-sulfide' species present in sulfided Co and CoMo catalysts applied in one of the largest chemical processes in the world, the hydrotreatment of crude oil. A structural model is proposed. Finally, the contribution of Moessbauer spectroscopic studies to the development of a new catalyst for cleaning of Claus tail gas via selective oxidation of hydrogen sulfide to elemental sulfur is discussed. (orig.)

  4. Technical Report - FINAL

    Energy Technology Data Exchange (ETDEWEB)

    Barbara Luke, Director, UNLV Engineering Geophysics Laboratory

    2007-04-25

    Improve understanding of the earthquake hazard in the Las Vegas Valley and to assess the state of preparedness of the area's population and structures for the next big earthquake. 1. Enhance the seismic monitoring network in the Las Vegas Valley 2. Improve understanding of deep basin structure through active-source seismic refraction and reflection testing 3. Improve understanding of dynamic response of shallow sediments through seismic testing and correlations with lithology 4. Develop credible earthquake scenarios by laboratory and field studies, literature review and analyses 5. Refine ground motion expectations around the Las Vegas Valley through simulations 6. Assess current building standards in light of improved understanding of hazards 7. Perform risk assessment for structures and infrastructures, with emphasis on lifelines and critical structures 8. Encourage and facilitate broad and open technical interchange regarding earthquake safety in southern Nevada and efforts to inform citizens of earthquake hazards and mitigation opportunities

  5. Highly Selective Hydrogenation of Levulinic Acid to γ-Valerolactone Over Ru/ZrO2 Catalysts

    NARCIS (Netherlands)

    Filiz, B.C.; Gnanakumar, E.S.; Martinez-Arias, A.; Gengler, R.; Rudolf, P.; Rothenberg, G.; Shiju, N.R.

    We studied the catalytic hydrogenation of levulinic acid over zirconia supported ruthenium catalysts. Four different Ru/ZrO2 catalysts were prepared by different pre-treatments and using different zirconium supports (ZrOx(OH)4−2x and ZrO2). Although the final compositions of the catalysts are the

  6. Highly Selective Hydrogenation of Levulinic Acid to gamma-Valerolactone Over Ru/ZrO2 Catalysts

    NARCIS (Netherlands)

    Filiz, Bilge Coskuner; Gnanakumar, Edwin S.; Martinez-Arias, Arturo; Gengler, Regis; Rudolf, Petra; Rothenberg, Gadi; Shiju, N. Raveendran

    We studied the catalytic hydrogenation of levulinic acid over zirconia supported ruthenium catalysts. Four different Ru/ZrO2 catalysts were prepared by different pre-treatments and using different zirconium supports (ZrOx(OH)(4-2x) and ZrO2). Although the final compositions of the catalysts are the

  7. An Approach to Developing Independent Learning and Non-Technical Skills Amongst Final Year Mining Engineering Students

    Science.gov (United States)

    Knobbs, C. G.; Grayson, D. J.

    2012-01-01

    There is mounting evidence to show that engineers need more than technical skills to succeed in industry. This paper describes a curriculum innovation in which so-called "soft" skills, specifically inter-personal and intra-personal skills, were integrated into a final year mining engineering course. The instructional approach was…

  8. Final Technical Report for SISGR: Ultrafast Molecular Scale Chemical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hersam, Mark C. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Guest, Jeffrey R. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Guisinger, Nathan P. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Hla, Saw Wai [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Schatz, George C. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Seideman, Tamar [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Van Duyne, Richard P. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry

    2017-04-10

    The Northwestern-Argonne SISGR program utilized newly developed instrumentation and techniques including integrated ultra-high vacuum tip-enhanced Raman spectroscopy/scanning tunneling microscopy (UHV-TERS/STM) and surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS) to advance the spatial and temporal resolution of chemical imaging for the study of photoinduced dynamics of molecules on plasmonically active surfaces. An accompanying theory program addressed modeling of charge transfer processes using constrained density functional theory (DFT) in addition to modeling of SE-FSRS, thereby providing a detailed description of the excited state dynamics. This interdisciplinary and highly collaborative research resulted in 62 publications with ~ 48% of them being co-authored by multiple SISGR team members. A summary of the scientific accomplishments from this SISGR program is provided in this final technical report.

  9. Sodium phosphate as a solid catalyst for biodiesel preparation

    Directory of Open Access Journals (Sweden)

    S. T. Jiang

    2010-03-01

    Full Text Available Sodium phosphate (Na3PO4 was chosen as catalyst for biodiesel preparation from rapeseed oil. The effects of mass ratio of catalyst to oil, molar ratio of methanol to oil, reaction temperature and rotation speed on biodiesel yield were investigated. For a mass ratio of catalyst to oil of 3%, molar ratio of methanol to oil of 9:1, reaction temperature of 343K and rotation speed of 600rpm, the transesterification was nearly completed within 20 minutes. Na3PO4 has a similar activity to homogeneous catalysts. Na3PO4 could be used repeatedly for 8 runs without any activation treatment and no obvious activity loss was observed. The concentrations of catalyst in biodiesel ranged from 0.6 to 0.7 mg/g. Compared to Na3PO4, Na3PO4.10H2O was cheaper, but the final yield was 71.3%, much lower than that of Na3PO4 at 99.7%.

  10. Minimally Adhesive, Advanced Non-toxic Coatings of Dendrimeric Catalysts in Sol-Gel Matrices

    Science.gov (United States)

    2015-10-19

    Catalysts in Sol -Gel Matrices 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-09-1-0217 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Detty, Michael R. 5d...Technical Report for ONR N00014-09-1-0217 Minimally Adhesive, Advanced Non-toxic Coatings of Dendrimeric Catalysts in Sol -Gel Matrices Michael R. Detty, PI...Environmentally benign sol -gel antifouling and foul-releasing coatings. Ace. Chem. Res. 2014, 47, 678-687. 11) Alberto, E. E.; Müller, L. M

  11. Catalyst inks and method of application for direct methanol fuel cells

    Science.gov (United States)

    Zelenay, Piotr; Davey, John; Ren, Xiaoming; Gottesfeld, Shimshon; Thomas, Sharon C.

    2004-02-24

    Inks are formulated for forming anode and cathode catalyst layers and applied to anode and cathode sides of a membrane for a direct methanol fuel cell. The inks comprise a Pt catalyst for the cathode and a Pt--Ru catalyst for the anode, purified water in an amount 4 to 20 times that of the catalyst by weight, and a perfluorosulfonic acid ionomer in an amount effective to provide an ionomer content in the anode and cathode surfaces of 20% to 80% by volume. The inks are prepared in a two-step process while cooling and agitating the solutions. The final solution is placed in a cooler and continuously agitated while spraying the solution over the anode or cathode surface of the membrane as determined by the catalyst content.

  12. A comparative study on the influence of the platinum catalyst in poly(dimethylsiloxane) based networks synthesis

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Poulsen, Julie Øblom; Skov, Anne Ladegaard

    2009-01-01

    The aim of the project is to find the best of three Pt catalysts and their appropriate quantity in order to obtain soft networks in one hour at room temperature. How the choice of catalyst influences the final elastomeric properties is also evaluated. The differences between the catalysts...

  13. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  14. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    2004-03-31

    In this reporting period, a fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of production since the reaction is highly exothermic. Consequently, heavy wax products must be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase FTS. The separation problem is further compounded by catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. Existing pilot-scale equipment was modified to include a filtration test apparatus. After undergoing an extensive plant shakedown period, filtration tests with cross-flow filter modules using simulant FTS wax slurry were conducted. The focus of these early tests was to find adequate mixtures of polyethylene wax to simulate FTS wax. Catalyst particle size analysis techniques were also developed. Initial analyses of the slurry and filter permeate particles will be used by the research team to design improved filter media and cleaning strategies.

  15. DIMEC - Final Report

    DEFF Research Database (Denmark)

    Conrad, Finn

    1997-01-01

    Final report of the research project DIMEC - Danish InfoMechatronic Control supported by the Danish Technical Research Council, STVF.......Final report of the research project DIMEC - Danish InfoMechatronic Control supported by the Danish Technical Research Council, STVF....

  16. Final Technical Report: Hydrogen Codes and Standards Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Karen I.

    2007-05-12

    This project contributed significantly to the development of new codes and standards, both domestically and internationally. The NHA collaborated with codes and standards development organizations to identify technical areas of expertise that would be required to produce the codes and standards that industry and DOE felt were required to facilitate commercialization of hydrogen and fuel cell technologies and infrastructure. NHA staff participated directly in technical committees and working groups where issues could be discussed with the appropriate industry groups. In other cases, the NHA recommended specific industry experts to serve on technical committees and working groups where the need for this specific industry expertise would be on-going, and where this approach was likely to contribute to timely completion of the effort. The project also facilitated dialog between codes and standards development organizations, hydrogen and fuel cell experts, the government and national labs, researchers, code officials, industry associations, as well as the public regarding the timeframes for needed codes and standards, industry consensus on technical issues, procedures for implementing changes, and general principles of hydrogen safety. The project facilitated hands-on learning, as participants in several NHA workshops and technical meetings were able to experience hydrogen vehicles, witness hydrogen refueling demonstrations, see metal hydride storage cartridges in operation, and view other hydrogen energy products.

  17. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION; FINAL

    International Nuclear Information System (INIS)

    Michael T. Klein; William H. Calkins; Jasna Tomic

    2000-01-01

    To provide a better understanding of the roles of a solid catalyst and the solvent in Direct Coal Liquefaction, a small reactor was equipped with a porous-walled basket which was permeable to the solvent but was not permeable to the coal or solid catalyst. With this equipment and a high volatile bituminous coal it was found that direct contact between the catalyst in the basket and the coal outside the basket is not required for catalyzed coal liquefaction. The character of the solvent in this system makes a significant difference in the conversion of the coal, the better solvents being strong donor solvents. Because of the extensive use of thermogravimetric analysis in this laboratory, it was noted that the peak temperature for volatiles evolution from coal was a reliable measure of coal rank. Because of this observation, a variety of coals of a range of ranks was investigated. It was shown in this work that measuring the peak temperature for volatiles evolution was a quite precise indicator of rank and correlated closely with the rank value obtained by measuring vitrinite reflectance, a more difficult measurement to make. This prompted the desire to know the composition of the volatile material evolved as a function of coal rank. This was then measured by coupling a TGA to a mass spectrometer using laser activation and photoionization detection TG-PI-MS. The predominant species in volatiles of low rank coal turned out to be phenols with some alkenes. As the rank increases, the relative amounts of alkene and aromatic hydrocarbons increases and the oxygenated species decrease. It was shown that these volatiles were actually pyrolytic products and not volatilization products of the coal. Solvent extraction experiments coupled with Thermogravimetric-photoionization-mass spectrometry (TG-PI-MS) indicated that the low boiling and more extractable material are essentially similar in chemical types to the non-extractable portions but apparently higher molecular weight

  18. Recycling of spent noble metal catalysts with emphasis on pyrometallurgical processing

    Energy Technology Data Exchange (ETDEWEB)

    Hagelueken, C. [Degussa Huels AG, Hanau (Germany)

    1999-09-01

    Precious metal catalysts for catalytic Naphta Reforming, Isomerization, Hydrogenation and other chemical and petrochemical processes are valuable assets for oil refineries and chemical companies. At the end of the service life of a reactor load of catalyst, the efficient and reliable recovery of the precious metals contained in the catalyst is of paramount importance. More than 150 years of technological advances at Degussa-Huels have resulted in refining methods for all kinds of precious metal containing materials which guarantee an optimum technical yield of the precious metals included. The refining of catalysts today is one of the important activities in the precious metals business unit. In the state-of-the-art precious metal refinery at Hanau in the centre of Germany, a wide variety of processes for the recovery of all precious metals is offered. These processes include accurate preparation, sampling and analysis as well as both wet-chemical and pyrometallurgical recovery techniques. Special emphasis in this presentation is laid on the advantages of pyrometallurgical processes for certain kinds of catalysts. To avoid any risks during transport, sampling and treatment of the spent catalyst, all parties involved in the recycling chain strictly have to follow the relevant safety regulations. Under its commitment to 'Responsible Care' standard procedures have been developed which include pre-shipment samples, safety data sheets/questionnaires and inspection of spent catalysts. These measures not only support a safe and environmentally sound catalyst recycling but also enable to determine the most suitable and economic recovery process - for the benefit of the customer. (orig.)

  19. Effect of precipitating agent on the catalytic behaviour of precipitated iron catalysts

    International Nuclear Information System (INIS)

    Motjope, T.R.; Dlamini, H.T.; Pollak, H.; Coville, N.J.

    1999-01-01

    Iron precipitated catalysts have been prepared using different precipitating agents (NH 4 OH, K 2 CO 3 ) at different pH values. In situ Moessbauer (MES) study of the reduced catalyst prepared using NH 4 OH revealed the presence of superparamagnetic Fe 2+ , Fe 3+ and magnetically split α-Fe only, whereas the catalyst prepared with K 2 CO 3 also showed an extra magnetic sextuplet of Fe 3 O 4 . For both catalyst systems, in situ MES revealed that during Fischer-Tropsch synthesis α-Fe was converted into ε'-Fe 2,2 C and finally into χ-Fe 2,5 C when the synthesis time was increased. The rate of formation of hydrocarbons was observed to increase with the increase in the degree of carburisation with the NH 4 OH catalyst showing a higher rate of reaction. The K 2 CO 3 catalyst exhibited higher olefin selectivity than the NH 4 OH catalyst under similar pH conditions

  20. Technology development for cobalt F-T catalysts. Quarterly technical progress report No. 12, July 1, 1995--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, A.H.

    1996-03-21

    The investigation of the effect of certain promoters (Fe, Pd, and Ru) on the deactivation characteristics of Co catalysts during F-T synthesis was continued during this reporting period. All catalysts were tested first at 220{degrees}C, then at higher temperatures from 240 to 280{degrees}C, while monitoring their deactivation. The choice of these promoters was based on their intrinsic ability to enhance the hydrogenation reactions while slowing down the Boudouard reaction under the conditions used in F-T synthesis. Olefin hydrogenation and CO dissociation reactions were used individually to investigate further the nature of the deactivation process of these catalyst during F-T synthesis. Hydrogenation of isobutene (IB) was carried out in the presence of CO between 120 and 180{degrees}C and atmospheric pressure. CO dissociation activities of the catalysts were measured using a pulse technique at 2.5 atm and at temperatures between 180 and 280{degrees}C with intermittent H{sub 2} bracketing at 350{degrees}C. Promotion with high loadings of Fe or Pd resulted in catalysts with relatively lower activity and higher methane selectivity. The deactivation process and rate for catalysts containing Pd or Fe were similar to those of the non-promoted or Ru-promoted alumina-supported Co catalysts tested previously. The only exception was Co.068 with 1% Pd which had adequate activity and selectivity as well as lower deactivation rate at the various temperatures tested.

  1. Technical support document for land application of sewage sludge. Volume 1. Final report

    International Nuclear Information System (INIS)

    Jones, A.; Beyer, L.; Rookwood, M.; Pacenka, J.; Bergin, J.

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the land application of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in land applied sewage sludge. The management practices associated with land application are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through land application are discussed

  2. Hydrocarbon reforming catalysts and new reactor designs for compact hydrogen generators

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, A.; Schwab, E.; Urtel, H. [BASF SE, Ludwigshafen (Germany); Farrauto, R. [BASF Catalysts LLC, Iselin, NJ (United States)

    2010-12-30

    A hydrogen based future energy scenario will use fuel cells for the conversion of chemically stored energy into electricity. Depending upon the type of fuel cell, different specifications will apply for the feedstock which is converted in the cell, ranging from very clean hydrogen for PEM-FC's to desulfurized methane for SOFC and MCFC technology. For the foreseeable future, hydrogen will be supplied by conventional reforming, however operated in compact and dynamic reformer designs. This requires that known catalyst formulations are offered in specific geometries, giving flexibility for novel reactor design options. These specific geometries can be special tablet shapes as well as monolith structures. Finally, also nonhydrocarbon feedstock might be used in special applications, e.g. bio-based methanol and ethanol. BASF offers catalysts for the full process chain starting from feedstock desulfurization via reforming, high temperature shift, low temperature shift to CO fine polishing either via selective oxidation or selective methanation. Depending upon the customer's design, most stages can be served either with precious metal based monolith solutions or base metal tablet solutions. For the former, we have taken the automobile catalyst monolith support and extended its application to the fuel cell hydrogen generation. Washcoats of precious metal supported catalysts can for example be deposited on ceramic monoliths and/or metal heat exchangers for efficient generation of hydrogen. Major advantages are high through puts due to more efficient heat transfer for catalysts on metal heat exchangers, lower pressure drop with greater catalyst mechanical and thermal stability compared to particulate catalysts. Base metal tablet catalysts on the other hand can have intrinsic cost advantages, larger fractions of the reactor can be filled with active mass, and if produced in unconventional shape, again novel reactor designs are made possible. Finally, if it comes to

  3. Bimetallic catalysts for HI decomposition in the iodine-sulfur thermochemical cycle

    International Nuclear Information System (INIS)

    Wang Laijun; Hu Songzhi; Xu Lufei; Li Daocai; Han Qi; Chen Songzhe; Zhang Ping; Xu Jingming

    2014-01-01

    Among the different kinds of thermochemical water-splitting cycles, the iodine-sulfur (IS) cycle has attracted more and more interest because it is one of the promising candidates for economical and massive hydrogen production. However, there still exist some science and technical problems to be solved before industrialization of the IS process. One such problem is the catalytic decomposition of hydrogen iodide. Although the active carbon supported platinum has been verified to present the excellent performance for HI decomposition, it is very expensive and easy to agglomerate under the harsh condition. In order to decrease the cost and increase the stability of the catalysts for HI decomposition, a series of bimetallic catalysts were prepared and studied at INET. This paper summarized our present research advances on the bimetallic catalysts (Pt-Pd, Pd-Ir and Pt-Ir) for HI decomposition. In the course of the study, the physical properties, structure, and morphology of the catalysts were characterized by specific surface area, X-ray diffractometer; and transmission electron microscopy, respectively. The catalytic activity for HI decomposition was investigated in a fixed bed reactor under atmospheric pressure. The results show that due to the higher activity and better stability, the active carbon supported bimetallic catalyst is more potential candidate than mono metallic Pt catalyst for HI decomposition in the IS thermochemical cycle. (author)

  4. Studies on recycling and utilization of spent catalysts. Preparation of active hydrodemetallization catalyst compositions from spent residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, Meena; Stanislaus, Antony [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat (Kuwait)

    2007-02-15

    Spent catalysts form a major source of solid wastes in the petroleum refining industries. Due to environmental concerns, increasing emphasis has been placed on the development of recycling processes for the waste catalyst materials as much as possible. In the present study the potential reuse of spent catalysts in the preparation of active new catalysts for residual oil hydrotreating was examined. A series of catalysts were prepared by mixing and extruding spent residue hydroprocessing catalysts that contained C, V, Mo, Ni and Al{sub 2}O{sub 3} with boehmite in different proportions. All prepared catalysts were characterized by chemical analysis and by surface area, pore volume, pore size and crushing strength measurements. The hydrodesulfurization (HDS) and hydrodemetallization (HDM) activities of the catalysts were evaluated by testing in a high pressure fixed-bed microreactor unit using Kuwait atmospheric residue as feed. A commercial HDM catalyst was also tested under similar operating conditions and their HDS and HDM activities were compared with that of the prepared catalysts. The results revealed that catalyst prepared with addition of up to 40 wt% spent catalyst to boehmite had fairly high surface area and pore volume together with large pores. The catalyst prepared by mixing and extruding about 40 wt% spent catalyst with boehmite was relatively more active for promoting HDM and HDS reactions than a reference commercial HDM catalyst. The formation of some kind of new active sites from the metals (V, Mo and Ni) present in the spent catalyst is suggested to be responsible for the high HDM activity of the prepared catalyst. (author)

  5. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia; El Eter, Mohamad; Caps, Valerie; Basset, Jean-Marie

    2014-01-01

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  6. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia

    2014-03-06

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  7. High temperature gas cleaning for pressurized gasification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alden, H.; Hagstroem, P.; Hallgren, A.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    The purpose of the project was to build an apparatus to study pressurized, high temperature gas cleaning of raw gasification gas generated from biomass. A flexible and easy to operate pressurized apparatus was designed and installed for the investigations in high temperature gas cleaning by means of thermal, catalytic or chemical procedures. A semi continuos fuel feeding concept, at a maximum rate of 700 g/h, allowed a very constant formation of a gas product at 700 deg C. The gas product was subsequently introduced into a fixed bed secondary reactor where the actual gas cleanup or reformation was fulfilled. The installation work was divided into four work periods and apart from a few delays the work was carried out according to the time plan. During the first work period (January - June 1994) the technical design, drawings etc. of the reactor and additional parts were completed. All material for the construction was ordered and the installation work was started. The second work period (July - December 1994) was dedicated to the construction and the installation of the different components. Initial tests with the electrical heating elements, control system and gas supply were assigned to the third work period (January - June 1995). After the commissioning and the resulting modifications, initial pyrolysis and tar decomposition experiments were performed. During the fourth and final work period, (June - December 1995) encouraging results from first tests allowed the experimental part of the project work to commence, however in a slightly reduced program. The experimental part of the project work comparatively studied tar decomposition as a function of the process conditions as well as of the choice of catalyst. Two different catalysts, dolomite and a commercial Ni-based catalyst, were evaluated in the unit. Their tar cracking ability in the pressure interval 1 - 20 bar and at cracker bed temperatures between 800 - 900 deg C was compared. Long term tests to study

  8. Final Technical Progress Report: Development of Low-Cost Suspension Heliostat; December 7, 2011 - December 6, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bender, W.

    2013-01-01

    Final technical progress report of SunShot Incubator Solaflect Energy. The project succeeded in demonstrating that the Solaflect Suspension Heliostat design is viable for large-scale CSP installations. Canting accuracy is acceptable and is continually improving as Solaflect improves its understanding of this design. Cost reduction initiatives were successful, and there are still many opportunities for further development and further cost reduction.

  9. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least...... one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treating an catalyst for conferring thereon an improved resistance to alkali poisoning....

  10. Screening, optimization and kinetics of Jatropha curcas oil transesterification with heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zanette, Andreia F.; Barella, Rodrigo A.; Silva, Edson A. [Department of Chemical Engineering, Universidade Estadual do Oeste do Parana, Toledo (Brazil); Pergher, Sibele B.C.; Treichel, Helen; Oliveira, Debora; Mazutti, Marcio A.; Oliveira, J. Vladimir [Department of Food Engineering, URI, Campus de Erechim, CEP 99700-000, Erechim (Brazil)

    2011-02-15

    This work investigates the production of fatty acid methyl esters (FAME) from Jatropha curcas oil using a variety of heterogeneous catalysts: resins, zeolites, clays, hydrotalcites, aluminas and niobium oxide. For this purpose, a catalyst screening was first conducted in a batch reactor at the following operating conditions: oil to methanol molar ratio of 1:9, 6 h of reaction, 5 wt% catalyst, at 333 and 393 K. From the screening step, KSF clay and Amberlyst 15 catalysts were selected to carry out a 2{sup 3} full factorial central composite rotatable design so as to elucidate the effects of process variables on FAME yield. The optimum reaction conditions for both catalysts were found to be oil to methanol molar ratio of 1:12, 5 wt% of catalyst, 433 K and 6 h of reaction with a FAME yield of about 70 wt%. A kinetic study was then experimentally performed and a semi-empirical model was built to represent the experimental data. Finally, catalyst re-utilization in five successive batch experiments was evaluated at the optimized conditions. (author)

  11. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    -particles dispersed in water which also contains the catalyst precursor nitrate salt. This support-catalyst precursor fluid must have a sufficiently low viscosity but high elastic modulus (high extensional viscosity to form films and bubbles when exposed to processing energy sources such as microwave, thermal, ultra-sound or UV-radiation or their combination. The micro-to-nano structures of the catalyst system are essentially formed at an early stage of energy input. It is shown that the primary particles of silica are transformed to a proto-silica particle state and form lamellar structures with the catalyst precursor. While the nano-structure is forming, water is evaporated leaving a highly porous solid support-catalyst precursor which then undergoes decomposition to form a silica-catalyst oxide system. The final catalyst system is obtained after catalyst oxide reduction. Although the XRD-based catalyst size changes slightly during the subsequent heat treatments, the nano-structure of the catalyst system remains substantially unaltered as evaluated through TEM images. However, if the catalyst preparation is carried out without film formation, the XRD-based catalyst size increases substantially by a factor of 2–8, with no significant alteration in surface area.

  12. New catalysts and new synthetic applications for hydroformylation

    Energy Technology Data Exchange (ETDEWEB)

    Breit, B. [Albert-Ludwigs-Univ. Freiburg (Germany). Inst. fuer Organische Chemie und Biochemie

    2006-07-01

    In the course of this lecture most recent advances in rhodium catalyzed hydroformylation and its use in organic synthesis are presented. Particular emphasis is given to regioselective hydroformylation of terminal alkenes and its application to fine chemical synthesis as well as latest results and applications of asymmetric hydroformylation. Furthermore, a new concept for simultaneous control of regio- and stereochemistry employing catalyst-directing groups will be discussed in detail. Finally, a new concept for catalyst library generation based on ligand-self-assembly through complementary hydrogen bonding and its application to regioselective hydroformylation as well as asymmetric hydrogenation is presented. (orig.)

  13. NEET-AMM Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components

    International Nuclear Information System (INIS)

    Anderson, Scott; Baca, Georgina; O'Connor, Michael

    2015-01-01

    Final technical report summarizes the program progress and technical accomplishments of the Laser Direct Manufacturing (LDM) for Nuclear Power Components project. A series of experiments varying build process parameters (scan speed and laser power) were conducted at the outset to establish the optimal build conditions for each of the alloys. Fabrication was completed in collaboration with Quad City Manufacturing Laboratory (QCML). The density of all sample specimens was measured and compared to literature values. Optimal build process conditions giving fabricated part densities close to literature values were chosen for making mechanical test coupons. Test coupons whose principal axis is on the x-y plane (perpendicular to build direction) and on the z plane (parallel to build direction) were built and tested as part of the experimental build matrix to understand the impact of the anisotropic nature of the process.. Investigations are described 316L SS, Inconel 600, 718 and 800 and oxide dispersion strengthed 316L SS (Yttria) alloys.

  14. NEET-AMM Final Technical Report on Laser Direct Manufacturing (LDM) for Nuclear Power Components

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott [Lockheed Martin Corporation, Denver, CO (United States). Space Systems Company; Baca, Georgina [Lockheed Martin Corporation, Denver, CO (United States). Space Systems Company; O' Connor, Michael [Lockheed Martin Corporation, Denver, CO (United States). Space Systems Company

    2015-12-31

    Final technical report summarizes the program progress and technical accomplishments of the Laser Direct Manufacturing (LDM) for Nuclear Power Components project. A series of experiments varying build process parameters (scan speed and laser power) were conducted at the outset to establish the optimal build conditions for each of the alloys. Fabrication was completed in collaboration with Quad City Manufacturing Laboratory (QCML). The density of all sample specimens was measured and compared to literature values. Optimal build process conditions giving fabricated part densities close to literature values were chosen for making mechanical test coupons. Test coupons whose principal axis is on the x-y plane (perpendicular to build direction) and on the z plane (parallel to build direction) were built and tested as part of the experimental build matrix to understand the impact of the anisotropic nature of the process.. Investigations are described 316L SS, Inconel 600, 718 and 800 and oxide dispersion strengthed 316L SS (Yttria) alloys.

  15. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2006-09-30

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of mesoporous aluminosilicate catalyst, Al-SBA-15, containing strong Broensted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt% Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst will be evaluated for the conversion of heavy petroleum feedstocks to naphtha and middle distillates.

  16. Final Technical Report on Development of an Economic and Efficient Biodiesel production Process (NC)

    Energy Technology Data Exchange (ETDEWEB)

    Tirla, Cornelia [Univ. of North Carolina, Pembroke, NC (United States); Dooling, Thomas A. [Univ. of North Carolina, Pembroke, NC (United States); Smith, Rachel B. [Univ. of North Carolina, Pembroke, NC (United States); Shi, Xinyan [Univ. of North Carolina, Pembroke, NC (United States); Shahbazi, Abolghasem [North Carolina Agricultural and Technical State Univ., Greensboro, NC (United States)

    2014-03-19

    The Biofuels Team at The University of North Carolina at Pembroke and North Carolina A&T State University carried out a joint research project aimed at developing an efficient process to produce biodiesel. In this project, the team developed and tested various types of homogeneous and heterogeneous catalysts which could replace the conventionally used soluble potassium hydroxide catalyst which, traditionally, must be separated and disposed of at the end of the process. As a result of this screening, the homogeneous catalyst choline hydroxide was identified as a potential replacement for the traditional catalyst used in this process, potassium hydroxide, due to its decreased corrosiveness and toxicity. A large number of heterogeneous catalysts were produced and tested in order to determine the scaffold, ion type and ion concentration which would produce optimum yield of biodiesel. The catalyst with 12% calcium on Zeolite β was identified as being highly effective and optimal reaction conditions were identified. Furthermore, a packed bed reactor utilizing this type of catalyst was designed, constructed and tested in order to further optimize the process. An economic analysis of the viability of the project showed that the cost of an independent farmer to produce the fuelstock required to produce biodiesel exceeds the cost of petroleum diesel under current conditions and that therefore without incentives, farmers would not be able to benefit economically from producing their own fuel. An educational website on biodiesel production and analysis was produced and a laboratory experiment demonstrating the production of biodiesel was developed and implemented into the Organic Chemistry II laboratory curriculum at UNCP. Five workshops for local farmers and agricultural agents were held in order to inform the broader community about the various fuelstock available, their cultivation and the process and advantages of biodiesel use and production. This project fits both

  17. New Tools for CO2 Fixation by Homogeneous Catalysis - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jessop, Phillip G.

    2006-01-20

    The overall goal is the development of new or more efficient methods for the conversion of CO{sub 2} into useful organic products, via the design or discovery of new catalysts, ligands, solvents, and methods. Specific objectives for this funded period: (1) To develop a high-throughput screening technique and use it to develop an efficient catalyst/reagent/solvent system for the synthesis of ureas or carboxylic acids. (2) To use in-situ spectroscopic and kinetic methods to study the mechanism of the synthesis of ureas or carboxylic acids. (3) To develop bifunctional ligands capable of secondary interactions with CO{sub 2}, to detect the interactions, and to demonstrate applications to catalysis.

  18. Allotropic Carbon Nanoforms as Advanced Metal-Free Catalysts or as Supports

    Directory of Open Access Journals (Sweden)

    Hermenegildo Garcia

    2014-01-01

    Full Text Available This perspective paper summarizes the use of three nanostructured carbon allotropes as metal-free catalysts (“carbocatalysts” or as supports of metal nanoparticles. After an introductory section commenting the interest of developing metal-free catalysts and main features of carbon nanoforms, the main body of this paper is focused on exemplifying the opportunities that carbon nanotubes, graphene, and diamond nanoparticles offer to develop advanced catalysts having active sites based on carbon in the absence of transition metals or as large area supports with special morphology and unique properties. The final section provides my personal view on future developments in this field.

  19. EXAFS characterization of supported metal catalysts in chemically dynamic environments

    International Nuclear Information System (INIS)

    Robota, H.J.

    1991-01-01

    Characterization of catalysts focuses on the identification of an active site responsible for accelerating desirable chemical reactions. The identification, characterization, and selective modification of such sites is fundamental to the development of structure-function relationships. Unfortunately, this goal is far from realized in nearly all catalysts, and particularly in catalysts comprised of small supported metal particles. X-ray absorption spectroscopy (XAS) has had a dramatic effect on our understanding of supported metal particles in their resting state. However, the performance of a catalyst can not be assessed from such simple resting state measurements. Among the factors which influence catalyst performance are the exact catalyst composition, including the support and any modifiers; particle size; catalyst finishing and pretreatment conditions; pressure, composition, and temperature of the operating environment; time. Gaining an understanding of how the structure of a catalytic site can change with such an array of variables requires that we begin to develop measurement methods which are effective under chemically dynamic conditions. Ideally, it should be possible to obtain a full X-ray absorption spectrum of each element thought to have a causal relationship with observed catalyst properties. From these spectra, we can optimally extract only a relatively limited amount of information which we must then piece together with information derived from other characterization methods and intuition to arrive at a hypothetical structure of the operating catalyst. Information about crystallinity, homogeneity, and general disorder can be obtained from the Debye-Waller factor. Finally, through analogy with known compounds, the electronic structure of the active atoms can be inferred from near edge absorption features

  20. Technical basis for the ITER final design report, cost review and safety analysis (FDR)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The ITER final design report, cost review and safety analysis (FDR) is the 4th major milestone, representing the progress made in the ITER Engineering Design Activities. With the approval of the Detailed Design Report (DDR), the design work was concentrated on the requirements of operation, with only relatively minor changes to design concepts of major components. The FDR is the culmination of almost 6 years collaborative design and supporting technical work by the ITER Joint Central Team and Home Teams under the terms of the ITER EDA Agreement. Refs, figs, tabs

  1. Technical basis for the ITER final design report, cost review and safety analysis (FDR)

    International Nuclear Information System (INIS)

    1998-01-01

    The ITER final design report, cost review and safety analysis (FDR) is the 4th major milestone, representing the progress made in the ITER Engineering Design Activities. With the approval of the Detailed Design Report (DDR), the design work was concentrated on the requirements of operation, with only relatively minor changes to design concepts of major components. The FDR is the culmination of almost 6 years collaborative design and supporting technical work by the ITER Joint Central Team and Home Teams under the terms of the ITER EDA Agreement

  2. Technical review of externalities issues. Final report

    International Nuclear Information System (INIS)

    Niemeyer, V.

    1994-12-01

    Externalities has become the catchword for a major experiment in electric utility regulation. Together with increased competition as a means for economic regulation, this experiment represents a potential revolution in how electric utilities are regulated. It is very important for utilities and policy makers to understand the technical issues and arguments driving the externality experiment. This Technical Review presents four papers covering topics in economics that may play important roles in this revolution. The four papers are: Economic Issues in the Application of Externalities to Electricity Resource Selection; Climate Change, the Marginal Cost of Carbon Dioxide Emissions and the Implications for Carbon Dioxide Emissions Adders; Positive Externalities and Benefits from Electricity; and Socioeconomic Effects of Externality Adders for Electric Utility Emissions

  3. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Branko N. Popov

    2009-02-20

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable

  4. DOE Award No. DE-FC36-03GO13108 NOVEL NON-PRECIOUS METAL CATALYSTS FOR PEMFC: CATALYST SELECTION THROUGH MOLECULAR MODELING AND DURABILITY STUDIES Final Report (September 2003 – October 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Branko N. Popov

    2009-03-03

    The objective of this project is to develop novel non-precious metal electrocatalysts for oxygen reduction reaction (ORR), and demonstrate the potential of the catalysts to perform at least as good as conventional Pt catalysts currently in use in polymer electrolyte membrane fuel cell (PEMFC) with a cost at least 50 % less than a target of 0.2 g (Pt loading)/peak kW and with durability > 2,000 h operation with less than 10 % power degradation. A novel nitrogen-modified carbon-based catalyst was obtained by modifying carbon black with nitrogen-containing organic precursor in the absence of transition metal precursor. The catalyst shows the onset potential of approximately 0.76 V (NHE) for ORR and the amount of H2O2 of approximately 3% at 0.5 V (NHE). Furthermore, a carbon composite catalyst was achieved through the high-temperature pyrolysis of the precursors of transition metal (Co and Fe) and nitrogen supported on the nitrogen-modified carbon-based catalyst, followed by chemical post-treatment. This catalyst showed an onset potential for ORR as high as 0.87 V (NHE), and generated less than 1 % of H2O2. The PEM fuel cell exhibited a current density of 2.3 A cm-2 at 0.2 V for a catalyst loading of 6.0 mg cm-2. No significant performance degradation was observed for 480 h continuous operation. The characterization studies indicated that the metal-nitrogen chelate complexes decompose at the temperatures above 800 oC. During the pyrolysis, the transition metals facilitate the incorporation of pyridinic and graphitic nitrogen groups into the carbon matrix, and the carbon surface modified with nitrogen is active for ORR. In order to elucidate the role of transition metal precursor played in the formation of active sites in the non-precious metal catalysts, a novel ruthenium-based chelate (RuNx) catalyst was synthesized by using RuCl3 and propylene diammine as the Ru and N precursors, respectively, followed by high-temperature pyrolysis. This catalyst exhibited comparable

  5. More active and sulfur resistant bimetallic Pd-Ni catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Betti, Carolina; Carrara, Nicolás; Badano, Juan; Lederhos, Cecilia; Vera, Carlos; Quiroga, Mónica, E-mail: mquiroga@fiq.unl.edu.ar [Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE (FIQ-UNL, CONICET), Santa Fe (Argentina)

    2018-02-15

    The influence of the kind of metal precursor and the sequence of impregnation on the properties of Pd-Ni catalysts was evaluated during the test reaction of selective hydrogenation of styrene to ethylbenzene by means of physicochemical characterization. The focus was put on the final hydrogenating activity and the resistance to deactivation by sulfide compounds (thiophene). The used techniques of characterization were ICP, XPS, XDR, TPR, CO chemisorption and TEM. XPS results indicated the presence of different Pd species: Pd{sup δ-}, Pd{sup 0} and Pd{sup δ+}. In the case of the Ni containing catalysts, Ni{sup 0} and NiO species were also detected. These palladium and nickel species would be responsible of the variation of activity and sulfur resistance of the catalysts. NiClPd catalysts had a higher resistance to deactivation by sulfur poisoning. This was associated to a higher concentration of Pd{sup η+}Cl{sub x}O{sub y} species that would prevent the adsorption of thiophene by both steric and electronic effects. It could also be due to the lower concentration of Pd{sup 0} and Ni{sup 0} on these catalysts, as compared to those shown by the PdNiCl catalysts. Both the Pd{sup 0} and Ni{sup 0} species are more prone to poisoning because of their higher electronic availability. (author)

  6. An introduction to catalyst

    International Nuclear Information System (INIS)

    Jeon, Hak Je

    1988-11-01

    This book explains basic conception of catalyst such as definition, velocity of chemical reaction and velocity of catalyst reaction, absorption with absorption energy and chemical absorption, pore structure with the role of pore and measurement of pore structure, catalyst activity on solid structure, electrical property on catalyst activity, choice and design of catalyst, catalytic reaction with reaction velocity and chemical equilibrium and reaction velocity model, measurement of reaction velocity and material analysis, catalyst for mixed compound, catalyst for solid acid and catalyst for supported metal.

  7. Alkali/TX{sub 2} catalysts for CO/H{sub 2} conversion to C{sub 1}-C{sub 4} alcohols. Final technical progress report, September 1, 1988--August 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Richards-Babb, M.; Bastian, R.; Kieke, M.

    1993-03-01

    The objective of this research is to determine the patterns of variations of catalyst activity and selectivity for the synthesis of alcohols from H{sub 2}/CO synthesis gas. Since the source of carbon can be coal-derived synthesis gas, this research makes a contribution to the technology for high quality clean transportation fuels and for basic chemicals from coal. Catalysts prepared were principally based on MoS{sub 2}, RuS{sub 2}, TaS{sub 2}, and NbS{sub 2}. Catalytic testing of these materials was carried out both before and after surface doping with Cs. In alcohol synthesis activation of hydrogen by the catalyst surface is essential. Knowledge of transition metal disulfide surface properties is important before the mechanism of hydrogen dissociation can be addressed. The electronic structures of MoS{sub 2}, RuS{sub 2}, and NbS{sub 2} were studied both theoretically and experimentally. Experimental valence bands were obtained by high resolution electron spectroscopy for chemical analysis (HR-ESCA, also referred to as x-ray photoelectron spectroscopy) and theoretical valence bands were calculated using solid state extended Hueckel theory. Comparison of two-dimensional (2-D) MoS{sub 2} theoretical valence bands with the experimental HR-ESCA valence bands of polycrystalline MoS{sub 2} led to parametrization of the S 3s, S 3p, and Mo 4d atomic ionization potentials and Slater-type coefficients and exponents. The S 3s and S 3p parameters obtained for MoS{sub 2} were used to obtain the NbS{sub 2} and RuS{sub 2} theoretical valence bands.

  8. FINAL TECHNICAL REPORT Synthetic, Structural and Mechanistic Investigations of Olefin Polymerization Catalyzed by Early Transition Metal Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bercaw, John E. [California Institute of Technology

    2014-05-23

    The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the active and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.

  9. Technical study gas storage. Final report

    International Nuclear Information System (INIS)

    Borowka, J.; Moeller, A.; Zander, W.; Koischwitz, M.A.

    2001-01-01

    This study will answer the following questions: (a) For what uses was the storage facility designed and for what use is it currently applied? Provide an overview of the technical data per gas storage facility: for instance, what is its capacity, volume, start-up time, etc.; (b) How often has this facility been used during the past 10 years? With what purpose was the facility brought into operation at the time? How much gas was supplied at the time from the storage facility?; (c) Given the characteristics and the use of the storage facility during the past 10 years and projected gas consumption in the future, how will the storage facility be used in the future?; (d) Are there other uses for which the gas storage facility can be deployed, or can a single facility be deployed for numerous uses? What are the technical possibilities in such cases? Questions (a) and (b) are answered separately for every storage facility. Questions (c) and (d) in a single chapter each (Chapter 2 and 3). An overview of the relevant storage data relating to current use, use in the last 10 years and use in future is given in the Annex

  10. Analysis and study on the performance variation of SCR DeNOx catalyst of Coal-Fired Boilers

    International Nuclear Information System (INIS)

    Jianxing, Ren; Fangqin, Li; Jiang, Wu; Qingrong, Liu; Yongwen, Yang; Zhongzhu, Qiu

    2010-01-01

    Nitrogen oxides (NO x ) are one kind of harmful substances from the burning process of fossil fuel and air at high temperature. NO x emissions cause serious pollution on atmospheric environment. In this paper, coal-fired utility boilers were chosen as the object, NO x formation mechanism and control were studied, and SCR deNO x technology was used to control NO x emissions from coal-fired boilers. Analyzed the relationship between deNO x efficiency and characteristics of SCR DeNO x catalyst. Through analysis, affecting SCR DeNO x catalyst failure factors, change law of catalytic properties and technical measures to extend the service life of the catalyst were gotten. (author)

  11. Nanoporous PdCo Catalyst for Microfuel Cells: Electrodeposition and Dealloying

    Directory of Open Access Journals (Sweden)

    Satoshi Tominaka

    2011-01-01

    Full Text Available PdCo alloy is a promising catalyst for oxygen reduction reaction of direct methanol fuel cells because of its high activity and the tolerance to methanol. We have applied this catalyst in order to realize on-chip fuel cell which is a membraneless design. The novel design made the fuel cells to be flexible and integratable with other microdevices. Here, we summarize our recent research on the synthesis of nanostructured PdCo catalyst by electrochemical methods, which enable us to deposit the alloy onto microelectrodes of the on-chip fuel cells. First, the electrodeposition of PdCo is discussed in detail, and then, dealloying for introducing nanopores into the electrodeposits is described. Finally, electrochemical response and activities are fully discussed.

  12. Metal Chlorides Supported Solid Catalysts for F-C Acylations of Arenes

    Institute of Scientific and Technical Information of China (English)

    李阳; 刘云龙; 穆曼曼; 陈立功

    2015-01-01

    A series of metal chlorides supported solid catalysts were prepared by simple wet impregnation method. Their catalytic performances for Friedel-Crafts acylation of toluene with benzoyl chloride were evaluated and the excellent results were obtained over FeCl3/SiO2. These catalysts were characterized by BET, NH3-TPD and FT-IR of pyridine adsorption to clarify the structure-activity relationship. It was found that FeCl3/SiO2 has larger pore size and pore volume than other catalysts, which increased the accessibility of the catalyst. In addition, FeCl3/SiO2 ex-hibited higher molar ratio of Lewis acid sites and Brφnsted acid sites, which might be another reason for the in-crease of toluene conversion. Furthermore, the reaction parameters, including temperature, time and molar ratio, were optimized. Under the optimized conditions, 91.2%, conversion and 82.0%, selectivity were obtained. Mean-while, the generality of the catalyst was demonstrated by the acylations of alkyl substituted aromatics. Finally, the catalyst was reused for four runs with slight loss in catalytic activity, which attributed to the drain of the active component.

  13. Development of Ni-Based Catalysts Derived from Hydrotalcite-Like Compounds Precursors for Synthesis Gas Production via Methane or Ethanol Reforming

    Directory of Open Access Journals (Sweden)

    Ya-Li Du

    2017-02-01

    Full Text Available As a favorably clean fuel, syngas (synthesis gas production has been the focus of concern in past decades. Substantial literatures reported the syngas production by various catalytic reforming reactions particularly in methane or ethanol reforming. Among the developed catalysts in these reforming processes, Ni-based catalysts from hydrotalcite-like compounds (HTLcs precursors have drawn considerable attention for their preferable structural traits. This review covers the recent literature reporting syngas production with Ni-based catalysts from HTLc precursors via methane or ethanol reforming. The discussion was initiated with catalyst preparation (including conventional and novel means, followed by subsequent thermal treatment processes, then composition design and the addition of promoters in these catalysts. As Ni-based catalysts have thermodynamic potential to deactivate because of carbon deposition or metal sintering, measures for dealing with these problems were finally summarized. To obtain optimal catalytic performances and resultantly better syngas production, based on analyzing the achievements of the references, some perspectives were finally proposed.

  14. Novel Catalyst for the Chirality Selective Synthesis of Single Walled Carbon Nanotubes

    Science.gov (United States)

    2015-05-12

    Final 3. DATES COVERED (From - To) 03-April-2013 to 02-April-2015 4. TITLE AND SUBTITLE Novel Catalyst for the Chirality Selective...Distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Chiral single walled carbon nanotubes (SWCNTs) are known to possess unique... chirality control in SWCNT synthesis. A model catalyst based on CoSO4/SiO2 was developed that showed good selectivity to (9,8) nanotubes. Remote plasma

  15. Hydrogen production by dry reforming of methane with carbon dioxide in one-dimensional nickel-based catalysts

    International Nuclear Information System (INIS)

    Lopez U, A. C.

    2016-01-01

    The main objective of this thesis is development of nickel catalysts supported over 1D matrix of cerium oxide, to be used in dry reforming methane reaction with carbon dioxide for hydrogen production. The catalysts were characterized by: Temperature Programmed Reduction (TPR), Scanning Electronic Microscopy (Sem), Surface Area (Bet method) an X Ray Diffraction (XRD). The TPR technique allowed to define reduction temperature of the active phase in the catalyst, Sem technique showed that the CeO_2 matrix had a nano rod morphology. XRD allowed to identify the crystalline phases of the catalysts. Finally, the catalysts were tested in the dry reforming methane reaction, high catalytic activity and hydrogen production were performed at 700 degrees Celsius and the catalyst with 30 wt.% of nickel. (Author)

  16. 78 FR 29239 - Final Priority; Technical Assistance To Improve State Data Capacity-National Technical Assistance...

    Science.gov (United States)

    2013-05-20

    ... Assistance To Improve State Data Capacity--National Technical Assistance Center To Improve State Capacity To... Education and Rehabilitative Services announces a priority under the Technical Assistance to Improve State... (FY) 2013 and later years. We take this action to focus attention on an identified national need to...

  17. Impeded solid state reactions and transformations in ceramic catalysts supports and catalysts

    Directory of Open Access Journals (Sweden)

    Ernő E. Kiss

    2012-12-01

    Full Text Available Impeded chemical reactions and impeded polymorphous transformation in materials are discussed, as desired effects, for stabilization of ceramic catalyst supports and ceramic based catalysts. This paper gives a short overview about the possibilities of slowing down the aging processes in ceramic catalyst supports and catalysts. Special attention is given to alumina and titania based catalysts.

  18. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    Energy Technology Data Exchange (ETDEWEB)

    Conrad Ingram; Mark Mitchell

    2007-03-31

    The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of a mesoporous aluminosilicate catalyst, AlSBA-15. The Al-SBA-15 mesoporous catalyst contains strong Br{umlt o}nsted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt % Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at a temperature of 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into a psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst is being evaluated for the conversion of a heavy petroleum feedstock to naphtha and middle distillates. This phase was significantly delayed during the past six months due to a serious malfunction of the fume hoods in the Clark Atlanta University's Research Center for Science and Technology, where the project is being conducted. The fume hood system was repaired and the catalyst evaluation is now underway.

  19. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., College Park, PA (United States); Gutterman, C.

    1995-04-01

    Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than did relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.

  20. Rape oil transesterification over heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Encinar, J.M.; Martinez, G. [Dpto. Ingenieria Quimica y Quimica Fisica, UEX, Avda. Elvas s/n, 06071-Badajoz (Spain); Gonzalez, J.F. [Dpto. Fisica Aplicada, UEX, Avda Elvas s/n, 06071-Badajoz (Spain); Pardal, A. [Dpto. Ciencias do Ambiente, ESAB, IPBeja, Rua Pedro Soares s/n, 7800-Beja (Portugal)

    2010-11-15

    This work studies the application of KNO{sub 3}/CaO catalyst in the transesterification reaction of triglycerides with methanol. The objective of the work was characterizing the methyl esters for its use as biodiesel in compression ignition motors. The variables affecting the methyl ester yield during the transesterification reaction, such as, amount of KNO{sub 3} impregnated in CaO, the total catalyst content, reaction temperature, agitation rate, and the methanol/oil molar ratio, were investigated to optimize the reaction conditions. The evolution of the process was followed by gas chromatography, determining the concentration of the methyl esters at different reaction times. The biodiesel was characterized by its density, viscosity, cetane index, saponification value, iodine value, acidity index, CFPP (cold filter plugging point), flash point and combustion point, according to ISO norms. The results showed that calcium oxide, impregnated with KNO{sub 3}, have a strong basicity and high catalytic activity as a heterogeneous solid base catalyst. The biodiesel with the best properties was obtained using an amount of KNO{sub 3} of 10% impregnated in CaO, a methanol/oil molar ratio of 6:1, a reaction temperature of 65 C, a reaction time of 3.0 h, and a catalyst total content of 1.0%. In these conditions, the oil conversion was 98% and the final product obtained had very similar characteristics to a no. 2 diesel, and therefore, these methyl esters might be used as an alternative to fossil fuels. (author)

  1. Final waste classification and waste form technical position papers

    International Nuclear Information System (INIS)

    1983-05-01

    The waste classification technical position paper describes overall procedures acceptable to NRC staff which may be used by licensees to determine the presence and concentrations of the radionuclides listed in section 61.55, and thereby classifying waste for near-surface disposal. This technical position paper also provides guidance on the types of information which should be included in shipment manifests accompanying waste shipments to near-surface disposal facilities. The technical position paper on waste form provides guidance to waste generators on test methods and results acceptable to NRC staff for implementing the 10 CFR Part 61 waste form requirements. It can be used as an acceptable approach for demonstrating compliance with the 10 CFR Part 61 waste structural stability criteria. This technical position paper includes guidance on processing waste into an acceptable stable form, designing acceptable high-integrity containers, packaging cartridge filters, and minimizing radiation effects on organic ion-exchange resins. The guidance in the waste form technical position paper may be used by licensees as the basis for qualifying process control programs to meet the waste form stability requirements, including tests which can be used to demonstrate resistance to degradation arising from the effects of compression, moisture, microbial activity, radiation, and chemical changes. Generic test data (e.g., topical reports prepared by vendors who market solidification technology) may be used for process control program qualification where such generic data is applicable to the particular types of waste generated by a licensee

  2. Endurance testing of a WDS catalyst

    International Nuclear Information System (INIS)

    Vladu, Mihaela; Brad, Sebastian; Vijulie, Mihai; Vasut, Felicia; Constantin, Marin

    2007-01-01

    Full text: The Water Detritiation System (WDS) of ITER is a safety related component since it is the final barrier against tritium discharge into the environment. Therefore, its subcomponents have to be qualified and predictions on the time evolution of performances have to be made. During the activities devoted to JET WDS, test at lower concentrations of tritium and at small scale have been performed. The goal of this work is to extend the endurance testings and to check early results by tests under relevant conditions. The degradation of the WDS catalyst can strongly affect its separation performances and consequently it will entail a raise of the tritium releases into the environment. If a catalyst based on Teflon material is used for the LPCE column of WDS, the fluoride that may be formed and released due to the tritium presence causes the corrosion of the LPCE column with unpredictable effects. Therefore the quantification of catalyst degradation and the amount of fluoride released is needed for planning the maintenance activities and to predict the operation life time of the WDS components. The manufacturing of hydrophobic catalysts with activity that is not lowered by liquid water determined the rise of interest for the isotopes separation techniques in the hydrogen - water system. The active component of these catalysts is Pt (the only material to be further discussed) that enhances the exchange between the hydrogen and water vapors. The hydrophobic support does not allow the wetting and blocking by water of the active surface. Hydrophobic catalysts were manufactured by two methods: - direct deposition of Pt into the pores of a hydrophobic support (Teflon, carbon monofluoride, poly styrene, styrene di-vinyl benzene, etc.); - deposition on a hydrophilic support, most common charcoal, followed by hydrophobization by silicon oil or by homogenizing with hydrophobic polymer (Teflon, silicon resins). This type of catalysts is one of the most studied groups due to

  3. New catalysts for coal processing: Metal carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    S. Ted Oyama; David F. Cox

    1999-12-03

    The subject of this research project was to investigate the catalytic properties of a new class of materials, transition metal carbides and nitrides, for treatment of coal liquid and petroleum feedstocks. The main objectives were: (1) preparation of catalysts in unsupported and supported form; (2) characterization of the materials; (3) evaluation of their catalytic properties in HDS and HDN; (4) measurement of the surface properties; and (5) observation of adsorbed species. All of the objectives were substantially carried out and the results will be described in detail below. The catalysts were transition metal carbides and nitrides spanning Groups 4--6 in the Periodic Table. They were chosen for study because initial work had shown they were promising materials for hydrotreating. The basic strategy was first to prepare the materials in unsupported form to identify the most promising catalyst, and then to synthesize a supported form of the material. Already work had been carried out on the synthesis of the Group VI compounds Mo{sub 2}C, Mo{sub 2}N, and WC, and new methods were developed for the Group V compounds VC and NbC. All the catalysts were then evaluated in a hydrotreating test at realistic conditions. It was found that the most active catalyst was Mo{sub 2}C, and further investigations of the material were carried out in supported form. A new technique was employed for the study of the bulk and surface properties of the catalysts, near edge x-ray absorption spectroscopy (NEXAFS), that fingerprinted the electronic structure of the materials. Finally, two new research direction were explored. Bimetallic alloys formed between two transition metals were prepared, resulting in catalysts having even higher activity than Mo{sub 2}C. The performance of the catalysts in hydrodechloration was also investigated.

  4. Catalyst support structure, catalyst including the structure, reactor including a catalyst, and methods of forming same

    Science.gov (United States)

    Van Norman, Staci A.; Aston, Victoria J.; Weimer, Alan W.

    2017-05-09

    Structures, catalysts, and reactors suitable for use for a variety of applications, including gas-to-liquid and coal-to-liquid processes and methods of forming the structures, catalysts, and reactors are disclosed. The catalyst material can be deposited onto an inner wall of a microtubular reactor and/or onto porous tungsten support structures using atomic layer deposition techniques.

  5. Research of catalysts for isotope enrichment of deuterium oxide in water - PX15-03/90 progress report

    International Nuclear Information System (INIS)

    1990-10-01

    The operation results of pre-concentration stages from the Pilot Unity, and the technical information important to the project of development of catalyst for isotope concentration of deuterium oxides (D 2 O) are described. (C.G.C.)

  6. A trifunctional mesoporous silica-based, highly active catalyst for one-pot, three-step cascade reactions.

    Science.gov (United States)

    Biradar, Ankush V; Patil, Vijayshinha S; Chandra, Prakash; Doke, Dhananjay S; Asefa, Tewodros

    2015-05-18

    We report the synthesis of a trifunctional catalyst containing amine, sulphonic acid and Pd nanoparticle catalytic groups anchored on the pore walls of SBA-15. The catalyst efficiently catalyzes one-pot three-step cascade reactions comprising deacetylation, Henry reaction and hydrogenation, giving up to ∼100% conversion and 92% selectivity to the final product.

  7. Final Technical Report [Development of Catalytic Alkylation and Fluoroalkylation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vicic, David A.

    2014-05-01

    In the early stages of this DOE-funded research project, we sought to prepare and study a well-defined nickel-alkyl complex containing tridentate nitrogen donor ligands. We found that reaction of (TMEDA)NiMe2 (1) with terpyridine ligand cleanly led to the formation of (terpyridyl)NiMe (2), which we also determined to be an active alkylation catalyst. The thermal stability of 2 was unlike that seen for any of the active pybox ligands, and enabled a number of key studies on alkyl transfer reactions to be performed, providing new insights into the mechanism of nickel-mediated alkyl-alkyl cross-coupling reactions. In addition to the mechanistic studies, we showed that the terpyridyl nickel compounds can catalytically cross-couple alkyl iodides in yields up to 98% and bromides in yields up to 46 %. The yields for the bromides can be increased up to 67 % when the new palladium catalyst [(tpy’)Pd-Ph]I is used. The best route to the targeted [(tpy)NiBr] (1) was found to involve the comproportionation reaction of [(dme)NiBr{sub 2}] and [Ni(COD){sub 2}] in the presence of two equivalents of terpyridine. This reaction was driven to high yields of product formation (72 % isolated) by the precipitation of 1 from THF solvent.

  8. Biomass-derived Syngas Utilization for Fuels and Chemicals - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dayton, David C

    2010-03-24

    Executive Summary The growing gap between petroleum production and demand, mounting environmental concerns, and increasing fuel prices have stimulated intense interest in research and development (R&D) of alternative fuels, both synthetic and bio-derived. Currently, the most technically defined thermochemical route for producing alternative fuels from lignocellulosic biomass involves gasification/reforming of biomass to produce syngas (carbon monoxide [CO] + hydrogen [H2]), followed by syngas cleaning, Fischer-Tropsch synthesis (FTS) or mixed alcohol synthesis, and some product upgrading via hydroprocessing or separation. A detailed techno-economic analysis of this type of process has recently been published [1] and it highlights the need for technical breakthroughs and technology demonstration for gas cleanup and fuel synthesis. The latter two technical barrier areas contribute 40% of the total thermochemical ethanol cost and 70% of the production cost, if feedstock costs are factored out. Developing and validating technologies that reduce the capital and operating costs of these unit operations will greatly reduce the risk for commercializing integrated biomass gasification/fuel synthesis processes for biofuel production. The objective of this project is to develop and demonstrate new catalysts and catalytic processes that can efficiently convert biomass-derived syngas into diesel fuel and C2-C4 alcohols. The goal is to improve the economics of the processes by improving the catalytic activity and product selectivity, which could lead to commercialization. The project was divided into 4 tasks: Task 1: Reactor Systems: Construction of three reactor systems was a project milestone. Construction of a fixed-bed microreactor (FBR), a continuous stirred tank reactor (CSTR), and a slurry bubble column reactor (SBCR) were completed to meet this milestone. Task 2: Iron Fischer-Tropsch (FT) Catalyst: An attrition resistant iron FT catalyst will be developed and tested

  9. Alumina reinforced tetragonal zirconia (TZP) composites. Final technical report, July 1, 1993--December 31, 1996

    International Nuclear Information System (INIS)

    Shetty, D.K.

    1997-01-01

    This final technical report summarizes the significant research results obtained during the period July 1, 1993 through December 31, 1996 in the DOE-supported research project entitled, open-quotes Alumina Reinforced Tetragonal Zirconia (TZP) Compositesclose quotes. The objective of the research was to develop high-strength and high-toughness ceramic composites by combining mechanisms of platelet, whisker or fiber reinforcement with transformation toughening. The approach used included reinforcement of Celia- or yttria-partially-stabilized zirconia (Ce-TZP or Y-TZP) with particulates, platelets, or continuous filaments of alumina

  10. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    was inspired by a computational screening, suggesting that alloys such as Ni-Fe, Co-Ni, and Co-Fe should show superior activity to the industrially used nickel catalyst. Especially the Ni-Fe system was considered to be interesting, since such alloy catalysts should be both more active and cheaper than the Ni...... catalyst. The results from the screening were experimentally verified for CO hydrogenation, CO2 hydrogenation, and simultaneous CO and CO2 hydrogenation by bimetallic Ni-Fe catalysts. These catalysts were found to be highly active and selective. The Co-Ni and Co-Fe systems were investigated for CO...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  11. Carbon-based Fuel Cell. Final report

    International Nuclear Information System (INIS)

    Steven S. C. Chuang

    2005-01-01

    The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO 2 , and (3) the production of a nearly pure CO 2 exhaust stream for the direct CO 2 sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts

  12. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, Mayda [Northwestern University

    2013-11-01

    This work is focused on the design and construction of novel beam diagnostic and instrumentation for charged particle accelerators required for the next generation of linear colliders. Our main interest is in non-invasive techniques. The Northwestern group of Velasco has been a member of the CLIC Test Facility 3 (CTF3) collaboration since 2003, and the beam instrumentation work is developed mostly at this facility1. This 4 kW electron beam facility has a 25-170 MeV electron LINAC. CTF3 performed a set of dedicated measurements to finalize the development of our RF-Pickup bunch length detectors. The RF-pickup based on mixers was fully commissioned in 2009 and the RF-pickup based on diodes was finished in time for the 2010-11 data taking. The analysis of all the data taken in by the summer of 2010 was finish in time and presented at the main conference of the year, LINAC 2010 in Japan.

  13. Highly dispersed metal catalyst

    Science.gov (United States)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  14. State child health; revisions to the regulations implementing the State Children's Health Insurance Program. Interim final rule with comment period; revisions, delay of effective date, and technical amendments to final rule.

    Science.gov (United States)

    2001-06-25

    Title XXI authorizes the State Children's Health Insurance Program (SCHIP) to assist State efforts to initiate and expand the provision of child health assistance to uninsured, low-income children. On January 11, 2001 we published a final rule in the Federal Register to implement SCHIP that has not gone into effect. This interim final rule further delays the effective date, revises certain provisions and solicits public comment, and makes technical corrections and clarifications to the January 2001 final rule based on further review of the comments received and applicable law. Only the provisions set forth in this document have changed. All other provisions set forth in the January 2001 final rule will be implemented without change.

  15. Final priority. Rehabilitation Training: Job-Driven Vocational Rehabilitation Technical Assistance Center. Final priority.

    Science.gov (United States)

    2014-08-19

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Rehabilitation Training program to establish a Job-Driven Vocational Rehabilitation Technical Assistance Center (JDVRTAC). The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. We take this action to focus on training in an area of national need. Specifically, this priority responds to the Presidential Memorandum to Federal agencies directing them to take action to address job-driven training for the Nation's workers. The JDVRTAC will provide technical assistance (TA) to State vocational rehabilitation (VR) agencies to help them develop for individuals with disabilities training and employment opportunities that meet the needs of today's employers.

  16. Final priority; Technical Assistance on State Data Collection--IDEA Data Management Center. Final priority.

    Science.gov (United States)

    2014-08-05

    The Assistant Secretary for the Office of Special Education and Rehabilitative Services (OSERS) announces a priority under the Technical Assistance on State Data Collection program. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2014 and later years. We take this action to fund a cooperative agreement to establish and operate an IDEA Data Management Center (Center) that will provide technical assistance (TA) to improve the capacity of States to meet the data collection requirements of the Individuals with Disabilities Education Act (IDEA).

  17. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, John

    2011-07-15

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  18. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    International Nuclear Information System (INIS)

    Saurwein, J.

    2011-01-01

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  19. The physical chemistry and materials science behind sinter-resistant catalysts.

    Science.gov (United States)

    Dai, Yunqian; Lu, Ping; Cao, Zhenming; Campbell, Charles T; Xia, Younan

    2018-06-18

    Catalyst sintering, a main cause of the loss of catalytic activity and/or selectivity at high reaction temperatures, is a major concern and grand challenge in the general area of heterogeneous catalysis. Although all heterogeneous catalysts are inevitably subjected to sintering during their operation, the immediate and drastic consequences can be mitigated by carefully engineering the catalytic particles and their interactions with the supports. In this tutorial review, we highlight recent progress in understanding the physical chemistry and materials science involved in sintering, including the discussion of advanced techniques, such as in situ microscopy and spectroscopy, for investigating the sintering process and its rate. We also discuss strategies for the design and rational fabrication of sinter-resistant catalysts. Finally, we showcase recent success in improving the thermal stability and thus sinter resistance of supported catalytic systems.

  20. Effect of coke and catalyst structure on oxidative regeneration of hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. (CANMET, Ottawa, ON (Canada). Energy Research Laboratories)

    1991-04-01

    Two industrial hydroprocessing catalysts used for upgrading an atmospheric residue and a gas oil, respectively were regenerated in a fixed bed using air and 2 vol.% O{sub 2}+N{sub 2} balance mixture. The regeneration in air resulted in a significant sintering of the catalyst's material. The surface area of catalysts regenerated in 2 vol.% O{sub 2} mixture was similar to that of fresh catalysts, whereas a significant loss of surface area was observed after regeneration in air. The X-ray diffraction pattern of catalysts regenerated in 2 vol.% O{sub 2}+N{sub 2} balance mixture was also similar to that of fresh catalysts. 22 refs., 9 figs., 7 tabs.

  1. Bimetallic Catalysts Containing Gold and Palladium for Environmentally Important Reactions

    Directory of Open Access Journals (Sweden)

    Ahmad Alshammari

    2016-07-01

    Full Text Available Supported bimetallic nanoparticles (SBN are extensively used as efficient redox catalysts. This kind of catalysis particularly using SBN has attracted immense research interest compared to their parent metals due to their unique physico-chemical properties. The primary objective of this contribution is to provide comprehensive overview about SBN and their application as promising catalysts. The present review contains four sections in total. Section 1 starts with a general introduction, recent progress, and brief summary of the application of SBN as promising catalysts for different applications. Section 2 reviews the preparation and characterization methods of SBN for a wide range of catalytic reactions. Section 3 concentrates on our own results related to the application of SBN in heterogeneous catalysis. In this section, the oxidation of cyclohexane to adipic acid (an eco-friendly and novel approach will be discussed. In addition, the application of bimetallic Pd catalysts for vapor phase toluene acetoxylation in a fixed bed reactor will also be highlighted. Acetoxylation of toluene to benzyl acetate is another green route to synthesize benzyl acetate in one step. Finally, Section 4 describes the summary of the main points and also presents an outlook on the application of SBN as promising catalysts for the production of valuable products.

  2. Imagining Technicities

    DEFF Research Database (Denmark)

    Liboriussen, Bjarke; Plesner, Ursula

    2011-01-01

    to the elements of taste and skill. In the final analysis those references were synthesized as five imagined technicities: the architect, the engineer, the client, the Chinese, and the Virtual World native. Because technicities are often assumed and rarely discussed as actants who influence practice, their role......, this article focuses on innovative uses of virtual worlds in architecture. We interviewed architects, industrial designers and other practitioners. Conceptually supported by an understanding of technicity found in Cultural Studies, the interviews were then coded with a focus on interviewees’ references...... in cooperation and development of ICTs seems to pass unnoticed. However, since they are aligned into ICTs, technicities impact innovation....

  3. Hydroprocessing catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Boorman, P.M.; Kydd, R.A.; Sorensen, T.S.; Chong, K.; Lewis, J.

    1992-08-01

    Co-Mo and Ni-Mo hydroprocessing catalysts were examined for their activity in removal of sulfur from thiophene in model compounds, and in the cracking and hydrocracking of cumene. Three types of support materials were examined: carbon, modified carbon, and carbon covered alumina. The objective of the study was to examine the correlation between catalyst activity in the hydrodenitrogenation of model compounds, and the resistance of the catalyst to nitrogen poisoning during use in the hydroprocessing of gas oils. The use of model compound testing provided information on the individual catalytic reactions promoted by those materials. Infrared spectroscopy was used to study surface species on the catalysts and to explain many of the trends in activity observed, revealing the role of fluoride and phosphorus as a secondary promoter. Testing of the catalysts in hydrotreating of gas oils allowed comparison of model compound results with those from a real feedstock. The gas oil was also spiked with a model nitrogen compound and the results from catalytic hydrotreating of this material were compared with those from unspiked material. A key finding was that the carbon supported catalysts were the most effective in treating high-nitrogen feeds. The very favorable deactivation properties of carbon and carbon-covered alumina supported catalysts make these promising from an industrial point of view where catalyst deactivation is a limiting factor. 171 refs., 25 figs., 43 tabs.

  4. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction. Technical progress report, October 25, 1990--October 24, 1991: Draft

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.

    1991-12-30

    The purpose of this work is to investigate the kinetics-assisted design, synthesis and characterization of fme-pardcle, unsupported catalysts for coal liquefaction. The goal is to develop a fundamental understanding of coal catalysis and catalysts that will, in turn, allow for the specification of a novel optimal catalyst for coal liquefaction.

  5. Stable amorphous georgeite as a precursor to a high-activity catalyst

    DEFF Research Database (Denmark)

    Kondrat, Simon A.; Smith, Paul J.; Wells, Peter P.

    2016-01-01

    Copper and zinc form an important group of hydroxycarbonate minerals that include zincian malachite, aurichalcite, rosasite and the exceptionally rare and unstable-and hence little known and largely ignored-georgeite. The first three of these minerals are widely used as catalyst precursors...... for the industrially important methanol-synthesis and low-temperature water-gas shift (LTS) reactions, with the choice of precursor phase strongly influencing the activity of the final catalyst. The preferred phase is usually zincian malachite. This is prepared by a co-precipitation method that involves the transient...

  6. Supported catalyst systems and method of making biodiesel products using such catalysts

    Science.gov (United States)

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  7. Templating Routes to Supported Oxide Catalysts by Design

    Energy Technology Data Exchange (ETDEWEB)

    Notestein, Justin M. [Northwestern Univ., Evanston, IL (United States)

    2016-09-08

    The rational design and understanding of supported oxide catalysts requires at least three advancements, in order of increasing complexity: the ability to quantify the number and nature of active sites in a catalytic material, the ability to place external controls on the number and structure of these active sites, and the ability to assemble these active sites so as to carry out more complex functions in tandem. As part of an individual investigator research program that is integrated with the Northwestern University Institute for Catalysis in Energy Processes (ICEP) as of 2015, significant advances were achieved in these three areas. First, phosphonic acids were utilized in the quantitative assessment of the number of active and geometrically-available sites in MOx-SiO2 catalysts, including nanocrystalline composites, co-condensed materials, and grafted structures, for M=Ti, Zr, Hf, Nb, and Ta. That work built off progress in understanding supported Fe, Cu, and Co oxide catalysts from chelating and/or multinuclear precursors to maximize surface reactivity. Secondly, significant progress was made in the new area of using thin oxide overcoats containing ‘nanocavities’ from organic templates as a method to control the dispersion and thermal stability of subsequently deposited metal nanoparticles or other catalytic domains. Similar methods were used to control surface reactivity in SiO2-Al2O3 acid catalysts and to control reactant selectivity in Al2O3-TiO2 photocatalysts. Finally, knowledge gained from the first two areas has been combined to synthesize a tandem catalyst for hydrotreating reactions and an orthogonal tandem catalyst system where two subsequent reactions in a reaction network are independently controlled by light and heat. Overall, work carried out under this project significantly advanced the knowledge of synthesis-structure-function relationships in supported

  8. Radiation catalytical effects in the pre-irradiated and thermally treated catalyst BASF K-3-10

    International Nuclear Information System (INIS)

    Motl, A.

    1987-01-01

    The effects of different heat treatment methods on radiation catalysis, induced by pre-irradiation of the BASF K-3-10 catalyst by γ- or β-radiation or by fast neutrons were investigated. It was found that calcination of the irradiated non-reduced catalyst resulted in a strong decrease in or even a total disappearance of the final radiation catalytical effects; however, at the same time the catalytical activity of the unirradiated catalyst was found to increase. The calcination of the catalyst in a nitrogen atmosphere after reduction also led to a substantial decrease in the resulting positive radiation catalytical effects and the exceedance of a certain calcination temperature also resulted in a decrease in the unirradiated catalyst activity. It could be concluded that calcination in nitrogen of the reduced irradiated samples decreased the radiation catalytical effects to a lesser degree than the calcination in the air of the non-reduced irradiated samples. In both cases, a different thermal stability of effects induced by different types of ionizing radiation was observed and it was found that it increased in the sequence beta radiation - gamma radiation - fast neutrons. The investigation of the γ radiation dose dependence of the radiation catalytical effect on the catalyst calcined before irradiation in the presence of air showed that the final radiation catalytical effects were lower than those observed in case of similarly irradiated but non-calcined samples. The dose dependence of the effect had the same character in both cases. (author). 3 tabs., 8 refs

  9. Oxidative coupling of 1-naphthols over noble and base metal catalysts

    CSIR Research Space (South Africa)

    Maphoru, MV

    2014-01-01

    Full Text Available Bismuth-promoted platinum catalysts were tested for the oxidative coupling of 2- and 4-substituted 1-naphthols at different temperatures and ambient pressure. The principal final products are the 3,3'-substituted 1,1'-binaphthalenylidene-4,4'-diones...

  10. Development of wet-proofed catalyst and catalytic exchange process for tritium extraction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Myung Jae; Son, Soon Hwan; Chung, Yang Gun; Lee, Gab Bock [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-12-31

    To apply a liquid phase catalytic exchange(LPCE) process for the tritium extraction from tritiated heavy water, the wet proofed catalyst to allow the hydrogen isotopic exchange reaction between liquid water and hydrogen gas was developed. A styrene divinyl benzene copolymer was selected as am effective catalyst support and prepared by suspension copolymerization. After post-treatment, final catalyst supports were dipped in chloroplatinic acid solution. The catalyst support had a good physical properties at a particular preparation condition. The catalytic performance was successfully verified through hydrogen isotopic exchange reaction in the exchange column. A mathematical model for the tritium removal process consisted of LPCE front-ended process and cryogenic distillation process was established using the NTU-HTU method for LPCE column and the FUG method for cryogenic distillation column, respectively. A computer program was developed using the model and then used to investigate optimum design variables which affect the size of columns and tritium inventory (author). 84 refs., 113 figs.

  11. High power passive μDMFC with low catalyst loading for small power generation

    International Nuclear Information System (INIS)

    Ahmad, M.M.; Kamarudin, S.K.; Daud, W.R.W.; Yaakub, Z.

    2010-01-01

    The main constraint for commercialization of micro direct methanol fuel cell (μDMFC) for small power generation is the performance of the fuel cell. In this study, a high power μDMFC with a power output of 56 mW and an active area of 4 cm 2 was successfully developed. The cell required low catalyst loading of 5 mg cm -2 and 0.5 mg cm -2 at the anode and cathode, respectively. Optimal design parameters for methanol concentration and catalyst loading were examined. Finally, long-term performance testing was performed and OCV curves are reported. The results obtained for this gives the highest power density at low catalyst loading as compare to other researchers in this area.

  12. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    International Nuclear Information System (INIS)

    Vierow, Karen; Aldemir, Tunc

    2009-01-01

    The project entitled, 'Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors', was conducted as a DOE NERI project collaboration between Texas A and M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  13. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen; Aldemir, Tunc

    2009-09-10

    The project entitled, “Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors”, was conducted as a DOE NERI project collaboration between Texas A&M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  14. Communicating catalysts

    Science.gov (United States)

    Weckhuysen, Bert M.

    2018-06-01

    The beauty and activity of enzymes inspire chemists to tailor new and better non-biological catalysts. Now, a study reveals that the active sites within heterogeneous catalysts actively cooperate in a fashion phenomenologically similar to, but mechanistically distinct, from enzymes.

  15. Methods of making textured catalysts

    Science.gov (United States)

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  16. Cure Schedule for Stycast 2651/Catalyst 9.

    Energy Technology Data Exchange (ETDEWEB)

    Kropka, Jamie Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McCoy, John D. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2017-11-01

    The Emerson & Cuming technical data sheet (TDS) for Stycast 2651/Catalyst 9 lists three alternate cure schedules for the material, each of which would result in a different state of reaction and different material properties. Here, a cure schedule that attains full reaction of the material is defined. The use of this cure schedule will eliminate variance in material properties due to changes in the cure state of the material, and the cure schedule will serve as the method to make material prior to characterizing properties. The following recommendation uses one of the schedules within the TDS and adds a “post cure” to obtain full reaction.

  17. {alpha}-Al{sub 2}O{sub 3} catalyst supports for synthesis gas production: influence of different alumina bonding agents on support and catalyst properties

    Energy Technology Data Exchange (ETDEWEB)

    Marturano, M. [Centro de Investigacion y Desarrollo en Procesos Cataliticos, La Plata (Argentina); Aglietti, E.F. [Centro de Tecnologia de Recursos Minerales y Ceramica (CETMIC), Gonnet (Argentina); Ferretti, O. [Centro de Investigacion y Desarrollo en Procesos Cataliticos, La Plata (Argentina)]|[Univ. Nacional de La Plata, Dept. de Ingenieria Quimica de la Facultad de Ingenieria, La Plata (Argentina)

    1997-02-01

    Aluminas are widely used as catalytic supports in chemical reactions. Reforming reactions to obtain synthesis gas requires good mechanical strength and low sintering behaviour. In this work, the influence of bentonite, aluminium phosphate and alumina gel as binder agents of a calcined {alpha}-Al{sub 2}O{sub 3} are analyzed with respect to support and catalytic properties. The {alpha}-Al{sub 2}O{sub 3} supports, calcined at 1300 C, are then impregnated with solutions of Ni and Al inorganic salts to obtain the catalysts and are finally tested in the reforming reaction of methane to synthesis gas at 500-900 C. Supports and catalysts are characterized by XRD, SEM, N{sub 2} adsorption, mechanical strength test and other techniques. Mechanical strength depends on the type and quantity of binder material used during support preparation. The influence of the support on the performance of the resulting catalyst is evidenced by means of catalytic tests. (orig.) 8 refs.

  18. DWPF coupled feed flowsheet material balance with batch one sludge and copper nitrate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.S.

    1993-09-28

    The SRTC has formally transmitted a recommendation to DWPF to replace copper formate with copper nitrate as the catalyst form during precipitate hydrolysis [1]. The SRTC was subsequently requested to formally document the technical bases for the recommendation. A memorandum was issued on August 23, 1993 detailing the activities (and responsible individuals) necessary to address the impact of this change in catalyst form on process compatibility, safety, processibility environmental impact and product glass quality [2]. One of the activities identified was the preparation of a material balance in which copper nitrate is substituted for copper formate and the identification of key comparisons between this material balance and the current Batch 1 sludge -- Late Wash material balance [3].

  19. Stable amorphous georgeite as a precursor to a high-activity catalyst

    Science.gov (United States)

    Kondrat, Simon A.; Smith, Paul J.; Wells, Peter P.; Chater, Philip A.; Carter, James H.; Morgan, David J.; Fiordaliso, Elisabetta M.; Wagner, Jakob B.; Davies, Thomas E.; Lu, Li; Bartley, Jonathan K.; Taylor, Stuart H.; Spencer, Michael S.; Kiely, Christopher J.; Kelly, Gordon J.; Park, Colin W.; Rosseinsky, Matthew J.; Hutchings, Graham J.

    2016-03-01

    Copper and zinc form an important group of hydroxycarbonate minerals that include zincian malachite, aurichalcite, rosasite and the exceptionally rare and unstable—and hence little known and largely ignored—georgeite. The first three of these minerals are widely used as catalyst precursors for the industrially important methanol-synthesis and low-temperature water-gas shift (LTS) reactions, with the choice of precursor phase strongly influencing the activity of the final catalyst. The preferred phase is usually zincian malachite. This is prepared by a co-precipitation method that involves the transient formation of georgeite; with few exceptions it uses sodium carbonate as the carbonate source, but this also introduces sodium ions—a potential catalyst poison. Here we show that supercritical antisolvent (SAS) precipitation using carbon dioxide (refs 13, 14), a process that exploits the high diffusion rates and solvation power of supercritical carbon dioxide to rapidly expand and supersaturate solutions, can be used to prepare copper/zinc hydroxycarbonate precursors with low sodium content. These include stable georgeite, which we find to be a precursor to highly active methanol-synthesis and superior LTS catalysts. Our findings highlight the value of advanced synthesis methods in accessing unusual mineral phases, and show that there is room for exploring improvements to established industrial catalysts.

  20. In-situ hydrodeoxygenation of phenol by supported Ni catalyst-explanation for catalyst performance

    DEFF Research Database (Denmark)

    Wang, Ze; Zeng, Ying; Lin, Weigang

    2017-01-01

    In-situ hydrodeoxygenation of phenol with aqueous hydrogen donor over supported Ni catalyst was investigated. The supported Ni catalysts exerted very poor performance, if formic acid was used as the hydrogen donor. Catalyst modification by loading K, Na, Mg or La salt could not make the catalyst...... performance improved. If gaseous hydrogen was used as the hydrogen source the activity of Ni/Al2O3 was pretty high. CO2 was found poisonous to the catalysis, due to the competitive adoption of phenol with CO2. If formic acid was replaced by methanol, the catalyst performance improved remarkably, with major...... products of cyclohexanone and cyclohexanol. The better effect of methanol enlightened the application of the supported Ni catalyst in in-situ hydrodeoxygenation of phenol....

  1. Engineering of RuMb: Toward a Green Catalyst for Carbene Insertion Reactions.

    Science.gov (United States)

    Wolf, Matthew W; Vargas, David A; Lehnert, Nicolai

    2017-05-15

    The small, stable heme protein myoglobin (Mb) was modified through cofactor substitution and mutagenesis to develop a new catalyst for carbene transfer reactions. The native heme was removed from wild-type Mb and several Mb His64 mutants (H64D, H64A, H64V), and the resulting apoproteins were reconstituted with ruthenium mesoporphyrin IX (RuMpIX). The reconstituted proteins (RuMb) were characterized by UV-vis and circular dichroism spectroscopy and were used as catalysts for the N-H insertion of aniline derivatives and the cyclopropanation of styrene derivatives. The best catalysts for each reaction were able to achieve turnover numbers (TON) up to 520 for the N-H insertion of aniline, and 350 TON for the cyclopropanation of vinyl anisole. Our results show that RuMb is an effective catalyst for N-H insertion, with the potential to further increase the activity and stereoselectivity of the catalyst in future studies. Compared to native Mb ("FeMb"), RuMb is a more active catalyst for carbene transfer reactions, which leads to both heme and protein modification and degradation and, hence, to an overall much-reduced lifetime of the catalyst. This leads to lower TONs for RuMb compared to the iron-containing analogues. Strategies to overcome this limitation are discussed. Finally, comparison is also made to FeH64DMb and FeH64AMb, which have not been previously investigated for carbene transfer reactions.

  2. XPS analysis of supported catalysts prepared in water-in-oil microemulsion system

    International Nuclear Information System (INIS)

    Mohd Ambar Yarmo; Wong Hoi Jin; Tan Chew Khim; Anita Ramli; Shahidan Radiman

    2002-01-01

    Catalysts supported on γ-alumina prepared by water-in-oil microemulsion were studied by X-ray photoelectron spectroscopy for comparison with catalysts prepared by wet impregnation. Comparable shifts to higher binding energies indicated a metal-support interaction where metal obtained via microemulsion is very small in size and highly dispersed. The positive binding energy shifts could be explained from a net unit positive charge remaining on the cluster in the photoemission final state in addition to the metallic screening from a redistribution of states within the bands. (Author)

  3. Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration

    Science.gov (United States)

    Zhang, Lei; Wen, Xin; Lei, Zhang; Gao, Long; Sha, Xiangling; Ma, Zhenhua; He, Huibin; Wang, Yusu; Jia, Yang; Li, Yonghui

    2018-04-01

    Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction) was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction), SEM (scanning electron microscope), BET test and transient test. The experiments show that: * The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. * The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. * The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.

  4. Study on the mechanism of a manganese-based catalyst for catalytic NOX flue gas denitration

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2018-04-01

    Full Text Available Manganese-based bimetallic catalysts were prepared with self-made pyrolysis coke as carrier and its denitration performance of low-temperature SCR (selective catalyst reduction was studied. The effects of different metal species, calcination temperature, calcination time and the metal load quantity on the denitration performance of the catalyst were studied by orthogonal test. The denitration mechanism of the catalyst was analyzed by XRD (X-ray diffraction, SEM (scanning electron microscope, BET test and transient test. The experiments show that: ① The denitration efficiency of Mn-based bimetallic catalysts mainly relates to the metal type, the metal load quantity and the catalyst adjuvant type. ② The optimal catalyst preparation conditions are as follows: the load quantity of monometallic MnO2 is 10%, calcined at 300°C for 4h, and then loaded with 8% CeO2, calcined at 350°Cfor 3h. ③ The denitration mechanism of manganese-based bimetallic oxide catalysts is stated as: NH3 is firstly adsorbed by B acid center Mn-OH which nears Mn4+==O to form NH4+, NH4+ was then attacked by the gas phase NO to form N2, H2O and Mn3+-OH. Finally, Mn3+-OH was oxidized by O2 to regenerate Mn4+.

  5. Non-PGM cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Elvington, M. [Savannah River Consulting, Aiken, SC (United States); Ganesan, P. [Savannah River Consulting, Aiken, SC (United States)

    2017-09-27

    A unique approach has been developed to probe the non-PGM catalyst active site for the Oxygen Reduction Reaction (ORR) for PEMFCs. Iron based functionalities have been engineered into a variety of catalysts to evaluate their impact on activity for the ORR. A series of high surface area catalysts were synthesized and the impact of the chemical structure on the electrochemical and electrocatalytic properties was investigated. Elemental and surface analyses of the prepared catalysts reveal the incorporation of iron in a targeted and controlled manner. A high surface area framework catalyst was prepared that shows exceptional activity, comparable to state-of-the-art materials. The results of this research project provided critical seed data for the newly awarded ElectroCat project, which focuses on rationally designed framework catalysts for the oxygen reduction reaction.

  6. Programs of Study as a State Policy Mandate: A Longitudinal Study of the South Carolina Personal Pathways to Success Initiative. Final Technical Report: Major Findings and Implications

    Science.gov (United States)

    Hammond, Cathy; Drew, Sam F.; Withington, Cairen; Griffith, Cathy; Swiger, Caroline M.; Mobley, Catherine; Sharp, Julia L.; Stringfield, Samuel C.; Stipanovic, Natalie; Daugherty, Lindsay

    2013-01-01

    This is the final technical report from the National Research Center for Career and Technical Education's (NRCCTE's) five-year longitudinal study of South Carolina's Personal Pathway to Success initiative, which was authorized by the state's Education and Economic Development Act (EEDA) in 2005. NRCCTE-affiliated researchers at the National…

  7. Effect of Mo-Doped Mesoporous Al-SSP Catalysts for the Catalytic Dehydration of Ethanol to Ethylene

    Directory of Open Access Journals (Sweden)

    Titinan Chanchuey

    2016-01-01

    Full Text Available The catalytic dehydration of ethanol to ethylene over the mesoporous Al-SSP and Mo-doped Al-SSP catalysts was investigated. The Al-SSP catalyst was first synthesized by the modified sol-gel method and then doped with Mo by impregnation to obtain 1% Mo/Al-SSP and 5% Mo/Al-SSP catalysts (1 and 5 wt% of Mo. The final catalysts were characterized using various techniques such as XRD, N2 physisorption, SEM/EDX, TEM, and NH3-TPD. The catalytic activity for all catalysts in gas-phase ethanol dehydration reaction was determined at temperature range of 200°C to 400°C. It was found that the most crucial factor influencing the catalytic activities appears to be the acidity. The acid property of catalysts depended on the amount of Mo loading. Increased Mo loading in Al-SSP resulted in increased weak acid sites, which enhanced the catalytic activity. Besides acidity, the high concentration of Al at surface of catalyst is also essential to obtain high activity. Based on the results, the most suitable catalyst in this study is 1% Mo/Al-SSP catalyst, which can produce ethylene yield of ca. 90% at 300°C with slight amounts of diethyl ether (DEE and acetaldehyde.

  8. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.

    Science.gov (United States)

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  9. Evaluation of palm oil mill fly ash supported calcium oxide as a heterogeneous base catalyst in biodiesel synthesis from crude palm oil

    International Nuclear Information System (INIS)

    Ho, Wilson Wei Sheng; Ng, Hoon Kiat; Gan, Suyin; Tan, Sang Huey

    2014-01-01

    Highlights: • Calcination temperature is an important influencing factor in catalytic activity. • The optimum calcination conditions were determined to be 850 °C for 2 h. • Maximum yield of 79.8% and FAME conversion of 97.1% was achieved. • Kinetic data fitted the pseudo-first order model and the E a was 42.56 kJ mol −1 . • The novel catalyst can be reused for 3 cycles with a final biodiesel yield of 60%. - Abstract: A palm oil mill fly ash supported calcium oxide (CaO) catalyst was developed to be used as a heterogeneous base catalyst in biodiesel synthesis from crude palm oil (CPO). The catalyst preparation procedure was optimised in terms of final calcination temperature and duration. The optimum catalyst preparation conditions were determined as final calcination at 850 °C for 2 h with 45 wt.% loading of calcined calcium carbonate (CaCO 3 ). A maximum biodiesel yield of 75.73% was achieved for this catalyst under fixed transesterification conditions. Characterisation tests showed that the catalyst had higher surface area and basic sites which favoured transesterification. The effects of catalyst loading, methanol to oil molar ratio, reaction temperature and reaction time on biodiesel yield and fatty acid methyl ester (FAME) conversion were also investigated. It was determined that transesterification conditions of 6 wt.% catalyst loading, 12:1 methanol to oil molar ratio, 45 °C reaction temperature, 3 h reaction time and 700 rpm stirring speed resulted in biodiesel yield and FAME conversion of 79.76% and 97.09%, respectively. Experimental kinetic data obtained from the heterogeneous transesterification reactions fitted the pseudo-first order kinetic model. The activation energy (E a ) of the reaction was calculated to be 42.56 kJ mol −1 . Key physicochemical properties of the produced biodiesel were measured and found to be within the limits set by EN 14214. The developed catalyst could feasibly be used up to three consecutive cycles after

  10. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  11. Final Technical Report - Kotzebue Wind Power Project - Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

    2007-10-31

    The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

  12. Energy-related inventions program invention 637. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The final technical report for the Pegasus plow, a stalk and root embedding apparatus, describes progress from the development stage to the product support stage. The US Department of Agriculture - Agriculture Research Service (ARS) is now in the second year of a three year study comparing the Pegasus to conventional tillage. So far, no downside has been with the Pegasus and the following benefits have been documented: (1) Energy savings of 65.0 kilowatt hours per hectare over conventional tillage. This is when the Pegasus plow is used to bury whole stalks, and represents a 70% savings over conventional tillage (92.5 kilowatt hours per hectare). (2) Four to seven fewer passes of tillage, depending on the particular situation. This represents a substantial time savings to farmers. (3) So far, no differences in cotton yields. Recent cotton boll counts in one study indicate a higher yield potential with the Pegasus. (4) No disease problems. (5) Significantly higher levels of organic matter in the soil. A hypothesis of the study is that whole stalk burial may reduce plant disease problems. This hypothesis has not yet been proven. (6) Significantly higher levels of nitrate nitrogen. Total nitrogen and ammonia nitrogen trended higher but were not significantly different. This shows that whole stalk burial does not adversely affect the nitrogen cycle in the soil and may actually improve it. The marketing support stage of the project is also described in the report.

  13. A two-stage fixed-bed reactor for direct hydrotreatment of volatiles from the hydropyrolysis of biomass: effect of catalyst temperature, pressure and catalyst ageing time on product characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pindoria, R.V.; Megaritis, A.; Herod, A.A.; Kandiyoti, R. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Chemical Engineering and Chemical Technology

    1998-12-01

    This investigation involved the hydropyrolysis of biomass (eucalyptus globulus) and the immediate catalytic hydrocracking of pyrolytic oils in the second stage of the reactor. The effects of temperature, pressure and the catalyst ageing time on the final product tar have been studied using the catalyst Zeolite H-ZSM5. The catalytically hydrocracked tar/oil products were characterised and compared with the hydropyrolysis product from the first stage of the reactor to determine the effect of catalytic hydrocracking. The carbon deposition on the catalyst has been examined using thermogravimetric analysis. The tar yields after catalytic hydrocracking decreased with increasing pressure and temperature of the cracking stage. The tar yields at 10 bar pressure were greater than those at 40 bar pressure. The fresh zeolite catalyst trapped more than 40% of the product from the hydropyrolysis stage and TGA evidence indicated that this was not as carbon deposition but as volatiles trapped in the zeolite matrix. Reuse of the catalyst resulted in little more uptake of volatiles; however, extended use of the catalyst did not result in increased yields of liquid products but in increased production of light volatiles or gas. The H-ZSM5 catalyst appeared to act as a more active cracking catalyst rather than to promote hydrogenation or deoxygenation of the liquids produced in the hydropyrolysis stage. Characterisation of the liquids by SEC and UV fluorescence indicated that structural changes were relatively minor despite the significant changes in yields of liquids with process conditions. Available reaction routes do not appear to allow specific deoxygenation pathways to predominate without disintegration of parent molecules to lighter volatiles, under the conditions used here. 41 refs., 10 figs., 4 tabs.

  14. A predictive tool for selective oxidation of hydrocarbons: optical basicity of catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Moriceau, P.; Lebouteiller, A.; Bordes, E.; Courtine, P. [Universite de Technologie de Compiegne, 60 (France). Dept. de Genie Chimique

    1998-12-31

    Whatever the composition of the catalyst (promoted, supported, multicomponent, etc.) is, it is possible to calculate its electron donor capacity {Lambda}. However, one important question remains: How are the surface and the bulk values of {Lambda} related? Most oxidation catalysts exhibit either a layered structure as V{sub 2}O{sub 5}, and approximately {Lambda}{sub th}{proportional_to}{Lambda}{sub surf}, or a molecular structure as polyoxometallates, and no correction seems to be needed. Work is in progress on that point. Of great importance is also the actual oxidation and coordination states of cations at the stedy state: {Lambda}s have been calculated from the composition determined by XANES and XPS. Finally, the model is able to discriminate between `paraffins` and olefins as reactants. These calibration curves should help to find new catalysts. (orig.)

  15. Catalysis for Mixed Alcohol Synthesis from Biomass Derived Syngas: Cooperative Research and Development Final Report, CRADA Number CRD-08-292

    Energy Technology Data Exchange (ETDEWEB)

    Hensley, J.

    2013-04-01

    The Dow Chemical Company (Dow) developed and tested catalysts for production of mixed alcohols from synthesis gas (syngas), under research and development (R&D) projects that were discontinued a number of years ago. Dow possesses detailed laboratory notebooks, catalyst samples, and technical expertise related to this past work. The National Renewable Energy Laboratory (NREL) is conducting R&D in support of the United States Department of Energy (DOE) to develop methods for economically producing ethanol from gasified biomass. NREL is currently conducting biomass gasification research at an existing 1/2 ton/day thermochemical test platform. Both Dow and NREL believe that the ability to economically produce ethanol from biomass-derived syngas can be enhanced through collaborative testing, refinement, and development of Dow's mixed-alcohol catalysts at NREL's and/or Dow's bench- and pilot-scale facilities. Dow and NREL further agree that collaboration on improvements in catalysts as well as gasifier operating conditions (e.g., time, temperature, upstream gas treatment) will be necessary to achieve technical and economic goals for production of ethanol and other alcohols.

  16. Vibration measurements of automobile catalyst

    Science.gov (United States)

    Aatola, Seppo

    1994-09-01

    Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.

  17. Alkali/TX{sub 2} catalysts for CO/H{sub 2} conversion to C{sub 1}-C{sub 4} alcohols. Technical progress report, March 1989--August 1989

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Bastian, R.D.; Flanagan, K.L.

    1989-12-31

    Ruthenium disulfide catalysts have been synthesized, tested, and characterized during this period of research. It was observed that both the undoped and Cs-doped RuS{sub 2} catalysts produced alcohols and lower amounts of hydrocarbons from H{sub 2}/CO = 1.0 synthesis gas at temperatures above 300{degree}C. Calcination and catalytic testing resulted in partial reduction of the RuS{sub 2} to Ru{sup o}. Calcination under H{sub 2}S prevented the partial reduction of the RuS{sub 2} catalyst, but subsequent catalytic testing again resulted in the formation of a quantity of Ru{sup o}. A Cs-doped RuS{sub 2} catalyst was prepared, but it might have had too high of a loading of Cs. Upon testing, a lower activity was observed for the doped catalyst compared with the undoped catalyst, but the alcohol selectivity was the same for the two catalysts.

  18. Colloidal polymer particles as catalyst carriers and phase transfer agents in multiphasic hydroformylation reactions.

    Science.gov (United States)

    Peral, D; Stehl, D; Bibouche, B; Yu, H; Mardoukh, J; Schomäcker, R; Klitzing, R von; Vogt, D

    2018-03-01

    Colloidal particles have been used to covalently bind ligands for the heterogenization of homogeneous catalysts. The replacement of the covalent bonds by electrostatic interactions between particles and the catalyst could preserve the selectivity of a truly homogeneous catalytic process. Functionalized polymer particles with trimethylammonium moieties, dispersed in water, with a hydrophobic core and a hydrophilic shell have been synthesized by emulsion polymerization and have been thoroughly characterized. The ability of the particles with different monomer compositions to act as catalyst carriers has been studied. Finally, the colloidal dispersions have been applied as phase transfer agents in the multiphasic rhodium-catalyzed hydroformylation of 1-octene. The hydrodynamic radius of the particles has been shown to be around 100 nm, and a core-shell structure could be observed by atomic force microscopy. The polymer particles were proven to act as carriers for the water-soluble hydroformylation catalyst, due to electrostatic interaction between the functionalized particles bearing ammonium groups and the sulfonated ligands of the catalyst. The particles were stable under the hydroformylation conditions and the aqueous catalyst phase could be recycled three times. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Catalyst for microelectromechanical systems microreactors

    Science.gov (United States)

    Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  20. Technical considerations associated with spent fuel acceptance. Final report

    International Nuclear Information System (INIS)

    Supko, E.M.

    1996-06-01

    This study was initiated by the Electric Power Research Institute (EPRI) to identify technical considerations associated with spent fuel acceptance and implementation of a waste management system that includes the use of transportable storage systems, and to serve as an opening dialogue among Standard Contract Holders and the department of Energy's Office of Civilian Radioactive Waste management (OCRWM) prior to the development of waste acceptance criteria or issuance of a Notice of Proposed Rulemaking by OCRWM to amend the Standard Contract. The original purpose of the Notice of Proposed Rulemaking was to address changes to the Standard Contract to implement a multi-purpose canister based system and to address other issues that were not adequately addressed in the standard contract. Even if DOE does not develop a multi-purpose canister based system for waste acceptance, it will still be necessary to develop waste acceptance criteria in order to accept spent fuel in transportable storage systems that are being deployed for at-reactor storage. In this study, technical issues associated with spent fuel acceptance will be defined and potential options and alternatives for resolution of technical considerations will be explored

  1. Process for hydroprocessing heavy oils utilizing sepiolite-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Auden, C.A.; Yan, T.-Y.

    1986-04-15

    A process is described for demetallizing and desulfurizing a hydrocarbon oil comprising contacting the hydrocarbon oil in the presence of hydrogen and a sepiolite-based catalyst composition under conditions of pressure and temperature sufficient to effect demetallization and desulfurization. The sepiolite-based catalyst composition has been prepared by first contacting the sepiolite with an aqueous solution of a first metal salt, then contacting the resultant metal ion-exchanged sepiolite with an aqueous solution of a compound of a second metal selected from the group consisting of molybdenum, tungsten and vanadium, and finally contacting the resultant metal-exchanged sepiolite product with an aqueous solution of a magnesium compound, thereby effecting a magnesium ion-exchange with the metal-exchanged sepiolite product and neutralizing acid sites on the sepiolite product.

  2. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Held, Isaac [Princeton Univ., NJ (United States); Balaji, V. [Princeton Univ., NJ (United States); Fueglistaler, Stephan [Princeton Univ., NJ (United States)

    2016-09-19

    We have constructed and analyzed a series of idealized models of tropical convection interacting with large-scale circulations, with 25-50km resolution and with 1-2km cloud resolving resolution to set the stage for rigorous tests of convection closure schemes in high resolution global climate models. Much of the focus has been on the climatology of tropical cyclogenesis in rotating systems and the related problem of the spontaneous aggregation of convection in non-rotating systems. The PI (Held) will be delivering the honorary Bjerknes lecture at the Fall 2016 AGU meeting in December on this work. We have also provided new analyses of long-standing issues related to the interaction between convection and the large-scale circulation: Kelvin waves in the upper troposphere and lower stratosphere, water vapor transport into the stratosphere, and upper tropospheric temperature trends. The results of these analyses help to improve our understanding of processes, and provide tests for future high resolution global modeling. Our final goal of testing new convections schemes in next-generation global atmospheric models at GFDL has been left for future work due to the complexity of the idealized model results meant as tests for these models uncovered in this work and to computational resource limitations. 11 papers have been published with support from this grant, 2 are in review, and another major summary paper is in preparation.

  3. Regeneration of Hydrotreating and FCC Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    CM Wai; JG Frye; JL Fulton; LE Bowman; LJ Silva; MA Gerber

    1999-09-30

    Hydrotreating, hydrocracking, and fluid catalytic cracking (FCC) catalysts are important components of petroleum refining processes. Hydrotreating and hydrocracking catalysts are used to improve the yield of high-quality light oil fractions from heavier crude oil and petroleum feedstocks containing high levels of impurities. FCC catalysts improve the yield of higher octane gasoline from crude oil. Residuum hydrotreating and cracking catalysts are susceptible to irreversible deactivation caused by adsorption of sulfur and by metals impurities, such as vanadium and nickel. The gradual buildup of these impurities in a hydrotreating catalyst eventually plugs the pores and deactivates it. Nickel and vanadium adversely affect the behavior of cracking catalysts, reducing product yield and quality. Replacing deactivated catalysts represents a significant cost in petroleum refining. Equally important are the costs and potential liabilities associated with treating and disposing spent catalysts. For example, recent US Environmental Protection Agency rulings have listed spent hydrotreating and hydrorefining catalysts as hazardous wastes. FCC catalysts, though more easily disposed of as road-base or as filler in asphalt and cement, are still an economic concern mainly because of the large volumes of spent catalysts generated. New processes are being considered to increase the useful life of catalysts or for meeting more stringent disposal requirements for spent catalysts containing metals. This report discusses a collaborative effort between Pacific Northwest National Laboratory (PNNL) and Phillips Petroleum, Inc., to identify promising chemical processes for removing metals adhered to spent hydrodesulfurization (HDS, a type of hydrotreating catalyst) and FCC catalysts. This study, conducted by PNNL, was funded by the US Department of Energy's Bartlesville Project Office. Fresh and spent catalysts were provided by Phillips Petroleum. The FCC catalyst was a rare

  4. Highly Dispersed Pseudo-Homogeneous and Heterogeneous Catalysts Synthesized via Inverse Micelle Solutions for the Liquefaction of Coal

    Energy Technology Data Exchange (ETDEWEB)

    Hampden-Smith, M.; Kawola, J.S.; Martino, A.; Sault, A.G.; Yamanaka, S.A.

    1999-01-05

    The mission of this project was to use inverse micelle solutions to synthesize nanometer sized metal particles and test the particles as catalysts in the liquefaction of coal and other related reactions. The initial focus of the project was the synthesis of iron based materials in pseudo-homogeneous form. The frost three chapters discuss the synthesis, characterization, and catalyst testing in coal liquefaction and model coal liquefaction reactions of iron based pseudo-homogeneous materials. Later, we became interested in highly dispersed catalysts for coprocessing of coal and plastic waste. Bifunctional catalysts . to hydrogenate the coal and depolymerize the plastic waste are ideal. We began studying, based on our previously devised synthesis strategies, the synthesis of heterogeneous catalysts with a bifunctional nature. In chapter 4, we discuss the fundamental principles in heterogeneous catalysis synthesis with inverse micelle solutions. In chapter 5, we extend the synthesis of chapter 4 to practical systems and use the materials in catalyst testing. Finally in chapter 6, we return to iron and coal liquefaction now studied with the heterogeneous catalysts.

  5. Atmosphere Processing Module Automation and Catalyst Durability Analysis for Mars ISRU Pathfinder

    Science.gov (United States)

    Petersen, Elspeth M.

    2016-01-01

    The Mars In-Situ Resource Utilization Pathfinder was designed to create fuel using components found in the planet’s atmosphere and regolith for an ascension vehicle to return a potential sample return or crew return vehicle from Mars. The Atmosphere Processing Module (APM), a subunit of the pathfinder, uses cryocoolers to isolate and collect carbon dioxide from Mars simulant gas. The carbon dioxide is fed with hydrogen into a Sabatier reactor where methane is produced. The APM is currently undergoing the final stages of testing at Kennedy Space Center prior to process integration testing with the other subunits of the pathfinder. The automation software for the APM cryocoolers was tested and found to perform nominally. The catalyst used for the Sabatier reactor was investigated to determine the factors contributing to catalyst failure. The results from the catalyst testing require further analysis, but it appears that the rapid change in temperature during reactor start up or the elevated operating temperature is responsible for the changes observed in the catalyst.

  6. Catalysts for synthetic liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, L.A.; Turney, T.W.

    1987-12-01

    Fischer-Tropsch catalysts have been designed, characterized and tested for the selective production of hydrocarbons suitable as synthetic liquid transport fuels from synthesis gas (i.e., by the reduction of carbon monoxide with hydrogen). It was found that hydrocarbons in the middle distillate range, or suitable for conversion to that range, could be produced over several of the new catalyst systems. The various catalysts examined included: (1) synthetic cobalt clays, mainly cobalt chlorites; (2) cobalt hydrotalcites; (3) ruthenium metal supported on rare earth oxides of high surface area; and (4) a novel promoted cobalt catalyst. Active and selective catalysts have been obtained, in each category. With the exception of the clays, reproducibility of catalyst performance has been good. Catalysts in groups 2 and 4 have exhibited very high activity, with long lifetimes and easy regeneration.

  7. DOEGO85004_1: Final Non-proprietary Technical Report, Generating Process and Economic Data for Preliminary Design of PureVision Biorefineries DOEGO85004_2: One Original Final Proprietary Technical Report to be mailed to DOE Golden.

    Energy Technology Data Exchange (ETDEWEB)

    Kadam, Kiran L., Ph.D; Lehrburger, Ed

    2008-01-17

    The overall objective of the project was to define a two-stage reactive fractionation process for converting corn stover into a solid cellulose stream and two liquid streams containing mostly hemicellulosic sugars and lignin, respectively. Toward this goal, biomass fractionation was conducted using a small continuous pilot unit with a nominal capacity of 100 pounds per day of dry biomass to generate performance data using primarily corn stover as feedstock. In the course of the program, the PureVision process was optimized for efficient hemicellulose hydrolysis in the first stage employing autohydrolysis and delignification in the second stage using sodium hydroxide as a catalyst. The remaining cellulose was deemed to be an excellent substrate for producing fermentation sugars, requiring 40% less enzymes for hydrolysis than conventional pretreatment systems using dilute acid. The fractionated cellulose was also determined to have potential higher-value applications as a pulp product. The lignin coproduct was determined to be substantially lower in molecular weight (MW) compared to lignins produced in the kraft or sulfite pulping processes. This low-MW lignin can be used as a feed and concrete binder and as an intermediate for producing a range of high-value products including phenolic resins. This research adds to the understanding of the biomass conversion area in that a new process was developed in the true spirit of biorefineries. The work completed successfully demonstrated the technical effectiveness of the process at the pilot level indicating the technology is ready to advance to a 2–3 ton per day scale. No technical showstoppers are anticipated in scaling up the PureVision fractionation process to commercial scale. Also, economic feasibility of using the PureVision process in a commercial-scale biorefinery was investigated and the minimum ethanol selling price for the PureVision process was calculated to be $0.94/gal ethanol vs. $1.07/gal ethanol for the

  8. Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production

    Science.gov (United States)

    Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru

    2016-02-01

    The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.

  9. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    International Nuclear Information System (INIS)

    Amende, Max; Kaftan, Andre; Bachmann, Philipp; Brehmer, Richard; Preuster, Patrick; Koch, Marcus

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al_2O_3 model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al_2O_3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al_2O_3 model catalyst and core–shell pellet were only

  10. Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Amende, Max, E-mail: max.amende@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Kaftan, Andre, E-mail: andre.kaftan@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Bachmann, Philipp, E-mail: philipp.bachmann@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Brehmer, Richard, E-mail: richard.brehmer@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Preuster, Patrick, E-mail: patrick.preuster@fau.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); Koch, Marcus, E-mail: marcus.koch@crt.cbi.uni-erlangen.de [Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen (Germany); and others

    2016-01-01

    Graphical abstract: - Highlights: • We examine the regeneration of Pt-based catalysts poisoned by LOHC degradation. • A microscopic mechanism of the removal of degradation products from Pt is proposed. • Results of our UHV studies on model catalysts are transferred to real catalysis. • Oxidative regeneration of Pt/alumina is possible under mild conditions (600 K). • The degree and temperature regime of regeneration depends on the catalyst morphology. - Abstract: The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al{sub 2}O{sub 3} model catalysts, and near-ambient pressure (NAP) measurements on real core–shell Pt/Al{sub 2}O{sub 3} catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al{sub 2}O{sub 3} model catalyst and

  11. Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt-Ru catalyst for methanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang Chunwei [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: cw.yang@hit.edu.cn; Wang Dianlong; Hu Xinguo; Dai Changsong [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Zhang Liang [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2008-01-10

    Multi-walled carbon nanotubes (MWCNTs) as a support of PtRu catalyst nanocomposites were prepared by colloid method in this work. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) all indicate that ultrasonic treatment can effectively functionalize MWCNTs, endowing them with groups that can act as nucleation sites which can favor well-dispersed deposition of PtRu clusters on their surface. The PtRu/MWCNTs catalysts have a high and homogeneous dispersion of spherical PtRu metal particles with a narrow particle-size distribution. From XPS tests, in PtRu/MWCNTs catalysts Ru can weaken the out-shell electrons of Pt because a part of Ru form alloy with Pt. The remnant Ru exists in oxidation and provides abundant oxygen to nearby Pt, as accelerated desorption and oxidation of intermediate products of methanol oxidation at surface of Pt. By a series of electrochemistry measurements, the PtRu/MWCNTs catalysts display significantly higher performance than the PtRu/XC-72 catalysts. Finally, schematic procedures for the oxidation of MWCNTs and synthesis of PtRu/MWCNTs catalysts were given.

  12. Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt-Ru catalyst for methanol electrooxidation

    International Nuclear Information System (INIS)

    Yang Chunwei; Wang Dianlong; Hu Xinguo; Dai Changsong; Zhang Liang

    2008-01-01

    Multi-walled carbon nanotubes (MWCNTs) as a support of PtRu catalyst nanocomposites were prepared by colloid method in this work. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) all indicate that ultrasonic treatment can effectively functionalize MWCNTs, endowing them with groups that can act as nucleation sites which can favor well-dispersed deposition of PtRu clusters on their surface. The PtRu/MWCNTs catalysts have a high and homogeneous dispersion of spherical PtRu metal particles with a narrow particle-size distribution. From XPS tests, in PtRu/MWCNTs catalysts Ru can weaken the out-shell electrons of Pt because a part of Ru form alloy with Pt. The remnant Ru exists in oxidation and provides abundant oxygen to nearby Pt, as accelerated desorption and oxidation of intermediate products of methanol oxidation at surface of Pt. By a series of electrochemistry measurements, the PtRu/MWCNTs catalysts display significantly higher performance than the PtRu/XC-72 catalysts. Finally, schematic procedures for the oxidation of MWCNTs and synthesis of PtRu/MWCNTs catalysts were given

  13. Final technical report; Mercury Release from Organic matter (OM) and OM-Coated Mineral Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, George

    2014-10-02

    This document is the final technical report for a project designed to address fundamental processes controlling the release of mercury from flood plain soils associated with East Fork Poplar Creek, Tennessee near the U.S. Department of Energy Oak Ridge facility. The report summarizes the activities, findings, presentations, and publications resulting from an award to the U.S. Geological that were part of a larger overall effort including Kathy Nagy (University of Illinois, Chicago, Ill) and Joseph Ryan (University of Colorado, Boulder, CO). The specific charge for the U.S.G.S. portion of the study was to provide analytical support for the larger group effort (Nagy and Ryan), especially with regard to analyses of Hg and dissolved organic matter, and to provide information about the release of mercury from the floodplain soils.

  14. Synthesis of Alkylpoly glucoside from Dextrose-Decanol in the Presence of Silicotungstic Acid Sol-Gel Catalyst

    International Nuclear Information System (INIS)

    Izazi Azzahidah Amin; Mohd Ambar Yarmo; Nik Idris Nik Yusoff

    2013-01-01

    The purpose of this study is to synthesis alkylpoly glucoside via condensation of decanol with dextrose in the presence of heterogenous catalyst. In this study, silicotungstic acid sol-gel (STSG) prepared using sol-gel was used as solid acid catalyst. The catalyst was characterized using BET surface area measurement, X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) surface analysis. The final product was easy to be separated from catalyst without the need of a further neutralization. Silicotungstic acid sol-gel has been found efficient to be solid catalyst for synthesis alkylpoly glucosides. Condensation reaction was carried out 8 hours at 110-120 degree Celsius under vacuum condition at 10 mmHg. The determination of decyl glucoside has been achieved by LC/ ESI-MS/ MS (ToF) giving a mass peak at m/z = 343.2 correspond to the m/z of [M+Na] + . Alkylpoly glucoside produced was analysed by FTIR, 1 H and 13 C NMR spectrometric technique. (author)

  15. 2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence

    International Nuclear Information System (INIS)

    Blomberg, Sara; Gustafson, Johan; Lundgren, Edvin; Zhou, Jianfeng; Zetterberg, Johan

    2016-01-01

    In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be

  16. 2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence

    Science.gov (United States)

    Blomberg, Sara; Zhou, Jianfeng; Gustafson, Johan; Zetterberg, Johan; Lundgren, Edvin

    2016-11-01

    In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be

  17. Spent catalyst waste management. A review. Part 1. Developments in hydroprocessing catalyst waste reduction and use

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, M.; Stanislaus, A. [Petroleum Refining Department, Petroleum Research and Studies Center, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109-Safat (Kuwait)

    2008-04-15

    Solid catalysts containing metals, metal oxides or sulfides, which play a key role in the refining of petroleum to clean fuels and many other valuable products, become solid wastes after use. In many refineries, the spent catalysts discarded from hydroprocessing units form a major part of these solid wastes. Disposal of spent hydroprocessing catalysts requires compliance with stringent environmental regulations because of their hazardous nature and toxic chemicals content. Various options such as minimizing spent catalyst waste generation by regeneration and reuse, metals recovery, utilization to produce useful materials and treatment for safe disposal, could be considered to deal with the spent catalyst environmental problem. In this paper, information available in the literature on spent hydroprocessing catalyst waste reduction at source by using improved more active and more stable catalysts, regeneration, rejuvenation and reuse of deactivated catalysts in many cycles, and reusing in other processes are reviewed in detail with focus on recent developments. Available methods for recycling of spent hydroprocessing catalysts by using them as raw materials for the preparation of active new catalysts and many other valuable products are also reviewed. (author)

  18. Automotive Catalyst State Diagnosis Using Microwaves

    Directory of Open Access Journals (Sweden)

    Moos Ralf

    2015-01-01

    Full Text Available The state of catalysts plays a key role in automotive exhaust gas aftertreatment. The soot or ash loading of Diesel particulate filters, the oxygen loading degree in three-way catalysts, the amount of stored ammonia in SCR catalysts, or the NOx loading degree in NOx storage catalysts are important parameters that are today determined indirectly and in a model-based manner with gas sensors installed upstream and/or downstream of the catalysts. This contribution gives an overview on a novel approach to determine the catalyst state directly by a microwave-based technique. The method exploits the fact that the catalyst housing acts as a microwave cavity resonator. As “sensing” elements, one or two simple antennas are mounted inside the catalyst canning. The electrical properties of the catalyst device (ceramic honeycomb plus coating and storage material can be measured. Preferably, the resonance characteristics, e.g., the resonance frequencies, of selected cavity modes are observed. The information on the catalyst interior obtained in such a contactless manner is very well correlated with the catalyst state as will be demonstrated for different exhaust gas aftertreatment systems.

  19. Catalyst in Basic Oleochemicals

    Directory of Open Access Journals (Sweden)

    Eva Suyenty

    2007-10-01

    Full Text Available Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty acids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydrogenation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methylate is derived from direct reaction of sodium metal and methanol under inert gas. The sulfonic based polystyrene resin is derived from sulfonation of polystyrene crosslinked with di-vinyl-benzene. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: E. Suyenty, H. Sentosa, M. Agustine, S. Anwar, A. Lie, E. Sutanto. (2007. Catalyst in Basic Oleochemicals. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 22-31.  doi:10.9767/bcrec.2.2-3.6.22-31][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.6.22-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/6

  20. Engineering New Catalysts for In-Process Elimination of Tars

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Larry G. [Gas Technology Inst., Des Plaines, IL (United States)

    2012-09-30

    and integrated (bulk) catalysts via a glass-ceramic processing route which were shown to exhibit excellent catalytic activity and superior resistance to attrition deactivation. With the discovery of these active, robust, glass-based catalysts, and with the permission of the project officer, the investigation of waste-based materials as originally proposed for Task 3 and pilot-scale testing proposed in Task 5 were deferred indefinitely in favor of further investigation of the glass-ceramic based catalyst materials. This choice was justified in part because during FY 2006 and through FY 2007, funding restrictions imposed by congressional budget choices significantly reduced funding for DOE biomass-related projects. Funding for this project was limited to what had been authorized which slowed the pace of project work at GTI so that our project partners could continue in their work. Thereafter, project work was allowed to resume and with restored funding, the project continued and concentrated on the development and testing of glass-ceramic catalysts in bulk or supported formats. Work concluded with a final development devoted to increasing the surface area of glass-ceramic catalysts in the form of microspheres. Following that development, project reporting was completed and the project was concluded.

  1. Hydroprocessing catalysts utilization and regeneration schemes

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    The catalyst reactor inventory represents an important part of the cost of hydroprocessing operation. The selection of a suitable catalyst and reactor is influenced by feedstock properties. Processes ensuring an uninterrupted operation during catalyst addition and withdrawal are preferred for processing high asphaltene and metal content feedstocks. The spent catalyst can be regenerated and returned to the operation if the extent of its deactivation is not high. The regeneration may be performed either in-situ or off-site. The former is suitable for fixed bed reactors whereas the catalyst from ebullated bed reactors must be regenerated off-site. The regeneration of spent catalysts heavily loaded with metals such as V, Ni and Fe may not be economic. Such catalysts may be suitable for metal reclamation. An environmentally safe method for catalyst disposal must be found if neither regeneration nor metal reclamation from spent catalysts can be performed.

  2. Mechanisms of catalytic activity in heavily coated hydrocracking catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Millan, M.; Adell, C.; Hinojosa, C.; Herod, A.A.; Kandiyoti, R. [University of London Imperial College Science Technology & Medicine, London (United Kingdom). Dept. of Chemical Engineering

    2008-01-15

    Catalyst deactivation by coke deposition has a direct impact on the economic viability of heavy hydrocarbon upgrading processes, such as coal liquefaction and oil residue hydroprocessing. Coke deposition is responsible for rapid loss of catalytic activity and it mostly takes place in the early stages of hydrocracking. The effect of carbonaceous deposition on the catalytic activity of a chromium pillared montmorillonite has been studied in the present work. Its catalytic activity in hydrocracking a coal extract was evaluated based on the boiling point distributions of feed and products obtained by thermogravimetric analysis (TGA), and their characterisation by size exclusion chromatography (SEC) and UV-Fluorescence spectroscopy (UV-F). A large deposition on the catalyst was observed after two successive 2-hour long runs in which the catalyst recovered from the first run was reused in the second. The pillared clay retained its activity even though it showed high carbon loading, a large drop in surface area and complete apparent pore blockage. Some observations may contribute to explain this persistent catalytic activity. First, there is evidence suggesting the dynamic nature of the carbonaceous deposits, which continuously exchange material with the liquid, allowing catalytic activity to continue. Secondly, Scanning Electron Microscopy (SEM) on the used Cr montmorillonite has shown preferential deposition on some regions of the catalyst, which leaves a fraction of the surface relatively exposed. Finally, evidence from SEM coupled to X-ray microanalysis also suggest that deposits are thinner in areas where the active phase of the catalyst is present in higher concentrations. Hydrogenation on the active sites would make the deposits more soluble in the liquid cleaning of surrounding area from deposits.

  3. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes

    2012-01-01

    by onepot sol–gel method. All catalysts were characterized by BET, XRPD and NH3-TPD. Initial SCR activities of 8 out of 9 catalysts showed higher NO conversion at least at one temperature in the temperature range 300–500 ◦C compared to the conventional V2O5-WO3/TiO2 catalyst. After potassium poisoning (100......Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared......–130 µmol of K/g of catalyst) the relative drop in SCR activity and acidity was lower for all the alternative catalysts compared to the industrial V2O5-WO3/TiO2 catalyst. Furthermore, Cu/MOR and Nano-V2O5/Sul-TiO2 catalysts showed 8–16 times higher SCR activities than the conventional even after high...

  4. Catalytic Activity of Sulfated and Phosphated Catalysts towards the Synthesis of Substituted Coumarin

    Directory of Open Access Journals (Sweden)

    Nagi R. E. Radwan

    2018-01-01

    Full Text Available New modified acidic catalysts were prepared from the treatment of silica, titania and silica prepared from hydrolyzed tetraethyl orthosilicate (TEOS with sulfuric and phosphoric acid. The sulfated and phosphated silica synthesized from TEOS were calcined at 450 and 650 °C. These catalysts were characterized by X-ray diffraction (XRD, Fourier-transform infrared spectroscopy (FTIR, transmission electron microscope (TEM, and scanning electron microscope (SEM. The surface areas, total pore volume, and mean pore radius of the acidic catalysts were investigated, while the pore size distribution was determined by the Barrett, Joyner and Halenda (BJH method. The catalytic activity of the sulfated and phosphated silica and/or titania were examined with the Pechmann condensation reaction, in which different phenols reacted with ethyl acetoacetate as a neat reaction to obtain the corresponding coumarin derivatives. The results indicated that the treatment of the catalysts with sulfuric or phosphoric acid led to a decrease in the phases’ crystallinity to a certain degree. The morphology and the structure of the acidified catalysts were examined and their particle size was calculated. Furthermore, the amount of the used catalysts played a vital role in controlling the formation of the products as well as their performance was manipulated by the number and nature of the active acidic sites on their surfaces. The obtained results suggested that the highest catalytic conversion of the reaction was attained at 20 wt % of the catalyst and no further increase in the product yield was detected when the amount of catalyst exceeded this value. Meanwhile the phenol molecules were a key feature in obtaining the final product.

  5. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    International Nuclear Information System (INIS)

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric; Tucker, Melvin P.; Yang, Bin

    2017-01-01

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4 , Ln(OTf) 3 , In(OTf) 3 , Al(OTf) 3 ] and noble metal catalysts (e.g., Ru/C, Ru/Al2O 3 ) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt % of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalyzed by super Lewis acids.

  6. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongliang [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA; Current address: Center of Biomass Engineering/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193 PR China; Wang, Huamin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Kuhn, Eric [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Tucker, Melvin P. [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Yang, Bin [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA

    2017-11-14

    Super Lewis acids containing the triflate anion (e.g. Hf(OTf)4, Ln(OTf)3, Al(OTf)3) and noble metal catalysts (e.g. Ru/C, Ru/Al2O3) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage via selective bonding to etheric oxygens while the noble metal catalysed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf)4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt% of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates via protonating hydroxyls and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote oxygenation reactions catalysed by super Lewis acids.

  7. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  8. Reuse of Hydrotreating Spent Catalyst

    International Nuclear Information System (INIS)

    Habib, A.M.; Menoufy, M.F.; Amhed, S.H.

    2004-01-01

    All hydro treating catalysts used in petroleum refining processes gradually lose activity through coking, poisoning by metal, sulfur or halides or lose surface area from sintering at high process temperatures. Waste hydrotreating catalyst, which have been used in re-refining of waste lube oil at Alexandria Petroleum Company (after 5 years lifetime) compared with the same fresh catalyst were used in the present work. Studies are conducted on partial extraction of the active metals of spent catalyst (Mo and Ni) using three leaching solvents,4% oxidized oxalic acid, 10% aqueous sodium hydroxide and 10% citric acid. The leaching experiments are conducting on the de coked extrude [un crushed] spent catalyst samples. These steps are carried out in order to rejuvenate the spent catalyst to be reused in other reactions. The results indicated that 4% oxidized oxalic acid leaching solution gave total metal removal 45.6 for de coked catalyst samples while NaOH gave 35% and citric acid gave 31.9 % The oxidized leaching agent was the most efficient leaching solvent to facilitate the metal removal, and the rejuvenated catalyst was characterized by the unchanged crystalline phase The rejuvenated catalyst was applied for hydrodesulfurization (HDS) of vacuum gas oil as a feedstock, under different hydrogen pressure 20-80 bar in order to compare its HDS activity

  9. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  10. Catalysis Science Initiative: Catalyst Design by Discovery Informatics

    Energy Technology Data Exchange (ETDEWEB)

    Delgass, William Nicholas [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Abu-Omar, Mahdi [Purdue Univ., West Lafayette, IN (United States) Department of Chemistry; Caruthers, James [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Ribeiro, Fabio [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Thomson, Kendall [Purdue Univ., West Lafayette, IN (United States). Chemical Engineering; Schneider, William [Univ. of Notre Dame, IN (United States)

    2016-07-08

    produces only oligomers to one that incorporates oligomers in polymer chains to introduce chain branching. These effects control the length of molecular chains, the number of errors in the regularity of the chains, and the variation of chain lengths in the final product distribution. These characteristics, in turn, determine the properties of the resulting polymer material. Predictive modeling of polymerization process cannot be done without the quantitative rate constant determination that our unique and comprehensive approach has produced. This tool, combined with insights on how catalyst chemistry affects the rate constants, is an important step toward establishing the quantitative relationships between catalyst chemistry and polymer properties that will allow more efficient searches for new catalysts and speed the discovery process. Thus, in both the heterogeneous and homogeneous catalysis areas, this work has brought important new understanding to the field. The technical effectiveness of our approach is demonstrated by its success. For heterogeneous catalysis, experimental work alone showed the important of the metal-support interface, but the integration with theory has allowed deeper understanding of the fundamental source of the effects and shown the path for how to use this understanding for discovery. In the case of homogeneous catalysis, methodology for determination of which reactions are needed to account for the data and the extraction of quantitative values for rate constants for those reactions allows accurate modeling of reaction behavior. This allowed correlation of trends in catalyst properties with alterations of specific rates, thus contributing to a data base that will guide catalyst discovery. While not yet realized, the economic benefits of this approach will come in significantly shortened cycle times for discovery and ability to fill product demand at lower price.

  11. Biodiesel production from acid oils and ethanol using a solid basic resin as catalyst

    International Nuclear Information System (INIS)

    Marchetti, J.M.; Errazu, A.F.

    2010-01-01

    In the search of an alternative fuel to substitute diesel fuel, biodiesel appears as one of the most promising sources of energy for diesel engines because of its environmental advantages and also due to the evolution of the petroleum market. Refined oil is the conventional raw material for the production of this biofuel; however, its major disadvantage is the high cost of its production. Therefore, frying oils, waste oils, crude oils and/or acid oils are being tested as alternative raw materials; nevertheless, there will be some problems if a homogeneous basic catalyst (NaOH) is employed due to the high amount of free fatty acid present in the raw oil. In this work, the transesterification reaction of acid oil using solid resin, Dowex monosphere 550 A, was studied as an alternative process. Ethanol was employed to have a natural and sustainable final product. The reaction temperature's effects, the initial amount of free fatty acid, the molar ratio of alcohol/oil and the type of catalyst (homogeneous or heterogeneous) over the main reaction are analyzed and their effects compared. The results obtained show that the solid resin is an alternative catalyst to be used to produce fatty acid ethyl esters (FAEEs) by a transesterification reaction with a final conversion over 90%. On the other hand, the time required to achieve this conversion is bigger than the one required using conventional technology which employs a homogeneous basic catalyst. This reaction time needs to be optimized. (author)

  12. Microscopic heavy-ion theory. Final technical report, June 1, 1993 - May 31, 1996

    International Nuclear Information System (INIS)

    Ernst, D.J.; Oberacker, V.E.; Umar, A.S.

    1998-01-01

    In this Final Technical Report, the authors summarize the research activities of the three Principal Investigators (Professors Ernst, Oberacker, and Umar) at Vanderbilt University since the last reporting period through the subject award expiration date (Dec. 31, 1996) under contract DE-FG05-87ER40376 with the Department of Energy. The research effort is divided between the following three areas: nuclear structure and astrophysics (microscopic nuclear structure studies and properties of exotic nuclei at HRIBF, supernovae calculations in connection with nuclear astrophysics, and nuclear viscosity studies via muon-induced fission at PSI); pion and kaon interactions with the nucleus at high energies (interaction of pions and kaons with nuclei from low energies to 1 GeV, propagation of excited hadrons in the nuclear medium as probed by pion and electron induced reactions); nuclear physics at high energies (dynamical string-parton model to study multi-particle production at RHIC, electromagnetic lepton pair production at RHIC)

  13. Head Start Impact Study. Technical Report

    Science.gov (United States)

    Puma, Michael; Bell, Stephen; Cook, Ronna; Heid, Camilla; Shapiro, Gary; Broene, Pam; Jenkins, Frank; Fletcher, Philip; Quinn, Liz; Friedman, Janet; Ciarico, Janet; Rohacek, Monica; Adams, Gina; Spier, Elizabeth

    2010-01-01

    This Technical Report is designed to provide technical detail to support the analysis and findings presented in the "Head Start Impact Study Final Report" (U.S. Department of Health and Human Services, January 2010). Chapter 1 provides an overview of the Head Start Impact Study and its findings. Chapter 2 provides technical information on the…

  14. Performance of HT-WGS Catalysts for Upgrading of Syngas Obtained from Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Marano Bujan, M.; Sanchez Hervas, J. M.

    2009-05-21

    Oxygen pressurized gasification of biomass out stands as a very promising approach to obtain energy or hydrogen from renewable sources. The technical feasibility of this technology is being investigated under the scope of the VI FP CHRISGAS project, which has started in September 2004 and has a duration of five years. The Division of Combustion and Gasification of CIEMAT participates in this project in Work Package 13: Ancillary and novel processes, studying innovative gas separation and gas upgrading systems. Such systems include novel or available high temperature water gas shift catalysts and commercially available membranes not yet tried in this type of atmosphere. This report describes the activities carried out during the period 2005-2007 regarding the performance of high temperature water gas shift catalysts for upgrading of synthesis gas obtained from biomass gasification. (Author) 28 refs.

  15. Paraffin Alkylation Using Zeolite Catalysts in a slurry reactor: Chemical Engineering Principles to Extend Catalyst Lifetime

    NARCIS (Netherlands)

    Jong, K.P. de; Mesters, C.M.A.M.; Peferoen, D.G.R.; Brugge, P.T.M. van; Groot, C. de

    1996-01-01

    The alkylation of isobutane with 2-butene is carried out using a zeolitic catalyst in a well stirred slurry reactor. Whereas application of fixed bed technology using a solid acid alkylation catalyst has in the led to catalysts lifetimes in the range of minutes, in this work we report catalyst

  16. Hydroxide catalysts for lignin depolymerization

    Science.gov (United States)

    Beckham, Gregg T; Biddy, Mary J.; Kruger, Jacob S.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-10-17

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  17. Hydroxide catalysts for lignin depolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T.; Biddy, Mary J.; Chmely, Stephen C.; Sturgeon, Matthew

    2017-04-25

    Solid base catalysts and their use for the base-catalyzed depolymerization (BCD) of lignin to compounds such as aromatics are presented herein. Exemplary catalysts include layered double hydroxides (LDHs) as recyclable, heterogeneous catalysts for BCD of lignin.

  18. Iron ore catalysts for methane decomposition to make CO x free hydrogen and carbon nano material

    KAUST Repository

    Zhou, Lu

    2018-03-27

    In this work, for the first time, iron ores with 91.7%–96.2% FeO, 1.3%–2.3% AlO, 1.2%–4.5% SiO, 1.3%–3.9% NaO, were studied directly as bulk catalysts for methane decomposition. By hydrogen pre-reduction at 850 °C, FeO species on iron ores were gradually reduced into FeO, FeO and then finally into Fe species. After reduction of 1.6 g of iron ore catalysts of 50 µm particle size with 100 mL/min pure H for 3.5 h at 850 °C, CMD life testing was conducted at 850 °C and GHSV of 3.75 L/g h and the catalyst showed a stable methane conversion for 5 h. When methane decomposition proceeded on Fe sites, FeC species would be formed to deposit graphite around themselves to finally form carbon nano onions. This carbon nano onions material showed excellent application for wastewater purification. All samples were fully characterized with XRF, XRD, H-TPR, TEM and Raman.

  19. Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper-Palladium Catalysts.

    Science.gov (United States)

    Chang, Xin; Liu, An-Feng; Cai, Bo; Luo, Jin-Yue; Pan, Hui; Huang, Yao-Bing

    2016-12-08

    The catalytic transfer hydrogenation of furfural to the fuel additives 2-methylfuran (2-MF) and 2-methyltetrahydrofuran (2-MTHF) was investigated over various bimetallic catalysts in the presence of the hydrogen donor 2-propanol. Of all the as-prepared catalysts, bimetallic Cu-Pd catalysts showed the highest catalytic activities towards the formation of 2-MF and 2-MTHF with a total yield of up to 83.9 % yield at 220 °C in 4 h. By modifying the Pd ratios in the Cu-Pd catalyst, 2-MF or 2-MTHF could be obtained selectively as the prevailing product. The other reaction conditions also had a great influence on the product distribution. Mechanistic studies by reaction monitoring and intermediate conversion revealed that the reaction proceeded mainly through the hydrogenation of furfural to furfuryl alcohol, which was followed by deoxygenation to 2-MF in parallel to deoxygenation/ring hydrogenation to 2-MTHF. Finally, the catalyst showed a high reactivity and stability in five catalyst recycling runs, which represents a significant step forward toward the catalytic transfer hydrogenation of furfural. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hydrocracking for oriented conversion of heavy oils. Recent trends for catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Bertoncini, F.; Bonduelle, A.; Simon, L.J. [IFP Energies nouvelles, Lyon Establishment, Solaize (France). Catalysis and separation Division; Raybaud, P.; Dulot, H. [IFP Energies nouvelles, Lyon Establishment, Solaize (France). Process Desing Modeling Division

    2011-07-01

    As a result of the global economic crisis since the end of 2008, HCK operators have been looking to increase the profitability of the unit by processing heavier feed streams, including sourer VGO. These feeds present the drawbacks of increased H{sub 2} consumption, lower products yields and quality, and reduction in cycle lengths. Along with optimised process parameters, catalysts manufacturers are also investigating novel formulations to deal with challenging feeds. This lecture briefly summarizes the market trends (fuel demand, refinery's product specification) and the driving forces for HCK catalyst development in order to face these new challenges. Finally, this lecture highlights the innovating trends for HCK catalyst's development. Overview of various ideas developed recently in our research laboratory about (i) rational approaches for the atomic scale design of active phases (morphology, preparation, inhibitor effects), (ii) new preparations of transition metal sulphides for maximising the hydrogenating function (precursors, activation,.), (iii) rational approaches of HCK acidic supports for maximizing the selectivity and (iv) better understanding of HCK reactions. These improvements will be discussed in term of improvement of activity and selectivity of HCK catalyst to cope with future market needs. (orig.)

  1. Hydrous titanium oxide-supported catalysts

    International Nuclear Information System (INIS)

    Dosch, R.G.; Stohl, F.V.; Richardson, J.T.

    1990-01-01

    Catalysts were prepared on hydrous titanium oxide (HTO) supports by ion exchange of an active metal for Na + ions incorporated in the HTO support during preparation by reaction with the parent Ti alkoxide. Strong active metal-HTO interactions as a result of the ion exchange reaction can require significantly different conditions for activation as compared to catalysts prepared by more widely used incipient wetness methods. The latter catalysts typically involve conversion or while the HTO catalysts require the alteration of electrostatic bonds between the metal and support with subsequent alteration of the support itself. In this paper, the authors discuss the activation, via sulfidation or reduction, of catalysts consisting of Co, Mo, or Ni-Mo dispersed on HTO supports by ion exchange. Correlations between the activation process and the hydrogenation, hydrodeoxygenation, and hydrodesulfurization activities of the catalysts are presented

  2. [Fuel substitution of vehicles by natural gas: Summaries of four final technical reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This report contains summary information on three meetings and highlights of a fourth meeting held by the Society of Automotive Engineers on natural gas fueled vehicles. The meetings covered the following: Natural gas engine and vehicle technology; Safety aspects of alternately fueled vehicles; Catalysts and emission control--Meeting the legislative standards; and LNG--Strengthening the links.

  3. Ethanolysis conversion of spent frying oils over aluminium, calcium-phosphate based bi-functional formulated catalysts. Catalytic activity assessment study

    Energy Technology Data Exchange (ETDEWEB)

    Al-Zaini, Essam O.; Chesterfield, Dean; Adesina, Adesoji A. [The Univ. of New South Wales, Sydney (Australia). Reactor Engineering and Technology Group; Olsen, John [The Univ. of New South Wales, Sydney (Australia). School of Mechanical and Manufacturing Engineering

    2013-06-01

    The current study compares the catalytic performance of two bi-functional solid catalysts for the transesterification of waste cooking vegetable oil in presence of bio-ethanol acyl-acceptor. The two catalysts were aluminum oxide and seashell-derived calcium oxide supported K{sub 3}PO{sub 4}. The catalytic activity of the produced catalyst samples were assessed and evaluated in terms of their textural and surface chemical properties. Evaluative runs showed that increased amounts of K{sub 3}PO{sub 4} have differently controlled the textural and surface chemical property of the finally synthesised catalyst samples. The behaviour revealed a strong correlation between the percentage yield of ethyl esters EEY% and acid-base site density and strength between the two types of catalysts. Possible leaching test of the catalysts was also used as a measure of performance and as a result, the optimum catalyst, on the basis of both ester yield and resistance to leaching was identified as the sample containing between 10 and 15wt% of K{sub 3}PO{sub 4} on AlO{sub 3} and CaO respectively. (orig.)

  4. Methanol conversion to hydrocarbons using modified clinoptilolite catalysts. Investigation of catalyst lifetime and reactivation

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, G J; Themistocleous, T; Copperthwaite, R G

    1988-10-17

    A study of the deactivation and reactivation of modified clinoptilolite catalysts for methanol conversion to hydrocarbons is reported. Clinoptilolite catalysts, modified by either ammonium ion exchange or hydrochloric acid treatment, exhibit a short useful catalyst lifetime for this reaction (ca. 2-3 h) due to a high rate of coke deposition (3-5.10/sup -3/ g carbon/g catalyst/h). A comparative study of reactivation using oxygen, nitrous oxide and ozone/oxygen as oxidants indicated that nitrous oxide reactivation gives improved catalytic performance when compared to the activity and lifetime of the fresh catalyst. Both oxygen and ozone/oxygen were found to be ineffective for the reactivation of clinoptilolite. Initial studies of in situ on-line reactivation are also described. 3 figs., 15 refs., 4 tabs.

  5. Recent Advances in the Application of Magnetic Nanoparticles as a Support for Homogeneous Catalysts

    Science.gov (United States)

    Govan, Joseph; Gun’ko, Yurii K.

    2014-01-01

    Magnetic nanoparticles are a highly valuable substrate for the attachment of homogeneous inorganic and organic containing catalysts. This review deals with the very recent main advances in the development of various nanocatalytic systems by the immobilisation of homogeneous catalysts onto magnetic nanoparticles. We discuss magnetic core shell nanostructures (e.g., silica or polymer coated magnetic nanoparticles) as substrates for catalyst immobilisation. Then we consider magnetic nanoparticles bound to inorganic catalytic mesoporous structures as well as metal organic frameworks. Binding of catalytically active small organic molecules and polymers are also reviewed. After that we briefly deliberate on the binding of enzymes to magnetic nanocomposites and the corresponding enzymatic catalysis. Finally, we draw conclusions and present a future outlook for the further development of new catalytic systems which are immobilised onto magnetic nanoparticles. PMID:28344220

  6. Magnetic catalyst bodies

    NARCIS (Netherlands)

    Teunissen, Wendy; Bol, A.A.; Geus, John W.

    1999-01-01

    After a discussion about the importance of the size of the catalyst bodies with reactions in the liquid-phase with a suspended catalyst, the possibilities of magnetic separation are dealt with. Deficiencies of the usual ferromagnetic particles are the reactivity and the clustering of the

  7. Technical advisory panel for the large acceptance spectrometer: Final report

    International Nuclear Information System (INIS)

    1989-01-01

    The Technical Advisory Panel for the Large Acceptance Spectrometer met on November 17--19, 1988, at CEBAF to perform a second review of the status of this project. The charge to the Panel was ''to provide technical advice to the CEBAF directorate on the design, construction, cost, schedule, and implementation of the Large Acceptance Spectrometer.'' In this written report, an overview of the entire project is given. Specific comments on the major components, data handling and analysis, assembly and installation, and management are presented. The Panel's conclusions are contained in the Executive Summary at the beginning of the report

  8. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, first and second quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involve injecting ammonia into the flue gas generated from coal combustion in a boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The project is being conducted in the following three phases: permitting, environmental monitoring plan and preliminary engineering; detailed design engineering and construction; and operation, testing, disposition and final report. The project was in the operation and testing phase during this reporting period. Accomplishments for this period are described.

  9. System-Cost-Optimized Smart EVSE for Residential Application: Final Technical Report including Manufacturing Plan

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Charles [Delta Products, Triangle Park, NC (United States)

    2015-05-15

    In the 2nd quarter of 2012, a program was formally initiated at Delta Products to develop smart-grid-enabled Electric Vehicle Supply Equipment (EVSE) product for residential use. The project was funded in part by the U.S. Department of Energy (DOE), under award DE-OE0000590. Delta products was the prime contractor to DOE during the three year duration of the project. In addition to Delta Products, several additional supplier-partners were engaged in this research and development (R&D) program, including Detroit Edison DTE, Mercedes Benz Research and Development North America, and kVA. This report summarizes the program and describes the key research outcomes of the program. A technical history of the project activities is provided, which describes the key steps taken in the research and the findings made at successive stages in the multi-stage work. The evolution of an EVSE prototype system is described in detail, culminating in prototypes shipped to Department of Energy Laboratories for final qualification. After the program history is reviewed, the key attributes of the resulting EVSE are described in terms of functionality, performance, and cost. The results clearly demonstrate the ability of this EVSE to meet or exceed DOE's targets for this program, including: construction of a working product-intent prototype of a smart-grid-enabled EVSE, with suitable connectivity to grid management and home-energy management systems, revenue-grade metering, and related technical functions; and cost reduction of 50% or more compared to typical market priced EVSEs at the time of DOE's funding opportunity announcement (FOA), which was released in mid 2011. In addition to meeting all the program goals, the program was completed within the original budget and timeline established at the time of the award. The summary program budget and timeline, comparing plan versus actual values, is provided for reference, along with several supporting explanatory notes. Technical

  10. WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS; A

    International Nuclear Information System (INIS)

    Carl R.F. Lund

    2001-01-01

    This report covers the second year of a project investigating water-gas shift catalysts for use in membrane reactors. It has been established that a simple iron high temperature shift catalyst becomes ineffective in a membrane reactor because the reaction rate is severely inhibited by the build-up of the product CO(sub 2). During the past year, an improved microkinetic model for water-gas shift over iron oxide was developed. Its principal advantage over prior models is that it displays the correct asymptotic behavior at all temperatures and pressures as the composition approaches equilibrium. This model has been used to explore whether it might be possible to improve the performance of iron high temperature shift catalysts under conditions of high CO(sub 2) partial pressure. The model predicts that weakening the surface oxygen bond strength by less than 5% should lead to higher catalytic activity as well as resistance to rate inhibition at higher CO(sub 2) partial pressures. Two promoted iron high temperature shift catalysts were studied. Ceria and copper were each studied as promoters since there were indications in the literature that they might weaken the surface oxygen bond strength. Ceria was found to be ineffective as a promoter, but preliminary results with copper promoted FeCr high temperature shift catalyst show it to be much more resistant to rate inhibition by high levels of CO(sub 2). Finally, the performance of sulfided CoMo/Al(sub 2)O(sub 3) catalysts under conditions of high CO(sub 2) partial pressure was simulated using an available microkinetic model for water-gas shift over this catalyst. The model suggests that this catalyst might be quite effective in a medium temperature water-gas shift membrane reactor, provided that the membrane was resistant to the H(sub 2)S that is required in the feed

  11. Investigation of sulfur-tolerant catalysts for selective synthesis of hydrocarbon liquids from coal-derived gases. Annual technical progress report, September 19, 1980-September 18, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, C.H.

    1981-10-31

    During the past contract year, considerable progress was made in characterization and activity/selectivity testing of iron and cobalt catalysts. Preparation of boride promoted cobalt and iron catalysts was refined and nearly completed. H/sub 2/ and CO adsorption and oxygen titration measurements were performed on a number of supported and unsupported catalysts, especially several boride promoted cobalt and iron catalysts. Activity/selectivity tests of 3 and 15% Fe/SiO/sub 2/ and Co/SiO/sub 2/ and of 6 borided cobalt and iron catalysts were completed. The product distributions for iron and cobalt boride catalysts are unusual and interesting. Boron promoted iron is more active and stable than iron/silica; cobalt boride has an unusually high selectivity for alcohols. Tests to determine effects of H/sub 2/S poisoning on activity/selectivity properties of 15% Co/SiO/sub 2/ indicate that a significant loss of activity occurs over a period of 24 to 28 h in the presence of 10 to 20 ppM H/sub 2/S. Product selectivity to liquids increased through a maximum during the gradual addition of sulfur. Reactant CO and H/sub 2/S interact partially to form COS which is less toxic than H/sub 2/S. H/sub 2/ and CO adsorption data were obtained for 3, 6 and 9% Co/ZSM-5 catalysts prepared and reactor tested by PETC. The unusual and interesting results suggest that metal-support interactions may have an important influence on reactant adsorption properties.

  12. Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review

    Science.gov (United States)

    Chen, Mengjie; Wang, Lei; Yang, Haipeng; Zhao, Shuai; Xu, Hui; Wu, Gang

    2018-01-01

    A reversible fuel cell (RFC), which integrates a fuel cell with an electrolyzer, is similar to a rechargeable battery. This technology lies on high-performance bifunctional catalysts for the oxygen reduction reaction (ORR) in the fuel cell mode and the oxygen evolution reaction (OER) in the electrolyzer mode. Current catalysts are platinum group metals (PGM) such as Pt and Ir, which are expensive and scarce. Therefore, it is highly desirable to develop PGM-free catalysts for large-scale application of RFCs. In this mini review, we discussed the most promising nanocarbon/oxide composite catalysts for ORR/OER bifunctional catalysis in alkaline media, which is mainly based on our recent progress. Starting with the effectiveness of selected oxides and nanocarbons in terms of their activity and stability, we outlined synthetic methods and the resulting structures and morphologies of catalysts to provide a correlation between synthesis, structure, and property. A special emphasis is put on understanding of the possible synergistic effect between oxide and nanocarbon for enhanced performance. Finally, a few nanocomposite catalysts are discussed as typical examples to elucidate the rules of designing highly active and durable bifunctional catalysts for RFC applications.

  13. Final technical evaluation report for the proposed revised reclamation plan for the Atlas Corporation Moab Mill

    International Nuclear Information System (INIS)

    1997-03-01

    This final Technical Evaluation Report (TER) summarizes the US Nuclear Regulatory Commission staff's review of Atlas Corporation's proposed reclamation plan for its uranium mill tailings pile near Moab, Utah. The proposed reclamation would allow Atlas to (1) reclaim the tailings pile for permanent disposal and long-term custodial care by a government agency in its current location on the Moab site, (2) prepare the site for closure, and (3) relinquish responsibility of the site after having its NRC license terminated. The NRC staff concludes that, subject to license conditions identified in the TER, the proposed reclamation plan meets the requirements identified in NRC regulations, which appear primarily in 10 CFR Part 40. 112 refs., 6 figs., 16 tabs

  14. Carbon and Mo transformations during the synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction

    Science.gov (United States)

    Wang, Haiyan; Liu, Shida; Liu, Bing; Montes, Vicente; Hill, Josephine M.; Smith, Kevin J.

    2018-02-01

    The synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction is reported. Petroleum coke (petcoke) was activated with KOH at 800 °C to obtain high surface area microporous activated petcoke (APC; 2000 m2/g). The APC was wet impregnated with ammonium heptamolybdate (AHM: 10 wt% Mo), dried and reduced in H2 at temperatures from 400 to 800 °C, to yield Mo2C/APC catalysts. Increased reduction temperature increased the Mo2C yield and the mesoporous volume of the Mo2C/APC. At a reduction temperature of 750 °C the mesopore volume of the catalyst doubled compared to the APC support and accounted for 37% of the total pore volume. Maintaining the final CHR temperature for 90 min further increased the Mo2C yield and mesoporosity of the catalyst. The role of Mo2C in the catalytic hydrogenation of the APC and mesopore generation is demonstrated. The activity of the Mo2C/carbon catalysts in the hydrodeoxygenation of 4-methyl phenol increased with increased CHR temperature and catalyst mesoporosity.

  15. Final Technical Report - SciDAC Cooperative Agreement: Center for Extended Magnetohydrodynamic Modeling/ Transport and Dynamics in Torodial Fusion System

    International Nuclear Information System (INIS)

    Schanck, Dalton D.

    2010-01-01

    Final technical report for research performed by Professor Dalton D. Schnack on SciDAC Cooperative Agreement: Center for Extended MHD Modeling, DE-FC02-06ER54870, for the period 7/1/06 to 2/15/08. Principal results for this period are: 1. Development of a model for computational modeling for the primitive form of the extended MMD equations. This was reported as Phys. Plasmas 13, 058103 (2006). 2. Comparison between the NIMROD and M3D codes for simulation of the nonlinear sawtooth crash in the CDXU tokamak. This was reported in Phys. Plasmas 14, 056105 (2006). 3. Demonstration of 2-fluid and gyroviscous stabilization of interchange modes using computational extended MHD models. This was reported in Phys. Rev. Letters 101, 085005 (2008). Each of these publications is attached as an Appendix of this report. They should be consulted for technical details.

  16. Fischer-Tropsch Synthesis over Iron Manganese Catalysts: Effect of Preparation and Operating Conditions on Catalyst Performance

    Directory of Open Access Journals (Sweden)

    Ali A. Mirzaei

    2009-01-01

    molar basis which is the most active catalyst for the conversion of synthesis gas to light olefins. The effects of different promoters and supports with loading of optimum support on the catalytic performance of catalysts are also studied. It was found that the catalyst containing 50%Fe/50%Mn/5 wt.%Al2O3 is an optimum-modified catalyst. The catalytic performance of optimal catalyst has been studied in operation conditions such as a range of reaction temperatures, H2/CO molar feed ratios and a range of total pressures. Characterization of both precursors and calcined catalysts is carried out by powder X-ray diffraction (XRD, scanning electron microscopy (SEM, BET specific surface area and thermal analysis methods such as TGA and DSC.

  17. Deactivation and regeneration of refinery catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1979-08-01

    A discussion covers the mechanisms of catalyst aging, poisoning, coke deposition, and metals deposition; feedstock pretreatment to extend catalyst life; the effects of operating conditions; the effects of catalyst composition and structure on its stability; nonchemical deactivation processes; and methods of catalyst regeneration, including coke burn-off and solvent extraction.

  18. Ternary catalyst-olefin-hydroperoxide complexes and their contribution to epoxidation

    International Nuclear Information System (INIS)

    Svitych, R.B.; Rzhevskaya, N.N.; Buchachenko, A.L.; Yablonskij, O.P.; Petukhov, A.A.; Belyaev, V.A.

    1976-01-01

    Electron and NMR spectroscopy have been used for studying the complex formation of catalysts (Mo 5+ , Mn 2+ , Co 2+ ) in double and triple systems: metal-olefin and metal-olefin-hydroperoxide. It has been established that ions of metals form complexes with olefins in the first sphere. The formation has been proved of ternary complexes metal-olefin-hydroperoxide. The structure of the complexes has been proposed with olefins in the first and hydroperoxide in the second sphere of the metal ion. The structure explains known kinetic regularities of epoxydation and the mechanism of the formation of final products, oxide and alcohol. It has been shown that the best catalysts for epoxydation of olefins with hydroperoxides must be the compounds of the metals with an electron state of ion d 0 [ru

  19. Oxidative desulfurization of synthetic diesel using supported catalysts. Part 3. Support effect on vanadium-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cedeno-Caero, Luis; Gomez-Bernal, Hilda; Fraustro-Cuevas, Adriana; Guerra-Gomez, Hector D.; Cuevas-Garcia, Rogelio [UNICAT, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria 04510, Mexico D.F. (Mexico)

    2008-04-15

    Oxidesulfurization (ODS) of benzothiophenic compounds prevailing in diesel was conducted with hydrogen peroxide in presence of various catalysts, using a model diesel and actual diesel fuel. ODS activities of dibenzothiophenes (DBTs) in hexadecane for a series of V{sub 2}O{sub 5} catalysts supported on alumina, titania, ceria, niobia and silica, were evaluated. Results show that the oxidation activity of DBTs depends on the support used. It was observed that the sulfone yield is not proportional to textural properties or V content. For all catalysts, ODS of benzothiophene (BT), dibenzothiophene (DBT), 4-methyl dibenzothiophene (4-MDBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) decreased in the following order: DBT > 4-MDBT > 4,6-DMDBT > BT. This trend does not depend on the catalyst used or the textural properties of the catalysts and supports. In presence of indole ODS activities diminish, except with catalysts supported on alumina-titania mixed oxide, whereas with V{sub 2}O{sub 5}/TiO{sub 2} catalyst the performance is the highest. ODS of Mexican diesel fuel was carried out in presence of this catalyst and S level was diminished in about 99%. (author)

  20. Heterogeneous Pd catalysts as emulsifiers in Pickering emulsions for integrated multistep synthesis in flow chemistry.

    Science.gov (United States)

    Hiebler, Katharina; Lichtenegger, Georg J; Maier, Manuel C; Park, Eun Sung; Gonzales-Groom, Renie; Binks, Bernard P; Gruber-Woelfler, Heidrun

    2018-01-01

    Within the "compartmentalised smart factory" approach of the ONE-FLOW project the implementation of different catalysts in "compartments" provided by Pickering emulsions and their application in continuous flow is targeted. We present here the development of heterogeneous Pd catalysts that are ready to be used in combination with biocatalysts for catalytic cascade synthesis of active pharmaceutical ingredients (APIs). In particular, we focus on the application of the catalytic systems for Suzuki-Miyaura cross-coupling reactions, which is the key step in the synthesis of the targeted APIs valsartan and sacubitril. An immobilised enzyme will accomplish the final product formation via hydrolysis. In order to create a large interfacial area for the catalytic reactions and to keep the reagents separated until required, the catalyst particles are used to stabilise Pickering emulsions of oil and water. A set of Ce-Sn-Pd oxides with the molecular formula Ce 0.99- x Sn x Pd 0.01 O 2-δ ( x = 0-0.99) has been prepared utilising a simple single-step solution combustion method. The high applicability of the catalysts for different functional groups and their minimal leaching behaviour is demonstrated with various Suzuki-Miyaura cross-coupling reactions in batch as well as in continuous flow employing the so-called "plug & play reactor". Finally, we demonstrate the use of these particles as the sole emulsifier of oil-water emulsions for a range of oils.

  1. GPHS-RTGs in support of the Cassini RTG Program. Addendum to the final technical report, May 1--December 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This Addendum to the Cassini GPHS-RTG Program Final Technical Progress Report describes activities performed during the period 1 May 1998 through 31 December 1998, including effort reflecting contract modification M058. These activities include Earth Gravity Assist (EGA) reentry and related analyses which are detailed in Part A, and effort related to the installation of CAGO equipment within Lockheed Martin`s Building 100 facility in Valley Forge, PA, which is detailed in Part B.

  2. GPHS-RTGs in support of the Cassini RTG Program. Addendum to the final technical report, May 1-December 31, 1998

    International Nuclear Information System (INIS)

    1998-12-01

    This Addendum to the Cassini GPHS-RTG Program Final Technical Progress Report describes activities performed during the period 1 May 1998 through 31 December 1998, including effort reflecting contract modification M058. These activities include Earth Gravity Assist (EGA) reentry and related analyses which are detailed in Part A, and effort related to the installation of CAGO equipment within Lockheed Martin's Building 100 facility in Valley Forge, PA, which is detailed in Part B

  3. Autothermal reforming catalyst having perovskite structure

    Science.gov (United States)

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  4. Isotope exchange in oxide-containing catalyst

    Science.gov (United States)

    Brown, Kenneth G. (Inventor); Upchurch, Billy T. (Inventor); Hess, Robert V. (Inventor); Miller, Irvin M. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Hoyt, Ronald F. (Inventor)

    1989-01-01

    A method of exchanging rare-isotope oxygen for common-isotope oxygen in the top several layers of an oxide-containing catalyst is disclosed. A sample of an oxide-containing catalyst is exposed to a flowing stream of reducing gas in an inert carrier gas at a temperature suitable for the removal of the reactive common-isotope oxygen atoms from the surface layer or layers of the catalyst without damaging the catalyst structure. The reduction temperature must be higher than any at which the catalyst will subsequently operate. Sufficient reducing gas is used to allow removal of all the reactive common-isotope oxygen atoms in the top several layers of the catalyst. The catalyst is then reoxidized with the desired rare-isotope oxygen in sufficient quantity to replace all of the common-isotope oxygen that was removed.

  5. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    International Nuclear Information System (INIS)

    Gary M. Blythe

    2002-01-01

    The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the first full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to project initiation and planning. There is no significant technical progress to report for the current period

  6. Bifunctional cobalt F-T catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.G.; Coughlin, P.K.; Yang, C.L.; Rabo, J.A.

    1986-03-01

    Results on the catalytic screening of Fischer-Tropsch catalysts containing shape selective components are reported. Catalysts consist of promoted cobalt intimately contacted with Union Carbide molecular sieves and were tested using a Berty type internally recycled reactor. Methods of preparation, promoters and shape selective components were varied and aimed at improving catalyst performance. Catalysts were developed demonstrating high C/sub 5/ + yields with high olefin content and low methane production while maintaining stability under both low and high H/sub 2/:CO ratio conditions.

  7. Recovery of molybdenum and cobalt powders from spent hydrogenation catalyst

    International Nuclear Information System (INIS)

    Rabah, M.A.; Hewaidy, I.F.; Farghaly, F.E.

    1996-01-01

    Free powders as well as compact shapes of molybdenum and cobalt have been successfully recovered from spent hydrogenation and desulphurization catalysts. A process flow sheet was followed involving crushing, milling, particle sizing, hydrometallurgical acid leaching roasting of the obtained salts in an atmospheric oxygen to obtain the respective oxides. These were reduced by hydrogen gas at 110 degree C and 900 degree C respectively. Parameters affecting the properties of the products and the recovery efficiency value such as acid concentration, particle diameter of the solid catalyst, temperature time under a constant mass flow rate the hydrogen gas, have been investigated. A mixture of concentration.sulphuric and nitric acids (3:1 by volume) achieved adequate recovery of both metals. The latter increased with the increase in acid concentration, time up 10 3 hours and temperature: 100 degree C and with the decrease in particle diameter of the spent catalyst. The PH of the obtained filtrate was adjusted to 2 with ammonia to precipitate insoluble ammonium molybdate and a solution of cobalt sulphate. Cobalt hydroxide can be precipitate from the latter solution at a PH = 7.6 using excess ammonium hydroxide solution. The obtained results showed that the metallic products are technically pure meeting the standard specifications. Compact shapes of molybdenum acquire density values increasing with the increase of the pressing load whereby a maximum density value of 2280 kg/m 3 is attained at 0.75 MPa. Maximum recovery efficiency amounts to 96%. 10 figs., 3 tabs

  8. Oxygen-reducing catalyst layer

    Science.gov (United States)

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  9. Catalytic biomass conversion methods, catalysts, and methods of making the same

    Science.gov (United States)

    Delgass, William Nicholas; Agrawal, Rakesh; Ribeiro, Fabio Henrique; Saha, Basudeb; Yohe, Sara Lynn; Abu-Omar, Mahdi M; Parsell, Trenton; Dietrich, Paul James; Klein, Ian Michael

    2017-10-10

    Described herein are processes for one-step delignification and hydrodeoxygenation of lignin fraction a biomass feedstock. The lignin feedstock is derived from by-products of paper production and biorefineries. Additionally described is a process for converting biomass-derived oxygenates to lower oxygen-content compounds and/or hydrocarbons in the liquid or vapor phase in a reactor system containing hydrogen and a catalyst comprised of a hydrogenation function and/or an oxophilic function and/or an acid function. Finally, also described herein is a process for converting biomass-derived oxygenates to lower oxygen-content compounds and/or hydrocarbons in the liquid or vapor phase in a reactor system containing hydrogen and a catalyst comprised of a hydrogenation function and/or an oxophilic function and/or an acid function.

  10. MORE ACTIVE AND SULFUR RESISTANT BIMETALLIC Pd-Ni CATALYSTS

    OpenAIRE

    Betti, Carolina; Carrara, Nicolás; Badano, Juan; Lederhos, Cecilia; Vera, Carlos; Quiroga, Mónica

    2018-01-01

    The influence of the kind of metal precursor and the sequence of impregnation on the properties of Pd-Ni catalysts was evaluated during the test reaction of selective hydrogenation of styrene to ethylbenzene by means of physicochemical characterization. The focus was put on the final hydrogenating activity and the resistance to deactivation by sulfided compounds (thiophene). The used techniques of characterization were ICP, XPS, XDR, TPR, CO chemisorption and TEM. XPS results indicated the pr...

  11. Graphene Nanowalls as Ingenious Material for Catalysts and Superconductors

    Science.gov (United States)

    2011-03-12

    whole transferred graphene films by using ECOPIA Hall measurement system HMS-3000 with silver paint used as electrodes at the four corners of graphene ...introduced for 15 min during growth stage. On the right: (a) A picture of the transferred graphene on SiO2/Si wafer with silver paint as electrodes at...Final Report for AOARD Grant 104057 “ Graphene Nanowalls as Ingenious Material for Catalysts and Superconductors” March 12, 2011 Name of

  12. Enhancement of plasma generation in catalyst pores with different shapes

    Science.gov (United States)

    Zhang, Yu-Ru; Neyts, Erik C.; Bogaerts, Annemie

    2018-05-01

    Plasma generation inside catalyst pores is of utmost importance for plasma catalysis, as the existence of plasma species inside the pores affects the active surface area of the catalyst available to the plasma species for catalytic reactions. In this paper, the electric field enhancement, and thus the plasma production inside catalyst pores with different pore shapes is studied with a two-dimensional fluid model. The results indicate that the electric field will be significantly enhanced near tip-like structures. In a conical pore with small opening, the strongest electric field appears at the opening and bottom corners of the pore, giving rise to a prominent ionization rate throughout the pore. For a cylindrical pore, the electric field is only enhanced at the bottom corners of the pore, with lower absolute value, and thus the ionization rate inside the pore is only slightly enhanced. Finally, in a conical pore with large opening, the electric field is characterized by a maximum at the bottom of the pore, yielding a similar behavior for the ionization rate. These results demonstrate that the shape of the pore has a significantly influence on the electric field enhancement, and thus modifies the plasma properties.

  13. Mild Hydroprocessing with Dispersed Catalyst of Highly Asphaltenic Pitch

    Science.gov (United States)

    Isquierdo, Fernanda

    Asphaltene are known to have diverse negative impacts on heavy oil extraction and hydroprocessing. This research then, explores the optimal conditions to convert asphaltenes into lighter material using mild conditions of pressure and temperature, and investigates changes in asphaltene structure during hydroprocessing. Feedstock and products were characterized by Simulated Distillation, Microdeasphalting, Sulfur content, X-ray diffraction, X-ray photoelectron spectroscopy, and Nuclear magnetic resonance spectroscopy. Solid catalysts were analyzed by Themogravimetric analysis, X-ray diffraction, and Dynamic light scattering. Based on the results obtained from X-ray diffraction and Nuclear magnetic resonance spectroscopy analysis a mechanism for the asphaltene hydroprocessing at mild conditions is proposed in which the alky peripheric portion from the original asphaltenes is partially removed during the reaction. The consequence of that process being an increase in the stacking of the aromatics sheets in the remaining asphaltenes. Also, this study investigates different for ultradispersed catalyst compositions, where CoWS, CoMoS, NiWS, FeWS, NiMo/NaHFeSi 2O6 and NaHFeSi2O6 showed a high asphaltene conversion as determined by asphaltene microdeasphalting, FeMoS and NaHFeSi 2O6 presented a high Vacuum Residue as determined by distillation (SIMDIST) analysis conversion, and in terms of sulfur removal CoMoS gave the higher conversion. In addition, all the catalyst tested showed a coke production lower than 1%. Finally, a kinetic study for the pitch hydroprocessing using CoMoS as catalysts gave a global activation energy of 97.3 kJ/mol.

  14. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts.

    Science.gov (United States)

    Wang, Hongliang; Wang, Huamin; Kuhn, Eric; Tucker, Melvin P; Yang, Bin

    2018-01-10

    Super Lewis acids containing the triflate anion [e.g., Hf(OTf) 4 , Ln(OTf) 3 , In(OTf) 3 , Al(OTf) 3 ] and noble metal catalysts (e.g., Ru/C, Ru/Al 2 O 3 ) formed efficient catalytic systems to generate saturated hydrocarbons from lignin in high yields. In such catalytic systems, the metal triflates mediated rapid ether bond cleavage through selective bonding to etheric oxygens while the noble metal catalyzed subsequent hydrodeoxygenation (HDO) reactions. Near theoretical yields of hydrocarbons were produced from lignin model compounds by the combined catalysis of Hf(OTf) 4 and ruthenium-based catalysts. When a technical lignin derived from a pilot-scale biorefinery was used, more than 30 wt % of the hydrocarbons produced with this catalytic system were cyclohexane and alkylcyclohexanes in the jet fuel range. Super Lewis acids are postulated to strongly interact with lignin substrates by protonating hydroxyl groups and ether linkages, forming intermediate species that enhance hydrogenation catalysis by supported noble metal catalysts. Meanwhile, the hydrogenation of aromatic rings by the noble metal catalysts can promote deoxygenation reactions catalyzed by super Lewis acids. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ultrasonically treated multi-walled carbon nanotubes (MWCNTs) as PtRu catalyst supports for methanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chunwei; Hu, Xinguo; Wang, Dianlong; Dai, Changsong [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Zhang, Liang; Jin, Haibo [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Agathopoulos, Simeon [Department of Materials Science and Engineering, University of Ioannina, GR-451 10 Ioannina (Greece)

    2006-09-29

    In the quest of fabricating supported catalysts, experimental results of transmission electron microscopy, Raman and infrared spectroscopy indicate that ultrasonic treatment effectively functionalizes multi-walled carbon nanotubes (MWCNTs), endowing them with groups that can act as nucleation sites which can favor well-dispersed depositions of PtRu clusters on their surface. Ultrasonic treatment seems to be superior than functionalization via regular refluxing. This is confirmed by the determination of the electrochemistry active surface area (ECA) and the CO-tolerance performance of the PtRu catalysts, measured by adsorbed CO-stripping voltammetry in 0.5M sulfuric acid solution, and the real surface area of the PtRu catalysts, evaluated by Brunauer-Emmett-Teller (BET) measurements. Finally, the effectiveness for methanol oxidation is assessed by cyclic voltammetry (CV) in a sulfuric acid and methanol electrolyte. (author)

  16. Development of porous structure simulator for multi-scale simulation of irregular porous catalysts

    International Nuclear Information System (INIS)

    Koyama, Michihisa; Suzuki, Ai; Sahnoun, Riadh; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A.; Miyamoto, Akira

    2008-01-01

    Efficient development of highly functional porous materials, used as catalysts in the automobile industry, demands a meticulous knowledge of the nano-scale interface at the electronic and atomistic scale. However, it is often difficult to correlate the microscopic interfacial interactions with macroscopic characteristics of the materials; for instance, the interaction between a precious metal and its support oxide with long-term sintering properties of the catalyst. Multi-scale computational chemistry approaches can contribute to bridge the gap between micro- and macroscopic characteristics of these materials; however this type of multi-scale simulations has been difficult to apply especially to porous materials. To overcome this problem, we have developed a novel mesoscopic approach based on a porous structure simulator. This simulator can construct automatically irregular porous structures on a computer, enabling simulations with complex meso-scale structures. Moreover, in this work we have developed a new method to simulate long-term sintering properties of metal particles on porous catalysts. Finally, we have applied the method to the simulation of sintering properties of Pt on alumina support. This newly developed method has enabled us to propose a multi-scale simulation approach for porous catalysts

  17. Modular Radioisotope Thermoelectric Generator (RTG) Program. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Section 2.0 of this report summarizes the MOD-RTG reference flight design, and Section 3.0 discusses the Ground Demonstration System design. Multicouple technology development is discussed in Section 4.0, and Section 5.0 lists all published technical papers prepared during the course of the contract.

  18. Final report on a study of coherence in acceptability criteria for the technical aspects of risks associated with potentially hazardous installations

    International Nuclear Information System (INIS)

    Chicken, J.C.

    1988-01-01

    This report describes the results of the study that was made, under Contract No ECI-1390-B7221-85D, for the European Atomic Energy Community. The aim of the study was to examine and assess the feasibility of developing coherent and uniform criteria for judging the acceptability of the technical aspects of the risks associated with potentially hazardous installations. The report is arranged in five main parts. First the nature of hazardous installations is considered and this provides the basis for examination of the currently-used technical risk acceptability criteria. Next, the possible forms of criteria are explored and then universally consistent partial and overall technical risk acceptability criteria are proposed. Following this the implications of using the criteria proposed at the design, regulatory and operating levels are examined. Then, by testing the criteria against some real decisions, the practical problems of using the proposed criteria are explored. This leads to consideration of possible alternatives to the proposed criteria. Finally the conclusions that appear to be justified are summarized and the need for further work is identified

  19. Metal catalysts fight back

    OpenAIRE

    George Marsh

    1998-01-01

    In recent years organometallic catalysts, especially metallocenes, have been a major focus of attention in terms of polymerisation chemistry. But the news earlier this year of a family of iron-based catalysts able to rival the effectiveness of both conventional and metallocene catalysts in the polymerisation of ethylene has excited the plastics industry. Because of the impact of this discovery and its potential as a route to lower-priced commodity plastics in the future, it may be useful at t...

  20. OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Constance Senior; Temi Linjewile

    2003-07-25

    This is the first Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Ceramics GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, analysis of the coal, ash and mercury speciation data from the first test series was completed. Good agreement was shown between different methods of measuring mercury in the flue gas: Ontario Hydro, semi-continuous emission monitor (SCEM) and coal composition. There was a loss of total mercury across the commercial catalysts, but not across the blank monolith. The blank monolith showed no oxidation. The data from the first test series show the same trend in mercury oxidation as a function of space velocity that has been seen elsewhere. At space velocities in the range of 6,000-7,000 hr{sup -1} the blank monolith did not show any mercury oxidation, with or without ammonia present. Two of the commercial catalysts clearly showed an effect of ammonia. Two other commercial catalysts showed an effect of ammonia, although the error bars for the no-ammonia case are large. A test plan was written for the second test series and is being reviewed.

  1. Rejuvenation of the SCR catalyst at Mehrum

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Y.; Inatsume, Y.; Morita, I.; Kato, Y.; Yokoyama, K.; Ito, K. [Babcock Hitachi K.K., Kure-shi, Hiroshima-ken (Japan)

    2004-07-01

    Babcock Hitachi K.K. (BHK) received the contract of the rejuvenation of the SCR catalyst at the 750 MW coal-fired Mehrum Power Station (in Hohenhameln, Germany) in March 2003. The contractual coverage was 160 m{sup 3} of the entire catalyst layer. The catalyst, which had been in operation for 16 years since 1987, was originally supplied by BHK. The rejuvenation process developed for the Mehrum project consisted of two major steps: the first is to dust off the catalyst and remove the catalyst poison, and the second step is to add active material to enhance the catalyst activity. The catalyst must be dried after each washing. In order to minimize transportation cost and time, the rejuvenation work was done at the Mehrum station site. The scope of the rejuvenation work was shared between the owner and BHK. It took about one and a half months to complete the (total) on-site rejuvenation worked. The performance of the rejuvenated catalyst was superior to show the same level of activity as the unused catalyst and maintain the same SO{sub 2} conversion rate as the spent catalyst. This paper gives the details of the spent coal-fired SCR catalyst rejuvenation work. 13 figs., 1 tab.

  2. Innovative Sol-Gel Routes for the Bottom-up Preparation of Heterogeneous Catalysts.

    Science.gov (United States)

    Debecker, Damien P

    2017-12-11

    Heterogeneous catalysts can be prepared by different methods offering various levels of control on the final properties of the solid. In this account, we exemplify bottom-up preparation routes that are based on the sol-gel chemistry and allow to tailor some decisive properties of solid catalysts. First, an emulsion templating strategy is shown to lead to macrocellular self-standing monoliths with a macroscopic 3D structure. The latter can be used as catalyst or catalyst supports in flow chemistry, without requiring any subsequent shaping step. Second, the aerosol-assisted sol-gel process allows for the one-step and continuous production of porous mixed oxides. Tailored textural properties can be obtained together with an excellent control on composition and homogeneity. Third, the application of non-hydrolytic sol-gel routes, in the absence of water, leads to mixed oxides with outstanding textural properties and with peculiar surface chemistry. In all cases, the resulting catalytic performance can be correlated with the specificities of the preparation routes presented. This is exemplified in catalytic reactions in the fields of biomass conversion, petro chemistry, enantioselective organic synthesis, and air pollution mitigation. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Preparation of catalysts based on Cu-Mn for combustion of n-hexane

    International Nuclear Information System (INIS)

    Picasso, Gino; Belleza, Freddy; Zavala, Cesar; Lopez, Alcides; Sun Kou, Rosario

    2014-01-01

    Catalysts based on Cu-Mn mixed oxides (with molar ratio Cu/Mn in the range of 0,33 to 3) have been prepared by sol-gel method of self-combustion for removal of n-hexane. Two combustion agents, citric acid and ethylenglycol, were applied to study their influence in the final catalyst. Additionally, simple oxides have been synthesized using the same procedure for comparison reasons. The catalysts were characterized by X-ray diffraction (XRD) and sorption of N_2 (BET method). All samples depicted surfaces, preferentially assigned to mesoporosity whose values ranged from 4 to 50 m"2/g. All XRD difractograms of mixed samples showed the presence of a good crystalinity indepently of composition, with the formation of spinel-hopcalite phase meanwhile Mn and Cu simple oxide showed peaks attributed to Mn_O_3, Mn_3O_4 and CuO, respectively. Curves of activity, measured as number of VOC molecules converted per hour and per gram of catalyst, considering the specific surface, showed that mixed oxides with more Mn content were the best, additionally, the sample prepared from citric acid was more active than the corresponding values to simple oxides, probably due to the better specific surface and the better spinel-hopcalite structure obtained. (author)

  4. Novel metalloporphyrin catalysts for the oxidation of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, M.C.; Nenoff, T.M.; Shelnutt, J.A.

    1996-11-01

    Work was done for developing biomimetic oxidation catalysts. Two classes of metalloporphyrin catalysts were studied. The first class of catalysts studied were a novel series of highly substituted metalloporphyrins, the fluorinated iron dodecaphenylporphyrins. These homogeneous metalloporphyrin catalysts were screened for activity as catalysts in the oxidation of hydrocarbons by dioxygen. Results are discussed with respect to catalyst structural features. The second type of catalysts studied were heterogeneous catalysts consisting of metalloporphyrins applied to inorganic supports. Preliminary catalytic testing results with these materials are presented.

  5. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yuting [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xiong, Ya; Tian, Shuanghong [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275 (China); Kong, Lingjun [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Descorme, Claude, E-mail: claude.descorme@ircelyon.univ-lyon1.fr [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2014-07-15

    Highlights: • A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared. • FeSC exhibited high catalytic activity in the wet air oxidation of 2-chlorophenol. • A strong correlation was observed between the 2-CP conversion, the iron leaching and the pH. • Using an acetate buffer, the iron leaching was suppressed while keeping some catalytic activity. • A simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst. - Abstract: A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pH{sub PZC}, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120 °C under 0.9 MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5 h and 90% Total Organic Carbon (TOC) was removed after 24 h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  6. Optimal catalyst curves: Connecting density functional theory calculations with industrial reactor design and catalyst selection

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.

    2002-01-01

    For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic...... ammonia synthesis activity, to a first approximation, is a function only of the binding energy of nitrogen to the catalyst. Therefore, it is possible to evaluate which nitrogen binding energy is optimal under given reaction conditions. This leads to the concept of optimal catalyst curves, which illustrate...... the nitrogen binding energies of the optimal catalysts at different temperatures, pressures, and synthesis gas compositions. Using this concept together with the ability to prepare catalysts with desired binding energies it is possible to optimize the ammonia process. In this way a link between first...

  7. NetView technical research

    Science.gov (United States)

    1993-01-01

    This is the Final Technical Report for the NetView Technical Research task. This report is prepared in accordance with Contract Data Requirements List (CDRL) item A002. NetView assistance was provided and details are presented under the following headings: NetView Management Systems (NMS) project tasks; WBAFB IBM 3090; WPAFB AMDAHL; WPAFB IBM 3084; Hill AFB; McClellan AFB AMDAHL; McClellan AFB IBM 3090; and Warner-Robins AFB.

  8. Final technical evaluation report for the proposed revised reclamation plan for the Atlas Corporation Moab Mill

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This final Technical Evaluation Report (TER) summarizes the US Nuclear Regulatory Commission staff`s review of Atlas Corporation`s proposed reclamation plan for its uranium mill tailings pile near Moab, Utah. The proposed reclamation would allow Atlas to (1) reclaim the tailings pile for permanent disposal and long-term custodial care by a government agency in its current location on the Moab site, (2) prepare the site for closure, and (3) relinquish responsibility of the site after having its NRC license terminated. The NRC staff concludes that, subject to license conditions identified in the TER, the proposed reclamation plan meets the requirements identified in NRC regulations, which appear primarily in 10 CFR Part 40. 112 refs., 6 figs., 16 tabs.

  9. A Systems Approach to Bio-Oil Stabilization - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert C; Meyer, Terrence; Fox, Rodney; Submramaniam, Shankar; Shanks, Brent; Smith, Ryan G

    2011-12-23

    The objective of this project is to develop practical, cost effective methods for stabilizing biomass-derived fast pyrolysis oil for at least six months of storage under ambient conditions. The U.S. Department of Energy has targeted three strategies for stabilizing bio-oils: (1) reducing the oxygen content of the organic compounds comprising pyrolysis oil; (2) removal of carboxylic acid groups such that the total acid number (TAN) of the pyrolysis oil is dramatically reduced; and (3) reducing the charcoal content, which contains alkali metals known to catalyze reactions that increase the viscosity of bio-oil. Alkali and alkaline earth metals (AAEM), are known to catalyze decomposition reactions of biomass carbohydrates to produce light oxygenates that destabilize the resulting bio-oil. Methods envisioned to prevent the AAEM from reaction with the biomass carbohydrates include washing the AAEM out of the biomass with water or dilute acid or infusing an acid catalyst to passivate the AAEM. Infusion of acids into the feedstock to convert all of the AAEM to salts which are stable at pyrolysis temperatures proved to be a much more economically feasible process. Our results from pyrolyzing acid infused biomass showed increases in the yield of anhydrosugars by greater than 300% while greatly reducing the yield of light oxygenates that are known to destabilize bio-oil. Particulate matter can interfere with combustion or catalytic processing of either syngas or bio-oil. It also is thought to catalyze the polymerization of bio-oil, which increases the viscosity of bio-oil over time. High temperature bag houses, ceramic candle filters, and moving bed granular filters have been variously suggested for syngas cleaning at elevated temperatures. High temperature filtration of bio-oil vapors has also been suggested by the National Renewable Energy Laboratory although there remain technical challenges to this approach. The fast pyrolysis of biomass yields three main organic

  10. European workshop on spent catalysts. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In 1999 and 2002 two well attended workshops on recycling, regeneration, reuse and disposal of spent catalysts took place in Frankfurt. This series has been continued in Berlin. The workshop was organized in collaboration with DGMK, the German Society for Petroleum and Coal Science and Technology. Contributions were in the following areas of catalyst deactivation: recycling of spent catalysts in chemical and petrochemical industry, recycling of precious metal catalysts and heterogenous base metal catalysts, legal aspects of transboundary movements, catalyst regeneration, quality control, slurry catalysts, commercial reactivation of hydrotreating catalysts. (uke)

  11. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil

    2007-01-01

    with compositions 25Fe75Ni and 50Fe50Ni showed significantly better activity and in some cases also a higher selectivity to methane compared with the traditional monometallic Ni and Fe catalysts. A catalyst with composition 25Fe75Ni was found to be the most active in CO hydrogenation for the MgAl2O4 support at low...... metal loadings. At high metal concentrations, the maximum for the methanation activity was found for catalysts with composition 50Ni50Fe both on the MgAl2O4 and Al2O3 supports. This difference can be attributed to a higher reducibility of the constituting metals with increasing metal concentration......DFT calculations combined with a computational screening method have previously shown that bimetallic Ni-Fe alloys should be more active than the traditional Ni-based catalyst for CO methanation. That was confirmed experimentally for a number of bimetallic Ni-Fe catalysts supported on MgAl2O4. Here...

  12. Final priority; technical assistance to improve state data capacity--National Technical Assistance Center to improve state capacity to accurately collect and report IDEA data. Final priority.

    Science.gov (United States)

    2013-05-20

    The Assistant Secretary for Special Education and Rehabilitative Services announces a priority under the Technical Assistance to Improve State Data Capacity program. The Assistant Secretary may use this priority for competitions in fiscal year (FY) 2013 and later years. We take this action to focus attention on an identified national need to provide technical assistance (TA) to States to improve their capacity to meet the data collection and reporting requirements of the Individuals with Disabilities Education Act (IDEA). We intend this priority to establish a TA center to improve State capacity to accurately collect and report IDEA data (Data Center).

  13. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide.

    Science.gov (United States)

    Anthonysamy, Shahreen Binti Izwan; Afandi, Syahidah Binti; Khavarian, Mehrnoush; Mohamed, Abdul Rahman Bin

    2018-01-01

    Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil-5 (ZSM-5), TiO 2 , and Al 2 O 3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir-Hinshelwood or Eley-Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH 3 catalyst are suggested.

  14. Final technical report for the Center for Catalytic Hydrocarbon Functionalization (an EFRC)

    Energy Technology Data Exchange (ETDEWEB)

    Gunnoe, Thomas Brent [Univ. of Virginia, Charlottesville, VA (United States)

    2016-11-11

    Greater than 95% of all materials produced by the chemical industry are derived from a small slate of simple hydrocarbons that are derived primarily from natural gas and petroleum, predominantly through oxygenation, C–C bond formation, halogenation or amination. Yet, current technologies for hydrocarbon conversion are typically high temperature, multi-step processes that are energy and capital intensive and result in excessive emissions (including carbon dioxide). The Center for Catalytic Hydrocarbon Functionalization (CCHF) brought together research teams with the broad coalition of skills and knowledge needed to make the fundamental advances in catalysis required for next-generation technologies to convert hydrocarbons (particularly light alkanes and methane) at high efficiency and low cost. Our new catalyst technologies offer many opportunities including enhanced utilization of natural gas in the transportation sector (via conversion to liquid fuels), more efficient generation of electricity from natural gas using direct methane fuel cells, reduced energy consumption and waste production for large petrochemical processes, and the preparation of high value molecules for use in biological/medical applications or the agricultural sector. The five year collaborative project accelerated fundamental understanding of catalyst design for the conversion of C–H bonds to functionalized products, essential to achieve the goals listed above, as evidenced by the publication of 134 manuscripts. Many of these fundamental advancements provide a foundation for potential commercialization, as evidenced by the submission of 11 patents from research support by the CCHF.

  15. Novel Nano-Composite Catalysts for Renewable Energy Storage Applications

    Science.gov (United States)

    Devaguptapu, Surya Vamsi

    Spinel NiCo2O4 catalysts are considered the promising precious metal-free catalyst for oxygen reactions. Significant efforts are mainly explore optimal chemical doping and substituent to tune its electronic structures for enhanced performance. Here, we focuses on morphology control and determine the morphology-dependent activity for bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In particular, three types of spinel NiCo2O4 were prepared using temple-free, SiO 2 hard template, and Pluronic-123 soft template hydrothermal methods, showing significantly different morphologies, respectively. In particular, template-free method yield dense structures. Sold-template method assists the formation of porous and hollow structures. Importantly, the soft template is effective to prepare a unique nanoflower morphology containing abundant rose petal (needle) like structures. The effect of the utilization of templates, both soft and hard as well as a template free synthesis on the morphology as well as the activity and stability of the final catalyst is investigated. Compared to others, the nanoflower-like NiCo2O4 exhibited the highest bifunctional catalytic activity simultaneously for ORR and OER, likely due to the facile absorption of oxygen molecules on increased surface areas with efficient mass transfer. The nanoflower NiCo2O 4 also exhibited an onset and half-wave potentials of 0.94 and 0.82 V for the ORR in alkaline media. Although it is still inferior to state of the art Pt, the new type of spinel NiCo2O4 catalyst represents the best activity compared to reported carbon-free oxides. Meanwhile, OER activity and stability were achieved with an onset potential of 1.48 V generating a current density of 14 mA/cm2 at 1.6 V. The OER activity does not declined after 10,000 potential cycles demonstrating excellent stability, which is superior to the benchmark of Ir for the OER. This work provides an effective solution to enhance catalytic activity

  16. Epoxidation catalyst and process

    Science.gov (United States)

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  17. Enhanced activity of Pt/CNTs anode catalyst for direct methanol fuel cells using Ni2P as co-catalyst

    Science.gov (United States)

    Li, Xiang; Luo, Lanping; Peng, Feng; Wang, Hongjuan; Yu, Hao

    2018-03-01

    The direct methanol fuel cell is a promising energy conversion device because of the utilization of the state-of-the-art platinum (Pt) anode catalyst. In this work, novel Pt/Ni2P/CNTs catalysts were prepared by the H2 reduction method. It was found that the activity and stability of Pt for methanol oxidation reaction (MOR) could be significantly enhanced while using nickel phosphide (Ni2P) nanoparticles as co-catalyst. X-ray photoelectron spectroscopy revealed that the existence of Ni2P affected the particle size and electronic distribution of Pt obviously. Pt/CNTs catalyst, Pt/Ni2P/CNTs catalysts with different Ni2P amount were synthesized, among which Pt/6%Ni2P/CNTs catalyst exhibited the best MOR activity of 1400 mAmg-1Pt, which was almost 2.5 times of the commercial Pt/C-JM catalyst. Moreover, compared to other Pt-based catalysts, this novel Pt/Ni2P/CNTs catalyst also exhibited higher onset current density and better steady current density. The result of this work may provide positive guidance to the research on high efficiency and stability of Pt-based catalyst for direct methanol fuel cells.

  18. Bio-inspired MOF-based Catalysts for Lignin Valorization.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Stavila, Vitalie; Ramakrishnan, Parthasarathi; Davis, Ryan Wesley

    2014-09-01

    Lignin is a potentially plentiful source of renewable organics, with %7E50Mtons/yr produced by the pulp/paper industry and 200-300 Mtons/yr projected production by a US biofuels industry. This industry must process approximately 1 billion tons of biomass to meet the US Renewable Fuel goals. However, there are currently no efficient processes for converting lignin to value-added chemicals and drop-in fuels. Lignin is therefore an opportunity for production of valuable renewable chemicals, but presents staggering technical and economic challenges due to the quantities of material involved and the strong chemical bonds comprising this polymer. Aggressive chemistries and high temperatures are required to degrade lignin without catalysts. Moreover, chemical non-uniformity among lignins leads to complex product mixtures that tend to repolymerize. Conventional petrochemical approaches (pyrolysis, catalytic cracking, gasification) are energy intensive (400-800 degC), require complicated separations, and remove valuable chemical functionality. Low-temperature (25-200 degC) alternatives are clearly desirable, but enzymes are thermally fragile and incompatible with liquid organic compounds, making them impractical for large-scale biorefining. Alternatively, homogeneous catalysts, such as recently developed vanadium complexes, must be separated from product mixtures, while many heterogenous catalysts involve costly noble metals. The objective of this project is to demonstrate proof of concept that an entirely new class of biomimetic, efficient, and industrially robust synthetic catalysts based on nanoporous Metal- Organic Frameworks (MOFs) can be developed. Although catalytic MOFs are known, catalysis of bond cleavage reactions needed for lignin degradation is completely unexplored. Thus, fundamental research is required that industry and most sponsoring agencies are currently unwilling to undertake. We introduce MOFs infiltrated with titanium and nickel species as catalysts

  19. Rare earth metals for automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Shinjoh, Hirohumi

    2006-01-01

    The usage of rare earth metals for automotive exhaust catalysts is demonstrated in this paper. Rare earth metals have been widely used in automotive catalysts. In particular, three-way catalysts require the use of ceria compounds as oxygen storage materials, and lanthana as both a stabilizer of alumina and a promoter. The application for diesel catalysts is also illustrated. Effects of inclusion of rare earth metals in automotive catalysts are discussed

  20. Alkaline Ionic Liquid Modified Pd/C Catalyst as an Efficient Catalyst for Oxidation of 5-Hydroxymethylfurfural

    Directory of Open Access Journals (Sweden)

    Zou Bin

    2018-01-01

    Full Text Available Conversion of HMF into FDCA was carried out by a simple and green process based on alkaline ionic liquid (IL modified Pd/C catalyst (Pd/C-OH−. Alkaline ionic liquids were chosen to optimize Pd/C catalyst for special hydrophilicity and hydrophobicity, redox stability, and unique dissolving abilities for polar compounds. The Pd/C-OH− catalyst was successfully prepared and characterized by SEM, XRD, TG, FT-IR, and CO2-TPD technologies. Loading of alkaline ionic liquid on the surface of Pd/C was 2.54 mmol·g−1. The catalyst showed excellent catalytic activity in the HMF oxidation after optimization of reaction temperature, reaction time, catalyst amount, and solvent. Supported alkaline ionic liquid (IL could be a substitute and promotion for homogeneous base (NaOH. Under optimal reaction conditions, high HMF conversion of 100% and FDCA yield of 82.39% were achieved over Pd/C-OH− catalyst in water at 373 K for 24 h.

  1. Carbonaceous deposits on naptha reforming catalysts

    International Nuclear Information System (INIS)

    Redwan, D.S.

    1999-01-01

    Carbonaceous deposits on naphtha reforming catalysts play a decisive role in limiting process performance. The deposits negatively after catalyst activity, selectivity and the production cycle of a semi regenerative reformer. The magnitude of negative effect of those deposits is directly proportional to their amounts and complexity. Investigations on used reforming catalysts samples reveal that the amount and type (complexity of the chemical nature) of carbonaceous deposits are directly proportional to the catalysts life on stream and the severity of operating conditions. In addition, the combustibility behavior of carbonaceous deposits on the catalyst samples taken from different reformers are found to be different. Optimal carbon removal, for in situ catalyst regeneration, requires the specific conditions be developed, based on the results of well designed and properly performed investigations of the amount and type of carbonaceous deposits. (author)

  2. Reducible oxide based catalysts

    Science.gov (United States)

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  3. Long term deactivation test of high dust SCR catalysts by straw co-firing

    Energy Technology Data Exchange (ETDEWEB)

    Weigang Lin; Degn Jensen, A.; Bjerkvig, J.

    2009-12-15

    The consequences of carbon dioxide induced global warming cause major concern worldwide. The consumption of energy produced with fossil fuels is the major factor that contributes to the global warming. Biomass is a renewable energy resource and has a nature of CO{sub 2} neutrality. Co-combustion of biomass in existing coal fired power plants can maintain high efficiency and reduce the emission of CO{sub 2} at same time. However, one of the problems faced by co-firing is deactivation of the SCR catalysts. Understanding of the mechanisms of deactivation of the catalyst elements at co-firing conditions is crucial for long term runs of the power plants. Twenty six SCR catalyst elements were exposed at two units (SSV3 and SSV4) in the Studstrup Power Plant for a long period. Both units co-fire coal and straw with a typical fraction of 8-10% straw on an energy basis during co-firing. SSV4 unit operated in co-firing mode most of the time; SSV3 unit co-fired straw half of the operating time. The main objective of this PSO-project is to gain knowledge of a long term influence on catalyst activity when co-firing straw in coal-fired power plants, thus, to improve the basis for operating the SCR-plants for NO{sub x}-reduction. The exposure time of the applied catalyst elements (HTAS and BASF) varied from approximately 5000 to 19000 hours in the power plant by exchanging the element two times. The activity of all elements was measured before and after exposure in a bench scale test rig at the Department of Chemical and Biochemical Engineering, Technical University of Denmark. The results show that the activity, estimated by exclusion of channel clogging of the elements, decreases gradually with the total exposure time. It appears that the exposure time under co-firing condition has little effect on the deactivation of the catalyst elements and no sharp decrease of the activity was observed. The average deactivation rate of the catalyst elements is 1.6 %/1000 hours. SEM

  4. Increasing the lifetime of fuel cell catalysts

    NARCIS (Netherlands)

    Latsuzbaia, R.

    2015-01-01

    In this thesis, I discuss a novel idea of fuel cell catalyst regeneration to increase lifetime of the PEM fuel cell electrode/catalyst operation and, therefore, reduce the catalyst costs. As many of the catalyst degradation mechanisms are difficult to avoid, the regeneration is alternative option to

  5. Yucca Mountain Climate Technical Support Representative

    International Nuclear Information System (INIS)

    Sharpe, Saxon E

    2007-01-01

    The primary objective of Project Activity ORD-FY04-012, 'Yucca Mountain Climate Technical Support Representative', was to provide the Office of Civilian Radioactive Waste Management (OCRWM) with expertise on past, present, and future climate scenarios and to support the technical elements of the Yucca Mountain Project (YMP) climate program. The Climate Technical Support Representative was to explain, defend, and interpret the YMP climate program to the various audiences during Site Recommendation and License Application. This technical support representative was to support DOE management in the preparation and review of documents, and to participate in comment response for the Final Environmental Impact Statement, the Site Recommendation Hearings, the NRC Sufficiency Comments, and other forums as designated by DOE management. Because the activity was terminated 12 months early and experience a 27% reduction in budget, it was not possible to complete all components of the tasks as originally envisioned. Activities not completed include the qualification of climate datasets and the production of a qualified technical report. The following final report is an unqualified summary of the activities that were completed given the reduced time and funding

  6. Influence of DC electric field on the Lennard-Jones potential and phonon vibrations of carbon nanotube on catalyst

    International Nuclear Information System (INIS)

    Saeidi, Mohammadreza; Vaezzadeh, Majid; Badakhshan, Farzaneh

    2011-01-01

    Influence of DC electric field on carbon nanotube (CNT) growth in chemical vapor deposition is studied. Investigation of electric field effect in van der Waals interaction shows that increase in DC electric field raises the magnitude of attractive term of the Lennard-Jones potential. By using a theoretical model based on phonon vibrations of CNT on catalyst, it is shown that there is an optimum field for growth. Also it is observed that CNT under optimum electric field is longer than CNT in the absence of field. Finally, the relation between optimum DC electric field and type of catalyst is investigated and for some intervals of electric field, the best catalyst is introduced, which is very useful for experimental researches. -- Research highlights: → Influence of DC electric field on CNT growth in CVD. → Effect of electric field on van der Waals interaction between CNT and its catalyst. → Applying DC electric field increases attractive term of Lennard-Jonespotential. → There is an optimum DC field for CNT growth. → For catalyst with stronger van der Waals interaction, optimum field is smaller.

  7. Session 6: Liquid-phase chloro-benzene hydrogenolysis over alkali-doped zirconia supported palladium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Aramendia, M.A.; Borau, V.; Jimenez, C.; Marinas, A.; Marinas, J.M.; Moreno, J.M.; Ruiz, J.R.; Urbano, F.J. [University of Cordoba. Marie Curie Building, Dept. of Organic Chemistry (Spain)

    2004-07-01

    Chlorinated hydrocarbons constitute one of the most important kind of organic pollutants due to their environmental impact and noxious effects. Catalytic hydro-dehalogenation is now emerging as a promising non-destructive alternative technology whereby the chlorinated waste is converted to products with a commercial value. It is simple, safe, effective, and it ensures, in many instances, the regeneration of the initial raw material. One of the main problems of catalytic hydro-dehalogenation arise from the deactivating effect of the hydrogen halide released as by product. This can be surpassed by, for example, adding a base, such as NaOH, or modification of the catalyst in order to neutralize the hydrogen halide released. In conclusion, the alkali modification of the zirconia supported catalysts did not enhance the catalytic activity in comparison to the undoped Pd/ZrO{sub 2}. Moreover, the lithium doped catalyst exhibits very poor results in initial rate and final chloro-benzene conversion. This could be related to the reduction in BET surface area caused by the doping together with a lower enhancement of the surface basicity of the doped catalysts. (authors)

  8. Solvent-resistant nanofiltration for product purification and catalyst recovery in click chemistry reactions.

    Science.gov (United States)

    Cano-Odena, Angels; Vandezande, Pieter; Fournier, David; Van Camp, Wim; Du Prez, Filip E; Vankelecom, Ivo F J

    2010-01-18

    The quickly developing field of "click" chemistry would undoubtedly benefit from the availability of an easy and efficient technology for product purification to reduce the potential health risks associated with the presence of copper in the final product. Therefore, solvent-resistant nanofiltration (SRNF) membranes have been developed to selectively separate "clicked" polymers from the copper catalyst and solvent. By using these solvent-stable cross-linked polyimide membranes in diafiltration, up to 98 % of the initially present copper could be removed through the membrane together with the DMF solvent, the polymer product being almost completely retained. This paper also presents the first SRNF application in which the catalyst permeates through the membrane and the reaction product is retained.

  9. Systems study 'Alternative Entsorgung'. Final report. Technical annex 6

    International Nuclear Information System (INIS)

    1984-08-01

    In the conditioning plant, fuel elements which have been stored for ten years are loaded into transport containers, unloaded, identified and welded into a dry storage box. The dry store barrel is introduced into a final storage container, which, after being closed, is packed in lost shielding. This so-called final storage barrel is finally placed in a transport container and leaves the conditioning plant in this form by rail for transport to the final storage mine. The fuel element method of treatment 'packing of three complete fuel elements' was used as the reference process. In addition, the method of treatment 'fuel elements dismantled into fuel rods' was also examined. The handling of fuel elements and secondary waste treatment in the reference process are described in detail. (orig./HP) [de

  10. Extended Catalyst Longevity Via Supercritical Isobutane Regeneration of a Partially Deactivated USY Alkylation Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar; David N. Thompson; Kyle C. Burch; David J. Zalewski

    2005-05-01

    Off-line, in situ activity recovery of a partially deactivated USY zeolite catalyst used for isobutane/butene alkylation was examined in a continuous-flow reaction system employing supercritical isobutane. Catalyst samples were deactivated in a controlled manner by running them to either to a fixed butene conversion level of 95% or a fixed time on stream of three hours, and then exposing the catalyst to supercritical isobutane to restore activity. Activity recovery was determined by comparing alkylation activity before and after the regeneration step. Both single and multiple regenerations were performed. Use of a 95% butene conversion level criterion to terminate the reaction step afforded 86% activity recovery for a single regeneration and provided nine sequential reaction steps for the multiple regeneration studies. Employing a fixed 3 h time on stream criterion resulted in nearly complete activity recovery for a single regeneration, and 24 reaction steps were demonstrated in sequence for the multiple regeneration process, producing only minor product yield declines per step. This resulted in a 12-fold increase in catalyst longevity versus unregenerated catalyst.

  11. Nanostructured Mn{sub x}O{sub y} for oxygen reduction reaction (ORR) catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Delmondo, Luisa, E-mail: luisa.delmondo@polito.it [Department of Applied Science and Technology—DISAT, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Salvador, Gian Paolo; Muñoz-Tabares, José Alejandro; Sacco, Adriano; Garino, Nadia; Castellino, Micaela [Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, C.so Trento 21, 10129 Torino (Italy); Gerosa, Matteo; Massaglia, Giulia [Department of Applied Science and Technology—DISAT, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, C.so Trento 21, 10129 Torino (Italy); Chiodoni, Angelica; Quaglio, Marzia [Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, C.so Trento 21, 10129 Torino (Italy)

    2016-12-01

    Highlights: • Good performance catalysts for oxygen reduction reaction. • Nanostructured low-cost catalysts respect to platinum ones. • Synthesis using environmental benign chemical reagents. - Abstract: In the field of fuel cells, oxygen plays a key role as the final electron acceptor. To facilitate its reduction (Oxygen Reduction Reaction—ORR), a proper catalyst is needed and platinum is considered the best one due to its low overpotential for this reaction. By considering the high price of platinum, alternative catalysts are needed and manganese oxides (Mn{sub x}O{sub y}) can be considered promising substitutes. They are inexpensive, environmental friendly and can be obtained into several forms; most of them show significant electro-catalytic performance, even if strategies are needed to increase their efficiency. In particular, by developing light and high-surface area materials and by optimizing the presence of catalytic sites, we can obtain a cathode with improved electro-catalytic performance. In this case, nanofibers and xerogels are two of the most promising nanostructures that can be used in the field of catalysis. In this work, a study of the morphological and catalytic behavior of Mn{sub x}O{sub y} nanofibers and xerogels is proposed. Nanofibers were obtained by electrospinning, while xerogels were prepared by sol-gel and freeze drying techniques. Despite of the different preparation approaches, the obtained nanostructured manganese oxides exhibited similar catalytic performance for the ORR, comparable to those obtained from Pt catalysts.

  12. Synthesis of 2D Nitrogen-Doped Mesoporous Carbon Catalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Zhipeng Yu

    2017-02-01

    Full Text Available 2D nitrogen-doped mesoporous carbon (NMC is synthesized by using a mesoporous silica film as hard template, which is then investigated as a non-precious metal catalyst for the oxygen reduction reaction (ORR. The effect of the synthesis conditions on the silica template and carbon is extensively investigated. In this work, we employ dual templates—viz. graphene oxide and triblock copolymer F127—to control the textural features of a 2D silica film. The silica is then used as a template to direct the synthesis of a 2D nitrogen-doped mesoporous carbon. The resultant nitrogen-doped mesoporous carbon is characterized by transmission electron microscopy (TEM, nitrogen ad/desorption isotherms, X-ray photoelectron spectroscopy (XPS, cyclic voltammetry (CV, and rotating disk electrode measurements (RDE. The electrochemical test reveals that the obtained 2D-film carbon catalyst yields a highly electrochemically active surface area and superior electrocatalytic activity for the ORR compared to the 3D-particle. The superior activity can be firstly attributed to the difference in the specific surface area of the two catalysts. More importantly, the 2D-film morphology makes more active sites accessible to the reactive species, resulting in a much higher utilization efficiency and consequently better activity. Finally, it is noted that all the carbon catalysts exhibit a higher ORR activity than a commercial Pt catalyst, and are promising for use in fuel cells.

  13. Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: effect of particle size.

    Science.gov (United States)

    Srichandan, Haragobinda; Singh, Sradhanjali; Pathak, Ashish; Kim, Dong-Jin; Lee, Seoung-Won; Heyes, Graeme

    2014-01-01

    The present work investigated the leaching potential of moderately thermophilic bacteria in the recovery of metals from spent petroleum catalyst of varying particle sizes. The batch bioleaching experiments were conducted by employing a mixed consortium of moderate thermophilic bacteria at 45°C and by using five different particle sizes (from 45 to >2000 μm) of acetone-washed spent catalyst. The elemental mapping by FESEM confirmed the presence of Al, Ni, V and Mo along with sulfur in the spent catalyst. During bioleaching, Ni (92-97%) and V (81-91%) were leached in higher concentrations, whereas leaching yields of Al (23-38%) were found to be lowest in all particle sizes investigated. Decreasing the particle size from >2000 μm to 45-106 μm caused an increase in leaching yields of metals during initial hours. However, the final metals leaching yields were almost independent of particle sizes of catalyst. Leaching kinetics was observed to follow the diffusion-controlled model showing the linearity more close than the chemical control. The results of the present study suggested that bioleaching using moderate thermophilic bacteria was highly effective in removing the metals from spent catalyst. Moreover, bioleaching can be conducted using spent catalyst of higher particle size (>2000 μm), thus saving the grinding cost and making process attractive for larger scale application.

  14. The Stability of Supported Gold Catalysts

    NARCIS (Netherlands)

    Masoud, Nazila

    2018-01-01

    Gold has supreme cultural and financial value and, in form of nanoparticles smaller than 10 nm, is a unique catalyst for different industrially relevant reactions. Intriguing properties of the gold catalysts have spurred demand in the chemical industry for Au catalysts, the application of which

  15. Nitrogen oxides storage catalysts containing cobalt

    Science.gov (United States)

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  16. FCC catalyst technologies expand limits of process capability

    International Nuclear Information System (INIS)

    Leiby, S.

    1992-01-01

    This paper reports that over the past 30 or so years, many improvements in fluid catalytic cracking (FCC) operation have been achieved as the result of innovations in catalyst formulation. During the 1990s, new environmental regulations on issues such as reformulated gasoline will place new demands on both the refining industry and catalyst suppliers. An overview of cracking catalyst technology therefore seems in order. Today, high-technology innovations by catalyst manufacturers are rapid, but profit margins are slim. Catalyst formulations are shrouded in secrecy and probably depend almost as much on art as on science. Special formulations for specific cracking applications get the greatest emphasis today. To illustrate this point, OGJ's Worldwide Catalyst Report lists over 200 FCC catalyst designations. Catalysts containing components to enhance gasoline octane now account for about 70% of total U.S. FCC catalyst usage

  17. Catalyst Deactivation and Regeneration in Low Temperature Ethanol Steam Reforming with Rh/CeO2-ZrO2 Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Hyun-Seog; Platon, Alex; Wang, Yong; King, David L.

    2006-08-01

    Rh/CeO2-ZrO2 catalysts with various CeO2/ZrO2 ratios have been applied to H2 production from ethanol steam reforming at low temperatures. The catalysts all deactivated with time on stream (TOS) at 350 C. The addition of 0.5% K has a beneficial effect on catalyst stability, while 5% K has a negative effect on catalytic activity. The catalyst could be regenerated considerably even at ambient temperature and could recover its initial activity after regeneration above 200 C with 1% O2. The results are most consistent with catalyst deactivation due to carbonaceous deposition on the catalyst.

  18. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  19. Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system

    International Nuclear Information System (INIS)

    Oh, Taek Hyun; Gang, Byeong Gyu; Kim, Hyuntak; Kwon, Sejin

    2015-01-01

    The response characteristics of electroless-deposited Co–P/Ni foam catalysts for sodium borohydride hydrolysis were investigated. The effect of nickel foam geometry on the properties of the catalysts was evaluated. As the PPI (pores per inch) of the nickel foam increased, the hydrogen generation rate per gram of the deposited catalyst increased due to an increase in surface area. The response characteristics of various catalysts were compared under real operating conditions. When a thin nickel foam with high PPI was used, the response characteristics of the catalyst improved due to an increase in the amount of the deposited catalyst and surface area. Finally, a 200 W PEMFC (proton exchange membrane fuel cell) system using electroless-deposited Co–P/Ni foam (110 PPI) catalyst was investigated. The response time to reach a hydrogen generation rate sufficient for a 200 W PEMFC was 71 s, and the energy density of a 200 W fuel cell system for producing 600 Wh was 252.1 Wh/kg. A fuel cell system using Co–P/Ni foam catalysts can be widely used as a power source for mobile applications due to fast response characteristics and high energy density. - Highlights: • Response characteristics of Co–P/Ni foam catalysts are investigated. • Catalytic activity is improved with increase in PPI (pores per inch) of Ni foam. • Co–P/Ni foam (110 PPI) catalyst has improved response characteristics. • The energy density of a 200 W PEMFC system for producing 600 Wh is 252.1 Wh/kg. • Co–P/Ni foam (110 PPI) catalyst is suitable for fuel cell system.

  20. Petroleum residue upgrading with dispersed catalysts. Part 1. Catalysts activity and selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Panariti, N.; Del Bianco, A.; Del Piero, G. [ENITECNOLOGIE S.p.A, Via Maritano 26, 20097 San Donato Mil. (Italy); Marchionna, M. [SNAMPROGETTI S.p.A, Via Maritano 26, 20097 San Donato Mil. (Italy)

    2000-12-04

    The results of a study aimed at the identification of the relevant chemical aspects involved in the process of upgrading heavy feedstocks in the presence of dispersed catalysts are discussed. The catalytic activity of different compounds was compared in terms of products yields and quality. Moreover, a detailed and systematic characterization of the catalysts recovered at the end of the reactions was achieved. The experimental work provided quite a large set of data, allowing to investigate the factors that may affect catalyst activity (precursor solubility, rate of activation, degree of dispersion, presence of promoters, etc.). The results of this study demonstrate that the best performances are obtained by the microcrystalline molybdenite generated in situ by oil-soluble precursors. The nature of the organic ligand does not play a very relevant role in influencing the hydrogenation activity. The presence of phosphorus, however, significantly enhances hydrodemetallation, at least in terms of vanadium removal. Bimetallic precursors show a slight synergistic effect towards the hydrodesulfurization reaction. Microsized powdered catalyst precursors have a much lower catalytic activity compared to the oil-soluble ones.

  1. Studies of Heterogenous Palladium and Related Catalysts for Aerobic Oxidation of Primary Alcohols

    Science.gov (United States)

    Ahmed, Maaz S.

    Development of aerobic oxidation methods is of critical importance for the advancement of green chemistry, where the only byproduct produced is water. Recent work by our lab has produced an efficient Pd based heterogenous catalyst capable of preforming the aerobic oxidation of a wide spectrum of alcohols to either carboxylic acid or methyl ester. The well-defined catalyst PdBi 0.35Te0.23/C (PBT/C) catalyst has been shown to can perform the aerobic oxidation of alcohols to carboxylic acids in basic conditions. Additionally, we explored this catalyst for a wide range of alcohols and probed the nature of the selectivity of PBT/C for methyl esterification over other side products. Finally, means by which the catalyst operates with respect to oxidation states of the three components, Pd, Bi, and Te, was probed. Carboxylic acids are an important functional group due to their prevalence in various pharmaceutically active agents, agrochemicals, and commodity scale chemicals. The well-defined catalyst PBT/C catalyst was discovered to be effective for the oxidation of a wide spectrum of alcohols to carboxylic acid. The demonstrated substrate scope and functional group tolerance are the widest reported for an aerobic heterogeneous catalyst. Additionally, the catalyst has been implemented in a packed bed reactor with quantitative yield of benzoic acid maintained throughout a two-day run. Biomass derived 5-(hydroxymethyl)furfural (HMF) is also oxidized to 2,5-furandicarboxylic acid (FDCA) in high yield. Exploration of PBT/C for the oxidative methyl esterification was found to exhibit exquisite selectivity for the initial oxidation of primary alcohol instead of methanol, which is the bulk solvent. We explored this selectivity and conclude that it results from various substrate-surface interactions, which are not attainable by methanol. The primary alcohol can outcompete the methanol for binding on the catalyst surface through various interactions between the side chain of the

  2. IRIS Final Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    M. D. Carelli

    2003-11-03

    OAK-B135 This NERI project, originally started as the Secure Transportable Autonomous Light Water Reactor (STAR-LW) and currently known as the International Reactor Innovative and Secure (IRIS) project, had the objective of investigating a novel type of water-cooled reactor to satisfy the Generation IV goals: fuel cycle sustainability, enhanced reliability and safety, and improved economics. The research objectives over the three-year (1999-2002) program were as follows: First year: Assess various design alternatives and establish main characteristics of a point design; Second year: Perform feasibility and engineering assessment of the selected design solutions; Third year: Complete reactor design and performance evaluation, including cost assessment These objectives were fully attained and actually they served to launch IRIS as a full fledged project for eventual commercial deployment. The program did not terminate in 2002 at the end of the NERI program, and has just entered in its fifth year. This has been made possible by the IRIS project participants which have grown from the original four member, two-countries team to the current twenty members, nine countries consortium. All the consortium members work under their own funding and it is estimated that the value of their in-kind contributions over the life of the project has been of the order of $30M. Currently, approximately 100 people worldwide are involved in the project. A very important constituency of the IRIS project is the academia: 7 universities from four countries are members of the consortium and five more US universities are associated via parallel NERI programs. To date, 97 students have worked or are working on IRIS; 59 IRIS-related graduate theses have been prepared or are in preparation, and 41 of these students have already graduated with M.S. (33) or Ph.D. (8) degrees. This ''final'' report (final only as far as the NERI program is concerned) summarizes the work performed

  3. Nature of the activates places of the acid solid catalysts of the sulphated metallic oxides type

    International Nuclear Information System (INIS)

    Gomez, Miguel A; Fontalvo Javier

    1998-01-01

    In this revision the state of the knowledge is presented with respect to the understanding of the nature of the active places for the strongly acid solid catalysts of the type sulphated metallic oxides. The results presented by means of models are based on the characterization of the properties physicochemical carried out by means of technical as XPS, to GO, NMR etc., and the evaluation of the catalytic activity in different applications

  4. DEVELOPMENT OF PRECIPITATED IRON FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Bukur, Dragomir B.; Lang, X.; Chokkaram, S.; Nowicki, L.; Wei, G.; Ding, Y.; Reddy, B.; Xiao, S.

    1999-01-01

    Despite the current worldwide oil glut, the US will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer-Tropsch (F-T) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Some of the F-T catalysts synthesized and tested at Texas A and M University under DOE Contract No. DE-AC22-89PC89868 were more active than any other known catalysts developed for maximizing production of high molecular weight hydrocarbons (waxes). The objectives of the present contract were to demonstrate repeatability of catalyst performance and reproducibility of preparation procedures of two of these catalysts on a laboratory scale. Improvements in the catalyst performance were attempted through the use of: (a) higher reaction pressure and gas space velocity to maximize the reactor productivity; (b) modifications in catalyst preparation steps; and (c) different pretreatment procedures. Repeatability of catalyst performance and reproducibility of catalyst synthesis procedure have been successfully demonstrated in stirred tank slurry reactor tests. Reactor space-time-yield was increased up to 48% by increasing reaction pressure from 1.48 MPa to 2.17 MPa, while maintaining the gas contact time and synthesis gas conversion at a constant value. Use of calcination temperatures above 300 C, additional CaO promoter, and/or potassium silicate as the source of potassium promoter, instead of potassium bicarbonate, did not result in improved catalyst performance. By using different catalyst activation procedures they were able to increase substantially the catalyst activity, while maintaining low methane and gaseous hydrocarbon selectivities. Catalyst productivity in runs SA-0946 and SA-2186 was 0.71 and 0.86 gHC/g-Fe/h, respectively, and this represents 45-75% improvement in productivity relative to that achieved in Rheinpreussen's demonstration plant

  5. Catalyst systems and uses thereof

    Science.gov (United States)

    Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH

    2012-07-24

    A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O.sub.2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO.sub.2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200.degree. C.

  6. Highly Stable and Active Catalyst for Sabatier Reactions

    Science.gov (United States)

    Hu, Jianli; Brooks, Kriston P.

    2012-01-01

    Highly active Ru/TiO2 catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO2 catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO2 catalysts show high activity at high throughput.

  7. Spectroscopic studies of surface-gas interactions and catalyst restructuring at ambient pressure: mind the gap!

    International Nuclear Information System (INIS)

    Rupprechter, Guenther; Weilach, Christian

    2008-01-01

    Recent progress in the application of surface vibrational spectroscopy at ambient pressure allows us to monitor surface-gas interactions and heterogeneous catalytic reactions under conditions approaching those of technical catalysis. The surface specificity of photon-based methods such as polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and sum frequency generation (SFG) spectroscopy is utilized to monitor catalytically active surfaces while they function at high pressure and high temperature. Together with complementary information from high-pressure x-ray photoelectron spectroscopy (HP-XPS) and high-resolution transmission electron microscopy (HRTEM), reaction mechanisms can be deduced on a molecular level. Well defined model catalysts, prepared under ultrahigh vacuum (UHV), are typically employed in such studies, including smooth and stepped single crystals, thin oxide films, and oxide-supported nanoparticles. A number of studies on unsupported and supported noble metal (Pd, Rh) catalysts are presented, focusing on the transformation of the catalysts from the 'as-prepared' to the 'active state'. This often involves pronounced alterations in catalyst structure and composition, for example the creation of surface carbon phases, surface oxides or surface alloys, as well as nanoparticle restructuring. The reactivity studies include CH 3 OH, CH 4 and CO oxidation with gas phase analysis by gas chromatography and mass spectrometry. Differing results between studies under ultrahigh vacuum and ambient pressure, and between studies on single crystals and supported nanoparticles, demonstrate the importance of 'minding the gap' between idealized and realistic conditions

  8. Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abu-Dief

    2018-03-01

    Full Text Available Magnetic nanoparticles are a highly worthy reactant for the correlation of homogeneous inorganic and organic containing catalysts. This review deals with the very recent main advances in the development of various nano catalytic systems by the immobilization of homogeneous catalysts onto magnetic nanoparticles. Catalytic fields include the use of mainly cobalt, nickel, copper, and zinc ferrites, as well as their mixed-metal combinations with Cr, Cd, Mn and sometimes some lanthanides. The ferrite nanomaterials are obtained mainly by co-precipitation and hydrothermal methods, sometimes by the sonochemical technique, micro emulsion and flame spray synthesis route. Catalytic processes with application of ferrite nanoparticles include degradation (in particular photocatalytic, reactions of dehydrogenation, oxidation, alkylation, C–C coupling, among other processes. Ferrite nano catalysts can be easily recovered from reaction systems and reused up to several runs almost without loss of catalytic activity. Finally, we draw conclusions and present a futurity outlook for the further development of new catalytic systems which are immobilized onto magnetic nanoparticles.

  9. Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Branko N. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemical Engineering; Weidner, John [Univ. of South Carolina, Columbia, SC (United States)

    2016-01-07

    initial power density (rated) of 0.174 gPGM/kW. Excellent activity and stability of the catalyst are due to synergistic effect of the catalytic activity and stability of ACCS-2, its enhanced hydrophobicity as well as activity of compressive Pt* lattice catalysts. For the first time, we report a carbon based support which is stable under simulated start-up/shut down operating conditions. Five 25cm2 MEA’s were fabricated at USC using Pt*/ACCS-2 cathode catalyst for independent evaluation at National Renewable Energy. In the Final NREL report they summarize their results as follow: (1) Initial ORR activity and performance of the USC MEA’s Pt*/ACCS-2 under oxygen air, evaluated at NREL were comparable to that measured and reported by USC in their report: (2) Cyclic durability studies indicate that Pt*/ACCS-2 catalysts has minimal losses in activity and performant under 1-1.5 V potential cycling indicating a robust corrosion resistant support.

  10. Capture and isotopic exchange method for water and hydrogen isotopes on zeolite catalysts up to technical scale for pre-study of processing highly tritiated water

    Energy Technology Data Exchange (ETDEWEB)

    Michling, R.; Braun, A.; Cristescu, I.; Dittrich, H.; Gramlich, N.; Lohr, N. [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Glugla, M.; Shu, W.; Willms, S. [ITER Organization, Saint-Paul-lez-Durance (France)

    2015-03-15

    Highly tritiated water (HTW) may be generated at ITER by various processes and, due to the excessive radio toxicity, the self-radiolysis and the exceedingly corrosive property of HTW, a potential hazard is associated with its storage and process. Therefore, the capture and exchange method for HTW utilizing Molecular Sieve Beds (MSB) was investigated in view of adsorption capacity, isotopic exchange performance and process parameters. For the MSB, different types of zeolite were selected. All zeolite materials were additionally coated with platinum. The following work comprised the selection of the most efficient zeolite candidate based on detailed parametric studies during the H{sub 2}/D{sub 2}O laboratory scale exchange experiments (about 25 g zeolite per bed) at the Tritium Laboratory Karlsruhe (TLK). For the zeolite, characterization analytical techniques such as Infrared Spectroscopy, Thermogravimetry and online mass spectrometry were implemented. Followed by further investigation of the selected zeolite catalyst under full technical operation, a MSB (about 22 kg zeolite) was processed with hydrogen flow rates up to 60 mol*h{sup -1} and deuterated water loads up to 1.6 kg in view of later ITER processing of arising HTW. (authors)

  11. Active carbon catalyst for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Hidetsugu; Terai, Satoshi [Technology Research Center, Toyo Engineering Corporation, 1818 Azafujimi, Togo, Mobara-shi, Chiba 297-00017 (Japan); Uchida, Masayuki [Business Planning and Exploring Department, Overseas Business Development and Marketing Division, Toyo Engineering Corporation, 2-8-1 Akanehama, Narashino-shi, Chiba 275-0024 (Japan); Cano, Jose L.; Ancheyta, Jorge [Maya Crude Treatment Project, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico)

    2004-11-24

    The active carbon (AC) catalyst was studied by hydrocracking of Middle Eastern vacuum residue (VR) for heavy oil upgrading. It was observed that the active carbon has the affinity to heavy hydrocarbon compounds and adsorption selectivity to asphaltenes, and exhibits better ability to restrict the coke formation during the hydrocracking reaction of VR. The mesopore of active carbon was thought to play an important role for effective conversion of heavy hydrocarbon compounds into lighter fractions restricting carbon formation. The performance of the AC catalyst was examined by continuous hydrocracking by CSTR for the removal of such impurities as sulfur and heavy metals (nickel and vanadium), which are mostly concentrated in the asphaltenes. The AC catalyst was confirmed to be very effective for the removal of heavy metals from Middle Eastern VR, Maya/Istmo VR and Maya VR. The extruded AC catalysts were produced by industrial manufacturing method. The application test of the extruded AC catalyst for ebullating-bed reactor as one of the commercially applicable reactors was carried out at the ebullating-bed pilot plant for 500h. The ebullition of the extruded AC catalyst was successfully traced and confirmed by existing {gamma}-ray density meter. The extruded AC catalyst showed stable performance with less sediment formation at an equivalent conversion by conventional alumina catalyst at commercial ebullating-bed unit. The degradation of the AC catalyst at the aging test was observed to be less than that of the conventional alumina catalyst. Thus, the AC catalyst was confirmed to be effective and suitable for upgrading of heavy oil, especially such heavy oils as Maya, which contains much heavy metals.

  12. Reactivation of a tin oxide-containing catalyst

    Science.gov (United States)

    Upchurch, Billy T. (Inventor); Miller, Irvin M. (Inventor); Brown, Kenneth G. (Inventor); Hess, Robert V. (Inventor); Schryer, David R. (Inventor); Sidney, Barry D. (Inventor); Wood, George M. (Inventor); Paulin, Patricia A. (Inventor)

    1989-01-01

    A method for the reactivation of a tin oxide-containing catalyst of a CO.sub.2 laser is provided. First, the catalyst is pretreated by a standard procedure. When the catalyst experiences diminished activity during usage, the heated zone surrounding the catalyst is raised to a temperature which is the operating temperature of the laser and 400.degree. C. for approximately one hour. The catalyst is exposed to the same laser gas mixture during this period. The temperature of the heated zone is then lowered to the operating temperature of the CO.sub.2 laser.

  13. In situ Transmission Electron Microscopy of catalyst sintering

    DEFF Research Database (Denmark)

    DeLaRiva, Andrew T.; Hansen, Thomas Willum; Challa, Sivakumar R.

    2013-01-01

    Recent advancements in the field of electron microscopy, such as aberration correctors, have now been integrated into Environmental Transmission Electron Microscopes (TEMs), making it possible to study the behavior of supported metal catalysts under operating conditions at atomic resolution. Here......, we focus on in situ electron microscopy studies of catalysts that shed light on the mechanistic aspects of catalyst sintering. Catalyst sintering is an important mechanism for activity loss, especially for catalysts that operate at elevated temperatures. Literature from the past decade is reviewed...... along with our recent in situ TEM studies on the sintering of Ni/MgAl2O4 catalysts. These results suggest that the rapid loss of catalyst activity in the earliest stages of catalyst sintering could result from Ostwald ripening rather than through particle migration and coalescence. The smallest...

  14. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  15. Development of GREET Catalyst Module

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States); Benavides, Pahola T. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Cronauer, Donald C. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    In this report, we develop energy and material flows for the production of five different catalysts (tar reforming, alcohol synthesis, Zeolite Socony Mobil-5 [ZSM-5], Mo/Co/ γ-Al2O3, and Pt/ γ-Al2O3) and two chemicals (olivine, dimethyl ether of polyethylene glycol [DEPG]). These compounds and catalysts are now included in the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET™) catalyst module.

  16. Functionalized Natural Carbon-Supported Nanoparticles as Excellent Catalysts for Hydrocarbon Production.

    Science.gov (United States)

    Sun, Jian; Guo, Lisheng; Ma, Qingxiang; Gao, Xinhua; Yamane, Noriyuki; Xu, Hengyong; Tsubaki, Noritatsu

    2017-02-01

    We report a one-pot and eco-friendly synthesis of carbon-supported cobalt nanoparticles, achieved by carbonization of waste biomass (rice bran) with a cobalt source. The functionalized biomass provides carbon microspheres as excellent catalyst support, forming a unique interface between hydrophobic and hydrophilic groups. The latter, involving hydroxyl and amino groups, can catch much more active cobalt nanoparticles on surface for Fischer-Tropsch synthesis than chemical carbon. The loading amount of cobalt on the final catalyst is much higher than that prepared with a chemical carbon source, such as glucose. The proposed concept of using a functionalized natural carbon source shows great potential compared with conventional carbon sources, and will be meaningful for other fields concerning carbon support, such as heterogeneous catalysis or electrochemical fields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  18. Technical oversight for installation of TNX piezometers, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pidcoe, W.W. Jr. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1997-06-05

    Science Applications International Corporation was tasked under subcontract C002025P to provide technical oversight for the drilling of one pilot borehole, and the drilling and installation of five piezometers in the TNX Area Swamp. The work was performed in accordance with the Statement of Work in Task Order Proposal No. ER39-129 dated August 6, 1996. This report describes the activities associated with the performance of the task.

  19. Olefin polymerization from single site catalysts confined within porous media

    Science.gov (United States)

    Kasi, Rajeswari M.

    Single Site Catalysts (SSCs) have been utilized for olefin polymerization. Altering the metal-ligand architecture in the SSCs, polyolefin properties can be enhanced in a rational manner. This influence of the ligands in the SSC on the property of polyolefins prepared can be referred to as the primary ligand influence. Extending this understanding and subsequent control of the metal-ligand framework to the interaction of SSCs within organic and inorganic supports is vital for the synthesis of polyolefins with tailored properties. The motivation behind this thesis was to explore the support influence on the reactivity of the SSC tethered to a support matrix during ethylene homo and copolymerization. In order to address this question of the support influence on the final polyolefin properties, synthetic routes to covalently bind SSCs on different matrices have been explored. Two distinct supported SSCs have been used to prepare branched polyethylenes. Branched polyethylenes can be prepared by either copolymerization (ethylene and alpha-olefin) or oligomerization/copolymerization processes (ethylene and in situ generated alpha-olefin). Synthetic routes to prepare precursor catalysts to Constrained Geometry Catalysts (CGCs) by silyl elimination chemistry have been developed (Chapter 2). Efficient synthetic protocols to assemble CGCs on aminomethylpolysytrene matrices (Chapter 3) and amine-functionalized mesoporous silica (Chapter 4) are also reported. These supported catalysts, with appropriate cocatalysts have been used to prepare ethylene homo and copolymers, the polymer thermal properties and microstructures were analyzed by various analytical techniques. Branched polyethylenes (LLDPE) can be prepared by copolymerization chemistry. It has been observed is that the influence of the support is seen in the production of lower crystalline forms of high density polyethylene (HDPE, 20--50% crystalline), while homogeneous polymerization of analogous soluble CGCs afford HDPE

  20. Volatiles combustion in fluidized beds. Final technical report, 4 September 1992--4 June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Pendergrass, R.A. II; Raffensperger, C.; Hesketh, R.P.

    1996-02-29

    The goal of this project is to investigate the conditions in which volatiles will burn within both the dense and freeboard regions of fluidized beds. Experiments using a fluidized bed operated at incipient fluidization are being conducted to characterize the effect of particle surface area, initial fuel concentration, and particle type on the inhibition of volatiles within a fluidized bed. A review of the work conducted under this grant is presented in this Final Technical Report. Both experimental and theoretical work have been conducted to examine the inhibition of the combustion by the fluidized bed material, sand. It has been shown that particulate phase at incipient fluidization inhibits the combustion of propane by free radical destruction at the surface of sand particles within the particulate phase. The implications of these findings is that at bed temperatures lower than the critical temperatures, gas combustion can only occur in the bubble phase or at the top surface of a bubbling fluidized bed. In modeling fluidized bed combustion this inhibition by the particulate phase should be included.

  1. Combining in situ characterization methods in one set-up: looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts.

    Science.gov (United States)

    Bentrup, Ursula

    2010-12-01

    Several in situ techniques are known which allow investigations of catalysts and catalytic reactions under real reaction conditions using different spectroscopic and X-ray methods. In recent years, specific set-ups have been established which combine two or more in situ methods in order to get a more detailed understanding of catalytic systems. This tutorial review will give a summary of currently available set-ups equipped with multiple techniques for in situ catalyst characterization, catalyst preparation, and reaction monitoring. Besides experimental and technical aspects of method coupling including X-ray techniques, spectroscopic methods (Raman, UV-vis, FTIR), and magnetic resonance spectroscopies (NMR, EPR), essential results will be presented to demonstrate the added value of multitechnique in situ approaches. A special section is focussed on selected examples of use which show new developments and application fields.

  2. Development of the biosphere code BIOMOD: final report

    International Nuclear Information System (INIS)

    Kane, P.

    1983-05-01

    Final report to DoE on the development of the biosphere code BIOMOD. The work carried out under the contract is itemised. Reference is made to the six documents issued along with the final report. These consist of two technical notes issued as interim consultative documents, a user's guide and a programmer's guide to BIOMOD, a database description, program test document and a technical note entitled ''BIOMOD - preliminary findings''. (author)

  3. Leaching of vanadium from sulphuric acid manufacture spent catalysts

    Directory of Open Access Journals (Sweden)

    García, Diego Juan

    2001-02-01

    Full Text Available Recovery of vanadium contained in spent catalysts from the manufacture of sulphuric acid has been studied in this work, resulting in an industrial multistage process for the treatment of them avoiding direct deposition or dumping. Characterization of supplied spent catalysts samples, confirmed vanadium levels showed in the literature. The study of variables influencing leaching process: type of leaching agent, leaching agent concentration, S/L ratio, stirring speed and temperature, allows to fix the most advantageous conditions using industrial application criterion and verifying that the process is difusión controlled. The work is completed by developing an industrial leaching cycle simulation with the aim of reproducing real performance of spent catalyst, proposing operating conditions, and verifying the non-toxic character of the final residue obtained.

    En el presente trabajo se ha estudiado la recuperación del vanadio contenido en los catalizadores agotados procedentes de la fabricación del ácido sulfúrico, planteando un proceso industrial multietapa para el tratamiento de estos residuos, evitando su deposición o vertido directos. La caracterización de las muestras de catalizadores agotados disponibles confirmó los valores encontrados en la bibliografía. Se estudiaron las variables que influyen en el proceso de lixiviación (tipo de agente de lixiviación y concentración del mismo, relación S/L, velocidad de agitación y temperatura definiendo las condiciones más adecuadas desde el punto de vista industrial y verificando que el proceso está controlado por mecanismos difusionales. El trabajo se completa con la simulación de un ciclo industrial de lavado del catalizador y la verificación de la nula toxicidad de los lixiviados obtenidos por degradación del residuo final. 24 Aplicación de la resistencia de ruido al estudio de pinturas ricas en zinc Noise resistance applied to the study of zinc rich paints

  4. exchanged Mg-Al hydrotalcite catalyst

    Indian Academy of Sciences (India)

    ) catalysts, ... The catalyst can be easily separated by simple filtration ... surface area by the single-point N2 adsorption method ... concentration of carbonate anions (by treating the cat- .... hydrotalcite phase along with copper hydroxide and.

  5. Two Catalysts for Selective Oxidation of Contaminant Gases

    Science.gov (United States)

    Wright, John D.

    2011-01-01

    Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to

  6. Polyfunctional catalyst for processiing benzene fractions

    Energy Technology Data Exchange (ETDEWEB)

    G. Byakov; B.D. Zubitskii; B.G. Tryasunov; I.Ya. Petrov [Kuznetsk Basin State Technical University, Kemerovo (Russian Federation)

    2009-05-15

    A by-product of the coke industry is a raw benzene fraction benzene- 1 which may serve as for catalytic processes. The paper reports a study on the influence of the composition and temperatures on the activity and selectivity of NiO-V{sub 2}O{sub 6}-MoO{sub 3}/{gamma}-Al{sub 2}O{sub 3} catalysts and the corresponding binary and tertiary subsystems are studied by a pulse method in model reactions; the hydrodealkylating of toluene and the hydrodesulfurizing of thioprhene. The optimal catalyst composition is established. The new catalyst is compared with industrial catalysts.

  7. Nanostructured, mesoporous Au/TiO2 model catalysts – structure, stability and catalytic properties

    Directory of Open Access Journals (Sweden)

    Matthias Roos

    2011-09-01

    Full Text Available Aiming at model systems with close-to-realistic transport properties, we have prepared and studied planar Au/TiO2 thin-film model catalysts consisting of a thin mesoporous TiO2 film of 200–400 nm thickness with Au nanoparticles, with a mean particle size of ~2 nm diameter, homogeneously distributed therein. The systems were prepared by spin-coating of a mesoporous TiO2 film from solutions of ethanolic titanium tetraisopropoxide and Pluronic P123 on planar Si(100 substrates, calcination at 350 °C and subsequent Au loading by a deposition–precipitation procedure, followed by a final calcination step for catalyst activation. The structural and chemical properties of these model systems were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, N2 adsorption, inductively coupled plasma ionization spectroscopy (ICP–OES and X-ray photoelectron spectroscopy (XPS. The catalytic properties were evaluated through the oxidation of CO as a test reaction, and reactivities were measured directly above the film with a scanning mass spectrometer. We can demonstrate that the thin-film model catalysts closely resemble dispersed Au/TiO2 supported catalysts in their characteristic structural and catalytic properties, and hence can be considered as suitable for catalytic model studies. The linear increase of the catalytic activity with film thickness indicates that transport limitations inside the Au/TiO2 film catalyst are negligible, i.e., below the detection limit.

  8. Kinetics and mechanistic study of n-alkane hydroisomerization reaction on Pt-doped γ-alumina catalyst

    Directory of Open Access Journals (Sweden)

    Abhishek Dhar

    2017-12-01

    Full Text Available The catalysts γ-alumina (GA, the reference catalyst and Pt doped γ-alumina (PGA-s were synthesized using a simple sol-gel technique, in which at first preparation of porous base (GA, then impregnation of platinum salt over the base and finally reduction of platinum in the surface of the support were done. These catalysts prepared in different mole ratios of Pt:Al as 2:1, 1:1 and 1:2 are named as PGA-1, PGA-2 and PGA-3 respectively. The isomerization of n-alkanes (n-hexane, n-heptane and n-octane were investigated over the synthesized catalysts. The 2-methyl pentane (2-MP, 2,2-dimethyl pentane (2,2-DMP and 2,3-dimethyl hexane (2,3-DMH are the major products of respective isomerization of n-hexane, n-heptane and n-octane, besides a small amount of other branched isomers are also produced. The product distribution is comparable to that reported for Pt based other catalysts. The optimal mole ratios of Pt:Al is 1:1 (PGA-2 gives quite good catalytic activity for isomerization of n-alkane. Even through in reusability study, PGA-2 gives better performance than others. We have mainly focused on kinetic study, reaction mechanism behind isomerization and calculated the order of reactions and activation energies of the isomerization reactions in the present work. Keywords: Isomerization, n-alkanes, Catalyst, Reaction mechanism, Kinetics study, Activation energy

  9. Calcium and lanthanum solid base catalysts for transesterification

    Science.gov (United States)

    Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.

    2015-07-28

    In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.

  10. Microwave-based investigation of electrochemical processes in catalysts and related systems; Mikrowellengestuetzte Aufklaerung elektronischer Vorgaenge in Katalysatoren und verwandten Systemen

    Energy Technology Data Exchange (ETDEWEB)

    Fischerauer, Gerhard; Spoerl, Matthias; Reiss, Sebastian; Moos, Ralf [Bayreuth Univ. (DE). Bayreuth Engine Research Center (BERC)

    2010-07-01

    Technically important electrochemical reactions often occur at high temperatures and inside bulky structures. The difficulties associated with their direct observation are usually circumvented by indirect measurement strategies. This contribution reports on a microwave-based direct measurement method and the results obtained when it was applied to systems such as three-way catalysts (TWC), lean NOx traps (LNT), and diesel particulate filters (DPF). (orig.)

  11. A Detector for Combined SPECT/CT. Final Technical Report

    International Nuclear Information System (INIS)

    Vivek Nagarkar

    2006-01-01

    The goal of the Phase I research was to demonstrate the feasibility of developing a high performance SPECT/CT detector module based on a combination of microcolumnar CsI(Tl) scintillator coupled to an EMCCD readout. We are very pleased to report that our Phase I research has demonstrated the technical feasibility of our approach with a very high degree of success. Specifically, we were able to implement a back-thinned EMCCD with a fiberoptic window which was successfully used to demonstrate the feasibility of near simultaneous radionuclide/CT using the proposed concept. Although significantly limited in imaging area (24 x 24 mm 2 ) and pixel resolution (512 x 512), this prototype has shown exceptional capabilities such as a single optical photon sensitivity, very low noise, an intrinsic resolution of 64 (micro)m for radionuclide imaging, and a resolution in excess of 10 lp/mm for x-ray imaging. Furthermore, the combination of newly developed, thick, microcolumnar CsI and an EMCCD has shown to be capable of operating in a photon counting mode, and that the position and energy information obtained from these data can be used to improve resolution in radionuclide imaging. Finally, the prototype system has successfully been employed for near simultaneous SPECT/CT imaging using both, 125 I and 99m Tc radioisotopes. The tomographic reconstruction data obtained using a mouse heart phantom and other phantoms clearly demonstrate the feasibility and efficacy of the detector in small animal research. The following were the objectives specified in the Phase I proposal: (1) In consultation with Professor Hasegawa, develop specifications for the Phase I/Phase II prototype detector; (2) Modify current vapor deposition protocols to fabricate ∼2 mm thick microcolumnar CsI(Tl) scintillators with excellent columnar structure, high light yield, and high spatial resolution; (3) Perform detailed characterization of the film morphology, light output, and spatial resolution, and use

  12. Final Technical Report: "Representing Endogenous Technological Change in Climate Policy Models: General Equilibrium Approaches"

    Energy Technology Data Exchange (ETDEWEB)

    Ian Sue Wing

    2006-04-18

    The research supported by this award pursued three lines of inquiry: (1) The construction of dynamic general equilibrium models to simulate the accumulation and substitution of knowledge, which has resulted in the preparation and submission of several papers: (a) A submitted pedagogic paper which clarifies the structure and operation of computable general equilibrium (CGE) models (C.2), and a review article in press which develops a taxonomy for understanding the representation of technical change in economic and engineering models for climate policy analysis (B.3). (b) A paper which models knowledge directly as a homogeneous factor, and demonstrates that inter-sectoral reallocation of knowledge is the key margin of adjustment which enables induced technical change to lower the costs of climate policy (C.1). (c) An empirical paper which estimates the contribution of embodied knowledge to aggregate energy intensity in the U.S. (C.3), followed by a companion article which embeds these results within a CGE model to understand the degree to which autonomous energy efficiency improvement (AEEI) is attributable to technical change as opposed to sub-sectoral shifts in industrial composition (C.4) (d) Finally, ongoing theoretical work to characterize the precursors and implications of the response of innovation to emission limits (E.2). (2) Data development and simulation modeling to understand how the characteristics of discrete energy supply technologies determine their succession in response to emission limits when they are embedded within a general equilibrium framework. This work has produced two peer-reviewed articles which are currently in press (B.1 and B.2). (3) Empirical investigation of trade as an avenue for the transmission of technological change to developing countries, and its implications for leakage, which has resulted in an econometric study which is being revised for submission to a journal (E.1). As work commenced on this topic, the U.S. withdrawal

  13. VO x /SiO 2 Catalyst Prepared by Grafting VOCl 3 on Silica for Oxidative Dehydrogenation of Propane

    KAUST Repository

    Zhu, Haibo; Ould-Chikh, Samy; Dong, Hailin; Llorens, Isabelle; Saih, Youssef; Anjum, Dalaver H.; Hazemann, Jean Louis; Basset, Jean-Marie

    2015-01-01

    The VOx/SiO2 catalysts for oxidative dehydrogenation of propane were synthesized by a simple grafting method. The VOCl3 was first grafted at the surface of SiO2, which was dehydrated at different temperature (from 200 to 1000°C). The formed grafted complexes were then calcined in air, leading to the formation of VOx/SiO2 catalysts. The synthesized catalysts were characterized by nitrogen adsorption, SEM, Raman spectroscopy, temperature-programmed reduction, and extended X-ray absorption fine structure analysis. The SiO2 pretreatment temperature has an evident effect on the loading and dispersion of VOx on SiO2, which finally affects their catalytic performance. High SiO2 treatment temperature is beneficial to dispersing the vanadium oxide species at the SiO2 surface. These materials are efficient catalysts for the catalytic oxidative dehydrogenation of propane to propylene. The best selectivity to propylene is achieved on the VOx/SiO2-(1000) catalyst. The high selectivity and activity are well maintained for three days catalytic reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. VO x /SiO 2 Catalyst Prepared by Grafting VOCl 3 on Silica for Oxidative Dehydrogenation of Propane

    KAUST Repository

    Zhu, Haibo

    2015-09-07

    The VOx/SiO2 catalysts for oxidative dehydrogenation of propane were synthesized by a simple grafting method. The VOCl3 was first grafted at the surface of SiO2, which was dehydrated at different temperature (from 200 to 1000°C). The formed grafted complexes were then calcined in air, leading to the formation of VOx/SiO2 catalysts. The synthesized catalysts were characterized by nitrogen adsorption, SEM, Raman spectroscopy, temperature-programmed reduction, and extended X-ray absorption fine structure analysis. The SiO2 pretreatment temperature has an evident effect on the loading and dispersion of VOx on SiO2, which finally affects their catalytic performance. High SiO2 treatment temperature is beneficial to dispersing the vanadium oxide species at the SiO2 surface. These materials are efficient catalysts for the catalytic oxidative dehydrogenation of propane to propylene. The best selectivity to propylene is achieved on the VOx/SiO2-(1000) catalyst. The high selectivity and activity are well maintained for three days catalytic reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Virginia Solar Pathways Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Katharine; Cosby, Sarah

    2018-03-28

    This Report provides a technical review of the final results of a funding award to Virginia Electric and Power Company (Dominion Energy Virginia (DEV) or the Company) for a project under the U.S. Department of Energy’s Solar Energy Technologies Office. The three-year project was formally known as the Virginia Solar Pathways Project (VSPP or the Project). The purpose of the VSPP was to develop a collaborative utility-administered solar strategy (Solar Strategy) for DEV’s service territory in the Commonwealth that could serve as a replicable model for other states with similar policy environments. The U.S. Department of Energy (DOE) funding award enabled DEV to take a focused approach to developing the Solar Strategy for its Virginia service territory. The structure and funding from the DOE award also facilitated valuable input from a formal stakeholder team convened to serve as advisors (Advisory Team) to the VSPP and contribute their perspectives and expertise to both the analysis and strategy development aspects of the Project. The development of the Solar Strategy involved three main goals: • Establish a policy and program framework that would integrate existing solar programs with new options appropriate for the Commonwealth’s policy environment and broader economic development objectives; • Promote wider deployment of solar within a low retail electric rate environment; and • Serve as a sustainable, utility-administered solar model that could be replicated in other states with similar policy environments, including, but not limited to, the entire Southeast region. In support of the VSPP goals, the Project Team commissioned four studies to support the Solar Strategy development. Two studies, completed by Navigant Consulting, focused on the integration of solar into the electric grid. The first solar integration study focused on integration of solar into the distribution grid where the utility system directly connects to and serves end-use customers

  16. FOREX trading strategy formation using technical analysis

    OpenAIRE

    Klimavičius, Domas

    2010-01-01

    FOREX technical analysis indicators, their characteristics and capabilities are researched in this final master thesis. The main goal of this thesis is to determine if technical analysis indicators can recognise patterns in price movements and if they can predict future price movement. The first part of the thesis presents with FOREX theoretical aspects, its characteristics and participants. In the second part of the thesis FOREX analysis tools are overviewed, focusing on technical analysis. ...

  17. Carbons and carbon supported catalysts in hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, Edward

    2009-07-01

    This book is a comprehensive summary of recent research in the field and covers all areas of carbons and carbon materials. The potential application of carbon supports, particularly those of carbon black (CB) and activated carbon (AC) in hydroprocessing catalysis are covered. Novel carbon materials such as carbon fibers and carbon nano tubes (CNT) are also covered, including the more recent developments in the use of fullerenes in hydroprocessing applications. Although the primary focus of this book is on carbons and carbon supported catalysts, it also identifies the difference in the effect of carbon supports compared with the oxidic supports, particularly that of the Al{sub 2}O{sub 3}. The difference in catalyst activity and stability was estimated using both model compounds and real feeds under variable conditions. The conditions applied during the preparation of carbon supported catalysts are also comprehensively covered and include various methods of pretreatment of carbon supports to enhance catalyst performance. The model compounds results consistently show higher hydrodesulfurization and hydrodeoxygenation activities of carbon supported catalysts than that of the Al{sub 2}O{sub 3} supported catalysts. Also, the deactivation of the former catalysts by coke deposition was much less evident. Chapter 6.3.1.3 is on carbon-supported catalysts: coal-derived liquids.

  18. Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts.

    Science.gov (United States)

    Debecker, Damien P; Le Bras, Solène; Boissière, Cédric; Chaumonnot, Alexandra; Sanchez, Clément

    2018-04-16

    Aerosol processing is long known and implemented industrially to obtain various types of divided materials and nanomaterials. The atomisation of a liquid solution or suspension produces a mist of aerosol droplets which can then be transformed via a diversity of processes including spray-drying, spray pyrolysis, flame spray pyrolysis, thermal decomposition, micronisation, gas atomisation, etc. The attractive technical features of these aerosol processes make them highly interesting for the continuous, large scale, and tailored production of heterogeneous catalysts. Indeed, during aerosol processing, each liquid droplet undergoes well-controlled physical and chemical transformations, allowing for example to dry and aggregate pre-existing solid particles or to synthesise new micro- or nanoparticles from mixtures of molecular or colloidal precursors. In the last two decades, more advanced reactive aerosol processes have emerged as innovative means to synthesise tailored-made nanomaterials with tunable surface properties, textures, compositions, etc. In particular, the "aerosol-assisted sol-gel" process (AASG) has demonstrated tremendous potential for the preparation of high-performance heterogeneous catalysts. The method is mainly based on the low-cost, scalable, and environmentally benign sol-gel chemistry process, often coupled with the evaporation-induced self-assembly (EISA) concept. It allows producing micronic or submicronic, inorganic or hybrid organic-inorganic particles bearing tuneable and calibrated porous structures at different scales. In addition, pre-formed nanoparticles can be easily incorporated or formed in a "one-pot" bottom-up approach within the porous inorganic or hybrid spheres produced by such spray drying method. Thus, multifunctional catalysts with tailored catalytic activities can be prepared in a relatively simple way. This account is an overview of aerosol processed heterogeneous catalysts which demonstrated interesting performance in

  19. Optimization of catalyst system reaps economic benefits

    International Nuclear Information System (INIS)

    Le Roy, C.F.; Hanshaw, M.J.; Fischer, S.M.; Malik, T.; Kooiman, R.R.

    1991-01-01

    Champlin Refining and Chemicals Inc. is learning to optimize its catalyst systems for hydrotreating Venezuelan gas oils through a program of research, pilot plant testing, and commercial unit operation. The economic results of this project have been evaluated, and the benefits are most evident in improvements in product yields and qualities. The project has involved six commercial test runs, to date (Runs 10-15), with a seventh run planned. A summary of the different types of catalyst systems used in the test runs, and the catalyst philosophy that developed is given. Runs 10 and 11 used standard CoMo and NiMo catalysts for heavy gas oils hydrotreating. These catalysts had small pore sizes and suffered high deactivation rates because of metals contamination. When it was discovered that metals contamination was a problem, catalyst options were reviewed

  20. Palladium-Based Catalysts as Electrodes for Direct Methanol Fuel Cells: A Last Ten Years Review

    Directory of Open Access Journals (Sweden)

    Juan Carlos Calderón Gómez

    2016-08-01

    Full Text Available Platinum-based materials are accepted as the suitable electrocatalysts for anodes and cathodes in direct methanol fuel cells (DMFCs. Nonetheless, the increased demand and scarce world reserves of Pt, as well as some technical problems associated with its use, have motivated a wide research focused to design Pd-based catalysts, considering the similar properties between this metal and Pt. In this review, we present the most recent advancements about Pd-based catalysts, considering Pd, Pd alloys with different transition metals and non-carbon supported nanoparticles, as possible electrodes in DMFCs. In the case of the anode, different reported works have highlighted the capacity of these new materials for overcoming the CO poisoning and promote the oxidation of other intermediates generated during the methanol oxidation. Regarding the cathode, the studies have showed more positive onset potentials, as fundamental parameter for determining the mechanism of the oxygen reduction reaction (ORR and thus, making them able for achieving high efficiencies, with less production of hydrogen peroxide as collateral product. This revision suggests that it is possible to replace the conventional Pt catalysts by Pd-based materials, although several efforts must be made in order to improve their performance in DMFCs.

  1. Method of performing sugar dehydration and catalyst treatment

    Science.gov (United States)

    Hu, Jianli [Kennewick, WA; Holladay, Johnathan E [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-06-01

    The invention includes a method of treating a solid acid catalyst. After exposing the catalyst to a mixture containing a sugar alcohol, the catalyst is washed with an organic solvent and is then exposed to a second reaction mixture. The invention includes a process for production of anhydrosugar alcohol. A solid acid catalyst is provided to convert sugar alcohol in a first sample to an anhydrosugar alcohol. The catalyst is then washed with an organic solvent and is subsequently utilized to expose a second sample. The invention includes a method for selective production of an anhydrosugar. A solid acid catalyst is provided within a reactor and anhydrosugar alcohol is formed by flowing a starting sugar alcohol into the reactor. The acid catalyst is then exposed to an organic solvent which allows a greater amount of additional anhydrosugar to be produced than would occur without exposing the acid catalyst to the organic solvent.

  2. Catalysts for oxidation of mercury in flue gas

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  3. Final Technical Report for Year 5 Early Career Research Project "Viscosity and equation of state of hot and dense QCD matter"

    Energy Technology Data Exchange (ETDEWEB)

    Molnar, Denes [Purdue Univ., West Lafayette, IN (United States)

    2016-05-25

    The Section below summarizes research activities and achievements during the fifth (last) year of the PI’s Early Career Research Project (ECRP). Unlike the first four years of the project, the last year was not funded under the American Recovery and Reinvestment Act (ARRA). The ECRP advanced two main areas: i) radiative 3 ↔ 2 radiative transport, via development of a new computer code MPC/Grid that solves the Boltzmann transport equation in full 6+1D (3X+3V+time); and ii) application of relativistic hydrodynamics, via development of a self-consistent framework to convert viscous fluids to particles. In Year 5 we finalized thermalization studies with radiative gg ↔ ggg transport (Sec. 1.1.1) and used nonlinear covariant transport to assess the accuracy of fluid-to-particle conversion models (Sec. 1.1.2), calculated observables with self-consistent fluid-to-particle conversion from realistic viscous hydrodynamic evolution (Secs. 1.2.1 and 1.2.2), extended the covariant energy loss formulation to heavy quarks (Sec. 1.4.1) and studied energy loss in small systems (Sec. 1.4.2), and also investigated how much of the elliptic flow could have non-hydrodynamic origin (Sec 1.3). Years 1-4 of the ECRP were ARRA-funded and, therefore, they have their own report document ’Final Technical Report for Years 1-4 of the Early Career Research Project “Viscosity and equation of state of hot and dense QCD matter”’ (same award number DE-SC0004035). The PI’s group was also part of the DOE JET Topical Collaboration, a multi-institution project that overlapped in time significantly with the ECRP. Purdue achievements as part of the JET Top- ical Collaboration are in a separate report “Final Technical Report summarizing Purdue research activities as part of the DOE JET Topical Collaboration” (award DE-SC0004077).

  4. Biomass processing over gold catalysts

    CERN Document Server

    Simakova, Olga A; Murzin, Dmitry Yu

    2014-01-01

    The book describes the valorization of biomass-derived compounds over gold catalysts. Since biomass is a rich renewable feedstock for diverse platform molecules, including those currently derived from petroleum, the interest in various transformation routes has become intense. Catalytic conversion of biomass is one of the main approaches to improving the economic viability of biorefineries.  In addition, Gold catalysts were found to have outstanding activity and selectivity in many key reactions. This book collects information about transformations of the most promising and important compounds derived from cellulose, hemicelluloses, and woody biomass extractives. Since gold catalysts possess high stability under oxidative conditions, selective oxidation reactions were discussed more thoroughly than other critical reactions such as partial hydrogenation, acetalization, and isomerization. The influence of reaction conditions, the role of the catalyst, and the advantages and disadvantages of using gold are pre...

  5. Catalytic upgrading of gas from biofuels and implementation of electricity production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Espenaes, Bengt-Goeran; Frostaeng, Sten [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    The project aimed at research and development concerning processes for production of fuel gas and systems for production of electricity in the small to intermediate size range (100 kW{sub e} to 5 MW{sub e}. The project included building and testing of a complete 'biomass-to-electricity' chain at scale of 100 kW{sub th}. Research work was focused on improvements in reduction of contents of tar and ammonia, and on the influences from sulphur on nickel catalysts, and from chlorine on dolomite catalysts. The project was divided into four main tasks, comprising 19 work packages which included basic and applied research and process development. The work was to some extent a further development of results obtained in a previous EC project (AIR2-CT93-1436). A pilot plant at scale 100 kW{sub th} was designed and erected by BTG. This system consists of a fluidized bed gasifier, a reversal flow tar converter (RFTC), a gas cooler, dust filter and a gas engine. A main effort was put into the optimisation of the RFTC. Tar contents obtained varied between 50 and 150 mg/Nm{sup 3} . Finally, a short test programme was executed, where the technical feasibility of the RFTC was demonstrated successfully at real conditions in the complete biomass-to-electricity system. Specific investment costs were estimated for scales of 0.4, 1 and 2 MW{sub el}. For the largest scale the specific investment costs were estimated to about 165 ECU/kW{sub el}. The fundamental work consisted of basic investigations of catalysts, catalysed reactions, catalyst poisoning by sulphur and tar characterisation. Issues addressed were such as factors that influence activity of different catalysts for elimination of tars, search for new catalysts and optimal use of known and new catalysts. Detailed kinetics of catalysed reactions that convert tar into desired permanent fuel gas components was determined for the most stable tar components, which play major roles in the overall conversion of tar. The

  6. Palladium catalysts deposited on silica materials: Comparison of catalysts based on mesoporous and amorphous supports in Heck reaction

    Czech Academy of Sciences Publication Activity Database

    Demel, J.; Čejka, Jiří; Štěpnička, P.

    2010-01-01

    Roč. 329, 1-2 (2010), s. 13-20 ISSN 1381-1169 R&D Projects: GA ČR GA104/09/0561 Institutional research plan: CEZ:AV0Z40400503 Keywords : heterogeneous catalysts * immobolized catalysts * supported catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.872, year: 2010

  7. Structure and catalytic activity of regenerated spent hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.S.; Massoth, F.E.; Furimsky, E. (Utah University, Salt Lake City, UT (USA). Dept. of Fuels Engineering)

    1992-11-01

    Two spent catalysts, obtained from different hydrodemetallation operations, were regenerated by two different treatments, viz. 2% (V/V) O[sub 2]/N[sub 2] and air. One spent catalyst (B), contained 3 wt% V and 15 wt% C, while the other (H) contained 10 wt% V, 14 wt% C and 8 wt% Fe. After regeneration in the O[sub 2]/N[sub 2] stream, catalyst B showed essentially complete recovery of its original surface area, whereas catalyst H showed only 70% recovery. Both catalysts showed substantial losses in surface area by the air treatment. Catalytic activity tests on the regenerated catalysts for hydrodesulfurization of thiophene and for hydrogenation of 1-hexene showed low recovery of activities, even for the regenerated catalyst in which the surface area had been completely recovered. X-ray diffraction analyses of the spent-regenerated catalysts revealed substantial changes in catalyst structure. Surface area and catalytic activity results were qualitatively explained by these catalyst structural changes. 17 refs., 1 fig., 3 tabs.

  8. The Dependence of CNT Aerogel Synthesis on Sulfur-driven Catalyst Nucleation Processes and a Critical Catalyst Particle Mass Concentration.

    Science.gov (United States)

    Hoecker, Christian; Smail, Fiona; Pick, Martin; Weller, Lee; Boies, Adam M

    2017-11-06

    The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of Fe x C y  > 160 mg/m 3 , but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

  9. 75 FR 33682 - Export Administration Regulations; Technical Amendments

    Science.gov (United States)

    2010-06-15

    ...-01] RIN 0694-AE93 Export Administration Regulations; Technical Amendments AGENCY: Bureau of Industry... Bureau of Industry and Security (BIS) makes a technical amendment to the Export Administration... review of final decisions and orders issued in BIS export control administrative enforcement proceedings...

  10. Development of industrial hydrogenating catalyst on rhenium base

    International Nuclear Information System (INIS)

    Chistyakova, G.A.; Bat', I.I.; Rebrova, V.V.

    1975-01-01

    Processes for forming rhenium catalysts on carbon carrier and their catalytic properties in nitrobenzene (NB) reduction were studied. Application of an ammonia preparation to the carbon surface produced impregnated carbon saturated at room temperature with a water solution of the ammonia preparation, taken in a volume equal to the volumetric capacity of the carbon. With one impregnation, 2% rhenium was taken up. Catalysts containing more than 5% rhenium were obtained by impregnating the carbon with heating and use of more concentrated solutions. Catalysts made in this way and dried at 100 0 C had the composition Re 2 OH/carbon/. The most active catalysts were those reduced at 200-250 0 C; higher temperatures, up to 300-500 0 C, decreased the activity. Study of the catalytic properties of the rhenium catalysts in a liquid phase reduction of NB showed that the specific activity of rhenium depends only slightly on the content of the active component in the catalyst and is close to the specific activity of palladium and considerably exceeds that of nickel. Study of the effect of the NB concentration and hydrogen pressure on the activity and stability of the 5% rhenium catalyst indicated that with NB concentrations from 50 to 10% the process takes place at an essentially constant rate; the order of the reaction was close to zero with an apparent activation energy of about 7000 cal/mole. At pressures of 15-200 atm the yield with the 5% catalyst was proportional to the hydrogen pressure. A big advantage of the rhenium catalysts in the reduction of NB is their high selectivity. With a higher activity than palladium and nickel catalysts, 5% rhenium catalyst produces a high operating capacity in a wide range of contact charges, which has considerable significance for industrial use in contact apparatus of the column type. Comparison of the costs of rhenium catalysts and granular carbon carrier with those of nickel, platinum, and palladium showed that 5% rhenium catalyst can

  11. Reactivation of a Tin-Oxide-Containing Catalyst

    Science.gov (United States)

    Hess, Robert; Sidney, Barry; Schryer, David; Miller, Irvin; Miller, George; Upchurch, Bill; Davis, Patricia; Brown, Kenneth

    2010-01-01

    The electrons in electric-discharge CO2 lasers cause dissociation of some CO2 into O2 and CO, and attach themselves to electronegative molecules such as O2, forming negative O2 ions, as well as larger negative ion clusters by collisions with CO or other molecules. The decrease in CO2 concentration due to dissociation into CO and O2 will reduce the average repetitively pulsed or continuous wave laser power, even if no disruptive negative ion instabilities occur. Accordingly, it is the primary object of this invention to extend the lifetime of a catalyst used to combine the CO and O2 products formed in a laser discharge. A promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide (Pt/SnO2). First, the catalyst is pretreated by a standard procedure. The pretreatment is considered complete when no measurable quantity of CO2 is given off by the catalyst. After this standard pretreatment, the catalyst is ready for its low-temperature use in the sealed, high-energy, pulsed CO2 laser. However, after about 3,000 minutes of operation, the activity of the catalyst begins to slowly diminish. When the catalyst experiences diminished activity during exposure to the circulating gas stream inside or external to the laser, the heated zone surrounding the catalyst is raised to a temperature between 100 and 400 C. A temperature of 225 C was experimentally found to provide an adequate temperature for reactivation. During this period, the catalyst is still exposed to the circulating gas inside or external to the laser. This constant heating and exposing the catalyst to the laser gas mixture is maintained for an hour. After heating and exposing for an appropriate amount of time, the heated zone around the catalyst is allowed to return to the nominal operating temperature of the CO2 laser. This temperature normally resides in the range of 23 to 100 C. Catalyst activity can be measured as the percentage conversion of CO to CO2. In the specific embodiment

  12. Competing reaction processes on a lattice as a paradigm for catalyst deactivation

    Science.gov (United States)

    Abad, E.; Kozak, J. J.

    2015-02-01

    trapping s at sites other than the target molecule does not result in a decrease of the efficiency as in the catalyst case, but rather in enhanced efficiency of light-energy conversion, which we characterize in terms of N and s . The one-dimensional case and its connection with a modified version of the gambler's ruin problem are discussed. Finally, generalizations of our model are described briefly.

  13. Health care fraud and abuse data collection program: technical revisions to Healthcare Integrity and Protection Data Bank data collection activities. Final rule.

    Science.gov (United States)

    2004-09-21

    The rule finalizes technical changes to the Healthcare Integrity and Protection Data Bank (HIPDB) data collection reporting requirements by clarifying the types of personal numeric identifiers that may be reported to the data bank in connection with adverse actions. The rule clarifies that in lieu of a Social Security Number (SSN), an individual taxpayer identification number (ITIN) may be reported to the data bank when, in those limited situations, an individual does not have an SSN.

  14. Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization and Applications

    OpenAIRE

    Saucedo, Jose A, Jr; Xiao, Yang; Varma, Arvind

    2015-01-01

    Bimetallic catalysts have been explored and shown to exhibit unique characteristics which are not present in monometallic catalysts. Platinum is well known as an effective catalyst for oxidation and reduction reactions, and it can be made more effective when bismuth is introduced as a promotor. Thus, the effectiveness of the Pt-Bi catalyst was demonstrated in prior work. What is not clear, however, is the mechanism behind the catalyst function; why addition of bismuth to platinum decreases de...

  15. Tungsten Recovery from Spent SCR Catalyst Using Alkaline Leaching and Ion Exchange

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Wu

    2016-10-01

    Full Text Available The recovery of tungsten (W from a honeycomb-type spent selective catalytic reduction (SCR catalyst using an alkaline leaching–ion exchange method was investigated. Spent SCR catalyst mainly consists of TiO2 and other oxides (6.37% W, 1.57% vanadium (V, and 2.81% silicon (Si, etc.. The ground catalyst was leached at the optimal conditions, as follows: NaOH concentration of 0.3 kg/kg of catalyst, pulp density of 3%, leaching temperature of 70 °C, particle size of −74 μm, and leaching time of 30 min. In this study, the leaching rate values of V and W under the above conditions were 87 wt %, and 91 wt %, respectively. The pregnant solution was then passed through a strong base anion exchange resin (Amberlite IRA900. At high pH conditions, the use of strong base anion exchange resin led to selective loading of divalent WO42− from the solution, because the fraction of two adjacent positively-charged sites on the IRA900 resin was higher and separate from the coexisting VO43−. The adsorbed W could then be eluted with 1 M NaCl + 0.5 M NaOH. The final concentrated W solution had 8.4 g/L of W with 98% purity. The application of this process in industry is expected to have an important impact on the recovery of W from secondary sources of these metals.

  16. Polymer-bound rhodium hydroformylation catalysts

    NARCIS (Netherlands)

    Jongsma, Tjeerd

    1992-01-01

    Homogeneous catalysts are superior in activity, selectivity as well as specificity, but heterogeneous catalyst are often preferred in industrial processes, because of their good recoverability and their applicability in continuous flow reactors. It would be of great environmental, commercial and

  17. SCR at bio fuels combustion - phase 2. Measures to extend catalyst life time; SCR vid biobraensleeldning - etapp 2. Aatgaerder foer att foerlaenga katalysatorns livslaengd

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer; Bodin, Henrik; Sahlqvist, Aasa [Vattenfall Utveckling AB, Aelvkarleby (Sweden); Khodayari, Raziyeh; Odenbrand, Ingemar [Lund Univ. (Sweden). Dept. of Chemical Engineering II

    2000-07-01

    In this project phase, the deactivation of catalysts during combustion of bio fuels, and different methods of regeneration have been investigated. The overall purpose is to improve the economic and technical possibilities to use SCR at bio fuels combustion. The two different methods for regeneration are washing with water and so called sulphation (treatment with sulphur dioxide). The results from wood fired FB-boilers show that the catalyst lose 25% (average) of the relative activity during a normal heat production season. The tendency is that a boiler with short residence time between final combustion and catalyst and/or high flame temperatures gives a faster deactivation. Such unfavourable conditions arise in FB-boilers with a large part of the combustion in freeboard/cyclone. The alkali content of the fuel (wood fuel) is of minor importance for the deactivation rate compared with the combustion conditions. The flue gas temperature within the interval 250 - 375 deg C is not an important parameter for the deactivation in the time interval 3 000 - 6 000 h. The 'new' honeycomb catalysts that were tested during phase two, BiotypA-C, evidently show different deactivation trends. The highly active BiotypC e.g. increases its activity during the first thousand hours. Calculations indicate that BiotypC at 315 deg C requires the smallest volume of catalyst over ten years of operation in order to maintain given performance. Practical consequences for downstream equipment also need to be carefully checked. Sulphation with SO{sub 2} works in the laboratory as a regeneration method for all of the tested samples. The sulphatised samples deactivation are almost comparable to a fresh sample when exposed to flue gas. About 80 % of the lost activity can be regained only by using sulphation. Plate-type catalysts gets a somewhat lower increase in activity compared to honeycomb-types, probably related to chemical rather than geometric design. High SO{sub 2}-concentration

  18. Immobilization of molecular catalysts in supported ionic liquid phases.

    Science.gov (United States)

    Van Doorslaer, Charlie; Wahlen, Joos; Mertens, Pascal; Binnemans, Koen; De Vos, Dirk

    2010-09-28

    In a supported ionic liquid phase (SILP) catalyst system, an ionic liquid (IL) film is immobilized on a high-surface area porous solid and a homogeneous catalyst is dissolved in this supported IL layer, thereby combining the attractive features of homogeneous catalysts with the benefits of heterogeneous catalysts. In this review reliable strategies for the immobilization of molecular catalysts in SILPs are surveyed. In the first part, general aspects concerning the application of SILP catalysts are presented, focusing on the type of catalyst, support, ionic liquid and reaction conditions. Secondly, organic reactions in which SILP technology is applied to improve the performance of homogeneous transition-metal catalysts are presented: hydroformylation, metathesis reactions, carbonylation, hydrogenation, hydroamination, coupling reactions and asymmetric reactions.

  19. Technology development for iron Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, R.J.; Raje, A.; Keogh, R.A. [and others

    1995-12-31

    The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low-or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the {open_quotes}standard-catalyst{close_quotes} developed by German workers for slurry phase synthesis. In parallel, work will be conducted to design a high-alpha iron catalyst this is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  20. The evaluation of a framework for measuring the non-technical ward round skills of final year nursing students: An observational study.

    Science.gov (United States)

    Murray, Kara; McKenzie, Karen; Kelleher, Michael

    2016-10-01

    The importance of non-technical skills (NTS) to patient outcomes is increasingly being recognised, however, there is limited research into how such skills can be taught and evaluated in student nurses in relation toward rounds. This pilot study describes an evaluation of a NTS framework that could potentially be used to measure ward round skills of student nurses. The study used an observational design. Potential key NTS were identified from existing literature and NTS taxonomies. The proposed framework was then used to evaluate whether the identified NTS were evident in a series of ward round simulations that final year general nursing students undertook as part of their training. Finally, the views of a small group of qualified nurse educators, qualified nurses and general nursing students were sought about whether the identified NTS were important and relevant to practice. The proposed NTS framework included seven categories: Communication, Decision Making, Situational Awareness, Teamwork and Task Management, Student Initiative and Responsiveness to Patient. All were rated as important and relevant to practice. The pilot study suggests that the proposed NTS framework could be used as a means of evaluating student nurse competencies in respect of many non-technical skills required for a successful ward round. Further work is required to establish the validity of the framework in educational settings and to determine the extent to which it is of use in a non-simulated ward round setting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.

    Science.gov (United States)

    Wang, Hong; Sofer, Zdeněk; Eng, Alex Yong Sheng; Pumera, Martin

    2014-11-10

    A novel concept of an iridium-based bubble-propelled Janus-particle-type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m(2)  g(-1). The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium-doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble-propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Catalytic Transformation of Ethylbenzene over Y-Zeolite-based Catalysts

    KAUST Repository

    Al-Khattaf, Sulaiman

    2008-11-19

    Catalytic transformation of ethylbenzene (EB) has been investigated over ultrastable Y (USY)-zeolite-based catalysts in a novel riser simulator at different operating conditions. The effect of reaction conditions on EB conversion is reported. The USY catalyst (FCC-Y) was modified by steaming to form a significantly lower acidity catalyst (FCC-SY). The current study shows that the FCC-SY catalyst favors EB disproportionation more than cracking. A comparison has been made between the results of EB conversion over the lowly acidic catalyst (FCC-SY) and the highly acidic catalyst (FCC-Y) under identical conditions. It was observed that increase in catalyst acidity favored cracking of EB at the expense of disproportionation. Kinetic parameters for EB disappearance during disproportionation reaction over the FCC-SY catalyst were calculated using the catalyst activity decay function based on time on stream (TOS). © 2008 American Chemical Society.

  3. Efficient epoxidation of propene using molecular catalysts

    DEFF Research Database (Denmark)

    Markovits, Iulius I. E.; Anthofer, Michael H.; Kolding, Helene

    2014-01-01

    The epoxidation of propene is performed in homogeneous phase using various molecular catalysts and H2O2 or tert-butyl hydroperoxide as oxidants. A comparison between some molybdenum catalysts and methyltrioxorhenium (MTO) shows that the well known Re catalyst is the best among the examined...

  4. Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs.

    Science.gov (United States)

    Santoro, Carlo; Kodali, Mounika; Herrera, Sergio; Serov, Alexey; Ieropoulos, Ioannis; Atanassov, Plamen

    2018-02-28

    Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e - transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm -2 and 10 mgcm -2 . Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm -2 and 262 ± 4 μWcm -2 with catalyst loading of 0.1 mgcm -2 and 10 mgcm -2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.

  5. High-Efficiency Nitride-Based Solid-State Lighting. Final Technical Progress Report

    International Nuclear Information System (INIS)

    Paul T. Fini; Shuji Nakamura

    2005-01-01

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 (micro)m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of ∼ 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light

  6. Exhaust gas sensors for NO{sub x} storage catalysts and ammonia SCR systems; Abgassensoren fuer NO{sub x}-Speicherkatalysatoren und Ammoniak-SCR-Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Moos, R. [Bayreuth Univ. (DE). Bayreuth Engine Research Center (BERC)

    2008-07-01

    Measuring of the air-to-fuel ratio and/or the exhaust gas oxygen content with the help of an exhaust gas sensor has been established thirty years ago. Whereas the original thimble type lambda probe, which is still shown today in textbooks, is a product of classical ceramic technology, newer sensors are manufactured in planar multilayer technology stemming from electronic technology. This is the basis for additional functionalities like NO{sub x} or ammonia sensitivities. Due to increasing requirements for OBD, the sensor of the future might be a multifunctional device which allows for measuring application specific components as well as lambda in a wide range. From a technical standpoint, it would even today be feasible to manufacture an integrated exhaust gas sensor that can measure ammonia, NO{sub x}, and lambda at the same time. Whether the direct catalyst status diagnosis will become ripe for serial application does not depends only on technical questions and cost considerations but also on the issue whether one is willing to establish a completely novel way of catalyst detection in the exhaust pipe. (orig.)

  7. Activating catalysts with mechanical force

    NARCIS (Netherlands)

    Piermattei, A.; Karthikeyan, S.; Sijbesma, R.P.

    2009-01-01

    Homogeneously catalysed reactions can be ‘switched on’ by activating latent catalysts. Usually, activation is brought about by heat or an external chemical agent. However, activation of homogeneous catalysts with a mechanical trigger has not been demonstrated. Here, we introduce a general method to

  8. Mechanical design and first experimental results of an upgraded technical PERMCAT reactor for tritium recovery in the fuel cycle of a fusion machine

    Energy Technology Data Exchange (ETDEWEB)

    Welte, S., E-mail: stefan.welte@kit.edu [Karlsruhe Institute of Technology (KIT), Forschungszentrum Karlsruhe, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Hermann v. Helmholtz Platz 1, 76344 Eggenstein Leopoldshafen (Germany); Demange, D.; Wagner, R. [Karlsruhe Institute of Technology (KIT), Forschungszentrum Karlsruhe, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Hermann v. Helmholtz Platz 1, 76344 Eggenstein Leopoldshafen (Germany)

    2010-12-15

    The PERMCAT process developed for the final clean-up stage of the Tokamak Exhaust Processing systems of the ITER tritium plant combines a catalytic reactor and a Pd/Ag permeator in a single component. A first generation technical PERMCAT has been successfully operated as part of the CAPER experiment at the Tritium Laboratory Karlsruhe for several years. Various alternative PERMCAT mechanical designs were proposed and studied on small-scale prototypes. An upgraded technical PERMCAT reactor was designed, manufactured and commissioned with deuterium. A parallel arrangement of finger-type membranes inserted in a single catalyst bed design was chosen to simplify the geometry and the manufacturing while improving the robustness of the reactor. The component has been designed and manufactured to be fully tritium compatible and also fully compatible with both process and electrical connections of the previous PERMCAT to be replaced. The new PERMCAT mechanical design is more compact and easy to manufacture. This PERMCAT reactor was submitted to functional tests and experiments based on isotopic exchanges between H{sub 2}O and D{sub 2} to measure the processing performances. The first experimental results show decontamination factors versus flow rates better than all previously measured.

  9. Mechanical design and first experimental results of an upgraded technical PERMCAT reactor for tritium recovery in the fuel cycle of a fusion machine

    International Nuclear Information System (INIS)

    Welte, S.; Demange, D.; Wagner, R.

    2010-01-01

    The PERMCAT process developed for the final clean-up stage of the Tokamak Exhaust Processing systems of the ITER tritium plant combines a catalytic reactor and a Pd/Ag permeator in a single component. A first generation technical PERMCAT has been successfully operated as part of the CAPER experiment at the Tritium Laboratory Karlsruhe for several years. Various alternative PERMCAT mechanical designs were proposed and studied on small-scale prototypes. An upgraded technical PERMCAT reactor was designed, manufactured and commissioned with deuterium. A parallel arrangement of finger-type membranes inserted in a single catalyst bed design was chosen to simplify the geometry and the manufacturing while improving the robustness of the reactor. The component has been designed and manufactured to be fully tritium compatible and also fully compatible with both process and electrical connections of the previous PERMCAT to be replaced. The new PERMCAT mechanical design is more compact and easy to manufacture. This PERMCAT reactor was submitted to functional tests and experiments based on isotopic exchanges between H 2 O and D 2 to measure the processing performances. The first experimental results show decontamination factors versus flow rates better than all previously measured.

  10. Dearomatization of jet fuel on irradiated platinum-supported catalyst

    International Nuclear Information System (INIS)

    Mucka, V.; Ostrihonova, A.; Kopernicky, I.; Mikula, O.

    1983-01-01

    The effect of ionizing radiation ( 60 Co #betta#-rays) on Pt-supported catalyst used for the dearomatization of jet fuel with distillation in the range 395 to 534 K has been studied. Pre-irradiation of the catalyst with doses in the range 10 2 to 5 x 10 4 Gy leads to the partial catalyst activation. Irradiation of the catalyst enhances its resistance to catalyst poisons, particularly to sulphur-compounds, and this is probably the reason for its catalytic activity being approx. 60 to 100% greater than that of un-irradiated catalyst. Optimum conditions for dearomatization on the irradiated catalyst were found and, by means of a rotary three-factorial experiment, it was shown that these lie at lower temperatures and lower pressures than those for un-irradiated catalyst. (author)

  11. Multi-stage catalyst systems and uses thereof

    Science.gov (United States)

    Ozkan, Umit S [Worthington, OH; Holmgreen, Erik M [Columbus, OH; Yung, Matthew M [Columbus, OH

    2009-02-10

    Catalyst systems and methods provide benefits in reducing the content of nitrogen oxides in a gaseous stream containing nitric oxide (NO), hydrocarbons, carbon monoxide (CO), and oxygen (O.sub.2). The catalyst system comprises an oxidation catalyst comprising a first metal supported on a first inorganic oxide for catalyzing the oxidation of NO to nitrogen dioxide (NO.sub.2), and a reduction catalyst comprising a second metal supported on a second inorganic oxide for catalyzing the reduction of NO.sub.2 to nitrogen (N.sub.2).

  12. Modeling of cobalt-based catalyst use during CSS for low-temperature heavy oil upgrading

    Science.gov (United States)

    Kadyrov, R.; Sitnov, S.; Gareev, B.; Batalin, G.

    2018-05-01

    One of the methods, which is actively used on deposits of heavy oils of the Upper Kungurian (Ufimian) sandstones of the Republic of Tatarstan, is cyclic steam simulation (CSS). This method consists of 3 stages: injection, soaking, and production. Steam is injected into a well at a temperature of 300 to 340° C for a period of weeks to months. Then, the well is allowed to sit for days to weeks to allow heat to soak into the formation. Finally, the hot oil is pumped out of the well for a period of weeks or months. Once the production rate falls off, the well is put through another cycle. The injection of the catalyst solution before the injection of steam opens the possibility for upgrading the heavy oil in the process of aquathermolysis directly in the reservoir. In this paper, the possibility of using a catalyst precursor based on cobalt for upgrading the hydrocarbons of this field in the process of their extraction is represented. SARA analysis on oil saturated sandstones shows an increase in the proportion of saturated hydrocarbons by 11.1% due to the hydrogenation of aromatic hydrocarbons and their derivatives, the content of resins and asphaltenes are remained practically unchanged. A new method for estimating the adsorption of a catalyst based on taking into account the change in the concentration of the base metal before and after simulation of catalyst injection in the thermobaric conditions of the reservoir is proposed. During the study of catalyst adsorption in the rock, when simulating the CSS process, it is found that almost 28% of the cobalt, which is the main element of the catalyst precursor, is retained in the rock.

  13. Process of activation of a palladium catalyst system

    Science.gov (United States)

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-08-02

    Improved processes for activating a catalyst system used for the reduction of nitrogen oxides are provided. In one embodiment, the catalyst system is activated by passing an activation gas stream having an amount of each of oxygen, water vapor, nitrogen oxides, and hydrogen over the catalyst system and increasing a temperature of the catalyst system to a temperature of at least 180.degree. C. at a heating rate of from 1-20.degree./min. Use of activation processes described herein leads to a catalyst system with superior NOx reduction capabilities.

  14. Characterization of catalysts by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Targos, W.M.; Bradley, S.A.

    1989-01-01

    The dedicated scanning transmission electron microscope (STEM) is an integral tool for characterizing catalysts because of its unique ability to image and analyze nanosized volumes. This information is valuable in optimizing catalyst formulations and determining causes for reduced catalyst performance. For many commercial catalysts direct correlations between structural features of metal crystallites and catalytic performance are not attainable. When these instances occur, determination of elemental distribution may be the only information available. In this paper the authors discuss some of the techniques employed and limitations associated with characterizing commercial catalysts

  15. Polar source analysis : technical memorandum

    Science.gov (United States)

    2017-09-29

    The following technical memorandum describes the development, testing and analysis of various polar source data sets. The memorandum also includes recommendation for potential inclusion in future releases of AEDT. This memorandum is the final deliver...

  16. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Adeyinka A. Adeyiga

    2001-01-01

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H 2 ) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H 2 /CO ratios. However, a serious problem with use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. Recently, fundamental understanding of physical attrition is being addressed by incorporating suitable binders into the catalyst recipe. This has resulted in the preparation of a spray dried Fe-based catalyst having aps of 70 mm with high attrition resistance. This Fe-based attrition resistant, active and selective catalyst gave 95% CO conversion through 125 hours of testing in a fixed-bed at 270 C, 1.48 MPa, H 2 /CO=0.67 and 2.0 NL/g-cat/h with C 5 + selectivity of >78% and methane selectivity of <5%. However, further development of the catalyst is needed to address the chemical attrition due to phase changes that any Fe-catalyst goes through potentially causing internal stresses within the particle and resulting in weakening, spalling or cracking. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (i) improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha iron

  17. Catalysts and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-02-14

    The present invention provides a catalyst including a mesoporous silica nanoparticle and a catalytic material comprising iron. In various embodiments, the present invention provides methods of using and making the catalyst. In some examples, the catalyst can be used to hydrotreat fatty acids or to selectively remove fatty acids from feedstocks.

  18. Low platinum catalyst and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia; Chong, Lina

    2017-11-21

    A low platinum catalyst and method for making same. The catalyst comprises platinum-transition metal bimetallic alloy microcrystallites over a transition metal-nitrogen-carbon composite. A method of making a catalyst comprises preparation of transition metal organic frameworks, infusion of platinum, thermal treatment, and reduction to form the microcrystallites and composite.

  19. Chemical engineering design of CO oxidation catalysts

    Science.gov (United States)

    Herz, Richard K.

    1987-01-01

    How a chemical reaction engineer would approach the challenge of designing a CO oxidation catalyst for pulsed CO2 lasers is described. CO oxidation catalysts have a long history of application, of course, so it is instructive to first consider the special requirements of the laser application and then to compare them to the characteristics of existing processes which utilize CO oxidation catalysts. All CO2 laser applications require a CO oxidation catalyst with the following characteristics: (1) active at stoichiometric ratios of O2 and CO, (2) no inhibition by CO2 or other components of the laser environment, (3) releases no particulates during vibration or thermal cycling, and (4) long lifetime with a stable activity. In all applications, low consumption of power is desirable, a characteristic especially critical in aerospace applications and, thus, catalyst activity at low temperatures is highly desirable. High power lasers with high pulse repetition rates inherently require circulation of the gas mixture and this forced circulation is available for moving gas past the catalyst. Low repetition rate lasers, however, do not inherently require gas circulation, so a catalyst that did not require such circulation would be favorable from the standpoint of minimum power consumption. Lasers designed for atmospheric penetration of their infrared radiation utilize CO2 formed from rare isotopes of oxygen and this application has the additional constraint that normal abundance oxygen isotopes in the catalyst must not exchange with rare isotopes in the gas mixture.

  20. Roles of K2O on the CaO-ZnO Catalyst and Its Influence on Catalyst Basicity for Biodiesel Production

    Science.gov (United States)

    Buchori, Luqman; Istadi, I.; Purwanto; Marpaung, Louis Claudia; Safitri, Rahmatika Luthfiani

    2018-02-01

    This research aimed to study the effect of K2O impregnation on the basicity of the CaO-ZnO catalyst and its effect on biodiesel production. The effect of mole ratio of CaO to ZnO catalyst and %wt K2O were also studied. The mole ratio of CaO to ZnO catalyst was varied at 1:1, 1:1.5, 1:2, 1:3, and 3:1, while the %wt K2O was varied at 1, 3, and 5 %. The catalyst basicity was determined by titration method. The basicity of the catalyst increased after the CaO-ZnO catalyst was impregnated with K2O in all mole ratios of CaO-ZnO catalyst. The addition of K2O as a promoter also increase the basicity. The highest basicity was obtained at the CaO-ZnO mole ratio of 3:1 and 5%wt K2O. The tranesterification process was carried out in a batch reactor at a methanol to oil mole ratio of 15:1, a reaction temperature of 60°C, a reaction time of 4 h, and a catalyst loading of 5%wt oil. The FAME yields obtained were 41.33%. These results proved that K2O plays a role in enhancing the catalyst basicity. In addition, K2O also serves as a binding agent to improve the mechanical properties of the catalyst.

  1. Study of Supported Nickel Catalysts Prepared by Aqueous Hydrazine Method. Hydrogenating Properties and Hydrogen Storage: Support Effect. Silver Additive Effect

    International Nuclear Information System (INIS)

    Wojcieszak, R.

    2006-06-01

    We have studied Ni or NiAg nano-particles obtained by the reduction of nickel salts (acetate or nitrate) by hydrazine and deposited by simple or EDTA-double impregnation on various supports (γ-Al 2 O 3 , amorphous or crystallized SiO 2 , Nb 2 O 5 , CeO 2 and carbon). Prepared catalysts were characterized by different methods (XRD, XPS, low temperature adsorption and desorption of N 2 , FTIR and FTIR-Pyridine, TEM, STEM, EDS, H 2 -TPR, H 2 -adsorption, H 2 -TPD, isopropanol decomposition) and tested in the gas phase hydrogenation of benzene or as carbon materials in the hydrogen storage at room temperature and high pressure. The catalysts prepared exhibited better dispersion and activity than classical catalysts. TOF's of NiAg/SiO 2 or Ni/carbon catalysts were similar to Pt catalysts in benzene hydrogenation. Differences in support acidity or preparation method and presence of Ag as metal additive play a crucial role in the chemical reduction of Ni by hydrazine and in the final properties of the materials. Ni/carbon catalysts could store significant amounts of hydrogen at room temperature and high pressure (0.53%/30 bars), probably through the hydrogen spillover effect. (author)

  2. Vehicle infrastructure integration proof of concept : technical description--vehicle : final report

    Science.gov (United States)

    2009-05-19

    This report provides the technical description of the VII system developed for the Cooperative Agreement VII Program between the USDOT and the VII Consortium. The basic architectural elements are summarized and detailed descriptions of the hardware a...

  3. Kinetics assisted design of catalysts for coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.; Foley, H.C.; Calkins, W.H.; Scouten, C.

    1998-02-01

    The thermal and catalytic reactions of 4-(1-naphthylmethyl)bibenzyl (NBBM), a resid and coal model compound, were examined. Catalytic reaction of NBBM was carried out at 400 C under hydrogen with a series of transition metal-based catalytic materials including Fe(CO){sub 4}PPh{sub 3}, Fe(CO){sub 3}(PPh{sub 3}){sub 2}, Fe(CO){sub 2}(PPh{sub 3}){sub 2}CS{sub 2}, Fe(CO){sub 5}, Mo(CO){sub 6}, Mn{sub 2}(CO){sub 10}, Fe{sub 2}O{sub 3} and MoS{sub 2}. Experimental findings and derived mechanistic insights were organized into molecular-level reaction models for NBBM pyrolysis and catalysis. Hydropyrolysis and catalysis reaction families occurring during NBBM hydropyrolysis at 420 C were summarized in the form of reaction matrices which, upon exhaustive application to the components of the reacting system, yielded the mechanistic reaction model. Each reaction family also had an associated linear free energy relationship (LFER) which provided an estimate of the rate constant k{sub i} given a structural property of species i or its reaction. Including the catalytic reaction matrices with those for the pyrolysis model provided a comprehensive NBBM catalytic reaction model and allowed regression of fundamental LFER parameters for the catalytic reaction families. The model also allowed specification of the property of an optimal catalyst. Iron, molybdenum and palladium were predicted to be most effective for model compound consumption. Due to the low costs associated with iron and its disposal, it is a good choice for coal liquefaction catalysis and the challenge remains to synthesize small particles able to access the full surface area of the coal macromolecule.

  4. Lunar CATALYST

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) is a NASA initiative to encourage the development of U.S. private-sector robotic lunar...

  5. Cure Schedule for Stycast 2651/Catalyst 11.

    Energy Technology Data Exchange (ETDEWEB)

    Kropka, Jamie Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McCoy, John D. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2017-11-01

    The Henkel technical data sheet (TDS) for Stycast 2651/Catalyst 11 lists three alternate cure schedules for the material, each of which would result in a different state of reaction and different material properties. Here, a cure schedule that attains full reaction of the material is defined. The use of this cure schedule will eliminate variance in material properties due to changes in the cure state of the material, and the cure schedule will serve as the method to make material prior to characterizing properties. The following recommendation was motivated by (1) a desire to cure at a single temperature for ease of manufacture and (2) a desire to keep the cure temperature low (to minimize residual stress build-up associated with the cooldown from the cure temperature to room temperature) without excessively limiting the cure reaction due to vitrification (i.e., material glass transition temperature, Tg, exceeding cure temperature).

  6. Bi-metallic catalysts, methods of making, and uses thereof

    KAUST Repository

    Basset, Jean-Marie

    2017-01-19

    Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.

  7. Bi-metallic catalysts, methods of making, and uses thereof

    KAUST Repository

    Basset, Jean-Marie; Samantaray, Manoja K.; Dey, Raju; Abou-Hamad, Edy; Kavitake, Santosh

    2017-01-01

    Provided herein are bi-metallic catalysts, methods of making, and uses thereof. In some embodiments, the bi-metallic catalyst contains two different metal catalysts that can be used in hydrocarbon metathesis reactions, in some embodiments, the methods of making the bi-metallic catalysts can include two steps utilizing a surface organometallic chemistry approach in which the two different metal catalysts are sequentially grafted onto a support.

  8. Study to improve the quality of a Mexican straight run gasoil over NiMo/γ-Al2O3 catalysts

    International Nuclear Information System (INIS)

    Dominguez-Crespo, M.A.; Diaz-Garcia, L.; Arce-Estrada, E.M.; Torres-Huerta, A.M.; Cortez de la Paz, M.T.

    2006-01-01

    Four NiMo catalyst supported on Al 2 O 3 with different textural properties have been studied in the hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) of a Mexican straight run gasoil (SRGO). All reactions were carried out at three different temperatures 613, 633, and 653 K. Alumina supports were analysed by pyridine FTIR-TPD and nitrogen physisorption in order to determine their surface acidity and textural properties, respectively. TPR studies of the NiMo catalysts were analysed to correlate their hydrogenating properties. Metallic particles were characterized (after sulfidation) using transmission electron microscopy (TEM). Catalytic activities are discussed in relation to the physicochemical properties of NiMo catalysts. The importance of textural properties on coke deposition has been emphasized. The results of catalytic activity of these materials varied depending on dispersed MoS particles and pore distribution in final catalysts. The optimum pore diameter was found around 80 A for HDS and HDN

  9. Study to improve the quality of a Mexican straight run gasoil over NiMo/γ-Al 2O 3 catalysts

    Science.gov (United States)

    Domínguez-Crespo, M. A.; Díaz-García, L.; Arce-Estrada, E. M.; Torres-Huerta, A. M.; Cortéz-De la Paz, M. T.

    2006-11-01

    Four NiMo catalyst supported on Al 2O 3 with different textural properties have been studied in the hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) of a Mexican straight run gasoil (SRGO). All reactions were carried out at three different temperatures 613, 633, and 653 K. Alumina supports were analysed by pyridine FTIR-TPD and nitrogen physisorption in order to determine their surface acidity and textural properties, respectively. TPR studies of the NiMo catalysts were analysed to correlate their hydrogenating properties. Metallic particles were characterized (after sulfidation) using transmission electron microscopy (TEM). Catalytic activities are discussed in relation to the physicochemical properties of NiMo catalysts. The importance of textural properties on coke deposition has been emphasized. The results of catalytic activity of these materials varied depending on dispersed MoS particles and pore distribution in final catalysts. The optimum pore diameter was found around 80 Å for HDS and HDN.

  10. Final Scientific and Technical Report State and Regional Biomass Partnerships

    Energy Technology Data Exchange (ETDEWEB)

    Handley, Rick; Stubbs, Anne D.

    2008-12-29

    The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

  11. Method of Heating a Foam-Based Catalyst Bed

    Science.gov (United States)

    Fortini, Arthur J.; Williams, Brian E.; McNeal, Shawn R.

    2009-01-01

    A method of heating a foam-based catalyst bed has been developed using silicon carbide as the catalyst support due to its readily accessible, high surface area that is oxidation-resistant and is electrically conductive. The foam support may be resistively heated by passing an electric current through it. This allows the catalyst bed to be heated directly, requiring less power to reach the desired temperature more quickly. Designed for heterogeneous catalysis, the method can be used by the petrochemical, chemical processing, and power-generating industries, as well as automotive catalytic converters. Catalyst beds must be heated to a light-off temperature before they catalyze the desired reactions. This typically is done by heating the assembly that contains the catalyst bed, which results in much of the power being wasted and/or lost to the surrounding environment. The catalyst bed is heated indirectly, thus requiring excessive power. With the electrically heated catalyst bed, virtually all of the power is used to heat the support, and only a small fraction is lost to the surroundings. Although the light-off temperature of most catalysts is only a few hundred degrees Celsius, the electrically heated foam is able to achieve temperatures of 1,200 C. Lower temperatures are achievable by supplying less electrical power to the foam. Furthermore, because of the foam s open-cell structure, the catalyst can be applied either directly to the foam ligaments or in the form of a catalyst- containing washcoat. This innovation would be very useful for heterogeneous catalysis where elevated temperatures are needed to drive the reaction.

  12. Current advances and trends in electro-Fenton process using heterogeneous catalysts - A review.

    Science.gov (United States)

    Poza-Nogueiras, Verónica; Rosales, Emilio; Pazos, Marta; Sanromán, M Ángeles

    2018-06-01

    Over the last decades, advanced oxidation processes have often been used alone, or combined with other techniques, for remediation of ground and surface water pollutants. The application of heterogeneous catalysis to electrochemical advanced oxidation processes is especially useful due to its efficiency and environmental safety. Among those processes, electro-Fenton stands out as the one in which heterogeneous catalysis has been broadly applied. Thus, this review has introduced an up-to-date collation of the current knowledge of the heterogeneous electro-Fenton process, highlighting recent advances in the use of different catalysts such as iron minerals (pyrite, magnetite or goethite), prepared catalysts by the load of metals in inorganic and organic materials, nanoparticles, and the inclusion of catalysts on the cathode. The effects of physical-chemical parameters as well as the mechanisms involved are critically assessed. Finally, although the utilization of this process to remediation of wastewater overwhelmingly outnumber other utilities, several applications have been described in the context of regeneration of adsorbent or the remediation of soils as clear examples of the feasibility of the electro-Fenton process to solve different environmental problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. NUSC Technical Publications Guide.

    Science.gov (United States)

    1985-05-01

    Facility personnel especially that of A. Castelluzzo, E. Deland, J. Gesel , and E. Szlosek (all of Code 4343). Reviewed and Approved: 14 July 1980 D...their technical content and format. Review and approve the manual outline, the review manuscript, and the final camera - reproducible copy. Conduct in

  14. Catalyst study for the plasma exhaust purification process

    International Nuclear Information System (INIS)

    Chabot, J.; Sannier, J.

    1990-01-01

    Several catalysts available from commercial sources have been screened to find out specific catalysts which allow complete methane oxidation and ammonia decomposition at temperature as low as possible in order to minimize tritium loss by permeation through processing equipment walls. Afterwards, an extended kinetic investigation has been performed on the best catalysts to achieve the data necessary to unit calculations. For methane oxidation, a palladium on alumina catalyst shows a very satisfactory low-temperature efficiency while a non-precious metal catalyst made of nickel oxide and alumina was found to be the more efficient for ammonia decomposition

  15. Attrition resistant Fischer-Tropsch catalyst and support

    Science.gov (United States)

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2004-05-25

    A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined .gamma.-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined .gamma.-alumina.

  16. Enzymatic biodiesel production: Technical and economical considerations

    DEFF Research Database (Denmark)

    Munk Nielsen, Per; Brask, Jesper; Fjerbæk, Lene

    2008-01-01

    It is well documented in the literature that enzymatic processing of oils and fats for biodiesel is technically feasible. However, with very few exceptions, enzyme technology is not currently used in commercial-scale biodiesel production. This is mainly due to non-optimized process design...... and a lack of available costeffective enzymes. The technology to re-use enzymes has typically proven insufficient for the processes to be competitive. However, literature data documenting the productivity of enzymatic biodiesel together with the development of new immobilization technology indicates...... that enzyme catalysts can become cost effective compared to chemical processing. This work reviews the enzymatic processing of oils and fats into biodiesel with focus on process design and economy....

  17. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Lab., TN (United States); LaBarge, W. [Delphi Automotive Systems, Flint, MI (United States)] [and others

    1997-04-01

    The CRADA between Delphi Automotive Systems (Delphi; formerly General Motors - AC Delco, Systems) and Lockheed Martin Energy Research (LMER) on automotive catalysts was completed at the end of FY96, after a ten month, no-cost extension. The CRADA was aimed at improved performance and lifetime of noble metal based three-way-catalysts (TWC), which are the primary catalytic system for automotive emission control systems. While these TWC can meet the currently required emission standards, higher than optimum noble metal loadings are often required to meet lifetime requirements. In addition, more stringent emission standards will be imposed in the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts. Initially in a fresh catalyst, the active material is often distributed on a very fine scale, approaching single atoms or small atomic clusters. As such, a wide range of analytical techniques have been employed to provide high spatial resolution characterization of the evolving state of the catalytic material.

  18. Technical applications of aerogels

    International Nuclear Information System (INIS)

    Hrubesh, L.W.

    1997-01-01

    Aerogel materials posses such a wide variety of exceptional properties that a striking number of applications have developed for them. Many of the commercial applications of aerogels such as catalysts, thermal insulation, windows, and particle detectors are still under development and new application as have been publicized since the ISA4 Conference in 1994: e.g.; supercapacitors, insulation for heat storage in automobiles, electrodes for capacitive deionization, etc. More applications are evolving as the scientific and engineering community becomes familiar with the unusual and exceptional physical properties of aerogels, there are also scientific and technical application, as well. This paper discusses a variety of applications under development at Lawrence Livermore National Laboratory for which several types of aerogels are formed in custom sizes and shapes. Particular discussions will focus on the uses of aerogels for physics experiments which rely on the exceptional, sometimes unique, properties of aerogels

  19. Multi-level computational chemistry study on hydrogen recombination catalyst of off-gas treatment system

    International Nuclear Information System (INIS)

    Hatakeyama, Nozomu; Ise, Mariko; Inaba, Kenji

    2011-01-01

    In order to reveal the deactivation mechanism of the hydrogen recombination catalyst of off-gas treatment system, we investigate by using multi-level computational chemistry simulation methods. The recombiner apparatus is modeled by the numerical mesh system in the axial coordinates, and unsteady, advection and reaction rate equations are solved by using a finite difference method. The chemical reactions are formulated to represent adsorption-desorption of hydrogen and oxygen on Pt catalyst, and time developments of the coverage factors of Pt are solved numerically. The computational simulations successfully reproduce the very similar behaviors observed by experiments, such as increasing of the inversion rates of H 2 to H 2 O, the temperatures distributions along the flow direction, dependencies of experimental condition, and so on. Thus Pt poisoning is considered to cause the deactivation of the hydrogen recombination catalyst. To clarify the poisoning mechanism, the molecular level simulation is applied to the system of Pt on boehmite attacked by a cyclic siloxane which has been detected by experiments and considered as one of poisoning spices. The simulation shows ring-opening reaction of the cyclic siloxane on Pt, then attachment of two ends of the chain-like siloxane to Pt and boehmite, respectively, and that finally the recombination reaction is prevented. This may be the first study to find out the detailed dynamical mechanism of hydrogen recombination catalyst poisoning with cyclic siloxane. (author)

  20. Alkali resistivity of Cu based selective catalytic reduction catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders

    2012-01-01

    The deactivation of V2O5–WO3–TiO2, Cu–HZSM5 and Cu–HMOR plate type monolithic catalysts was investigated when exposed to KCl aerosols in a bench-scale reactor. Fresh and exposed catalysts were characterized by selective catalytic reduction (SCR) activity measurements, scanning electron microscope......–energy dispersive X-ray spectroscopy (SEM–EDX) and NH3-temperature programmed desorption (NH3-TPD). 95% deactivation was observed for the V2O5–WO3–TiO2 catalyst, while the Cu–HZSM5 and Cu–HMOR catalysts deactivated only 58% and 48%, respectively, after 1200 h KCl exposure. SEM analysis of the KCl aerosol exposed...... catalysts revealed that the potassium salt not only deposited on the catalyst surface, but also penetrated into the catalyst wall. Thus, the K/M ratio (M = V or Cu) was high on V2O5–WO3–TiO2 catalyst and comparatively less on Cu–HZSM5 and Cu–HMOR catalysts. NH3-TPD revealed that the KCl exposed Cu–HZSM5...

  1. Attrition Resistant Fischer-Tropsch Catalysts Based on FCC Supports

    Energy Technology Data Exchange (ETDEWEB)

    Adeyiga, Adeyinka

    2010-02-05

    Commercial spent fluid catalytic cracking (FCC) catalysts provided by Engelhard and Albemarle were used as supports for Fe-based catalysts with the goal of improving the attrition resistance of typical F-T catalysts. Catalysts with the Ruhrchemie composition (100 Fe/5 Cu/4.2 K/25 spent FCC on mass basis) were prepared by wet impregnation. XRD and XANES analysis showed the presence of Fe{sub 2}O{sub 3} in calcined catalysts. FeC{sub x} and Fe{sub 3}O{sub 4} were present in the activated catalysts. The metal composition of the catalysts was analyzed by ICP-MS. F-T activity of the catalysts activated in situ in CO at the same conditions as used prior to the attrition tests was measured using a fixed bed reactor at T = 573 K, P = 1.38 MPa and H{sub 2}:CO ratio of 0.67. Cu and K promoted Fe supported over Engelhard provided spent FCC catalyst shows relatively good attrition resistance (8.2 wt% fines lost), high CO conversion (81%) and C{sub 5}+ hydrocarbons selectivity (18.3%).

  2. Bio-oil hydrodeoxygenation catalysts produced using strong electrostatic adsorption

    Science.gov (United States)

    We synthesized hydrothermally stable metal catalysts with controlled particle size and distribution, with the goal of determining which catalyst(s) can selectively catalyze the production of aromatics from bio-oil (from pyrolysis of biomass). Both precious and base transition metal catalysts (Ru, Pt...

  3. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    Science.gov (United States)

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  4. Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants

    International Nuclear Information System (INIS)

    Nadejde, C.; Neamtu, M.; Hodoroaba, V.-D.; Schneider, R. J.; Paul, A.; Ababei, G.; Panne, U.

    2015-01-01

    The use of magnetic materials as heterogeneous catalysts has attracted increasing attention in the last years since they proved to be promising candidates for water treatment. In the present study, two types of surface-modified magnetite (Fe 3 O 4 ) nanoparticles, coated with non-hazardous naturally occurring agents—either tannic acid (TA) or dissolved natural organic matter—were evaluated as magnetic heterogeneous catalysts. Chemical synthesis (co-precipitation) was chosen to yield the nanocatalysts due to its well-established simplicity and efficiency. Subsequently, the properties of the final products were fully assessed by various characterization techniques. The catalytic activity in heterogeneous oxidation of aqueous solutions containing a model pollutant, Bisphenol A (BPA), was comparatively studied. The effect of operational parameters (catalyst loading, H 2 O 2 dosage, and UV light irradiation) on the degradation performance of the oxidation process was investigated. The optimum experimental parameters were found to be 1.0 g/L of catalysts and 10 mM H 2 O 2 , under UV irradiation. The highest mineralization rates were observed for Fe 3 O 4 -TA catalyst. More than 80 % of BPA was removed after 30 min of reaction time under the specified experimental conditions. The obtained results showed that the two catalysts studied here are suitable candidates for the removal of pollutants in wastewaters by means of heterogeneous reaction using a green sustainable treatment method

  5. Highly Active N,O Zinc Guanidine Catalysts for the Ring-Opening Polymerization of Lactide.

    Science.gov (United States)

    Schäfer, Pascal M; Fuchs, Martin; Ohligschläger, Andreas; Rittinghaus, Ruth; McKeown, Paul; Akin, Enver; Schmidt, Maximilian; Hoffmann, Alexander; Liauw, Marcel A; Jones, Matthew D; Herres-Pawlis, Sonja

    2017-09-22

    New zinc guanidine complexes with N,O donor functionalities were prepared, characterized by X-Ray crystallography, and examined for their catalytic activity in the solvent-free ring-opening polymerization (ROP) of technical-grade rac-lactide at 150 °C. All complexes showed a high activity. The fastest complex [ZnCl 2 (DMEGasme)] (C1) produced colorless poly(lactide) (PLA) after 90 min with a conversion of 52 % and high molar masses (M w =69 100, polydispersity=1.4). The complexes were tested with different monomer-to-initiator ratios to determine the rate constant k p . Furthermore, a polymerization with the most active complex C1 was monitored by in situ Raman spectroscopy. Overall, conversion of up to 90 % can be obtained. End-group analysis was performed to clarify the mechanism. All four complexes combine robustness against impurities in the lactide with high polymerization rates, and they represent the fastest robust lactide ROP catalysts to date, opening new avenues to a sustainable ROP catalyst family for industrial use. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Medium energy measurements of N-N parameters. Final technical report, April 1, 1994--September 30, 1996

    International Nuclear Information System (INIS)

    Ambrose, D.; Betts, W.; Coffey, P.; Glass, G.; McDonough, J.; Riley, P.; Tang, J.L.

    1998-08-01

    This document is a final technical report describing the accomplishments of the medium/high energy nuclear physics research program at the University of Texas at Austin. The research program had four main thrusts, only one of which can be considered as measurements of N-N parameters: (1) finishing the data analyses associated with recent LAMPF and TRIUMPF N-N experiments, whose overall purpose has been the determination of the nucleon-nucleon amplitudes, both for isospin 0 and 1 at medium energies; (2) continuing work on BNL E871, a search for rare decay modes of the K L ; (3) work on the RHIC-STAR project, an experiment to create and study a quark gluon plasma and nuclear matter at high energy density; (4) beginning a new AGS experiment (E896) which will search for the lowest mass state of the predicted strange di-baryons, the Ho, and other exotic states of nuclear matter through nucleus-nucleus collisions

  7. Novel Fischer-Tropsch catalysts. [DOE patent

    Science.gov (United States)

    Vollhardt, K.P.C.; Perkins, P.

    Novel compounds are described which are used as improved Fischer-Tropsch catalysts particularly for the conversion of CO + H/sub 2/ to gaseous and liquid hydrocarbons at milder conditions than with prior catalysts.

  8. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells.

    Science.gov (United States)

    Long, Nguyen Viet; Thi, Cao Minh; Yong, Yang; Nogami, Masayuki; Ohtaki, Michitaka

    2013-07-01

    In this review, we present the synthesis and characterization of Pt, Pd, Pt based bimetallic and multi-metallic nanoparticles with mixture, alloy and core-shell structure for nano-catalysis, energy conversion, and fuel cells. Here, Pt and Pd nanoparticles with modified nanostructures can be controllably synthesized via chemistry and physics for their uses as electro-catalysts. The cheap base metal catalysts can be studied in the relationship of crystal structure, size, morphology, shape, and composition for new catalysts with low cost. Thus, Pt based alloy and core-shell catalysts can be prepared with the thin Pt and Pt-Pd shell, which are proposed in low and high temperature proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs). We also present the survey of the preparation of Pt and Pd based catalysts for the better catalytic activity, high durability, and stability. The structural transformations, quantum-size effects, and characterization of Pt and Pd based catalysts in the size ranges of 30 nm (1-30 nm) are presented in electro-catalysis. In the size range of 10 nm (1-10 nm), the pure Pt catalyst shows very large surface area for electro-catalysis. To achieve homogeneous size distribution, the shaped synthesis of the polyhedral Pt nanoparticles is presented. The new concept of shaping specific shapes and morphologies in the entire nano-scale from nano to micro, such as polyhedral, cube, octahedra, tetrahedra, bar, rod, and others of the nanoparticles is proposed, especially for noble and cheap metals. The uniform Pt based nanosystems of surface structure, internal structure, shape, and morphology in the nanosized ranges are very crucial to next fuel cells. Finally, the modifications of Pt and Pd based catalysts of alloy, core-shell, and mixture structures lead to find high catalytic activity, durability, and stability for nano-catalysis, energy conversion, fuel cells, especially the next large-scale commercialization of next

  9. Molecular catalysts structure and functional design

    CERN Document Server

    Gade, Lutz H

    2014-01-01

    Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers wil

  10. Oxidation catalysts on alkaline earth supports

    Science.gov (United States)

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  11. Zircon Supported Copper Catalysts for the Steam Reforming of Methanol

    Science.gov (United States)

    Widiastri, M.; Fendy, Marsih, I. N.

    2008-03-01

    Steam reforming of methanol (SRM) is known as one of the most favorable catalytic processes for producing hydrogen. Current research on zirconia, ZrO2 supported copper catalyst revealed that CuO/ZrO2 as an active catalyst for the SRM. Zircon, ZrSiO4 is available from the by-product of tin mining. In the work presented here, the catalytic properties of CuO/ZrSiO4 with various copper oxide compositions ranging from 2.70% (catalyst I), 4.12% (catalyst II), and 7.12%-mass (catalyst III), synthesized by an incipient wetness impregnation technique, were investigated to methanol conversion, selectivity towards CO formation, and effect of ZnO addition (7.83%CuO/8.01%ZnO/ZrSiO4 = catalyst V). The catalytic activity was obtained using a fixed bed reactor and the zircon supported catalyst activity was compared to those of CuO/ZnO/Al2O3 catalyst (catalyst IV) and commercial Kujang LTSC catalyst. An X-ray powder diffraction (XRD) analysis was done to identify the abundant phases of the catalysts. The catalysts topography and particle diameter were measured with scanning electron microscopy (SEM) and composition of the catalysts was measured by SEM-EDX, scanning electron microscope-energy dispersive using X-ray analysis. The results of this research provide information on the possibility of using zircon (ZrSiO4) as solid support for SRM catalysts.

  12. NTRCI Legacy Engine Research and Development Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Holbert, Connie [National Transportation Research Center, Inc., Knoxville, TN (United States); Petrolino, Joseph [National Transportation Research Center, Inc., Knoxville, TN (United States); Watkins, Bart [Power Source Technologies Inc., Corvallis, OR (United States); Irick, David [Power Source Technologies Inc., Corvallis, OR (United States)

    2011-12-31

    The Legacy engine is a completely new design, transitional diesel engine, replacing the reciprocating engine with a rotary engine. The Legacy engine offers significant advances over conventional internal combustion engines in 1) power to weight ratio; 2) multiple fuel acceptance; 3) fuel economy; and 4) environmental compliance. These advances are achieved through a combination of innovative design geometry, rotary motion, aspiration simplicity, and manufacturing/part simplicity. The key technical challenge to the Legacy engine's commercialization, and the focus of this project, was the development of a viable roton tip seal. The PST concept for the roton tip seal was developed into a manufacturable design. The design was evaluated using a custom designed and fabricated seal test fixture and further refined. This design was incorporated into the GEN2.5A prototype and tested for achievable compression pressure. The Decision Point at the end of Phase 1 of the project (described below) was to further optimize the existing tip seal design. Enhancements to the tip seal design were incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Compression pressures adequate for compression ignition of diesel fuel were achieved, although not consistently in all combustion volumes. The variation in compression pressures was characterized versus design features. As the roton tip seal performance was improved, results pointed toward inadequate performance of the housing side seals. Enhancement of the housing side seal system was accomplished using a custom designed side seal test fixture. The design enhancements developed with the test fixture were also incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Finally, to simplify the requirements for the roton tip seals and to enhance the introduction and combustion of fuel, a flush-mount fuel injector

  13. Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R. C.; McCarley, T. M.

    2006-05-04

    . Platform teams organize faculty and students for cross-disciplinary, systems-oriented research and collaborative learning. To date, nine platforms have been developed, although these will most likely be reorganized into a smaller number of broader topics. In the spring of 2004, BRT faculty initiated a regional partnership and collaborative learning program with colleagues at the University of Minnesota, Kansas State University, and South Dakota State University to develop distance education courses in biorenewable resources and technology. As a fledgling graduate program, the BRT graduate program didn’t have the breadth of resources to offer a large number of courses in biorenewables. Other schools faced a similar problem. The academic consortium as first conceived would allow students from the member schools to enroll in biorenewables courses from any of the participating schools, which would assure the necessary enrollment numbers to offer specialized course work. Since its inception, the collaborative curriculum partnership has expanded to include Louisiana State University and the University of Wisconsin. A second international curriculum development campaign was also initiated in the spring of 2004. In particular, several BRT faculty teamed with colleagues at the University of Arkansas, University of Washington, University of Gent (Belgium), National Polytechnic Institute of Toulouse (France), and Technical University of Graz (Austria) to develop an EU-US exchange program in higher education and vocational education/training (entitled “Renewable Resources and Clean Technology”).

  14. Pt-based Bi-metallic Monolith Catalysts for Partial Upgrading of Microalgae Oil

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Adeniyi [Stevens Inst. of Technology, Hoboken, NJ (United States); Manganaro, James [Anasyn LLC, Princeton, NJ (United States); Goodall, Brian [Valicor Renewables LLC, Dexter, MI (United States); Farrauto, Robert [Columbia Univ., New York, NY (United States)

    2015-03-24

    catalysts, and consumes less hydrogen, if methanation can be mitigated. Our methanation data on Pt and Rh indicate effective suppression of methanation. Our data also show that our catalysts are less susceptible to coking; and unlike NiMo and CoMo, precious metal catalysts are not deactivated by water, a by-product of HDO of algae oil. Finally, our catalysts do not need to be sulfided to be active. A rigorous techno-economic analysis of our process for commercial scale production of 10,000 barrels per day of hydrotreated algae oil, with nutraceuticals co-product claiming only 0.05% of the raw algae oil, indicates an estimated plant gate price of ~$10/gal. Sensitivity analysis shows that critical parameters affecting sale price include (1) algae doubling time (2) biomass oil content (3) CAPEX, and (4) moisture content of post extracted algae residue. Modest improvements in these areas will result in enhanced and competitive economics. Based on a life cycle assessment for greenhouse gas emission, we found that if algae oil replaced 10% of the US consumption, this would result in a CO2e reduction of 210,000 tons per day. Improving the drying process for animal feed by 50% would result in further significant reduction in CO2e.

  15. THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS. Includes quarterly technical progress report No.25 from 10/01/1997-12/31/1997, and quarterly technical progress report No.26 from 01/01/1998-03/31/1998; FINAL

    International Nuclear Information System (INIS)

    1999-01-01

    This project was divided into two parts. One part evaluated possible catalysts for producing higher-alcohols (C(sub 2) to C(sub 5+)) as fuel additives. The other part provided guidance by looking both at the economics of mixed-alcohol production from coal-derived syngas and the effect of higher alcohol addition on gasoline octane and engine performance. The catalysts studied for higher-alcohol synthesis were molybdenum sulfides promoted with potassium. The best catalysts produced alcohols at a rate of 200 g/kg of catalyst/h. Higher-alcohol selectivity was over 40%. The hydrocarbon by-product was less than 20%. These catalysts met established success criteria. The economics for mixed alcohols produced from coal were poor compared to mixed alcohols produced from natural gas. Syngas from natural gas was always less expensive than syngas from coal. Engine tests showed that mixed alcohols added to gasoline significantly improved fuel quality. Mixed-alcohols as produced by our catalysts enhanced gasoline octane and decreased engine emissions. Mixed-alcohol addition gave better results than adding individual alcohols as had been done in the 1980's when some refiners added methanol or ethanol to gasoline

  16. Diethyl Ether Production Process with Various Catalyst Type

    Directory of Open Access Journals (Sweden)

    Widayat Widayat

    2012-12-01

    Full Text Available Several H-zeolite and HZSM-5 catalysts was preparated and their characters have also been investigated. H-zeolit Catalyst was preparated from Natural Zeolite that obtained from Malang District and Gunung Kidul District. Diethyl ether was produced by Ethanol with concentration of 95%. This research use fixed bed reactor that 1 gram of catalyst as bed catalyst, atmospheric pressure and temperature 140oC as the operating condition. Ethanol vapor from vaporization tank was driven by 200 ml/min Nitrogen stream. The responds in this research is liquid product concentration; diethyl ether, ethanol, methanol and water concentration. The results showed that the largest ethanol conversion was produced by the use of 56.44% HZSM-5 and the largest yield of diethyl ether diethyl was produced by the use of alumina and H-zeolite catalyst. The larger ratio between natural zeolite with HCl solvent will produce the larger surface area of catalyst and ethanol conversion. The largest ethanol conversion was produced at reactan ratio 1:20. [Keywords:  catalyst; ethanol conversion; dehydration process; yield of diethyl ether; natural zeolite].

  17. Micelle-derived catalysts for extended Schulz-Flory

    Energy Technology Data Exchange (ETDEWEB)

    Abrevaya, H.

    1986-01-01

    The objective of this program is to develop a synthesis gas conversion catalyst with higher selectivity to liquid fuels, while maintaining catalytic activity and stability at least equivalent relative to state-of-the-art precipitated iron catalysts. During this quarter, the emphasis in the program has been the investigation of the hydrocarbon cutoff hypothesis with supported ruthenium catalysts. An alumina-supported catalyst with smaller than 20[Angstrom] ruthenium particles was tested under conditions of maximal water gas shift activity. During this test more than 90% of the water made in the Fischer-Tropsch synthesis reaction was converted to H[sub 2]. However, the extent of ruthenium metal agglomeration was not reduced. Accordingly, it was not possible to conclude whether hydrocarbon cutoff occurs with smaller than 20[Angstrom] ruthenium particles on [gamma]-alumina. A ruthenium catalyst prepared on Y-type zeolite had 20[Angstrom] or smaller ruthenium particles according to STEM examination and a 15[Angstrom] average ruthenium metal particle size according to EXAFS examination. The ruthenium metal particle size was stable during the test with this catalyst. The hydrocarbon product distribution was Anderson-Schulz-Flory with no cutoff up to a carbon number of 160. A well-dispersed titania-supported ruthenium catalyst is going to be evaluated during the next quarter in order to determine whether hydrocarbon cutoff occurs.

  18. Reclaim/recycle of Pt/C catalysts for PEMFC

    International Nuclear Information System (INIS)

    Zhao, Jishi; He, Xiangming; Tian, Jianhua; Wan, Chunrong; Jiang, Changyin

    2007-01-01

    Platinum was reclaimed from Pt/C catalysts of the PEMFC by drying the degraded Pt/C catalysts at 80 o C for 3 h, followed by sintering at 600 o C for 6 h, dissolution by aqua fortis, purification with hydrochloric acid, reduction and filtration, successively. Pt/C catalysts were prepared again from the reclaimed Pt by two proposed processes, e.g., pH value control process and mass control process. The fuel cell with recycled catalysts presented a power density of over 0.18 W cm -2 . The reclaiming of Pt/C catalysts is a potential way for recycling Pt for PEMFC, reducing the cost of PEMFC

  19. Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: effect of calcination temperature of catalysts.

    Science.gov (United States)

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-02-29

    Oxidative desulfurization (ODS) of model fuel containing benzothiophene (BT) or thiophene (Th) has been carried out with WO(x)/ZrO2 catalyst, which was calcined at various temperatures. Based on the conversion of BT in the model fuel, it can be shown that the optimum calcination temperature of WOx/ZrO2 catalyst is around 700 °C. The most active catalyst is composed of tetragonal zirconia (ZrO2) with well dispersed polyoxotungstate species and it is necessary to minimize the contents of the crystalline WO3 and monoclinic ZrO2 for a high BT conversion. The oxidation rate was interpreted with the first-order kinetics, and it demonstrated the importance of electron density since the kinetic constant for BT was higher than that for Th even though the BT is larger than Th in size. A WOx/ZrO2 catalyst, treated suitably, can be used as a reusable active catalyst in the ODS. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Dissolved oxygen removal in a column packed with catalyst

    International Nuclear Information System (INIS)

    Lee, Han Soo; Chung, Hong Suk; Cho, Young Hyun; Ahn, Do Hee; Kim, Eun Kee

    1996-01-01

    The dissolved oxygen removed by H 2 -O 2 reaction in column packed with various catalysts was examined. The catalysts employed were the prepared polymeric catalyst, platinum on activated carbon, and Lewatit OC-1045 which is available commercially. The column experiments with the prepared polymeric catalyst showed the dissolved oxygen reduced to 35 ppb which is below the limit in feel water of power plants. This implies the likely application of the prepared catalyst for practical use. The activated carbon required the pre-treatment for the removed of dissolved oxygen, since the surface of activated carbon contains much oxygen adsorbed initially. The Lewatit catalyst exposed the best performance, however, the aged one showed the gradual loss of catalytic activity due to degradation of resin catalyst. 14 refs., 6 figs., 2 tabs. (author)

  1. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of... catalyst conversion efficiency for Phase 1 engines. The thermal stress is imposed on the test catalyst by...

  2. Technical assistance for Meharry Medical College Energy Efficiency Project. Final project status and technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-08

    This report presents the results of a program to provide technical assistance to Meharry Medical College. The purpose of the program is to facilitate Meharry`s effort to finance a campus-wide facility retrofit. The US Department of Energy (USDOE) funded the program through a grant to the Tennessee Department of Economic and Community Development (TECD). The University of Memphis-Technology and Energy Services (UM-TES), under contract to TECD, performed program services. The report has three sections: (1) introduction; (2) project definition, financing, and participants; and (3) opportunities for federal participation.

  3. Tethered catalysts for the hydration of carbon dioxide

    Science.gov (United States)

    Valdez, Carlos A; Satcher, Jr., Joe H; Aines, Roger D; Wong, Sergio E; Baker, Sarah E; Lightstone, Felice C; Stolaroff, Joshuah K

    2014-11-04

    A system is provided that substantially increases the efficiency of CO.sub.2 capture and removal by positioning a catalyst within an optimal distance from the air-liquid interface. The catalyst is positioned within the layer determined to be the highest concentration of carbon dioxide. A hydrophobic tether is attached to the catalyst and the hydrophobic tether modulates the position of the catalyst within the liquid layer containing the highest concentration of carbon dioxide.

  4. Fundamental studies of the chemical vapor deposition of diamond. Final technical report, April 1, 1988--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Nix, W.D.

    1995-05-01

    We submit here a final technical report for the research program entitled: Fundamental Studies of the Chemical Vapor Deposition of Diamond, DOE Grant No. DE-FG05-88ER45345-M006. This research program was initiated in 1988 under the direction of the late Professor David A. Stevenson and was renewed in 1992. Unfortunately, at the end of 1992, just as the last phase of this work was getting underway, Professor Stevenson learned that he had developed mesothelioma, a form of cancer based on asbestos. Professor Stevenson died from that disease in February of 1994. Professor William D. Nix, the Chairman of the Materials Science department at Stanford was named the Principal Investigator. Professor Nix has assembled this final technical report. Much of the work of this grant was conducted by Mr. Paul Dennig, a graduate student who will receive his Ph.D. degree from Stanford in a few months. His research findings are described in the chapters of this report and in the papers published over the past few years. The main discovery of this work was that surface topology plays a crucial role in the nucleation of diamond on silicon. Dennig and his collaborators demonstrated this by showing that diamond nucleates preferentially at the tips of asperities on a silicon surface rather than in the re-entrant comers at the base of such asperities. Some of the possible reasons for this effect are described in this report. The published papers listed on the next page of this report also describe this research. Interested persons can obtain copies of these papers from Professor Nix at Stanford. A full account of all of the research results obtained in this work is given in the regular chapters that follow this brief introduction. In addition, interested readers will want to consult Mr. Dennig`s Ph.D. dissertation when it is made available later this year.

  5. CATALYSTS NHI Thermochemical Systems FY 2009 Year-End Report

    International Nuclear Information System (INIS)

    Ginosar, Daniel M.

    2009-01-01

    Fiscal Year 2009 work in the Catalysts project focused on advanced catalysts for the decomposition of sulfuric acid, a reaction common to both the Sulfur-Iodine (S-I) cycle and the Hybrid Sulfur cycle. Prior years effort in this project has found that although platinum supported on titanium oxide will be an acceptable catalyst for sulfuric acid decomposition in the integrated laboratory scale (ILS) project, the material has short comings, including significant cost and high deactivation rates due to sintering and platinum evaporation. For pilot and larger scale systems, the catalyst stability needs to be improved significantly. In Fiscal Year 2008 it was found that at atmospheric pressure, deactivation rates of a 1 wt% platinum catalyst could be reduced by 300% by adding either 0.3 wt% iridium (Ir) or 0.3 wt% ruthenium (Ru) to the catalyst. In Fiscal Year 2009, work focused on examining the platinum group metal catalysts activity and stability at elevated pressures. In addition, simple and complex metal oxides are known to catalyze the sulfuric acid decomposition reaction. These metal oxides could offer activities comparable to platinum but at significantly reduced cost. Thus a second focus for Fiscal Year 2009 was to explore metal oxide catalysts for the sulfuric acid decomposition reaction. In Fiscal Year 2007 several commercial activated carbons had been identified for the HI decomposition reaction; a reaction specific to the S-I cycle. Those materials should be acceptable for the pilot scale project. The activated carbon catalysts have some disadvantages including low activity at the lower range of reactor operating temperature (350 to 400 C) and a propensity to generate carbon monoxide in the presence of water that could contaminate the hydrogen product, but due to limited funding, this area had low priority in Fiscal Year 2009. Fiscal Year 2009 catalyst work included five tasks: development, and testing of stabilized platinum based H2SO4 catalysts

  6. Metal-Carbon-CNF Composites Obtained by Catalytic Pyrolysis of Urban Plastic Residues as Electro-Catalysts for the Reduction of CO2

    Directory of Open Access Journals (Sweden)

    Jesica Castelo-Quibén

    2018-05-01

    Full Text Available Metal–carbon–carbon nanofibers composites obtained by catalytic pyrolysis of urban plastic residues have been prepared using Fe, Co or Ni as pyrolitic catalysts. The composite materials have been fully characterized from a textural and chemical point of view. The proportion of carbon nanofibers and the final content of carbon phases depend on the used pyrolitic metal with Ni being the most active pyrolitic catalysts. The composites show the electro-catalyst activity in the CO2 reduction to hydrocarbons, favoring all the formation of C1 to C4 hydrocarbons. The tendency of this activity is in accordance with the apparent faradaic efficiencies and the linear sweep voltammetries. The cobalt-based composite shows high selectivity to C3 hydrocarbons within this group of compounds.

  7. Mordenite - Type Zeolite SCR Catalysts with Iron or Copper

    DEFF Research Database (Denmark)

    2012-01-01

    Cu/mordenite catalysts were found to be highly active for the SCR of NO with NH3 and exhibited high resistance to alkali poisoning. Redox and acidic properties of Cu/mordenite were well preserved after poisoning with potassium unlike that of vanadium catalysts. Fe-mordenite catalysts also reveale...... to be essential requirements for the high alkali resistance. Mordenite-type zeolite based catalysts could therefore be attractive alternatives to conventional SCR catalysts for biomass fired power plant flue gas treatment....

  8. NOVEL RU-NI-S ELECTRODE CATALYST FOR PEMFC

    Science.gov (United States)

    The expected results from this project include: a new formula and preparation procedures for Ru-Ni-S catalyst; demonstration of CO and S tolerance of the new catalyst; a small size PEMFC with Ru-Ni-S catalyst and good performance; an...

  9. Experimental comparison among hydrocarbon and oxygenated compounds for their elimination by three-way automotive catalysts

    International Nuclear Information System (INIS)

    Bart, J.M.; Prigent, M.F.

    1992-01-01

    Many hydrocarbon species are present in automotive exhaust gases, and three-way Pt-Rh catalysts are commonly used for their elimination. However, most published work on individual hydrocarbon conversion concerns their oxidation in simulated exhaust gases with excess oxygen. This paper reports that this study was therefore undertaken to determine the reactivity of saturated alkanes, olefins, acetylene, aromatics, alcohols or various other oxygenated compounds in steady state conditions with synthetic exhaust gases near stoichiometry. In a first series of measurements, conversion rates were determined as a function of temperature at stoichiometry. The partial pressure effect of O 2 , NO and H 2 O was then determined at constant temperature in the region of catalyst light-off. NO and mainly O 2 were shown to have a negative effect on the first terms of saturated alkane conversion under lean conditions. Water vapor has a positive effect in rich conditions (without SO 2 ), but is more pronounced for Pt-Rh than for a Pt catalyst. Finally, the role played by SO 2 in hydrocarbon conversion was evaluated

  10. [Towards computer-aided catalyst design: Three effective core potential studies of C-H activation]. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Research in the initial grant period focused on computational studies relevant to the selective activation of methane, the prime component of natural gas. Reaction coordinates for methane activation by experimental models were delineated, as well as the bonding and structure of complexes that effect this important reaction. This research, highlighted in the following sections, also provided the impetus for further development, and application of methods for modeling metal-containing catalysts. Sections of the report describe the following: methane activation by multiple-bonded transition metal complexes; computational lanthanide chemistry; and methane activation by non-imido, multiple-bonded ligands.

  11. Minutes of the IFMIF technical meeting

    International Nuclear Information System (INIS)

    Nakamura, H.; Takeda, M.; Ida, M.; Maebara, S.; Yutani, T.; Sugimoto, M.

    2004-03-01

    The IFMIF Technical Meeting was held on December 4-5, 2003 at Shiran-kaikan, Kyoto University. The main objectives are 1) to finalize the Comprehensive Design Report (CDR), 2) to discuss IFMIF cost and organization, 3) to review technical status of major systems, transition phase activities and EVEDA plan. This report presents a brief summary of the results of the meeting. Agenda, participants list and presentation materials are attached as Appendix. (author)

  12. Steam dealkylation catalyst and a method for its activation

    International Nuclear Information System (INIS)

    Dorawala, T.; Reinhard, R.

    1980-01-01

    The method of activating a supported catalyst containing oxides of a group viii metal and of a group 1 a metal which comprises heating said catalyst at a rate of 10 0 to 500 0 F/hr to a temperature of 650 0 to 1400 0 F in a hydrogen atmosphere; maintaining said heated catalyst in a hydrogen atmosphere at 650 0 to 1400 0 F for 2 to 30 hours thereby forming a hydrogen-treated catalyst; and maintaining the hydrogen-treated catalyst in a steam-hydrogen atmosphere at 650 0 to 1400 0 F for 2 to 20 hours thereby forming a steamed hydrogen-treated catalyst

  13. Establishment of the International Power Institute. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Julius E. Coles

    2000-08-04

    The International Power Institute, in collaboration with American industries, seeks to address technical, political, economic and cultural issues of developing countries in the interest of facilitating profitable transactions in power related infrastructure projects. IPI works with universities, governments and commercial organizations to render project-specific recommendations for private-sector investment considerations. IPI also established the following goals: Facilitate electric power infrastructure transactions between developing countries and the US power industry; Collaborate with developing countries to identify development strategies to achieve energy stability; and Encourage market driven solutions and work collaboratively with other international trade energy, technology and banking organizations.

  14. Ship-in-a-bottle catalysts

    Science.gov (United States)

    Haw, James F.; Song, Weiguo

    2006-07-18

    In accordance with the present invention there is provided a novel catalyst system in which the catalytic structure is tailormade at the nanometer scale using the invention's novel ship-in-a-bottle synthesis techniques. The invention describes modified forms of solid catalysts for use in heterogeneous catalysis that have a microporous structure defined by nanocages. Examples include zeolites, SAPOs, and analogous materials that have the controlled pore dimensions and hydrothermal stability required for many industrial processes. The invention provides for modification of these catalysts using reagents that are small enough to pass through the windows used to access the cages. The small reagents are then reacted to form larger molecules in the cages.

  15. Niobium, catalyst repair kit

    International Nuclear Information System (INIS)

    Tanabe, K.

    1991-01-01

    This paper reports that niobium oxides, when small amounts are added to known catalysts, enhance catalytic activity and selectivity and prolong catalyst life. Moreover, niobium oxides exhibit a pronounced effect as supports of metal or metal oxide catalysts. Recently we found that the surface acidity of hydrated niobium pentoxide, niobic acid (Nb 2 O 5 · nH 2 O), corresponds to the acidity of 70% sulfuric acid and exhibits high catalytic activity, selectivity, and stability for acid-catalyzed reactions in which water molecules participate. Although there are few differences in electronegativity and ionic radius between niobium and its neighbors in the periodic table, it is interesting that the promoter effect, support effect, and acidic nature of niobium compounds are quite different from those of compounds of the surrounding elements. Here we review what's known of niobium compounds from the viewpoint of their pronounced catalytic behavior

  16. Supported chromium-molybdenum and tungsten sulfide catalysts

    International Nuclear Information System (INIS)

    Chianelli, R.R.; Jacobson, A.J.; Young, A.R.

    1988-01-01

    This patent describes the process for preparing a supported hydroprocessing catalyst. The process comprising compositing a quantity of a particulate, porous catalyst support material comprising one or more refactory oxides with one or more catalyst precursor salts and heating the composite at elevated temperature of at least about 200/sup 0/C up to about 600/sup 0/, in the presence of a sulfur-bearing compound in an amount whereby sulfur in the form of the sulfur-bearing compound in an amount whereby sulfur in the form of the sulfur bearing compound is present in excess of that contained in the catalyst precursor and under oxygen-free conditions for a time sufficient to form the catalyst. The catalyst precursor salt contains a tetrathiometallate anion of Mo, W or mixture therof and a cation comprising trivalent chromium or a mixture of trivalent chromium with one or more divalent promoter metals selected from the group consisting of Fe, Ni, Co, Mn, Cu and a mixture thereof wherein the trivalent chromium and divalent promoter metals are chelated by at least one neutral, nitrogen-containing polydentate ligand, L

  17. Catalyst for Decomposition of Nitrogen Oxides

    Science.gov (United States)

    Schryer, David R. (Inventor); Jordan, Jeffrey D. (Inventor); Akyurtlu, Ates (Inventor); Akyurtlu, Jale (Inventor)

    2015-01-01

    This invention relates generally to a platinized tin oxide-based catalyst. It relates particularly to an improved platinized tin oxide-based catalyst able to decompose nitric oxide to nitrogen and oxygen without the necessity of a reducing gas.

  18. A novel magnetically recyclable heterogeneous catalyst

    Indian Academy of Sciences (India)

    propanesultone. 1. Introduction ... O. Scheme 2. The reaction of benzaldehyde with 1-phenyl-3- ... (2 mmol), catalyst (2 mol%, except for entries 7 and 9), room temperature. bCatalyst = 1 .... The electronic supporting information can be seen in.

  19. High tracking resolution detectors. Final Technical Report

    International Nuclear Information System (INIS)

    Vasile, Stefan; Li, Zheng

    2010-01-01

    High-resolution tracking detectors based on Active Pixel Sensor (APS) have been valuable tools in Nuclear Physics and High-Energy Physics research, and have contributed to major discoveries. Their integration time, radiation length and readout rate is a limiting factor for the planed luminosity upgrades in nuclear and high-energy physics collider-based experiments. The goal of this program was to demonstrate and develop high-gain, high-resolution tracking detector arrays with faster readout, and shorter radiation length than APS arrays. These arrays may operate as direct charged particle detectors or as readouts of high resolution scintillating fiber arrays. During this program, we developed in CMOS large, high-resolution pixel sensor arrays with integrated readout, and reset at pixel level. Their intrinsic gain, high immunity to surface and moisture damage, will allow operating these detectors with minimal packaging/passivation requirements and will result in radiation length superior to APS. In Phase I, we designed and fabricated arrays with calorimetric output capable of sub-pixel resolution and sub-microsecond readout rate. The technical effort was dedicated to detector and readout structure development, performance verification, as well as to radiation damage and damage annealing.

  20. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M [Kemira Metalkat Oy, Oulu (Finland)

    1997-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)