Compression limits in cascaded quadratic soliton compression
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw;
2008-01-01
Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency.......Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency....
Critical Boundary of Cascaded Quadratic Soliton Compression in PPLN
DEFF Research Database (Denmark)
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin;
2012-01-01
Cascaded quadratic soliton compression in PPLN is investigated and a general critical soliton number is found as the compression boundary. An optimal-parameter diagram for compression at 1550 nm is presented.......Cascaded quadratic soliton compression in PPLN is investigated and a general critical soliton number is found as the compression boundary. An optimal-parameter diagram for compression at 1550 nm is presented....
Cascaded quadratic soliton compression at 800 nm
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Moses, Jeffrey;
2007-01-01
We study soliton compression in quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion.......We study soliton compression in quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....
Scaling laws for soliton pulse compression by cascaded quadratic nonlinearities
Bache, M; Wise, F W
2007-01-01
We present a detailed study of soliton compression of ultra-short pulses ($< 1$ ps) based on phase-mismatched second-harmonic generation (\\textit{i.e.}, the cascaded quadratic nonlinearity) in bulk quadratic nonlinear media. The single-cycle propagation equations in the temporal domain including higher-order nonlinear terms are presented. The balance between the quadratic (SHG) and the cubic (Kerr) nonlinearity plays a crucial role: we define an effective soliton number -- related to the difference between the SHG and the Kerr soliton numbers -- and show that it has to be larger than unity for successful pulse compression to take place. This requires that the wave-vector mismatch be below a critical level, which is high in a material where the quadratic nonlinearity dominates over the cubic Kerr nonlinearity. Through extensive numerical simulations we find dimensionless scaling laws, expressed through the effective soliton number, which control the behaviour of the compressed pulses. These laws hold in the...
Limits to compression with cascaded quadratic soliton compressors
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw;
2008-01-01
We study cascaded quadratic soliton compressors and address the physical mechanisms that limit the compression. A nonlocal model is derived, and the nonlocal response is shown to have an additional oscillatory component in the nonstationary regime when the group-velocity mismatch (GVM) is strong....... This inhibits efficient compression. Raman-like perturbations from the cascaded nonlinearity, competing cubic nonlinearities, higher-order dispersion, and soliton energy may also limit compression, and through realistic numerical simulations we point out when each factor becomes important. We find that...
Cascaded Quadratic Soliton Compression in Waveguide Structures
DEFF Research Database (Denmark)
Guo, Hairun
The generation of few-cycle, high-intensity laser pulses is of great interests in a variety of research and application fields such as time-resolved spectroscopy, bio-chemical imaging with two-photon absorptions, medical treatment, material characterization, coherent supercontinuum generation......-focusing Kerr effects when under the self-defocusing regime. On the other hand, CQSC in quadratic waveguides seems highly complementary to that in quadratic bulk crystals. With bulk crystals dealing with high-energy, low-repetition-rate and large-beam-size pulses, quadratic waveguides could operate low-energy...... and tera-hertz wave generation. Commercial pulsed lasers including the solid state system and the pulsed fiber laser have promised the generation of energetic femto-second pulses with the temporal duration around much more than tens of femto-seconds. Therefore, pulse compression technologies could be used...
Limits to compression with cascaded quadratic soliton compressors
Bache, M; Królikowski, W; Moses, J; Wise, F W
2008-01-01
We study cascaded quadratic soliton compressors and address the physical mechanisms that limit the compression. A nonlocal model is derived, and the nonlocal response is shown to have an additional oscillatory component in the nonstationary regime when the group-velocity mismatch (GVM) is strong. This inhibits efficient compression. Raman-like perturbations from the cascaded nonlinearity, competing cubic nonlinearities, higher-order dispersion, and soliton energy may also limit compression, and through realistic numerical simulations we point out when each factor becomes important. We find that it is theoretically possible to reach the single-cycle regime by compressing high-energy fs pulses for wavelengths $\\lambda=1.0-1.3 \\mu{\\rm m}$ in a $\\beta$-barium-borate crystal, and it requires that the system is in the stationary regime, where the phase mismatch is large enough to overcome the detrimental GVM effects. However, the simulations show that reaching single-cycle duration is ultimately inhibited by compet...
Accurate nonlocal theory for cascaded quadratic soliton compression
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Moses, Jeffrey;
2007-01-01
We study soliton compression in bulk quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion.......We study soliton compression in bulk quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....
Soliton compression to few-cycle pulses by cascaded quadratic nonlinearities
DEFF Research Database (Denmark)
Bache, Morten; Moses, Jeffrey; Bang, Ole;
2007-01-01
Theoretical and numerical investigation of pulse-compression in a nonlinear crystal is presented. SHG soliton number is introduced and show that compression only takes place when it is larger than the "usual" Kerr soliton number. Pulse compression with cascaded quadratic nonlinearities requires...... that the ratio of the SHG and Kerr soliton numbers N>1....
DEFF Research Database (Denmark)
Bache, Morten; Moses, Jeffrey; Wise, Frank W.
2008-01-01
The output of a high-power femtosecond fiber laser is typically 300 fs with a wavelength around $\\lambda=1030-1060$ nm. Our numerical simulations show that cascaded quadratic soliton compression in bulk LiNbO$_3$ can compress such pulses to below 100 fs....
Quadratic solitons as nonlocal solitons
Nikolov, Nikola Ivanov; Neshev, D.; Bang, Ole; Królikowski, W.
2003-01-01
We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an effective saturable Kerr medium. The nonlocal analogy also allows for novel analytical solutions and the prediction of novel bound states of quadratic solitons.
Quadratic solitons as nonlocal solitons
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov; Neshev, D.; Bang, Ole;
2003-01-01
We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an effective saturable Kerr medium. The nonlocal analogy also allows for analytical...... solutions and the prediction of bound states of quadratic solitons....
Soliton pulse compression through cascaded quadratic nonlinearity in difference-frequency generation
Institute of Scientific and Technical Information of China (English)
WANG Ke; QIAN LieJia; ZHU HeYuan
2008-01-01
Cascaded nonlinearity based soliton pulse compression in the process of femtosecond difference frequency generation is studied theoretically. A set of simplified coupled wave equations under the conditions of large phase mismatch and matched group velocities is obtained, which reveals the physical mechanism of soliton compression in this process. Numerical simulations demonstrate that in the presence of group velocity dispersion and equivalent cross phase modulation, both the pump and the signal pulses can be compressed with a high compression ratio.
Quadratic spatial soliton interactions
Jankovic, Ladislav
Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO 3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the fundamental component only, showed a broad angular acceptance bandwidth which was important for the soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation was observed for the first time. The influence on the multi-soliton patterns generated of the input intensity and beam symmetry was investigated. The combined experimental and theoretical efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton patterns. Another research direction pursued was intensity dependent soliton routing by using of a specially engineered quadratically nonlinear interface within a periodically poled KTP sample. This was the first time demonstration of the self-reflection phenomenon in a system with a quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton routing and manipulation by engineered structures. A detailed investigation was conducted on two soliton interaction and collision processes. Birth of an additional soliton resulting from a two soliton collision was observed and characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 30
Impurity solitons with quadratic nonlinearities
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis
We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton...
Impurity solitons with quadratic nonlinearities
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis
1998-01-01
We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton...
Solitons in quadratic nonlinear photonic crystals
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2001-01-01
We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families....... Because of these induced cubic terms, solitons still exist even when the effective quadratic nonlinearity vanishes and conventional theory predicts that there can be no soliton. We demonstrate that both bright and dark forms of these solitons can propagate stably....
DEFF Research Database (Denmark)
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin;
2014-01-01
inherent material self-focusing Kerr nonlinearity is overcome over a wide wavelength range, and self-defocusing solitons are supported from 1100 to 1900 nm, covering the whole communication band. Single cycle self-compressed solitons and supercontinuum generation spanning 1.3 octaves are observed when...
Quadratic soliton self-reflection at a quadratically nonlinear interface
Jankovic, Ladislav; Kim, Hongki; Stegeman, George; Carrasco, Silvia; Torner, Lluis; Katz, Mordechai
2003-11-01
The reflection of bulk quadratic solutions incident onto a quadratically nonlinear interface in periodically poled potassium titanyl phosphate was observed. The interface consisted of the boundary between two quasi-phase-matched regions displaced from each other by a half-period. At high intensities and small angles of incidence the soliton is reflected.
DEFF Research Database (Denmark)
Bache, Morten; Zhou, Binbin; Chong, A.; Wise, F.W.
2010-01-01
We show that ultra-short few-cycle pulses can be generated through soliton compression of energetic femtosecond pulses from a Ti:Sapphire regenerative amplifier. The compression relies on cascaded type 0 second-harmonic generation in mm-length lithium niobate crystals.......We show that ultra-short few-cycle pulses can be generated through soliton compression of energetic femtosecond pulses from a Ti:Sapphire regenerative amplifier. The compression relies on cascaded type 0 second-harmonic generation in mm-length lithium niobate crystals....
Evolution of Dark Spatial Soliton in Quasi-phase-matched Quadratic Media
Institute of Scientific and Technical Information of China (English)
WANG Fei-Yu; CHEN Xian-Feng; CHEN Yu-Ping; YANG Yi; XIA Yu-Xing
2005-01-01
We theoretically investigate the evolvement of dark spatial soliton with cascading quadratic nonlinearity in quasi-phase-matched second harmonic generation. It is shown that the dark solitary wave can propagate stably when background intensity is large enough, in which diffraction of beam can be balanced by the cascading quadratic nonlinearity. We also analyze the influence of phase-mismatch on the stability of dark soliton propagation.
Dynamics of Soliton Cascades in Fiber Amplifiers
Arteaga-Sierra, F R; Agrawal, Govind P
2016-01-01
We study numerically the formation of cascading solitons when femtosecond optical pulses are launched into a fiber amplifier with less energy than required to form a soliton of equal duration. As the pulse is amplified, cascaded fundamental solitons are created at different distances, without soliton fission, as each fundamental soliton moves outside the gain bandwidth through the Raman-induced spectral shifts. As a result, each input pulse creates multiple, temporally separated, ultrashort pulses of different wavelengths at the amplifier output. The number of pulses depends not only on the total gain of the amplifier but also on the width of input pulses.
Sarma, Amarendra K
2012-01-01
We report exact bright and dark soliton solution to the nonlinear evolution equation derived by Moses and Wise [Phys. Rev. Lett. 97, 073903, (2006)] for cascaded quadratic media beyond the slowly varying envelope approximations. The integrability aspects of the model are addressed. The traveling wave hypothesis as well as the ansatz method is employed to obtain an exact 1-soliton solution. Both bright and dark soliton solutions are obtained. The corresponding constraint conditions are obtained in order for the soliton solutions to exist.
Approximate solutions and scaling transformations for quadratic solitons
Sukhorukov, Andrey A.
1999-01-01
We study quadratic solitons supported by two- and three-wave parametric interactions in chi-2 nonlinear media. Both planar and two-dimensional cases are considered. We obtain very accurate, 'almost exact', explicit analytical solutions, matching the actual bright soliton profiles, with the help of a specially-developed approach, based on analysis of the scaling properties. Additionally, we use these approximations to describe the linear tails of solitary waves which are related to the propert...
Soliton interaction in quadratic and cubic bulk media
DEFF Research Database (Denmark)
Johansen, Steffen Kjær; Bang, Ole
2000-01-01
Summary form only given. The understanding of how and to what extend the cubic nonlinearity affects beam propagation and spatial soliton formation in quadratic media is of vital importance in fundamental and applied nonlinear physics. We consider beam propagation under type-I SHG conditions in...... lossless bulk second order nonlinear optical materials with a nonvanishing third order nonlinearity. It is known that in pure second order systems a single soliton can never collapse whereas in systems with both nonlinearities and that stable single soliton propagation can only in some circumstances be...
Adiabatic femtosecond pulse compression and control by using quadratic cascading nonlinearity
Zeng, Xianglong; Ashihara, Satoshi; Shimura, Tsutomu; Kuroda, Kazuo
2008-01-01
We experimentally demonstrate that adiabatic compression of femtosecond pulse can be achieved by employing the management of quadratic cascading nonlinearity in quasi-phase-matching gratings. Cascading nonlinearity is not a simple analogy with third-order optical nonlinearity in term of the engineering properties of the magnitude and focusing (or defocusing) nonlinearity. Femtosecond pulse compression is investigated based on type-I (e: o + o) collinear QPM geometry of aperiodically poled MgO-doped LiNbO 3 (MgO: LN). Group-velocity-matching condition is chosen to generate quadratic femtosecond soliton consisting of fundamental (FF) and second harmonic (SH) pulses. Adiabatic-like compression process is observed in the length of 50 mm linearly chirped QPM. Cascading nonlinearity is local managed, instead of dispersion management used in fiber adiabatic soliton compression. Quadratic soliton including FF and SH pulses are obtained from the compression of 95 fs FF pulse in the initial experiments. Dependence on the phase mismatch and group velocity mismatch, cascading nonlinearity has a flexible property and presents a new challenge for exploring femtosecond pulse shaping and control. The demonstrated pulse compression and control based on cascading nonlinearity is useful for generation of shorter pulses with clean temporal profiles, efficient femtosecond second harmonic generation and group-velocity control.
Cascaded generation of coherent Raman dissipative solitons.
Kharenko, Denis S; Bednyakova, Anastasia E; Podivilov, Evgeniy V; Fedoruk, Mikhail P; Apolonski, Alexander; Babin, Sergey A
2016-01-01
The cascaded generation of a conventional dissipative soliton (at 1020 nm) together with Raman dissipative solitons of the first (1065 nm) and second (1115 nm) orders inside a common fiber laser cavity is demonstrated experimentally and numerically. With sinusoidal (soft) spectral filtering, the generated solitons are mutually coherent at a high degree and compressible down to 300 fs. Numerical simulation shows that an even higher degree of coherence and shorter pulses could be achieved with step-like (hard) spectral filtering. The approach can be extended toward a high-order coherent Raman dissipative soliton source offering numerous applications such as frequency comb generation, pulse synthesis, biomedical imaging, and the generation of a coherent mid-infrared supercontinuum. PMID:26696187
Liu, Xing; Guo, Hairun; Bache, Morten
2015-01-01
We show numerically that ultrashort self-defocusing temporal solitons colliding with a weak pulsed probe in the near-IR can convert the probe to the mid-IR. A near-perfect conversion efficiency is possible for a high effective soliton order. The near-IR self-defocusing soliton can form in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between $\\lambda=2.2-2.4~\\mu\\rm m$ as a resonant dispersive wave. This process relies on non-degenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation.
Liu, Xing; Zhou, Binbin; Guo, Hairun; Bache, Morten
2015-08-15
We show numerically that ultrashort self-defocusing temporal solitons colliding with a weak pulsed probe in the near-IR can convert the probe to the mid-IR. A near-perfect conversion efficiency is possible for a high effective soliton order. The near-IR self-defocusing soliton can form in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between λ=2.2-2.4 μm as a resonant dispersive wave. This process relies on nondegenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation. PMID:26274663
Cascaded Soliton Compression of Energetic Femtosecond Pulses at 1030 nm
DEFF Research Database (Denmark)
Bache, Morten; Zhou, Binbin
2012-01-01
We discuss soliton compression with cascaded second-harmonic generation of energetic femtosecond pulses at 1030 nm. We discuss problems encountered with soliton compression of long pulses and show that sub-10 fs compressed pulses can be achieved.......We discuss soliton compression with cascaded second-harmonic generation of energetic femtosecond pulses at 1030 nm. We discuss problems encountered with soliton compression of long pulses and show that sub-10 fs compressed pulses can be achieved....
The linear trace Harnack quadratic on a steady gradient Ricci soliton satisfies the heat equation
Chow, Bennett; Lu, Peng
2011-01-01
We show that the linear trace Harnack quadratic on a steady gradient Ricci soliton satisfies the heat equation. Similar result holds for shrinkers. We also present an interpolation between Perelman's and Cao--Hamilton's Harnacks on a steady soliton.
Spatial quadratic solitons guided by narrow layers of a nonlinear material
Shapira, Asia; Malomed, Boris A; Arie, Ady
2011-01-01
We report analytical solutions for spatial solitons supported by layers of a quadratically nonlinear material embedded into a linear planar waveguide. A full set of symmetric, asymmetric, and antisymmetric modes pinned to a symmetric pair of the nonlinear layers is obtained. The solutions describe a bifurcation of the subcritical type, which accounts for the transition from the symmetric to asymmetric modes. The antisymmetric states (which do not undergo the bifurcation) are completely stable (the stability of the solitons pinned to the embedded layers is tested by means of numerical simulations). Exact solutions are also found for nonlinear layers embedded into a nonlinear waveguide, including the case when the uniform and localized nonlinearities have opposite signs (competing nonlinearities). For the layers embedded into the nonlinear medium, stability properties are explained by comparison to the respective cascading limit.
DEFF Research Database (Denmark)
Esbensen, B.K.; Bache, Morten; Krolikowski, W.;
2012-01-01
We employ the formal analogy between quadratic and nonlocal solitons to investigate analytically the properties of solitons and soliton bound states in second-harmonic generation in the regime of negative diffraction or dispersion of the second harmonic. We show that in the nonlocal description...... this regime corresponds to a periodic nonlocal response function. We then use the strongly nonlocal approximation to find analytical solutions of the families of single bright solitons and their bound states in terms of Mathieu functions....
Coalescence cascade of dissipative solitons in parametrically driven systems.
Clerc, M G; Coulibaly, S; Gordillo, L; Mujica, N; Navarro, R
2011-09-01
Parametrically driven spatially extended systems exhibit uniform oscillations which are modulationally unstable. The resulting periodic state evolves to the creation of a gas of dissipative solitons. Driven by the interaction of dissipative solitons, the multisoliton state undergoes a cascade of coalescence processes, where the average soliton separation distance obeys a temporal self-similar law. Starting from the soliton pair interaction law, we have derived analytically and characterized the law of this multisoliton coarsening process. A comparison of numerical results obtained with different models such as the parametrically driven damped nonlinear Schrödinger equation, a vertically driven chain of pendula, and a parametrically forced magnetic wire, shows remarkable agreement. Both phenomena, the pair interaction law and the coarsening process, are also observed experimentally in a quasi-one-dimensional layer of Newtonian fluid which is oscillated vertically. PMID:22060473
DEFF Research Database (Denmark)
Bache, Morten; Guo, Hairun; Zhou, Binbin
2013-01-01
investigate the so-called noncritical SHG case, where no phase matching can be achieved but as a compensation the largest quadratic nonlinearities are exploited. A self-defocusing temporal soliton can be excited if the cascading nonlinearity is larger than the competing material self-focusing nonlinearity......We discuss a novel method for generating octave-spanning supercontinua and few-cycle pulses in the important mid-IR wavelength range. The technique relies on strongly phase-mismatched cascaded second-harmonic generation (SHG) in mid-IR nonlinear frequency conversion crystals. Importantly we here...
TEMPORAL OPTICAL SOLITONS VIA MULTISTEP x(2) CASCADING
Institute of Scientific and Technical Information of China (English)
HUANG GUO-XIANG
2001-01-01
We consider a multistep X(2) cascading for light pulses with the dispersion of the system taken into account. Using the method of multiple scales we derive a set of coupled envelope equations governing the nonlinear evolution of the fundamental, second and third harmonic waves involved simultaneously in two nonlinear optical processes, i.e. second harmonic generation and sum frequency mixing. We show that three-wave temporal optical solitons are possible in three- and four-step cascading in the presence of a group-velocity mismatch between different pulses.
DEFF Research Database (Denmark)
Zeng, Xianglong; Guo, Hairun; Zhou, Binbin;
2012-01-01
In few-cycle soliton generation with large compression factors using cascaded nonlinearities the pulse quality can be improved by engineering quasi-phase-matching structures. The soliton-induced mid-IR optical Cherenkov wave is also enhanced.......In few-cycle soliton generation with large compression factors using cascaded nonlinearities the pulse quality can be improved by engineering quasi-phase-matching structures. The soliton-induced mid-IR optical Cherenkov wave is also enhanced....
DEFF Research Database (Denmark)
Liu, Xing; Zhou, Binbin; Guo, Hairun; Bache, Morten
2015-01-01
quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between. lambda = 2.2-2.4 mu m as a resonant dispersive wave. This process relies on...
DEFF Research Database (Denmark)
Zhou, Binbin; Guo, Hairun; Bache, Morten
2015-01-01
quality, having up to 10.5 μJ energy (6.3% conversion). The mid-IR pulses are dispersive waves phase-matched to near-IR self-defocusing solitons created by the induced self-defocusing cascaded nonlinearity. This process is filament-free and the input pulse energy can therefore be scaled arbitrarily by......Generating energetic femtosecond mid-IR pulses is crucial for ultrafast spectroscopy, and currently relies on parametric processes that, while efficient, are also complex. Here we experimentally show a simple alternative that uses a single pump wavelength without any pump synchronization and...... without critical phase-matching requirements. Pumping a bulk quadratic nonlinear crystal (unpoled LiNbO3 cut for noncritical phase-mismatched interaction) with sub-mJ near-IR 50-fs pulses, tunable and broadband (∼ 1,000 cm−1) mid-IR pulses around 3.0 μm are generated with excellent spatio-temporal pulse...
Zhou, B B; Bache, M
2014-01-01
Generating energetic femtosecond mid-IR pulses is crucial for ultrafast spectroscopy, and currently relies on parametric processes that, while efficient, are also complex. Here we experimentally show a simple alternative that uses a single pump wavelength without any pump synchronization and without critical phase-matching requirements. Pumping a bulk quadratic nonlinear crystal (unpoled LiNbO$_3$ cut for noncritical phase-mismatched interaction) with sub-mJ near-IR 50-fs pulses, tunable and broadband ($\\sim 1,000$ cm$^{-1}$) mid-IR pulses around $3.0~\\mu\\rm m$ are generated with excellent spatio-temporal pulse quality, having up to 10.5 $\\mu$J energy (6.3% conversion). The mid-IR pulses are dispersive waves phase-matched to near-IR self-defocusing solitons created by the induced self-defocusing cascaded nonlinearity. This process is filament-free and the input pulse energy can therefore be scaled arbitrarily by using large-aperture crystals. The technique can readily be implemented with other crystals and la...
Spatial Solitons and Induced Kerr Effects in Quasi-Phase-Matched Quadratic Media
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Bang, Ole; Kivshar, Yu.S.
1997-01-01
We show that the evolution of the average intensity of cw beams in a quasi-phase-matched quadratic (or chi((2))) medium is strongly influenced by induced Kerr effects, such as self- and cross-phase modulation. We prove the existence of rapidly oscillating solitary waves (a spatial analog of the...
DEFF Research Database (Denmark)
Zhou, Binbin; Chong, Andy; Wise, Frank W.; Bache, Morten
2011-01-01
We show experimentally that sub-20 fs near-infrared pulses can be generated through soliton compression of energetic femtosecond pulses.e compression relies on cascaded type-0 second-harmonic generation in a just 1 mm long lithium niobate crystal.......We show experimentally that sub-20 fs near-infrared pulses can be generated through soliton compression of energetic femtosecond pulses.e compression relies on cascaded type-0 second-harmonic generation in a just 1 mm long lithium niobate crystal....
Designing quadratic nonlinear photonic crystal fibers for soliton compression to few-cycle pulses
DEFF Research Database (Denmark)
Bache, Morten; Moses, Jeffrey; Lægsgaard, Jesper;
2007-01-01
phase shifts accessible. This self-defocusing nonlinearity can be used to compress a pulse when combined with normal dispersion, and problems normally encountered due to self-focusing in cubic media are avoided. Thus, having no power limit, in bulk media a self-defocusing soliton compressor can create...... high-energy near single-cycle fs pulses (Liu et al., 2006). However, the group-velocity mismatch (GVM) between the FW and second harmonic (SH), given by the inverse group velocity difference d12=1/Vg,1 - 1/Vg,2, limits the pulse quality and compression ratio. Especially very short input pulses (...
Ku, Mark J H; Mukherjee, Biswaroop; Yefsah, Tarik; Zwierlein, Martin W
2016-01-29
We follow the time evolution of a superfluid Fermi gas of resonantly interacting ^{6}Li atoms after a phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, its subsequent snaking, and its decay into a vortex ring, which, in turn, breaks to finally leave behind a single solitonic vortex. In intermediate stages, we find evidence for an exotic structure resembling the Φ soliton, a combination of a vortex ring and a vortex line. Direct imaging of the nodal surface reveals its undulation dynamics and its decay via the puncture of the initial soliton plane. The observed evolution of the nodal surface represents dynamics beyond superfluid hydrodynamics, calling for a microscopic description of unitary fermionic superfluids out of equilibrium. PMID:26871342
Ku, Mark J. H.; Mukherjee, Biswaroop; Yefsah, Tarik; Zwierlein, Martin W.
2016-01-01
We follow the time evolution of a superfluid Fermi gas of resonantly interacting 6 atoms after a phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, its subsequent snaking, and its decay into a vortex ring, which, in turn, breaks to finally leave behind a single solitonic vortex. In intermediate stages, we find evidence for an exotic structure resembling the Φ soliton, a combination of a vortex ring and a vortex line. Direct imaging of the nodal surface reveals its undulation dynamics and its decay via the puncture of the initial soliton plane. The observed evolution of the nodal surface represents dynamics beyond superfluid hydrodynamics, calling for a microscopic description of unitary fermionic superfluids out of equilibrium.
International Nuclear Information System (INIS)
Solitons are mathematical objects which arise as solutions of certain non-linear dispersive wave equations like the Korteweg-de Vries (KdV), the non-linear Schroedinger (NLS) and the self-induced transparency (SIT) and sine-Gordon (s-G) equations. These govern, respectively, ion acoustic waves in plasmas, the self-steepening of optical pulses and the formation of optical filaments by intense laser light, and the propagation of approximately -9s optical pulses in resonant media, for example. The equations and applications are very different, yet solitons have many features in common: they collide like particles and, for example, the break-up of coherent 10-9s optical pulses of 'area' 6π into three 2π pulses is a break-up into three solitons. The KdV, NLS and s-G equations are introduced and some single and multi-soliton solutions displayed. As one example of an application in non-linear physics the KdV equation is derived in detail for ion acoustic waves. Next the relevance of the KdV to recurrence phenomena in non-linear lattices (the Fermi-Pasta-Ulam problem) is noted. The theory of SIT in non-degenerate media is developed and used as a physical example of the s-G equation. A double s-G is then derived for SIT in degenerate media. It is shown that soliton-like behaviour is now established by 'wobbling' 4π pulses. SIT for the 2Ssub(1/2)(F=2)→2Psub(1/2)(F=1,2)D1 transitions in sodium vapour is treated. Applications of solitons to Josephson junctions, to optical filaments and to other non-linear physics (plasmas, lattices, particle physics) are briefly sketched. (author)
Few-cycle nonlinear mid-IR pulse generated with cascaded quadratic nonlinearities
DEFF Research Database (Denmark)
Bache, Morten; Liu, Xing; Zhou, Binbin
Generating few-cycle energetic and broadband mid-IR pulses is an urgent current challenge in nonlinear optics. Cascaded second-harmonic generation (SHG) gives access to an ultrafast and octave-spanning self-defocusing nonlinearity: when ΔkL >> 2π the pump experiences a Kerr-like nonlinear index...
Dispersive waves induced by self-defocusing temporal solitons in a beta-barium-borate crystal
DEFF Research Database (Denmark)
Zhou, Binbin; Bache, Morten
2015-01-01
We experimentally observe dispersive waves in the anomalous dispersion regime of a beta-barium-borate (BBO) crystal, induced by a self-defocusing few-cycle temporal soliton. Together the soliton and dispersive waves form an energetic octave-spanning supercontinuum. The soliton was excited in the...... normal dispersion regime of BBO through a negative cascaded quadratic nonlinearity. Using pump wavelengths from 1.24 to 1.4 μm, dispersive waves are found from 1.9 to 2.2 μm, agreeing well with calculated resonant phasematching wavelengths due to degenerate four-wave mixing to the soliton. We also...
Spatial solitons in nonlinear photonic crystals
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2000-01-01
We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero.......We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....
DEFF Research Database (Denmark)
Bache, Morten; Wise, Frank W.
2010-01-01
, and in particular the latter could become an issue when compressing such long crystals (around 10 cm long). We finally show that the second harmonic contains a short pulse locked to the pump and a long multi-picosecond red-shifted detrimental component. The latter is caused by the nonlocal effects in...
Dispersive waves induced by self-defocusing temporal solitons in a beta-barium-borate crystal.
Zhou, Binbin; Bache, Morten
2015-09-15
We experimentally observe dispersive waves in the anomalous dispersion regime of a beta-barium-borate (BBO) crystal, induced by a self-defocusing few-cycle temporal soliton. Together the soliton and dispersive waves form an energetic octave-spanning supercontinuum. The soliton was excited in the normal dispersion regime of BBO through a negative cascaded quadratic nonlinearity. Using pump wavelengths from 1.24 to 1.4 μm, dispersive waves are found from 1.9 to 2.2 μm, agreeing well with calculated resonant phase-matching wavelengths due to degenerate four-wave mixing to the soliton. We also observe resonant radiation from nondegenerate four-wave mixing between the soliton and a probe wave, which was formed by leaking part of the pump spectrum into the anomalous dispersion regime. We confirm the experimental results through simulations. PMID:26371910
Spatial optical solitons supported by mutual focusing
Salgueiro, Jose R.; Sukhorukov, Andrey A.; Kivshar, Yuri S.
2003-01-01
We study composite spatial optical solitons supported by two-wave mutual focusing induced by cross-phase modulation in Kerr-like nonlinear media. We find the families of both single- and two-hump solitons and discuss their properties and stability. We also reveal remarkable similarities between recently predicted holographic solitons in photorefractive media and parametric solitons in quadratic nonlinear crystals.
Chen, Peter Y P
2008-01-01
The problem of the stability of solitons in second-harmonic-generating media with normal group-velocity dispersion (GVD) in the second-harmonic (SH) field, which is generic to available chi^(2) materials, is revisited. Using an iterative numerical scheme to construct stationary soliton solutions, and direct simulations to test their stability, we identify a full soliton-stability range in the space of the system's parameters, including the coefficient of the group-velocity-mismatch (GVM). The soliton stability is limited by an abrupt onset of growth of tails in the SH component, the relevant stability region being defined as that in which the energy loss to the tail generation is negligible under experimentally relevant conditions. We demonstrate that the stability domain can be readily expanded with the help of two "management" techniques (spatially periodic compensation of destabilizing effects) - the dispersion management (DM) and GVM management. In comparison with their counterparts in optical fibers, DM ...
Multi-wavelength and multi-colour temporal and spatial optical solitons
DEFF Research Database (Denmark)
Kivshar, Y. S.; Sukhorukov, A. A.; Ostrovskaya, E. A.;
2000-01-01
We present an overview of several novel types of multi- component envelope solitary waves that appear in fiber and waveguide nonlinear optics. In particular, we describe multi-channel solitary waves in bit-parallel-wavelength fiber transmission systems for high performance computer networks, mult......-color parametric spatial solitary waves due to cascaded nonlinearities of quadratic materials, and quasiperiodic envelope solitons in Fibonacci optical superlattices....
Multi-wavelength and multi-colour temporal and spatial optical solitons
DEFF Research Database (Denmark)
Kivshar, Y. S.; Sukhorukov, A. A.; Ostrovskaya, E. A.; Bang, Ole; Clausen, Carl A. Balslev
We present an overview of several novel types of multi- component envelope solitary waves that appear in fiber and waveguide nonlinear optics. In particular, we describe multi-channel solitary waves in bit-parallel-wavelength fiber transmission systems for high performance computer networks, multi......-color parametric spatial solitary waves due to cascaded nonlinearities of quadratic materials, and quasiperiodic envelope solitons in Fibonacci optical superlattices....
Quasiperiodic Envelope Solitons
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Kivshar, Yuri S.; Bang, Ole;
1999-01-01
We analyze nonlinear wave propagation and cascaded self-focusing due to second-harmonic generation in Fibbonacci optical superlattices and introduce a novel concept of nonlinear physics. the quasiperiodic soliton, which describes spatially localized self-trapping of a quasiperiodic wave. We point...... out a link between the quasiperiodic soliton and partially incoherent spatial solitary waves recently generated experimentally....
Two-color surface lattice solitons
Xu, Zhiyong; Kivshar, Yuri S.
2008-01-01
We study the properties of surface solitons generated at the edge of a semi-infinite photonic lattice in nonlinear quadratic media, namely two-color surface lattice solitons. We analyze the impact of phase mismatch on existence and stability of surface modes, and find novel classes of two-color twisted surface solitons which are stable in a large domain of their existence.
Soliton-similariton switchable ultrafast fiber laser
Peng, Junsong; Guo, Pan; Gu, Zhaochang; Zou, Weiwen; Luo, Shouyu; Shen, Qishun
2012-01-01
For the first time, we demonstrated alternative generation of dispersion-managed (DM) solitons or similaritons in an all-fiber Erbium-doped laser. DM solitons or similaritons can be chosen to emit at the same output port by controlling birefringence in the cavity. The pulse duration of 87-fs for DM solitons and 248-fs for similaritons have been observed. For proof of similaritons, we demonstrate that the spectral width depends exponentially on the pump power, consistent with theoretical studies. Besides, the phase profile measured by a frequency-resolved optical gating (FROG) is quadratic corresponding to linear chirp. In contrast, DM solitons show non-quadratic phase profile.
Soliton Formation in Neutral Ion Gases: Exact Analysis
Mirza, Babur M
2015-01-01
It is shown here that in neutral ion gases the thermal energy transport can occur in the form of new types of thermal soliton waves. The solitons can form under a vanishing net heating function, and for a quadratic net heating. It is predicted that these solitons play an important role in a diversity of terrestrial and astrophysical phenomena. We claim that the reported soliton waves can be observed under ordinary laboratory conditions.
Soliton Formation in Neutral Ion Gases: Exact Analysis
Mirza, Babur M.
2012-01-01
It is shown here that in neutral ion gases the thermal energy transport can occur in the form of new types of thermal soliton waves. The solitons can form under a vanishing net heating function, and for a quadratic net heating. It is predicted that these solitons play an important role in a diversity of terrestrial and astrophysical phenomena. We claim that the reported soliton waves can be observed under ordinary laboratory conditions.
Salerno, Mario; Rodríguez Quintero, Niurka
2002-01-01
The mechanism underlying the soliton ratchet, both in absence and in presence of noise, is investigated. We show the existence of an asymmetric internal mode on the soliton profile that couples, through the damping in the system, to the soliton translational mode. Effective soliton transport is achieved when the internal mode and the external force are phase locked. We use as a working model a generalized double sine-Gordon equation. The phenomenon is expected to be valid for generic soliton ...
Parametric localized modes in quadratic nonlinear photonic structures
DEFF Research Database (Denmark)
Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole; Soukoulis, Costas M.
2001-01-01
We analyze two-color spatially localized nonlinear modes formed by parametrically coupled fundamental and second-harmonic fields excited at quadratic (or chi2) nonlinear interfaces embedded in a linear layered structure-a quadratic nonlinear photonic crystal. For a periodic lattice of nonlinear...... linear superlattice, we study the properties of two-color localized modes, and describe both similarities to and differences from quadratic solitons in homogeneous media....
Acceleration of Alfven solitons
International Nuclear Information System (INIS)
We study the dynamics of solitons perturbed by an external harmonic driver. These are described by a derivative nonlinear Schroedinger equation (DNLSE) which we solve by pseudo-spectral simulations over a 1024 point grid. Under the action of the perturbation, low-amplitude non-linearly interacting wave modes develop, which eventually degenerate into chaotic oscillations characterized by a positive maximum Lyapunov exponent and a large dimension. After this stage (which lasts about 10 driver's periods), an initially injected soliton (the initial condition) sets down to a train of pulse-shaped structures. These pulses have all the same speed and move in the same direction of the original soliton, retaining its polarization. However, the number of pulses in the numerical box and the time interval between them point out a translation speed which is about 4 times the one of the original soliton; the amplitude and width of the pulses are respectively about 2 and 1/4 times the ones of the original soliton. This suggests that the observed structure is itself a soliton which in fact solves the DNLSE. In other words, it appears as if the DNLSE nonlinearly stored the energy intake out of the driver into more energetic, faster and narrower solitons, a phenomenon we refer to as soliton acceleration. In the meanwhile, the above reported chaotic oscillations have entered an energy-cascade regime, and they have generated a low-level turbulent background in which the solitary structure is embedded. These features are spectrally analyzed to produce power-law wave-number and frequency spectra. An inertial range exists where the spectral indexes are about -1.45 and -1.5 for the wave-number and the frequency spectrum respectively. (orig.)
DEFF Research Database (Denmark)
Zhou, Binbin; Guo, Hairun; Bache, Morten
2014-01-01
explains this as phase matching between a sideband in the broadband pump to its second harmonic. However, our experiment is conducted under high input intensities and instead shows excellent quantitative agreement with a nonlocal theory describing cascaded quadratic nonlinearities. This theory explains the...... detuned peak as a nonlocal resonance that arises due to phase matching between the pump and a detuned second-harmonic frequency, but where in contrast to the traditional theory the pump is assumed dispersion free. As a soliton is inherently dispersion free, the agreement between our experiment and the...
International Nuclear Information System (INIS)
An outline for the construction of an effective theory of interacting solitons in N = 2 supergravity is presented. The solitons are described by their asymptotic properties, carrying translational and supertranslational degrees of freedom. We discuss briefly the classical and the quantized dynamics for the free soliton. The Lagrangian for the motion of a soliton in a curved supergravity background is exhibited and its implications for an effective supercharge interaction are mentioned. (Author)
Controllable nonlocal behaviour by cascaded second-harmonic generation of fs pulses
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw; Moses, Jeffrey; Wise, Frank W.
Second-harmonic generation (SHG) of ultra-short pulses can act as a prototypical nonlocal nonlinear model, since the strength and nature of the temporal nonlocality can be controlled through the phase-mismatch parameter. The presence of a group-velocity mismatch namely implies that when the phase...... compression to few-cycle pulses in the cascaded quadratic soliton compressor, the spectral content of the full coupled SHG model is predicted by the nonlocal model even when few-cycle pulses are interacting....
Govindarajan, T. R.
1998-01-01
The existence of ring-like and knotted solitons in O(3) non-linear sigma model is analysed. The role of isotopy of knots/links in classifying such solitons is pointed out. Appearance of torus knot solitons is seen.
Multiple-octave spanning mid-IR supercontinuum generation in bulk quadratic nonlinear crystals
Zhou, Binbin
2016-01-01
Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystal like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband supercontinuum generation in the visible, near-IR and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal pumped in the mid-IR gives multiple-octave spanning supercontinua. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed (covering 1.6-$7.0~\\mu$m). The results were recorded in a commercially available crystal LiInS$_2$ pumped in the 3-$4~\\mu$m range, but other mid-IR crystals ...
Escape angles in bulk chi((2)) soliton interactions
DEFF Research Database (Denmark)
Johansen, Steffen Kjær; Bang, Ole; Sørensen, Mads Peter
2002-01-01
We develop a theory for nonplanar interaction between two identical type I spatial solitons propagating at opposite, but arbitrary transverse angles in quadratic nonlinear (or so-called chi((2))) bulk, media. We predict quantitatively the outwards escape angle, below which the solitons turn aroun...
Fusion arrest and collapse phenomena due to Kerr-nonlinearity in quadratic media
DEFF Research Database (Denmark)
Johansen, Steffen Kjær; Bang, Ole; Sørensen, Mads Peter
Emphasizing collapse phenomena it is investigated to what extend the always present cubic nonlinearity affects the properties of soliton interaction in quadratic bulk media. An effective particle approach is applied and verified by numerical simulations....
Kälbermann, G.
1997-01-01
We present a numerical simulation of the scattering of a topological soliton off finite size attractive impurities, repulsive impurities and a combination of both. The attractive and attractive-repulsive cases show similar features to those found for $\\delta$ function type of impurities. For the repulsive case, corresponding to a finite width barrier, the soliton behaves completely classically. No tunneling occurs for sub-barrier kinetic energies despite the extended nature of the soliton.
Supercontinuum generation in quadratic nonlinear waveguides without quasi-phase matching
DEFF Research Database (Denmark)
Guo, Hairun; Zhou, Binbin; Steinert, Michael;
2015-01-01
Supercontinuum generation (SCG) is most efficient when the solitons can be excited directly at the pump laser wavelength. Quadratic nonlinear waveguides may induce an effective negative Kerr nonlinearity, so temporal solitons can be directly generated in the normal (positive) dispersion regime...
Solvable quadratic Lie algebras
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A Lie algebra endowed with a nondegenerate, symmetric, invariant bilinear form is called a quadratic Lie algebra. In this paper, the author investigates the structure of solvable quadratic Lie algebras, in particular, the solvable quadratic Lie algebras whose Cartan subalgebras consist of semi-simple elements, the author presents a procedure to construct a class of quadratic Lie algebras from the point of view of cohomology and shows that all solvable quadratic Lie algebras can be obtained in this way.
Zhou, Binbin; Bache, Morten
2016-08-01
Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystals like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband supercontinuum generation in the visible, near-IR, and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal is pumped in the mid-IR. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed. The results were recorded in a commercially available crystal LiInS2 pumped in the 3-4 μm range with 85 fs 50 μJ pulse energy, with the broadest supercontinuum covering 1.6-7.0 μm. We measured up 30 μJ energy in the supercontinuum, and the energy promises to scale favorably with an increased pump energy. Other mid-IR crystals can readily be used as well to cover other pump wavelengths and target other supercontinuum wavelength ranges.
Theory of Multidimensional Solitons
Carr, L. D.; Brand, Joachim
2007-01-01
We review a number of topics germane to higher-dimensional solitons in Bose-Einstein condensates. For dark solitons, we discuss dark band and planar solitons; ring dark solitons and spherical shell solitons; solitary waves in restricted geometries; vortex rings and rarefaction pulses; and multi-component Bose-Einstein condensates. For bright solitons, we discuss instability, stability, and metastability; bright soliton engineering, including pulsed atom lasers; solitons in a thermal bath; sol...
Vortex solitons in an off-resonant Raman medium
Gorbach, A V; Harvey, C N
2008-01-01
We investigate existence and linear stability of coupled vortex solitons supported by cascaded four-wave mixing in a Raman active medium excited away from the resonance. We present a detailed analysis for the two- and three-component vortex solitons and demonstrate the formation of stable and unstable vortex solitons, and associated spatio-temporal helical beams, under the conditions of the simultaneous frequency and vortex comb generation.
Soliton-soliton effective interaction
International Nuclear Information System (INIS)
A scheme of semi-phenomenological quantization is proposed for the collision process of two equal size envelopes-solitons provided by nonlinear Schroedinger equation. The time advance due to two envelopes-solitons collision was determined. Considering the solitons as puntual particles and using the description of classical mechanics, the effective envelope soliton-envelope soliton attractive potential, denominated modified Poschl-Teller potential. The obtainment of this potential was possible using the information in from of system memory, done by an analytical expression of time delay. Such system was quantized using this effective potential in Schroeding equation. The Scol matrix of two punctual bodies was determined, and it is shown that, in the limit of 122 /mN4 it reproduces the exact S2N matrix obtained from soliton packet wich incurs on another soliton packet. Every ones have the same mass, interacts by contact force between two bodies. These packets have only one bound state, i e, do not have excited states. It was verified that, using the Scol matrix, the binding energy of ground state of the system can be obtained, which is coincident with 2N particles in the 1/N approximation. In this scheme infinite spurious bound states are found (M.C.K.)
International Nuclear Information System (INIS)
Solitonic objects play a central role in gauge and string theory (as, e.g., monopoles, black holes, D-branes, etc.). Certain string backgrounds produce a noncommutative deformation of the low-energy effective field theory, which allows for new types of solitonic solutions. I present the construction, moduli spaces and dynamics of Moyal-deformed solitons, exemplified in the 2+1 dimensional Yang-Mills-Higgs theory and its Bogomolny system, which is gauge-fixed to an integrable chiral sigma model (the Ward model). Noncommutative solitons for various 1+1 dimensional integrable systems (such as sine-Gordon) easily follow by dimensional and algebraic reduction. Supersymmetric extensions exist as well and are related to twistor string theory
International Nuclear Information System (INIS)
Two of the most remarkable properties of light - squeezing and solitons - are being combined in a new generation of experiments that could revolutionize optics and communications. One area of application concerns the transmission and processing of classical (binary) information, in which the presence or absence of a soliton in a time-window corresponds to a ''1'' or ''0'', as in traditional optical-fibre communications. However, since solitons occur at fixed power levels, we do not have the luxury of being able to crank up the input power to improve the signal-to-noise ratio at the receiving end. Nevertheless, the exploitation of quantum effects such as squeezing could help to reduce noise and improve fidelity. In long-distance communications, where the signal is amplified every 50-100 kilometres or so, the soliton pulse is strongest just after the amplifier. Luckily this is where the bulk of the nonlinear interaction needed to maintain the soliton shape occurs. However, the pulse gets weaker as it propagates along the fibre, so the nonlinear interaction also becomes weaker and weaker. This means that dispersive effects become dominant until the next stage of amplification, where the nonlinearity takes over again. One problem is that quantum fluctuations in the amplifiers lead to random jumps in the central wavelength of the individual solitons, and this results in a random variation of the speed of individual solitons in the fibre. Several schemes have been devised to remove this excess noise and bring the train of solitons back to the orderly behaviour characteristic of a stable coherent state (e.g. the solitons could be passed through a spectral filter). Photon-number squeezing could also play a key role in solving this problem. For example, if the solitons are number-squeezed immediately after amplification, there will be a smaller uncertainty in the nonlinearity that keeps the soliton in shape and, therefore, there will also be less noise in the soliton. This
Engineering of effective quadratic and cubic nonlinearities in two-period QPM gratings
DEFF Research Database (Denmark)
Bang, Ole; Clausen, Carl A. Balslev; Torner, L.
longitudinal grating structure allows for distortion free temporal pulse compression, soliton shaping, broad-band phase matching, multiwavelength second-harmonic generation (SHG), and an enhanced cascaded phase shift. Transverse patterning can be used for beam-tailoring, broad-band SHG and soliton steering....
Induced Kerr effects and self-guided beams in quasi-phase-matched quadratic media [CBC4
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Bang, Ole; Kivshar, Yuri S.
1997-01-01
We show that quasi-phase-matching of quadratic media induces Kerr effects, such as self- and cross-phase modulation, and leads to the existence of a novel class of solitary waves, QPM-solitons......We show that quasi-phase-matching of quadratic media induces Kerr effects, such as self- and cross-phase modulation, and leads to the existence of a novel class of solitary waves, QPM-solitons...
Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation
International Nuclear Information System (INIS)
We investigated the soliton solution for N coupled nonlinear Schrödinger (CNLS) equations. These equations are coupled due to the cross-phase-modulation (CPM). Lax pair of this system is obtained via the Ablowitz–Kaup–Newell–Segur (AKNS) scheme and the corresponding Darboux transformation is constructed to derive the soliton solution. One and two soliton solutions are generated. Using two soliton solutions of 3 CNLS equation, nonlinear tunneling of soliton for both with and without exponential background has been discussed. Finally cascade compression of optical soliton through multi-nonlinear barrier has been discussed. The obtained results may have promising applications in all-optical devices based on optical solitons, study of soliton propagation in birefringence fiber systems and optical soliton with distributed dispersion and nonlinearity management. -- Highlights: •We consider the nonlinear tunneling of soliton in birefringence fiber. •3-coupled NLS (CNLS) equation with variable coefficients is considered. •Two soliton solutions are obtained via Darboux transformation using constructed Lax pair. •Soliton tunneling through dispersion barrier and well are investigated. •Finally, cascade compression of soliton has been achieved
Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation
Energy Technology Data Exchange (ETDEWEB)
Mani Rajan, M.S., E-mail: senthilmanirajanofc@gmail.com [Department of Physics, Anna University, Madurai Region, Ramanathapuram (India); Mahalingam, A. [Department of Physics, Anna University, Chennai - 600 025 (India); Uthayakumar, A. [Department of Physics, Presidency College, Chennai - 600 005 (India)
2014-07-15
We investigated the soliton solution for N coupled nonlinear Schrödinger (CNLS) equations. These equations are coupled due to the cross-phase-modulation (CPM). Lax pair of this system is obtained via the Ablowitz–Kaup–Newell–Segur (AKNS) scheme and the corresponding Darboux transformation is constructed to derive the soliton solution. One and two soliton solutions are generated. Using two soliton solutions of 3 CNLS equation, nonlinear tunneling of soliton for both with and without exponential background has been discussed. Finally cascade compression of optical soliton through multi-nonlinear barrier has been discussed. The obtained results may have promising applications in all-optical devices based on optical solitons, study of soliton propagation in birefringence fiber systems and optical soliton with distributed dispersion and nonlinearity management. -- Highlights: •We consider the nonlinear tunneling of soliton in birefringence fiber. •3-coupled NLS (CNLS) equation with variable coefficients is considered. •Two soliton solutions are obtained via Darboux transformation using constructed Lax pair. •Soliton tunneling through dispersion barrier and well are investigated. •Finally, cascade compression of soliton has been achieved.
Phillips, C R; Mayer, A S; Klenner, A; Keller, U
2014-03-10
We demonstrate femtosecond SESAM modelocking in the near-infrared by using cascaded quadratic nonlinearities (phase-mismatched second-harmonic generation, SHG), enabling soliton modelocking in the normal dispersion regime without any dispersion compensating elements. To obtain large and negative self-phase modulation (SPM) we use an intracavity LBO crystal, whose temperature and angles are optimized with respect to SPM, nonlinear losses, and self-starting characteristics. To support femtosecond pulses, we use the very promising Yb:CaGdAlO(4) (CALGO) gain material, operated in a bulk configuration. The LBO crystal provides sufficient negative SPM to compensate for its own GDD as well as the positive GDD and SPM from the gain crystal. The modelocked laser produces pulses of 114 fs at 1050 nm, with a repetition rate of 113 MHz (average output power 1.1 W). We perform a detailed theoretical study of this soliton modelocking regime with positive GDD, which clearly indicates the important design constraints in an intuitive and systematic way. In particular, due to its importance in avoiding multi-pulsed modelocking, we examine the nonlinear loss associated with the cascading process carefully and show how it can be suppressed in practice. With this modelocking regime, it should be possible to overcome the limits faced by current state of the art modelocked lasers in terms of dispersion compensation and nonlinearity management at high powers, suppression of Q-switching in compact GHz lasers, and enabling femtosecond soliton modelocking at very high repetition rates due to the high nonlinearities accessible via cascading combined with eliminating the need for intracavity dispersion compensation. PMID:24663941
Inverse Quadratic Transportation Problem
Jalilzadeh, Afrooz; Hamedani, Erfan Yazdandoost
2014-01-01
Many research has been conducted about quadratic programming and inverse optimization. In this paper we present the combination aspect of these subjects, applying on transportation problem. First, we obtain the inverse form of quadratic tranportation problem under $L_1$ norm by using duality as well as introducing the optimal value. Then, we do the same process for inverse quadratic transportation problem (IQTP) under $L_\\infty$ norm.
Calviño-Louzao, E.; Hervella, L. M.; Seoane-Bascoy, J.; Vázquez-Lorenzo, R.
2013-01-01
Left-invariant Cotton solitons on homogeneous manifolds are determined. Moreover, algebraic Cotton solitons are studied providing examples of non-invariant Cotton solitons, both in the Riemannian and Lorentzian homogeneous settings.
Tchen, C. M.
1986-01-01
Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.
International Nuclear Information System (INIS)
The Langrangian for a single free soliton in N = 2 supergravity as proposed in an earlier paper, is studied. We analyze the algebra of constraints and discuss the local gauge symmetry due to the existence of first class constraints. The classical motion as well as a Gupta-Bleuler type quantization are given. (Author)
Escape angles in bulk chi((2)) soliton interactions
Johansen, Steffen Kjær; Bang, Ole; Sørensen, Mads Peter
2002-01-01
We develop a theory for nonplanar interaction between two identical type I spatial solitons propagating at opposite, but arbitrary transverse angles in quadratic nonlinear (or so-called chi((2))) bulk, media. We predict quantitatively the outwards escape angle, below which the solitons turn around and collide, and above which they continue to move-away from each other. For in-plane interaction, the theory allows prediction of the Outcome of a collision through the inwards escape angle, i.e., ...
Tang, D. Y.; B. Zhao; Shen, D. Y.; Lu, C.
2009-01-01
Experimental study on the soliton dynamics of a passively mode locked fiber ring laser firstly revealed a state of bound soliton operation in the laser, where two solitons bind together tightly with fixed pulse separation. We further report on the properties of the bound-soliton emission of the laser. In particular, we demonstrate both experimentally and numerically that, like the single pulse soliton operation of the laser, the bound soliton emission is another intrinsic feature of the laser.
Multivariate Nonnegative Quadratic Mappings
Luo, Z-Q; Sturm, J.F.; Zhang, S.
2003-01-01
In this paper we study several issues related to the characterization of speci c classes of multivariate quadratic mappings that are nonnegative over a given domain, with nonnegativity de ned by a pre-speci ed conic order.In particular, we consider the set (cone) of nonnegative quadratic mappings de
Stable helical solitons in optical media
Indian Academy of Sciences (India)
Boris Malomed; G D Peng; P L Chu; Isaac Towers; Alexander V Buryak; Rowland A Sammut
2001-11-01
We present a review of new results which suggest the existence of fully stable spinning solitons (self-supporting localised objects with an internal vorticity) in optical ﬁbres with self-focusing Kerr (cubic) nonlinearity, and in bulk media featuring a combination of the cubic self-defocusing and quadratic nonlinearities. Their distinctive difference from other optical solitons with an internal vorticity, which were recently studied in various optical media, theoretically and also experimentally, is that all the spinning solitons considered thus far have been found to be unstable against azimuthal perturbations. In the ﬁrst part of the paper, we consider solitons in a nonlinear optical ﬁbre in a region of parameters where the ﬁbre carries exactly two distinct modes, viz., the fundamental one and the ﬁrst-order helical mode. From the viewpoint of application to communication systems, this opens the way to doubling the number of channels carried by a ﬁbre. Besides that, these solitons are objects of fundamental interest. To fully examine their stability, it is crucially important to consider collisions between them, and their collisions with fundamental solitons, in (ordinary or hollow) optical ﬁbres. We introduce a system of coupled nonlinear Schrödinger equations for the fundamental and helical modes with nonstandard values of the cross-phase-modulation coupling constants, and show, in analytical and numerical forms, results of collisions between solitons carried by the two modes. In the second part of the paper, we demonstrate that the interaction of the fundamental beam with its second harmonic in bulk media, in the presence of self-defocusing Kerr nonlinearity, gives rise to the ﬁrst ever example of completely stable spatial ring-shaped solitons with intrinsic vorticity. The stability is demonstrated both by direct simulations and by analysis of linearized equations.
Hernandez Tenorio, C.; Villagran Vargas, E.; Serkin, Vladimir N.; Aguero Granados, M.; Belyaeva, T. L.; Pena Moreno, R.; Morales Lara, L.
2005-09-01
The dynamics of nonlinear solitary waves is studied by using the model of nonlinear Schrödinger equation (NSE) with an external harmonic potential. The model allows one to analyse on the general basis a variety of nonlinear phenomena appearing both in a Bose—Einstein condensate in a magnetic trap, whose profile is described by a quadratic function of coordinates, and in nonlinear optics, physics of lasers, and biophysics. It is shown that exact solutions for a quantum-mechanical particle in a harmonic potential and solutions obtained within the framework of the adiabatic perturbation theory for bright solitons in a parabolic trap are completely identical. This fact not only proves once more that solitons behave like particles but also that they can preserve such properties in different traps for which the parabolic approximation is valid near potential energy minima. The conditions are found for formation of stable stationary states of antiphase solitons in a harmonic potential. The interaction dynamics of solitons in nonstationary potentials is studied and the possibility of the appearance of a soliton parametric resonance at which the amplitude of soliton oscillations in a trap exponentially increases with time is shown. It is shown that exact solutions of the problem found using the Miura transformation open up the possibility to control the dynamics of solitons. New effects are predicted, which are called the reversible and irreversible denaturation of solitons in a nonstationary harmonic potential.
A revisit to quadratic programming with fuzzy parameters
International Nuclear Information System (INIS)
Quadratic programming has been widely applied to solving real-world problems. Recently, Liu describes a solution method for solving a class of fuzzy quadratic programming problems, where the cost coefficients of the linear terms in objective function, constraint coefficients, and right-hand sides are fuzzy numbers [Liu ST. Quadratic programming with fuzzy parameters: a membership function approach. Chaos, Solitons and Fractals 2009;40:237-45]. In this paper, we generalize Liu's method to a more general fuzzy quadratic programming problem, where the cost coefficients in objective function, constraint coefficients, and right-hand sides are all fuzzy numbers. A pair of two-level mathematical programs is formulated to calculate the upper bound and lower bound of the objective values of the fuzzy quadratic program. Based on the duality theorem and by applying the variable transformation technique, the pair of two-level mathematical programs is transformed into a family of conventional one-level quadratic programs. Solving the pair of quadratic programs produces the fuzzy objective values of the problem. With the ability of calculating the fuzzy objective value developed in this paper, it might help initiate wider applications.
Dispersive waves in fs cascaded second-harmonic generation
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw;
2009-01-01
Dispersive waves are observed in simulations of cascaded (phase-mismatched) second-harmonic generation. When generating ultra-short fs compressed near-IR solitons the dispersive waves are strongly red-shifted, depending on the soliton wavelength. Semi-analytical calculations predict the wavelengths....
Generation of χ(2) solitons from the Airy wave through the parametric instability.
Mayteevarunyoo, Thawatchai; Malomed, Boris A
2015-11-01
Spontaneous creation of solitons in quadratic media by the downconversion (i.e., parametric instability against the generation of fundamental-frequency excitations) from the truncated Airy-wave (AW) mode in the second-harmonic component is studied. Parameter regions are identified for the generation of one, two, and three solitons, with additional small-amplitude "jets." Shares of the total power carried by individual solitons are found. Also considered are soliton patterns generated by the downconversion from a pair of AWs bending in opposite directions. PMID:26512490
Nonlinearly Driven Second Harmonics of Alfven Cascades
International Nuclear Information System (INIS)
In recent experiments on Alcator C-Mod, measurements of density fluctuations with Phase Contrast Imaging through the plasma core show a second harmonic of the basic Alfven Cascade (AC) signal. The present work describes the perturbation at the second harmonic as a nonlinear sideband produced by the Alfven Cascade eigenmode via quadratic terms in the MHD equations. (author)
OPTICAL SOLITONS: Excitation of two-dimensional soliton matrices by fundamental Gaussian beams
Borovkova, O. V.; Chuprakov, D. A.; Sukhorukov, Anatolii P.
2005-01-01
The excitation of two-dimensional periodic structures of fields of the first and second radiation harmonics due to the modulation instability of fundamental Gaussian beams is studied in a medium with a quadratic nonlinearity. The distances are found at which soliton matrix structures with a specified period are formed and destroyed. Optical gratings formed due to nonlinear aberration of broad Gaussian beams are considered.
Two-photon cavity solitons in a laser: radiative profiles, interaction and control
International Nuclear Information System (INIS)
We study the properties of two-photon cavity solitons that appear in a broad-area cascade laser. These vectorial solitons consist of islands of two-photon emission emerging over a background of single-photon emission. Analysis of their structural properties reveals singular features such as their short distance radiation of outgoing waves, which can be interpreted in terms of the soliton frequency profile. However, the phase of these solitons is not determined by any external factor, which influences the way in which the structures can be written and erased. We also examine ways of controlling the cavity-soliton position, and analyse the interaction between neighbouring cavity solitons. Finally, investigation of the parameter dependence of these structures shows a route from soliton-dominated to defect-mediated turbulence
Indian Academy of Sciences (India)
R S Kaushal; Ranjit Kumar; Awadhesh Prasad
2006-08-01
Attempts have been made to look for the soliton content in the solutions of the recently studied nonlinear diffusion-reaction equations [R S Kaushal, J. Phys. 38, 3897 (2005)] involving quadratic or cubic nonlinearities in addition to the convective flux term which renders the system nonconservative and the corresponding Hamiltonian non-Hermitian.
Alvarez-Gaume, Luis; Kounnas, Costas; Lust, Dieter; Riotto, Antonio
2015-01-01
We discuss quadratic gravity where terms quadratic in the curvature tensor are included in the action. After reviewing the corresponding field equations, we analyze in detail the physical propagating modes in some specific backgrounds. First we confirm that the pure $R^2$ theory is indeed ghost free. Then we point out that for flat backgrounds the pure $R^2$ theory propagates only a scalar massless mode and no spin-two tensor mode. However, the latter emerges either by expanding the theory around curved backgrounds like de Sitter or anti-de Sitter, or by changing the long-distance dynamics by introducing the standard Einstein term. In both cases, the theory is modified in the infrared and a propagating graviton is recovered. Hence we recognize a subtle interplay between the UV and IR properties of higher order gravity. We also calculate the corresponding Newton's law for general quadratic curvature theories. Finally, we discuss how quadratic actions may be obtained from a fundamental theory like string- or M-...
Ultra-slow Bright and Dark Optical Solitons in Cold Media
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
We present a systematic study on the formation of ultra-slow bright and dark optical solitons in highly resonant media. By investigating four life-time broadened atomic systems, i.e., three-state A-type and cascade-type schemes, and four-state N-type and cascade-type schemes, we show that the formation of such ultra-slow solitons in cold atomic systems is a fairly universal phenomenon.
Topological Solitons in Physics.
Parsa, Zohreh
1979-01-01
A broad definition of solitons and a discussion of their role in physics is given. Vortices and magnetic monopoles which are examples of topological solitons in two and three spatial dimensions are described in some detail. (BB)
Chiu, Hong-Yee
1990-01-01
The theory of Lee and Pang (1987), who obtained solutions for soliton stars composed of zero-temperature fermions and bosons, is applied here to quark soliton stars. Model soliton stars based on a simple physical model of the proton are computed, and the properties of the solitons are discussed, including the important problem of the existence of a limiting mass and thus the possible formation of black holes of primordial origin. It is shown that there is a definite mass limit for ponderable soliton stars, so that during cooling a soliton star might reach a stage beyond which no equilibrium configuration exists and the soliton star probably will collapse to become a black hole. The radiation of ponderable soliton stars may alter the short-wavelength character of the cosmic background radiation, and may be observed as highly redshifted objects at z of about 100,000.
Zhang, Han
2011-01-01
Solitons, as stable localized wave packets that can propagate long distance in dispersive media without changing their shapes, are ubiquitous in nonlinear physical systems. Since the first experimental realization of optical bright solitons in the anomalous dispersion single mode fibers (SMF) by Mollenauer et al. in 1980 and optical dark solitons in the normal dispersion SMFs by P. Emplit et al. in 1987, optical solitons in SMFs had been extensively investigated. In reality a SMF always suppo...
Vector Lattice Vortex Solitons
Institute of Scientific and Technical Information of China (English)
WANG Jian-Dong; YE Fang-Wei; DONG Liang-Wei; LI Yong-Ping
2005-01-01
@@ Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth Vo. For small Vo, vector vortex solitons with the total zero-angular momentum are more stable than those with the total nonzero-angular momentum, while for large Vo, this case is inversed. If Vo is large enough, both the types of such solitons are stable.
Zhang, H.; Tang, D. Y.; L.M. Zhao; Wu, X; Bao, Q. L.; Loh, K. P.
2009-01-01
We report on the experimental observation of stable dark solitons in an all normal dispersion fiber laser. We found experimentally that dark soliton formation is a generic feature of the fiber laser under strong continuous wave (CW) emission. However, only under appropriate pump strength and negative cavity feedback, stable single or multiple dark soliton could be achieved. Furthermore, we show that the features of the observed dark solitons could be well understood based on the nonlinear Sch...
Cheh, Jigger; Zhao, Hong
2011-01-01
In this paper we demonstrate the direct evidence of solitons in graphene by means of molecular dynamics simulations and mathematical analysis. It shows various solitons emerge in the graphene flakes with two different chiralities by cooling procedures. They are in-plane longitudinal and transverse solitons. Their propagations and collisions are studied in details. A soliton solution is derived by making several valid simplifications. We hope it shed light on understanding the unusual thermal ...
Indian Academy of Sciences (India)
Miki Wadati
2001-11-01
As an introduction to the special issue on nonlinear waves, solitons and their signiﬁcance in physics are reviewed. The soliton is the ﬁrst universal concept in nonlinear science. Universality and ubiquity of the soliton concept are emphasized.
Soliton Fay identities: I. Dark soliton case
International Nuclear Information System (INIS)
We derive a set of bilinear identities for the determinants of the matrices that have been used to construct dark soliton solutions for various models. To give examples of the application of the obtained identities, we present soliton solutions for the equations describing multidimensional quadrilateral lattices, Darboux equations, and multidimensional multicomponent systems of the nonlinear Schrödinger type. (paper)
Soliton fay identities: II. Bright soliton case
International Nuclear Information System (INIS)
We present a set of bilinear matrix identities that generalize the ones that have been used to construct the bright soliton solutions for various models. As an example of an application of these identities, we present a simple derivation of the N-bright soliton solutions for the Ablowitz–Ladik hierarchy. (paper)
Soliton Fay identities. I. Dark soliton case
Vekslerchik, V. E.
2014-01-01
We derive a set of bilinear identities for the determinants of the matrices that have been used to construct the dark soliton solutions for various models. To give examples of the application of the obtained identities we present soliton solutions for the equations describing multidimensional quadrilateral lattices, Darboux equations and multidimensional multicomponent systems of the nonlinear Schrodinger type.
Soliton Fay identities. II. Bright soliton case
Vekslerchik, V. E.
2015-01-01
We present a set of bilinear matrix identities that generalize the ones that have been used to construct the bright soliton solutions for various models. As an example of an application of these identities, we present a simple derivation of the N-bright soliton solutions for the Ablowitz-Ladik hierarchy.
Quadratic Diophantine equations
Andreescu, Titu
2015-01-01
This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.
Conceição, Ana; PEREIRA, José; Silva, Cátia; Simão, Cristina
2012-01-01
The article (see http://hdl.handle.net/10400.1/1105) was first presented in the 1st National Conference on Symbolic Computation in Education and Research, IST Portugal 2012, where distinguished with the Timberlake Award for Best Article by a Young Researcher. On how to work with the CDF format please see http://www.wolfram.com/cdf-player/. F-Quadratic is a F-Tool (see http://hdl.handle.net/10400.1/1105), that is, a visual, dynamic, and interactive teaching tool that allow to explore in an ...
Kaplansky's ternary quadratic form
Directory of Open Access Journals (Sweden)
James Kelley
2001-02-01
Full Text Available This paper proves that if N is a nonnegative eligible integer, coprime to 7, which is not of the form x2+y2+7z2, then N is square-free. The proof is modelled on that of a similar theorem by Ono and Soundararajan, in which relations between the number of representations of an integer np2 by two quadratic forms in the same genus, the pth coefficient of an L-function of a suitable elliptic curve, and the class number formula prove the theorem for large primes, leaving 3 cases which are easily numerically verified.
Resonance Thirring solitons in type II second-harmonic generation
Trillo, Stefano
1996-11-01
It is shown that second-harmonic generation in a grating allows one to cancel the group-velocity difference between two polarization components at fundamental by means of nonlinearly induced phase shifts. This occurs when a new type of cascading soliton propagates on resonance.
Blanco-Redondo, Andrea; Martijn, De Sterke C.; Sipe, J. E.; Krauss, Thomas F.; Eggleton, Benjamin J.; Husko, Chad
2016-01-01
Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers.
Blanco-Redondo, Andrea; de Sterke, C Martijn; Martijn, de Sterke C; Sipe, J E; Krauss, Thomas F; Eggleton, Benjamin J; Husko, Chad
2016-01-01
Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers. PMID:26822758
Blanco-Redondo, Andrea; Sipe, John E; Krauss, Thomas F; Eggleton, Benjamin J; Husko, Chad
2015-01-01
Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we report the discovery of an entirely new class of bright solitons arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. Using analytic theory, we derive the approximate shape of the fundamental pure-quartic soliton exhibiting excellent agreement with our experimental observations. Our discovery, enabled by the unique dispersion of photonic crystal waveguides, could find applications i...
DEFF Research Database (Denmark)
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin;
2014-01-01
Self-defocusing soliton compression supported by the cascaded phase-mismatched second-harmonic generation process is numerically demonstrated in unpoled lithium niobate ridge waveguides where nano-joule pulses are operated and quasi-phase-matching is unnecessary. The soliton range is 1100-1800 nm....
Vortex Solitons, Soliton Clusters, and Vortex Lattices
Directory of Open Access Journals (Sweden)
Desyatnikov A.S.
2005-06-01
Full Text Available We introduce novel types of self-trapped extended optical structures, which can be generated in both self-focusing and self-defocusing nonlinear media in the form of two-dimensional vortex lattices. We discuss a link of these novel objects with other types of spatially local-ised self-trapped states, such as vortex solitons and ring-shaped rotating clusters of solitons.
Kartashov, Yaroslav V.; Egorov, Alexey A.; Vysloukh, Victor A.; Torner, Lluis
2006-01-01
We discover the existence of vortex solitons supported by the surface between two optical lattices imprinted in Kerr-type nonlinear media. Such solitons can feature strongly noncanonical profiles, and we found that their properties are dictated by the location of the vortex core relative to the surface. The refractive index modulation forming the lattices at both sides of the interface results in complete stability of the vortex solitons in wide domains of their existence, thus introducing th...
Filippov, Alexandre T
2010-01-01
If you have not already heard about solitons, you will sooner or later encounter them. The soliton, a solitary wave impulse preserving its shape and strikingly similar to a particle, is one of the most fascinating and beautiful phenomena in the physics of nonlinear waves. In this engaging book, the concept of the soliton is traced from the beginning of the last century to modern times, with recent applications in biology, oceanography, solid state physics, electronics, elementary particle physics, and cosmology. The main concepts and results of theoretical physics related to solitons can be ex
International Nuclear Information System (INIS)
Recent developments in the theory of solitons and related objects in the fields of high energy physics and nuclear physics are reviewed. The aim is to concentrate on the physical aspects and explain why these objects have awakened the interest of physicists. The physics of solitons is discussed with the help of a simple one-dimensional soliton. Then the physically more interesting monopole-soliton is considered and its connection with the original Dirac monopole is pointed out. The ''revolutionary'' possibility of making fermions as composites of bosons is indicated. Both the one-dimensional solitons and the monopole-soliton are examples of ''topological solitons'' and the role of topology in the physics of solitons is explained. The possible importance of topological quantum numbers in providing a fundamental understanding of the basic conservation laws of physics is pointed out. Two examples of non-topological solitons namely, the nucleon as a bag of almost-massless quarks and the abnormal nucleons as a bag of almost massless nucleons is discussed. (auth.)
Chiu, Hong-Yee
1990-01-01
The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.
Two-dimensional χ2 solitons generated by the downconversion of Airy waves.
Mayteevarunyoo, Thawatchai; Malomed, Boris A
2016-07-01
Conversion of truncated Airy waves (AWs) carried by the second-harmonic (SH) component into axisymmetric χ2 solitons is considered in a 2D system with quadratic nonlinearity. The spontaneous conversion is driven by the parametric instability of the SH wave. The input in the form of the AW vortex is also considered. As a result, one, two, or three stable solitons emerge in a well-defined form, unlike the recently studied 1D setting, where the picture is obscured by radiation jets. Shares of the total power captured by the emerging solitons and conversion efficiency are found as functions of parameters of the AW input. PMID:27367065
Linear Programming Relaxations of Quadratically Constrained Quadratic Programs
Qualizza, Andrea; Belotti, Pietro; Margot, Francois
2012-01-01
We investigate the use of linear programming tools for solving semidefinite programming relaxations of quadratically constrained quadratic problems. Classes of valid linear inequalities are presented, including sparse PSD cuts, and principal minors PSD cuts. Computational results based on instances from the literature are presented.
Solitons reduced from Heterotic fivebranes
La, H S
1992-01-01
In view of the expectation that the solitonic sector of the lower dimensional world may be originated from the solitonic sector of string theory, various solitonic solutions are reduced from the heterotic fivebrane solutions in the ten-dimensional heterotic string theory. These solitons in principle can appear after proper compactifications, {\\it e.g.} toroidal compactifications.
Soliton Turbulence as a Thermodynamic Limit of Stochastic Soliton Lattices
El, Gennady A.; Krylov, Alexander L.; Molchanov, Stanislav A.; Venakides, Stephanos
2000-01-01
We use recently introduced notion of stochastic soliton lattice for quantitative description of soliton turbulence. We consider the stochastic soliton lattice on a special band-gap scaling of the spectral surface of genus $N$ so that the integrated density of states remains finite as $N \\to \\infty$ (thermodynamic type limit). We prove existence of the limiting stationary ergodic process and associate it with the soliton turbulence. The phase space of the soliton turbulence is a one-dimensiona...
Quadratic brackets from symplectic forms
International Nuclear Information System (INIS)
We give a physicist oriented survey of Poisson-Lie symmetries of classical systems. We consider finite-dimensional geometric actions and the chiral WZNW model as examples for the general construction. An essential point is the appearance of quadratic Poisson brackets for group-like variables. It is believed that upon quantization they lead to quadratic exchange algebras. ((orig.))
On Characterization of Quadratic Splines
DEFF Research Database (Denmark)
Chen, B. T.; Madsen, Kaj; Zhang, Shuzhong
2005-01-01
representation can be refined in a neighborhood of a non-degenerate point and a set of non-degenerate minimizers. Based on these characterizations, many existing algorithms for specific convex quadratic splines are also finite convergent for a general convex quadratic spline. Finally, we study the relationship...
Deformations of quadratic Diophantine systems
Energy Technology Data Exchange (ETDEWEB)
Zhuravlev, V G [Vladimir State Pedagogical University, Vladimir (Russian Federation)
2001-12-31
We consider specializations of quadratic matrix equations preserving the invariant type of the equation and the weight formula for representations of the quadratic form by a genus of positive definite forms. We apply our results to the forms of cubic and Gosset lattices.
Quadratic brackets from symplectic forms
Alekseev, A; Alekseev, Anton; Todorov, Ivan
1994-01-01
We give a physicist oriented survey of Poisson-Lie symmetries of classical systems. We consider finite dimensional geometric actions and the chiral WZNW model as examples for the general construction. An essential point is that quadratic Poisson bracets appear for group--like variables. It is believed that after quantization they lead to quadratic exchange algebras.
Semirelativity and Kink Solitons
Nowak, Mariusz Karol
2014-01-01
It is hard to observe relativistic effects in everyday life. However, table experiments using a mechanical transmission line for solitons may be an efficient and simple way to show effects such as Lorentz contraction in a classroom. A kink soliton is a deformation of a lattice of several dozen or more pendulums placed on a wire and connected by a…
Institute of Scientific and Technical Information of China (English)
Huai-Dong CAO
2006-01-01
Ricci solitons are natural generalizations of Einstein metrics on one hand, and are special solutions of the Ricci flow of Hamilton on the other hand. In this paper we survey some of the recent developments on Ricci solitons and the role they play in the singularity study of the Ricci flow.
International Nuclear Information System (INIS)
We construct a special type of quantum soliton solutions for quantized affine Toda models. The elements of the principal Heisenberg subalgebra in the affinised quantum Lie algebra are found. Their eigenoperators inside the quantized universal enveloping algebra for an affine Lie algebra are constructed to generate quantum soliton solutions
Solitons. Theory and application
International Nuclear Information System (INIS)
First the mathematical aspects of solitary waves and solitons are considered together with conservation laws, constants of motion, symmetries, and stability problems. Then the applications of soliton theory to several physical problems are described. In particular this review considers nonlinear propagation of heat pulse in solids, propagation of a magnetic flux in a Josephson junction, as well as more recent developments
Stokes Soliton in Optical Microcavities
Yang, Qi-Fan; Yang, Ki Youl; Vahala, Kerry
2016-01-01
Solitons are wavepackets that resist dispersion through a self-induced potential well. They are studied in many fields, but are especially well known in optics on account of the relative ease of their formation and control in optical fiber waveguides. Besides their many interesting properties, solitons are important to optical continuum generation, in mode-locked lasers and have been considered as a natural way to convey data over great distances. Recently, solitons have been realized in microcavities thereby bringing the power of microfabrication methods to future applications. This work reports a soliton not previously observed in optical systems, the Stokes soliton. The Stokes soliton forms and regenerates by optimizing its Raman interaction in space and time within an optical-potential well shared with another soliton. The Stokes and the initial soliton belong to distinct transverse mode families and benefit from a form of soliton trapping that is new to microcavities and soliton lasers in general. The di...
Solitons in optomechanical arrays.
Gan, Jing-Hui; Xiong, Hao; Si, Liu-Gang; Lü, Xin-You; Wu, Ying
2016-06-15
We show that optical solitons can be obtained with a one-dimensional optomechanical array that consists of a chain of periodically spaced identical optomechanical systems. Unlike conventional optical solitons, which originate from nonlinear polarization, the optical soliton here stems from a new mechanism, namely, phonon-photon interaction. Under proper conditions, the phonon-photon induced nonlinearity that refers to the optomechanical nonlinearity will exactly compensate the dispersion caused by photon hopping of adjacent optomechanical systems. Moreover, the solitons are capable of exhibiting very low group velocity, depending on the photon hopping rate, which may lead to many important applications, including all-optical switches and on-chip optical architecture. This work may extend the range of optomechanics and nonlinear optics and provide a new field to study soliton theory and develop corresponding applications. PMID:27304261
Quantum Solitons with Cylindrical Symmetry
Chepilko, N.; Kobushkin, A.; Syamtomov, A.
1993-01-01
Soliton solutions with cylindrical symmetry are investigated within the nonlinear $\\sigma $-model disregarding the Skyrme-stabilization term. The solitons are stabilized by quantization of collective breathing mode and collapse in the $\\hbar \\to 0$ limit. It is shown that for such stabilization mechanism the model, apart from solitons with integer topological number $B$, admits the solitons with half-odd $B$. The solitons with integer $B$ have standard spin-isospin classification, while $B={\\...
Spatial semiconductor-resonator solitons
Taranenko, V. B.; C. O. Weiss
2002-01-01
We demonstrate experimentally and numerically the existence spatial solitons in multiple-quantum-well semiconductor microresonators driven by an external coherent optical field. We discuss stability of the semiconductor-resonator solitons over a wide spectral range around the band edge. We demonstrate the manipulation of such solitons: switching solitons on and off by coherent as well as incoherent light; reducing the light power necessary to sustain and switch a soliton, by optical pumping.
Efficient supercontinuum generation in quadratic nonlinear waveguides without quasi-phase matching
Guo, Hairun; Steinert, Michael; Setzpfandt, Frank; Pertsch, Thomas; Chung, Hung-ping; Chen, Yen-Hung; Bache, Morten
2014-01-01
Efficient supercontinuum generation (SCG) requires excitation of solitons at the pump laser wavelength. Quadratic nonlinear waveguides may support an effective self-defocusing nonlinearity so solitons can directly be generated at common ultrafast laser wavelengths without any waveguide dispersion engineering. We here experimentally demonstrate efficient SCG in a standard lithium niobate (LN) waveguide without using quasi-phase matching (QPM). By using femtosecond pumps with wavelengths in the $1.25-1.5 \\mu\\rm m$ range, where LN has normal dispersion and thus supports self-defocusing solitons, octave-spanning SCG is observed. An optimized mid-IR waveguide design is expected to support even broader spectra. The QPM-free design reduces production complexity, allows longer waveguides, limits undesired spectral resonances and effectively allows using nonlinear crystals where QPM is inefficient or impossible. This result is important for mid-IR SCG, where QPM-free self-defocusing waveguides in common mid-IR nonline...
QUANTUM GAP SOLITON IN PARAMETRIC PROCESS
Institute of Scientific and Technical Information of China (English)
LI XIANG; GUO GUANG-CAN
2000-01-01
The Hamiltonian of the process of cascaded second harmonic generation is found from Maxwell equations. Inthe double-gap model and under rotating-wave and effective-mass approximations, it is quantized and the generalizedquantum nonlinear Shrodinger equation (GQNSE) is obtained. Tri-photon and quadri-photon bound states are foundbased on general solutions of GQNSE solved via Bethe's Ansatz method. Quantum parametric gap soliton (QPGS)solution is constructed consequently, and the existence of the double-gap QPGS is predicted for the first time.
Quadratic Inverse Function Tsallis Entropy Multi-modulus Blind Equalization Algorithm
Guo Yecai; Gong Xiuli; Chen Qu; Gong Xi
2013-01-01
In underwater acoustic communication systems, inter-symbol interference (ISI) caused by communication channel distortion is the main factor affecting the quality of communication. Aiming at the shortcomings of computational complexity, slow convergence rate, and poor stability of Multi-Modulus Algorithm (MMA), a quadratic inverse function Tsallis entropy of Cascade Multi-Modulus blind equalization Algorithm (TCMMA) was proposed. In the proposed algorithm, quadratic inverse function Tsallis en...
Kang, J. U.; Stegeman, G. I.; Aitchison, J. S.; Akhmediev, N.
1996-12-01
The Manakov soliton is a two-component soliton that was first considered by Manakov in the early 1970s.1 Based on the work of Zakharov and Shabat,2 Manakov found that the coupled nonlinear Schrodinger (CNSE) equations with special choice of the coefficients in front of nonlinear terms can be solved exactly. This system is integrable and solitons have therefore a number of special properties which might be useful in practice. In particular, for same total power, the soliton of a single nonlinear Schrodinger equation and the Manakov soliton behave similarly. There are certain conditions for the integrability of the CNSE. Namely, for the coupled set of equations with cubic nonlinearity, the ratio between the self-phase modulation (SPM) to the cross-phase modulation coefficients has to be equal to unity, and the SPM coefficients need to be equal for the two polarizations. Moreover, the energy exchange terms or four-wave mixing (FWM) terms must be zero. Physically, the Manakov soliton is a mutually trapped state of two orthogonally polarized beams where each component of the soliton experiences exactly the same index potential which is proportional to the total intensity of the beam. There are no crystal symmetries that a priori lead to a SPM/XPM ratio of unity. Thus, the Manakov soliton has not been observed experimentally prior to the work we reported.3 Based on our previous work, we found that in AlGaAs, for photon energies just below half the band gap, the conditions for integrability can be satisfied. This led to the first experimental observation of spatial Manakov solitons.
The Effects of Five-Order Nonlinear on the Dynamics of Dark Solitons in Optical Fiber
Directory of Open Access Journals (Sweden)
Feng-Tao He
2013-01-01
Full Text Available We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton’s dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1 if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton’s width increases, while its amplitude and wave velocity reduce. (2 If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton’s width increases, while its amplitude and the wave velocity reduce.
Solitons and ionospheric modification
Sheerin, J. P.; Nicholson, D. R.; Payne, G. L.; Hansen, P. J.; Weatherall, J. C.; Goldman, M. V.
1982-01-01
The possibility of Langmuir soliton formation and collapse during ionospheric modification is investigated. Parameters characterizing former facilities, existing facilities, and planned facilities are considered, using a combination of analytical and numerical techniques. At a spatial location corresponding to the exact classical reflection point of the modifier wave, the Langmuir wave evolution is found to be dominated by modulational instability followed by soliton formation and three-dimensional collapse. The earth's magnetic field is found to affect the shape of the collapsing soliton. These results provide an alternative explanation for some recent observations.
The electrical soliton oscillator
Ricketts, David Shawn
Solitons are a special class of pulse-shaped waves that propagate in nonlinear dispersive media while maintaining their spatial confinement. They are found throughout nature where the proper balance between nonlinearity and dispersion is achieved. Examples of the soliton phenomena include shallow water waves, vibrations in a nonlinear spring-mass lattice, acoustic waves in plasma, and optical pulses in fiber optic cable. In electronics, the nonlinear transmission line (NLTL) serves as a nonlinear dispersive medium that propagates voltage solitons. Electrical solitons on the NLTL have been actively investigated over the last 40 years, particularly in the microwave domain, for sharp pulse generation applications and for high-speed RF and microwave sampling applications. In these past studies the NLTL has been predominantly used as a 2-port system where a high-frequency input is required to generate a sharp soliton output through a transient process. One meaningful extension of the past 2-port NLTL works would be to construct a 1-port self-sustained electrical soliton oscillator by properly combining the NLTL with an amplifier (positive active feedback). Such an oscillator would self-start by growing from ambient noise to produce a train of periodic soliton pulses in steady-state, and hence would make a self-contained soliton generator not requiring an external high-frequency input. While such a circuit may offer a new direction in the field of electrical pulse generation, there has not been a robust electrical soliton oscillator reported to date to the best of our knowledge. In this thesis we introduce the first robust electrical soliton oscillator, which is able to self-generate a stable, periodic train of electrical solitons. This new oscillator is made possible by combining the NLTL with a unique nonlinear amplifier that is able to "tame" the unruly dynamics of the NLTL. The principle contribution of this thesis is the identification of the key instability
Coherent soliton communication lines
Energy Technology Data Exchange (ETDEWEB)
Yushko, O. V., E-mail: olesya.yushko@gmail.com; Redyuk, A. A.; Fedoruk, M. P.; Turitsyn, S. K. [Novosibirsk State University (Russian Federation)
2014-11-15
The data transmission in coherent fiber-optical communication lines using solitons with a variable phase is studied. It is shown that nonlinear coherent structures (solitons) can be applied for effective signal transmission over a long distance using amplitude and optical-phase keying of information. The optimum ratio of the pulse width to the bit slot at which the spectral efficiency (transmitted bits per second and hertz) is maximal is determined. It is shown that soliton fiber-optical communication lines can ensure data transmission at a higher spectral efficiency as compared to traditional communication lines and at a high signal-to-noise ratio.
International Nuclear Information System (INIS)
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
Indian Academy of Sciences (India)
Paulo E G Assis; Andreas Fring
2010-06-01
We investigate whether the recently proposed $\\mathcal{PT}$-symmetric extensions of generalized Korteweg–de Vries equations admit genuine soliton solutions besides compacton solitary waves. For models which admit stable compactons having a width which is independent of their amplitude and those which possess unstable compacton solutions the Painlevé test fails, such that no soliton solutions can be found. The Painlevé test is passed for models allowing for compacton solutions whose width is determined by their amplitude. Consequently, these models admit soliton solutions in addition to compactons and are integrable.
Energy Technology Data Exchange (ETDEWEB)
Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)
2010-02-26
We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.
Scalar - vector soliton fiber lasers
Wu, Zhichao; Li, Lei; Luo, Yiyang; Tang, Dingyuan; Shen, Deyuan; Tang, Ming; Fu, Songnian; Zhao, Luming
2016-01-01
Rapid progress in passively mode-locked fiber lasers is currently driven by the recent discovery of vector feature of mode-locking pulses, namely, the group velocity-locked vector solitons, the phase locked vector solitons, and the high-order vector solitons. Those vector solitons are fundamentally different from the previously known scalar solitons. Here, we report a fiber laser where the mode-locked pulse evolves as a vector soliton in the strong birefringent segment and is transformed into a regular scalar soliton after the polarizer within the laser cavity. The existence of solutions in a polarization-dependent cavity comprising a periodic combination of two distinct nonlinear waves is novel and likely to be applicable to various other nonlinear systems. For very large local birefringence, our laser approaches the working regime of vector soliton lasers, while it approaches scalar soliton fiber lasers under the conditions of very small birefringence.
Quantum quadratic operators and processes
Mukhamedov, Farrukh
2015-01-01
Covering both classical and quantum approaches, this unique and self-contained book presents the most recent developments in the theory of quadratic stochastic operators and their Markov and related processes. The asymptotic behavior of dynamical systems generated by classical and quantum quadratic operators is investigated and various properties of quantum quadratic operators are studied, providing an insight into the construction of quantum channels. This book is suitable as a textbook for an advanced undergraduate/graduate level course or summer school in quantum dynamical systems. It can also be used as a reference book by researchers looking for interesting problems to work on, or useful techniques and discussions of particular problems. Since it includes the latest developments in the fields of quadratic dynamical systems, Markov processes and quantum stochastic processes, researchers at all levels are likely to find the book inspiring and useful.
International Nuclear Information System (INIS)
Several letters discuss the short-comings of the use of the linear quadratic model in fractionated radiotherapy and the validity of the prediction of hyperfractionation as the operational strategy for most human tumours. Particular points discussed are the absence of a time factor in the linear quadratic model, corrections in regard to OER and the clinical implications of isoeffect relationships for normal tissue damage. (U.K.)
Temporal dark polariton solitons.
Kartashov, Yaroslav V; Skryabin, Dmitry V
2016-04-15
We predict that strong coupling between waveguide photons and excitons of quantum well embedded into waveguide results in the formation of hybrid-dark and antidark light-matter solitons. Such temporal solitons exist due to interplay between repulsive excitonic nonlinearity and giant group-velocity dispersion arising in the vicinity of excitonic resonance. Such fully conservative states do not require external pumping to counteract losses and form continuous families parameterized by the power-dependent phase shift and velocity of their motion. Dark solitons are stable in the considerable part of their existence domain, while antidark solitons are always unstable. Both families exist outside the forbidden frequency gap of the linear system. PMID:27082338
Krolikowski, Wieslaw; Bang, Ole; Wyller, John
2004-01-01
We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons.
Villari, Leone Di Mauro; Biancalana, Fabio; Conti, Claudio
2016-01-01
We have very little experience of the quantum dynamics of the ubiquitous nonlinear waves. Observed phenomena in high energy physics are perturbations to linear waves, and classical nonlinear waves, like solitons, are barely affected by quantum effects. We know that solitons, immutable in classical physics, exhibit collapse and revivals according to quantum mechanics. However this effect is very weak and has never been observed experimentally. By predicting black hole evaporation Hawking first introduced a distinctly quantum effect in nonlinear gravitational physics.Here we show the existence of a general and universal quantum process whereby a soliton emits quantum radiation with a specific frequency content, and a temperature given by the number of quanta, the soliton Schwarzschild radius, and the amount of nonlinearity, in a precise and surprisingly simple way. This result may ultimately lead to the first experimental evidence of genuine quantum black hole evaporation. In addition, our results show that bla...
Temporal dark polariton solitons
Kartashov, Yaroslav V
2016-01-01
We predict that strong coupling between waveguide photons and excitons of quantum well embedded into waveguide results in the formation of hybrid dark and anti-dark light-matter solitons. Such temporal solitons exist due to interplay between repulsive excitonic nonlinearity and giant group velocity dispersion arising in the vicinity of excitonic resonance. Such fully conservative states do not require external pumping to counteract losses and form continuous families parameterized by the power-dependent phase shift and velocity of their motion. Dark solitons are stable in the considerable part of their existence domain, while anti-dark solitons are always unstable. Both families exist outside forbidden frequency gap of the linear system.
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole; Wyller, John
2004-01-01
We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons.......We investigate the propagation of partially coherent beams in spatially nonlocal nonlinear media with a logarithmic type of nonlinearity. We derive analytical formulas for the evolution of the beam parameters and conditions for the formation of nonlocal incoherent solitons....
Gorbach, A V; Skryabin, D V
2009-01-01
We report the existence, and study mobility and interactions of gap polariton solitons in a microcavity with a periodic potential, where the light field is strongly coupled to excitons. Gap solitons are formed due to the interplay between the repulsive exciton-exciton interaction and cavity dispersion. The analysis is carried out in an analytical form, using the coupled-mode (CM) approximation, and also by means of numerical methods.
Scattering of periodic solitons
Energy Technology Data Exchange (ETDEWEB)
Cova, R.J. [Carleton University, School of Mathematics and Statistics, 1125 Colonel by Drive, Ottawa, Ontario K1S 5B6 (Canada); Zakrzewski, W.J. [University of Durham, Dept. of Mathematical Sciences, Durham DH1 3LE (United Kingdom)]. e-mail: rcova@math.carleton.ca
2004-07-01
Through numerical simulations we study N-soliton scattering (N = 3, 4) in the (2 + 1)-dimensional CP{sup 1} model with periodic boundary conditions. Solitons colliding from symmetrical configurations scatter at {pi}/ N, as observed in the usual model with standard boundary conditions. When the initial configurations are not symmetric the angles differ from {pi}/ N. We describe our observed patterns based on a properly formulated geodesic approximation. (Author) 11 refs., 10 figs.
Rigidity of gradient Ricci Solitons
Petersen, Peter; Wylie, William
2007-01-01
We define a gradient Ricci soliton to be rigid if it is a flat bundle $% N\\times_{\\Gamma}\\mathbb{R}^{k}$ where $N$ is Einstein. It is known that not all gradient solitons are rigid. Here we offer several natural conditions on the curvature that characterize rigid gradient solitons. Other related results on rigidity of Ricci solitons are also explained in the last section.
Bright solitons from defocusing nonlinearities
Borovkova, Olga V.; Kartashov, Yaroslav; Torner Sabata, Lluís; Malomed, Boris A.
2011-01-01
We report that defocusing cubic media with spatially inhomogeneous nonlinearity, whose strength increases rapidly enough toward the periphery, can support stable bright localized modes. Such nonlinearity landscapes give rise to a variety of stable solitons in all three dimensions, including one-dimensional fundamental and multihump states, two-dimensional vortex solitons with arbitrarily high topological charges, and fundamental solitons in three dimensions. Solitons maintain their coherence ...
A Simple Classification of Solitons
Yousefi, Yousef; Muminov, Khikmat Kh.
2012-01-01
In this report, fundamental educational concepts of linear and non-linear equations and solutions of nonlinear equations from the book High-Temperature Superconductivity: The Nonlinear Mechanism and Tunneling Measurements (Kluwer Academic Publishers, Dordrecht, 2002, pages 101-142) is given. There are a few ways to classify solitons. For example, there are topological and nontopological solitons. Independently of the topological nature of solitons, all solitons can be divided into two groups ...
Transverse stability of Kawahara solitons
DEFF Research Database (Denmark)
Karpman, V.I.
1993-01-01
The transverse stability of the planar solitons described by the fifth-order Korteweg-de Vries equation (Kawahara solitons) is studied. It is shown that the planar solitons are unstable with respect to bending if the coefficient at the fifth-derivative term is positive and stable if it is negative....... This is in agreement with the dynamics of the two-dimensional Kawahara solitons....
Soliton on thin vortex filament
International Nuclear Information System (INIS)
Showing that one of the equations found by Wadati, Konno and Ichikawa is equivalent to the equation of motion of a thin vortex filament, we investigate solitons on the vortex filament. N vortex soliton solution is given in terms of the inverse scattering method. We examine two soliton collision processes on the filament. Our analysis provides the theoretical foundation of two soliton collision processes observed numerically by Aref and Flinchem. (author)
Mathematical frontiers in optical solitons
Bronski, Jared C.; Segev, Mordechai; Weinstein, Michael I.
2001-01-01
Solitons are localized concentrations of field energy, resulting from a balance of dispersive and nonlinear effects. They are ubiquitous in the natural sciences. In recent years optical solitons have arisen in new and exciting contexts that differ in many ways from the original context of coherent propagation in a uniform medium. We review recent developments in incoherent spatial solitons and in gap solitons in periodic structures.
Two-Photon Cavity Solitons in Active Optical Media
International Nuclear Information System (INIS)
We show that broad-area cascade lasers with no absorbing intracavity elements support the spontaneous formation of two-dimensional bright localized structures in a dark background. These cavity solitons consist of islands of two-photon emission embedded in a background of single-photon emission. We discuss the mechanisms through which these structures are formed and interact, along with their properties and stability
Scattering of solitons on resonance
Kiselev, O M; Glebov, S. G.
2004-01-01
We investigate a propagation of solitons for nonlinear Schrodinger equation under small driving force. The driving force passes the resonance. The process of scattering on the resonance leads to changing of number of solitons. After the resonance the number of solitons depends on the amplitude of the driving force.
Special solitons on 3-manifolds
Malekzadeh, Nasrin; Abedi, Esmaiel
2016-01-01
In this paper, we study solitons on $3$-dimensional manifolds. In particular, we show that $3$-dimensional pseudo-symmetric gradient Ricci solitons and nontrivial gradient Yamabe solitons are locally isometric to either $\\mathbb{R}^{3}$, $\\mathbb{S}^{3}$, $\\mathbb{H}^{3}$, $\\mathbb{R} \\times \\mathbb{S}^{2}$ or $\\mathbb{R} \\times \\mathbb{H}^{2}$.
Generalized quasi Yamabe gradient solitons
Neto, Benedito Leandro; de Oliveira, Hudson Pina
2016-01-01
We prove that a nontrivial complete generalized quasi Yamabe gradient soliton (M; g) must be a quasi Yamabe gradient soliton on each connected component of M and that a nontrivial complete locally conformally at generalized quasi Yamabe gradient soliton has a special warped product structure.
Students' understanding of quadratic equations
López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael
2016-05-01
Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help students achieve an understanding of quadratic equations with improved interrelation of ideas and more flexible application of solution methods. Semi-structured interviews with eight beginning undergraduate students explored which of the mental constructions conjectured in the genetic decomposition students could do, and which they had difficulty doing. Two of the mental constructions that form part of the genetic decomposition are highlighted and corresponding further data were obtained from the written work of 121 undergraduate science and engineering students taking a multivariable calculus course. The results suggest the importance of explicitly considering these two highlighted mental constructions.
Quadratic bundle and nonlinear equations
International Nuclear Information System (INIS)
The paper is aimed at giving an exhaustive description of the nonlinear evolution equations (NLEE), connected with the quadratic bundle (the spectral parameter lambda, which enters quadratically into the equations) and at describing Hamiltonian structure of these equations. The equations are solved through the inverse scattering method (ISM). The basic formulae for the scattering problem are given. The spectral expansion of the integrodifferential operator is used so that its eigenfunctions are the squared solutions of the equation. By using the notions of Hamiltonian structure hierarchy and gauge transformations it is shown how to single out physically interesting NLEE
Annihilation Solitons and Chaotic Solitons for the (2+1)-Dimensional Breaking Soliton System
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
By means of an improved mapping method and a variable separation method, a scries of variable separation solutions (including solitary wave solutions, periodic wave solutions and rational function solutions) to the (2+1)-dimensional breaking soliton system is derived. Based on the derived solitary wave excitation, we obtain some special annihilation solitons and chaotic solitons in this short note.
Semiclassical geons as solitonic black hole remnants
Energy Technology Data Exchange (ETDEWEB)
Lobo, Francisco S.N. [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Campo Grande, Ed. C8 1749-016 Lisboa (Portugal); Olmo, Gonzalo J.; Rubiera-Garcia, D., E-mail: flobo@cii.fc.ul.pt, E-mail: gonzalo.olmo@csic.es, E-mail: drubiera@fisica.ufpb.br2 [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia - CSIC. Universidad de Valencia, Burjassot-46100, Valencia (Spain)
2013-07-01
We find that the end state of black hole evaporation could be represented by non-singular and without event horizon stable solitonic remnants with masses of the order the Planck scale and up to ∼ 16 units of charge. Though these objects are locally indistinguishable from spherically symmetric, massive electric (or magnetic) charges, they turn out to be sourceless geons containing a wormhole generated by the electromagnetic field. Our results are obtained by interpreting semiclassical corrections to Einstein's theory in the first-order (Palatini) formalism, which yields second-order equations and avoids the instabilities of the usual (metric) formulation of quadratic gravity. We also discuss the potential relevance of these solutions for primordial black holes and the dark matter problem.
Timing jitter of Raman solitons.
Zhou, Gengji; Xin, Ming; Kaertner, Franz X; Chang, Guoqing
2015-11-01
We study the relative intensity noise (RIN) and timing jitter of a Raman soliton. We demonstrate that the RIN of an excitation pulse causes center-wavelength fluctuations of the resulting Raman soliton which translates by fiber dispersion into relative timing jitter (RTJ) between the Raman soliton and the excitation pulse. The Raman soliton's absolute timing jitter is dominated by the excitation pulse's timing jitter at low frequency and by the RTJ at high frequency. The experimental study reveals that RTJ can be significantly reduced by reducing the accumulated fiber dispersion (e.g., using less dispersive fibers with shorter length) experienced by the Raman soliton. PMID:26512530
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
Lin Xiao-Gang; Liu Wen-Jun; Lei Ming
2016-03-01
Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota’s bilinear method. The bilinear forms and analytic soliton solutions are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.
Ichikawa, Yoshi H.
1990-08-01
The present discussion of the structure of soliton equations and dynamics of low-dimensional Hamiltonian nonlinear plasma systems emphasizes the universality of solitonic and chaotic concepts for other branches of physical research and engineering applications. Attention is given to the significance of the inverse-scattering transformation for the KdV equation in soliton-phenomena studies, as well as to the multidimensional behavior of solitons and their Alfvenic and optical-fiber types. An account is given of the development status of computational physics and integrable mapping methodologies applicable to solitonic plasma phenomena.
Simerka - Quadratic Forms and Factorization
Lemmermeyer, Franz
2011-01-01
In this article we show that the Czech mathematician Vaclav Simerka discovered the factorization of (10^17-1)/9 using a method based on the class group of binary quadratic forms more than 120 years before Shanks and Schnorr developed similar algorithms. Simerka also gave the first examples of what later became known as Carmichael numbers.
Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.
2016-08-01
Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.
Three-dimensional collinearly propagating solitons
International Nuclear Information System (INIS)
The generalized nonlinear Schrödinger equation is modified in order to describe three-dimensional solitons propagating collinearly with a constant velocity. One- and two-soliton solutions are obtained and analysed. When the frequencies of the respective solitons approach, then the effect of the repulsion of the solitons is observed. These solitons are proposed to model photons. (paper)
Soliton equations solved by the boundary CFT
SAITO, Satoru; Sato, Ryuichi
2003-01-01
Soliton equations are derived which characterize the boundary CFT a la Callan et al. Soliton fields of classical soliton equations are shown to appear as a neutral bound state of a pair of soliton fields of BCFT. One soliton amplitude under the influence of the boundary is calculated explicitly and is shown that it is frozen at the Dirichlet limit.
Defect solitons in photonic lattices.
Yang, Jianke; Chen, Zhigang
2006-02-01
Nonlinear defect modes (defect solitons) and their stability in one-dimensional photonic lattices with focusing saturable nonlinearity are investigated. It is shown that defect solitons bifurcate out from every infinitesimal linear defect mode. Low-power defect solitons are linearly stable in lower bandgaps but unstable in higher bandgaps. At higher powers, defect solitons become unstable in attractive defects, but can remain stable in repulsive defects. Furthermore, for high-power solitons in attractive defects, we found a type of Vakhitov-Kolokolov (VK) instability which is different from the usual VK instability based on the sign of the slope in the power curve. Lastly, we demonstrate that in each bandgap, in addition to defect solitons which bifurcate from linear defect modes, there is also an infinite family of other defect solitons which can be stable in certain parameter regimes. PMID:16605473
Nonlocal description of X waves in quadratic nonlinear materials
DEFF Research Database (Denmark)
Larsen, Peter Ulrik Vingaard; Sørensen, Mads Peter; Bang, Ole;
2006-01-01
does not exist - one needs to use the nonlocal description, because the nonlocal response function does not converge towards a delta-function. Also, we use the nonlocal theory to show for the first time that the coupling to second harmonic is able to generate an X-shape in the fundamental field despite......We study localized light bullets and X-waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multi-dimensional nonlinear waves. For X-waves we show that a local cascading limit in terms of a nonlinear Schrodinger equation...
Noncommutative solitonic black hole
International Nuclear Information System (INIS)
We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value. (paper)
Noncommutative Solitonic Black Hole
Chang-Young, Ee; Lee, Daeho; Lee, Youngone
2012-01-01
We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field using the Moyal product expanded up to first order in the noncommutativity parameter in the two noncommutative spatial directions. By numerical simulation we look for black hole solutions by increasing the non- commutativity parameter value starting from regular solutions with vanishing noncommutativity. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.
Noncommutative solitonic black hole
Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone
2012-05-01
We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.
International Nuclear Information System (INIS)
We develop the tomographic representation of wavefunctions which are solutions of the generalized nonlinear Schroedinger equation (NLSE) and show its connection with the Weyl-Wigner map. The generalized NLSE is presented in the form of a nonlinear Fokker-Planck-type equation for the standard probability distribution function (tomogram). In particular, this theory is applied to solitons, where tomograms for envelope bright solitons of a family of modified NLSEs are presented and numerically evaluated. Examples of symplectic tomography and Fresnel tomography of linear and nonlinear signals are discussed
Scattering of periodic solitons
Cova, R J
2003-01-01
With the help of numerical simulations we study N-soliton scattering (N=3,4) in the (2+1)-dimensional CP^1 model with periodic boundary conditions. When the solitons are scattered from symmetrical configurations the scattering angles observed agree with the earlier \\pi/N predictions based on the model on R_2 with standard boundary conditions. When the boundary conditions are not symmetric the angles are different from \\pi/N. We present an explanation of our observed patterns based on a properly formulated geodesic approximation.
Gravitating $\\sigma$ Model Solitons
Kim, Y; Kim, Yoonbai; Moon, Sei-Hoon
1998-01-01
We study axially symmetric static solitons of O(3) nonlinear $\\sigma$ model coupled to (2+1)-dimensional anti-de Sitter gravity. The obtained solutions are not self-dual under static metric. The usual regular topological lump solution cannot form a black hole even though the scale of symmetry breaking is increased. There exist nontopological solitons of half integral winding in a given model, and the corresponding spacetimes involve charged Ba$\\tilde n$ados-Teitelboim-Zanelli black holes without non-Abelian scalar hair.
Generalized gauge field theories with non-topological soliton solutions
International Nuclear Information System (INIS)
We perform a systematic analysis of the conditions under which generalized gauge field theories of compact semisimple Lie groups exhibit electrostatic spherically symmetric non-topological soliton solutions in three space dimensions. By the term generalized, we mean that the dynamics of the concerned fields is governed by Lagrangian densities which are general functions of the quadratic field invariants, leading to physically consistent models. The analysis defines exhaustively the class of this kind of Lagrangian models supporting those soliton solutions and leads to methods for their explicit determination. The necessary and sufficient conditions for the linear stability of the finite-energy solutions against charge-preserving perturbations are established, going beyond the usual Derrick-like criteria, which only provides necessary conditions
Exact periodic and solitonic states of the spinor condensates in a uniform external potential
Zhang, Zhi-Hai; Yang, Shi-Jie
2016-08-01
We propose a method to analytically solve the one-dimensional coupled nonlinear Gross-Pitaevskii equations which govern the motion of the spinor Bose-Einstein condensates. In a uniform external potential, several classes of exact periodic and solitonic solutions, either in real or in complex forms, are obtained for both the F=1 and F=2 condensates for the Hamiltonian comprising the kinetic energy, the linear and the quadratic Zeeman energies. Real solutions take the form of composite soliton trains. Complex solutions correspond to the mass counter-flows as well as spin currents. These solutions are general that contains neither approximations nor constraints on the system parameters.
RICCI SOLITONS IN CONTACT METRIC MANIFOLDS
Tripathi, Mukut
2011-01-01
In $N(k)$-contact metric manifolds and/or $(k,\\mu)$-manifolds, gradient Ricci solitons, compact Ricci solitons and Ricci solitons with $V$ pointwise collinear with the structure vector field $\\xi $ are studied.
Self-trapped optical beams: Spatial solitons
Indian Academy of Sciences (India)
Andrey A Sukhorukov; Yuri S Kivshar
2001-11-01
We present a brief overview of the basic concepts of the theory ofspatial optical solitons, including the soliton stability in non-Kerr media, the instability-induced soliton dynamics, and collision of solitary waves in nonintegrable nonlinear models.
Quadratic and 2-Crossed Modules of Algebras
Institute of Scientific and Technical Information of China (English)
Z. Arvasi; E. Ulualan
2007-01-01
In this work, we define the quadratic modules for commutative algebras and give relations among 2-crossed modules, crossed squares, quadratic modules and simplicial commutative algebras with Moore complex of length 2.
Covert, Michael
2015-01-01
This book is intended for software developers, system architects and analysts, big data project managers, and data scientists who wish to deploy big data solutions using the Cascading framework. You must have a basic understanding of the big data paradigm and should be familiar with Java development techniques.
Solitons and ionospheric heating
Weatherall, J. C.; Goldman, M. V.; Sheerin, J. P.; Nicholson, D. R.; Payne, G. L.; Hansen, P. J.
1982-01-01
It is noted that for parameters characterizing the Platteville ionospheric heating facility, the Langmuir wave evolution at the exact reflection point of the heater wave involves an oscillating two-stream instability followed by a collisionally damped three-dimensional soliton collapse. The result gives an alternative explanation for certain experimental observations.
Solitons in Josephson junctions
Ustinov, A. V.
1998-11-01
Magnetic flux quanta in Josephson junctions, often called fluxons, in many cases behave as solitons. A review of recent experiments and modelling of fluxon dynamics in Josephson circuits is presented. Classic quasi-one-dimensional junctions, stacked junctions (Josephson superlattices), and discrete Josephson transmission lines (JTLs) are discussed. Applications of fluxon devices as high-frequency oscillators and digital circuits are also addressed.
Bergshoeff, E A
1999-01-01
Energy bounds are derived for planar and compactified M2-branes in a hyper-Kähler background. These bounds are saturated, respectively, by lump and Q-kink solitons, which are shown to preserve a half of the worldvolume supersymmetry. The Q-kinks have a dual IIB interpretation as strings that migrate between fivebranes.
Statistical mechanics of solitons
International Nuclear Information System (INIS)
The status of statistical mechanics theory (classical and quantum, statics and dynamics) is reviewed for 1-D soliton or solitary-wave-bearing systems. Primary attention is given to (i) perspective for existing results with evaluation and representative literature guide; (ii) motivation and status report for remaining problems; (iii) discussion of connections with other 1-D topics
Topological soliton in magnetohydrodynamics
Kamchatnov, A. M.
2004-01-01
We use the Hopf mapping to construct a magnetic configuration consisting of closed field lines, each of which is linked with all the other ones. We obtain in this way a solution of the equations of magnetohydrodynamics of an ideal incompressible fluid with infinite conductivity, which describes a localized topological soliton.
Kinetic equation for a dense soliton gas
El, G. A.; Kamchatnov, A. M.
2005-01-01
We propose a general method to derive kinetic equations for dense soliton gases in physical systems described by integrable nonlinear wave equations. The kinetic equation describes evolution of the spectral distribution function of solitons due to soliton-soliton collisions. Owing to complete integrability of the soliton equations, only pairwise soliton interactions contribute to the solution and the evolution reduces to a transport of the eigenvalues of the associated spectral problem with t...
Soliton interaction in a fiber ring laser
Tang, D. Y.; B. Zhao; Zhao, L. M.
2009-01-01
We have experimentally investigated the soliton interaction in a passively mode-locked fiber ring laser and revealed the existence of three types of strong soliton interaction: a global type of soliton interaction caused by the existence of unstable CW components; a local type of soliton interaction mediated through the radiative dispersive waves; and the direct soliton interaction. We found that the appearance of the various soliton operation modes observed in the passively mode locked fiber...
Single-photon quadratic optomechanics
Jie-Qiao Liao; Franco Nori
2013-01-01
We present exact analytical solutions to study the coherent interaction between a single photon and the mechanical motion of a membrane in quadratic optomechanics. We consider single-photon emission and scattering when the photon is initially inside the cavity and in the fields outside the cavity, respectively. Using our solutions, we calculate the single-photon emission and scattering spectra, and find relations between the spectral features and the system's inherent parameters, such as: the...
Quadratic deformation of Minkowski space
Cervantes, D.; Cervantes, R.; Lledó, M. A.; Nadal, F. A.
2012-09-01
We present a deformation of the Minkowski space as embedded into the conformal space (in the formalism of twistors) based in the quantum versions of the corresponding kinematic groups. We compute explicitly the star product, whose Poisson bracket is quadratic. We show that the star product although defined on the polynomials can be extended differentiably. Finally we compute the Eucliden and Minkowskian real forms of the deformation.
The quadratic oil extraction oligopoly
Energy Technology Data Exchange (ETDEWEB)
Hartwick, John M.; Brolley, Michael [Department of Economics, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada)
2008-12-15
Each extractor has a distinct initial endowment of oil and a distinct quadratic extraction cost and faces a linear industry demand schedule. We observe in a discrete-time model with a finite number of periods that the open loop and closed loop solutions are the same if initial stocks are such that each competitor is extracting in every period in which her competitors are extracting. (author)
Orthogonality preserving infinite dimensional quadratic stochastic operators
International Nuclear Information System (INIS)
In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators
Orthogonality preserving infinite dimensional quadratic stochastic operators
Energy Technology Data Exchange (ETDEWEB)
Akın, Hasan [Department of Mathematics, Faculty of Education, Zirve University, Gaziantep, 27260 (Turkey); Mukhamedov, Farrukh [Department of Computational & Theoretical Sciences Faculty of Science, International Islamic University Malaysia P.O. Box, 141, 25710, Kuantan Pahang (Malaysia)
2015-09-18
In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.
Natural Exponential Families with Quadratic Variance Functions
Morris, Carl N.
1982-01-01
The normal, Poisson, gamma, binomial, and negative binomial distributions are univariate natural exponential families with quadratic variance functions (the variance is at most a quadratic function of the mean). Only one other such family exists. Much theory is unified for these six natural exponential families by appeal to their quadratic variance property, including infinite divisibility, cumulants, orthogonal polynomials, large deviations, and limits in distribution.
Interaction of spatial photorefractive solitons
DEFF Research Database (Denmark)
Królikowski, W.; Denz, C.; Stepken, A.;
1998-01-01
We present a review of our recent theoretical and experimental results on the interaction of two-dimensional solitary beams in photorefractive SBN crystals. We show that the collision of coherent solitons may result in energy exchange, fusion of the interacting solitons, the birth of a new solitary...... beam or the complete annihilation of some of them, depending on the relative phase of the interacting beams. In the case of mutually incoherent solitons, we show that the photorefractive nonlinearity leads to an anomalous interaction between solitons. Theoretical and experimental results reveal that a...... soliton pair may experience both attractive and repulsive forces; depending on their mutual separation. We also show that strong attraction leads to periodic collision or helical motion of solitons depending on initial conditions....
Formation of quasiparallel Alfven solitons
Hamilton, R. L.; Kennel, C. F.; Mjolhus, E.
1992-01-01
The formation of quasi-parallel Alfven solitons is investigated through the inverse scattering transformation (IST) for the derivative nonlinear Schroedinger (DNLS) equation. The DNLS has a rich complement of soliton solutions consisting of a two-parameter soliton family and a one-parameter bright/dark soliton family. In this paper, the physical roles and origins of these soliton families are inferred through an analytic study of the scattering data generated by the IST for a set of initial profiles. The DNLS equation has as limiting forms the nonlinear Schroedinger (NLS), Korteweg-de-Vries (KdV) and modified Korteweg-de-Vries (MKdV) equations. Each of these limits is briefly reviewed in the physical context of quasi-parallel Alfven waves. The existence of these limiting forms serves as a natural framework for discussing the formation of Alfven solitons.
Soliton dynamics in complex potentials
International Nuclear Information System (INIS)
Soliton propagation dynamics under the presence of a complex potential are investigated. Cases of both symmetric and non-symmetric potentials are studied in terms of their effect on soliton dynamics. The existence of an invariant of soliton propagation under specific symmetry conditions for the real and the imaginary part of the potential is shown. The rich set of dynamical features of soliton propagation include dynamical trapping, periodic and nonperiodic soliton mass variation and non-reciprocal dynamics. These features are systematically investigated with the utilization of an effective particle phase space approach which is shown in remarkable agreement with direct numerical simulations. The generality of the results enables the consideration of potential applications where the inhomogeneity of the gain and loss is appropriately engineered in order to provide desirable soliton dynamics
Helmholtz bright and boundary solitons
International Nuclear Information System (INIS)
We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts
Helmholtz bright and boundary solitons
Energy Technology Data Exchange (ETDEWEB)
Christian, J M [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P [Departmento de TeorIa de la Senal y Comunicaciones e IngenierIa Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)
2007-02-16
We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts.
Chiral solitons a review volume
1987-01-01
This review volume on topological and nontopological chiral solitons presents a global view on the current developments of this field in particle and nuclear physics. The book addresses problems in quantization, restoration of translational and rotational symmetry, and the field theoretical approach to solitons which are common problems in the field of solitons. Primarily aimed for graduate students and the novice in the field, the collected articless cover a broad spectrum of topics in formalism as well as phenomenology.
Solitonization of a dispersive wave.
Braud, F; Conforti, M; Cassez, A; Mussot, A; Kudlinski, A
2016-04-01
We report the observation of a nonlinear propagation scenario in which a dispersive wave is transformed into a fundamental soliton in an axially varying optical fiber. The dispersive wave is initially emitted in the normal dispersion region and the fiber properties change longitudinally so that the dispersion becomes anomalous at the dispersive wave wavelength, which allows it to be transformed into a soliton. The solitonic nature of the field is demonstrated by solving the direct Zakharov-Shabat scattering problem. Experimental characterization performed in spectral and temporal domains show evidence of the solitonization process in an axially varying photonic crystal fiber. PMID:27192249
2014-01-01
Prevailing economic models of consumer behavior completely ignore the well-documented link between context and evaluation. We propose and test a theory that explicitly incorporates this link. Changes in one group's spending shift the frame of reference that defines consumption standards for others just below them on the income scale, giving rise to expenditure cascades. Our model, a descendant of James Duesenberry's relative income hypothesis, predicts the observed ways in which individual sa...
Soliton-soliton and wave-soliton collisions in Skyrme-like [sigma]-models
Energy Technology Data Exchange (ETDEWEB)
Kudryavtsev, A. (Dept. of Mathematical Sciences, Durham Univ. (United Kingdom)); Piette, B. (Dept. of Mathematical Sciences, Durham Univ. (United Kingdom)); Zakrzewski, W.J. (Dept. of Mathematical Sciences, Durham Univ. (United Kingdom))
1993-12-01
A skyrme-like inversion of the (2+1)-dimensional classical [sigma]-model is considered. Some aspects of soliton-soliton collisions are studied using both the numerical and phenomenological approaches. In particular, the problem of 90 scattering of solitons in the head-on collisions is analyzed. Properties of the two-soliton configurations for v[proportional to]v[sub cr] are discussed in terms of a specific solution, which may be called a 'disoliton'. This solution corresponds to a saddle point in the space of field configurations and is unstable with respect to the decay into two well separated solitons. Different classes of field configurations, which may be called 'one-dimensional' wave packets, are also studied as well as the interaction of these wave packets with a soliton. (orig.)
Institute of Scientific and Technical Information of China (English)
BAO Yuan-Peng; RUAN Hang-Yu; XIE Wen-Fang; LI Zhi-Fang
2008-01-01
Starting from the variable separation approach, the algebraic soliton solution and the solution describing the interaction between line soliton and algebraic soliton are obtained by selecting appropriate seed solution for (2+1)-dimensional ANNV equation. The behaviors of interactions are discussed in detail both analytically and graphically. It is shown that there are two kinds of singular interactions between line soliton and algebraic soliton: 1) the resonant interaction where the algebraic soliton propagates together with the line soliton and persists infinitely; 2) the extremely repulsive interaction where the algebraic soliton affects the motion of the line soliton infinitely apart.
International Nuclear Information System (INIS)
The Camassa-Holm equation, Degasperis—Procesi equation and Novikov equation are the three typical integrable evolution equations admitting peaked solitons. In this paper, a generalized Novikov equation with cubic and quadratic nonlinearities is studied, which is regarded as a generalization of these three well-known studied equations. It is shown that this equation admits single peaked traveling wave solutions, periodic peaked traveling wave solutions, and multi-peaked traveling wave solutions. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
International Nuclear Information System (INIS)
The basic reactor physics of a completely novel nuclear fission reactor design - the soliton-reactor - is presented on the basis of a simple model. In such a reactor, the neutrons in the critical region convert either fertile material in the adjacent layers into fissile material or reduce the poisoning of fissile material in such a manner that successively new critical regions emerge. The result is an autocatalytically driven burn-up wave which propagates throughout the reactor. Thereby, the relevant characteristic spatial distributions (neutron flux, specific power density and the associated particle densities) are solitons - wave phenomena resulting from non-linear partial differential equations which do not change their shape during propagation. A qualitativley new kind of harnessing nuclear fission energy may become possible with fuel residence times comparable with the useful lifetime of the reactor system. In the long run, fast breeder systems which exploit the natural uranium and thorium resources, without any reprocessing capacity are imaginable. (orig.)
Optimal control linear quadratic methods
Anderson, Brian D O
2007-01-01
This augmented edition of a respected text teaches the reader how to use linear quadratic Gaussian methods effectively for the design of control systems. It explores linear optimal control theory from an engineering viewpoint, with step-by-step explanations that show clearly how to make practical use of the material.The three-part treatment begins with the basic theory of the linear regulator/tracker for time-invariant and time-varying systems. The Hamilton-Jacobi equation is introduced using the Principle of Optimality, and the infinite-time problem is considered. The second part outlines the
Coherent states for quadratic Hamiltonians
Contreras-Astorga, Alonso; Velazquez, Mercedes
2010-01-01
The coherent states for a set of quadratic Hamiltonians in the trap regime are constructed. A matrix technique which allows to identify directly the creation and annihilation operators will be presented. Then, the coherent states as simultaneous eigenstates of the annihilation operators will be derived, and they are going to be compared with those attained through the displacement operator method. The corresponding wave function will be found, and a general procedure for obtaining several expected values involving the canonical operators in these states will be described. The results will be illustrated through the asymmetric Penning trap.
Coherent states for quadratic Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Contreras-Astorga, Alonso; Fernandez C, David J; Velazquez, Mercedes, E-mail: david@fis.cinvestav.mx [Departamento de Fisica, Cinvestav, AP 14-740, 07000 Mexico DF (Mexico)
2011-01-21
The coherent states for a set of quadratic Hamiltonians in the trap regime are constructed. A matrix technique which allows us to directly identify the creation and annihilation operators will be presented. Then, the coherent states as simultaneous eigenstates of the annihilation operators will be derived, and will be compared with those attained through the displacement operator method. The corresponding wavefunction will be found, and a general procedure for obtaining several mean values involving the canonical operators in these states will be described. The results will be illustrated through the asymmetric Penning trap.
Quadratic Variation by Markov Chains
DEFF Research Database (Denmark)
Hansen, Peter Reinhard; Horel, Guillaume
We introduce a novel estimator of the quadratic variation that is based on the the- ory of Markov chains. The estimator is motivated by some general results concerning filtering contaminated semimartingales. Specifically, we show that filtering can in prin- ciple remove the effects of market...... microstructure noise in a general framework where little is assumed about the noise. For the practical implementation, we adopt the dis- crete Markov chain model that is well suited for the analysis of financial high-frequency prices. The Markov chain framework facilitates simple expressions and elegant analyti...
Quadratic minima and modular forms
Brent, Barry
1998-01-01
We give upper bounds on the size of the gap between the constant term and the next non-zero Fourier coefficient of an entire modular form of given weight for \\Gamma_0(2). Numerical evidence indicates that a sharper bound holds for the weights h \\equiv 2 . We derive upper bounds for the minimum positive integer represented by level two even positive-definite quadratic forms. Our data suggest that, for certain meromorphic modular forms and p=2,3, the p-order of the constant term is related to t...
Invariants of quadratic differential forms
Wright, Joseph Edmund
2013-01-01
This classic monograph by a mathematician affiliated with Trinity College, Cambridge, offers a brief account of the invariant theory connected with a single quadratic differential form. Suitable for advanced undergraduates and graduate students of mathematics, it avoids unnecessary analysis and offers an accessible view of the field for readers unfamiliar with the subject.A historical overview is followed by considerations of the methods of Christoffel and Lie as well as Maschke's symbolic method and explorations of geometrical and dynamical methods. The final chapter on applications, which d
SOLITONS: Dynamics of strong coupling formation between laser solitons
Rosanov, Nikolai N.; Fedorov, S. V.; Shatsev, A. N.
2005-03-01
The dynamics of the strong coupling formation between two solitons with the unit topological charge is studied in detail for a wide-aperture class A laser. The sequence of bifurcations of the vector field of energy fluxes in the transverse plane was demonstrated during the formation of a soliton complex.
Noncommutative Solitonic Black Hole
Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone
2011-01-01
We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find t...
Diffusion of Classical Solitons
Dziarmaga, J.; Zakrzewski, W.
1998-01-01
We study the diffusion and deformation of classical solitons coupled to thermal noise. The diffusion coefficient for kinks in the $\\phi^4$ theory is predicted up to the second order in $kT$. The prediction is verified by numerical simulations. Multiskyrmions in the vector O(3) sigma model are studied within the same formalism. Thermal noise results in a diffusion on the multisoliton collective coordinate space (moduli space). There are entropic forces which tend, for example, to bind pairs of...
Modified Korteweg-de Vries solitons at supercritical densities in two-electron temperature plasmas
Verheest, Frank; Hereman, Willy A
2016-01-01
The supercritical composition of a plasma model with cold positive ions in the presence of a two-temperature electron population is investigated, initially by a reductive perturbation approach, under the combined requirements that there be neither quadratic nor cubic nonlinearities in the evolution equation. This leads to a unique choice for the set of compositional parameters and a modified Korteweg-de Vries equation (mKdV) with a quartic nonlinear term. The conclusions about its one-soliton solution and integrability will also be valid for more complicated plasma compositions. Only three polynomial conservation laws can be obtained. The mKdV equation with quartic nonlinearity is not completely integrable, thus precluding the existence of multi-soliton solutions. Next, the full Sagdeev pseudopotential method has been applied and this allows for a detailed comparison with the reductive perturbation results. This comparison shows that the mKdV solitons have slightly larger amplitudes and widths than those obta...
Quadratic Goldreich-Levin Theorems
Tulsiani, Madhur
2011-01-01
Decomposition theorems in classical Fourier analysis enable us to express a bounded function in terms of few linear phases with large Fourier coefficients plus a part that is pseudorandom with respect to linear phases. The Goldreich-Levin algorithm can be viewed as an algorithmic analogue of such a decomposition as it gives a way to efficiently find the linear phases associated with large Fourier coefficients. In the study of "quadratic Fourier analysis", higher-degree analogues of such decompositions have been developed in which the pseudorandomness property is stronger but the structured part correspondingly weaker. For example, it has previously been shown that it is possible to express a bounded function as a sum of a few quadratic phases plus a part that is small in the $U^3$ norm, defined by Gowers for the purpose of counting arithmetic progressions of length 4. We give a polynomial time algorithm for computing such a decomposition. A key part of the algorithm is a local self-correction procedure for Re...
Observations of ion-acoustic cylindrical solitons
Hershkowitz, N.; Romesser, T.
1974-01-01
Experimental observations of cylindrical solitons in a collisionless plasma are presented. The data obtained show that cylindrical solitonlike objects exist and that their properties are consistent with those of one- and three-dimensional solitons. It is found that compressive density perturbations evolve into solitons. The number of the solitons is determined by the width and amplitude of the applied pulse.
Semiconductor resonator solitons above band gap
Taranenko, V. B.; Weiss, C. O.; Stolz, W.
2001-01-01
We show experimentally the existence of bright and dark spatial solitons in semiconductor resonators for excitation above the band gap energy. These solitons can be switched on, both spontaneously and with address pulses, without the thermal delay found for solitons below the band gap which is unfavorable for applications. The differences between soliton properties above and below gap energy are discussed.
Diffusion stabilizes cavity solitons in bidirectional lasers
Perez-Arjona, Isabel; Sanchez-Morcillo, Victor; Redondo, Javier; Staliunas, Kestutis; Roldan, Eugenio
2009-01-01
We study the influence of field diffusion on the spatial localized structures (cavity solitons) recently predicted in bidirectional lasers. We find twofold positive role of the diffusion: 1) it increases the stability range of the individual (isolated) solitons; 2) it reduces the long-range interaction between the cavity solitons. Latter allows the independent manipulation (writing and erasing) of individual cavity solitons.
Spatial Solitons in Algaas Waveguides
Kang, Jin Ung
In this work, by measuring the two-, three-photon absorption, and the nonlinear refractive index coefficients, a useful bandwidth for an all-optical switching applications in the AlGaAs below half the band gap is identified. Operating in this material system, several types of spatial solitons such as fundamental bright solitons, Vector solitons, and Manakov solitons are experimentally demonstrated. The propagation and the interaction behaviors of these solitons are studied experimentally and numerically. The distinct properties of each soliton are discussed along with some possible applications. Some applications, such as all -optical switching based on spatial soliton dragging and the efficient guiding of orthogonally polarized femtosecond pulses by a bright spatial soliton, are experimentally demonstrated. The signal gain due to an ultrafast polarization coupling, better known as Four Wave Mixing (FWM) is demonstrated in a channel waveguide. The effects of FWM are studied experimentally and numerically. This effect is also used to demonstrate polarization switching. The linear and nonlinear properties of AlGaAs/GaAs multiple quantum well waveguides are measured. Anisotropic two photon absorption and nonlinear refractive indices near half the band gap are measured along with the linear birefringence for several different quantum well structures. The usefulness of multiple quantum well structures for an all -optical switching because of anisotropic nature of this material system is discussed.
Primordial origin of nontopological solitons
Frieman, Joshua A.; Gelmini, Graciela B.; Gleiser, Marcelo; Kolb, Edward W.
1988-01-01
The formation of nontopological solitons in a second-order phase transition in the early universe is discussed. Ratios of dimensionless coupling constants in the Lagrangian determine their abundance and mass. For a large range of parameters, nontopological solitons can be cosmologically significant, contributing a significant fraction of the present mass density of the universe.
International Nuclear Information System (INIS)
Plasma exhibits a full of variety of nonlinear phenomena. Active research in nonlinear plasma physics contributed to explore the concepts of soliton and chaos. Structure of soliton equations and dynamics of low dimensional Hamiltonian systems are discussed to emphasize the universality of these novel concepts in the wide branch of science and engineering. (author) 52 refs
Recent Progress on Ricci Solitons
Cao, Huai-Dong
2009-01-01
Ricci solitons are natural generalizations of Einstein metrics. They are also special solutions to Hamilton's Ricci flow and play important roles in the singularity study of the Ricci flow. In this paper, we survey some of the recent progress on Ricci solitons.
Sparsifying preconditioner for soliton calculations
Lu, Jianfeng; Ying, Lexing
2016-06-01
We develop a robust and efficient method for soliton calculations for nonlinear Schrödinger equations. The method is based on the recently developed sparsifying preconditioner combined with Newton's iterative method. The performance of the method is demonstrated by numerical examples of gap solitons in the context of nonlinear optics.
Sparsifying preconditioner for soliton calculations
Lu, Jianfeng
2015-01-01
We develop a robust and efficient method for soliton calculations for nonlinear Schr\\"odinger equations. The method is based on the recently developed sparsifying preconditioner combined with Newton's iterative method. The performance of the method is demonstrated by numerical examples of gap solitons in the context of nonlinear optics.
Carbone, Francesco; Dutykh, Denys; El, Gennady
2015-01-01
We undertake a detailed comparison of the results of direct numerical simulations of the integrable soliton gas dynamics with the analytical predictions inferred from the exact solutions of the relevant kinetic equation for solitons. We use the KdV soliton gas as a simplest analytically accessible model yielding major insight into the general properties of soliton gases in integrable systems. Two model problems are considered: (i) the propagation of a `trial' soliton through a one-component `...
Phase interaction of short vector solitons
International Nuclear Information System (INIS)
An interaction of vector solitons in the frame of coupled third-order nonlinear Schrödinger equations taking into account third-order linear dispersion, nonlinear dispersion, and cross-phase modulation terms is considered. Phase nature of the solitons' interaction is shown. In particular, dependence of solitons' trajectories on initial distance between solitons is shown. Conditions of reflection and propagation of solitons through each other are obtained. -- Highlights: ► Short vector soliton's interaction in the frame of CTNSE without SRS is studied. ► Analytical and numerical approaches are considered. ► Phase effects lead to short vector soliton's interaction character change.
Solitons in generalized galileon theories
Carrillo-Gonzalez, Mariana; Solomon, Adam R; Trodden, Mark
2016-01-01
We consider the existence and stability of solitons in generalized galileons, scalar field theories with higher-derivative interactions but second-order equations of motion. It has previously been proven that no stable, static solitons exist in a single galileon theory using an argument invoking the existence of zero modes for the perturbations. Here we analyze the applicability of this argument to generalized galileons and discuss how this may be avoided by having potential terms in the energy functional for the perturbations, or by including time dependence. Given the presence of potential terms in the Lagrangian for the perturbations, we find that stable, static solitons are not ruled out in conformal and (A)dS galileons. For the case of DBI and conformal galileons, we find that solitonic solutions moving at the speed of light exist, the former being stable and the latter unstable if the background soliton satisfies a certain condition.
Breather soliton dynamics in microresonators
Yu, Mengjie; Okawachi, Yoshitomo; Griffith, Austin G; Luke, Kevin; Miller, Steven A; Ji, Xingchen; Lipson, Michal; Gaeta, Alexander L
2016-01-01
The generation of temporal cavity solitons in microresonators results in low-noise optical frequency combs which are critical for applications in spectroscopy, astronomy, navigation or telecommunications. Breather solitons also form an important part of many different classes of nonlinear wave systems with a localized temporal structure that exhibits oscillatory behavior. To date, the dynamics of breather solitons in microresonators remains largely unexplored, and its experimental characterization is challenging. Here, we demonstrate the excitation of breather solitons in two different microresonator platforms based on silicon nitride and on silicon. We investigate the dependence of the breathing frequency on pump detuning and observe the transition from period-1 to period-2 oscillation in good agreement with the numerical simulations. Our study presents experimental confirmation of the stability diagram of dissipative cavity solitons predicted by the Lugiato-Lefever equation and is importance to understandin...
Soliton interaction in the presence of a weak non-soliton component
Loh, W H; Grudinin, A. B.; Afanasjev, V.V.; Payne, D. N.
1994-01-01
We study both experimentally and theoretically soliton interaction in the presence of a weak non-soliton component and show that the existence of a frequency shifted cw wave results in a temporal shift of the soliton.
Fully Localized Two-dimensional Embedded Solitons
Yang, Jianke
2010-01-01
We report the first prediction of fully localized two-dimensional embedded solitons. These solitons are obtained in a quasi-one-dimensional waveguide array which is periodic along one spatial direction and localized along the orthogonal direction. Under appropriate nonlinearity, these solitons are found to exist inside the Bloch bands (continuous spectrum) of the waveguide, and thus are embedded solitons. These embedded solitons are fully localized along both spatial directions. In addition, ...
On gradient Ricci solitons with Symmetry
Petersen, Peter; Wylie, William
2007-01-01
We study gradient Ricci solitons with maximal symmetry. First we show that there are no non-trivial homogeneous gradient Ricci solitons. Thus the most symmetry one can expect is an isometric cohomogeneity one group action. Many examples of cohomogeneity one gradient solitons have been constructed. However, we apply the main result in our paper "Rigidity of gradient Ricci solitons" to show that there are no noncompact cohomogeneity one shrinking gradient solitons with nonnegative curvature.