WorldWideScience

Sample records for cassava starch films

  1. A Comparative Study of Some Properties of Cassava and Tree Cassava Starch Films

    Science.gov (United States)

    Belibi, P. C.; Daou, T. J.; Ndjaka, J. M. B.; Nsom, B.; Michelin, L.; Durand, B.

    Cassava and tree cassava starch films plasticized with glycerol were produced by casting method. Different glycerol contents (30, 35, 40 and 45 wt. % on starch dry basis) were used and the resulting films were fully characterized. Their water barrier and mechanical properties were compared. While increasing glycerol concentration, moisture content, water solubility, water vapour permeability, tensile strength, percent elongation at break and Young's modulus decreased for both cassava and tree cassava films. Tree cassava films presented better values of water vapour permeability, water solubility and percent elongation at break compared to those of cassava films, regardless of the glycerol content.

  2. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films

    Directory of Open Access Journals (Sweden)

    Sriburi Pensiri

    2011-02-01

    Full Text Available Abstract Background Cassava starch, the economically important agricultural commodity in Thailand, can readily be cast into films. However, the cassava starch film is brittle and weak, leading to inadequate mechanical properties. The properties of starch film can be improved by adding plasticizers and blending with the other biopolymers. Results Cassava starch (5%w/v based films plasticized with glycerol (30 g/100 g starch were characterized with respect to the effect of carboxymethyl cellulose (CMC concentrations (0, 10, 20, 30 and 40%w/w total solid and relative humidity (34 and 54%RH on the mechanical properties of the films. Additionally, intermolecular interactions were determined by Fourier transform infrared spectroscopy (FT-IR, melting temperature by differential scanning calorimetry (DSC, and morphology by scanning electron microscopy (SEM. Water solubility of the films was also determined. Increasing concentration of CMC increased tensile strength, reduced elongation at break, and decreased water solubility of the blended films. FT-IR spectra indicated intermolecular interactions between cassava starch and CMC in blended films by shifting of carboxyl (C = O and OH groups. DSC thermograms and SEM micrographs confirmed homogeneity of cassava starch-CMC films. Conclusion The addition of CMC to the cassava starch films increased tensile strength and reduced elongation at break of the blended films. This was ascribed to the good interaction between cassava starch and CMC. Cassava starch-CMC composite films have the potential to replace conventional packaging, and the films developed in this work are suggested to be suitable for low moisture food and pharmaceutical products.

  3. Evaluation of tensile properties and water absortion of cassava starch film

    Science.gov (United States)

    Walster, R. Justin; Rozyanty, A. R.; Kahar, A. W. M.; Musa, L.; Shahnaz, S. B. S.

    2017-09-01

    Casava Starch film was prepared by casting method with different percentage of glycerol (0%, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%) as plasticizer. The effect of glycerol content in starch film on mechanical and water absorption properties was studied. Results shows that the increase of glycerol content in cassava starch film had decrease the tensile strength, tensile modulus and increase the elongation of break properties. The result of water absorbency tended to increase for starch film with higher percentage of glycerol content. The incorporation of glycerol in cassava starch film had increase the water absorption ability due to increase of hydroxyl content contributed by glycerol.

  4. Effect of cassava peel and cassava bagasse natural fillers on mechanical properties of thermoplastic cassava starch: Comparative study

    Science.gov (United States)

    Edhirej, Ahmed; Sapuan, S. M.; Jawaid, Mohammad; Zahari, Nur Ismarrubie; Sanyang, M. L.

    2017-12-01

    Increased awareness of environmental and sustainability issues has generated increased interest in the use of natural fiber reinforced composites. This work focused on the use of cassava roots peel and bagasse as natural fillers of thermoplastic cassava starch (TPS) materials based on cassava starch. The effect of cassava bagasse (CB) and cassava peel (CP) content on the tensile properties of cassava starch (CS) biocomposites films was studied. The biocomposites films were prepared by casting technique using cassava starch (CS) as matrix and fructose as plasticizer. The CB and CP were added to improve the properties of the films. The addition of both fibers increased the tensile strength and modulus while decreased the elongation at break of the biocomposites films. Films containing CB showed higher tensile strength and modulus as compared to the films containing the same amount of CP. The addition of 6 % bagasse increased the modulus and maximum tensile stress to 581.68 and 10.78 MPa, respectively. Thus, CB is considered to be the most efficient reinforcing agent due to its high compatibility with the cassava starch. The use of CB and CP as reinforcement agents for CS thermoplastic cassava added value to these waste by-products and increase the suitability of CS composite films as environmentally friendly food packaging material.

  5. Statistical analysis of the factors that influenced the mechanical properties improvement of cassava starch films

    Science.gov (United States)

    Monteiro, Mayra; Oliveira, Victor; Santos, Francisco; Barros Neto, Eduardo; Silva, Karyn; Silva, Rayane; Henrique, João; Chibério, Abimaelle

    2017-08-01

    In order to obtain cassava starch films with improved mechanical properties in relation to the synthetic polymer in the packaging production, a complete factorial design 23 was carried out in order to investigate which factor significantly influences the tensile strength of the biofilm. The factors to be investigated were cassava starch, glycerol and modified clay contents. Modified bentonite clay was used as a filling material of the biofilm. Glycerol was the plasticizer used to thermoplastify cassava starch. The factorial analysis suggested a regression model capable of predicting the optimal mechanical property of the cassava starch film from the maximization of the tensile strength. The reliability of the regression model was tested by the correlation established with the experimental data through the following statistical analyse: Pareto graph. The modified clay was the factor of greater statistical significance on the observed response variable, being the factor that contributed most to the improvement of the mechanical property of the starch film. The factorial experiments showed that the interaction of glycerol with both modified clay and cassava starch was significant for the reduction of biofilm ductility. Modified clay and cassava starch contributed to the maximization of biofilm ductility, while glycerol contributed to the minimization.

  6. Mechanical properties of bioplastics cassava starch film with Zinc Oxide nanofiller as reinforcement

    Science.gov (United States)

    Harunsyah; Yunus, M.; Fauzan, Reza

    2017-06-01

    This study focuses on investigating the influence of zinc oxide nanofiller on the mechanical properties of bioplastic cassava starch films. Bioplastic cassava starch film-based zinc oxide reinforced composite biopolymeric films were prepared by casting technique. The content of zinc oxide in the bioplastic films was varied from 0.2%, 0.4%, 0.6%, 0.8% and 1.0% (w/w) by weight of starch. Surface morphologies of the composites bioplastic films were examined by scanning electron microscope (SEM).The result showed that the Tensile strength (TS) was improved significantly with the additional of zinc oxide but the elongation at break (EB %) of the composites was decreased. The maximum tensile strength obtained was 22.30 kgf / mm on the additional of zinc oxide by 0.6% and plastilizer by 25%. Based on data of FTIR, the produced film plastic did not change the group function and it can be concluded that theinteraction in film plastic produced was only a physical interaction. Biodegradable plastic film based on cassava starch-zinc oxide and plasticizer glycerol showed that interesting mechanical properties being transparent, clear, homogeneous, flexible, and easily handled.

  7. Biodegradable films made from raw and acetylated cassava starch

    Directory of Open Access Journals (Sweden)

    Fábio D. S. Larotonda

    2004-07-01

    Full Text Available Studies were carried out to produce biodegradable films from cassava starch. Two alternatives were investigated. In the first, films were obtained by starch gelatinization followed by thermopressing and glycerol was used at different concentrations as a plasticizer. In the second, starch acetate films were obtained by solubilization of cassava starch acetate in organic solvents, followed by casting on a glass plate and drying at room temperature. The films obtained by gelatinization were transparent and resistant to traction. The starch acetate films were also transparent but breakable. The use of these starch acetate films in paper impregnation improved the mechanical properties of the paper.A reciclagem de produtos constituídos por polímeros sintéticos e sua substituição por materiais biodegradáveis estão sendo estudadas como alternativas para reduzir a poluição ambiental causada por estes materiais. Neste contexto, o amido está recebendo considerável atenção entre os recursos renováveis que podem ser usados para a fabricação de materiais para embalagem. O objetivo deste trabalho foi produzir filmes biodegradáveis a partir do amido da mandioca. Duas alternativas foram investigadas. Na primeira, os filmes foram obtidos pela gelatinização do amido seguida de termoprensagem, utilizando o glicerol em concentrações diferentes como o plastificante. A outra alternativa estudada foi a acetilação do amido de mandioca. Os filmes de acetato de amido foram obtidos pela solubilização do acetato em solventes orgânicos, seguido do espalhamento da solução em uma placa de vidro e secagem em temperatura ambiente. Os filmes obtidos pela gelatinização do amido mostraram-se transparentes e resistentes à tração. Os filmes de acetato de amido mostraram-se transparentes e quebradiços. No entanto, seu uso para a impregnação de papel melhorou as propriedades mecânicas deste último.

  8. Optimization of factors to obtain cassava starch films with improved mechanical properties

    Science.gov (United States)

    Monteiro, Mayra; Oliveira, Victor; Santos, Francisco; Barros Neto, Eduardo; Silva, Karyn; Silva, Rayane; Henrique, João; Chibério, Abimaelle

    2017-08-01

    In this study, was investigated the optimization of the factors that significantly influenced the mechanical property improvement of cassava starch films through complete factorial design 23. The factors to be analyzed were cassava starch, glycerol and modified clay contents. A regression model was proposed by the factorial analysis, aiming to estimate the condition of the individual factors investigated in the optimum state of the mechanical properties of the biofilm, using the following statistical tool: desirability function and response surface. The response variable that delimits the improvement of the mechanical property of the biofilm is the tensile strength, such improvement is obtained by maximizing the response variable. The factorial analysis showed that the best combination of factor configurations to reach the best response was found to be: with 5g of cassava starch, 10% of glycerol and 5% of modified clay, both percentages in relation to the dry mass of starch used. In addition, the starch biofilm showing the lowest response contained 2g of cassava starch, 0% of modified clay and 30% of glycerol, and was consequently considered the worst biofilm.

  9. Reinforced cassava starch based edible film incorporated with essential oil and sodium bentonite nanoclay as food packaging material.

    Science.gov (United States)

    Iamareerat, Butsadee; Singh, Manisha; Sadiq, Muhammad Bilal; Anal, Anil Kumar

    2018-05-01

    Biodegradable packaging in food materials is a green technology based novel approach to replace the synthetic and conventional packaging systems. This study is aimed to formulate the biodegradable cassava starch based films incorporated with cinnamon essential oil and sodium bentonite clay nanoparticles. The films were characterized for their application as a packaging material for meatballs. The cassava starch films incorporated with sodium bentonite and cinnamon oil showed significant antibacterial potential against all test bacteria; Escherichia coli , Salmonella typhimurium and Staphylococcus aureus. Antibacterial effect of films increased significantly when the concentration of cinnamon oil was increased. The cassava starch film incorporated with 0.75% (w/w) sodium bentonite, 2% (w/w) glycerol and 2.5% (w/w) cinnamon oil was selected based on physical, mechanical and antibacterial potential to evaluate shelf life of meatballs. The meatballs stored at ambient temperature in cassava starch film incorporated with cinnamon oil and nanoclay, significantly inhibited the microbial growth till 96 h below the FDA limits (10 6  CFU/g) in foods compared to control films that exceeded above the limit within 48 h. Hence cassava starch based film incorporated with essential oils and clay nanoparticles can be an alternate approach as a packaging material for food industries to prolong the shelf life of products.

  10. Classification of cassava starch films by physicochemical properties and water vapor permeability quantification by FTIR and PLS.

    Science.gov (United States)

    Henrique, C M; Teófilo, R F; Sabino, L; Ferreira, M M C; Cereda, M P

    2007-05-01

    Cassava starches are widely used in the production of biodegradable films, but their resistance to humidity migration is very low. In this work, commercial cassava starch films were studied and classified according to their physicochemical properties. A nondestructive method for water vapor permeability determination, which combines with infrared spectroscopy and multivariate calibration, is also presented. The following commercial cassava starches were studied: pregelatinized (amidomax 3550), carboxymethylated starch (CMA) of low and high viscosities, and esterified starches. To make the films, 2 different starch concentrations were evaluated, consisting of water suspensions with 3% and 5% starch. The filmogenic solutions were dried and characterized for their thickness, grammage, water vapor permeability, water activity, tensile strength (deformation force), water solubility, and puncture strength (deformation). The minimum thicknesses were 0.5 to 0.6 mm in pregelatinized starch films. The results were treated by means of the following chemometric methods: principal component analysis (PCA) and partial least squares (PLS) regression. PCA analysis on the physicochemical properties of the films showed that the differences in concentration of the dried material (3% and 5% starch) and also in the type of starch modification were mainly related to the following properties: permeability, solubility, and thickness. IR spectra collected in the region of 4000 to 600 cm(-1) were used to build a PLS model with good predictive power for water vapor permeability determination, with mean relative errors of 10.0% for cross-validation and 7.8% for the prediction set.

  11. Preparation and Properties of Cassava Starch-based Wood Adhesives

    Directory of Open Access Journals (Sweden)

    Qing Xu

    2016-06-01

    Full Text Available A biodegradable, environmentally friendly starch-based wood adhesive with cassava starch as a raw material and butyl acrylate (BA as a co-monomer was synthesized. Results revealed that this cassava starch-based wood adhesive (SWA was more stable than corn starch-based wood adhesive, and its bonding performance was close to that of commercial PVAc emulsion, even after 90 days of storage. Further analysis found that the improved stability of the adhesive could be attributed to its low minimum film forming temperature (MFFT and glass transition temperature (Tg of cassava starch. Moreover, the amount of total volatile organic compounds (TVOCs emitted by the cassava starch-based wood adhesive were much lower than the Chinese national standard control criteria. Therefore, cassava SWA might be a potential alternative to traditional petrochemical-based wood adhesives.

  12. Comparison of gamma radiation effects on natural corn and potato starches and modified cassava starch

    Science.gov (United States)

    Teixeira, Bruna S.; Garcia, Rafael H. L.; Takinami, Patricia Y. I.; del Mastro, Nelida L.

    2018-01-01

    The objective of this work was to evaluate the effect of irradiation treatment on physicochemical properties of three natural polymers, i.e. native potato and corn starches and a typical Brazilian product, cassava starch modified through fermentation -sour cassava- and also to prepare composite hydrocolloid films based on them. Starches were irradiated in a 60Co irradiation chamber in doses up to 15 kGy, dose rate about 1 kGy/h. Differences were found in granule size distribution upon irradiation, mainly for corn and cassava starch but radiation did not cause significant changes in granule morphology. The viscosity of the potato, corn and cassava starches hydrogels decreased as a function of absorbed dose. Comparing non-irradiated and irradiated starches, changes in the Fourier transform infrared (FTIR) spectra in the 2000-1500 cm-1 region for potato and corn starches were observed but not for the cassava starch. Maximum rupture force of the starch-based films was affected differently for each starch type; color analysis showed that doses of 15 kGy promoted a slight rise in the parameter b* (yellow color) while the parameter L* (lightness) was not significantly affected; X-ray diffraction patterns remained almost unchanged by irradiation.

  13. Edible Film from the Pectin of Papaya Skin (The Study of Cassava Starch and Glycerol Addition)

    Science.gov (United States)

    Rosida; Sudaryati; Yahya, A. M.

    2018-01-01

    The production of edible cooking made from the pectin of papaya skin with cassava starch and glycerol adition had been studied. The usage of pectin of papaya skin was one way to use papaya skin waste in order to raise its economic value. The aim of this study was to study the effect of cassava starch and glycerol concentration on the product qualities and to determine the the best treatment in making a good quality adible film and acceptable by the consumer. This research used completely randomized design in factorial patern with two factors. The first factor was cassava starch concentration (25%, 35% and 45%) and the second factor was glycerol concentration (20 %, 15% and 10). The data were analyzed by Analysis of Variance (Anova) and Duncan’s Multiple Range Test to detect the difference between the treatment. The best treatment was 25% cassava starch addition and 10% glycerol concentration which produced edible film which had moisture content of 21.16%, thickness of 0.023 mm, tensile strength of 1.900 N, elasticity of 14.223%, and vapor transmission rate of 116.963 g/m2/24 hours. So the production of edible film from papaya skin pectin was potential to be developed.

  14. Performance evaluation of cassava starch-zinc nanocomposite film for tomatoes packaging

    Directory of Open Access Journals (Sweden)

    Adeshina Fadeyibi

    2017-05-01

    Full Text Available Biodegradable nanocomposite films are novel materials for food packaging because of their potential to extend the shelf life of food. In this research, the performance of cassava starch-zincnanocomposite film was evaluated for tomatoes packaging. The films were developed by casting the solutions of 24 g cassava starch, 0-2% (w/w zinc nanoparticles and 55% (w/w glycerol in plastic mould of 12 mm depth. The permeability of the films, due to water and oxygen, was investigated at 27°C and 65% relative humidity while the mechanical properties were determined by nanoindentation technique. The average thickness of the dried nanocomposite films was found to be 17±0.13 μm. The performances of films for tomatoes packaging was evaluated in comparison with low density polyethylene (LDPE; 10 μm at the temperature and period ranges of 10-27°C and 0-9 days, respectively. The quality and microbial attributes of the packaged tomatoes, including ascorbic acid, β-carotene and total coliform were analysed at an interval of 3 days. The results revealed that the water vapour permeability increased while the oxygen permeability decreased with the nanoparticles (P<0.05. The hardness, creep, elastic and plastic works, which determined the plasticity index of the film, decreased generally with the nanoparticles. The films containing 1 and 2% of the nanoparticles suppressed the growth of microorganisms and retained the quality of tomatoes than the LDPE at 27°C and day-9 of packaging (P<0.05. The results implied that the film could effectively be used for tomatoes packaging due to their lower oxygen permeability, hardness, elastic and plastic works.

  15. Resistant starch in cassava products

    Directory of Open Access Journals (Sweden)

    Bruna Letícia Buzati Pereira

    2014-06-01

    Full Text Available Found in different foods, starch is the most important source of carbohydrates in the diet. Some factors present in starchy foods influence the rate at which the starch is hydrolyzed and absorbed in vivo. Due the importance of cassava products in Brazilian diet, the objective of this study was to analyze total starch, resistant starch, and digestible starch contents in commercial cassava products. Thirty three commercial cassava products from different brands, classifications, and origin were analyzed. The method used for determination of resistant starch consisted of an enzymatic process to calculate the final content of resistant starch considering the concentration of glucose released and analyzed. The results showed significant differences between the products. Among the flours and seasoned flours analyzed, the highest levels of resistant starch were observed in the flour from Bahia state (2.21% and the seasoned flour from Paraná state (1.93%. Starch, tapioca, and sago showed levels of resistant starch ranging from 0.56 to 1.1%. The cassava products analyzed can be considered good sources of resistant starch; which make them beneficial products to the gastrointestinal tract.

  16. Cassava starch in the Brazilian food industry

    Directory of Open Access Journals (Sweden)

    Ivo Mottin Demiate

    2011-06-01

    Full Text Available Cassava starch is a valued raw material for producing many kinds of modified starches for food applications. Its physicochemical properties, as well as its availability, have made it an interesting and challenging ingredient for the food industry. In the present work, food grade modified cassava starches were purchased from producers and analyzed for selected physicochemical characteristics. Samples of sour cassava starch were included, as well as one sample of native cassava starch. Results showed that almost all modified starches were resistant to syneresis, produced pastes more stable to stirred cooking, and some of them were difficult to cook. The sour cassava starches presented high acidity and resulted in clear and unstable pastes during stirred cooking, susceptible to syneresis.

  17. Effect of temperature and relative humidity on the water vapour permeability and mechanical properties of cassava starch and soy protein concentrate based edible films.

    Science.gov (United States)

    Chinma, C E; Ariahu, C C; Alakali, J S

    2015-04-01

    The effect of temperature and relative humidity on the water vapour permeability (WVP) and mechanical properties of cassava starch and soy protein concentrate (SPC) based edible films containing 20 % glycerol level were studied. Tensile strength and elastic modulus of edible films increased with increase in temperature and decreased with increase in relative humidity, while elongation at break decreased. Water vapour permeability of the films increased (2.6-4.3 g.mm/m(2).day.kPa) with increase in temperature and relative humidity. The temperature dependence of water vapour permeation of cassava starch-soy protein concentrate films followed Arrhenius relationship. Activation energy (Ea) of water vapour permeation of cassava starch-soy protein concentrate edible films ranged from 1.9 to 5.3 kJ/mol (R (2)  ≥ 0.93) and increased with increase in SPC addition. The Ea values were lower for the bio-films than for polyvinylidene chloride, polypropylene and polyethylene which are an indication of low water vapour permeability of the developed biofilms compared to those synthetic films.

  18. Starch films from a novel (Pachyrhizus ahipa) and conventional sources: Development and characterization

    International Nuclear Information System (INIS)

    López, Olivia V.; García, María A.

    2012-01-01

    Biodegradable films from ahipa, cassava and corn native starches were developed by casting method and their physicochemical, mechanical and barrier properties were analyzed taking into account the different starch botanical sources. Filmogenic suspensions were prepared; their rheological behaviors were studied and all of them exhibited film-forming ability. However, mechanical assays demonstrated that unplasticized films were too rigid, limiting their technological applications. Thus, 1.5% w/w of glycerol as plasticizer was added to filmogenic suspensions and film flexibility and extensibility were improved, this effect was more significant for ahipa and cassava starch films. Furthermore, thickness, moisture content and water solubility of the developed films were increased when plasticizer was incorporated. Glycerol addition reduced film water vapor permeability and the lowest reduction corresponded to cassava starch films due to the high viscosity of its filmogenic suspensions. Plasticized starch films resulted to be UV radiation barriers; ahipa starch films had the lowest light absorption capacity and higher transparency than cassava and corn starch films. Dynamic-mechanical analysis indicated that plasticized films were partially miscible systems exhibiting two relaxations, one attributed to the starch-rich phase and the other to the glycerol-rich one. Likewise, it could be demonstrated that glycerol exerted a major plasticizing effect on ahipa starch matrixes. Highlights: ► Ahipa, cassava and corn starch films were developed by casting method. ► Glycerol effect on film mechanical behavior was major for tuberous starch films. ► Ahipa starch films resulted to be more transparent with lower UV absorption capacity. ► Plasticized films were partially miscible systems: with a glycerol-rich and a starch-rich phase. ► Glycerol exerted a major plasticizing effect on ahipa starch films.

  19. Características físicas de filmes biodegradáveis produzidos a partir de amidos modificados de mandioca Physical characteristics of cassava modified starch films

    Directory of Open Access Journals (Sweden)

    Celina Maria Henrique

    2008-03-01

    , foram mais permeáveis que o PVC. Porém, quando se compara o filme biodegradável de amidos modificados com o filme comercial de PVC, ainda há muito que se trabalhar na formulação para melhorar várias propriedades deste tipo de embalagem, que tem amplo uso atualmente.Cassava starches may be used as raw materials for developing biodegradable films. Some starch modification processes can make them miscible in cold water and others can modify their film properties, making them stronger and more flexible. The aim of this study was to evaluate the physical characteristics of biodegradable films developed from cassava modified starches using the casting process (dehydration of a filmogenic solution on Petri dishes. The modified starches used were cross linked, low and high viscosity carboxymethyl starches and esterified starch. Starch viscosity is an important property to produce the filmogenic solution and it was tested using the Rapid Visco Analyser (RVA. Excepting cross linked starch, all modified starches presented cold solubility. This property enables an easier preparation of the filmogenic solutions. However, all modified starches presented a severe reduction of setback values, property associated with film formation. The cassava modified starch films were compared to commercial PVC films of 0.0208 to 0.0217 mm thickness. The cassava modified starch films presented thickness values from 0.0551 to 0.1279 mm. The minimum thickness values were observed in pre-gelatinized and cross linked films. The scanning electron microscopy analysis of the films showed differences among the starches. The resulting films were transparent and homogeneous. There was no significant interference of film thickness in water vapor permeability and the films with 5% dry matter were more permeable than the PVC film. However, when modified starch films are compared to PVC commercial films, there is still much research to be made in the formulation to improve several properties necessary to

  20. Influence of nanoparticles on the properties of bionanocomposites from cassava starch

    International Nuclear Information System (INIS)

    Paglicawan, Marissa A.; Emolaga, Carlo S.; Navarro, Ma. Teresa V.; Celorico, Josefina; Basilia, Blessie A.

    2015-01-01

    Plastics are widely used packaging materials for food and non-food products due to their desirable material properties and low cost. However, the merits of plastic products have been overshadowed by its non-degradable nature, thereby leading to waste disposal problems. Because of the environmental problem, many researchers are facing to minimize non-degradable to biodegradable materials. Starch is one of the most promising natural polymers because of its inherent biodegradability, overwhelming abundance and its renewability. One of the abundant starch is cassava. The Manihot exculenta Crantz, is known as camoteng-kahoy or balinghoy in the Philippines. The production of thermoplastic starch (also known as plasticized starch or TPS) basically involves three essential components, namely: starch, plasticizer and thermomechanical energy. However, this material has high water solubility and may lose their mechanical properties in humid conditions. One of the possible ways to overcome this problem is through nanocomposite in which consist of a polymer matrix reinforced with nano-dimensional particles. This research involves the processing of cassava starch into thermoplastic starch for packaging application that can be biodegraded in soil or compostable after its usage. Thermoplastic starchs from cassava starch and different nanomaterials were processed by melt-blending method in a twin-screw extruder. The four nanofillers - nanoclay (NC), halloysite nanotube (HNT), nanozeolite (NZ), and nanocalcium carbonate (NCC) were incorporated into the starch matrix in a 3 phr concentration. The resulting biocomposites were characterized in terms of mechanical properties, morphology, thermal properties, moisture absorption, and crystallinity. The newly developed technology based on cassava starch/nano-scale particles nanocomposites upgrade the hdydrophylic and mechanical properties of starch based films. Homogeneously dispersing nanometer size materials, with high length

  1. Effect of Drying Method and Variety on Quality of Cassava Starch ...

    African Journals Online (AJOL)

    Effect of Drying Method and Variety on Quality of Cassava Starch Extracts. ... Cassava starch is one of the main industrial products of cassava processing. ... Also, cassava starch samples dried at lower temperature have better functional and ...

  2. Starch behaviors and mechanical properties of starch blend films with different plasticizers.

    Science.gov (United States)

    Nguyen Vu, Hoang Phuong; Lumdubwong, Namfone

    2016-12-10

    The main objective of the study was to gain insight into structural and mechanical starch behaviors of the plasticized starch blend films. Mechanical properties and starch behaviors of cassava (CS)/and mungbean (MB) (50/50, w/w) starch blend films containing glycerol (Gly) or sorbitol (Sor) at 33% weight content were investigated. It was found that tensile strength TS and %E of the Gly-CSMB films were similar to those of MB films; but%E of all Sor-films was identical. TS of plasticized films increased when AM content and crystallinity increased. When Sor was substituted for Gly, crystallinity of starch films and their TS increased. The CSMB and MB films had somewhat a similar molecular profile and comparable mechanical properties. Therefore, it was proposed the starch molecular profile containing amylopectin with high M¯w, low M¯w of amylose, and the small size of intermediates may impart the high TS and%E of starch films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Rheological behavior of gamma-irradiated cassava (Manihot esculenta crantz) starch

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Orelio L.; Uehara, Vanessa B.; Mastro, Nelida L. del, E-mail: nlmastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Cassava starch is the by-product of the process of pressing water out of cassava to make cassava meal. The juice has a fine starch, similar to rice or potato starch that, when dried, yields polvilho doce (sweet manioc starch); from the fermented juice comes polvilho azedo (sour manioc starch). Cassava starch can perform most of the functions where maize, rice and wheat starch are currently used. The aim of the present work was to determine the influence or ionizing radiation on the rheological behavior of aqueous preparations of gamma-irradiated cassava starch at different concentrations. Samples of polvilho doce and polvilho azedo were obtained at the local market and irradiated in plastic bags in a Gammacell 220 with doses of 1, 3 e 5 kGy, dose rate ∼ 1.2 kGy h-1. A Brooksfield viscometer was employed for the viscosity measurements. The results showed a strong dependence of the viscosity with the concentration of the starch solutions. In most of the cases there was a decrease of viscosity with the increase of the radiation dose usually seen in irradiated polysaccharides. Nevertheless, the dose response relation of the two kind of starch was different. (author)

  4. Rheological behavior of gamma-irradiated cassava (Manihot esculenta crantz) starch

    International Nuclear Information System (INIS)

    Silva, Orelio L.; Uehara, Vanessa B.; Mastro, Nelida L. del

    2013-01-01

    Cassava starch is the by-product of the process of pressing water out of cassava to make cassava meal. The juice has a fine starch, similar to rice or potato starch that, when dried, yields polvilho doce (sweet manioc starch); from the fermented juice comes polvilho azedo (sour manioc starch). Cassava starch can perform most of the functions where maize, rice and wheat starch are currently used. The aim of the present work was to determine the influence or ionizing radiation on the rheological behavior of aqueous preparations of gamma-irradiated cassava starch at different concentrations. Samples of polvilho doce and polvilho azedo were obtained at the local market and irradiated in plastic bags in a Gammacell 220 with doses of 1, 3 e 5 kGy, dose rate ∼ 1.2 kGy h-1. A Brooksfield viscometer was employed for the viscosity measurements. The results showed a strong dependence of the viscosity with the concentration of the starch solutions. In most of the cases there was a decrease of viscosity with the increase of the radiation dose usually seen in irradiated polysaccharides. Nevertheless, the dose response relation of the two kind of starch was different. (author)

  5. Evaluation of Starch Biodegradable Plastics Derived from Cassava ...

    African Journals Online (AJOL)

    BSN

    bioplastics produced from cassava does not depend on the level of amylose and amylopectin in the starch per se ... cassava starch is a pure, natural biopolymer that is suitable for ... enzymatic action of microorganisms when disposed, is thus ...

  6. Physicochemical properties of starches and proteins in alkali-treated mungbean and cassava starch granules.

    Science.gov (United States)

    Israkarn, Kamolwan; Na Nakornpanom, Nantarat; Hongsprabhas, Parichat

    2014-05-25

    This study explored the influences of envelope integrity of cooked starch granules on physicochemical and thermophysical properties of mungbean and cassava starches. Alkali treatment was used to selectively leach amylose from the amorphous region of both starches and partially fragmented starch molecules into lower-molecular-weight polymers. It was found that despite the loss of 40% of the original content of amylose, both mungbean and cassava starches retained similar crystallinities, gelatinization temperature ranges, and pasting profiles compared to the native starches. However, the loss of granule-bound starch synthases during alkali treatment and subsequent alkali cooking in excess water played significant roles in determining granular disintegration. The alterations in envelope integrity due to the negative charge repulsion among polymers within the envelope of swollen granules, and the fragmentation of starch molecules, were responsible for the alterations in thermophysical properties of mungbean and cassava starches cooked under alkaline conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Cassava starch films containing acetylated starch nanoparticles as reinforcement: Physical and mechanical characterization.

    Science.gov (United States)

    Teodoro, Ana Paula; Mali, Suzana; Romero, Natália; de Carvalho, Gizilene Maria

    2015-08-01

    This paper reports the use of acetylated starch nanoparticles (NPAac) as reinforcement in thermoplastic starch films. NPAac with an average size of approximately 500 nm were obtained by nanoprecipitation. Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) indicated that NPAac are more thermally stable and essentially amorphous when compared with acetylated starch. Thermoplastic starch films with different proportions of NPAac (0.5, 1.0, 1.5, 10.0%, w/w) were obtained and characterized by scanning electron microscopy (SEM), water vapor permeability (WVP), adsorption isotherms, TGA and mechanical tests. The inclusion of reinforcement caused changes in film properties: WVP was lowered by 41% for film with 1.5% (w/w) of NPAac and moisture adsorption by 33% for film with 10% (w/w) of NPAac; and the Young's modulus and thermal stability were increased by 162% and 15%, respectively, for film with 0.5% (w/w) of NPAac compared to the starch film without the addition of NPAac. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effects of processing conditions on hydrolysis of cassava starch ...

    African Journals Online (AJOL)

    amyloglucosidase using 30% initial cassava starch concentration, which produced 152 g/l reducing sugar concentration and DE of 50.9. The total effective operating time was 60 h. Keywords:Cassava starch, hydrolysis, enzyme, dextrose equivalent.

  9. The relationship between absorbency and density of bioplastic film made from hydrolyzed starch

    Science.gov (United States)

    Singan, Grace; Chiang, Liew Kang

    2017-12-01

    Water absorption in polymer blends such as starch-based bioplastic films is important to evaluate the stability characteristics of such films in water that will affect their long-term performance in final products. In this study, the absorbency of starch-based bioplastic films made from potato, cassava, and corn starches that have went through the hydrolysis process first to alter its characteristics and properties in terms of granular swelling and hydrophilicity behaviour. The final results showed that hydrolyzed cassava bioplastic film has the ability to absorb more water compared to hydrolyzed potato and corn bioplastic films. The reading of hydrolyzed cassava bioplastic film on the seventh day of immersion for all ratios were between 87.83 % to 131.29 %, while for hydrolyzed potato bioplastic films was 69.48 % to 92.41 % and hydrolyzed corn bioplastic films was 66.28 % to 74.18 %. Meanwhile, the density analysis was evaluated to determine its physical properties towards moisture condition. The results showed that the hydrolyzed cassava bioplastic films have higher density compared to the other two, which indicated that it is a more favourable raw material to produce biodegradable planting pot due to its ability to absorb more water. Hence, still manage to retain its shape with low brittle surface.

  10. Organic acid profile of commercial sour cassava starch

    Directory of Open Access Journals (Sweden)

    DEMIATE I.M.

    1999-01-01

    Full Text Available Organic acids are present in sour cassava starch ("polvilho azedo" and contribute with organoleptic and physical characteristics like aroma, flavor and the exclusive baking property, that differentiate this product from the native cassava starch. Samples of commercial sour cassava starch collected in South and Southeast Brazil were prepared for high performance liquid chromatography (HPLC analysis. The HPLC equipment had a Biorad Aminex HPX-87H column for organic acid analysis and a refractometric detector. Analysis was carried out with 0.005M sulfuric acid as mobile phase, 0.6ml/min flow rate and column temperature of 60° C. The acids quantified were lactic (0.036 to 0.813 g/100g, acetic (0 to 0.068 g/100g, propionic (0 to 0.013 g/100g and butyric (0 to 0.057 g/100g, that are produced during the natural fermentation of cassava starch. Results showed large variation among samples, even within the same region. Some samples exhibited high acid levels, mainly lactic acid, but in these neither propionic nor butyric acids were detected. Absence of butyric acid was not expected because this is an important component of the sour cassava starch aroma, and the lack of this acid may suggest that such samples were produced without the natural fermentation step.

  11. Cassava starch as a stabilizer of soy-based beverages.

    Science.gov (United States)

    Drunkler, Northon Lee; Leite, Rodrigo Santos; Mandarino, José Marcos Gontijo; Ida, Elza Iouko; Demiate, Ivo Mottin

    2012-10-01

    Soy-based beverages are presented as healthy food alternatives for human nutrition. Cassava (Manihot esculenta, Crantz) starch is relatively inexpensive, widely available in Brazil and is broadly used by the food industry due to its desired properties that result from pasting. The objective of this study was to develop soy-based beverages with good sensory quality using native cassava starch as a stabilizer and maintaining the nutritional value that makes this product a functional food. The developed formulations featured a range of cassava starch and soybean extract concentrations, which were tested in a 2² experimental design with three central points. The results of sensory analysis showed that the studied variables (cassava starch and soybean extract concentrations) did not have a significant effect with respect to a 5% probability level. When considering the apparent viscosity, on the other hand, the variables had a significant effect: the increase in soybean extract and cassava starch concentrations caused an increase in the viscosity of the final product. The profile of isoflavones in the tested formulations was similar to the profiles reported in other papers, with a predominance of the conjugated glycosides over the aglycone forms.

  12. Modification of Foamed Articles Based on Cassava Starch

    International Nuclear Information System (INIS)

    Ponce, P.

    2006-01-01

    This work reports the influence of radiation, plasticizers and poly vinyl alcohol (PVA) on the barrier properties [water vapour permeability (WVP)) and mechanical properties (tensile strength and elongation; compression resistance and flexibility) of foamed articles based on cassava starch. The starch foam was obtained by thermopressing process. Poly ethylene glycol (PEG, 300) was selected as plasticizer and water was necessary for the preparation of the foams. The foamed articles based on cassava starch were irradiated at low doses of 2 and 5 kGy, commonly used in food irradiation. The mechanical properties of starch foams are influenced by the plasticizer concentration and by irradiation dose. An increase in PEG content showed a considerable increase in elongation percentage and a decrease in the tensile strength of the foams; also increase the permeability of the foams in water. After irradiation, the barrier properties and mechanical properties of the foams were improved due to chemical reactions among polymer molecules. Irradiated starch cassava foams with poly vinyl alcohol (PVA) have good flexibility and low water permeability. WVP can be reduced by low doses of gamma radiation

  13. Evaluation of the effect of ginger modified cassava starch as ...

    African Journals Online (AJOL)

    Raw cassava starch has been used as thickener and binder in the formulation of water based paint, but with a problem of loss of viscosity in a very short period. This study evaluates the modification of cassava starch using active component of ginger extract and its use as a water- based paint thickener. 150 g of starch in ...

  14. Biogas Production From Cassava Starch Effluent Using Microalgae As Biostabilisator

    Directory of Open Access Journals (Sweden)

    B. Budiyono

    2011-07-01

    Full Text Available The rapid growing of Indonesian population is emerging several critical national issues i.e. energy, food, environmental, water, transportation, as well as law and human right. As an agricultural country, Indonesia has abundant of biomass wastes such as agricultural wastes include the cassava starch wastes. The problem is that the effluent from cassava starch factories is released directly into the river before properly treatment. It has been a great source of pollution and has caused environmental problems to the nearby rural population. The possible alternative to solve the problem is by converting waste to energy biogas in the biodigester. The main problem of the biogas production of cassava starch effluent is acid forming-bacteria quickly produced acid resulting significantly in declining pH below the neutral pH and diminishing growth of methane bacteria. Hence, the only one of the method to cover this problem is by adding microalgae as biostabilisator of pH. Microalgae can also be used as purifier agent to absorb CO2.The general objective of this research project was to develop an integrated process of biogas production and purification from cassava starch effluent by using biostabilisator agent microalgae. This study has been focused on the used of urea, ruminant, yeast, microalgae, the treatment of gelled and ungelled feed for biogas production, pH control during biogas production using buffer Na2CO3, and feeding management in the semi-continuous process of biogas production. The result can be concluded as follows: i The biogas production increased after cassava starch effluent and yeast was added, ii Biogas production with microalgae and cassava starch effluent, yeast, ruminant bacteria, and urea were 726.43 ml/g total solid, iii Biogas production without  microalgae was 189 ml/g total solid.

  15. 13 Comparative Effects of Cassava Starch and Simple Sugar in ...

    African Journals Online (AJOL)

    Arc. Usman A. Jalam

    Abstract. Comparative effects of simple laboratory quality sugar and cassava starch on grade C35 concrete were studied in the laboratory. The simple white sugar was used at concentrations of 0 to 1% by weight of cement in concrete cured at 3, 7, 14 and 28 days using ordinary Portland cement. Cassava starch of the same ...

  16. Enhancing saccharification of cassava stems by starch hydrolysis prior to pretreatment

    OpenAIRE

    Martín, Carlos; Wei, Maogui; Xiong, Shaojun; Jönsson, Leif J.

    2017-01-01

    Chemical characterization of cassava stems from different origin revealed that glucans accounted for 54-63% of the dry weight, whereas 35-67% of these glucans consisted of starch. The cassava stems were subjected to a saccharification study including starch hydrolysis, pretreatment with either sulfuric acid or 1-ethyl-3-methylimidazolium acetate ([Emim]OAc), and enzymatic hydrolysis of cellulose. Starch hydrolysis prior to pretreatment decreased sugar degradation, improved enzymatic convertib...

  17. Ethanol production of banana shell and cassava starch

    International Nuclear Information System (INIS)

    Monsalve G, John F; Medina de Perez, Victoria Isabel; Ruiz colorado, Angela Adriana

    2006-01-01

    In this work the acid hydrolysis of the starch was evaluated in cassava and the cellulose shell banana and its later fermentation to ethanol, the means of fermentation were adjusted for the microorganisms saccharomyces cerevisiae nrrl y-2034 and zymomonas mobilis cp4. The banana shell has been characterized, which possesses a content of starch, cellulose and hemicelluloses that represent more than 80% of the shell deserve the study of this as source of carbon. The acid hydrolysis of the banana shell yield 20g/l reducing sugar was obtained as maximum concentration. For the cassava with 170 g/l of starch to ph 0.8 in 5 hours complete conversion is achieved to you reducing sugars and any inhibitory effect is not noticed on the part of the cultivations carried out with banana shell and cassava by the cyanide presence in the cassava and for the formation of toxic compounds in the acid hydrolysis the cellulose in banana shell. For the fermentation carried out with saccharomyces cerevisiae a concentration of ethanol of 7.92± 0.31% it is achieved and a considerable production of ethanol is not appreciated (smaller than 0.1 g/l) for none of the means fermented with zymomonas mobilis

  18. Thermogravimetric and Kinetic Analysis of Cassava Starch Based Bioplastic

    Directory of Open Access Journals (Sweden)

    Nanang Eko Wahyuningtyas

    2017-11-01

    Full Text Available Cassava starch based bioplasticfor packaging application has great potency because of the various starch-producing plants in Indonesia.Bioplasticcan contribute to reduce the dependence on fossil fuels andpetroleumthat can solve the environmentalproblem.Thepurpose of this research is to find out the thermal decomposition and the activation energy of cassava starch based bioplastic. The methods weresynthesis bioplastic with cassava starch as main component and glycerol as plasticizer. The thermogravimetry analysis was conducted to obtain the decomposition process mechanism of bioplastic and the heating valueof bioplasticwas measured  using theadiabatic bomb calorimetric.  Data analysis was conducted using  a fitting model approach with an acikalin method to determine the activation energy. The result of thethermogravimetricanalysis showed thatbioplasticisgraduallydecomposedto the moisture, volatilematter, fixed carbon, andash in four stages mechanism. Totally decomposition of bioplastic was 530°C, then all of bioplastic was become the ash. The activation energy in the early and primary thermal decomposition stages are 1.27 kJ/moland 22.62 kJ/mol, respectively and heating valueof bioplastic is 15.16 MJ/kg.

  19. Characteristics of cassava starch fermentation wastewater based on structural degradation of starch granules

    Directory of Open Access Journals (Sweden)

    Juliane Mascarenhas Pereira

    2016-01-01

    Full Text Available ABSTRACT: Sour cassava starch is a naturally modified starch produced by fermentation and sun drying, achieving the property of expansion upon baking. Sour cassava starch' bakery products can be prepared without the addition of yeast and it is gluten free. The fermentation process associated with this product has been well studied, but the wastewater, with high acidity and richness in other organic compounds derived from starch degradation, requires further investigation. In this study, the structure of solids present in this residue was studied, seeking to future applications for new materials. The solids of the wastewater were spray dried with maltodextrin (MD with dextrose equivalent (DE of 5 and 15 and the structure of the powder was evaluated by scanning electron microscopy. A regular structure with a network arrangement was observed for the dried material with MD of 5 DE, in contrast to the original and fermented starches structure, which suggests a regular organization of this new material, to be studied in future applications.

  20. Iron oxide/cassava starch-supported Ziegler-Natta catalysts for in situ ethylene polymerization.

    Science.gov (United States)

    Chancharoenrith, Sittikorn; Kamonsatikul, Choavarit; Namkajorn, Montree; Kiatisevi, Supavadee; Somsook, Ekasith

    2015-03-06

    Iron oxide nanoparticles were used as supporters for in situ polymerization to produce polymer nanocomposites with well-dispersed fillers in polymer matrix. Iron oxide could be sustained as colloidal solutions by cassava starch to produce a good dispersion of iron oxide in the matrix. New supports based on iron oxide/cassava starch or cassava starch for Ziegler-Natta catalysts were utilized as heterogeneous supporters for partially hydrolyzed triethylaluminum. Then, TiCl4 was immobilized on the supports as catalysts for polymerization of ethylene. High-density polyethylene (HDPE) composites were obtained by the synthesized catalysts. A good dispersion of iron oxide/cassava starch particles was observed in the synthesized polymer matrix promoting to good mechanical properties of HDPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Production of raw cassava starch-degrading enzyme by Penicillium and its use in conversion of raw cassava flour to ethanol.

    Science.gov (United States)

    Lin, Hai-Juan; Xian, Liang; Zhang, Qiu-Jiang; Luo, Xue-Mei; Xu, Qiang-Sheng; Yang, Qi; Duan, Cheng-Jie; Liu, Jun-Liang; Tang, Ji-Liang; Feng, Jia-Xun

    2011-06-01

    A newly isolated strain Penicillium sp. GXU20 produced a raw starch-degrading enzyme which showed optimum activity towards raw cassava starch at pH 4.5 and 50 °C. Maximum raw cassava starch-degrading enzyme (RCSDE) activity of 20 U/ml was achieved when GXU20 was cultivated under optimized conditions using wheat bran (3.0% w/v) and soybean meal (2.5% w/v) as carbon and nitrogen sources at pH 5.0 and 28 °C. This represented about a sixfold increment as compared with the activity obtained under basal conditions. Starch hydrolysis degree of 95% of raw cassava flour (150 g/l) was achieved after 72 h of digestion by crude RCSDE (30 U/g flour). Ethanol yield reached 53.3 g/l with fermentation efficiency of 92% after 48 h of simultaneous saccharification and fermentation of raw cassava flour at 150 g/l using the RCSDE (30 U/g flour), carried out at pH 4.0 and 40 °C. This strain and its RCSDE have potential applications in processing of raw cassava starch to ethanol.

  2. Properties and antioxidant action of actives cassava starch films incorporated with green tea and palm oil extracts.

    Directory of Open Access Journals (Sweden)

    Kátya Karine Nery Carneiro Lins Perazzo

    Full Text Available There is an interest in the development of an antioxidant packaging fully biodegradable to increase the shelf life of food products. An active film from cassava starch bio-based, incorporated with aqueous green tea extract and oil palm colorant was developed packaging. The effects of additives on the film properties were determined by measuring mechanical, barrier and thermal properties using a response surface methodology design experiment. The bio-based films were used to pack butter (maintained for 45 days under accelerated oxidation conditions. The antioxidant action of the active films was evaluated by analyzing the peroxide index, total carotenoids, and total polyphenol. The same analysis also evaluated unpacked butter, packed in films without additives and butter packed in LDPE films, as controls. The results suggested that incorporation of the antioxidants extracts tensile strength and water vapor barrier properties (15 times lower compared to control without additives. A lower peroxide index (231.57%, which was significantly different from that of the control (p<0.05, was detected in products packed in film formulations containing average concentration of green tea extracts and high concentration of colorant. However, it was found that the high content of polyphenols in green tea extract can be acted as a pro-oxidant agent, which suggests that the use of high concentration should be avoided as additives for films. These results support the applicability of a green tea extract and oil palm carotenoics colorant in starch films totally biodegradable and the use of these materials in active packaging of the fatty products.

  3. Properties and Antioxidant Action of Actives Cassava Starch Films Incorporated with Green Tea and Palm Oil Extracts

    Science.gov (United States)

    Perazzo, Kátya Karine Nery Carneiro Lins; Conceição, Anderson Carlos de Vasconcelos; dos Santos, Juliana Caribé Pires; Assis, Denilson de Jesus; Souza, Carolina Oliveira; Druzian, Janice Izabel

    2014-01-01

    There is an interest in the development of an antioxidant packaging fully biodegradable to increase the shelf life of food products. An active film from cassava starch bio-based, incorporated with aqueous green tea extract and oil palm colorant was developed packaging. The effects of additives on the film properties were determined by measuring mechanical, barrier and thermal properties using a response surface methodology design experiment. The bio-based films were used to pack butter (maintained for 45 days) under accelerated oxidation conditions. The antioxidant action of the active films was evaluated by analyzing the peroxide index, total carotenoids, and total polyphenol. The same analysis also evaluated unpacked butter, packed in films without additives and butter packed in LDPE films, as controls. The results suggested that incorporation of the antioxidants extracts tensile strength and water vapor barrier properties (15 times lower) compared to control without additives. A lower peroxide index (231.57%), which was significantly different from that of the control (pstarch films totally biodegradable and the use of these materials in active packaging of the fatty products. PMID:25251437

  4. Effect of cassava starch-based edible coating incorporated with lemongrass essential oil on the quality of papaya MJ9

    Science.gov (United States)

    Praseptiangga, D.; Utami, R.; Khasanah, L. U.; Evirananda, I. P.; Kawiji

    2017-02-01

    Edible films and coatings have emerged as an alternative packaging in food applications and have received much attention due to their advantages. The incorporation of essential oils in film matrices to give antimicrobial properties had been observed recently, and could be used as promising preservation technology. In this study, cassava starch-based edible coating incorporated with lemongrass essential oil (1%) was applied by spraying and dipping methods to preserve papaya MJ9 during storage at room temperature. The quality of papaya MJ9 was analyzed based on its physicochemical and microbiological properties. The addition of lemongrass essential oil (1%) significantly inhibited the microbial growth on papaya MJ9 by reducing the value of total yeast and mold as compared to the control. This study also showed that for parameters of weight loss, total soluble solid, vitamin C, and total titratable acid, papaya MJ9 with cassava starch-based edible coating incorporated with lemongrass essential oil (1%) had the lower values than control, however, they had the higher value than control on firmness parameter. These results indicate that cassava starch-based edible coating incorporated with lemongrass essential oil (1%) can be used as an alternative preservation for papaya MJ9.

  5. Biodegradable foam trays obtained from mixtures of non-irradiated and irradiated cassava starches

    International Nuclear Information System (INIS)

    Brant, A.J.C.; Naime, N.; Lugao, A.B.; Ponce, P.

    2015-01-01

    Biodegradable polymers, such as starch, cellulose, PHB, PLA, and derivatives thereof, are being studied to produce innovative packaging in the most diverse shapes (films, bags, trays, bottles, etc.) to attend this current market trend. The aim of this work was to produce foam trays from cassava starch for food packaging by extrusion-thermopressing process. Their formulations were based on non-irradiated and γ-irradiated starches at diverse radiation absorbed doses (kGy) in order to evaluate the influence of the irradiated starches on the physical properties of the trays. Water absorption results showed an irregular increase with the increase of the absorbed dose: 26.32% and 39.84% for the trays based on starch 0 kGy and 1:1 (w/w) mixture of starches 0 kGy and 100.0 kGy, respectively. Other physicochemical properties were evaluated from the starches utilized and the trays obtained. (author)

  6. Biodegradable foam trays obtained from mixtures of non-irradiated and irradiated cassava starches

    Energy Technology Data Exchange (ETDEWEB)

    Brant, A.J.C.; Naime, N.; Lugao, A.B.; Ponce, P., E-mail: thonybrant@gmail.com, E-mail: patiponce@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Biodegradable polymers, such as starch, cellulose, PHB, PLA, and derivatives thereof, are being studied to produce innovative packaging in the most diverse shapes (films, bags, trays, bottles, etc.) to attend this current market trend. The aim of this work was to produce foam trays from cassava starch for food packaging by extrusion-thermopressing process. Their formulations were based on non-irradiated and γ-irradiated starches at diverse radiation absorbed doses (kGy) in order to evaluate the influence of the irradiated starches on the physical properties of the trays. Water absorption results showed an irregular increase with the increase of the absorbed dose: 26.32% and 39.84% for the trays based on starch 0 kGy and 1:1 (w/w) mixture of starches 0 kGy and 100.0 kGy, respectively. Other physicochemical properties were evaluated from the starches utilized and the trays obtained. (author)

  7. Morphological and mechanical properties of thermoplastic starch (TPS) and its blend with poly(lactic acid)(PLA) using cassava bagasse and starch

    International Nuclear Information System (INIS)

    Teixeira, Eliangela de M.; Correa, Ana C.; Campos, Adriana de; Marconcini, Jose M.; Mattoso, Luiz H.C.; Curvelo, Antonio A.S.

    2011-01-01

    This study aims the use of an agro waste coming from the industrialization of cassava starch, known as cassava bagasse (BG). This material contains residual starch and cellulose fibers which can be used to obtain thermoplastic starch (TPS) and /or blends reinforced with fibers. In this context, it was prepared a thermoplastic starch with BG (TPSBG) and evaluated the incorporation of 20wt% of it into the biodegradable polymer poly (lactic acid) (PLA), resulting in a blend PLA/TPSBG20. The materials were investigated through morphology (scanning electron microscopy with field emission gun (FEG), x-ray diffraction (XRD), and mechanical behavior (tensile test). Their properties were compared to the blend PLA/TPSI20 in which TPSI is obtained from commercial cassava starch. The results showed that the use of bagasse generates homogenous materials with higher mechanical strength if compared to TPS obtained from commercial cassava starch. The fiber in this residue acted as reinforcement for TPS and PLA/TPS systems. (author)

  8. Pós-colheita de pêssegos (Prunus pérsica L. Bastsch revestidos com filmes a base de amido como alternativa à cera comercial Postharvest of peaches (Prunus persica L. Bastsch covered with film-forming of cassava starch as alternative to the commercial wax

    Directory of Open Access Journals (Sweden)

    Marcelo Alvares de Oliveira

    2003-12-01

    Full Text Available O presente trabalho objetivou prolongar a conservação póscolheita de pêssegos, armazenando-os à temperatura ambiente. Inicialmente selecionou-se uma microemulsão à base de fécula de mandioca e cera de abelha. Posteriormente ela foi testada, aplicando-a na superfície dos frutos em comparação com "Fruit wax" (cera comercial, com o intuito de se verificar o efeito dos diferentes tratamentos na composição química, física e físico-química dos mesmos. Utilizaram-se pêssegos 'Biuti' colhidos manualmente em 14/01/1999, ao atingirem o ponto de maturação fisiológica. Do lote colhido foram selecionados 120 frutos sendo os mesmos analisados quanto a perda de massa fresca, taxa respiratória, textura, sólidos solúveis totais, acidez total titulável e pH, a cada 3 dias. Os frutos receberam os tratamentos: Testemunha, "Fruit Wax", Fécula e Microemulsão. Os tratamentos "Fruit Wax" e "Microemulsão" proporcionaram melhor eficiência em relação à perda de massa fresca que os frutos dos tratamentos Testemunha e Fécula. Quanto à taxa de respiração, verificou-se picos da ordem de 40mg de CO2.kg-1.h-1 . Quanto aos açúcares, verificou-se que a sacarose foi o açúcar encontrado em maior quantidade, com apenas traços de glicose e frutose em algumas amostras. Quanto aos teores de sólidos solúveis totais, os frutos tratados com "Fruit Wax" apresentaram valores inferiores aos do tratamento Testemunha. O efeito da Microemulsão mostrou-se similar ao da cera "Fruit Wax" em todos os atributos e, superior ao dos tratamentos Testemunha e Fécula na redução da perda de massa fresca.The main objective of this work was to prolong the shelf life of peaches at ambient conditions. Initially, the studies were to get a film forming of cassava starch and bee wax with similar properties of commercial waxes. The second pass was apply in the surface of the fruits, commercial wax (" Fruit wax" or film-forming of cassava starch and bee wax. The

  9. DEVELOPMENT OF ADHESIVE TO THE BASIS OF CORN AND CASSAVA STARCH

    Directory of Open Access Journals (Sweden)

    Rosane Furtado Fabrício

    2014-05-01

    Full Text Available Corn and native cassava starch were modified by oxidation and acid hydrolysis, aiming to develop paper and paperboard stickers. The oxidation was made with Sodium hypochlorite (NaOCl in two distinct concentrations of active chloride which is present on oxidizing agent solution. The synthesis resulting products were used to make stickers and they were compared to corn and cassava starch based stickers without any modification, as well as commercial stickers based on polyvinyl acetate (PVA. Two different methodologies were tested using acid hydrolysis to modify corn and cassava starch, both using phosphoric acid (H3PO4 in order to obtain dextrin and subsequently use it in the production of stickers and also comparing them to petrochemical-based commercial stickers. Considering the different starch modifications methods (oxidation and acid hydrolysis, stickers based on renewable raw material were obtained, which combine biodegradability, low costs and availability.

  10. Coordination of cassava starch to metal ions and thermolysis of ...

    African Journals Online (AJOL)

    Cassava starch formed Werner-type complexes with ions of metals from the transition groups. This was proven by conductivity and electron paramagnetic resonance measurements. The coordination of starch to central metal ions influenced the thermal decomposition of starch. As a rule complexes started to decompose at ...

  11. Effect of addition of different hydrocolloids on pasting, thermal, and rheological properties of cassava starch

    Directory of Open Access Journals (Sweden)

    Tatiana Dias Leite

    2012-09-01

    Full Text Available Starches and gums are hydrocolloids frequently used in food systems to provide proper texture, moisture, and water mobility. Starch-gum interaction in food systems can change the starch granule swelling and its gelatinization and rheological properties. In this study, the effect of the addition of xanthan gum (XG, sodium carboxymethyl cellulose (SCMC, and carrageenan (CAR at the concentrations of the 0.15, 0.25, 0.35 and 0.45% (w/v on the pasting, thermal, and rheological properties of cassava starch was studied. The swelling power (SP and the scanning electron microscopy (SEM of the starch gels were also evaluated. The results obtained showed that xanthan gum (XG had a strong interaction with the cassava starch penetrating between starch granules causing increase in pasting viscosities, SP, storage and loss (G', and G", respectively modulus and reduction in the setback of the starch; sodium carboxymethyl cellulose (SCMC greatly increased the pasting viscosities, the SP, and the storage and loss (G', and G", respectively modulus of the starch-mixtures, mainly due to its greater capacity to hold water and not due to the interaction with cassava starch. Carrageenan (CAR did not change any of the starch properties since there was no interaction between this gum and cassava starch at the concentrations used.

  12. Measurement of the transmittance of edible films of aloe vera (barbadensis miller) and cassava starch using optical fibers trifurcated

    Science.gov (United States)

    Díaz, L.; Reales, J.; Torres, C.

    2017-01-01

    In Colombia, especially in the Atlantic Coast it is produced and marketed the costeño cheese, an indigenous product of the gastronomy of this region, but the prolonged exposure of this product to the environment leads to microbial contamination and non-enzymatic rancidity. For this reason the transmittance of an edible coating based in aloe vera gel and cassava starch to preserve costeño cheese was evaluated using trifurcated optical fibers. The results become a tool for the selection of treatments in making edible films and their subsequent use in coatings for various types of food products.

  13. Measurement of the transmittance of edible films of aloe vera (barbadensis miller) and cassava starch using optical fibers trifurcated

    International Nuclear Information System (INIS)

    Díaz, L; Torres, C; Reales, J

    2017-01-01

    In Colombia, especially in the Atlantic Coast it is produced and marketed the costeño cheese, an indigenous product of the gastronomy of this region, but the prolonged exposure of this product to the environment leads to microbial contamination and non-enzymatic rancidity. For this reason the transmittance of an edible coating based in aloe vera gel and cassava starch to preserve costeño cheese was evaluated using trifurcated optical fibers. The results become a tool for the selection of treatments in making edible films and their subsequent use in coatings for various types of food products. (paper)

  14. Modification of cassava starch using combination process lactic acid hydrolysis and micro wave heating to increase coated peanut expansion quality

    Science.gov (United States)

    Sumardiono, Siswo; Pudjihastuti, Isti; Jos, Bakti; Taufani, Muhammad; Yahya, Faad

    2017-05-01

    Modified cassava starch is very prospective products in the food industry. The main consideration of this study is the increasing volume of imported wheat and the demand for modified cassava starch industry. The purpose of this study is the assessing of lactic acid hydrolysis and microwave heating impact to the physicochemical and rheological properties of modified cassava starch, and test applications of modified cassava starch to coated peanut expansion quality. Experimental variables include the concentration of lactic acid (0.5% w/w, 1% w/w; 2% w/w), a time of hydrolysis (15, 30, 45 minutes), a time of microwave heating (1, 2, 3 hours). The research step is by dissolving lactic acid using aquadest in the stirred tank reactor, then added cassava starch. Hydrolysed cassava starch was then heated by microwave. Physicochemical properties and rheology of the modified cassava starch is determined by the solubility, swelling power, and test congestion. The optimum obtained results indicate that solubility, swelling power, congestion test, respectively for 19.75%; 24.25% and 826.10% in the hydrolysis treatment for 15 minutes, 1% w lactic acid and microwave heating 3 hours. The physicochemical and rheological properties of modified cassava starch have changed significantly when compared to the native cassava starch. Furthermore, these modified cassava starch are expected to be used for the substitution of food products.

  15. Investigation on modification of cassava starch using active ...

    African Journals Online (AJOL)

    Effects of ginger grates at concentrations of l, 5 and 20 g per 150 g of cassava starch suspension in 200 ml of water at room temperature were investigated in order to evaluate the potentials of active components of the ginger in modifying pasting and some physicochemical properties of the starch. Pasting properties of the ...

  16. Development of waxy cassava with different Biological and physico-chemical characteristics of starches for industrial applications.

    Science.gov (United States)

    Zhao, Shan-Shan; Dufour, Dominique; Sánchez, Teresa; Ceballos, Hernan; Zhang, Peng

    2011-08-01

    The quality of cassava starch, an important trait in cassava breeding programs, determines its applications in various industries. For example, development of waxy (having a low level of amylose) cassava is in demand. Amylose is synthesized by granule-bound starch synthase I (GBSSI) in plants, and therefore, down-regulation of GBSSI expression in cassava might lead to reduced amylose content. We produced 63 transgenic cassava plant lines that express hair-pin dsRNAs homologous to the cassava GBSSI conserved region under the control of the vascular-specific promoter p54/1.0 from cassava (p54/1.0::GBSSI-RNAi) or cauliflower mosaic virus (CaMV) 35S (35S::GBSSI-RNAi). After the screening storage roots and starch granules from field-grown plants with iodine staining, the waxy phenotype was discovered: p54/1.0::GBSSI-RNAi line A8 and 35S::GBSSI-RNAi lines B9, B10, and B23. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that there was no detectable GBSSI protein in the starch granules of plants with the waxy phenotype. Further, the amylose content of transgenic starches was significantly reduced (industrial utilization. Copyright © 2011 Wiley Periodicals, Inc.

  17. Modification of Cassava Starch Using Lactic Acid Hydrolysis in The Rotary-UV Dryer to Improve Physichocemical Properties

    Directory of Open Access Journals (Sweden)

    Sumardiono Siswo

    2018-01-01

    Full Text Available Food security should be supported in an effort to utilize local products into import substitution products. Cassava starch has the potential to be developed into semi-finished products in the form of flour or starch which does not contain gluten but can inflate large baking process, potentially as a substitute for wheat flour-the main ingredient for making bread. The characteristic of the starch is influenced by the type of starch composition and structure. Natural starch has physicochemical properties i.e. a long time cooking and pasta formed hard. These constraints allow us to modify cassava starch by a combination of lactic acid hydrolysis and drying with rotary UV system. Modified cassava starch is expected to be used as a substitute for wheat flour. The aim of the research which is a combination of lactic acid hydrolysis and drying using a rotary UV system is to examine the optimum operating conditions in the drying process of starch hydrolysis with parameter the physicochemical and rheological properties of modified cassava starch. The initial process study is to hydrolyze cassava starch using lactic acid. Furthermore, hydrolyzed cassava starch is then dried using UV light in the rotary dryers system. There are a variety of changing variables, i.e. time of irradiation cassava starch-lactic acid hydrolysis products in the rotary UV light and air drying temperature. The research results show that modified starch has a better characteristic than the natural starch. From the analysis, the best point of swelling power, solubility and baking expansion is consequently 15.62 g/g; 24.19 %; 2.21 ml/gr. The FTIR result shows that there is no significant difference of the chemical structure because the starch modification only change the physical characteristics. From the SEM analysis, we can know that the size of the starch’s granule changes between the natural starch and the modified starch..

  18. EFFECT OF TEMPERATURE AND pH OF MODIFICATION PROCESS ON THE PHYSICAL-MECHANICAL PROPERTIES OF MODIFIED CASSAVA STARCH

    Directory of Open Access Journals (Sweden)

    Yudi Wicaksono

    2016-11-01

    Full Text Available The use of cassava starch for excipient in the manufacturing of the tablet has some problems, especially on physical-mechanical properties. The purpose of this study was to determine the effect of the differentness of temperature and pH in the process of modification on the physical-mechanical properties of modified cassava starch. Modifications were performed by suspending cassava starch into a solution of 3 % (w/v PVP K30. The effect of the difference of temperature was observed at temperatures of 25; 45 and 65 0C, while the effect of the difference of pH was observed at pH of 4.0; 7.0 and 12.0. The results showed that the temperature and pH did not affect the physical-mechanical properties of the modified cassava starch. Modification of cassava starch at pH and temperature of 7.0 and 45 0C was produced modified cassava starch with the most excellent solubility, while the best swelling power were formed by the modification process at pH and temperature of 7.0 and 25 0C. Overall, the most excellent compression properties of modified cassava starch resulted from the modification process at pH 12.

  19. Effects of Radiation on Mechanical Properties of Poly (butylene succinate) and Cassava Starch Blends

    International Nuclear Information System (INIS)

    Hemvichian, K.; Dechasasawat, K.; Kangsumrith, W.; Suwanmala, P.

    2014-01-01

    This research compared the effects of gamma and electron beam irradiation at different doses on the mechanical properties of polymer blends between poly(butylene succinate) (PBS) and cassava starch. Two types of starch were used to prepare thermoplastic starch (TPS), native cassava starch and hydrophobic starch. PBS/TPS blends were compounded at five different weight ratios using a twin-screw extruder. Mechanical properties and degradation were evaluated in comparison to unirradiated samples. Results indicated that the incorpora- tion of TPS prepared from native cassava starch decreased the mechanical properties of PBS/TPS blends, whereas the addition of TPS prepared from hydrophobic starch improved the mechanical properties of the blends. In addition, the maximum mechanical properties of PBS/TPS blends were achieved when samples were exposed to irradiation at 120 kGy. Using soil burial evaluation, the degradation rate of blends was found to increase with the addition of TPS. Therefore we have demonstrated in this study that the type of TPS and irradiation treatment can significantly alter the mechanical properties and degradation of PBS/TPS blends.

  20. Evaluation of Starch Biodegradable Plastics Derived from Cassava ...

    African Journals Online (AJOL)

    BSN

    2 Molecular Bio/Sciences Limited, 124 MCC Road, Calabar, Nigeria. Abstract ... cassava starch is a pure, natural biopolymer that is suitable for .... matter of fact, Ohtaki and Nakasaki (2000) reported that ... Chemistry and. Industry 31: 7 - 9.

  1. Combination process method of lactic acid hydrolysis and hydrogen peroxide oxidation for cassava starch modification

    Science.gov (United States)

    Sumardiono, Siswo; Pudjihastuti, Isti; Budiyono, Hartanto, Hansen; Sophiana, Intan Clarissa

    2017-05-01

    Indonesia is one of the world's largest wheat importer, some research are conducted to find other carbohydrate sources which can replace wheat. Cassava is very easy to find and grown in tropical climates especially Indonesia. The research is focused on cassava starch modification as a substitute for wheat flour in order to reduce consumption of wheat flour. The aim of this research is to assess the effect of temperature, pH, and the concentration of H2O2 in modifying cassava starch which. The combination methods are lactic acid hydroxylation and hydrogen peroxide oxidation to improve baking expansion. The carboxyl group, carbonyl group, swelling power, starch solubility, and baking expansion of starch are analized and calculated. Results showed that the modified cassava starch can substitute wheat flour with optimum conditions process at a concentration of H2O2 is 1.5% w/w, oxidation temperature is 50°C, and pH is 3 by the value of swelling power is 6.82%, solubility is 0.02%, and baking expansion is 7.2 cm3/gram.

  2. Effect of Gamma Irradiation on the Physicochemical and Functional Properties of Cassava Starch

    International Nuclear Information System (INIS)

    Asare, I.K.

    2011-10-01

    Cassava (Manihot esculanta Crantz) is popularly consumed as a staple food crop in many tropical countries in Africa, South America and Asia. In Africa the crop has been recognized as more than a subsistence crop. The crop is very important and commercially serves as a raw material for industries with significant effect on the economy of a country. Cassava roots contain high starch content and approximately half of the total roots produced is used for the production of starch for industrial purposes. Limitation to utilization of cassava roots by processors is due to its high perishability and bulkness, while native starches are structurally too weak and funtionally restricted for a wide variety of industrial applications. The objective of the project was to determine the effect of gamma irradiation as a modifying agent on native starch from three cassava varieties namely Ankra, Bosome nsia and TME419. Gamma radiation doses applied ranged between 0 - 20kGy and changes in physicochemical, functional and pasting indices of the starch were measured. Physicochemical indices measured were moisture content, amylose content, carbohydrate content, pH, ash content, fat content, protein content and L*a*b* values. Functional indices mesured were water absorption capacity, solubility index, bulk density, swelling power, fat absorption capacity, emulsion capacity, emulsion stability and least gelation concentration. Pasting indices measured were gelatinzation temperature, peak viscosity, viscosity at 92 degrees C and 50 degrees C, breakdown viscosity and setback viscosity. The pH, amylose content, carbohydrate content and ash content of native starch from Ankra, Bosome nsia and TME 419 were respectively 8.06, 7.80 and 7.18, 17.62%, 19.46% and 23.54%, 56.11%, 52.43% and 35.70%, 0.11%, 0.19% and 0.12%. The water absortion capacity and least gelation concentration of native starch from Ankra, Bosome nsia and TME 419 were 12.3%, 13.0% and 10.0%, respectively, least gelation

  3. Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch.

    Science.gov (United States)

    Mei, Ji-Qiang; Zhou, Da-Nian; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2015-11-15

    In this study, citric acid was used to react with cassava starch in order to compare the digestibility, structural and physicochemical properties of citrate starch samples. The results indicated that citric acid esterification treatment significantly increased the content of resistant starch (RS) in starch samples. The swelling power and solubility of citrate starch samples were lower than those of native starch. Compared with native starch, a new peak at 1724 cm(-1) was appeared in all citrate starch samples, and crystalline peaks of all starch citrates became much smaller or even disappeared. Differential scanning calorimetry results indicated that the endothermic peak of citrate starches gradually shrank or even disappeared. Moreover, the citrate starch gels exhibited better freeze-thaw stability. These results suggested that citric acid esterification induced structural changes in cassava starch significantly affected its digestibility and it could be a potential method for the preparation of RS with thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Post-harvest conservation of organic strawberries coated with cassava starch and chitosan

    Directory of Open Access Journals (Sweden)

    Raquel P Campos

    2011-10-01

    Full Text Available The strawberry is as non-climacteric fruit, but has a high post-harvest respiration rate, which leads to a rapid deterioration at room temperature. This study aimed to evaluate the application of biodegradable coating on postharvest conservation of organic strawberries, cv. Camarosa, packed in plastic hinged boxes and stored at 10ºC. The treatments consisted of: a control; b 2% cassava starch; c 1% chitosan; and d 2% cassava starch + 1% chitosan. Physical and chemical characteristics of fruits were evaluated at 3, 6 and 9 days of storage, and microbiological and sensory analyses were carried out at the end of the storage period. The treatments influenced positively the post-harvest quality of organic strawberries. The coating cassava starch + chitosan provided the best results, with less than 6% of loss in fruit mass, lower counts of yeast and psychrophilic microorganisms and the best appearance according to the sensory analysis.

  5. Preparation and physico-chemical properties of hydrogels from carboxymethyl cassava starch crosslinked with citric acid

    Science.gov (United States)

    Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong

    2014-06-01

    Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.

  6. Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Shanavas, S.; Padmaja, G.; Moorthy, S.N.; Sajeev, M.S.; Sheriff, J.T. [Division of Crop Utilization, Central Tuber Crops Research Institute, Thiruvananthapuram, 695 017 Kerala (India)

    2011-02-15

    Although cassava (Manihot esculenta Crantz) is a potential bioethanol crop, high operational costs resulted in a negative energy balance in the earlier processes. The present study aimed at optimizing the bioethanol production from cassava starch using new enzymes like Spezyme {sup registered} Xtra and Stargen trademark 001. The liquefying enzyme Spezyme was optimally active at 90 C and pH 5.5 on a 10% (w/v) starch slurry at levels of 20.0 mg (280 Amylase Activity Units) for 30 min. Stargen levels of 100 mg (45.6 Granular Starch Hydrolyzing Units) were sufficient to almost completely hydrolyze 10% (w/v) starch at room temperature (30 {+-} 1 C). Ethanol yield and fermentation efficiency were very high (533 g/kg and 94.0% respectively) in the Stargen + yeast process with 10% (w/v) starch for 48 h. Raising Spezyme and Stargen levels to 560 AAU and 91.2 GSHU respectively for a two step loading [initial 20% (w/v) followed by 20% starch after Spezyme thinning]/initial higher loading of starch (40% w/v) resulted in poor fermentation efficiency. Upscaling experiments using 1.0 kg starch showed that Stargen to starch ratio of 1:100 (w/w) could yield around 558 g ethanol/kg starch, with a high fermentation efficiency of 98.4%. The study showed that Spezyme level beyond 20.0 mg for a 10% (w/v) starch slurry was not critical for optimizing bioethanol yield from cassava starch, although an initial thinning of starch for 30 min by Spezyme facilitated rapid saccharification-fermentation by Stargen + yeast system. The specific advantage of the new process was that the reaction could be completed within 48.5 h at 30 {+-} 1 C. (author)

  7. Improving hydrogen production from cassava starch by combination of dark and photo fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Su, Huibo; Cheng, Jun; Zhou, Junhu; Song, Wenlu; Cen, Kefa [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027 (China)

    2009-02-15

    The combination of dark and photo fermentation was studied with cassava starch as the substrate to increase the hydrogen yield and alleviate the environmental pollution. The different raw cassava starch concentrations of 10-25 g/l give different hydrogen yields in the dark fermentation inoculated with the mixed hydrogen-producing bacteria derived from the preheated activated sludge. The maximum hydrogen yield (HY) of 240.4 ml H{sub 2}/g starch is obtained at the starch concentration of 10 g/l and the maximum hydrogen production rate (HPR) of 84.4 ml H{sub 2}/l/h is obtained at the starch concentration of 25 g/l. When the cassava starch, which is gelatinized by heating or hydrolyzed with {alpha}-amylase and glucoamylase, is used as the substrate to produce hydrogen, the maximum HY respectively increases to 258.5 and 276.1 ml H{sub 2}/g starch, and the maximum HPR respectively increases to 172 and 262.4 ml H{sub 2}/l/h. Meanwhile, the lag time ({lambda}) for hydrogen production decreases from 11 h to 8 h and 5 h respectively, and the fermentation duration decreases from 75-110 h to 44-68 h. The metabolite byproducts in the dark fermentation, which are mainly acetate and butyrate, are reused as the substrates in the photo fermentation inoculated with the Rhodopseudomonas palustris bacteria. The maximum HY and HPR are respectively 131.9 ml H{sub 2}/g starch and 16.4 ml H{sub 2}/l/h in the photo fermentation, and the highest utilization ratios of acetate and butyrate are respectively 89.3% and 98.5%. The maximum HY dramatically increases from 240.4 ml H{sub 2}/g starch only in the dark fermentation to 402.3 ml H{sub 2}/g starch in the combined dark and photo fermentation, while the energy conversion efficiency increases from 17.5-18.6% to 26.4-27.1% if only the heat value of cassava starch is considered as the input energy. When the input light energy in the photo fermentation is also taken into account, the whole energy conversion efficiency is 4.46-6.04%. (author)

  8. Evaluation of the Disintegrant Properties of Native Starches of Five New Cassava Varieties in Paracetamol Tablet Formulations

    Directory of Open Access Journals (Sweden)

    Frank Kumah Adjei

    2017-01-01

    Full Text Available The disintegrant potential of native starches of five new cassava (Manihot esculenta Crantz. varieties developed by the Crops Research Institute of Ghana (CRIG was studied in paracetamol tablet formulations. The yield of the starches ranged from 8.0 to 26.7%. The starches were basic (pH: 8.1–9.9, with satisfactory moisture content (≤15%, swelling capacity (≥20%, ash values (0.05 to those containing maize starch BP. The disintegration times of the tablets decreased with increase in concentration of the cassava starches. The tablets passed the disintegration test (DT ≤ 15 min and exhibited faster disintegration times (p>0.05 than those containing maize starch BP. The disintegration efficiency ratio (DER and the disintegration parameter DERc of the tablets showed that cassava starches V20, V40, and V50 had better disintegrant activity than maize starch BP. The tablets passed the dissolution test for immediate release tablets (≥70% release in 45 min with dissolution rates similar to those containing maize starch BP.

  9. Effect of cassava starch substituion on the functional and sensory ...

    African Journals Online (AJOL)

    The starch cake was rinsed four times, dried in the oven at 40oC for 24 hrs, milled and sieved. The cassava starch was used to substitute 10, 20, 30, 40 and 50% of trifoliate yam flour. The control white yam (Dioscorea rotundata) tubers were peeled, washed and diced. The diced yam tubers were parboiled at temperature of ...

  10. Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging.

    Science.gov (United States)

    de Souza, Ana Cristina; Dias, Ana M A; Sousa, Hermínio C; Tadini, Carmen C

    2014-02-15

    In this work, supercritical solvent impregnation (SSI) has been tested for the incorporation of natural compounds into biocomposite materials for food packaging. Cinnamaldehyde, with proved antimicrobial activity against fungi commonly found in bread products, was successfully impregnated on biocomposite cassava starch based materials using supercritical carbon dioxide as solvent. Different process experimental conditions were tested (pressure, impregnation time and depressurization rate) at a fixed temperature (35 °C) in order to study their influence on the amount of impregnated cinnamaldehyde as well as on the morphology of the films. Results showed that all conditions permitted to impregnate antimicrobial active amounts superior to those previously obtained using conventional incorporation methods. Moreover, a significant decrease of the equilibrium water vapor sorption capacity and water vapor permeability of the films was observed after SSI processing which is a clear advantage of the process, considering the envisaged applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Utilization of Cassava Starch in Copolymerisation of Superabsorbent Polymer Composite (SAPC

    Directory of Open Access Journals (Sweden)

    Akhmad Zainal Abidin

    2014-09-01

    Full Text Available Cassava starch was used as the main chain in the copolymerization of a superabsorbent polymer composite (SAPC based on acrylic acid and bentonite. The SAPC was synthesized through graft polymerization using nano-sized bentonite as reinforcement. The variables in this experiment were: bentonite concentration, acrylic acid to starch weight ratio, concentration of initiator, and cross linker. The product was characterized using FTIR, SEM and TGA-DSC. The results show that the polymerization reactions involved processes of incorporating starch chains as polymer backbone and grafting acrylic acid monomers onto it. The use of cassava starch in the polymerisation produced a very short reaction time (10-15 minutes, which led to SAPC production with higher efficiency and lower cost. Bentonite interacts with monomers via hydrogen and weak bonding, thus improving the thermal properties of the product. The maximum absorbance capacity obtained was at an acrylic acid to starch weight ratio of 5 and a concentration of initiator, cross linker and bentonite of 0.5, 0.05 and 2 weight percent, respectively. The product is suitable for agricultural and medical applications as well as common superabsorbent polymer applications.

  12. Some Nutritional Characteristics of Enzymatically Resistant Maltodextrin from Cassava (Manihot esculenta Crantz) Starch.

    Science.gov (United States)

    Toraya-Avilés, Rocío; Segura-Campos, Maira; Chel-Guerrero, Luis; Betancur-Ancona, David

    2017-06-01

    Cassava (Manihot esculenta Crantz) native starch was treated with pyroconversion and enzymatic hydrolysis to produce a pyrodextrin and an enzyme-resistant maltodextrin. Some nutritional characteristics were quantified for both compounds. Pyroconversion was done using a 160:1 (p/v) starch:HCl ratio, 90 °C temperature and 3 h reaction time. The resulting pyrodextrin contained 46.21% indigestible starch and 78.86% dietary fiber. Thermostable α-amylase (0.01%) was used to hydrolyze the pyrodextrin at 95 °C for 5 min. The resulting resistant maltodextrin contained 24.45% dextrose equivalents, 56.06% indigestible starch and 86.62% dietary fiber. Compared to the cassava native starch, the pyrodextrin exhibited 56% solubility at room temperature and the resistant maltodextrin 100%. The glycemic index value for the resistant maltodextrin was 59% in healthy persons. Its high indigestible starch and dietary fiber contents, as well as its complete solubility, make the resistant maltodextrin a promising ingredient for raising dietary fiber content in a wide range of foods, especially in drinks, dairy products, creams and soups.

  13. Cassava starch edible coating incorporated with propolis on bioactive compounds in strawberries

    Directory of Open Access Journals (Sweden)

    Ariela Betsy Thomas

    2016-02-01

    Full Text Available ABSTRACT Strawberry is a fruit appreciated throughout the world due to its attractive quality attributes and stands out due to its high phenolic compound content, which positively contribute to biological properties of nutritional interest. The objective of this study was to evaluate the effect of cassava starch coatings incorporated with propolis combinations on the phytochemical content and the maintenance and increase of the strawberry antioxidant activity. The treatments were 3% cassava starch (CS, 3% cassava starch + 33% ethanolic propolis extract (CS + P33%, 3% cassava starch + 66% ethanolic propolis extract (CS + P66% and control (C. The fruits were stored at 4 °C ± 0.5 ºC and 90%RH for 16 days, making up a completely randomized design with 4 treatments and 5 time evaluations. Vitamin C, phenolic compound, anthocyanin, and antioxidant activity levels were evaluated through two methods. The coating with 66% of propolis promoted higher Vitamin C content than fruits submitted to the other treatments at 8 and 12 days of storage. For antioxidant activity, fruits treated with CS maintained a higher FRS percentage (free radical scavenging at all time evaluations. Control fruits presented higher anthocyanin content at the last evaluation time when the highest antioxidant capacity, by the ABTS method (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid, was observed in fruits with CS and CS + P66% treatments. There was an increase tendency of the phenolic content during storage in all evaluated fruits. The propolis concentrations used, however, were not sufficient to increase or maintain the antioxidant capacity and phenolic contents of strawberries.

  14. Effect of modification with 1,4-α-glucan branching enzyme on the rheological properties of cassava starch.

    Science.gov (United States)

    Li, Yadi; Li, Caiming; Gu, Zhengbiao; Hong, Yan; Cheng, Li; Li, Zhaofeng

    2017-10-01

    Steady and dynamic shear measurements were used to investigate the rheological properties of cassava starches modified using the 1,4-α-glucan branching enzyme (GBE) from Geobacillus thermoglucosidans STB02. GBE treatment lowered the hysteresis loop areas, the activation energy (E a ) values and the parameters in rheological models of cassava starch pastes. Moreover, GBE treatment increased its storage (G') and loss (G″) moduli, and decreased their tan δ (ratio of G″/G') values and frequency-dependencies. Scanning electron microscopic studies showed the selective and particular attack of GBE on starch granules, and X-ray diffraction analyses showed that GBE treatment produces significant structural changes in amylose and amylopectin. These changes demonstrate that GBE modification produces cassava starch with a more structured network and improved stability towards mechanical processing. Differential scanning calorimetric analysis and temperature sweeps indicated greater resistance to granule rupture, higher gel rigidity, and a large decrease in the rate of initial conformational ordering with increasing GBE treatment time. Pronounced changes in rheological parameters revealed that GBE modification enhances the stability of cassava starch and its applicability in the food processing industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effectiveness of incorporating citric acid in cassava starch edible coatings to preserve quality of Martha tomatoes

    Science.gov (United States)

    Ambarsari, I.; Oktaningrum, G. N.; Endrasari, R.

    2018-01-01

    Tomato as an agricultural product is extremely perishable. Coatings of tomatoes with edible starch extend quality and storage life of the fruits. Incorporation of citric acid as antimicrobial agent in the edible starch coatings is expected to preserve the quality of tomatoes during storage. The aim of this study was to verify the effectiveness of citric acid incorporated in cassava starch coating to preserve quality of tomatoes. The edible coatings formula consisted of cassava starch solutions (1; 2; 3%), citric acid (0.5; 1.0%) and glycerol (10%). Tomatoes were dipped to the coating solution for 10 seconds, then air-dried and stored at room temperature during 18 days. All the treatments were carried out in triplicates. Experimental data were analyzed using One Way ANOVA. The results showed that coating treatments did not affect the weight loss, moisture content, color characteristic, carotene and vitamin C content on Martha tomatoes. The low concentration of starch coating on Martha tomatoes are indicated to be the reason why there was no significant difference between coated and coated tomatoes for some parameters. However, incorporating citric acid in cassava starch-based coatings could prevent tomato fruits from firmness reduction and spoilage during storage.

  16. SACCHARIFICATION OF NATIVE CASSAVA STARCH AT HIGH DRY SOLIDS IN AN ENZYMATIC MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    I Nyoman Widiasa

    2012-02-01

    Full Text Available This study is aimed to develop a novel process scheme for hydrolysis of native cassava starch at high dry solids using an enzymatic membrane reactor (EMR. Firstly, liquefied cassava starch having solids content up to 50% by weight was prepared by three stage liquefactions in a conventional equipment using a commercially available heat stable a-amylase (Termamyl 120L. The liquefied cassava starch was further saccharified in an EMR using glucoamylase (AMG E. By using the developed process scheme, a highly clear hydrolysate with dextrose equivalent (DE approximately 97 could be produced, provided the increase of solution viscosity during the liquefaction was precisely controlled. The excessive space time could result in reduction in conversion degree of starch. Moreover, a residence time distribution study confirmed that the EMR could be modelled as a simple continuous stirred tank reactor (CSTR. Using Lineweaver-Burk analysis, the apparent Michaelis-Menten constant (Km and glucose production rate constant (k2 were 552 (g/l and 4.04 (min-1, respectively. Application of simple CSTR model with those kinetic parameters was quietly appropriate to predict the reactor’s performance at low space time.

  17. Starch/poly (butylene adipate-co-terephthalate/montmorillonite films produced by blow extrusion

    Directory of Open Access Journals (Sweden)

    Rodrigo A. L. Santos

    2014-07-01

    Full Text Available This study aims to prepare biodegradable films from cassava starch, poly (butylene adipate-co-terephthalate (PBAT, and montmorillonite (MMT using blow-extrusion process and analyze the effects of different types and concentrations of MMT on the microstructure, physicochemical, and mechanical properties of the resulting films. The films were produced by blending 30% of PBAT with glycerol (17.5%, starch (49.0-52.5%, and four different types of montmorillonite (Cloisite® Na+, 10A, 15A, and 30B at two different concentrations (1.75% and 3.5%. All the films prepared in this study showed an increase in the basal spacing of MMT layers. In particular, the films with 10A and 30B showed the highest increase in intercalation basal spacing, suggesting the formation of intercalated composites. The addition of nanoclays decreased the elongation of films. The addition of Cloisite® 10A resulted in films with the lowest WVP values and the highest stability to water adsorption under different RH conditions.

  18. Thermoanalytical and starch content evaluation of cassava bagasse as agro-industrial residue

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo Lacerda

    2009-11-01

    Full Text Available Starch nutritional fractions as well as thermal properties and other analysis are essential for food and industrial application. Cassava bagasse is an important agro-industrial residue and its starch content was evaluated using two alternative methods. Thermal characterization and microscopy analyses helped to understand how hydrolysis digests starchy fraction of cassava bagasse. The melting point of cassava starch occurred at 169.2ºC. Regarding TG analyses, after moisture content, there were observed two main mass losses for all samples. Results suggest hydrolysis carried out using enzyme is less effective in order to convert total starch content in cassava bagasse. However, using sulfuric acid, fibers are affected by analyses conditions.As frações nutricionais bem como as propriedades térmicas e outras análises são essenciais para a indústria de alimentos e suas aplicações O bagaço de mandioca é um importante resíduo agroindustrial e seu teor de amido foi avaliado por dois métodos alternativos. A caracterização por análise térmica e microscopia ajudou na compreensão de como a hidrólise digere a fração amilácea do bagaço de mandioca, O ponto de fusão foi de 170ºC, a análise termogravimétrica (TG mostrou após a perda de umidade do material, duas principais perdas de massa em todas as amostras analisadas. Os resultados sugerem que a hidrólise enzimática é menos eficiente na conversão total de amido no bagaço de mandioca. No entanto, o uso de ácido sulfúrico degradou até mesmo a parcela fibrosa do material, afetando as condições de análise.

  19. Enzymatic Production of Ethanol from Cassava Starch Using Two ...

    African Journals Online (AJOL)

    Cassava starch from TMS 30572 and Idileru were hydrolyzed with ƒ¿-amylase and amylo-glucosidase before fermentation using two strains of Saccharomyces cerevisiae from palm wine and bakersf yeast. The per cent yield of sugars and total dissolved solids were 66 % and 26% respectively while pH was 7.

  20. Effect of waxy rice flour and cassava starch on freeze-thaw stability of rice starch gels.

    Science.gov (United States)

    Charoenrein, Sanguansri; Preechathammawong, Nutsuda

    2012-10-01

    Repeatedly frozen and thawed rice starch gel affects quality. This study investigated how incorporating waxy rice flour (WF) and cassava starch (CS) in rice starch gel affects factors used to measure quality. When rice starch gels containing 0-2% WF and CS were subjected to 5 freeze-thaw cycles, both WF and CS reduced the syneresis in first few cycles. However CS was more effective in reducing syneresis than WF. The different composite arrangement of rice starch with WF or CS caused different mechanisms associated with the rice starch gel retardation of retrogradation, reduced the spongy structure and lowered syneresis. Both swollen granules of rice starch and CS caused an increase in the hardness of the unfrozen and freeze-thawed starch gel while highly swollen WF granules caused softer gels. These results suggested that WF and CS were effective in preserving quality in frozen rice starch based products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Synthesis and property characterization of cassava starch grafted poly(acrylamide-co-(maleic acid)) superabsorbent via γ-irradiation

    International Nuclear Information System (INIS)

    Kiatkamjornwong, Suda; Mongkolsawat, Kanlaya; Sonsuk, Manit

    2004-01-01

    Graft copolymerizations of acrylamide and maleic acid onto cassava starch by a simultaneous irradiation technique using γ-rays as a initiator were carried out. Various important parameters of total dose, dose rate, monomer-to-cassava starch ratio and maleic acid content were studied. Addition of 2% ww -1 diprotic acid of maleic acid into the reaction mixture yields a saponified starch graft copolymer with a water absorption in distilled water as high as 2256g g -1 of its dried weight. The water absorption of these saponified graft copolymers insaline and buffer solutions was also measured. The water absorption depends largely on the cationic type and concentration of these solutions in terms of ionic strength. This research explains a charge transfer mechanism for graft copolymerization of maleic acid and acrylamide onto cassava starch, and describes the influential parameters that affect grafting efficiency and water absorption. (author)

  2. Starch/polyester films: simultaneous optimisation of the properties for the production of biodegradable plastic bags

    OpenAIRE

    Olivato, J. B.; Grossmann, M. V. E.; Bilck, A. P.; Yamashita, F.; Oliveira, L. M.

    2013-01-01

    Blends of starch/polyester have been of great interest in the development of biodegradable packaging. A method based on multiple responses optimisation (Desirability) was used to evaluate the properties of tensile strength, perforation force, elongation and seal strength of cassava starch/poly(butylene adipate-co-terephthalate) (PBAT) blown films produced via a one-step reactive extrusion using tartaric acid (TA) as a compatibiliser. Maximum results for all the properties were set as more des...

  3. Effect of modified cassava starch on the rheological and quality properties of a dairy beverage prepared with sweet whey

    Directory of Open Access Journals (Sweden)

    Paola Catalina IMBACHÍ-NARVÁEZ

    2018-03-01

    Full Text Available Abstract The effect of sweet whey and octenyl succinic anhydride (OSA-modified cassava starch on the quality and rheological properties of fermented dairy beverages was evaluated. Sweet whey (45-65% and OSA-modified cassava starch (0.8-1.2% were added to determine an optimal fermented dairy beverage with the highest viscosity and the lowest syneresis possible. The optimal fermented dairy beverage corresponded to the addition of 40.9% sweet whey and 1.13% OSA-modified cassava starch with respect to the milk and sweet whey mixture. Moreover, the rheological and quality properties of the optimal fermented dairy beverage were compared to a commercial beverage (control during 22 days of storage. No significant differences were found in soluble solids, acidity, pH and consistency index during the time evaluated, while the syneresis of both products showed an increase during storage. OSA-modified cassava starch can be used as a stabiliser in sweet whey fermented dairy beverages because it helps improve its quality properties.

  4. Gamma irradiation effect on mechanical and barrier properties of foamed articles based on cassava starch

    International Nuclear Information System (INIS)

    Naime, Natalia; Ponce, Patricia; Lugao, Ademar B.

    2009-01-01

    With the increasing environmental concern, replacing the traditional non-biodegradable synthetic materials for biodegradable products is the challenge for many researchers and companies. Starch is considered one of the most promising natural polymers for packaging application because of its renewability, biodegradability and low cost. However, there are some limitations in developing starch-based products due to its poor mechanical properties and high moisture sensitivity. These properties can change when subjected to any process of sterilization, especially by gamma radiation. This work aims to study the mechanical and barrier properties of cassava starch in front of gamma radiation, for cobalt-60 ( 60 C0), when subjected to doses of 3 kGy, 6 kGy, 12 kGy and 25 kGy for the development of packaging, and then it compares the results to those of conventional packaging, as the expanded polystyrene (styrofoam) and paper cards. The starch foams (packaging) were obtained by thermopressing process. After baking, the foams were conditioned for one month at 23 deg C and 60% relative humidity (RH) before mechanical and barrier testing. Polyethyleneglycol (PEG 300) was selected as plasticizer. The packaging in which the cassava starch was subjected to irradiation had higher resistance to compression and higher flexibility compared to that in which the starch had not been irradiated. The expanded polystyrene and paper card packages are less resistant to compression than the cassava starch packages. The styrofoam is more flexible than the paper cards, which in turn is more flexible than packages of starch. After irradiation, the barrier properties of the foams were improved. (author)

  5. Biogas Production Using Anaerobic Biodigester from Cassava Starch Effluent

    Directory of Open Access Journals (Sweden)

    S. Sunarso

    2010-12-01

    Full Text Available IKMs’ factory activity in Margoyoso produces liquid and solid wastes. The possible alternative was to use the liquid effluent as biogas raw material. This study focuses on the used of urea, ruminant, yeast, microalgae, the treatment of gelled and ungelled feed for biogas production, pH control during biogas production using buffer Na2CO3, and feeding management in the semi-continuous process of biogas production that perform at ambient temperature for 30 days. Ruminant bacteria, yeast, urea, and microalgae was added 10% (v/v, 0.08% (w/v, 0.04% (w/v, 50% (v/v of mixing solution volume, respectively. The pH of slurry was adjusted with range 6.8-7.2 and was measured daily and corrected when necessary with Na2CO3. The total biogas production was measured daily by the water displacement technique. Biogas production from the ungelling and gelling mixture of cassava starch effluent, yeast, ruminant bacteria, and urea were 726.43 ml/g total solid and 198 ml/g total solid. Biogas production from ungelling mixture without yeast was 58.6 ml/g total solid. Biogas production from ungelling mixture added by microalgae without yeast was 58.72 ml/g total solid and that with yeast was 189 ml/g total solid. Biogas production from ungelling mixture of cassava starch effluent, yeast, ruminant bacteria, and urea in semi-continuous process was 581.15 ml/g total solid. Adding of microalgae as nitrogen source did not give significant effect to biogas production. But adding of yeast as substrate activator was very helpful to accelerate biogas production. The biogas production increased after cassava starch effluent and yeast was added. Requirement of sodium carbonate (Na2CO3 to increase alkalinity or buffering capacity of fermenting solution depends on pH-value

  6. Structure and properties of pregelatinized cassava starch/kaolin composites

    International Nuclear Information System (INIS)

    Kaewtatip, Kaewta; Tanrattanakul, Varaporn

    2012-01-01

    Highlights: ► Pregelatinized starch/kaolin composites were prepared using compression molding. ► The tensile strengths of the composites were higher than for thermoplastic starch. ► Degradation temperatures of the composites were higher than for thermoplastic starch. ► The retrogradation behavior of the composites was hindered by kaolin. -- Abstract: Pregelatinized cassava starch/kaolin composites were prepared using compression molding. The morphology of the fractured surfaces, retrogradation behavior, thermal decomposition temperatures and mechanical properties of the composites were investigated using scanning election microscopy (SEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and tensile testing, respectively. The tensile strengths and thermal degradation temperatures of the composites were higher than for thermoplastic starch (TPS). The retrogradation behavior of the composites was hindered by kaolin. The water absorption was measured after aging for 12 and 45 days at a relative humidity (RH) of 15% and 55%. It indicated that all the composites displayed lower water absorption values than TPS.

  7. Dynamic moisture sorption characteristics of enzyme-resistant recrystallized cassava starch.

    Science.gov (United States)

    Mutungi, Christopher; Schuldt, Stefan; Onyango, Calvin; Schneider, Yvonne; Jaros, Doris; Rohm, Harald

    2011-03-14

    The interaction of moisture with enzyme-resistant recrystallized starch, prepared by heat-moisture treatment of debranched acid-modified or debranched non-acid-modified cassava starch, was investigated in comparison with the native granules. Crystallinities of the powdered products were estimated by X-ray diffraction. Moisture sorption was determined using dynamic vapor sorption analyzer and data fitted to various models. Percent crystallinities of native starch (NS), non-acid-modified recrystallized starch (NAMRS), and acid-modified recrystallized starch (AMRS) were 39.7, 51.9, and 56.1%, respectively. In a(w) below 0.8, sorption decreased in the order NS > NAMRS > AMRS in line with increasing sample crystallinities but did not follow this crystallinity dependence at higher a(w) because of condensation and polymer dissolution effects. Adsorbed moisture became internally absorbed in NS but not in NAMRS and AMRS, which might explain the high resistance of the recrystallized starches to digestion because enzyme and starch cannot approach each other over fairly sufficient surface at the molecular level.

  8. Analysis of Biodegradation of Bioplastics Made of Cassava Starch

    Directory of Open Access Journals (Sweden)

    Nanang Eko Wahyuningtiyas

    2017-08-01

    Full Text Available Environmental pollution due to plastic waste taking too long to decompose has become a global problem. There have been numerous solutions proposed, one of which is the use of bioplastics. The use of cassava starch as the main ingredient in the manufacture of bioplastics shows great potential, since Indonesia has a diverse range of starch-producing plants. The aim of the present study is to analyse the effect of glycerol on microbial degradation. This experimental research investigated the use of cassava flour mixed with glycerol plasticizer at various concentrations (0, 2, 2.5, 3% in the synthesis of bioplastics. The aspects studied were biodegradability, moisture absorption (using ASTM D570, shelf life, and morphological properties (using a camera equipped with a macro lens and SEM. This study revealed that complete degradation could be achieved on the 9th day. The addition of a large concentration of glycerol would accelerate the microbial degradation process, increase moisture, and extend the shelf life of bioplastics in a dry place.

  9. Volume 10 No. 7 July 2010 2837 EFFECT OF CASSAVA STARCH ...

    African Journals Online (AJOL)

    user

    2010-07-07

    Jul 7, 2010 ... This study was carried out to determine the effect of cassava (Manihot cranzt) starch substitution ... Sample TF had the least peak viscosity value of 54.13 RVU while ... Swelling index and water absorption capacity ranged from.

  10. Effects of Gamma Irradiation on Mechanical Properties of LDPE/Cassava Starch Blends

    International Nuclear Information System (INIS)

    Hemvichian, Kasinee; Suwanmala, Phiriyatorn; Kangsumrith, Wararat

    2007-08-01

    Full text: Low density polyethylene (LDPE) was blended with cassava starch. The starch content was varied from 10, 20 to 30%. The blends were compression molded to form plastic sheets. The sheets were cut into dog bone-shaped specimens. The samples were gamma irradiated in air with the total dose of 10, 20, 50 and 100 kGy. The mechanical properties of both the unirradiated and irradiated samples were characterized using a Universal Testing Machine. The results demonstrated that tensile strength of the LDPE/Starch blends increased with dose, while it simultaneously decreased with starch content

  11. Preparation and characterization of biodegradable composites based on brazilian cassava starch, corn starch and green coconut fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Maria Guadalupe Lomeli; Muniz, Graciela I. Bolzon de.; Satyanarayana, Kestur G.; Tanobe, Valcineide; Iwakiri, Setsuo, E-mail: glomeli12@hotmail.com [Universidade Federal do Parana (UFPR), Curitiba, Parana (Brazil). Centro de Ciencias Florestais e da Madeira

    2010-07-01

    Increasing search for new materials with high premium on eco-friendliness, new trend is emerging in materials development such as composites, which are well established for a wide variety of applications. With growing interest and importance of renewable bioresources has led to more stress on the use of locally available materials. This paper presents preliminary results on the preparation and characterization of composites based on Brazilian coconut fibers and starches of cassava and corn. The raw materials were characterized for their morphology, chemical composition, and thermal properties and X-ray diffraction studies. Coir fibers were also tested for their tensile properties showing increasing strength and Young's modulus with decreasing diameter, while the % elongation remaining constant. Lignin content of coir was found to be 35%. Structure and properties of composites containing 0, 5 10, 15% fibers in both the matrices and prepared by compression molding would be compared. For the 2 types of starch, there was an increase in the tensile strength by the increasing proportion of fiber. The effect of moisture in the composite stress affects the strength and percentage elongation. The water absorption was higher in the composites made from cassava starch. (author)

  12. Preparation and characterization of biodegradable composites based on brazilian cassava starch, corn starch and green coconut fibers

    International Nuclear Information System (INIS)

    Ramirez, Maria Guadalupe Lomeli; Muniz, Graciela I. Bolzon de.; Satyanarayana, Kestur G.; Tanobe, Valcineide; Iwakiri, Setsuo

    2010-01-01

    Increasing search for new materials with high premium on eco-friendliness, new trend is emerging in materials development such as composites, which are well established for a wide variety of applications. With growing interest and importance of renewable bioresources has led to more stress on the use of locally available materials. This paper presents preliminary results on the preparation and characterization of composites based on Brazilian coconut fibers and starches of cassava and corn. The raw materials were characterized for their morphology, chemical composition, and thermal properties and X-ray diffraction studies. Coir fibers were also tested for their tensile properties showing increasing strength and Young's modulus with decreasing diameter, while the % elongation remaining constant. Lignin content of coir was found to be 35%. Structure and properties of composites containing 0, 5 10, 15% fibers in both the matrices and prepared by compression molding would be compared. For the 2 types of starch, there was an increase in the tensile strength by the increasing proportion of fiber. The effect of moisture in the composite stress affects the strength and percentage elongation. The water absorption was higher in the composites made from cassava starch. (author)

  13. APPLICATION OF ANTIOXIDANTS AND EDIBLE STARCH COATING TO REDUCE BROWNING OF MINIMALLY - PROCESSED CASSAVA

    Directory of Open Access Journals (Sweden)

    DANIEL GOMES COELHO

    2017-01-01

    Full Text Available This study aimed to evaluate the quality of minimally - processed cassava treated with antioxidants and a starch - based edible coating. Cassava roots were washed, cooled, immersed in cold water, peeled and then cut. Root pieces were then immersed in a chloride solution, centrifuged, and subsequently immersed in either a starch suspension (3%, a solution containing antioxidants (3% citric acid and 3% ascorbic acid, or in both the coating and antioxidant solutions. Coated root pieces were dried at 18 ± 2°C for 1 hour, then packaged into polypropylene bags (150 g per pack and kept at 5 ± 2°C for 15 days, and assessed every 3 days. A completely randomized design was used in a 4 × 6 factorial consisting of the treatment (control, coating, antioxidant, or coating and antioxidant and the storage period (0, 3 6, 9, 12 or 15 days, with three replicates in each group. The pH, blackened area and peroxidase and polyphenol oxidase activities of the cassava was reduced in treatments containing antioxidants and the scores of visual analysis and phenolic content were higher. Therefore, treatment with antioxidants was effective for reducing browning in minimally - processed cassava, retaining the quality of cassava pieces stored for 15 days at 5 ± 2°C. The combination of antioxidants and the edible coating showed no improvement compared to treatment with antioxidants alone.

  14. Influence of the simultaneous addition of bentonite and cellulose fibers on the mechanical and barrier properties of starch composite-films.

    Science.gov (United States)

    de Moraes, J Oliveira; Müller, C M O; Laurindo, J B

    2012-02-01

    The addition of nanoclay or cellulose fibers has been presented in the literature as a suitable alternative for reinforcing starch films. The aim of the present work was to evaluate the effect of the simultaneous incorporation of nanoclay (bentonite) and cellulose fibers on the mechanical and water barrier properties of the resultant composite-films. Films were prepared by casting with 3% in weight of cassava starch, using glycerol as plasticizer (0.30 g per g of starch), cellulose fibers at a concentration of 0.30 g of fibers per g of starch and nanoclay (0.05 g clay per g starch and 0.10 g clay per g starch). The addition of cellulose fibers and nanoclay increased the tensile strength of the films 8.5 times and the Young modulus 24 times but reduced the elongation capacity 14 times. The water barrier properties of the composite-films to which bentonite and cellulose fibers were added were approximately 60% inferior to those of starch films. Diffractograms showed that the nanoclay was intercalated in the polymeric matrix. These results indicate that the simultaneous addition of bentonite and cellulose fibers is a suitable alternative to increase the tensile strength of the films and decrease their water vapor permeabilities.

  15. Direct detection of toxigenic Bacillus cereus in dietary complement for children and cassava starch

    Directory of Open Access Journals (Sweden)

    Jnnifer A. Sánchez

    2014-05-01

    Full Text Available Bacillus cereus is a food contaminant and a known human pathogen that can cause emetic and diarrheal syndromes. In this study we evaluated the presence of toxigenic B. cereus by multiplex PCR directly in dietary complement for children and cassava starch samples collected on Medellin, Colombia. Of 75 dietary complement for children samples evaluated, 70.7% were contaminated with toxigenic B. cereus and four different toxigenic consortia were detected: I: nheA, hblC, cytK (9.8%, II: nheA, hblC (2%, III: hblC, cytK (41.2%, IV: hblC (47%. Of 75 cassava starch samples, 44% were contaminated with toxigenic B. cereus and four different toxigenic consortia were determined: I: nheA, hblC, cytK (48.5%, II: nheA, hblC, cytK, cesB (3%, III: hblC, cytK (30.3%, IV: hblC (18.2%. In general, in dietary complement for children only enterotoxigenic consortia were detected while in cassava starch the enterotoxigenic consortia predominated over the emetic. Multiplex PCR was useful to detect toxigenic B. cereus contamination allowing direct and imultaneous detection of all toxin genes in foods. This study is the first in Colombia to evaluate toxigenic B. cereus, providing information of importance for microbiological risk evaluation in dried foods.

  16. Structural and Digestion Properties of Soluble-, Slowly Digestible and Resistant Maltodextrin from Cassava Starch by Enzymatic Modification

    DEFF Research Database (Denmark)

    Sorndech, Waraporn

    The combination of branching enzyme (BE) and amylomaltase (AM) were selected to modify cassava starch. AM were used to elongate the glucan chains in order to enhance BE activity to create branching linkages. Cassava starch were gelatinized and incubated with BE or AMBE or BEAMBE or simultaneous...... AM and BE. The molecular analysis of the products including amylopectin chain length distribution, content of α-1,6 glucosidic linkages, absolute molecular weight distribution and digestibility were examined. Only BE catalysis showed 7.8% of branching linkages. The sequential AMBE-treated starch...... showed 9.9%-10.0% branching linkages, while the sequential BEAMBE-treated starch gained 10.9%-13.1% of branching linkages. Moreover, the sequential AMBE and BEAMBE-treated starch retarded the digestion rate of α-amylase and glucoamylase. Overall, sequential BEAMBE catalysis resulted in more...

  17. Properties enhancement of cassava starch based bioplastics with addition of graphene oxide

    Science.gov (United States)

    Amri, A.; Ekawati, L.; Herman, S.; Yenti, S. R.; Zultiniar; Aziz, Y.; Utami, S. P.; Bahruddin

    2018-04-01

    The properties of cassava starch based bioplastic have been successfully enhanced by additioning of graphene oxide (GO) filler. The composite was synthesized via starch intercalation method using glycerol plasticizer with variation of 5 – 15 % v/v GO filler and mixing time of 30 and 60 minutes. The effects of GO content and the mixing time to the mechanical, water uptake and biodegradation were studied. The synthesis of GO and its integration in the bioplastic composite were also elucidated. The increasing of the GO content and mixing time improved the mechanical properties of composite mainly due to of good homogeneity among the constituents in the composite as indicated by scanning electron microscopy (SEM) and Fourier Transfom Infrared (FTIR) spectroscopy. The bioplastic produced using 15% of GO and 60 minutes mixing time had the highest mechanical properties with tensile strenght of 3,92 Mpa, elongation of 13,22% and modulus young of 29,66 MPa. The water uptake and biodegradation increased as the increase of GO content and decreased as the increase of the mixing time. Graphene oxide is the promissing filler for further development of cassava starch based bioplastics.

  18. Manual of radiation processing of cassava starch hydrogel

    International Nuclear Information System (INIS)

    Sonsuk, Manit

    2007-01-01

    The radiation processing of natural cassava starch (CS) is described for the improvement of its properties. A series of hydrogels were prepared from gelatinized CS and vinylpyrrolidone by radiation-induced graft copolymerization. Hydrogels were also synthesized from radiation-induced crosslinking of carboxymethyl CS. The optimum condition for the swelling ratio and gel fraction of the obtained hydrogels is irradiation at low dose. The polymeric chelating resins containing the hydroxamic acid groups were synthesized from the polymethyl acrylate (PMA)-grafted CS via gamma radiation. (M.H.)

  19. Physicochemical properties of potato and cassava starches and their mutants in relation to their structural properties

    NARCIS (Netherlands)

    Gomand, S.V.; Lamberts, L.; Visser, R.G.F.; Delcour, J.A.

    2010-01-01

    Physicochemical properties [swelling power (SP), pasting behaviour and retrogradation] of five wild type (wt), five amylose free (amf), four high-amylose (ha) potato starches (ps) and one wt and amf cassava starch (cs) were investigated. While swelling of wtps occurred in two phases, amfps showed a

  20. Functional properties of edible agar-based and starch-based films for food quality preservation.

    Science.gov (United States)

    Phan, The D; Debeaufort, F; Luu, D; Voilley, A

    2005-02-23

    Edible films made of agar (AG), cassava starch (CAS), normal rice starch (NRS), and waxy (glutinous) rice starch (WRS) were elaborated and tested for a potential use as edible packaging or coating. Their water vapor permeabilities (WVP) were comparable with those of most of the polysaccharide-based films and with some protein-based films. Depending on the environmental moisture pressure, the WVP of the films varies and remains constant when the relative humidity (RH) is >84%. Equilibrium sorption isotherms of these films have been measured; the Guggenheim-Anderson-de Boer (GAB) model was used to describe the sorption isotherm and contributed to a better knowledge of hydration properties. Surface hydrophobicity and wettability of these films were also investigated using the sessile drop contact angle method. The results obtained suggested the migration of the lipid fraction toward evaporation surface during film drying. Among these polysaccharide-based films, AG-based film and CAS-based film displayed more interesting mechanical properties: they are transparent, clear, homogeneous, flexible, and easily handled. NRS- and WRS-based films were relatively brittle and have a low tension resistance. Microstructure of film cross section was observed by environmental scanning electron microscopy to better understand the effect of the structure on the functional properties. The results suggest that AG-based film and CAS-based films, which show better functional properties, are promising systems to be used as food packaging or coating instead of NRS- and WRS-based films.

  1. Poly(Lactic Acid) Filled with Cassava Starch-g-Soybean Oil Maleate

    Science.gov (United States)

    Kiangkitiwan, Nopparut; Srikulkit, Kawee

    2013-01-01

    Poly(lactic acid), PLA, is a biodegradable polymer, but its applications are limited by its high cost and relatively poorer properties when compared to petroleum-based plastics. The addition of starch powder into PLA is one of the most promising efforts because starch is an abundant and cheap biopolymer. However, the challenge is the major problem associated with poor interfacial adhesion between the hydrophilic starch granules and the hydrophobic PLA, leading to poorer mechanical properties. In this paper, soybean oil maleate (SOMA) was synthesized by grafting soybean oil with various weight percents of maleic anhydride (MA) using dicumyl peroxide (DCP) as an initiator. Then, SOMA was employed for the surface modifying of cassava starch powder, resulting in SOMA-g-STARCH. The obtained SOMA-g-STARCH was mixed with PLA in various weight ratios using twin-screw extruder, resulting in PLA/SOMA-g-STARCH. Finally, the obtained PLA/SOMA-g-STARCH composites were prepared by a compression molding machines. The compatibility, thermal properties, morphology properties, and mechanical properties were characterized and evaluated. The results showed that the compatibility, surface appearance, and mechanical properties at 90 : 10 and 80 : 20 ratios of PLA/SOMA-g-STARCH were the best. PMID:24307883

  2. Polymeric flocculant based on cassava starch grafted polydiallyldimethylammonium chloride: Flocculation behavior and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Razali, M.A.A.; Ariffin, A., E-mail: srazlan@usm.my

    2015-10-01

    Graphical abstract: - Highlights: • Flocculation performance of cassava grafted polyDADMAC was studied. • Turbidity and TSS removal increased with increasing grafting percentage. • The grafted polymer showed good removal in acidic and neutral region. • Zeta potential results pointed to the charge neutralization mechanism. • Flocs increased with increasing grafting percentage and molecular weight. - Abstract: In this work, flocculation properties of cassava starch grafted polydiallyldimethylammonium chloride (polyDADMAC) with different grafting percentages were investigated. Flocculation performance was evaluated in simulated kaolin suspension. The grafting percentages used were 1.76 %, 14.84 %, and 21.98 %. The effectiveness of the flocculation was measured based on the reduction of the turbidity and total suspended solids (TSSs), zeta potential measurements, particle size, and atomic force microscopy imaging. Grafted polymers improved the removal rate of turbidity and TSS compared with gelatinized starch, and the removal rate increased with increasing grafting percentage and dosage.

  3. Polymeric flocculant based on cassava starch grafted polydiallyldimethylammonium chloride: Flocculation behavior and mechanism

    International Nuclear Information System (INIS)

    Razali, M.A.A.; Ariffin, A.

    2015-01-01

    Graphical abstract: - Highlights: • Flocculation performance of cassava grafted polyDADMAC was studied. • Turbidity and TSS removal increased with increasing grafting percentage. • The grafted polymer showed good removal in acidic and neutral region. • Zeta potential results pointed to the charge neutralization mechanism. • Flocs increased with increasing grafting percentage and molecular weight. - Abstract: In this work, flocculation properties of cassava starch grafted polydiallyldimethylammonium chloride (polyDADMAC) with different grafting percentages were investigated. Flocculation performance was evaluated in simulated kaolin suspension. The grafting percentages used were 1.76 %, 14.84 %, and 21.98 %. The effectiveness of the flocculation was measured based on the reduction of the turbidity and total suspended solids (TSSs), zeta potential measurements, particle size, and atomic force microscopy imaging. Grafted polymers improved the removal rate of turbidity and TSS compared with gelatinized starch, and the removal rate increased with increasing grafting percentage and dosage

  4. Effect of the improved fermentation on physicochemical properties and sensorial acceptability of sour cassava starch

    Directory of Open Access Journals (Sweden)

    Maria Janete Angeloni Marcon

    2007-11-01

    Full Text Available The aim of this work was to study the effect of improved fermentation on sour cassava starch, aiming to reduce its fermentation time and to enhance its expansion capacity as well as its viscoamylographic properties and its sensorial acceptability. Results showed that the improved process of cassava starch production did not harm starch expansion, physicochemical properties or sensorial acceptability; it also produced starches with different viscoamylographic properties, which compared favourably to those of the sour cassava starch produced through current industrial methods.O Polvilho azedo é caracterizado pelas suas propriedades físicas, químicas e reológicas, as quais são diferentes do amido nativo do qual se originou. A propriedade de expansão é uma das mais importantes características do produto, sendo um parâmetro fundamental de avaliação do polvilho azedo. O resultado do perfil viscoamilográfico também é uma importante maneira de avaliação uma vez que cada amido tem um padrão viscoamilográfico definido de acordo com sua organização granular. Este trabalho determinou o efeito da fermentação melhorada pela adição de glicose, sobre o polvilho azedo, apontando para uma redução no tempo de fermentação e avaliando sua capacidade de expansão, suas propriedades viscoamilográficas e aceitabilidade sensorial. O processo de produção de polvilho azedo melhorado não prejudicou a expansão do amido, suas propriedades físico-químicas e sensoriais, mas sim resultou em amidos com diferentes propriedades viscoamilográficas melhores comparativamente ao polvilho azedo produzido pelo processo industrial atual.

  5. Good Housekeeping Implementation for Improving Efficiency in Cassava Starch Industry (Case Study : Margoyoso District, Pati Regency)

    Science.gov (United States)

    Aji, Wijayanto Setyo; Purwanto; Suherman, S.

    2018-02-01

    Cassava starch industry is one of the leading small-medium enterprises (SMEs) in Pati Regency. Cassava starch industry released waste that reduces the quantity of final product and potentially contamined the environment. This study was conducted to observe the feasibility of good housekeeping implementation to reduce waste and at the same time improve efficiency of production process. Good housekeeping opportunities are consideration by three aspect, technical, economy and environmental. Good housekeeping opportunities involved water conservation and waste reduction. These included reuse of water in washing process, improving workers awareness in drying section and packaging section. Implementation of these opportunities can reduce water consumption, reduce wastewater and solid waste generation also increased quantity of final product.

  6. Bio hydrogen production from cassava starch by anaerobic mixed cultures: Multivariate statistical modeling

    Science.gov (United States)

    Tien, Hai Minh; Le, Kien Anh; Le, Phung Thi Kim

    2017-09-01

    Bio hydrogen is a sustainable energy resource due to its potentially higher efficiency of conversion to usable power, high energy efficiency and non-polluting nature resource. In this work, the experiments have been carried out to indicate the possibility of generating bio hydrogen as well as identifying effective factors and the optimum conditions from cassava starch. Experimental design was used to investigate the effect of operating temperature (37-43 °C), pH (6-7), and inoculums ratio (6-10 %) to the yield hydrogen production, the COD reduction and the ratio of volume of hydrogen production to COD reduction. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. The interaction effects between them seem not significant. The central composite design showed that the polynomial regression models were in good agreement with the experimental results. This result will be applied to enhance the process of cassava starch processing wastewater treatment.

  7. Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films.

    Science.gov (United States)

    Li, Xiaojing; Qiu, Chao; Ji, Na; Sun, Cuixia; Xiong, Liu; Sun, Qingjie

    2015-05-05

    To characterize the pea starch films reinforced with waxy maize starch nanocrystals, the mechanical, water vapor barrier and morphological properties of the composite films were investigated. The addition of starch nanocrystals increased the tensile strength of the composite films, and the value of tensile strength of the composite films was highest when starch nanocrystals content was 5% (w/w). The moisture content (%), water vapor permeability, and water-vapor transmission rate of the composite films significantly decreased as starch nanocrystals content increased. When their starch nanocrystals content was 1-5%, the starch nanocrystals dispersed homogeneously in the composite films, resulting in a relatively smooth and compact film surface and better thermal stability. However, when starch nanocrystals content was more than 7%, the starch nanocrystals began to aggregate, which resulted in the surface of the composite films developing a longitudinal fibrous structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Characterization of starch films containing starch nanoparticles: part 1: physical and mechanical properties.

    Science.gov (United States)

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    We report, for the first time, the preparation method and characteristics of starch films incorporating spray dried and vacuum freeze dried starch nanoparticles. Physical properties of these films such as morphology, crystallinity, water vapor permeability (WVP), opacity, and glass transition temperature (Tg) and mechanical properties (strain versus temperature, strain versus stress, Young's modulus and toughness) were measured. Addition of both starch nanoparticles in starch films increased roughness of surface, lowered degree of crystallinity by 23.5%, WVP by 44% and Tg by 4.3°C, respectively compared to those of starch-only films. Drying method used in preparation of starch nanoparticles only affected opacity of films. The incorporation of nanoparticles in starch films resulted into denser films due to which the extent of variation of strain with temperature was much lower. The toughness and Young's modulus of films containing both types of starch nanoparticles were lower than those of control films especially at <100°C. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Enhancement of the grafting performance and of the water absorption of cassava starch graft copolymer by gamma radiation

    International Nuclear Information System (INIS)

    Kiatkamjornwong, Suda; Meechai, Nispa

    1997-01-01

    Enhancement of the gamma radiation grafting of acrylonitrile onto gelatinized cassava starch was investigated. Infrared spectrometry was used to follow the chemical changes in the grafting reaction and from saponification. The saponified starch-g-PAN (HSPAN) was then characterized in terms of grafting parameters to provide a guide for the optimum total dose (kGy) and the appropriate ratio of starch/acrylonitrile for a fixed dose rate of 2.5 x 10 -1 kGy/min. Other dose rates were also carried out to obtain the appropriate result of grafting copolymerization and of water absorption. A thin aluminium foil, covering the inner wall of the reaction vessel, was found to be far more effective than any other metal films in the enhancement of the grafting reaction and the water absorption as well. Nitric acid in the medium increases the grafting yield and the water absorption. Methyl ether hydroquinone inhibitor was evaluated for its ability to increase homopolymerization and decrease graft reaction. When styrene was used as a comonomer, it hampered the grafting of acrylonitrile onto starch backbone. The water absorption capacity was improved by freeze-drying the HSPAN. The treatment of the HSPAN with aluminium trichloride hexahydrate was found to enhance the degree of wicking, but to decrease the water absorbency. (author)

  10. Effect of amylose:amylopectin ratio and rice bran addition on starch films properties.

    Science.gov (United States)

    Cano, Amalia; Jiménez, Alberto; Cháfer, Maite; Gónzalez, Chelo; Chiralt, Amparo

    2014-10-13

    The influence of the amylose:amylopectin ratio on the properties of pea, potato and cassava starch films and the effect of the incorporation of rice bran of two different particle sizes were studied. The structural, mechanical, optical and barrier properties of the films were analyzed after 1 and 5 weeks. The high content of amylose gave rise to stiffer, more resistant to fracture, but less stretchable films, with lower oxygen permeability and greater water binding capacity. Although no changes in the water vapour permeability values of the films were observed during storage, their oxygen permeability decreased. Throughout storage, films became stiffer, more resistant to break, but less stretchable. Rice bran with the smallest particles improved the elastic modulus of the films, especially in high amylose content films, but reduced the film stretchability and its barrier properties, due to the enhancement of the water binding capacity and the introduction of discontinuities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    Science.gov (United States)

    Barleany, Dhena Ria; Ulfiyani, Fida; Istiqomah, Shafina; Heriyanto, Heri; Rahmayetty, Erizal

    2015-12-01

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w-1 acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g-1 of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g-1 and 523 g g-1 for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM).

  12. Cassava starch graft copolymers an eco-friendly corrosion inhibitor for steel in H{sub 2}SO{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xianghong; Deng, Shuduan [Southwest Forestry University, Kunming (China)

    2015-11-15

    Cassava starch graft copolymer (CSGC) was prepared by grafting acryl amide (AA) onto cassava starch (CS). The inhibition effect of CSGC on the corrosion of cold rolled steel (CRS) in 1.0M H{sub 2}SO{sub 4} solution was first studied by weight loss, potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM) methods. The results show that CSGC is a good inhibitor, and inhibition efficiency of CSGC is higher than that of CS or AA. The adsorption of CSGC on steel surface obeys Langmuir adsorption isotherm. CSGC is a mixed-type inhibitor at 20 .deg. C, while mainly a cathodic inhibitor at 50 .deg. C.

  13. Sugar-mediated semidian oscillation of gene expression in the cassava storage root regulates starch synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer; Baguma, Yona; Sun, Chuanxin; Boren, Mats; Olsson, Helena; Rosenqvist, Sara; Mutisya, Joel; Rubaihayo, Patrick R.; Jansson, Christer

    2008-01-15

    Starch branching enzyme (SBE) activity in the cassava storage root exhibited a diurnal fluctuation, dictated by a transcriptional oscillation of the corresponding SBE genes. The peak of SBE activity coincided with the onset of sucrose accumulation in the storage, and we conclude that the oscillatory mechanism keeps the starch synthetic apparatus in the storage root sink in tune with the flux of sucrose from the photosynthetic source. When storage roots were uncoupled from the source, SBE expression could be effectively induced by exogenous sucrose. Turanose, a sucrose isomer that cannot be metabolized by plants, mimicked the effect of sucrose, demonstrating that downstream metabolism of sucrose was not necessary for signal transmission. Also glucose and glucose-1-P induced SBE expression. Interestingly, induction by sucrose, turanose and glucose but not glucose-1-P sustained an overt semidian (12-h) oscillation in SBE expression and was sensitive to the hexokinase (HXK) inhibitor glucosamine. These results suggest a pivotal regulatory role for HXK during starch synthesis. Abscisic acid (ABA) was another potent inducer of SBE expression. Induction by ABA was similar to that of glucose-1-P in that it bypassed the semidian oscillator. Both the sugar and ABA signaling cascades were disrupted by okadaic acid, a protein phosphatase inhibitor. Based on these findings, we propose a model for sugar signaling in regulation of starch synthesis in the cassava storage root.

  14. Lactic acid bacteria and yeasts associated with spontaneous fermentations during the production of sour cassava starch in Brazil.

    Science.gov (United States)

    Lacerda, Inayara C A; Miranda, Rose L; Borelli, Beatriz M; Nunes, Alvaro C; Nardi, Regina M D; Lachance, Marc-André; Rosa, Carlos A

    2005-11-25

    Sour cassava starch is a traditional fermented food used in the preparation of fried foods and baked goods such as traditional cheese breads in Brazil. Thirty samples of sour cassava starch were collected from two factories in the state of Minas Gerais. The samples were examined for the presence of lactic acid bacteria, yeasts, mesophilic microorganisms, Bacillus cereus and faecal coliforms. Lactic acid bacteria and yeasts isolates were identified by biochemical tests, and the identities were confirmed by molecular methods. Lactobacillus plantarum and Lactobacillus fermentum were the prevalent lactic acid bacteria in product from both factories, at numbers between 6.0 and 9.0 log cfu g(-)(1). Lactobacillus perolans and Lactobacillus brevis were minor fractions of the population. Galactomyces geothricum and Issatchenkia sp. were the prevalent yeasts at numbers of 5.0 log cfu g(-)(1). A species similar to Candida ethanolica was frequently isolated from one factory. Mesophilic bacteria and amylolytic microorganisms were recovered in high numbers at all stages of the fermentation. B. cereus was found at low numbers in product at both factories. The spontaneous fermentations associated with the production of sour cassava starch involve a few species of lactic acid bacteria at high numbers and a variety of yeasts at relatively low numbers.

  15. Toughening of Poly(lactic acid and Thermoplastic Cassava Starch Reactive Blends Using Graphene Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Anibal Bher

    2018-01-01

    Full Text Available Poly(lactic acid (PLA was reactively blended with thermoplastic cassava starch (TPCS and functionalized with commercial graphene (GRH nanoplatelets in a twin-screw extruder, and films were produced by cast-film extrusion. Reactive compatibilization between PLA and TPCS phases was reached by introducing maleic anhydride and a peroxide radical during the reactive blending extrusion process. Films with improved elongation at break and toughness for neat PLA and PLA-g-TPCS reactive blends were obtained by an addition of GRH nanoplatelets. Toughness of the PLA-g-TPCS-GRH was improved by ~900% and ~500% when compared to neat PLA and PLA-g-TPCS, respectively. Crack bridging was established as the primary mechanism responsible for the improvement in the mechanical properties of PLA and PLA-g-TPCS in the presence of the nanofiller due to the high aspect ratio of GRH. Scanning electron microscopy images showed a non-uniform distribution of GRH nanoplatelets in the matrix. Transmittance of the reactive blend films decreased due to the TPCS phase. Values obtained for the reactive blends showed ~20% transmittance. PLA-GRH and PLA-g-TPCS-GRH showed a reduction of the oxygen permeability coefficient with respect to PLA of around 35% and 50%, respectively. Thermal properties, molecular structure, surface roughness, XRD pattern, electrical resistivity, and color of the films were also evaluated. Biobased and compostable reactive blend films of PLA-g-TPCS compounded with GRH nanoplatelets could be suitable for food packaging and agricultural applications.

  16. Pepino japonês (Cucumis sativus L. submetido ao tratamento com fécula de mandioca Japonese cucumber (Cucumis sativus L. submitted of the treatment with cassava starch film

    Directory of Open Access Journals (Sweden)

    Kelen Cristina dos Reis

    2006-06-01

    Full Text Available Com o presente trabalho objetivou-se avaliar a qualidade e a vida útil do pepino (Cucumis sativus L., utilizando recobrimento com película de fécula de mandioca. Após seleção, amostras de pepino japonês foram mergulhadas em suspensões de fécula de mandioca a 0, 2, 3 e 4%, secos ao ar e armazenados em câmara fria a 5ºC e 95% de UR por 8 dias. As análises realizadas foram perda de massa, pH, sólidos solúveis (SS , acidez titulável (AT, Cor L*a*b e firmeza. O delineamento utilizado foi o DIC com 3 repetições, com os tratamentos dispostos em esquema fatorial 4 x 5. O valor encontrado para firmeza nas amostras tratadas com película a 4% foram menores em comparação aos outros tratamentos, isto, provavelmente se deve à plasticidade do tecido que estas amostras apresentaram. A película reduziu significativamente a perda de massa das amostras mantidas sob refrigeração. A aplicação de película de fécula de mandioca na concentração mais elevada (4%, proporcionou ao pepino um aspecto melhor de conservação, tornando o produto mais atraente.This work was made to evaluate the properties and postharvest life of cucumber (Cucumis sativus L. coated with cassava starch film. After the selection the fruits were dipped in suspensions 0, 2, 3 and 4% starch, dried naturally and stored in chamber cold (5ºC ± 1ºC and 90% ± 5% HR during 8 days and the analyses were done in the time zero and in intervals of 2 days. The analyses done were loss mass, titratable acidity (TA, pH, soluble solids (SS, color L*a*b and firmness. The test was conducted in completely randomized design, with three repetitions, with the treatments disposed in factory layout 4x5. The value found for firmness in the samples treated with biofilm at 4% was smaller in comparison to the other treatments, this, is probably due to the plasticity of the tissue that these samples presented. The film reduced the loss of mass of the samples maintained under refrigeration

  17. Production of Starch Based Bioplastic from Cassava Peel Reinforced with Microcrystalline Celllulose Avicel PH101 Using Sorbitol as Plasticizer

    Science.gov (United States)

    Maulida; Siagian, M.; Tarigan, P.

    2016-04-01

    The production of starch based bioplastics from cassava peel reeinforced with microcrystalline cellulose using sorbitol as plasticizer were investigated. Physical properties of bioplastics were determined by density, water uptake, tensile strength and Fourier Transform Infrared Spectroscopy. Bioplastics were prepared from cassava peel starch plasticized using sorbitol with variation of 20; 25; 30% (wt/v of sorbitol to starch) reinforced with microcrystalline celllulose (MCC) Avicel PH101 fillers with range of 0 to 6% (wt/wt of MCC to starch). The results showed improvement in tensile strength with higher MCC content up to 9, 12 mpa compared to non-reinforced bioplastics. This could be mainly attributed to the strong hydrogen bonds between MCC and starch. On the contrary, the addition of MCC decreased the elongation at break, density and water uptake. Fourier Transform Infrared Spectroscopy showed the functional groups of bioplastics, which the majority of O-H groups were found at the bioplastics with reinforcing filler MCC that represented substantial hydrogen bonds. The highest tensile strength value was obtained for bioplastic with MCC content 6% and sorbitol content 20%. With good adhesion between MCC and starch the production of bioplastics could be widely used as a substitute for conventional plastics with more benefits to the environment.

  18. Production of Starch Based Bioplastic from Cassava Peel Reinforced with Microcrystalline Celllulose Avicel PH101 Using Sorbitol as Plasticizer

    International Nuclear Information System (INIS)

    Maulida; Siagian, M; Tarigan, P

    2016-01-01

    The production of starch based bioplastics from cassava peel reeinforced with microcrystalline cellulose using sorbitol as plasticizer were investigated. Physical properties of bioplastics were determined by density, water uptake, tensile strength and Fourier Transform Infrared Spectroscopy. Bioplastics were prepared from cassava peel starch plasticized using sorbitol with variation of 20; 25; 30% (wt/v of sorbitol to starch) reinforced with microcrystalline celllulose (MCC) Avicel PH101 fillers with range of 0 to 6% (wt/wt of MCC to starch). The results showed improvement in tensile strength with higher MCC content up to 9, 12 mpa compared to non-reinforced bioplastics. This could be mainly attributed to the strong hydrogen bonds between MCC and starch. On the contrary, the addition of MCC decreased the elongation at break, density and water uptake. Fourier Transform Infrared Spectroscopy showed the functional groups of bioplastics, which the majority of O-H groups were found at the bioplastics with reinforcing filler MCC that represented substantial hydrogen bonds. The highest tensile strength value was obtained for bioplastic with MCC content 6% and sorbitol content 20%. With good adhesion between MCC and starch the production of bioplastics could be widely used as a substitute for conventional plastics with more benefits to the environment. (paper)

  19. Effect of pH on Physicochemical Properties of Cassava Starch Modification Using Ozone

    Directory of Open Access Journals (Sweden)

    Pudjihastuti Isti

    2018-01-01

    Full Text Available Nowadays, starch modification is carried out in order to change the native properties into the better ones, such as high stability, brightness, and better texture. The objectives of this study are to investigate the effect of pH on carboxyl content, swelling power, and water solubility of starch. This research was divided into two main stages, i.e. starch modification by ozone oxidation and analysis. The physicochemical properties of modified cassava starch were investigated under various reaction pH of 7-10 and the reaction time between 0-240 minutes. Reaction condition at pH 10 provided the higher value of carboxyl content and water solubility, but the lower of swelling power. This increase in solubility indicates that the modified oxidation starch readily dissolves in water, due to its small size granules and high amylose content. The significant changes of both parameters were achieved in the first 120 minutes of ozone reaction times. The graphic pattern of water solubility was in contrast with swelling power.

  20. Caracterização de amidos de mandioca nativos e modificados e utilização em produtos panificados Characterization of native and modified cassava starches and their use in baked products

    Directory of Open Access Journals (Sweden)

    Krischina Singer Aplevicz

    2007-09-01

    Full Text Available O amido de mandioca é utilizado como ingrediente principal na fabricação de biscoitos e pão de queijo. O polvilho azedo é um produto artesanal, sem padrão de qualidade estabelecido, com problemas de higiene em seu processamento e de oferta. O trabalho teve como objetivo caracterizar amidos de mandioca nativos e modificados e testá-los na elaboração de pão de queijo e biscoito de polvilho. As principais características que diferem o polvilho azedo do amido de mandioca nativo, também denominado polvilho doce são: acidez, grau de expansão, viscosidade, claridade de pasta, sinérese e poder redutor. Foram aplicados nos produtos panificados quatro tipos de amidos, sendo polvilho doce, azedo, amido modificado com peróxido de hidrogênio e amido modificado comercial Expandex® 160003. Obtidos os produtos panificados, foi determinada a composição físico-química e observado que os tipos de amidos influenciaram nas características internas, externas e no sabor. Os produtos panificados foram submetidos à análise sensorial de aceitabilidade, utilizando-se a escala hedônica de nove pontos, com provadores não-treinados. As amostras de pão de queijo contendo amido modificado oxidado com peróxido de hidrogênio foram as que apresentaram o melhor resultado entre as formulações. Para as amostras de biscoito de polvilho, as elaboradas com polvilho azedo e com Expandex® 160003 foram superiores e não diferiram estatisticamente.Cassava starch is used as the main ingredient in the production of biscuits and Brazilian cheese bread. The processing and sale of sour cassava starch - an artisanal product with no established standard of quality - is marked by hygiene problems and its commercial availability is uncertain. The purpose of this study was to characterize native and modified cassava starches and test them in cheese bread and cassava starch biscuit recipes. The main characteristics that differentiate sour starch from native cassava

  1. A REVIEW ON BIODEGRADABLE STARCH BASED FILM

    Directory of Open Access Journals (Sweden)

    Hooman Molavi

    2015-04-01

    Full Text Available In recent years, biodegradable edible films have become very important in research related to food, due to their compatibility with the environment and their use in the food packaging industry. Various sources can be used in the production of biopolymers as biodegradable films that include polysaccharides, proteins and lipids. Among the various polysaccharides, starch due to its low price and its abundance in nature is of significant importance. Several factors affect the properties of starch films; such as the source which starch is obtained from, as well as the ratio of constituents of the starch. Starch films have advantages such as low thickness, flexibility and transparency though; there are some downsides to mention, such as the poor mechanical properties and water vapor permeability. Thus, using starch alone to produce the film will led to restrictions on its use. To improve the mechanical properties of starch films and also increases resistance against humidity, several methods can be used; including the starch modifying techniques such as cross linking of starch and combining starch with other natural polymers. Other methods such as the use of lipid in formulations of films to increase the resistance to moisture are possible, but lipids are susceptible to oxidation. Therefore, new approaches are based on the integration of different biopolymers in food packaging.

  2. Improvement of cassava for high dry matter, starch and low cyanogenic glucoside content by mutation induction

    Energy Technology Data Exchange (ETDEWEB)

    Nwachukwu, E C; Mbanaso, E N.A.; Ene, L S.O. [Plant Breeding Div., National Root Crops Research Inst., Umudike, Umuahia (Nigeria)

    1997-07-01

    Cassava (Manihot esculenta Crantz) is an important food in Nigeria. One drawback in its use as a staple food is the presence of cyanogenic glucosides which on hydrolysis produce the very toxic hydrogen cyanide (HCN). To reduce the cyanogenic levels by mutation induction, three locally adopted and high yielding varieties of cassava, TMS 30572, NR 8817 and NR 84111 were irradiated with 20, 25 and 30 Gy gamma rays. There were a wide variation in HCN, dry matter and starch content of irradiated cassava plants, screened in the MV{sub 2} propagation. Fourteen cassavavariant lines were selected for low HCN content, and 22 lines for high dry matter content. These will be further tested for yield in replicated field trials. (author). 7 refs, 3 tabs.

  3. Improvement of cassava for high dry matter, starch and low cyanogenic glucoside content by mutation induction

    International Nuclear Information System (INIS)

    Nwachukwu, E.C.; Mbanaso, E.N.A.; Ene, L.S.O.

    1997-01-01

    Cassava (Manihot esculenta Crantz) is an important food in Nigeria. One drawback in its use as a staple food is the presence of cyanogenic glucosides which on hydrolysis produce the very toxic hydrogen cyanide (HCN). To reduce the cyanogenic levels by mutation induction, three locally adopted and high yielding varieties of cassava, TMS 30572, NR 8817 and NR 84111 were irradiated with 20, 25 and 30 Gy gamma rays. There were a wide variation in HCN, dry matter and starch content of irradiated cassava plants, screened in the MV 2 propagation. Fourteen cassavavariant lines were selected for low HCN content, and 22 lines for high dry matter content. These will be further tested for yield in replicated field trials. (author). 7 refs, 3 tabs

  4. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Barleany, Dhena Ria, E-mail: dbarleany@yahoo.com; Ulfiyani, Fida; Istiqomah, Shafina; Rahmayetty [Department of Chemical Engineering, University of Sultan Ageng Tirtayasa, Cilegon, Banten (Indonesia); Heriyanto, Heri; Erizal [Centre for Application of Isotopes and Radiation, Jakarta (Indonesia)

    2015-12-29

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w{sup −1} acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g{sup −1} of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g{sup −1} and 523 g g{sup −1} for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM)

  5. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase

    Directory of Open Access Journals (Sweden)

    Ayalew Ligaba-Osena

    2018-02-01

    Full Text Available To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava (Manihot esculenta, which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus, together with the gene encoding a modified ADP-glucose pyrophosphorylase (glgC from Escherichia coli, were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability.

  6. Enhanced production of raw starch degrading enzyme using agro-industrial waste mixtures by thermotolerant Rhizopus microsporus for raw cassava chip saccharification in ethanol production.

    Science.gov (United States)

    Trakarnpaiboon, Srisakul; Srisuk, Nantana; Piyachomkwan, Kuakoon; Sakai, Kenji; Kitpreechavanich, Vichien

    2017-09-14

    In the present study, solid-state fermentation for the production of raw starch degrading enzyme was investigated by thermotolerant Rhizopus microsporus TISTR 3531 using a combination of agro-industrial wastes as substrates. The obtained crude enzyme was applied for hydrolysis of raw cassava starch and chips at low temperature and subjected to nonsterile ethanol production using raw cassava chips. The agro-industrial waste ratio was optimized using a simplex axial mixture design. The results showed that the substrate mixture consisting of rice bran:corncob:cassava bagasse at 8 g:10 g:2 g yielded the highest enzyme production of 201.6 U/g dry solid. The optimized condition for solid-state fermentation was found as 65% initial moisture content, 35°C, initial pH of 6.0, and 5 × 10 6 spores/mL inoculum, which gave the highest enzyme activity of 389.5 U/g dry solid. The enzyme showed high efficiency on saccharification of raw cassava starch and chips with synergistic activities of commercial α-amylase at 50°C, which promotes low-temperature bioethanol production. A high ethanol concentration of 102.2 g/L with 78% fermentation efficiency was achieved from modified simultaneous saccharification and fermentation using cofermentation of the enzymatic hydrolysate of 300 g raw cassava chips/L with cane molasses.

  7. Preliminary study for acetylation of cassava bagasse starch and microfibrillated cellulose of bamboo

    Directory of Open Access Journals (Sweden)

    Silviana Silviana

    2018-01-01

    Full Text Available Bio composite matrixes have been developed from several biomaterials, such as starch. One of potential resources is starch isolated from cassava bagasse still consisting 30-50% of starch. Reinforcement material may be inserted into bio composite to tough and reduce the drawback of the starch-based bio composite or bio plastic. Microfibrillated cellulose of bamboo (MFC can be used as toughening filler for composite matrix. However, surface modification of material could be employed to alter its properties, such as acetylation of starch-based bio composite and microfibrillated cellulose. The acetylation was executed by using glacial acetic acid (GAA catalyzed with sodium hydroxide. This paper investigates optimum condition of acetylation for bagasse starch (BS and bamboo MFC in different weight ratio of GAA to BS or MFC (1:1, 2:1, 3:1, 1:2, 1:3, temperature range of 30°C to 70°C, and pH range of 7 to 11. Data were resulted from degree of susbtitution for each running. The optimum condition of acetylation of BS was obtained at temperature of 50°C (for BS and 30°C (for MFC, pH of 9, and 2:1 ratio. This acetylation was confirmed by fourier transform infrared spectroscopy and scanning electron microscope.

  8. Effect of ionizing electron beam radiation on properties of edible biopolymers based on isolated soybean protein and cassava starch

    International Nuclear Information System (INIS)

    Uehara, Vanessa Bernardo

    2017-01-01

    In recent decades, there has been a substantial increase in the amount of research focusing on the development and characterization of biodegradable materials, particularly edible films. The use of polymers from renewable sources, prepared from plant products, has gained importance in this approach. Soy protein concentrate and cassava starch may be considered an alternative to petrochemical polymers. Processing by ionizing radiation can be used for the modification of polymers and macromolecules, resulting in new materials with great prospects of industrial use. The food industry, one of the traditionally most innovative industries, requires the constant development of new products. The widely known ability of film forming proteins and polysaccharides is a starting point for the development of new materials that meet the varying requirements of this pungent industry. In this work, films based on manioc starch and isolated soy protein were prepared in two different proportions and later irradiated and analyzed for their mechanical properties, color, water absorption, water vapor permeability, TGA and DSC thermal analysis between others. The films became apparently more soluble and less resistant to drilling with the increased radiation dose applied. Regarding the thermal properties, it was observed that the films with greater protein orientation are more resistant. Properties such as water vapor permeability and water absorption, the films were less permeable at the 40 kGy dose. With regard to water absorption, it was reduced as a function of the radiation dose. Films with good resistance to water vapor and with low absorption are considered efficient for food packaging. Radiation has proven to be a convenient tool in the modification of polymeric materials mainly for the production of soluble films where it is a new trend for bioactive packaging. (author)

  9. Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid.

    Science.gov (United States)

    Witono, J R; Noordergraaf, I W; Heeres, H J; Janssen, L P B M

    2014-03-15

    An important application of starch grafted with copolymers from unsaturated organic acids is the use as water absorbent. Although much research has been published in recent years, the kinetics of water absorption and the swelling behavior of starch based superabsorbents are relatively unexplored. Also, water retention under mechanical strain is usually not reported. Cassava starch was used since it has considerable economic potential in Asia. The gelatinized starch was grafted with acrylic acid and Fenton's initiator and crosslinked with N,N'-methylenebisacrylamide (MBAM). Besides a good initial absorption capacity, the product could retain up to 63 g H2O/g under severe suction. The material thus combines a good absorption capacity with sufficient gel strength. The mathematical analysis of the absorption kinetics shows that at conditions of practical interest, the rate of water penetration into the gel is determined by polymer chain relaxations and not by osmotic driven diffusion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Functional properties of extruded nano composites based on cassava starch, polyvinyl alcohol and montmorillonite

    International Nuclear Information System (INIS)

    Debiagi, Flavia; Matsuda, Daniel K.M.; Marengo, Vitor A.; Vercelheze, Ana Elisa S.; Mali, Suzana

    2011-01-01

    The objectives of this work were to produce biodegradable trays based on cassava starch (native or modified by acid), sugarcane fibers and nano clay (sodium montmorillonite) and also to characterize the produced trays according to their density, tensile strength, X-ray diffraction and biodegradability. The trays were obtained by thermoforming into a hydraulic press coupled to a Teflon mold (18 x 23 cm) at 130 degree C/ 20 min and 100 bars of pressure. The peak related to the nano clay (2 = 7.1 o ) were not observed in XRD patterns of the trays, suggesting the formation of an exfoliated structure in the nano composite. The addition of modified starch increased tensile strength and density of the samples, and the addition of fibers and nano clays decreased the tensile strength of native and modified starch trays. The weight loss of trays was not affected by the starch type, however the addition of fibers increased the biodegradation and the addition of nano clays decreased. (author)

  11. Functional and pasting properties of cassava and sweet potato ...

    African Journals Online (AJOL)

    The functional and pasting properties of cassava starch and sweet potato starch mixtures at different ratios were investigated. Starches from four different cassava genotypes ('Adehye', AFS048, 'Bankye Botan' and OFF146) and one local sweet potato were used for the study. The swelling volume and swelling power of ...

  12. Characterization of edible films of Swartzia burchelli phosphated starches and development of coatings for post-harvest application to cherry tomatoes

    Directory of Open Access Journals (Sweden)

    Millene Aparecida Gomes

    2016-08-01

    Full Text Available The market demand for corn starch and cassava continues to increase because of their use in edible applications, their biodegradable nature, and other appealing properties. As a result, there is a need to identify alternative starch sources, for example, the seeds of S. burchelli, with the potential to be modified for use in post-harvest applications. Therefore, this study aimed to develop and characterize edible films based on the starch phosphates of the seeds of S. burchelli, with the specific aim to apply these starches to cherry tomatoes for post-harvest conservation. After extraction, the starch was phosphorylated with sodium tripolyphosphate (STP in different concentrations and times according to a 2 x 2 factorial design with additional treatment (native starch. After modification, the starch phosphates were selected for the preparation of edible films using glycerol as a plasticizer, in proportions of 5, 10, 15 and 20% for each selected starch. The films were measured for thickness, permeability to water vapor and solubility in water. According to their permeability values, 4 films were selected for application in the coverage of cherry tomatoes. The conservation of cherry tomatoes with and without coverage was studied over 8 evaluation times (up to 21 days at 10±2 °C and 80±5% relative humidity. The weight loss, soluble solids, titratable acidity, maturation index, and firmness were measured every 3 days during storage. The starch phosphates showed a phosphorus content within that established by standards, such that the resulting films are acceptable for use in food for human consumption. The edible films presented with an acceptable appearance and without the development of cracks. The concentration of glycerol and the type of starch influenced the characteristics of the films, increasing the permeability and reducing the water solubility of the various edible films. The best result obtained regarding the conservation of cherry

  13. Production of raw starch-degrading enzyme by Aspergillus sp. and its use in conversion of inedible wild cassava flour to bioethanol.

    Science.gov (United States)

    Moshi, Anselm P; Hosea, Ken M M; Elisante, Emrode; Mamo, Gashaw; Önnby, Linda; Nges, Ivo Achu

    2016-04-01

    The major bottlenecks in achieving competitive bioethanol fuel are the high cost of feedstock, energy and enzymes employed in pretreatment prior to fermentation. Lignocellulosic biomass has been proposed as an alternative feedstock, but because of its complexity, economic viability is yet to be realized. Therefore, research around non-conventional feedstocks and deployment of bioconversion approaches that downsize the cost of energy and enzymes is justified. In this study, a non-conventional feedstock, inedible wild cassava was used for bioethanol production. Bioconversion of raw starch from the wild cassava to bioethanol at low temperature was investigated using both a co-culture of Aspergillus sp. and Saccharomyces cerevisiae, and a monoculture of the later with enzyme preparation from the former. A newly isolated strain of Aspergillus sp. MZA-3 produced raw starch-degrading enzyme which displayed highest activity of 3.3 U/mL towards raw starch from wild cassava at 50°C, pH 5.5. A co-culture of MZA-3 and S. cerevisiae; and a monoculture of S. cerevisiae and MZA-3 enzyme (both supplemented with glucoamylase) resulted into bioethanol yield (percentage of the theoretical yield) of 91 and 95 at efficiency (percentage) of 84 and 96, respectively. Direct bioconversion of raw starch to bioethanol was achieved at 30°C through the co-culture approach. This could be attractive since it may significantly downsize energy expenses. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Starch/polyester films: simultaneous optimisation of the properties for the production of biodegradable plastic bags

    Directory of Open Access Journals (Sweden)

    J. B. Olivato

    2013-01-01

    Full Text Available Blends of starch/polyester have been of great interest in the development of biodegradable packaging. A method based on multiple responses optimisation (Desirability was used to evaluate the properties of tensile strength, perforation force, elongation and seal strength of cassava starch/poly(butylene adipate-co-terephthalate (PBAT blown films produced via a one-step reactive extrusion using tartaric acid (TA as a compatibiliser. Maximum results for all the properties were set as more desirable, with an optimal formulation being obtained which contained (55:45 starch/PBAT (88.2 wt. (%, glycerol (11.0 wt. (% and TA (0.8 wt. (%. Biodegradable plastic bags were produced using the film with this formulation, and analysed according to the standard method of the Associação Brasileira de Normas Técnicas (ABNT. The bags exhibited a 45% failure rate in free-falling dart impact tests, a 10% of failure rate in dynamic load tests and no failure in static load tests. These results meet the specifications set by the standard. Thus, the biodegradable plastic bags fabricated with an optimised formulation could be useful as an alternative to those made from non-biodegradable materials if the nominal capacity declared for this material is considered.

  15. Energy and exergy analyses of native cassava starch drying in a tray dryer

    International Nuclear Information System (INIS)

    Aviara, Ndubisi A.; Onuoha, Lovelyn N.; Falola, Oluwakemi E.; Igbeka, Joseph C.

    2014-01-01

    Energy and exergy analyses of native cassava starch drying in a tray dryer were carried out to assess the performance of the system in terms of energy utilization, energy utilization ratio, energy efficiency, exergy inflow and outflow, exergy loss and exegetic efficiency. The results indicated that for the starch with ash content of 0.76%, 0.85% crude protein, 0.16% crude fat, negligible amount of fiber, average granule size of 14.1 μm, pH of 5.88, amylose content of 23.45% and degree of crystallinity of 22.34%, energy utilization and energy utilization ratio increased from 1.93 to 5.51 J/s and 0.65 to 0.6 as the drying temperature increased from 40 to 60 °C. Energy efficiency increased from 16.036 to 30.645%, while exergy inflow, outflow and losses increased from 0.399 to 2.686, 0.055 to 0.555 and 0.344 to 2.131 J/s respectively in the above temperature range. Exergetic efficiency increased with increase in both drying air temperature and energy utilization and was lower than energy efficiency. Exergetic improvement potential also increased with increase in drying air temperature. Model equations that could be used to express the energy and exergy parameters as a function of drying temperature were established. - Highlights: • Energy and exergy analyses of cassava starch drying in a tray dryer were carried out. • Energy utilization increased with drying temperature. • Energy efficiency was higher than exergy efficiency. • Energy and exergy efficiencies increased with increase in temperature. • Improvement potential increased with increase in temperature

  16. Films based on oxidized starch and cellulose from barley.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Antimicrobial nanostructured starch based films for packaging.

    Science.gov (United States)

    Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V

    2015-09-20

    Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations.

    Science.gov (United States)

    Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana

    2017-02-01

    This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The Utilization of Additional Cassava Starch (Manihot Utilisima) for Alginate Dental Impression Material

    OpenAIRE

    Ali Noerdin; Bambang Irawan; Mirna Febriani

    2003-01-01

    In Indonesia alginate which is a common impression material used in dentistry is still imported. Since the economic crisis in 1998 the alginate price becoming four times more expensive. This situation resulted in efforts to modify the commercial alginate as had been conducted by a dentist in South Sumatera province in Indonesia. He who had added cassava starch into the commercial alginate used to make partial denture impression. The aim of this research is to investigate the effect of additio...

  20. Development of oxidised and heat-moisture treated potato starch film.

    Science.gov (United States)

    Zavareze, Elessandra da Rosa; Pinto, Vânia Zanella; Klein, Bruna; El Halal, Shanise Lisie Mello; Elias, Moacir Cardoso; Prentice-Hernández, Carlos; Dias, Alvaro Renato Guerra

    2012-05-01

    This study investigated the effects of sodium hypochlorite oxidation and a heat-moisture treatment of potato starch on the physicochemical, pasting and textural properties of potato starches in addition to the water vapour permeability (WVP) and mechanical properties of potato starch films produced from these starches. The carbonyl contents, carboxyl contents, swelling power, solubility, pasting properties and gel texture of the native, oxidised and heat-moisture treated (HMT) starches were evaluated. The films made of native, oxidised and HMT starches were characterised by thickness, water solubility, colour, opacity, mechanical properties and WVP. The oxidised and HMT starches had lower viscosity and swelling power compared to the native starch. The films produced from oxidised potato starch had decreased solubility, elongation and WVP values in addition to increased tensile strength compared to the native starch films. The HMT starch increased the tensile strength and WVP of the starch films compared to the native starch. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Fragrant starch-based films with limonene

    Directory of Open Access Journals (Sweden)

    Adrian K. Antosik

    2017-02-01

    Full Text Available Novel fragrant starch-based films with limonene were successfully prepared. Biodegradable materials of natural origin were used and the process was relatively simple and inexpensive. The effect of limonene on physicochemical properties of starch-based films (moisture absorption, solubility in water, wettability, mechanical properties were compared to glycerol plasticized system. Taking into consideration that the obtained materials could also exhibit bactericidal and fungicidal properties, the studies with Escherichia coli, Candida albicans and Aspergillus niger were performed. Such a material could potentially find application in food packaging (e.g. masking unpleasant odors, hydrophilic starch film would prevent food drying, or in agriculture (e.g. for seed encapsulated tapes.

  2. Physicochemical characterization of starches from seven improved ...

    African Journals Online (AJOL)

    SARAH

    2014-01-31

    Jan 31, 2014 ... Key words: Cassava, starch, functional properties, industrial utilization. ... in demand for starch (Davis et al., 2002). Potato, maize, wheat and cassava are the major ... ambient temperature and stored at 4 °C for 4 weeks.

  3. Estudo comparativo da caracterização de filmes biodegradáveis de amido de mandioca contendo polpas de manga e de acerola

    Directory of Open Access Journals (Sweden)

    Carolina Oliveira de Souza

    2012-01-01

    Full Text Available Most compounds reinforcements have been used to improve thermals, mechanical and barrier properties of biopolymers films, whose performance is usually poor when compared to those of synthetic polymers. Biodegradables films have been developed by adding mango and acerola pulps in different concentrations (0-17,1% w/w as antioxidants active compounds to cassava starch based biodegradable films. The effect of pulps was studied in terms of tensile properties, water vapor permeability, DSC, among other analysis of the films. The study demonstrated that the properties of cassava starch biodegradable films can be significantly altered through of incorporation mango and acerola pulps.

  4. Physicochemical Characteristics of Artificial Rice from Composite Flour: Modified Cassava Starch, Canavalia ensiformis and Dioscorea esculenta

    Science.gov (United States)

    Sumardiono, Siswo; Pudjihastuti, Isti; Handayani, Noer Abyor; Kusumayanti, Heny

    2018-02-01

    Indonesia is the third largest country on the global paddy rice production and also considered as a rice importer. Even, Indonesia has the biggest per capita consumption of paddy rice (140 kg of paddy rice per person per year). Product diversification using local commodities. Artificial rice is potential to be developed as a new value product using different types of grains. It is one of appropriate solutions for reducing imported rice rate. Artificial rice was produced using high nutrition composite flours (modified cassava starch, corn, Canavalian ensiformis, and Dioscorea esculenta). This study consists of three main stages, preparation of composite flour, formulation, and artificial rice production using hot extruder capacity 10 kg/day. The objectives of this studies were to investigate some formulation in compare with commercial paddy rice. Artificial rice has been successfully conducted using prototype of hot extruder with the temperature 95°C. Physical analyses (color and water absorption) were carried out to artificial rice product and commercial paddy rice. Chemical analyses (nutrition and amylose content) of product will be also presented in this study. The best formulation of artificial rice was achieved in 80% modified cassava starch, 10% Canavalian ensiformis, and 10% Dioscorea esculenta, respectively.

  5. Biodegradability and mechanical properties of starch films from Andean crops.

    Science.gov (United States)

    Torres, F G; Troncoso, O P; Torres, C; Díaz, D A; Amaya, E

    2011-05-01

    Different Andean crops were used to obtain starches not previously reported in literature as raw material for the production of biodegradable polymers. The twelve starches obtained were used to prepare biodegradable films by casting. Water and glycerol were used as plasticizers. The mechanical properties of the starch based films were assessed by means of tensile tests. Compost tests and FTIR tests were carried out to assess biodegradability of films. The results show that the mechanical properties (UTS, Young's modulus and elongation at break) of starch based films strongly depend on the starch source used for their production. We found that all the starch films prepared biodegrade following a three stage process and that the weight loss rate of all the starch based films tested was higher than the weight loss rate of the cellulose film used as control. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Thermal characterization of partially hydrolyzed cassava (Manihot esculenta starch granules

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo Lacerda

    2008-12-01

    Full Text Available Cassava starch, partially hydrolyzed by fungal á-amylase, was characterized using thermal analysis, light microscopy and X-ray diffraction. Thermal degradation was initiated at lower degradation temperatures after enzymatic treatment and the DSC (Differential scanning calorimetry analysis showed almost similar range of gelatinization temperature, but the enthalpies of gelatinization were quite increased for the partially hydrolyzed starch granules. The results suggested that the partial degradation of the starch granules was concentrated in the amorphous regions.Amilases fúngicas são comumente empregadas a amidos com o intuito de otimizar o rendimento de leveduras, modificar a textura de produtos panificados e prolongar a vida de prateleira do produto final. A hidrólise parcial enzimática pode auxiliar no entendimento da estrutura do amido ganular. Amido de mandioca parcialmente hidrolisado por á-amilase fúngica foi investigado utilizando-se técnicas termoanalíticas, microscopia ótica e difratometria por raios X. A degradação térmica iniciou-se a temperaturas menores após o tratamento enzimático e a análise por DSC mostrou uma próxima faixa de temperatura de gelatinização, porém, a entalpia necessária para o evento foi maior para os grânulos parcialmente hidrolisados. Os resultados sugerem que a degradação parcial do amido granular foi concentrada em regiões amorfas.

  7. The effect of clay nanoparticles as reinforcement on mechanical properties of bioplastic base on cassava starch

    Science.gov (United States)

    Harunsyah; Sariadi; Raudah

    2018-01-01

    Plastics have been used widely for packaging material since long time ago. However, environmentally friendly plastics or plastics whose raw materials come from natural polymers are still very low in development. Efforts have been conducted to develop environmental friendly plastic from renewable resources such as biopolymer. The aim of this paper is to study the influence of clay nanoparticles as reinforcment on the mechanical properties of bioplastic were prepared by solution-casting method. The content of clay nanoparticles in the bioplastic was varied from 0.2%, 0.4%, 0.6%, 0.8% and 1.0% (w/w) by weight of starch. Structural characterization was done by Fourier Transform Infrared Spectroscopy. Surface morphologies of the plastic film were examined by scanning electron microscope.The result showed that the Tensile strength was improved significantly with the addition of clay nanoparticles. The maximum tensile strength obtained was 24.18 M.Pa on the additional of clay nanoparticles by 0.6% and plasticizer by 25%. Based on data of FTIR, the produced bioplastic did not change the group function and it can be concluded that the interaction in bioplastic produced was only a physical interaction. The bioplastic based on cassava starch-clay nanoparticles and plasticizer glycerin showed that interesting mechanical properties being transparent, clear, homogeneous, flexible and easy to be handled.

  8. Production and characterization of thermoplastic cassava starch, functionalized poly(lactic acid), and their reactive compatibilized blends

    Science.gov (United States)

    Detyothin, Sukeewan

    Cassava starch was blended with glycerol using a co-rotating twin-screw extruder (TSE). Thermoplastic cassava starch (TPCS) at a ratio of 70/30 by weight of cassava/glycerol was selected and further blended with other polymers. TPCS sheets made from compression molding had low tensile strength (0.45 +/- 0.05 MPa) and Young's modulus (1.24 +/- 0.58 MPa), but moderate elongation at break (83.0 +/- 0.18.6%), medium level of oxygen permeability, and high water vapor permeability with a very high rate of water absorption. TPCS was blended with poly(lactic acid) (PLA) at various ratios by using a TSE. The blend resins exhibited good properties such as increased thermal stability (Tmax) and crystallinity of PLA, and improved water sensitivity and processability of TPCS. PLA and TPCS exhibited a high interfacial tension between the two phases of 7.9 mJ·m -2, indicating the formation of an incompatible, immiscible blend. SEM micrographs showed a non-homogeneous distribution of TPCS droplets in the PLA continuous phase. TEM micrographs of the blend films made by cast-film extrusion showed coalescence of the TPCS droplets in the PLA continuous phase of the blend, indicating that the compatibility between the polymer pair needs to be improved. A response surface methodology (RSM) design was used to analyze the effects of maleic anhydride (MA) and 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (Luperox or L101) contents, and TSE screw speed on the degree of grafted MA and number average molecular weight (Mn) of functionalized PLA (PLA-g-MA), a reactive compatibilizer. PLA-g- MA made by reactive extrusion had an array of colors depending on the content of L101 and MA used. New FTIR peaks suggested that MA was grafted onto the PLA backbone and oligomeric MA may occur. Increasing L101 increased the degree of grafting and decreased Mn, but the Mn of the PLA-g-MA's produced with a high amount of L101 was stable during storage. MA exhibited an optimum concentration for maximizing the

  9. Flour mixture of rice flour, corn and cassava starch in the production of gluten-free white bread

    Directory of Open Access Journals (Sweden)

    Ana Cristina Ballesteros López

    2004-03-01

    Full Text Available The use of rice flour corn and cassava starch was evaluated in several formulations aiming to find a flour mixture to replace wheat flour in the production of free-gluten white bread. Production parameters were evaluated through sensory analysis. The resulting breads were evaluated taking into account physical parameters (crumb appearance, specific volume and moisture and sensorial parameters (flavor, appearance, crumb texture, crust color and satisfaction. Regarding flavor and moisture, breads prepared with the three different ingredients were not statistically different at 5% probability by the Tuckey test. However, they differed significantly regarding the specific volume, crumb texture, crust color, degree of satisfaction and external appearance. Rice flour bread presented the best parameters, being preferred by the sensory evaluation panel, followed by corn starch bread and cassava starch bread. Breads prepared with rice flour resulted in a softer product, presenting a better consistency with small alveoli homogeneously distributed. As far as crumb texture was concerned, corn starch bread presented larger alveoli, while cassava starch resulted in bread with expandable and gummy crumb, with granulation without alveoli, and undesirable sensorial characteristics. Production parameters were established based on these results and a mixture of flours, composed by 45% rice flour, 35% corn starch and 20% cassava starch presented good results originating bread with crumb formed by uniform and well distributed cells, and pleasant flavor and appearance.Para desenvolver um sucedâneo para o pão de forma, isento de glúten, foram testadas as influências dos amidos de milho, de mandioca e da farinha de arroz, bem como das etapas de mistura, fermentação e assamento na qualidade do mesmo. Os parâmetros de fabricação foram determinados por meio de análises sensoriais durante a produção. As características sensoriais dos pães foram comparadas por

  10. Direct detection of toxigenic Bacillus cereus in dietary complement for children and cassava starch

    OpenAIRE

    Jnnifer A. Sánchez; Margarita M. Correa; Ángel E. Aceves Dies; Laura M. Castañeda Sandoval

    2014-01-01

    Bacillus cereus is a food contaminant and a known human pathogen that can cause emetic and diarrheal syndromes. In this study we evaluated the presence of toxigenic B. cereus by multiplex PCR directly in dietary complement for children and cassava starch samples collected on Medellin, Colombia. Of 75 dietary complement for children samples evaluated, 70.7% were contaminated with toxigenic B. cereus and four different toxigenic consortia were detected: I: nheA, hblC, cytK (9.8%), II: nheA, hbl...

  11. Uso de fécula de mandioca na pó-colheita de manga 'surpresa' Use of cassava starch in the 'surpresa' mango postharvest

    Directory of Open Access Journals (Sweden)

    Laerte Scanavaca Júnior

    2007-04-01

    Full Text Available A manga é uma fruta tropical climatéria que amadurece rapidamente depois de colhida. Avaliou-se a vida útil pós-colheita de mangas 'Surpresa' utilizando recobrimento com película de fécula de mandioca. Os frutos foram mergulhados em suspensões a 0; 1; 2 e 3% de fécula de mandioca por três minutos, secos ao ar e armazenados em temperatura ambiente (± 29º C e ± 87% de umidade relativa. O delineamento utilizado foi o inteiramente casualizado, em fatorial de 4 x 5 (tratamentos x tempo. Foram avaliados a perda de massa fresca (%, a firmeza do fruto e da polpa, a acidez total titulável, os sólidos solúveis totais, a relação SST/ATT e o pH, além das cores da casca e da polpa. Os frutos foram avaliados aos 0; 3; 6; 9 e 12 dias. Os frutos tratados com 3% de fécula de mandioca reduziram a perda de água e melhoraram o aspecto visual dos frutos, e a logevidade deste tratamento foi de 12 contra 7 dias da testemunha.The mango is a tropical climacteric fruit that ripens quickly after having been picked. The useful postharvest life of 'Surpresa' mangos was evaluated using covering with cassava starch film. The fruits were immersed in suspensions to 1, 2 and 3% of cassava starch for three minutes, dried by the air and conserved in ambient temperature at ± 29º C of temperature and ± 87% of relative humidity. The outline used was entirely randomized and the experiment was carried out in 4 x 5 fatorial design (treatments x time. The loss of fresh mass (%, the firmness of the fruit and pulp, the total titratable acidity (TTA, the total soluble solids (TSS, the TSS/TTA relation and the pH, were evaluated besides of the colors of the peel and pulp. The fruits were evaluated on the 0, 3, 6, 9 and 12 days. The fruits treated with 3% of cassava starch reduced its loses of water and improved the visual aspect of the fruits, and the shelf life of this treatment was 12 against 7 days of the witness.

  12. Modification of mechanical and thermal property of chitosan–starch blend films

    International Nuclear Information System (INIS)

    Tuhin, Mohammad O.; Rahman, Nazia; Haque, M.E.; Khan, Ruhul A.; Dafader, N.C.; Islam, Rafiqul; Nurnabi, Mohammad; Tonny, Wafa

    2012-01-01

    Chitosan–starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan–starch films, glycerol and mustard oil of different composition were used. Chitosan–starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan–starch films. Water uptake of the films reduced significantly than the pure chitosan–starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively. - Highlights: ► Chitosan–starch blend films (thickness 0.2 mm) were prepared by casting. ► To improve the properties of chitosan–starch films, glycerol and mustard oil of different composition were used. ► Chitosan–starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. ► Properties of the modified films such as tensile strength, elongation at break, water uptake, TGA, DMA, SEM, FTIR were studied. ► Results indicate that modification of chitosan–starch film with mustard oil improved the properties of the blend films which could be further modified by HEMA using gamma radiation.

  13. Optimization of Chitosan Drying Temperature on The Quality and Quantity of Edible Film

    Science.gov (United States)

    Sri Wahyuni, Endah; Arifan, Fahmi

    2018-02-01

    Edible film is a thin layer (biodegradable) used to coat food and can be eaten. In addition edible film serves as a vapor transfer inhibitor, inhibits gas exchange, prevents aroma loss, prevents fat transfer, improves physical characteristics, and as an additive carrier. Edible film made of cassava starch, glycerol and chitosan. Cassava starch is used as raw material because it contains 80% starch. Glycerol serves as a plasticizer and chitosan serves to form films and membranes well. The purpose of this research is to know the characteristic test of edible film by using ANOVA analysis, where the variable of drying of the oven is temperature (70°C, 80°C, 90°C) and time for 3 hours and variables change chitosan (2 gr, 3 gr, 4 gr). The result of this research was obtained the most optimum for water content and water resistance in temperature variable 80 °C and chitosan 4 gr. The best edible films and bubbles on temperature variables are 80 °C and chitosan 4 gr.

  14. Development and characterisation of composite films made of kefiran and starch.

    Science.gov (United States)

    Motedayen, Ali Akbar; Khodaiyan, Faramarz; Salehi, Esmail Atai

    2013-02-15

    In this study, new edible composite films were prepared by blending kefiran with corn starch. Film-forming solutions of different ratios of kefiran to corn starch (100/0, 70/30, 50/50, 30/70) were cast at room temperature. The effects of starch addition on the resulting films' physical, mechanical and water-vapor permeability (WVP) properties were investigated. Increasing starch content from 0% to 50% (v/v) decreased the WVP of films; however, with further starch addition the WVP increased. Also, this increase in starch content increased the tensile strength and extensibility of the composite films. However, these mechanical properties decreased at higher starch contents. Dynamic mechanical thermal analysis (DMTA) curves showed that addition of starch at all levels increased the glass transition temperature of films. The electron scanning micrograph for the composite film was homogeneous, without signs of phase separation between the components. Thus, it was observed that these two film-forming components were compatible, and that an interaction existed between them. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Water desorption of cassava starch granules: A study based on thermogravimetric analysis of aqueous suspensions and humid powders.

    Science.gov (United States)

    Ayala Valencia, Germán; Djabourov, Madeleine; do Amaral Sobral, Paulo José

    2016-08-20

    This work reports on water desorption from cassava starch in relation with the structure and conditioning of granules in suspensions or after equilibration in desiccators. The experimental work is performed by thermogravimetric analysis with isothermal and non-isothermal protocols and interpreted to derive the activation energies and desorption frequencies according to the humidity range with no adjustable parameter. The analysis points out the different types of water interacting with the starch granules and relates the drying coefficients to their microscopic structure. The work helps clarifying contradictory and partial results from the literature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effect of cassava starch coating on quality and shelf life of fresh-cut pineapple (Ananas comosus L. Merril cv "Pérola").

    Science.gov (United States)

    Bierhals, Vânia S; Chiumarelli, Marcela; Hubinger, Miriam D

    2011-01-01

    This research studied the influence of treatment with ascorbic acid, citric acid, and calcium lactate dipping and cassava starch edible coatings on quality parameters and shelf life of fresh-cut pineapple in slices during 12 d at 5 °C. After previous tests, the treatments selected for this study were samples dipped into antibrowning solution with 0.5% of ascorbic acid and 1% of citric acid, with and without 2% of calcium lactate and coated with 2% of cassava starch suspensions. Changes in weight loss, juice leakage, mechanical properties (stress at failure), color parameters (L* and H*), ascorbic acid content, sensory acceptance, and microbial growth of fruits were evaluated. Samples only treated with antibrowning agents were used as control. Edible coatings with and without calcium lactate were efficient in reducing weight loss, juice leakage, and maintaining firmness during storage. However, these samples showed more browning and the ascorbic acid content was reduced. All treatments presented good sensory acceptance (scores above 6). The determining factor of shelf life of pineapple slices was the microbial spoilage. A shelf life of 8 d was obtained for pineapple slices only treated with antibrowning agents. On the other hand, coated samples showed a reduced shelf life of 7 d and higher yeast and mold growth. Thus, although cassava starch coatings were efficient in reducing respiration rate, weight loss, and juice leakage and maintained mechanical properties, these treatments were not able to increase the shelf life of minimally processed pineapple. Practical Application: Pineapple fruit is highly appreciated for its aroma, flavor, and juiciness, but its immediate consumption is difficult. Therefore, pineapple is a potential fruit for minimal processing. However, shelf life of fresh-cut pineapple is very limited by changes in color, texture, appearance, off-flavors, and microbial growth. The use of edible coatings as gas and water vapor barrier and antibrowning

  17. Physicochemical Characteristics of Artificial Rice from Composite Flour: Modified Cassava Starch, Canavalia ensiformis and Dioscorea esculenta

    Directory of Open Access Journals (Sweden)

    Sumardiono Siswo

    2018-01-01

    Full Text Available Indonesia is the third largest country on the global paddy rice production and also considered as a rice importer. Even, Indonesia has the biggest per capita consumption of paddy rice (140 kg of paddy rice per person per year. Product diversification using local commodities. Artificial rice is potential to be developed as a new value product using different types of grains. It is one of appropriate solutions for reducing imported rice rate. Artificial rice was produced using high nutrition composite flours (modified cassava starch, corn, Canavalian ensiformis, and Dioscorea esculenta. This study consists of three main stages, preparation of composite flour, formulation, and artificial rice production using hot extruder capacity 10 kg/day. The objectives of this studies were to investigate some formulation in compare with commercial paddy rice. Artificial rice has been successfully conducted using prototype of hot extruder with the temperature 95°C. Physical analyses (color and water absorption were carried out to artificial rice product and commercial paddy rice. Chemical analyses (nutrition and amylose content of product will be also presented in this study. The best formulation of artificial rice was achieved in 80% modified cassava starch, 10% Canavalian ensiformis, and 10% Dioscorea esculenta, respectively.

  18. Utilization of residue from cassava starch processing for production of fermentable sugar by enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Luciana Reis Fontinelle SOUTO

    Full Text Available Abstract The aim of this study was to characterize and perform enzymatic hydrolysis of cassava peeling residue (peel and inner peel, mainly composed of peels and small pieces. Residue was sanitized, dried at 55 °C for 24 hours and ground. The obtained flour showed pH of 4.85; 72.53 g 100 g–1 moisture; 5.18 mL 1M NaOH 100 g–1 acidity; 60.68 g 100 g–1 starch; 1.08 g 100 g–1 reducing sugar; 1.63 g 100g–1 ash; 0.86 g 100 g–1 lipid and 3.97 g 100 g–1 protein. Enzymatic hydrolysis was carried out by means of rotational central composite design, analyzing the effects of concentrations of α-amylase enzyme (10 to 50 U g starch–1, and the amyloglucosidase enzyme (80 to 400 U g starch–1 on variable responses: percent conversion of starch into reducing sugars (RSC and soluble solid content (SS. Highest values of RSC (110% and SS (12 °Brix were observed when using the maximum concentration of amyloglucosidase and throughout the concentration range of α-amylase. Enzymatic hydrolysis of cassava peel is feasible and allows the use of hydrolysate in fermentation processes for the production of various products, such as alcoholic drinks, vinegar, among others.

  19. Utilization of residue from cassava starch processing for production of fermentable sugar by enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Luciana Reis Fontinelle SOUTO

    2016-01-01

    Full Text Available Abstract The aim of this study was to characterize and perform enzymatic hydrolysis of cassava peeling residue (peel and inner peel, mainly composed of peels and small pieces. Residue was sanitized, dried at 55 °C for 24 hours and ground. The obtained flour showed pH of 4.85; 72.53 g 100 g–1 moisture; 5.18 mL 1M NaOH 100 g–1 acidity; 60.68 g 100 g–1 starch; 1.08 g 100 g–1 reducing sugar; 1.63 g 100g–1 ash; 0.86 g 100 g–1 lipid and 3.97 g 100 g–1 protein. Enzymatic hydrolysis was carried out by means of rotational central composite design, analyzing the effects of concentrations of α-amylase enzyme (10 to 50 U g starch–1, and the amyloglucosidase enzyme (80 to 400 U g starch–1 on variable responses: percent conversion of starch into reducing sugars (RSC and soluble solid content (SS. Highest values of RSC (110% and SS (12 °Brix were observed when using the maximum concentration of amyloglucosidase and throughout the concentration range of α-amylase. Enzymatic hydrolysis of cassava peel is feasible and allows the use of hydrolysate in fermentation processes for the production of various products, such as alcoholic drinks, vinegar, among others.

  20. Influence of the use of acids and films in post-harvest lychee conservation

    Directory of Open Access Journals (Sweden)

    Danielle Fabíola Pereira da Silva

    2012-12-01

    Full Text Available Lychee (Litchi chinensis Sonn. has a high commercial value; however, it has a short shelf-life because of its rapid pericarp browning. The objective of this study was to evaluate the shelf-life of 'Bengal' lychee fruits stored after treatment with hydrochloric acid and citric acid, associated with cassava starch and plastic packaging. Uniformly red pericarp fruits were submitted to treatments: 1-(immersion in citric acid 100 mM for 5 minutes + cassava starch 30 g L-1 for 5 minutes, 2-(immersion in hydrochloric acid 1 M for 2 minutes + starch cassava 30 g L-1 for 5 minutes, 3-(immersion in citric acid 100 mM for 5 minutes + polyvinyl chloride film (PVC, 14 µm thick and 4-(immersion in hydrochloric acid 1 M for 2 minutes + PVC film. During 20 days, the fruits were evaluated for mass loss, pericarp color, pH, soluble solids and titratable acidity, vitamin C of the pulp and pericarp and activities of polyphenol oxidase and peroxidase of the pericarp. The treatment with hydrochloric acid associated with PVC was the most effective in maintaining the red color of the pericarp for a period of 20 days and best preservation of the fruit. The cassava starch associated with citric acid, and hydrochloric acid did not reduce the mass loss and did not prevent the browning of lychee fruit pericarp.

  1. Modification of mechanical and thermal property of chitosan-starch blend films

    Science.gov (United States)

    Tuhin, Mohammad O.; Rahman, Nazia; Haque, M. E.; Khan, Ruhul A.; Dafader, N. C.; Islam, Rafiqul; Nurnabi, Mohammad; Tonny, Wafa

    2012-10-01

    Chitosan-starch blend films (thickness 0.2 mm) of different composition were prepared by casting and their mechanical properties were studied. To improve the properties of chitosan-starch films, glycerol and mustard oil of different composition were used. Chitosan-starch films, incorporated with glycerol and mustard oil, were further modified with monomer 2-hydroxyethyl methacrylate (HEMA) using gamma radiation. The modified films showed improvement in both tensile strength and elongation at break than the pure chitosan-starch films. Water uptake of the films reduced significantly than the pure chitosan-starch film. Thermo gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) showed that the modified films experience less thermal degradation than the pure films. Scanning electron microscopy (SEM) and FTIR were used to investigate the morphology and molecular interaction of the blend film, respectively.

  2. The effect of water volume and mixing time on physical properties of bread made from modified cassava starch-wheat composite flour

    Science.gov (United States)

    Srirejeki, S.; Manuhara, G. J.; Amanto, B. S.; Atmaka, W.; Laksono, P. W.

    2018-03-01

    Modification of cassava starch with soaking in the whey (by product on cheese production) resulted in changes of the flour characteristics. Adjustments of processing condition are important to be studied in the making of bread from modified cassava starch and wheat composite flour (30:70). This research aims to determine the effect of water volume and mixing time on the physical properties of the bread. The experimental design of this research was Completely Randomized Factorial Design (CRFD) with two factors which were water volume and mixing time. The variation of water volume significantly affected on bread height, dough volume, dough specific volume, and crust thickness. The variation of mixing time had a significant effect on the increase of dough volume and dough specific volume. The combination of water volume and mixing time had a significant effect on dough height, bread volume, bread specific volume, baking expansion, and weight loss.

  3. Graft copolymerization of acrylic acid to cassava starch-Evaluation of the influences of process parameters by an experimental design method

    NARCIS (Netherlands)

    Witono, J. R.; Noordergraaf, I. W.; Heeres, H. J.; Janssen, L. P. B. M.

    2012-01-01

    The graft copolymerization of cassava starch with acrylic acid was investigated using a free radical initiator system (Fe2+/H2O2 redox system) in water. A comprehensive understanding of the important variables and their interaction has been obtained by applying an experimental design method. In this

  4. Household characteristics and market participation competence of smallholder farmers supplying cassava to starch processors in Nigeria

    Directory of Open Access Journals (Sweden)

    Ifeanyi A Ojiako

    2016-12-01

    Full Text Available The household head characteristics of smallholder cassava farmers supplying raw materials to the major commercial starch processors in Nigeria were examined alongside their market participation categories. A multi-stage random sampling technique was used to select 96 farmers working in clusters in the eight cassava producing states. Data were analyzed using a combination of descriptive and inferential statistics, including the use of independent sample t-test technique to compare farmer's characteristics for the farmers' market participation categories. Results revealed that majority of the farmers were farming for subsistence with only 19.80% selling up to 50% of their farm produce as against 80.20% who sold less. Average mean values were found to be higher for the high market participants compared with the low participants for the age, farming experiences, education, farm size, gender, marital status, household size, training, season of harvesting and fertilizer use, but lower for use of credit, improved cassava variety, harvesting method, farming time devotion, and road access. Only farm size, gender and harvesting season at p<0.01 level and training at p<0.05 level were found to be statistically significant in distinguishing the high and low market participation categories. Policies and programmes aimed at promoting market participation among cassava farmers in Nigeria should be more impactful if directed at these significant factors.

  5. Characterization of starch films containing starch nanoparticles. Part 2: viscoelasticity and creep properties.

    Science.gov (United States)

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    Starch films were successfully produced by incorporating spray dried and vacuum-freeze dried starch nanoparticles. The frequency sweep, creep-recovery behavior and time-temperature superposition (TTS) on these films were studied. All these films exhibited dominant elastic behavior (than viscous behavior) over the entire frequency range (0.1-100 rad/s). The incorporation of both types of starch nanoparticles increased the storage and loss modulus, tanδ, creep strain, creep compliance and creep rate at long time frame and reduced the recovery rate of films while the effect of different kinds of starch nanoparticles on these parameters was similar both in magnitude and trend. TTS method was successfully used to predict long time (over 20 days) creep behavior through the master curves. The addition of these nanoparticles could increase the activation energy parameter used in TTS master curves. Power law and Burger's models were capable of fitting storage and loss modulus (R(2)>0.79) and creep data (R(2)>0.96), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Modified Starch-Chitosan Edible Films: Physicochemical and Mechanical Characterization

    Directory of Open Access Journals (Sweden)

    Monserrat Escamilla-García

    2017-12-01

    Full Text Available Starch and chitosan are widely used for preparation of edible films that are of great interest in food preservation. This work was aimed to analyze the relationship between structural and physical properties of edible films based on a mixture of chitosan and modified starches. In addition, films were tested for antimicrobial activity against Listeria innocua. Films were prepared by the casting method using chitosan (CT, waxy (WS, oxidized (OS and acetylated (AS corn starches and their mixtures. The CT-starches films showed improved barrier and mechanical properties as compared with those made from individual components, CT-OS film presented the lowest thickness (74 ± 7 µm, water content (11.53% ± 0.85%, w/w, solubility (26.77% ± 1.40%, w/v and water vapor permeability ((1.18 ± 0.48 × 10−9 g·s−1·m−1·Pa−1. This film showed low hardness (2.30 ± 0.19 MPa, low surface roughness (Rq = 3.20 ± 0.41 nm and was the most elastic (Young’s modulus = 0.11 ± 0.06 GPa. In addition, films made from CT-starches mixtures reduced CT antimicrobial activity against L. innocua, depending on the type of modified starch. This was attributed to interactions between acetyl groups of AS with the carbonyl and amino groups of CT, leaving CT with less positive charge. Interaction of the pyranose ring of OS with CT led to increased OH groups that upon interaction with amino groups, decreased the positive charge of CT, and this effect is responsible for the reduced antimicrobial activity. It was found that the type of starch modification influenced interactions with chitosan, leading to different films properties.

  7. Preparation and properties of Starch-g-PLA/poly(vinyl alcohol) composite film.

    Science.gov (United States)

    Hu, Yingmo; Wang, Qingling; Tang, Mingru

    2013-07-25

    Starch/lactic acid graft copolymer (Starch-g-PLA) was prepared by the in situ copolymerization of starch grafted with lactic acid catalyzed with sodium hydroxide, and then mixed with poly(vinyl alcohol) (PVA) to get composite films. The structures of the graft copolymer and composite films were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties, water resistance, and thermal stability were also investigated. It was found that the compatibility of Starch-g-PLA and PVA was better than that of starch and PVA in the composite films. The tensile strength and elongation at break of the Starch-g-PLA/PVA composite film increased by 69.15% and 84.22%, respectively, while the water absorption decreased by 50.39%, which overcame the shortcomings of hydrophilicity and poor mechanical properties of Starch/PVA film. Thermogravimetric analysis (TGA) also showed that the thermal stability of Starch-g-PLA/PVA film was improved compared with Starch/PVA film. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Characterization of chestnut (Castanea sativa, mill starch for industrial utilization

    Directory of Open Access Journals (Sweden)

    Demiate Ivo Mottin

    2001-01-01

    Full Text Available Studies were conducted to characterize the chestnut and its starch. Chemical composition of the chestnuts showed high level of starch. Moisture level in the raw nuts was around 50g/100g in wet basis and starch content, around 80g/100g in dry basis; other nut flour components were protein (5.58 g/100g, lipid (5.39 g/100g, crude fiber (2.34 g/100g and ash (2.14 g/100g. Starch fraction was chemically characterized in order to identify the granule quality as compared with those of cassava and corn. This fraction showed more lipids and proteins than the other starches. Chestnut starch granules showed peculiar shape, smaller than the control starches and low amount of damaged units. Chemical composition concerning amylose : amylopectin ratio was intermediate to that presented by cassava and corn starch granules. Water absorption at different temperatures as well as solubility were also intermediate but closer to that presented by cassava granules. The same behavior was observed in the interaction with dimethyl-sulfoxide. Native starch granules and those submitted to enzymatic treatment with commercial alpha-amylase and also with enzymes from germinated wheat were observed by scanning electronic microscopy. Water suspensions of chestnut starch granules were heated to form pastes that were studied comparatively to those obtained with cassava and corn starches. Viscographic pattern of chestnut starch pastes showed a characteristic profile with high initial viscosity but peak absence, high resistance to mechanical stirring under hot conditions and high final viscosity. There was no way to compare it with the paste viscographic profiles obtained with the control starches. Chestnut starch pastes were stable down to pH 4 but unstable at pH 3. The water losses observed in the chestnut starch pastes after freeze-thaw cycles showed more similarity to the pattern observed in corn starch pastes as well as clarity and strength of the gel. In general the results

  9. Metal Adsorbent Prepared from Poly(Methyl Acrylate)-Grafted Cassava Starch via Gamma Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Suwanmala, P; Hemvichian, K; Srinuttrakul, W [Nuclear Research and Development Group, Thailand Institute of Nuclear Technology, Bangkok (Thailand)

    2012-09-15

    Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, %Dg = 191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum conditions: in a mixture solution of 20% HA (w/v) and methanol solution (methanol:H{sub 2}O = 5:1) 300 mL, pH 13, reaction time 2 h, and 20 g of grafted copolymer. The adsorbent was characterized by FTIR, TGA, and DSC. The presence of electron donating groups in adsorbent containing hydroxamic acid groups gives the ability to form polycomplexes with metal ions. The ability of the adsorbent to adsorb various metals was investigated in order to evaluate the possibility of its use in metal adsorption. The adsorbent exhibited a remarkable % adsorption for Cd{sup 2+}, Al{sup 3+}, UO{sub 2} {sup 2+}, V{sup 5+} and Pb{sup 2+} at pH 3, 4, 5, 4, and 3, respectively. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15, and 1.6 mmol/g adsorbent for Cd{sup 2+}, Al{sup 3+}, UO{sub 2} {sup 2+}, V{sup 5+} and Pb{sup 2+}, respectively, in the batch mode adsorption. (author)

  10. Maltose Production Using Starch from Cassava Bagasse Catalyzed by Cross-Linked β-Amylase Aggregates

    Directory of Open Access Journals (Sweden)

    Rafael Araujo-Silva

    2018-04-01

    Full Text Available Barley β-amylase was immobilized using different techniques. The highest global yield was obtained using the cross-linked enzyme aggregates (CLEA technique, employing bovine serum albumin (BSA or soy protein isolate (SPI as feeder proteins to reduce diffusion problems. The CLEAs produced using BSA or SPI showed 82.7 ± 5.8 and 53.3 ± 2.4% global yield, respectively, and a stabilization effect was observed upon immobilization at neutral pH value, e.g., after 12 h at 55 °C, the free β-amylase is fully inactivated, while CLEAs retained 25 and 15% of activity (using BSA and SPI, respectively. CLEA using SPI was selected because of its easier recovery, being chosen to convert the residual starch contained in cassava bagasse into maltose. This biocatalyst permitted to reach almost 70% of maltose conversion in 4 h using 30.0 g/L bagasse starch solution (Dextrose Equivalent of 15.88 and 1.2 U of biocatalyst per gram of starch at pH 7.0 and 40 °C. After 4 reuses (batches of 12 h the CLEA using SPI maintained 25.50 ± 0.01% of conversion due to the difficulty of recovering.

  11. Fermentation and recovery of L-glutamic acid from cassava starch hydrolysate by ion-exchange resin column

    Directory of Open Access Journals (Sweden)

    Nampoothiri K. Madhavan

    1999-01-01

    Full Text Available Investigations were carried out with the aim of producing L-glutamic acid from Brevibacterium sp. by utilizing a locally available starchy substrate, cassava (Manihot esculenta Crantz. Initial studies were carried out in shake flasks, which showed that even though the yield was high with 85-90 DE (Dextrose Equivalent value, the maximum conversion yield (~34% was obtained by using only partially digested starch hydrolysate, i.e. 45-50 DE. Fermentations were carried out in batch mode in a 5 L fermenter, using suitably diluted cassava starch hydrolysate, using a 85-90 DE value hydrolysate. Media supplemented with nutrients resulted in an accumulation of 21 g/L glutamic acid with a fairly high (66.3% conversation yield of glucose to glutamic acid (based on glucose consumed and on 81.74% theoretical conversion rate. The bioreactor conditions most conducive for maximum production were pH 7.5, temperature 30°C and an agitation of 180 rpm. When fermentation was conducted in fed-batch mode by keeping the residual reducing sugar concentration at 5% w/v, 25.0 g/L of glutamate was obtained after 40 h fermentation (16% more the batch mode. Chromatographic separation by ion-exchange resin was used for the recovery and purification of glutamic acid. It was further crystallized and separated by making use of its low solubility at the isoelectric point (pH 3.2.

  12. Dielectric spectroscopy of Ag-starch nanocomposite films

    Science.gov (United States)

    Meena; Sharma, Annu

    2018-04-01

    In the present work Ag-starch nanocomposite films were fabricated via chemical reduction route. The formation of Ag nanoparticles was confirmed using transmission electron microscopy (TEM). Further the effect of varying concentration of Ag nanoparticles on the dielectric properties of starch has been studied. The frequency response of dielectric constant (ε‧), dielectric loss (ε″) and dissipation factor tan(δ) has been studied in the frequency range of 100 Hz to 1 MHz. Dielectric data was further analysed using Cole-Cole plots. The dielectric constant of starch was found to be 4.4 which decreased to 2.35 in Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Such nanocomposites with low dielectric constant have potential applications in microelectronic technologies.

  13. Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration.

    Science.gov (United States)

    Wang, Wenhang; Wang, Kun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana; Liu, Anjun

    2017-01-01

    In order to study the impact of starch in film performance, high amylose corn starch was composited in gelatin films under different gelatinization conditions and, in high and low concentrations (10 and 50wt.%). It was found that hot water gelatinized starch (Gel-Shw) increased film mechanical strength and was dependent upon the starch concentration. The addition of an alkali component to the starch significantly enhanced the swelling of the starch granules and expedited the gelatinization process. Incorporation of starch, especially the alkalized starch (Sha), into the gelatin films decreased film solubility which improved its water resistance and water vapor permeability (WVP). Multiple techniques (DSC, TGA, FT-IR, and XRD) were used to characterize the process and results, including the crosslinking of the dissolved starch molecules and the particles formed from gelatinized starch during retrogradation process, which played an important role in improving the thermal stability of the composited gelatin films. Overall, the starch-gelatin composition provides a potential approach to improve gelatin film performance and benefit its applications in the food industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Preparation and Characterization of PLA-Starch Biodegradable Composites Via Radiation Processing

    Energy Technology Data Exchange (ETDEWEB)

    Hemvichian, K.; Suwanmala, P. [Thailand Institute of Nuclear Technology (TINT) (Thailand); Kungsumrith, W. [Department of Industrial Engineering, Faculty of Engineering, Thammasat University (TU) (Thailand); Pongprayoon, T. [Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok (KMUTNB), Bangkok (Thailand)

    2011-07-01

    This research project aims to apply the use of radiation processing to prepare biodegradable composites from poly(lactic acid) or polylactide (PLA) and cassava starch. Cassava starch, a natural polymer that is inexpensive and abundant, especially in Thailand, will be used as starting material. Functional group of cassava starch will be modified first in order to render starch more compatible with PLA. The monomer with desired functional groups will be grafted onto the backbone of starch via radiation-induced grafting polymerization. Different parameters will be examined to determine the optimum conditions for the grafting polymerization. The modified starch will subsequently be blended with PLA, with and without clay, to form biodegradable composites. In order to further improve the thermal properties, the blends and their composites will be subjected to radiation to induce crosslinking between the molecules of PLA and starch derivatives. (author)

  15. Preparation and Characterization of PLA-Starch Biodegradable Composites Via Radiation Processing

    International Nuclear Information System (INIS)

    Hemvichian, K.; Suwanmala, P.; Kungsumrith, W.; Pongprayoon, T.

    2011-01-01

    This research project aims to apply the use of radiation processing to prepare biodegradable composites from poly(lactic acid) or polylactide (PLA) and cassava starch. Cassava starch, a natural polymer that is inexpensive and abundant, especially in Thailand, will be used as starting material. Functional group of cassava starch will be modified first in order to render starch more compatible with PLA. The monomer with desired functional groups will be grafted onto the backbone of starch via radiation-induced grafting polymerization. Different parameters will be examined to determine the optimum conditions for the grafting polymerization. The modified starch will subsequently be blended with PLA, with and without clay, to form biodegradable composites. In order to further improve the thermal properties, the blends and their composites will be subjected to radiation to induce crosslinking between the molecules of PLA and starch derivatives. (author)

  16. Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films

    Science.gov (United States)

    Cieśla, Krystyna; Watzeels, Nick; Rahier, Hubert

    2014-06-01

    In this work the influence of gamma irradiation on the thermomechanical properties of the films formed in potato starch-glycerol and potato starch-glycerol-surfactant systems were examined by Dynamic Mechanical Analysis, DMA, and Differential Scanning Calorimetry, DSC, and the results were correlated to the amount of the volatile fraction in the films.

  17. Antagonistic properties of microogranisms associated with cassava ...

    African Journals Online (AJOL)

    The antagonistic properties of indigenous microflora from cassava starch, flour and grated cassava were investigated using the conventional streak, novel ring and well diffusion methods. Antagonism was measured by zone of inhibition between the fungal plug and bacterial streak/ring. Bacillus species were more effective ...

  18. Bio-composites of cassava starch-green coconut fiber: part II-Structure and properties.

    Science.gov (United States)

    Lomelí-Ramírez, María Guadalupe; Kestur, Satyanarayana G; Manríquez-González, Ricardo; Iwakiri, Setsuo; de Muniz, Graciela Bolzon; Flores-Sahagun, Thais Sydenstricker

    2014-02-15

    Development of any new material requires its complete characterization to find potential applications. In that direction, preparation of bio-composites of cassava starch containing up to 30 wt.% green coconut fibers from Brazil by thermal molding process was reported earlier. Their characterization regarding physical and tensile properties of both untreated and treated matrices and their composites were also reported. Structural studies through FTIR and XRD and thermal stability of the above mentioned composites are presented in this paper. FT-IR studies revealed decomposition of components in the matrix; the starch was neither chemically affected nor modified by either glycerol or the amount of fiber. XRD studies indicated increasing crystallinity of the composites with increasing amount of fiber content. Thermal studies through TGA/DTA showed improvement of thermal stability with increasing amount of fiber incorporation, while DMTA showed increasing storage modulus, higher glass transition temperature and lower damping with increasing fiber content. Improved interfacial bonding between the matrix and fibers could be the cause for the above results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Application of edible coating from cassava peel – bay leaf on avocado

    Science.gov (United States)

    Handayani, M. N.; Karlina, S.; Sugiarti, Y.; Cakrawati, D.

    2018-05-01

    Avocados have a fairly short shelf life and are included in climacteric fruits. Edible coating application is one alternative to maintain the shelf life of avocado. Cassava peel starch is potential to be used as raw material for edible coating making. Addition of bay leaf extract containing antioxidants can increase the functional value of edible coating. The purpose of this study is to know the shrinkage of weight, acid number, color change and respiration rate of avocado coated with edible coating from cassava peel starch with an addition of bay leaf extract. The study consisted of making cassava peel starch, bay leaf extraction, edible coating making, edible coating application on avocado, and analysis of avocado characteristics during storage at room temperature. The results showed that addition of bay leaf extract on cassava peel starch edible coating applied to avocado, an effect on characteristics of avocado. Avocado applied edible coating and stored at room temperatures had lower weight loss than avocado without edible coating, lower acid number, tend to be more able to maintain color rather than avocado without edible coating.

  20. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase.

    Science.gov (United States)

    Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka

    2011-04-01

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.

  1. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and {beta}-glucosidase

    Energy Technology Data Exchange (ETDEWEB)

    Apiwatanapiwat, Waraporn; Rugthaworn, Prapassorn [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Kasetsart Univ., Bangkok (Thailand). Nanotechnology and Biotechnology Div.; Murata, Yoshinori; Kosugi, Akihiko; Arai, Takamitsu; Mori, Yutaka [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Yamada, Ryosuke; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering

    2011-04-15

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying {alpha}-amylase ({alpha}-AM), glucoamylase, endoglucanase, cellobiohydrase, and {beta}-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley {beta}-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes. (orig.)

  2. Yield and properties of ethanol biofuel produced from different whole cassava flours.

    Science.gov (United States)

    Ademiluyi, F T; Mepba, H D

    2013-01-01

    The yield and properties of ethanol biofuel produced from five different whole cassava flours were investigated. Ethanol was produced from five different whole cassava flours. The effect of quantity of yeast on ethanol yield, effect of whole cassava flour to acid and mineralized media ratio on the yield of ethanol produced, and the physical properties of ethanol produced from different cassava were investigated. Physical properties such as distillation range, density, viscosity, and flash point of ethanol produced differ slightly for different cultivars, while the yield of ethanol and electrical conductivity of ethanol from the different cassava cultivars varies significantly. The variation in mineral composition of the different whole cassava flours could also lead to variation in the electrical conductivity of ethanol produced from the different cassava cultivars. The differences in ethanol yield are attributed to differences in starch content, protein content, and dry matter of cassava cultivars. High yield of ethanol from whole cassava flour is best produced from cultivars with high starch content, low protein content, and low fiber.

  3. Mechanical and barrier properties of maize starch-gelatin composite films: effects of amylose content.

    Science.gov (United States)

    Wang, Kun; Wang, Wenhang; Ye, Ran; Xiao, Jingdong; Liu, Yaowei; Ding, Junsheng; Zhang, Shaojing; Liu, Anjun

    2017-08-01

    In order to obtain new reinforcing bio-fillers to improve the physicochemical properties of gelatin-based films, three types of maize starch, waxy maize starch (Ap), normal starch (Ns) and high-amylose starch (Al), were incorporated into gelatin film and the resulting film properties were investigated, focusing on the impact of amylose content. The thickness, opacity and roughness of gelatin film increased depending on the amylose content along with the starch concentration. The effects of the three starches on the mechanical properties of gelatin film were governed by amylose content, starch concentration as well as environmental relative humidity (RH). At 75% RH, the presence of Al and Ns in the gelatin matrix increased the film strength but decreased its elongation, while Ap exhibited an inverse effect. Starch addition decreased the oxygen permeability of the film, with the lowest value at 20% Al and Ns. All starches, notably at 30% content, led to a decrease in the water vapor permeability of the film at 90% RH, especially Ns starch. Furthermore, the starches improved the thermal stability of the film to some extent. Fourier transform infrared spectra indicated that some weak intermolecular interactions such as hydrogen bonding occurred between gelatin and starch. Moreover, a high degree of B-type crystallinity of starch was characterized in Gel-Al film by X-ray diffraction. Tailoring the properties of gelatin film by the incorporation of different types of maize starch provides the potential to extend its applications in edible food packaging. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Super water absorbent by radiation graft polymerization of acrylic monomers onto cassava starch

    International Nuclear Information System (INIS)

    Doan Binh

    2008-01-01

    Water superabsorbent gel has been applying in personal care, agriculture, medical supplies and water purification. In agricultural application, the gel will help to control soil erosion, limit loss of nutrients and slit for plants, decrease irrigation frequency, improve infiltration, and increase water retention in prolonged arid soil and droughts. The gel absorbs many times its weight in available water. The gel from poly(acrylamide) was developed in the 60's to grow plants in the deserts. The other gel from poly(acrylic acid) was used to absorb rapidly in baby diapers, sanitary napkins. These polymers are commonly produced from natural gas, which have recently been introduced as a soil conditioner with great success. Prior to these polymers, peat moss, agro-waste (sugar-cane waste, coffee-shell, etc.), activated kaolin were the alternative soil additives to hold water (20 times its weight), but poly(acrylamide) absorbs 400 times its weight and polyacrylate is capable of absorbing greater amounts of liquid than poly(acrylamide). In addition, starch and cellulose are biodegradable naturally occurring polymers, which are not capable of holding a great amount of water, but their modification by graft polymerization or crosslinking through radiation or chemical initiation techniques, they become the potential superabsorbent polymers. Radiation initiation of chemical reactions has been widely known for making novel materials because the degree of polymerization, grafting and crosslinking process can easily be controlled. Recently, it was shown that the starch and cellulose derivatives such as carboxymethyl starch, carboxymethyl starch can be synthesized by radiation-induced crosslinking at high concentrations. Their utilization in agriculture seems to be appropriately evaluated. In this article, the graft polymerization and crosslinking of acrylic acid onto cassava starch and field trial of its product (GAM-Sorb S) are reported. (author)

  5. Amylolytic Enzymes Acquired from L-Lactic Acid Producing Enterococcus faecium K-1 and Improvement of Direct Lactic Acid Production from Cassava Starch.

    Science.gov (United States)

    Unban, Kridsada; Kanpiengjai, Apinun; Takata, Goro; Uechi, Keiko; Lee, Wen-Chien; Khanongnuch, Chartchai

    2017-09-01

    An amylolytic lactic acid bacterium isolate K-1 was isolated from the wastewater of a cassava starch manufacturing factory and identified as Entercoccus faecium based on 16S rRNA gene sequence analysis. An extracellular α-amylase was purified to homogeneity and the molecular weight of the purified enzyme was approximately 112 kDa with optimal pH value and temperature measured of 7.0 and 40 °C, respectively. It was stable at a pH range of 6.0-7.0, but was markedly sensitive to high temperatures and low pH conditions, even at a pH value of 5. Ba 2+ , Al 3+ , and Co 2+ activated enzyme activity. This bacterium was capable of producing 99.2% high optically pure L-lactic acid of 4.3 and 8.2 g/L under uncontrolled and controlled pH at 6.5 conditions, respectively, in the MRS broth containing 10 g/L cassava starch as the sole carbon source when cultivated at 37 °C for 48 h. A control pH condition of 6.5 improved and stabilized the yield of L-lactic acid production directly from starch even at a high concentration of starch at up to 150 g/L. This paper is the first report describing the properties of purified α-amylase from E. faecium. Additionally, pullulanase and cyclodextrinase activities were also firstly recorded from E. faecium K-1.

  6. Effect of starch type on the physico-chemical properties of edible films.

    Science.gov (United States)

    Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric

    2017-05-01

    Food preservation is mostly related to packaging in oil-based plastics, inducing environmental problems, but this drawback could be limited by using edible/biodegradable films and coatings. Physical and chemical properties were assessed and reflect the role of the starch type (wheat, corn or potato) and thus that of the amylose/amylopectin ratio, which influences thickness, colour, moisture, wettability, thermal, surface and mechanical properties. Higher amylose content in films induces higher moisture sensitivity, and thus affects the mechanical and barrier properties. Films made from potato starch constitute a greater barrier for oxygen and water vapour though they have weaker mechanical properties than wheat and corn starch films. Starch species with higher amylose content have lower wettability properties, and better mechanical resistance, which strongly depends on the water content due to the hydrophilic nature of starch films, so they could be used for products with higher water activity, such as cheese, fruits and vegetables. It especially concerns wheat starch systems, and the contact angle indicates less hydrophilic surfaces (above 90°) than those of corn and potato starch films (below 90°). The starch origin influences optical properties and thickness: with more amylose, films are opalescent and thicker; with less, they are transparent and thinner. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Application of Taguchi optimization on the cassava starch wastewater electrocoagulation using batch recycle method

    Science.gov (United States)

    Sudibyo, Hermida, L.; Suwardi

    2017-11-01

    Tapioca waste water is very difficult to treat; hence many tapioca factories could not treat it well. One of method which able to overcome this problem is electrodeposition. This process has high performance when it conducted using batch recycle process and use aluminum bipolar electrode. However, the optimum operation conditions are having a significant effect in the tapioca wastewater treatment using bath recycle process. In this research, The Taguchi method was successfully applied to know the optimum condition and the interaction between parameters in electrocoagulation process. The results show that current density, conductivity, electrode distance, and pH have a significant effect on the turbidity removal of cassava starch waste water.

  8. Preparation and characterization of dialdehyde starch urea (DASU ...

    African Journals Online (AJOL)

    Dialdehyde starch urea (DASU) was prepared by the reaction of dialdehyde starch (DAS) from periodate oxidized cassava starch with urea, which was then used to adsorb Co(II), Pb(II) and Zn(II) ions from aqueous solution. Starch modified starches and starch complexes were characterized by Fourier transform infrared ...

  9. Partial characterization of chayotextle starch-based films added with ascorbic acid encapsulated in resistant starch.

    Science.gov (United States)

    Martínez-Ortiz, Miguel A; Vargas-Torres, Apolonio; Román-Gutiérrez, Alma D; Chavarría-Hernández, Norberto; Zamudio-Flores, Paul B; Meza-Nieto, Martín; Palma-Rodríguez, Heidi M

    2017-05-01

    Chayotextle starch was modified by subjecting it to a dual treatment with acid and heating-cooling cycles. This caused a decrease in the content of amylose, which showed values of 30.22%, 4.80%, 3.27% and 3.57% for native chayotextle starch (NCS), starch modified by acid hydrolysis (CMS), and CMS with one (CMS1AC) and three autoclave cycles (CMS3AC), respectively. The percentage of crystallinity showed an increase of 36.9%-62% for NCS and CMS3AC. The highest content of resistant starch (RS) was observed in CMS3AC (37.05%). The microcapsules were made with CMS3AC due to its higher RS content; the total content of ascorbic acid of the microcapsules was 82.3%. The addition of different concentrations of CMS3AC microcapsules (0%, 2.5%, 6.255% and 12.5%) to chayotextle starch-based films (CSF) increased their tensile strength and elastic modulus. The content of ascorbic acid and RS in CSF was ranged from 0% to 59.4% and from 4.84% to 37.05% in the control film and in the film mixed with CMS3AC microcapsules, respectively. Water vapor permeability (WVP) values decreased with increasing concentrations of microcapsules in the films. Microscopy observations showed that higher concentrations of microcapsules caused agglomerations due their poor distribution in the matrix of the films. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cassava starch factory residues in the diet of slow-growing broilers.

    Science.gov (United States)

    Picoli, Karla Paola; Murakami, Alice Eiko; Nunes, Ricardo Vianna; do Amaral Duarte, Cristiane Regina; Eyng, Cinthia; Ospina-Rojas, Ivan Camilo

    2014-12-01

    The objective of this study was to evaluate the effect of inclusion of dehydrated cassava starch residue (DCSR) on the performance, gastrointestinal tract characteristics and carcass traits of ISA Label JA57 slow-growing broilers. A total of 510 broilers at 21 were distributed in a randomized experimental design with 5 treatments (2, 4, 6, 8, and 10 % DCSR inclusion) and a control group, 5 replicates, and 17 birds per experimental unit. The DCSR inclusion from 21 to 49 days of age negatively influenced (P  0.05) feed conversion in the broilers with increasing of DCSR inclusion. From 21 to 79 days, DCSR inclusion impaired (P litter quality with increasing of DCSR inclusion. The level of blood triglycerides showed a quadratic response (P  0.05) the other parameters of carcass quality and yield, cuts, and percentage of abdominal fat. In conclusion, DCSR inclusion levels above 2 % compromised broiler performance.

  11. Morphological, mechanical, barrier and properties of films based on acetylated starch and cellulose from barley.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Biduski, Bárbara; Evangelho, Jarine Amaral do; Bruni, Graziella Pinheiro; Antunes, Mariana Dias; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    Biodegradable films of native or acetylated starches with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. The tensile strength of the acetylated starch film was lower than those of the native starch film, without fibers. The addition of fibers increased the tensile strength and decreased the elongation and the moisture of native and acetylated starches films. The acetylated starch film showed higher water solubility when compared to native starch film. The addition of cellulose fibers reduced the water solubility of the acetylated starch film. The films reinforced with cellulose fiber exhibited a higher initial decomposition temperature and thermal stability. The mechanical, barrier, solubility, and thermal properties are factors which direct the type of the film application in packaging for food products. The films elaborated with acetylated starches of low degree of substitution were not effective in a reduction of the water vapor permeability. The addition of the cellulose fiber in acetylated and native starches films can contribute to the development of more resistant films to be applied in food systems that need to maintain their integrity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Functional properties of irradiated starch

    International Nuclear Information System (INIS)

    Laouini, Wissal

    2011-01-01

    Irradiation is an effective method capable of modifying the functional properties of starches. Its effect depends on the specific structural and molecular organization of starch granules from different botanical sources. In this study, we have studied the effect of gamma irradiation (3, 5, 10, 20, 35, 50 kGy) on the rheological properties of some varieties of starch (potato, cassava and wheat). First, we were interested in determining dry matter content; the results showed that the variation in dry matter compared to the control (native starch) is almost zero. So it does not depend on the dose of irradiation. Contrariwise, it differs from a botanical species to another. The viscometer has shown that these starches develop different behaviors during shearing. The native potato starch gave the highest viscosity followed by wheat and cassava which have almost similar viscosities. For all varieties, the viscosity of starch decreases dramatically with an increasing dose of irradiation. At high doses (35 and 50 kGy) the behavior of different starch is similar to that of a viscous pure liquid. The textural analysis via the back-extrusion test showed that increasing the dose of radiation causes a decrease in extrusion force and the energy spent of the different starch throughout the test. Indeed, the extrusion resistance decreases with increasing dose.

  13. Characterization of starch nanoparticles

    Science.gov (United States)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  14. Edible Film from Polyblend of Ginger Starch, Chitosan, and Sorbitol as Plasticizer

    Science.gov (United States)

    Sariningsih, N.; Putra, Y. P.; Pamungkas, W. P.; Kusumaningsih, T.

    2018-03-01

    Polyblend ginger starch/chitosan based edible film has been succesfully prepared and characterized. The purpose of this research was to produce edible film from polyblend of ginger starch, chitosan, and sorbitol as plasticizer. The resulted edible film were characterized by using FTIR, TGA and UTM. Edible film of ginger starch had OH vibration (3430 cm-1). Besides, edible film had elongation up to 15.63%. The thermal degradation of this material reached 208°C indicating high termal stability. The water uptake of the edible film was 42.85%. It concluded that edible film produce in this research has potential as a packaging.

  15. BIODEGRADABLE PLASTICS FROM A MIXTURE OF LOW DENSITY POLYETHYLENE (LDPE AND CASSAVA STARCH WITH THE ADDITION OF ACRYLIC ACID

    Directory of Open Access Journals (Sweden)

    Susilawati Susilawati

    2013-05-01

    Full Text Available A research of preparation biodegradable plastics, from LDPE and cassava starch mixture with the addition of acrylic acid, had been conducted. This research purpose to  studied compatibility properties of the material and percent weight loss during the biodegradation test. Optimum weight loss (59,26% was showed after 60 days witches LDPE and starch composition ratio 6 : 4 (w/w  while tensile strength  equal to 0,38 Kgf/mm2.  SEM characterization showed that biodegradation has occurred by  formation of hole in the biodegradable plastic surface. DTA test gave Tg = 130 °C, Tm = 230 °C and Td = 370-450 °C while FT-IR analysis showed that the biodegradable plastics have a chemistry interaction.

  16. Modification of water absorption capacity of a plastic based on bean protein using gamma irradiated starches as additives

    International Nuclear Information System (INIS)

    Koeber, E.; Gonzalez, M.E.; Gavioli, N.; Salmoral, E.M.

    2007-01-01

    Some properties of a bean protein-starch plastic were modified by irradiation of the starch. Two kinds of starch from bean and cassava were irradiated with doses until 50 kGy before their inclusion in the composite. Water absorption of the resultant product was reduced by 36% and 60% in materials containing bean and cassava starch, respectively. A large decline in the elongation is observed till 10 kGy in both materials, while tensile strength diminished by 11% in the cassava composite

  17. Acetylated rice starches films with different levels of amylose: Mechanical, water vapor barrier, thermal, and biodegradability properties.

    Science.gov (United States)

    Colussi, Rosana; Pinto, Vânia Zanella; El Halal, Shanise Lisie Mello; Biduski, Bárbara; Prietto, Luciana; Castilhos, Danilo Dufech; Zavareze, Elessandra da Rosa; Dias, Alvaro Renato Guerra

    2017-04-15

    Biodegradable films from native or acetylated starches with different amylose levels were prepared. The films were characterized according to the mechanical, water vapor barrier, thermal, and biodegradability properties. The films from acetylated high amylose starches had higher moisture content and water solubility than the native high amylose starch film. However, the acetylation did not affect acid solubility of the films, regardless of the amylose content. Films made from high and medium amylose rice starches were obtained; however low amylose rice starches, whether native or acetylated, did not form films with desirable characteristics. The acetylation decreased the tensile strength and increased the elongation of the films. The acetylated starch-based films had a lower decomposition temperature and higher thermal stability than native starch films. Acetylated starches films exhibited more rapid degradation as compared with the native starches films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. MICROMORPHOLOGICAL STUDIES OF STARCH GRANULES IN SELECTED PROCESSED INDIGENOUS FLOUR OF SOUTH WESTERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Adeniyi A. JAYEOLA

    2013-06-01

    Full Text Available Starch granules of yam stem tubers, plantain fruits and cassava root tubers were studied using the light microscope and then compared. Yam and plantain, both monocotyledons, had morphologically similar granules between locations, being mostly oval in shape while the granules of cassava, a dicot, were predominantly globular but varied between locations. Differences in processing methods between locations might be responsible for the observed variation in cassava granules. There is a suggestion that starch granule morphology might follow lineages in a broad sense. The unique micromorphology of cassava starch granule could make it easily detectable when adulterated, substituted or contaminated with yam or plantain granules and this could provide a cost effective clue in forensic determination.

  19. Irradiation of starches for industrial uses: Chemical and physical effects

    International Nuclear Information System (INIS)

    Gonzalez, Maria E.

    1999-01-01

    Corn and cassava starches have been irradiated with gamma doses from 10 to 180 kGy and pastes have been prepared by boiling the starches in water. The rheological properties of the pastes have been determined showing that the 10 kGy dose reduces sharply the viscosity of the aqueous pastes. The solubility of the irradiated starches has been also studied. The cassava starch irradiated with 180 kGy is soluble in boiling water and remains soluble at room temperature. After some considerations on the chemical effects of the irradiation it is concluded that the irradiation technique is suitable to replace the chemical treatment in many industrial applications of the starch. (author)

  20. Preparation and Characterization of Potentially Antimicrobial Polymer Films Containing Starch Nano- and Microparticles

    Directory of Open Access Journals (Sweden)

    Paulius Pavelas DANILOVAS

    2014-09-01

    Full Text Available The forming conditions of biodegradable polymer films containing iodine-modified starch particles as well as the properties of the obtained films were investigated. Cationic cross-linked starch microparticles and cationic starch nanoparticles were dispersed in cellulose acetate and hydroxyethyl cellulose solution, respectively, and composite films were spin-casted. The obtained films were characterized and their mechanical properties were assessed. The cellulose acetate solution has been found to be an appropriate matrix for the dispersion of dry modified starch microparticles, but not in the case of nanoparticles. Starch nanoparticles were obtained in an aqueous medium, and the mechanical properties of the formed cellulose acetate films are significantly reduced by water present in the casting solution. It has been estimated that a fairly high amount of nanoparticles (18 wt% can be immobilized into films of water-soluble hydroxyethyl cellulose without markedly affecting the mechanical properties of the films. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.5426

  1. Physicochemical and Mechanical Properties of Bambara Groundnut Starch Films Modified with Stearic Acid.

    Science.gov (United States)

    Oyeyinka, Samson A; Singh, Suren; Amonsou, Eric O

    2017-01-01

    The physicochemical and mechanical properties of biofilm prepared from bambara starch modified with varying concentrations of stearic acid (0%, 2.5%, 3.5%, 5%, 7%, and 10%) were studied. By scanning electron microscopy, bambara starch films modified with stearic acid (≥3.5%) showed a progressively rough surface compared to those with 2.5% stearic acid and the control. Fourier transform infrared spectroscopy spectra revealed a peak shift of approximately 31 cm -1 , suggesting the promotion of hydrogen bond formation between hydroxyl groups of starch and stearic acid. The addition of 2.5% stearic acid to bambara starch film reduced water vapor permeability by approximately 17%. Bambara starch films modified with higher concentration of stearic acid were more opaque and showed significantly high melting temperatures. However, mechanical properties of starch films were generally negatively affected by stearic acid. Bambara starch film may be modified with 2.5% stearic acid for improved water vapor permeability and thermal stability with minimal effect on tensile strength. © 2016 Institute of Food Technologists®.

  2. Correlation of concentration of modified cassava flour for banana fritter flour using simple linear regression

    Science.gov (United States)

    Herminiati, A.; Rahman, T.; Turmala, E.; Fitriany, C. G.

    2017-12-01

    The purpose of this study was to determine the correlation of different concentrations of modified cassava flour that was processed for banana fritter flour. The research method consists of two stages: (1) to determine the different types of flour: cassava flour, modified cassava flour-A (using the method of the lactid acid bacteria), and modified cassava flour-B (using the method of the autoclaving cooling cycle), then conducted on organoleptic test and physicochemical analysis; (2) to determine the correlation of concentration of modified cassava flour for banana fritter flour, by design was used simple linear regression. The factors were used different concentrations of modified cassava flour-B (y1) 40%, (y2) 50%, and (y3) 60%. The response in the study includes physical analysis (whiteness of flour, water holding capacity-WHC, oil holding capacity-OHC), chemical analysis (moisture content, ash content, crude fiber content, starch content), and organoleptic (color, aroma, taste, texture). The results showed that the type of flour selected from the organoleptic test was modified cassava flour-B. Analysis results of modified cassava flour-B component containing whiteness of flour 60.42%; WHC 41.17%; OHC 21.15%; moisture content 4.4%; ash content 1.75%; crude fiber content 1.86%; starch content 67.31%. The different concentrations of modified cassava flour-B with the results of the analysis provides correlation to the whiteness of flour, WHC, OHC, moisture content, ash content, crude fiber content, and starch content. The different concentrations of modified cassava flour-B does not affect the color, aroma, taste, and texture.

  3. Preparation and Characterization of Some Polyethylene Modified- Starch Biodegradable Films

    International Nuclear Information System (INIS)

    Badrana, A.S.; Ramadanb, A.M.; Ibrahim, N.A.; Kahild, T.; Hussienc, H.A.

    2005-01-01

    Blends of LDPE with soluble starch, wheat flour and commercial starch were prepared by mixing starch (or flour) with styrene then blending the mixture with LDPE, The starch percents vary between 5 and 50% of the total weight. Their physical and mechanical properties were recorded and compared with pure LDPE. It was observed that the increase in starch or wheat flour contents of the mixture was reversibly proportional to the tensile strength and % elongation. Samples were tested for water absorption. All of the samples were insoluble in cold and boiling water. Moisture uptake increased with immersion time and increasing starch content. The changes in the tensile strength of LDPE/starch (or wheat flour) after the course of thermal oxidation was measured. These results show negligible changes in the tensile strength of the control sample as compared to that of the samples containing the additives. Oxidation processes take advantage of the high temperatures (40-50 degree C) and the time. It was also observed that after 10 weeks of soil burial, the mechanical properties of the films decrease, mainly, due to starch removal from the films. Also, for the weight loss a drastic decrease was observed after 10 weeks of soil burial thereafter it preceded slowly. The LDPE/ starch strips showed weight loss after treating with a-amylase this due to hydrolysis and leaching of the starch. The rate of starch hydrolysis increases with the increase in starch content of the sample. The influence of addition of starch on the overall migration of these films, with different food simulant, was studied, at different temperatures (-4 degree. 25 degree and 40 degree C). All values were significantly lower than the upper limit for overall migration set by the EU (10 mg/dirf) for food grade plastics packaging materials

  4. Oxidação dos amidos de mandioca e de milho comum fermentados: desenvolvimento da propriedade de expansão Oxidation of fermented cassava and corn starches: development of the expansion property

    Directory of Open Access Journals (Sweden)

    Alvaro Renato Guerra Dias

    2007-12-01

    Full Text Available Amidos de mandioca e de milho comum foram fermentados em laboratório a 20 °C, sendo uma fração seca ao sol e outra oxidada com peróxido de hidrogênio e secada artificialmente, visando o desenvolvimento da propriedade de expansão. Estudou-se a fermentação em 0, 10, 30 e 50 dias, sendo a propriedade de expansão no forneamento avaliada pelo teste do biscoito e o comportamento viscoamilográfico pelo RVA. Verificou-se que a fermentação promove modificação que auxilia na oxidação dos amidos de mandioca e de milho elevando a acidez titulável do produto. O amido de mandioca fermentado oxidado com exposição solar ou com peróxido de hidrogênio pode desenvolver a propriedade de expansão, já o amido de milho comum nessas condições não tem essa capacidade. Os melhores resultados para a propriedade de expansão foram no amido de mandioca oxidado com peróxido de hidrogênio aos 50 dias de fermentação.Cassava and corn starches were fermented in the laboratory at 20 °C, and a fraction was in the sun while another fraction was oxidized with hydrogen peroxide and dried artificially to develop the expansion property. Fermentation in 0, 10, 30 and 50 days was checked and the expansion property was evaluated by the baking test and viscoamilograph behavior (RVA. Fermentation was found to cause changes that help the oxidation of cassava and corn starches, increasing the product's titrable acidity. The fermented cassava starch, oxidized by exposure to sunlight or hydrogen peroxide, may develop the expansion property, but the corn starch did not display that ability under these conditions. The best results for the expansion property were obtained with cassava starch oxidized with hydrogen peroxide after 50 days of fermentation.

  5. Conversion of Cassava Starch to Produce Glucose and Fructose by Enzymatic Process Using Microwave Heating

    Directory of Open Access Journals (Sweden)

    Sumardiono Siswo

    2018-01-01

    Full Text Available In this study, variation of glycosidase enzyme concentration and saccharification time on enzymatic hydrolysis using microwave have been investigated. Concentration and kinetic parameters rate of glucose and fructose were analyzed. Cassava starch was liquefied and gelatinized by microwave at 80°C. The gelatinized starch was saccharified at 60°C using (0.2;0.4;0.6;0.8;1% (w/v glycosidase enzyme for 24, 48 and 72 hours. The glucose which has been saccharified with 1% glycosidase enzyme for 72 hours gave highest conversion 66.23 %. The optimization process by multilevel reaction gave the highest conversion at enzyme concentrations 0.88 %and saccharification time 29 hours that 68.82%. The highest conversion of glucose was isomerized to fructose. The fructose which has been isomerized for 180 minutes gave highest conversion 20.05 %. The kinetics enzymatic reaction was approached and determined by Michaelis - Menten equation, Km and Vmax of reaction for glucose 22.94 g/L; 2.70 g/L hours and for fructose 3.39 g/L; 0.38 g/L. min respectively.

  6. Filmes de amidos de mandioca modificados para recobrimento e conservação de uvas

    Directory of Open Access Journals (Sweden)

    Suellen Laís Vicentino

    2011-01-01

    Full Text Available In this article, films were produced with six types of cassava's starch mixed with gelatin and plasticized with sorbitol. These films were used in covering of grapes 'Benitaka' (Vitis vinifera L. as biodegradable packaging. The acetylated starch film showed the best results in solubility, thickness and homogeneity, besides the less water loss the fruit, resulting in better coverage, increasing the shelf life fruits in 12 days. These results demonstrate the great potential of using films in food conservation, adding value to agricultural activity and helping to reduce non-biodegradable plastics in the environment.

  7. Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films.

    Science.gov (United States)

    Teacă, Carmen-Alice; Bodîrlău, Ruxanda; Spiridon, Iuliana

    2013-03-01

    The present paper describes the preparation and characterization of polysaccharides-based bio-composite films obtained by the incorporation of 10, 20 and 30 wt% birch cellulose (BC) within a glycerol plasticized matrix constituted by the corn starch (S) and chemical modified starch microparticles (MS). The obtained materials (coded as MS/S, respectively MS/S/BC) were further characterized. FTIR spectroscopy and X-ray diffraction were used to evidence structural and crystallinity changes in starch based films. Morphological, thermal, mechanical, and water resistance properties were also investigated. Addition of cellulose alongside modified starch microparticles determined a slightly improvement of the starch-based films water resistance. Some reduction of water uptake for any given time was observed mainly for samples containing 30% BC. Some compatibility occurred between MS and BC fillers, as evidenced by mechanical properties. Tensile strength increased from 5.9 to 15.1 MPa when BC content varied from 0 to 30%, while elongation at break decreased significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Biocomposite of Cassava Starch Reinforced with Cellulose Pulp Fibers Modified with Deposition of Silica (SiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Joabel Raabe

    2015-01-01

    Full Text Available Eucalyptus pulp cellulose fibers were modified by the sol-gel process for SiO2 superficial deposition and used as reinforcement of thermoplastic starch (TPS. Cassava starch, glycerol, and water were added at the proportion of 60/26/14, respectively. For composites, 5% and 10% (by weight of modified and unmodified pulp fibers were added before extrusion. The matrix and composites were submitted to thermal stability, tensile strength, moisture adsorption, and SEM analysis. Micrographs of the modified fibers revealed the presence of SiO2 nanoparticles on fiber surface. The addition of modified fibers improved tensile strength in 183% in relation to matrix, while moisture adsorption decreased 8.3%. Such improvements were even more effective with unmodified fibers addition. This result was mainly attributed to poor interaction between modified fibers and TPS matrix detected by SEM analysis.

  9. Use of biomass energy. Saccharification of raw starch and ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, S

    1982-01-01

    Raw starch was saccharified under acidic condition of pH 3.5 using black-koji amylase, and the resultant saccharidies were fermented to give ethanol in succession. White polished rice flour was fermented at 30 degrees C during the period of 7 to 10 days to give ethanol. Semi-continuous ethanol fermentation was carried out using corn starch and cassava starch. Batch ethanol fermentation was also carried out using cassava or sweet potato. Sweet potato was fermented using Rhizopus gluco-amylase. 11 references.

  10. Effect of acid additives on graft copolymerization and water absorption of graft copolymers of cassava starch and acrylamide/acrylic acid

    International Nuclear Information System (INIS)

    Kiatkamjornwong, Suda; Mongkolsawat, Kanlaya; Sonsuk, Manit

    2003-01-01

    Gelatinized cassava starch was radiation graft copolymerized with acrylamide or acrylic acid in the presence of sulfuric acid, nitric acid or maleic acid at a specific dose rate to a fixed total dose. Homopolymer or free copolymer was extracted by water to obtain the pure graft copolymer, which was subsequently saponified with 5% potassium hydroxide solution at room temperature for 90 min. The saponified graft copolymer was investigated for the effect of acid additives and water absorption. The addition of 2% maleic acid into the grafting reaction containing acrylamide-to-starch ratio of 2.5:1 can produce the superabsorbent copolymer having water absorption as high as 2,256 ± 25 g g -1 . The effect of acid additive was explained. (author)

  11. Qualidade física e sensorial de biscoitos doces com fécula de mandioca Physical and sensorial quality of sweet cookies with cassava starch

    Directory of Open Access Journals (Sweden)

    Jucyanne Carvalho Vieira

    2010-12-01

    Full Text Available Neste trabalho, foi avaliada a substituição de 5, 10 e 15% de farinha de trigo por fécula de mandioca na elaboração de biscoito doce. Ambas, farinha e fécula, foram submetidas à caracterização físico-química, reológica e análise térmica diferencial (DTA. Os biscoitos produzidos foram comparados por meio de análises sensoriais e microbiológicas. O resultado da análise térmica diferencial não mostrou qualquer alteração no comportamento de gelatinização do amido. O teste de aceitação sensorial mostrou que a crocância foi o único atributo que apresentou diferença significativa, indicando a viabilidade técnica de substituição da farinha de trigo por 15% de fécula de mandioca.This research evaluated the substitution of 5, 10 and 15% of wheat flour for cassava starch in sweet cookies production. Both, flour and starch were submitted to the physicochemical, rheological and differential thermal analysis (DTA. The produced cookies were compared through sensory and microbiological analyses. The DTA result didn´t show any alteration in the starch gelatinization behavior. The result of the sensory acceptance analysis showed that crispness is the unique attribute that presented significant difference, indicating the technical viability of wheat flour substitution for 15% of cassava starch.

  12. A comparative study of the physicochemical properties of starches ...

    African Journals Online (AJOL)

    Some properties of starches from cassava, potato and sweet potato were compared with cereal starches from maize, wheat, millet and sorghum. The aim was to determine the properties of tuber and root crop starches and compare them with cereal starches in addition to unravelling the potential of commonly grown ...

  13. Cassava Pulp as a Biofuel Feedstock of an Enzymatic Hydrolysis Proces

    Directory of Open Access Journals (Sweden)

    Djuma’ali Djuma’ali

    2013-03-01

    Full Text Available Cassava pulp, a low cost solid byproduct of cassava starch industry, has been proposed as a high potential ethanolic fermentation substrate due to its high residual starch level, low ash content and small particle size of the lignocellulosic fibers. As the economic feasibility depends on complete degradation of the polysaccharides to fermentable glucose, the comparative hydrolytic potential of cassava pulp by six commercial enzymes were studied. Raw cassava pulp (12% w/v, particle size <320 μm hydrolyzed by both commercial pectinolytic (1 and amylolytic (2 enzymes cocktail, yielded 70.06% DE. Hydrothermal treatment of cassava pulp enhanced its susceptibility to enzymatic cleavageas compared to non-hydrothermal treatment raw cassava pulp. Hydrothermal pretreatment has shown that a glucoamylase (3 was the most effective enzyme for hydrolysis process of cassava pulp at temperature 65 °C or 95 °C for 10 min and yielded approximately 86.22% and 90.18% DE, respectively. Enzymatic pretreatment increased cassava pulp vulnerability to cellulase attacks. The optimum conditions for enzymatic pretreatment of 30% (w/v cassava pulp by a potent cellulolytic/ hemicellulolytic enzyme (4 was achieves at 50 °C for 3, meanwhile for liquefaction and saccharification by a thermo-stable α-amylase (5 was achieved at 95 °C for 1 and a glucoamylase (3 at 50 °C for 24 hours, respectively, yielded a reducing sugar level up to 94,1% DE. The high yield of glucose indicates the potential use of enzymatic-hydrothermally treated cassava pulp as a cheap substrate for ethanol production.

  14. Nutritional and toxicological composition analysis of selected cassava processed products

    Directory of Open Access Journals (Sweden)

    Kuda Dewage Supun Charuni Nilangeka Rajapaksha

    2017-01-01

    Full Text Available Cassava (Manihot esculanta Crantz is an important food source in tropical countries where it can withstand environmentally stressed conditions. Cassava and its processed products have a high demand in both local and export market of Sri Lanka. MU51 cassava variety is one of the more common varieties and boiling is the main consumption pattern of cassava among Sri Lankans. The less utilization of cassava is due to the presence of cyanide which is a toxic substance. This research was designed to analyse the nutritional composition and toxicological (cyanide content of Cassava MU51 variety and selected processed products of cassava MU51 (boiled, starch, flour, chips, two chips varieties purchased from market to identify the effect of processing on cassava MU51 variety. Nutritional composition was analysed by AOAC (2012 methods with modifications and cyanide content was determined following picric acid method of spectrophotometric determination. The Flesh of MU51 variety and different processed products of cassava had an average range of moisture content (3.18 - 61.94%, total fat (0.31 - 23.30%, crude fiber (0.94 - 2.15%, protein (1.67 - 3.71% and carbohydrates (32.68 - 84.20% and where they varied significantly in between products and the variety MU51, where no significance difference (p >0.05 observed in between MU51 flesh and processed products' ash content where it ranged (1.02 - 1.91%. However, boiled product and MU51 flesh had more similar results in their nutritional composition where they showed no significant difference at any of the nutrient that was analysed. Thus, there could be no significant effect on the nutrient composition of raw cassava once it boiled. Cyanide content of the MU51 flesh and selected products (boiled, starch, flour and chips prepared using MU51 variety, showed wide variation ranging from 4.68 mg.kg-1 to 33.92 mg.kg-1 in dry basis. But except boiled cassava all processed products had cyanide content <10 mg.kg-1, which

  15. Development of thermoplastic starch blown film by incorporating plasticized chitosan.

    Science.gov (United States)

    Dang, Khanh Minh; Yoksan, Rangrong

    2015-01-22

    The objective of the present work was to improve blown film extrusion processability and properties of thermoplastic starch (TPS) film by incorporating plasticized chitosan, with a content of 0.37-1.45%. The effects of chitosan on extrusion processability and melt flow ability of TPS, as well as that on appearance, optical properties, thermal properties, viscoelastic properties and tensile properties of the films were investigated. The possible interactions between chitosan and starch molecules were evaluated by FTIR and XRD techniques. Chitosan and starch molecules could interact via hydrogen bonds, as confirmed from the blue shift of OH bands and the reduction of V-type crystal formation. Although the incorporation of chitosan caused decreased extensibility and melt flow ability, as well as increased yellowness and opacity, the films possessed better extrusion processability, increased tensile strength, rigidity, thermal stability and UV absorption, as well as reduced water absorption and surface stickiness. The obtained TPS/chitosan-based films offer real potential application in the food industry, e.g. as edible films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Antimicrobial, Physicochemical, Mechanical, and Barrier Properties of Tapioca Starch Films Incorporated with Eucalyptus Extract

    Directory of Open Access Journals (Sweden)

    M. Rojhan

    2013-11-01

    Full Text Available Starch is found in abundance in nature and it is one of the raw materials used for food packagingbecause of the low price, biodegradability, good mechanical and barrier properties. The recycling ability ofcoating materials was significantly increased by using edible films and coating in comparison to traditionalpackaging and it could be an alternative for synthetic films. In this research, the effect of eucalyptus extract(Aqueous Extract was investigated on tapioca starch films. Tapioca starch films were prepared by castingmethod with addition of eucalyptus extract and a mixture of sorbitol/glycerol (weight ratio of 3 to 1 asplasticizers. Eucalyptus extract incorporated to the tapioca starch films were dried at different concentrations(0, 15, 25, and 35 of total solid under controlled conditions. Physicochemical properties such as waterabsorption capacity (WAC, water vapor permeability (WVP and mechanical properties of the films wereevaluated. Results showed that by increasing the concentration of eucalyptus extract, tensile strength wasincreased from 20.60 to 15.68 (MPa, also elongation was increased from 19.31 to 23.57 (% at break andYoung’s modulus was decreased from 800.31 to 500.32 (MPa. Also incorporation of eucalyptus extract in thestructure of biopolymer increased permeability of water vapor of starch films. Tapioca starch filmsincorporated with eucalyptus extract exhibited excellent antimicrobial activity against E. Coli. In summary,eucalyptus extract improves functional properties of tapioca starch films and this types of films can be used infood packaging.

  17. Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Kosugi, Akihiko; Murata, Yoshinori; Arai, Takamitsu; Mori, Yutaka [Post-harvest Science and Technology Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686 (Japan); Kondo, Akihiko [Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, Nada-ku, Kobe, 657-8501 (Japan); Ueda, Mitsuyoshi [Department of Applied Biochemistry, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Vaithanomsat, Pilanee; Thanapase, Warunee [Nanotechnology and Biotechnology Division, Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, 50 Chatuchak, Ladyao, Bangkok 10900 (Thailand)

    2009-05-15

    Cassava (Manihot esculenta Crantz) pulp, produced in large amounts as a by-product of starch manufacturing, is a major biomass resource in Southeast Asian countries. It contains abundant starch (approximately 60%) and cellulose fiber (approximately 20%). To effectively utilize the cassava pulp, an attempt was made to convert its components to ethanol using a sake-brewing yeast displaying glucoamylase on the cell surface. Saccharomyces cerevisiae Kyokai no. 7 (strain K7) displaying Rhizopus oryzae glucoamylase, designated strain K7G, was constructed using the C-terminal-half region of {alpha}-agglutinin. A sample of cassava pulp was pretreated with a hydrothermal reaction (140 C for 1 h), followed by treatment with a Trichoderma reesei cellulase to hydrolyze the cellulose in the sample. The K7G strain fermented starch and glucose in pretreated samples without addition of amylolytic enzymes, and produced ethanol in 91% and 80% of theoretical yield from 5% and 10% cassava pulp, respectively. (author)

  18. Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles

    Science.gov (United States)

    Hejri, Zahra; Seifkordi, Ali Akbar; Ahmadpour, Ali; Zebarjad, Seyed Mojtaba; Maskooki, Abdolmajid

    2013-10-01

    Biodegradable starch/poly (vinyl alcohol)/nano-titanium dioxide (ST/PVA/nano-TiO2) nanocomposite films were prepared via a solution casting method. Their biodegradability, mechanical properties, and thermal properties were also studied in this paper. A general full factorial experimental approach was used to determine effective parameters on the mechanical properties of the prepared films. ST/PVA/TiO2 nanocomposites were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results of mechanical analysis show that ST/PVA films with higher contents of PVA have much better mechanical properties. In thermal analysis, it is found that the addition of TiO2 nanoparticles improves the thermal stability of the films. SEM micrographs, taken from the fracture surface of samples, illustrate that the addition of PVA makes the film softer and more flexible. The results of soil burial biodegradation indicate that the biodegradability of ST/PVA/TiO2 films strongly depends on the starch proportion in the film matrix. The degradation rate is increased by the addition of starch in the films.

  19. Production and quality evaluation of extruded snack from blends of bambara groundnut flour, cassava starch, and corn bran flour

    OpenAIRE

    Ogunmuyiwa, O. H.; Adebowale, A. A.; Sobukola, O. P.; Onabanjo, O. O.; Obadina, A. O.; Adegunwa, M. O.; Kajihausa, O. E.; Sanni, L. O.; Tomlins, Keith

    2017-01-01

    Protein dense, fiber-rich extruded snacks were produced from blend of bambara groundnut flour, cassava starch, and corn bran flour using a single screw cooking extruder. The snacks were analyzed for their physical properties and proximate composition using standard laboratory procedures. The expansion ratio, specific volume, breaking force, and breaking strength index (BSI) of the snacks ranged from 0.85 to 1.22, 0.75 to 1.30 g/cm3, 3.95 to 36.45 N, and 0.99 to 9.11 N/mm, respectively. The br...

  20. Initial sustainability assessment of tapioca starch production system in Lake Toba area

    Science.gov (United States)

    Situmorang, Asido; Manik, Yosef

    2018-04-01

    This study aims to explore to what extent the principles of sustainability have been applied in a tapioca industry located in Lake Toba area and to explore the aspects that open the opportunities for system improvement. In conducting such assessment, we adopted the life-cycle approach using Mass Flow Analysis methods that covers all cassava starch production processes from fresh cassava root till dry cassava starch. The inventory data were collected from the company, in the form of both production record and interviews. From data analysis the authors were able to present a linked flow that describes the production process of tapioca starch that quantifies into the functional unit of one pack marketable tapioca starch weighs 50 kg. In order to produce 50 kg of tapioca, 200 kg cassava root and 800 kg of water are required. This production efficiency translates to 25% yield. This system generates 40 kg of cassava peel, 60 kg of pulp and 850 kg of waste water. For starch drying 208.8 MJ of thermal energy is required in the form of heating fuel. The material flow analysis is employed for impact assessment. Several options in improving the operation are proposed includes utilization of pulp into more valuable co-products, integration of waste treatment plant to enable the use of water recycled from the extraction operation for the washing process, and to application of a waste water treatment system that produces biogas as a renewable energy, which reduces the consumption of fuel in dryer unit.

  1. Measurement of Thermal Properties of Triticale Starch Films Using Photothermal Techniques

    Science.gov (United States)

    Correa-Pacheco, Z. N.; Cruz-Orea, A.; Jiménez-Pérez, J. L.; Solorzano-Ojeda, S. C.; Tramón-Pregnan, C. L.

    2015-06-01

    Nowadays, several commercially biodegradable materials have been developed with mechanical properties similar to those of conventional petrochemical-based polymers. These materials are made from renewable sources such as starch, cellulose, corn, and molasses, being very attractive for numerous applications in the plastics, food, and paper industries, among others. Starches from maize, rice, wheat, and potato are used in the food industry. However, other types of starches are not used due to their low protein content, such as triticale. In this study, starch films, processed using a single screw extruder with different compositions, were thermally and structurally characterized. The thermal diffusivity, thermal effusivity, and thermal conductivity of the biodegradable films were determined using photothermal techniques. The thermal diffusivity was measured using the open photoacoustic cell technique, and the thermal effusivity was obtained by the photopyroelectric technique in an inverse configuration. The results showed differences in thermal properties for the films. Also, the films microstructures were observed by scanning electron microscopy, transmission electron microscopy, and the crystalline structure determined by X-ray diffraction.

  2. Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mei; Liu, Guang-Lei; Chi, Zhe; Chi, Zhen-Ming [Unesco Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, No. 5, Qingdao 266003 (China)

    2010-01-15

    Rhodotorula mucilaginosa TJY15a which was isolated from surface of marine fish could accumulate a large amount of lipid from hydrolysate of cassava starch. The cells contained 47.9% (w/w) oil during batch cultivation, whereas 52.9% (w/w) of lipid was obtained during the fed-batch cultivation. At the end of the fed-batch cultivation, all the starch were converted into reducing sugar and only 0.34 g dm{sup -3} of reducing sugar was left in the fermented medium. Therefore, the marine-derived R. mucilaginosa TJY15a was another candidate for single cell oil production. The fatty acids from R. mucilaginosa TJY15a were mainly composed of palmitic acid (C{sub 16:0}), palmitoleic acid (C{sub 16:1}), stearic acid (C{sub 18:0}), oleic acid (C{sub 18:1}) and linolenic acid (C{sub 18:2}), suggesting that the fatty acids could be used as feedstock for biodiesel production. (author)

  3. A physicochemical study of sugar palm (Arenga Pinnata) starch films plasticized by glycerol and sorbitol

    Science.gov (United States)

    Poeloengasih, Crescentiana D.; Pranoto, Yudi; Hayati, Septi Nur; Hernawan, Rosyida, Vita T.; Prasetyo, Dwi J.; Jatmiko, Tri H.; Apriyana, Wuri; Suwanto, Andri

    2016-02-01

    The present work explores the physicochemical characteristics of sugar palm starch film for a potential hard capsule purpose. Sugar palm (Arenga pinnata) starch films were plasticized with glycerol or sorbitol in various concentrations (30% up to 50% w/w starch). Their effects on physicochemical properties of the films were investigated. The results showed that sugar palm starch was successfully developed as the main material of film using casting method. Incorporation of both glycerol or sorbitol affected the properties of films in different ways. It was found that thickness and solubility increased as plasticizer concentration increased, whereas retraction ratio, swelling degree and swelling thickness decreased with the increased plasticizer concentration.

  4. Influence of ionizing radiation and use of plasticizers on the mechanical properties and barrier properties of biodegradable films

    International Nuclear Information System (INIS)

    Ponce, Patricia; Parra, Duclerc F.; Carr, Laura G.; Sato, Juliana S.; Lugao, Ademar B.

    2005-01-01

    This work reports the influence of radiation and plasticizers on the barrier properties [water vapour permeability (WVP)] and mechanical properties (tensile strength and elongation) of edible films made of starch. These films were prepared with 4 g of starch/100 mL of water; 2-10 g polyethylene glycol (PEG)/100 g starch; and at natural pH. Tensile strength and percentage elongation were measured using a Mechanical Universal Testing Machine Instron 4400R and the water vapour permeability was determined according to ASTM E96-80 (ASTM, 1989). The mechanical properties of starch films are influenced by the plasticizer concentration. An increase in PEG content showed a considerable increase in elongation percentage and a decrease in the tensile strength of the films, also increase the permeability of the films in water. After irradiation, the barrier properties [water vapour permeability (WVP)] and mechanical properties (tensile strength and elongation) of the films were improved due to chemical reactions among polymer molecules. The films were irradiated at room temperature with gamma radiation. Irradiated starch cassava films with polyethylene glycol (PEG) as plasticizer have good flexibility and low water permeability, which indicate potential application as edible films (author)

  5. Characterization of corn starch-based edible film incorporated with nutmeg oil nanoemulsion

    Science.gov (United States)

    Aisyah, Y.; Irwanda, L. P.; Haryani, S.; Safriani, N.

    2018-05-01

    This study aimed to formulate corn starch-based edible films by varying concentrations of nutmeg oil nanoemulsion and glycerol. Furthermore, the resulted edible film was characterized by its mechanical properties and antibacterial activity. The edible films were made using corn starch, nutmeg oil nanoemulsion, and glycerol. Concentrations of nutmeg oil nanoemulsion were 1%, 2%, and 3%, and glycerol were 10%, 20%, and 30%. Results indicated that the increase of nutmeg oil nanoemulsion concentration could increase the film thickness. However, the nutmeg oil had no effect on the film tensile strength and elongation. Glycerol had no effect on the film tensile strength. The best treatment of the corn starch-based film was obtained by adding 1% of nutmeg oil and 30% of glycerol, yielding a tensile strength of 18.73 Kgf/mm2, elongation of 69.44% and thickness of 0.0840. The addition of 1% nutmeg oil nanoemulsion has been able to inhibit the growth of two types of the bacteria tested (Staphylococcus aureus and Escherichia coli).

  6. Effect of potassium sorbate on antimicrobial and physical properties of starch-clay nanocomposite films.

    Science.gov (United States)

    Barzegar, Hassan; Azizi, Mohammad Hossein; Barzegar, Mohsen; Hamidi-Esfahani, Zohreh

    2014-09-22

    Using fresh foods which undergo the least processing operations developed widely in recent years. Active packaging is a novel method for preserving these products. Active starch-clay nanocomposite films which contained potassium sorbate (PS) at a level of 0, 5, 7.5 and 10 g PS/100 g starch were produced and their physical, mechanical and antimicrobial properties were evaluated. In order to evaluate antimicrobial properties of films Aspergillus niger was used. The results showed that 5% of the PS did not produce antimicrobial property in the film, but by increasing the content of the additive in film formulation, antimicrobial effect increased. PS increased water permeability and elongation at break of the films, but decreased tensile strength. The rate of PS migration into the semi-solid medium in starch-nanocomposites was lower than starch films. This shows that nanocomposite films could retain their antimicrobial property for longer time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Superabsorbent Prepared by Radiation Induced Graft Copolymerization of Acrylic Acid onto Cassava Starch. Chapter 18

    Energy Technology Data Exchange (ETDEWEB)

    Suwanmala, P.; Tangthong, T.; Hemvichian, K. [Thailand Institute of Nuclear Technology (Thailand)

    2014-07-15

    Superabsorbent was synthesized by radiation induced graft polymerization of acrylic acid onto cassava starch. Parameters such as the absorbed dose and the amount of monomer were investigated in order to determine the optimum conditions for the grafting polymerization. Water retention, germination percentage, and germination energy were also determined in order to evaluate the possibility of superabsorbent in agricultural applications, especially in arid regions. The graft copolymer was characterized by the Fourier transform infrared spectroscopy (FTIR). Results indicated that the sand mixed with 0.1% wt superabsorbent could absorb more water than the sand without superabsorbent. The germination energy of corn seeds mixed with 0.5% superabsorbent was obviously higher than those without superabsorbent. These experimental results showed that the superabsorbent has considerable effects on seed germination and the growth of young plants. (author)

  8. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre.

    Science.gov (United States)

    Priya, Bhanu; Gupta, Vinod Kumar; Pathania, Deepak; Singha, Amar Singh

    2014-08-30

    Cellulosic fibres reinforced composite blend films of starch/poly(vinyl alcohol) (PVA) were prepared by using citric acid as plasticizer and glutaraldehyde as the cross-linker. The mechanical properties of cellulosic fibres reinforced composite blend were compared with starch/PVA crossed linked blend films. The increase in the tensile strength, elongation percentage, degree of swelling and biodegradability of blend films was evaluated as compared to starch/PVA crosslinked blend films. The value of different evaluated parameters such as citric acid, glutaraldehyde and reinforced fibre to starch/PVA (5:5) was found to be 25 wt.%, 0.100 wt.% and 20 wt.%, respectively. The blend films were characterized using Fourier transform-infrared spectrophotometry (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG). Scanning electron microscopy illustrated a good adhesion between starch/PVA blend and fibres. The blend films were also explored for antimicrobial activities against pathogenic bacteria like Staphylococcus aureus and Escherichia coli. The results confirmed that the blended films may be used as exceptional material for food packaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Modification of the microstructure of the films formed by gamma irradiated starch examined by SEM

    Science.gov (United States)

    Cieśla, K.; Sartowska, B.

    2016-01-01

    The paper concerns the effect of gamma irradiation carried out for starch on the microstructure of the films prepared using the starch and its composition with sodium laurate (NaLau) and cetyltrimethylammonium bromide (CTAB) studied by scanning electron microscopy (SEM). Potato starch was irradiated with 60Co gamma rays applying a dose of 30 kGy. Films were prepared by the solution casting method with the addition of 30 wt% glycerol as a plasticizer. Films containing NaLau and CTAB were prepared after performing the procedure, leading to starch-surfactant complexes. Mechanical tests and wetting angle measurements were performed for the films. SEM observations were carried out for the surfaces, fractures and/or sections of the films subjected to chemical fixation and for the dried films. The films obtained using irradiated starch are characterized by a smoother and more homogeneous structure as compared to those based on the non-irradiated starch. Besides, a number of small precipitates were observed on the films surfaces after drying and the number of those precipitates seemed to be higher after irradiation. The results can be related to differences in the microstructure of gels formed on the intermediate step of the films preparation and to the presence of two phases in the system and might serve for explanation of the radiation induced improvement of the hydrophilic/hydrophobic properties, a modification of the mechanical properties of the films, as well as for the changes of those properties resulting after storage.

  10. FILMES BIODEGRADÁVEIS DE AMIDO DE MANDIOCA, PULULANA E CELULOSE BACTERIANA

    Directory of Open Access Journals (Sweden)

    Ana Claudia Sueiro

    Full Text Available The largest consumption of plastics in the world is referred to the synthetic polymers, which are not biodegradable and have a non-renewable source, generating a large environmental impact, especially in urban centers. As a result, in the last two decades several polymers obtained from renewable sources (biopolymers have been studied as potential raw materials for the production of new biodegradable materials with different applications. The objectives of this study were to produce biodegradable films based on cassava starch, pullulan and bacterial cellulose, and also to characterize these films according to their microstructure, barrier, thermal and mechanical properties. The addition of bacterial cellulose and pullulan to the starch films resulted in films with more homogeneous surfaces, and also decreased solubility and water vapor permeability, and increased elongation and thermal stability.

  11. Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films.

    Science.gov (United States)

    Ren, Lili; Yan, Xiaoxia; Zhou, Jiang; Tong, Jin; Su, Xingguang

    2017-12-01

    The active packaging films based on corn starch and chitosan were prepared through mixing the starch solution and the chitosan solution (1:1) by casting. The aim of this work was to characterize and analyze the effects of the chitosan concentrations (0, 21, 41, 61 and 81wt% of starch) on physicochemical, mechanical and water vapor barrier properties as well as morphological characteristics of the corn starch/chitosan (CS/CH) films. Starch molecules and chitosan could interact through hydrogen bonding as confirmed from the shift of the main peaks to higher wavenumbers in FTIR and the reduction of crystallinity in XRD. Results showed that the incorporation of chitosan resulted in an increase in film solubility, total color differences, tensile strength and elongation at break and a decrease in Young's modulus and water vapor permeability (WVP). Elongation at break of the CS/CH films increased with increasing of chitosan concentration, and reached a maximum at 41 wt%, then declined at higher chitosan concentration. The WVP of CS/CH films increased with an increase of chitosan concentration and the same tendency observed for the moisture content. The results suggest that this biodegradable CS/CH films could potentially be used as active packaging films for food and pharmaceutical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Mechanical and barrier properties of starch-based films plasticized with two- or three component deep eutectic solvents.

    Science.gov (United States)

    Zdanowicz, Magdalena; Johansson, Caisa

    2016-10-20

    The aim of this work was to prepare two- and three-components deep eutectic solvents (DES) and investigate their potential as starch plasticizers. Starch/DES films were prepared via casting method. Mechanical properties, water vapor- and oxygen transmission rates were measured; additionally contact angle and moisture sorption were determined and FTIR analysis was applied on the films. Native potato starch and hydroxypropylated and oxidized starch (HOPS) with common plasticizers (e.g. polyols, urea) and DES were studied. Moreover, influence of three methods of DES introduction and concentration of plasticizer on the films properties were compared. HOPS films were prepared by two methods: as non-cured and cured samples. Some of DESs containing citrate anion exhibited crosslinking ability of polysaccharide matrix. Non-cured HOPS/DES films exhibited more favourable mechanical and barrier properties than cured analogue films. Samples prepared with unmodified potato starch had higher mechanical and barrier properties than films made with HOPS. Starch-based films plasticized with novel DESs with parallel crosslinking activity exhibited satisfactory mechanical and barrier properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Biodegradation Behaviour of Thermoplastic Starch Films Derived from Tacca leontopetaloides Starch under Controlled Composting Condition

    Science.gov (United States)

    Amin, A. M. Mohd; Sauid, S. Mohd; Hamid, K. H. Ku; Musa, M.

    2018-05-01

    The biodegradation study of thermoplastic starch (TPS) films derived from Tacca leontopetaloides starch; namely TPS/GLY, TPS/ACE and TPS/BCHR were investigated under controlled composting conditions. A manual set-up test rig in laboratory scale was built according to ISO 14855-1: 2012. The biodegradation percentage was determined by measuring the amount of CO2 evolved using titration method and validated by automatic system (Arduino UNO System) that detected the CO2 evolved. After 45 days under controlled composting condition, results indicated that TPS/GLY degraded the fastest, followed by TPS/BCHR and the TPS/ACE had the slowest degradation. The biodegradation process of TPS/GLY, TPS/ACE and TPS/BCHR also exhibited two stages with different degradation speeds. From these results, it indicated that chemical modification of the TPS films by adding acetic acid and rice husk bio-char to the thermoplastic starch can have a major impact on the biodegradation rate and final biodegradation percentage.

  14. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    Science.gov (United States)

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films. Copyright © 2016. Published by Elsevier Ltd.

  15. Characterization of cassava clones produced in Roraima for in natura consumption. = Caracterização e identificação de clones de mandioca produzidos em Roraima para o consumo in natura.

    Directory of Open Access Journals (Sweden)

    Natália Trajano de Oliveira

    2011-12-01

    Full Text Available The objective of this study was to characterize and identify cassava clones produced in Roraima State, Brazil, for human consumption. There was the planting of six clones of cassava (Aciolina, Pão, Pão-do-Chile, Água Morna, Enxuta and Amazonas, in double rows, following the spacing of 2.0 m x 0.8 m x 0.8 m, total of 8,928 plants ha-1 . It was used randomized blocks experimental design with four replications. At eight months after planting was carried out to harvest the roots, being evaluated for hydrocyanic acid, starch content by the method of hydrostatic balance and artisanal mining, ability to release the film and bark, bark color and flesh color raw. The cassava clones were classified according to HCN content in: Mansi (Enxuta and Pão-do-Chile, intermediate (Aciolina and Água Morna and Brava (Pão and Amazonas. The starch obtained by the method of hydrostatic balance overestimates the starch content by the method artisanal mining. The Aciolina clone stood out among the clones for human consumption, it is also recommended for industrial use. The Pão and Amazonas clones have restrictions for both human consumption and for industrial used.

  16. COORDINATION OF CASSAVA STARCH TO METAL IONS AND ...

    African Journals Online (AJOL)

    a

    starch. On the other hand, the decomposition proceeded at a lower rate than the decomposition of ... Metal salts influenced the thermal decomposition of starches [4, 5]. Thus, properly ..... reactions of starch resulting in dextrins. After the ...

  17. Preparation and characterization of jackfruit seed starch/poly (vinyl alcohol) (PVA) blend film

    Science.gov (United States)

    Sarifuddin, N.; Shahrim, N. A.; Rani, N. N. S. A.; Zaki, H. H. M.; Azhar, A. Z. A.

    2018-01-01

    From the environmental point of view, biodegradable materials have been rapidly developed in the past years. PVA is one of the biodegradable synthetic polymers commonly used, but its degradation rate is slow. As an alternative to reduce plastic waste and accelerate the degradation process, PVA frequently blended with other natural polymers to improve its biodegradability. The natural polymer such as starch has high potential in enhancing PVA biodegradability by blending both components. The usage of starch extracted from agriculture wastes such as jackfruit seed is quite promising. In this study, jackfruit seed starch (JFSS)/poly (vinyl alcohol) (PVA) blend films were prepared using the solution casting method. The effect of starch content on the mechanical (tensile strength and elongation to break %) and physical properties of the tested films were investigated. The optimum tensile strength was obtained at 10.45 MPa when 4 wt. % of starch added to the blend. But, decreasing trend of tensile strength was found upon increasing the amount of starch beyond 4 wt. % in starch/PVA blend films. Nevertheless, elongation at break decreases with the increase in starch content. The mechanical properties of the blend films are supported by the Field Emission Scanning Electron Microscopy (FESEM), in which the native JFSS granules are wetted by PVA continuous phase with good dispersion and less agglomeration. The incorporation of JFSS in PVA has also resulted in the appearance of hydrogen bond peak, which evidenced by Fourier Transform Infrared (FTIR). Additionally, the biodegradation rate of JFSS/PVA was evaluated through soil burial test.

  18. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  19. Biodegradation and moisture uptake modified starch-filled Linear ...

    African Journals Online (AJOL)

    Sixteen different modified-cassava starch-LLDPE blends containing starch in the range of 10-40% by weight were prepared. Calcium chloride, D-glucose, chloroform and alumina were differently used as modifying agents. The Moisture uptake and biodegradation of each of the composites were investigated. Both of these ...

  20. A comparative study of the starch pasting properties of unprocessed ...

    African Journals Online (AJOL)

    Pasting properties (gelatinization temperature gelatinization time, viscosity, ease of cooking and starch stability) of cassava, plantain and banana flours have been found to be affected by processing. Roasting and boiling, reduced peak viscosities drastically. Boiling reduced the peak viscosity of cassava from 1575 to 65Bu, ...

  1. Mango kernel starch-gum composite films: Physical, mechanical and barrier properties.

    Science.gov (United States)

    Nawab, Anjum; Alam, Feroz; Haq, Muhammad Abdul; Lutfi, Zubala; Hasnain, Abid

    2017-05-01

    Composite films were developed by the casting method using mango kernel starch (MKS) and guar and xanthan gums. The concentration of both gums ranged from 0% to 30% (w/w of starch; db). Mechanical properties, oxygen permeability (OP), water vapor permeability (WVP), solubility in water and color parameters of composite films were evaluated. The crystallinity and homogeneity between the starch and gums were also evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The scanning electron micrographs showed homogeneous matrix, with no signs of phase separation between the components. XRD analysis demonstrated diminished crystalline peak. Regardless of gum type the tensile strength (TS) of composite films increased with increasing gum concentration while reverse trend was noted for elongation at break (EAB) which found to be decreased with increasing gum concentration. The addition of both guar and xanthan gums increased solubility and WVP of the composite films. However, the OP was found to be lower than that of the control with both gums. Furthermore, addition of both gums led to changes in transparency and opacity of MKS films. Films containing 10% (w/w) xanthan gum showed lower values for solubility, WVP and OP, while film containing 20% guar gum showed good mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Modification on liquid retention property of cassava starch by radiation grafting with acrylonitrile: Pt. 1

    International Nuclear Information System (INIS)

    Kiatkamjornwong, S.; Nakason, C.; Chvajarempun, J.

    1993-01-01

    Radiation modification on liquid retention properties of native cassava starch, gelatinized at 85 o C, by graft copolymerization with acrylonitrile was carried out by mutual irradiation to gamma-rays. A thin aluminium foil was used to cover the inner wall of the reaction vessel, so that the homopolymer concentration was reduced to be less than 1.0% with a distilled water retention value of 665 g/g of the dry weight of the saponified grafted product. Confirmation of graft copolymerization and saponification reactions was made by the infrared spectrophotometric technique. The combined effect of radiation parameters in terms of an irradiation time and a dose rate to the total dose on the extent of the grafting reaction expressed in terms of grafting parameters which directly influenced liquid retention values was evaluated in conjunction with statistical analysis. (author)

  3. Effects of pH and Salts on Physical and Mechanical Properties of Pea Starch Films.

    Science.gov (United States)

    Choi, W S; Patel, D; Han, J H

    2016-07-01

    To identify the significant contribution of intermolecular hydrogen bonds of starch molecules to the film structure formation, pH of film-forming solutions was adjusted and also various salts (NaCl, CaCl2 , CaSO4 , and K2 SO4 ) were mixed into the glycerol-plasticized pea starch film. The film made from pH 7 possessed the highest tensile strength-at-break (2 times) and elastic modulus (4 to 15 times) and the lowest elongation-at-break compared with those of the films made from acid and alkali environments. The pH 7 film also has the highest film density and the lowest total soluble matter. At the level of 0.01 to 0.1 M of CaSO4 and 0.1 M of K2 SO4 in a kilogram of starch, the water solubility of the film increased, while chloride salts slightly lowered the solubility. NaCl and CaSO4 reduced water vapor permeability (WVP), while CaCl2 slightly increased WVP at 0.01 and 0.06 M concentrations, and K2 SO4 significantly increased WVP at 0.03 and 0.15 M. Presence of salts increased tensile strength (5 to 14 times than the control films) and elastic modulus (35 to 180 times) of starch film at 0.01 to 0.03 M of CaSO4 and K2 SO4 . Elongation-at-break increased significantly as salt concentration increases to an optimal level. However, when the concentration exceeded above the optimal level, the E of starch films decreased and showed no significant difference from the control film. Overall, the addition of salts modified physical and mechanical properties of pea starch films more than pH adjustment without any salt addition. © 2016 Institute of Food Technologists®

  4. Characterization of Starch Edible Films with Different Essential Oils Addition

    Directory of Open Access Journals (Sweden)

    Šuput Danijela

    2016-12-01

    Full Text Available This study investigated properties of starch-based edible films with oregano and black cumin essential oil addition. Essential oils addition positively affected film swelling (decreased due to essential oil addition, mechanical properties (tensile strength decreased while elongation at break increased, and water vapor barrier properties (decreased along with essential oils addition. Control film did not have any biological activity, which proves the need for essential oils addition in order to obtain active packaging. Oregano oil was more effective in terms of biological activity. Endothermal peak, above 200°C, represents total thermal degradation of edible films. Diffraction pattern of control film showed significant destruction of A-type crystal structure. Addition of essential oils resulted in peak shape change: diffraction peaks became narrower. Principal Component Analysis has been used to assess the effect of essential oils addition on final starch-based edible films characteristics with the aim to reveal directions for the film characteristics improvement, since the next phase will be optimal film application for food packaging.

  5. Characterization of starch and other components from African crops and quality evaluation of derived products

    International Nuclear Information System (INIS)

    Quattrucci, E.; Acquistucci, R.; Carcea, M.; Cubadda, R.

    1997-01-01

    Research was carried out on African staple foods on characterization of components of cereals and tubers, and quality evaluation of foods manufactured from composite flours. Cereal starch, alimentary fiber and minerals from cassava were investigated. Starch was isolated under conditions of minimum damage from seeds of three sorghum and two fonio cultivars, and its physico-chemical properties were compared with commercial wheat starch. Fiber, ash and mineral content of samples of genetically improved varieties of cassava from Ghana were determined to understand the role of factors that influence texture of cooked products. Bread and pasta were produced from either triticale alone or in combination with different amounts of cassava flour, and by varying the amount of wheat flour. The organoleptic quality of the raw materials and final products were determined. (author). 15 refs, 10 tabs

  6. Characterization of starch and other components from African crops and quality evaluation of derived products

    Energy Technology Data Exchange (ETDEWEB)

    Quattrucci, E; Acquistucci, R; Carcea, M [National Insti. of Nutrion, Rome (Italy); Cubadda, R [University of Molise, Campobasso (Italy)

    1997-07-01

    Research was carried out on African staple foods on characterization of components of cereals and tubers, and quality evaluation of foods manufactured from composite flours. Cereal starch, alimentary fiber and minerals from cassava were investigated. Starch was isolated under conditions of minimum damage from seeds of three sorghum and two fonio cultivars, and its physico-chemical properties were compared with commercial wheat starch. Fiber, ash and mineral content of samples of genetically improved varieties of cassava from Ghana were determined to understand the role of factors that influence texture of cooked products. Bread and pasta were produced from either triticale alone or in combination with different amounts of cassava flour, and by varying the amount of wheat flour. The organoleptic quality of the raw materials and final products were determined. (author). 15 refs, 10 tabs.

  7. Effect of the incorporation of antimicrobial/antioxidant proteins on the properties of potato starch films.

    Science.gov (United States)

    Moreno, Olga; Atarés, Lorena; Chiralt, Amparo

    2015-11-20

    Glycerol plasticized potato starch films containing bioactive proteins (lactoferrin (LF) and/or lysozyme (LZ), at 0.1 and 0.2 ratio with respect to starch) were obtained by casting method and characterized as to their microstructural, thermal and physical (water content, mechanical, water and oxygen barrier, optical) properties. The bioactive properties, named antioxidant and antimicrobial, of the proteins and the films were also characterized. The incorporation of proteins affected the structural and physical properties of potato starch films, while modifying their thermal behavior and increasing the glass transition temperature. Both proteins showed a certain degree of compatibility with starch chains through the bond formations (increase in Tg), while a part is separated and migrates to the film surface. Their incorporation, especially that of lactoferrin, greatly increased the film's brittleness, regardless of the films water content, although they enhance the water vapor and oxygen barrier properties, whatever the age of the film. Protein also reduced the film's transparency and gloss, while lactoferrin induced color changes. The thermal degradation of blend films and isolated proteins occurred at temperatures of over 250°C, which means that blend starch films can be thermoprocessed, according to their thermoplastic properties and following the usual practices of the plastics industries. A synergistic antimicrobial action against Escherichia coli and coliforms was observed when both LZ and LF were simultaneously applied. Both of these exhibited antioxidant capacity. Copyright © 2015. Published by Elsevier Ltd.

  8. Cassava as feedstock for ethanol production in South Africa

    African Journals Online (AJOL)

    Sanette

    2013-07-31

    Jul 31, 2013 ... substitute a minimum of 2% of the country's transportation fuel with biomass based fuels. ... and fermentation (SSF) showed the highest ethanol yield and direct ... of co-immobilized yeast cells to ferment cassava starch.

  9. post harvest production efficiency and output elasticity in cassava

    African Journals Online (AJOL)

    d

    Cassava starch has numerous food application roles owing to its thickening and ... Malaysia, the Far East and Latin America, with limited exploitation in Africa, which ... observed that education brings about choice of better input combinations ...

  10. Characterization of films made with chayote tuber and potato starches blending with cellulose nanoparticles.

    Science.gov (United States)

    Aila-Suárez, Selene; Palma-Rodríguez, Heidi M; Rodríguez-Hernández, Adriana I; Hernández-Uribe, Juan P; Bello-Pérez, Luis A; Vargas-Torres, Apolonio

    2013-10-15

    The aim of this study was to characterize chayotextle starch films reinforced with cellulose (C) and cellulose nanoparticle (CN) (at concentrations of 0.3%, 0.5%, 0.8% and 1.2%), using thermal, mechanical, physicochemical, permeability, and water solubility tests. C was acid-treated to obtain CN. The films were prepared by casting; potato starch and C were used as the control. The solubility of the starch films decreased with the addition of C and CN compared with its respective film without C and CN. No statistical difference (α=0.05) was found in the films added with different concentrations of C and CN. In general, the mechanical properties were improved with the addition of C and CN, and higher values of tensile strength and elastic modulus were determined in the films reinforced with CN. The melting temperature and enthalpy increased with the addition of C and CN, and the values of both thermal parameters were higher in the films with CN than with C; the enthalpy value of the film decreased when the concentration of C or CN increased in the composite. Low concentration of C and CN is better distributed in the matrix film. The addition of C and CN in the starch films improved some mechanical, barrier, and functional properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films

    International Nuclear Information System (INIS)

    Cieśla, Krystyna; Watzeels, Nick; Rahier, Hubert

    2014-01-01

    In this work the influence of gamma irradiation on the thermomechanical properties of the films formed in potato starch–glycerol and potato starch–glycerol–surfactant systems were examined by Dynamic Mechanical Analysis, DMA, and Differential Scanning Calorimetry, DSC, and the results were correlated to the amount of the volatile fraction in the films. The starch was irradiated with a dose of 30 kGy. The films were prepared by casting from solutions with addition of 0, 20 and 30 wt% of glycerol. Two endotherms attributed to glass transitions were observed in water or glycerol plasticised samples, the first one shifting to higher temperature after irradiation. A similar shift was observed after irradiation of films prepared from starch–sodium laurate and starch–sodium palmitate systems, while a decrease in glass transition temperature was observed in the case of starch–cetyltrimethylammonium bromide films. Small differences in the content of the volatile fraction reached after the appropriate conditioning had no impact on the direction of temperature shift of Tg observed after irradiation. - Highlights: • The films were prepared basing starch, surfactant and glycerol. • Two glass transitions were observed showing an existence of two phase system. • The first Tg of the starch–CTAB films shifts after irradiation to lower temperature. • In all the other cases it shifts after irradiation to higher temperature. • Differences in volatile fractions content are not important for the temperature shift

  12. Energetic potential of biogas produced from cassava starch wastewater using a pilot scale two-stage anaerobic biodigester; Potencial energetico do biogas gerado no tratamento de aguas residuarias de fecularias em sistema piloto de biodigestao anaerobia com separacao de fases

    Energy Technology Data Exchange (ETDEWEB)

    Feiden, Armin [Universidade Estadual do Oeste do Parana (UNIOESTE), Marechal Candido Rondon, PR (Brazil). Centro de Ciencias Agrarias]. E-mail: armin_feiden@yahoo.com.br; Cereda, Marney Pascoli [UNESP, Botucatu, SP (Brazil). Centro de Raizes Tropicais

    2003-06-01

    Cassava starch is extracted in more of 70 units in west of Parana state, South of Brazil. Near the border of the Parana river there is a big concentration of this type of industry. The cassava starch extraction generates a great quantity of wastewater. The aim of this work was to evaluate the energetic potential of biogas generated in the anaerobic treatment of cassava. The pilot reactors were located at a cassava processing factory, with cassava roots grauding capacity of 250 metric ton day{sup -1} at the parallel 24 deg 09'18'' South latitude and meridian 54 deg 09'26'' West longitude of Grw. The treatment pilot system was consisted of two settling tanks with 500 L each, connected in series, followed by a two-stage anaerobic biodigester reactor. The acidogenic reactor had a capacity of 1,000 L and the methanogenic had a capacity of 3,000 L. The experiment was conducted at temperatures ranging from 23.9 deg C to 27.7 deg C, with a annual average of 25.8 deg C. It was not used the addition of nutrients nor pH correction. The best results were obtained at a flow rate of 901 L d{sup -1} with a TOC (total organic carbon) loading rate of 0.565 g L{sup -1} d{sup -1} and COD (chemical oxygen demand) of 2.49 g L{sup -1} d{sup -1}, and a hydraulic residence time of 4.4 days. At this loading rate, the system had an average biogas yield of 3.975 L L{sup -1} wastewater 0.895 L L{sup -1} reactor day{sup -1}, and 0.391 L g{sup -1} TOC removed. The net biogas yield was 16.10 m{sup 3} ton{sup -1} cassava roots processed, with 28.65% CO{sub 2}. By calculation it was found that the biogas production is enough to supply 30% of the heat necessity to steam production of the industry, 100% of the heat necessity of direct drying of cassava starch, or 50% of the general total electricity need of the factory. (author)

  13. The Effects of SiO2 Nanoparticles on Mechanical and Physicochemical Properties of Potato Starch Films

    Directory of Open Access Journals (Sweden)

    Z. Torabi

    2013-06-01

    Full Text Available In this paper effect of SiO2 nanoparticles was investigated on potato starch films. Potato starch films were prepared by casting method with addition of nano-silicon dioxide and a mixture of sorbitol/glycerol (weight ratio of 3 to 1 as plasticizers. SiO2 nanoparticles incorporated to the potato starch films at different concentrations 0, 1, 2, 3, and 5% of total solid, and the films were dried under controlled conditions.  Physicochemical properties such as water absorption capacity (WAC, water vapor permeability (WVP and mechanical properties of the films were measured. Results show that by increasing the concentration of silicon dioxide nanoparticles, mechanical properties of films can be improved. Also incorporation of silicon dioxide nanoparticles in the structure of biopolymer decrease permeability of the gaseous molecules such as water vapor. In summary, addition of silicon dioxide nanoparticles improves functional properties of potato starch films and these bio Nano composites can be used in food packaging.

  14. Effect of addition of different hydrocolloids on pasting, thermal, and rheological properties of cassava starch Efeito da adição de diferentes hidrocoloides sobre as propriedades de pasta, térmicas e reológicas do amido de mandioca

    Directory of Open Access Journals (Sweden)

    Tatiana Dias Leite

    2012-09-01

    Full Text Available Starches and gums are hydrocolloids frequently used in food systems to provide proper texture, moisture, and water mobility. Starch-gum interaction in food systems can change the starch granule swelling and its gelatinization and rheological properties. In this study, the effect of the addition of xanthan gum (XG, sodium carboxymethyl cellulose (SCMC, and carrageenan (CAR at the concentrations of the 0.15, 0.25, 0.35 and 0.45% (w/v on the pasting, thermal, and rheological properties of cassava starch was studied. The swelling power (SP and the scanning electron microscopy (SEM of the starch gels were also evaluated. The results obtained showed that xanthan gum (XG had a strong interaction with the cassava starch penetrating between starch granules causing increase in pasting viscosities, SP, storage and loss (G', and G", respectively modulus and reduction in the setback of the starch; sodium carboxymethyl cellulose (SCMC greatly increased the pasting viscosities, the SP, and the storage and loss (G', and G", respectively modulus of the starch-mixtures, mainly due to its greater capacity to hold water and not due to the interaction with cassava starch. Carrageenan (CAR did not change any of the starch properties since there was no interaction between this gum and cassava starch at the concentrations used.Amidos e gomas são hidrocoloides frequentemente usados em sistemas alimentícios com a finalidade de fornecer textura, umidade e mobilidade de água. A interação amido-goma em sistemas alimentícios pode alterar o inchamento do grânulo de amido e as suas propriedades de gelatinização e reológicas. Neste trabalho, o efeito da adição de goma xantana (GX, carboximetilcelulose sódica (CMC e carragena (CAR nas concentrações de 0,15, 0,25, 0,35 e 0,45% (p/v sobre as propriedades de pasta, térmicas e reológicas do amido de mandioca foi estudado. O Poder de inchamento (PI e a Microscopia Eletrônica de Varredura (MEV dos géis de amido tamb

  15. The influence of ionizing radiation on the properties of starch-PVA films

    Directory of Open Access Journals (Sweden)

    Abramowska Anna

    2015-09-01

    Full Text Available The cornstarch: poly(vinyl alcohol (PVA films characterized by the alternating ratio of starch:PVA (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 and containing 30% of glycerol were prepared by solution casting. The films were irradiated with an absorbed dose of 25 kGy with gamma rays in a vacuum and with fast electrons in the air. The films characterized by a high content of starch appeared stiff, while the films characterized by a high content of PVA were highly flexible. The tensile strength and flexibility, as well as swelling and hydrophilicity, increased with the increase in the PVA content in the films. However, the tensile strength and wetting angle values achieved a minimum at an intermediate composition. It was found that irradiation enables to reduce hydrophilicity of the films accompanied by a decrease in their flexibility. No general conclusion concerning the effect of irradiation on tensile strength and swelling behavior can be derived. An increase in the homogeneity of the films and an increase in the compatibility of their components was found by scanning electron microscopy (SEM. Strong interactions of the starch and the PVA components were discovered by diffuse reflectance spectroscopy. Degradation was found to be the prevailing process occurring in the films under the influence of irradiation. The possible accompanying crosslinking is discussed in terms of the gel content in the samples. Creation of various oxidation products in the films characterized by the modified composition was observed under the influence of irradiation carried out in the air. Basing on the obtained results it can be supposed that the selected starch-PVA compositions might appear useful as packagings of the products predicted for radiation decontamination.

  16. Effect of gamma rays on grafting parameters and liquid retention property of cassava starch-g-PAN

    International Nuclear Information System (INIS)

    Kiatkamjornwong, S.; Chvajarernpun, J.; Nakason, C.

    1992-01-01

    Radiation modification on liquid retention properties of native cassava starch, gelatinized at 85 0 C, by graft copolymerization with acrylonitrile was carried out by mutual irradiation to γ-rays. A thin aluminium foil was used to cover the inner wall of the reaction vessel so that the extent of homo polymer could be reduced to be less than 1.6% with a distilled water retention value of 665 g/g of the dry weight of the saponified grafted product. Confirmations of graft copolymerization and saponification reactions were made by the infrared spectrophotometric technique. The combined effect of radiation parameters in terms of an irradiation time and a dose rate to the same total dose on the extent of grafting reaction expressed in terms of grafting parameters which directly influenced liquid retention values was evaluated in conjunction with statistical analysis

  17. Tunable d-Limonene Permeability in Starch-Based Nanocomposite Films Reinforced by Cellulose Nanocrystals.

    Science.gov (United States)

    Liu, Siyuan; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing; Zhu, Jie

    2018-01-31

    In order to control d-limonene permeability, cellulose nanocrystals (CNC) were used to regulate starch-based film multiscale structures. The effect of sphere-like cellulose nanocrystal (CS) and rod-like cellulose nanocrystal (CR) on starch molecular interaction, short-range molecular conformation, crystalline structure, and micro-ordered aggregated region structure were systematically discussed. CNC aspect ratio and content were proved to be independent variables to control d-limonene permeability via film-structure regulation. New hydrogen bonding formation and increased hydroxypropyl starch (HPS) relative crystallinity could be the reason for the lower d-limonene permeability compared with tortuous path model approximation. More hydrogen bonding formation, higher HPS relative crystallinity and larger size of micro-ordered aggregated region in CS0.5 and CR2 could explain the lower d-limonene permeability than CS2 and CR0.5, respectively. This study provided new insight for the control of the flavor release from starch-based films, which favored its application in biodegradable food packaging and flavor encapsulation.

  18. Preparation and physicochemistry properties of smart edible films based on gelatin-starch nanoparticles.

    Science.gov (United States)

    Tao, Furong; Shi, Chengmei; Cui, Yuezhi

    2018-04-24

    Among the natural polymers able to form edible films, starch and gelatin (Gel) are potential sources. Corn starch is a polysaccharide widely produced around the world, and gelatin differs from other hydrocolloids as a fully digestible protein, containing nearly all the essential amino acids, except tryptophan. Based on this, with advantages such as abundance, relatively low cost, biodegradability, and edibility, studies considering alternative systems for food protection that utilize biopolymers have increased significantly in the recent years. A novel macromolecular crosslinker Starch-BTCAD-NHS (starch - butanetetracarboxylic acid dianhydride - N-hydroxysuccinimide, SBN) was successfully prepared to modify gelatin film. Compared with the blank gelatin films, the resulting SBN-Gel films exhibited the improved surface hydrophobicity, the higher tense strength and elongation-at-break, the lower Young's modulus values, the greater opacity, the poorer water vapor uptake properties and better anti-degradation capacity. The modified gelatin film material with advanced properties obtained in this work was safe, stable eco-friendly and biorefractory, and was an ideal choice to form a packaging in food industry. Also, the crosslinking SBN-gelatin coating was effective in reducing the corruption and extending the shelf life for the peeled apple substantially. This article is protected by copyright. All rights reserved.

  19. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films.

    Science.gov (United States)

    Usman, Adil; Hussain, Zakir; Riaz, Asim; Khan, Ahmad Nawaz

    2016-11-20

    In the present work, synthesis of poly(vinyl alcohol)/graphene oxide/starch/silver (PVA/GO/Starch/Ag) nanocomposites films is reported. Such films have been characterized and investigated for their mechanical, thermal and antimicrobial properties. The exfoliation of GO in the PVA matrix occurs owing to the non-covalent interactions of the polymer chains of PVA and hydrophilic surface of the GO layers. Presence of GO in PVA and PVA/starch blends were found to enhance the tensile strength of the nanocomposites system. It was found that the thermal stability of PVA as well as PVA/starch blend systems increased by the incorporation of GO where strong physical bonding between GO layers and PVA/starch blends is assumed to cause thermal barrier effects. Antimicrobial properties of the prepared films were investigated against Escherichia coli and Staphylococcus aureus. Our results show enhanced antimicrobial properties of the prepared films where PVA-GO, PVA-Ag, PVA-GO-Ag and PVA-GO-Ag-Starch showed antimicrobial activity in ascending order. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Physical stability and moisture sorption of aqueous chitosan-amylose starch films plasticized with polyols

    DEFF Research Database (Denmark)

    Cervera, Mirna Fernández; Karjalainen, Milja; Airaksinen, Sari

    2004-01-01

    The short-term stability and the water sorption of films prepared from binary mixtures of chitosan and native amylose maize starch (Hylon VII) were evaluated using free films. The aqueous polymer solutions of the free films contained 2% (w/w) film formers, glycerol, or erythritol as a plasticizer...... in the crystallinity of the films are evident within a 3-month period of storage, and the changes in the solid state are dependent on the plasticizer and storage conditions. When stored at ambient conditions for 3 months, the aqueous chitosan-amylose starch films plasticized with erythritol exhibited a partly...

  1. How Glycerol and Water Contents Affect the Structural and Functional Properties of Starch-Based Edible Films

    Directory of Open Access Journals (Sweden)

    Ewelina Basiak

    2018-04-01

    Full Text Available As starch is an inexpensive, filmogenic, easily processable and a widely available material, it is a material that can be utilized in the creation of biodegradable films and containers, presenting as a viable alternative to polymers derived from petrol. Moreover, starch could also be used to create edible coatings for fresh foods in order to extend shelf life. As such, wheat starch films with two glycerol contents were formulated to mimic the effects of compounds currently used to coat fruit. Their structural and functional properties were characterized. This study found that the transfer properties of starch films containing 33% of plasticizer was less effective than film comprised of 50% glycerol. Water diffusivity, oxygen permeability, and water vapor permeability at two different humidity gradients, surface tension, works of surface adhesion and cohesion, and moisture sorption were tested. Glycerol content does not play a significant role on the color or mechanical properties. This work shows that glycerol can strongly affect the functional properties of starch-based coatings and films.

  2. Biodegradable Starch/Copolyesters Film Reinforced with Silica Nanoparticles: Preparation and Characterization

    Science.gov (United States)

    Lima, Roberta A.; Oliveira, Rene R.; Wataya, Célio H.; Moura, Esperidiana A. B.

    Biodegradable starch/copolyesters/silica nanocomposite films were prepared by melt extrusion, using a twin screw extruder machine and blown extrusion process. The influence of the silica nanoparticle addition on mechanical and thermal properties of nanocomposite films was investigated by tensile tests; X-rays diffraction (XRD), differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM) analysis and the correlation between properties was discussed. The results showed that incorporation of 2 % (wt %) of SiO2 nanoparticle in the blend matrix of PBAT/Starch, resulted in a gain of mechanical properties of blend.

  3. Physicochemical properties of sugar palm starch film: Effect of concentration and plasticizer type

    Science.gov (United States)

    Prasetyo, D. J.; Apriyana, W.; Jatmiko, T. H.; Hernawan; Hayati, S. N.; Rosyida, V. T.; Pranoto, Y.; Poeloengasih, C. D.

    2017-07-01

    In order to find the best formula for capsule shell production, this present work dealt with exploring physicochemical properties of sugar palm (Arenga pinnata) starch film as a function of different kinds and various concentrations of plasticizers. The films were prepared by casting method at different formula: starch 9-11%, glycerol or sorbitol 35-45% and polyethylene-glycol 400 (PEG 400) 5-9%. Appearance, thickness, retraction ratio, moisture content, swelling behavior and solubility of the film in water were analyzed. Both glycerol and sorbitol are compatible with starch matrix. On the contrary, PEG 400 did not form a film with suitable characteristics. The result reveals that glycerol- and sorbitol-plasticized films appeared translucent, homogenous, smooth and slightly brown in all formulas. Different type and concentration of plasticizers altered the physicochemical of film in different ways. The sorbitol-plasticized film had lower moisture content (≤ 10%) than that of glycerol-plasticized film (≥ 18%). In contrast, film plasticized with sorbitol showed higher solubility in water (28-35%) than glycerol-plasticized film (22-28%). As the concentration of both plasticizers increased, there was an increasing tendency on thickness and solubility in water. Conversely, retraction ratio and swelling degree decreased when both plasticizers concentration increased. In conclusion, the sorbitol-plasticized film showed a potency to be developed as hard capsule material.

  4. Cassava varietal screening for cooking quality: relationship between dry matter, starch content, mealiness and certain microscopic observations of the raw and cooked tuber

    International Nuclear Information System (INIS)

    Safo-Kantanka, O.; Owusu-Nipah, J.

    1992-01-01

    Thirteen cassava (Manihot esculenta L Crantz) varieties from three successive annual harvests were screened for the mealiness of the cooked tuber, and the elasticity and smoothness of the pounded paste. Six were selected for further studies based on their mealiness and the starch and dry matter contents were determined. The diameter of the starch granules of the selected varieties and those of an irradiated M1V2 population were measured. Microscopic examinations of the raw and cooked cells of the irradiated M1V2 population were made. Correlations among all the parameters were studied. Varietal and seasonal differences in cooking quality were observed. There was no consistent relationship between mealiness of the boiled tuber and the elasticity and smoothness of the pounded paste. Varieties that were mealy were high in dry matter and starch content. The starch granules of mealy varieties were larger than those of nonmealy ones. There were no differences between mealy and non-mealy varieties in the arrangement of the cells or ‘cell condition’, of the raw tubers. However, the cells of the cooked tubers were held less cohesively, ie there was more ‘cell disorganisation’, in mealy varieties than in non-mealy ones

  5. Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay.

    Science.gov (United States)

    Sadegh-Hassani, Fatemeh; Mohammadi Nafchi, Abdorreza

    2014-06-01

    In this research casting method was used to prepare potato starch based bio-nanocomposite films with halloysite nanoclay as the reinforcing materials. The composition included potato starch with 40% (w/w) of a mixture of sorbitol/glycerol (weight ratio of 3 to 1as plasticizer) with nanoclay (0-5% w/w). The films were dried under controlled conditions. Physicochemical properties such as solubility in water, water absorption capacity (WAC), water vapour permeability (WVP), oxygen permeability, and mechanical properties of the films were measured. Results showed that by increasing the concentration of nanoclay, mechanical properties of films were improved. Tensile strength was increased from 7.33 to 9.82MPa, and elongation at break decreased from 68.0 to 44.0%. Solubility in water decreased from 35 to 23%, and heat seal strength increased from 375 to 580N/m. Also incorporation of clay nanoparticles in the structure of biopolymer decreased permeability of the gaseous molecules. In summary, addition of halloysite nanoclay, improve the barrier and mechanical properties of potato starch films and this bionanocomposites have high potential to be used for food packaging purposes. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Bi-functional biobased packing of the cassava starch, glycerol, licuri nanocellulose and red propolis.

    Directory of Open Access Journals (Sweden)

    Samantha Serra Costa

    Full Text Available The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4% and glycerol (1.0%, reinforced with cellulose nanocrystals (0-1% and activated with alcoholic extracts of red propolis (0.4 to 1.0%. The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage.

  7. Characterization of Corn Starch Films Reinforced with CaCO3 Nanoparticles

    Science.gov (United States)

    Sun, Qingjie; Xi, Tingting; Li, Ying; Xiong, Liu

    2014-01-01

    The characterization of corn starch (CS) films impregnated with CaCO3 nanoparticles was investigated. Criteria such as morphology, crystallinity, water vapor permeability (WVP), opacity, and mechanical properties were the focus of the investigation. It was found that the CaCO3 contents had significant effects on the tensile properties of the nanocomposite films. The addition of CaCO3 nanoparticles to the CS films significantly increased tensile strength from 1.40 to 2.24 MPa, elongation from 79.21 to 118.98%, and Young’s modulus from 1.82 to 2.41 MPa. The incorporation of CaCO3 nanoparticles increased the opacity of films, lowered the degree of WVP and film solubility value compared to those of the CS films. The results of scanning electron microscopy (SEM) showed that with the increase of CaCO3 nanoparticles content in starch films, the roughness of the films increased, and pores or cavities were found on the surface of the films, while small cracks were observed in the structures of the fractured surfaces. X-ray diffraction showed that the addition of nanoparticles increased the peaks in the intensity of films. PMID:25188503

  8. Isolation and characterisation of starch biosynthesis genes from cassava (Manihot esculenta Crantz)

    NARCIS (Netherlands)

    Munyikwa, T.R.I.

    1997-01-01


    Cassava (Manihot esculenta Crantz) is a tropical crop grown for its starchy thickened roots, mainly by peasant farmers, in the tropics, for whom it is a staple food. There is an increasing demand for the use of cassava in processed food and feed products, and in the

  9. Modulating rheo-kinetics of native starch films towards improved wet-strength

    DEFF Research Database (Denmark)

    Gillgren, Thomas; Blennow, Andreas; Pettersson, Anders J.

    2011-01-01

    properties of the films – an increase in the amylose content resulted in both a higher stress and strain at break. Interestingly, there was no correlation between the speed of hydration and mechanical water resistance of the films. Generally, the films were clear and transparent, even after wetting...... highly different starch types derived from potato and cereal sources of normal and mutant and transgenic backgrounds. A new improved technique was developed to permit the dynamic mechanical analysis of films in the presence of water. It was found that the amylose content was decisive for the mechanical....... Transgenic potato starch with a low content of phosphate displayed an extraordinary combination of high robustness, transparency, mechanical strength and extensibility even in a wet condition. The combination of optimal phosphate and amylose concentrations in this sample probably favoured hydration...

  10. Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils.

    Science.gov (United States)

    Ghasemlou, Mehran; Aliheidari, Nahal; Fahmi, Ronak; Shojaee-Aliabadi, Saeedeh; Keshavarz, Behnam; Cran, Marlene J; Khaksar, Ramin

    2013-10-15

    Corn starch-based films are inherently brittle and lack the necessary mechanical integrity for conventional packaging. However, the incorporation of additives can potentially improve the mechanical properties and processability of starch films. In this work two essential oils, Zataria multiflora Boiss (ZEO) or Mentha pulegium (MEO) at three levels (1%, 2% and 3% (v/v)), were incorporated into starch films using a solution casting method to improve the mechanical and water vapor permeability (WVP) properties and to impart antimicrobial activity. Increasing the content of ZEO or MEO from 2% to 3% (v/v) increased values for elongation at break from 94.38% to 162.45% and from 53.34% to 107.71% respectively, but did not significantly change tensile strength values of the films. The WVP properties of the films decreased from 7.79 to 3.37 or 3.19 g mm m(-2) d(-1) kPa(-1) after 3% (v/v) ZEO or MEO incorporation respectively. The oxygen barrier properties were unaffected at the 1% and 2% (v/v) oil concentration used but oxygen transmission increased with 3% (v/v) for both formulations. The films' color became slightly yellow as the levels of ZEO or MEO were increased although transparency was maintained. Both films demonstrated antimicrobial activity with films containing ZEO more effective against Escherichia coli and Staphylococcus aureus than those containing MEO. These results suggest that ZEO and MEO have the potential to be directly incorporated into corn starch to prepare antimicrobial biodegradable films for various food packaging applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. CARACTERIZACIÓN MORFOLÓGICA DE PELÍCULAS BIODEGRADABLES A PARTIR DE ALMIDÓN MODIFICADO DE YUCA, AGENTE ANTIMICROBIANO Y PLASTIFICANTE CARACTERIZAÇÃO MORFOLÓGICA DE FILMES BIODEGRADÁVEIS A PARTIR DE AMIDO MODIFICADO DE MANDIOCA, AGENTE ANTIMICROBIANO E PLASTIFICANTE MORPHOLOGICAL CHARACTERIZATION OF BIODEGRADABLE FILMS MADE FROM MODIFIED CASSAVA STARCH, ANTIMICROBIAL AGENT AND PLASTICIZER

    Directory of Open Access Journals (Sweden)

    REINALDO VELASCO M

    2012-12-01

    propriedades microestruturais e mecânicas dos amidos termoplásticos, que são essenciais para a continuidade no estudo de filmes biodegradáveisIt was evaluated the morphological surface of thermoplastic starch (TPS obtained from three modified cassava starch varieties, plasticizer and an antimicrobial agent. The films was made by blown extrusion and extended over a slide and then was taken photomicrographs with 4x and 10x objectives. It was used High Resolution Optical Microscopy to image characterization. The technique showed the effect of plasticizer addition over the starch films microstructure, it was found some inhomogeneity; however was identified some smooth regions related to form and size of starch granule, plasticizer concentration and extrusion variables process like velocity screw and temperature profile. This research contributed to characterize microstructural properties and gave some insights about the mechanical behaviour of TPS films, needed to study and make biodegradable films.

  12. Physical and structural properties and thermal behaviour of starch-poly(ɛ-caprolactone) blend films for food packaging

    OpenAIRE

    Ortega Toro, Rodrigo; Contreras, Jessica; Talens Oliag, Pau; Chiralt A.

    2015-01-01

    Structural and physical properties (barrier, mechanical, and optical properties) and thermal behaviour of corn starch-PCL blend films, containing glycerol as plasticizer, obtained by compression moulding, at 160 °C and 130 bars, were studied. The stability on the films properties was also evaluated. Blend films showed phase separation of the polymers in a heterogeneous matrix with starch rich regions and PCL rich regions. Nevertheless, a small miscibility of PCL in the starch phase was detec...

  13. Physicochemical properties of maca starch.

    Science.gov (United States)

    Zhang, Ling; Li, Guantian; Wang, Sunan; Yao, Weirong; Zhu, Fan

    2017-03-01

    Maca (Lepidium meyenii Walpers) is gaining research attention due to its unique bioactive properties. Starch is a major component of maca roots, thus representing a novel starch source. In this study, the properties of three maca starches (yellow, purple and black) were compared with commercially maize, cassava, and potato starches. The starch granule sizes ranged from 9.0 to 9.6μm, and the granules were irregularly oval. All the maca starches presented B-type X-ray diffraction patterns, with the relative degree of crystallinity ranging from 22.2 to 24.3%. The apparent amylose contents ranged from 21.0 to 21.3%. The onset gelatinization temperatures ranged from 47.1 to 47.5°C as indicated by differential scanning calorimetry. Significant differences were observed in the pasting properties and textural parameters among all of the studied starches. These characteristics suggest the utility of native maca starch in products subjected to low temperatures during food processing and other industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Physical properties of snacks made from cassava leaf flour

    Directory of Open Access Journals (Sweden)

    Adriana Cristina Ferrari

    2014-02-01

    Full Text Available The food industry is continually growing with new products becoming available every year. Extrusion combines a number of unit operations in one energy efficient rapid continuous process and can be used to produce a wide variety of snacks foods. The objective of this study was to evaluate the effect of extrusion temperature, screw speed, and amount of cassava leaf flour mixed with cassava starch on the physical properties of extruded snacks processed using a single screw extruder. A central composite rotational design, including three factors with 20 treatments, was used in the experimental design. Dependent variables included the expansion index, specific volume, color, water absorption index, and water solubility index. Among the parameters examined, the amount of cassava leaf flour and extrusion temperature showed significant effects on extruded snack characteristics. Mixtures containing 10% of cassava leaf flour extruded at 100°C and 255 rpm shows favorable levels of expansion, color, water absorption index, and water solubility index.

  15. A review of the recent advances in starch as active and nanocomposite packaging films

    Directory of Open Access Journals (Sweden)

    Umar Shah

    2015-12-01

    Full Text Available Technological advances have led to increased constraints regarding food packaging due to environmental issues, consumer health concerns, and economic restrictions associated therewith. Hence, food scientists and technologists are now more focused on developing biopolymer packages. Starch satisfies all the principle aspects, making it a promising raw material for edible coatings/films. Starch as a package material has grabbed much attention both at academic as well as industrial levels. Besides this, the role of various plasticizers, polys, sugars, and wetting agents are discussed and their importance in packaging industries. Herein, the role of starch as packaging material and nanofillers/composites is discussed in detail. The review summons a comprehensive and current overview of the widely available information and recent advances in starch film packaging.

  16. Structural and mechanical characteristics of film using modified corn starch by the same two chemical processes used in different sequences.

    Science.gov (United States)

    Qiu, Liping; Hu, Fei; Peng, Yali

    2013-01-16

    Structure of dual modified starches, cross-linked esterified corn starch (CES) and esterified cross-linked corn starch (ECS), and product films (CEF and ECF) were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction and scanning electron microscopy (SEM). The peak 1730cm(-1) of IR spectra confirmed the formation of ester carbonyl groups in starch matrix. The sequence of modification procedure had an impact on the final modification degree, resulting in structural differences of modified starches and starch films. Compared to native starch film (NF), CEF and ECF showed improved transparence (77.59% and 74.39% respectively) with compact structure, lower crystallinity (6.5% and 7.4% respectively). Results of mechanical test indicated that structure of ECF was more flexible than CEF, whereas tensile strength was higher in CEF. Accordingly, complex modification could be an effective method to adequate properties of starch films for specific processing requirements. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  17. Understanding the distribution of natural wax in starch-wax films using synchrotron-based FTIR (S-FTIR).

    Science.gov (United States)

    Muscat, Delina; Tobin, Mark J; Guo, Qipeng; Adhikari, Benu

    2014-02-15

    High amylose starch-glycerol (HAG) films were produced incorporating beeswax, candelilla wax and carnauba wax in the presence and absence of Tween-80 in order to determine the distribution of wax in the films during the film formation process. The distribution of these waxes within the film was studied using Synchrotron based Fourier Transform Infrared Spectroscopy (S-FTIR) which provided 2D mapping along the thickness of the film. The incorporation of 5% and 10% wax in HAG films produced randomly distributed wax or wax-rich domains, respectively, within these films. Consequently, the addition of these waxes to HAG increased the surface roughness and hydrophobicity of these films. The addition of Tween-80 caused variations in wax-rich bands within the films. The HAG+carnauba wax+Tween-80 films exhibited domed wax-rich domains displayed with high integrated CH2 absorption value at the interior of the films, rougher surface and higher contact angle values than the other films. The S-FTIR 2D images indicated that the distribution of wax in starch-wax films correlated with the roughness and hydrophobicity of the starch-wax films. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films.

    Science.gov (United States)

    Qin, Yang; Zhang, Shuangling; Yu, Jing; Yang, Jie; Xiong, Liu; Sun, Qingjie

    2016-08-20

    We investigated the effects of chitin nano-whiskers (CNWs) on the antibacterial and physiochemical properties of maize starch-based films. The microstructures, crystalline structures, and thermal, mechanical and barrier properties of the nanocomposite films were characterized by using transmission electron microscopy, X-ray diffraction analysis, thermogravimetric, differential scanning calorimeter, and texture profile analysis. The tensile strength of the maize starch films increased from 1.64MPa to 3.69MPa (Pstarch films. Furthermore, the nanocomposite films exhibited strong antimicrobial activity against Gram-positive Listeria monocytogenes but not against Gram-negative Escherichia coli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The Effects of ZnOnanorodson the Characteristics of Sago Starch Biodegradable Films

    Directory of Open Access Journals (Sweden)

    R. Alebooyeh

    2013-01-01

    Full Text Available : Nowadays tend to use biodegradable packaging; including edible coatings and films for free from synthetic chemicals and do not cause environmental pollution, the industry is growing day by day. The aim of this research was to preparation and characterization of biodegradable films supported with ZnOnanorods. In this study, sago starch based films were prepared and   plasticized with sorbitol/ glycerol by casting method. ZnOnanorod with 0, 1, 3and 5%(w/wwas added to the films before casting the films. Films were dried at controlled conditions. Physicochemical properties such as water absorption capacity (WAC, permeability to water vapor (WVP and water solubility of the films were measured.  Also, the effects of addition of nano particles were measured on the antimicrobial properties of the films by agar diffusion method. Results showed that by increasing concentration of ZnOnanorod, solubility in water, WAC, and WVP of the films significantly (p <0.05 decreased. Furthermore, the addition of zinc oxide nanorods showed antimicrobial properties against E. Coli. In summary sago starch films supported with ZnOnanorodscan were used as active packaging for agricultural products as well as food industry. 

  20. Cassava brown streak disease effects on leaf metabolites and ...

    African Journals Online (AJOL)

    Cassava brown streak disease effects on leaf metabolites and pigment accumulation. ... Total reducing sugar and starch content also dropped significantly (-30 and -60%, respectively), much as NASE 14 maintained a relatively higher amount of carbohydrates. Leaf protein levels were significantly reduced at a rate of 0.07 ...

  1. An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Ziska, Lewis H.; Tomecek, Martha; Sicher, Richard [United States Department of Agriculture, Agricultural Research Service, Crop Systems and Global Change Lab, 10300 Baltimore Avenue, Building 1, Beltsville, MD 20705 (United States); Runion, G. Brett; Prior, Stephen A.; Torbet, H. Allen [United States Department of Agriculture, Agricultural Research Service, National Soil Dynamics Laboratory, 411 South Donahue Drive, Auburn, AL 36832 (United States)

    2009-11-15

    The recent emphasis on corn production to meet the increasing demand for bioethanol has resulted in trepidation regarding the sustainability of the global food supply. To assess the potential of alternative crops as sources of bioethanol production, we grew sweet potato (Ipomoea batatas) and cassava (Manihot esculentum) at locations near Auburn, Alabama and Beltsville, Maryland in order to measure root carbohydrate (starch, sucrose, glucose) and root biomass. Averaged for both locations, sweet potato yielded the highest concentration of root carbohydrate (ca 80%), primarily in the form of starch (ca 50%) and sucrose (ca 30%); whereas cassava had root carbohydrate concentrations of (ca 55%), almost entirely as starch. For sweet potato, overall carbohydrate production was 9.4 and 12.7 Mg ha{sup -1} for the Alabama and Maryland sites, respectively. For cassava, carbohydrate production in Maryland was poor, yielding only 2.9 Mg ha{sup -1}. However, in Alabama, carbohydrate production from cassava averaged {proportional_to}10 Mg ha{sup -1}. Relative to carbohydrate production from corn in each location, sweet potato and cassava yielded approximately 1.5 x and 1.6 x as much carbohydrate as corn in Alabama; 2.3 x and 0.5 x for the Maryland site. If economical harvesting and processing techniques could be developed, these data suggest that sweet potato in Maryland, and sweet potato and cassava in Alabama, have greater potential as ethanol sources than existing corn systems, and as such, could be used to replace or offset corn as a source of biofuels. (author)

  2. Sugarcane starch: quantitative determination and characterization

    Directory of Open Access Journals (Sweden)

    Joelise de Alencar Figueira

    2011-09-01

    Full Text Available Starch is found in sugarcane as a storage polysaccharide. Starch concentrations vary widely depending on the country, variety, developmental stage, and growth conditions. The purpose of this study was to determine the starch content in different varieties of sugarcane, between May and November 2007, and some characteristics of sugarcane starch such as structure and granules size; gelatinization temperature; starch solution filterability; and susceptibility to glucoamylase, pullulanase, and commercial bacterial and fungal α-amylase enzymes. Susceptibility to debranching amylolytic isoamylase enzyme from Flavobacterium sp. was also tested. Sugarcane starch had spherical shape with a diameter of 1-3 µm. Sugarcane starch formed complexes with iodine, which showed greater absorption in the range of 540 to 620 nm. Sugarcane starch showed higher susceptibility to glucoamylase compared to that of waxy maize, cassava, and potato starch. Sugarcane starch also showed susceptibility to debranching amylolytic pullulanases similar to that of waxy rice starch. It also showed susceptibility to α-amylase from Bacillus subtilis, Bacillus licheniformis, and Aspergillus oryzae similar to that of the other tested starches producing glucose, maltose, maltotriose, maltotetraose, maltopentose and limit α- dextrin.

  3. Modeling and analysis of film composition on mechanical properties of maize starch based edible films.

    Science.gov (United States)

    Prakash Maran, J; Sivakumar, V; Thirugnanasambandham, K; Kandasamy, S

    2013-11-01

    The present study investigates the influence of composition (content of maize starch (1-3 g), sorbitol (0.5-1.0 ml), agar (0.5-1.0 g) and tween-80 (0.1-0.5 ml)) on the mechanical properties (tensile strength, elongation, Young's modulus, puncture force and puncture deformation) of the maize starch based edible films using four factors with three level Box-Behnken design. The edible films were obtained by casting method. The results showed that, tween-80 increases the permeation of sorbitol in to the polymer matrix. Increasing concentration of sorbitol (hydrophilic nature and plasticizing effect of sorbitol) decreases the tensile strength, Young's modulus and puncture force of the films. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were obtained for all responses with high R(2) values (R(2)>0.95). 3D response surface plots were constructed to study the relationship between process variables and the responses. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Incorporation of Sunflower Oil and d-alpha-tocopherol Effect on Mechanical Properties and Permeability of Corn Starch Composite Edible Film

    Directory of Open Access Journals (Sweden)

    Pramono Putro Utomo

    2015-06-01

    Full Text Available Corn starch-based films are inherently brittle and lack the necessary mechanical integrity for conventional packaging. However, the incorporation of additives can potentially improve the mechanical properties and processability of starch films. In this work sunflower oil (SO and vitamin E (d-alpha-tocopherol at three levels each (0.05%, 0.1% and 0.15% (w/vtotal and (0.18%, 0.36% and 0.54% (w/vtotal were incorporated into corn starch films using a solution casting method to improve the mechanical and water vapour transmission rate (WVTR properties. The addition of SO and vitamin E increased elongation at break of starch-based film while decreased tensile strength and WVTR of starch-based film. The best edible film obtained on addition of sunflower oil concentration of 0.15% and 0.54%, vitamin E with a value of 0.121 mm thickness, tensile strength of 65.38 kg/cm2, elongation at break 14.17% and WVTR 1144 g/m2 24 hours.

  5. Effect of Punica granatum peel extracts on antimicrobial properties in Walnut shell cellulose reinforced Bio-thermoplastic starch films from cashew nut shells.

    Science.gov (United States)

    Harini, K; Chandra Mohan, C; Ramya, K; Karthikeyan, S; Sukumar, M

    2018-03-15

    The main aim of the present study is to extract and characterize cashew nut shell (CNS) starch and walnut shell cellulose (WNC) for development of cellulose reinforced starch films. Moreover, the extraction and characterization of pomegranate peel extract, for incorporation with CNS-WNC films, was investigated. CNS starch was examined to be a moderate amylose starch with 26.32 ± 0.43% amylose content. Thermal degradation temperature of CNS starch was found to be 310 °C. Walnut shell cellulose was found to have high crystallinity index of 72%, with two thermal degradation temperatures of 319 °C and 461 °C. 2% WN cellulose reinforced CNS starch films were examined to have good oxygen transfer rate, mechanical and physical properties. Thermal degradation temperature of CNS-WNC starch films were found to be at the range of 298-302 °C. Surface roughness of CNS-WNC starch films were found to be increasing with increase in concentration of cellulose in films. Hydroxymethylfurfurole, Benzene, 2-methoxy-1,3,4-trimethyl and 1,2,3-Propanetriol, 1-acetate were found to be major active compounds present in hydrophilic extracts of Punica granatum peels. 2% WN cellulose reinforced starch films infused with hydrophilic active compounds of pomegranate peel was examined to be having good active package properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Physicochemical properties of cassava starch and starch-keratin prepared biofilm

    Directory of Open Access Journals (Sweden)

    Oluwasina Olugbenga Oladayo

    2016-08-01

    Full Text Available Synthetic plastics pose one of the biggest threats to the environment and a promising solution is biodegradable polymers. This study investigates the properties of biofilms prepared using starch/keratin blend with and without formaldehyde. Some starch properties in percentage are; moisture content 0.27, hydration capacity 189.66, amylopectin content 65.79 and amylose content 34.21. From the water testing results, thickness swelling, water absorption capacity and linear expansion of biofilm without formaldehyde after 10 s of soaking in water were 28.59%, 8.89% and 4.90% respectively and 65.30%, 91.33% and 46.29% respectively after 40 s. But, higher values are recorded for those biofilms made with addition of formaldehyde. Thus using water effect on the properties of the biofilms as the performance index, the research indicates that biofilms without formaldehyde had better performance than those with formaldehyde

  7. Compositional and physicochemical factors governing the viability of Lactobacillus rhamnosus GG embedded in starch-protein based edible films

    Science.gov (United States)

    Soukoulis, Christos; Singh, Poonam; Macnaughtan, William; Parmenter, Christopher; Fisk, Ian D.

    2016-01-01

    Probiotic incorporation in edible films and coatings has been shown recently to be an efficient strategy for the delivery of probiotics in foods. In the present work, the impact of the compositional, physicochemical and structural properties of binary starch-protein edible films on Lactobacillus rhamnosus GG viability and stability was evaluated. Native rice and corn starch, as well as bovine skin gelatine, sodium caseinate and soy protein concentrate were used for the fabrication of the probiotic edible films. Starch and protein type both impacted the structural, mechanical, optical and thermal properties of the films, and the process loss of L. rhamnosus GG during evaporation-dehydration was significantly lower in the presence of proteins (0.91–1.07 log CFU/g) compared to solely starch based systems (1.71 log CFU/g). A synergistic action between rice starch and proteins was detected when monitoring the viability of L. rhamnosus GG over four weeks at fridge and room temperature conditions. In particular, a 3- to 7-fold increase in the viability of L. rhamnosus GG was observed in the presence of proteins, with sodium caseinate – rice starch based films offering the most enhanced stability. The film's shelf-life (as calculated using the FAO/WHO (2011) basis of 6 log viable CFU/g) ranged between 27-96 and 15–24 days for systems stored at fridge or room temperature conditions respectively. PMID:26726280

  8. Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi.

    Science.gov (United States)

    Ogbo, Frank C

    2010-06-01

    Two fungi characterized as Aspergillus fumigatus and Aspergillus niger, isolated from decaying cassava peels were used to convert cassava wastes by the semi-solid fermentation technique to phosphate biofertilizer. The isolates solubilized Ca(3)(PO(4))(2), AlPO(4) and FePO(4) in liquid Pikovskaya medium, a process that was accompanied by acid production. Medium for the SSF fermentation was composed of 1% raw cassava starch and 3% poultry droppings as nutrients and 96% ground (0.5-1.5mm) dried cassava peels as carrier material. During the 14days fermentation, both test organisms increased in biomass in this medium as indicated by increases in phosphatase activity and drop in pH. Ground cassava peels satisfied many properties required of carrier material particularly in respect of the organisms under study. Biofertilizer produced using A. niger significantly (p<.05) improved the growth of pigeon pea [Cajanus cajan (L.) Millsp.] in pot experiments but product made with A. fumigatus did not. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. A Pontential Agriculture Waste Material as Coagulant Aid: Cassava Peel

    Science.gov (United States)

    Othman, N.; Abd-Rahim, N.-S.; Tuan-Besar, S.-N.-F.; Mohd-Asharuddin, S.; Kumar, V.

    2018-02-01

    All A large amount of cassava peel waste is generated annually by small and medium scale industries. This has led to a new policy of complete utilization of raw materials so that there will be little or no residue left that could pose pollution problems. Conversion of these by-products into a material that poses an ability to remove toxic pollutant would increase the market value and ultimately benefits the producers. This study investigated the characteristics of cassava peel as a coagulant aid material and optimization process using the cassava peel was explored through coagulation and flocculation. This research had highlighted that the Cassava peels contain sugars in the form of polysaccharides such as starch and holocellulose. The FTIR results revealed that amino acids containing abundant of carboxyl, hydroxyl and amino groups which has significant capabilities in removing pollutants. Whereas analysis by XRF spectrometry indicated that the CP samples contain Fe2O3 and Al2O3 which might contribute to its coagulation ability. The optimum condition allowed Cassava peel and alum removed high turbidity up to 90. This natural coagulant from cassava peel is found to be an alternative coagulant aid to reduce the usage of chemical coagulants

  10. Gluten-free dough-making of specialty breads: Significance of blended starches, flours and additives on dough behaviour.

    Science.gov (United States)

    Collar, Concha; Conte, Paola; Fadda, Costantino; Piga, Antonio

    2015-10-01

    The capability of different gluten-free (GF) basic formulations made of flour (rice, amaranth and chickpea) and starch (corn and cassava) blends, to make machinable and viscoelastic GF-doughs in absence/presence of single hydrocolloids (guar gum, locust bean and psyllium fibre), proteins (milk and egg white) and surfactants (neutral, anionic and vegetable oil) have been investigated. Macroscopic (high deformation) and macromolecular (small deformation) mechanical, viscometric (gelatinization, pasting, gelling) and thermal (gelatinization, melting, retrogradation) approaches were performed on the different matrices in order to (a) identify similarities and differences in GF-doughs in terms of a small number of rheological and thermal analytical parameters according to the formulations and (b) to assess single and interactive effects of basic ingredients and additives on GF-dough performance to achieve GF-flat breads. Larger values for the static and dynamic mechanical characteristics and higher viscometric profiles during both cooking and cooling corresponded to doughs formulated with guar gum and Psyllium fibre added to rice flour/starch and rice flour/corn starch/chickpea flour, while surfactant- and protein-formulated GF-doughs added to rice flour/starch/amaranth flour based GF-doughs exhibited intermediate and lower values for the mechanical parameters and poorer viscometric profiles. In addition, additive-free formulations exhibited higher values for the temperature of both gelatinization and retrogradation and lower enthalpies for the thermal transitions. Single addition of 10% of either chickpea flour or amaranth flour to rice flour/starch blends provided a large GF-dough hardening effect in presence of corn starch and an intermediate effect in presence of cassava starch (chickpea), and an intermediate reinforcement of GF-dough regardless the source of starch (amaranth). At macromolecular level, both chickpea and amaranth flours, singly added, determined

  11. Effect of cross linking of PVA/starch and reinforcement of modified barley husk on the properties of composite films.

    Science.gov (United States)

    Mittal, Aanchal; Garg, Sangeeta; Kohli, Deepak; Maiti, Mithu; Jana, Asim Kumar; Bajpai, Shailendra

    2016-10-20

    Barley husk (BH) was graft copolymerized by palmitic acid. The crystalline behavior of BH decreased after grafting. Poly vinyl alcohol (PVA)/starch (St) blend film, urea formaldehyde cross linked PVA/St films and composite films containing natural BH, grafted BH were prepared separately. The effect of urea/starch ratio, content of BH and grafted BH on the mechanical properties, water uptake (%), and biodegradability of the composite films was observed. With increase in urea: starch ratio from 0 to 0.5 in the blend, tensile strength of cross linked film increased by 40.23% compared to the PVA/St film. However, in grafted BH composite film, the tensile strength increased by 72.4% than PVA/St film. The degradation rate of natural BH composite film was faster than PVA/St film. Various films were characterized by SEM, FT-IR and thermal analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effects of carbohydrate/protein ratio on the microstructure and the barrier and sorption properties of wheat starch-whey protein blend edible films.

    Science.gov (United States)

    Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric

    2017-02-01

    Starch and whey protein isolate and their mixtures were used for making edible films. Moisture sorption isotherms, water vapour permeability, sorption of aroma compounds, microstructure, water contact angle and surface properties were investigated. With increasing protein content, the microstructure changes became more homogeneous. The water vapour permeability increases with both the humidity gradient and the starch content. For all films, the hygroscopicity increases with starch content. Surface properties change according to the starch/whey protein ratio and are mainly related to the polar component of the surface tension. Films composed of 80% starch and 20% whey proteins have more hydrophobic surfaces than the other films due to specific interactions. The effect of carbohydrate/protein ratio significantly influences the microstructure, the surface wettability and the barrier properties of wheat starch-whey protein blend films. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Effect of carrageenan on properties of biodegradable thermoplastic cassava starch/low-density polyethylene composites reinforced by cotton fibers

    International Nuclear Information System (INIS)

    Prachayawarakorn, Jutarat; Pomdage, Wanida

    2014-01-01

    Highlights: • We prepared the TPCS/LDPE composites modified by carrageenan and/or cotton fibers. • The IR O–H stretching peak of the modified composites shifts to lower wavenumber. • Stress and Young’s modulus of the modified composites increase significantly. • The modified composites degrade faster than the non-modified composite. - Abstract: Applications of biodegradable thermoplastic starch (TPS) have been restricted due to its poor mechanical properties, limited processability and high water uptake. In order to improve properties and processability, thermoplastic cassava starch (TPCS) was compounded with low-density polyethylene (LDPE). The TPCS/LDPE blend was, then, modified by a natural gelling agent, i.e. carrageenan and natural fibers, i.e. cotton fibers. All composites were compounded and processed using an internal mixer and an injection molding machine, respectively. It was found that stress at maximum load and Young’s modulus of the TPCS/LDPE composites significantly increased by the addition of the carrageenan and/or the cotton fibers. The highest mechanical properties were obtained from the TPCS/LDPE composites modified by both the carrageenan and the cotton fibers. Percentage water absorption of all of the TPCS/LDPE composites was found to be similar. All modified composites were also degraded easier than the non-modified one. Furthermore, all the composites were analyzed using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM)

  14. The influence of Aloe vera gel incorporation on the physicochemical and mechanical properties of banana starch-chitosan edible films.

    Science.gov (United States)

    Pinzon, Magda I; Garcia, Omar R; Villa, Cristian C

    2018-01-27

    Aloe vera (AV) gel is a promising material in food conservation, given its widely reported antimicrobial and antioxidant activity; however, its application in the formation of edible films and coatings has been small owing its low film-forming capability. The aim of this study was to investigate the physicochemical properties of film-forming solutions and films prepared using unripe banana starch-chitosan and AV gel at different AV gel concentrations. Our results showed that AV gel considerably affected the rheological and optical properties of the edible coatings, mainly due to increased amounts of solids brought by the AV gel. Film-forming capacity and physicochemical properties were also studied; most of the film properties were affected by the inclusion of AV gel, with decreased water vapor permeability, tensile strength and elongation at break. Fourier transform infrared studies showed that the inclusion of AV gel disrupts the interaction between starch and chitosan molecules; however, further studies are needed to fully understand the specific interactions between the components of AV gel and both starch and chitosan molecules. Our results suggest that the addition of AV gel creates a crosslinking effect between the phenolic compounds in AV gel and starch molecules, which disrupts the starch-chitosan interaction and greatly affects the properties of both the film-forming solution and edible films. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  15. Different characteristic effects of ageing on starch-based films plasticised by 1-ethyl-3-methylimidazolium acetate and by glycerol.

    Science.gov (United States)

    Zhang, Binjia; Xie, Fengwei; Zhang, Tianlong; Chen, Ling; Li, Xiaoxi; Truss, Rowan W; Halley, Peter J; Shamshina, Julia L; McNally, Tony; Rogers, Robin D

    2016-08-01

    The focus of this study was on the effects of plasticisers (the ionic liquid 1-ethyl-3-methylimidazolium acetate, or [Emim][OAc]; and glycerol) on the changes of starch structure on multiple length scales, and the variation in properties of plasticised starch-based films, during ageing. The films were prepared by a simple melt compression moulding process, followed by storage at different relative humidity (RH) environments. Compared with glycerol, [Emim][OAc] could result in greater homogeneity in [Emim][OAc]-plasticised starch-based films (no gel-like aggregates and less molecular order (crystallites) on the nano-scale). Besides, much weaker starch-starch interactions but stronger starch-[Emim][OAc] interactions at the molecular level led to reduced strength and stiffness but increased flexibility of the films. More importantly, [Emim][OAc] (especially at high content) was revealed to more effectively maintain the plasticised state during ageing than glycerol: the densification (especially in the amorphous regions) was suppressed; and the structural characteristics especially on the nano-scale were stabilised (especially at a high RH), presumably due to the suppressed starch molecular interactions by [Emim][OAc] as confirmed by Raman spectroscopy. Such behaviour contributed to stabilised mechanical properties. Nonetheless, the crystallinity and thermal stability of starch-based films with both plasticisers were much less affected by ageing and moisture uptake during storage (42 days), but mostly depended on the plasticiser type and content. As starch is a typical semi-crystalline bio-polymer containing abundant hydroxyl groups and strong hydrogen bonding, the findings here could also be significant in creating materials from other similar biopolymers with tailored sensitivity and properties to the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Application of thermophilic enzymes and water jet system to cassava pulp.

    Science.gov (United States)

    Chaikaew, Siriporn; Maeno, Yuka; Visessanguan, Wonnop; Ogura, Kota; Sugino, Gaku; Lee, Seung-Hwan; Ishikawa, Kazuhiko

    2012-12-01

    Co-production of fermentable sugars and nanofibrillated cellulose from cassava pulp was achieved by the combination of thermophilic enzymes (endoglucanase, β-glucosidase, and α-amylase) and a new atomization system (Star Burst System; SBS), which employs opposing water jets. The SBS represents a key technology for providing cellulose nanofibers and improving the enzymatic saccharification of cassava pulp. Depending on the enzymes used, the production of glucose from cassava pulp treated with the SBS was 1.2- to 2.5-fold higher than that from pulp not treated with the SBS. Nanofibrillated cellulose with the gel-like property in suspension was produced (yield was over 90%) by α-amylase treatment, which completely released trapped starch granules from the fibrous cell wall structure of cassava pulp pretreated with the SBS. The SBS provides an environmentally low-impact pretreatment system for processing biomass material into value-added products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Plasticizer effect on the properties of biodegradable blend film from rice starch-chitosan

    Directory of Open Access Journals (Sweden)

    Thawien Bourtoom

    2008-04-01

    Full Text Available The properties of biodegradable blend film from rice starch-chitosan with different plasticizers were determined. Three plasticizers comprising sorbitol (SOR, glycerol (GLY and polyethylene glycol (PEG were studied over a range of concentration from 20 to 60%. Increasing concentration of these plasticizers resulted in decreased tensile strength (TS concomitant with an increase in elongation at break (E, water vapor permeability (WVP and film solubility (FS. SOR plasticized films were the most brittle, with the highest tensile strength (TS, 26.06 MPa. However, its effect on WVP was low (5.45 g.mm/m2.day.kPa. In contrast, GLY and PEG plasticized films had a flexible structure contradictory to a low TS (14.31MPa and 16.14MPa, respectively providing a high WVP (14.52 g.mm/m2.day.kPa and 14.69 g.mm/m2.day.kPa, respectively. SOR plasticized films, demonstrated little higher FS compared to PEG and GLY plasticized films but not significant different (p<0.05. The color of biodegradable blend film from rice starch-chitosan was more affected by the concentration of the plasticizer used than by its type. Nine moisture sorption models were applied to experimental data. Moisture content of the film increased at elevated water activity. The time to reach equilibrium moisture content (EMC was about 20-24 days at lower humidity and 13-16 days at higher humidities. The EMC of glycerol and sorbitol rice starchchitosan biodegradable blend films showed a logarithmic increase at above 0.59 aw and reached the highest moisture content of 51.46% and 42.97 % at 0.95 aw, whereas PEG rice starch-chitosan biodegradable blend films did not show much increase in moisture content.

  18. Fungal inactivation by Mexican oregano (Lippia berlandieri Schauer) essential oil added to amaranth, chitosan, or starch edible films.

    Science.gov (United States)

    Avila-Sosa, Raúl; Hernández-Zamoran, Erika; López-Mendoza, Ingrid; Palou, Enrique; Jiménez Munguía, María Teresa; Nevárez-Moorillón, Guadalupe Virginia; López-Malo, Aurelio

    2010-04-01

    Edible films can incorporate antimicrobial agents to provide microbiological stability, since they can be used as carriers of a wide number of additives that can extend product shelf life and reduce the risk of pathogenic bacteria growth on food surfaces. Addition of antimicrobial agents to edible films offers advantages such as the use of low antimicrobial concentrations and low diffusion rates. The aim of this study was to evaluate inhibition of Aspergillus niger and Penicillium spp. by selected concentrations of Mexican oregano (Lippia berlandieri Schauer) essential oil added to amaranth, chitosan, or starch edible films. Oregano essential oil was characterized by gas chromatography-mass spectrometry (GC/MS) analysis. Amaranth, chitosan, and starch edible films were formulated with essential oil concentrations of 0%, 0.25%, 0.50%, 0.75%, 1%, 2%, and 4%. Mold radial growth was evaluated inoculating spores in 2 ways: edible films were placed over inoculated agar, Film/Inoculum mode (F/I), or the edible films were first placed in the agar and then films were inoculated, Inoculum/Film mode (I/F). The modified Gompertz model adequately described growth curves. There was no significant difference (P > 0.05) in growth parameters between the 2 modes of inoculation. Antifungal effectiveness of edible films was starch > chitosan > amaranth. In starch edible films, both studied molds were inhibited with 0.50% of essential oil. Edible films added with Mexican oregano essential oil could improve the quality of foods by controlling surface growth of molds.

  19. Desenvolvimento e avaliação da eficácia de filmes biodegradáveis de amido de mandioca com nanocelulose como reforço e com extrato de erva-mate como aditivo antioxidante Development and evaluation of the effectiveness of biodegradable films of cassava starch with nanocelulose as reinforcement and yerba mate extract as an additive antioxidant

    Directory of Open Access Journals (Sweden)

    Bruna Aparecida Souza Machado

    2012-11-01

    Full Text Available O objetivo do trabalho foi desenvolver uma embalagem biodegradável utilizando como matriz polimérica o amido de mandioca plastificada com glicerol e reforçada com a incorporação de nanocelulose da fibra de coco, bem como, avaliar o efeito da adição de um aditivo natural (erva-mate nas formulações de nanobiocompósitos com ação antioxidante. Os nanocristais de celulose (L/D=39 foram obtidos por hidrólise ácida com H2SO4 a 65%. Os filmes foram preparados por casting contendo 4,5 e 6,0% de amido, 0,5 e 1,5% de glicerol, 0,3% de nanocelulose e 20% de extrato de erva-mate. O armazenamento do azeite de dendê embalado com os filmes contendo o aditivo foi monitorado por 40 dias sob condições de oxidação acelerada (63%UR/30°C. Constatou-se que, à medida que aumentam as perdas de Polifenóis Totais nos filmes, ocorre um menor aumento do Índice de Peróxidos do produto embalado, demonstrando, assim, que, ao invés do produto, os compostos da embalagem é quem estão sofrendo oxidação. A incorporação de extrato de erva-mate não alterou as propriedades mecânicas e de barreira desses filmes.The objective was to develop biodegradable packaging using a polymer matrix as the cassava starch plasticized with glycerol and reinforced with the incorporation of nanocelulose of coconut fiber, as well as to evaluate the effect of the addition of an additive nature (yerba mate in nanobiocompósitos formulations with antioxidant action. The nanocrystal cellulose (L/D=39 were obtained by acid hydrolysis with 65% H2SO4. The films were prepared by casting containing 4.5 and 6.0% starch, 0.5 and 1.5% glycerol, 0.3% nanocelulose and 20% extract of yerba mate. The palm oil storage packed with films containing the additive was monitored for 40 days under conditions of accelerated oxidation (63%UR/30°C. It was found that as the losses increase polyphenol films, there is a smaller increase of the peroxide value of the packaged product, thus

  20. Synthesis and Characterization of PVP-Grafted-Starch Hydrogels Using Gamma Radiation

    International Nuclear Information System (INIS)

    Suwanmala, Phiriyatorn; Hemvichian, Kasinee; Sonsuk, Manit

    2004-10-01

    A Series of hydrogels were prepared from gelatinized cassava starch and vinylpyrrolidone by radiation-induced graft copolymerization. Gel fraction, swelling ratio and gel strength of the obtained hydrogels were characterized. The experimental results show that the swelling ratio is inversely dependent on the radiation dose. The results from PVP-grafted-starch were subsequently compared with those of PVP hydrogels and PVP-blended-starch hydrogels. It was found that the PVP-grafted-starch hydrogels, with gel fraction higher than 80% can be prepared at the dose of 10 kGy, while PVP and PVP-blended-starch hydrogels require at least 30 kGy to obtain gels with more than 80% gel fraction

  1. Improvement of cassava quality through mutation breeding

    International Nuclear Information System (INIS)

    Safo-Kantanka, O.

    1997-01-01

    Ghana has not been able to take advantage of the high-yielding cassava varieties developed by the International Institute of Tropical Agriculture (IITA) because these varieties generally do not have the desired cooking quality. The major emphasis of this project therefore is to use mutations to produce varieties with the desired starch characteristics while maintaining the disease-resistance and high-yielding characteristics of the IITA varieties. 1 ref., 4 tabs

  2. Improvement of cassava quality through mutation breeding

    Energy Technology Data Exchange (ETDEWEB)

    Safo-Kantanka, O [Crop Science Dept., Univ. of Science and Technology, Kumasi (Ghana)

    1997-12-01

    Ghana has not been able to take advantage of the high-yielding cassava varieties developed by the International Institute of Tropical Agriculture (IITA) because these varieties generally do not have the desired cooking quality. The major emphasis of this project therefore is to use mutations to produce varieties with the desired starch characteristics while maintaining the disease-resistance and high-yielding characteristics of the IITA varieties. 1 ref., 4 tabs.

  3. Effect of incorporation of nutraceutical capsule waste of safflower oil in the mechanical characteristics of corn starch films

    Directory of Open Access Journals (Sweden)

    Camila de CAMPO

    2016-01-01

    Full Text Available Abstract Biodegradable films blends made of safflower oil nutraceutical capsules waste corn starch (20:4, 30:4, 40:4 and 50:4 were prepared. The objective of this study was to evaluate the influence of addition of different concentrations of safflower oil nutraceutical capsule waste in the mechanical properties (tensile strength, elongation at break, Young’s modulus and thickness of corn starch films. A decrease in tensile strength and Young’s modulus and an increase in elongation at break were observed with the increase in the content of the nutraceutical capsule waste. The results showed that the blends of safflower oil capsules waste-corn starch films demonstrated promising characteristics to form biodegradable films with different mechanical characteristics.

  4. Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications.

    Science.gov (United States)

    Liu, Bin; Xu, Han; Zhao, Huiying; Liu, Wei; Zhao, Liyun; Li, Yuan

    2017-02-10

    We have developed an intelligent starch/poly-vinyl alcohol (PVA) film that is capable of monitoring pH changes and inhibiting undesired microbial growth in foods. Starch and PVA polymers in the film were doubly cross-linked by sodium trimetaphosphate and boric acid to improve their water-resistance and mechanical strength. Anthocyanins (ANT) and limonene (LIM) were used to achieve simultaneous colorimetric indication and antimicrobial activity. Firstly, the characterization of surface morphology using SEM confirmed that the starch-PVA-ANT-LIM film possessed a smooth surface. Secondly, the results of the mechanical strength test showed that starch-PVA-ANT-LIM possesses the highest mechanical strength. Additionally, there was a distinguishable change of colors as the film was immersed in solutions of pH ranging from 1.0 to 14.0. Moreover, the film showed excellent antimicrobial activity for three typical undesired microorganisms in foods, Bacillus subtilis, Aspergillus niger, and Staphylococcus aureus. Finally, the film exhibited good color indication and antimicrobial activity on pasteurized milk. The results suggest that the intelligent film reported here shows good capability for both alerting and inhibiting food spoilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Biological synthesis of Au nanoparticles using liquefied mash of cassava starch and their functionalization for enhanced hydrolysis of xylan by recombinant xylanase.

    Science.gov (United States)

    Zeng, Sumei; Du, Liangwei; Huang, Meiying; Feng, Jia-Xun

    2016-05-01

    Au nanoparticles (AuNPs) have shown the potential for a variety of applications due to their unique physical and chemical properties. In this study, a facile and affordable method for the synthesis of AuNPs via the liquefied mash of cassava starch has been described and the functionalized AuNPs by L-cysteine improved activity of recombinant xylanase was demonstrated. UV-Vis absorption spectroscopy, transmission electron microscopy, and zeta potential measurements were performed to characterize the AuNPs and monitor their synthesis. The presence of Au was confirmed by energy-dispersive X-ray spectroscopy (EDX) and the X-ray diffraction patterns showed that Au nanocrystals were face-centered cubic. The C=O stretching vibration in the Fourier transform infrared spectrum of AuNPs suggested that the hemiacetal C-OH of sugar molecules performed the reduction of Au³⁺ to Au⁰. The presence of C and O in the EDX spectrum and the negative zeta potential of AuNPs suggested that the biomolecules present in liquefied cassava mash were responsible for the stabilization of AuNPs. The surface of AuNPs was easily functionalized by L-cysteine, which improved the stability of AuNPs. Moreover, cysteine-functionalized AuNPs could significantly improve recombinant xylanase efficiency and stability.

  6. Physical, mechanical and antimicrobial properties of starch films incorporated with ε-poly-L-lysine.

    Science.gov (United States)

    Zhang, Liming; Li, Ruichao; Dong, Feng; Tian, Aiying; Li, Zhengjun; Dai, Yujie

    2015-01-01

    Starch/ε-poly-L-lysine (ε-PL) composite films were prepared by combining 4% (w/v) gelatinized cornstarch and varying the level of ε-PL. The physical, mechanical and antimicrobial properties of these films were investigated. Fourier-transform infrared spectra (FT-IR) showed that the carbonyl group stretching vibration band of the ε-PL molecule shifted from 1646 cm(-1) to 1673 cm(-1) in the composite films. Differential scanning calorimetry (DSC) results indicated that there were sharp endothermal peaks at 215-230 °C for the composite films. These results indicated that there was an intense interaction between the two components. The films incorporated with ε-PL showed a higher tensile strength (TS) and elongation-at-break (E) than those of the starch film alone. These composite films exhibited effective inhibition against Escherichia coli and Bacillus subtilis, films containing 2% (w/w) ε-PL effectively suppressed the growth of the tested microbes (Pstarch/ε-PL films showed a low inhibitory effect on Aspergillus niger. This antimicrobial trend of the composite films was in agreement with the results of free ε-PL. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Comparison of three cyanogen assays for total cyanogens in cassava (Manihot esculenta Crantz)

    DEFF Research Database (Denmark)

    Saka, J.D.K.; Mhone, A.R.K.; Brimer, Leon

    1997-01-01

    The sensitivity and reproducibility of three methods for determining the total cyanogenic potential (CNp) of 7 fresh and processed cassava varieties were determined and compared. The total cyanogen content of fresh cassava roots and three cassava products (kondowole, makaka, and starch) were...... analysed by the acid hydrolysis, microdiffusion with solid state detection and Cooke's enzymatic assays. The total cyanogen contents of the cassava, obtained by the three methods were not significantly different (p....3+or-0.4 and 20.4+or-1.4 mg HCN eq. kg-1 fresh weight by Cooke's, acid hydrolysis and solid state methods, respectively. However, at very low cyanogen levels, less than 5 mg HCN eq. kg-1 fresh weight, the acid hydrolysis method overestimates by 3-5 times. Otherwise, their coefficients of variations...

  8. Determinação da cor, imagem superficial topográfica e ângulo de contato de biofilmes de diferentes fontes de amido Determination of color, topographic superficial image and contact angle of the biofilms of different starch sources

    Directory of Open Access Journals (Sweden)

    Washington Azevêdo da Silva

    2007-02-01

    starch in biofilms. The aim of this work was to study the color variation, the topographic superficial surface by scanning electron microscopy and the water absorption by contact angle of biofilms produced with three different starch sources: potato starch film (PSF, cassava starch film (CSF and maize starch film (MSF with varied concentration: 1, 2 and 3% to prepare biofilms using a complete randomize design with three repetitions. The interaction between starch source and concentration was statistically significant for contact angle whereas it was not significant for color. The color difference was affected by starch source being higher for CSF. As concentration increased in biofilms of potato and cassava, the contact angle decreased in contrast to maize biofilms which remained constant.

  9. Characterization of Barnyard Millet Starch Films Containing Borage Seed Oil

    Directory of Open Access Journals (Sweden)

    Thi Luyen Cao

    2017-11-01

    Full Text Available In this study, barnyard millet starch (BMS was used to prepare edible films. Antioxidant activity was conferred to the BMS film by incorporating borage seed oil (BO. The physical, optical, and thermal properties as well as antioxidant activities of the films were evaluated. The incorporation of BO into the BMS films decreased the tensile strength from 9.46 to 4.69 MPa and increased the elongation at break of the films from 82.49% to 103.87%. Water vapor permeability, water solubility, and moisture content of the BMS films decreased with increasing BO concentration, whereas Hunter b value and opacity increased, L and a values of the films decreased. The BMS films containing BO exhibited antioxidant activity that increased proportionally with increased BO concentration. In particular, the BMS film with 1.0% BO exhibited the highest antioxidant activity and light barrier properties among the BMS films. Therefore, the BMS films with added BO can be used as an antioxidant packaging material.

  10. Impact of edible chitosan-cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature.

    Science.gov (United States)

    de Aquino, Alana Bezerra; Blank, Arie Fitzgerald; Santana, Luciana Cristina Lins de Aquino

    2015-03-15

    The effect of edible chitosan-cassava starch (CH-CS) coatings containing a mixture of Lippia gracilis Schauer genotypes (EOM) on the shelf life of guavas during storage at room temperature for 10 days was studied. Sixteen formulations were prepared with a range of chitosan and essential oil mixtures concentrations, and the in vitro antimicrobial activity was tested. Formulations containing 2.0% cassava starch, 2.0% chitosan and 1.0%, 2.0% or 3.0% EOM were most effective in inhibiting the growth of the majority of bacteria. The edible CH-CS coating and CH-CS with 1.0% (CH-CS-EOM1) or 3.0% EOM (CH-CS-EOM3) were added to guavas and the shelf life was evaluated. On the tenth day of storage, total aerobic mesophilic bacteria and mould and yeast counts were statistically lower (p<0.05) in the CH-CS-EOM1- or CH-CS-EOM3-coated fruits than CH-CS-coated fruits. In addition, fruits coated with CH-CS or CH-CS-EOM showed no significant changes of total soluble solids content, while CH-CS-EOM-coated fruits showed lower titratable acidity than CH-CS-coated fruits at the end of storage. CH-CS-EOM3-coated guavas showed lower a(∗) and b(∗) values and higher L(∗) and hue values than those with other coatings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Influence of thickness on properties of plasticized oat starch films

    Directory of Open Access Journals (Sweden)

    Melicia Cintia Galdeano

    2013-08-01

    Full Text Available The aim of this study was to investigate the effect of thickness (between 80 and 120 µm on apparent opacity, water vapor permeability and mechanical properties (tensile and puncture of oat starch films plasticized with glycerol, sorbitol, glycerol:sorbitol mixture, urea and sucrose. Films were stored under 11, 57, 76 and 90% relative humidity (RH to study the mechanical properties. It was observed that the higher the thickness, the higher was the opacity values. Films without the plasticizer were more opaque in comparison with the plasticized ones. Glycerol:sorbitol films presented increased elongation with increasing thickness at all RH. Puncture force showed a strong dependence on the film thickness, except for the films plasticized with sucrose. In general, thickness did not affect the water permeability.

  12. Development of cassava cake enriched with its own bran and Spirulina platensis - doi: 10.4025/actascitechnol.v34i4.10687

    Directory of Open Access Journals (Sweden)

    Meire Franci Polonio Navacchi

    2012-10-01

    Full Text Available The cassava cake was developed enriching it with a biomass of Spirulina platensis and a type of bran made out of its own starch. This biomass, a part from being rich in protein, also contains vitamins, essential fatty acids and minerals. Around Umuarama, in the State of Paraná, there is an agricultural/industrial complex annually producing and processing tons of cassava. Baked goods can be elaborated based in cassava as a way to expand the use of this raw material and to produce food free of gluten to celiac people. In this complex a solid byproduct is generated, which is rich in starch and fibres, and because of its low commercial value it is used for animal feed or discarded. The bran was dehydrated and analysed microbiologically as well as physically and chemically so as to be used in applied research. Developed energetic food based on cassava lacks protein, but this can be supplied by adding the biomass of Spirulina platensis. Different formulations of this cassava cake were developed varying the concentration of Spirulina platensis and cassava bran. The formulation that presented the best features received chocolate before being submitted to sensory tests by children in the public education system. The results show an excellent acceptance which made viable the development of this product because of aspects like nutrition, technology and sensorial.

  13. Physical and biological treatments of polyethylene-rice starch plastic films

    Energy Technology Data Exchange (ETDEWEB)

    El-Naggar, Manal M.A., E-mail: mmelnaggar@yahoo.com [Microbiology Lab., National Institute of Oceanography and Fisheries, Alexandria (Egypt); Farag, Magdy Gh. [Development Plastic Center, Victoria, Alexandria (Egypt)

    2010-04-15

    This study aimed to produce an industrial applicable thermo-stable {alpha}-amylase from marine Bacillus amyloliquefaciens which isolated and selected according to its significant enzyme production. The effect of different pH values and temperatures on the bacterial growth and the enzyme production was estimated using an experimental statistical design; maximum amylase production and bacterial growth was obtained at pH 7.0 and 50 deg. C. Some biodegradable polyethylene rice starch plastic films (PERS-P) were manufactured using 0, 2.5, 5, 7.5 and 10% starch concentrations. The biodegradability (reduction in the plastic elongation%) was tested using the exposure to UV radiation at {lambda}{sub 300-400nm} (intensity of about 1000 W/m{sup 2}) and the produced B. amyloliquefaciens thermo-stable {alpha}-amylase. A significant reduction in the elongation% of these biodegradable plastics was observed in both cases especially on testing the 10% PERS-P; they showed a reduction of 26% and 20%, respectively, compared to the untreated plastic films (180 {+-} 5).

  14. Physical and biological treatments of polyethylene-rice starch plastic films

    International Nuclear Information System (INIS)

    El-Naggar, Manal M.A.; Farag, Magdy Gh.

    2010-01-01

    This study aimed to produce an industrial applicable thermo-stable α-amylase from marine Bacillus amyloliquefaciens which isolated and selected according to its significant enzyme production. The effect of different pH values and temperatures on the bacterial growth and the enzyme production was estimated using an experimental statistical design; maximum amylase production and bacterial growth was obtained at pH 7.0 and 50 deg. C. Some biodegradable polyethylene rice starch plastic films (PERS-P) were manufactured using 0, 2.5, 5, 7.5 and 10% starch concentrations. The biodegradability (reduction in the plastic elongation%) was tested using the exposure to UV radiation at λ 300-400nm (intensity of about 1000 W/m 2 ) and the produced B. amyloliquefaciens thermo-stable α-amylase. A significant reduction in the elongation% of these biodegradable plastics was observed in both cases especially on testing the 10% PERS-P; they showed a reduction of 26% and 20%, respectively, compared to the untreated plastic films (180 ± 5).

  15. Field testing and exploitation of genetically modified cassava with low-amylose or amylose-free starch in Indonesia

    NARCIS (Netherlands)

    Koehorst-van Putten, H.J.J.; Sudarmonowati, E.; Herman, M.; Pereira-Bertram, I.J.; Wolters, A.M.A.; Meima, H.; Vetten, de N.; Raemakers, C.J.J.M.; Visser, R.G.F.

    2012-01-01

    The development and testing in the field of genetically modified -so called- orphan crops like cassava in tropical countries is still in its infancy, despite the fact that cassava is not only used for food and feed but is also an important industrial crop. As traditional breeding of cassava is

  16. Enantioselective resolution of (R,S)-1-phenylethanol catalyzed by lipases immobilized in starch films

    International Nuclear Information System (INIS)

    Hoffmann, Isabel; Silva, Vanessa D.; Nascimento, Maria da G.

    2011-01-01

    Lipases from different sources and two mycelium-bound lipases, in a free or immobilized form, in ginger starch film were screened as biocatalysts in the reaction of (R,S)-1-phenylethanol (1) with vinyl acetate and other acylating agents. The effect of various reaction parameters in the resolution of (1) catalyzed by lipase from Burkholderia cepacia (BCL) immobilized in ginger starch film was evaluated (acyl donor type, alcohol:acyl donor molar ratio, temperature and organic solvent). The catalytic efficiency of BCL immobilized in polymeric blends of ginger starch and polyethylene oxide (PEO), in different compositions, was also studied. Vinyl acetate and iso-propenyl acetate furnished the highest conversion (9%) and enantiomeric excess (> 99%) of the (R)-ester. The alcohol:acyl donor molar ratio and temperature optimum were 1:1 and 28 deg respectively. The mixture of n-hexane/glycerol (9:1 v:v) was the most adequate for this reaction (conversion 23%, E > 200). The ginger starch/PEO (7:3 m/m) blend was successfully reused six times consecutively. (author)

  17. Enantioselective resolution of (R,S)-1-phenylethanol catalyzed by lipases immobilized in starch films

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Isabel; Silva, Vanessa D.; Nascimento, Maria da G., E-mail: graca@qmc.ufsc.b [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Quimica

    2011-07-01

    Lipases from different sources and two mycelium-bound lipases, in a free or immobilized form, in ginger starch film were screened as biocatalysts in the reaction of (R,S)-1-phenylethanol (1) with vinyl acetate and other acylating agents. The effect of various reaction parameters in the resolution of (1) catalyzed by lipase from Burkholderia cepacia (BCL) immobilized in ginger starch film was evaluated (acyl donor type, alcohol:acyl donor molar ratio, temperature and organic solvent). The catalytic efficiency of BCL immobilized in polymeric blends of ginger starch and polyethylene oxide (PEO), in different compositions, was also studied. Vinyl acetate and iso-propenyl acetate furnished the highest conversion (9%) and enantiomeric excess (> 99%) of the (R)-ester. The alcohol:acyl donor molar ratio and temperature optimum were 1:1 and 28 deg respectively. The mixture of n-hexane/glycerol (9:1 v:v) was the most adequate for this reaction (conversion 23%, E > 200). The ginger starch/PEO (7:3 m/m) blend was successfully reused six times consecutively. (author)

  18. Evaluation of the Potentials of Some Cassava Varieties in Nigeria for ...

    African Journals Online (AJOL)

    Suitability of four cassava varieties (98/2101, 98/0505, TME 419, and TMS 4(2) 1425) for ethanol production was investigated. The total starch and amylose contents of variety 98/2101 were higher than those of the other three varieties. Variety 98/2101 also gave the highest ethanol productivity and yield. This was followed ...

  19. Genomics approaches to unlock the high yield potential of cassava, a tropical model plant

    Directory of Open Access Journals (Sweden)

    Shengkui ZHANG,Ping'an MA,Haiyan WANG,Cheng LU,Xin CHEN,Zhiqiang XIA,Meiling ZOU,Xinchen ZHOU,Wenquan WANG

    2014-12-01

    Full Text Available Cassava, a tropical food, feed and biofuel crop, has great capacity for biomass accumulation and an extraordinary efficiency in water use and mineral nutrition, which makes it highly suitable as a model plant for tropical crops. However, the understanding of the metabolism and genomics of this important crop is limited. The recent breakthroughs in the genomics of cassava, including whole-genome sequencing and transcriptome analysis, as well as advances in the biology of photosynthesis, starch biosynthesis, adaptation to drought and high temperature, and resistance to virus and bacterial diseases, are reviewed here. Many of the new developments have come from comparative analyses between a wild ancestor and existing cultivars. Finally, the current challenges and future potential of cassava as a model plant are discussed.

  20. Effect of multiple subcultures on Musa shoots derived from cassava ...

    African Journals Online (AJOL)

    Shoot tip explants excised from in vitro plantlets of two Musa genotypes (TM3X 15108-6 and TMBX 612-74) were seeded singly into test tubes containing twenty milliliters each of Musa multiplication medium gelled differently in 60 and 70 gL-l cassava starch as well as 5 gL-l agar and placed on shelves under 14 h photo ...

  1. Sensory evaluation of aromatic foods packed in developed starch based films using fuzzy logic

    Directory of Open Access Journals (Sweden)

    Tanima Chowdhury

    2015-04-01

    Full Text Available The last two decades have seen attempts to replace non biodegradable, synthetic food packaging films with alternatives made from biopolymers. The objective of the present work was to evaluate sensory quality of tea leaf and culinary tastemaker powder when sealed in pouches based on starch films.Films were developed from corn starch and a functional polysaccharide (FP from amylose (AM, methylcellulose (MC, and hydroxypropylmethylcellulose (HPMC, using a casting technique. Pouches were stored inside a secondary package (plastic jar under ambient condition for 90 days. Sensory attributes of the stored food samples were evaluated (tea in liquor form and the scores analysed by fuzzy logic. Results were compared with similarly stored foods but using market available poly-pouches as packaging material.For tea and tastemaker in general, the relative importance of the sensory attributes under consideration was assessed as:  aroma (Highly important >taste (Highly important>colour (Highly important > strength (Important for tea, and taste (Highly important>aroma (Highly important>colour (Important>appearance (Important for tastemaker. Among the three films that were developed, the highly important sensory attributes of aroma and taste were maintained as ‘Very good’ when the foods were packed in starch–HPMC/AM film. When the products were packed in market-available poly-pouches they exhibited similar attributes. With the exception of ‘Very good’ maintenance of the colour of tastemaker by the commercial pouch, irrespective of film and food, the colour and strength/appearance were retained in the ‘Good’-‘Satisfactory’ range. The overall sensory score of tea was also maintained as ‘Very good’ in starch-HPMC film.

  2. Chitosan-Starch Films with Natural Extracts: Physical, Chemical, Morphological and Thermal Properties

    Directory of Open Access Journals (Sweden)

    Jessica I. Lozano-Navarro

    2018-01-01

    Full Text Available The aim of this study is to analyze the properties of a series of polysaccharide composite films, such as apparent density, color, the presence of functional groups, morphology, and thermal stability, as well as the correlation between them and their antimicrobial and optical properties. Natural antioxidants such as anthocyanins (from cranberry; blueberry and pomegranate; betalains (from beetroot and pitaya; resveratrol (from grape; and thymol and carvacrol (from oregano were added to the films. Few changes in the position and intensity of the FTIR spectra bands were observed despite the low content of extract added to the films. Due to this fact, the antioxidants were extracted and identified by spectroscopic analysis; and they were also quantified using the Folin-Denis method and a gallic acid calibration curve, which confirmed the presence of natural antioxidants in the films. According to the SEM analysis, the presence of natural antioxidants has no influence on the film morphology because the stretch marks and white points that were observed were related to starch presence. On the other hand, the TGA analysis showed that the type of extract influences the total weight loss. The overall interpretation of the results suggests that the use of natural antioxidants as additives for chitosan-starch film preparation has a prominent impact on most of the critical properties that are decisive in making them suitable for food-packing applications.

  3. Chitosan-Starch Films with Natural Extracts: Physical, Chemical, Morphological and Thermal Properties

    Science.gov (United States)

    Díaz-Zavala, Nancy P.; Melo-Banda, José A.; García-Alamilla, Ricardo; Martínez-Hernández, Ana L.; Zapién-Castillo, Samuel

    2018-01-01

    The aim of this study is to analyze the properties of a series of polysaccharide composite films, such as apparent density, color, the presence of functional groups, morphology, and thermal stability, as well as the correlation between them and their antimicrobial and optical properties. Natural antioxidants such as anthocyanins (from cranberry; blueberry and pomegranate); betalains (from beetroot and pitaya); resveratrol (from grape); and thymol and carvacrol (from oregano) were added to the films. Few changes in the position and intensity of the FTIR spectra bands were observed despite the low content of extract added to the films. Due to this fact, the antioxidants were extracted and identified by spectroscopic analysis; and they were also quantified using the Folin-Denis method and a gallic acid calibration curve, which confirmed the presence of natural antioxidants in the films. According to the SEM analysis, the presence of natural antioxidants has no influence on the film morphology because the stretch marks and white points that were observed were related to starch presence. On the other hand, the TGA analysis showed that the type of extract influences the total weight loss. The overall interpretation of the results suggests that the use of natural antioxidants as additives for chitosan-starch film preparation has a prominent impact on most of the critical properties that are decisive in making them suitable for food-packing applications. PMID:29329275

  4. Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films

    Science.gov (United States)

    Sapkal, R. T.; Shinde, S. S.; Rajpure, K. Y.; Bhosale, C. H.

    2013-05-01

    Thin films of zinc oxide have been deposited onto glass/FTO substrates at optimized 400 °C by using a chemical spray pyrolysis technique. Deposited films are character photocatalytic activity by using XRD, an SEM, a UV-vis spectrophotometer, and a PEC single-cell reactor. Films are polycrystalline and have a hexagonal (wurtzite) crystal structure with c-axis (002) orientation growth perpendicular to the substrate surface. The observed direct band gap is about 3.22 eV for typical films prepared at 400 °C. The photocatalytic activity of starch with a ZnO photocatalyst has been studied by using a novel photoelectrocatalytic process.

  5. Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films

    International Nuclear Information System (INIS)

    Sapkal, R. T.; Shinde, S. S.; Rajpure, K.Y.; Bhosale, C. H.

    2013-01-01

    Thin films of zinc oxide have been deposited onto glass/FTO substrates at optimized 400 °C by using a chemical spray pyrolysis technique. Deposited films are character photocatalytic activity by using XRD, an SEM, a UV-vis spectrophotometer, and a PEC single-cell reactor. Films are polycrystalline and have a hexagonal (wurtzite) crystal structure with c-axis (002) orientation growth perpendicular to the substrate surface. The observed direct band gap is about 3.22 eV for typical films prepared at 400 °C. The photocatalytic activity of starch with a ZnO photocatalyst has been studied by using a novel photoelectrocatalytic process. (semiconductor materials)

  6. Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites

    International Nuclear Information System (INIS)

    Prachayawarakorn, Jutarat; Chaiwatyothin, Sudarat; Mueangta, Suwat; Hanchana, Areeya

    2013-01-01

    Highlights: ► TPCS matrix was reinforced by the low (jute) and high (kapok) absorbency cellulosic fibers. ► Water absorption of the TPCS/jute and TPCS/kapok fiber composites decreases. ► Stress and Young’s modulus of the TPCS/jute and TPCS/kapok fiber composites increase. ► Thermal degradation temperature of the TPCS/kapok fiber composite decreases. - Abstract: Since mechanical properties and water uptake of biodegradable thermoplastic cassava starch (TPCS) was still the main disadvantages for many applications. The TPCS matrix was, therefore, reinforced by two types of cellulosic fibers, i.e. jute or kapok fibers; classified as the low and high oil absorbency characteristics, respectively. The TPCS, plasticized by glycerol, was compounded by internal mixer and shaped by compression molding machine. It was found that water absorption of the TPCS/jute fiber and TPCS/kapok fiber composites was clearly reduced by the addition of the cellulosic fibers. Moreover, stress at maximum load and Young’s modulus of the composites increased significantly by the incorporation of both jute and kapok fibers. Thermal degradation temperature, determined from thermogravimetric analysis (TGA), of the TPCS matrix increased by the addition of jute fibers; however, thermal degradation temperature decreased by the addition of kapok fibers. Functional group analysis and morphology of the TPCS/jute fiber and TPCS/kapok fiber composites were also examined using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) techniques

  7. Effect of the addition order and amylose content on mechanical, barrier and structural properties of films made with starch and montmorillonite.

    Science.gov (United States)

    Romero-Bastida, C A; Bello-Pérez, L A; Velazquez, G; Alvarez-Ramirez, J

    2015-01-01

    This study considered the effect of amylose content (30% and 70%), montmorillonite (MMT) fraction (5 and 15%) and preparation method on mechanical and barrier properties of starch/clay nanocomposites prepared by casting. In Method 1, (30% w/w) glycerol was incorporated before starch gelatinization and MMT addition, while in Method 2 after gelatinization and MMT addition. Nanocomposites with higher amount of MMT showed the highest tensile strength and Young's modulus for both preparation methods. Method 1 favored nanocomposite properties of films with less amylose content, meanwhile Method 2 favored nanocomposites properties with higher amylose content. Water vapor permeability did not decrease significantly in starch films with different amylose content with the two different preparation methods. X-ray diffraction of the starch films indicated intercalated structures. Higher melting temperature (Tm) was found for nanocomposites with Method 2, indicating more ordered structures. Films with 70% amylose content have higher Tm than films with 30% amylose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    Science.gov (United States)

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-04

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Caracterização físico-química de filmes comestíveis de amido adicionado de acerola (Malphigia emarginata D.C.

    Directory of Open Access Journals (Sweden)

    Mônica Guimarães Farias

    2012-01-01

    Full Text Available Edibles films are an alternative to synthetic materials used for packing food products. Barbados cherry is rich in vitamin C and carotenoids. The aim of this study was to characterize and develop films by casting from cassava starch, lyophilized Barbados cherry pulp and glycerol. The films were characterized with respect to thickness, water vapor permeability (WVP, water solubility, vitamin C, carotene and mechanical properties. The interaction of pulp and glycerol reduced film thickness. An increase in pulp concentration up to 60% increased WVP but beyond this concentration reduced both WVP and solubility leading to an increased level of vitamin C and β carotene in the films.

  10. Creep behavior of starch-based nanocomposite films with cellulose nanofibrils.

    Science.gov (United States)

    Li, Meng; Li, Dong; Wang, Li-jun; Adhikari, Benu

    2015-03-06

    Nanocomposite films were successfully prepared by incorporating cellulose nanofibrils (CNFs) from sugar beet pulp into plasticized starch (PS) at CNFs concentration of 5-20%. The storage (G') and loss (G″) moduli, creep and creep-recovery behavior of these films were studied. The creep behavior of these films at long time frame was studied using time-temperature superposition (TTS). The CNFs were uniformly distributed within these films up to 15% of CNFs. The PS-only and the PS/CNFs nanocomposite films exhibited dominant elastic behavior. The incorporation of CNFs increased both the G' and G″. The CNFs improved the creep resistance and reduced the creep recovery rate of the PS/CNFs nanocomposite films. TTS method was successfully used to predict the creep behavior of these films at longer time frame. Power law and Burgers model were capable (R(2)>0.98) of fitting experimental G' versus angular frequency and creep strain versus time data, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Cassava traits and end-user preference: Relating traits to consumer liking, sensory perception, and genetics.

    Science.gov (United States)

    Bechoff, Aurélie; Tomlins, Keith; Fliedel, Geneviève; Becerra Lopez-Lavalle, Luis Augusto; Westby, Andrew; Hershey, Clair; Dufour, Dominique

    2018-03-04

    Breeding efforts have focused on improving agronomic traits of the cassava plant however little research has been done to enhance the crop palatability. This review investigates the links between cassava traits and end-user preference in relation with sensory characteristics. The main trait is starch and its composition related to the textural properties of the food. Pectin degradation during cooking resulted in increased mealiness. Nutritional components such as carotenoids made the cassava yellow but also altered sweetness and softness; however, yellow cassava was more appreciated by consumers than traditional (white) varieties. Components formed during processing such as organic acids gave fermented cassava products an acidic taste that was appreciated but the fermented smell was not always liked. Anti-nutritional compounds such as cyanogenic glucosides were mostly related to bitter taste. Post-harvest Physiological Deterioration (PPD) affected the overall sensory characteristics and acceptability. Genes responsible for some of these traits were also investigated. Diversity in cassava food products can provide a challenge to identifying acceptance criteria. Socio-economic factors such as gender may also be critical. This review leads to questions in relation to the adaptation of cassava breeding to meet consumer needs and preference in order to maximize income, health and food security.

  12. Comparasion of iles-iles and cassava tubers as a Saccharomyces cerevisiae substrate fermentation for bioethanol production

    Directory of Open Access Journals (Sweden)

    KUSMIYATI

    2010-01-01

    Full Text Available Kusmiyati (2010 Comparasion of iles-iles and cassava tubers as a Saccharomyces cerevisiae substrate fermentation for bioethanol production. Nusantara Bioscience 2: 7-13. The production of bioethanol increase rapidly because it is renewable energy that can be used to solve energy crisis caused by the depleting of fossil oil. The large scale production bioethanol in industry generally use feedstock such as sugarcane, corn, and cassava that are also required as food resouces. Therefore, many studies on the bioethanol process concerned with the use raw materials that were not competing with food supply. One of the alternative feedstock able to utilize for bioethanol production is the starchy material that available locally namely iles-iles (Amorphophallus mueller Blum. The contain of carbohydrate in the iles-iles tubers is around 71.12 % which is slightly lower as compared to cassava tuber (83,47%. The effect of various starting material, starch concentration, pH, fermentation time were studied. The conversion of starchy material to ethanol have three steps, liquefaction and saccharification were conducted using α-amylase and amyloglucosidase then fermentation by yeast S.cerevisiaie. The highest bioethanol was obtained at following variables starch:water ratio=1:4 ;liquefaction with 0.40 mL α-amylase (4h; saccharification with 0.40 mL amyloglucosidase (40h; fermentation with 10 mL S.cerevisiae (72h producing bioethanol 69,81 g/L from cassava while 53,49 g/L from iles-iles tuber. At the optimum condition, total sugar produced was 33,431 g/L from cassava while 16,175 g/L from iles-iles tuber. The effect of pH revealed that the best ethanol produced was obtained at pH 5.5 during fermentation occurred for both cassava and iles-iles tubers. From the results studied shows that iles-iles tuber is promising feedstock because it is producing bioethanol almost similarly compared to cassava.

  13. Poly(Lactic Acid) Filled with Cassava Starch-g-Soybean Oil Maleate

    OpenAIRE

    Kiangkitiwan, Nopparut; Srikulkit, Kawee

    2013-01-01

    Poly(lactic acid), PLA, is a biodegradable polymer, but its applications are limited by its high cost and relatively poorer properties when compared to petroleum-based plastics. The addition of starch powder into PLA is one of the most promising efforts because starch is an abundant and cheap biopolymer. However, the challenge is the major problem associated with poor interfacial adhesion between the hydrophilic starch granules and the hydrophobic PLA, leading to poorer mechanical properties....

  14. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles.

    Science.gov (United States)

    Oleyaei, Seyed Amir; Zahedi, Younes; Ghanbarzadeh, Babak; Moayedi, Ali Akbar

    2016-08-01

    In this research, potato starch and TiO2 nanoparticles (0.5, 1 and 2wt%) films were developed. Influences of different concentrations of TiO2 on the functional properties of nanocomposite films (water-related properties, mechanical characteristics, and UV transmittance) were investigated. XRD, FTIR, and DSC analyses were used to characterize the morphology and thermal properties of the films. The results revealed that TiO2 nanoparticles dramatically decreased the values of water-related properties (water vapor permeability: 11-34%; water solubility: 1.88-9.26%; moisture uptake: 2.15-11.18%). Incorporation of TiO2 led to a slight increment of contact angle and tensile strength, and a decrease in elongation at break of the films. TiO2 successfully blocked more than 90% of UV light, while opacity and white index of the films were enhanced. Glass transition temperature and melting point of the films were positively affected by the addition of TiO2 nanoparticles. The result of XRD study exhibited that due to a limited agglomeration of TiO2 nanoparticles, the mean crystal size of TiO2 increased. Formation of new hydrogen bonds between the hydroxyl groups of starch and nanoparticles was confirmed by FTIR spectroscopy. In conclusion, TiO2 nanoparticles improved the functional properties of potato starch film and extended the potential for food packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Citric acid as multifunctional agent in blowing films of starch/PBAT

    Directory of Open Access Journals (Sweden)

    Patrícia Salomão Garcia

    2011-09-01

    Full Text Available Citric acid was used as a compatibilizer in the production of starch and PBAT films plasticized with glycerol and processed by blow extrusion. Films produced were characterized by WVP, mechanical properties, FT-IR-ATR and SEM. WPV ranged from 3.71 to 12.73×10-11 g m-1 s-1 Pa-1, while tensile strength and elongation at break ranged from 1.81 to 7.15 MPa and from 8.61 to 23.63%, respectively. Increasing the citric acid concentration improved WVP and slightly decreased film resistance and elongation. The films micrographs revealed a more homogeneous material with the addition of citric acid. However, the infrared spectra revealed little about cross-linking esterification reaction

  16. Instant blend from cassava derivatives produced by extrusion

    OpenAIRE

    Trombini, Fernanda Rossi Moretti; Mischan, Martha Maria; Leonel, Magali

    2016-01-01

    ABSTRACT: The current research aimed to evaluate the effects of extrusion parameters on the physical characteristics of extruded blends of cassava leaf flour and starch. A factorial central composite design with four independent variables and the response surface methodology were used to evaluate the results of color parameters (L*, a*, b*), water absorption index, water solubility index and paste properties, according to the variations in the leaf flour percentage (1.5 to 7.5%), extrusion te...

  17. Development of cassava periclinal chimera may boost production.

    Science.gov (United States)

    Bomfim, N; Nassar, N M A

    2014-02-10

    Plant periclinal chimeras are genotypic mosaics arranged concentrically. Trials to produce them to combine different species have been done, but pratical results have not been achieved. We report for the second time the development of a very productive interspecific periclinal chimera in cassava. It has very large edible roots up to 14 kg per plant at one year old compared to 2-3 kg in common varieties. The epidermal tissue formed was from Manihot esculenta cultivar UnB 032, and the subepidermal and internal tissue from the wild species, Manihot fortalezensis. We determined the origin of tissues by meiotic and mitotic chromosome counts, plant anatomy and morphology. Epidermal features displayed useful traits to deduce tissue origin: cell shape and size, trichome density and stomatal length. Chimera roots had a wholly tuberous and edible constitution with smaller starch granule size and similar distribution compared to cassava. Root size enlargement might have been due to an epigenetic effect. These results suggest a new line of improved crop based on the development of interspecific chimeras composed of different combinations of wild and cultivated species. It promises boosting cassava production through exceptional root enlargement.

  18. Efficient transformation and regeneration of transgenic cassava using the neomycin phosphotransferase gene as aminoglycoside resistance marker gene.

    Science.gov (United States)

    Niklaus, Michael; Gruissem, Wilhelm; Vanderschuren, Hervé

    2011-01-01

    Cassava is one of the most important crops in the tropics. Its industrial use for starch and biofuel production is also increasing its importance for agricultural production in tropical countries. In the last decade cassava biotechnology has emerged as a valuable alternative to the breeding constraints of this highly heterozygous crop for improved trait development of cassava germplasm. Cassava transformation remains difficult and time-consuming because of limitations in selecting transgenic tissues and regeneration of transgenic plantlets. We have recently reported an efficient and robust cassava transformation protocol using the hygromycin phosphotransferase II (hptII) gene as selection marker and the aminoglycoside hygromycin at optimal concentrations to maximize the regeneration of transgenic plantlets. In the present work, we expanded the transformation protocol to the use of the neomycin phosphotransferase II (nptII) gene as selection marker. Several aminoglycosides compatible with the use of nptII were tested and optimal concentrations for cassava transformation were determined. Given its efficiency equivalent to hptII as selection marker with the described protocol, the use of nptII opens new possibilities to engineer transgenic cassava lines with multiple T-DNA insertions and to produce transgenic cassava with a resistance marker gene that is already deregulated in several commercial transgenic crops.

  19. Investigation of photo-biodegradation of starch-filled polyethylene films under the environment conditions of Tehran

    International Nuclear Information System (INIS)

    Naeimian, F.; Khoylou, F.; Sheikh, N.; Akhavan, A.; Hassanpour, S.; Sohrabpour, M.

    2006-01-01

    In this work biodegradable polymers have been formulated for packaging purposes and with a view to reduce the environmental accumulation of plastic waste. Degradation of the polymers under the specific weathering conditions of Tehran was studied. In this work low-density polyethylene was formulated with two wheat starch concentrations, maleic anhydride, glycerol as well as a pro-oxidant system of oleic acid, benzoyl peroxide and ferric stearate. The formulated master batches were mixed by using a laboratory two-roll mill at 190 d ig C prepared master batches were mixed with the commercial low-density polyethylene to prepare compounds 1 and 2 containing 1.2 and 6.4 percents wheat starch. The low-density polyethylene control films as well as the formulated compounds were compression moulded in a hot press at 130 d ig C films were subjected to three general conditions of atmospheric exposure, buried in soil and combined conditions of soil burial/ atmospheric exposure. The three environmental conditions impact upon the formulated and control films were investigated through tensile strength, elongation-at-break, carbonyl index, water absorption, weight loss as well as SEM analysis. The microbial investigation was followed by growing the Penicillium Asymmetrica, which had the main population in microbial flora of the soil, on formulated and control films. The studies revealed that the incorporation of this pro-oxidant system with the addition of 6.4% wheat starch enhance the degradation rate of commercial low-density polyethylene films to a significant degree

  20. Effect of ionizing electron beam radiation on properties of edible biopolymers based on isolated soybean protein and cassava starch; Efeito da radiação ionizante de feixe de elétrons em propriedades de biopolímeros comestíveis a base de proteína isolada de soja e fécula de mandioca

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Vanessa Bernardo

    2017-07-01

    In recent decades, there has been a substantial increase in the amount of research focusing on the development and characterization of biodegradable materials, particularly edible films. The use of polymers from renewable sources, prepared from plant products, has gained importance in this approach. Soy protein concentrate and cassava starch may be considered an alternative to petrochemical polymers. Processing by ionizing radiation can be used for the modification of polymers and macromolecules, resulting in new materials with great prospects of industrial use. The food industry, one of the traditionally most innovative industries, requires the constant development of new products. The widely known ability of film forming proteins and polysaccharides is a starting point for the development of new materials that meet the varying requirements of this pungent industry. In this work, films based on manioc starch and isolated soy protein were prepared in two different proportions and later irradiated and analyzed for their mechanical properties, color, water absorption, water vapor permeability, TGA and DSC thermal analysis between others. The films became apparently more soluble and less resistant to drilling with the increased radiation dose applied. Regarding the thermal properties, it was observed that the films with greater protein orientation are more resistant. Properties such as water vapor permeability and water absorption, the films were less permeable at the 40 kGy dose. With regard to water absorption, it was reduced as a function of the radiation dose. Films with good resistance to water vapor and with low absorption are considered efficient for food packaging. Radiation has proven to be a convenient tool in the modification of polymeric materials mainly for the production of soluble films where it is a new trend for bioactive packaging. (author)

  1. Mechanical, barrier and morphological properties of pea starch and peanut protein isolate blend films.

    Science.gov (United States)

    Sun, Qingjie; Sun, Cuixia; Xiong, Liu

    2013-10-15

    Mechanical, barrier and morphological properties of edible films based on blends of Pea starch (PS) and Peanut protein isolate (PPI) plasticized with glycerol (30%, w/w) were investigated. As PPI ratio in PS/PPI blends increased, the thickness of films decreased, the opacity slightly elevated and color intensified. The addition of PPI to the PS film significantly reduced tensile strength from 5.44 MPa to 3.06 MPa, but increased elongation from 28.56% to 98.12% with the incorporation of PPI into PS at 50% level. Film solubility value fell from 22.31% to 9.78% upon the incorporation of PPI ranged from 0 to 50% level. When PPI was added into PS film at 40% level, the WVP and WVTR of the films markedly dropped from 11.18% to 4.19% and 6.16 to 1.95%, respectively. Scanning electron microscopy (SEM) of the surface of films showed that many swollen starch granules were presented in the 100% PS film, while 100% PPI film was observed to have rougher surfaces with presence of pores or cavities. The PS/PPI blend films upon the incorporation of PPI at 20% and 50% level were not homogeneous. However, the smoother film surface was observed in PS/PPI blend films with the addition of PPI at 40% level. SEM image of the cross-sections of the films revealed that the 100% PS film showed a uniform and compact matrix without disruption, and pore formation and 100% PPI film displayed a smooth structure. Rougher and flexible network was shown in blend film with the addition of PPI reaching 40% level. Copyright © 2013. Published by Elsevier Ltd.

  2. Removal of total suspended solid by natural coagulant derived from cassava peel waste

    Science.gov (United States)

    Mohd-Asharuddin, S.; Othman, N.; Mohd-Zin, N. S.; Tajarudin, H. A.

    2018-04-01

    The present study was aimed to investigate the performance of starch derived from cassava peel waste as primary coagulant and coagulant aid. Comparable study was also conducted using commercially used aluminium sulfate (alum) as primary coagulant. A series of Jar tests were performed using raw water from Sembrong Barat water treatment plant. It was observed that coagulation test using cassava peel starch (CPS) alone had unappreciable removing ability. However, it was found that combination of alum-CPS successfully achieve up to 90.48% of total suspended solid (TSS) removal under optimized working conditions (pH 9, 7.5mg/L : 100 mg/L of alum : CPS dosage, rapid mixing of 200 rpm for 1 minute; 100 rpm for 2 minutes, slow mixing of 25 rpm for 30 minutes and 30 minutes settling time). This remarks the reduction in alum dosage up to 50% compared to coagulation test using alum alone. Therefore this finding suggesting that CPS can be considered as potential source of sustainable and effective coagulant aid for water treatment especially in developing countries.

  3. Influence of the use of acids and films in post-harvest lychee conservation Influência da utilização de ácidos e filmes na conservação pós-colheita de lichia

    Directory of Open Access Journals (Sweden)

    Danielle Fabíola Pereira da Silva

    2012-12-01

    Full Text Available Lychee (Litchi chinensis Sonn. has a high commercial value; however, it has a short shelf-life because of its rapid pericarp browning. The objective of this study was to evaluate the shelf-life of 'Bengal' lychee fruits stored after treatment with hydrochloric acid and citric acid, associated with cassava starch and plastic packaging. Uniformly red pericarp fruits were submitted to treatments: 1-(immersion in citric acid 100 mM for 5 minutes + cassava starch 30 g L-1 for 5 minutes, 2-(immersion in hydrochloric acid 1 M for 2 minutes + starch cassava 30 g L-1 for 5 minutes, 3-(immersion in citric acid 100 mM for 5 minutes + polyvinyl chloride film (PVC, 14 µm thick and 4-(immersion in hydrochloric acid 1 M for 2 minutes + PVC film. During 20 days, the fruits were evaluated for mass loss, pericarp color, pH, soluble solids and titratable acidity, vitamin C of the pulp and pericarp and activities of polyphenol oxidase and peroxidase of the pericarp. The treatment with hydrochloric acid associated with PVC was the most effective in maintaining the red color of the pericarp for a period of 20 days and best preservation of the fruit. The cassava starch associated with citric acid, and hydrochloric acid did not reduce the mass loss and did not prevent the browning of lychee fruit pericarp.A lichia (Litchi chinensis Sonn. possui alto valor comercial no mercado, entretanto, apresenta vida útil pós-colheita curta, por causa do rápido escurecimento do pericarpo. O objetivo deste trabalho foi avaliar a vida útil pós-colheita de lichias 'Bengal', armazenadas após tratamento com ácido clorídrico e ácido cítrico, associados a fécula de mandioca e embalagem plástica. Frutos com pericarpos uniformemente vermelhos foram submetidos aos tratamentos: 1-( imersão em ácido cítrico 100 mM por 5 minutos + fécula de mandioca 30 g/L por 5 minutos; 2-( imersão em ácido clorídrico 1 M por 2 minutos + fécula de mandioca 30 g/L por 5 minutos; 3-( imers

  4. Effect of Plasticizer Type and Concentration on Tensile, Thermal and Barrier Properties of Biodegradable Films Based on Sugar Palm (Arenga pinnata Starch

    Directory of Open Access Journals (Sweden)

    Muhammed L. Sanyang

    2015-06-01

    Full Text Available The use of starch based films as a potential alternative choice to petroleum derived plastics is imperative for environmental waste management. This study presents a new biopolymer (sugar palm starch for the preparation of biodegradable packaging films using a solution casting technique. The effect of different plasticizer types (glycerol (G, sorbitol (S and glycerol-sorbitol (GS combination with varying concentrations (0, 15, 30 and 45, w/w% on the tensile, thermal and barrier properties of sugar palm starch (SPS films was evaluated. Regardless of plasticizer types, the tensile strength of plasticized SPS films decreased, whereas their elongation at break (E% increased as the plasticizer concentrations were raised. However, the E% for G and GS-plasticized films significantly decreased at a higher plasticizer concentration (45% w/w due to the anti-plasticization effect of plasticizers. Change in plasticizer concentration showed an insignificant effect on the thermal properties of S-plasticized films. The glass transition temperature of SPS films slightly decreased as the plasticizer concentration increased from 15% to 45%. The plasticized films exhibited increased water vapor permeability values from 4.855 × 10−10 to 8.70 × 10−10 g·m−1·s−1·Pa−1, irrespective of plasticizer types. Overall, the current study manifested that plasticized sugar palm starch can be regarded as a promising biopolymer for biodegradable films.

  5. The Effect of Emulsifier and Hydrocolloid on Baking Expansion and Texture of Bread from Modified Cassava

    Directory of Open Access Journals (Sweden)

    Pudjihastuti Isti

    2018-01-01

    Full Text Available Indonesia has a very abundant cassava that can be used instead of wheat. Bread made from cassava is safe for celiac sufferers, in which cannot tolerate a protein called gluten found in wheat flour. However, bread from cassava has the disadvantage that it cannot inflate perfectly. Our research goal is to study the effect of emulsifier and hydrocolloid concentration as modifying agents on baking expansion and bread texture (hardness. The test level hedonic preference for bread products results from modified tapioca is also necessary to know the level of customer satisfaction. This study were conducted by three main stages, modification of cassava, baking process, and analyses. Modification of cassava starch was applied using combination of lactic acid solution and ultra violet (UV irradiation. Emulsifier (DATEM and hydrocolloid (xanthan gum were used in baking process. The addition of emulsifier and hydrocolloid can improve baking expansion. The addition of 7% emulsifiers on modified cassava can increase the volume of bread, taste, and texture so it can give greater satisfaction to consumers. Hydrocolloid can replace the function of gluten so the bread can inflate perfectly. The optimal composition of modified cassava in bread making is 25% of modified cassava and 75% of wheat flour. The low value of texture (hardness on bread made from modified cassava indicated a better performance in comparison with native cassava. Baking expansion and texture of the bread is influenced by the modification process. Furthermore, the comprehensive and optimum studies of modification need to be investigated.

  6. MODELING OF THE SEPARATION OF PARTICLES NOT RETAINED IN THE STAGE OF SEDIMENTATION ON CHANELS: EXTRACTION PROCESS CASSAVA STARCH

    Directory of Open Access Journals (Sweden)

    Patricia Torres Lozada

    2014-12-01

    Full Text Available On the settling stage in channels of the extraction process of the cassava starch, is generated around 80% of the total wastewater from the process. On this study, we analyze the theoretical modeling of the particles that are not retained in the channels basing on the analyses of settling of discrete particles with sizes between 2 and 8 microns, using the Stockes Law. The theoretical modeling showed that the sedimentation rate is between 0,007 and 0,112 cm/min. With this rate range and a critical flow rate of 1,5 L/s, for the total removal of the particles, it is required a structure with a surface area of 1288 m2 , height of 1 m and approximately 10 days. This study shows that is not economically or technically feasible the conventional nor high settling to retain this type of particles, being advisable to evaluate different mechanisms to improve the separation efficiency of particles that may potentiate their use and to avoid the contamination of the receiving bodies of these effluents

  7. SYNTHESIS AND CHARACTERIZATION OF BIODEGRDABLE PLASTIC FROM CASAVA STARCH AND ALOE VERA EXTRACT WITH GLYCEROL PLASTICIZER

    Directory of Open Access Journals (Sweden)

    Mery Apriyani

    2016-05-01

    Full Text Available Synthesis and characterizations of Biodegradable Plastic made of Cassava Waste Starch, glycerol, acetic acid and Aloe vera extract has done. The aims of this research are to study the influence of addition of aloe vera extract in plastics mechanics properties, water vapor transmission rate and biodegradation. There are five main steps in this research, extraction of aloe vera, cassava starch preparation from cassava waste, preparations, characterization and biodegradability study of biodegradable plastic. The addition variations of aloe vera extract that used in this research are 0.01; 0.03; 0.05; 0.07 and 0.14 grams. Results showed that the addition of aloe Vera tends to increased biodegrable plastic thickness to 0.01 mm and elongation to 32.07%. However, biodegradable plastic tensile strength tends to decreased to 23.95 Mpa. Optimum tensile strength is 3.90 Mpa and elongation is 34.43%. Optimum water vapor transmission rate is 2.40 g/m2hours. Biodegradation study of biodegradable plastic showed that addition of aloe vera extract doesn’t significantly influence in plastic degradations.

  8. Preparation and Application of Starch/Polyvinyl Alcohol/Citric Acid Ternary Blend Antimicrobial Functional Food Packaging Films

    Directory of Open Access Journals (Sweden)

    Zhijun Wu

    2017-03-01

    Full Text Available Ternary blend films were prepared with different ratios of starch/polyvinyl alcohol (PVA/citric acid. The films were characterized by field emission scanning electron microscopy (FE-SEM, thermogravimetric analysis, as well as Fourier transform infrared (FTIR analysis. The influence of different ratios of starch/polyvinyl alcohol (PVA/citric acid and different drying times on the performance properties, transparency, tensile strength (TS, water vapor permeability (WVP, water solubility (WS, color difference (ΔE, and antimicrobial activity of the ternary blends films were investigated. The starch/polyvinyl alcohol/citric acid (S/P/C1:1:0, S/P/C3:1:0.08, and S/P/C3:3:0.08 films were all highly transparent. The S/P/C3:3:0.08 had a 54.31 times water-holding capacity of its own weight and its mechanical tensile strength was 46.45 MPa. In addition, its surface had good uniformity and compactness. The S/P/C3:1:0.08 and S/P/C3:3:0.08 showed strong antimicrobial activity to Listeria monocytogenes and Escherichia coli, which were the food-borne pathogenic bacteria used. The freshness test results of fresh figs showed that all of the blends prevented the formation of condensed water on the surface of the film, and the S/P/C3:1:0.08 and S/P/C3:3:0.08 prevented the deterioration of figs during storage. The films can be used as an active food packaging system due to their strong antibacterial effect.

  9. Improvement of raw starch digestibility by ion-beam mutation of Aspergillus awamori

    Energy Technology Data Exchange (ETDEWEB)

    Amsal, Aryanti [National Atomic Energy Agency, Jakarta (Indonesia); Takigami, Machiko; Ito, Hitoshi

    1998-09-01

    Aspergillus awamori possess the ability to express raw starch digestibility. For the effective utilization of starchy crops produced in South-Asian countries, it is important to achieve the digestion of raw starchs for industrial fermentation process. In this study, higher ratio of mutant strains of Aspergillus awamori IFO4033 were isolated by irradiation of C{sup 5+} ion-beam on freeze dried spores with improvement of enzyme production for two-to threefold in the extracellular {alpha}-amylase compared with gamma-irradiation. The digestibility of raw starch from cassava, sago and sukun increased remarkably about two-to threefold by some mutant strains obtained from irradiation of C{sup 5+} ion-beam. (author)

  10. Improvement of raw starch digestibility by ion-beam mutation of Aspergillus awamori

    International Nuclear Information System (INIS)

    Amsal, Aryanti; Takigami, Machiko; Ito, Hitoshi

    1998-01-01

    Aspergillus awamori possess the ability to express raw starch digestibility. For the effective utilization of starchy crops produced in South-Asian countries, it is important to achieve the digestion of raw starchs for industrial fermentation process. In this study, higher ratio of mutant strains of Aspergillus awamori IFO4033 were isolated by irradiation of C 5+ ion-beam on freeze dried spores with improvement of enzyme production for two-to threefold in the extracellular α-amylase compared with gamma-irradiation. The digestibility of raw starch from cassava, sago and sukun increased remarkably about two-to threefold by some mutant strains obtained from irradiation of C 5+ ion-beam. (author)

  11. Properties of cast films made of chayote (Sechium edule Sw.) tuber starch reinforced with cellulose nanocrystals

    Science.gov (United States)

    In this study, cellulose (C) and cellulose nanocrystals (CN) were blended with chayote tuber (Sechium edule Sw.) starch (CS) in formulations cast into films. The films were conditioned at different storage temperatures and relative humidity (RH), and analyzed by mechanical tests, X-ray diffraction, ...

  12. Biodegradable starch-based films containing saturated fatty acids: thermal, infrared and raman spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    Marcelo M. Nobrega

    Full Text Available Biodegradable films of thermoplastic starch and poly (butylene adipate co-terephthalate (PBAT containing fatty acids were characterized thermally and with infrared and Raman spectroscopies. The symmetrical character of the benzene ring in PBAT provided a means to illustrate the difference between these spectroscopic techniques, because a band appeared in the Raman spectrum but not in the infrared. The thermal analysis showed three degradation stages related to fatty acids, starch and PBAT. The incorporation of saturated fatty acids with different molecular mass (caproic, lauric and stearic did not change the nature of the chemical bonds among the components in the blends of starch, PBAT and glycerol, according to the thermal analysis, infrared and Raman spectroscopies.

  13. EFFECTS OF SUCROSE AND VEGETABLE OIL ON PROPERTIES ...

    African Journals Online (AJOL)

    nindjin.c

    diameter) to minimize the formation of air bubbles included in the film. ..... polymeric chains was more difficult to make due to the molecule structure of ... observed during storage, due to sucrose addition to cassava starch-xanthan gum films,.

  14. Data of thermal degradation and dynamic mechanical properties of starch-glycerol based films with citric acid as crosslinking agent.

    Science.gov (United States)

    González Seligra, Paula; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-06-01

    Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch-glycerol based films with citric acid (CA) as crosslinking agent described in the article titled: "Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent" González Seligra et al. (2016) [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature.

  15. Structural properties and gelatinisation characteristics of potato and cassava starches and mutants thereof

    NARCIS (Netherlands)

    Gomand, S.V.; Lamberts, L.; Derde, L.J.; Groesaert, H.; Vandeputte, G.E.; Goderis, B.; Visser, R.G.F.; Delcour, J.A.

    2010-01-01

    The molecular size of amylopectin (AP) and amylose (AM), AP chain length distribution, crystallinity and granular structure (morphology and granule size distribution) of five wild type potato starches (wtps), five AM free potato starches (amfps), four high-AM potato starches (haps), one wild type

  16. Quantification of starch physicochemical characteristics in a cassava ...

    African Journals Online (AJOL)

    ... cloned (6-8 plants per genotype) and established in a single-row trial. ... In the parents, it ranged between 1.3-8.6 and 50-67g100g-1 starch at 60oC, respectively. ... In both the parents and the F1 families, the reducing sugar and protein ...

  17. The effect of poly(vinyl alcohol) type and radiation treatment on the properties of starch-poly(vinyl alcohol) films

    Science.gov (United States)

    Cieśla, Krystyna; Abramowska, Anna; Boguski, Jacek; Drewnik, Joanna

    2017-12-01

    Our present study concerns the effect of application of various PVA substrates and the influence of ionising radiation on the properties of films based on starch and PVA. Four PVAs revealing various molecular masses (in the range of 11-145 kDa) were selected for this purpose. The films characterized by starch: PVA ratios of 40:60 were prepared by solution casting and irradiated with 60Co gamma rays (under nitrogen) and with fast electrons (under air) applying the absorbed dose of 25 kGy. Mechanical properties of the films (tensile strength, elongation at break and Young Modulus) were examined, as well as the contact angle to water and swelling in water, in regard for evaluation of the hydrophilic/hydrophobic properties. Gel content in the samples was also determined. Physicochemical properties of the films and their sensitivity to irradiation strongly depend on the applied PVA substrate. This can be related to differences in the capability of particular PVAs for forming the crosslinked starch-PVA network during the films' synthesis and future treatment. In particular, the usage of the PVA characterized by the high molecular mass has appeared more rewarding as compared to those based on the low molecular mass PVAs. Additionally, properties of these films were not affected or improved after irradiation.

  18. Bulk H analysis using neutrons for routine quality control of cassava and products

    International Nuclear Information System (INIS)

    Jonah, S.A.; Okunade, I.O.; Abolude, O.; Onyike, E.; Inuwa, I.M.

    2011-01-01

    Nuclear and related techniques are useful in addressing the issues of food security and safety facing the world today, via quality control of raw materials and products. In this work, experimental investigations were performed to assess the use of total hydrogen content in cassava and products as a quality control indicator of starch and cyanide contents. The work was carried out using a neutron reflection facility at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria. Cassava samples and products were obtained from retail outlets of Ibadan, Umudike and Zaria, representing three major regions of Nigeria. In general, data obtained indicate a total hydrogen content range of 4.47±0.11-10.71±0.27 wt% for the various samples, including raw, dry and processed cassava. Results show that samples having low hydrogen content are generally rich in cyanide compounds and demonstrate an inverse relationship between hydrogen content and cyanide content. The implication of this is that the neutron reflection facility can be used as a quality control setup for routine determination of hydrogen as an indicator of the cyanide content in cassava and products.

  19. THERMAL ANALYSIS, RHEOLOGY, X-RAY DIFFRACTOMETRY AND ATOMIC FORCE MICROSCOPY IN THE EVALUATION OF BINARY MIXTURES OF “STARCH-HYDROCOLLOIDS”

    Directory of Open Access Journals (Sweden)

    Crislaine Alberton

    2014-02-01

    Full Text Available Starch is arguably the most investigated biopolymer in the world and the cassava starch that is extracted from Manihot esculenta Crantz, represents an important vegetal crop in tropical countries, where its roots and derivatives serve as food and a source of energy. The main composition of these roots is 70-80% water, 16-24% starch and small quantities (<4% of protein, lipids vitamins and minerals. Hydrocolloids, or gums, are substances consisting of a hydrophilic long-chain with colloidal properties that, in water-based systems, produce gels. Starches and hydrocolloids are often used together in food systems to provide texture, water mobility, control moisture, improve product quality and stability, facilitate processing and reduce costs. In this study, the interactions between cassava and starch-hydrocolloids (1% of the following gums: CMC, jatahy, pectin and xanthan were investigated. The TG/DTG method made it possible to determine the thermal decomposition of each sample, which under air atmosphere occurs in three steps. Little difference was observed in the degree of relative crystallinity (XRD and in the average roughness or average diameter of the starch granules (NC-AFM. The viscosity and pasting properties (RVA increased, and were higher for starch treated with jatahy gum. A large decrease was observed in peak temperature and gelatinisation enthalpy for the treated samples (DSC.

  20. Evaluation of the pasting and some functional properties of starch ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... It is essentially a carbohydrate food with low protein and fat. Edible part of ... The cassava roots used for the study were harvested at 12 months after planting. .... or gel after cooling and that less stability of starch paste is commonly ... to the simple kinetic effect of cooling on viscosity and the re-association of ...

  1. The structural modification of cassava starch using a saline water pretreatment

    Directory of Open Access Journals (Sweden)

    Hanny Frans SANGIAN

    2018-04-01

    Full Text Available Abstract The cassava has been modified successfully by using the saline water, which was abundantly available on the planet. The biomass was submerged in saline waters that salt concentrations were altered at 0, 3.5 percent (seawater and 10 percent (w/w and were kept 5 days. After recovery by washing steps, the treated solids were characterized by using XRD (X-ray diffraction , FTIR (Fourier transform infra-red, and SEM (Scanning electron microscopic. The results showed that the XRD pattern of saline water pretreatment decreased significantly. The biggest decrease of X-ray intensity occurred at around 18o. Meanwhile, the fingerprint of FTIR revealed the transmittance intensity of infra-red ray of saline water treated solid inclined for all wave constant numbers, suggesting that many hydrogen bonds were disconnected. Those findings also were enhanced by SEM pictures that showed the change of surface morphology of treated biomass. It was indicative that cassava structure was modified becoming more textured after employing saline water pretreatment. This work is an innovative finding to gradually substitute commercial ionic liquids that are very expensive with saline water for biomass pretreatment.

  2. Characterization of different cassava samples by nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Iulianelli, Gisele C.V.; Tavares, Maria I.B.

    2011-01-01

    Cassava root (Manihot esculenta Crantz) is grown in all Brazilian states, being an important product in the diet of Brazilians. For many families of the North and Northeast states, it may represent the main energy source. The cassava root flour has high levels of starch, in addition to containing fiber, lipids and some minerals. There is, however, great genetic variability, which results in differentiation in its chemical composition and structural aspect. Motivated by the economic, nutritional and pharmacological importance of this product, this work is aimed at characterizing six cassava flour samples by NMR spectroscopy. The spectra revealed the main chemical groups. Furthermore, the results confirmed differences on chemical and structural aspect of the samples. For instance, the F1 sample is richer in carbohydrates, while the F4 sample has higher proportion of glycolipids, the F2 sample has higher amylose content and the F6 sample exhibits a greater diversity of glycolipid types. Regarding the molecular structure, the NMR spectra indicated that the F1 sample is more organized at the molecular level, while the F3 and F5 samples are similar in amorphicity and in the molecular packing. (author)

  3. Utilization of cassava waste through fermentation technology

    International Nuclear Information System (INIS)

    Lotong, N.

    1991-01-01

    Over 400 isolates of molds were screened for raw starch digesting enzymes and aspergillus J8 ad Rhizopus N37 were selected for further investigations. Crude enzymes obtained from wheat bran was higher than from rice bran. Crude enzymes from Aspergillus is active at pH 4.0, whereas that from Rhizopus is active at pH 5.0. Aspergillus J8 gave higher yield of silage fermentation. Selection of yeast strain was accomplished, it was found that Saccharomyces cerevisiae SC90, the local commercial strain (non-flocculent) performed best in fermentation of cassava mash. Another strain AM12, a flocculent fusant strain derived from fusion between flocculent strain and sake brewing strain was comparable to that of commercial strain at normal temperature but performed better at higher temperature up to 40 deg C. It is unlikely that fuel alcohol produced from raw cassava will be able to compete with petroleum fuel at this moment. However, silage fermentation to increase nutritional quality of the silage through selected strains of microorganisms has a good prospect to pursue. (author)

  4. Starch films: production, properties and potential of utilization / Filmes de amido: produção, propriedades e potencial de utilização

    Directory of Open Access Journals (Sweden)

    Fábio Yamashita

    2010-04-01

    Full Text Available There is an increasing interest in the utilization of renewable resources for the production of food packaging. Among the biopolymers, starches from several sources have been considered as one of the most promising material for this purpose, and the reasons for this are that starches are biodegradable, are inexpensive and available in the worldwide. This work presents a bibliography review about biodegradable starch films characterization and potential of utilization. Discusses the starch films mechanical and barrier properties, the cristallinity and the effects of the use of plasticizers over these properties. The discussed informations indicate that exist great possibilities for these materials in food packaging, which depend on the production of more stable materials and the development of production technology in industrial scale.O interesse no emprego de matérias-primas provenientes de recursos renováveis para a produção de embalagens de alimentos vem crescendo. Dentre os biopolímeros mais promissores para este fim estão os amidos de diversas fontes botânicas, que são biodegradáveis, têm custo baixo e estão disponíveis em todo o mundo. Diante disto, este trabalho apresenta uma revisão bibliográfica sobre a caracterização e o potencial de utilização de filmes biodegradáveis a base de amido. Discute as propriedades mecânicas, de barreira e a cristalinidade dos filmes de amido e o efeito do uso de plastificantes sobre estas propriedades. As informações disponibilizadas mostram que existem grandes possibilidades de utilização destes materiais como embalagens de alimentos que, no entanto, dependem da produção de materiais mais estáveis às condições de armazenamento e do desenvolvimento de tecnologia de produção em escala industrial.

  5. Acid and enzymatic hydrolysis to recover reducing sugars from cassava bagasse: an economic study

    Directory of Open Access Journals (Sweden)

    Woiciechowski Adenise Lorenci

    2002-01-01

    Full Text Available The objective of this work was to study the acid and enzymatic hydrolysis of cassava bagasse for the recovery of reducing sugars and to establish the operational costs. A statistical program "Statistica", based on the surface response was used to optimize the recovery of reducing sugars in both the processes. The process economics was determined considering the values of reducing sugars obtained at laboratory scale, and the operations costs of a cylindrical reactor of 1500 L, with flat walls at the top and bottom. The reactor was operated with 150 kg of cassava bagasse and 1350 kg of water. The yield of the acid hydrolysis was 62.4 g of reducing sugars from 100 g of cassava bagasse containing 66% starch. It represented 94.5% of reducing sugar recovery. The yield of the enzymatic hydrolysis was 77.1 g of reducing sugars from 120 g of cassava bagasse, which represented 97.3% of reducing sugars recovery. Concerning to the time, a batch of acid hydrolysis required 10 minutes, plus the time to heat and cool the reactor, and a batch of the enzymatic hydrolysis needed 25 hours and 20 minutes, plus the time to heat and to cool the reactor. Thus, the acid hydrolysis of 150 kg of cassava bagasse required US$ 34.27, and the enzymatic hydrolysis of the same amount of cassava bagasse required US$ 2470.99.

  6. Experimental study of bioethanol production using mixed cassava and durian seed

    Science.gov (United States)

    Seer, Q. H.; Nandong, J.; Shanon, T.

    2017-06-01

    The production of biofuels using conventional fermentation feedstocks, such as sugar-and starch-based agricultural crops will in the long-term lead to a serious competition with human-animal food consumption. To avoid this competition, it is important to explore various alternative feedstocks especially those from inedible waste materials. Potentially, fruit wastes such as damaged fruits, peels and seeds represent alternative cheap feedstocks for biofuel production. In this work, an experimental study was conducted on ethanol production using mixed cassava and durian seeds through fermentation by Saccharomyces cerevisiae yeast. The effects of pH, temperature and ratio of hydrolyzed cassava to durian seeds on the ethanol yield, substrate consumption and product formation rates were analyzed in the study. In flask-scale fermentation using the mixed cassava-durian seeds, it was found that the highest ethanol yield of 45.9 and a final ethanol concentration of 24.92 g/L were achieved at pH 5.0, temperature 35°C and 50:50 volume ratio of hydrolyzed cassava to durian seeds for a batch period of 48 hours. Additionally, the ethanol, glucose and biomass concentration profiles in a lab-scale bioreactor were examined for the fermentation using the proposed materials under the flask-scale optimum conditions. The ethanol yield of 35.7 and a final ethanol concentration of 14.61 g/L were obtained over a period of 46 hours where the glucose was almost fully consumed. It is worth noting that both pH and temperature have significant impacts on the fermentation process using the mixed cassava-durian seeds.

  7. Obtenção de nanocelulose da fibra de coco verde e incorporação em filmes biodegradáveis de amido plastificados com glicerol

    Directory of Open Access Journals (Sweden)

    Bruna A. S. Machado

    2014-01-01

    Full Text Available Composites strengthened with nanocellulose have been developed with the aim of improving mechanical, barrier, and thermal properties of materials. This improvement is primarily due to the nanometric size and the high crystallinity of the incorporated cellulose. Cassava starch films plasticized with glycerol and incorporated with nanocellulose from coconut fibers were developed in this study. The effect of this incorporation was studied with respect to the water activity, solubility, mechanical properties, thermal analysis, and biodegradability. The study demonstrated that the film properties can be significantly altered through the incorporation of small concentrations of nanocellulose.

  8. Development of non-water soluble, ductile mung bean starch based edible film with oxygen barrier and heat sealability.

    Science.gov (United States)

    Rompothi, Onjira; Pradipasena, Pasawadee; Tananuwong, Kanitha; Somwangthanaroj, Anongnat; Janjarasskul, Theeranun

    2017-02-10

    This research determined the effects of starch concentration (3.5-5.0%w/w), and plasticizer [glycerol (0-30%w/w) or sorbitol (0-60%w/w)] on properties of mung bean starch (MBS) films. The result showed that increasing plasticizer concentration tended to decrease tensile strength (TS), elastic modulus (EM) and oxygen permeability (OP); but increase elongation (%E), solubility, water vapor permeability (WVP) and seal strength. The extent of those changes also depended on starch concentration. Glycerol provided better plasticizer efficiency than sorbitol. A bimodal melting endotherm of retrograded structure was evident in non-plasticized film. However, only a low temperature endotherm was observed in polyol-plasticized films, indicating a plasticizer-induced structural modification. The developed ductile MBS films, (TS of 7.14±0.95 to 46.30±3.09MPa, %E of 2.46±0.21 to 56.95±4.34% and EM of 16.29±3.40 to 1428.45±148.72MPa) with an OP of 0.2397±0.0365 to 1.1520±0.1782 ccmm/m 2 daykPa and seal strength up to 422.36±7.93N/m, demonstrated in this study indicate the potential for food packaging applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Functional characteristics, wettability properties and cytotoxic effect of starch film incorporated with multi-walled and hydroxylated multi-walled carbon nanotubes.

    Science.gov (United States)

    Shahbazi, Mahdiyar; Rajabzadeh, Ghadir; Sotoodeh, Shahnaz

    2017-11-01

    Two types of multi-walled carbon nanotubes (CNT and CNT-OH) at different levels (0.1-0.9wt%) were introduced into starch matrix in order to modify its functional properties. The optimum concentration of each nanotube was selected based on the results of water solubility, water permeability and mechanical experiments. The physico-mechanical data showed that CNT up to 0.7wt% led to a notable increase in water resistance, water barrier property and tensile strength, whilst regarding CNT-OH, these improvements found at 0.9wt%. Therefore, effects of optimized level of each nanotube on the starch film were evaluated by XRD, surface hydrophobicity, wettability and surface energy tests. XRD revealed that the position of starch characteristic peak shifted to higher degree after nanotubes introducing. The hydrophobic character of the film was greatly increased with incorporation of nanoparticles, as evidenced by increased contact angle with greatest value regarding CNT-OH. Moreover, CNT-OH notably decreased the surface free energy of the starch film. Finally, the conformity of both nanocomposites with actual food regulations on biodegradable materials was tested by cytotoxicity assay to evaluate the possibility of application in food packaging sector. Both nanocomposite films had potential of cytotoxic effects, since they could increase cytoplasmic lactate dehydrogenase release from L-929 fibroblast cells in contact with their surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Improving Properties of Arrowroot Starch (Maranta arundinacea)/PVA Blend Films by Using Citric Acid as Cross-linking Agent

    Science.gov (United States)

    Sholichah, Enny; Purwono, Bambang; Nugroho, Pramono

    2017-12-01

    This research studied the effect of PVA as organic polymer and citric acid as crosslinker agent in the arrowroot starch/PVA blend films. The properties of films were investigated by water uptake, water vapor permeability, mechanical properties, thermal stability, spectra of FTIR and XRD patterns. PVA used in this research influenced the film properties at the highest concentration. The cross-linkingsinter or intra molecules of arrowroot and PVA were developed as ester bonds which are formed from the reaction of hydroxyl groups consisting of starch and PVA with citric acid. The ester bond was confirmed by FTIR spectra. The increase of the amount of citric acid affected significantly on physical, chemical and mechanical properties, water uptake, WVP and crystallinity. Water barrier level was reduced by decreasing of water uptake and WVP succeeded significantly with increased crosslinking. Cross-linking impact the thermal stability of the films. The elasticity of the films also increases the production of citric acid as a plasticizer in the making of the films as a food packaging material.

  11. Biscoitos de polvilho azedo enriquecidos com fibras solúveis e insolúveis Fermented cassava starch biscuits enriched with soluble and insoluble fibers

    Directory of Open Access Journals (Sweden)

    Flavio Martins Montenegro

    2008-12-01

    Full Text Available O presente trabalho avaliou a utilização de farelo de trigo e polidextrose como fontes de fibra no enriquecimento de biscoitos de polvilho. Utilizou-se a Metodologia de Superfície de Resposta para verificar a influência da adição destes ingredientes nos parâmetros de qualidade dos biscoitos. As respostas avaliadas do planejamento experimental fatorial completo 2² foram o volume específico, a dureza instrumental, a umidade e a cor - parâmetros L, a* e b*. Para as respostas: volume específico e dureza instrumental, todos os fatores foram significativos, a 95% de confiança, com R² = 0,9307 e 0,8091, respectivamente. Pela análise das superfícies geradas, pode-se observar que o farelo de trigo e a polidextrose reduziram o volume específico e o farelo teve maior efeito no aumento da dureza. A substituição de polvilho azedo por farelo de trigo e polidextrose nas proporções de 1,5 e 5%, respectivamente, gerou uma amostra rica em fibras, com 6,23% de fibra alimentar (calculado teoricamente, sem prejuízo considerável para as características de expansão e dureza, e com boa aceitação sensorial.This work evaluated the use of wheat bran and polidextrose as fiber sources to enrich fermented cassava starch biscuits. The Response Surface Methodology was used to verify the influence of the addition of these fiber sources on the quality parameters of the biscuits. The responses of the 2² central composite rotational experimental design that were evaluated were specific volume, hardness, and moisture and color - parameters L, a*, and b*. For the specific volume and hardness responses, all factors were significant: 95% confidence level, with R² of 0.9307 and 0.8091, respectively. Analyzing the surfaces obtained it could be observed that the wheat bran and polidextrose reduced the specific volume and the wheat bran had a greater effect in increasing hardness. The substitution of fermented cassava starch by wheat bran and polidextrose in

  12. Multi-objective optimization of process conditions in the manufacturing of banana (Musa paradisiaca L.) starch/natural rubber films.

    Science.gov (United States)

    Ramírez-Hernández, A; Aparicio-Saguilán, A; Reynoso-Meza, G; Carrillo-Ahumada, J

    2017-02-10

    Multi-objective optimization was used to evaluate the effect of adding banana (Musa paradisiaca L.) starch and natural rubber (cis-1,4-poliisopreno) at different ratios (1-13w/w) to the manufacturing process of biodegradable films, specifically the effect on the biodegradability, crystallinity and moisture of the films. A structural characterization of the films was performed by X-ray diffraction, Fourier transform infrared spectroscopy and SEM, moisture and biodegradability properties were studied. The models obtained showed that degradability vs. moisture tend to be inversely proportional and crystallinity vs. degradability tend to be directly proportional. With respect to crystallinity vs. moisture behavior, it is observed that crystallinity remains constant when moisture values remain between 27 and 41%. Beyond this value there is an exponential increase in crystallinity. These results allow for predictions on the mechanical behavior that can occur in starch/rubber films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Contribution to the understanding of the cooking quality of cassava (Manihot esculenta L. Crantz)

    Energy Technology Data Exchange (ETDEWEB)

    Safo-Kantanka, O; Owusu-Nipah, J; Osei-Minta, M; Aubyn, A; Quansah, C [Crop Science Dept. Univ. of Science and Technology, Kumasi (Ghana); Acquistucci, R [National Nutrition Inst., Rome (Italy)

    1997-07-01

    Cassava cooking quality was investigated from the mealiness of the cooked roots, and elasticity and freedom from lumpiness of the pounded paste. Microscopic study of the cells of raw and cooked roots showed that the cooking quality was related to the size of the starch granules, and the difference between varieties could be explained on the basis of cell disorganization. Dry matter and starch content were related to the differences in mealiness, and amylose content of the starch to the elasticity and smoothness of the pounded paste. Fibre content was negatively correlated with cooking quality. The loss in cooking quality during rainy season was due more to the reduction of dry matter than starch content. Changes in the gelatinization properties of the starch were also related to the loss in cooking quality. Addition of common salt to fufu paste reduced the retrogradation tendency of the starch and made fufu acceptable for consumption long after its preparation. Application of mulch during the dry season minimized soil temperature fluctuations, maintained high soil moisture, which in turn reduced changes in tuber composition. (author). 16 refs, 6 tabs.

  14. Contribution to the understanding of the cooking quality of cassava (Manihot esculenta L. Crantz)

    International Nuclear Information System (INIS)

    Safo-Kantanka, O.; Owusu-Nipah, J.; Osei-Minta, M.; Aubyn, A.; Quansah, C.; Acquistucci, R.

    1997-01-01

    Cassava cooking quality was investigated from the mealiness of the cooked roots, and elasticity and freedom from lumpiness of the pounded paste. Microscopic study of the cells of raw and cooked roots showed that the cooking quality was related to the size of the starch granules, and the difference between varieties could be explained on the basis of cell disorganization. Dry matter and starch content were related to the differences in mealiness, and amylose content of the starch to the elasticity and smoothness of the pounded paste. Fibre content was negatively correlated with cooking quality. The loss in cooking quality during rainy season was due more to the reduction of dry matter than starch content. Changes in the gelatinization properties of the starch were also related to the loss in cooking quality. Addition of common salt to fufu paste reduced the retrogradation tendency of the starch and made fufu acceptable for consumption long after its preparation. Application of mulch during the dry season minimized soil temperature fluctuations, maintained high soil moisture, which in turn reduced changes in tuber composition. (author). 16 refs, 6 tabs

  15. Irradiated gelatin-potato starch blends: evaluation of physicochemical properties

    International Nuclear Information System (INIS)

    Inamura, Patricia Y.; Regis, Wellington; Mastro, Nelida L.

    2015-01-01

    Macromolecular polysaccharides of large chains as starch can interlace with gelatin modifying their mechanical resistance. In this work, biodegradable bovine gelatin-potato starch blends films were developed using glycerol as plasticizer. Three formulations of gelatin/starch proportions (w/w) were used (1:0; 3:1; 1:1) and casting was the chosen method. The dried samples were then submitted to ionizing radiation coming from an electron beam (EB) accelerator with doses of 20 and 40 kGy, at room temperature, in the presence of air. Mechanical properties such as puncture strength and elongation at break were measured. Color measurements, water absorption, moisture, and film solubility were assessed. The results showed that starch addition to films based on gelatin as well as irradiation affected physical and structural properties of the films. Although the increase of starch content in the mixture led to decrease of the puncture force even in samples irradiated with the higher dose, there was a decrease of water absorption of films with the increase of the dose, and also by the higher starch content. Samples irradiated at 20 kGy presented higher moisture and film solubility. The methodology developed in this paper can be applied to other composite systems to establish the best protein:starch ratio, and the contribution of the radiation crosslinking in each specific case. (author)

  16. Irradiated gelatin-potato starch blends: evaluation of physicochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Patricia Y.; Regis, Wellington; Mastro, Nelida L., E-mail: nlmastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Macromolecular polysaccharides of large chains as starch can interlace with gelatin modifying their mechanical resistance. In this work, biodegradable bovine gelatin-potato starch blends films were developed using glycerol as plasticizer. Three formulations of gelatin/starch proportions (w/w) were used (1:0; 3:1; 1:1) and casting was the chosen method. The dried samples were then submitted to ionizing radiation coming from an electron beam (EB) accelerator with doses of 20 and 40 kGy, at room temperature, in the presence of air. Mechanical properties such as puncture strength and elongation at break were measured. Color measurements, water absorption, moisture, and film solubility were assessed. The results showed that starch addition to films based on gelatin as well as irradiation affected physical and structural properties of the films. Although the increase of starch content in the mixture led to decrease of the puncture force even in samples irradiated with the higher dose, there was a decrease of water absorption of films with the increase of the dose, and also by the higher starch content. Samples irradiated at 20 kGy presented higher moisture and film solubility. The methodology developed in this paper can be applied to other composite systems to establish the best protein:starch ratio, and the contribution of the radiation crosslinking in each specific case. (author)

  17. Structural properties and in vitro digestibility of edible and pH-sensitive films made from guinea arrowroot starch and wastes from wine manufacture.

    Science.gov (United States)

    Gutiérrez, Tomy J; Herniou-Julien, Clémence; Álvarez, Kelvia; Alvarez, Vera A

    2018-03-15

    A non-conventional starch obtained from guinea arrowroot tubers (Calathea allouia) grown in the Amazon was used as a polymeric matrix for the development of edible films. The films were manufactured by blending/thermo molding and plasticized with glycerol. Agro-industrial wastes from wine manufacture (grape waste flour and grape waste extract) were used as natural fillers of the thermoplastic starch (TPS) matrices. The results showed that the natural fillers caused cross-linking in the TPS matrix. This led to the production of films with higher resistant starch (RS) content, especially RS type 4 (RS4), although the DSC results showed that the films developed also contained RS type 3 (RS3). As expected, the presence of RS reduced the in vitro digestibility rate. Films made with the natural fillers were also less hydrophilic, had a greater thermal resistance, and tended towards ductile mechanical behavior. Finally, the edible film containing grape waste flour as a natural filler proved to be pH-sensitive, although this material disintegrated under alkaline conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Propriedades de barreira e solubilidade de filmes de amido de ervilha associado com goma xantana e glicerol Barrier properties of films of pea starch associated with xanthan gum and glycerol

    Directory of Open Access Journals (Sweden)

    Manoel D. da Matta Jr

    2011-01-01

    Full Text Available O objetivo do trabalho foi avaliar as propriedades de barreira e a solubilidade de biofilmes obtidos a partir de amido de ervilha de alto teor de amilose em associação à goma xantana e glicerol. Soluções filmogênicas (SF com diferentes teores de amido de ervilha (3, 4 e 5%, goma xantana (0, 0,05 e 0,1% e glicerol (proporção glicerol-amido de 1:5 P/P foram estudadas. As SF foram obtidas por ebulição (5 minutos, seguida de autoclavagem por 1 hora a 120 ºC e os filmes foram preparados por casting. O aumento da concentração de amido e de glicerol na composição causou aumento da espessura e da solubilidade dos filmes em água. O plastificante gerou ainda elevação dos coeficientes de permeabilidade ao vapor d'água e ao oxigênio. O aumento da concentração da goma xantana não interferiu nas propriedades estudadas. Os biofilmes obtidos a partir de amido de ervilha verde, associado ou não à goma xantana e glicerol, se comparados com filmes de amido de ervilha amarelas e outras fontes de amido, apresentaram boa barreira ao oxigênio e ao vapor d'água e baixa solubilidade em água.The aim of this work was to evaluate the barrier properties and solubility of biofilms made from wrinkled pea starch with high amylose content in association with xanthan gum and glycerol. Filmogenic solution (FS with different levels of pea starch (3, 4 and 5%, xanthan gum (0, 0.05 and 0.1% and glycerol (glycerol-starch 1:5 W/W were tested. FS was obtained by boiling (5 minutes, autoclaving for 1 hour at 120 ºC and the films were prepared by casting. The increased concentration of starch and glycerol in the composition caused increases in thickness of the films and in their solubility in water. The plasticizer also generated higher coefficients of water vapor and oxygen permeabilities to water vapor and to oxygen. The increasing concentration of xanthan gum did not interfere in the properties studied. Biofilms produced with wrinkled pea starch, with or

  19. EXPLORING OPTIMAL FEED TO MICROBES RATIO FOR ANAEROBIC ACIDOGENIC FERMENTATION OF CASSAVA RESIDUE FROM BREWERY

    Directory of Open Access Journals (Sweden)

    Xinying Wang,

    2012-01-01

    Full Text Available Cassava residue from breweries is being generated in large amounts in Guangxi Province of China, and this has potential to cause serious environmental problems if disposed of improperly. Two-stage anaerobic fermentation is a promising method for the treatment of such residue. In this study, the effect of feed to microbes ratio (F/M ratio on the anaerobic acidogenic fermentation of cassava residue was studied to determine the optimal F/M ratio and to maximize the performance in a subsequent methanogenic stage. The experiments were carried out at the F/M ratios of 0.2, 0.61, 1.02, 2.05, 3.07, and 4.09 g cassava-TS/g sludge-VSS in six laboratory-scale, completely stirred, tank reactors (CSTR at mesophilic temperature (35°C. An F/M ratio of 1.02 g cassava-TS/g sludge-VSS resulted in the highest solid removal efficiency and VFA/COD ratio, while starch removal efficiency was still near 100 percent, and acidification was relatively high. As a further benefit, the VFA distribution was more suitable for the subsequent methanogenic fermentation stage.

  20. Mechanical properties and total hydroxycinnamic derivative release of starch/glycerol/Melissa officinalis extract films

    Directory of Open Access Journals (Sweden)

    Letícia Mello Rechia

    2010-09-01

    Full Text Available The aim of this study was to investigate the mechanical properties of starch/glycerol/Melissa officinalis, a topical drug delivery system for labial herpes treatment. Four films were prepared with different concentrations of starch, glycerol, and Melissa officinalis extract. The results revealed that increasing the glycerol concentration in the film reduced elasticity modulus and tensile strength, exhibiting a plasticizing effect. The increase in free volume resulted in increased release of hydroxycinnamic derivatives expressed as rosmarinic acid.O objetivo deste trabalho foi estudar as propriedades mecânicas e o mecanismo de liberação de um sistema tópico de liberação prolongada para o tratamento do Herpes labial a partir de filmes de amido/glicerol/extrato de Melissa officinalis, planta com comprovada atividade antiviral. Foram obtidos quatro filmes poliméricos com diferentes concentrações de amido, glicerol e extrato de Melissa officinalis os quais foram caracterizados mecanicamente e determinado o perfil de liberação de derivados hidroxicinâmicos. Os resultados demonstraram que o aumento da concentração de glicerol no filme produz uma redução no módulo de elasticidade e na tensão de deformação como conseqüência do efeito plastificante. O aumento no volume livre do polímero resultou em aumento da liberação dos derivados hidroxicinâmicos expressos como ácido rosmarínico.

  1. Properties and characteristics of dual-modified rice starch based biodegradable films.

    Science.gov (United States)

    Woggum, Thewika; Sirivongpaisal, Piyarat; Wittaya, Thawien

    2014-06-01

    In this study, the dual-modified rice starch was hydroxypropylated with 6-12% of propylene oxide followed by crosslinking with 2% sodium trimetaphosphate (STMP) and a mixture of 2% STMP and 5% sodium tripolyphosphate (STPP). Increasing the propylene oxide concentrations in the DMRS yielded an increase in the molar substitution (MS) and degree of substitution (DS). However, the gelatinization parameters, paste properties, gel strength and paste clarity showed an inverse trend. The biodegradable films from the DMRS showed an increase the tensile strength, elongation at break and film solubility, while the transparency value decreased when the concentration of propylene oxide increased. However the water vapor permeability of the films did not significantly change with an increase in the concentration of propylene oxide. In addition, it was found that DMRS films crosslinked with 2% STMP demonstrated higher tensile strength, transparency value and lower water vapor permeability than the DMRS films crosslinked with a mixture of 2% STMP and 5% STPP. The XRD analysis of the DMRS films showed a decrease in crystallinity when the propylene oxide concentrations increased and the crystallinity of DMRS films with 2% STMP were higher than the DMRS films with a mixture of 2% STMP and 5% STPP. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Fungal cellulases as an aid for the saccharification of cassava

    Energy Technology Data Exchange (ETDEWEB)

    De Menezes, T J.B.; Arakaki, T; DeLamo, P R; Sales, A M

    1978-04-01

    Culture broths of cellulolytic fungi were used together with commercial anylases to enhance the saccharification of cassava starch slurry. It was found that the addition of appropriate concentration of the cellulases Trichoderma viride and a soil isolated Basidiomycete, increased both the rate of sugar formation and the degree of solubilization, and decreased the viscosity of the hydrolyzates. Owing to the improvement of the rheological properties of the must, and the additional sugar produced, an increased ethanol yield would be expected from the alcoholic fermentation of this hydrolyzate.

  3. Effect of mosaic virus diseases on dry matter content and starch ...

    African Journals Online (AJOL)

    The effect of mosaic virus diseases on dry matter content and starch yield of five local accessions of cassava, “Ankrah”, “AW/17, “Tomfa”, “Dagarti” and “Tuaka” was evaluated. Tomfa showed the highest (95%) incidence of the disease, index of severity of symptoms for all plants (ISSAP) of 3.70, as well as, for diseased plants ...

  4. Effect of extrusion process on the functional properties of high amylose corn starch edible films and its application in mango (Mangifera indica L.) cv. Tommy Atkins.

    Science.gov (United States)

    Calderón-Castro, Abraham; Vega-García, Misael Odín; de Jesús Zazueta-Morales, José; Fitch-Vargas, Perla Rosa; Carrillo-López, Armando; Gutiérrez-Dorado, Roberto; Limón-Valenzuela, Víctor; Aguilar-Palazuelos, Ernesto

    2018-03-01

    Starch is an attractive raw material as ingredient for edible film manufacture because of its low cost, abundant availability, renewability, and biodegradability. Nevertheless, starch based films exhibit several disadvantages such as brittleness and poor mechanical and barrier properties, which restrict its application for food packaging. The use of the extrusion technology as a pretreatment of the casting technique to change the starch structure in order to obtain edible films, may constitute an alternative to generate coatings with good functional properties and maintain longer the postharvest quality and shelf life of fruits. For this reason, the objective of this study was to optimize the conditions of an extrusion process to obtain a formulation of modified starch to elaborate edible films with good functional properties using the casting technique and assess the effect during the storage when applied on a model fruit. The best conditions of the extrusion process and concentration of plasticizers were obtained using response surface methodology. From optimization study, it was found that appropriate conditions to obtain starch edible films with the best mechanical and barrier properties were an extrusion temperature of 100 °C and a screw speed of 120 rpm, while the glycerol content was 16.73%. Also, once applied in fruit, the loss of quality attributes was diminished.

  5. The effect of starch-garlic powder ratio on degradation rate of Gadung starch bioplastic

    Science.gov (United States)

    Mairiza, L.; Mariana; Ramadhany, M.; Feviyussa, C. A.

    2018-03-01

    Bioplastic is one of the solutions for environmental problems caused by plastics waste. Utilization of toxic gadung starch in the manufacturing of bioplastic would be as an alternative, due to gadung bulb has high starch content, and it is still not used optimally. This research aimed to learn about the using of gadung starch-mixed with garlic powder of making biodegradable plastic packaging. Also, to observe the duration of degradation, as a level of biodegradability of plastic film produced. The method used making this bioplastic was casting method. The variables used in this study were the ratios of starch and powdered garlic, were 10:0; 8:2; 6:4, and the concentration of garlic powder were 2%; 4%; 6%; and 8 %. The degradation test was done by soil burial test. The results of the soil burial test shown that the film was more rapidly degraded at ratio of 6: 4 compared to the ratio of 8: 2 and 10: 0. The results shown that bioplastic at the starch-garlic powder ratio of 10: 0 was decomposed in 21 days, at the the ratio of 8:2 was 15 days, while at the ratio of 6:4, the plastic film was degraded in the 11 days.

  6. Resistance to Sri Lankan Cassava Mosaic Virus (SLCMV) in Genetically Engineered Cassava cv. KU50 through RNA Silencing

    KAUST Repository

    Ntui, Valentine Otang

    2015-04-22

    Cassava ranks fifth among the starch producing crops of the world, its annual bioethanol yield is higher than for any other crop. Cassava cultivar KU50, the most widely grown cultivar for non-food purposes is susceptible to Sri Lankan cassava mosaic virus (SLCMV). The objective of this work was to engineer resistance to SLCMV by RNA interference (RNAi) in order to increase biomass yield, an important aspect for bioethanol production. Here, we produced transgenic KU50 lines expressing dsRNA homologous to the region between the AV2 and AV1 of DNA A of SLCMV. High level expression of dsRNA of SLCMV did not induce any growth abnormality in the transgenic plants. Transgenic lines displayed high levels of resistance to SLCMV compared to the wild-type plants and no virus load could be detected in uninoculated new leaves of the infected resistant lines after PCR amplification and RT-PCR analysis. The agronomic performance of the transgenic lines was unimpaired after inoculation with the virus as the plants presented similar growth when compared to the mock inoculated control plants and revealed no apparent reduction in the amount and weight of tubers produced. We show that the resistance is correlated with post-transcriptional gene silencing because of the production of transgene specific siRNA. The results demonstrate that transgenic lines exhibited high levels of resistance to SLCMV. This resistance coupled with the desirable yield components in the transgenic lines makes them better candidates for exploitation in the production of biomass as well as bioethanol.

  7. Resistance to Sri Lankan Cassava Mosaic Virus (SLCMV) in Genetically Engineered Cassava cv. KU50 through RNA Silencing

    KAUST Repository

    Ntui, Valentine Otang; Kong, Kynet; Khan, Raham Sher; Igawa, Tomoko; Janavi, Gnanaguru Janaky; Rabindran, Ramalingam; Nakamura, Ikuo; Mii, Masahiro

    2015-01-01

    Cassava ranks fifth among the starch producing crops of the world, its annual bioethanol yield is higher than for any other crop. Cassava cultivar KU50, the most widely grown cultivar for non-food purposes is susceptible to Sri Lankan cassava mosaic virus (SLCMV). The objective of this work was to engineer resistance to SLCMV by RNA interference (RNAi) in order to increase biomass yield, an important aspect for bioethanol production. Here, we produced transgenic KU50 lines expressing dsRNA homologous to the region between the AV2 and AV1 of DNA A of SLCMV. High level expression of dsRNA of SLCMV did not induce any growth abnormality in the transgenic plants. Transgenic lines displayed high levels of resistance to SLCMV compared to the wild-type plants and no virus load could be detected in uninoculated new leaves of the infected resistant lines after PCR amplification and RT-PCR analysis. The agronomic performance of the transgenic lines was unimpaired after inoculation with the virus as the plants presented similar growth when compared to the mock inoculated control plants and revealed no apparent reduction in the amount and weight of tubers produced. We show that the resistance is correlated with post-transcriptional gene silencing because of the production of transgene specific siRNA. The results demonstrate that transgenic lines exhibited high levels of resistance to SLCMV. This resistance coupled with the desirable yield components in the transgenic lines makes them better candidates for exploitation in the production of biomass as well as bioethanol.

  8. Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline.

    Science.gov (United States)

    Li, Ming; Xie, Fengwei; Hasjim, Jovin; Witt, Torsten; Halley, Peter J; Gilbert, Robert G

    2015-03-06

    The effects of molecular and crystalline structures on the tensile mechanical properties of thermoplastic starch (TPS) films from waxy, normal, and high-amylose maize were investigated. Starch structural variations were obtained through extrusion and hydrothermal treatment (HTT). The molecular and crystalline structures were characterized using size-exclusion chromatography and X-ray diffractometry, respectively. TPS from high-amylose maize showed higher elongation at break and tensile strength than those from normal maize and waxy maize starches when processed with 40% plasticizer. Within the same amylose content, the mechanical properties were not affected by amylopectin molecular size or the crystallinity of TPS prior to HTT. This lack of correlation between the molecular size, crystallinity and mechanical properties may be due to the dominant effect of the plasticizer on the mechanical properties. Further crystallization of normal maize TPS by HTT increased the tensile strength and Young's modulus, while decreasing the elongation at break. The results suggest that the crystallinity from the remaining ungelatinized starch granules has less significant effect on the mechanical properties than that resulting from starch recrystallization, possibly due to a stronger network from leached-out amylose surrounding the remaining starch granules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effect of Harvest Time and Nitrogen Doses on Cassava Root Yield and Quality

    Directory of Open Access Journals (Sweden)

    Natália Trajano de Oliveira

    Full Text Available ABSTRACT Nitrogen is considered the most limiting nutrient for cassava, and N availability can influence the crop cycle, including earlier harvest. The aim of this study was to study the effect of harvest time on the production components of cassava, “Aciolina” cultivar, at different rates of N fertiliser. The experiment was carried out in an area newly incorporated into the productive system in a savannah ecosystem in the northern Amazon. A randomised block experimental design was used in a split plot arrangement with four replications. The N rates (0, 30, 60, 150, and 330 kg ha-1 were allocated to the main plots, and the harvest times (90, 120, 150, 180, 240, 300, and 360 days after emergence of the stalks - DAE were allocated to the subplots. Plant height, shoot fresh matter yield, number of roots per plant, average root diameter, and root fresh matter yield display an increasing linear response up to 360 DAE in cassava cv. “Aciolina”. For all harvest times, the N rates promote an increase in root fresh matter yield. At 300 and 360 DAE, the root fresh matter and starch yield and the harvest index show a quadratic response as a function of the N level. The greatest efficiency of N topdressing on the production of root fresh matter occurs at 300 DAE, promoting an earlier harvest. At that time, the dose of maximum technical efficiency, 226 kg ha-1 N, results in a yield of 62 Mg ha-1 of root fresh matter, 13 Mg ha-1 of starch, and a harvest index of 81 %.

  10. Physical and Antimicrobial Properties of Starch-PVA Blend Films as Affected by the Incorporation of Natural Antimicrobial Agents.

    Science.gov (United States)

    Cano, Amalia; Cháfer, Maite; Chiralt, Amparo; González-Martínez, Chelo

    2015-12-26

    In this work, active films based on starch and PVA (S:PVA ratio of 2:1) were developed by incorporating neem (NO) and oregano essential oils (OEO). First, a screening of the antifungal effectiveness of different natural extracts (echinacea, horsetail extract, liquid smoke and neem seed oil) against two fungus ( P. expansum and A. niger ) was carried out. The effect of NO and OEO incorporation on the films' physical and antimicrobial properties was analyzed. Only composite films containing OEO exhibited antibacterial and antifungal activity. Antibacterial activity occurred at low OEO concentration (6.7%), while antifungal effect required higher doses of OEO in the films. Incorporation of oils did not notably affect the water sorption capacity and water vapor barrier properties of S-PVA films, but reduced their transparency and gloss, especially at the highest concentrations. The mechanical response of the S-PVA films was also negatively affected by oil incorporation but this was only relevant at the highest oil ratio (22%). S-PVA films with 6.7% of OEO exhibited the best physical properties, without significant differences with respect to the S-PVA matrix, while exhibiting antibacterial activity. Thus, the use of OEO as a natural antimicrobial incorporated into starch-PVA films represents a good and novel alternative in food packaging applications.

  11. Performance properties and antibacterial activity of crosslinked films of quaternary ammonium modified starch and poly(vinyl alcohol).

    Science.gov (United States)

    Sekhavat Pour, Zahra; Makvandi, Pooyan; Ghaemy, Mousa

    2015-09-01

    There has been a growing interest in developing antibacterial polymeric materials. In the present work, novel antibacterial cross-linked blend films were prepared based on polyvinyl alcohol (PVA) and quaternary ammonium starch (ST-GTMAC) using citric acid (CA) as plasticizer and glutaraldehyde (GA) as cross-linker. The ST-GTMAC was successfully synthesized from reaction between water-soluble oxidized starch and glycidyltrimethylammonium chloride (GTMAC). The effect of ST-GTMAC, CA and GA contents on the swelling, solubility, mechanical and thermal properties of the films was investigated. It was found that incorporation of ST-GTMAC reduced UV-transmittance and provided antibacterial properties, increasing GA content increased tensile strength and decreased solubility and swelling degree of the films, while CA acted as plasticizer when its concentration was above 10 wt%. The results showed that ST-GTMAC/PVA/CA/GA film has fair antibacterial activity against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. These results suggest that the prepared film might be used as potential antibacterial material in medical and packaging applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Biofuels and Biotechnology: Cassava (Manihot esculenta) as a Research Model

    International Nuclear Information System (INIS)

    Cortes S, Simon; Chavarriaga, Paul; Lopez, Camilo

    2010-01-01

    Fuels such as ethanol and biodiesel, obtained from plants and their constituents, have recently received the world's attention as a true alternative to the global energy supply, mainly because they are cheaper and less contaminant of the environment than the currently used, non-renewable fossil fuels. Due to the pushing biofuel market, the world is currently experiencing an increase of agricultural land devoted to grow crops used to obtain them, like maize and sugar cane, as well as crops that have the potential to become new sources of biofuels. Similarly, this emerging market is boosting the basic research oriented towards obtaining better quality and yield in these crops. Plants that store high quantities of starch, simple sugars or oils, are the target of the biofuel industry, although the newest technologies use also cellulose as raw material to produce fuels. Cassava (Manihot esculenta) is widely grown in the tropics and constitutes a staple food for approximately 10% of the world population. The high starch content of its storage roots, together with the use of conventional and non-conventional breeding turn this crop into an option to obtain better adapted varieties for ethanol production. This manuscript reviews the current state of biofuels worldwide and at the national level,and discusses the benefits and challenges faced in terms of effect on the environment and the human food chain. Finally, it discusses the potential of cassava as a source of raw material for obtaining biofuels in Colombia.

  13. Silver nanoparticle-loaded chitosan-starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties

    International Nuclear Information System (INIS)

    Yoksan, Rangrong; Chirachanchai, Suwabun

    2010-01-01

    The fabrication of silver nanoparticles was accomplished by γ-ray irradiation reduction of silver nitrate in a chitosan solution. The obtained nanoparticles were stable in the solution for more than six months, and showed the characteristic surface plasmon band at 411 nm as well as a positively charged surface with 40.4 ± 2.0 mV. The silver nanoparticles presented a spherical shape with an average size of 20-25 nm, as observed by TEM. Minimum inhibitory concentration (MIC) against E. coli, S. aureus and B. cereus of the silver nanoparticles dispersed in the γ-ray irradiated chitosan solution was 5.64 μg/mL. The silver nanoparticle-loaded chitosan-starch based films were prepared by a solution casting method. The incorporation of silver nanoparticles led to a slight improvement of the tensile and oxygen gas barrier properties of the polysaccharide-based films, with diminished water vapor/moisture barrier properties. In addition, silver nanoparticle-loaded films exhibited enhanced antimicrobial activity against E. coli, S. aureus and B. cereus. The results suggest that silver nanoparticle-loaded chitosan-starch based films can be feasibly used as antimicrobial materials for food packaging and/or biomedical applications.

  14. Utilização de filmes plásticos e comestíveis na conservação pós-colheita de melão amarelo Utilization of PVC film and edible films to extend the postharvest conservation of yellow melons

    Directory of Open Access Journals (Sweden)

    Patrício F Batista

    2007-12-01

    Full Text Available Este trabalho teve como objetivo prolongar a vida pós-colheita de melões do tipo amarelo cv. AF-682, por meio da atmosfera modificada obtida com filme plástico de PVC e filmes comestíveis à base de cera de carnaúba (50% e fécula de mandioca (1, 2 e 3%. Para o revestimento dos frutos com embalagem plástica utilizou-se filme de PVC com 10 mm de espessura, aderente e esticável, colocado em camada única, na superfície de cada fruto. Após serem revestidos pelos filmes os frutos foram armazenados em temperatura ambiente de 29± 2ºC e 64±1% UR por 20 dias, sendo em intervalos de cinco dias submetidos às avaliações: massa individual, firmeza da polpa, teor de sólidos solúveis totais, acidez titulável e pH. Utilizou-se delineamento inteiramente casualizado com seis repetições em esquema fatorial 6x4, sendo 6 tratamentos de conservação e 4 períodos de armazenamento. Nenhum dos tratamentos avaliados é recomendável para aumentar a conservação pós-colheita de melão amarelo. Os frutos revestidos com fécula de mandioca a 3% e filme de PVC apresentaram processo iniciais característicos de fermentação e podridão a partir de 15 dias de armazenamento em temperatura ambiente.This work aimed to extend the postharvest life of yellow melons cv. AF-682 through modified atmosphere techniques obtained with PVC film and edible films such as carnauba wax (50% and cassava starch (1, 2 and 3%. Fruits were wrapped with one layer of adherent and stretchable PVC film with 10 mm width. After covering, fruits were stored at 29± 2ºC and 64±1% UR for 20 days. At a 5-day interval, fruits were evaluated for individual weight, pulp firmness, total soluble solids content, titratable acidity and pH. The trial was carried out in a complete randomized design, with six replications in a factorial scheme 6x4, with six treatments and four storage periods. The use of PVC film and edible films are not recommended to extend postharvest conservation of

  15. Improved homopolymer separation to enable the application of H-1 NMR and HPLC for the determination of the reaction parameters of the graft copolymerization of acrylic acid onto starch

    NARCIS (Netherlands)

    Witono, Judy R.; Marsman, Jan Henk; Noordergraaf, Inge-Willem; Heeres, Hero J.; Janssen, Leon P. B. M.

    2013-01-01

    Graft copolymers of starch with acrylic acid are a promising green, bio based material with many potential applications. The grafting of acrylic acid onto cassava starch in an aqueous medium initiated by Fenton's reagent has been studied. Common grafting result parameters are add-on (yield) and

  16. Performance of polymeric films based thermoplastic starch and organophilic clay

    International Nuclear Information System (INIS)

    Cipriano, P.B.; Costa, A.N.M.; Araujo, S.S.; Araujo, A.R.A.; Canedo, E.L.; Carvalho, L.H.

    2010-01-01

    The aim of this work was the development and investigation of the properties of flat films of LDPE/corn thermoplastic starch (TPS). A bentonite clay (Argel) was organophilized and characterized by XRD. This clay (1%) in both pristine and organophilic forms was added to the matrix (LDPE) and to LDPE/TPS systems with TPS contents varying from 5-20% w/w. The films manufactured (LDPE, LDPE/Clay, LDPE/TPS, LDPE/TPS/Clay) were characterized. Results indicate that water vapor permeability is dependent and increases with TPS content which was attributed to the higher affinity of water by TPS. TPS and Clay addition to LDPE led to significant changes in film properties with respect to the neat LDPE. In general,tensile and perforation forces increased with clay and TPS contents; the strength of thermo sealed films lowered with natural clay addition and increased with TPS and organoclay incorporation and, in general, dynamic friction coefficient decrease with organoclay and TPS addition. Best overall properties were obtained for the systems containing the organoclay and optimal properties were achieved for the 5%TPS10 LDPE1% ANO system. (author)

  17. Development and characterization of sugar palm starch and poly(lactic acid) bilayer films.

    Science.gov (United States)

    Sanyang, M L; Sapuan, S M; Jawaid, M; Ishak, M R; Sahari, J

    2016-08-01

    The development and characterization of environmentally friendly bilayer films from sugar palm starch (SPS) and poly(lactic acid) (PLA) were conducted in this study. The SPS-PLA bilayer films and their individual components were characterized for their physical, mechanical, thermal and water barrier properties. Addition of 50% PLA layer onto 50% SPS layer (SPS50-PLA50) increased the tensile strength of neat SPS film from 7.74 to 13.65MPa but reduced their elongation at break from 46.66 to 15.53%. The incorporation of PLA layer significantly reduced the water vapor permeability as well as the water uptake and solubility of bilayer films which was attributed to the hydrophobic characteristic of the PLA layer. Furthermore, scanning electron microscopy (SEM) image of SPS50-PLA50 revealed lack of strong interfacial adhesion between the SPS and PLA. Overall, the incorporation of PLA layer onto SPS films enhances the suitability of SPS based films for food packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Variability of electron spin resonance (ESR) signal of γ -irradiated starches

    International Nuclear Information System (INIS)

    Silva, Gilberto D.; Rodrigues Junior, Orlando; Mastro, Nelida L. del

    2017-01-01

    Food preservation is one of the practical applications of radiation processing of materials. Starch is an abundant and cheap nutritious biopolymer and also is the material for appropriate food systems and for technical industries. Starch granules are partially crystalline structures composed mainly of two types of starch: amylose, an essentially linear polymer, and amylopectin, with 3-44% of branch points. Electron spin resonance (ESR) spectroscopy is a very powerful and sensitive method for the characterization of the electronic structures of materials with unpaired electrons. The aim of the present work was to monitor the disappearance of the short life and long-life free radicals formed during γ-irradiation of 3 different starches. Corn, potato and fermented cassava starches were irradiated in a "6"0Co source Gammacell 220 with 20 kGy, dose rate around 1 kGy h"-"1. EPR spectra were obtained at room temperature using a Bruker EMX plus model, X band equipment. The main type of ESR signal from irradiated starch is a singlet with a g-value of about 2.0. The fading of ESR signals was followed for 350 hours, and presents differences among the different starch type reflecting differences in molecular arrangements of starch crystalline and amorphous fractions, although ESR spectra seemed to be common for all starches. (author)

  19. Variability of electron spin resonance (ESR) signal of γ -irradiated starches

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Gilberto D.; Rodrigues Junior, Orlando; Mastro, Nelida L. del, E-mail: nlmastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Food preservation is one of the practical applications of radiation processing of materials. Starch is an abundant and cheap nutritious biopolymer and also is the material for appropriate food systems and for technical industries. Starch granules are partially crystalline structures composed mainly of two types of starch: amylose, an essentially linear polymer, and amylopectin, with 3-44% of branch points. Electron spin resonance (ESR) spectroscopy is a very powerful and sensitive method for the characterization of the electronic structures of materials with unpaired electrons. The aim of the present work was to monitor the disappearance of the short life and long-life free radicals formed during γ-irradiation of 3 different starches. Corn, potato and fermented cassava starches were irradiated in a {sup 60}Co source Gammacell 220 with 20 kGy, dose rate around 1 kGy h{sup -1}. EPR spectra were obtained at room temperature using a Bruker EMX plus model, X band equipment. The main type of ESR signal from irradiated starch is a singlet with a g-value of about 2.0. The fading of ESR signals was followed for 350 hours, and presents differences among the different starch type reflecting differences in molecular arrangements of starch crystalline and amorphous fractions, although ESR spectra seemed to be common for all starches. (author)

  20. PREPARATION AND CHARACTERIZATION OF CO-PROCESSED EXCIPIENT-PREGELATINIZED CASSAVA STARCH PROPIONATE AS A MATRIX IN THE GASTRORETENTIVE DOSAGE FORM

    Directory of Open Access Journals (Sweden)

    Junaedi

    2011-11-01

    Full Text Available The gastroretentive dosage form is designed to prolong the gastric residence time of the drug delivery system whichalso results in the development of an appropriate excipient. The purpose of this study is to develop and characterize coprocessedexcipient made from carrageenan (kappa-iota = 1:1 and pregelatinized cassava starch propionate (PCSP inratios of 1:1, 1:2, and 1:3. PCSP was prepared with propionic anhydride in an aqueous medium. The product was mixedwith carrageenan (kappa-iota = 1:1, as well as characterized physicochemical and functional properties. The coprocessedexcipient was then used as a mucoadhesive granule and floating tablet. The USP Basket was selected toperform the dissolution test of the granules in HCl buffer (pH 1.2 and distilled water for 8 hours each. Mucoadhesiveproperties were evaluated using bioadhesive through a vitro test and wash-off test. As for the floating tablet, the USPPaddle was selected to perform the dissolution test of the tablets in 0.1 N HCl for 10 hours. The floating lag time andfloating time were tested in 0.1 N HCl for 24 hours. The result of these studies indicated that co-processed excipientcarrageenan-PCSP can retard dosage form in gastric and drug controlled release, thus making it a suitable material forthe gastroretentive dosage form.

  1. RESPONSE OF NIGERIAN CASSAVA EXPANSION INITIATIVES TO CLIMATE CHANGES, ECONOMIC GROWTH AND SOME POLICY INSTRUMENT (1970-2012

    Directory of Open Access Journals (Sweden)

    Onwumere Joseph

    2013-10-01

    Full Text Available This study considered the limiting response of Nigeria cassava expansion initiative to climate changes, economic growth and some policy instruments. The presidential initiative to make cassava a foreign exchange earner as well as ensuring that national demand are satisfied has made cassava a significant economic crop and resource input of industrial and international status. Currently, its derivatives such as animal feed, starch, ethanol, cassava chip, cassava flour, cassava liquor etc are in high demand. Having gained international recognition some factors need be examined to ascertain the limiting response of this economic crop some exogenous factors. The specific objectives of interest were to ascertain the response of cassava output expansion to rainfall, temperature, imports, exports, credit allocation to agribusiness, exchange rate, nominal interest rate, inflation and GDP from 1970 – 2012. Also, it examined the short and long run effects of these variables to cassava output so as to know how much adjustment it makes to reach the equilibrium. Secondary data were used for this research work. The technique of data analysis was auto- regressive modeling regression. To capture the long run and short run dynamics of cassava output behavior, the error correction model (ECM using the Engle-Granger methodology was adopted. The result revealed a very high rate of adjustment to long run equilibrium and the variables are correlated which means that impact of each variable on cassava output behavior in the economy is inseparable. The Error correction coefficient of -0.975 measures the speed of adjustment towards long run equilibrium earned the expected negative sign and is statistically significant at 1% risk level. Thus, this study recommends that the emerging cassava economy of Nigeria would be adequately empowered for efficient productivity if the Government stipulate policies that will encourage domestic output expansion to meet the national and

  2. Physical and Antimicrobial Properties of Starch-PVA Blend Films as Affected by the Incorporation of Natural Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Amalia Cano

    2015-12-01

    Full Text Available In this work, active films based on starch and PVA (S:PVA ratio of 2:1 were developed by incorporating neem (NO and oregano essential oils (OEO. First, a screening of the antifungal effectiveness of different natural extracts (echinacea, horsetail extract, liquid smoke and neem seed oil against two fungus (P. expansum and A. niger was carried out. The effect of NO and OEO incorporation on the films’ physical and antimicrobial properties was analyzed. Only composite films containing OEO exhibited antibacterial and antifungal activity. Antibacterial activity occurred at low OEO concentration (6.7%, while antifungal effect required higher doses of OEO in the films. Incorporation of oils did not notably affect the water sorption capacity and water vapor barrier properties of S-PVA films, but reduced their transparency and gloss, especially at the highest concentrations. The mechanical response of the S-PVA films was also negatively affected by oil incorporation but this was only relevant at the highest oil ratio (22%. S-PVA films with 6.7% of OEO exhibited the best physical properties, without significant differences with respect to the S-PVA matrix, while exhibiting antibacterial activity. Thus, the use of OEO as a natural antimicrobial incorporated into starch-PVA films represents a good and novel alternative in food packaging applications.

  3. Isolation and characterization of two soil derived yeasts for bioethanol production on Cassava starch

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gi-Wook; Kim, Yule; Kang, Hyun-Woo [Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., Ltd, Palbok-Dong 829, Dukjin-Gu, Jeonju 561-203 (Korea); Um, Hyun-Ju; Kim, Mina; Kim, Yang-Hoon [Department of Microbiology, Chungbuk National University, 410 Sungbong-Ro, Heungduk-Gu, Cheongju 361-763 (Korea); Chung, Bong-Woo [Department of Bioprocess Engineering, Chonbuk National University, 664-14, 1-Ga, Duckjin-Dong, Duckjin-Gu, Jeonju 561-156 (Korea)

    2010-08-15

    Two ethanol-producing yeast strains, CHY1011 and CHFY0901 were isolated from soil in South Korea using an enrichment technique in a yeast peptone dextrose medium supplemented with 5% (w v{sup -1}) ethanol at 30 C. The phenotypic and physiological characteristics, as well as molecular phylogenetic analysis based on the D1/D2 domains of the large subunit (26S) rRNA gene and the internally transcribed spacer (ITS) 1 + 2 regions suggested that they were novel strains of Saccharomyces cerevisiae. During shaking flask cultivation, the highest ethanol productivity and theoretical yield of S. cerevisiae CHY1011 in YPD media containing 9.5% total sugars was 1.06 {+-} 0.02 g l{sup -1} h{sup -1} and 95.5 {+-} 1.2%, respectively, while those for S. cerevisiae CHFY0901 were 0.97 {+-} 0.03 g l{sup -1} h{sup -1} and 91.81 {+-} 2.2%, respectively. Simultaneous saccharification and fermentation for ethanol production was carried out using liquefied cassava (Manihot esculenta) starch in a 5 l lab-scale jar fermenter at 32 C for 66 h with an agitation speed of 2 Hz. Under these conditions, S. cerevisiae CHY1011 and CHFY0901 yielded a final ethanol concentration of 89.1 {+-} 0.87 g l{sup -1} and 83.8 {+-} 1.11 g l{sup -1}, a maximum ethanol productivity of 2.10 {+-} 0.02 g l{sup -1} h{sup -1} and 1.88 {+-} 0.01 g l{sup -1} h{sup -1}, and a theoretical yield of 93.5 {+-} 1.4% and 91.3 {+-} 1.1%, respectively. These results suggest that S. cerevisiae CHY1011 and CHFY0901 have potential use in industrial bioethanol fermentation processes. (author)

  4. Hidrofilicidade de filmes de amido/poli(butileno adipato co-tereftalato (Pbat adicionados de tween 80 e óleo de soja Hydrophilicity of starch and poly(butylene adipate-co-terephthalate (Pbat films containing tween 80 and soybean oil

    Directory of Open Access Journals (Sweden)

    Renata P. Herrera Brandelero

    2013-01-01

    Full Text Available A incorporação de amido ao polímero poli (butilenoadipatoco-tereftalato (PBAT através de blendas com alto teor de amido pode ser uma alternativa para obter embalagens biodegradáveis, minimizar custos e o uso de recursos não renováveis. No entanto, a adição de amido aumenta a permeabilidade ao vapor de água (PVA. A incorporação em filmes com amido de substâncias como óleos vegetais e surfactantes pode diminuir a hidrofilicidade, favorecendo as aplicações destes como embalagens. A hidrofilicidade dos filmes elaborados por blendas de amido/PBAT adicionados de óleo de soja (OS e tween 80 (TW foi avaliada considerando o efeito do OS e TW nas isotermas de sorção dos filmes, na PVA e nos coeficientes de difusão (Dw e solubilidade (β do vapor de água. Filmes com OS com ou sem TW apresentaram menor quantidade de água de sorção, sendo os filmes com menores quantidades de OS e sem TW menos hidrofílicos e menos permeáveis aos vapores de água. A adição de OS reduziu os valores de β e Dw dos filmes de amido/PBAT. O efeito foi relacionado com o aumento das porções hidrofóbicas e da compatibilidade entre o amido e PBAT na presença de OS.Incorporating starch into the poly(butylene adipate-co-terephthalate (PBAT polymer by means of blends with high starch contents is a possible option for producing biodegradable packaging using renewable resources and reducing costs. However, the addition of starch increases the water vapour permeability (WVP. The incorporation of substances as lipids and surfactants can reduce the hydrophilicity of films containing starch, favouring their use as packaging. The hydrophilicity of films produced from blends of starch/PBAT with added soybean oil (SO and tween 80 (TW was studied. The effects of these substances on the sorption isotherm, on the WVP and on the water vapour diffusion (Dw and solubility (β coefficients of the films were evaluated. The water sorption in films with SO, with or without TW

  5. Cassava biology and physiology.

    Science.gov (United States)

    El-Sharkawy, Mabrouk A

    2004-11-01

    Cassava or manioc (Manihot esculenta Crantz), a perennial shrub of the New World, currently is the sixth world food crop for more than 500 million people in tropical and sub-tropical Africa, Asia and Latin America. It is cultivated mainly by resource-limited small farmers for its starchy roots, which are used as human food either fresh when low in cyanogens or in many processed forms and products, mostly starch, flour, and for animal feed. Because of its inherent tolerance to stressful environments, where other food crops would fail, it is often considered a food-security source against famine, requiring minimal care. Under optimal environmental conditions, it compares favorably in production of energy with most other major staple food crops due to its high yield potential. Recent research at the Centro Internacional de Agricultura Tropical (CIAT) in Colombia has demonstrated the ability of cassava to assimilate carbon at very high rates under high levels of humidity, temperature and solar radiation,which correlates with productivity across all environments whether dry or humid. When grown on very poor soils under prolonged drought for more than 6 months, the crop reduce both its leaf canopy and transpiration water loss, but its attached leaves remain photosynthetically active, though at greatly reduced rates. The main physiological mechanism underlying such a remarkable tolerance to drought was rapid stomatal closure under both atmospheric and edaphic water stress, protecting the leaf against dehydration while the plant depletes available soil water slowly during long dry periods. This drought tolerance mechanism leads to high crop water use efficiency values. Although the cassava fine root system is sparse, compared to other crops, it can penetrate below 2 m soil,thus enabling the crop to exploit deep water if available. Leaves of cassava and wild Manihot possess elevated activities of the C4 enzyme PEP carboxylase but lack the leaf Kranz anatomy typical of C4

  6. Effect of Cassava Flour Characteristics on Properties of Cassava-Wheat-Maize Composite Bread Types

    Directory of Open Access Journals (Sweden)

    Maria Eduardo

    2013-01-01

    Full Text Available Replacement of wheat flour by other kinds of flour in bread making is economically important in South East Africa as wheat is mainly an imported commodity. Cassava is widely available in the region, but bread quality is impaired when large amounts of cassava are used in the bread formulation. Effect of differently processed cassavas (sun-dried, roasted and fermented on composite cassava-wheat-maize bread quality containing cassava levels from 20 to 40% (w/w was evaluated in combination with high-methylated pectin (HM-pectin added at levels of 1 to 3% (w/w according to a full factorial design. Addition of pectin to cassava flour made it possible to bake bread with acceptable bread quality even at concentration as high as 40%. In addition to cassava concentration, the type of cassava flour had the biggest effect on bread quality. With high level of cassava, bread with roasted cassava had a higher volume compared with sun-dried and fermented. The pectin level had a significant effect on improving the volume in high level roasted cassava bread. Crumb firmness similar to wheat bread could be obtained with sun-dried and roasted cassava flours. Roasted cassava bread was the only bread with crust colour similar to wheat bread.

  7. Effect of Cassava Flour Characteristics on Properties of Cassava-Wheat-Maize Composite Bread Types.

    Science.gov (United States)

    Eduardo, Maria; Svanberg, Ulf; Oliveira, Jorge; Ahrné, Lilia

    2013-01-01

    Replacement of wheat flour by other kinds of flour in bread making is economically important in South East Africa as wheat is mainly an imported commodity. Cassava is widely available in the region, but bread quality is impaired when large amounts of cassava are used in the bread formulation. Effect of differently processed cassavas (sun-dried, roasted and fermented) on composite cassava-wheat-maize bread quality containing cassava levels from 20 to 40% (w/w) was evaluated in combination with high-methylated pectin (HM-pectin) added at levels of 1 to 3% (w/w) according to a full factorial design. Addition of pectin to cassava flour made it possible to bake bread with acceptable bread quality even at concentration as high as 40%. In addition to cassava concentration, the type of cassava flour had the biggest effect on bread quality. With high level of cassava, bread with roasted cassava had a higher volume compared with sun-dried and fermented. The pectin level had a significant effect on improving the volume in high level roasted cassava bread. Crumb firmness similar to wheat bread could be obtained with sun-dried and roasted cassava flours. Roasted cassava bread was the only bread with crust colour similar to wheat bread.

  8. Swelling and tensile properties of starch glycerol system with various crosslinking agents

    Science.gov (United States)

    Mohamed, R.; Mohd, N.; Nurazzi, N.; Siti Aisyah, M. I.; Fauzi, F. Mohd

    2017-07-01

    Brittle properties of starch had been overcome by the modification process. In this work, sago starch is being modified with variable amount of plasticiser, namely glycerol at 20 and 40% and crosslinking agent had been added to the system. The film of the modification and characterizations of the starch glycerol system with various crosslinking systems were produced by casting method. The film properties of the starch glycerol system were then characterized by tensile strength (mechanical properties) and swelling (physical properties). The modification of the starch glycerol had improved that system by increasing the tensile strength, modulus however lowering its elongation. The increasing in percentage of the water absorption and also swelling are due to the intrinsic hydroxyl groups presence from the starch and glycerol itself that can attract more water to the system. Upon crosslinking, films casted with chemicals namely, glyoxal, malonic acid, borax, PEG were characterised. It was found that, all the film of sago starch crosslinked and undergoing easy film formation. From this modification, borax and malonic acid crosslinking agent had been determined as the best crosslinking agent to the starch glycerol system.

  9. Mechanical behavior of mullite green disks prepared by thermal consolidation with different starches

    International Nuclear Information System (INIS)

    Talou, M.H.; Tomba Martinez, A.G.; Camerucci, M.A.

    2011-01-01

    Mechanical behavior of porous green disks obtained by thermal consolidation of mullite suspensions with cassava and potato starches was studied by diametral compression testing. Disks (thickness/diameter ≤ 0.25) were prepared by thermal treatment (70-80 °C, 2h) of mullite (75 vol%)/starch (25 vol%) of suspensions (40 vol%) pre-gelled at 55-60 °C, and dried (40 °C, 24 h). Samples were characterized by porosity measurements (50-55%) and microstructural analysis (SEM). Several mechanical parameters were determined: mechanical strength, Young's modulus, strain to fracture and yield stress. Typical crack patterns were analyzed and the fractographic analysis was performed by SEM. Mechanical results were related to the developed microstructures, the behavior of the starches in aqueous suspension, and the properties of the formed gels. For comparative purposes, mullite green disks obtained by burning out the starch (650 °C, 2h) were also mechanically evaluated. (author)

  10. Water barrier properties of starch-clay nanocomposite films Propriedades de barreira à água de filmes de nanocompósitos de amido e argila

    Directory of Open Access Journals (Sweden)

    Aníbal Marcelo Slavutsky

    2012-09-01

    Full Text Available The functional properties of corn starch based films were improved by incorporating nanoclay (Montmorillonite. Nanoclay was incorporated in the polymer matrix using two different methodologies and the films were formed by casting. The effect of film preparation methodology and of the nanoclay concentration on the physicochemical properties of the films was studied. Depending on film preparation method used, intercalated or exfoliated nanocomposite films were obtained. The FTIR spectra showed a strong interaction between the montmorillonite and the starch molecules. Opacity was dependent on the nanoclay dispersion method used. Water vapor solubility and permeability decreased with increasing montmorillonite content and were affected by the dispersion method. Water diffusion was only dependent on the nanoclay content due to the increase in tortuosity of the diffusion path, caused by the nanoparticles. The results showed that the incorporation of 5% of montmorillonite using an adequate dispersion method, improved the water resistance and barrier properties of corn starch based films. Nanoparticles reduced the damage caused to the properties of these hydrophilic films by the increase in moisture content.As propriedades funcionais de filmes à base de amido de milho foram melhoradas pela incorporação de nanoargila (montmorilonita. Nanoargila foi incorporada na matriz polimérica por meio de duas metodologias diferentes e os filmes foram produzidos por casting. Os efeitos da metodologia de preparação e da concentração de nanoargila nas propriedades físico-químicas dos filmes foram estudados. Conforme os métodos de elaboração, filmes intercalados e esfoliados de nanocompósitos foram obtidos. Os espectros FTIR mostraram uma forte interação entre a argila montmorilonita e as moléculas de amido. A opacidade foi dependente do método utilizado para a dispersão da nanoargila. A solubilidade e a permeabilidade ao vapor de água diminu

  11. Effect of sugar addition on glass transition temperatures of cassava starch with low to intermediate moisture contents.

    Science.gov (United States)

    Figueroa, Yetzury; Guevara, Marvilan; Pérez, Adriana; Cova, Aura; Sandoval, Aleida J; Müller, Alejandro J

    2016-08-01

    This work studies how sucrose (S) addition modifies the thermal properties of cassava starch (CS). Neat CS and CS-S blends with 4, 6 and 8% sugar contents (CS-S-4%, CS-S-6% and CS-S-8%) were prepared and analyzed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA), in a wide range of moisture levels (2-20%). In equilibrated samples with moisture contents lower than 10%, twoendothermic steps were observed during first DSC heating scans and two corresponding relaxation maxima in tan δ were detected by DMTA. The first transition, detected at around 45-55°C by both DSC and DMTA, is frequently found in starchy foods, while the second observed at higher temperatures is associated to the glass transition temperature of the blends. At higher moisture contents, only one thermal transition was observed. Samples analyzed immediately after cooling from the melt (i.e., after erasing their thermal history), exhibited a single glass transition temperature, regardless of their moisture content. Addition of sugar promotes water plasticization of CS only at high moisture contents. In the low moisture content range, anti-plasticization was observed for both neat and sugar-added CS samples. Addition of sugar decreases the moisture content needed to achieve the maximum value of the glass transition temperature before plasticization starts. The results of this work may be valuable for the study of texture establishment in low moisture content extruded food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Awareness of Cassava Peel Utilization Forms among Cassava ...

    African Journals Online (AJOL)

    hp

    processors were women (76.5%), married (75.0%), and members of cassava processing associations. (89.5%) ... products for mini-agricultural business include wafers .... Results and Discussion .... one or more cassava farmers' or processors'.

  13. Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol.

    Science.gov (United States)

    Santana, Renata Ferreira; Bonomo, Renata Cristina Ferreira; Gandolfi, Olga Reinert Ramos; Rodrigues, Luciano Brito; Santos, Leandro Soares; Dos Santos Pires, Ana Clarissa; de Oliveira, Cristiane Patrícia; da Costa Ilhéu Fontan, Rafael; Veloso, Cristiane Martins

    2018-01-01

    Biodegradable films based on starches from different botanical sources exhibited physicochemical and functional properties which were related with the starch characteristics. However, had inadequate mechanical properties and were hard and brittle. In this research, jackfruit seed starch plasticized with glycerol were developed and characterized. The starch and glycerol concentrations ranged from 2 to 6% w/w and 20 to 60 g/100 g starch, respectively. Bioplastics were obtained by the casting method and characterized in terms of color, mechanical properties, solubility, water vapor permeability ( WVP ), morphology and free energy of the hydrophobic interaction. Electronic micrographics showed the presence of some intact starch granules. The bioplastics were hydrophilic and those of 6% starch and 40% glycerol were the most hydrophilic ([Formula: see text] = 41.35 mJ m -1 ). The solubility of the films presented a direct relationship with the starch concentration ranging from 16.42 to 23.26%. Increased opacity and color difference were observed with increasing starch concentration. The WVP ranged from 1.374 × 10 -3 to 3.07 × 10 -4  g m/day m 2 which was positively related with the concentration of starch and glycerol. Tensile strength, percent elongation and Young's Modulus indicated that the jackfruit starch and glycerol provided a film with good mechanical properties. The results replaced that jackfruit starch can be used to develop films, with low opacity, moderate WVP and relatively high mechanical stability, by using glycerol in the gelatinized starch dispersions.

  14. Antibacterial, antioxidant and optical properties of edible starch-chitosan composite film containing Thymus kotschyanus essential oil

    Directory of Open Access Journals (Sweden)

    Tooraj Mehdizadeh

    2012-09-01

    Full Text Available Thyme Essential oils (EO with antimicrobial and antioxidant properties are widely used in pharmaceutical, cosmetic, and perfume industry. It is also used for flavoring and preservation of several foods. Nowadays, packaging research is receiving a considerable attention due to the development of eco-friendly materials made from natural polymers such as starch and chitosan. In this study Thymus kotschyanus EO concentrations ranging from 0 to 2.0%, incorporated in starch-chitosan composite (S-CH film were used. Antimicrobial and antioxidant properties significantly increased with the incorporation of EO (p < 0.05. Incorporating EO, increased total color differences (DE, yellowness index (YI and whiteness index (WI which were significantly higher than control and its transparency was reduced. Our results pointed out that the incorporation of Thymus kotschyanus EO as a natural antibacterial agent has potential for using the developed film as an active packaging.

  15. Gamma (γ) irradiated and non-irradiated poly (L-lactide) carboxymethyl starch composite film

    Science.gov (United States)

    Yusof, Mohd Reusmaazran; Shamsudin, Roslinda; Abdullah, Yusof; Yaacob, Norzita

    2018-04-01

    A film of poly (L-lactide)(PLLA) and carboxymethyl starch (CMS) is prepared by casting evaporation method. The use of CMS blended with PLLA induces the porous film that is potentially used in tissue engineering applications. PLLA is blended with CMS in solution form and rolled on glass to produce a film. The film is then irradiated with gamma-ray (γ) at 10 and 80 kGy. FTIR analysis indicates weak interaction between PLLA and CMS at 10 kGy. Degradation and crosslinking are predicted to have occurred simultaneously at 10 kGy and massive degradation at 80 kGy as indicated in differential scanning calorimetry (DSC) curves. Mechanical analysis shows a higher strength at 10 kGy indicating that crosslinking has occured whereas degradation takes place at higher doses as shown in the reduction of mechanical strength for both PLLA and PLLA/CMS.

  16. Sensory properties and storage stability of salad cream from ...

    African Journals Online (AJOL)

    Sensory properties and storage stability of salad cream prepared from cassava starch and soy protein concentrates was studied. Cassava starch and soy protein concentrate blends were prepared with 30% soy protein concentrate and incorporated into 70% cassava starch. The cassava-soy protein concentrate blend was ...

  17. Biosafety considerations for selectable and scorable markers used in cassava (Manihot esculenta Crantz) biotechnology.

    Science.gov (United States)

    Petersen, William; Umbeck, Paul; Hokanson, Karen; Halsey, Mark

    2005-01-01

    Cassava is an important subsistence crop grown only in the tropics, and represents a major source of calories for many people in developing countries. Improvements in the areas of resistance to insects and viral diseases, enhanced nutritional qualities, reduced cyanogenic content and modified starch characteristics are urgently needed. Traditional breeding is hampered by the nature of the crop, which has a high degree of heterozygosity, irregular flowering, and poor seed set. Biotechnology has the potential to enhance crop improvement efforts, and genetic engineering techniques for cassava have thus been developed over the past decade. Selectable and scorable markers are critical to efficient transformation technology, and must be evaluated for biosafety, as well as efficiency and cost-effectiveness. In order to facilitate research planning and regulatory submission, the literature on biosafety aspects of the selectable and scorable markers currently used in cassava biotechnology is surveyed. The source, mode of action and current use of each marker gene is described. The potential for toxicity, allergenicity, pleiotropic effects, horizontal gene transfer, and the impact of these on food or feed safety and environmental safety is evaluated. Based on extensive information, the selectable marker genes nptII, hpt, bar/pat, and manA, and the scorable marker gene uidA, all have little risk in terms of biosafety. These appear to represent the safest options for use in cassava biotechnology available at this time.

  18. Effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch

    International Nuclear Information System (INIS)

    Silva, Leonardo G. Andrade e; Poveda, Patricia N.S.; Rezende, Maira L.; Rosa, Derval S.

    2009-01-01

    Biodegradable and green plastics have been studied in the last years. The aim of this paper is to study the effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch. The samples were irradiated at different doses 10 and 40 kGy in a linear accelerator. The biodegradability of the materials was evaluated by two methods: soil simulated and enzymatic. In the method enzymatic when it was used α-amylase, the irradiated samples presented faster biodegradation than the references non irradiated. The blend of aromatic aliphatic copolyester with corn starch (Ecobras R ) irradiated presented a bigger biodegradability than the aromatic aliphatic copolyester (Ecoflex R ) film in both methods studied. (author)

  19. Production of methane by co-digestion of cassava pulp with various concentrations of pig manure

    Energy Technology Data Exchange (ETDEWEB)

    Panichnumsin, Pornpan [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Thungkru, Bangkok 10140 (Thailand); Excellent Center of Waste Utilization and Management, National Center for Genetic Engineering and Biotechnology, Bangkhuntien, Bangkok 10150 (Thailand); Nopharatana, Annop [Pilot Plant Development and Training Institute, King Mongkut' s University of Technology Thonburi, Bangkhuntien, Bangkok 10150 (Thailand); Ahring, Birgitte [AAU, Copenhagen Institute of Technology, Lautrupvang 15, 2750 Ballerup (Denmark); Chaiprasert, Pawinee [School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, Bangkhuntien, Bangkok 10150 (Thailand)

    2010-08-15

    Cassava pulp is a major by-product produced in a cassava starch factory, containing 50-60% of starch (dry basis). Therefore, in this study we are considering its potential as a raw material substrate for the production of methane. To ensure sufficient amounts of nutrients for the anaerobic digestion process, the potential of co-digestion of cassava pulp (CP) with pig manure (PM) was further examined. The effect of the co-substrate mixture ratio was carried out in a semi-continuously fed stirred tank reactor (CSTR) operated under mesophilic condition (37 C) and at a constant OLR of 3.5 kg VS m{sup -3} d{sup -1} and a HRT of 15 days. The results showed that co-digestion resulted in higher methane production and reduction of volatile solids (VS) but lower buffering capacity. Compared to the digestion of PM alone, the specific methane yield increased 41% higher when co-digested with CP in concentrations up to 60% of the incoming VS. This was probably due to an increase in available easily degradable carbohydrates as the CP ratio in feedstock increased. The highest methane yield and VS removal of 306 mL g{sup -1} VS{sub added} and 61%, respectively, were achieved with good process stability (VFA:Alkalinity ratio < 0.1) when CP accounted for 60% of the feedstock VS. A further increase of CP of the feedstock led to a decrease in methane yield and solid reductions. This appeared to be caused by an extremely high C:N ratio of the feedstock resulting in a deficiency of ammonium nitrogen for microbial growth and buffering capacity. (author)

  20. Production of methane by co-digestion of cassava pulp with various concentrations of pig manure

    International Nuclear Information System (INIS)

    Panichnumsin, Pornpan; Nopharatana, Annop; Ahring, Birgitte; Chaiprasert, Pawinee

    2010-01-01

    Cassava pulp is a major by-product produced in a cassava starch factory, containing 50-60% of starch (dry basis). Therefore, in this study we are considering its potential as a raw material substrate for the production of methane. To ensure sufficient amounts of nutrients for the anaerobic digestion process, the potential of co-digestion of cassava pulp (CP) with pig manure (PM) was further examined. The effect of the co-substrate mixture ratio was carried out in a semi-continuously fed stirred tank reactor (CSTR) operated under mesophilic condition (37 o C) and at a constant OLR of 3.5 kg VS m -3 d -1 and a HRT of 15 days. The results showed that co-digestion resulted in higher methane production and reduction of volatile solids (VS) but lower buffering capacity. Compared to the digestion of PM alone, the specific methane yield increased 41% higher when co-digested with CP in concentrations up to 60% of the incoming VS. This was probably due to an increase in available easily degradable carbohydrates as the CP ratio in feedstock increased. The highest methane yield and VS removal of 306 mL g -1 VS added and 61%, respectively, were achieved with good process stability (VFA:Alkalinity ratio < 0.1) when CP accounted for 60% of the feedstock VS. A further increase of CP of the feedstock led to a decrease in methane yield and solid reductions. This appeared to be caused by an extremely high C:N ratio of the feedstock resulting in a deficiency of ammonium nitrogen for microbial growth and buffering capacity.

  1. Potential of sago starch/carrageenan mixture as gelatin alternative for hard capsule material

    Science.gov (United States)

    Poeloengasih, Crescentiana Dewi; Pranoto, Yudi; Anggraheni, Frida Dwi; Marseno, Djagal Wiseso

    2017-03-01

    In order to replace gelatin in capsule shell production, blends of sago starch and carrageenan were developed. Films and capsules were prepared with 10% (w/v) of sago starch, 25% (w/w starch) of glycerol and various carrageenan concentration (1, 2, 3% w/w starch) in two different kappa/iota-carrageenan ratio (1:3 and 3:1). The resulted films and capsules were characterized by mechanical property, water vapor and oxygen permeability. In addition, moisture absorption and solubility of capsule in acid solution were investigated. The results reveal that addition of carrageenan makes the films stronger and less permeable. Higher kappa-carrageenan content improved tensile strength and barrier properties of the films, whereas higher iota-carrageenan content produced films with higher elongation, moisture absorption and capsule solubility in acid solution. Capsule with 2% (w/w starch) of carrageenan at kappa-/iota-ratio 3:1 had the lowest moisture absorption, whereas capsule with 3% (w/w starch) of carrageenan at kappa/iota ratio 1:3 had the highest solubility. It is illustrated that sago starch/carrageenan blends can be used as hard capsule material.

  2. Valorisation of blueberry waste and use of compression to manufacture sustainable starch films with enhanced properties.

    Science.gov (United States)

    Luchese, Cláudia Leites; Uranga, Jone; Spada, Jordana Corralo; Tessaro, Isabel Cristina; de la Caba, Koro

    2018-08-01

    Blueberry waste from juice processing was valorised to develop starch films by compression moulding. The compression process resulted in hydrophobic films with water contact angles even higher than 100° for the films prepared with the highest blueberry waste content. Additionally, the film solubility was reduced by the incorporation of blueberry waste, regardless of the solution pH. These films also exhibited good barrier properties against UV light due to the aromatic compounds present in the blueberry waste. Furthermore, films showed a homogenous surface, although some pores appeared in the cross-section for the films with the highest blueberry waste content. Results highlighted the use of thermo-mechanical processes such as compression to manufacture sustainable films with enhanced properties through waste valorisation by the techniques actually employed at industrial scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Preparation and characterization of bionanocomposite film based ontapioca starch/bovine gelatin/nanorod zinc oxide

    DEFF Research Database (Denmark)

    Mehdi Marvizadeh, Mohammad; Oladzadabbasabadi, Nazila; Mohammadi Nafchi, Abdorreza

    2017-01-01

    , as well as the barrier properties of bionanocomposite films were investigated. X-ray diffraction analysis showed that the bionanocomposite film incorporated with ZnOsingle bondN at a concentration of 3.5% w/w exhibited high intensity peaks compared with control samples. Results of UV–vis spectra analysis......To exploring a nano-packaging materials for using as coating or edible films, tapioca starch/gelatin/nanorod ZnO (ZnOsingle bondN) bionanocomposites were prepared via solution casting technique. The effects of nanofiller addition on the mechanical, physicochemical, and crystalline structures...... showed that incorporation of ZnOsingle bondN into the films can absorb the whole UV light. Tensile strength of the films was increased from 14 to 18 MPa whereas elongation at breaks decreased from 18 to 8 percent and oxygen permeability decreased from 151.03 to 91.52 cm3 μm/(m2–day) by incorporation of 3...

  4. Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid

    NARCIS (Netherlands)

    Witono, J. R.; Noordergraaf, Inge; Heeres, H. J.; Janssen, L. P. B. M.; Heeres, Hero

    2014-01-01

    An important application of starch grafted with copolymers from unsaturated organic acids is the use as water absorbent. Although much research has been published in recent years, the kinetics of water absorption and the swelling behavior of starch based superabsorbents are relatively unexplored.

  5. Characterization of bioplastic based from cassava crisp home industrial waste incorporated with chitosan and liquid smoke

    Science.gov (United States)

    Fathanah, U.; Lubis, M. R.; Nasution, F.; Masyawi, M. S.

    2018-03-01

    Cassava peel (Manihot utilissima) is waste of agricultural result that is much potential as raw material of bioplastic making. This research focuses on bioplastic making from cassava peel. It aims to characterize the resulted bioplastic (mechanical and physical properties, SEM analysis, FTIR analysis and time test of bioplastic degradation). The bioplastic preparation takes place by mixing starch of cassava peel and chitosan (20, 30, 40 and 50% w/w), glycerol 30% w/w as plasticizer, and liquid smoke (0, 1 and 2 mL) as antimicrobial agent. The research result shows the highest value of tensile strength is 96.04 MPa, the highest elongation at break is 52.27%, and the value of water-resistant test is 22.68%. Morphology analysis by using SEM shows uneven surface and there is fracture in its cross-section. The analysis of functional group by FTIR shows the presence of functional groups of O–H (hydroxyl), N–H (amine), dan CH3–O (ether). The fastest complete degradation of bioplastic occurs in 45 days, and the longest occurs in 57 days.

  6. Antibacterial, mechanical, and barrier properties of sago starch film incorporated with Betel leaves extract.

    Science.gov (United States)

    Nouri, Leila; Mohammadi Nafchi, Abdorreza

    2014-05-01

    The antimicrobial, mechanical and barrier properties and light transmission of sago starch film incorporated with different percentage of Betel leaf extract (5%, 10%, 20%, and 30%) were evaluated. With regard to mechanical properties, tensile strength decreased when the percentage of extract increased. Elongation at break (%) and seal strength (N/m) increased with increasing percentage of extract from 5% to 20%, while decreased for films containing 30% extract due to heterogeneity of films in this percentage. With regard to barrier properties, water vapour and oxygen barrier properties decreased in all samples when percentage of the extract increased. Antimicrobial activity of all the films increased against both Gram positive and Gram negative bacteria as percentage of Betel leaf extract increased, except for Psuedomonas aeruginosa, which was not susceptible at any percentage of the extract. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Structural modification in the formation of starch - silver nanocomposites

    Science.gov (United States)

    Begum, S. N. Suraiya; Aswal, V. K.; Ramasamy, Radha Perumal

    2016-05-01

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.

  8. Cassava, yam, sweet potato and ñampi starch: functional properties and possible applications in the food industry. Harinas y almidones de yuca, ñame, camote y ñampí: propiedades funcionales y posibles aplicaciones en la industria alimentaria.

    Directory of Open Access Journals (Sweden)

    Pedro Vargas Aguilar

    2013-03-01

    Full Text Available A technical review was conducted to related physical and chemical properties of flours and starches from cassava, yams, taro and sweet potato. Amyloseamylopectin content, viscosity, nutritional value and fiber, were studied to relate them with starch functional properties. A relationship was obtained between amylose-amylopectin, viscosity and fiber content with the digestibility of those starches and the glycemic index values. The use of fermentation to enhance the nutritional value of these starches is known. Starch fermentation allows the production of gluten-free bread and energy drinks as an option to diversify products. It was also observed the relationship between the starch viscosity and the fat absorption in fried foods.Se realizó una revisión de las características fisicoquímicas de las harinas y almidones de yuca, ñame, ñampí y camote, tales como el contenido de amilosa-amilopectina, la viscosidad, el valor nutricional y la fibra, con el fin de relacionarlas con sus propiedades funcionales y técnico-funcionales. Se obtuvo una relación entre el contenido de amilosa-amilopectina, viscosidad y contenido de fibra en la digestibilidad de estos almidones y los valores de índice glicémico. Se encontró que es posible introducir modificaciones por medio de la fermentación para mejorar el valor funcional de estos almidones. La fermentación permite elaborar pan sin gluten y bebidas energéticas como nuevas opciones de productos. También se encontró que existe una relación entre la viscosidad de los almidones y la disminución de absorción de la grasa en frituras.

  9. Effect of enzymatic hydrolysis on some physicochemical properties of root and tuber granular starches Efeito da hidrólise enzimática sobre algumas propriedades físico-químicas de amidos de raízes e tubérculos

    Directory of Open Access Journals (Sweden)

    Thaís de Souza Rocha

    2010-06-01

    Full Text Available Enzymatic hydrolysis of granular starch is an important tool to provide information about granule structure. Cassava, sweet potato, Peruvian carrot, and potato starches were hydrolyzed by bacterial α-amylase at 37 °C for 48 hours, and the physicochemical properties of the residues from hydrolysis were determined. Cassava starch was the most susceptible to enzyme displaying 20.9% of hydrolysis, whereas potato starch was the most resistant with 5.9%. The granule average size varied from 10.8 to 23.4 μm for Peruvian carrot and potato starches, respectively. With the use of SEM, a smooth granule surface was observed for all native starches. Cassava and sweet potato starches displayed an A-type X-ray diffraction pattern, while Peruvian carrot and potato starches showed a B-type pattern. After hydrolysis, cassava, sweet potato, and Peruvian carrot starches showed some well degraded granules, whereas potato starch presented a slight sign of degradation. The amylose content of the starches decreased with hydrolysis for cassava, sweet potato, and Peruvian carrot starches and was kept unchanged for the potato starch. As expected, intrinsic viscosity and pasting properties decreased for all hydrolyzed starches. There is no difference between thermal properties of native and hydrolyzed starches. These results suggested that hydrolysis occurred in amorphous and crystalline areas of the granules. The B type diffraction pattern in conjunction with the big granule size of the potato starch may have contributed to the greatest resistance of this starch to hydrolysis.A hidrólise enzimática do amido pode fornecer informações importantes sobre sua estrutura granular. Amidos de mandioca, batata-doce, mandioquinha-salsa e batata foram hidrolisados por α-amilase bacteriana a 37 °C durante 48 horas, e algumas propriedades físico-químicas dos resíduos da hidrólise foram determinadas. O amido de mandioca foi o mais suscetível à enzima com 20,9% de hidr

  10. Multi-objective optimization of bioethanol production during cold enzyme starch hydrolysis in very high gravity cassava mash.

    Science.gov (United States)

    Yingling, Bao; Li, Chen; Honglin, Wang; Xiwen, Yu; Zongcheng, Yan

    2011-09-01

    Cold enzymatic hydrolysis conditions for bioethanol production were optimized using multi-objective optimization. Response surface methodology was used to optimize the effects of α-amylase, glucoamylase, liquefaction temperature and liquefaction time on S. cerevisiae biomass, ethanol concentration and starch utilization ratio. The optimum hydrolysis conditions were: 224 IU/g(starch) α-amylase, 694 IU/g(starch) glucoamylase, 77°C and 104 min for biomass; 264 IU/g(starch) α-amylase, 392 IU/g(starch) glucoamylase, 60°C and 85 min for ethanol concentration; 214 IU/g(starch) α-amylase, 398 IU/g(starch) glucoamylase, 79°C and 117 min for starch utilization ratio. The hydrolysis conditions were subsequently evaluated by multi-objectives optimization utilizing the weighted coefficient methods. The Pareto solutions for biomass (3.655-4.380×10(8)cells/ml), ethanol concentration (15.96-18.25 wt.%) and starch utilization ratio (92.50-94.64%) were obtained. The optimized conditions were shown to be feasible and reliable through verification tests. This kind of multi-objective optimization is of potential importance in industrial bioethanol production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Leonardo G. Andrade e; Poveda, Patricia N.S., E-mail: lgasilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rezende, Maira L.; Rosa, Derval S. [Universidade Sao Francisco, Itatiba, SP (Brazil)

    2009-07-01

    Biodegradable and green plastics have been studied in the last years. The aim of this paper is to study the effect of electron beam irradiation on the biodegradability of aromatic aliphatic copolyester film and their blend with corn starch. The samples were irradiated at different doses 10 and 40 kGy in a linear accelerator. The biodegradability of the materials was evaluated by two methods: soil simulated and enzymatic. In the method enzymatic when it was used alpha-amylase, the irradiated samples presented faster biodegradation than the references non irradiated. The blend of aromatic aliphatic copolyester with corn starch (Ecobras{sup R}) irradiated presented a bigger biodegradability than the aromatic aliphatic copolyester (Ecoflex{sup R}) film in both methods studied. (author)

  12. Effect of Harvest Period on the Proximate Composition and Functional and Sensory Properties of Gari Produced from Local and Improved Cassava (Manihot esculenta Varieties

    Directory of Open Access Journals (Sweden)

    Alphonse Laya

    2018-01-01

    Full Text Available This study is aimed at evaluating the proximate composition and functional and sensory characteristics of gari obtained from five cassava varieties (EN, AD, TMS92/0326, TMS96/1414, and IRAD4115. These cassavas were harvested during the dry season 12 months after planting (12MAP and in the rainy season (15MAP. Results showed that the characteristics of gari varied significantly (p<0.05 with the variety and the harvest period. Gari from EN cassava harvested at 12MAP had the highest total carbohydrates (78.07% dry weight, starch (61%, and proteins content, while gari from TMS 96/1414 variety (12MAP had high amino acids (10.25 mg/g and phenolic compounds (9.31 mg/g content. The gari from IRAD4115 had the highest value of ash content (20.62 mg/g at 12MAP. The soluble sugar content was high in the gari from cassava harvested at 12MAP while free cyanide reduced significantly in gari from cassava harvested at 12MAP. The water absorption capacity, swelling power, and bulk density were significantly (p<0.05 high in the gari from EN cassava variety at 12MAP. Compared to commercial gari (3.30, gari from EN local cassava had the best overall acceptability (4.35 followed by those obtained from TMS92/0326 and TMS92/1414 varieties, respectively.

  13. Effect of Cassava Flour Characteristics on Properties of Cassava-Wheat-Maize Composite Bread Types

    OpenAIRE

    Eduardo, Maria; Svanberg, Ulf; Oliveira, Jorge; Ahrn?, Lilia

    2013-01-01

    Replacement of wheat flour by other kinds of flour in bread making is economically important in South East Africa as wheat is mainly an imported commodity. Cassava is widely available in the region, but bread quality is impaired when large amounts of cassava are used in the bread formulation. Effect of differently processed cassavas (sun-dried, roasted and fermented) on composite cassava-wheat-maize bread quality containing cassava levels from 20 to 40% (w/w) was evaluated in combination with...

  14. Characteristics of raw starch degrading alpha-amylase from Bacillus aquimaris MKSC 6.2 associated with soft coral Sinularia sp.

    NARCIS (Netherlands)

    Puspasari, Fernita; Nurachman, Zeily; Noer, Achmad Saefuddin; Radjasa, Ocky Karna; van der Maarel, Marc J. E. C.; Natalia, Dessy

    Partially purified alpha-amylase from Bacillus aquimaris MKSC 6.2, a bacterium isolated from a soft coral Sinularia sp., Merak Kecil Island, West Java, Indonesia, showed an ability to degrade raw corn, rice, sago, cassava, and potato starches with adsorption percentage in the range of 65-93%. Corn

  15. In vitro ruminal fermentation kinetic of diets containing forage cactus with urea and different starch sources

    Directory of Open Access Journals (Sweden)

    Yann dos Santos Luz

    2014-06-01

    Full Text Available The study was conducted to evaluate fermentation kinetic of diets based on cactus forage enriched with urea and Tifton 85 hay, containing different starch sources, using semi-automated in vitro gas production technique. Treatments were disposed in a randomized block design, with four replications, where concentrates were formulated as follows: cassava roots (FSMa, semi flint corn grains (FSMiSD, dent corn grains (FSMiD and wheat bran (FTMa. All diets were formulated to obtain 15% of crude protein. Gas pressure were measured 2, 4, 6, 8, 10, 12, 15, 18, 21, 24, 30, 36, 48, 72 and 96 h after inoculation. For fast phase maximum gas volume (Vf1, both treatments containing corn did not differ (P>0.05. FTMa differed (P<0.05 from diets composed with corn, as main starch source. Specific degradation rate of fast fraction (Kd1 was higher (P<0.05 on FSMa and FTMa diets, compared with corn diets. Colonization time (L showed lower values (P<0.05 for FTMa diet. The lowest total gas production was observed on FTMa and the highest for FSMiD, varying from 225.49 to 268.31 mL/g, respectively. Cassava roots as starch source contributes to a faster fermentation, compared to both corns, allowing a better synchronization with faster degradation nitrogen sources.

  16. Mechanical behavior and essential work of fracture of starch-based blown films

    Science.gov (United States)

    Nottez, M.; Chaki, S.; Soulestin, J.; Lacrampe, M. F.; Krawczak, P.

    2015-05-01

    A fracture mechanics approach (Essential Work of Fracture, EWF) was applied to assess the toughness of novel partly starch-grafted polyolefin blown films, compared to that of a neat polyethylene reference. Tests were performed on double-end notched samples. The digital image correlation method was used to monitor the deformation field around the notch. Regular tensile and tear tests were also carried out. The specific essential work of fracture is a characteristic which is much more sensitive to materials structural modifications than the tensile or tear properties.

  17. Fermentation of cassava and other vegetable substances

    Energy Technology Data Exchange (ETDEWEB)

    Stanton, W R; Wallbridge, A J

    1972-06-07

    The fermentation consists of a process in which a mucoraceous fungus of the genera Rhizopus, Mucor, or Acrinomucor or a fungus of the genus Monilia is fermented on a solid or paste like substrate which is a mixture of an edible protein-deficient vegetable material known as cassava, of which the carbohydrate is mainly starch and a compound containing N in nonproteinaceous form and assimilable by the fungus to synthesize protein. Thus, tubers obtained from M. esculenta (M. utilissima are peeled, dried, and ground to give a tapioca flour. The N source is prepared by dissolving 45.8g NH/sub 4/NO/sub 3/ and 8 g KH/sub 2/PO/sub 4/ in 200 to 300 ml distilled H/sub 2/O and to this is added inculum, 15 ml of a spore suspension of R stolonifer. The mixture is stirred into 1 kg of milled cassava flour and 300 ml of H/sub 2/O is added, so that the final moisture level is 45 +- 3%. The pH is 5.4 to 6.7 and the mixture is mixed with a machine for 10 to 12 minutes to give a stiff paste. The dough is extruded as a spaghetti 3 to 5 mm diam and strands are cut into 10 cm lengths. The strands are packed into shallow fermentation trays, which are covered with a loose fitting Al lid and placed in fermentor. Temperature is kept at 30/sup 0/ and relative humidity is kept at 95 to 97% for 72 hours. Fermentation is stopped by cooking or by deep freezing. The protein content is raised by the process from 0.2 to 4%. The initial toxicity of the cassava is also reduced.

  18. Development of starch biofilms using different carboxylic acids as plasticizers

    International Nuclear Information System (INIS)

    Cruz, L.C.; Miranda, C.S.; Santos, W.J. dos; Goncalves, A.P.B.; Oliveira, J.C.; Jose, N.M.

    2014-01-01

    Biodegradable films have become a widely exploited issue among scientists because of their positive environmental impact, besides their potential to promote better food conservation and an increase in shelf life. Starch has been studied in this field due to its availability, low cost and biodegradability. However, starch films tend to be brittle and they need addition of a plasticizer to enable their usage. In this work, starch films were synthesized with different carboxylic acids as plasticizers, aiming to observe the effect of the acids chain size in the final films properties. The acids used were: oxalic, succinic and adipic. The materials were produced by casting and characterized by DSC, TG, DRX e FTIR. It was observed that the acids chain size influenced on the thermal and structural properties of the films. (author)

  19. REKAYASA PROSES HIDROLISIS PATI DAN SERAT UBI KAYU (Manihot utilissima UNTUK PRODUKSI BIOETANOL Hydrolysis Process Design of Starch and Cassava (Manihot utilissima Fibers for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Yuana Susmiati

    2012-05-01

    Full Text Available Ethanol production from cassava (Manihot utilissima usually uses enzymatic process for starch hydrolysis. Enzymatichydrolysis by α-amylase and amyloglucosidase enzymes are not able to convert cassava fibers into sugars. Dilute acid hydrolysis is applied to convert both starch and fibers, which will increase the yield of simple sugars as fermentable sugars and resulting in high ethanol production. In this research there are two steps of dilute acid hydrolysis, first for starch hydrolysis at H SO concentration of 0.1-0.5 M, 5-15 minutes and second for fiber hydrolysis at 0.5-1.0 2 4M H SO , 10-20 minutes, at the same temperature of 121-127 oC and pressure of 1.0-1.5 atm. The disadvantage of acid hydrolysis is the formation of toxic compounds such as hydroxymethyl furfural (HMF which is inhibited yeast fermentation. Therefore, acid hydrolyzates were detoxified with NH OH before use as fermentation substrate. The best starch hydrolysis condition was obtained at 0.4 M H SO  for 10 minutes which gave 257.37 g/l of total sugars, 2 4229.38 g/l of reducing sugars, 89.59 of dextrose equivalent (DE and 0.57 g/l of HMF. While the best fiber hydrolysis performed at 1.0 M H SO  solution for 20 minutes which gave 79.74 g/l of total sugars, 70.88 g/l of reducing sugars, 2 488.99 of DE and 0.0142 g/l of HMF. Single direct acid hydrolysis was the most suitable substrate for yeast fermentationwith the ethanol concentration of 5.7 % (w/v and 30.5 % (w/w of ethanol yield. This result is comparable with enzymatic hydrolysis which gave ethanol yield of 30 % (w/w. ABSTRAK Produksi etanol dari ubi kayu biasanya menggunakan enzim untuk menghidrolisis pati. Hidrolisis secara enzimatismenggunakan enzim α-amilase dan amiloglukosidase tidak mampu mengkonversi serat menjadi gula. Hidrolisis asam  berkonsentrasi  rendah  dilakukan  untuk  mengkonversi  pati  dan  serat,  sehingga  gula-gula  sederhana  yang dapat difermentasi meningkat dan menghasilkan

  20. Antimicrobial, Optical and Mechanical Properties of Chitosan-Starch Films with Natural Extracts.

    Science.gov (United States)

    Lozano-Navarro, Jessica I; Díaz-Zavala, Nancy P; Velasco-Santos, Carlos; Martínez-Hernández, Ana L; Tijerina-Ramos, Beatriz I; García-Hernández, Margarita; Rivera-Armenta, José L; Páramo-García, Ulises; Reyes-de la Torre, Adriana I

    2017-05-05

    Natural extracts possess several kinds of antioxidants (anthocyanins, betalains, thymol, carvacrol, and resveratrol) that have also demonstrated antimicrobial properties. In order to study these properties, extracts from cranberry, blueberry, beetroot, pomegranate, oregano, pitaya, and resveratrol (from grapes) were obtained. Growth inhibition tests of mesophilic aerobes, coliforms, and fungi were conducted in films prepared from the extracts in accordance with Mexican Official Norms (NOM). Optical properties such as transparency and opacity, mechanical properties, and pH were also analyzed in these materials. The films with beetroot, cranberry, and blueberry extracts demonstrated the best antimicrobial activity against various bacteria and fungi in comparison with unmodified chitosan-starch film. This study shows that the addition of antioxidants improved the antimicrobial performance of these films. It was also found that antimicrobial properties are inherent to the films. These polymers combined with the extracts effectively inhibit or reduce microorganism growth from human and environmental contact; therefore, previous sterilization could be unnecessary in comparison with traditional plastics. The presence of extracts decreased transmittance percentages at 280 and 400 nm, as well as the transparency values, while increasing their opacity values, providing better UV-VIS light barrier properties. Despite diminished glass transition temperatures ( T g), the values obtained are still adequate for food packaging applications.

  1. Antimicrobial, Optical and Mechanical Properties of Chitosan–Starch Films with Natural Extracts

    Science.gov (United States)

    Lozano-Navarro, Jessica I.; Díaz-Zavala, Nancy P.; Velasco-Santos, Carlos; Martínez-Hernández, Ana L.; Tijerina-Ramos, Beatriz I.; García-Hernández, Margarita; Rivera-Armenta, José L.; Páramo-García, Ulises; Reyes-de la Torre, Adriana I.

    2017-01-01

    Natural extracts possess several kinds of antioxidants (anthocyanins, betalains, thymol, carvacrol, and resveratrol) that have also demonstrated antimicrobial properties. In order to study these properties, extracts from cranberry, blueberry, beetroot, pomegranate, oregano, pitaya, and resveratrol (from grapes) were obtained. Growth inhibition tests of mesophilic aerobes, coliforms, and fungi were conducted in films prepared from the extracts in accordance with Mexican Official Norms (NOM). Optical properties such as transparency and opacity, mechanical properties, and pH were also analyzed in these materials. The films with beetroot, cranberry, and blueberry extracts demonstrated the best antimicrobial activity against various bacteria and fungi in comparison with unmodified chitosan–starch film. This study shows that the addition of antioxidants improved the antimicrobial performance of these films. It was also found that antimicrobial properties are inherent to the films. These polymers combined with the extracts effectively inhibit or reduce microorganism growth from human and environmental contact; therefore, previous sterilization could be unnecessary in comparison with traditional plastics. The presence of extracts decreased transmittance percentages at 280 and 400 nm, as well as the transparency values, while increasing their opacity values, providing better UV–VIS light barrier properties. Despite diminished glass transition temperatures (Tg), the values obtained are still adequate for food packaging applications. PMID:28475151

  2. Structural modification in the formation of starch – silver nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Begum, S. N. Suraiya; Ramasamy, Radha Perumal, E-mail: perumal.ramasamy@gmail.com [Department of Applied Science and Technology, A.C.Tech. Campus, Anna University, Chennai – 600 025 (India); Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai (India)

    2016-05-23

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO{sub 3}) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO{sub 3}. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO{sub 3} concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.

  3. Structural modification in the formation of starch – silver nanocomposites

    International Nuclear Information System (INIS)

    Begum, S. N. Suraiya; Ramasamy, Radha Perumal; Aswal, V. K.

    2016-01-01

    Polymer based nanocomposites have gained wide applications in field of battery technology. Starch is a naturally occurring polysaccharide with sustainable properties such as biodegradable, non toxic, excellent film forming capacity and it also act as reducing agent for the metal nanoparticles. In our research various concentration of silver nitrate (AgNO_3) was added to the starch solution and films were obtained using solution casting method. Surface electron microscope (SEM) of the films shows modifications depending upon the concentration of AgNO_3. Small angle neutron scattering (SANS) analysis showed that addition of silver nitrate modifies the starch to disc like structures and with increasing the AgNO_3 concentration leads to the formation of fractals. This research could benefit battery technology where solid polymer membranes using starch is used.

  4. of cassava in africa

    African Journals Online (AJOL)

    Cassava Colombian symptomless potexvirus. Cassava latent rhabdovirus .... densities of B. afer tend to occur on the lowest leaves of cassava, which are those that show the most conspicuous symptoms of CBSD (J.P. Legg, personal communication). ...... are used wherever possible to decrease the risks involved, although it ...

  5. EFFECT OF PLASTICIZERS ON MECHANICAL PROPERTIES OF EDIBLE FILM FROM JANENG STARCH – CHITOSAN

    Directory of Open Access Journals (Sweden)

    Narlis Juandi

    2016-10-01

    Full Text Available The interest in the development of edible and biodegradable films has increased because it is every day more evident that non degradable are doing much damage to the environment. In this research, edible films were based on blends of janeng starch in different proportions, added of palm oil or glycerol, which were used as plasticizers. The objective was to study the effect of two different plasticizers, palm oil and glycerol of edible film from janeng starch–chitosan on the mechanical properties and FTIR spectra. Increasing concentration of glycerol as plasticizer resulted tend to increased tensile strength and elongation at break. The tensile strength and elongation at break values for palm oil is higher than glycerol as plasticizer at the same concentration. FTIR spectra show the process of making edible film from janeng starch–chitosan with palm oil or glycerol as plasticizers are physically mixing in the presence of hydrogen interactions between chains.

  6. Effect of organoclay on morphology and properties of linear low density polyethylene and Vietnamese cassava starch biobased blend.

    Science.gov (United States)

    Nguyen, D M; Vu, T T; Grillet, Anne-Cécile; Ha Thuc, H; Ha Thuc, C N

    2016-01-20

    Linear low density polyethylene (LLDPE)/thermal plastic starch (TPS) blend was studied to prepare the biobased nanocomposite material using organoclay nanofil15 (N15) modified by alkilammonium as the reinforced phase. The LLDPE/TPS blend and its nanocomposites were elaborated by melt mixing method at 160 °C for 7 min. And the compounded sample was filmed by blowing method at three different zones of temperature profile which are 160-170-165 °C. The good dispersion of clay in the polymer blend matrix is showed by X-ray diffraction (XRD) and transmission electronic microscopy (TEM), and a semi-exfoliated structure was obtained. The thermal and mechanical properties of materials are enhanced when N15 is added to the mixture. The effect of N15 on morphology and particles size of TPS phase is also investigated. The biodegradation test shows that more than 60% in weight of LLDPE/TPS film is degraded into CO2, H2O, methane and biomass after 5 months in compost soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The effect of cassava and corn flour utilization on the physicochemical characteristics of cassava leaves snack

    Science.gov (United States)

    Ambarsari, I.; Endrasari, R.; Oktaningrum, G. N.

    2018-01-01

    Cassava leaves are nutritious vegetable, but often regarded as an inferior commodity. One of the efforts increasing in the benefit of cassava leaves is through processing it into snack. In order to support the food diversification program and to reduce the dependence on imported commodities, the development of cassava leaves snack could be accompanied by optimizing the use of local materials to minimize the use of wheat flour. The aim of this assessment was to learn the effects of cassava and corn flour substitution on the physicochemical characteristics of cassava-leaves snack. The substitution of local flour (cassava and corn) on the snack production was carried on three levels at 15, 30, and 45%. A control treatment was using 100% wheat flour. The results showed that cassava and corn flour were potential to substitute wheat flour for making cassava-leaves snack. The substitution of cassava and corn flour as much as 45% was able to produce crispy products with a brighter color. The substitution of corn flour was resulting in snacks with the lower content of lipid than the other substitution snacks.

  8. Use of radiation for the improvement of fungal strains as the nutritional additive in the carbohydrate-rich root crops of Nigeria. Coordinated programme on radiation microbiology

    International Nuclear Information System (INIS)

    Balogh, E.

    1976-04-01

    After a short introduction describing the use of West African root plants (yams, cassava) as food and ways of increasing the protein content of this food, experiments on protein production by microbial fermentation of starches are described. Cassava starch was fermented as solid extrusions and in liquid phase with Rhizopus oligosporus wild and mutant strains (mutants obtained by irradiation with Co 60 source). The mutant strain was found to produce more proteins both on solid cassava starch extrusions and in liquid starch media. Experiments were carried out also with combinations of Rhizopus and other micro-organisms (Candida, Endomycopsis, Geotrichum, Saccharomyces) and with cassava starch supplemented with sugar cane molasses. The cyanogen glucoside content of cassava and the effect of cyanide on the protein production was also investigated

  9. Techno-economic and environmental assessment of bioethanol production from high starch and root yield Sri Kanji 1 cassava in Malaysia

    Directory of Open Access Journals (Sweden)

    M. Hanif

    2016-11-01

    Full Text Available Transportation played a significant role in energy consumption and pollution subsequently. Caused by the intense growth of greenhouse gas emission, efficient and sustainable improvement of the transportation sector has elevated the concern in many nations including Malaysia. Bioethanol is an alternative and renewable energy that has a great potential to substitute for fossil gasoline in internal combustion engine (ICE. Although bioethanol has been widely utilized in road transport worldwide, the production and application of bioethanol in Malaysia is yet to be considered. Presently there is comprehensive diversity of bioethanol research on distillation, performance and emission analysis available worldwide. Yet, the study on techno-economic and feasibility of bioethanol fuel in Malaysia condition is unavailable. Thus, this study is concentrated on bioethanol production and techno-economic analysis of cassava bioethanol as an alternative fuel in Malaysia. Furthermore, the current study attempts to determine the effect of bioethanol employment towards the energy scenario, environmental and economy. From the economic analysis, determined that the life cycle cost for 54 ktons cassava bioethanol production plant with a project life time of 20 years is $132 million USD, which is equivalent to $0.11 USD per litre of bioethanol. Furthermore, substituting 5 % of gasoline fuel with bioethanol fuel in road transport can reduce the CO2 emissions up to 2,038 ktons in year 2036. In case to repay the carbon debt from converting natural forest to cassava cropland, cassava bioethanol required about 5.4 years. The cassava bioethanol is much cheaper than gasoline fuel even when 20 % taxation is subjected to bioethanol at current production cost. Thus, this study serves as a guideline for further investigation and research on bioethanol production, subsidy cost and other limitation factors before the extensive application of bioethanol can be implemented in

  10. Preparation and Effect of Gamma Radiation on The Properties and Biodegradability of Poly(Styrene/Starch) Blends

    Science.gov (United States)

    Ali, H. E.; Abdel Ghaffar, A. M.

    2017-01-01

    Biodegradable blends based on Poly(styrene/starch) Poly(Sty/Starch) were prepared by the casting method using different contents of starch in the range of 0-20 wt% aiming at preparing disposable packaging materials. The prepared bio-blends were Characterized by Fourier transform infrared (FTIR), swelling behavior, mechanical properties, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). It was found that the swelling behavior slightly increased with increasing starch content and not exceeding 7.5%. The results showed that by increasing irradiation dose up to 5 kGy, the mechanical properties of the prepared PSty/10 wt% Starch blend film modified than other blend films, and hence it is selected. Also the water resistant increased, by irradiation of the selected PSty/10 wt% Starch blend film. The intermolecular hydrogen bonding interaction between Starch and PSty of the PSty/10 wt% Starch blend film promote a more homogenous blend film as shown in scanning electron microscopy (SEM). The prepared Poly(Sty/Starch) blends with different compositions and the selected irradiated PSty/10 wt% Starch blend were subjected to biodegradation in soil burial tests for 6 months using two different types of soils; agricultural and desert soils, then analyzed gravimetrically and by scanning electron microscopy (SEM). The results suggested that there is a possibility of using irradiated PSty/10 wt% Starch at a dose of 5 kGy as a potential candidate for packaging material.

  11. Biodegradable foams based on starch, polyvinyl alcohol, chitosan and sugarcane fibers obtained by extrusion

    Directory of Open Access Journals (Sweden)

    Flávia Debiagi

    2011-10-01

    Full Text Available Biodegradable foams made from cassava starch, polyvinyl alcohol (PVA, sugarcane bagasse fibers and chitosan were obtained by extrusion. The composites were prepared with formulations determined by a constrained ternary mixtures experimental design, using as variables: (X1 starch / PVA (100 - 70%, (X2 chitosan (0 - 2% and (X3 fibers from sugar cane (0 - 28%. The effects of varying proportions of these three components on foam properties were studied, as well the relationship between their properties and foam microstructure. The addition of starch/PVA in high proportions increased the expansion index and mechanical resistance of studied foams. Fibers addition improved the expansion and mechanical properties of the foams. There was a trend of red and yellow colors when the composites were produced with the highest proportions of fibers and chitosan, respectively. All the formulations were resistant to moisture content increase until 75% relative humidity of storage.

  12. Cassava Pulp Hydrolysis under Microwave Irradiation with Oxalic Acid Catalyst for Ethanol Production

    Directory of Open Access Journals (Sweden)

    Euis Hermiati

    2014-07-01

    Full Text Available Microwave irradiation is an alternative method of starch hydrolysis that offers a rapid process. The aim of this research was to improve microwave-assisted hydrolysis of cassava pulp by using oxalic acid as a catalyst. Suspension of cassava pulp in 0.5% oxalic acid (1 g/20 mL was subjected to microwave irradiation at 140-230 °C for 5 minutes, with 4 minutes of pre-heating. One gram of fractured activated carbon made of coconut shell was added into a number of suspensions that were subjected to the same conditions of microwave irradiation. The soluble fraction of the hydrolysates was analyzed for its total soluble solids, malto-oligomer distribution, glucose content, pH value, and formation of brown compounds. The effects of the combined severity parameter at a substrate concentration of 5-12.5% on the glucose yield were also evaluated. The highest glucose yield (78% of dry matter was obtained after hydrolysis at 180 °C without activated carbon addition. Heating above 180 °C reduced the glucose yield and increased the pH and the formation of brown compounds. The use of activated carbon in microwave-assisted acid hydrolysis of cassava pulp reduced the glucose yield, but suppressed the formation of brown compounds. The highest glucose yield (70-80% of dry matter was attained at a severity parameter of 1.3-1.5.

  13. Marker-assisted selection in common beans and cassava

    International Nuclear Information System (INIS)

    Blair, M.W.; Fregene, M.A.; Beebe, S.E.; Ceballos, H.

    2007-01-01

    (CGM) and cassava brown streak (CBS) resistance from a wild relative, M. esculenta sub spp. flabellifolia. The use of advanced backcrossing with additional wild relatives is proposed as a way to discover genes for high protein content, waxy starch, delayed post-harvest physiological deterioration, and resistance to whiteflies and hornworm. Other potential targets of MAS such as beta carotene and dry matter content as well as lower cyanogenic potential are given. In addition, suggestions are made for the use of molecular markers to estimate average heterozygosity during inbreeding of cassava and for the delineation of heterotic groups within the species. A final section describes the similarities and differences between the MAS schemes presented for the two crops. Differences between the species can be ascribed partially to the breeding and propagation systems of common beans (seed propagated, selfpollinating) and cassava (clonally propagated, cross-pollinating). In addition, differences in growth cycles, breeding methods, availability of genetic markers, access to selection environments and the accompanying opportunities for phenotypic selection influence the decisions in both crops of when and how to apply MAS. Recommendations are made for applying MAS in breeding of both crops including careful prioritization of traits, marker systems, genetic stocks, scaling up, planning of crosses and the balance between MAS and phenotypic selection. (author)

  14. Cassava is not a goitrogen in mice

    International Nuclear Information System (INIS)

    Hershman, J.M.; Pekary, A.E.; Sugawara, M.; Adler, M.; Turner, L.; Demetriou, J.A.; Hershman, J.D.

    1985-01-01

    To examine the effect of cassava on the thyroid function of mice, the authors fed fresh cassava root to mice and compared this diet with low iodine diet and Purina. Cassava provided a low iodine intake and increased urine thiocyanate excretion and serum thiocyanate levels. Mice on cassava lost weight. The thyroid glands of mice on cassava were not enlarged, even when normalized for body weight. The 4- and 24-hr thyroid uptakes of mice on cassava were similar to those of mice on low iodine diets. Protein-bound [ 125 I]iodine at 24 hr was high in mice on either the cassava or low iodine diets. The thyroid iodide trap (T/M) was similar in mice on cassava and low iodine diets. When thiocyanate was added in vitro to the incubation medium, T/M was reduced in all groups of mice; under these conditions, thiocyanate caused a dose-related inhibition of T/M. The serum thyroxine (T4) and triiodothyronine (T3) concentrations of mice on cassava were reduced compared with mice on Purina diet. Thyroid T4 and T3 contents of mice on cassava were relatively low compared with mice on Purina diet. Hepatic T3 content and T4 5'-monodeiodination in liver homogenates were reduced in mice on cassava compared with other groups. The data show that cassava does not cause goiter in mice. The thiocyanate formed from ingestation of cassava is insufficient to inhibit thyroid iodide transport or organification of iodide. The cassava diet leads to rapid turnover of hormonal iodine because it is a low iodine diet. It also impairs 5'-monodeiodination of T4 which may be related to nutritional deficiency. These data in mice do not support the concept that cassava per se has goitrogenic action in man

  15. WATER SORPTION PROPERTIES AND ANTIMICROBIAL ACTION OF ZINC OXIDE NANO PARTICLES LOADED SAGO STARCH FILM

    Directory of Open Access Journals (Sweden)

    Sunil Bajpai

    2013-02-01

    Full Text Available In this work, sago starch based films have been loaded with ZnO nanoparticles prepared insitu via using an unique equilibration-cum-hydrothermal approach. The films have been characterized by XRD, DSC,SPR ,FTIR and SEM analysis. The moisture absorption behavior of plain and ZnO nanoparticles loaded films have been studied at 23, 31 and 37o C.The equilibrium moisture uptake data was found to fit well on GAB isotherm model and the monolayer sorption capacity Mo for the plain and ZnO nanoparticles loaded films was 0.089, 0.039 ,0.021 g/g and 0.042, 0.012, 0.007 g/g at 23,31 and 37 oC respectively. Moreover, the water vapor transmission rates (WVTR for plain and ZnO nanoparticles loaded films at 23,31,37 oC were 11.19x10-4, 48.9x10-4, 62.1x10-4 and 3.73 x10-4, 6.21x10-4, 24.8x10-4 respectively. These films have shown excellent antibacterial action against model bacteria E.coli when investigated qualitatively by zone inhibition method. Films exhibit great potential to be used as packaging films to protect food stuff against microbial contaminents.

  16. Quality evaluation of stiff porridges prepared from Irish potato (Solanum tuberosum) and pigeon pea (Cajanus cajan) starch blends.

    Science.gov (United States)

    Abu, Joseph Oneh; Enyinnaya, Chinma Chiemela; James, Samaila; Okeleke, Ezinne

    2012-06-01

    Quality attributes of stiff porridges prepared from Irish potato and pigeon pea starch blends were studied. Starches were extracted from Irish potato and pigeon pea using a wet extraction method. Various ratios of the starches were mixed and analyzed for chemical, functional and pasting properties. The starch blends were then prepared into stiff porridges for sensory evaluation using a 20-man sensory panel. Substitution of Irish potato starch with pigeon pea starch led to increases in protein (0.15 to 1.2%), fat (0.26 to 0.56%) and ash (0.30 to 0.69%) while the amylose content of the starch blends decreased (from 23.8 to 18.4%) respectively. Functional properties such as bulk density (0.75 to 0.60 g/cm(3)), water absorption capacity (3.1 to 2.6 g water/ g sample) and dispersibility (58.6 to 42.7%) decreased significantly (P pigeon pea starch respectively. Pasting properties such as peak, breakdown, final and setback viscosities increased with increasing levels of pigeon pea starch while peak time and pasting temperature decreased. The sensory attributes of stiff porridges were not adversely affected by pigeon pea starch inclusion. Therefore it should be possible to incorporate up to 50% of low digestible pigeon pea starch into Irish potato starch from legumes such as pigeon pea as alternatives to cassava starch in the preparation of stiff porridges. Such porridges made from Irish potato and legume starches could provide additional incentive for individuals requiring decreased and or slow starch digestibility such as diabetics.

  17. Cassava as a food.

    Science.gov (United States)

    Okezie, B O; Kosikowski, F V

    1982-01-01

    This review has attempted to examine information pertaining to the role of cassava (Manihot esculenta) as a major food source for a large part of the world population, particularly the countries of South America, Africa, and Asia, where it is primarily a major source of energy for 300 to 500 million people. Its cultivation, usually on small farms with little technology, is estimated to cover on an annual basis about 11 million hectares providing about 105 million tons, more than half of which is consumed by humans. The importance of cassava as an energy source can be seen by its growing demand in the European economic community countries where it forms up to 60% of the balanced diets for swine. Cassava is one of the crops that converts the greatest amount of solar energy into soluble carbohydrates per unit of area, thus 1 kg of moisture-free cassava meal may yield up to about 3750 kcal which would mean that a yearly production of 15 tons of cassava meal per hectare would yield some 56 million kcal. The major limitations of cassava as food appear to be its poor protein content and quality and the rapid post harvest deterioration of its roots which usually prevents their storage in the fresh state for more than a few days. However, in addition to its use for culinary purposes, cassava finds application in industrial products such as an adhesive for laundry purposes, for manufacturing paper, alcohol, butanol, dextrin, adhesive tape, textile sizing, and glue.

  18. Value chain analysis on cassava and cassava based - products in ...

    African Journals Online (AJOL)

    This study examined the value Chain analysis (production process and cost related to each element of production chain to add value) on cassava and cassava products in Imo State specifically to ascertain the farm size holdings of the respondents as well as the ownerships of the land used for production. It also identified` ...

  19. Desenvolvimento de snacks extrusados a partir de misturas de farinha de soja, fécula e farelo de mandioca Development of extruded snacks from blends of soya flour, cassava starch and bran

    Directory of Open Access Journals (Sweden)

    Fernanda Rossi Moretti Trombini

    2013-01-01

    Full Text Available Neste trabalho, objetivou-se avaliar o efeito das condições de extrusão sobre as propriedades físicas de produtos extrusados. Foi utilizado o delineamento central composto rotacional com quatro variáveis independentes (2(4 e a metodologia de superfície de resposta para avaliar os resultados de índice de expansão, volume específico, índice de absorção de água, índice de solubilidade em água e cor, de acordo com as variações de temperatura de extrusão, rotação da rosca, porcentagem de farelo de mandioca e porcentagem de farinha de soja. Os resultados indicam que é possível produzir novos produtos extrusados com boas propriedades físicas a partir de misturas de farinha de soja, fécula e farelo de mandioca.This study aimed to evaluate the effect of the extrusion conditions on physical properties of extruded products. A factorial central composite design (2(4 with four independent variables and the response surface methodology were used to evaluate the results of expansion index, specific volume, water absorption index, water solubility index and color, according to the variations in barrel temperature, screw speed, percentage of cassava bran and percentage of soya flour. The results indicate that is possible to produce new extruded products with good physical properties from blends of soya flour, cassava starch and bran.

  20. Rice Starch Particle Interactions at Air/Aqueous Interfaces—Effect of Particle Hydrophobicity and Solution Ionic Strength

    Science.gov (United States)

    McNamee, Cathy E.; Sato, Yu; Wiege, Berthold; Furikado, Ippei; Marefati, Ali; Nylander, Tommy; Kappl, Michael; Rayner, Marilyn

    2018-01-01

    Starch particles modified by esterification with dicarboxylic acids to give octenyl succinic anhydride (OSA) starch is an approved food additive that can be used to stabilize oil in water emulsions used in foods and drinks. However, the effects of the OSA modification of the starch particle on the interfacial interactions are not fully understood. Here, we directly measured the packing of films of rice starch granules, i.e., the natural particle found inside the plant, at air/aqueous interfaces, and the interaction forces in that system as a function of the particle hydrophobicity and ionic strength, in order to gain insight on how starch particles can stabilize emulsions. This was achieved by using a combined Langmuir trough and optical microscope system, and the Monolayer Interaction Particle Apparatus. Native rice starch particles were seen to form large aggregates at air/water interfaces, causing films with large voids to be formed at the interface. The OSA modification of the rice starches particles decreased this aggregation. Increasing the degree of modification improved the particle packing within the film of particles at the air/water interface, due to the introduction of inter-particle electrostatic interactions within the film. The introduction of salt to the water phase caused the particles to aggregate and form holes within the film, due to the screening of the charged groups on the starch particles by the salt. The presence of these holes in the film decreased the stiffness of the films. The effect of the OSA modification was concluded to decrease the aggregation of the particles at an air/water interface. The presence of salts, however, caused the particles to aggregate, thereby reducing the strength of the interfacial film. PMID:29868551

  1. Cassava as an energy crop

    DEFF Research Database (Denmark)

    Kristensen, Søren Bech Pilgaard; Birch-Thomsen, Torben; Rasmussen, Kjeld

    2014-01-01

    of the Attieké cassava variety. Little competition with food crops is likely, as cassava most likely would replace cotton as primary cash crop, following the decline of cotton production since 2005 and hence food security concerns appear not to be an issue. Stated price levels to motivate an expansion of cassava...

  2. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    Science.gov (United States)

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  3. Biodegradable starch-based polymeric materials

    Science.gov (United States)

    Suvorova, Anna I.; Tyukova, Irina S.; Trufanova, Elena I.

    2000-05-01

    The effects of low-molecular-weight additives, temperature and mechanical action on the structure and properties of starch are discussed. Special attention is given to mixtures of starch with synthetic polymers, e.g., co-polymers of ethylene with vinyl acetate, vinyl alcohol, acrylic acid, cellulose derivatives and other natural polymers. These mixtures can be used in the development of novel environmentally safe materials (films, coatings, packaging materials) and various articles for short-term use. The bibliography includes 105 references.

  4. Physical and structural characterisation of starch/polyester blends with tartaric acid

    International Nuclear Information System (INIS)

    Olivato, J.B.; Müller, C.M.O.; Carvalho, G.M.; Yamashita, F.; Grossmann, M.V.E.

    2014-01-01

    Starch/PBAT blends were produced by reactive extrusion with tartaric acid (TA) as an additive. The effects of TA, glycerol and starch + PBAT on the mechanical, optical and structural properties of the films were evaluated, with formulations based in a constrained mixture design. Tartaric acid acts as a compatibiliser and promotes the acid hydrolysis of starch chains. These two functions explain the observed film resistance and opacity. TA reduced the weight loss in water. Scanning electron microscopy (SEM) images showed that TA reduces the interfacial tension between the polymeric phases, resulting in more homogeneous films. Nuclear magnetic resonance ( 13 C CPMAS) and Fourier transform infrared spectroscopy (FT-IR) suggest that tartaric acid is able to react with the hydroxyl groups of the starch by esterification/transesterification reactions, confirming its role as a compatibiliser. The addition of TA results in materials with better properties that are suitable for use in food packaging. - Highlights: • Tartaric acid (TA) was efficient as compatibiliser of starch/PBAT blends. • Film properties were analysed based on the modelling of the mixture design. • Greater proportions of TA resulted in more opaque and less soluble materials. • Esterification reactions promoted by TA were characterised by FT-IR and 13 C CPMAS NMR. • Compatibilised blends with TA showed better morphological and mechanical properties

  5. Physical and structural characterisation of starch/polyester blends with tartaric acid

    Energy Technology Data Exchange (ETDEWEB)

    Olivato, J.B., E-mail: jubonametti@uel.br [Departamento de Ciência e Tecnologia de Alimentos, Centro de Ciências Agrárias, Universidade Estadual de Londrina, PO Box 6001, 86051-980 Londrina, PR (Brazil); Müller, C.M.O. [Departamento de Ciência e Tecnologia de Alimentos, Centro de Ciências Agrárias, Universidade Estadual de Londrina, PO Box 6001, 86051-980 Londrina, PR (Brazil); Carvalho, G.M. [Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, PO Box 6001, 86051-980 Londrina, PR (Brazil); Yamashita, F.; Grossmann, M.V.E. [Departamento de Ciência e Tecnologia de Alimentos, Centro de Ciências Agrárias, Universidade Estadual de Londrina, PO Box 6001, 86051-980 Londrina, PR (Brazil)

    2014-06-01

    Starch/PBAT blends were produced by reactive extrusion with tartaric acid (TA) as an additive. The effects of TA, glycerol and starch + PBAT on the mechanical, optical and structural properties of the films were evaluated, with formulations based in a constrained mixture design. Tartaric acid acts as a compatibiliser and promotes the acid hydrolysis of starch chains. These two functions explain the observed film resistance and opacity. TA reduced the weight loss in water. Scanning electron microscopy (SEM) images showed that TA reduces the interfacial tension between the polymeric phases, resulting in more homogeneous films. Nuclear magnetic resonance ({sup 13}C CPMAS) and Fourier transform infrared spectroscopy (FT-IR) suggest that tartaric acid is able to react with the hydroxyl groups of the starch by esterification/transesterification reactions, confirming its role as a compatibiliser. The addition of TA results in materials with better properties that are suitable for use in food packaging. - Highlights: • Tartaric acid (TA) was efficient as compatibiliser of starch/PBAT blends. • Film properties were analysed based on the modelling of the mixture design. • Greater proportions of TA resulted in more opaque and less soluble materials. • Esterification reactions promoted by TA were characterised by FT-IR and {sup 13}C CPMAS NMR. • Compatibilised blends with TA showed better morphological and mechanical properties.

  6. Synthesis and properties of silane-fluoroacrylate grafted starch.

    Science.gov (United States)

    Qu, Jia; He, Ling

    2013-10-15

    The latex of silane-fluoroacrylate grafted starch for coating materials, VTMS-starch/P(MMA/BA/3FMA), is obtained by two step grafting reactions. Vinyltrimethoxysilane (VTMS) is primarily grafted onto starch by condensation between Si-OH and C-OH at 120 °C, and then the copolymer of methyl methacrylate (MMA), butyl acrylate (BA) and 2,2,2-trifluoroethyl methacrylate (3FMA) is grafted onto the VTMS-starch by emulsion polymerization. Fourier transform infrared spectrometry (FTIR) and X-ray photoelectron spectroscopy (XPS) have been used to confirm the chemically grafting reactions in every step. The conversion percent, grafting percent and grafting efficiency for VTMS-starch/p(MMA/BA/3FMA) latex indicate that the optimum conditions should be controlled at 75 °C for 1h as VTMS-starch/P(MMA/BA/3FMA) in 1/3 weight ratio. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis have revealed that the latexes exhibit the uniform spherical particles of 40-60 nm in a narrow size distribution. The latex films perform the obvious hydrophobic (107°) property, lower surface free energy (25-35 mN/m) and the higher thermostability (330-440 °C) than starch (51°, 51.32 mN/m, 100-330 °C). Dynamic thermomechanical analysis (DMA) shows that the latex film could gain considerable toughness and strength with an elongation at break of 39.45% and a tensile strength of 11.97 MPa. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Microstructure, thermal properties and crystallinity of amadumbe starch nanocrystals.

    Science.gov (United States)

    Mukurumbira, Agnes; Mariano, Marcos; Dufresne, Alain; Mellem, John J; Amonsou, Eric O

    2017-09-01

    Amadumbe (Colocasia esculenta), commonly known as taro is a tropical tuber that produces starch-rich underground corms. In this study, the physicochemical properties of starch nanocrystals (SNC) prepared by acid hydrolysis of amadumbe starches were investigated. Two varieties of amadumbe corms were used for starch extraction. Amadumbe starches produced substantially high yield (25%) of SNC's. These nanocrystals appeared as aggregated and individual particles and possessed square-like platelet morphology with size: 50-100nm. FTIR revealed high peak intensities corresponding to OH stretch, CH stretch and H 2 O bending vibrations for SNCs compared to their native starch counterparts. Both the native starch and SNC exhibited the A-type crystalline pattern. However, amadumbe SNCs showed higher degree of crystallinity and slightly reduced melting temperatures than their native starches. Amadumbe SNCs presented similar thermal decomposition property as their native starches. Amadumbe starch nanocrystals may have potential application in biocomposite films due to their square-like platelet morphology. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. PELÍCULAS BIODEGRADABLES BASADAS EN ALMIDÓN COMPOSIÇÃO E TRANSFORMAÇÃO DE FILMES BIODEGRADÁVEIS À BASE DE AMIDO COMPOSITION AND PROCESSING OF STARCH-BASED BIODEGRADABLE FILMS

    Directory of Open Access Journals (Sweden)

    MARIO ENRÍQUEZ C

    2012-06-01

    componentes mais comuns utilizados na elaboração de filmes biodegradáveis baseados em amido e os principais métodos de processamento para obtê-los.Starch is a promissory polymer to biodegradable films development for replacement traditional package materials due to it´s cheap, highly available and comes from natural resources. However, films made with starch only has limitations like poor mechanical properties, high vapor water permeability, retrogradation tendency, high rigidity, brittle, and others when compared to traditional synthetic films. To avoid these limitations is necessary to mix and blend starch with other substances with the aim of create filmogenic formulations and films like the synthetic ones. Below is a review made from patents and scientific articles complemented in which are listed more common components used for biodegradable starch-based films manufacturing and main processing methods.

  9. Synergistic reinforcing effect of TiO2 and montmorillonite on potato starch nanocomposite films: Thermal, mechanical and barrier properties.

    Science.gov (United States)

    Oleyaei, Seyed Amir; Almasi, Hadi; Ghanbarzadeh, Babak; Moayedi, Ali Akbar

    2016-11-05

    In this study, ternary potato starch (PS) bionanocomposite films containing two types of nanoparticles, sodium montmorillonite (MMT), one-dimensional (1D) clay platelets, (3 and 5wt%) and TiO2, three-dimensional (3D) nanospheres, (0.5, 1 and 2wt%), are prepared using solvent casting method. X-ray diffraction (XRD) test confirms the completely exfoliated structure formed in the PS-MMT nanocomposites containing 3 and 5% MMT. The success of the formation of new hydrogen bonds between the hydroxyl groups of starch and nanofillers is confirmed by Fourier transform infrared (FTIR) spectroscopy. Tensile strength (TS), elongation at break (EB), glass transition temperature (Tg), and melting point (Tm) of the films are also enhanced after MMT and TiO2 incorporation. The water vapor permeability (WVP) and the visible, UVA, UVB and UVC lights transmittance decreases upon TiO2 and MMT content increasing. Generally, a synergistic effect is observed between MMT and TiO2 at lower concentrations of MMT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Avaliação da substituição do milho pela mandioca e seus resíduos na digestibilidade aparente em novilhas confinadas Evaluation of cassava and its industrial residues replacing corn in the apparent digestibility for feedlot heifers

    Directory of Open Access Journals (Sweden)

    Antônio Ferriani Branco

    1999-11-01

    Full Text Available O objetivo deste trabalho foi avaliar a substituição do milho pela casca de mandioca, farinha de varredura ou raspa de mandioca sobre a digestibilidade aparente da matéria seca (MS, matéria orgânica (MO, proteína bruta (PB, energia bruta (EB, fibra em detergente neutro (FDN, fibra em detergente ácido (FDA e amido (AM, utilizando a cinza insolúvel em ácido (CIA como indicador interno em novilhas confinadas. Foram utilizadas 28 novilhas mestiças, com aproximadamente 24 meses de idade e peso médio inicial de 365kg, distribuídas em um delineamento inteiramente casualizado, nos quatro tratamentos e sete repetições. A substituição do milho pela raspa de mandioca aumentou o coeficiente de digestibilidade aparente da MS, PB, MO, EB e AM. O coeficiente de digestibilidade aparente da FDN foi semelhante entre rações com casca e com raspa de mandioca. O coeficiente de digestibilidade aparente da FDA foi menor para a ração com farinha de varredura e semelhante para as demais rações.The objective of this work was to study the effect of replacement of corn meal by cassava hulls, cassava meal or cassava roots on apparent digestibility coefficient of dry matter, organic matter, crude protein, crude energy, neutral detergent fiber, acid detergent fiber and starch. Ash insoluble acid (AIAwas used as an internal indicator, in heifers. Twenty-eight crossbred heifers, averaging 365kg live weight and 24 months old, were used in a complete randomized design to test four diets with seven repetitions. The replacement of corn by cassava roots increased the apparent digestibility coefficient of dry matter, organic matter, crude protein, crude energy and starch. The apparent digestibility coefficient of the neutral detergent fiber was similar in diets with cassava hulls and diets with cassava roots. The apparent digestibility coefficient of the acid detergent fiber was smaller for cassava meal and similar for other diets.

  11. An Environmental Impact Analysis of Semi-Mechanical Extraction Process of Sago Starch: Life Cycle Assessment (LCA) Perspective

    Science.gov (United States)

    Yusuf, M. A.; Romli, M.; Suprihatin; Wiloso, E. I.

    2018-05-01

    Industrial activities use material, energy and water resources and generate greenhouse gas (GHG). Currently, various regulations require industry to measure and quantify the emissions generated from its process activity. LCA is a method that can be used to analyze and report the environmental impact of an activity that uses resources and generates waste by an industrial activity. In this work, LCA is used to determine the environmental impact of a semi-mechanical extraction process of sago industry. The data was collected through the sago industry in Cimahpar, Bogor. The extraction of sago starch consists of stem cutting, rasping, mixing, filtration, starch sedimentation, washing, and drying. The scope of LCA study covers the harvesting of sago stem, transportation to extraction site, and the starch extraction process. With the assumption that the average transportation distance of sago stem to extraction site is 200 km, the GHG emission is estimated to be 325 kg CO2 eq / ton of sundried sago starch. This figure is lower than that reported for maize starch (1120 kg CO2 eq), potato starch (2232 kg CO2 eq) and cassava starch (4310 kg CO2 eq). This is most likely due to the uncounted impact from the use of electrical energy on the extraction process, which is currently being conducted. A follow-up study is also underway to formulate several process improvement scenarios to derive the design of sago starch processing that generates the minimum emissions.

  12. Physicochemical Properties of Fungal Detoxified Cassava Mash and ...

    African Journals Online (AJOL)

    The physicochemical properties of fungal detoxified cassava mash and sensory characteristics of wheat-detoxified cassava composite doughnuts were investigated. Fungal isolates from soils collected at cassava processing sites were isolated, quantified and identified. Cassava mash from grated tuber was partially ...

  13. Starch Characteristics Linked to Gluten-Free Products

    Directory of Open Access Journals (Sweden)

    Stefan W. Horstmann

    2017-04-01

    Full Text Available The increasing prevalence of coeliac disease (CD and gluten-related disorders has led to increasing consumer demand for gluten-free products with quality characteristics similar to wheat bread. The replacement of gluten in cereal-based products remains a challenge for scientists, due to its unique role in network formation, which entraps air bubbles. When gluten is removed from a flour, starch is the main component left. Starch is used as gelling, thickening, adhesion, moisture-retention, stabilizing, film forming, texturizing and anti-staling ingredient. The extent of these properties varies depending on the starch source. The starches can additionally be modified increasing or decreasing certain properties of the starch, depending on the application. Starch plays an important role in the formulation of bakery products and has an even more important role in gluten-free products. In gluten-free products, starch is incorporated into the food formulation to improve baking characteristics such as the specific volume, colour and crumb structure and texture. This review covers a number of topics relating to starch; including; an overview of common and lesser researched starches; chemical composition; morphology; digestibility; functionality and methods of modification. The emphasis of this review is on starch and its properties with respect to the quality of gluten-free products.

  14. Starch Characteristics Linked to Gluten-Free Products.

    Science.gov (United States)

    Horstmann, Stefan W; Lynch, Kieran M; Arendt, Elke K

    2017-04-06

    The increasing prevalence of coeliac disease (CD) and gluten-related disorders has led to increasing consumer demand for gluten-free products with quality characteristics similar to wheat bread. The replacement of gluten in cereal-based products remains a challenge for scientists, due to its unique role in network formation, which entraps air bubbles. When gluten is removed from a flour, starch is the main component left. Starch is used as gelling, thickening, adhesion, moisture-retention, stabilizing, film forming, texturizing and anti-staling ingredient. The extent of these properties varies depending on the starch source. The starches can additionally be modified increasing or decreasing certain properties of the starch, depending on the application. Starch plays an important role in the formulation of bakery products and has an even more important role in gluten-free products. In gluten-free products, starch is incorporated into the food formulation to improve baking characteristics such as the specific volume, colour and crumb structure and texture. This review covers a number of topics relating to starch; including; an overview of common and lesser researched starches; chemical composition; morphology; digestibility; functionality and methods of modification. The emphasis of this review is on starch and its properties with respect to the quality of gluten-free products.

  15. Cassava; African perspective on space agriculture

    Science.gov (United States)

    Katayama, Naomi; Njemanze, Philip; Nweke, Felix; Space Agriculture Task Force, J.; Katayama, Naomi; Yamashita, Masamichi

    Looking on African perspective in space agriculture may contribute to increase diversity, and enforce robustness for advanced life support capability. Cassava, Manihot esculentaand, is one of major crop in Africa, and could be a candidate of space food materials. Since resource is limited for space agriculture in many aspects, crop yield should be high in efficiency, and robust as well. The efficiency is measured by farming space and time. Harvest yield of cassava is about 41 MJ/ m2 (70 ton/ha) after 11 months of farming. Among rice, wheat, potato, and sweet potato, cassava is ranked to the first place (40 m2 ) in terms of farming area required to supply energy of 5 MJ/day, which is recommended for one person. Production of cassava could be made under poor condition, such as acidic soil, shortage of fertilizer, draught. Laterite, similar to Martian regolith. Propagation made by stem cutting is an advantage of cassava in space agriculture avoiding entomophilous or anemophilous process to pollinate. Feature of crop storage capability is additional factor that determines the efficiency in the whole process of agriculture. Cassava root tuber can be left in soil until its consumption. Cassava might be an African contribution to space agriculture.

  16. Consumer’s market analysis of products based on cassava

    Science.gov (United States)

    Unteawati, Bina; Fitriani; Fatih, Cholid

    2018-03-01

    Cassava product has the important role for enhancing household's income in rural. Cassava as raw material food is plentiful as local food in Lampung. Cassava product is one of strategic value addition activities. Value additional activities are a key to create income source enrichment in rural. The household was product cassava as a snack or additional food. Their product cassava was operated in small-scale, traditional, and discontinuous production. They have been lacked in technology, capital, and market access. Measurement the sustainability of their business is important. The market has driven the business globally. This research aims to (1) describe the cassava demand to locally product cassava in rural and (2) analysis the consumer's perception of cassava product. Research take placed in Lampung Province, involved Bandar Lampung and Metro City, Pringsewu, Pesawaran, Central Lampung, and East Lampung district. It is held in February until April 2017. Data were analyzed by descriptive statistic and multidimensional scaling. Based on the analysis conclude that (1) the demand of product cassava from rural was massive in volume and regularity with the enormous transaction. This fact is very important to role business cycles. Consumers demand continuously will lead the production of cassava product sustain. Producers of product cassava will consume fresh cassava for the farmer. Consumption of fresh cassava for home industry regularly in rural will develop balancing in fresh cassava price in the farming gate (2) The consumer's perception on cassava product in the different market showed that they prefer much to consume cassava chips as cassava product products than other. Next are crackers, opak, and tiwul rice. Urban consumers prefer product products as snacks (chips, crumbs, and opak), with consumption frequency of 2-5 times per week and volume of 1-3 kg purchases. Consumers in rural were more frequent with daily consumption frequency. Multidimensional scaling

  17. Glycemic Index Biscuits Formulation of Pedada Flour (Sonneratia caseolaris) with Tubers Starch

    Science.gov (United States)

    Jariyah; Susiloningsih, E. K. B.; Nilasari, K.

    2018-01-01

    The glycemic index of food is the level of food according to its effect on blood glucose levels. Foods with low glycemic index have been shown to improve glucose and fat levels in people with diabetes mellitus and improve insulin resistance. Pedada Fruits (Sonneratia caseolaris) is the one of mangrove fruits has a high fiber content, so it can be used as a raw material in biscuits production. The aim of this research to evaluate the glycemic index on the formula biscuit from the pedada flour and starch from white sweet potato, arrowroot, taro, potato and cassava mixed. This research used completely randomized design in factorial patern with one factor and five levels on formulation biscuit of pedada flour with tubers starch (20% : 80%). The biscuits product were measured of the proximate, crude fiber, glycemic index and glycemic load on wistar rats. The best treatment was 20% of pedada flour with 80% of taro starch which produced biscuit with 76.24% of yield, 2.58% of protein, 15.55% of fat, 2.72% of crude fiber, 48.83 of glycemic index and 7.39 of glycemic load.

  18. Effect of antimicrobial on mechanical, barrier and optical properties of corn starch based self-supporting edible film

    Directory of Open Access Journals (Sweden)

    Tanima Chowdhury

    2013-10-01

    Full Text Available Antimicrobials like potassium sorbate, sodium propionate, and benzoic acid were incorporated in corn starch based formulation to investigate their effect on mechanical, water vapour barrier and optical properties of the developed self supporting edible film. The film was prepared by casting technique. When incorporated at 1.40% and above, potassium sorbate decreased the tensile strength (about 22% and increased the elongation (about 55% of control film; whereas, it increased the water vapour permeability by 15% only when added at 2.66%. At 2.66%, benzoic acid reduced the tensile strength by 24% and sodium propionate increased elongation by 17%. These two antimicrobials did not change the water vapour permeability. However, all the three antimicrobials adversely affected the optical properties by decreasing the whiteness index, increasing yellowness index, and reducing the surface gloss, with potassium sorbate showing the maximum effect. Among the three antimicrobials, sodium propionate appeared to be the best with minimum deterioration of film properties.

  19. Optimization of the fermentation time and bacteria cell concentration in the starter culture for cyanide acid removal from wild cassava (Manihot glaziovii

    Directory of Open Access Journals (Sweden)

    Hawashi Mohamed

    2018-01-01

    Full Text Available Cassava is one of the most widespread starchy tuberous roots in Indonesia, being one of the typical plants used in the starch market. However, due to the high cyanide content (338.41 ppm, these roots become a poison if they are unsuitably processed. Therefore, a detoxification process is needed to reduce the cyanide level to the safe level for human consumption (10 ppm. This study was focused on (i the investigation of the detoxification potential of fermentation with Lactobacillus plantarum (L. plantarum on the cyanide level of wild cassava tubers (Manihot glaziovii and (ii the optimization of the fermentation time and bacteria cell number in the starter culture. The fermentation was performed for different periods of time (12, 24 and 36 h and various initial bacteria cell number (7x1010, 7x1011, 1.05x1012, and 3.5x1012 L. plantarum cells. The results showed a significant decrease of the cyanide level, 97 % of cyanide degradation being noticed after 36 h of fermentation for an initial bacterial cell number of 3.5x1012 cells. Hence, the strong point of the study consists of a noteworthy reduction of the cyanide content in wild cassava in short periods, whereas the protein content was increased (from 1.5% to 3.5% in Modified Cassava Flour (MOCAF.

  20. Cassava For Space Diet

    Science.gov (United States)

    Katayama, Naomi; Yamashita, Masamichi; Njemanze, Philip; Nweke, Felix; Mitsuhashi, Jun; Hachiya, Natumi; Miyashita, Sachiko; Hotta, Atuko

    Space agriculture is an advanced life support enginnering concept based on biological and ecological system ot drive the materials recycle loop and create pleasant life environment on distant planetary bodies. Choice of space diet is one of primary decision required ot be made at designing space agriculture. We propose cassava, Manihot esculenta and, for one major composition of space food materials, and evaluate its value and feasibility of farming and processing it for space diet. Criteria to select space crop species could be stated as follows. 1) Fill th enutritional requirements. There is no perfect food material to meet this requirements without making a combination with others. A set of food materials which are adopted inthe space recipe shall fit to the nutritional requirement. 2) Space food is not just for maintaining physiological activities of human, but an element of human culture. We shall consider joy of dining in space life. In this context, space foos or recipe should be accepted by future astronauts. Food culture is diverse in the world, and has close relatioship to each cultural background. Cassava root tuber is a material to supply mainly energy in the form of carbohydrate, same as cereals and other tuber crops. Cassava leaf is rich in protein high as 5.1 percents about ten times higher content than its tuber. In the food culture in Africa, cassava is a major component. Cassava root tuber in most of its strain contains cyanide, it should be removed during preparation for cooking. However certain strain are less in this cyanogenic compound, and genetically modified cassava can also aboid this problem safely.

  1. Supramolecular structure of jackfruit seed starch and its relationship with digestibility and physicochemical properties.

    Science.gov (United States)

    Chen, Jin; Liang, Yi; Li, Xiaoxi; Chen, Ling; Xie, Fengwei

    2016-10-05

    The influence of supramolecular structure on the physicochemical properties and digestibility of jackfruit seed starch (JSS) were investigated. Compared with maize and cassava starches (MS and CS), JSS had smaller granules and higher amylose content (JSS: 24.90%; CS: 16.68%; and MS: 22.42%), which contributed to higher gelatinization temperature (To: 81.11°C) and setback viscosity (548.9mPas). From scanning electron microscopy, the digestion of JSS was observed mainly at the granule surface. Due to its higher crystallinity (JSS: 30.6%; CS: 30.3%; and MS: 27.4%) and more ordered semi-crystalline lamellae, JSS had a high RS content (74.26%) and melting enthalpy (19.61J/g). In other words, the supramolecular structure of JSS extensively determined its digestibility and resistance to heat and mechanical shear treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Evaluating the antimicrobial activity of Nisin, Lysozyme and Ethylenediaminetetraacetate incorporated in starch based active food packaging film.

    Science.gov (United States)

    Bhatia, Sugandha; Bharti, Anoop

    2015-06-01

    The pleothera of micro organisms obtained from contaminated food cultured in a starch broth was effectively tested against antibacterial agents, i.e. nisin, lysozyme and chelating agent EDTA. A variety of combination treatments of these antimicrobial agents and their incorporation in Starch based active packaging film according to their permissibility standards was done. 4 variables of Nisin concentration (ranging from 0 to 750 IU/ml), 3 variables of lysozyme concentration (ranging from 0 to 500 IU/ml) and 3 variables of EDTA concentration from (0 to 20 μM) were chosen. Bacterial inhibition by combination of different levels of different factors without antimicrobial films was evaluated using a liquid incubation method. The samples were assayed for turbidity at interval of 2, 4 and 24 h to check effectiveness of combined effects of antimicrobial agents which proved a transitory bactericidal effect for short incubation times. Zone of Inhibition was observed in the antimicrobial films prepared by agar diffusion method. Statistical analysis of experimental data for their antimicrobial spectrum was carried out by multi regression analysis and ANOVA using Design-Expert software to plot the final equation in terms of coded factors as antimicrobial agents. The experimental data indicated that the model was highly significant. Results were also evaluated graphically using response surface showing interactions between two factors, keeping other factor fixed at values at the center of domain. Synergy was also determined among antibacterial agents using the fractional inhibitory concentration (FIC) index which was observed to be 0.56 supporting the hypothesis that nisin and EDTA function as partial synergistically. The presented work aimed to screen in quick fashion the combinatorial effect of three antimicrobial agents and evaluating their efficacy in anti microbial film development.

  3. [A rare cause of optic neuropathy: Cassava].

    Science.gov (United States)

    Zeboulon, P; Vignal-Clermont, C; Baudouin, C; Labbé, A

    2016-06-01

    Cassava root is a staple food for almost 500 million people worldwide. Excessive consumption of it is a rare cause of optic neuropathy. Ten patients diagnosed with cassava root related optic neuropathy were included in this retrospective study. Diagnostic criteria were a bilateral optic neuropathy preceded by significant cassava root consumption. Differential diagnoses were excluded through a neuro-ophthalmic examination, blood tests and a brain MRI. All patients had visual field examination and OCT retinal nerve fiber layer (RNFL) analysis as well as an evaluation of their cassava consumption. All patients had a bilateral optic nerve head atrophy or pallor predominantly located into the temporal sector. Visual field defects consisted of a central or cecocentral scotoma for all patients. RNFL showed lower values only in the temporal sector. Mean duration of cassava consumption prior to the appearance of visual symptoms was 22.7±11.2 years with a mean of 2.57±0.53 cassava-based meals per week. Cassava related optic neuropathy is possibly due to its high cyanide content and enabled by a specific amino-acid deficiency. Cassava root chronic consumption is a rare, underappreciated cause of optic neuropathy and its exact mechanism is still uncertain. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Preparation and Characterization of Starch-g-PVA/Nano-hydroxyapatite Complex Hydrogel

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Starch-g-PVA/hydroxyapatite complex hydrogel was prepared with two-repeated freezing/ thawing circles. SEM observation results exhibits that hydroxyapatite is dispersed in starch-g-PVA in nanoscale. Thermogravimetric analysis curves show that the remained fraction keeps the same at the temperatures higher than 490℃ . It was found the dried starch-g- PVA/ hydroxyapatite films could reswell within 12 minutes.

  5. Effect of natamycin, nisin and glycerol on the physicochemical properties, roughness and hydrophobicity of tapioca starch edible films.

    Science.gov (United States)

    Ollé Resa, Carolina P; Jagus, Rosa J; Gerschenson, Lía N

    2014-07-01

    In this paper, films based on tapioca starch and containing nisin, natamycin and glycerol were characterized in relation to their physicochemical properties, roughness and hydrophobicity. The content of glycerol affected the mechanical properties of the films studied and the roughness and it was observed an increase in WVP with the increase in glycerol content. The addition of antimicrobials affected the mechanical properties, being nisin the one that produced the greater decrease in the Young modulus. The color was highly affected by the joint presence of natamycin and nisin, which increased the yellow index. The contact angle increased with antimicrobial addition indicating a decrease in hydrophilicity. Nisin also affected the roughness of the films. Water vapor permeability was slightly reduced by the presence of natamycin. It was observed that water vapor permeability and contact angle were correlated with the roughness of the films. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Investigation of the Effects of Rosemary Extract on Barrier and Colorimetric Properties of Mungbean Starch Films

    Directory of Open Access Journals (Sweden)

    H. Safari Maznabi

    2013-08-01

    Full Text Available Barrier properties are one of the most important factors in the edible film. In this study, edible mungbean films were prepared containing (0%, 15%, 30%, 45% concentrations of rosemary aqueous extract. Then the effect of rosemary was investigated on colorimetric and barrier properties (water vapor permeability, oxygen permeability. Rosemary extract increased the absorption of color in the visible region, which in turn led to increase of the parameters a (index color tends toward green and b (index color tends towards yellow. The results showed that increasing concentrations of rosemary extract have a significant effect( p <0.05 to reduce the amount of oxygen and water vapor permeability.  Also turbidity of mungbean starch was increased with increasing concentrations of rosemary in the film. Improving barrier properties and the colorimetric properties were showed by rosemary extract compounds that these materials can use as the safety of food and pharmaceutical packaging industry.

  7. Qualitative Performance and Consumer Acceptability of Starch Films for the Blueberry Modified Atmosphere Packaging Storage

    Directory of Open Access Journals (Sweden)

    Giuggioli Nicole R.

    2017-06-01

    Full Text Available The sustainability of packaging is an important part of food system innovation and it can influence the purchase decision for the fresh produce. In this work, we evaluated the qualitative performance and the consumer acceptability of three starch films for the blueberry modified atmosphere packaging (MAP storage under fluctuating temperatures. Fruits cv. Duke were monitored for up to 18 days (15 days at 1±1°C and 3 days at 20±1°C. The respiration rate of the blueberries and the permeability of the films affect the initial atmospheric composition (0.2 kPa CO2 and 21.2 kPa O2 inside each package influencing the headspace gas composition and the quality parameters of the fruits. The F3 film has better controlled O2 values inside the packages up until the end of storage (5.7 kPa and it maintained the highest anthocyanin content (156.21 mg C3G/100 g FW and antioxidant capacity (22.18 Fe2+/kg of fruits at 20±1°C.

  8. Determinants Of Adoption Of Improved Cassava Production ...

    African Journals Online (AJOL)

    Descriptive statistics and multiple regression analysis were used to analyse the field data The identified cassava production technologies at different stages of adoption by the respondents are use of improved cassava cuttings, use of herbicides/pesticides, Alternate row/crop geometry in a cassava /maize/yam intercrop, ...

  9. All-natural bio-plastics using starch-betaglucan composites.

    Science.gov (United States)

    Sagnelli, Domenico; Kirkensgaard, Jacob J K; Giosafatto, Concetta Valeria L; Ogrodowicz, Natalia; Kruczała, Krzysztof; Mikkelsen, Mette S; Maigret, Jean-Eudes; Lourdin, Denis; Mortensen, Kell; Blennow, Andreas

    2017-09-15

    Grain polysaccharides represent potential valuable raw materials for next-generation advanced and environmentally friendly plastics. Thermoplastic starch (TPS) is processed using conventional plastic technology, such as casting, extrusion, and molding. However, to adapt the starch to specific functionalities chemical modifications or blending with synthetic polymers, such as polycaprolactone are required (e.g. Mater-Bi). As an alternative, all-natural and compostable bio-plastics can be produced by blending starch with other polysaccharides. In this study, we used a maize starch (ST) and an oat β-glucan (BG) composite system to produce bio-plastic prototype films. To optimize performing conditions, we investigated the full range of ST:BG ratios for the casting (100:0, 75:25, 50:50, 25:75 and 0:100 BG). The plasticizer used was glycerol. Electron Paramagnetic Resonance (EPR), using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a spin probe, showed that the composite films with high BG content had a flexible chemical environment. They showed decreased brittleness and improved cohesiveness with high stress and strain values at the break. Wide-angle X-ray diffraction displayed a decrease in crystallinity at high BG content. Our data show that the blending of starch with other natural polysaccharides is a noteworthy path to improve the functionality of all-natural polysaccharide bio-plastics systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Biodegradable films of starch/PVOH/alginate in packaging systems for minimally processed lettuce (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Renata Paula Herrera Brandelero

    Full Text Available ABSTRACT Biodegradable packaging may replace non-biodegradable materials when the shelf life of the packaged product is relatively short, as in minimally processed foods. The objective of this work was to evaluate the efficiency of biodegradable films comprising starch/polyvinyl alcohol (PVOH/alginate with the addition of 0 or 0.5% of essential oil of copaiba (EOCP or lemongrass (EOLM compared to poly-vinyl chloride (PVC films in the storage of minimally processed lettuce. Lettuce samples cut into 1-cm strips were placed in polypropylene trays wrapped with biodegradable films and stored at 6 ± 2 °C for 8 days. PVC films were used as controls. The biofilms presented 11.43-8.11 MPa resistance and 11.3-13.22% elongation, with water vapor permeability (WVP of 0.5-4.04 x 10-12 g. s-1.Pa-1.m-1; thus, the films' properties were considered suitable for the application. The lettuce stored in PVC presented minor total soluble solids (TSS, less luminosity (L, higher intensity of yellow color (b, and eight times less mass loss than that stored in biodegradable films. Multivariate analysis showed that the lettuce lost quality after 2 days of storage in PVC films, representing a different result from the other treatments. Lettuce stored in biodegradable films for 2 and 4 days showed a greater similarity with newly harvested lettuce (time zero. The films with or without the addition of essential oil showed similar characteristics. Biodegradable films were considered viable for the storage of minimally processed lettuce.

  11. Design and fabrication of a cassava peeling machine | Akintunde ...

    African Journals Online (AJOL)

    Design and fabrication of a cassava peeling machine. ... Journal Home > Vol 23, No 1 (2005) > ... The varying shapes and sizes of cassava tubers have made cassava peeling to be one of the major problems in the mechanization of cassava ...

  12. Tailoring barrier properties of thermoplastic corn starch-based films (TPCS) by means of a multilayer design.

    Science.gov (United States)

    Fabra, María José; López-Rubio, Amparo; Cabedo, Luis; Lagaron, Jose M

    2016-12-01

    This work compares the effect of adding different biopolyester electrospun coatings made of polycaprolactone (PCL), polylactic acid (PLA) and polyhydroxybutyrate (PHB) on oxygen and water vapour barrier properties of a thermoplastic corn starch (TPCS) film. The morphology of the developed multilayer structures was also examined by Scanning Electron Microscopy (SEM). Results showed a positive linear relationship between the amount of the electrospun coatings deposited onto both sides of the TPCS film and the thickness of the coating. Interestingly, the addition of electrospun biopolyester coatings led to an exponential oxygen and water vapour permeability drop as the amount of the electrospun coating increased. This study demonstrated the versatility of the technology here proposed to tailor the barrier properties of food packaging materials according to the final intended use. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Development of edible films from tapioca starch and agar, enriched with red cabbage (Brassica oleracea) as a sausage deterioration bio-indicator

    Science.gov (United States)

    Aditya Wardana, Ata; Dewanti Widyaningsih, Tri

    2017-12-01

    Sausage spoilage has been identified as a cause of some food poisoning cases. Development of a bioindicator film is one of the alternative methods to detect sausage deterioration. The objectives of this paper were to develop a bioindicator edible films (BEF) from tapioca starch (TS), agar, and red cabbage juice (RC), and to evaluate its performance on sausage deterioration detection. The experiment had a 3x3 randomized factorial experimental design (agar: 3, 5, 7% by weight of TS; RC: 10, 15, 20% v/v based on 100% of suspension). Glycerol was used as the plasticizer. The results showed that the addition of agar into the film solution increased the thickness, elongation, and tensile strength, and decreased water vapour transmission rate (WVTR). While the addition of RC increased the thickness, but decreased elongation, tensile strength, and WVTR. BEF consisting of 2% tapioca starch, 7% (w/w) agar and 10 % (v/v) RC was chosen to apply on sausage. It could detect an increase in the microbial population and in the pH variations as result of sausage deterioration at 24, 48, and 72 h shown through color changes of BEF from bright purple at 0 h to light purple, dark purple-blue, and purple-green color respectively.

  14. Resistance to moist conditions of whey protein isolate and pea starch biodegradable films and low density polyethylene nondegradable films: a comparative study

    Science.gov (United States)

    Mehyar, G. F.; Bawab, A. Al

    2015-10-01

    Biodegradable packaging materials are degraded under the natural environmental conditions. Therefore using them could alleviate the problem of plastics accumulation in nature. For effective replacement of plastics, with biodegradable materials, biodegradable packages should keep their properties under the high relative humidity (RH) conditions. Therefore the objectives of the study were to develop biodegradable packaging material based on whey protein isolate (WPI) and pea starch (PS). To study their mechanical, oxygen barrier and solubility properties under different RHs compared with those of low density polyethylene (LDPE), the most used plastic in packaging. Films of WPI and PS were prepared separately and conditioned at different RH (30-90%) then their properties were studied. At low RHs ( 40% RH. Oxygen permeability of WPI and LDPE did not adversely affected by increasing RH to 65%. Furthermore, WPI and LDPE films had lower degree of hydration at 50% and 90% RH and total soluble matter than PS films. These results suggest that WPI could be successfully replacing LDPE in packaging of moist products.

  15. Produção de biscoitos extrusados de polvilho azedo com fibras: efeito de parâmetros operacionais sobre as propriedades físicas Production of snacks from sour cassava starch and fiber: effect of operational parameters on physical properties

    Directory of Open Access Journals (Sweden)

    Karina Fernandes de Camargo

    2008-09-01

    Full Text Available Neste trabalho buscou-se avaliar o efeito de parâmetros operacionais do processo de extrusão no desenvolvimento de biscoitos de polvilho com fibras, utilizando como matérias-primas o polvilho azedo e o farelo de mandioca. O processamento foi realizado em um extrusor mono-rosca, sendo considerados parâmetros variáveis: temperatura na 3ª zona de extrusão, umidade e porcentagem de fibras na mistura. Para analisar o efeito combinado das variáveis independentes nas características tecnológicas dos extrusados, utilizou-se o delineamento 'central composto rotacional' para três fatores. Os resultados obtidos mostraram efeitos significativos da umidade e porcentagem de fibras sobre o volume específico, sendo que a temperatura afetou os índices de solubilidade e absorção de água dos produtos extrusados. Condições de baixa temperatura (65 °C, baixa umidade (12% e baixo teor de fibras (The purpose of this work was to evaluate the effect of operational extrusion parameters on the production of cassava fiber snacks from sour cassava starch and cassava bagasse. Processing was carried out in a single-screw extruder, with temperature in the third extrusion zone, moisture and fiber percentage as independent variables. In order to evaluate the effect of the independent variables on technological characteristics of the snacks, a central composite design with three factors was used. The results showed significant effects of moisture and fiber percentage on specific volume, and extrusion temperature had effects on Water Solubility Index (WSI and Water Absorption Index (WAI. Products with good technological characteristics can be produced at low temperature (65 °C, low fiber (<4% and low moisture (12% conditions.

  16. A Process Technology For Conversion Of Dried Cassava Chips Into ...

    African Journals Online (AJOL)

    “Gari”, made from fermented bitter Cassava roots (Manihot esculenta crantz) were successfully processed from already dried Cassava chips at 7% moisture level. Cassava mash at 67% moisture was prepared from dried Cassava chips. This was seeded severally with fresh cassava mash and fermented for 72hours.

  17. Effect of spice-incorporated starch edible film wrapping on shelf life of white shrimps stored at different temperatures.

    Science.gov (United States)

    Meenatchisundaram, Sivarajan; Chandrasekar, Chandra Mohan; Udayasoorian, Lalitha Priya; Kavindapadi Rajasekaran, Rakhavan; Kesavan, Radha Krishnan; Srinivasan, Babuskin; Muthusamy, Sukumar

    2016-09-01

    White shrimps (Litopenaeus vannamei) are a major aquaculture product in the world fishery market. The main aim of this study was to investigate the effect of clove- and cinnamon-assimilated starch edible films on the shelf life of white shrimps in terms of maintaining their freshness and other organoleptic properties. Physical, chemical, microbial and sensory qualities of edible film-wrapped white shrimps were studied until they reached their limit of acceptability during storage at different temperatures (10 and 4 °C). Shrimp samples wrapped with spice-assimilated edible films showed lower bacterial counts. Shelf life extension of edible film-wrapped white shrimps was estimated to be 14 and 12 days for storage at 10 and 4 °C respectively. Reduced lipid oxidation and release of nitrogen base compounds were noted for edible film-wrapped shrimp samples. Good consumer acceptance was noted for edible film-wrapped shrimp samples through sensory evaluation. The results of this study show that spice-fused edible films were effective in inhibiting the growth of microbial populations. Reductions in lipid oxidation and total volatile base nitrogen were also achieved through edible film wrapping of shrimps, which increased their consumer acceptance during sensory evaluation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Redução da hidrofilicidade de filmes biodegradáveis à base de amido por meio de polimerização por plasma Reduction of hydrophilicity of biodegradable starch-based films by plasma polymerization

    Directory of Open Access Journals (Sweden)

    Rossana M. S. M. Thiré

    2004-03-01

    Full Text Available Devido ao baixo custo de produção e excelente biodegradabilidade, o amido constitui-se em matéria-prima promissora para a produção de plásticos biodegradáveis. No entanto, a grande hidrofilicidade dos filmes à base de amido representa uma séria limitação tecnológica à sua comercialização, uma vez que as propriedades dos filmes são afetadas pela variação da umidade relativa do ar durante a sua estocagem ou o seu uso. Neste trabalho, filmes de amido termoplástico foram recobertos com uma fina camada protetora polimérica gerada por intermédio da tecnologia de plasma frio. 1-Buteno e 1,3-butadieno foram utilizados como monômeros para a polimerização por plasma. Os filmes recobertos apresentaram uma redução de até 80% na absorção de água e aumento do ângulo de contato em relação à água. Estes resultados indicaram uma redução significativa na natureza hidrofílica do material à base de amido após o recobrimento.Due to low cost and excellent biodegradability, the use of starch as a raw material for bioplastic production is growing in interest. However, the properties of starch-based materials are affected by relative humidity during their use and storage due to their hydrophilic character. In this work, thermoplastic cornstarch films were coated by cold plasma technology with a protective thin layer in order to reduce water sensitivity. 1-Butene and 1,3-butadiene were used as monomers for plasma polymerization. Coated films presented a reduction of water absorption up to 80% an increase in contact angle related to water. These results indicated that the coating process reduced significantly the hydrophilic nature of the starch-based materials.

  19. Limitations of Cassava Bacterial Blight: New Advances

    Directory of Open Access Journals (Sweden)

    Camilo López

    2006-07-01

    genomics. The acquired knowledge in the last years for this pathosystem will help to establish better disease control strategies and generate, in a short term, resistant cassava varieties contributing to solve one of the main problems of poor cassava farmers and this effort will open a new horizon to the cassava crop in the world.

  20. Performance of polymeric films based thermoplastic starch and organophilic clay; Efeito da incorporacao de argila no desempenho de filmes de amido termoplastico/PEBD

    Energy Technology Data Exchange (ETDEWEB)

    Cipriano, P.B.; Costa, A.N.M.; Araujo, S.S.; Araujo, A.R.A.; Canedo, E.L.; Carvalho, L.H., E-mail: pamufcg@gmail.co [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    The aim of this work was the development and investigation of the properties of flat films of LDPE/corn thermoplastic starch (TPS). A bentonite clay (Argel) was organophilized and characterized by XRD. This clay (1%) in both pristine and organophilic forms was added to the matrix (LDPE) and to LDPE/TPS systems with TPS contents varying from 5-20% w/w. The films manufactured (LDPE, LDPE/Clay, LDPE/TPS, LDPE/TPS/Clay) were characterized. Results indicate that water vapor permeability is dependent and increases with TPS content which was attributed to the higher affinity of water by TPS. TPS and Clay addition to LDPE led to significant changes in film properties with respect to the neat LDPE. In general,tensile and perforation forces increased with clay and TPS contents; the strength of thermo sealed films lowered with natural clay addition and increased with TPS and organoclay incorporation and, in general, dynamic friction coefficient decrease with organoclay and TPS addition. Best overall properties were obtained for the systems containing the organoclay and optimal properties were achieved for the 5%TPS10 LDPE1% ANO system. (author)