WorldWideScience

Sample records for cartilage derived retinoic

  1. Molecular characterization and chromosomal assignment of equine cartilage derived retinoic acid sensitive protein (CD-RAP)/melanoma inhibitory activity (MIA)

    DEFF Research Database (Denmark)

    Berg, Lise Charlotte; Mata, Xavier; Thomsen, Preben Dybdahl

    2008-01-01

    Cartilage-derived retinoic acid sensitive protein (CD-RAP) also known as melanoma inhibitory activity (MIA) has already been established as a marker for chondrocyte differentiation and a number of cancerous condition sin humans. Studies have also shown that CD-RAP/MIA is a potential marker of joint......RNA in articular cartilage and chondrocytes from horses with no signs of joint disease. The expression decreased as the cells dedifferentiated in monolayer culture. We also identified an equine CD-RAP/MIA splioce variant similar to that reported in humans. The CD_RAP/MIA protein was detected in equine synovial...... fluid, serum and culture medium from chondrocyte cultures. In conclusion, CD-RAP/MIA is expressed in equine cartilage and chondrocytes, and the protein can be detected in equine serum, synovial fluid and in culture medium from chondrocyte cultures. The equine gene and resulting protein share great...

  2. Effect of retinoic acid on proteoglycan turnover in bovine articular cartilage cultures

    International Nuclear Information System (INIS)

    Campbell, M.A.; Handley, C.J.

    1987-01-01

    This paper describes proteoglycan catabolism by adult bovine articular cartilage treated with retinoic acid as a means of stimulating the loss of this macromolecule from the extracellular matrix of cartilage. Addition of retinoic acid (10(-12)-10(-6) M) to adult bovine articular cartilage which had been labeled with [ 35 S]sulfate for 6 h after 5 days in culture, resulted in a dose-dependent increase in the rate of loss of 35 S-labeled proteoglycans from the matrix of the tissue. Concomitant with this loss was a decrease in the proteoglycan content of the tissue. Incubation of cultures treated with 1 microM retinoic acid, at 4 degrees C, or with 0.5 mM cycloheximide, resulted in a significant decrease in the rate of retinoic acid-induced loss of proteoglycans and demonstrated cellular involvement in this process. Analysis of the 35 S-labeled proteoglycans remaining in the matrix showed that the percentage of radioactivity associated with the small proteoglycan species extracted from the matrix of articular cartilage explants labeled with [ 35 S]sulfate after 5 days in culture was 15% and this increased to 22% in tissue maintained in medium alone. In tissue treated with 1 microM retinoic acid for 6 days, the percentage of radioactivity associated with the small proteoglycan was 58%. Approximately 93% of the 35 S-labeled proteoglycans released into the medium of control and retinoic acid-treated cultures was recovered in high density fractions after CsCl gradient centrifugation and eluted on Sepharose CL-2B as a broad peak with a Kav of 0.30-0.37. Less than 17% of these proteoglycans was capable of aggregating with hyaluronate. These results indicate that in both control and retinoic acid-treated cultures the larger proteoglycan species is lost to the medium at a greater rate than the small proteoglycan species. The effect of retinoic acid on proteoglycan turnover was shown to be reversible

  3. Retinoic acid regulates cell-shape and -death of E-FABP (FABP5)-immunoreactive septoclasts in the growth plate cartilage of mice.

    Science.gov (United States)

    Bando, Yasuhiko; Yamamoto, Miyuki; Sakiyama, Koji; Sakashita, Hide; Taira, Fuyoko; Miyake, Genki; Iseki, Shoichi; Owada, Yuji; Amano, Osamu

    2017-09-01

    Septoclasts, which are mononuclear and spindle-shaped cells with many processes, have been considered to resorb the transverse septa of the growth plate (GP) cartilage at the chondro-osseous junction (COJ). We previously reported the expression of epidermal-type fatty acid-binding protein (E-FABP, FABP5) and localization of peroxisome proliferator-activated receptor (PPAR)β/δ, which mediates the cell survival or proliferation, in septoclasts. On the other hand, retinoic acid (RA) can bind to E-FABP and is stored abundantly in the GP cartilage. From these information, it is possible to hypothesize that RA in the GP is incorporated into septoclasts during the cartilage resorption and regulates the growth and/or death of septoclasts. To clarify the mechanism of the cartilage resorption induced by RA, we administered an overdose of RA or its precursor vitamin A (VA)-deficient diet to young mice. In mice of both RA excess and VA deficiency, septoclasts decreased in the number and cell size in association with shorter and lesser processes than those in normal mice, suggesting a substantial suppression of resorption by septoclasts in the GP cartilage. Lack of PPARβ/δ-expression, TUNEL reaction, RA receptor (RAR)β, and cellular retinoic acid-binding protein (CRABP)-II were induced in E-FABP-positive septoclasts under RA excess, suggesting the growth arrest/cell-death of septoclasts, whereas cartilage-derived retinoic acid-sensitive protein (CD-RAP) inducing the cell growth arrest or morphological changes was induced in septoclasts under VA deficiency. These results support and do not conflict with our hypothesis, suggesting that endogenous RA in the GP is possibly incorporated in septoclasts and utilized to regulate the activity of septoclasts resorbing the GP cartilage.

  4. Elastic cartilage reconstruction by transplantation of cultured hyaline cartilage-derived chondrocytes.

    Science.gov (United States)

    Mizuno, M; Takebe, T; Kobayashi, S; Kimura, S; Masutani, M; Lee, S; Jo, Y H; Lee, J I; Taniguchi, H

    2014-05-01

    Current surgical intervention of craniofacial defects caused by injuries or abnormalities uses reconstructive materials, such as autologous cartilage grafts. Transplantation of autologous tissues, however, places a significant invasiveness on patients, and many efforts have been made for establishing an alternative graft. Recently, we and others have shown the potential use of reconstructed elastic cartilage from ear-derived chondrocytes or progenitors with the unique elastic properties. Here, we examined the differentiation potential of canine joint cartilage-derived chondrocytes into elastic cartilage for expanding the cell sources, such as hyaline cartilage. Articular chondrocytes are isolated from canine joint, cultivated, and compared regarding characteristic differences with auricular chondrocytes, including proliferation rates, gene expression, extracellular matrix production, and cartilage reconstruction capability after transplantation. Canine articular chondrocytes proliferated less robustly than auricular chondrocytes, but there was no significant difference in the amount of sulfated glycosaminoglycan produced from redifferentiated chondrocytes. Furthermore, in vitro expanded and redifferentiated articular chondrocytes have been shown to reconstruct elastic cartilage on transplantation that has histologic characteristics distinct from hyaline cartilage. Taken together, cultured hyaline cartilage-derived chondrocytes are a possible cell source for elastic cartilage reconstruction. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  5. Brief report: reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage.

    Science.gov (United States)

    Mizuno, Mitsuru; Kobayashi, Shinji; Takebe, Takanori; Kan, Hiroomi; Yabuki, Yuichiro; Matsuzaki, Takahisa; Yoshikawa, Hiroshi Y; Nakabayashi, Seiichiro; Ik, Lee Jeong; Maegawa, Jiro; Taniguchi, Hideki

    2014-03-01

    In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age- and sports-related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long-term tissue maintenance. However, it is unknown whether ear-derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear-derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear-derived cartilage progenitor cells. It also demonstrated that ear-derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies. © AlphaMed Press.

  6. Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles.

    Science.gov (United States)

    Yin, Heyong; Wang, Yu; Sun, Zhen; Sun, Xun; Xu, Yichi; Li, Pan; Meng, Haoye; Yu, Xiaoming; Xiao, Bo; Fan, Tian; Wang, Yiguo; Xu, Wenjing; Wang, Aiyuan; Guo, Quanyi; Peng, Jiang; Lu, Shibi

    2016-03-01

    We propose a method of preparing a novel cell carrier derived from natural cartilage extracellular matrix (ECM), designated cartilage ECM-derived particles (CEDPs). Through a series of processes involving pulverization, sieving, and decellularization, fresh cartilage was made into CEDPs with a median diameter of 263 ± 48 μm. Under microgravity culture conditions in a rotary cell culture system (RCCS), bone marrow stromal cells (BMSCs) can proliferate rapidly on the surface of CEDPs with high viability. Histological evaluation and gene expression analysis indicated that BMSCs were differentiated into mature chondrocytes after 21 days of culture without the use of exogenous growth factors. Functional cartilage microtissue aggregates of BMSC-laden CEDPs formed as time in culture increased. Further, the microtissue aggregates were directly implanted into trochlear cartilage defects in a rat model (CEDP+MSC group). Gait analysis and histological results indicated that the CEDP+MSC group obtained better and more rapid joint function recovery and superior cartilage repair compared to the control groups, in which defects were treated with CEDPs alone or only fibrin glue, at both 6 and 12 weeks after surgery. In conclusion, the innovative cell carrier derived from cartilage ECM could promote chondrogenic differentiation of BMSCs, and the direct use of functional cartilage microtissue facilitated cartilage regeneration. This strategy for cell culture, stem cell differentiation and one-step surgery using cartilage microtissue for cartilage repair provides novel prospects for cartilage tissue engineering and may have further broad clinical applications. We proposed a method to prepare a novel cell carrier derived from natural cartilage ECM, termed cartilage ECM-derived particles (CEDPs), which can support proliferation of MSCs and facilitate their chondrogenic differentiation. Further, the direct use of functional cartilage microtissue of MSC-laden CEDP aggregates for

  7. The Potential for Synovium-derived Stem Cells in Cartilage Repair

    DEFF Research Database (Denmark)

    Kubosch, Eva Johanna; Lang, Gernot Michael; Fürst, David

    2018-01-01

    for the treatment of large, isolated, full thickness cartilage defects. Several disadvantages such as the need for two surgical procedures or hypertrophic regenerative cartilage, underline the need for alternative cell sources. OBJECTIVE: Mesenchymal stem cells, particularly synovium-derived mesenchymal stem cells......, represent a promising cell source. Synovium-derived mesenchymal stem cells have attracted considerable attention since they display great chondrogenic potential and less hypertrophic differentiation than mesenchymal stem cells derived from bone marrow. The aim of this review was to summarize the current...... knowledge on the chondrogenic potential for synovial stem cells in regard to cartilage repair purposes. RESULTS: A literature search was carried out identifying 260 articles in the databases up to January 2017. Several in vitro and initial animal in vivo studies of cartilage repair using synovia stem cell...

  8. Evidence of a novel aggrecan-degrading activity in cartilage: Studies of mice deficient in both ADAMTS-4 and ADAMTS-5.

    Science.gov (United States)

    Rogerson, Fraser M; Stanton, Heather; East, Charlotte J; Golub, Suzanne B; Tutolo, Leonie; Farmer, Pamela J; Fosang, Amanda J

    2008-06-01

    To characterize aggrecan catabolism and the overall phenotype in mice deficient in both ADAMTS-4 and ADAMTS-5 (TS-4/TS-5 Delta-cat) activity. Femoral head cartilage from the joints of TS-4/TS-5 Delta-cat mice and wild-type mice were cultured in vitro, and aggrecan catabolism was stimulated with either interleukin-1alpha (IL-1alpha) or retinoic acid. Total aggrecan release was measured, and aggrecanase activity was examined by Western blotting using neoepitope antibodies for detecting cleavage at EGE 373-374 ALG, SELE 1279-1280 GRG, FREEE 1467-1468 GLG, and AQE 1572-1573 AGEG. Aggrecan catabolism in vivo was examined by Western blotting of cartilage that had been extracted immediately ex vivo. TS-4/TS-5 Delta-cat mice were viable, fertile, and phenotypically normal. TS-4/TS-5 Delta-cat cartilage explants did not release aggrecan in response to IL-1alpha, and there was no detectable increase in aggrecanase neoepitopes. TS-4/TS-5 Delta-cat cartilage explants released aggrecan in response to retinoic acid. There was no retinoic acid-stimulated cleavage at either EGE 373-374 ALG or AQE 1572-1573 AGEG. There was a low level of cleavage at SELE 1279-1280 GRG and major cleavage at FREEE 1467-1468 GLG. Ex vivo, cleavage at FREEE 1467-1468 GLG was substantially reduced, but still present, in TS-4/TS-5 Delta-cat mouse cartilage compared with wild-type mouse cartilage. An aggrecanase other than ADAMTS-4 and ADAMTS-5 is expressed in mouse cartilage and is up-regulated by retinoic acid but not IL-1alpha. The novel aggrecanase appears to have different substrate specificity from either ADAMTS-4 or ADAMTS-5, cleaving E-G bonds but not E-A bonds. Neither ADAMTS-4 nor ADAMTS-5 is required for normal skeletal development or aggrecan turnover in cartilage.

  9. Mesenchymal Stem/Progenitor Cells Derived from Articular Cartilage, Synovial Membrane and Synovial Fluid for Cartilage Regeneration: Current Status and Future Perspectives.

    Science.gov (United States)

    Huang, Yi-Zhou; Xie, Hui-Qi; Silini, Antonietta; Parolini, Ornella; Zhang, Yi; Deng, Li; Huang, Yong-Can

    2017-10-01

    Large articular cartilage defects remain an immense challenge in the field of regenerative medicine because of their poor intrinsic repair capacity. Currently, the available medical interventions can relieve clinical symptoms to some extent, but fail to repair the cartilaginous injuries with authentic hyaline cartilage. There has been a surge of interest in developing cell-based therapies, focused particularly on the use of mesenchymal stem/progenitor cells with or without scaffolds. Mesenchymal stem/progenitor cells are promising graft cells for tissue regeneration, but the most suitable source of cells for cartilage repair remains controversial. The tissue origin of mesenchymal stem/progenitor cells notably influences the biological properties and therapeutic potential. It is well known that mesenchymal stem/progenitor cells derived from synovial joint tissues exhibit superior chondrogenic ability compared with those derived from non-joint tissues; thus, these cell populations are considered ideal sources for cartilage regeneration. In addition to the progress in research and promising preclinical results, many important research questions must be answered before widespread success in cartilage regeneration is achieved. This review outlines the biology of stem/progenitor cells derived from the articular cartilage, the synovial membrane, and the synovial fluid, including their tissue distribution, function and biological characteristics. Furthermore, preclinical and clinical trials focusing on their applications for cartilage regeneration are summarized, and future research perspectives are discussed.

  10. Uninduced adipose-derived stem cells repair the defect of full-thickness hyaline cartilage.

    Science.gov (United States)

    Zhang, Hai-Ning; Li, Lei; Leng, Ping; Wang, Ying-Zhen; Lv, Cheng-Yu

    2009-04-01

    To testify the effect of the stem cells derived from the widely distributed fat tissue on repairing full-thickness hyaline cartilage defects. Adipose-derived stem cells (ADSCs) were derived from adipose tissue and cultured in vitro. Twenty-seven New Zealand white rabbits were divided into three groups randomly. The cultured ADSCs mixed with calcium alginate gel were used to fill the full-thickness hyaline cartilage defects created at the patellafemoral joint, and the defects repaired with gel or without treatment served as control groups. After 4, 8 and 12 weeks, the reconstructed tissue was evaluated macroscopically and microscopically. Histological analysis and qualitative scoring were also performed to detect the outcome. Full thickness hyaline cartilage defects were repaired completely with ADSCs-derived tissue. The result was better in ADSCs group than the control ones. The microstructure of reconstructed tissue with ADSCs was similar to that of hyaline cartilage and contained more cells and regular matrix fibers, being better than other groups. Plenty of collagen fibers around cells could be seen under transmission electron microscopy. Statistical analysis revealed a significant difference in comparison with other groups at each time point (t equal to 4.360, P less than 0.01). These results indicate that stem cells derived from mature adipose without induction possess the ability to repair cartilage defects.

  11. Tissue-Derived Extracellular Matrix Bioscaffolds: Emerging Applications in Cartilage and Meniscus Repair.

    Science.gov (United States)

    Monibi, Farrah A; Cook, James L

    2017-08-01

    Musculoskeletal injuries are a common problem in orthopedic practice. Given the long-term consequences of unaddressed cartilage and meniscal pathology, a number of treatments have been attempted to stimulate repair or to replace the injured tissue. Despite advances in orthopedic surgery, effective treatments for cartilage and meniscus injuries remain a significant clinical challenge. Tissue engineering is a developing field that aims to regenerate injured tissues with a combination of cells, scaffolds, and signals. Many natural and synthetic scaffold materials have been developed and tested for the repair and restoration of a number of musculoskeletal tissues. Among these, biological scaffolds derived from cell and tissue-derived extracellular matrix (ECM) have shown great promise in tissue engineering given the critical role of the ECM for maintaining the biological and biomechanical properties, structure, and function of native tissues. This review article presents emerging applications for tissue-derived ECM scaffolds in cartilage and meniscus repair. We examine normal ECM composition and the current and future methods for potential treatment of articular cartilage and meniscal defects with decellularized scaffolds.

  12. Xiphoid Process-Derived Chondrocytes: A Novel Cell Source for Elastic Cartilage Regeneration

    Science.gov (United States)

    Nam, Seungwoo; Cho, Wheemoon; Cho, Hyunji; Lee, Jungsun

    2014-01-01

    Reconstruction of elastic cartilage requires a source of chondrocytes that display a reliable differentiation tendency. Predetermined tissue progenitor cells are ideal candidates for meeting this need; however, it is difficult to obtain donor elastic cartilage tissue because most elastic cartilage serves important functions or forms external structures, making these tissues indispensable. We found vestigial cartilage tissue in xiphoid processes and characterized it as hyaline cartilage in the proximal region and elastic cartilage in the distal region. Xiphoid process-derived chondrocytes (XCs) showed superb in vitro expansion ability based on colony-forming unit fibroblast assays, cell yield, and cumulative cell growth. On induction of differentiation into mesenchymal lineages, XCs showed a strong tendency toward chondrogenic differentiation. An examination of the tissue-specific regeneration capacity of XCs in a subcutaneous-transplantation model and autologous chondrocyte implantation model confirmed reliable regeneration of elastic cartilage regardless of the implantation environment. On the basis of these observations, we conclude that xiphoid process cartilage, the only elastic cartilage tissue source that can be obtained without destroying external shape or function, is a source of elastic chondrocytes that show superb in vitro expansion and reliable differentiation capacity. These findings indicate that XCs could be a valuable cell source for reconstruction of elastic cartilage. PMID:25205841

  13. Post-surgical treatment of thyroid carcinoma in dogs with retinoic ...

    African Journals Online (AJOL)

    tulyasys

    2016-01-20

    Jan 20, 2016 ... In humans it is well known that therapeutic options for TC and prognosis after ..... Molecular pathways: current role and future directions of the retinoic acid ... Potential of retinoic acid derivatives for the treatment of corticotroph ...

  14. Repair of articular cartilage defects by tissue-engineered cartilage constructed with adipose-derived stem cells and acellular cartilaginous matrix in rabbits.

    Science.gov (United States)

    Wang, Z J; An, R Z; Zhao, J Y; Zhang, Q; Yang, J; Wang, J B; Wen, G Y; Yuan, X H; Qi, X W; Li, S J; Ye, X C

    2014-06-18

    After injury, inflammation, or degeneration, articular cartilage has limited self-repair ability. We aimed to explore the feasibility of repair of articular cartilage defects with tissue-engineered cartilage constructed by acellular cartilage matrices (ACMs) seeded with adipose-derived stem cells (ADSCs). The ADSCs were isolated from 3-month-old New Zealand albino rabbit by using collagenase and cultured and amplified in vitro. Fresh cartilage isolated from adult New Zealand albino rabbit were freeze-dried for 12 h and treated with Triton X-100, DNase, and RNase to obtain ACMs. ADSCs were seeded in the acellular cartilaginous matrix at 2x10(7)/mL, and cultured in chondrogenic differentiation medium for 2 weeks to construct tissue-engineered cartilage. Twenty-four New Zealand white rabbits were randomly divided into A, B, and C groups. Engineered cartilage was transplanted into cartilage defect position of rabbits in group A, group B obtained ACMs, and group C did not receive any transplants. The rabbits were sacrificed in week 12. The restored tissue was evaluated using macroscopy, histology, immunohistochemistry, and transmission electron microscopy (TEM). In the tissue-engineered cartilage group (group A), articular cartilage defects of the rabbits were filled with chondrocyte-like tissue with smooth surface. Immunohistochemistry showed type II-collagen expression and Alcian blue staining was positive. TEM showed chondrocytes in the recesses, with plenty of secretary matrix particles. In the scaffold group (group B), the defect was filled with fibrous tissue. No repaired tissue was found in the blank group (group C). Tissue-engineered cartilage using ACM seeded with ADSCs can help repair articular cartilage defects in rabbits.

  15. Improved healing of transected rabbit Achilles tendon after a single injection of cartilage-derived morphogenetic protein-2.

    Science.gov (United States)

    Forslund, Carina; Aspenberg, Per

    2003-01-01

    Achilles tendon ruptures in humans might be treated more efficiently with the help of a growth factor. Cartilage-derived morphogenetic protein-2 has been shown to induce formation of tendon-like tissue. Cartilage-derived morphogenetic protein-2 has a positive effect on mechanical parameters for tendon healing in a rabbit model with Achilles tendon transection. Controlled laboratory study. The right Achilles tendon of 40 rabbits was transected without tendon suture. Cartilage-derived morphogenetic protein-2 (10 micro g) or vehicle control (acetate buffer) was injected locally 2 hours postoperatively. All tendons were tested biomechanically at 8 and 14 days, and treated tendons were histologically and radiographically evaluated at 56 days. At 14 days, both failure load and stiffness of treated tendons were increased by 35%. The treated tendons had significantly larger callus size at 8 and 14 days. Histologic and radiographic examination showed no signs of ossification in the treated tendons after 56 days. A single injection of cartilage-derived morphogenetic protein-2 led to a stronger and stiffer tendon callus than that in the controls without inducing bone formation. Similar results from a larger animal model would suggest a possible future use of cartilage-derived morphogenetic protein-2 in the treatment of human Achilles tendon ruptures.

  16. Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold

    Directory of Open Access Journals (Sweden)

    Amin Tavassoli

    2015-12-01

    Full Text Available Objective (s: The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (BM-MSCs. Materials and Methods: Bovine articular cartilage that was cut into pieces with 2 mm thickness, were decellularized by combination of physical and chemical methods including snap freeze-thaw and treatment with sodium dodecyl sulfate (SDS. The scaffolds were then seeded with 1, 1’-dioctadecyl-3, 3, 3’, 3’-tetramethylindocarbocyanine perchlorate (DiI labeled BM-MSCs and cultured for up to two weeks. Results: Histological studies of decellularized bovine articular cartilage showed that using 5 cycles of snap freeze-thaw in liquid nitrogen and treatment with 2.5% SDS for 4 hr led to the best decellularization, while preserving the articular cartilage structure. Adherence and penetration of seeded BM-MSCs on to the scaffold were displayed by histological and florescence examinations and also confirmed by electron microscopy. Conclusion: ECM-derived decellularized articular cartilage scaffold provides a suitable environment to support adhesion and maintenance of cultured BM-MSCs and could be applied to investigate cellular behaviors in this system and may also be useful for studies of cartilage tissue engineering.

  17. Chondrogenic potential of physically treated bovine cartilage matrix derived porous scaffolds on human dermal fibroblast cells.

    Science.gov (United States)

    Moradi, Ali; Ataollahi, Forough; Sayar, Katayoun; Pramanik, Sumit; Chong, Pan-Pan; Khalil, Alizan Abdul; Kamarul, Tunku; Pingguan-Murphy, Belinda

    2016-01-01

    Extracellular matrices have drawn attention in tissue engineering as potential biomaterials for scaffold fabrication because of their bioactive components. Noninvasive techniques of scaffold fabrication and cross-linking treatments are believed to maintain the integrity of bioactive molecules while providing proper architectural and mechanical properties. Cartilage matrix derived scaffolds are designed to support the maintenance of chondrocytes and provide proper signals for differentiation of chondroinducible cells. Chondroinductive potential of bovine articular cartilage matrix derived porous scaffolds on human dermal fibroblasts and the effect of scaffold shrinkage on chondrogenesis were investigated. An increase in sulfated glycosaminoglycans production along with upregulation of chondrogenic genes confirmed that physically treated cartilage matrix derived scaffolds have chondrogenic potential on human dermal fibroblasts. © 2015 Wiley Periodicals, Inc.

  18. Feasibility of autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffold for cartilage tissue engineering.

    Science.gov (United States)

    Tang, Cheng; Xu, Yan; Jin, Chengzhe; Min, Byoung-Hyun; Li, Zhiyong; Pei, Xuan; Wang, Liming

    2013-12-01

    Extracellular matrix (ECM) materials are widely used in cartilage tissue engineering. However, the current ECM materials are unsatisfactory for clinical practice as most of them are derived from allogenous or xenogenous tissue. This study was designed to develop a novel autologous ECM scaffold for cartilage tissue engineering. The autologous bone marrow mesenchymal stem cell-derived ECM (aBMSC-dECM) membrane was collected and fabricated into a three-dimensional porous scaffold via cross-linking and freeze-drying techniques. Articular chondrocytes were seeded into the aBMSC-dECM scaffold and atelocollagen scaffold, respectively. An in vitro culture and an in vivo implantation in nude mice model were performed to evaluate the influence on engineered cartilage. The current results showed that the aBMSC-dECM scaffold had a good microstructure and biocompatibility. After 4 weeks in vitro culture, the engineered cartilage in the aBMSC-dECM scaffold group formed thicker cartilage tissue with more homogeneous structure and higher expressions of cartilaginous gene and protein compared with the atelocollagen scaffold group. Furthermore, the engineered cartilage based on the aBMSC-dECM scaffold showed better cartilage formation in terms of volume and homogeneity, cartilage matrix content, and compressive modulus after 3 weeks in vivo implantation. These results indicated that the aBMSC-dECM scaffold could be a successful novel candidate scaffold for cartilage tissue engineering. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  19. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo

    Science.gov (United States)

    Nakagawa, Yusuke; Muneta, Takeshi; Otabe, Koji; Ozeki, Nobutake; Mizuno, Mitsuru; Udo, Mio; Saito, Ryusuke; Yanagisawa, Katsuaki; Ichinose, Shizuko; Koga, Hideyuki; Tsuji, Kunikazu; Sekiya, Ichiro

    2016-01-01

    Objective Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs) are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1) whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2) whether aggregates of human MSCs promoted lubricin expression, and (3) whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats. Methods For in vitro analysis, human bone marrow (BM) MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages. Results In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4), which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and

  20. Effects of Hydrostatic Loading on a Self-Aggregating, Suspension Culture–Derived Cartilage Tissue Analog

    Science.gov (United States)

    Kraft, Jeffrey J.; Jeong, Changhoon; Novotny, John E.; Seacrist, Thomas; Chan, Gilbert; Domzalski, Marcin; Turka, Christina M.; Richardson, Dean W.; Dodge, George R.

    2011-01-01

    Objective: Many approaches are being taken to generate cartilage replacement materials. The goal of this study was to use a self-aggregating suspension culture model of chondrocytes with mechanical preconditioning. Design: Our model differs from others in that it is based on a scaffold-less, self-aggregating culture model that produces a cartilage tissue analog that has been shown to share many similarities with the natural cartilage phenotype. Owing to the known loaded environment under which chondrocytes function in vivo, we hypothesized that applying force to the suspension culture–derived chondrocyte biomass would improve its cartilage-like characteristics and provide a new model for engineering cartilage tissue analogs. Results: In this study, we used a specialized hydrostatic pressure bioreactor system to apply mechanical forces during the growth phase to improve biochemical and biophysical properties of the biomaterial formed. We demonstrated that using this high-density suspension culture, a biomaterial more consistent with the hyaline cartilage phenotype was produced without any foreign material added. Unpassaged chondrocytes responded to a physiologically relevant hydrostatic load by significantly increasing gene expression of critical cartilage molecule collagen and aggrecan along with other cartilage relevant genes, CD44, perlecan, decorin, COMP, and iNOS. Conclusions: This study describes a self-aggregating bioreactor model without foreign material or scaffold in which chondrocytes form a cartilage tissue analog with many features similar to native cartilage. This study represents a promising scaffold-less, methodological advancement in cartilage tissue engineering with potential translational applications to cartilage repair. PMID:26069584

  1. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    Science.gov (United States)

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation. Copyright © 2012 Wiley Periodicals, Inc.

  2. Somite-Derived Retinoic Acid Regulates Zebrafish Hematopoietic Stem Cell Formation.

    Directory of Open Access Journals (Sweden)

    Laura M Pillay

    Full Text Available Hematopoietic stem cells (HSCs are multipotent progenitors that generate all vertebrate adult blood lineages. Recent analyses have highlighted the importance of somite-derived signaling factors in regulating HSC specification and emergence from dorsal aorta hemogenic endothelium. However, these factors remain largely uncharacterized. We provide evidence that the vitamin A derivative retinoic acid (RA functions as an essential regulator of zebrafish HSC formation. Temporal analyses indicate that RA is required for HSC gene expression prior to dorsal aorta formation, at a time when the predominant RA synthesis enzyme, aldh1a2, is strongly expressed within the paraxial mesoderm and somites. Previous research implicated the Cxcl12 chemokine and Notch signaling pathways in HSC formation. Consequently, to understand how RA regulates HSC gene expression, we surveyed the expression of components of these pathways in RA-depleted zebrafish embryos. During somitogenesis, RA-depleted embryos exhibit altered expression of jam1a and jam2a, which potentiate Notch signaling within nascent endothelial cells. RA-depleted embryos also exhibit a severe reduction in the expression of cxcr4a, the predominant Cxcl12b receptor. Furthermore, pharmacological inhibitors of RA synthesis and Cxcr4 signaling act in concert to reduce HSC formation. Our analyses demonstrate that somite-derived RA functions to regulate components of the Notch and Cxcl12 chemokine signaling pathways during HSC formation.

  3. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Xiaowei Zhang

    Full Text Available Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9 is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP (scSOX9 to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.

  4. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Xiaowei; Wu, Shili; Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Chu, Cong-Qiu; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrating recombinant SOX9 protein in regeneration of hyaline cartilage in situ at the site of cartilage injury. We generated a recombinant SOX9 protein which was fused with super positively charged green fluorescence protein (GFP) (scSOX9) to facilitate cell penetration. scSOX9 was able to induce chondrogenesis of bone marrow derived MSC in vitro. In a rabbit cartilage injury model, scSOX9 in combination with microfracture significantly improved quality of repaired cartilage as shown by macroscopic appearance. Histological analysis revealed that the reparative tissue induced by microfracture with scSOX9 had features of hyaline cartilage; and collagen type II to type I ratio was similar to that in normal cartilage. This short term in vivo study demonstrated that when administered at the site of microfracture, scSOX9 was able to induce reparative tissue with features of hyaline cartilage.

  5. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration.

    Science.gov (United States)

    Jones, Brendan A; Pei, Ming

    2012-08-01

    Articular cartilage is difficult to heal once injury or disease occurs. Autologous chondrocyte transplantation is a biological treatment with good prognosis, but donor site morbidity and limited cell source are disadvantages. Currently, mesenchymal stem cells (MSCs) are a promising approach for cartilage regeneration. Despite there being various sources, the best candidate for cartilage regeneration is the one with the greatest chondrogenic potential and the least hypertrophic differentiation. These properties are able to insure that the regenerated tissue is hyaline cartilage of high quality. This review article will summarize relevant literature to justify synovium-derived stem cells (SDSCs) as a tissue-specific stem cell for chondrogenesis by comparing synovium and cartilage with respect to anatomical location and functional structure, comparing the growth characterization and chondrogenic capacity of SDSCs and MSCs, evaluating the application of SDSCs in regenerative medicine and diseases, and discussing potential future directions.

  6. Retinoic acid synthesis and functions in early embryonic development

    Directory of Open Access Journals (Sweden)

    Kam Richard Kin Ting

    2012-03-01

    Full Text Available Abstract Retinoic acid (RA is a morphogen derived from retinol (vitamin A that plays important roles in cell growth, differentiation, and organogenesis. The production of RA from retinol requires two consecutive enzymatic reactions catalyzed by different sets of dehydrogenases. The retinol is first oxidized into retinal, which is then oxidized into RA. The RA interacts with retinoic acid receptor (RAR and retinoic acid X receptor (RXR which then regulate the target gene expression. In this review, we have discussed the metabolism of RA and the important components of RA signaling pathway, and highlighted current understanding of the functions of RA during early embryonic development.

  7. Chondrogenic Differentiation of Human Adipose-Derived Stem Cells: A New Path in Articular Cartilage Defect Management?

    Directory of Open Access Journals (Sweden)

    Jan-Philipp Stromps

    2014-01-01

    Full Text Available According to data published by the Centers for Disease Control and Prevention, over 6 million people undergo a variety of medical procedures for the repair of articular cartilage defects in the U.S. each year. Trauma, tumor, and age-related degeneration can cause major defects in articular cartilage, which has a poor intrinsic capacity for healing. Therefore, there is substantial interest in the development of novel cartilage tissue engineering strategies to restore articular cartilage defects to a normal or prediseased state. Special attention has been paid to the expansion of chondrocytes, which produce and maintain the cartilaginous matrix in healthy cartilage. This review summarizes the current efforts to generate chondrocytes from adipose-derived stem cells (ASCs and provides an outlook on promising future strategies.

  8. The cartilage-derived, C-type lectin (CLECSF1): structure of the gene and chromosomal location.

    Science.gov (United States)

    Neame, P J; Tapp, H; Grimm, D R

    1999-09-03

    Cartilage is a tissue that is primarily extracellular matrix, the bulk of which consists of proteoglycan aggregates constrained within a collagen framework. Candidate components that organize the extracellular assembly of the matrix consist of collagens, proteoglycans and multimeric glycoproteins. We describe the human gene structure of a potential organizing factor, a cartilage-derived member of the C-type lectin superfamily (CLECSF1; C-type lectin superfamily) related to the serum protein, tetranectin. We show by Northern analysis that this protein is restricted to cartilage and locate the gene on chromosome 16q23. We have characterized 10.9 kb of sequence upstream of the first exon. Similarly to human tetranectin, there are three exons. The residues that are conserved between CLECSF1 and tetranectin suggest that the cartilage-derived protein forms a trimeric structure similar to that of tetranectin, with three N-terminal alpha-helical domains aggregating through hydrophobic faces. The globular, C-terminal domain that has been shown to bind carbohydrate in some members of the family and plasminogen in tetranectin, is likely to have a similar overall structure to that of tetranectin.

  9. Murine pluripotent stem cells derived scaffold-free cartilage grafts from a micro-cavitary hydrogel platform.

    Science.gov (United States)

    He, Pengfei; Fu, Jiayin; Wang, Dong-An

    2016-04-15

    By means of appropriate cell type and scaffold, tissue-engineering approaches aim to construct grafts for cartilage repair. Pluripotent stem cells especially induced pluripotent stem cells (iPSCs) are of promising cell candidates due to the pluripotent plasticity and abundant cell source. We explored three dimensional (3D) culture and chondrogenesis of murine iPSCs (miPSCs) on an alginate-based micro-cavity hydrogel (MCG) platform in pursuit of fabricating synthetic-scaffold-free cartilage grafts. Murine embryonic stem cells (mESCs) were employed in parallel as the control. Chondrogenesis was fulfilled using a consecutive protocol via mesoderm differentiation followed by chondrogenic differentiation; subsequently, miPSC and mESC-seeded constructs were further respectively cultured in chondrocyte culture (CC) medium. Alginate phase in the constructs was then removed to generate a graft only comprised of induced chondrocytic cells and cartilaginous extracellular matrix (ECMs). We found that from the mESC-seeded constructs, formation of intact grafts could be achieved in greater sizes with relatively fewer chondrocytic cells and abundant ECMs; from miPSC-seeded constructs, relatively smaller sized cartilaginous grafts could be formed by cells with chondrocytic phenotype wrapped by abundant and better assembled collagen type II. This study demonstrated successful creation of pluripotent stem cells-derived cartilage/chondroid graft from a 3D MCG interim platform. By the support of materials and methodologies established from this study, particularly given the autologous availability of iPSCs, engineered autologous cartilage engraftment may be potentially fulfilled without relying on the limited and invasive autologous chondrocytes acquisition. In this study, we explored chondrogenic differentiation of pluripotent stem cells on a 3D micro-cavitary hydrogel interim platform and creation of pluripotent stem cells-derived cartilage/chondroid graft via a consecutive

  10. The ECM-Cell Interaction of Cartilage Extracellular Matrix on Chondrocytes

    Directory of Open Access Journals (Sweden)

    Yue Gao

    2014-01-01

    Full Text Available Cartilage extracellular matrix (ECM is composed primarily of the network type II collagen (COLII and an interlocking mesh of fibrous proteins and proteoglycans (PGs, hyaluronic acid (HA, and chondroitin sulfate (CS. Articular cartilage ECM plays a crucial role in regulating chondrocyte metabolism and functions, such as organized cytoskeleton through integrin-mediated signaling via cell-matrix interaction. Cell signaling through integrins regulates several chondrocyte functions, including differentiation, metabolism, matrix remodeling, responses to mechanical stimulation, and cell survival. The major signaling pathways that regulate chondrogenesis have been identified as wnt signal, nitric oxide (NO signal, protein kinase C (PKC, and retinoic acid (RA signal. Integrins are a large family of molecules that are central regulators in multicellular biology. They orchestrate cell-cell and cell-matrix adhesive interactions from embryonic development to mature tissue function. In this review, we emphasize the signaling molecule effect and the biomechanics effect of cartilage ECM on chondrogenesis.

  11. Preparation and characterization of a decellularized cartilage scaffold for ear cartilage reconstruction

    International Nuclear Information System (INIS)

    Utomo, Lizette; Pleumeekers, Mieke M; Van Osch, Gerjo J V M; Nimeskern, Luc; Stok, Kathryn S; Nürnberger, Sylvia; Hildner, Florian

    2015-01-01

    Scaffolds are widely used to reconstruct cartilage. Yet, the fabrication of a scaffold with a highly organized microenvironment that closely resembles native cartilage remains a major challenge. Scaffolds derived from acellular extracellular matrices are able to provide such a microenvironment. Currently, no report specifically on decellularization of full thickness ear cartilage has been published. In this study, decellularized ear cartilage scaffolds were prepared and extensively characterized. Cartilage decellularization was optimized to remove cells and cell remnants from elastic cartilage. Following removal of nuclear material, the obtained scaffolds retained their native collagen and elastin contents as well as their architecture and shape. High magnification scanning electron microscopy showed no obvious difference in matrix density after decellularization. However, glycosaminoglycan content was significantly reduced, resulting in a loss of viscoelastic properties. Additionally, in contact with the scaffolds, human bone-marrow-derived mesenchymal stem cells remained viable and are able to differentiate toward the chondrogenic lineage when cultured in vitro. These results, including the ability to decellularize whole human ears, highlight the clinical potential of decellularization as an improved cartilage reconstruction strategy. (paper)

  12. Rotating three-dimensional dynamic culture of adult human bone marrow-derived cells for tissue engineering of hyaline cartilage.

    Science.gov (United States)

    Sakai, Shinsuke; Mishima, Hajime; Ishii, Tomoo; Akaogi, Hiroshi; Yoshioka, Tomokazu; Ohyabu, Yoshimi; Chang, Fei; Ochiai, Naoyuki; Uemura, Toshimasa

    2009-04-01

    The method of constructing cartilage tissue from bone marrow-derived cells in vitro is considered a valuable technique for hyaline cartilage regenerative medicine. Using a rotating wall vessel (RWV) bioreactor developed in a NASA space experiment, we attempted to efficiently construct hyaline cartilage tissue from human bone marrow-derived cells without using a scaffold. Bone marrow aspirates were obtained from the iliac crest of nine patients during orthopedic operation. After their proliferation in monolayer culture, the adherent cells were cultured in the RWV bioreactor with chondrogenic medium for 2 weeks. Cells from the same source were cultured in pellet culture as controls. Histological and immunohistological evaluations (collagen type I and II) and quantification of glycosaminoglycan were performed on formed tissues and compared. The engineered constructs obtained using the RWV bioreactor showed strong features of hyaline cartilage in terms of their morphology as determined by histological and immunohistological evaluations. The glycosaminoglycan contents per microg DNA of the tissues were 10.01 +/- 3.49 microg/microg DNA in the case of the RWV bioreactor and 6.27 +/- 3.41 microg/microg DNA in the case of the pellet culture, and their difference was significant. The RWV bioreactor could provide an excellent environment for three-dimensional cartilage tissue architecture that can promote the chondrogenic differentiation of adult human bone marrow-derived cells.

  13. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Zhang, Xiaowei; Wu, Shili; Naccarato, Ty; Prakash-Damani, Manan; Chou, Yuan; Chu, Cong-Qiu; Zhu, Yong

    2017-01-01

    Microfracture, a common procedure for treatment of cartilage injury, induces fibrocartilage repair by recruiting bone marrow derived mesenchymal stem cells (MSC) to the site of cartilage injury. However, fibrocartilage is inferior biomechanically to hyaline cartilage. SRY-type high-mobility group box-9 (SOX9) is a master regulator of chondrogenesis by promoting proliferation and differentiation of MSC into chondrocytes. In this study we aimed to test the therapeutic potential of cell penetrat...

  14. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Rupak Dua

    Full Text Available We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels were integrated with human bone marrow stem cell (HBMSC-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol diacrylate (PEGDA hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05 when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05 when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in

  15. Chondrogenic potential of canine articular cartilage derived cells (cACCs

    Directory of Open Access Journals (Sweden)

    Nowak Urszula

    2016-01-01

    Full Text Available In the present paper, the potential of canine articular cartilage-derived cells (cACCs for chondrogenic differentiation was evaluated. The effectiveness of cACCs’ lineage commitment was analyzed after 14 days of culture in chondorgenic and non-chondrogenic conditions. Formation of proteoglycan-rich extracellular matrix was assessed using histochemical staining – Alcian Blue and Safranin-O, while elemental composition was determined by means of SEM-EDX. Additionally, ultrastructure of cACCs was evaluated using TEM. The expression of genes involved in chondrogenesis was monitored with quantitative Real Time PCR. Results obtained indicate that the potential of cACCs for cartilagous extracellular matrix formation may be maintained only in chondrogenic cultures. The formation of specific chondro-nodules was not observed in a non-chondrogenic culture environment. The analysis of cACCs’ ultrastructure, both in non-chondrogenic and chondrogenic cultures, revealed well-developed rough endoplasmatic reticulum and presence of mitochondria. The cACCs in chondrogenic medium shed an increased number of microvesicles. Furthermore, it was shown that the extracellular matrix of cACCs in chondrogenic cultures is rich in potassium and molybdenum. Additionally, it was determined that gene expression of collagen type II, aggrecan and SOX-9 was significantly increased during chondrogenic differentiation of cACCs. Results obtained indicate that the culture environment may significantly influence the cartilage phenotype of cACCs during long term culture.

  16. Chicken homeobox gene Msx-1: structure, expression in limb buds and effect of retinoic acid.

    Science.gov (United States)

    Yokouchi, Y; Ohsugi, K; Sasaki, H; Kuroiwa, A

    1991-10-01

    A chicken gene carrying a homeobox highly homologous to the Drosophila muscle segment homeobox (msh) gene was isolated and designated as Msx-1. Conceptual translation from the longest ORF gave a protein of 259 amino acids lacking the conserved hexapeptide. Northern analysis detected a single 2.6 kb transcript. As early as day 2 of incubation, the transcript was detected but was not found in adult tissue. In situ hybridization analysis revealed that Msx-1 expression is closely related to a particular mesenchymal cell lineage during limb bud formation. In early stage embryos, Msx-1 was expressed in the somatopleure. When primordial mesenchyme cells for limb bud were generated from the Wolffian ridge of the somatopleure, Msx-1 expression began to diminish in the posterior half of the limb bud then in the presumptive cartilage-forming mesenchyme. In developing limb buds, remarkable expression was seen in the apical ectodermal ridge (AER), which is responsible for the sustained outgrowth and development of the limb. The Msx-1 transcripts were found in the limb mesenchymal cells in the region covering the necrotic zone and ectodermal cells overlying such mesenchymal cells. Both ectodermal and mesenchymal expression in limb bud were rapidly suppressed by local treatment of retinoic acid which can generate mirror-image duplication of digits. This indicates that retinoic acid alters the marginal presumptive non-cartilage forming mesenchyme cell lineage through suppression of Msx-1 expression.

  17. Adipose-derived mesenchymal stem cells for cartilage tissue engineering: state-of-the-art in in vivo studies.

    Science.gov (United States)

    Veronesi, Francesca; Maglio, Melania; Tschon, Matilde; Aldini, Nicolò Nicoli; Fini, Milena

    2014-07-01

    Several therapeutic approaches have been developed to address hyaline cartilage regeneration, but to date, there is no universal procedure to promote the restoration of mechanical and functional properties of native cartilage, which is one of the most important challenges in orthopedic surgery. For cartilage tissue engineering, adult mesenchymal stem cells (MSCs) are considered as an alternative cell source to chondrocytes. Since little is known about adipose-derived mesenchymal stem cell (ADSC) cartilage regeneration potential, the aim of this review was to give an overview of in vivo studies about the chondrogenic potential and regeneration ability of culture-expanded ADSCs when implanted in heterotopic sites or in osteoarthritic and osteochondral defects. The review compares the different studies in terms of number of implanted cells and animals, cell harvesting sites, in vitro expansion and chondrogenic induction conditions, length of experimental time, defect dimensions, used scaffolds and post-explant analyses of the cartilage regeneration. Despite variability of the in vivo protocols, it seems that good cartilage formation and regeneration were obtained with chondrogenically predifferentiated ADSCs (1 × 10(7) cells for heterotopic cartilage formation and 1 × 10(6) cells/scaffold for cartilage defect regeneration) and polymeric scaffolds, even if many other aspects need to be clarified in future studies. © 2013 Wiley Periodicals, Inc.

  18. E1A FUNCTIONS AS A COACTIVATOR OF RETINOIC ACID-DEPENDENT RETINOIC ACID RECEPTOR-BETA-2 PROMOTER ACTIVATION

    NARCIS (Netherlands)

    KRUYT, FAE; FOLKERS, GE; WALHOUT, AJM; VANDERLEEDE, BM; VANDERSAAG, PT; Kruyt, Frank

    The retinoic acid (RA) receptor (RAR) beta2 promoter is strongly activated by RA in embryonal carcinoma (EC) cells. We examined this activation in the P19 EC-derived END-2 cell line and in E1A-expressing counterparts and found strong RA-dependent RARbeta2 promoter activation in the E1A-expressing

  19. Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo.

    Science.gov (United States)

    Yang, Yuanheng; Lin, Hang; Shen, He; Wang, Bing; Lei, Guanghua; Tuan, Rocky S

    2018-03-15

    Mesenchymal stem cell derived extracellular matrix (MSC-ECM) is a natural biomaterial with robust bioactivity and good biocompatibility, and has been studied as a scaffold for tissue engineering. In this investigation, we tested the applicability of using decellularized human bone marrow derived MSC-ECM (hBMSC-ECM) as a culture substrate for chondrocyte expansion in vitro, as well as a scaffold for chondrocyte-based cartilage repair. hBMSC-ECM deposited by hBMSCs cultured on tissue culture plastic (TCP) was harvested, and then subjected to a decellularization process to remove hBMSCs. Compared with chondrocytes grown on TCP, chondrocytes seeded onto hBMSC-ECM exhibited significantly increased proliferation rate, and maintained better chondrocytic phenotype than TCP group. After being expanded to the same cell number and placed in high-density micromass cultures, chondrocytes from the ECM group showed better chondrogenic differentiation profile than those from the TCP group. To test cartilage formation ability, composites of hBMSC-ECM impregnated with chondrocytes were subjected to brief trypsin treatment to allow cell-mediated contraction, and folded to form 3-dimensional chondrocyte-impregnated hBMSC-ECM (Cell/ECM constructs). Upon culture in vitro in chondrogenic medium for 21 days, robust cartilage formation was observed in the Cell/ECM constructs. Similarly prepared Cell/ECM constructs were tested in vivo by subcutaneous implantation into SCID mice. Prominent cartilage formation was observed in the implanted Cell/ECM constructs 14 days post-implantation, with higher sGAG deposition compared to controls consisting of chondrocyte cell sheets. Taken together, these findings demonstrate that hBMSC-ECM is a superior culture substrate for chondrocyte expansion and a bioactive matrix potentially applicable for cartilage regeneration in vivo. Current cell-based treatments for focal cartilage defects face challenges, including chondrocyte dedifferentiation, need for

  20. In Vivo Imaging of Retinoic Acid Receptor Activity using a Sodium/Iodide Symporter and Luciferase Dual Imaging Reporter Gene

    Directory of Open Access Journals (Sweden)

    Min Kyung So

    2004-07-01

    Full Text Available Retinoic acids are natural derivatives of vitamin A, and play important roles in modulating tumor cell growth by regulating differentiation, thus suggesting the potential use of these derivatives in cancer therapy and prevention. To visualize the intranuclear responses of functional retinoic acid receptors, we have developed a dual-imaging reporter gene system based on the use of sodium/iodide symporter (NIS and luciferase in cancer cell lines. NIS and luciferase genes were linked with an internal ribosome entry site, and placed under the control of an artificial cis-acting retinoic acid responsive element (pRARE/NL. After retinoic acid treatment, I-125 uptake by pRARE/NL transfected cells was found to have increased by up to about five times that of nontreated cells. The bioluminescence intensity of pRARE/NL transfected cells showed dose-dependency. In vivo luciferase images showed higher intensity in retinoic acid treated SK-RARE/NL tumors, and scintigraphic images of SK-RARE/NL tumors showed increased Tc-99m uptake after retinoic acid treatment. The NIS/luciferase imaging reporter system was sufficiently sensitive to allow the visualization of intranuclear retinoic acid receptor activity. This cis-enhancer imaging reporter system may be useful in vitro and in vivo for the evaluation of retinoic acid responses in such areas as cellular differentiation and chemoprevention.

  1. An Autologous Bone Marrow Mesenchymal Stem Cell–Derived Extracellular Matrix Scaffold Applied with Bone Marrow Stimulation for Cartilage Repair

    Science.gov (United States)

    Tang, Cheng; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Min, Byoung-Hyun; Xu, Yan

    2014-01-01

    Purpose: It is well known that implanting a bioactive scaffold into a cartilage defect site can enhance cartilage repair after bone marrow stimulation (BMS). However, most of the current scaffolds are derived from xenogenous tissue and/or artificial polymers. The implantation of these scaffolds adds risks of pathogen transmission, undesirable inflammation, and other immunological reactions, as well as ethical issues in clinical practice. The current study was undertaken to evaluate the effectiveness of implanting autologous bone marrow mesenchymal stem cell–derived extracellular matrix (aBMSC-dECM) scaffolds after BMS for cartilage repair. Methods: Full osteochondral defects were performed on the trochlear groove of both knees in 24 rabbits. One group underwent BMS only in the right knee (the BMS group), and the other group was treated by implantation of the aBMSC-dECM scaffold after BMS in the left knee (the aBMSC-dECM scaffold group). Results: Better repair of cartilage defects was observed in the aBMSC-dECM scaffold group than in the BMS group according to gross observation, histological assessments, immunohistochemistry, and chemical assay. The glycosaminoglycan and DNA content, the distribution of proteoglycan, and the distribution and arrangement of type II and I collagen fibers in the repaired tissue in the aBMSC-dECM scaffold group at 12 weeks after surgery were similar to that surrounding normal hyaline cartilage. Conclusions: Implanting aBMSC-dECM scaffolds can enhance the therapeutic effect of BMS on articular cartilage repair, and this combination treatment is a potential method for successful articular cartilage repair. PMID:24666429

  2. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells.

    Science.gov (United States)

    Levato, Riccardo; Webb, William R; Otto, Iris A; Mensinga, Anneloes; Zhang, Yadan; van Rijen, Mattie; van Weeren, René; Khan, Ilyas M; Malda, Jos

    2017-10-01

    Cell-laden hydrogels are the primary building blocks for bioprinting, and, also termed bioinks, are the foundations for creating structures that can potentially recapitulate the architecture of articular cartilage. To be functional, hydrogel constructs need to unlock the regenerative capacity of encapsulated cells. The recent identification of multipotent articular cartilage-resident chondroprogenitor cells (ACPCs), which share important traits with adult stem cells, represents a new opportunity for cartilage regeneration. However, little is known about the suitability of ACPCs for tissue engineering, especially in combination with biomaterials. This study aimed to investigate the potential of ACPCs in hydrogels for cartilage regeneration and biofabrication, and to evaluate their ability for zone-specific matrix production. Gelatin methacryloyl (gelMA)-based hydrogels were used to culture ACPCs, bone marrow mesenchymal stromal cells (MSCs) and chondrocytes, and as bioinks for printing. Our data shows ACPCs outperformed chondrocytes in terms of neo-cartilage production and unlike MSCs, ACPCs had the lowest gene expression levels of hypertrophy marker collagen type X, and the highest expression of PRG4, a key factor in joint lubrication. Co-cultures of the cell types in multi-compartment hydrogels allowed generating constructs with a layered distribution of collagens and glycosaminoglycans. By combining ACPC- and MSC-laden bioinks, a bioprinted model of articular cartilage was generated, consisting of defined superficial and deep regions, each with distinct cellular and extracellular matrix composition. Taken together, these results provide important information for the use of ACPC-laden hydrogels in regenerative medicine, and pave the way to the biofabrication of 3D constructs with multiple cell types for cartilage regeneration or in vitro tissue models. Despite its limited ability to repair, articular cartilage harbors an endogenous population of progenitor cells

  3. Preparation of N, N, N-trimethyl chitosan-functionalized retinoic acid ...

    African Journals Online (AJOL)

    nanocarrier (TR-SLNs) with enhanced anti-cancer activity. ... Retinoic acid (RA), a derivative of vitamin A, is a potential ... intravenous (i.v.) administration; therefore, RA ... °C. Preparation of TMC. TMC was synthesized by reductive methylation.

  4. Retinoic acid is a potential dorsalising signal in the late embryonic chick hindbrain

    Directory of Open Access Journals (Sweden)

    Maden Malcolm

    2007-12-01

    Full Text Available Abstract Background Human retinoic acid teratogenesis results in malformations of dorsally derived hindbrain structures such as the cerebellum, noradrenergic hindbrain neurons and the precerebellar system. These structures originate from the rhombic lip and adjacent dorsal precursor pools that border the fourth ventricle roofplate. While retinoic acid synthesis is known to occur in the meninges that blanket the hindbrain, the particular sensitivity of only dorsal structures to disruptions in retinoid signalling is puzzling. We therefore looked for evidence within the neural tube for more spatiotemporally specific signalling pathways using an in situ hybridisation screen of known retinoic acid pathway transcripts. Results We find that there are highly restricted domains of retinoic acid synthesis and breakdown within specific hindbrain nuclei as well as the ventricular layer and roofplate. Intriguingly, transcripts of cellular retinoic acid binding protein 1 are always found at the interface between dividing and post-mitotic cells. By contrast to earlier stages of development, domains of synthesis and breakdown in post-mitotic neurons are co-localised. At the rhombic lip, expression of the mRNA for retinoic acid synthesising and catabolising enzymes is spatially highly organised with respect to the Cath1-positive precursors of migratory precerebellar neurons. Conclusion The late developing hindbrain shows patterns of retinoic acid synthesis and use that are distinct from the well characterised phase of rostrocaudal patterning. Selected post-mitotic populations, such as the locus coeruleus, appear to both make and break down retinoic acid suggesting that a requirement for an autocrine, or at least a highly localised paracrine signalling network, might explain its acute sensitivity to retinoic acid disruption. At the rhombic lip, retinoic acid is likely to act as a dorsalising factor in parallel with other roofplate signalling pathways. While its

  5. Priming Adipose-Derived Mesenchymal Stem Cells with Hyaluronan Alters Growth Kinetics and Increases Attachment to Articular Cartilage

    Directory of Open Access Journals (Sweden)

    Peter Succar

    2016-01-01

    Full Text Available Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC therapy are gaining acceptance for knee-osteoarthritis (OA treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL. At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA.

  6. A comparison study of different physical treatments on cartilage matrix derived porous scaffolds for tissue engineering applications

    International Nuclear Information System (INIS)

    Moradi, Ali; Pramanik, Sumit; Ataollahi, Forough; Pingguan-Murphy, Belinda; Abdul Khalil, Alizan; Kamarul, Tunku

    2014-01-01

    Native cartilage matrix derived (CMD) scaffolds from various animal and human sources have drawn attention in cartilage tissue engineering due to the demonstrable presence of bioactive components. Different chemical and physical treatments have been employed to enhance the micro-architecture of CMD scaffolds. In this study we have assessed the typical effects of physical cross-linking methods, namely ultraviolet (UV) light, dehydrothermal (DHT) treatment, and combinations of them on bovine articular CMD porous scaffolds with three different matrix concentrations (5%, 15% and 30%) to assess the relative strengths of each treatment. Our findings suggest that UV and UV–DHT treatments on 15% CMD scaffolds can yield architecturally optimal scaffolds for cartilage tissue engineering. (paper)

  7. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    International Nuclear Information System (INIS)

    Salamon, Achim; Jonitz-Heincke, Anika; Adam, Stefanie; Rychly, Joachim; Müller-Hilke, Brigitte; Bader, Rainer; Lochner, Katrin; Peters, Kirsten

    2013-01-01

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but

  8. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Achim, E-mail: achim.salamon@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Jonitz-Heincke, Anika, E-mail: anika.jonitz@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Adam, Stefanie, E-mail: stefanie.adam@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Rychly, Joachim, E-mail: joachim.rychly@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Müller-Hilke, Brigitte, E-mail: brigitte.mueller-hilke@med.uni-rostock.de [Institute of Immunology, Rostock University Medical Center, Schillingallee 68, D-18057 Rostock (Germany); Bader, Rainer, E-mail: rainer.bader@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Lochner, Katrin, E-mail: katrin.lochner@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Peters, Kirsten, E-mail: kirsten.peters@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany)

    2013-11-01

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but

  9. Ectopic bone formation during tissue-engineered cartilage repair using autologous chondrocytes and novel plasma-derived albumin scaffolds.

    Science.gov (United States)

    Robla Costales, David; Junquera, Luis; García Pérez, Eva; Gómez Llames, Sara; Álvarez-Viejo, María; Meana-Infiesta, Álvaro

    2016-10-01

    The aims of this study were twofold: first, to evaluate the production of cartilaginous tissue in vitro and in vivo using a novel plasma-derived scaffold, and second, to test the repair of experimental defects made on ears of New Zealand rabbits (NZr) using this approach. Scaffolds were seeded with chondrocytes and cultured in vitro for 3 months to check in vitro cartilage production. To evaluate in vivo cartilage production, a chondrocyte-seeded scaffold was transplanted subcutaneously to a nude mouse. To check in vivo repair, experimental defects made in the ears of five New Zealand rabbits (NZr) were filled with chondrocyte-seeded scaffolds. In vitro culture produced mature chondrocytes with no extracellular matrix (ECM). Histological examination of redifferentiated in vitro cultures showed differentiated chondrocytes adhered to scaffold pores. Subcutaneous transplantation of these constructs to a nude mouse produced cartilage, confirmed by histological study. Experimental cartilage repair in five NZr showed cartilaginous tissue repairing the defects, mixed with calcified areas of bone formation. It is possible to produce cartilaginous tissue in vivo and to repair experimental auricular defects by means of chondrocyte cultures and the novel plasma-derived scaffold. Further studies are needed to determine the significance of bone formation in the samples. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Endogenous retinoic acid activity in principal cells and intercalated cells of mouse collecting duct system.

    Directory of Open Access Journals (Sweden)

    Yuen Fei Wong

    2011-02-01

    Full Text Available Retinoic acid is the bioactive derivative of vitamin A, which plays an indispensible role in kidney development by activating retinoic acid receptors. Although the location, concentration and roles of endogenous retinoic acid in post-natal kidneys are poorly defined, there is accumulating evidence linking post-natal vitamin A deficiency to impaired renal concentrating and acidifying capacity associated with increased susceptibility to urolithiasis, renal inflammation and scarring. The aim of this study is to examine the presence and the detailed localization of endogenous retinoic acid activity in neonatal, young and adult mouse kidneys, to establish a fundamental ground for further research into potential target genes, as well as physiological and pathophysiological roles of endogenous retinoic acid in the post-natal kidneys.RARE-hsp68-lacZ transgenic mice were employed as a reporter for endogenous retinoic acid activity that was determined by X-gal assay and immunostaining of the reporter gene product, β-galactosidase. Double immunostaining was performed for β-galactosidase and markers of kidney tubules to localize retinoic acid activity. Distinct pattern of retinoic acid activity was observed in kidneys, which is higher in neonatal and 1- to 3-week-old mice than that in 5- and 8-week-old mice. The activity was present specifically in the principal cells and the intercalated cells of the collecting duct system in all age groups, but was absent from the glomeruli, proximal tubules, thin limbs of Henle's loop and distal tubules.Endogenous retinoic acid activity exists in principal cells and intercalated cells of the mouse collecting duct system after birth and persists into adulthood. This observation provides novel insights into potential roles for endogenous retinoic acid beyond nephrogenesis and warrants further studies to investigate target genes and functions of endogenous retinoic acid in the kidney after birth, particularly in the

  11. Novel retinoic acid receptor alpha agonists for treatment of kidney disease.

    Directory of Open Access Journals (Sweden)

    Yifei Zhong

    Full Text Available Development of pharmacologic agents that protect podocytes from injury is a critical strategy for the treatment of kidney glomerular diseases. Retinoic acid reduces proteinuria and glomerulosclerosis in multiple animal models of kidney diseases. However, clinical studies are limited because of significant side effects of retinoic acid. Animal studies suggest that all trans retinoic acid (ATRA attenuates proteinuria by protecting podocytes from injury. The physiological actions of ATRA are mediated by binding to all three isoforms of the nuclear retinoic acid receptors (RARs: RARα, RARβ, and RARγ. We have previously shown that ATRA exerts its renal protective effects mainly through the agonism of RARα. Here, we designed and synthesized a novel boron-containing derivative of the RARα-specific agonist Am580. This new derivative, BD4, binds to RARα receptor specifically and is predicted to have less toxicity based on its structure. We confirmed experimentally that BD4 binds to RARα with a higher affinity and exhibits less cellular toxicity than Am580 and ATRA. BD4 induces the expression of podocyte differentiation markers (synaptopodin, nephrin, and WT-1 in cultured podocytes. Finally, we confirmed that BD4 reduces proteinuria and improves kidney injury in HIV-1 transgenic mice, a model for HIV-associated nephropathy (HIVAN. Mice treated with BD4 did not develop any obvious toxicity or side effect. Our data suggest that BD4 is a novel RARα agonist, which could be used as a potential therapy for patients with kidney disease such as HIVAN.

  12. Trophic effects of adipose-tissue-derived and bone-marrow-derived mesenchymal stem cells enhance cartilage generation by chondrocytes in co-culture.

    Science.gov (United States)

    Pleumeekers, M M; Nimeskern, L; Koevoet, J L M; Karperien, M; Stok, K S; van Osch, G J V M

    2018-01-01

    Combining mesenchymal stem cells (MSCs) and chondrocytes has great potential for cell-based cartilage repair. However, there is much debate regarding the mechanisms behind this concept. We aimed to clarify the mechanisms that lead to chondrogenesis (chondrocyte driven MSC-differentiation versus MSC driven chondroinduction) and whether their effect was dependent on MSC-origin. Therefore, chondrogenesis of human adipose-tissue-derived MSCs (hAMSCs) and bone-marrow-derived MSCs (hBMSCs) combined with bovine articular chondrocytes (bACs) was compared. hAMSCs or hBMSCs were combined with bACs in alginate and cultured in vitro or implanted subcutaneously in mice. Cartilage formation was evaluated with biochemical, histological and biomechanical analyses. To further investigate the interactions between bACs and hMSCs, (1) co-culture, (2) pellet, (3) Transwell® and (4) conditioned media studies were conducted. The presence of hMSCs-either hAMSCs or hBMSCs-increased chondrogenesis in culture; deposition of GAG was most evidently enhanced in hBMSC/bACs. This effect was similar when hMSCs and bAC were combined in pellet culture, in alginate culture or when conditioned media of hMSCs were used on bAC. Species-specific gene-expression analyses demonstrated that aggrecan was expressed by bACs only, indicating a predominantly trophic role for hMSCs. Collagen-10-gene expression of bACs was not affected by hBMSCs, but slightly enhanced by hAMSCs. After in-vivo implantation, hAMSC/bACs and hBMSC/bACs had similar cartilage matrix production, both appeared stable and did not calcify. This study demonstrates that replacing 80% of bACs by either hAMSCs or hBMSCs does not influence cartilage matrix production or stability. The remaining chondrocytes produce more matrix due to trophic factors produced by hMSCs.

  13. Adipose-Derived Mesenchymal Stem Cells for the Treatment of Articular Cartilage: A Systematic Review on Preclinical and Clinical Evidence

    Directory of Open Access Journals (Sweden)

    Francesco Perdisa

    2015-01-01

    Full Text Available Among the current therapeutic approaches for the regeneration of damaged articular cartilage, none has yet proven to offer results comparable to those of native hyaline cartilage. Recently, it has been claimed that the use of mesenchymal stem cells (MSCs provides greater regenerative potential than differentiated cells, such as chondrocytes. Among the different kinds of MSCs available, adipose-derived mesenchymal stem cells (ADSCs are emerging due to their abundancy and easiness to harvest. However, their mechanism of action and potential for cartilage regeneration are still under investigation, and many other aspects still need to be clarified. The aim of this systematic review is to give an overview of in vivo studies dealing with ADSCs, by summarizing the main evidence for the treatment of cartilage disease of the knee.

  14. Chondrogenic Differentiation of Defined Equine Mesenchymal Stem Cells Derived from Umbilical Cord Blood for Use in Cartilage Repair Therapy

    Directory of Open Access Journals (Sweden)

    Mélanie Desancé

    2018-02-01

    Full Text Available Cartilage engineering is a new strategy for the treatment of cartilage damage due to osteoarthritis or trauma in humans. Racehorses are exposed to the same type of cartilage damage and the anatomical, cellular, and biochemical properties of their cartilage are comparable to those of human cartilage, making the horse an excellent model for the development of cartilage engineering. Human mesenchymal stem cells (MSCs differentiated into chondrocytes with chondrogenic factors in a biomaterial appears to be a promising therapeutic approach for direct implantation and cartilage repair. Here, we characterized equine umbilical cord blood-derived MSCs (eUCB-MSCs and evaluated their potential for chondrocyte differentiation for use in cartilage repair therapy. Our results show that isolated eUCB-MSCs had high proliferative capacity and differentiated easily into osteoblasts and chondrocytes, but not into adipocytes. A three-dimensional (3D culture approach with the chondrogenic factors BMP-2 and TGF-β1 potentiated chondrogenic differentiation with a significant increase in cartilage-specific markers at the mRNA level (Col2a1, Acan, Snorc and the protein level (type II and IIB collagen without an increase in hypertrophic chondrocyte markers (Col10a1 and Mmp13 in normoxia and in hypoxia. However, these chondrogenic factors caused an increase in type I collagen, which can be reduced using small interfering RNA targeting Col1a2. This study provides robust data on MSCs characterization and demonstrates that eUCB-MSCs have a great potential for cartilage tissue engineering.

  15. Regulating Chondrogenesis of Human Mesenchymal Stromal Cells with a Retinoic Acid Receptor-Beta Inhibitor: Differential Sensitivity of Chondral Versus Osteochondral Development

    Directory of Open Access Journals (Sweden)

    Solvig Diederichs

    2014-05-01

    Full Text Available Aim: Main objective was to investigate whether the synthetic retinoic acid receptor (RAR-β antagonist LE135 is able to drive in vitro chondrogenesis of human mesenchymal stromal cells (MSCs or improve differentiation by suppressing hypertrophic chondrocyte development. Methods: Chondrogenesis of human bone marrow and adipose tissue-derived MSCs was induced in micromass pellet culture for six weeks. Effects of LE135 alone and in combinatorial treatment with TGF-β on deposition of cartilaginous matrix including collagen type II and glycosaminoglycans, on deposition of non-hyaline cartilage collagens type I and X, and on hypertrophy markers including alkaline phosphatase (ALP, indian hedghehog (IHH and matrix metalloproteinase (MMP-13 were assessed. Results: LE135 was no inducer of chondrogenesis and failed to stimulate deposition of collagen type II and glycosaminoglycans. Moreover, addition of LE135 to TGF-β-treated pellets inhibited cartilaginous matrix deposition and gene expression of COL2A1. In contrast, non-hyaline cartilage collagens were less sensitive to LE135 and hypertrophy markers remained unaffected. Conclusion: This demonstrates a differential sensitivity of chondral versus endochondral differentiation pathways to RARβ signaling; however, opposite to the desired direction. The relevance of trans-activating versus trans-repressing RAR signaling, including effects on activator protein (AP-1 is discussed and implications for overcoming current limits of hMSC chondrogenesis are considered.

  16. Regulating chondrogenesis of human mesenchymal stromal cells with a retinoic Acid receptor-Beta inhibitor: differential sensitivity of chondral versus osteochondral development.

    Science.gov (United States)

    Diederichs, Solvig; Zachert, Kerstin; Raiss, Patric; Richter, Wiltrud

    2014-01-01

    Main objective was to investigate whether the synthetic retinoic acid receptor (RAR)-β antagonist LE135 is able to drive in vitro chondrogenesis of human mesenchymal stromal cells (MSCs) or improve differentiation by suppressing hypertrophic chondrocyte development. Chondrogenesis of human bone marrow and adipose tissue-derived MSCs was induced in micromass pellet culture for six weeks. Effects of LE135 alone and in combinatorial treatment with TGF-β on deposition of cartilaginous matrix including collagen type II and glycosaminoglycans, on deposition of non-hyaline cartilage collagens type I and X, and on hypertrophy markers including alkaline phosphatase (ALP), indian hedghehog (IHH) and matrix metalloproteinase (MMP)-13 were assessed. LE135 was no inducer of chondrogenesis and failed to stimulate deposition of collagen type II and glycosaminoglycans. Moreover, addition of LE135 to TGF-β-treated pellets inhibited cartilaginous matrix deposition and gene expression of COL2A1. In contrast, non-hyaline cartilage collagens were less sensitive to LE135 and hypertrophy markers remained unaffected. This demonstrates a differential sensitivity of chondral versus endochondral differentiation pathways to RARβ signaling; however, opposite to the desired direction. The relevance of trans-activating versus trans-repressing RAR signaling, including effects on activator protein (AP)-1 is discussed and implications for overcoming current limits of hMSC chondrogenesis are considered. © 2014 S. Karger AG, Basel.

  17. A Human Amnion-Derived Extracellular Matrix-Coated Cell-Free Scaffold for Cartilage Repair: In Vitro and In Vivo Studies.

    Science.gov (United States)

    Nogami, Makiko; Kimura, Tomoatsu; Seki, Shoji; Matsui, Yoshito; Yoshida, Toshiko; Koike-Soko, Chika; Okabe, Motonori; Motomura, Hiraku; Gejo, Ryuichi; Nikaido, Toshio

    2016-04-01

    Extracellular matrix (ECM) derived from human amniotic mesenchymal cells (HAMs) has various biological activities. In this study, we developed a novel HAM-derived ECM-coated polylactic-co-glycolic acid (ECM-PLGA) scaffold, examined its property on mesenchymal cells, and investigated its potential as a cell-free scaffold for cartilage repair. ECM-PLGA scaffolds were developed by inoculating HAM on a PLGA. After decellularization by irradiation, accumulated ECM was examined. Exogenous cell growth and differentiation of rat mesenchymal stem cells (MSCs) on the ECM-PLGA were analyzed in vitro by cell attachment/proliferation assay and reverse transcription-polymerase chain reaction. The cell-free ECM-PLGA scaffolds were implanted into osteochondral defects in the trochlear groove of rat knees. After 4, 12, or 24 weeks, the animals were sacrificed and the harvested tissues were examined histologically. The ECM-PLGA contained ECM that mimicked natural amniotic stroma that contains type I collagen, fibronectin, hyaluronic acid, and chondroitin sulfates. The ECM-PLGA showed excellent properties of cell attachment and proliferation. MSCs inoculated on the ECM-PLGA scaffold showed accelerated type II collagen mRNA expression after 3 weeks in culture. The ECM-PLGA implanted into an osteochondral defect in rat knees induced gradual tissue regeneration and resulted in hyaline cartilage repair, which was better than that in the empty control group. These in vitro and in vivo experiments show that the cell-free scaffold composed of HAM-derived ECM and PLGA provides a favorable growth environment for MSCs and facilitates the cartilage repair process. The ECM-PLGA may become a "ready-made" biomaterial for cartilage repair therapy.

  18. Transplantation of dedifferentiated fat cell-derived micromass pellets contributed to cartilage repair in the rat osteochondral defect model.

    Science.gov (United States)

    Shimizu, Manabu; Matsumoto, Taro; Kikuta, Shinsuke; Ohtaki, Munenori; Kano, Koichiro; Taniguchi, Hiroaki; Saito, Shu; Nagaoka, Masahiro; Tokuhashi, Yasuaki

    2018-03-20

    Mature adipocyte-derived dedifferentiated fat (DFAT) cells possesses the ability to proliferate effectively and the potential to differentiate into multiple linages of mesenchymal tissue; similar to adipose-derived stem cells (ASCs). The purpose of this study is to examine the effects of DFAT cell transplantation on cartilage repair in a rat model of osteochondral defects. Full-thickness osteochondral defects were created in the knees of Sprague-Dawley rats bilaterally. Cartilage-like micromass pellets were prepared from green fluorescent protein (GFP)-labeled rat DFAT cells and subsequently transplanted into the affected right knee of these rats. Defects in the left knee were used as a control. Macroscopic and microscopic changes of treated and control defects were evaluated up to 12 weeks post-treatment with DFAT cells. To observe the transplanted cells, sectioned femurs were immunostained for GFP and type II collagen. DFAT cells formed micromass pellets expressing characteristics of immature cartilage in vitro. In the DFAT cell-transplanted limbs, the defects were completely filled with white micromass pellets as early as 2 weeks post-treatment. These limbs became smooth at 4 weeks. Conversely, the defects in the control limbs were still not repaired by 4 weeks. Macroscopic ICRS scores at 2 and 4 weeks were significantly higher in the DFAT cells-transplanted limbs compared to those of the control limbs. The modified O'Driscol histological scores for the DFAT cell-transplanted limbs were significantly higher than those of the control limbs at corresponding time points. GFP-positive DAFT cells were detected in the transplanted area at 2 weeks but hardly visible at 12 weeks post-operation. Transplantation of DFAT cell-derived micromass pellets contribute to cartilage repair in a rat osteochondral defect model. DFAT cell transplantation may be a viable therapeutic strategy for the repair of osteochondral injuries. Copyright © 2018 The Authors. Published by

  19. Intra-articular injection of synovium-derived mesenchymal stem cells and hyaluronic acid promote regeneration of massive cartilage defects in rabbits

    Directory of Open Access Journals (Sweden)

    Vyacheslav Ogay

    2014-01-01

    Full Text Available Introduction: The purpose of this study was to investigate whether intra-articular injection of synovium-derived mesenchymal stem cells (SD MSCs with low molecular weight hyaluronic acid (HA could promote regeneration of massive cartilage in rabbits. Material and methods: The SD MSCs were harvested from the knees of 10 Flemish giant rabbits, expanded in culture, and characterized. A reproducible 4-mm cylindrical defect was created in the intercondylar groove area using a kit for the mosaic chondroplasty of femoral condyle COR (De Puy, Mitek. The defect was made within the cartilage layer without destruction of subchondral bone. Two weeks after the cartilage defect, SD MSCs (2 × 106 cell/0.15 ml were suspended in 0.5% low molecular weight HA (0.15 ml and injected into the left knee, and HA solution (0.30 ml alone was placed into the right knee. Cartilage regeneration in the experimental and control groups were evaluated by macroscopically and histologically at 10, 30, and 60 days. Results: On day 10, after intra-articular injection of SD MSCs, we observed an early process of cartilage regeneration in the defect area. Histological studies revealed that cartilage defect was covered by a thin layer of spindle-shaped undifferentiated cells and proliferated chodroblasts. In contrast, an injection of HA did not induce reparation of cartilage in the defect area. At 30 days, macroscopic observation showed that the size of cartilage defect after SD MSC injection was significantly smaller than after HA injection. Histological score was also better in the MSC- treated intercondylar defect. At 60 days after MSC treatment, cartilage defect was nearly nonexistent and looked similar to an intact cartilage. Conclusion: Thus, intra-articular injection of SD MSCs can adhere to the defect in the intercondylar area, and promote cartilage regeneration in rabbits.

  20. Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells

    Directory of Open Access Journals (Sweden)

    W Ando

    2012-09-01

    Full Text Available The present study investigated the surface structure and mechanical properties of repair cartilage generated from a tissue engineered construct (TEC derived from synovial mesenchymal stem cells at six months post-implantation compared to those of uninjured cartilage. TEC-mediated repair tissue was cartilaginous with Safranin O staining, and had comparable macro-scale compressive properties with uninjured cartilage. However, morphological assessments revealed that the superficial zone of TEC-mediated tissue was more fibrocartilage-like, in contrast to the middle or deep zones that were more hyaline cartilage-like with Safranin O staining. Histological scoring of the TEC-mediated tissue was significantly lower in the superficial zone than in the middle and deep zones. Scanning electron microscopy showed a thick tangential bundle of collagen fibres at the most superficial layer of uninjured cartilage, while no corresponding structure was detected at the surface of TEC-mediated tissue. Immunohistochemical analysis revealed that PRG4 was localised in the superficial area of uninjured cartilage, as well as the TEC-mediated tissue. Friction testing showed that the lubrication properties of the two tissues was similar, however, micro-indentation analysis revealed that the surface stiffness of the TEC-repair tissue was significantly lower than that of uninjured cartilage. Permeability testing indicated that the TEC-mediated tissue exhibited lower water retaining capacity than did uninjured cartilage, specifically at the superficial zone. Thus, TEC-mediated tissue exhibited compromised mechanical properties at the superficial zone, properties which need improvement in the future for maintenance of long term repair cartilage integrity.

  1. Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells.

    Science.gov (United States)

    Ando, Wataru; Fujie, Hiromichi; Moriguchi, Yu; Nansai, Ryosuke; Shimomura, Kazunori; Hart, David A; Yoshikawa, Hideki; Nakamura, Norimasa

    2012-09-28

    The present study investigated the surface structure and mechanical properties of repair cartilage generated from a tissue engineered construct (TEC) derived from synovial mesenchymal stem cells at six months post-implantation compared to those of uninjured cartilage. TEC-mediated repair tissue was cartilaginous with Safranin O staining, and had comparable macro-scale compressive properties with uninjured cartilage. However, morphological assessments revealed that the superficial zone of TEC-mediated tissue was more fibrocartilage-like, in contrast to the middle or deep zones that were more hyaline cartilage-like with Safranin O staining. Histological scoring of the TEC-mediated tissue was significantly lower in the superficial zone than in the middle and deep zones. Scanning electron microscopy showed a thick tangential bundle of collagen fibres at the most superficial layer of uninjured cartilage, while no corresponding structure was detected at the surface of TEC-mediated tissue. Immunohistochemical analysis revealed that PRG4 was localised in the superficial area of uninjured cartilage, as well as the TEC-mediated tissue. Friction testing showed that the lubrication properties of the two tissues was similar, however, micro-indentation analysis revealed that the surface stiffness of the TEC-repair tissue was significantly lower than that of uninjured cartilage. Permeability testing indicated that the TEC-mediated tissue exhibited lower water retaining capacity than did uninjured cartilage, specifically at the superficial zone. Thus, TEC-mediated tissue exhibited compromised mechanical properties at the superficial zone, properties which need improvement in the future for maintenance of long term repair cartilage integrity.

  2. Cell factory-derived bioactive molecules with polymeric cryogel scaffold enhance the repair of subchondral cartilage defect in rabbits.

    Science.gov (United States)

    Gupta, Ankur; Bhat, Sumrita; Chaudhari, Bhushan P; Gupta, Kailash C; Tägil, Magnus; Zheng, Ming Hao; Kumar, Ashok; Lidgren, Lars

    2017-06-01

    We have explored the potential of cell factory-derived bioactive molecules, isolated from conditioned media of primary goat chondrocytes, for the repair of subchondral cartilage defects. Enzyme-linked immunosorbent assay (ELISA) confirms the presence of transforming growth factor-β1 in an isolated protein fraction (12.56 ± 1.15 ng/mg protein fraction). These bioactive molecules were used alone or with chitosan-agarose-gelatin cryogel scaffolds, with and without chondrocytes, to check whether combined approaches further enhance cartilage repair. To evaluate this, an in vivo study was conducted on New Zealand rabbits in which a subchondral defect (4.5 mm wide × 4.5 mm deep) was surgically created. Starting after the operation, bioactive molecules were injected at the defect site at regular intervals of 14 days. Histopathological analysis showed that rabbits treated with bioactive molecules alone had cartilage regeneration after 4 weeks. However, rabbits treated with bioactive molecules along with scaffolds, with or without cells, showed cartilage formation after 3 weeks; 6 weeks after surgery, the cartilage regenerated in rabbits treated with either bioactive molecules alone or in combinations showed morphological similarities to native cartilage. No systemic cytotoxicity or inflammatory response was induced by any of the treatments. Further, ELISA was done to determine systemic toxicity, which showed no difference in concentration of tumour necrosis factor-α in blood serum, before or after surgery. In conclusion, intra-articular injection with bioactive molecules alone may be used for the repair of subchondral cartilage defects, and bioactive molecules along with chondrocyte-seeded scaffolds further enhance the repair. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Suppression of MMP activity in bovine cartilage explants cultures has little if any effect on the release of aggrecanase-derived aggrecan fragments

    DEFF Research Database (Denmark)

    Wang, Bijue; Chen, Pingping; Jensen, Anne-Christine Bay

    2009-01-01

    BACKGROUND: Progressive loss of articular cartilage is a central hallmark in many joint disease, however, the relative importance of individual proteolytic pathways leading to cartilage erosion is at present unknown. We therefore investigated the time-dependant release ex vivo of MMP- and aggreca......BACKGROUND: Progressive loss of articular cartilage is a central hallmark in many joint disease, however, the relative importance of individual proteolytic pathways leading to cartilage erosion is at present unknown. We therefore investigated the time-dependant release ex vivo of MMP......- and aggrecanase-derived fragments of aggrecan and type II collagen into the supernatant of bovine cartilage explants cultures using neo-epitope specific immunoassays, and to associate the release of these fragments with the activity of proteolytic enzymes using inhibitors. FINDINGS: Bovine cartilage explants were...... cultured in the presence or absence of the catabolic cytokines oncostatin M (OSM) and tumor necrosis factor alpha (TNFalpha). In parallel, explants were co-cultured with protease inhibitors such as GM6001, TIMP1, TIMP2 and TIMP3. Fragments released into the supernatant were determined using a range of neo...

  4. Mesenchymal stem cells in cartilage regeneration.

    Science.gov (United States)

    Savkovic, Vuk; Li, Hanluo; Seon, Jong-Keun; Hacker, Michael; Franz, Sandra; Simon, Jan-Christoph

    2014-01-01

    Articular cartilage provides life-long weight-bearing and mechanical lubrication with extraordinary biomechanical performance and simple structure. However, articular cartilage is apparently vulnerable to multifactorial damage and insufficient to self-repair, isolated in articular capsule without nerves or blood vessels. Osteoarthritis (OA) is known as a degenerative articular cartilage deficiency progressively affecting large proportion of the world population, and restoration of hyaline cartilage is clinical challenge to repair articular cartilage lesion and recreate normal functionality over long period. Mesenchymal stem cells (MSC) are highly proliferative and multipotent somatic cells that are able to differentiate mesoderm-derived cells including chondrocytes and osteoblasts. Continuous endeavors in basic research and preclinical trial have achieved promising outcomes in cartilage regeneration using MSCs. This review focuses on rationale and technologies of MSC-based hyaline cartilage repair involving tissue engineering, 3D biomaterials and growth factors. By comparing conventional treatment and current research progress, we describe insights of advantage and challenge in translation and application of MSC-based chondrogenesis for OA treatment.

  5. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation.

    Science.gov (United States)

    Hamid, Adila A; Idrus, Ruszymah Bt Hj; Saim, Aminuddin Bin; Sathappan, Somasumdaram; Chua, Kien-Hui

    2012-01-01

    Understanding the changes in chondrogenic gene expression that are involved in the differentiation of human adipose-derived stem cells to chondrogenic cells is important prior to using this approach for cartilage repair. The aims of the study were to characterize human adipose-derived stem cells and to examine chondrogenic gene expression after one, two, and three weeks of induction. Human adipose-derived stem cells at passage 4 were evaluated by flow cytometry to examine the expression of surface markers. These adipose-derived stem cells were tested for adipogenic and osteogenic differentiation capacity. Ribonucleic acid was extracted from the cells for quantitative polymerase chain reaction analysis to determine the expression levels of chondrogenic genes after chondrogenic induction. Human adipose-derived stem cells were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen and successfully differentiated into adipogenic and osteogenic lineages. The human adipose-derived stem cells aggregated and formed a dense matrix after chondrogenic induction. The expression of chondrogenic genes (collagen type II, aggrecan core protein, collagen type XI, COMP, and ELASTIN) was significantly higher after the first week of induction. However, a significantly elevated expression of collagen type X was observed after three weeks of chondrogenic induction. Human adipose-derived stem cells retain stem cell characteristics after expansion in culture to passage 4 and serve as a feasible source of cells for cartilage regeneration. Chondrogenesis in human adipose-derived stem cells was most prominent after one week of chondrogenic induction.

  6. The effect of estrogen on the expression of cartilage-specific genes in the chondrogenesis process of adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Farzaneh Sadeghi

    2015-01-01

    Full Text Available Background: During adolescence, sex hormones play an important role in regulating proliferation, differentiation, maturation, and the scheduled death of chondrocytes. Although some studies have reported the regulatory role of estrogen in the development and progression of cartilage, some of the mechanisms still remain unclear, including the role of estrogen in the expression of cartilage-specific genes in chondrogenesis process, which we cover in this study. Materials and Methods: In the present study, we used adipose-derived stem cells (ADSCs to differentiate into cartilage. Differentiated cartilage cells were used in the control (without estrogen E2 in the culture medium and experimental (with estrogen in the culture medium groups to evaluate the expression of type II collagen and aggrecan as chondrogenic genes markers, with -real-time polymerase chain reaction technique. Results: Our results indicated that estrogen leads to inhibition of type II collagen gene expression and reduction of aggrecan gene expression. Conclusion: Therefore, estrogen probably has negative effects on chondrogenesis process of ADSCs.

  7. Natural Type II Collagen Hydrogel, Fibrin Sealant, and Adipose-Derived Stem Cells as a Promising Combination for Articular Cartilage Repair.

    Science.gov (United States)

    Lazarini, Mariana; Bordeaux-Rego, Pedro; Giardini-Rosa, Renata; Duarte, Adriana S S; Baratti, Mariana Ozello; Zorzi, Alessandro Rozim; de Miranda, João Batista; Lenz Cesar, Carlos; Luzo, Ângela; Olalla Saad, Sara Teresinha

    2017-10-01

    Objective Articular cartilage is an avascular tissue with limited ability of self-regeneration and the current clinical treatments have restricted capacity to restore damages induced by trauma or diseases. Therefore, new techniques are being tested for cartilage repair, using scaffolds and/or stem cells. Although type II collagen hydrogel, fibrin sealant, and adipose-derived stem cells (ASCs) represent suitable alternatives for cartilage formation, their combination has not yet been investigated in vivo for focal articular cartilage defects. We performed a simple experimental procedure using the combination of these 3 compounds on cartilage lesions of rabbit knees. Design The hydrogel was developed in house and was first tested in vitro for chondrogenic differentiation. Next, implants were performed in chondral defects with or without ASCs and the degree of regeneration was macroscopically and microscopically evaluated. Results Production of proteoglycans and the increased expression of collagen type II (COL2α1), aggrecan (ACAN), and sex-determining region Y-box 9 (SOX9) confirmed the chondrogenic character of ASCs in the hydrogel in vitro. Importantly, the addition of ASC induced a higher overall repair of the chondral lesions and a better cellular organization and collagen fiber alignment compared with the same treatment without ASCs. This regenerating tissue also presented the expression of cartilage glycosaminoglycan and type II collagen. Conclusions Our results indicate that the combination of the 3 compounds is effective for articular cartilage repair and may be of future clinical interest.

  8. Advances of human bone marrow-derived mesenchymal stem cells in the treatment of cartilage defects: a systematic review.

    Science.gov (United States)

    Gopal, Kaliappan; Amirhamed, Haji Alizadeh; Kamarul, Tunku

    2014-06-01

    Mesenchymal stem cell (MSC)-based therapies represent a new option for treating damaged cartilage. However, the outcomes following its clinical application have seldom been previously compared. The present paper presents the systematic review of current literatures on MSC-based therapy for cartilage repair in clinical applications. Ovid, Scopus, PubMed, ISI Web of Knowledge and Google Scholar online databases were searched using several keywords, which include "cartilage" and "stem cells". Only studies using bone marrow-derived MSC (BM-MSC) to treat cartilage defects clinically were included in this review. The clinical outcomes were compared, and the quality of the tissue repair was analysed where possible. Of the 996 articles, only six (n = 6) clinical studies have described the use of BM-MSC in clinical applications. Two studies were cohort observational trials, three were case series, and one was a case report. In the two comparative trials, BM-MSCs produced superior repair to cartilage treatment without cells and have comparable outcomes to autologous chondrocyte implantation. The case series and case-control studies have demonstrated that use of BM-MSCs resulted in better short- to long-term clinical outcomes with minimal complications. In addition, histological analyses in two studies have resulted in good repair tissue formation at the damaged site, composed mainly of hyaline-like cartilage. Although results of the respective studies are highly indicative that BM-MSC-based therapy is superior, due to the differences in methods and selection criteria used, it was not possible to make direct comparison between the studies. In conclusion, published studies do suggest that BM-MSCs could provide superior cartilage repair. However, due to limited number of reports, more robust studies might be required before a definitive conclusion can be drawn.

  9. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation

    Directory of Open Access Journals (Sweden)

    Adila A Hamid

    2012-01-01

    Full Text Available OBJECTIVES: Understanding the changes in chondrogenic gene expression that are involved in the differentiation of human adipose-derived stem cells to chondrogenic cells is important prior to using this approach for cartilage repair. The aims of the study were to characterize human adipose-derived stem cells and to examine chondrogenic gene expression after one, two, and three weeks of induction. MATERIALS AND METHODS: Human adipose-derived stem cells at passage 4 were evaluated by flow cytometry to examine the expression of surface markers. These adipose-derived stem cells were tested for adipogenic and osteogenic differentiation capacity. Ribonucleic acid was extracted from the cells for quantitative polymerase chain reaction analysis to determine the expression levels of chondrogenic genes after chondrogenic induction. RESULTS: Human adipose-derived stem cells were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen and successfully differentiated into adipogenic and osteogenic lineages. The human adipose-derived stem cells aggregated and formed a dense matrix after chondrogenic induction. The expression of chondrogenic genes (collagen type II, aggrecan core protein, collagen type XI, COMP, and ELASTIN was significantly higher after the first week of induction. However, a significantly elevated expression of collagen type X was observed after three weeks of chondrogenic induction. CONCLUSION: Human adipose-derived stem cells retain stem cell characteristics after expansion in culture to passage 4 and serve as a feasible source of cells for cartilage regeneration. Chondrogenesis in human adiposederived stem cells was most prominent after one week of chondrogenic induction.

  10. Progenitor cells in auricular cartilage demonstrate cartilage-forming capacity in 3D hydrogel culture

    Directory of Open Access Journals (Sweden)

    IA Otto

    2018-02-01

    Full Text Available Paramount for the generation of auricular structures of clinically-relevant size is the acquisition of a large number of cells maintaining an elastic cartilage phenotype, which is the key in producing a tissue capable of withstanding forces subjected to the auricle. Current regenerative medicine strategies utilize chondrocytes from various locations or mesenchymal stromal cells (MSCs. However, the quality of neo-tissues resulting from these cell types is inadequate due to inefficient chondrogenic differentiation and endochondral ossification, respectively. Recently, a subpopulation of stem/progenitor cells has been identified within the auricular cartilage tissue, with similarities to MSCs in terms of proliferative capacity and cell surface biomarkers, but their potential for tissue engineering has not yet been explored. This study compared the in vitro cartilage-forming ability of equine auricular cartilage progenitor cells (AuCPCs, bone marrow-derived MSCs and auricular chondrocytes in gelatin methacryloyl (gelMA-based hydrogels over a period of 56 d, by assessing their ability to undergo chondrogenic differentiation. Neocartilage formation was assessed through gene expression profiling, compression testing, biochemical composition and histology. Similar to MSCs and chondrocytes, AuCPCs displayed a marked ability to generate cartilaginous matrix, although, under the applied culture conditions, MSCs outperformed both cartilage-derived cell types in terms of matrix production and mechanical properties. AuCPCs demonstrated upregulated mRNA expression of elastin, low expression of collagen type X and similar levels of proteoglycan production and mechanical properties as compared to chondrocytes. These results underscored the AuCPCs’ tissue-specific differentiation potential, making them an interesting cell source for the next generation of elastic cartilage tissue-engineered constructs.

  11. Cartilage Repair Using Composites of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronic Acid Hydrogel in a Minipig Model.

    Science.gov (United States)

    Ha, Chul-Won; Park, Yong-Beom; Chung, Jun-Young; Park, Yong-Geun

    2015-09-01

    The cartilage regeneration potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) with a hyaluronic acid (HA) hydrogel composite has shown remarkable results in rat and rabbit models. The purpose of the present study was to confirm the consistent regenerative potential in a pig model using three different cell lines. A full-thickness chondral injury was intentionally created in the trochlear groove of each knee in 6 minipigs. Three weeks later, an osteochondral defect, 5 mm wide by 10 mm deep, was created, followed by an 8-mm-wide and 5-mm-deep reaming. A mixture (1.5 ml) of hUCB-MSCs (0.5×10(7) cells per milliliter) and 4% HA hydrogel composite was then transplanted into the defect on the right knee. Each cell line was used in two minipigs. The osteochondral defect created in the same manner on the left knee was untreated to act as the control. At 12 weeks postoperatively, the pigs were sacrificed, and the degree of subsequent cartilage regeneration was evaluated by gross and histological analysis. The transplanted knee resulted in superior and more complete hyaline cartilage regeneration compared with the control knee. The cellular characteristics (e.g., cellular proliferation and chondrogenic differentiation capacity) of the hUCB-MSCs influenced the degree of cartilage regeneration potential. This evidence of consistent cartilage regeneration using composites of hUCB-MSCs and HA hydrogel in a large animal model could be a stepping stone to a human clinical trial in the future. To date, several studies have investigated the chondrogenic potential of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs); however, the preclinical studies are still limited in numbers with various results. In parallel, in the past several years, the cartilage regeneration potential of hUCB-MSCs with a hyaluronic acid (HA) hydrogel composite have been investigated and remarkable results in rat and rabbit models have been attained. (These

  12. Programmed Application of Transforming Growth Factor β3 and Rac1 Inhibitor NSC23766 Committed Hyaline Cartilage Differentiation of Adipose-Derived Stem Cells for Osteochondral Defect Repair.

    Science.gov (United States)

    Zhu, Shouan; Chen, Pengfei; Wu, Yan; Xiong, Si; Sun, Heng; Xia, Qingqing; Shi, Libing; Liu, Huanhuan; Ouyang, Hong Wei

    2014-10-01

    Hyaline cartilage differentiation is always the challenge with application of stem cells for joint repair. Transforming growth factors (TGFs) and bone morphogenetic proteins can initiate cartilage differentiation but often lead to hypertrophy and calcification, related to abnormal Rac1 activity. In this study, we developed a strategy of programmed application of TGFβ3 and Rac1 inhibitor NSC23766 to commit the hyaline cartilage differentiation of adipose-derived stem cells (ADSCs) for joint cartilage repair. ADSCs were isolated and cultured in a micromass and pellet culture model to evaluate chondrogenic and hypertrophic differentiation. The function of Rac1 was investigated with constitutively active Rac1 mutant and dominant negative Rac1 mutant. The efficacy of ADSCs with programmed application of TGFβ3 and Rac1 inhibitor for cartilage repair was studied in a rat model of osteochondral defects. The results showed that TGFβ3 promoted ADSCs chondro-lineage differentiation and that NSC23766 prevented ADSC-derived chondrocytes from hypertrophy in vitro. The combination of ADSCs, TGFβ3, and NSC23766 promoted quality osteochondral defect repair in rats with much less chondrocytes hypertrophy and significantly higher International Cartilage Repair Society macroscopic and microscopic scores. The findings have illustrated that programmed application of TGFβ3 and Rac1 inhibitor NSC23766 can commit ADSCs to chondro-lineage differentiation and improve the efficacy of ADSCs for cartilage defect repair. These findings suggest a promising stem cell-based strategy for articular cartilage repair. ©AlphaMed Press.

  13. Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle development to changes in retinoic acid and IGF signaling.

    Directory of Open Access Journals (Sweden)

    Brenda L Bohnsack

    Full Text Available 1-Phenyl 2-thiourea (PTU is a tyrosinase inhibitor commonly used to block pigmentation and aid visualization of zebrafish development. At the standard concentration of 0.003% (200 µM, PTU inhibits melanogenesis and reportedly has minimal other effects on zebrafish embryogenesis. We found that 0.003% PTU altered retinoic acid and insulin-like growth factor (IGF regulation of neural crest and mesodermal components of craniofacial development. Reduction of retinoic acid synthesis by the pan-aldehyde dehydrogenase inhibitor diethylbenzaldehyde, only when combined with 0.003% PTU, resulted in extraocular muscle disorganization. PTU also decreased retinoic acid-induced teratogenic effects on pharyngeal arch and jaw cartilage despite morphologically normal appearing PTU-treated controls. Furthermore, 0.003% PTU in combination with inhibition of IGF signaling through either morpholino knockdown or pharmacologic inhibition of tyrosine kinase receptor phosphorylation, disrupted jaw development and extraocular muscle organization. PTU in and of itself inhibited neural crest development at higher concentrations (0.03% and had the greatest inhibitory effect when added prior to 22 hours post fertilization (hpf. Addition of 0.003% PTU between 4 and 20 hpf decreased thyroxine (T4 in thyroid follicles in the nasopharynx of 96 hpf embryos. Treatment with exogenous triiodothyronine (T3 and T4 improved, but did not completely rescue, PTU-induced neural crest defects. Thus, PTU should be used with caution when studying zebrafish embryogenesis as it alters the threshold of different signaling pathways important during craniofacial development. The effects of PTU on neural crest development are partially caused by thyroid hormone signaling.

  14. Retinoic Acid and Its Role in Modulating Intestinal Innate Immunity

    Directory of Open Access Journals (Sweden)

    Paulo Czarnewski

    2017-01-01

    Full Text Available Vitamin A (VA is amongst the most well characterized food-derived nutrients with diverse immune modulatory roles. Deficiency in dietary VA has not only been associated with immune dysfunctions in the gut, but also with several systemic immune disorders. In particular, VA metabolite all-trans retinoic acid (atRA has been shown to be crucial in inducing gut tropism in lymphocytes and modulating T helper differentiation. In addition to the widely recognized role in adaptive immunity, increasing evidence identifies atRA as an important modulator of innate immune cells, such as tolerogenic dendritic cells (DCs and innate lymphoid cells (ILCs. Here, we focus on the role of retinoic acid in differentiation, trafficking and the functions of innate immune cells in health and inflammation associated disorders. Lastly, we discuss the potential involvement of atRA during the plausible crosstalk between DCs and ILCs.

  15. Suppression of MMP activity in bovine cartilage explants cultures has little if any effect on the release of aggrecanase-derived aggrecan fragments

    Directory of Open Access Journals (Sweden)

    Sondergaard Bodil-Cecilie

    2009-12-01

    Full Text Available Abstract Background Progressive loss of articular cartilage is a central hallmark in many joint disease, however, the relative importance of individual proteolytic pathways leading to cartilage erosion is at present unknown. We therefore investigated the time-dependant release ex vivo of MMP- and aggrecanase-derived fragments of aggrecan and type II collagen into the supernatant of bovine cartilage explants cultures using neo-epitope specific immunoassays, and to associate the release of these fragments with the activity of proteolytic enzymes using inhibitors. Findings Bovine cartilage explants were cultured in the presence or absence of the catabolic cytokines oncostatin M (OSM and tumor necrosis factor alpha (TNFα. In parallel, explants were co-cultured with protease inhibitors such as GM6001, TIMP1, TIMP2 and TIMP3. Fragments released into the supernatant were determined using a range of neo-epitope specific immunoassays; (1 sandwich 342FFGVG-G2 ELISA, (2 competition NITEGE373ELISA (3 sandwich G1-NITEGE373 ELISA (4 competition 374ARGSV ELISA, and (5 sandwich 374ARGSV-G2 ELISA all detecting aggrecan fragments, and (6 sandwich CTX-II ELISA, detecting C-telopeptides of type II collagen. We found that (1 aggrecanase-derived aggrecan fragments are released in the early (day 2-7 and mid phase (day 9-14 into the supernatant from bovine explants cultures stimulated with catabolic cytokines, (2 the release of NITEGE373 neo-epitopes are delayed compared to the corresponding 374ARGSV fragments, (3 the MMP inhibitor GM6001 did not reduce the release of aggrecanase-derived fragment, but induced a further delay in the release of these fragments, and finally (4 the MMP-derived aggrecan and type II collagen fragments were released in the late phase (day 16-21 only. Conclusion Our data support the model, that aggrecanases and MMPs act independently in the processing of the aggrecan molecules, and furthermore that suppression of MMP-activity had little if

  16. Mastication markedly affects mandibular condylar cartilage growth, gene expression, and morphology.

    Science.gov (United States)

    Enomoto, Akiko; Watahiki, Junichi; Nampo, Tomoki; Irie, Tarou; Ichikawa, Yuuta; Tachikawa, Tetsuhiko; Maki, Koutaro

    2014-09-01

    Mandibular growth is believed to be strongly related to mastication. Furthermore, mandibular condylar cartilage is known to be derived from neural crest cells. We examined whether the degree of chewing affects condylar cartilage growth of the mandible. Mice were fed diets with varying hardness. Genes specific to neural crest-derived cells were measured by real-time polymerase chain reaction to compare the expression changes between the mandibular and tibia cartilages. The mandibular condylar cartilage was then evaluated histologically, and proliferation was evaluated using proliferating cell nuclear antigen. Immunostaining was conducted for osteopontin, type X collagen, and Musashi1, and real-time polymerase chain reaction was used to assess the expression levels of osteopontin and type X collagen. Markers including P75, Wnt-1, Musashi1, and Nestin were upregulated in the mandibular condylar cartilage as compared with the tibial cartilage. Histologic assessment of the mandibular cartilage showed that the hypertrophic chondrocyte zone was statistically significantly thicker in mice fed a hard diet. Chondrocyte proliferation and Musashi1 expression were lower in mice fed a hard diet. After 4 weeks, numerous osteopontin and type X collagen-positive cells were observed in mice fed a mixed diet. Mastication affects the balance between differentiation and proliferation in the mandibular condylar cartilage. This phenomenon might be attributed to the presence of neural crest-derived cells. Copyright © 2014 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  17. Cartilage quantification using contrast-enhanced MRI in the wrist of rheumatoid arthritis: cartilage loss is associated with bone marrow edema.

    Science.gov (United States)

    Fujimori, Motoshi; Nakamura, Satoko; Hasegawa, Kiminori; Ikeno, Kunihiro; Ichikawa, Shota; Sutherland, Kenneth; Kamishima, Tamotsu

    2017-08-01

    To quantify wrist cartilage using contrast MRI and compare with the extent of adjacent synovitis and bone marrow edema (BME) in patients with rheumatoid arthritis (RA). 18 patients with RA underwent post-contrast fat-suppressed T 1 weighted coronal imaging. Cartilage area at the centre of the scaphoid-capitate and radius-scaphoid joints was measured by in-house developed software. We defined cartilage as the pixels with signal intensity between two thresholds (lower: 0.4, 0.5 and 0.6 times the muscle signal, upper: 0.9, 1.0, 1.1, 1.2 and 1.3 times the muscle signal). We investigated the association of cartilage loss with synovitis and BME score derived from RA MRI scoring system. Cartilage area was correlated with BME score when thresholds were adequately set with lower threshold at 0.6 times the muscle signal and upper threshold at 1.2 times the muscle signal for both SC (r s =-0.469, p cartilage in the wrist and BME associated with cartilage loss in patients with RA. Advances in knowledge: Our software can quantify cartilage using conventional MR images of the wrist. BME is associated with cartilage loss in RA patients.

  18. Retinoic acid modulation of ultraviolet light-induced epidermal ornithine decarboxylase activity

    International Nuclear Information System (INIS)

    Lowe, N.J.; Breeding, J.

    1982-01-01

    Irradiation of skin with ultraviolet light of sunburn range (UVB) leads to a large and rapid induction of the polyamine biosynthetic enzyme ornithine decarboxylase in the epidermis. Induction of epidermal ornithine decarboxylase also occurs following application of the tumor promoting agent 12-0-tetradecanoylphorbol-13 acetate and topical retinoic acid is able to block both this ornithine decarboxylase induction and skin tumor promotion. In the studies described below, topical application of retinoic acid to hairless mouse skin leads to a significant inhibition of UVB-induced epidermal ornithine decarboxylase activity. The degree of this inhibition was dependent on the dose, timing, and frequency of the application of retinoic acid. To show significant inhibition of UVB-induced ornithine decarboxylase the retinoic acid had to be applied within 5 hr of UVB irradiation. If retinoic acid treatment was delayed beyond 7 hr following UVB, then no inhibition of UVB-induced ornithine decarboxylase was observed. The quantities of retinoic acid used (1.7 nmol and 3.4 nmol) have been shown effective at inhibiting 12-0-tetradecanoyl phorbol-13 acetate induced ornithine decarboxylase. The results show that these concentrations of topical retinoic acid applied either before or immediately following UVB irradiation reduces the UVB induction of epidermal ornithine decarboxylase. The effect of retinoic acid in these regimens on UVB-induced skin carcinogenesis is currently under study

  19. Adipose, Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair

    Science.gov (United States)

    Fellows, Christopher R.; Matta, Csaba; Zakany, Roza; Khan, Ilyas M.; Mobasheri, Ali

    2016-01-01

    Current cell-based repair strategies have proven unsuccessful for treating cartilage defects and osteoarthritic lesions, consequently advances in innovative therapeutics are required and mesenchymal stem cell-based (MSC) therapies are an expanding area of investigation. MSCs are capable of differentiating into multiple cell lineages and exerting paracrine effects. Due to their easy isolation, expansion, and low immunogenicity, MSCs are an attractive option for regenerative medicine for joint repair. Recent studies have identified several MSC tissue reservoirs including in adipose tissue, bone marrow, cartilage, periosteum, and muscle. MSCs isolated from these discrete tissue niches exhibit distinct biological activities, and have enhanced regenerative potentials for different tissue types. Each MSC type has advantages and disadvantages for cartilage repair and their use in a clinical setting is a balance between expediency and effectiveness. In this review we explore the challenges associated with cartilage repair and regeneration using MSC-based cell therapies and provide an overview of phenotype, biological activities, and functional properties for each MSC population. This paper also specifically explores the therapeutic potential of each type of MSC, particularly focusing on which cells are capable of producing stratified hyaline-like articular cartilage regeneration. Finally we highlight areas for future investigation. Given that patients present with a variety of problems it is unlikely that cartilage regeneration will be a simple “one size fits all,” but more likely an array of solutions that need to be applied systematically to achieve regeneration of a biomechanically competent repair tissue. PMID:28066501

  20. Adipose, Bone Marrow and Synovial Joint-derived Mesenchymal Stem Cells for Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Christopher Fellows

    2016-12-01

    Full Text Available Current cell-based repair strategies have proven unsuccessful for treating cartilage defects and osteoarthritic lesions, consequently advances in innovative therapeutics are required and mesenchymal stem cell-based (MSC therapies are an expanding area of investigation. MSCs are capable of differentiating into multiple cell lineages and exerting paracrine effects. Due to their easy isolation, expansion and low immunogenicity, MSCs are an attractive option for regenerative medicine for joint repair. Recent studies have identified several MSC tissue reservoirs including in adipose tissue, bone marrow, cartilage, periosteum and muscle. MSCs isolated from these discrete tissue niches exhibit distinct biological activities, and have enhanced regenerative potentials for different tissue types. Each MSC type has advantages and disadvantages for cartilage repair and their use in a clinical setting is a balance between expediency and effectiveness. In this review we explore the challenges associated with cartilage repair and regeneration using MSC-based cell therapies and provide an overview of phenotype, biological activities and functional properties for each MSC population. This paper also specifically explores the therapeutic potential of each type of MSC, particularly focusing on which cells are capable of producing stratified hyaline-like articular cartilage regeneration. Finally we highlight areas for future investigation. Given that patients present with a variety of problems it is unlikely that cartilage regeneration will be a simple ‘one size fits all’, but more likely an array of solutions that need to applied systematically to achieve regeneration of a biomechanically competent repair tissue.

  1. Microscopic and histochemical manifestations of hyaline cartilage dynamics.

    Science.gov (United States)

    Malinin, G I; Malinin, T I

    1999-01-01

    Structure and function of hyaline cartilages has been the focus of many correlative studies for over a hundred years. Much of what is known regarding dynamics and function of cartilage constituents has been derived or inferred from biochemical and electron microscopic investigations. Here we show that in conjunction with ultrastructural, and high-magnification transmission light and polarization microscopy, the well-developed histochemical methods are indispensable for the analysis of cartilage dynamics. Microscopically demonstrable aspects of cartilage dynamics include, but are not limited to, formation of the intracellular liquid crystals, phase transitions of the extracellular matrix and tubular connections between chondrocytes. The role of the interchondrocytic liquid crystals is considered in terms of the tensegrity hypothesis and non-apoptotic cell death. Phase transitions of the extracellular matrix are discussed in terms of self-alignment of chondrons, matrix guidance pathways and cartilage growth in the absence of mitosis. The possible role of nonenzymatic glycation reactions in cartilage dynamics is also reviewed.

  2. Repair of osteochondral defects in rabbits with ectopically produced cartilage

    NARCIS (Netherlands)

    Emans, PJ; Hulsbosch, M; Wetzels, GMR; Bulstra, SK; Kuijer, R

    2005-01-01

    Cartilage has poor regenerative capacity. Donor site morbidity and interference with joint homeostasis should be considered when applying the autologous chondrocyte transplantation technique. The use of ectopically produced cartilage, derived from periosteum, might be a novel method to heal

  3. Magnetic resonance imaging of cartilage and cartilage repair

    International Nuclear Information System (INIS)

    Verstraete, K.L.; Almqvist, F.; Verdonk, P.; Vanderschueren, G.; Huysse, W.; Verdonk, R.; Verbrugge, G.

    2004-01-01

    Magnetic resonance (MR) imaging of articular cartilage has assumed increased importance because of the prevalence of cartilage injury and degeneration, as well as the development of new surgical and pharmacological techniques to treat damaged cartilage. This article will review relevant aspects of the structure and biochemistry of cartilage that are important for understanding MR imaging of cartilage, describe optimal MR pulse sequences for its evaluation, and review the role of experimental quantitative MR techniques. These MR aspects are applied to clinical scenarios, including traumatic chondral injury, osteoarthritis, inflammatory arthritis, and cartilage repair procedures

  4. Magnetic resonance imaging of cartilage and cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Verstraete, K.L. E-mail: koenraad.verstraete@ugent.be; Almqvist, F.; Verdonk, P.; Vanderschueren, G.; Huysse, W.; Verdonk, R.; Verbrugge, G

    2004-08-01

    Magnetic resonance (MR) imaging of articular cartilage has assumed increased importance because of the prevalence of cartilage injury and degeneration, as well as the development of new surgical and pharmacological techniques to treat damaged cartilage. This article will review relevant aspects of the structure and biochemistry of cartilage that are important for understanding MR imaging of cartilage, describe optimal MR pulse sequences for its evaluation, and review the role of experimental quantitative MR techniques. These MR aspects are applied to clinical scenarios, including traumatic chondral injury, osteoarthritis, inflammatory arthritis, and cartilage repair procedures.

  5. In Vivo Tibial Cartilage Strains in Regions of Cartilage-to-Cartilage Contact and Cartilage-to-Meniscus Contact in Response to Walking.

    Science.gov (United States)

    Liu, Betty; Lad, Nimit K; Collins, Amber T; Ganapathy, Pramodh K; Utturkar, Gangadhar M; McNulty, Amy L; Spritzer, Charles E; Moorman, Claude T; Sutter, E Grant; Garrett, William E; DeFrate, Louis E

    2017-10-01

    There are currently limited human in vivo data characterizing the role of the meniscus in load distribution within the tibiofemoral joint. Purpose/Hypothesis: The purpose was to compare the strains experienced in regions of articular cartilage covered by the meniscus to regions of cartilage not covered by the meniscus. It was hypothesized that in response to walking, tibial cartilage covered by the meniscus would experience lower strains than uncovered tibial cartilage. Descriptive laboratory study. Magnetic resonance imaging (MRI) of the knees of 8 healthy volunteers was performed before and after walking on a treadmill. Using MRI-generated 3-dimensional models of the tibia, cartilage, and menisci, cartilage thickness was measured in 4 different regions based on meniscal coverage and compartment: covered medial, uncovered medial, covered lateral, and uncovered lateral. Strain was defined as the normalized change in cartilage thickness before and after activity. Within each compartment, covered cartilage before activity was significantly thinner than uncovered cartilage before activity ( P meniscus experiences lower strains than uncovered cartilage in the medial compartment. These findings provide important baseline information on the relationship between in vivo tibial compressive strain responses and meniscal coverage, which is critical to understanding normal meniscal function.

  6. The bio in the ink : cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells

    NARCIS (Netherlands)

    Levato, Riccardo; Webb, William R; Otto, Iris A; Mensinga, Anneloes; Zhang, Yadan; van Rijen, Mattie; van Weeren, P. René; Khan, Ilyas M.; Malda, Jos

    2017-01-01

    Cell-laden hydrogels are the primary building blocks for bioprinting, and, also termed bioinks, are the foundations for creating structures that can potentially recapitulate the architecture of articular cartilage. To be functional, hydrogel constructs need to unlock the regenerative capacity of

  7. Retinoic acid modulates chondrogenesis in the developing mouse cranial base.

    Science.gov (United States)

    Kwon, Hyuk-Jae; Shin, Jeong-Oh; Lee, Jong-Min; Cho, Kyoung-Won; Lee, Min-Jung; Cho, Sung-Won; Jung, Han-Sung

    2011-12-15

    The retinoic acid (RA) signaling pathway is known to play important roles during craniofacial development and skeletogenesis. However, the specific mechanism involving RA in cranial base development has not yet been clearly described. This study investigated how RA modulates endochondral bone development of the cranial base by monitoring the RA receptor RARγ, BMP4, and markers of proliferation, programmed cell death, chondrogenesis, and osteogenesis. We first examined the dynamic morphological and molecular changes in the sphenooccipital synchondrosis-forming region in the mouse embryo cranial bases at E12-E16. In vitro organ cultures employing beads soaked in RA and retinoid-signaling inhibitor citral were compared. In the RA study, the sphenooccipital synchondrosis showed reduced cartilage matrix and lower BMP4 expression while hypertrophic chondrocytes were replaced with proliferating chondrocytes. Retardation of chondrocyte hypertrophy was exhibited in citral-treated specimens, while BMP4 expression was slightly increased and programmed cell death was induced within the sphenooccipital synchondrosis. Our results demonstrate that RA modulates chondrocytes to proliferate, differentiate, or undergo programmed cell death during endochondral bone formation in the developing cranial base. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  8. Cartilage-selective genes identified in genome-scale analysis of non-cartilage and cartilage gene expression

    Directory of Open Access Journals (Sweden)

    Cohn Zachary A

    2007-06-01

    Full Text Available Abstract Background Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18–22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. Results 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. Conclusion Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.

  9. Retinoic acid, hemin and hexamethylen bisacetamide interference with "in vitro" differentiation of chick embryo chondrocytes.

    Science.gov (United States)

    Manduca, P; Abelmoschi, M L

    1992-01-01

    We have investigated the effect of all-trans Retinoic acid, and of substances (Hemine and Hexamethylene bisacetamide) which interfere with "in vitro" differentiation of mesenchyme derived cell lineages on the expression of specific markers of hyperthrophy in "in vitro" differentiating chick embryo chondrocytes. (Castagnola P., et al., 1986). Continuous treatment of chondrogenic cells in conditions allowing differentiation "in vitro" with Retinoic acid resulted in persistence of type I collagen synthesis and in lack of type X collagen and Ch 21 protein expression. Hemin treated cells secreted a reduced amount of type X collagen. HMBA treatment inhibited type X collagen expression and caused reduction of the ratio between type II collagen and Ch 21 synthesized. The data indicate an independent regulation of these markers during chondrocyte differentiation.

  10. From gristle to chondrocyte transplantation: treatment of cartilage injuries.

    Science.gov (United States)

    Lindahl, Anders

    2015-10-19

    This review addresses the progress in cartilage repair technology over the decades with an emphasis on cartilage regeneration with cell therapy. The most abundant cartilage is the hyaline cartilage that covers the surface of our joints and, due to avascularity, this tissue is unable to repair itself. The cartilage degeneration seen in osteoarthritis causes patient suffering and is a huge burden to society. The surgical approach to cartilage repair was non-existing until the 1950s when new surgical techniques emerged. The use of cultured cells for cell therapy started as experimental studies in the 1970s that developed over the years to a clinical application in 1994 with the introduction of the autologous chondrocyte transplantation technique (ACT). The technology is now spread worldwide and has been further refined by combining arthroscopic techniques with cells cultured on matrix (MACI technology). The non-regenerating hypothesis of cartilage has been revisited and we are now able to demonstrate cell divisions and presence of stem-cell niches in the joint. Furthermore, cartilage derived from human embryonic stem cells and induced pluripotent stem cells could be the base for new broader cell treatments for cartilage injuries and the future technology base for prevention and cure of osteoarthritis. © 2015 The Author(s).

  11. From gristle to chondrocyte transplantation: treatment of cartilage injuries

    Science.gov (United States)

    Lindahl, Anders

    2015-01-01

    This review addresses the progress in cartilage repair technology over the decades with an emphasis on cartilage regeneration with cell therapy. The most abundant cartilage is the hyaline cartilage that covers the surface of our joints and, due to avascularity, this tissue is unable to repair itself. The cartilage degeneration seen in osteoarthritis causes patient suffering and is a huge burden to society. The surgical approach to cartilage repair was non-existing until the 1950s when new surgical techniques emerged. The use of cultured cells for cell therapy started as experimental studies in the 1970s that developed over the years to a clinical application in 1994 with the introduction of the autologous chondrocyte transplantation technique (ACT). The technology is now spread worldwide and has been further refined by combining arthroscopic techniques with cells cultured on matrix (MACI technology). The non-regenerating hypothesis of cartilage has been revisited and we are now able to demonstrate cell divisions and presence of stem-cell niches in the joint. Furthermore, cartilage derived from human embryonic stem cells and induced pluripotent stem cells could be the base for new broader cell treatments for cartilage injuries and the future technology base for prevention and cure of osteoarthritis. PMID:26416680

  12. Vascular Canals in Permanent Hyaline Cartilage: Development, Corrosion of Nonmineralized Cartilage Matrix, and Removal of Matrix Degradation Products.

    Science.gov (United States)

    Gabner, Simone; Häusler, Gabriele; Böck, Peter

    2017-06-01

    Core areas in voluminous pieces of permanent cartilage are metabolically supplied via vascular canals (VCs). We studied cartilage corrosion and removal of matrix degradation products during the development of VCs in nose and rib cartilage of piglets. Conventional staining methods were used for glycosaminoglycans, immunohistochemistry was performed to demonstrate collagens types I and II, laminin, Ki-67, von Willebrand factor, VEGF, macrophage marker MAC387, S-100 protein, MMPs -2,-9,-13,-14, and their inhibitors TIMP1 and TIMP2. VCs derived from connective tissue buds that bulged into cartilage matrix ("perichondrial papillae", PPs). Matrix was corroded at the tips of PPs or resulting VCs. Connective tissue stromata in PPs and VCs comprised an axial afferent blood vessel, peripherally located wide capillaries, fibroblasts, newly synthesized matrix, and residues of corroded cartilage matrix (collagen type II, acidic proteoglycans). Multinucleated chondroclasts were absent, and monocytes/macrophages were not seen outside the blood vessels. Vanishing acidity characterized areas of extracellular matrix degradation ("preresorptive layers"), from where the dismantled matrix components diffused out. Leached-out material stained in an identical manner to intact cartilage matrix. It was detected in the stroma and inside capillaries and associated downstream veins. We conclude that the delicate VCs are excavated by endothelial sprouts and fibroblasts, whilst chondroclasts are specialized to remove high volumes of mineralized cartilage. VCs leading into permanent cartilage can be formed by corrosion or inclusion, but most VCs comprise segments that have developed in either of these ways. Anat Rec, 300:1067-1082, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Neonatal Desensitization Supports Long-Term Survival and Functional Integration of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells in Rat Joint Cartilage Without Immunosuppression

    Science.gov (United States)

    Zhang, Shufang; Jiang, Yang Zi; Zhang, Wei; Chen, Longkun; Tong, Tong; Liu, Wanlu; Mu, Qin; Liu, Hua; Ji, Junfeng; Ouyang, Hong Wei

    2013-01-01

    Immunological response hampers the investigation of human embryonic stem cells (hESCs) or their derivates for tissue regeneration in vivo. Immunosuppression is often used after surgery, but exhibits side effects of significant weight loss and allows only short-term observation. The purpose of this study was to investigate whether neonatal desensitization supports relative long-term survival of hESC-derived mesenchymal stem cells (hESC-MSCs) and promotes cartilage regeneration. hESC-MSCs were injected on the day of birth in rats. Six weeks after neonatal injection, a full-thickness cylindrical cartilage defect was created and transplanted with a hESC-MSC-seeded collagen bilayer scaffold (group d+s+c) or a collagen bilayer scaffold (group d+s). Rats without neonatal injection were transplanted with the hESC-MSC-seeded collagen bilayer scaffold to serve as controls (group s+c). Cartilage regeneration was evaluated by histological analysis, immunohistochemical staining, and biomechanical test. The role of hESC-MSCs in cartilage regeneration was analyzed by CD4 immunostaining, cell death detection, and visualization of human cells in regenerated tissues. hESC-MSCs expressed CD105, CD73, CD90, CD29, and CD44, but not CD45 and CD34, and possessed trilineage differentiation potential. Group d+s+c exhibited greater International Cartilage Repair Society (ICRS) scores than group d+s or group s+c. Abundant collagen type II and improved mechanical properties were detected in group d+s+c. There were less CD4+ inflammatory cell infiltration and cell death at week 1, and hESC-MSCs were found to survive as long as 8 weeks after transplantation in group d+s+c. Our study suggests that neonatal desensitization before transplantation may be an efficient way to develop a powerful tool for preclinical study of human cell-based therapies in animal models. PMID:22788986

  14. Cartilage extracellular matrix as a biomaterial for cartilage regeneration.

    Science.gov (United States)

    Kiyotake, Emi A; Beck, Emily C; Detamore, Michael S

    2016-11-01

    The extracellular matrix (ECM) of various tissues possesses the model characteristics that biomaterials for tissue engineering strive to mimic; however, owing to the intricate hierarchical nature of the ECM, it has yet to be fully characterized and synthetically fabricated. Cartilage repair remains a challenge because the intrinsic properties that enable its durability and long-lasting function also impede regeneration. In the last decade, cartilage ECM has emerged as a promising biomaterial for regenerating cartilage, partly because of its potentially chondroinductive nature. As this research area of cartilage matrix-based biomaterials emerged, investigators facing similar challenges consequently developed convergent solutions in constructing robust and bioactive scaffolds. This review discusses the challenges, emerging trends, and future directions of cartilage ECM scaffolds, including a comparison between two different forms of cartilage matrix: decellularized cartilage (DCC) and devitalized cartilage (DVC). To overcome the low permeability of cartilage matrix, physical fragmentation greatly enhances decellularization, although the process itself may reduce the chondroinductivity of fabricated scaffolds. The less complex processing of a scaffold composed of DVC, which has not been decellularized, appears to have translational advantages and potential chondroinductive and mechanical advantages over DCC, without detrimental immunogenicity, to ultimately enhance cartilage repair in a clinically relevant way. © 2016 New York Academy of Sciences.

  15. Comparison of Regenerative Tissue Quality following Matrix-Associated Cell Implantation Using Amplified Chondrocytes Compared to Synovium-Derived Stem Cells in a Rabbit Model for Cartilage Lesions

    DEFF Research Database (Denmark)

    Schmal, Hagen; Kowal, Justyna M; Kassem, Moustapha

    2018-01-01

    Known problems of the autologous chondrocyte implantation motivate the search for cellular alternatives. The aim of the study was to test the potential of synovium-derived stem cells (SMSC) to regenerate cartilage using a matrix-associated implantation. In an osteochondral defect model of the med......Known problems of the autologous chondrocyte implantation motivate the search for cellular alternatives. The aim of the study was to test the potential of synovium-derived stem cells (SMSC) to regenerate cartilage using a matrix-associated implantation. In an osteochondral defect model...... of the medial femoral condyle in a rabbit, a collagen membrane was seeded with either culture-expanded allogenic chondrocytes or SMSC and then transplanted into the lesion. A tailored piece synovium served as a control. Rabbit SMSC formed typical cartilage in vitro. Macroscopic evaluation of defect healing...... and the thickness of the regenerated tissue did not reveal a significant difference between the intervention groups. However, instantaneous and shear modulus, reflecting the biomechanical strength of the repair tissue, was superior in the implantation group using allogenic chondrocytes (p

  16. A Dual Role of Upper Zone of Growth Plate and Cartilage Matrix-Associated Protein in Human and Mouse Osteoarthritic Cartilage: Inhibition of Aggrecanases and Promotion of Bone Turnover

    NARCIS (Netherlands)

    Stock, M.; Menges, S.; Eitzinger, N.; Gesslein, M.; Botschner, R.; Wormser, L.; Distler, A.; Schlotzer-Schrehardt, U.; Dietel, K.; Distler, J.; Beyer, C.; Gelse, K.; Engelke, K.; Koenders, M.I.; Berg, W.B. van den; Mark, K. von der; Schett, G.

    2017-01-01

    OBJECTIVE: Cartilage damage and subchondral bone changes are closely connected in osteoarthritis. Nevertheless, how these processes are interlinked is, to date, incompletely understood. This study was undertaken to investigate the mechanistic role of a cartilage-derived protein, upper zone of growth

  17. The junction between hyaline cartilage and engineered cartilage in rabbits.

    Science.gov (United States)

    Komura, Makoto; Komura, Hiroko; Otani, Yushi; Kanamori, Yutaka; Iwanaka, Tadashi; Hoshi, Kazuto; Tsuyoshi, Takato; Tabata, Yasuhiko

    2013-06-01

    Tracheoplasty using costal cartilage grafts to enlarge the tracheal lumen was performed to treat congenital tracheal stenosis. Fibrotic granulomatous tissue was observed at the edge of grafted costal cartilage. We investigated the junction between the native hyaline cartilage and the engineered cartilage plates that were generated by auricular chondrocytes for fabricating the airway. Controlled, prospecive study. In group 1, costal cartilage from New Zealand white rabbits was collected and implanted into a space created in the cervical trachea. In group 2, chondrocytes from auricular cartilages were seeded on absorbable scaffolds. These constructs were implanted in the subcutaneous space. Engineered cartilage plates were then implanted into the trachea after 3 weeks of implantation of the constructs. The grafts in group 1 and 2 were retrieved after 4 weeks. In group 1, histological studies of the junction between the native hyaline cartilage and the implanted costal cartilage demonstrated chondrogenic tissue in four anastomoses sides out of the 10 examined. In group 2, the junction between the native trachea and the engineered cartilage showed neocartilage tissue in nine anastomoses sides out of 10. Engineered cartilage may be beneficial for engineered airways, based on the findings of the junction between the native and engineered grafts. Copyright © 2012 The American Laryngological, Rhinological and Otological Society, Inc.

  18. New discovery of cryptorchidism: Decreased retinoic acid in testicle

    Directory of Open Access Journals (Sweden)

    Jinpu Peng

    2016-05-01

    Full Text Available This study focuses on investigation of cryptorchidism induced by flutamide (Flu and its histopathological damage, and detects retinoic acid concentration in testicle tissue, in order to find a new method for clinical treatment to infertility caused by cryptorchidism. Twenty SD (Sprague Dawley pregnant rats were randomly divided into Flu cryptorchidism group (n = 10 and normal control group (n = 10. HE stained for observing morphological difference. Transmission electron microscope (TEM was used for observing the tight junction structure between Sertoli cells. Epididymal caudal sperms were counted and observed in morphology. The expression of stimulated by retinoic acid gene 8 (Stra8 was detected using immunohistochemistry, western blot, and Q-PCR. High performance liquid chromatography (HPLC analysis was made on retinoic acid content. Sperm count and morphology observation confirmed cryptorchidism group was lower than normal group in sperm quantity and quality. The observation by TEM showed a loose structure of tight junctions between Sertoli cells. Immunohistochemistry, western blot, and Q-PCR showed that cryptorchidism group was significantly lower than normal group in the expression of Stra8. HPLC showed that retinoic acid content was significantly lower in cryptorchid testis than in normal testis. In the cryptorchidism model, retinoic acid content in testicular tissue has a significant reduction; testicles have significant pathological changes; damage exists in the structure of tight junctions between Sertoli cells; Stra8 expression has a significant reduction, perhaps mainly contributing to spermatogenesis disorder.

  19. Regional differentiation of retinoic acid-induced human pluripotent embryonic carcinoma stem cell neurons.

    Directory of Open Access Journals (Sweden)

    Dennis E Coyle

    Full Text Available The NTERA2 cl D1 (NT2 cell line, derived from human teratocarcinoma, exhibits similar properties as embryonic stem (ES cells or very early neuroepithelial progenitors. NT2 cells can be induced to become postmitotic central nervous system neurons (NT2N with retinoic acid. Although neurons derived from pluripotent cells, such as NT2N, have been characterized for their neurotransmitter phenotypes, their potential suitability as a donor source for neural transplantation also depends on their ability to respond to localized environmental cues from a specific region of the CNS. Therefore, our study aimed to characterize the regional transcription factors that define the rostocaudal and dorsoventral identity of NT2N derived from a monolayer differentiation paradigm using quantitative PCR (qPCR. Purified NT2N mainly expressed both GABAergic and glutamatergic phenotypes and were electrically active but did not form functional synapses. The presence of immature astrocytes and possible radial glial cells was noted. The NT2N expressed a regional transcription factor code consistent with forebrain, hindbrain and spinal cord neural progenitors but showed minimal expression of midbrain phenotypes. In the dorsoventral plane NT2N expressed both dorsal and ventral neural progenitors. Of major interest was that even under the influence of retinoic acid, a known caudalization factor, the NT2N population maintained a rostral phenotype subpopulation which expressed cortical regional transcription factors. It is proposed that understanding the regional differentiation bias of neurons derived from pluripotent stem cells will facilitate their successful integration into existing neuronal networks within the CNS.

  20. Which cartilage is regenerated, hyaline cartilage or fibrocartilage? Non-invasive ultrasonic evaluation of tissue-engineered cartilage.

    Science.gov (United States)

    Hattori, K; Takakura, Y; Ohgushi, H; Habata, T; Uematsu, K; Takenaka, M; Ikeuchi, K

    2004-09-01

    To investigate ultrasonic evaluation methods for detecting whether the repair tissue is hyaline cartilage or fibrocartilage in new cartilage regeneration therapy. We examined four experimental rabbit models: a spontaneous repair model (group S), a large cartilage defect model (group L), a periosteal graft model (group P) and a tissue-engineered cartilage regeneration model (group T). From the resulting ultrasonic evaluation, we used %MM (the maximum magnitude of the measurement area divided by that of the intact cartilage) as a quantitative index of cartilage regeneration. The results of the ultrasonic evaluation were compared with the histological findings and histological score. The %MM values were 61.1 +/- 16.5% in group S, 29.8 +/- 15.1% in group L, 36.3 +/- 18.3% in group P and 76.5 +/- 18.7% in group T. The results showed a strong similarity to the histological scoring. The ultrasonic examination showed that all the hyaline-like cartilage in groups S and T had a high %MM (more than 60%). Therefore, we could define the borderline between the two types of regenerated cartilage by the %MM.

  1. The anti-catabolic role of bovine lactoferricin in cartilage.

    Science.gov (United States)

    Ahmadinia, Kasra; Yan, Dongyao; Ellman, Michael; Im, Hee-Jeong

    2013-10-01

    Bovine lactoferricin (LfcinB) is a multifunctional peptide derived from bovine lactoferrin that demonstrates antibacterial, antifungal, antiviral, antitumor, and immunomodulatory activities. Recently, studies have focused on the anti-catabolic and anti-inflammatory potential of LfcinB. LfcinB is able to modulate the effects cytokines such as IL-1 and fibroblast growth factor 2 as well as promote specific cartilage anabolic factors. These properties are particularly important in maintaining cartilage homeostasis and preventing a catabolic state, which leads to clinical pathology. This review focuses on the recent literature elucidating the role of LfcinB in preventing cartilage degradation.

  2. Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses.

    Science.gov (United States)

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B; Sureshkumar, Chitta; Manna, Sunil K

    2011-02-11

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies.

  3. Azadirachtin Interacts with Retinoic Acid Receptors and Inhibits Retinoic Acid-mediated Biological Responses*

    Science.gov (United States)

    Thoh, Maikho; Babajan, Banaganapalli; Raghavendra, Pongali B.; Sureshkumar, Chitta; Manna, Sunil K.

    2011-01-01

    Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. The extract of the medicinal plant Neem (Azadirachta indica) is used against several ailments especially for anti-inflammatory, anti-itching, spermicidal, anticancer, and insecticidal activities. In this report we prove the detailed mechanism on the regulation of retinoic acid-mediated cell signaling by azadirachtin, active components of neem extract. Azadirachtin repressed all trans-retinoic acid (ATRA)-mediated nuclear transcription factor κB (NF-κB) activation, not the DNA binding but the NF-κB-dependent gene expression. It did not inhibit IκBα degradation, IκBα kinase activity, or p65 phosphorylation and its nuclear translocation but inhibited NF-κB-dependent reporter gene expression. Azadirachtin inhibited TRAF6-mediated, but not TRAF2-mediated NF-κB activation. It inhibited ATRA-induced Sp1 and CREB (cAMP-response element-binding protein) DNA binding. Azadirachtin inhibited ATRA binding with retinoid receptors, which is supported by biochemical and in silico evidences. Azadirachtin showed strong interaction with retinoid receptors. It suppressed ATRA-mediated removal of retinoid receptors, bound with DNA by inhibiting ATRA binding to its receptors. Overall, our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors, and activates transcription factors like CREB, Sp1, NF-κB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway that would be beneficial for further anti-inflammatory and anti-cancer therapies. PMID:21127062

  4. The effects of dynamic compression on the development of cartilage grafts engineered using bone marrow and infrapatellar fat pad derived stem cells.

    Science.gov (United States)

    Luo, Lu; Thorpe, Stephen D; Buckley, Conor T; Kelly, Daniel J

    2015-09-21

    Bioreactors that subject cell seeded scaffolds or hydrogels to biophysical stimulation have been used to improve the functionality of tissue engineered cartilage and to explore how such constructs might respond to the application of joint specific mechanical loading. Whether a particular cell type responds appropriately to physiological levels of biophysical stimulation could be considered a key determinant of its suitability for cartilage tissue engineering applications. The objective of this study was to determine the effects of dynamic compression on chondrogenesis of stem cells isolated from different tissue sources. Porcine bone marrow (BM) and infrapatellar fat pad (FP) derived stem cells were encapsulated in agarose hydrogels and cultured in a chondrogenic medium in free swelling (FS) conditions for 21 d, after which samples were subjected to dynamic compression (DC) of 10% strain (1 Hz, 1 h d(-1)) for a further 21 d. Both BM derived stem cells (BMSCs) and FP derived stem cells (FPSCs) were capable of generating cartilaginous tissues with near native levels of sulfated glycosaminoglycan (sGAG) content, although the spatial development of the engineered grafts strongly depended on the stem cell source. The mechanical properties of cartilage grafts generated from both stem cell sources also approached that observed in skeletally immature animals. Depending on the stem cell source and the donor, the application of DC either enhanced or had no significant effect on the functional development of cartilaginous grafts engineered using either BMSCs or FPSCs. BMSC seeded constructs subjected to DC stained less intensely for collagen type I. Furthermore, histological and micro-computed tomography analysis showed mineral deposition within BMSC seeded constructs was suppressed by the application of DC. Therefore, while the application of DC in vitro may only lead to modest improvements in the mechanical functionality of cartilaginous grafts, it may play an important

  5. The effects of dynamic compression on the development of cartilage grafts engineered using bone marrow and infrapatellar fat pad derived stem cells

    International Nuclear Information System (INIS)

    Luo, Lu; Buckley, Conor T; Kelly, Daniel J; Thorpe, Stephen D

    2015-01-01

    Bioreactors that subject cell seeded scaffolds or hydrogels to biophysical stimulation have been used to improve the functionality of tissue engineered cartilage and to explore how such constructs might respond to the application of joint specific mechanical loading. Whether a particular cell type responds appropriately to physiological levels of biophysical stimulation could be considered a key determinant of its suitability for cartilage tissue engineering applications. The objective of this study was to determine the effects of dynamic compression on chondrogenesis of stem cells isolated from different tissue sources. Porcine bone marrow (BM) and infrapatellar fat pad (FP) derived stem cells were encapsulated in agarose hydrogels and cultured in a chondrogenic medium in free swelling (FS) conditions for 21 d, after which samples were subjected to dynamic compression (DC) of 10% strain (1 Hz, 1 h d −1 ) for a further 21 d. Both BM derived stem cells (BMSCs) and FP derived stem cells (FPSCs) were capable of generating cartilaginous tissues with near native levels of sulfated glycosaminoglycan (sGAG) content, although the spatial development of the engineered grafts strongly depended on the stem cell source. The mechanical properties of cartilage grafts generated from both stem cell sources also approached that observed in skeletally immature animals. Depending on the stem cell source and the donor, the application of DC either enhanced or had no significant effect on the functional development of cartilaginous grafts engineered using either BMSCs or FPSCs. BMSC seeded constructs subjected to DC stained less intensely for collagen type I. Furthermore, histological and micro-computed tomography analysis showed mineral deposition within BMSC seeded constructs was suppressed by the application of DC. Therefore, while the application of DC in vitro may only lead to modest improvements in the mechanical functionality of cartilaginous grafts, it may play an important

  6. Insights from amphioxus into the evolution of vertebrate cartilage.

    Directory of Open Access Journals (Sweden)

    Daniel Meulemans

    2007-08-01

    Full Text Available Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm.

  7. Hyaline cartilage formation and tumorigenesis of implanted tissues derived from human induced pluripotent stem cells.

    Science.gov (United States)

    Saito, Taku; Yano, Fumiko; Mori, Daisuke; Kawata, Manabu; Hoshi, Kazuto; Takato, Tsuyoshi; Masaki, Hideki; Otsu, Makoto; Eto, Koji; Nakauchi, Hiromitsu; Chung, Ung-il; Tanaka, Sakae

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are a promising cell source for cartilage regenerative medicine. Meanwhile, the risk of tumorigenesis should be considered in the clinical application of human iPSCs (hiPSCs). Here, we report in vitro chondrogenic differentiation of hiPSCs and maturation of the differentiated hiPSCs through transplantation into mouse knee joints. Three hiPSC clones showed efficient chondrogenic differentiation using an established protocol for human embryonic stem cells. The differentiated hiPSCs formed hyaline cartilage tissues at 8 weeks after transplantation into the articular cartilage of NOD/SCID mouse knee joints. Although tumors were not observed during the 8 weeks after transplantation, an immature teratoma had developed in one mouse at 16 weeks. In conclusion, hiPSCs are a potent cell source for regeneration of hyaline articular cartilage. However, the risk of tumorigenesis should be managed for clinical application in the future.

  8. In Vitro Expression of the Extracellular Matrix Components Aggrecan, Collagen Types I and II by Articular Cartilage-Derived Chondrocytes.

    Science.gov (United States)

    Schneevoigt, J; Fabian, C; Leovsky, C; Seeger, J; Bahramsoltani, M

    2017-02-01

    The extracellular matrix (ECM) of hyaline cartilage is perfectly suited to transmit articular pressure load to the subchondral bone. Pressure is transferred by a high amount of aggrecan-based proteoglycans and collagen type II fibres in particular. After any injury, the hyaline cartilage is replaced by fibrocartilage, which is low in proteoglycans and contains collagen type I predominantly. Until now, long-term results of therapeutic procedures including cell-based therapies like autologous chondrocyte transplantation (ACT) lead to a replacement tissue meeting the composition of fibrocartilage. Therefore, it is of particular interest to discover how and to what extent isolation and in vitro cultivation of chondrocytes affect the cells and their expression of ECM components. Hyaline cartilage-derived chondrocytes were cultivated in vitro and observed microscopically over a time period of 35 days. The expression of collagen type I, collagen type II and aggrecan was analysed using RT-qPCR and Western blot at several days of cultivation. Chondrocytes presented a longitudinal shape for the entire cultivation period. While expression of collagen type I prevailed within the first days, only prolonged cultivation led to an increase in collagen type II and aggrecan expression. The results indicate that chondrocyte isolation and in vitro cultivation lead to a dedifferentiation at least to the stage of chondroprogenitor cells. © 2016 Blackwell Verlag GmbH.

  9. Development of a computational technique to measure cartilage contact area.

    Science.gov (United States)

    Willing, Ryan; Lapner, Michael; Lalone, Emily A; King, Graham J W; Johnson, James A

    2014-03-21

    Computational measurement of joint contact distributions offers the benefit of non-invasive measurements of joint contact without the use of interpositional sensors or casting materials. This paper describes a technique for indirectly measuring joint contact based on overlapping of articular cartilage computer models derived from CT images and positioned using in vitro motion capture data. The accuracy of this technique when using the physiological nonuniform cartilage thickness distribution, or simplified uniform cartilage thickness distributions, is quantified through comparison with direct measurements of contact area made using a casting technique. The efficacy of using indirect contact measurement techniques for measuring the changes in contact area resulting from hemiarthroplasty at the elbow is also quantified. Using the physiological nonuniform cartilage thickness distribution reliably measured contact area (ICC=0.727), but not better than the assumed bone specific uniform cartilage thicknesses (ICC=0.673). When a contact pattern agreement score (s(agree)) was used to assess the accuracy of cartilage contact measurements made using physiological nonuniform or simplified uniform cartilage thickness distributions in terms of size, shape and location, their accuracies were not significantly different (p>0.05). The results of this study demonstrate that cartilage contact can be measured indirectly based on the overlapping of cartilage contact models. However, the results also suggest that in some situations, inter-bone distance measurement and an assumed cartilage thickness may suffice for predicting joint contact patterns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Mesenchymal Stem Cells for Cartilage Regeneration of TMJ Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Dixin Cui

    2017-01-01

    Full Text Available Temporomandibular joint osteoarthritis (TMJ OA is a degenerative disease, characterized by progressive cartilage degradation, subchondral bone remodeling, synovitis, and chronic pain. Due to the limited self-healing capacity in condylar cartilage, traditional clinical treatments have limited symptom-modifying and structure-modifying effects to restore impaired cartilage as well as other TMJ tissues. In recent years, stem cell-based therapy has raised much attention as an alternative approach towards tissue repair and regeneration. Mesenchymal stem cells (MSCs, derived from the bone marrow, synovium, and even umbilical cord, play a role as seed cells for the cartilage regeneration of TMJ OA. MSCs possess multilineage differentiation potential, including chondrogenic differentiation as well as osteogenic differentiation. In addition, the trophic modulations of MSCs exert anti-inflammatory and immunomodulatory effects under aberrant conditions. Furthermore, MSCs combined with appropriate scaffolds can form cartilaginous or even osseous compartments to repair damaged tissue and impaired function of TMJ. In this review, we will briefly discuss the pathogenesis of cartilage degeneration in TMJ OA and emphasize the potential sources of MSCs and novel approaches for the cartilage regeneration of TMJ OA, particularly focusing on the MSC-based therapy and tissue engineering.

  11. All-trans retinoic acid inhibits craniopharyngioma cell growth: study on an explant cell model.

    Science.gov (United States)

    Li, Qiang; You, Chao; Zhou, Liangxue; Sima, Xiutian; Liu, Zhiyong; Liu, Hao; Xu, Jianguo

    2013-05-01

    The ratio between FABP5 and CRABPII determines cellular response to physiological level of retinoic acid; tumor cells undergo proliferation with high level of FABP5 and apoptosis with high level of CRABPII. We intended to study FABP5 and CRABPII expression in craniopharyngiomas, to establish craniopharyngioma cell model using explants method, and to study the effect of pharmacological dose of retinoic acid on craniopharyngioma cells. Expression of FABP5 and CRABPII in craniopharyngioma tissue from 20 patients was studied using immunohistochemistry. Primary craniopharyngioma cell cultures were established using tissue explants method. Craniopharyngioma cells were treated using various concentrations of all-trans retinoic acid, and cell growth curve, apoptosis, expression of FABP5, CRABPII and NF-κB were assayed in different groups. FABP5/CRABPII ratio was significantly higher in adamatinomatous group than that in papillary group. Cell cultures were established in 19 cases (95 %). Pharmacological level retinoic acid inhibited cell growth and induced cellular apoptosis in dose dependent manner, and apoptosis rate cells treated with 30 μM retinoic acid for 24 h was 43 %. Also, retinoic acid increased CRABPII, and decreased FABP5 and NF-κB expression in craniopharyngioma cells. High FABP5/CRABPII ratio is observed in adamatinomatous craniopharyngioma. Retinoic acid at pharmacological level induced craniopharyngioma cell apoptosis via increasing FABP5/CRABPII ratio and inhibiting NF-κB signaling pathway. Our study demonstrated that all-trans retinoic acid might be a candidate for craniopharyngioma adjuvant chemotherapy in future.

  12. * Human Amniotic Mesenchymal Stromal Cells as Favorable Source for Cartilage Repair.

    Science.gov (United States)

    Muiños-López, Emma; Hermida-Gómez, Tamara; Fuentes-Boquete, Isaac; de Toro-Santos, Javier; Blanco, Francisco Javier; Díaz-Prado, Silvia María

    2017-09-01

    Localized trauma-derived breakdown of the hyaline articular cartilage may progress toward osteoarthritis, a degenerative condition characterized by total loss of articular cartilage and joint function. Tissue engineering technologies encompass several promising approaches with high therapeutic potential for the treatment of these focal defects. However, most of the research in tissue engineering is focused on potential materials and structural cues, while little attention is directed to the most appropriate source of cells endowing these materials. In this study, using human amniotic membrane (HAM) as scaffold, we defined a novel static in vitro model for cartilage repair. In combination with HAM, four different cell types, human chondrocytes, human bone marrow-derived mesenchymal stromal cells (hBMSCs), human amniotic epithelial cells, and human amniotic mesenchymal stromal cells (hAMSCs) were assessed determining their therapeutic potential. A chondral lesion was drilled in human cartilage biopsies simulating a focal defect. A pellet of different cell types was implanted inside the lesion and covered with HAM. The biopsies were maintained for 8 weeks in culture. Chondrogenic differentiation in the defect was analyzed by histology and immunohistochemistry. HAM scaffold showed good integration and adhesion to the native cartilage in all groups. Although all cell types showed the capacity of filling the focal defect, hBMSCs and hAMSCs demonstrated higher levels of new matrix synthesis. However, only the hAMSCs-containing group presented a significant cytoplasmic content of type II collagen when compared with chondrocytes. More collagen type I was identified in the new synthesized tissue of hBMSCs. In accordance, hBMSCs and hAMSCs showed better International Cartilage Research Society scoring although without statistical significance. HAM is a useful material for articular cartilage repair in vitro when used as scaffold. In combination with hAMSCs, HAM showed better

  13. Human sclera maintains common characteristics with cartilage throughout evolution.

    Directory of Open Access Journals (Sweden)

    Yuko Seko

    Full Text Available BACKGROUND: The sclera maintains and protects the eye ball, which receives visual inputs. Although the sclera does not contribute significantly to visual perception, scleral diseases such as refractory scleritis, scleral perforation and pathological myopia are considered incurable or difficult to cure. The aim of this study is to identify characteristics of the human sclera as one of the connective tissues derived from the neural crest and mesoderm. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated microarray data of cultured human infant scleral cells. Hierarchical clustering was performed to group scleral cells and other mesenchymal cells into subcategories. Hierarchical clustering analysis showed similarity between scleral cells and auricular cartilage-derived cells. Cultured micromasses of scleral cells exposed to TGF-betas and BMP2 produced an abundant matrix. The expression of cartilage-associated genes, such as Indian hedge hog, type X collagen, and MMP13, was up-regulated within 3 weeks in vitro. These results suggest that human 'sclera'-derived cells can be considered chondrocytes when cultured ex vivo. CONCLUSIONS/SIGNIFICANCE: Our present study shows a chondrogenic potential of human sclera. Interestingly, the sclera of certain vertebrates, such as birds and fish, is composed of hyaline cartilage. Although the human sclera is not a cartilaginous tissue, the human sclera maintains chondrogenic potential throughout evolution. In addition, our findings directly explain an enigma that the sclera and the joint cartilage are common targets of inflammatory cells in rheumatic arthritis. The present global gene expression database will contribute to the clarification of the pathogenesis of developmental diseases such as high myopia.

  14. Role of retinoic acid receptors in squamous-cell carcinoma in human esophagus

    DEFF Research Database (Denmark)

    Bergheim, I.; Wolfgarten, E.; Bollschweiler, E.

    2005-01-01

    BACKGROUND: Worldwide, cancer in the esophagus ranks among the 10 most common cancers. Alterations of retinoic acid receptors (e.g. RARalpha, beta, gamma, and RXRalpha, beta, gamma) expression is considered to play an important role in development of squamous-cell carcinoma (SCC), which is the most...... common esophageal cancer. Alcohol consumption and smoking, which can alter retinoic acid receptor levels, have been identified as key risk factors in the development of carcinoma in the aero-digestive tract. Therefore, the aim of the present study was to evaluate protein levels of retinoic acid receptors...... were found for RARalpha, beta, and RXRbeta protein levels between normal esophageal tissue of patients and that of controls. CONCLUSION: In conclusion, results of the present study suggest that alterations of retinoic acid receptors protein may contribute in the development of SCC in esophagus...

  15. Imaging of articular cartilage

    Directory of Open Access Journals (Sweden)

    Bhawan K Paunipagar

    2014-01-01

    Full Text Available We tried to review the role of magnetic resonance imaging (MRI in understanding microscopic and morphologic structure of the articular cartilage. The optimal protocols and available spin-echo sequences in present day practice are reviewed in context of common pathologies of articular cartilage. The future trends of articular cartilage imaging have been discussed with their appropriateness. In diarthrodial joints of the body, articular cartilage is functionally very important. It is frequently exposed to trauma, degeneration, and repetitive wear and tear. MRI has played a vital role in evaluation of articular cartilage. With the availability of advanced repair surgeries for cartilage lesions, there has been an increased demand for improved cartilage imaging techniques. Recent advances in imaging strategies for native and postoperative articular cartilage open up an entirely new approach in management of cartilage-related pathologies.

  16. Predicting knee cartilage loss using adaptive partitioning of cartilage thickness maps

    DEFF Research Database (Denmark)

    Jørgensen, Dan Richter; Dam, Erik Bjørnager; Lillholm, Martin

    2013-01-01

    This study investigates whether measures of knee cartilage thickness can predict future loss of knee cartilage. A slow and a rapid progressor group was determined using longitudinal data, and anatomically aligned cartilage thickness maps were extracted from MRI at baseline. A novel machine learning...... framework was then trained using these maps. Compared to measures of mean cartilage plate thickness, group separation was increased by focusing on local cartilage differences. This result is central for clinical trials where inclusion of rapid progressors may help reduce the period needed to study effects...

  17. THE USE OF SHARK CARTILAGE EXTRACTS IN POSSIBLE THERAPIES AGAINST CANCER: AREVIEW

    Directory of Open Access Journals (Sweden)

    Gláuber Fernando Ratzkob

    2015-06-01

    Full Text Available The study aims to discuss the use of extracts derived from shark cartilage in potential cancer therapies. This is a literature review based on literature by consulting the scientific articles selected in the Medline, Scopus and DOAJ database. Twenty-seven articles were included after applying the inclusion and not inclusion criteria established by the authors. The selected studies revealed that ther are some extracts derived from shark cartilage with anticancer properties. These properties are mostly related to the blockade of angiogenesis and some extracts also have action on the immune system and inhibition of metastases. The best known shark cartilage extract is the formulation of Neovastat® (AE-941, which was successful in studies conducted in the laboratory, but failed in clinical trials in humans, and therefore ceased to be developed in 2007. Nevertheless, yetmany extracts are under review, and these studies will be important to confirm or not the feasibility and applicability of the use of shark cartilage extracts in the treatment of cancer.

  18. Effect of Transplanting Various Concentrations of a Composite of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronic Acid Hydrogel on Articular Cartilage Repair in a Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Yong-Beom Park

    Full Text Available Mesenchymal stem cells (MSCs are known to have therapeutic potential for cartilage repair. However, the optimal concentration of MSCs for cartilage repair remains unclear. Therefore, we aimed to explore the feasibility of cartilage repair by human umbilical cord blood-derived MSCs (hUCB-MSCs and to determine the optimal concentrations of the MSCs in a rabbit model.Osteochondral defects were created in the trochlear groove of femur in 55 rabbits. Four experimental groups (11 rabbits/group were treated by transplanting the composite of hUCB-MSCs and HA with various MSCs concentrations (0.1, 0.5, 1.0, and 1.5 x 107 cells/ml. One control group was left untreated. At 4, 8, and 16 weeks post-transplantation, the degree of cartilage repair was evaluated grossly and histologically.Overall, transplanting hUCB-MSCs and HA hydrogel resulted in cartilage repair tissue with better quality than the control without transplantation (P = 0.015 in 0.1, P = 0.004 in 0.5, P = 0.004 in 1.0, P = 0.132 in 1.5 x 107 cells/ml. Interestingly, high cell concentration of hUCB-MSCs (1.5×107 cells/ml was inferior to low cell concentrations (0.1, 0.5, and 1.0 x 107 cells/ml in cartilage repair (P = 0.394,P = 0.041, P = 0.699, respectively. The 0.5 x 107 cells/ml group showed the highest cartilage repair score at 4, 8 and 16 weeks post transplantation, and followed by 0.1x107 cells/ml group or 1.0 x 107 cell/ml group.The results of this study suggest that transplantation of the composite of hUCB-MSCs and HA is beneficial for cartilage repair. In addition, this study shows that optimal MSC concentration needs to be determined for better cartilage repair.

  19. Can one generate stable hyaline cartilage from adult mesenchymal stem cells? A developmental approach.

    Science.gov (United States)

    Hellingman, Catharine A; Koevoet, Wendy; van Osch, Gerjo J V M

    2012-11-01

    Chondrogenically differentiating bone marrow-derived mesenchymal stem cells (BMSCs) display signs of chondrocyte hypertrophy, such as production of collagen type X, MMP13 and alkaline phosphatase (ALPL). For cartilage reconstructions this is undesirable, as terminally differentiated cartilage produced by BMSCs mineralizes when implanted in vivo. Terminal differentiation is not restricted to BMSCs but is also encountered in chondrogenic differentiation of adipose-derived mesenchymal stem cells (MSCs) as well as embryonic stem cells, which by definition should be able to generate all types of tissues, including stable cartilage. Therefore, we propose that the currently used culture conditions may drive the cells towards terminal differentiation. In this manuscript we aim to review the literature, supplemented by our own data to answer the question, is it possible to generate stable hyaline cartilage from adult MSCs? We demonstrate that recently published methods for inhibiting terminal differentiation (through PTHrP, MMP13 or blocking phosphorylation of Smad1/5/8) result in cartilage formation with reduction of hypertrophic markers, although this does not reach the low level of stable chondrocytes. A set of hypertrophy markers should be included in future studies to characterize the phenotype more precisely. Finally, we used what is currently known in developmental biology about the differential development of hyaline and terminally differentiated cartilage to provide thought and insights to change current culture models for creating hyaline cartilage. Inhibiting terminal differentiation may not result in stable hyaline cartilage if the right balance of signals has not been created from the start of culture onwards. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Retinoic acid signaling: a new piece in the spoken language puzzle

    Directory of Open Access Journals (Sweden)

    Jon-Ruben eVan Rhijn

    2015-11-01

    Full Text Available Speech requires precise motor control and rapid sequencing of highly complex vocal musculature. Despite its complexity, most people produce spoken language effortlessly. This is due to activity in distributed neuronal circuitry including cortico-striato-thalamic loops that control speech-motor output. Understanding the neuro-genetic mechanisms that encode these pathways will shed light on how humans can effortlessly and innately use spoken language and could elucidate what goes wrong in speech-language disorders.FOXP2 was the first single gene identified to cause speech and language disorder. Individuals with FOXP2 mutations display a severe speech deficit that also includes receptive and expressive language impairments. The underlying neuro-molecular mechanisms controlled by FOXP2, which will give insight into our capacity for speech-motor control, are only beginning to be unraveled. Recently FOXP2 was found to regulate genes involved in retinoic acid signaling and to modify the cellular response to retinoic acid, a key regulator of brain development. Herein we explore the evidence that FOXP2 and retinoic acid signaling function in the same pathways. We present evidence at molecular, cellular and behavioral levels that suggest an interplay between FOXP2 and retinoic acid that may be important for fine motor control and speech-motor output. We propose that retinoic acid signaling is an exciting new angle from which to investigate how neurogenetic mechanisms can contribute to the (spoken language ready brain.

  1. Retinoic acid for treatment of systemic sclerosis and morphea: A literature review.

    Science.gov (United States)

    Thomas, Renee M; Worswick, Scott; Aleshin, Maria

    2017-03-01

    Systemic sclerosis and morphea are connective tissue diseases characterized by tightening, thickening, and hardening of the skin, leading to significant morbidity. Unfortunately, current treatment options have limited efficacy for many patients. Cutaneous manifestations of these diseases arise from excess collagen deposition and fibrosis in the skin, through pathogenic mechanisms which have yet to be extensively detailed at the causal immune and cellular levels. Research elucidating the mechanism of action of retinoic acid on collagen production in the skin and case series highlighting the success of retinoic acid on the skin manifestations of systemic sclerosis and on morphea demonstrate its promise as a treatment. Herein they will briefly review the treatment options for both systemic sclerosis and morphea, and will discuss the potential of retinoic acid as a therapy and the supporting evidence from the literature, highlighting the previously published basic science and clinical studies investigating the role of retinoic acid in the treatment of sclerotic skin diseases. © 2016 Wiley Periodicals, Inc.

  2. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial.

    Science.gov (United States)

    Mumme, Marcus; Barbero, Andrea; Miot, Sylvie; Wixmerten, Anke; Feliciano, Sandra; Wolf, Francine; Asnaghi, Adelaide M; Baumhoer, Daniel; Bieri, Oliver; Kretzschmar, Martin; Pagenstert, Geert; Haug, Martin; Schaefer, Dirk J; Martin, Ivan; Jakob, Marcel

    2016-10-22

    Articular cartilage injuries have poor repair capacity, leading to progressive joint damage, and cannot be restored predictably by either conventional treatments or advanced therapies based on implantation of articular chondrocytes. Compared with articular chondrocytes, chondrocytes derived from the nasal septum have superior and more reproducible capacity to generate hyaline-like cartilage tissues, with the plasticity to adapt to a joint environment. We aimed to assess whether engineered autologous nasal chondrocyte-based cartilage grafts allow safe and functional restoration of knee cartilage defects. In a first-in-human trial, ten patients with symptomatic, post-traumatic, full-thickness cartilage lesions (2-6 cm 2 ) on the femoral condyle or trochlea were treated at University Hospital Basel in Switzerland. Chondrocytes isolated from a 6 mm nasal septum biopsy specimen were expanded and cultured onto collagen membranes to engineer cartilage grafts (30 × 40 × 2 mm). The engineered tissues were implanted into the femoral defects via mini-arthrotomy and assessed up to 24 months after surgery. Primary outcomes were feasibility and safety of the procedure. Secondary outcomes included self-assessed clinical scores and MRI-based estimation of morphological and compositional quality of the repair tissue. This study is registered with ClinicalTrials.gov, number NCT01605201. The study is ongoing, with an approved extension to 25 patients. For every patient, it was feasible to manufacture cartilaginous grafts with nasal chondrocytes embedded in an extracellular matrix rich in glycosaminoglycan and type II collagen. Engineered tissues were stable through handling with forceps and could be secured in the injured joints. No adverse reactions were recorded and self-assessed clinical scores for pain, knee function, and quality of life were improved significantly from before surgery to 24 months after surgery. Radiological assessments indicated variable degrees of

  3. Retinoic Acid Signaling in Thymic Epithelial Cells Regulates Thymopoiesis

    DEFF Research Database (Denmark)

    Wendland, Kerstin; Niss, Kristoffer; Kotarsky, Knut

    2018-01-01

    Despite the essential role of thymic epithelial cells (TEC) in T cell development, the signals regulating TEC differentiation and homeostasis remain incompletely understood. In this study, we show a key in vivo role for the vitamin A metabolite, retinoic acid (RA), in TEC homeostasis. In the abse......Despite the essential role of thymic epithelial cells (TEC) in T cell development, the signals regulating TEC differentiation and homeostasis remain incompletely understood. In this study, we show a key in vivo role for the vitamin A metabolite, retinoic acid (RA), in TEC homeostasis...

  4. Chondrogenic properties of collagen type XI, a component of cartilage extracellular matrix.

    Science.gov (United States)

    Li, Ang; Wei, Yiyong; Hung, Clark; Vunjak-Novakovic, Gordana

    2018-08-01

    Cartilage extracellular matrix (ECM) has been used for promoting tissue engineering. However, the exact effects of ECM on chondrogenesis and the acting mechanisms are not well understood. In this study, we investigated the chondrogenic effects of cartilage ECM on human mesenchymal stem cells (MSCs) and identified the contributing molecular components. To this end, a preparation of articular cartilage ECM was supplemented to pellets of chondrogenically differentiating MSCs, pellets of human chondrocytes, and bovine articular cartilage explants to evaluate the effects on cell proliferation and the production of cartilaginous matrix. Selective enzymatic digestion and screening of ECM components were conducted to identify matrix molecules with chondrogenic properties. Cartilage ECM promoted MSC proliferation, production of cartilaginous matrix, and maturity of chondrogenic differentiation, and inhibited the hypertrophic differentiation of MSC-derived chondrocytes. Selective digestion of ECM components revealed a contributory role of collagens in promoting chondrogenesis. The screening of various collagen subtypes revealed strong chondrogenic effect of collagen type XI. Finally, collagen XI was found to promote production and inhibit degradation of cartilage matrix in human articular chondrocyte pellets and bovine articular cartilage explants. Our results indicate that cartilage ECM promotes chondrogenesis and inhibits hypertrophic differentiation in MSCs. Collagen type XI is the ECM component that has the strongest effects on enhancing the production and inhibiting the degradation of cartilage matrix. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage.

    Science.gov (United States)

    Kreuz, P C; Gentili, C; Samans, B; Martinelli, D; Krüger, J P; Mittelmeier, W; Endres, M; Cancedda, R; Kaps, C

    2013-12-01

    Studies about cartilage repair in the hip and infant chondrocytes are rare. The aim of our study was to evaluate the use of infant articular hip chondrocytes for tissue engineering of scaffold-assisted cartilage grafts. Hip cartilage was obtained from five human donors (age 1-10 years). Expanded chondrocytes were cultured in polyglycolic acid (PGA)-fibrin scaffolds. De- and re-differentiation of chondrocytes were assessed by histological staining and gene expression analysis of typical chondrocytic marker genes. In vivo, cartilage matrix formation was assessed by histology after subcutaneous transplantation of chondrocyte-seeded PGA-fibrin scaffolds in immunocompromised mice. The donor tissue was heterogenous showing differentiated articular cartilage and non-differentiated tissue and considerable expression of type I and II collagens. Gene expression analysis showed repression of typical chondrocyte and/or mesenchymal marker genes during cell expansion, while markers were re-induced when expanded cells were cultured in PGA-fibrin scaffolds. Cartilage formation after subcutaneous transplantation of chondrocyte loaded PGA-fibrin scaffolds in nude mice was variable, with grafts showing resorption and host cell infiltration or formation of hyaline cartilage rich in type II collagen. Addition of human platelet rich plasma (PRP) to cartilage grafts resulted robustly in formation of hyaline-like cartilage that showed type II collagen and regions with type X collagen. These results suggest that culture of expanded and/or de-differentiated infant hip cartilage cells in PGA-fibrin scaffolds initiates chondrocyte re-differentiation. The heterogenous donor tissue containing immature chondrocytes bears the risk of cartilage repair failure in vivo, which may be possibly overcome by the addition of PRP. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects.

    Science.gov (United States)

    White, Lawrence M; Sussman, Marshall S; Hurtig, Mark; Probyn, Linda; Tomlinson, George; Kandel, Rita

    2006-11-01

    To prospectively assess T2 mapping characteristics of normal articular cartilage and of cartilage at sites of arthroscopic repair, including comparison with histologic results and collagen organization assessed at polarized light microscopy (PLM). Study protocol was compliant with the Canadian Council on Animal Care Guidelines and approved by the institutional animal care committee. Arthroscopic osteochondral autograft transplantation (OAT) and microfracture arthroplasty (MFx) were performed in knees of 10 equine subjects (seven female, three male; age range, 3-5 years). A site of arthroscopically normal cartilage was documented in each joint as a control site. Joints were harvested at 12 (n = 5) and 24 (n = 5) weeks postoperatively and were imaged at 1.5-T magnetic resonance (MR) with a 10-echo sagittal fast spin-echo acquisition. T2 maps of each site (21 OAT harvest, 10 MFx, 12 OAT plug, and 10 control sites) were calculated with linear least-squares curve fitting. Cartilage T2 maps were qualitatively graded as "organized" (normal transition of low-to-high T2 signal from deep to superficial cartilage zones) or "disorganized." Quantitative mean T2 values were calculated for deep, middle, and superficial cartilage at each location. Results were compared with histologic and PLM assessments by using kappa analysis. T2 maps were qualitatively graded as organized at 20 of 53 sites and as disorganized at 33 sites. Perfect agreement was seen between organized T2 and histologic findings of hyaline cartilage and between disorganized T2 and histologic findings of fibrous reparative tissue (kappa = 1.0). Strong agreement was seen between organized T2 and normal PLM findings and between disorganized T2 and abnormal PLM findings (kappa = .92). Quantitative assessment of the deep, middle, and superficial cartilage, respectively, showed mean T2 values of 53.3, 58.6, and 54.9 msec at reparative fibrous tissue sites and 40.7, 53.6, and 61.6 msec at hyaline cartilage sites. A

  7. Engineering Cartilage

    Science.gov (United States)

    ... Research Matters NIH Research Matters March 3, 2014 Engineering Cartilage Artistic rendering of human stem cells on ... situations has been a major goal in tissue engineering. Cartilage contains water, collagen, proteoglycans, and chondrocytes. Collagens ...

  8. PEDF Is Associated with the Termination of Chondrocyte Phenotype and Catabolism of Cartilage Tissue.

    Science.gov (United States)

    Klinger, P; Lukassen, S; Ferrazzi, F; Ekici, A B; Hotfiel, T; Swoboda, B; Aigner, T; Gelse, K

    2017-01-01

    Objective. To investigate the expression and target genes of pigment epithelium-derived factor (PEDF) in cartilage and chondrocytes, respectively. Methods. We analyzed the expression pattern of PEDF in different human cartilaginous tissues including articular cartilage, osteophytic cartilage, and fetal epiphyseal and growth plate cartilage, by immunohistochemistry and quantitative real-time (qRT) PCR. Transcriptome analysis after stimulation of human articular chondrocytes with rhPEDF was performed by RNA sequencing (RNA-Seq) and confirmed by qRT-PCR. Results. Immunohistochemically, PEDF could be detected in transient cartilaginous tissue that is prone to undergo endochondral ossification, including epiphyseal cartilage, growth plate cartilage, and osteophytic cartilage. In contrast, PEDF was hardly detected in healthy articular cartilage and in the superficial zone of epiphyses, regions that are characterized by a permanent stable chondrocyte phenotype. RNA-Seq analysis and qRT-PCR demonstrated that rhPEDF significantly induced the expression of a number of matrix-degrading factors including SAA1, MMP1, MMP3, and MMP13. Simultaneously, a number of cartilage-specific genes including COL2A1, COL9A2, COMP, and LECT were among the most significantly downregulated genes. Conclusions. PEDF represents a marker for transient cartilage during all neonatal and postnatal developmental stages and promotes the termination of cartilage tissue by upregulation of matrix-degrading factors and downregulation of cartilage-specific genes. These data provide the basis for novel strategies to stabilize the phenotype of articular cartilage and prevent its degradation.

  9. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering.

    Science.gov (United States)

    Fahy, Niamh; Alini, Mauro; Stoddart, Martin J

    2018-01-01

    Articular cartilage is a load-bearing tissue playing a crucial mechanical role in diarthrodial joints, facilitating joint articulation, and minimizing wear. The significance of biomechanical stimuli in the development of cartilage and maintenance of chondrocyte phenotype in adult tissues has been well documented. Furthermore, dysregulated loading is associated with cartilage pathology highlighting the importance of mechanical cues in cartilage homeostasis. The repair of damaged articular cartilage resulting from trauma or degenerative joint disease poses a major challenge due to a low intrinsic capacity of cartilage for self-renewal, attributable to its avascular nature. Bone marrow-derived mesenchymal stem cells (MSCs) are considered a promising cell type for cartilage replacement strategies due to their chondrogenic differentiation potential. Chondrogenesis of MSCs is influenced not only by biological factors but also by the environment itself, and various efforts to date have focused on harnessing biomechanics to enhance chondrogenic differentiation of MSCs. Furthermore, recapitulating mechanical cues associated with cartilage development and homeostasis in vivo, may facilitate the development of a cellular phenotype resembling native articular cartilage. The goal of this review is to summarize current literature examining the effect of mechanical cues on cartilage homeostasis, disease, and MSC chondrogenesis. The role of biological factors produced by MSCs in response to mechanical loading will also be examined. An in-depth understanding of the impact of mechanical stimulation on the chondrogenic differentiation of MSCs in terms of endogenous bioactive factor production and signaling pathways involved, may identify therapeutic targets and facilitate the development of more robust strategies for cartilage replacement using MSCs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:52-63, 2018. © 2017 Orthopaedic Research

  10. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering.

    Science.gov (United States)

    Choi, Jane Ru; Yong, Kar Wey; Choi, Jean Yu

    2018-03-01

    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair. © 2017 Wiley Periodicals, Inc.

  11. Characterization of Chondrogenic Gene Expression and Cartilage Phenotype Differentiation in Human Breast Adipose-Derived Stem Cells Promoted by Ginsenoside Rg1 In Vitro

    Directory of Open Access Journals (Sweden)

    Fang-Tian Xu

    2015-11-01

    Full Text Available Background/Aims: Investigating and understanding chondrogenic gene expression during the differentiation of human breast adipose-derived stem cells (HBASCs into chondrogenic cells is a prerequisite for the application of this approach for cartilage repair and regeneration. In this study, we aim to characterize HBASCs and to examine chondrogenic gene expression in chondrogenic inductive culture medium containing ginsenoside Rg1. Methods: Human breast adipose-derived stem cells at passage 3 were evaluated based on specific cell markers and their multilineage differentiation capacity. Cultured HBASCs were treated either with basic chondrogenic inductive conditioned medium alone (group A, control or with basic chondrogenic inductive medium plus 10 µg/ml (group B, 50 µg/ml (group C, or 100µg/ml ginsenoside Rg1 (group D. Cell proliferation was assessed using the CCK-8 assay for a period of 9 days. Two weeks after induction, the expression of chondrogenic genes (collagen type II, collagen type XI, ACP, COMP and ELASTIN was determined using real-time PCR in all groups. Results: The different concentrations of ginsenoside Rg1 that were added to the basic chondrogenic inductive culture medium promoted the proliferation of HBASCs at earlier stages (groups B, C, and D but resulted in chondrogenic phenotype differentiation and higher mRNA expression of collagen type II (CO-II, collagen type XI (CO-XI, acid phosphatase (ACP, cartilage oligomeric matrix protein (COMP and ELASTIN compared with the control (group A at later stages. The results reveal an obvious positive dose-effect relationship between ginsenoside Rg1 and the proliferation and chondrogenic phenotype differentiation of HBASCs in vitro. Conclusions: Human breast adipose-derived stem cells retain stem cell characteristics after expansion in culture through passage 3 and serve as a feasible source of cells for cartilage regeneration in vitro. Chondrogenesis in HBASCs was found to be prominent

  12. Shark Cartilage

    Science.gov (United States)

    Shark cartilage (tough elastic tissue that provides support, much as bone does) used for medicine comes primarily from sharks ... Several types of extracts are made from shark cartilage including squalamine lactate, AE-941, and U-995. ...

  13. A Comparison of Bone Marrow and Cord Blood Mesenchymal Stem Cells for Cartilage Self-Assembly.

    Science.gov (United States)

    White, Jamie L; Walker, Naomi J; Hu, Jerry C; Borjesson, Dori L; Athanasiou, Kyriacos A

    2018-04-02

    Joint injury is a common cause of premature retirement for the human and equine athlete alike. Implantation of engineered cartilage offers the potential to increase the success rate of surgical intervention and hasten recovery times. Mesenchymal stem cells (MSCs) are a particularly attractive cell source for cartilage engineering. While bone marrow-derived MSCs (BM-MSCs) have been most extensively characterized for musculoskeletal tissue engineering, studies suggest that cord blood MSCs (CB-MSCs) may elicit a more robust chondrogenic phenotype. The objective of this study was to determine a superior equine MSC source for cartilage engineering. MSCs derived from bone marrow or cord blood were stimulated to undergo chondrogenesis through aggregate redifferentiation and used to generate cartilage through the self-assembling process. The resulting neocartilage produced from either BM-MSCs or CB-MSCs was compared by measuring mechanical, biochemical, and histological properties. We found that while BM constructs possessed higher tensile properties and collagen content, CB constructs had superior compressive properties comparable to that of native tissue and higher GAG content. Moreover, CB constructs had alkaline phosphatase activity, collagen type X, and collagen type II on par with native tissue suggesting a more hyaline cartilage-like phenotype. In conclusion, while both BM-MSCs and CB-MSCs were able to form neocartilage, CB-MSCs resulted in tissue more closely resembling native equine articular cartilage as determined by a quantitative functionality index. Therefore, CB-MSCs are deemed a superior source for the purpose of articular cartilage self-assembly.

  14. Use of synovium-derived stromal cells and chitosan/collagen type I scaffolds for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Gong Zhongcheng; Lin Zhaoquan [Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054 (China); Xiong Hui; Long Xing; Wei Lili; Li Jian; Wu Yang, E-mail: xinglong1957@yahoo.com.c [State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079 (China)

    2010-10-01

    The objective was to investigate synovium-derived stromal cells (SDSCs) coupled with chitosan/collagen type I (CS/COL-I) scaffolds for cartilage engineering. CS/COL-I scaffolds were fabricated through freeze-drying and cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. SDSCs were isolated from synovium and cultured onto CS/COL-I scaffolds, constructs of which were incubated in serum-free chondrogenic medium with sequential application of TGF-{beta}1 and bFGF for up to 21 days and then implanted into nude mice. The physical characteristics of the scaffolds were examined. The quality of the in vitro constructs was assessed in terms of DNA content by PicoGreen assay and cartilaginous matrix by histological examination. The implants of the constructs were evaluated by histological and immunohistochemical examinations and reverse transcription PCR. Results indicated that the CS/COL-I scaffold showed porous structures, and the DNA content of SDSCs in CS/COL-I scaffolds increased at 1 week culture time. Both of the constructs in vitro and the implants were examined with positive stained GAGs histologically and the implants with positive collagen type II immunohistochemically. RT-PCR of the implants indicated that aggrecan and collagen type II expressed. It suggested that SDSCs coupled with CS/COL-I scaffolds treated sequentially with TGF-{beta}1 and bFGF in vitro were highly competent for engineered cartilage formation in vitro and in vivo.

  15. Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha

    Science.gov (United States)

    Hall, J.A.; Cannons, J.L.; Grainger, J.R.; Santos, L.M. Dos; Hand, T.W.; Naik, S.; Wohlfert, E.A.; Chou, D.B.; Oldenhove, G.; Robinson, M.; Grigg, M.E.; Kastenmayer, R.; Schwartzberg, P.L.; Belkaid, Y.

    2012-01-01

    SUMMARY Vitamin A and its metabolite, retinoic acid (RA), have recently been implicated in the regulation of immune homeostasis via the peripheral induction of regulatory T cells. Here we show that RA is also required to elicit proinflammatory CD4+ helper T cell responses to infection and mucosal vaccination. Retinoic acid receptor alpha (RARα) is the critical mediator of these effects. Strikingly, antagonism of RAR signaling and deficiency in RARα(Rara−/−) results in a cell autonomous CD4+ T cell activation defect. Altogether, these findings reveal a fundamental role for the RA/RARα axis in the development of both regulatory and inflammatory arms of adaptive immunity and establish nutritional status as a broad regulator of adaptive T cell responses. PMID:21419664

  16. Neutrophils are immune cells preferentially targeted by retinoic acid in elderly subjects

    Directory of Open Access Journals (Sweden)

    Minet-Quinard Régine

    2010-08-01

    Full Text Available Abstract Background The immune system gradually deteriorates with age and nutritional status is a major factor in immunosenescence. Of the many nutritional factors implicated in age-related immune dysfunction, vitamin A may be a good candidate, since vitamin A concentrations classically decrease during aging whereas it may possess important immunomodulatory properties via its active metabolites, the retinoic acids. This prompted us to investigate the immune response induced by retinoids in adults and elderly healthy subjects. Before and after oral supplementation with 13cis retinoic acid (0.5 mg/kg/day during 28 days, whole blood cells were phenotyped, and functions of peripheral blood mononuclear cells (PBMC and polymorphonuclear cells (PMN were investigated by flow cytometry and ELISA tests. Results In both young adults (n = 20, 25 ± 4 years and older subjects (n = 20, 65 ± 4 years, retinoic acid supplementation had no effect on the distribution of leukocyte subpopulations or on the functions of PBMC (Il-2 and sIl-2R production, membrane expression of CD25. Concerning PMN, retinoic acid induced an increase in both spontaneous migration and cell surface expression of CD11b in the two different age populations, whereas bactericidal activity and phagocytosis remained unchanged. Conclusions We demonstrated that retinoic acid induces the same intensity of immune response between adult and older subjects, and more specifically affects PMN functions, i.e. adhesion and migration, than PBMC functions.

  17. Tuning the differentiation of periosteum-derived cartilage using biochemical and mechanical stimulation

    NARCIS (Netherlands)

    Kock, L.M.; Ravetto, A.; Donkelaar, van C.C.; Foolen, J.; Emans, P.J.; Ito, K.

    2010-01-01

    OBJECTIVE: In this study, we aim at tuning the differentiation of periosteum in an organ culture model towards cartilage, rich in collagen type II, using combinations of biochemical and mechanical stimuli. We hypothesize that addition of TGF-ß will stimulate chondrogenesis, whereas sliding

  18. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images

    International Nuclear Information System (INIS)

    Neubert, A.; Yang, Z.; Engstrom, C.; Xia, Y.; Strudwick, M. W.; Chandra, S. S.; Crozier, S.; Fripp, J.

    2016-01-01

    Purpose: Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hip joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. Methods: The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone–cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Results: Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head

  19. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Neubert, A., E-mail: ales.neubert@csiro.au [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072, Australia and The Australian E-Health Research Centre, CSIRO Health and Biosecurity, Brisbane 4029 (Australia); Yang, Z. [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072, Australia and Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190 (China); Engstrom, C. [School of Human Movement Studies, University of Queensland, Brisbane 4072 (Australia); Xia, Y.; Strudwick, M. W.; Chandra, S. S.; Crozier, S. [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072 (Australia); Fripp, J. [The Australian E-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, 4029 (Australia)

    2016-10-15

    Purpose: Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hip joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. Methods: The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone–cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Results: Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head

  20. Shortwave-infrared Raman spectroscopic classification of water fractions in articular cartilage ex vivo

    Science.gov (United States)

    Unal, Mustafa; Akkus, Ozan

    2018-01-01

    Water loss is an early onset indicator of osteoarthritis. Although Raman spectroscopy (RS) holds the potential for measurement of cartilage hydration, the knowledge of Raman OH-stretch bands of biological tissue is very limited. We assesed here the sensitivity of RS to identify and classify water types in the cartilage. Raman spectrum measurements over the high wavenumber range were employed to identify different water fractions in articular cartilage. Raman spectra were collected from wet and sequentially dehydrated cartilage along with pure collagen type II and chondroitin sulfate standards. OH-stretch band of cartilage is dominated by mobile water, up to 95% of total intensities. We identified six peaks in cartilage spectrum using second-derivative analysis: peaks at 3200 and 3650 cm-1 are associated with organic matrix (both collagen and proteglycan) and matrix-bound water molecules. Peaks at 3250, 3453, and 3630 cm-1 are associated with collagen and collagen-related water molecules, whereas the peak at 3520 cm-1 is associated with proteoglycan (PG) and PG-related water molecules. The current work is the first thorough analysis of the Raman OH-stretch band of the cartilage and with the knowledge generated by this study, it may now be possible to study on cartilage hydration by RS.

  1. Degenerated human articular cartilage at autopsy represents preclinical osteoarthritic cartilage: comparison with clinically defined osteoarthritic cartilage

    NARCIS (Netherlands)

    van Valburg, A. A.; Wenting, M. J.; Beekman, B.; te Koppele, J. M.; Lafeber, F. P.; Bijlsma, J. W.

    1997-01-01

    To investigate whether macroscopically fibrillated human articular knee cartilage observed at autopsy can be considered an early, preclinical phase of osteoarthritis (OA). Histological and biochemical characteristics of 3 types of articular knee cartilage were compared: macroscopically degenerated

  2. Study of mesanchymal stem cells derived from human umbilical cord vein wall and determining the Process of differentiation to cartilage and bone

    Directory of Open Access Journals (Sweden)

    MohammadAli Zare

    2015-01-01

    Full Text Available Background: Mesenchymal stem cells (MSCs comprise a rare population of multipotent progenitors capable of supporting hematopoiesis and differentiating into three (osteogenic, adipogenic, and chondrogenic or more (myogenic, cardiomyogenic, etc. lineages. Due to this ability, MSCs appear to be an attractive tool in the context of tissue engineering and cell-based therapy. Currently, bone marrow represents the main source of MSCs for both experimental and clinical studies. The purpose of this study was isolation and quantitative comparison of mesenchymal stem cells derived from umbilical vein. Materials and Methods: In this study, 35 samples of umbilical cord of healthy full- term newborn were studied. Results: The cells had fibroblastoid like appearance and had revealed the potential to differentiate into three linage of bone, Adipose and cartilage. Surface markers for mesenchymal nature were their demonstratives. Conclusion: Based on our findings the mesenchymal stem cells, from umbilical vein wall can be isolated, cultured and differentiated into three categories of bone, cartilage and adipose.

  3. Degeneration of osteoarthritis cartilage

    DEFF Research Database (Denmark)

    Jørgensen, Dan Richter

    of sensitive biomarkers for monitoring disease progression. This thesis investigates how subregional measures of cartilage thickness can be used to improve upon current imaging biomarkers. The first part of this investigation aims to discover discriminative areas in the cartilage using machine......-learning techniques specifically developed to take advantage of the spatial nature of the problem. The methods were evaluated on data from a longitudinal study where detailed cartilage thickness maps were quantified from magnetic resonance images. The results showed that focal differences in cartilage thickness may...... be relevant for both OA diagnosis and for prediction of future cartilage loss. The second part of the thesis investigates spatial patterns of longitudinal cartilage thickness changes in healthy and OA knees. Based on our findings, we propose a new, conceptually simple biomarker that embraces the heterogeneous...

  4. MR imaging of articular cartilage in the ankle: comparison of available imaging sequences and methods of measurement in cadavers

    Energy Technology Data Exchange (ETDEWEB)

    Tan, T.C.F. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States)]|[Department of Radiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan (Taiwan, Province of China); Wilcox, D.M. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States); Frank, L. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States); Shih, C. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States)]|[Department of Radiology, Veterans General Hospital-Taipei (Taiwan, Province of China); Trudell, D.J. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States); Sartoris, D.J. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States); Resnick, D. [Department of Radiology, Veterans Administrative Medical Center, San Diego, CA (United States)]|[University of California Medical Center, San Diego, CA (United States)

    1996-11-01

    Objective. To assess hyaline cartilage of cadaveric ankles using different magnetic resonance (MR) imaging techniques and various methods of measurement. Design and patients. Cartilage thicknesses of the talus and tibia were measured in ten cadaveric ankles by naked eye and by digitized image analysis from MR images of fat-suppressed T1-weighted gradient recalled (FS-SPGR), sequences and pulsed transfer saturation sequences with (FS-STS) and without fat-suppression (STS); these measurements were compared with those derived from direct inspection of cadaveric sections. The accuracy and precision errors were evaluated statistically for each imaging technique as well as measuring method. Contrast-to-noise ratios of cartilage versus joint fluid and marrow were compared for each of the imaging sequences. Results. Statistically, measurements from FS-SPGR images were associated with the smallest estimation error. Precision error of measurements derived from digitized image analysis was found to be smaller than that derived from naked eye measurements. Cartilage thickness measurements in images from STS and FS-STS sequences revealed larger errors in both accuracy and precision. Interobserver variance was larger in naked eye assessment of the cartilage. Contrast-to-noise ratio of cartilage versus joint fluid and marrow was higher with FS-SPGR than with FS-STS or STS sequences. Conclusion. Of the sequences and measurement techniques studied, the FS-SPGR sequence combined with the use of digitized image analysis provides the most accurate method for the assessment of ankle hyaline cartilage. (orig.). With 3 figs., 2 tabs.

  5. MR imaging of articular cartilage in the ankle: comparison of available imaging sequences and methods of measurement in cadavers

    International Nuclear Information System (INIS)

    Tan, T.C.F.; Wilcox, D.M.; Frank, L.; Shih, C.; Trudell, D.J.; Sartoris, D.J.; Resnick, D.

    1996-01-01

    Objective. To assess hyaline cartilage of cadaveric ankles using different magnetic resonance (MR) imaging techniques and various methods of measurement. Design and patients. Cartilage thicknesses of the talus and tibia were measured in ten cadaveric ankles by naked eye and by digitized image analysis from MR images of fat-suppressed T1-weighted gradient recalled (FS-SPGR), sequences and pulsed transfer saturation sequences with (FS-STS) and without fat-suppression (STS); these measurements were compared with those derived from direct inspection of cadaveric sections. The accuracy and precision errors were evaluated statistically for each imaging technique as well as measuring method. Contrast-to-noise ratios of cartilage versus joint fluid and marrow were compared for each of the imaging sequences. Results. Statistically, measurements from FS-SPGR images were associated with the smallest estimation error. Precision error of measurements derived from digitized image analysis was found to be smaller than that derived from naked eye measurements. Cartilage thickness measurements in images from STS and FS-STS sequences revealed larger errors in both accuracy and precision. Interobserver variance was larger in naked eye assessment of the cartilage. Contrast-to-noise ratio of cartilage versus joint fluid and marrow was higher with FS-SPGR than with FS-STS or STS sequences. Conclusion. Of the sequences and measurement techniques studied, the FS-SPGR sequence combined with the use of digitized image analysis provides the most accurate method for the assessment of ankle hyaline cartilage. (orig.). With 3 figs., 2 tabs

  6. First and second order stereology of hyaline cartilage: Application on mice femoral cartilage.

    Science.gov (United States)

    Noorafshan, Ali; Niazi, Behnam; Mohamadpour, Masoomeh; Hoseini, Leila; Hoseini, Najmeh; Owji, Ali Akbar; Rafati, Ali; Sadeghi, Yasaman; Karbalay-Doust, Saied

    2016-11-01

    Stereological techniques could be considered in research on cartilage to obtain quantitative data. The present study aimed to explain application of the first- and second-order stereological methods on articular cartilage of mice and the methods applied on the mice exposed to cadmium (Cd). The distal femoral articular cartilage of BALB/c mice (control and Cd-treated) was removed. Then, volume and surface area of the cartilage and number of chondrocytes were estimated using Cavalieri and optical dissector techniques on isotropic uniform random sections. Pair-correlation function [g(r)] and cross-correlation function were calculated to express the spatial arrangement of chondrocytes-chondrocytes and chondrocytes-matrix (chondrocyte clustering/dispersing), respectively. The mean±standard deviation of the cartilage volume, surface area, and thickness were 1.4±0.1mm 3 , 26.2±5.4mm 2 , and 52.8±6.7μm, respectively. Besides, the mean number of chondrocytes was 680±200 (×10 3 ). The cartilage volume, cartilage surface area, and number of chondrocytes were respectively reduced by 25%, 27%, and 27% in the Cd-treated mice in comparison to the control animals (pcartilage components carried potential advantages for investigating the cartilage in different joint conditions. Chondrocyte clustering/dispersing and cellularity can be evaluated in cartilage assessment in normal or abnormal situations. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Decellularized cartilage may be a chondroinductive material for osteochondral tissue engineering.

    Directory of Open Access Journals (Sweden)

    Amanda J Sutherland

    Full Text Available Extracellular matrix (ECM-based materials are attractive for regenerative medicine in their ability to potentially aid in stem cell recruitment, infiltration, and differentiation without added biological factors. In musculoskeletal tissue engineering, demineralized bone matrix is widely used, but recently cartilage matrix has been attracting attention as a potentially chondroinductive material. The aim of this study was thus to establish a chemical decellularization method for use with articular cartilage to quantify removal of cells and analyze the cartilage biochemical content at various stages during the decellularization process, which included a physically devitalization step. To study the cellular response to the cartilage matrix, rat bone marrow-derived mesenchymal stem cells (rBMSCs were cultured in cell pellets containing cells only (control, chondrogenic differentiation medium (TGF-β, chemically decellularized cartilage particles (DCC, or physically devitalized cartilage particles (DVC. The chemical decellularization process removed the vast majority of DNA and about half of the glycosaminoglycans (GAG within the matrix, but had no significant effect on the amount of hydroxyproline. Most notably, the DCC group significantly outperformed TGF-β in chondroinduction of rBMSCs, with collagen II gene expression an order of magnitude or more higher. While DVC did not exhibit a chondrogenic response to the extent that DCC did, DVC had a greater down regulation of collagen I, collagen X and Runx2. A new protocol has been introduced for cartilage devitalization and decellularization in the current study, with evidence of chondroinductivity. Such bioactivity along with providing the 'raw material' building blocks of regenerating cartilage may suggest a promising role for DCC in biomaterials that rely on recruiting endogenous cell recruitment and differentiation for cartilage regeneration.

  8. Human articular cartilage: in vitro correlation of MRI and histologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Uhl, M.; Allmann, K.H.; Laubenberger, J.; Langer, M. [Department of Diagnostic Radiology, University Hospital of Freiburg (Germany); Ihling, C.; Tauer, U.; Adler, C.P. [Department of Pathology, University Hospital of Freiburg (Germany)

    1998-09-01

    The aim of our study was to correlate MRI with histologic findings in normal and degenerative cartilage. Twenty-two human knees derived from patients undergoing amputation were examined with 1.0- and 1.5-T MR imaging units. Firstly, we optimized two fat-suppressed 3D gradient-echo sequences. In this pilot study two knees were examined with fast imaging with steady precession (FISP) sequences and fast low-angle shot (FLASH, SPGR) sequence by varying the flip angles (40, 60, 90 ) and combining each flip angle with different echo time (7, 10 or 11, 20 ms). We chose the sequences with the best visual contrast between the cartilage layers and the best measured contrast-to-noise ratio between cartilage and bone marrow. Therefore, we used a 3D FLASH fat-saturated sequence (TR/TE/flip angle = 50/11 ms/40 ) and a 3D FISP fat-saturated sequence (TR/TE/flip angle = 40/10 ms/40 ) for cartilage imaging in 22 human knees. The images were obtained at various angles of the patellar cartilage in relation to the main magnetic field (0, 55, 90 ). The MR appearances were classified into five categories: normal, intracartilaginous signal changes, diffuse thinning (cartilage thickness < 3 mm), superficial erosions, and cartilage ulcers. After imaging, the knees were examined macroscopically and photographed. In addition, we performed histologic studies using light microscopy with several different stainings, polarization, and dark field microscopy as well as electron microscopy. The structural characteristics with the cartilage lesions were correlated with the MR findings. We identified a hyperintense superficial zone in the MR image which did not correlate to the histologically identifiable superficial zone. The second lamina was hypointense on MRI and correlated to the bulk of the radial zone. The third (or deep) cartilage lamina in the MR image seemed to represent the combination of the lowest portion of the radial zone and the calcified cartilage. The width of the hypointense second

  9. Human articular cartilage: in vitro correlation of MRI and histologic findings

    International Nuclear Information System (INIS)

    Uhl, M.; Allmann, K.H.; Laubenberger, J.; Langer, M.; Ihling, C.; Tauer, U.; Adler, C.P.

    1998-01-01

    The aim of our study was to correlate MRI with histologic findings in normal and degenerative cartilage. Twenty-two human knees derived from patients undergoing amputation were examined with 1.0- and 1.5-T MR imaging units. Firstly, we optimized two fat-suppressed 3D gradient-echo sequences. In this pilot study two knees were examined with fast imaging with steady precession (FISP) sequences and fast low-angle shot (FLASH, SPGR) sequence by varying the flip angles (40, 60, 90 ) and combining each flip angle with different echo time (7, 10 or 11, 20 ms). We chose the sequences with the best visual contrast between the cartilage layers and the best measured contrast-to-noise ratio between cartilage and bone marrow. Therefore, we used a 3D FLASH fat-saturated sequence (TR/TE/flip angle = 50/11 ms/40 ) and a 3D FISP fat-saturated sequence (TR/TE/flip angle = 40/10 ms/40 ) for cartilage imaging in 22 human knees. The images were obtained at various angles of the patellar cartilage in relation to the main magnetic field (0, 55, 90 ). The MR appearances were classified into five categories: normal, intracartilaginous signal changes, diffuse thinning (cartilage thickness < 3 mm), superficial erosions, and cartilage ulcers. After imaging, the knees were examined macroscopically and photographed. In addition, we performed histologic studies using light microscopy with several different stainings, polarization, and dark field microscopy as well as electron microscopy. The structural characteristics with the cartilage lesions were correlated with the MR findings. We identified a hyperintense superficial zone in the MR image which did not correlate to the histologically identifiable superficial zone. The second lamina was hypointense on MRI and correlated to the bulk of the radial zone. The third (or deep) cartilage lamina in the MR image seemed to represent the combination of the lowest portion of the radial zone and the calcified cartilage. The width of the hypointense second

  10. MRI of the cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, H.; Noebauer-Huhmann, I.-M.; Krestan, C.; Gahleitner, A.; Marlovits, S.; Trattnig, S. [Department of Osteology, Universitaetklinik fuer Radiodiagnostik, AKH-Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Sulzbacher, I. [Universitaetsklinik fuer Pathologie Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)

    2002-11-01

    With the introduction of fat-suppressed gradient-echo and fast spin-echo (FSE) sequences in clinical routine MR visualization of the hyaline articular cartilage is routinely possible in the larger joints. While 3D gradient-echo with fat suppression allows exact depiction of the thickness and surface of cartilage, FSE outlines the normal and abnormal internal structures of the hyaline cartilage; therefore, both sequences seem to be necessary in a standard MRI protocol for cartilage visualization. In diagnostically ambiguous cases, in which important therapeutic decisions are required, direct MR arthrography is the established imaging standard as an add-on procedure. Despite the social impact and prevalence, until recent years there was a paucity of knowledge about the pathogenesis of cartilage damage. With the introduction of high-resolution MRI with powerful surface coils and fat-suppression techniques, visualization of the articular cartilage is now routinely possible in many joints. After a short summary of the anatomy and physiology of the hyaline cartilage, the different MR imaging methods are discussed and recommended standards are suggested. (orig.)

  11. Fetal mesenchymal stromal cells differentiating towards chondrocytes acquire a gene expression profile resembling human growth plate cartilage.

    Directory of Open Access Journals (Sweden)

    Sandy A van Gool

    Full Text Available We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs differentiating towards chondrocytes as an alternative model for the human growth plate (GP. Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFβ3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with in vitro cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development.

  12. MR imaging of articular cartilage

    International Nuclear Information System (INIS)

    Schaefer, F.K.W.; Muhle, C.; Heller, M.; Brossmann, J.

    2001-01-01

    MR imaging has evolved to the best non-invasive method for the evaluation of articular cartilage. MR imaging helps to understand the structure and physiology of cartilage, and to diagnose cartilage lesions. Numerous studies have shown high accuracy and reliability concerning detection of cartilage lesions and early changes in both structure and biochemistry. High contrast-to-noise ratio and high spatial resolution are essential for analysis of articular cartilage. Fat-suppressed 3D-T 1 weighted gradient echo and T 2 -weighted fast spin echo sequences with or without fat suppression are recommended for clinical routine. In this article the anatomy and pathology of hyaline articular cartilage and the complex imaging characteristics of hyaline cartilage will be discussed. (orig.) [de

  13. Towards Regeneration of Articular Cartilage

    Science.gov (United States)

    Iwamoto, Masahiro; Ohta, Yoichi; Larmour, Colleen; Enomoto-Iwamoto, Motomi

    2014-01-01

    Articular cartilage is classified into permanent hyaline cartilage and has significant differences in structure, extracelluar matrix components, gene expression profile, and mechanical property from transient hyaline cartilage found in growth plate. In the process of synovial joint development, articular cartilage is originated from the interzone, developing at the edge of the cartilaginous anlagen, it establishes zonal structure over time and supports smooth movement of the synovial joint through life. The cascade actions of key regulators such as Wnts, GDF5, Erg, and PTHLH coordinate sequential steps of articular cartilage formation. Articular chondrocytes are restrictedly controlled not to differentiate into a hypertrophic stage by autocrine and paracrine factors and extracerllular matrix microenvironment, but retain potential to undergo hypertrophy. The basal calcified zone of articular cartilage is connected with subchondral bone, but not invaded by blood vessels nor replaced by bone, which is highly contrasted with the growth plate. Articular cartilage has limited regenerative capacity, but likely possesses and potentially uses intrinsic stem cell source in the superficial layer, Ranvier’s groove, the intra-articular tissues such as synovium and fat pad, and marrow below the subchondral bone. Considering the biological views on articular cartilage, several important points are raised for regeneration of articular cartilage. We should evaluate the nature of regenerated cartilage as permanent hyaline cartilage and not just hyaline cartilage. We should study how a hypertrophic phenotype of transplanted cells can be lastingly suppressed in regenerating tissue. Further, we should develop the methods and reagents to activate recruitment of intrinsic stem/progenitor cells into the damaged site. PMID:24078496

  14. Metabolism of all-trans-retinoic acid and all-trans-retinyl acetate. Demonstration of common physiological metabolites in rat small intestinal mucosa and circulation

    International Nuclear Information System (INIS)

    Cullum, M.E.; Zile, M.H.

    1985-01-01

    The kinetics and metabolism of physiological doses of all-trans-retinoic acid were examined in blood and small intestinal mucosa of vitamin A-depleted rats. A major portion of intrajugularly injected retinoic acid is rapidly (within 2 min) sequestered by tissues; subsequently 13-cis-retinoic acid and polar metabolites are released into circulation. All-trans-retinoic acid appears in small intestinal epithelium within 2 min after dosing and is the major radioactive compound there for at least 2 h. Retinoyl glucuronide and 13-cis-retinoic acid are early metabolites of all-trans-retinoic acid in the small intestine of bile duct-cannulated rats. Retinoyl glucuronide, the major metabolite of retinoic acid intestinal epithelium, in contrast to other polar metabolites, was not detected in circulation. An examination of [ 3 H]retinyl acetate metabolites under steady state conditions in vitamin A-repleted rats demonstrates the occurrence of all-trans-retinoic acid and 13-cis-retinoic acid in circulation and in intestinal epithelium, in a pattern similar to that found after injection of retinoic acid into vitamin A-depleted rats. These data establish that all-trans-retinoic acid, 13-cis-retinoic acid, and retinoyl glucuronide are physiological metabolites of vitamin A in target tissues, and therefore are important candidates as mediators of the biological effect of the vitamin

  15. Interaction between cellular retinoic acid-binding protein II and histone hypoacetylation in renal cell carcinoma

    OpenAIRE

    Viroj Wiwanitkit

    2008-01-01

    Renal cell carcinoma is a rare but serious malignancy. Since a reduction in the level of retinoic acid receptor beta 2 (RARbeta2) expression in cancer cells due in part to histone hypoacetylation which is controlled by histone deacetylase (HD), the study on the interaction between cellular retinoic acid-binding proteins II (CRABP II), which is proposed to have its potential influence on retinoic acid (RA) response, and HD can be useful. Comparing to CARBP II and HD, the CARBP II-HD poses the ...

  16. Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application.

    Science.gov (United States)

    Wang, L; Lazebnik, M; Detamore, M S

    2009-03-01

    To compare temporomandibular joint (TMJ) condylar cartilage cells in vitro to hyaline cartilage cells cultured in a three-dimensional (3D) environment for tissue engineering of mandibular condylar cartilage. Mandibular condylar cartilage and hyaline cartilage cells were harvested from pigs and cultured for 6 weeks in polyglycolic acid (PGA) scaffolds. Both types of cells were treated with glucosamine sulfate (0.4 mM), insulin-like growth factor-I (IGF-I) (100 ng/ml) and their combination. At weeks 0 and 6, cell number, glycosaminoglycan (GAG) and collagen content were determined, types I and II collagen were visualized by immunohistochemistry and GAGs were visualized by histology. Hyaline cartilage cells produced from half an order to a full order of magnitude more GAGs and collagen than mandibular condylar cartilage cells in 3D culture. IGF-I was a highly effective signal for biosynthesis with hyaline cartilage cells, while glucosamine sulfate decreased cell proliferation and biosynthesis with both types of cells. In vitro culture of TMJ condylar cartilage cells produced a fibrous tissue with predominantly type I collagen, while hyaline cartilage cells formed a fibrocartilage-like tissue with types I and II collagen. The combination of IGF and glucosamine had a synergistic effect on maintaining the phenotype of TMJ condylar cells to generate both types I and II collagen. Given the superior biosynthetic activity by hyaline cartilage cells and the practical surgical limitations of harvesting cells from the TMJ of a patient requiring TMJ reconstruction, cartilage cells from elsewhere in the body may be a potentially better alternative to cells harvested from the TMJ for TMJ tissue engineering. This finding may also apply to other fibrocartilages such as the intervertebral disc and knee meniscus in applications where a mature cartilage cell source is desired.

  17. Bovine cumulus-granulosa cells contain biologically active retinoid receptors that can respond to retinoic acid

    Directory of Open Access Journals (Sweden)

    Malayer Jerry

    2003-11-01

    Full Text Available Abstract Retinoids, a class of compounds that include retinol and its metabolite, retinoic acid, are absolutely essential for ovarian steroid production, oocyte maturation, and early embryogenesis. Previous studies have detected high concentrations of retinol in bovine large follicles. Further, administration of retinol in vivo and supplementation of retinoic acid during in vitro maturation results in enhanced embryonic development. In the present study, we hypothesized that retinoids administered either in vivo previously or in vitro can exert receptor-mediated effects in cumulus-granulosa cells. Total RNA extracted from in vitro cultured cumulus-granulosa cells was subjected to reverse transcription polymerase chain reaction (RT-PCR and mRNA expression for retinol binding protein (RBP, retinoic acid receptor alpha (RARalpha, retinoic acid receptor beta (RARbeta, retinoic acid receptor gamma (RARgamma, retinoid X receptor alpha (RXRalpha, retinoid X receptor beta (RXRbeta, retinaldehyde dehydrogenase-2 (RALDH-2, and peroxisome proliferator activated receptor gamma (PPARgamma. Transcripts were detected for RBP, RARalpha, RARgamma, RXRalpha, RXRbeta, RALDH-2, and PPARgamma. Expression of RARbeta was not detected in cumulus-granulosa cells. Using western blotting, immunoreactive RARalpha, and RXRbeta protein was also detected in bovine cumulus-granulosa cells. The biological activity of these endogenous retinoid receptors was tested using a transient reporter assay using the pAAV-MCS-betaRARE-Luc vector. Addition of 0.5 and 1 micro molar all-trans retinoic acid significantly (P trans retinol stimulated a mild increase in reporter activity, however, the increase was not statistically significant. Based on these results we conclude that cumulus cells contain endogenously active retinoid receptors and may also be competent to synthesize retinoic acid using the precursor, retinol. These results also indirectly provide evidence that retinoids

  18. Hyaline cartilage regeneration by combined therapy of microfracture and long-term bone morphogenetic protein-2 delivery.

    Science.gov (United States)

    Yang, Hee Seok; La, Wan-Geun; Bhang, Suk Ho; Kim, Hak-Jun; Im, Gun-Il; Lee, Haeshin; Park, Jung-Ho; Kim, Byung-Soo

    2011-07-01

    Microfracture of cartilage induces migration of bone-marrow-derived mesenchymal stem cells. However, this treatment often results in fibrocartilage regeneration. Growth factors such as bone morphogenetic protein (BMP)-2 induce the differentiation of bone-marrow-derived mesenchymal stem cells into chondrocytes, which can be used for hyaline cartilage regeneration. Here, we tested the hypothesis that long-term delivery of BMP-2 to cartilage defects subjected to microfracture results in regeneration of high-quality hyaline-like cartilage, as opposed to short-term delivery of BMP-2 or no BMP-2 delivery. Heparin-conjugated fibrin (HCF) and normal fibrin were used as carriers for the long- and short-term delivery of BMP-2, respectively. Rabbit articular cartilage defects were treated with microfracture combined with one of the following: no treatment, fibrin, short-term delivery of BMP-2, HCF, or long-term delivery of BMP-2. Eight weeks after treatment, histological analysis revealed that the long-term delivery of BMP-2 group (microfracture + HCF + BMP-2) showed the most staining with alcian blue. A biochemical assay, real-time polymerase chain reaction assay and Western blot analysis all revealed that the long-term delivery of BMP-2 group had the highest glucosaminoglycan content as well as the highest expression level of collagen type II. Taken together, the long-term delivery of BMP-2 to cartilage defects subjected to microfracture resulted in regeneration of hyaline-like cartilage, as opposed to short-term delivery or no BMP-2 delivery. Therefore, this method could be more convenient for hyaline cartilage regeneration than autologous chondrocyte implantation due to its less invasive nature and lack of cell implantation.

  19. Regeneration of Cartilage in Human Knee Osteoarthritis with Autologous Adipose Tissue-Derived Stem Cells and Autologous Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Jaewoo Pak

    2016-08-01

    Full Text Available This clinical case series demonstrates that percutaneous injections of autologous adipose tissue-derived stem cells (ADSCs and homogenized extracellular matrix (ECM in the form of adipose stromal vascular fraction (SVF, along with hyaluronic acid (HA and platelet-rich plasma (PRP activated by calcium chloride, could regenerate cartilage-like tissue in human knee osteoarthritis (OA patients. Autologous lipoaspirates were obtained from adipose tissue of the abdominal origin. Afterward, the lipoaspirates were minced to homogenize the ECM. These homogenized lipoaspirates were then mixed with collagenase and incubated. The resulting mixture of ADSCs and ECM in the form of SVF was injected, along with HA and PRP activated by calcium chloride, into knees of three Korean patients with OA. The same affected knees were reinjected weekly with additional PRP activated by calcium chloride for 3 weeks. Pretreatment and post-treatment magnetic resonance imaging (MRI data, functional rating index, range of motion (ROM, and pain score data were then analyzed. All patients' MRI data showed cartilage-like tissue regeneration. Along with MRI evidence, the measured physical therapy outcomes in terms of ROM, subjective pain, and functional status were all improved. This study demonstrates that percutaneous injection of ADSCs with ECM contained in autologous adipose SVF, in conjunction with HA and PRP activated by calcium chloride, is a safe and potentially effective minimally invasive therapy for OA of human knees.

  20. When is cartilage repair successful?

    International Nuclear Information System (INIS)

    Raudner, M.; Roehrich, S.; Zalaudek, M.; Trattnig, S.; Schreiner, M.M.

    2017-01-01

    Focal cartilage lesions are a cause of long-term disability and morbidity. After cartilage repair, it is crucial to evaluate long-term progression or failure in a reproducible, standardized manner. This article provides an overview of the different cartilage repair procedures and important characteristics to look for in cartilage repair imaging. Specifics and pitfalls are pointed out alongside general aspects. After successful cartilage repair, a complete, but not hypertrophic filling of the defect is the primary criterion of treatment success. The repair tissue should also be completely integrated to the surrounding native cartilage. After some months, the transplants signal should be isointense compared to native cartilage. Complications like osteophytes, subchondral defects, cysts, adhesion and chronic bone marrow edema or joint effusion are common and have to be observed via follow-up. Radiological evaluation and interpretation of postoperative changes should always take the repair method into account. (orig.) [de

  1. Zn deposition at the bone-cartilage interface in equine articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.A. [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom)], E-mail: D.A.Bradley@surrey.ac.uk; Moger, C.J.; Winlove, C.P. [School of Physics, University of Exeter, Exeter, EX4 4QL (United Kingdom)

    2007-09-21

    In articular cartilage metalloproteinases, a family of enzymes whose function relies on the presence of divalent cations such as Zn and Ca plays a central role in the normal processes of growth and remodelling and in the degenerative and inflammatory processes of arthritis. Another important enzyme, alkaline phosphatase, involved in cartilage mineralisation also relies on metallic cofactors. The local concentration of divalent cations is therefore of considerable interest in cartilage pathophysiology and several authors have used synchrotron X-ray fluorescence (XRF) to map metal ion distributions in bone and cartilage. We report use of a bench-top XRF analytical microscope, providing spatial resolution of 10 {mu}m and applicable to histological sections, facilitating correlation of the distribution with structural features. The study seeks to establish the elemental distribution in normal tissue as a precursor to investigation of changes in disease. For six samples prepared from equine metacarpophalangeal joint, we observed increased concentration of Zn and Sr ions around the tidemark between normal and mineralised cartilage. This is believed to be an active site of remodelling but its composition has hitherto lacked detailed characterization. We also report preliminary results on two of the samples using Proton-Induced X-ray Emission (PIXE). This confirms our previous observations using synchrotron-based XRF of enhanced deposition of Sr and Zn at the surface of the subchondral bone and in articular cartilage.

  2. Magnetically targeted delivery through cartilage

    Science.gov (United States)

    Jafari, Sahar; Mair, Lamar O.; Chowdhury, Sagar; Nacev, Alek; Hilaman, Ryan; Stepanov, Pavel; Baker-McKee, James; Ijanaten, Said; Koudelka, Christian; English, Bradley; Malik, Pulkit; Weinberg, Irving N.

    2018-05-01

    In this study, we have invented a method of delivering drugs deep into articular cartilage with shaped dynamic magnetic fields acting on small metallic magnetic nanoparticles with polyethylene glycol coating and average diameter of 30 nm. It was shown that transport of magnetic nanoparticles through the entire thickness of bovine articular cartilage can be controlled by a combined alternating magnetic field at 100 Hz frequency and static magnetic field of 0.8 tesla (T) generated by 1" dia. x 2" thick permanent magnet. Magnetic nanoparticles transport through bovine articular cartilage samples was investigated at various settings of magnetic field and time durations. Combined application of an alternating magnetic field and the static field gradient resulted in a nearly 50 times increase in magnetic nanoparticles transport in bovine articular cartilage tissue as compared with static field conditions. This method can be applied to locally deliver therapeutic-loaded magnetic nanoparticles deep into articular cartilage to prevent cartilage degeneration and promote cartilage repair in osteoarthritis.

  3. Magnetically targeted delivery through cartilage

    Directory of Open Access Journals (Sweden)

    Sahar Jafari

    2018-05-01

    Full Text Available In this study, we have invented a method of delivering drugs deep into articular cartilage with shaped dynamic magnetic fields acting on small metallic magnetic nanoparticles with polyethylene glycol coating and average diameter of 30 nm. It was shown that transport of magnetic nanoparticles through the entire thickness of bovine articular cartilage can be controlled by a combined alternating magnetic field at 100 Hz frequency and static magnetic field of 0.8 tesla (T generated by 1" dia. x 2" thick permanent magnet. Magnetic nanoparticles transport through bovine articular cartilage samples was investigated at various settings of magnetic field and time durations. Combined application of an alternating magnetic field and the static field gradient resulted in a nearly 50 times increase in magnetic nanoparticles transport in bovine articular cartilage tissue as compared with static field conditions. This method can be applied to locally deliver therapeutic-loaded magnetic nanoparticles deep into articular cartilage to prevent cartilage degeneration and promote cartilage repair in osteoarthritis.

  4. Palovarotene, a novel retinoic acid receptor gamma agonist for the treatment of emphysema.

    Science.gov (United States)

    Hind, Matthew; Stinchcombe, Sian

    2009-11-01

    Emphysema is characterized by the destruction of alveoli and alveolar ducts within the lungs. Retinoid signaling is believed to play a role in alveologenesis, with the retinoic acid receptor gamma thought to be required for alveolar formation. Based on this hypothesis, Roche Holding AG is developing palovarotene (R-667, RO-3300074), a selective retinoic acid receptor gamma agonist for the treatment of emphysema. In small animal studies, palovarotene was claimed to reverse the structural, functional and inflammatory features of cigarette smoke-induced emphysema. Phase I clinical trials of palovarotene in patients with emphysema demonstrated that the drug is well tolerated, with improvements observed in markers of emphysema progression. Unlike all-trans retinoic acid, the pharmacokinetic profile of palovarotene appears to be dose-proportional. At the time of publication, a phase II, placebo-controlled trial was ongoing, and was expected to report prospective measurements of exercise, gas transfer and lung densitometry endpoints. The development of a selective retinoic acid receptor gamma agonist for the treatment of emphysema represents the first of a new class of small-molecule regenerative therapies that may prove useful for the treatment of destructive or age-related lung disease.

  5. Cartilage oligomeric matrix protein enhances matrix assembly during chondrogenesis of human mesenchymal stem cells.

    Science.gov (United States)

    Haleem-Smith, Hana; Calderon, Raul; Song, Yingjie; Tuan, Rocky S; Chen, Faye H

    2012-04-01

    Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention.

  6. CARTILAGE OLIGOMERIC MATRIX PROTEIN ENHANCES MATRIX ASSEMBLY DURING CHONDROGENESIS OF HUMAN MESENCHYMAL STEM CELLS

    Science.gov (United States)

    Haleem-Smith, Hana; Calderon, Raul; Song, Yingjie; Tuan, Rocky S.; Chen, Faye H.

    2011-01-01

    Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate-hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention. PMID:22095699

  7. Tissue engineering of cartilages using biomatrices

    DEFF Research Database (Denmark)

    Melrose, J.; Chuang, C.; Whitelock, J.

    2008-01-01

    and age-related degenerative diseases can all lead to cartilage loss; however, the low cell density and very limited self-renewal capacity of cartilage necessitate the development of effective therapeutic repair strategies for this tissue. The ontogeny of the chondrocyte, which is the cell that provides...... the biosynthetic machinery for all the component parts of cartilage, is discussed, since an understanding of cartilage development is central to the maintenance of a chondrocytic phenotype in any strategy aiming to produce a replacement cartilage. A plethora of matrices have been developed for cartilage...

  8. Non-invasive monitoring of cytokine-based regenerative treatment of cartilage by hyperspectral unmixing (Conference Presentation)

    Science.gov (United States)

    Mahbub, Saabah B.; Succer, Peter; Gosnell, Martin E.; Anwaer, Ayad G.; Herbert, Benjamin; Vesey, Graham; Goldys, Ewa M.

    2016-03-01

    Extracting biochemical information from tissue autofluorescence is a promising approach to non-invasively monitor disease treatments at a cellular level, without using any external biomarkers. Our recently developed unsupervised hyperspectral unmixing by Dependent Component Analysis (DECA) provides robust and detailed metabolic information with proper account of intrinsic cellular heterogeneity. Moreover this method is compatible with established methods of fluorescent biomarker labelling. Recently adipose-derived stem cell (ADSC) - based therapies have been introduced for treating different diseases in animals and humans. ADSC have been shown promise in regenerative treatments for osteoarthritis and other bone and joint disorders. One of the mechanism of their action is their anti-inflammatory effects within osteoarthritic joints which aid the regeneration of cartilage. These therapeutic effects are known to be driven by secretions of different cytokines from the ADSCs. We have been using the hyperspectral unmixing techniques to study in-vitro the effects of ADSC-derived cytokine-rich secretions with the cartilage chip in both human and bovine samples. The study of metabolic effects of different cytokine treatment on different cartilage layers makes it possible to compare the merits of those treatments for repairing cartilage.

  9. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    Science.gov (United States)

    Jungmann, Pia M.; Baum, Thomas; Bauer, Jan S.; Karampinos, Dimitrios C.; Link, Thomas M.; Li, Xiaojuan; Trattnig, Siegfried; Rummeny, Ernst J.; Woertler, Klaus; Welsch, Goetz H.

    2014-01-01

    Background. New quantitative magnetic resonance imaging (MRI) techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), and diffusion weighted imaging (DWI) are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair. PMID:24877139

  10. Cartilage Repair Surgery: Outcome Evaluation by Using Noninvasive Cartilage Biomarkers Based on Quantitative MRI Techniques?

    Directory of Open Access Journals (Sweden)

    Pia M. Jungmann

    2014-01-01

    Full Text Available Background. New quantitative magnetic resonance imaging (MRI techniques are increasingly applied as outcome measures after cartilage repair. Objective. To review the current literature on the use of quantitative MRI biomarkers for evaluation of cartilage repair at the knee and ankle. Methods. Using PubMed literature research, studies on biochemical, quantitative MR imaging of cartilage repair were identified and reviewed. Results. Quantitative MR biomarkers detect early degeneration of articular cartilage, mainly represented by an increasing water content, collagen disruption, and proteoglycan loss. Recently, feasibility of biochemical MR imaging of cartilage repair tissue and surrounding cartilage was demonstrated. Ultrastructural properties of the tissue after different repair procedures resulted in differences in imaging characteristics. T2 mapping, T1rho mapping, delayed gadolinium-enhanced MRI of cartilage (dGEMRIC, and diffusion weighted imaging (DWI are applicable on most clinical 1.5 T and 3 T MR scanners. Currently, a standard of reference is difficult to define and knowledge is limited concerning correlation of clinical and MR findings. The lack of histological correlations complicates the identification of the exact tissue composition. Conclusions. A multimodal approach combining several quantitative MRI techniques in addition to morphological and clinical evaluation might be promising. Further investigations are required to demonstrate the potential for outcome evaluation after cartilage repair.

  11. Fractional calculus model of articular cartilage based on experimental stress-relaxation

    Science.gov (United States)

    Smyth, P. A.; Green, I.

    2015-05-01

    Articular cartilage is a unique substance that protects joints from damage and wear. Many decades of research have led to detailed biphasic and triphasic models for the intricate structure and behavior of cartilage. However, the models contain many assumptions on boundary conditions, permeability, viscosity, model size, loading, etc., that complicate the description of cartilage. For impact studies or biomimetic applications, cartilage can be studied phenomenologically to reduce modeling complexity. This work reports experimental results on the stress-relaxation of equine articular cartilage in unconfined loading. The response is described by a fractional calculus viscoelastic model, which gives storage and loss moduli as functions of frequency, rendering multiple advantages: (1) the fractional calculus model is robust, meaning that fewer constants are needed to accurately capture a wide spectrum of viscoelastic behavior compared to other viscoelastic models (e.g., Prony series), (2) in the special case where the fractional derivative is 1/2, it is shown that there is a straightforward time-domain representation, (3) the eigenvalue problem is simplified in subsequent dynamic studies, and (4) cartilage stress-relaxation can be described with as few as three constants, giving an advantage for large-scale dynamic studies that account for joint motion or impact. Moreover, the resulting storage and loss moduli can quantify healthy, damaged, or cultured cartilage, as well as artificial joints. The proposed characterization is suited for high-level analysis of multiphase materials, where the separate contribution of each phase is not desired. Potential uses of this analysis include biomimetic dampers and bearings, or artificial joints where the effective stiffness and damping are fundamental parameters.

  12. Magnetic Resonance Imaging of Cartilage Repair

    Science.gov (United States)

    Trattnig, Siegfried; Winalski, Carl S.; Marlovits, Stephan; Jurvelin, Jukka S.; Welsch, Goetz H.; Potter, Hollis G.

    2011-01-01

    Articular cartilage lesions are a common pathology of the knee joint, and many patients may benefit from cartilage repair surgeries that offer the chance to avoid the development of osteoarthritis or delay its progression. Cartilage repair surgery, no matter the technique, requires a noninvasive, standardized, and high-quality longitudinal method to assess the structure of the repair tissue. This goal is best fulfilled by magnetic resonance imaging (MRI). The present article provides an overview of the current state of the art of MRI of cartilage repair. In the first 2 sections, preclinical and clinical MRI of cartilage repair tissue are described with a focus on morphological depiction of cartilage and the use of functional (biochemical) MR methodologies for the visualization of the ultrastructure of cartilage repair. In the third section, a short overview is provided on the regulatory issues of the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) regarding MR follow-up studies of patients after cartilage repair surgeries. PMID:26069565

  13. Repair of articular cartilage defects in the knee with autologous iliac crest cartilage in a rabbit model.

    Science.gov (United States)

    Jing, Lizhong; Zhang, Jiying; Leng, Huijie; Guo, Qinwei; Hu, Yuelin

    2015-04-01

    To demonstrate that iliac crest cartilage may be used to repair articular cartilage defects in the knees of rabbits. Full-thickness cartilage defects were created in the medial femoral condyle on both knees of 36 New Zealand white rabbits. The 72 defects were randomly assigned to be repaired with ipsilateral iliac crest cartilage (Group I), osteochondral tissues removed at defect creation (Group II), or no treatment (negative control, Group III). Animals were killed at 6, 12, and 24 weeks post-operatively. The repaired tissues were harvested for magnetic resonance imaging (MRI), histological studies (haematoxylin and eosin and immunohistochemical staining), and mechanical testing. At 6 weeks, the iliac crest cartilage graft was not yet well integrated with the surrounding articular cartilage, but at 12 weeks, the graft deep zone had partial ossification. By 24 weeks, the hyaline cartilage-like tissue was completely integrated with the surrounding articular cartilage. Osteochondral autografts showed more rapid healing than Group I at 6 weeks and complete healing at 12 weeks. Untreated defects were concave or partly filled with fibrous tissue throughout the study. MRI showed that Group I had slower integration with surrounding normal cartilage compared with Group II. The mechanical properties of Group I were significantly lower than those of Group II at 12 weeks, but this difference was not significant at 24 weeks. Iliac crest cartilage autografts were able to repair knee cartilage defects with hyaline cartilage and showed comparable results with osteochondral autografts in the rabbit model.

  14. Effect of histone deacetylase inhibitor, trichostatin A, on cartilage ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of histone deacetylase (HDAC) inhibitor, trichostatin A (TCA), on cartilage regeneration in a rabbit perichondrial graft model. Methods: Perichondrial grafts (20 × 20 mm2) were derived from the ears of New Zealand rabbits and transplanted onto the paravertebral muscle of the face of each ...

  15. [Current overview of cartilage regeneration procedures].

    Science.gov (United States)

    Schenker, H; Wild, M; Rath, B; Tingart, M; Driessen, A; Quack, V; Betsch, M

    2017-11-01

    Cartilage is an avascular, alymphatic and non-innervated tissue with limited intrinsic repair potential. The high prevalence of cartilage defects and their tremendous clinical importance are a challenge for all treating physicians. This article provides the reader with an overview about current cartilage treatment options and their clinical outcome. Microfracture is still considered the gold standard in the treatment of small cartilage lesions. Small osteochondral defects can be effectively treated with the autologous osteochondral transplantation system. Larger cartilage defects are successfully treated by autologous membrane-induced chondrogenesis (AMIC) or by membrane-assisted autologous chondrocyte implantation (MACI). Despite limitations of current cartilage repair strategies, such procedures can result in short- and mid-term clinical improvement of the patients. Further developments and clinical studies are necessary to improve the long-term outcome following cartilage repair.

  16. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage.

    Science.gov (United States)

    Li, Feng; Wang, Anmin; Wang, Chengtao

    2016-05-01

    Many biomaterials are being used to repair damaged articular cartilage. In particular, poly vinyl alcohol hydrogel has similar mechanical properties to natural cartilage under compressive and shearing loading. Here, three-factor and two-level friction experiments and long-term tests were conducted to better evaluate its tribological properties. The friction coefficient between articular cartilage and the poly vinyl alcohol hydrogel depended primarily on the three factors of load, speed, and lubrication. When the speed increased from 10 to 20 mm/s under a load of 10 N, the friction coefficient increased from 0.12 to 0.147. When the lubricant was changed from Ringer's solution to a hyaluronic acid solution, the friction coefficient decreased to 0.084 with loads as high as 22 N. The poly vinyl alcohol hydrogel was severely damaged and lost its top surface layers, which were transferred to the articular cartilage surface. Wear was observed in the surface morphologies, which indicated the occurrence of surface adhesion of bovine cartilage. Surface fatigue and adhesive wear was the dominant wear mechanism.

  17. Advances in cartilage tissue engineering : in vitro

    NARCIS (Netherlands)

    E.W. Mandl (Erik)

    2004-01-01

    textabstractWithin the body three subtypes of cartilage can be distinguished: hyaline cartilage, elastic cartilage and fibrocartilage. Hyaline cartilage is the predominant subtype and is mainly located in articular joints and in less extent in the nasal septum and cricoid. Elastic cartilage can be

  18. Human osteoarthritic cartilage is synthetically more active but in culture less vital than normal cartilage

    NARCIS (Netherlands)

    Lafeber, F. P.; van Roy, H.; Wilbrink, B.; Huber-Bruning, O.; Bijlsma, J. W.

    1992-01-01

    The proteoglycan turnover of human osteoarthritic (OA) cartilage was compared to that of normal (N) cartilage. The cartilage was obtained postmortem from human femoral knee condyles. Short term cultures were compared to longterm cultures, and proteoglycan synthesis rate, content and release

  19. Pretreatment with platelet derived growth factor-BB modulates the ability of costochondral resting zone chondrocytes incorporated into PLA/PGA scaffolds to form new cartilage in vivo.

    Science.gov (United States)

    Lohmann, C H; Schwartz, Z; Niederauer, G G; Carnes, D L; Dean, D D; Boyan, B D

    2000-01-01

    Optimal repair of chondral defects is likely to require both a suitable population of chondrogenic cells and a biodegradable matrix to provide a space-filling structural support during the early stages of cartilage formation. This study examined the ability of chondrocytes to support cartilage formation when incorporated into biodegradable scaffolds constructed from copolymers (PLG) of polylactic acid (PLA) and polyglycolic acid (PGA) and implanted in the calf muscle of nude mice. Scaffolds were fabricated to be more hydrophilic (PLG-H) or were reinforced with 10% PGA fibers (PLG-FR), increasing the stiffness of the implant by 20-fold. Confluent primary cultures of rat costochondral resting zone chondrocytes (RC) were loaded into PLG-H foams and implanted intramuscularly. To determine if growth factor pretreatment could modulate the ability of the cells to form new cartilage, RC cells were pretreated with recombinant human platelet derived growth factor-BB IPDGF-BB) for 4 or 24 h prior to implantation. To assess whether scaffold material properties could affect the ability of chondrogenic cells to form cartilage, RC cells were also loaded into PLG-FR scaffolds. To determine if the scaffolds or treatment with PDGF-BB affected the rate of chondrogenesis, tissue at the implant site was harvested at four and eight weeks post-operatively, fixed, decalcified and embedded in paraffin. Sections were obtained along the transverse plane of the lower leg, stained with haematoxylin and eosin, and then assessed by morphometric analysis for area of cartilage, area of residual implant, and area of fibrous connective tissue formation (fibrosis). Whether or not the cartilage contained hypertrophic cells was also assessed. The amount of residual implant did not change with time in any of the implanted tissues. The area occupied by PLG-FR implants was greater than that occupied by PLG-H implants at both time points. All implants were surrounded by fibrous connective tissue, whether

  20. An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant.

    Science.gov (United States)

    Bartz, Christoph; Meixner, Miriam; Giesemann, Petra; Roël, Giulietta; Bulwin, Grit-Carsta; Smink, Jeske J

    2016-11-15

    Cell-based therapies such as autologous chondrocyte implantation are promising therapeutic approaches to treat cartilage defects to prevent further cartilage degeneration. To assure consistent quality of cell-based therapeutics, it is important to be able to predict the biological activity of such products. This requires the development of a potency assay, which assesses a characteristic of the cell transplant before implantation that can predict its cartilage regeneration capacity after implantation. In this study, an ex vivo human cartilage repair model was developed as quality assessment tool for potency and applied to co.don's chondrosphere product, a matrix-associated autologous chondrocyte implant (chondrocyte spheroids) that is in clinical use in Germany. Chondrocyte spheroids were generated from 14 donors, and implanted into a subchondral cartilage defect that was manually generated in human articular cartilage tissue. Implanted spheroids and cartilage tissue were co-cultured ex vivo for 12 weeks to allow regeneration processes to form new tissue within the cartilage defect. Before implantation, spheroid characteristics like glycosaminoglycan production and gene and protein expression of chondrogenic markers were assessed for each donor sample and compared to determine donor-dependent variation. After the co-cultivation, histological analyses showed the formation of repair tissue within the cartilage defect, which varied in amount for the different donors. In the repair tissue, aggrecan protein was expressed and extra-cellular matrix cartilage fibers were present, both indicative for a cartilage hyaline-like character of the repair tissue. The amount of formed repair tissue was used as a read-out for regeneration capacity and was correlated with the spheroid characteristics determined before implantation. A positive correlation was found between high level of aggrecan protein expression in spheroids before implantation and a higher regeneration potential

  1. An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant

    Directory of Open Access Journals (Sweden)

    Christoph Bartz

    2016-11-01

    Full Text Available Abstract Background Cell-based therapies such as autologous chondrocyte implantation are promising therapeutic approaches to treat cartilage defects to prevent further cartilage degeneration. To assure consistent quality of cell-based therapeutics, it is important to be able to predict the biological activity of such products. This requires the development of a potency assay, which assesses a characteristic of the cell transplant before implantation that can predict its cartilage regeneration capacity after implantation. In this study, an ex vivo human cartilage repair model was developed as quality assessment tool for potency and applied to co.don’s chondrosphere product, a matrix-associated autologous chondrocyte implant (chondrocyte spheroids that is in clinical use in Germany. Methods Chondrocyte spheroids were generated from 14 donors, and implanted into a subchondral cartilage defect that was manually generated in human articular cartilage tissue. Implanted spheroids and cartilage tissue were co-cultured ex vivo for 12 weeks to allow regeneration processes to form new tissue within the cartilage defect. Before implantation, spheroid characteristics like glycosaminoglycan production and gene and protein expression of chondrogenic markers were assessed for each donor sample and compared to determine donor-dependent variation. Results After the co-cultivation, histological analyses showed the formation of repair tissue within the cartilage defect, which varied in amount for the different donors. In the repair tissue, aggrecan protein was expressed and extra-cellular matrix cartilage fibers were present, both indicative for a cartilage hyaline-like character of the repair tissue. The amount of formed repair tissue was used as a read-out for regeneration capacity and was correlated with the spheroid characteristics determined before implantation. A positive correlation was found between high level of aggrecan protein expression in spheroids

  2. Cartilage Integration: Evaluation of the reasons for failure of integration during cartilage repair. A review

    Directory of Open Access Journals (Sweden)

    IM Khan

    2008-09-01

    Full Text Available Articular cartilage is a challenging tissue to reconstruct or replace principally because of its avascular nature; large chondral lesions in the tissue do not spontaneously heal. Where lesions do penetrate the bony subchondral plate, formation of hematomas and the migration of mesenchymal stem cells provide an inferior and transient fibrocartilagenous replacement for hyaline cartilage. To circumvent the poor intrinsic reparative response of articular cartilage several surgical techniques based on tissue transplantation have emerged. One characteristic shared by intrinsic reparative processes and the new surgical therapies is an apparent lack of lateral integration of repair or graft tissue with the host cartilage that can lead to poor prognosis. Many factors have been cited as impeding cartilage:cartilage integration including; chondrocyte cell death, chondrocyte dedifferentiation, the nature of the collagenous and proteoglycan networks that constitute the extracellular matrix, the type of biomaterial scaffold employed in repair and the origin of the cells used to repopulate the defect or lesion. This review addresses the principal intrinsic and extrinsic factors that impede integration and describe how manipulation of these factors using a host of strategies can positively influence cartilage integration.

  3. Osteoarthritic cartilage is more homogeneous than healthy cartilage

    DEFF Research Database (Denmark)

    Qazi, Arish A; Dam, Erik B; Nielsen, Mads

    2007-01-01

    it evolves as a consequence to disease and thereby can be used as a progression biomarker. MATERIALS AND METHODS: A total of 283 right and left knees from 159 subjects aged 21 to 81 years were scanned using a Turbo 3D T1 sequence on a 0.18-T MRI Esaote scanner. The medial compartment of the tibial cartilage...... sheet was segmented using a fully automatic voxel classification scheme based on supervised learning. From the segmented cartilage sheet, homogeneity was quantified by measuring entropy from the distribution of signal intensities inside the compartment. Each knee was examined by radiography...... of the region was evaluated by testing for overfitting. Three different regularization techniques were evaluated for reducing overfitting errors. RESULTS: The P values for separating the different groups based on cartilage homogeneity were 2 x 10(-5) (KL 0 versus KL 1) and 1 x 10(-7) (KL 0 versus KL >0). Using...

  4. Increased Toxicity of Chemotherapeutic Drugs by All-Trans Retinoic Acid in Cd44 Cells

    Directory of Open Access Journals (Sweden)

    A Abbasi

    2016-03-01

    Full Text Available BACKGROUND AND OBJECTIVE: In recent studies, undifferentiated CD44 cells have been introduced as the major cause of chemotherapeutic drug resistance in esophageal cancer. In this study, we aimed to evaluate the effects of all-trans retinoic acid on reducing chemotherapeutic drug resistance and improving the associated toxic effects. METHODS: In this clinical study, CD44+ and CD44- cells were separated from KYSE-30 cell line, using magnetic-activated cell sorting (MACS method. The cytotoxic effects of retinoic acid treatment, combined with cisplatin and 5-fluorouracil, were separately evaluated in two cell groups, i.e., CD44+ and CD44-. Cytotoxicity was determined by identifying cellular metabolic activity, acridine orange/ethidium bromide staining, and flow cytometry. FINDINGS: In this study, CD44 marker was expressed in 6.25% of the cell population in KYSE-30 cell line. The results of flow cytometry revealed that treatment with a combination of retinoic acid and chemotherapeutic drugs could improve cell cycle arrest in CD44+ cells (p<0.05, unlike CD44- cells. Determination of cellular metabolic activity, increased cell apoptosis along with decreased half maximal inhibitory concentration (IC50, and acridine orange/ethidium bromide staining were indicative of the increased percentage of primary and secondary apoptotic CD44+ cells. However, in CD44- cells, these effects were only observed by using a combination of retinoic acid and cisplatin (p<0.05. CONCLUSION: The present results showed that all-trans retinoic acid could increase the toxicity of cisplatin and 5-fluorouracil in CD44+ cells.

  5. Induction of spontaneous hyaline cartilage regeneration using a double-network gel: efficacy of a novel therapeutic strategy for an articular cartilage defect.

    Science.gov (United States)

    Kitamura, Nobuto; Yasuda, Kazunori; Ogawa, Munehiro; Arakaki, Kazunobu; Kai, Shuken; Onodera, Shin; Kurokawa, Takayuki; Gong, Jian Ping

    2011-06-01

    A double-network (DN) gel, which was composed of poly-(2-acrylamido-2-methylpropanesulfonic acid) and poly-(N,N'-dimetyl acrylamide) (PAMPS/PDMAAm), has the potential to induce chondrogenesis both in vitro and in vivo. To establish the efficacy of a therapeutic strategy for an articular cartilage defect using a DN gel. Controlled laboratory study. A 4.3-mm-diameter osteochondral defect was created in rabbit trochlea. A DN gel plug was implanted into the defect of the right knee so that a defect 2 mm in depth remained after surgery. An untreated defect of the left knee provided control data. The osteochondral defects created were examined by histological and immunohistochemical evaluations, surface assessment using confocal laser scanning microscopy, and real-time polymerase chain reaction (PCR) analysis at 4 and 12 weeks. Samples were quantitatively evaluated with 2 scoring systems reported by Wayne et al and O'Driscoll et al. The DN gel-implanted defect was filled with a sufficient volume of the hyaline cartilage tissue rich in proteoglycan and type 2 collagen. Quantitative evaluation using the grading scales revealed a significantly higher score in the DN gel-implanted defects compared with the untreated control at each period (P cartilage at 12 weeks (P = .0106), while there was no statistical difference between the DN gel-implanted and normal knees. This study using the mature rabbit femoral trochlea osteochondral defect model demonstrated that DN gel implantation is an effective treatment to induce cartilage regeneration in vivo without any cultured cells or mammalian-derived scaffolds. This study has prompted us to develop a potential innovative strategy to repair cartilage lesions in the field of joint surgery.

  6. An integrin-dependent role of pouch endoderm in hyoid cartilage development.

    Directory of Open Access Journals (Sweden)

    Justin Gage Crump

    2004-09-01

    Full Text Available Pharyngeal endoderm is essential for and can reprogram development of the head skeleton. Here we investigate the roles of specific endodermal structures in regulating craniofacial development. We have isolated an integrinalpha5 mutant in zebrafish that has region-specific losses of facial cartilages derived from hyoid neural crest cells. In addition, the cranial muscles that normally attach to the affected cartilage region and their associated nerve are secondarily reduced in integrinalpha5- animals. Earlier in development, integrinalpha5 mutants also have specific defects in the formation of the first pouch, an outpocketing of the pharyngeal endoderm. By fate mapping, we show that the cartilage regions that are lost in integrinalpha5 mutants develop from neural crest cells directly adjacent to the first pouch in wild-type animals. Furthermore, we demonstrate that Integrinalpha5 functions in the endoderm to control pouch formation and cartilage development. Time-lapse recordings suggest that the first pouch promotes region-specific cartilage development by regulating the local compaction and survival of skeletogenic neural crest cells. Thus, our results reveal a hierarchy of tissue interactions, at the top of which is the first endodermal pouch, which locally coordinates the development of multiple tissues in a specific region of the vertebrate face. Lastly, we discuss the implications of a mosaic assembly of the facial skeleton for the evolution of ray-finned fish.

  7. Retinoic acid from the meninges regulates cortical neuron generation.

    Science.gov (United States)

    Siegenthaler, Julie A; Ashique, Amir M; Zarbalis, Konstantinos; Patterson, Katelin P; Hecht, Jonathan H; Kane, Maureen A; Folias, Alexandra E; Choe, Youngshik; May, Scott R; Kume, Tsutomu; Napoli, Joseph L; Peterson, Andrew S; Pleasure, Samuel J

    2009-10-30

    Extrinsic signals controlling generation of neocortical neurons during embryonic life have been difficult to identify. In this study we demonstrate that the dorsal forebrain meninges communicate with the adjacent radial glial endfeet and influence cortical development. We took advantage of Foxc1 mutant mice with defects in forebrain meningeal formation. Foxc1 dosage and loss of meninges correlated with a dramatic reduction in both neuron and intermediate progenitor production and elongation of the neuroepithelium. Several types of experiments demonstrate that retinoic acid (RA) is the key component of this secreted activity. In addition, Rdh10- and Raldh2-expressing cells in the dorsal meninges were either reduced or absent in the Foxc1 mutants, and Rdh10 mutants had a cortical phenotype similar to the Foxc1 null mutants. Lastly, in utero RA treatment rescued the cortical phenotype in Foxc1 mutants. These results establish RA as a potent, meningeal-derived cue required for successful corticogenesis.

  8. In vitro cartilage construct generation from silk fibroin- chitosan porous scaffold and umbilical cord blood derived human mesenchymal stem cells in dynamic culture condition.

    Science.gov (United States)

    Agrawal, Parinita; Pramanik, Krishna; Biswas, Amit; Ku Patra, Ranjan

    2018-02-01

    Cartilage construct generation includes a scaffold with appropriate composition to mimic matrix of the damaged tissue on which the stem cells grow and differentiate. In this study, umbilical cord blood (UCB) derived human mesenchymal stem cells (hMSCs) were seeded on freeze dried porous silk-fibroin (SF)/chitosan (CS) scaffolds. Influence of static and dynamic (spinner flask bioreactor) culture conditions on the developing cartilage construct were studied by in-vitro characterization for viability, proliferation, distribution, and chondrogenic differentiation of hMSCs over the scaffold. Constructs developed in spinner flask consisted of 62% live cells, and exhibited 543% more cell density at the core than constructs cultured in static system. Quantification of DNA and glycosaminoglycans accumulation after 21 days showed the progression of chondrogenic differentiation of hMSCs was higher in dynamic culture compared to static one. In constructs generated under dynamic condition, histology staining for proteoglycan matrix, and fluorescence staining for collagen-II and aggrecan showed positive correlation between early and late stage chondrogenic markers, which was further confirmed by quantitative PCR analysis, showing low collagen-I expression and highly expressed Sox9, collagen-II and aggrecan. The present study demonstrated that construct generated by combining 3D SF/CS scaffold with UCB-hMSCs under dynamic condition using spinner flask bioreactor can be used for cartilage tissue regeneration for future medical treatments. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 397-407, 2018. © 2017 Wiley Periodicals, Inc.

  9. Similar properties of chondrocytes from osteoarthritis joints and mesenchymal stem cells from healthy donors for tissue engineering of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Amilton M Fernandes

    Full Text Available Lesions of hyaline cartilage do not heal spontaneously, and represent a therapeutic challenge. In vitro engineering of articular cartilage using cells and biomaterials may prove to be the best solution. Patients with osteoarthritis (OA may require tissue engineered cartilage therapy. Chondrocytes obtained from OA joints are thought to be involved in the disease process, and thus to be of insufficient quality to be used for repair strategies. Bone marrow (BM derived mesenchymal stem cells (MSCs from healthy donors may represent an alternative cell source. We have isolated chondrocytes from OA joints, performed cell culture expansion and tissue engineering of cartilage using a disc-shaped alginate scaffold and chondrogenic differentiation medium. We performed real-time reverse transcriptase quantitative PCR and fluorescence immunohistochemistry to evaluate mRNA and protein expression for a range of molecules involved in chondrogenesis and OA pathogenesis. Results were compared with those obtained by using BM-MSCs in an identical tissue engineering strategy. Finally the two populations were compared using genome-wide mRNA arrays. At three weeks of chondrogenic differentiation we found high and similar levels of hyaline cartilage-specific type II collagen and fibrocartilage-specific type I collagen mRNA and protein in discs containing OA and BM-MSC derived chondrocytes. Aggrecan, the dominant proteoglycan in hyaline cartilage, was more abundantly distributed in the OA chondrocyte extracellular matrix. OA chondrocytes expressed higher mRNA levels also of other hyaline extracellular matrix components. Surprisingly BM-MSC derived chondrocytes expressed higher mRNA levels of OA markers such as COL10A1, SSP1 (osteopontin, ALPL, BMP2, VEGFA, PTGES, IHH, and WNT genes, but lower levels of MMP3 and S100A4. Based on the results presented here, OA chondrocytes may be suitable for tissue engineering of articular cartilage.

  10. The Expression of Bone Morphogenetic Protein 2 and Matrix Metalloproteinase 2 through Retinoic Acid Receptor Beta Induced by All-Trans Retinoic Acid in Cultured ARPE-19 Cells.

    Directory of Open Access Journals (Sweden)

    Zhenya Gao

    Full Text Available All-trans retinoic acid (ATRA plays an important role in ocular development. Previous studies found that retinoic acid could influence the metabolism of scleral remodeling by promoting retinal pigment epithelium (RPE cells to secrete secondary signaling factors. The purpose of this study was to investigate whether retinoic acid affected secretion of bone morphogenetic protein 2 (BMP-2 and matrix metalloproteinase 2 (MMP-2 and to explore the signaling pathway of retinoic acid in cultured acute retinal pigment epithelial 19 (ARPE-19 cells.The effects of ATRA (concentrations from 10-9 to 10-5 mol/l on the expression of retinoic acid receptors (RARs in ARPE-19 cells were examined at the mRNA and protein levels using reverse transcription-polymerase chain reaction (RT-PCR and western blot assay, respectively. The effects of treating ARPE-19 cells with ATRA concentrations ranging from 10-9 to 10-5 mol/l for 24 h and 48 h or with 10-6mol/l ATRA at different times ranging from 6h to 72h were assessed using real-time quantitative PCR (qPCR and enzyme-linked immunosorbent assay (ELISA. The contribution of RARβ-induced activation of ARPE-19 cells was confirmed using LE135, an antagonist of RARβ.RARβ mRNA levels significantly increased in the ARPE-19 cells treated with ATRA for 24h and 48h. These increases in RARβ mRNA levels were dose dependent (at concentrations of 10-9 to 10-5 mol/l with a maximum effect observed at 10-6 mol/l. There were no significant changes in the mRNA levels of RARα and RARγ. Western blot assay revealed that RARβ protein levels were increased significantly in a time-dependent manner in ARPE-19 cells treated with 10-6 mol/l ATRA from 12 h to 72 h, with a marked increase observed at 24 h and 48 h. The upregulation of RARβ and the ATRA-induced secretion in ARPE-19 cells could be inhibited by the RARβ antagonist LE135.ATRA induced upregulation of RARβ in ARPE-19 cells and stimulated these cells to secrete BMP-2 and MMP-2.

  11. Effects of Chondroitinase ABC-Mediated Proteoglycan Digestion on Decellularization and Recellularization of Articular Cartilage.

    Directory of Open Access Journals (Sweden)

    Catherine A Bautista

    Full Text Available Articular cartilage has a limited capacity to heal itself and thus focal defects often result in the development of osteoarthritis. Current cartilage tissue engineering strategies seek to regenerate injured tissue by creating scaffolds that aim to mimic the unique structure and composition of native articular cartilage. Decellularization is a novel strategy that aims to preserve the bioactive factors and 3D biophysical environment of the native extracellular matrix while removing potentially immunogenic factors. The purpose of this study was to develop a procedure that can enable decellularization and recellularization of intact articular cartilage matrix. Full-thickness porcine articular cartilage plugs were decellularized with a series of freeze-thaw cycles and 0.1% (w/v sodium dodecyl sulfate detergent cycles. Chondroitinase ABC (ChABC was applied before the detergent cycles to digest glycosaminoglycans in order to enhance donor chondrocyte removal and seeded cell migration. Porcine synovium-derived mesenchymal stem cells were seeded onto the decellularized cartilage scaffolds and cultured for up to 28 days. The optimized decellularization protocol removed 94% of native DNA per sample wet weight, while collagen content and alignment were preserved. Glycosaminoglycan depletion prior to the detergent cycles increased removal of nuclear material. Seeded cells infiltrated up to 100 μm into the cartilage deep zone after 28 days in culture. ChABC treatment enhances decellularization of the relatively dense, impermeable articular cartilage by reducing glycosaminoglycan content. ChABC treatment did not appear to affect cell migration during recellularization under static, in vitro culture, highlighting the need for more dynamic seeding methods.

  12. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  13. Synthesis of two possible ligature for the receivers of the acid retinoic

    International Nuclear Information System (INIS)

    Coto Quintana, T.

    1997-01-01

    The retinoic acid and their similar, play an important part in the control of the growth of the cellular diferenciation. This biological activity is due to its interaction with the nuclear receivers of the retinoic acid (RARs and RXRs). In this work was synthesized two similar of the retinoic acid: the acid (E)-3-(3 - [(5,6,7,8-tetrathido-3,5,5,8,8-pentametil-2-naftil)cartonil] fenil)-2-butenoico (1) and the acid (AND) -3-(3 - [(5,6,7,8-tethahiddro-3,5,5,8,8-pentametil-2-naftil)etenil] enil)-2-butenoico (2). The elaboration of (1) required six synthetic steps and involved a study of the joining Heck with paladio being evaluated the use of two different methods, one direct and the other one indirect. The structural elucidation of (1), (2), the synthetic precursor (6) and the isolation of four secondary compounds were interesting, being reached conclusions with regard to regal aspects - and estereoquimical of the corresponding reactions. The ceto-acid (1) resulted active with the receiving RAR, showing selectivity for the subtypes β and γ [es

  14. In silico discovery of novel Retinoic Acid Receptor agonist structures

    Directory of Open Access Journals (Sweden)

    Samuels Herbert H

    2001-06-01

    Full Text Available Abstract Background Several Retinoic Acid Receptors (RAR agonists have therapeutic activity against a variety of cancer types; however, unacceptable toxicity profiles have hindered the development of drugs. RAR agonists presenting novel structural and chemical features could therefore open new avenues for the discovery of leads against breast, lung and prostate cancer or leukemia. Results We have analysed the induced fit of the active site residues upon binding of a known ligand. The derived binding site models were used to dock over 150,000 molecules in silico (or virtually to the structure of the receptor with the Internal Coordinates Mechanics (ICM program. Thirty ligand candidates were tested in vitro. Conclusions Two novel agonists resulting from the predicted receptor model were active at 50 nM. One of them displays novel structural features which may translate into the development of new ligands for cancer therapy.

  15. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    NARCIS (Netherlands)

    Pot, M.W.; Gonzales, V.K.; Buma, P.; Hout, J. in't; Kuppevelt, T.H. van; Vries, R.B. de; Daamen, W.F.

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of

  16. Articulation of Native Cartilage Against Different Femoral Component Materials. Oxidized Zirconium Damages Cartilage Less Than Cobalt-Chrome.

    Science.gov (United States)

    Vanlommel, Jan; De Corte, Ronny; Luyckx, Jean Philippe; Anderson, Melissa; Labey, Luc; Bellemans, Johan

    2017-01-01

    Oxidized zirconium (OxZr) is produced by thermally driven oxidization creating an oxidized surface with the properties of a ceramic at the top of the Zr metal substrate. OxZr is much harder and has a lower coefficient of friction than cobalt-chrome (CoCr), both leading to better wear characteristics. We evaluated and compared damage to the cartilage of porcine patella plugs, articulating against OxZr vs CoCr. Our hypothesis was that, owing to its better wear properties, OxZr would damage cartilage less than CoCr. If this is true, OxZr might be a better material for the femoral component during total knee arthroplasty if the patella is not resurfaced. Twenty-one plugs from porcine patellae were prepared and tested in a reciprocating pin-on-disk machine while lubricated with bovine serum and under a constant load. Three different configurations were tested: cartilage-cartilage as the control group, cartilage-OxZr, and cartilage-CoCr. Macroscopic appearance, cartilage thickness, and the modified Mankin score were evaluated after 400,000 wear cycles. The control group showed statistically significant less damage than plugs articulating against both other materials. Cartilage plugs articulating against OxZr were statistically significantly less damaged than those articulating against CoCr. Although replacing cartilage by an implant always leads to deterioration of the cartilage counterface, OxZr results in less damage than CoCr. The use of OxZr might thus be preferable to CoCr in case of total knee arthroplasty without patella resurfacing. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Free Diced Cartilage: A New Application of Diced Cartilage Grafts in Primary and Secondary Rhinoplasty.

    Science.gov (United States)

    Kreutzer, Christian; Hoehne, Julius; Gubisch, Wolfgang; Rezaeian, Farid; Haack, Sebastian

    2017-09-01

    Irregularities or deformities of the nasal dorsum after hump reduction account for a significant number of revision rhinoplasties. The authors therefore developed a technique of meticulously dicing and exactly placing free diced cartilage grafts, harvested from septum, rib, or ear cartilage. The cartilage paste is used for smoothening, augmentation, or camouflaging of the nasal dorsum in primary or revision rhinoplasties. A retrospective analysis of multisurgeon consecutive open approach rhinoplasties from January to December of 2014 was conducted at a single center. The authors compared the outcome of three different techniques to augment or cover the nasal dorsum after an observation period of 7 months. In group I, 325 patients with free diced cartilage grafts as the only onlay were included. In group II, consisting of 73 patients, the dorsal onlay was either fascia alone or in combination with free diced cartilage grafts. Forty-eight patients in group III received a dorsal augmentation with the classic diced cartilage in fascia technique. Four hundred forty-six patients undergoing primary and secondary rhinoplasties in which one of the above-mentioned diced cartilage techniques was used were included in the study. The authors found revision rates for dorsal irregularities within the 7-month postoperative observation period of 5.2, 8.2, and 25 percent for groups I, II, and III, respectively. The authors' findings strongly support their clinical experience that the free diced cartilage graft technique presents an effective and easily reproducible method for camouflage and augmentation in aesthetic and reconstructive rhinoplasty.

  18. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels.

    Science.gov (United States)

    Lai, Janice H; Kajiyama, Glen; Smith, Robert Lane; Maloney, William; Yang, Fan

    2013-12-19

    Cartilage loss is a leading cause of disability among adults and effective therapy remains elusive. Neonatal chondrocytes (NChons) are an attractive allogeneic cell source for cartilage repair, but their clinical translation has been hindered by scarce donor availability. Here we examine the potential for catalyzing cartilage tissue formation using a minimal number of NChons by co-culturing them with adipose-derived stem cells (ADSCs) in 3D hydrogels. Using three different co-culture models, we demonstrated that the effects of co-culture on cartilage tissue formation are dependent on the intercellular distance and cell distribution in 3D. Unexpectedly, increasing ADSC ratio in mixed co-culture led to increased synergy between NChons and ADSCs, and resulted in the formation of large neocartilage nodules. This work raises the potential of utilizing stem cells to catalyze tissue formation by neonatal chondrocytes via paracrine signaling, and highlights the importance of controlling cell distribution in 3D matrices to achieve optimal synergy.

  19. Optical properties of nasal septum cartilage

    Science.gov (United States)

    Bagratashvili, Nodar V.; Sviridov, Alexander P.; Sobol, Emil N.; Kitai, Moishe S.

    1998-05-01

    Optical parameters (scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g) of hyaline cartilage were studied for the first time. Optical properties of human and pig nasal septum cartilage, and of bovine ear cartilage were examined using a spectrophotometer with an integrating sphere, and an Optical Multi-Channel Analyser. We measured total transmission Tt, total reflection Rt, and on-axis transmission Ta for light propagating through cartilage sample, over the visible spectral range (14000 - 28000 cm-1). It is shown that transmission and reflection spectra of human, pig and bovine cartilage are rather similar. It allows us to conclude that the pig cartilage can be used for in-vivo studies instead of human cartilage. The data obtained were treated by means of the one-dimensional diffusion approximation solution of the optical transport equation. We have found scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g by the iterative comparison of measured and calculated Tt, Rt and Ta values for human and pig cartilage. We found, in particular, that for 500 nm irradiation s equals 37,6 plus or minus 3.5 cm-1, g equals 0,56 plus or minus 0.05, k approximately equals 0,5 plus or minus 0.3 cm-1. The above data were used in Monte Carlo simulation for spatial intensity profile of light scattered by a cartilage sample. The computed profile was very similar to the profile measured using an Optical Multi-Channel Analyzer (OMA).

  20. A high throughput mechanical screening device for cartilage tissue engineering.

    Science.gov (United States)

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. © 2013 Published by Elsevier Ltd.

  1. In Vivo Evaluation of a Novel Oriented Scaffold-BMSC Construct for Enhancing Full-Thickness Articular Cartilage Repair in a Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Shuaijun Jia

    Full Text Available Tissue engineering (TE has been proven usefulness in cartilage defect repair. For effective cartilage repair, the structural orientation of the cartilage scaffold should mimic that of native articular cartilage, as this orientation is closely linked to cartilage mechanical functions. Using thermal-induced phase separation (TIPS technology, we have fabricated an oriented cartilage extracellular matrix (ECM-derived scaffold with a Young's modulus value 3 times higher than that of a random scaffold. In this study, we test the effectiveness of bone mesenchymal stem cell (BMSC-scaffold constructs (cell-oriented and random in repairing full-thickness articular cartilage defects in rabbits. While histological and immunohistochemical analyses revealed efficient cartilage regeneration and cartilaginous matrix secretion at 6 and 12 weeks after transplantation in both groups, the biochemical properties (levels of DNA, GAG, and collagen and biomechanical values in the oriented scaffold group were higher than that in random group at early time points after implantation. While these differences were not evident at 24 weeks, the biochemical and biomechanical properties of the regenerated cartilage in the oriented scaffold-BMSC construct group were similar to that of native cartilage. These results demonstrate that an oriented scaffold, in combination with differentiated BMSCs can successfully repair full-thickness articular cartilage defects in rabbits, and produce cartilage enhanced biomechanical properties.

  2. Supporting Biomaterials for Articular Cartilage Repair

    Science.gov (United States)

    Duarte Campos, Daniela Filipa; Drescher, Wolf; Rath, Björn; Tingart, Markus

    2012-01-01

    Orthopedic surgeons and researchers worldwide are continuously faced with the challenge of regenerating articular cartilage defects. However, until now, it has not been possible to completely mimic the biological and biochemical properties of articular cartilage using current research and development approaches. In this review, biomaterials previously used for articular cartilage repair research are addressed. Furthermore, a brief discussion of the state of the art of current cell printing procedures mimicking native cartilage is offered in light of their use as future alternatives for cartilage tissue engineering. Inkjet cell printing, controlled deposition cell printing tools, and laser cell printing are cutting-edge techniques in this context. The development of mimetic hydrogels with specific biological properties relevant to articular cartilage native tissue will support the development of improved, functional, and novel engineered tissue for clinical application. PMID:26069634

  3. Preparation of N, N, N-trimethyl chitosan-functionalized retinoic acid ...

    African Journals Online (AJOL)

    encapsulated solid lipid nanoparticles for the effective treatment of glioma. Methods: Retinoic acid-loaded solid lipid nanoparticles (R-SLNs) were prepared using homogenization followed by sonication. R-SLN surfaces were functionalized electrostatically ...

  4. Biomaterial and Cell Based Cartilage Repair

    NARCIS (Netherlands)

    Zhao, X

    2015-01-01

    Injuries to human native cartilage tissue are particularly troublesome because cartilage has little ability to heal or regenerate itself. The reconstruction, repair, and regeneration of cartilage tissue continue to be one of the greatest clinical challenges, especially in orthopaedic and plastic

  5. Magnetic resonance imaging of articular cartilage: ex vivo study on normal cartilage correlated with magnetic resonance microscopy

    International Nuclear Information System (INIS)

    Cova, M.; Frezza, F.; Pozzi-Mucelli, R.S.; Dalla-Palma, L.; Toffanin, R.; Pozzi-Mucelli, M.; Mlynarik, V.; Vittur, F.

    1998-01-01

    The aims of this study were (a) to compare the MR appearance of normal articular cartilage in ex vivo MR imaging (MRI) and MR microscopy (MRM) images of disarticulated human femoral heads, (b) to evaluate by MRM the topographic variations in articular cartilage of disarticulated human femoral heads, and subsequently, (c) to compare MRM images with histology. Ten disarticulated femoral heads were examined. Magnetic resonance images were obtained using spin-echo (SE) and gradient-echo (GE) sequences. Microimages were acquired on cartilage-bone cylindrical plugs excised from four regions (superior, inferior, anterior, posterior) of one femoral head, using a modified SE sequence. Both MRI and MRM images were obtained before and after a 90 rotation of the specimen, around the axis perpendicular to the examined cartilage surface. Finally, MRM images were correlated with histology. A trilaminar appearance of articular cartilage was observed with MRI and with a greater detail with MRM. A good correlation between MRI and MRM features was demonstrated. Both MRI and MRM showed a loss of the trilaminar cartilage appearance after specimen rotation, with greater evidence on MRM images. Cartilage excised from the four regions of the femoral head showed a different thickness, being thickest in the samples excised from the superior site. The MRM technique confirms the trilaminar MRI appearance of human articular cartilage, showing good correlation with histology. The loss of the trilaminar appearance of articular cartilage induced by specimen rotation suggests that this feature is partially related to the collagen-fiber orientation within the different layers. The MRM technique also shows topographic variations in thickness of human articular cartilage. (orig.)

  6. Cartilage grafting in nasal reconstruction.

    Science.gov (United States)

    Immerman, Sara; White, W Matthew; Constantinides, Minas

    2011-02-01

    Nasal reconstruction after resection for cutaneous malignancies poses a unique challenge to facial plastic surgeons. The nose, a unique 3-D structure, not only must remain functional but also be aesthetically pleasing to patients. A complete understanding of all the layers of the nose and knowledge of available cartilage grafting material is necessary. Autogenous material, namely septal, auricular, and costal cartilage, is the most favored material in a free cartilage graft or a composite cartilage graft. All types of material have advantages and disadvantages that should guide the most appropriate selection to maximize the functional and cosmetic outcomes for patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Reconstruction of Hyaline Cartilage Deep Layer Properties in 3-Dimensional Cultures of Human Articular Chondrocytes.

    Science.gov (United States)

    Nanduri, Vibudha; Tattikota, Surendra Mohan; T, Avinash Raj; Sriramagiri, Vijaya Rama Rao; Kantipudi, Suma; Pande, Gopal

    2014-06-01

    Articular cartilage (AC) injuries and malformations are commonly noticed because of trauma or age-related degeneration. Many methods have been adopted for replacing or repairing the damaged tissue. Currently available AC repair methods, in several cases, fail to yield good-quality long-lasting results, perhaps because the reconstructed tissue lacks the cellular and matrix properties seen in hyaline cartilage (HC). To reconstruct HC tissue from 2-dimensional (2D) and 3-dimensional (3D) cultures of AC-derived human chondrocytes that would specifically exhibit the cellular and biochemical properties of the deep layer of HC. Descriptive laboratory study. Two-dimensional cultures of human AC-derived chondrocytes were established in classical medium (CM) and newly defined medium (NDM) and maintained for a period of 6 weeks. These cells were suspended in 2 mm-thick collagen I gels, placed in 24-well culture inserts, and further cultured up to 30 days. Properties of chondrocytes, grown in 2D cultures and the reconstructed 3D cartilage tissue, were studied by optical and scanning electron microscopic techniques, immunohistochemistry, and cartilage-specific gene expression profiling by reverse transcription polymerase chain reaction and were compared with those of the deep layer of native human AC. Two-dimensional chondrocyte cultures grown in NDM, in comparison with those grown in CM, showed more chondrocyte-specific gene activity and matrix properties. The NDM-grown chondrocytes in 3D cultures also showed better reproduction of deep layer properties of HC, as confirmed by microscopic and gene expression analysis. The method used in this study can yield cartilage tissue up to approximately 1.6 cm in diameter and 2 mm in thickness that satisfies the very low cell density and matrix composition properties present in the deep layer of normal HC. This study presents a novel and reproducible method for long-term culture of AC-derived chondrocytes and reconstruction of cartilage

  8. MR Imaging of Articular Hyaline Cartilage

    OpenAIRE

    Uetani, Masataka

    2005-01-01

    MR imaging is still an evolving technique for the diagnosis of joint cartilage lesions. Early morphologic changes in the degenerative cartilage are not reliably diagnosed even with use of tailored MR imaging techniques. The detection of the biochemical changes of cartilage or high-resolution MRI will serve as an important tool for the early diagnosis of cartilage degeneration in near future. Further prospective studies are needed to establish the role of MR imaging in clinical use.

  9. Trophic effects of adipose-tissue-derived and bone-marrow-derived mesenchymal stem cells enhance cartilage generation by chondrocytes in co-culture

    NARCIS (Netherlands)

    Pleumeekers, M.M.; Nimeskern, L.M.; Koevoet, J. L.M.; Karperien, M.; Stok, K.S.; van Osch, G.J.V.M.

    2018-01-01

    Aims Combining mesenchymal stem cells (MSCs) and chondrocytes has great potential for cell-based cartilage repair. However, there is much debate regarding the mechanisms behind this concept. We aimed to clarify the mechanisms that lead to chondrogenesis (chondrocyte driven MSC-differentiation versus

  10. Thyroid hormone and retinoic acid nuclear receptors: specific ligand-activated transcription factors

    International Nuclear Information System (INIS)

    Brtko, J.

    1998-01-01

    Transcriptional regulation by both the thyroid hormone and the vitamin A-derived 'retinoid hormones' is a critical component in controlling many aspects of higher vertebrate development and metabolism. Their functions are mediated by nuclear receptors, which comprise a large super-family of ligand-inducible transcription factors. Both the thyroid hormone and the retinoids are involved in a complex arrangement of physiological and development responses in many tissues of higher vertebrates. The functions of 3,5,3'-triiodothyronine (T 3 ), the thyromimetically active metabolite of thyroxine as well as all-trans retinoic acid, the biologically active vitamin A metabolite are mediated by nuclear receptor proteins that are members of the steroid/thyroid/retinoid hormone receptor family. The functions of all members of the receptor super family are discussed. (authors)

  11. [Experimental study of tissue engineered cartilage construction using oriented scaffold combined with bone marrow mesenchymal stem cells in vivo].

    Science.gov (United States)

    Duan, Wei; Da, Hu; Wang, Wentao; Lü, Shangjun; Xiong, Zhuo; Liu, Jian

    2013-05-01

    To investigate the feasibility of fabricating an oriented scaffold combined with chondrogenic-induced bone marrow mesenchymal stem cells (BMSCs) for enhancement of the biomechanical property of tissue engineered cartilage in vivo. Temperature gradient-guided thermal-induced phase separation was used to fabricate an oriented cartilage extracellular matrix-derived scaffold composed of microtubules arranged in parallel in vertical section. No-oriented scaffold was fabricated by simple freeze-drying. Mechanical property of oriented and non-oriented scaffold was determined by measurement of compressive modulus. Oriented and non-oriented scaffolds were seeded with chondrogenic-induced BMSCs, which were obtained from the New Zealand white rabbits. Proliferation, morphological characteristics, and the distribution of the cells on the scaffolds were analyzed by MTT assay and scanning electron microscope. Then cell-scaffold composites were implanted subcutaneously in the dorsa of nude mice. At 2 and 4 weeks after implantation, the samples were harvested for evaluating biochemical, histological, and biomechanical properties. The compressive modulus of oriented scaffold was significantly higher than that of non-oriented scaffold (t=201.099, P=0.000). The cell proliferation on the oriented scaffold was significantly higher than that on the non-oriented scaffold from 3 to 9 days (P fibers with chondrocyte-like cells on the oriented-structure constructs. Total DNA, glycosaminoglycan (GAG), and collagen contents increased with time, and no significant difference was found between 2 groups (P > 0.05). The compressive modulus of the oriented tissue engineered cartilage was significantly higher than that of the non-oriented tissue engineered cartilage at 2 and 4 weeks after implantation (P < 0.05). Total DNA, GAG, collagen contents, and compressive modulus in the 2 tissue engineered cartilages were significantly lower than those in normal cartilage (P < 0.05). Oriented extracellular

  12. Exogenous Modulation of Retinoic Acid Signaling Affects Adult RGC Survival in the Frog Visual System after Optic Nerve Injury.

    Directory of Open Access Journals (Sweden)

    Mildred V Duprey-Díaz

    Full Text Available After lesions to the mammalian optic nerve, the great majority of retinal ganglion cells (RGCs die before their axons have even had a chance to regenerate. Frog RGCs, on the other hand, suffer only an approximately 50% cell loss, and we have previously investigated the mechanisms by which the application of growth factors can increase their survival rate. Retinoic acid (RA is a vitamin A-derived lipophilic molecule that plays major roles during development of the nervous system. The RA signaling pathway is also present in parts of the adult nervous system, and components of it are upregulated after injury in peripheral nerves but not in the CNS. Here we investigate whether RA signaling affects long-term RGC survival at 6 weeks after axotomy. Intraocular injection of all-trans retinoic acid (ATRA, the retinoic acid receptor (RAR type-α agonist AM80, the RARβ agonist CD2314, or the RARγ agonist CD1530, returned axotomized RGC numbers to almost normal levels. On the other hand, inhibition of RA synthesis with disulfiram, or of RAR receptors with the pan-RAR antagonist Ro-41-5253, or the RARβ antagonist LE135E, greatly reduced the survival of the axotomized neurons. Axotomy elicited a strong activation of the MAPK, STAT3 and AKT pathways; this activation was prevented by disulfiram or by RAR antagonists. Finally, addition of exogenous ATRA stimulated the activation of the first two of these pathways. Future experiments will investigate whether these strong survival-promoting effects of RA are mediated via the upregulation of neurotrophins.

  13. Cholinergic and dopaminergic neuronal differentiation of human adipose tissue derived mesenchymal stem cells.

    Science.gov (United States)

    Marei, Hany El Sayed; El-Gamal, Aya; Althani, Asma; Afifi, Nahla; Abd-Elmaksoud, Ahmed; Farag, Amany; Cenciarelli, Carlo; Thomas, Caceci; Anwarul, Hasan

    2018-02-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various cell types such as cartilage, bone, and fat cells. Recent studies have shown that induction of MSCs in vitro by growth factors including epidermal growth factor (EGF) and fibroblast growth factor (FGF2) causes them to differentiate into neural like cells. These cultures also express ChAT, a cholinergic marker; and TH, a dopaminergic marker for neural cells. To establish a protocol with maximum differentiation potential, we examined MSCs under three experimental culture conditions using neural induction media containing FGF2, EGF, BMP-9, retinoic acid, and heparin. Adipose-derived MSCs were extracted and expanded in vitro for 3 passages after reaching >80% confluency, for a total duration of 9 days. Cells were then characterized by flow cytometry for CD markers as CD44 positive and CD45 negative. MSCs were then treated with neural induction media and were characterized by morphological changes and Q-PCR. Differentiated MSCs expressed markers for immature and mature neurons; β Tubulin III (TUBB3) and MAP2, respectively, showing the neural potential of these cells to differentiate into functional neurons. Improved protocols for MSCs induction will facilitate and ensure the reproducibility and standard production of MSCs for therapeutic applications in neurodegenerative diseases. © 2017 Wiley Periodicals, Inc.

  14. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration

    Science.gov (United States)

    Meng, Qingyang; Man, Zhentao; Dai, Linghui; Huang, Hongjie; Zhang, Xin; Hu, Xiaoqing; Shao, Zhenxing; Zhu, Jingxian; Zhang, Jiying; Fu, Xin; Duan, Xiaoning; Ao, Yingfang

    2015-12-01

    Articular cartilage injury is still a significant challenge because of the poor intrinsic healing potential of cartilage. Stem cell-based tissue engineering is a promising technique for cartilage repair. As cartilage defects are usually irregular in clinical settings, scaffolds with moldability that can fill any shape of cartilage defects and closely integrate with the host cartilage are desirable. In this study, we constructed a composite scaffold combining mesenchymal stem cells (MSCs) E7 affinity peptide-modified demineralized bone matrix (DBM) particles and chitosan (CS) hydrogel for cartilage engineering. This solid-supported composite scaffold exhibited appropriate porosity, which provided a 3D microenvironment that supports cell adhesion and proliferation. Cell proliferation and DNA content analysis indicated that the DBM-E7/CS scaffold promoted better rat bone marrow-derived MSCs (BMMSCs) survival than the CS or DBM/CS groups. Meanwhile, the DBM-E7/CS scaffold increased matrix production and improved chondrogenic differentiation ability of BMMSCs in vitro. Furthermore, after implantation in vivo for four weeks, compared to those in control groups, the regenerated issue in the DBM-E7/CS group exhibited translucent and superior cartilage-like structures, as indicated by gross observation, histological examination, and assessment of matrix staining. Overall, the functional composite scaffold of DBM-E7/CS is a promising option for repairing irregularly shaped cartilage defects.

  15. Comparative proteomic analysis of colon cancer cell HCT-15 in response to all-trans retinoic acid treatment.

    Science.gov (United States)

    Zhao, Jie; Wen, Gaotian; Ding, Ming; Pan, Jian-Yi; Yu, Mei-Lan; Zhao, Fukun; Weng, Xia-Lian; Du, Jiang-Li

    2012-12-01

    Colon cancer is one of the most common malignances. In vitro and in vivo study show that retinoic acids inhibit a wide variety of cancer cells but the molecular mechanism of their anti-tumor effects are not yet fully understood. Alltrans retinoic acid (ATRA), an isomer of retinoic acid, can inhibit the proliferation of HCT-15 human colon cancer cell line. A proteomic analysis was performed using HCT-15 treated with ATRA to further elucidate the retinoic acid signaling pathway and its anti-tumor effect mechanism. MTT results showed that the growth of HCT-15 cells were significantly inhibited by ATRA. The alkaline phosphatase activity assay showed that ATRA failed to induce the differentiation of HCT-15. The DNA ladder detection showed that ATRA induced apoptosis in HCT-15. Two-dimensional gel electrophoresis coupled with MALDI-TOF/TOF mass spectrometry identified 13 differentially expressed proteins in HCT-15 cells after all-trans retinoic acid treatment. Among the identified differentially expressed proteins, there were four scaffold proteins (YWHAE, SFN, YWHAB, and YWHAZ), two ubiquitin modification related proteins (ISG-15 and UBE2N), two translational initiation factors (EIF1AX and EIF3K), two cytoskeleton related proteins (EZRI and CNN3), two proteinmodification related proteins (TXNDC17 and PIMT), and one enzyme related to phospholipid metabolism (PSP). Both EZRI and UBE2N were rendered to western-blot validation and the results were consistent with the two-dimension electrophoresis analysis. In this study, the differentially expressed proteins in HCT-15 treated by ATRA were identified, which will assist the further elucidation of the anti-tumor mechanism of retinoic acids.

  16. Retinoic acid reduces human neuroblastoma cell migration and invasiveness: effects on DCX, LIS1, neurofilaments-68 and vimentin expression

    International Nuclear Information System (INIS)

    Messi, Elio; Florian, Maria C; Caccia, Claudio; Zanisi, Mariarosa; Maggi, Roberto

    2008-01-01

    Neuroblastoma is a severe pediatric tumor, histologically characterised by a variety of cellular phenotypes. One of the pharmacological approaches to neuroblastoma is the treatment with retinoic acid. The mechanism of action of retinoic acid is still unclear, and the development of resistance to this differentiating agent is a great therapy problem. Doublecortin, a microtubule-associated protein involved in neuronal migration, has recently been proposed as a molecular marker for the detection of minimal residual disease in human neuroblastoma. Nevertheless, no information is available on the expression of doublecortin in the different cell-types composing human neuroblastoma, its correlation with neuroblastoma cell motility and invasiveness, and the possible modulations exerted by retinoic acid treatment. We analysed by immunofluorescence and by Western blot analysis the presence of doublecortin, lissencephaly-1 (another protein involved in neuronal migration) and of two intermediate filaments proteins, vimentin and neurofilament-68, in SK-N-SH human neuroblastoma cell line both in control conditions and under retinoic acid treatment. Migration and cell invasiveness studies were performed by wound scratch test and a modified microchemotaxis assay, respectively. Doublecortin is expressed in two cell subtypes considered to be the more aggressive and that show high migration capability and invasiveness. Vimentin expression is excluded by these cells, while lissencephaly-1 and neurofilaments-68 are immunodetected in all the cell subtypes of the SK-N-SH cell line. Treatment with retinoic acid reduces cell migration and invasiveness, down regulates doublecortin and lissencephaly-1 expression and up regulates neurofilament-68 expression. However, some cells that escape from retinoic acid action maintain migration capability and invasiveness and express doublecortin. a) Doublecortin is expressed in human neuroblastoma cells that show high motility and invasiveness; b

  17. Imaging Bone–Cartilage Interactions in Osteoarthritis Using [18F]-NaF PET-MRI

    Directory of Open Access Journals (Sweden)

    Dragana Savic MSc

    2016-12-01

    Full Text Available Purpose: Simultaneous positron emission tomography–magnetic resonance imaging (PET-MRI is an emerging technology providing both anatomical and functional images without increasing the scan time. Compared to the traditional PET/computed tomography imaging, it also exposes the patient to significantly less radiation and provides better anatomical images as MRI provides superior soft tissue characterization. Using PET-MRI, we aim to study interactions between cartilage composition and bone function simultaneously, in knee osteoarthritis (OA. Procedures: In this article, bone turnover and remodeling was studied using [18F]-sodium fluoride (NaF PET data. Quantitative MR-derived T1ρ relaxation times characterized the biochemical cartilage degeneration. Sixteen participants with early signs of OA of the knee received intravenous injections of [18F]-NaF at the onset of PET-MR image acquisition. Regions of interest were identified, and kinetic analysis of dynamic PET data provided the rate of uptake (Ki and the normalized uptake (standardized uptake value of [18F]-NaF in the bone. Morphological MR images and quantitative voxel-based T1ρ maps of cartilage were obtained using an atlas-based registration technique to segment cartilage automatically. Voxel-by-voxel statistical parameter mapping was used to investigate the relationship between bone and cartilage. Results: Increases in cartilage T1ρ, indicating degenerative changes, were associated with increased turnover in the adjoining bone but reduced turnover in the nonadjoining compartments. Associations between pain and increased bone uptake were seen in the absence of morphological lesions in cartilage, but the relationship was reversed in the presence of incident cartilage lesions. Conclusion: This study shows significant cartilage and bone interactions in OA of the knee joint using simultaneous [18F]-NaF PET-MR, the first in human study. These observations highlight the complex biomechanical and

  18. Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing.

    Science.gov (United States)

    Cunniffe, Gráinne M; Vinardell, Tatiana; Murphy, J Mary; Thompson, Emmet M; Matsiko, Amos; O'Brien, Fergal J; Kelly, Daniel J

    2015-09-01

    Clinical translation of tissue engineered therapeutics is hampered by the significant logistical and regulatory challenges associated with such products, prompting increased interest in the use of decellularized extracellular matrix (ECM) to enhance endogenous regeneration. Most bones develop and heal by endochondral ossification, the replacement of a hypertrophic cartilaginous intermediary with bone. The hypothesis of this study is that a porous scaffold derived from decellularized tissue engineered hypertrophic cartilage will retain the necessary signals to instruct host cells to accelerate endogenous bone regeneration. Cartilage tissue (CT) and hypertrophic cartilage tissue (HT) were engineered using human bone marrow derived mesenchymal stem cells, decellularized and the remaining ECM was freeze-dried to generate porous scaffolds. When implanted subcutaneously in nude mice, only the decellularized HT-derived scaffolds were found to induce vascularization and de novo mineral accumulation. Furthermore, when implanted into critically-sized femoral defects, full bridging was observed in half of the defects treated with HT scaffolds, while no evidence of such bridging was found in empty controls. Host cells which had migrated throughout the scaffold were capable of producing new bone tissue, in contrast to fibrous tissue formation within empty controls. These results demonstrate the capacity of decellularized engineered tissues as 'off-the-shelf' implants to promote tissue regeneration. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Polymer Formulations for Cartilage Repair

    Energy Technology Data Exchange (ETDEWEB)

    Gutowska, Anna; Jasionowski, Marek; Morris, J. E.; Chrisler, William B.; An, Yuehuei H.; Mironov, V.

    2001-05-15

    Regeneration of destroyed articular cartilage can be induced by transplantation of cartilage cells into a defect. The best results are obtained with the use of autologus cells. However, obtaining large amounts of autologus cartilage cells causes a problem of creating a large cartilage defect in a donor site. Techniques are currently being developed to harvest a small number of cells and propagate them in vitro. It is a challenging task, however, due to the fact that ordinarily, in a cell culture on flat surfaces, chondrocytes do not maintain their in vivo phenotype and irreversibly diminish or cease the synthesis of aggregating proteoglycans. Therefore, the research is continuing to develop culture conditions for chondrocytes with the preserved phenotype.

  20. Diode laser (980nm) cartilage reshaping

    Science.gov (United States)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  1. Precision of hyaline cartilage thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, K.; Buckwalter, K.; Helvie, M.; Niklason, L.; Martel, W. (Univ. of Michigan Hospitals, Ann Arbor, MI (United States). Dept. of Radiology)

    1992-05-01

    Measurement of cartilage thickness in vivo is an important indicator of the status of a joint as the various degenerative and inflammatory arthritides directly affect the condition of the cartilage. In order to assess the precision of thickness measurements of hyaline articular cartilage, we undertook a pilot study using MR imaging, plain radiography, and ultrasonography (US). We measured the cartilage of the hip and knee joints in 10 persons (4 healthy volunteers and 6 patients). The joints in each patient were examined on two separate occasions using each modality. In the hips a swell as the knee joints, the most precise measuring method was plain film radiography. For radiographs of the knees obtained in the standing position, the coefficient of variation was 6.5%; in the hips this figure was 6.34%. US of the knees and MR imaging of the hips were the second best modalities in the measurement of cartilage thickness. In addition, MR imaging enabled the most complete visualization of the joint cartilage. (orig.).

  2. Imaging diagnosis of the articular cartilage disorders

    International Nuclear Information System (INIS)

    Liu Sirun; Zhu Tianyuan; Huang Li; Leng Xiaoming

    2003-01-01

    Objective: To evaluate the diagnosis and differential diagnosis among the chronic osteoarthritis, rheumatoid arthritis and other chronic cartilage lesions on the plain films and MR images. Methods: Eighty-nine cases, including 115 joints, underwent plain film and MRI examination, and enhanced MRI scan was performed on 32 of them, including 44 joints. MRI scan sequences consisted of T 1 WI, T 2 WI + PDWI, STIR, and 3D FS SPGR. There were 90 knee joints in this group and each of the articular cartilage was divided into four parts: patella, femoral medial condyle, femoral lateral condyle, and tibia facet on MR images. The cartilage disorders were classified according to the outerbridge method. In addition, 61 cases including 75 joints were observed as a control group on the plain films and MR images. Results: 115 cartilage lesions were found on MR images, in which thinness of the cartilage (58 cases, 50.4%), bone changes under the cartilage (22 cases, 19.7%), medullar edema (22 cases, 19.7%), and synovial hyperplasia (52 cases, 45.2%) were seen. The patella cartilage was the most likely affected part (81/90, 90%). So the patellar cartilage lesions were divided as group 1 (grade I-II) and group 2 (grade III-IV) on MR images, which were compared with the plain film signs. The narrowing of the joint space and saccules under the articular surface were statistically significant with each other, and χ 2 values were 9.349 and 9.885, respectively (P=0.002). Conclusion: No constant signs could be seen on the plain films with grade I-II cartilage disorders. While the narrowing joint space and saccules under the joint surface could be seen on them with grade III-IV cartilage disorders, which were mainly correlated with the cartilage disorders and bone changes under the articular cartilages. A combination of the plain films and MR images is the best imaging method for examining the joints and joint cartilages. Enhanced MRI scan is very helpful on the diagnosis and differential

  3. Application of second derivative spectroscopy for increasing molecular specificity of Fourier transform infrared spectroscopic imaging of articular cartilage.

    Science.gov (United States)

    Rieppo, L; Saarakkala, S; Närhi, T; Helminen, H J; Jurvelin, J S; Rieppo, J

    2012-05-01

    Fourier transform infrared (FT-IR) spectroscopic imaging is a promising method that enables the analysis of spatial distribution of biochemical components within histological sections. However, analysis of FT-IR spectroscopic data is complicated since absorption peaks often overlap with each other. Second derivative spectroscopy is a technique which enhances the separation of overlapping peaks. The objective of this study was to evaluate the specificity of the second derivative peaks for the main tissue components of articular cartilage (AC), i.e., collagen and proteoglycans (PGs). Histological bovine AC sections were measured before and after enzymatic removal of PGs. Both formalin-fixed sections (n = 10) and cryosections (n = 6) were investigated. Relative changes in the second derivative peak heights caused by the removal of PGs were calculated for both sample groups. The results showed that numerous peaks, e.g., peaks located at 1202 cm(-1) and 1336 cm(-1), altered less than 5% in the experiment. These peaks were assumed to be specific for collagen. In contrast, two peaks located at 1064 cm(-1) and 1376 cm(-1) were seen to alter notably, approximately 50% or more. These peaks were regarded to be specific for PGs. The changes were greater in cryosections than formalin-fixed sections. The results of this study suggest that the second derivative spectroscopy offers a practical and more specific method than routinely used absorption spectrum analysis methods to obtain compositional information on AC with FT-IR spectroscopic imaging. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Cartilage Health in Knees Treated with Metal Resurfacing Implants or Untreated Focal Cartilage Lesions: A Preclinical Study in Sheep.

    Science.gov (United States)

    Martinez-Carranza, Nicolas; Hultenby, Kjell; Lagerstedt, Anne Sofie; Schupbach, Peter; Berg, Hans E

    2017-07-01

    Background Full-depth cartilage lesions do not heal and the long-term clinical outcome is uncertain. In the symptomatic middle-aged (35-60 years) patient, treatment with metal implants has been proposed. However, the cartilage health surrounding these implants has not been thoroughly studied. Our objective was to evaluate the health of cartilage opposing and adjacent to metal resurfacing implants. Methods The medial femoral condyle was operated in 9 sheep bilaterally. A metallic resurfacing metallic implant was immediately inserted into an artificially created 7.5 mm defect while on the contralateral knee the defect was left untreated. Euthanasia was performed at 6 months. Six animals, of similar age and study duration, from a previous study were used for comparison in the evaluation of cartilage health adjacent to the implant. Cartilage damage to joint surfaces within the knee, cartilage repair of the defect, and cartilage adjacent to the implant was evaluated macroscopically and microscopically. Results Six animals available for evaluation of cartilage health within the knee showed a varying degree of cartilage damage with no statistical difference between defects treated with implants or left untreated ( P = 0.51; 95% CI -3.7 to 6.5). The cartilage adjacent to the implant (score 0-14; where 14 indicates no damage) remained healthy in these 6 animals showing promising results (averaged 10.5; range 9-11.5, SD 0.95). Cartilage defects did not heal in any case. Conclusion Treatment of a critical size focal lesion with a metal implant is a viable alternative treatment.

  5. The identification of CD163 expressing phagocytic chondrocytes in joint cartilage and its novel scavenger role in cartilage degradation.

    Directory of Open Access Journals (Sweden)

    Kai Jiao

    Full Text Available BACKGROUND: Cartilage degradation is a typical characteristic of arthritis. This study examined whether there was a subset of phagocytic chondrocytes that expressed the specific macrophage marker, CD163, and investigated their role in cartilage degradation. METHODS: Cartilage from the knee and temporomandibular joints of Sprague-Dawley rats was harvested. Cartilage degradation was experimentally-induced in rat temporomandibular joints, using published biomechanical dental methods. The expression levels of CD163 and inflammatory factors within cartilage, and the ability of CD163(+ chondrocytes to conduct phagocytosis were investigated. Cartilage from the knees of patients with osteoarthritis and normal cartilage from knee amputations was also investigated. RESULTS: In the experimentally-induced degrading cartilage from temporomandibular joints, phagocytes were capable of engulfing neighboring apoptotic and necrotic cells, and the levels of CD163, TNF-α and MMPs were all increased (P0.05. CD163(+ chondrocytes were found in the cartilage mid-zone of temporomandibular joints and knee from healthy, three-week old rats. Furthermore, an increased number of CD163(+ chondrocytes with enhanced phagocytic activity were present in Col-II(+ chondrocytes isolated from the degraded cartilage of temporomandibular joints in the eight-week experimental group compared with their age-matched controls. Increased number with enhanced phagocytic activity of CD163(+ chondrocytes were also found in isolated Col-II(+ chondrocytes stimulated with TNF-α (P<0.05. Mid-zone distribution of CD163(+ cells accompanied with increased expression of CD163 and TNF-α were further confirmed in the isolated Col-II(+ chondrocytes from the knee cartilage of human patients with osteoarthritis, in contrast to the controls (both P<0.05. CONCLUSIONS: An increased number of CD163(+ chondrocytes with enhanced phagocytic activity were discovered within degraded joint cartilage, indicating a

  6. The cranial cartilages of teleosts and their classification.

    OpenAIRE

    Benjamin, M

    1990-01-01

    The structure and distribution of cartilages has been studied in 45 species from 24 families. The resulting data have been used as a basis for establishing a new classification. A cartilage is regarded as 'cell-rich' if its cells or their lacunae occupy more than half of the tissue volume. Five classes of cell-rich cartilage are recognised (a) hyaline-cell cartilage (common in the lips of bottom-dwelling cyprinids) and its subtypes fibro/hyaline-cell cartilage, elastic/hyaline-cell cartilage ...

  7. Delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) can be effectively applied for longitudinal cohort evaluation of articular cartilage regeneration

    NARCIS (Netherlands)

    Bekkers, J.E.J.; Lambertus, W.B.; Benink, R.J.; Tsuchida, A.I.; Vincken, K.L.; Dhert, W.J.A.; Creemers, L.B.; Saris, Daniël B.F.

    2013-01-01

    Objective Delayed gadolinium enhanced MRI of cartilage (dGEMRIC) facilitates non-invasive evaluation of the glycosaminoglycan content in articular cartilage. The primary aim of this study was to show that the dGEMRIC technique is able to monitor cartilage repair following regenerative cartilage

  8. Retinoic acid in developmental toxicology: Teratogen, morphogen and biomarker.

    NARCIS (Netherlands)

    Piersma, Aldert H; Hessel, Ellen V; Staal, Yvonne C

    This review explores the usefulness retinoic acid (RA) related physiological factors as possible biomarkers of embryotoxicity. RA is involved in the morphogenesis of the early embryo as well as in the development and maturation of a wide variety of organ anlagen. The region-specific homeostasis of

  9. Impressic acid from Acanthopanax koreanum, possesses matrix metalloproteinase-13 down-regulating capacity and protects cartilage destruction.

    Science.gov (United States)

    Lim, Hyun; Min, Dong Suk; Yun, Han Eul; Kim, Kil Tae; Sun, Ya Nan; Dat, Le Duc; Kim, Young Ho; Kim, Hyun Pyo

    2017-09-14

    Acanthopanax koreanum (Araliaceae) has been used in traditional medicine for enhancing vitality, rheumatism, and bone-related pains. But its activity on cartilage protection has not been known yet. Matrix metalloproteinase (MMP)-13 has an important role in degrading cartilage materials under pathologic conditions such as arthritis. The present study was designed to find the inhibitory activity of impressic acid on MMP-13 expression and cartilage protective action. 70% ethanol extract of Acanthopanax koreanum leaves and impressic acid, a major constituent isolated from the same plant materials, were examined on MMP-13 down-regulating capacity in IL-1β-treated human chondrocyte cell line (SW1353) and rabbit cartilage explants. In IL-1β-treated SW1353 cells, impressic acid significantly and concentration-dependently inhibited MMP-13 expression at 0.5-10μM. Impressic acid was found to be able to inhibit MMP-13 expression by blocking the phosphorylation of signal transducer and activator of transcription-1/-2 (STAT-1/-2) and activation of c-Jun and c-Fos among the cellular signaling pathways involved. Further, impressic acid was found to inhibit the expression of MMP-13 mRNA (47.7% inhibition at 10μM), glycosaminoglycan release (42.2% reduction at 10μM) and proteoglycan loss in IL-1-treated rabbit cartilage explants culture. In addition, a total of 21 lupane-type triterpenoids structurally-related to impressic acid were isolated from the same plant materials and their suppressive activities against MMP-13 expression were also examined. Among these derivatives, compounds 2, 3, 16, and 18 clearly down-regulated MMP-13 expression. However, impressic acid was more potent than these derivatives in down-regulating MMP-13 expression. Impressic acid, its related triterpenoids, and A. koreanum extract have potential as therapeutic agents to prevent cartilage degradation by inhibiting matrix protein degradation. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  10. Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes

    NARCIS (Netherlands)

    Vonk, L A; Kragten, A H M; Dhert, W J A; Saris, D B F; Creemers, L B

    OBJECTIVE: Hsa-miR-148a expression is decreased in Osteoarthritis (OA) cartilage, but its functional role in cartilage has never been studied. Therefore, our aim was to investigate the effects of overexpressing hsa-miR-148a on cartilage metabolism of OA chondrocytes. DESIGN: OA chondrocytes were

  11. Computer-aided diagnosis for phase-contrast X-ray computed tomography: quantitative characterization of human patellar cartilage with high-dimensional geometric features.

    Science.gov (United States)

    Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Glaser, Christian; Wismüller, Axel

    2014-02-01

    Phase-contrast computed tomography (PCI-CT) has shown tremendous potential as an imaging modality for visualizing human cartilage with high spatial resolution. Previous studies have demonstrated the ability of PCI-CT to visualize (1) structural details of the human patellar cartilage matrix and (2) changes to chondrocyte organization induced by osteoarthritis. This study investigates the use of high-dimensional geometric features in characterizing such chondrocyte patterns in the presence or absence of osteoarthritic damage. Geometrical features derived from the scaling index method (SIM) and statistical features derived from gray-level co-occurrence matrices were extracted from 842 regions of interest (ROI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. These features were subsequently used in a machine learning task with support vector regression to classify ROIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver-operating characteristic curve (AUC). SIM-derived geometrical features exhibited the best classification performance (AUC, 0.95 ± 0.06) and were most robust to changes in ROI size. These results suggest that such geometrical features can provide a detailed characterization of the chondrocyte organization in the cartilage matrix in an automated and non-subjective manner, while also enabling classification of cartilage as healthy or osteoarthritic with high accuracy. Such features could potentially serve as imaging markers for evaluating osteoarthritis progression and its response to different therapeutic intervention strategies.

  12. MRI evaluation of acute articular cartilage injury of knee

    International Nuclear Information System (INIS)

    Zhang Jun; Wu Zhenhua; Fan Guoguang; Pan Shinong; Guo Qiyong

    2003-01-01

    Objective: To study the MRI manifestation of acute articular cartilage injury of knee for evaluating the extension and degree of the injury and guiding treatment. Methods: MRI of 34 patients with acute articular cartilage injury of knee within one day to fifteen days confirmed by arthroscopy and arthrotomy was reviewed and analyzed, with emphasis on articular cartilage and subchondral lesion. And every manifestation on MRI and that of arthroscopy and operation was compared. Results: The articular cartilage injury was diagnosed on MRI in 29 of 34 cases. Cartilage signal changes were found only in 4. The changes of cartilage shape were variable. Thinning of focal cartilage was showed in 3, osteochondral impaction in 3, creases of cartilage in 3, disrupted cartilage with fissuring in 13, cracks cartilage in 2, and cracks cartilage with displaced fragment in 1. Bone bruise and occult fracture were found only on MRI. Conclusion: The assessment of MRI and arthroscopy in acute articular cartilage injury are consistent. Combined with arthroscopy, MRI can succeed in assessing the extension and degree of acute articular injury and allowing treatment planning

  13. Retinoic acid postconsolidation therapy for high-risk neuroblastoma patients treated with autologous haematopoietic stem cell transplantation.

    Science.gov (United States)

    Peinemann, Frank; van Dalen, Elvira C; Enk, Heike; Berthold, Frank

    2017-08-25

    Neuroblastoma is a rare malignant disease and mainly affects infants and very young children. The tumours mainly develop in the adrenal medullary tissue, with an abdominal mass as the most common presentation. About 50% of patients have metastatic disease at diagnosis. The high-risk group is characterised by metastasis and other features that increase the risk of an adverse outcome. High-risk patients have a five-year event-free survival of less than 50%. Retinoic acid has been shown to inhibit growth of human neuroblastoma cells and has been considered as a potential candidate for improving the outcome of patients with high-risk neuroblastoma. This review is an update of a previously published Cochrane Review. To evaluate the efficacy and safety of additional retinoic acid as part of a postconsolidation therapy after high-dose chemotherapy (HDCT) followed by autologous haematopoietic stem cell transplantation (HSCT), compared to placebo retinoic acid or to no additional retinoic acid in people with high-risk neuroblastoma (as defined by the International Neuroblastoma Risk Group (INRG) classification system). We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library (2016, Issue 11), MEDLINE in PubMed (1946 to 24 November 2016), and Embase in Ovid (1947 to 24 November 2016). Further searches included trial registries (on 22 December 2016), conference proceedings (on 23 March 2017) and reference lists of recent reviews and relevant studies. We did not apply limits by publication year or languages. Randomised controlled trials (RCTs) evaluating additional retinoic acid after HDCT followed by HSCT for people with high-risk neuroblastoma compared to placebo retinoic acid or to no additional retinoic acid. Primary outcomes were overall survival and treatment-related mortality. Secondary outcomes were progression-free survival, event-free survival, early toxicity, late toxicity, and health-related quality of life. We used standard

  14. Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes

    NARCIS (Netherlands)

    Vonk, Lucienne A.; Kragten, Angela H.M.; Dhert, Wouter J.; Saris, Daniël B.F.; Creemers, Laura B.

    2014-01-01

    Objective Hsa-miR-148a expression is decreased in OA cartilage, but its functional role in cartilage has never been studied. Therefore, our aim was to investigate the effects of overexpressing hsa-miR-148a on cartilage metabolism of OA chondrocytes. Design OA chondrocytes were transfected with a

  15. Transfection of the IHH gene into rabbit BMSCs in a simulated microgravity environment promotes chondrogenic differentiation and inhibits cartilage aging.

    Science.gov (United States)

    Liu, Peng-Cheng; Liu, Kuan; Liu, Jun-Feng; Xia, Kuo; Chen, Li-Yang; Wu, Xing

    2016-09-27

    The effect of overexpressing the Indian hedgehog (IHH) gene on the chondrogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (BMSCs) was investigated in a simulated microgravity environment. An adenovirus plasmid encoding the rabbit IHH gene was constructed in vitro and transfected into rabbit BMSCs. Two large groups were used: conventional cell culture and induction model group and simulated microgravity environment group. Each large group was further divided into blank control group, GFP transfection group, and IHH transfection group. During differentiation induction, the expression levels of cartilage-related and cartilage hypertrophy-related genes and proteins in each group were determined. In the conventional model, the IHH transfection group expressed high levels of cartilage-related factors (Coll2 and ANCN) at the early stage of differentiation induction and expressed high levels of cartilage hypertrophy-related factors (Coll10, annexin 5, and ALP) at the late stage. Under the simulated microgravity environment, the IHH transfection group expressed high levels of cartilage-related factors and low levels of cartilage hypertrophy-related factors at all stages of differentiation induction. Under the simulated microgravity environment, transfection of the IHH gene into BMSCs effectively promoted the generation of cartilage and inhibited cartilage aging and osteogenesis. Therefore, this technique is suitable for cartilage tissue engineering.

  16. Cartilage repair in the degenerative ageing knee

    Science.gov (United States)

    Brittberg, Mats; Gomoll, Andreas H; Canseco, José A; Far, Jack; Lind, Martin; Hui, James

    2016-01-01

    Background and purpose Cartilage damage can develop due to trauma, resulting in focal chondral or osteochondral defects, or as more diffuse loss of cartilage in a generalized organ disease such as osteoarthritis. A loss of cartilage function and quality is also seen with increasing age. There is a spectrum of diseases ranging from focal cartilage defects with healthy surrounding cartilage to focal lesions in degenerative cartilage, to multiple and diffuse lesions in osteoarthritic cartilage. At the recent Aarhus Regenerative Orthopaedics Symposium (AROS) 2015, regenerative challenges in an ageing population were discussed by clinicians and basic scientists. A group of clinicians was given the task of discussing the role of tissue engineering in the treatment of degenerative cartilage lesions in ageing patients. We present the outcomes of our discussions on current treatment options for such lesions, with particular emphasis on different biological repair techniques and their supporting level of evidence. Results and interpretation Based on the studies on treatment of degenerative lesions and early OA, there is low-level evidence to suggest that cartilage repair is a possible treatment for such lesions, but there are conflicting results regarding the effect of advanced age on the outcome. We concluded that further improvements are needed for direct repair of focal, purely traumatic defects before we can routinely use such repair techniques for the more challenging degenerative lesions. Furthermore, we need to identify trigger mechanisms that start generalized loss of cartilage matrix, and induce subchondral bone changes and concomitant synovial pathology, to maximize our treatment methods for biological repair in degenerative ageing joints. PMID:27910738

  17. Role of Cartilage Forming Cells in Regenerative Medicine for Cartilage Repair

    OpenAIRE

    Sun, Lin; Reagan, Michaela R.; Kaplan, David L.

    2010-01-01

    Lin Sun1, Michaela R Reagan2, David L Kaplan1,21Department of Chemical and Biological Engineering, 2Department of Biomedical Engineering, Tufts University, Medford, MA, USAAbstract: Currently, cartilage repair remains a major challenge for researchers and physicians due to its limited healing capacity. Cartilage regeneration requires suitable cells; these must be easily obtained and expanded, able to produce hyaline matrix with proper mechanical properties, and demonstrate sustained integrati...

  18. Imaging of cartilage repair procedures

    International Nuclear Information System (INIS)

    Sanghvi, Darshana; Munshi, Mihir; Pardiwala, Dinshaw

    2014-01-01

    The rationale for cartilage repair is to prevent precocious osteoarthritis in untreated focal cartilage injuries in the young and middle-aged population. The gamut of surgical techniques, normal postoperative radiological appearances, and possible complications have been described. An objective method of recording the quality of repair tissue is with the magnetic resonance observation of cartilage repair tissue (MOCART) score. This scoring system evaluates nine parameters that include the extent of defect filling, border zone integration, signal intensity, quality of structure and surface, subchondral bone, subchondral lamina, and records presence or absence of synovitis and adhesions. The five common techniques of cartilage repair currently offered include bone marrow stimulation (microfracture or drilling), mosaicplasty, synthetic resorbable scaffold grafts, osteochondral allograft transplants, and autologous chondrocyte implantation (ACI). Complications of cartilage repair procedures that may be demonstrated on magnetic resonance imaging (MRI) include plug loosening, graft protuberance, graft depression, and collapse in mosaicplasty, graft hypertrophy in ACI, and immune response leading to graft rejection, which is more common with synthetic grafts and cadaveric allografts

  19. Laser surface modification of decellularized extracellular cartilage matrix for cartilage tissue engineering.

    Science.gov (United States)

    Goldberg-Bockhorn, Eva; Schwarz, Silke; Subedi, Rachana; Elsässer, Alexander; Riepl, Ricarda; Walther, Paul; Körber, Ludwig; Breiter, Roman; Stock, Karl; Rotter, Nicole

    2018-02-01

    The implantation of autologous cartilage as the gold standard operative procedure for the reconstruction of cartilage defects in the head and neck region unfortunately implicates a variety of negative effects at the donor site. Tissue-engineered cartilage appears to be a promising alternative. However, due to the complex requirements, the optimal material is yet to be determined. As demonstrated previously, decellularized porcine cartilage (DECM) might be a good option to engineer vital cartilage. As the dense structure of DECM limits cellular infiltration, we investigated surface modifications of the scaffolds by carbon dioxide (CO 2 ) and Er:YAG laser application to facilitate the migration of chondrocytes inside the scaffold. After laser treatment, the scaffolds were seeded with human nasal septal chondrocytes and analyzed with respect to cell migration and formation of new extracellular matrix proteins. Histology, immunohistochemistry, SEM, and TEM examination revealed an increase of the scaffolds' surface area with proliferation of cell numbers on the scaffolds for both laser types. The lack of cytotoxic effects was demonstrated by standard cytotoxicity testing. However, a thermal denaturation area seemed to hinder the migration of the chondrocytes inside the scaffolds, even more so after CO 2 laser treatment. Therefore, the Er:YAG laser seemed to be better suitable. Further modifications of the laser adjustments or the use of alternative laser systems might be advantageous for surface enlargement and to facilitate migration of chondrocytes into the scaffold in one step.

  20. Current status of imaging of articular cartilage

    International Nuclear Information System (INIS)

    Hodler, J.; Resnick, D.

    1996-01-01

    Various imaging methods have been applied to assessment of articular cartilage. These include standard radiography, arthrography, CT, CT arthrography, ultrasonography, and MR imaging. Radiography remains the initial musculoskeletal imaging method. However, it is insensitive to early stages of cartilage abnormalities. MR imaging has great potential in the assessment of articular cartilage, although high-quality scans are required because imaging signs of cartilage abnormalities may be subtle. The potential and limitations of various sequences and techniques are discussed, including MR arthrography. The role of the other imaging methods in assessment of articular cartilage appears to be limited. (orig.). With 8 figs., 6 tabs

  1. Cartilage proteoglycans inhibit fibronectin-mediated adhesion

    Science.gov (United States)

    Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.

    1981-09-01

    Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.

  2. Cartilage.

    Science.gov (United States)

    Caplan, Arnold I.

    1984-01-01

    Cartilage is a fundamental biological material that helps to shape the body and then helps to support it. Its fundamental properties of strength and resilience are explained in terms of the tissue's molecular structure. (JN)

  3. Volumetric quantitative characterization of human patellar cartilage with topological and geometrical features on phase-contrast X-ray computed tomography.

    Science.gov (United States)

    Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Wismüller, Axel

    2015-11-01

    Phase-contrast X-ray computed tomography (PCI-CT) has attracted significant interest in recent years for its ability to provide significantly improved image contrast in low absorbing materials such as soft biological tissue. In the research context of cartilage imaging, previous studies have demonstrated the ability of PCI-CT to visualize structural details of human patellar cartilage matrix and capture changes to chondrocyte organization induced by osteoarthritis. This study evaluates the use of geometrical and topological features for volumetric characterization of such chondrocyte patterns in the presence (or absence) of osteoarthritic damage. Geometrical features derived from the scaling index method (SIM) and topological features derived from Minkowski Functionals were extracted from 1392 volumes of interest (VOI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. These features were subsequently used in a machine learning task with support vector regression to classify VOIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver operating characteristic curve (AUC). Our results show that the classification performance of SIM-derived geometrical features (AUC: 0.90 ± 0.09) is significantly better than Minkowski Functionals volume (AUC: 0.54 ± 0.02), surface (AUC: 0.72 ± 0.06), mean breadth (AUC: 0.74 ± 0.06) and Euler characteristic (AUC: 0.78 ± 0.04) (p < 10(-4)). These results suggest that such geometrical features can provide a detailed characterization of the chondrocyte organization in the cartilage matrix in an automated manner, while also enabling classification of cartilage as healthy or osteoarthritic with high accuracy. Such features could potentially serve as diagnostic imaging markers for evaluating osteoarthritis progression and its response to different therapeutic intervention strategies.

  4. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Isales, Gregory M.; Hipszer, Rachel A.; Raftery, Tara D. [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States); Chen, Albert; Stapleton, Heather M. [Division of Environmental Sciences and Policy, Nicholas School of the Environment, Duke University, Durham, NC (United States); Volz, David C., E-mail: volz@mailbox.sc.edu [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States)

    2015-04-15

    Highlights: • Triphenyl phosphate-induced toxicity in zebrafish embryos is enhanced in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate uptake or metabolism within zebrafish embryos is not altered in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate decreases expression of cytochrome P450 26a1 in zebrafish embryos. • Triphenyl phosphate inhibits retinoic acid-induced activation of human retinoic acid receptors. - Abstract: Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5–72 h post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite – were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may

  5. Hyaline cartilage degenerates after autologous osteochondral transplantation.

    Science.gov (United States)

    Tibesku, C O; Szuwart, T; Kleffner, T O; Schlegel, P M; Jahn, U R; Van Aken, H; Fuchs, S

    2004-11-01

    Autologous osteochondral grafting is a well-established clinical procedure to treat focal cartilage defects in patients, although basic research on this topic remains sparse. The aim of the current study was to evaluate (1) histological changes of transplanted hyaline cartilage of osteochondral grafts and (2) the tissue that connects the transplanted cartilage with the adjacent cartilage in a sheep model. Both knee joints of four sheep were opened surgically and osteochondral grafts were harvested and simultaneously transplanted to the contralateral femoral condyle. The animals were sacrificed after three months and the received knee joints were evaluated histologically. Histological evaluation showed a complete ingrowth of the osseous part of the osteochondral grafts. A healing or ingrowth at the level of the cartilage could not be observed. Histological evaluation of the transplanted grafts according to Mankin revealed significantly more and more severe signs of degeneration than the adjacent cartilage, such as cloning of chondrocytes and irregularities of the articular surface. We found no connecting tissue between the transplanted and the adjacent cartilage and histological signs of degeneration of the transplanted hyaline cartilage. In the light of these findings, long-term results of autologous osteochondral grafts in human beings have to be followed critically.

  6. Evaluation of focal cartilage lesions of the knee using MRI T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC).

    Science.gov (United States)

    Årøen, Asbjørn; Brøgger, Helga; Røtterud, Jan Harald; Sivertsen, Einar Andreas; Engebretsen, Lars; Risberg, May Arna

    2016-02-11

    Assessment of degenerative changes of the cartilage is important in knee cartilage repair surgery. Magnetic Resonance Imaging (MRI) T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) are able to detect early degenerative changes. The hypothesis of the study was that cartilage surrounding a focal cartilage lesion in the knee does not possess degenerative changes. Twenty-eight consecutive patients included in a randomized controlled trial on cartilage repair were evaluated using MRI T2 mapping and dGEMRIC before cartilage treatment was initiated. Inclusion was based on disabling knee problems (Lysholm score of ≤ 75) due to an arthroscopically verified focal femoral condyle cartilage lesion. Furthermore, no major malalignments or knee ligament injuries were accepted. Mean patient age was 33 ± 9.6 years, and the mean duration of knee symptoms was 49 ± 60 months. The MRI T2 mapping and the dGEMRIC measurements were performed at three standardized regions of interest (ROIs) at the medial and lateral femoral condyle, avoiding the cartilage lesion The MRI T2 mapping of the cartilage did not demonstrate significant differences between condyles with or without cartilage lesions. The dGEMRIC results did not show significantly lower values of the affected condyle compared with the opposite condyle and the contra-lateral knee in any of the ROIs. The intraclass correlation coefficient (ICC) of the dGEMRIC readings was 0.882. The MRI T2 mapping and the dGEMRIC confirmed the arthroscopic findings that normal articular cartilage surrounded the cartilage lesion, reflecting normal variation in articular cartilage quality. NCT00885729 , registered April 17 2009.

  7. Peptide-Based Materials for Cartilage Tissue Regeneration.

    Science.gov (United States)

    Hastar, Nurcan; Arslan, Elif; Guler, Mustafa O; Tekinay, Ayse B

    2017-01-01

    Cartilaginous tissue requires structural and metabolic support after traumatic or chronic injuries because of its limited capacity for regeneration. However, current techniques for cartilage regeneration are either invasive or ineffective for long-term repair. Developing alternative approaches to regenerate cartilage tissue is needed. Therefore, versatile scaffolds formed by biomaterials are promising tools for cartilage regeneration. Bioactive scaffolds further enhance the utility in a broad range of applications including the treatment of major cartilage defects. This chapter provides an overview of cartilage tissue, tissue defects, and the methods used for regeneration, with emphasis on peptide scaffold materials that can be used to supplement or replace current medical treatment options.

  8. Permanence of diced cartilage, bone dust and diced cartilage/bone dust mixture in experimental design in twelve weeks.

    Science.gov (United States)

    Islamoglu, Kemal; Dikici, Mustafa Bahadir; Ozgentas, Halil Ege

    2006-09-01

    Bone dust and diced cartilage are used for contour restoration because their minimal donor site morbidity. The purpose of this study is to investigate permanence of bone dust, diced cartilage and bone dust/diced cartilage mixture in rabbits over 12 weeks. New Zealand white rabbits were used for this study. There were three groups in the study: Group I: 1 mL bone dust. Group II: 1 mL diced cartilage. Group III: 0.5 mL bone dust + 0.5 mL diced cartilage mixture. They were placed into subcutaneous tissue of rabbits and removed 12 weeks later. The mean volumes of groups were 0.23 +/- 0.08 mL in group I, 0.60 +/- 0.12 mL in group II and 0.36 +/- 0.10 mL in group III. The differences between groups were found statistically significant. In conclusion, diced cartilage was found more reliable than bone dust aspect of preserving its volume for a long period in this study.

  9. Repair of large full-thickness articular cartilage defects in the rabbit: the effects of joint distraction and autologous bone-marrow-derived mesenchymal cell transplantation.

    Science.gov (United States)

    Yanai, T; Ishii, T; Chang, F; Ochiai, N

    2005-05-01

    We produced large full-thickness articular cartilage defects in 33 rabbits in order to evaluate the effect of joint distraction and autologous culture-expanded bone-marrow-derived mesenchymal cell transplantation (ACBMT) at 12 weeks. After fixing the knee on a hinged external fixator, we resected the entire surface of the tibial plateau. We studied three groups: 1) with and without joint distraction; 2) with joint distraction and collagen gel, and 3) with joint distraction and ACBMT and collagen gel. The histological scores were significantly higher in the groups with ACBMT collagen gel (p distraction, collagen gel and ACBMT.

  10. Long-Term Results of Cartilage Repair after Allogeneic Transplantation of Cartilaginous Aggregates Formed from Bone Marrow–Derived Cells for Large Osteochondral Defects in Rabbit Knees

    Science.gov (United States)

    Mishima, Hajime; Sakai, Shinsuke; Uemura, Toshimasa

    2013-01-01

    Objective: The purpose of this study was to evaluate the long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow–derived cells. Methods: Bone marrow cells were harvested from 12-day-old rabbits. The cells were subjected to a monolayer culture, and the spindle-shaped cells attached to the flask surface were defined as bone marrow–derived mesenchymal cells. After the monolayer culture, a 3-dimensional cartilaginous aggregate was formed using a bioreactor with chondrogenesis. We created osteochondral defects, measuring 5 mm in diameter and 4 mm in depth, at the femoral trochlea of 10-week-old rabbits. Two groups were established, the transplanted group in which the cartilaginous aggregate was transplanted into the defect, and the control group in which the defect was left untreated. Twenty-six and 52 weeks after surgery, the rabbits were sacrificed and their tissue repair status was evaluated macroscopically (International Cartilage Repair Society [ICRS] score) and histologically (O’Driscoll score). Results: The ICRS scores were as follows: at week 26, 7.2 ± 0.5 and 7.6 ± 0.8; at week 52, 7.6 ± 1.1 and 9.7 ± 0.7, for the transplanted and control groups, respectively. O’Driscoll scores were as follows: at week 26, 12.6 ± 1.9 and 10.1 ± 1.9; at week 52, 9.6 ± 3.0 and 14.0 ± 1.4, each for transplanted and control groups, respectively. No significant differences were observed between the groups. Conclusions: This study demonstrates that allogeneic transplantation of cartilaginous aggregates formed from bone marrow–derived cells produces comparable long-term results based on macroscopic and histological outcome measures when compared with osteochondral defects that are left untreated. PMID:26069678

  11. Long-Term Results of Cartilage Repair after Allogeneic Transplantation of Cartilaginous Aggregates Formed from Bone Marrow-Derived Cells for Large Osteochondral Defects in Rabbit Knees.

    Science.gov (United States)

    Yoshioka, Tomokazu; Mishima, Hajime; Sakai, Shinsuke; Uemura, Toshimasa

    2013-10-01

    The purpose of this study was to evaluate the long-term results of cartilage repair after allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells. Bone marrow cells were harvested from 12-day-old rabbits. The cells were subjected to a monolayer culture, and the spindle-shaped cells attached to the flask surface were defined as bone marrow-derived mesenchymal cells. After the monolayer culture, a 3-dimensional cartilaginous aggregate was formed using a bioreactor with chondrogenesis. We created osteochondral defects, measuring 5 mm in diameter and 4 mm in depth, at the femoral trochlea of 10-week-old rabbits. Two groups were established, the transplanted group in which the cartilaginous aggregate was transplanted into the defect, and the control group in which the defect was left untreated. Twenty-six and 52 weeks after surgery, the rabbits were sacrificed and their tissue repair status was evaluated macroscopically (International Cartilage Repair Society [ICRS] score) and histologically (O'Driscoll score). The ICRS scores were as follows: at week 26, 7.2 ± 0.5 and 7.6 ± 0.8; at week 52, 7.6 ± 1.1 and 9.7 ± 0.7, for the transplanted and control groups, respectively. O'Driscoll scores were as follows: at week 26, 12.6 ± 1.9 and 10.1 ± 1.9; at week 52, 9.6 ± 3.0 and 14.0 ± 1.4, each for transplanted and control groups, respectively. No significant differences were observed between the groups. This study demonstrates that allogeneic transplantation of cartilaginous aggregates formed from bone marrow-derived cells produces comparable long-term results based on macroscopic and histological outcome measures when compared with osteochondral defects that are left untreated.

  12. Pathways of load-induced cartilage damage causing cartilage degeneration in the knee after meniscectomy

    NARCIS (Netherlands)

    Wilson, W.; Rietbergen, van B.; Donkelaar, van C.C.; Huiskes, R.

    2003-01-01

    Results of both clinical and animal studies show that meniscectomy often leads to osteoarthritic degenerative changes in articular cartilage. It is generally assumed that this process of cartilage degeneration is due to changes in mechanical loading after meniscectomy. It is, however, not known why

  13. Rabbit articular cartilage defects treated by allogenic chondrocyte transplantation

    OpenAIRE

    Boopalan, P. R. J. V. C.; Sathishkumar, Solomon; Kumar, Senthil; Chittaranjan, Samuel

    2006-01-01

    Articular cartilage defects have a poor capacity for repair. Most of the current treatment options result in the formation of fibro-cartilage, which is functionally inferior to normal hyaline articular cartilage. We studied the effectiveness of allogenic chondrocyte transplantation for focal articular cartilage defects in rabbits. Chondrocytes were cultured in vitro from cartilage harvested from the knee joints of a New Zealand White rabbit. A 3 mm defect was created in the articular cartilag...

  14. ISOLATION AND CHARACTERIZATION OF AXOLOTL NPDC-1 AND ITS EFFECTS ON RETINOIC ACID RECEPTOR SIGNALING

    Science.gov (United States)

    Theodosiou, Maria; Monaghan, James R; Spencer, Michael L; Voss, S Randal; Noonan, Daniel J

    2009-01-01

    Retinoic acid, a key morphogen in early vertebrate development and tissue regeneration, mediates its effects through the binding of receptors that act as ligand-induced transcription factors. These binding events function to recruit an array of transcription co-regulatory proteins to specific gene promoters. One such co-regulatory protein, neuronal proliferation and differentiation control-1 (NPDC-1), is broadly expressed during mammalian development and functions as an in vitro repressor of retinoic acid receptor (RAR)-mediated transcription. To obtain comparative and developmental insights about NPDC-1 function, we cloned the axolotl (Ambystoma mexicanum) orthologue and measured transcript abundances among tissues sampled during the embryonic and juvenile phases of development, and also during spinal cord regeneration. Structurally, the axolotl orthologue of NPDC-1 retained sequence identity to mammalian sequences in all functional domains. Functionally, we observed that axolotl NPDC-1 mRNA expression peaked late in embryogenesis, with highest levels of expression occurring during the time of limb development, a process regulated by retinoic acid signaling. Also similar to what has been observed in mammals, axolotl NPDC-1 directly interacts with axolotl RAR, modulates axolotl RAR DNA binding, and represses cell proliferation and axolotl RAR-mediated gene transcription. These data justify axolotl as a model to further investigate NPDC-1 and its role in regulating retinoic acid signaling. PMID:17331771

  15. Lubrication and cartilage.

    Science.gov (United States)

    Wright, V; Dowson, D

    1976-02-01

    Mechanisms of lubrication of human synovial joints have been analysed in terms of the operating conditions of the joint, the synovial fluid and articular cartilage. In the hip and knee during a walking cycle the load may rise up to four times body weight. In the knee on dropping one metre the load may go up to 25 time body weight. The elastic modulus of cartilage is similar to that of the synthetic rubber of a car tyre. The cartilage surface is rough and in elderly specimens the centre line average is 2-75 mum. The friction force generated in reciprocating tests shows that both cartilage and synovial fluid are important in lubrication. The viscosity-shear rate relationships of normal synovial fluid show that it is non-Newtonian. Osteoarthrosic fluid is less so and rheumatoid fluid is more nearly Newtonian. Experiments with hip joints in a pendulum machine show that fluid film lubrication obtains at some phases of joint action. Boundary lubrication prevails under certain conditions and has been examined with a reciprocating friction machine. Digestion of hyaluronate does not alter the boundary lubrication, but trypsin digestion does. Surface active substances (lauryl sulphate and cetyl 3-ammonium bromide) give a lubricating ability similar to that of synovial fluid. The effectiveness of the two substances varies with pH.

  16. Transcriptomic signatures in cartilage ageing

    Science.gov (United States)

    2013-01-01

    Introduction Age is an important factor in the development of osteoarthritis. Microarray studies provide insight into cartilage aging but do not reveal the full transcriptomic phenotype of chondrocytes such as small noncoding RNAs, pseudogenes, and microRNAs. RNA-Seq is a powerful technique for the interrogation of large numbers of transcripts including nonprotein coding RNAs. The aim of the study was to characterise molecular mechanisms associated with age-related changes in gene signatures. Methods RNA for gene expression analysis using RNA-Seq and real-time PCR analysis was isolated from macroscopically normal cartilage of the metacarpophalangeal joints of eight horses; four young donors (4 years old) and four old donors (>15 years old). RNA sequence libraries were prepared following ribosomal RNA depletion and sequencing was undertaken using the Illumina HiSeq 2000 platform. Differentially expressed genes were defined using Benjamini-Hochberg false discovery rate correction with a generalised linear model likelihood ratio test (P ageing cartilage. Conclusion There was an age-related dysregulation of matrix, anabolic and catabolic cartilage factors. This study has increased our knowledge of transcriptional networks in cartilage ageing by providing a global view of the transcriptome. PMID:23971731

  17. Biological aspects of tissue-engineered cartilage.

    Science.gov (United States)

    Hoshi, Kazuto; Fujihara, Yuko; Yamawaki, Takanori; Harai, Motohiro; Asawa, Yukiyo; Hikita, Atsuhiko

    2018-04-01

    Cartilage regenerative medicine has been progressed well, and it reaches the stage of clinical application. Among various techniques, tissue engineering, which incorporates elements of materials science, is investigated earnestly, driven by high clinical needs. The cartilage tissue engineering using a poly lactide scaffold has been exploratorily used in the treatment of cleft lip-nose patients, disclosing good clinical results during 3-year observation. However, to increase the reliability of this treatment, not only accumulation of clinical evidence on safety and usefulness of the tissue-engineered products, but also establishment of scientific background on biological mechanisms, are regarded essential. In this paper, we reviewed recent trends of cartilage tissue engineering in clinical practice, summarized experimental findings on cellular and matrix changes during the cartilage regeneration, and discussed the importance of further studies on biological aspects of tissue-engineered cartilage, especially by the histological and the morphological methods.

  18. In Vitro Analysis of Cartilage Regeneration Using a Collagen Type I Hydrogel (CaReS) in the Bovine Cartilage Punch Model.

    Science.gov (United States)

    Horbert, Victoria; Xin, Long; Foehr, Peter; Brinkmann, Olaf; Bungartz, Matthias; Burgkart, Rainer H; Graeve, T; Kinne, Raimund W

    2018-02-01

    Objective Limitations of matrix-assisted autologous chondrocyte implantation to regenerate functional hyaline cartilage demand a better understanding of the underlying cellular/molecular processes. Thus, the regenerative capacity of a clinically approved hydrogel collagen type I implant was tested in a standardized bovine cartilage punch model. Methods Cartilage rings (outer diameter 6 mm; inner defect diameter 2 mm) were prepared from the bovine trochlear groove. Collagen implants (± bovine chondrocytes) were placed inside the cartilage rings and cultured up to 12 weeks. Cartilage-implant constructs were analyzed by histology (hematoxylin/eosin; safranin O), immunohistology (aggrecan, collagens 1 and 2), and for protein content, RNA expression, and implant push-out force. Results Cartilage-implant constructs revealed vital morphology, preserved matrix integrity throughout culture, progressive, but slight proteoglycan loss from the "host" cartilage or its surface and decreasing proteoglycan release into the culture supernatant. In contrast, collagen 2 and 1 content of cartilage and cartilage-implant interface was approximately constant over time. Cell-free and cell-loaded implants showed (1) cell migration onto/into the implant, (2) progressive deposition of aggrecan and constant levels of collagens 1 and 2, (3) progressively increased mRNA levels for aggrecan and collagen 2, and (4) significantly augmented push-out forces over time. Cell-loaded implants displayed a significantly earlier and more long-lasting deposition of aggrecan, as well as tendentially higher push-out forces. Conclusion Preserved tissue integrity and progressively increasing cartilage differentiation and push-out forces for up to 12 weeks of cultivation suggest initial cartilage regeneration and lateral bonding of the implant in this in vitro model for cartilage replacement materials.

  19. Mechanical Stimulation Protocols of Human Derived Cells in Articular Cartilage Tissue Engineering - A Systematic Review.

    Science.gov (United States)

    Khozoee, Baktash; Mafi, Pouya; Mafi, Reza; Khan, Wasim S

    2017-01-01

    Mechanical stimulation is a key factor in articular cartilage generation and maintenance. Bioreactor systems have been designed and built in order to deliver specific types of mechanical stimulation. The focus has been twofold, applying a type of preconditioning in order to stimulate cell differentiation, and to simulate in vivo conditions in order to gain further insight into how cells respond to different stimulatory patterns. Due to the complex forces at work within joints, it is difficult to simulate mechanical conditions using a bioreactor. The aim of this review is to gain a deeper understanding of the complexities of mechanical stimulation protocols by comparing those employed in bioreactors in the context of tissue engineering for articular cartilage, and to consider their effects on cultured cells. Allied and Complementary Medicine 1985 to 2016, Ovid MEDLINE[R] 1946 to 2016, and Embase 1974 to 2016 were searched using key terms. Results were subject to inclusion and exclusion criteria, key findings summarised into a table and subsequently discussed. Based on this review it is overwhelmingly clear that mechanical stimulation leads to increased chondrogenic properties in the context of bioreactor articular cartilage tissue engineering using human cells. However, given the variability and lack of controlled factors between research articles, results are difficult to compare, and a standardised method of evaluating stimulation protocols proved challenging. With improved standardisation in mechanical stimulation protocol reporting, bioreactor design and building processes, along with a better understanding of joint behaviours, we hope to perform a meta-analysis on stimulation protocols and methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. A retinaculum-sparing surgical approach preserves porcine stifle joint cartilage in an experimental animal model of cartilage repair.

    Science.gov (United States)

    Bonadio, Marcelo B; Friedman, James M; Sennett, Mackenzie L; Mauck, Robert L; Dodge, George R; Madry, Henning

    2017-12-01

    This study compares a traditional parapatellar retinaculum-sacrificing arthrotomy to a retinaculum-sparing arthrotomy in a porcine stifle joint as a cartilage repair model. Surgical exposure of the femoral trochlea of ten Yucatan pigs stifle joint was performed using either a traditional medial parapatellar approach with retinaculum incision and luxation of the patella (n = 5) or a minimally invasive (MIS) approach which spared the patellar retinaculum (n = 5). Both classical and MIS approaches provided adequate access to the trochlea, enabling the creation of cartilage defects without difficulties. Four full thickness, 4 mm circular full-thickness cartilage defects were created in each trochlea. There were no intraoperative complications observed in either surgical approach. All pigs were allowed full weight-bearing and full range of motion immediately postoperatively and were euthanized between 2 and 3 weeks. The traditional approach was associated with increased cartilage wear compared to the MIS approach. Two blinded raters performed gross evaluation of the trochlea cartilage surrounding the defects according to the modified ICRS cartilage injury classification. The traditional approach cartilage received a significantly worse score than the MIS approach group from both scorers (3.2 vs 0.8, p = 0.01 and 2.8 vs 0, p = 0.005 respectively). The MIS approach results in less damage to the trochlear cartilage and faster return to load bearing activities. As an arthrotomy approach in the porcine model, MIS is superior to the traditional approach.

  1. Stable subcutaneous cartilage regeneration of bone marrow stromal cells directed by chondrocyte sheet.

    Science.gov (United States)

    Li, Dan; Zhu, Lian; Liu, Yu; Yin, Zongqi; Liu, Yi; Liu, Fangjun; He, Aijuan; Feng, Shaoqing; Zhang, Yixin; Zhang, Zhiyong; Zhang, Wenjie; Liu, Wei; Cao, Yilin; Zhou, Guangdong

    2017-05-01

    high-density culture of chondrocytes in vitro could cearte a chondrogenic niche in subcutaneous environment and efficiently retain the chondrogenic phenotype of in vitro BMSC engineered cartilage (vitro-BEC). Furthermore, cell tracing results revealed that the regenerated cartilage mainly derived from the implanted vitro-BEC. The current study not only proposes a novel research model for microenvironment simulation but also provides a useful strategy for stable ectopic cartilage regeneration of stem cells. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Modeling the development of tissue engineered cartilage

    NARCIS (Netherlands)

    Sengers, B.G.

    2005-01-01

    The limited healing capacity of articular cartilage forms a major clinical problem. In general, current treatments of cartilage damage temporarily reliefs symptoms, but fail in the long term. Tissue engineering (TE) has been proposed as a more permanent repair strategy. Cartilage TE aims at

  3. Multiphasic modeling of charged solute transport across articular cartilage: Application of multi-zone finite-bath model.

    Science.gov (United States)

    Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A

    2016-06-14

    Charged and uncharged solutes penetrate through cartilage to maintain the metabolic function of chondrocytes and to possibly restore or further breakdown the cartilage tissue in different stages of osteoarthritis. In this study the transport of charged solutes across the various zones of cartilage was quantified, taken into account the physicochemical interactions between the solute and the cartilage constituents. A multiphasic finite-bath finite element (FE) model was developed to simulate equine cartilage diffusion experiments that used a negatively charged contrast agent (ioxaglate) in combination with serial micro-computed tomography (micro-CT) to measure the diffusion. By comparing the FE model with the experimental data both the diffusion coefficient of ioxaglate and the fixed charge density (FCD) were obtained. In the multiphasic model, cartilage was divided into multiple (three) zones to help understand how diffusion coefficient and FCD vary across cartilage thickness. The direct effects of charged solute-FCD interaction on diffusion were investigated by comparing the diffusion coefficients derived from the multiphasic and biphasic-solute models. We found a relationship between the FCD obtained by the multiphasic model and ioxaglate partitioning obtained from micro-CT experiments. Using our multi-zone multiphasic model, diffusion coefficient of the superficial zone was up to ten-fold higher than that of the middle zone, while the FCD of the middle zone was up to almost two-fold higher than that of the superficial zone. In conclusion, the developed finite-bath multiphasic model provides us with a non-destructive method by which we could obtain both diffusion coefficient and FCD of different cartilage zones. The outcomes of the current work will also help understand how charge of the bath affects the diffusion of a charged molecule and also predict the diffusion behavior of a charged solute across articular cartilage. Copyright © 2016 Elsevier Ltd. All

  4. Effects of 13- cis-retinoic acid on the tamoxifen induced uterine histological changes in the rabbit

    International Nuclear Information System (INIS)

    Hamid, S.; Minhas, L.A.; Khan, M.Y.

    2013-01-01

    Objective: To study the effects of 13-cis-retinoic acid on the tamoxifen induced uterine histological changes in the rabbit. Study Design: Experimental - randomized controlled trial. Place and Duration of study: The study was conducted for 4 months at the department of Anatomy, Army Medical College and National Institute of Health in 2007. Material and Methods: The animals were randomly divided into three groups, a control group A, and two experimental groups B and C, consisting of thirty rabbits each. The experimental groups were treated with tamoxifen only and tamoxifen plus retinoic acid, respectively. The animals were sacrificed after three months. The uteri were then processed for paraffin embedding. Sections were then assessed for the luminal epithelial height, endometrial area and percentage of mitotic figures. Results: The results obtained were suggestive of uterine proliferation by tamoxifen. The adjuvant administration of 13-cis-retinoic acid produced a statistically significant (p = 0.002) inhibitory effect on the tamoxifen induced increase in the area of endometrium, whereas no significant suppressive effect of this drug has been observed on the other parameters when compared with Group B. Conclusion: 13-cis Retinoic acid has not shown a significant role in the reversal of tamoxifen induced changes in the uterine tissue after a short term administration of three months. (author)

  5. Gonadotropin Regulation of Retinoic Acid Activity in the Testis

    Directory of Open Access Journals (Sweden)

    Seyedmehdi Nourashrafeddin

    2018-02-01

    Full Text Available Initiation of spermatogenesis in primates is triggered at puberty by an increase in gonadotropins; i.e., follicle-stimulating hormone (FSH and luteinizing hormone (LH. Prior to puberty, testis of the monkey contains only undifferentiated germ cells. However, sermatogonial differentiation and spermatogenesis may be initiated prior to puberty after stimulation with exogenous LH and FSH. Retinoic acid (RA signaling is considered to be a major component that drives spermatogonial differentiation. We were interested in evaluating the relative role of LH and FSH, either alone or in combination, in regulating the retinoic acid signaling in monkey testis. Sixteen juvenile male rhesus monkeys (Macaca mulatta were infused with intermittent recombinant single chain human LH (schLH or recombinant human FSH (rhFSH or a combination of both for 11 days. We then analyzed the expression of the several putative RA signaling pathway related genes; i.e. RDH10, RDH11, ALDH1A1, ALDH1A2, CYP26B1, CRABP1, CRABP2, STRA6, STRA8 in the testis after 11 days of stimulation with vehicle, LH, FSH and combination LH/FSH using quantitative real-time PCR (qPCR. The qPCR results analysis showed that administration of gonadotropins affected a significant change in expression of some RA signaling related genes in the monkey testis. The gonadotropins, either alone or in combination dramatically increased expression of CRABP2 (p≤0.001, whereas there was a decrease in ALDH1A2 expression (p≤0.001. Moreover, combined gonadotropin treatment led to the significant decrease in CRABP1 expression (p≤0.05. These findings are the first evidence that the activity of retinoic acid signaling in the monkey testis is regulated through gonadotropins (LH/FSH levels.

  6. Fibrous cartilage of human menisci is less shock-absorbing and energy-dissipating than hyaline cartilage.

    Science.gov (United States)

    Gaugler, Mario; Wirz, Dieter; Ronken, Sarah; Hafner, Mirjam; Göpfert, Beat; Friederich, Niklaus F; Elke, Reinhard

    2015-04-01

    To test meniscal mechanical properties such as the dynamic modulus of elasticity E* and the loss angle δ at two loading frequencies ω at different locations of the menisci and compare it to E* and δ of hyaline cartilage in indentation mode with spherical indenters. On nine pairs of human menisci, the dynamic E*-modulus and loss angle δ (as a measure of the energy dissipation) were determined. The measurements were performed at two different strain rates (slow sinusoidal and fast single impact) to show the strain rate dependence of the material. The measurements were compared to previous similar measurements with the same equipment on human hyaline cartilage. The resultant E* at fast indentation (median 1.16 MPa) was significantly higher, and the loss angle was significantly lower (median 10.2°) compared to slow-loading mode's E* and δ (median 0.18 MPa and 16.9°, respectively). Further, significant differences for different locations are shown. On the medial meniscus, the anterior horn shows the highest resultant dynamic modulus. In dynamic measurements with a spherical indenter, the menisci are much softer and less energy-dissipating than hyaline cartilage. Further, the menisci are stiffer and less energy-dissipating in the middle, intermediate part compared to the meniscal base. In compression, the energy dissipation of meniscus cartilage plays a minor role compared to hyaline cartilage. At high impacts, energy dissipation is less than on low impacts, similar to cartilage.

  7. Effects of growth factors and glucosamine on porcine mandibular condylar cartilage cells and hyaline cartilage cells for tissue engineering applications.

    Science.gov (United States)

    Wang, Limin; Detamore, Michael S

    2009-01-01

    Temporomandibular joint (TMJ) condylar cartilage is a distinct cartilage that has both fibrocartilaginous and hyaline-like character, with a thin proliferative zone that separates the fibrocartilaginous fibrous zone at the surface from the hyaline-like mature and hypertrophic zones below. In this study, we compared the effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), and glucosamine sulphate on porcine TMJ condylar cartilage and ankle cartilage cells in monolayer culture. In general, TMJ condylar cartilage cells proliferated faster than ankle cartilage cells, while ankle cells produced significantly greater amounts of glycosaminoglycans (GAGs) and collagen than TMJ condylar cartilage cells. IGF-I and bFGF were potent stimulators of TMJ cell proliferation, while no signals statistically outperformed controls for ankle cell proliferation. IGF-I was the most effective signal for GAG production with ankle cells, and the most potent upregulator of collagen synthesis for both cell types. Glucosamine sulphate promoted cell proliferation and biosynthesis at specific concentrations and outperformed growth factors in certain instances. In conclusion, hyaline cartilage cells had lower cell numbers and superior biosynthesis compared to TMJ condylar cartilage cells, and we have found IGF-I at 100 ng/mL and glucosamine sulphate at 100 microg/mL to be the most effective signals for these cells under the prescribed conditions.

  8. Endogenous Cartilage Repair by Recruitment of Stem Cells.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Articular cartilage has a very limited capacity for repair after injury. The adult body has a pool of stem cells that are mobilized during injury or disease. These cells exist inside niches in bone marrow, muscle, adipose tissue, synovium, and other connective tissues. A method that mobilizes this endogenous pool of stem cells will provide a less costly and less invasive alternative if these cells successfully regenerate defective cartilage. Traditional microfracture procedures employ the concept of bone marrow stimulation to regenerate cartilage. However, the regenerated tissue usually is fibrous cartilage, which has very poor mechanical properties compared to those of normal hyaline cartilage. A method that directs the migration of a large number of autologous mesenchymal stem cells toward injury sites, retains these cells around the defects, and induces chondrogenic differentiation that would enhance success of endogenous cartilage repair. This review briefly summarizes chemokines and growth factors that induce recruitment, proliferation, and differentiation of endogenous progenitor cells, endogenous cell sources for regenerating cartilage, scaffolds for delivery of bioactive factors, and bioadhesive materials that are necessary to bring about endogenous cartilage repair.

  9. Spectrocolorimetric evaluation of repaired articular cartilage after a microfracture

    Directory of Open Access Journals (Sweden)

    Dohi Yoshihiro

    2008-09-01

    Full Text Available Abstract Background In clinical practice, surgeons differentiate color changes in repaired cartilage compared with surrounding intact cartilage, but cannot quantify these color changes. Objective assessments are required. A spectrocolorimeter was used to evaluate whether intact and repaired cartilage can be quantified. Findings We investigated the use of a spectrocolorimeter and the application of two color models (L* a* b* colorimetric system and spectral reflectance distribution to describe and quantify articular cartilage. In this study, we measured the colors of intact and repaired cartilage after a microfracture. Histologically, the repaired cartilage was a mixture of fibrocartilage and hyaline cartilage. In the L* a* b* colorimetric system, the L* and a* values recovered to close to the values of intact cartilage, whereas the b* value decreased over time after the operation. Regarding the spectral reflectance distribution at 12 weeks after the operation, the repaired cartilage had a higher spectral reflectance ratio than intact cartilage between wavelengths of 400 to 470 nm. Conclusion This study reports the first results regarding the relationship between spectrocolorimetric evaluation and the histological findings of repair cartilage after a microfracture. Our findings demonstrate the ability of spectrocolorimetric measurement to judge the repair cartilage after treatment on the basis of objective data such as the L*, a* and b* values and the SRP as a coincidence index of the spectral reflectance curve.

  10. Potential role of nuclear receptor ligand all-trans retinoic acids in the treatment of fungal keratitis

    Directory of Open Access Journals (Sweden)

    Hong-Yan Zhou

    2015-08-01

    Full Text Available Fungal keratitis (FK is a worldwide visual impairment disease. This infectious fungus initiates the primary innate immune response and, later the adaptive immune response. The inflammatory process is related to a variety of immune cells, including macrophages, helper T cells, neutrophils, dendritic cells, and Treg cells, and is associated with proinflammatory, chemotactic and regulatory cytokines. All-trans retinoic acids (ATRA have diverse immunomodulatory actions in a number of inflammatory and autoimmune conditions. These retinoids regulate the transcriptional levels of target genes through the activation of nuclear receptors. Retinoic acid receptor α (RAR α, retinoic acid receptor γ (RAR γ, and retinoid X receptor α (RXR α are expressed in the cornea and immune cells. This paper summarizes new findings regarding ATRA in immune and inflammatory diseases and analyzes the perspective application of ATRA in FK.

  11. Papain-induced changes in rabbit cartilage; alterations in the chemical structure of the cartilage matrix.

    Science.gov (United States)

    TSALTAS, T T

    1958-10-01

    Some biochemical aspects of the collapse of the rabbit ears produced by the intravenous injection of papain have been studied. A marked depletion of chondromucoprotein (M.C.S.) and a reduction of the S(35) content of cartilage matrix were found to coincide with the gross and histologic changes in the cartilage. At the same time there was a marked increase in the amount of S(35) in the serum and an increase of S(35) and glucuronic acid excreted in the urine. Alteration in the composition of the M.C.S. remaining in the cartilage of the papain-injected animals was detected. The findings indicate that the collapse of the rabbit ears is due to loss of chondromucoprotein from cartilage and reduction of chondroitin sulfate in the chondromucoprotein that remains. All these changes were reversed in recovery.

  12. Preserved irradiated homologous cartilage for orbital reconstruction

    International Nuclear Information System (INIS)

    Linberg, J.V.; Anderson, R.L.; Edwards, J.J.; Panje, W.R.; Bardach, J.

    1980-01-01

    Human costal cartilage is an excellent implant material for orbital and periorbital reconstruction because of its light weight, strength, homogeneous consistency and the ease with which it can be carved. Its use has been limited by the necessity of a separate surgical procedure to obtain the material. Preserved irradiated homologous cartilage has been shown to have almost all the autogenous cartilage and is convenient to use. Preserved irradiated homologous cartilage transplants do not elicit rejection reactions, resist infection and rarely undergo absorption

  13. Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: Cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures

    NARCIS (Netherlands)

    Blumbach, K.; Bastiaansen-Jenniskens, Y.M.; Groot, J. de; Paulsson, M.; Osch, G.J.V.M. van; Zaucke, F.

    2009-01-01

    Objective. Defects in the assembly and composition of cartilage extracellular matrix are likely to result in impaired matrix integrity and increased susceptibility to cartilage degeneration. The aim of this study was to determine the functional interaction of the collagen fibril-associated proteins

  14. The development of the collagen fibre network in tissue-engineered cartilage constructs in vivo. Engineered cartilage reorganises fibre network

    Directory of Open Access Journals (Sweden)

    H Paetzold

    2012-04-01

    Full Text Available For long term durability of tissue-engineered cartilage implanted in vivo, the development of the collagen fibre network orientation is essential as well as the distribution of collagen, since expanded chondrocytes are known to synthesise collagen type I. Typically, these properties differ strongly between native and tissue-engineered cartilage. Nonetheless, the clinical results of a pilot study with implanted tissue-engineered cartilage in pigs were surprisingly good. The purpose of this study was therefore to analyse if the structure and composition of the artificial cartilage tissue changes in the first 52 weeks after implantation. Thus, collagen network orientation and collagen type distribution in tissue-engineered cartilage-carrier-constructs implanted in the knee joints of Göttinger minipigs for 2, 26 or 52 weeks have been further investigated by processing digitised microscopy images of histological sections. The comparison to native cartilage demonstrated that fibre orientation over the cartilage depth has a clear tendency towards native cartilage with increasing time of implantation. After 2 weeks, the collagen fibres of the superficial zone were oriented parallel to the articular surface with little anisotropy present in the middle and deep zones. Overall, fibre orientation and collagen distribution within the implants were less homogenous than in native cartilage tissue. Despite a relatively low number of specimens, the consistent observation of a continuous approximation to native tissue is very promising and suggests that it may not be necessary to engineer the perfect tissue for implantation but rather to provide an intermediate solution to help the body to heal itself.

  15. A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose

    Science.gov (United States)

    2013-01-01

    Introduction Current therapies for articular cartilage defects fail to achieve qualitatively sufficient tissue regeneration, possibly because of a mismatch between the speed of cartilage rebuilding and the resorption of degradable implant polymers. The present study focused on the self-healing capacity of resident cartilage cells in conjunction with cell-free and biocompatible (but non-resorbable) bacterial nanocellulose (BNC). This was tested in a novel in vitro bovine cartilage punch model. Methods Standardized bovine cartilage discs with a central defect filled with BNC were cultured for up to eight weeks with/without stimulation with transforming growth factor-β1 (TGF-β1. Cartilage formation and integrity were analyzed by histology, immunohistochemistry and electron microscopy. Content, release and neosynthesis of the matrix molecules proteoglycan/aggrecan, collagen II and collagen I were also quantified. Finally, gene expression of these molecules was profiled in resident chondrocytes and chondrocytes migrated onto the cartilage surface or the implant material. Results Non-stimulated and especially TGF-β1-stimulated cartilage discs displayed a preserved structural and functional integrity of the chondrocytes and surrounding matrix, remained vital in long-term culture (eight weeks) without signs of degeneration and showed substantial synthesis of cartilage-specific molecules at the protein and mRNA level. Whereas mobilization of chondrocytes from the matrix onto the surface of cartilage and implant was pivotal for successful seeding of cell-free BNC, chondrocytes did not immigrate into the central BNC area, possibly due to the relatively small diameter of its pores (2 to 5 μm). Chondrocytes on the BNC surface showed signs of successful redifferentiation over time, including increase of aggrecan/collagen type II mRNA, decrease of collagen type I mRNA and initial deposition of proteoglycan and collagen type II in long-term high-density pellet cultures

  16. Interaction between cellular retinoic acid-binding protein II and histone hypoacetylation in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2008-04-01

    Full Text Available Renal cell carcinoma is a rare but serious malignancy. Since a reduction in the level of retinoic acid receptor beta 2 (RARbeta2 expression in cancer cells due in part to histone hypoacetylation which is controlled by histone deacetylase (HD, the study on the interaction between cellular retinoic acid-binding proteins II (CRABP II, which is proposed to have its potential influence on retinoic acid (RA response, and HD can be useful. Comparing to CARBP II and HD, the CARBP II-HD poses the same function and biological process as HD. This can confirm that HD has a significant suppressive effect on the expression of CARBP II. Therefore, reduction in the level of RARbeta2 expression in cancer cells can be expected and this can lead to failure in treatment of renal cell carcinoma with RA. The author hereby purpose that additional HD inhibitor should be added into the regiment of RA to increase the effectiveness of treatment.

  17. The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation.

    Science.gov (United States)

    Moreira Teixeira, Liliana S; Leijten, Jeroen C H; Wennink, Jos W H; Chatterjea, Anindita G; Feijen, Jan; van Blitterswijk, Clemens A; Dijkstra, Pieter J; Karperien, Marcel

    2012-05-01

    In situ gelating dextran-tyramine (Dex-TA) injectable hydrogels have previously shown promising features for cartilage repair. Yet, despite suitable mechanical properties, this system lacks intrinsic biological signals. In contrast, platelet lysate-derived hydrogels are rich in growth factors and anti-inflammatory cytokines, but mechanically unstable. We hypothesized that the advantages of these systems may be combined in one hydrogel, which can be easily translated into clinical settings. Platelet lysate was successfully incorporated into Dex-TA polymer solution prior to gelation. After enzymatic crosslinking, rheological and morphological evaluations were performed. Subsequently, the effect of platelet lysate on cell migration, adhesion, proliferation and multi-lineage differentiation was determined. Finally, we evaluated the integration potential of this gel onto osteoarthritis-affected cartilage. The mechanical properties and covalent attachment of Dex-TA to cartilage tissue during in situ gel formation were successfully combined with the advantages of platelet lysate, revealing the potential of this enhanced hydrogel as a cell-free approach. The addition of platelet lysate did not affect the mechanical properties and porosity of Dex-TA hydrogels. Furthermore, platelet lysate derived anabolic growth factors promoted proliferation and triggered chondrogenic differentiation of mesenchymal stromal cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The effect of platelet lysate supplementation of a dextran-based hydrogel on cartilage formation

    NARCIS (Netherlands)

    Moreira Teixeira, Liliana; Leijten, Jeroen Christianus Hermanus; Wennink, J.W.H.; Ganguly, Anindita; Feijen, Jan; van Blitterswijk, Clemens; Dijkstra, Pieter J.; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    In situ gelating dextran-tyramine (Dex-TA) injectable hydrogels have previously shown promising features for cartilage repair. Yet, despite suitable mechanical properties, this system lacks intrinsic biological signals. In contrast, platelet lysate-derived hydrogels are rich in growth factors and

  19. Modern cartilage imaging of the ankle

    International Nuclear Information System (INIS)

    Weber, Marc-Andre; Wuennemann, Felix; Rehnitz, Christoph; Jungmann, Pia M.; Kuni, Benita

    2017-01-01

    Talar osteochondral lesions are an important risk factor for the development of talar osteoarthritis. Furthermore, osteochondral lesions might explain persistent ankle pain. Early diagnosis of accompanying chondral defects is important to establish the optimal therapy strategy and thereby delaying or preventing the onset of osteoarthritis. The purpose of this review is to explain modern cartilage imaging with emphasis of MR imaging as well as the discussion of more sophisticated imaging studies like CT-arthrography or functional MR imaging. Pubmed literature search concerning: osteochondral lesions, cartilage damage, ankle joint, talus, 2 D MR imaging, 3 D MR imaging, cartilage MR imaging, CT-arthrography, cartilage repair, microfracture, OATS, MACT. Dedicated MR imaging protocols to delineate talar cartilage and the appearance of acute and chronic osteochondral lesions were discussed. Recent developments of MR imaging, such as isotropic 3 D imaging that has a higher signal-to noise ratio when compared to 2 D imaging, and specialized imaging methods such as CT-arthrography as well as functional MR imaging were introduced. Several classifications schemes and imaging findings of osteochondral lesions that influence the conservative or surgical therapy strategy were discussed. MRI enables after surgery the non-invasive assessment of the repair tissue and the success of implantation. Key points: Modern MRI allows for highly resolved visualization of the articular cartilage of the ankle joint and of subchondral pathologies. Recent advances in MRI include 3 D isotropic ankle joint imaging, which deliver higher signal-to-noise ratios of the cartilage and less partial volume artifacts when compared with standard 2 D sequences. In case of osteochondral lesions MRI is beneficial for assessing the stability of the osteochondral fragment and for this discontinuity of the cartilage layer is an important factor. CT-arthrography can be used in case of contraindications of MRI and

  20. Metal deposition at the bone-cartilage interface in articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Kaabar, W. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)], E-mail: w.kaabar@surrey.ac.uk; Daar, E.; Gundogdu, O.; Jenneson, P.M. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Farquharson, M.J. [Department of Radiography, School of Allied Health Sciences, City University, London EC1V 0HB (United Kingdom); Webb, M.; Jeynes, C. [Surrey Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2009-03-15

    There is a growing interest being shown in the changes occurring in elemental distribution at the bone-cartilage interface, the changes either being a result of mechanical damage or disease. In particular, such investigations have tended to concern the elemental alterations associated with the osteoarthritic wear and tear damage occurring to the cartilage and subchondral bone of synovial joints or that associated with disease processes such as rheumatic arthritis. Present studies examine sections of femoral head obtained from total hip replacement surgery, use being made of micro-proton-induced X-ray emission ({mu}-PIXE) and the Rutherford back scattering (RBS) techniques. Enhancements of Zn, Ca and P have been observed at the bone-cartilage interface. Further, the concentration of Zn in spongy bone underlying the subchondral surface of a section of the femoral head has been measured, obtaining 136 {mu}g g{sup -1} bone, the presence of Ca and P at the same position being 0.235 and 0.0451 g g{sup -1} bone, respectively. These values are slightly different to figures recently published by other authors using similar techniques.

  1. Regulators of articular cartilage homeostasis

    NARCIS (Netherlands)

    Leijten, Jeroen Christianus Hermanus

    2012-01-01

    Prevention of hypertrophic differentiation is essential for successful cartilage repair strategies. Although this process is essential for longitudinal growth, it also is part of degenerative cartilage diseases such as osteoarthiritis. Moreover, it limits the use of cell types prone to this process

  2. Articular cartilage changes in chondromalacia patellae.

    Science.gov (United States)

    Bentley, G

    1985-11-01

    Full thickness samples of articular cartilage were removed from areas of chondromalacia on the medial and "odd" facets of the patellae of 21 adults and examined by histology, autoradiography and electron microscopy. Surface fibrillation, loss of superficial matrix staining and reduced 35SO4 labelling was seen, with little change in the deep zone. Ten cases showed "fibrous metaplasia" of the superficial cartilage with definite evidence of cell division and apparent smoothing of the surface. Scattered chondrocyte replication appeared to occur in the surrounding intact cartilage. The findings suggest that early lesions in chondromalacia patellae may heal either by cartilage or fibrous metaplasia and that this may account for the resolution of clinical symptoms.

  3. Cartilage Repair in Football (Soccer) Athletes

    Science.gov (United States)

    Bekkers, J.E.J.; de Windt, Th.S.; Brittberg, M.

    2012-01-01

    The prevalence of focal articular cartilage lesions among athletes is higher than in the general population. Treatment goals differ considerably between the professional and recreational athlete. High financial stakes and the short duration of a professional career influence the treatment selection for the professional athlete, while such parameters weigh differently in recreational sports. This article describes our investigation of the relation between sports and a high prevalence of focal cartilage lesions. In addition, we provide a critical review of the best available evidence for cartilage surgery and treatment selection, evaluate specific patient profiles for professional and recreational athletes, and propose a treatment algorithm for the treatment of focal cartilage lesions in football (soccer) players. PMID:26069606

  4. Computer-aided diagnosis in phase contrast imaging X-ray computed tomography for quantitative characterization of ex vivo human patellar cartilage.

    Science.gov (United States)

    Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Glaser, Christian; Wismuller, Axel

    2013-10-01

    Visualization of ex vivo human patellar cartilage matrix through the phase contrast imaging X-ray computed tomography (PCI-CT) has been previously demonstrated. Such studies revealed osteoarthritis-induced changes to chondrocyte organization in the radial zone. This study investigates the application of texture analysis to characterizing such chondrocyte patterns in the presence and absence of osteoarthritic damage. Texture features derived from Minkowski functionals (MF) and gray-level co-occurrence matrices (GLCM) were extracted from 842 regions of interest (ROI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. These texture features were subsequently used in a machine learning task with support vector regression to classify ROIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver operating characteristic curve (AUC). The best classification performance was observed with the MF features perimeter (AUC: 0.94 ±0.08 ) and "Euler characteristic" (AUC: 0.94 ±0.07 ), and GLCM-derived feature "Correlation" (AUC: 0.93 ±0.07). These results suggest that such texture features can provide a detailed characterization of the chondrocyte organization in the cartilage matrix, enabling classification of cartilage as healthy or osteoarthritic with high accuracy.

  5. Satisfactory surgical option for cartilage graft absorption in microtia reconstruction.

    Science.gov (United States)

    Han, So-Eun; Oh, Kap Sung

    2016-04-01

    We routinely perform auricular elevation at least 6 months after implantation of framework in microtia reconstruction using costal cartilage. However, in a few cases, cartilage graft absorption has occurred, which has led to contour irregularity with unfavorable long-term results. In the present study, we recount the details of using additional rib cartilage augmentation to achieve an accentuated contour in cartilage graft absorption cases. The cartilage graft absorption was defined as contour irregularity or cartilage graft deformation as evaluated by the surgeon and patient. Depending on the extent of cartilage graft absorption, another rib cartilage framework was added to the previously implanted framework, targeting the absorption area. We used banked cartilage or harvested new cartilage based on three-dimensional rib computed tomography. Additional recontouring of framework was conducted in eight patients who were examined for cartilage graft absorption from 1.5 to 5 years after implantation of the framework. Four patients received additional rib cartilage augmentation and tissue expander insertion simultaneously prior to auricular elevation. Two patients underwent auricular elevation simultaneously. In another two patients, additional rib cartilage augmentation was performed before auricular elevation. The mean follow-up period was 18 months, and in all cases reconstructive results were acceptable. Although further follow-up evaluation is required, additional rib cartilage augmentation is an attractive surgical option for cartilage graft absorption cases. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  6. Osteoarthritic human cartilage is more sensitive to transforming growth factor beta than is normal cartilage

    NARCIS (Netherlands)

    Lafeber, F. P.; Vander Kraan, P. M.; Huber-Bruning, O.; Vanden Berg, W. B.; Bijlsma, J. W.

    1993-01-01

    Osteoarthritis is a degenerative joint disease, characterized by the destruction of the articular cartilage. One of the first changes in the osteoarthritic articular cartilage is a reduction in proteoglycan content. In this study we demonstrate that transforming growth factor beta (TGF beta), a

  7. Harnessing biomechanics to develop cartilage regeneration strategies.

    Science.gov (United States)

    Athanasiou, Kyriacos A; Responte, Donald J; Brown, Wendy E; Hu, Jerry C

    2015-02-01

    As this review was prepared specifically for the American Society of Mechanical Engineers H.R. Lissner Medal, it primarily discusses work toward cartilage regeneration performed in Dr. Kyriacos A. Athanasiou's laboratory over the past 25 years. The prevalence and severity of degeneration of articular cartilage, a tissue whose main function is largely biomechanical, have motivated the development of cartilage tissue engineering approaches informed by biomechanics. This article provides a review of important steps toward regeneration of articular cartilage with suitable biomechanical properties. As a first step, biomechanical and biochemical characterization studies at the tissue level were used to provide design criteria for engineering neotissues. Extending this work to the single cell and subcellular levels has helped to develop biochemical and mechanical stimuli for tissue engineering studies. This strong mechanobiological foundation guided studies on regenerating hyaline articular cartilage, the knee meniscus, and temporomandibular joint (TMJ) fibrocartilage. Initial tissue engineering efforts centered on developing biodegradable scaffolds for cartilage regeneration. After many years of studying scaffold-based cartilage engineering, scaffoldless approaches were developed to address deficiencies of scaffold-based systems, resulting in the self-assembling process. This process was further improved by employing exogenous stimuli, such as hydrostatic pressure, growth factors, and matrix-modifying and catabolic agents, both singly and in synergistic combination to enhance neocartilage functional properties. Due to the high cell needs for tissue engineering and the limited supply of native articular chondrocytes, costochondral cells are emerging as a suitable cell source. Looking forward, additional cell sources are investigated to render these technologies more translatable. For example, dermis isolated adult stem (DIAS) cells show potential as a source of

  8. Regulatory Challenges for Cartilage Repair Technologies.

    Science.gov (United States)

    McGowan, Kevin B; Stiegman, Glenn

    2013-01-01

    In the United States, few Food and Drug Administration (FDA)-approved options exist for the treatment of focal cartilage and osteochondral lesions. Developers of products for cartilage repair face many challenges to obtain marketing approval from the FDA. The objective of this review is to discuss the necessary steps for FDA application and approval for a new cartilage repair product. FDA Guidance Documents, FDA Panel Meetings, scientific organization recommendations, and clinicaltrials.gov were reviewed to demonstrate the current thinking of FDA and the scientific community on the regulatory process for cartilage repair therapies. Cartilage repair therapies can receive market approval from FDA as medical devices, drugs, or biologics, and the specific classification of product can affect the nonclinical, clinical, and regulatory strategy to bring the product to market. Recent FDA guidance gives an outline of the required elements to bring a cartilage repair product to market, although these standards are often very general. As a result, companies have to carefully craft their study patient population, comparator group, and clinical endpoint to best showcase their product's attributes. In addition, regulatory strategy and manufacturing process validation need to be considered early in the clinical study process to allow for timely product approval following the completion of clinical study. Although the path to regulatory approval for a cartilage repair therapy is challenging and time-consuming, proper clinical trial planning and attention to the details can eventually save companies time and money by bringing a product to the market in the most expeditious process possible.

  9. Cellular and Acellular Approaches for Cartilage Repair

    Science.gov (United States)

    2015-01-01

    There are several choices of cells to use for cartilage repair. Cells are used as internal or external sources and sometimes in combination. In this article, an analysis of the different cell choices and their use and potential is provided. Embryonic cartilage formation is of importance when finding more about how to be able to perfect cartilage repair. Some suggestions for near future research based on up-to-date knowledge on chondrogenic cells are given to hopefully stimulate more studies on the final goal of cartilage regeneration. PMID:27340516

  10. Evaluation of laryngeal cartilage calcification in computed tomography

    International Nuclear Information System (INIS)

    Laskowska, K.; Serafin, Z.; Lasek, W.; Maciejewski, M.; Wieczor, W.; Wisniewski, S.

    2008-01-01

    Computed tomography (CT) is one of the basic methods used for laryngeal carcinoma diagnostics. Osteosclerotic and osteolytic changes of the cartilages are considered as a common radiologic symptom of laryngeal neoplasms. The aim of this paper was to evaluate the prevalence of both osteosclerotic changes and focal calcification defects, which may be suggestive of osteolysis. Calcification was assessed in the thyroid, the cricoid and the arytenoids cartilages on CT images of the neck. We have retrospectively analyzed neck CT examinations of 50 patients without any laryngeal pathology in anamnesis. The grade and symmetry of calcifications was assessed in the thyroid, the cricoid and the arytenoids cartilages. Calcification of the laryngeal cartilages was present in 83% of the patients. Osteosclerotic lesions of the thyroid cartilage were seen in 70% of the patients (asymmetric in 60% of them), of the cricoid catrilage in 50% (asymmetric in 60%), and of the arytenoid cartilages in 24% (asymmetric in 67%). Focal calcification defects were present in the thyroid cartilage in 56% of the patients (asymmetric in 67% of them), in the cricoid catrilage in 8% (asymmetric in all cases), and in the arytenoid cartilages in 20% (asymmetric in 90%). Osteosclerotic changes and focal calcification defects, which may suggest osteolysis, were found in most of the patients. Therefore, they cannot be used as crucial radiological criteria of neoplastic invasion of laryngeal cartilages. (authors)

  11. Raman microspectrometry of laser-reshaped rabbit auricular cartilage: preliminary study on laser-induced cartilage mineralization

    Science.gov (United States)

    Heger, Michal; Mordon, Serge R.; Leroy, Gérard; Fleurisse, Laurence; Creusy, Collette

    2006-03-01

    Laser-assisted cartilage reshaping (LACR) is a relatively novel technique designed to noninvasively and permanently restructure cartilaginous tissue. It is believed that heat-induced stress relaxation, in which a temperature-mediated disruption of H2O binding is associated with conformational alterations in the proteoglycan and collagen-rich matrix, constitutes the underlying mechanism of LACR. Several reports have suggested that laser-mediated cartilage mineralization may contribute to the permanent shape change of laser-reshaped cartilage. In an effort to validate these results in the context of Er:glass LACR, we performed a preliminary Raman microspectrometric study to characterize the crystal deposits in laser-irradiated chondrocytes and extracellular matrix. For the first time, we identified intracellular calcium sulfate deposits and extracellular calcium phosphate (apatite) crystals in laser-reshaped rabbit auricular cartilage. Calcium carbonate deposits are localized in both irradiated and nonirradiated samples, suggesting that this mineral plays no role in conformational retention. In our discussion, we elaborate on the possible molecular and cellular mechanisms responsible for intra- and extracellular crystallization, and propose a novel hypothesis on the formation of apatite, inasmuch as the biological function of this mineral (providing structure and rigidity in bones and dental enamel) may be extrapolated to the permanent shape change of laser-irradiated cartilage.

  12. The Role of Inorganic Polyphosphates in the Formation of Bioengineered Cartilage Incorporating a Zone of Calcified Cartilage In Vitro

    Science.gov (United States)

    St-Pierre, Jean-Philippe

    The development of bioengineered cartilage for replacement of damaged articular cartilage has gained momentum in recent years. One such approach has been developed in the Kandel lab, whereby cartilage is formed by seeding primary articular chondrocytes on the top surface of a porous biodegradable calcium polyphosphate (CPP) bone substitute, permitting anchorage of the tissue within the pores of the substrate; however, the interfacial shear properties of the tissue-substrate interface of these biphasic constructs are 1 to 2 orders of magnitude lower than the native cartilage-subchondral bone interface. To overcome this limitation, a strategy was devised to generate a zone of calcified cartilage (ZCC), thereby mimicking the native architecture of the osteochondral junction; however, the ZCC was located slightly above the cartilage-CPP interface. Thus, it was hypothesized that polyphosphate released from the CPP substrate and accumulating in the tissue inhibits the formation of the ZCC at the tissue-substrate interface. Based on this information, a strategy was devised to generate biphasic constructs incorporating a properly located ZCC. This approach involved the application of a thin calcium phosphate film to the surfaces of porous CPP via a sol-gel procedure, thereby limiting the accumulation of polyphosphate in the cartilaginous tissue. This modification to the substrate surface did not negatively impact the quality of the in vitro-formed cartilage tissue or the ZCC. Interfacial shear testing of biphasic constructs demonstrated significantly improved interfacial shear properties in the presence of a properly located ZCC. These studies also led to the observation that chondrocytes produce endogenous polyphosphate and that its levels in deep zone cartilage appear inversely related to mineral deposition within the tissue. Using an in vitro model of cartilage calcification, it was demonstrated that polyphosphate levels are modulated in part by the inhibitory effects

  13. Management of chest deformity caused by microtia reconstruction: Comparison of autogenous diced cartilage versus cadaver cartilage graft partial filling techniques.

    Science.gov (United States)

    Go, Ju Young; Kang, Bo Young; Hwang, Jin Hee; Oh, Kap Sung

    2017-01-01

    Efforts to prevent chest wall deformity after costal cartilage graft are ongoing. In this study, we introduce a new method to prevent donor site deformation using irradiated cadaver cartilage (ICC) and compare this method to the autogenous diced cartilage (ADC) technique. Forty-two pediatric patients comprised the ADC group (n = 24) and the ICC group (n = 18). After harvesting costal cartilage, the empty perichondrial space was filled with autologous diced cartilage in the ADC group and cadaver cartilage in the ICC group. Digital photographs and rib cartilage three-dimensional computed tomography (CT) data were analyzed to compare the preventive effect of donor site deformity. We compared the pre- and postoperative costal cartilage volumes using 3D-CT and graded the volumes (grade I: 0%-25%, grade II: 25%-50%, grade III: 50%-75%, and grade IV: 75%-100%). The average follow-up period was 20 and 24 months in the ADC and ICC groups, respectively. Grade IV maintenance of previous costal cartilage volume was evident postoperatively in 22% of patients in the ADC group and 82% of patients in the ICC group. Intercostal space narrowing and chest wall depression were less in the ICC group. There were no complications or severe resorption of cadaver cartilage. ICC support transected costal ring and prevented stability loss by acting as a spacer. The ICC technique is more effective in preventing intercostal space narrowing and chest wall depression than the ADC technique. Samsung Medical Center Institution Review Board, Unique protocol ID: 2009-10-006-008. This study is also registered on PRS (ClinicalTrials.gov Record 2009-10-006). Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. [Tribological assessment of articular cartilage. A system for the analysis of the friction coefficient of cartilage, regenerates and tissue engineering constructs; initial results].

    Science.gov (United States)

    Schwarz, M L R; Schneider-Wald, B; Krase, A; Richter, W; Reisig, G; Kreinest, M; Heute, S; Pott, P P; Brade, J; Schütte, A

    2012-10-01

    Values for the friction coefficient of articular cartilage are given in ranges of percentage and lower and are calculated as a quotient of the friction force and the perpendicular loading force acting on it. Thus, a sophisticated system has to be provided for analysing the friction coefficient under different conditions in particular when cartilage should be coupled as friction partner. It is possible to deep-freeze articular cartilage before measuring the friction coefficient as the procedure has no influence on the results. The presented tribological system was able to distinguish between altered and native cartilage. Furthermore, tissue engineered constructs for cartilage repair were differentiated from native cartilage probes by their friction coefficient. In conclusion a tribological equipment is presented to analyze the friction coefficient of articular cartilage, in vivo generated cartilage regenerates and in vitro tissue engineered constructs regarding their biomechanical properties for quality assessment.

  15. Equivalence and precision of knee cartilage morphometry between different segmentation teams, cartilage regions, and MR acquisitions

    Science.gov (United States)

    Schneider, E; Nevitt, M; McCulloch, C; Cicuttini, FM; Duryea, J; Eckstein, F; Tamez-Pena, J

    2012-01-01

    Objective To compare precision and evaluate equivalence of femorotibial cartilage volume (VC) and mean cartilage thickness (ThCtAB.Me) from independent segmentation teams using identical MR images from three series: sagittal 3D Dual Echo in the Steady State (DESS), coronal multi-planar reformat (DESS-MPR) of DESS and coronal 3D Fast Low Angle SHot (FLASH). Design 19 subjects underwent test-retest MR imaging at 3 Tesla. Four teams segmented the cartilage using prospectively defined plate regions and rules. Mixed models analysis of the pooled data were used to evaluate the effect of acquisition, team and plate on precision and Pearson correlations and mixed models to evaluate equivalence. Results Segmentation team differences dominated measurement variability in most cartilage regions for all image series. Precision of VC and ThCtAB.Me differed significantly by team and cartilage plate, but not between FLASH and DESS. Mean values of VC and ThCtAB.Me differed by team (P<0.05) for DESS, FLASH and DESS-MPR, FLASH VC was 4–6% larger than DESS in the medial tibia and lateral central femur, and FLASH ThCtAB.Me was 5–6% larger in the medial tibia, but 4–8% smaller in the medial central femur. Correlations betweenDESS and FLASH for VC and ThCtAB.Me were high (r=0.90–0.97), except for DESS versus FLASH medial central femur ThCtAB.Me (r=0.81–0.83). Conclusions Cartilage morphology metrics from different image contrasts had similar precision, were generally equivalent, and may be combined for cross-sectional analyses if potential systematic offsets are accounted for. Data from different teams should not be pooled unless equivalence is demonstrated for cartilage metrics of interest. PMID:22521758

  16. Comparative evaluation of retinoic acid, benzoyl peroxide and erythromycin lotion in acne vulgarils

    Directory of Open Access Journals (Sweden)

    Dogra A

    1993-01-01

    Full Text Available Ninety three patients suffering from acne vulgaris were treated with 0.05% retinoic acid (23 patients, 10% benzyoyl peroxide (24 patients, 2% erythromycin lotin (25 patients and 50% glycerine in methylated spirit (21 patients used as a control, for a period of 6 weeks. The patients were evaluated at 2 weeks and 6 weeks by spot counting of the lesions and diagrammatic representations. Good to excellent results were obtained in 69.6% of patients of erythromycin lotion. Retinoic acid was more effective in reducing noninflammatory lesions (75.2% whereas inflammatory lesions showed better response (73.6% with erythromycin lotion and benzoyl peroxide was almost equally effective in both types of lesions.

  17. Platelet lysate activates quiescent cell proliferation and reprogramming in human articular cartilage: Involvement of hypoxia inducible factor 1.

    Science.gov (United States)

    Nguyen, Van Thi; Cancedda, Ranieri; Descalzi, Fiorella

    2018-03-01

    The idea of rescuing the body self-repair capability lost during evolution is progressively gaining ground in regenerative medicine. In particular, growth factors and bioactive molecules derived from activated platelets emerged as promising therapeutic agents acting as trigger for repair of tissue lesions and restoration of tissue functions. Aim of this study was to assess the potential of a platelet lysate (PL) for human articular cartilage repair considering its activity on progenitor cells and differentiated chondrocytes. PL induced the re-entry in the cell cycle of confluent, growth-arrested dedifferentiated/progenitor cartilage cells. In a cartilage permissive culture environment, differentiated cells also resumed proliferation after exposure to PL. These findings correlated with an up-regulation of the proliferation/survival pathways ERKs and Akt and with an induction of cyclin D1. In short- and long-term cultures of articular cartilage explants, we observed a release of proliferating chondroprogenitors able to differentiate and form an "in vitro" tissue with properties of healthy articular cartilage. Moreover, in cultured cartilage cells, PL induced a hypoxia-inducible factor (HIF-1) alpha increase, its nuclear relocation and the binding to HIF-1 responsive elements. These events were possibly related to the cell proliferation because the HIF-1 inhibitor acriflavine inhibited HIF-1 binding to HIF-1 responsive elements and cell proliferation. Our study demonstrates that PL induces quiescent cartilage cell activation and proliferation leading to new cartilage formation, identifies PL activated pathways playing a role in these processes, and provides a rationale to the application of PL for therapeutic treatment of damaged articular cartilage. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Fate of Meckel's cartilage chondrocytes in ocular culture

    International Nuclear Information System (INIS)

    Richman, J.M.; Diewert, V.M.

    1988-01-01

    Modulation of the chondrocyte phenotype was observed in an organ culture system using Meckel's cartilage. First branchial arch cartilage was dissected from fetal rats of 16- and 17-day gestation. Perichondrium was mechanically removed, cartilage was split at the rostral process, and each half was grafted into the anterior chamber of an adult rat eye. The observed pattern of development in nonirradiated specimens was the following: hypertrophy of the rostral process and endochondral-type ossification, fibrous atrophy in the midsection, and mineralization of the malleus and incus. A change in matrix composition of the implanted cartilage was demonstrated with immunofluorescence staining for cartilage-specific proteoglycan (CSPG). After 15 days of culture, CSPG was found in the auricular process but not in the midsection or rostral process. In order to mark the implanted cells and follow their fate, cartilage was labeled in vitro with [3H]thymidine [3H]TdR). Immediately after labeling 20% of the chondrocytes contained [3H]TdR. After culturing for 5 days, 20% of the chondrocytes were still labeled and 10% of the osteogenic cells also contained radioactive label. The labeling index decreased in both cell types with increased duration of culture. Multinucleated clast-type cells did not contain label. Additional cartilages not labeled with [3H]TdR were exposed to between 20000 and 6000 rad of gamma irradiation before ocular implantation. Irradiated cartilage did not hypertrophy or form bone but a fibrous region developed in the midsection. Cells of the host animal were not induced to form bone around the irradiated cartilage. Our studies suggest that fully differentiated chondrocytes of Meckel's cartilage have the capacity to become osteocytes, osteoblasts, and fibroblasts

  19. Stem Cells and Gene Therapy for Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Umile Giuseppe Longo

    2012-01-01

    Full Text Available Cartilage defects represent a common problem in orthopaedic practice. Predisposing factors include traumas, inflammatory conditions, and biomechanics alterations. Conservative management of cartilage defects often fails, and patients with this lesions may need surgical intervention. Several treatment strategies have been proposed, although only surgery has been proved to be predictably effective. Usually, in focal cartilage defects without a stable fibrocartilaginous repair tissue formed, surgeons try to promote a natural fibrocartilaginous response by using marrow stimulating techniques, such as microfracture, abrasion arthroplasty, and Pridie drilling, with the aim of reducing swelling and pain and improving joint function of the patients. These procedures have demonstrated to be clinically useful and are usually considered as first-line treatment for focal cartilage defects. However, fibrocartilage presents inferior mechanical and biochemical properties compared to normal hyaline articular cartilage, characterized by poor organization, significant amounts of collagen type I, and an increased susceptibility to injury, which ultimately leads to premature osteoarthritis (OA. Therefore, the aim of future therapeutic strategies for articular cartilage regeneration is to obtain a hyaline-like cartilage repair tissue by transplantation of tissues or cells. Further studies are required to clarify the role of gene therapy and mesenchimal stem cells for management of cartilage lesions.

  20. A retinoic acid-inducible mRNA from F9 teratocarcinoma cells encodes a novel protease inhibitor homologue.

    Science.gov (United States)

    Wang, S Y; Gudas, L J

    1990-09-15

    We have previously isolated several cDNA clones specific for mRNA species that increase in abundance during the retinoic acid-associated differentiation of F9 teratocarcinoma stem cells. One of these mRNAs, J6, encodes a approximately 40 kDa protein as assayed by hybrid selection and in vitro translation (Wang, S.-Y., LaRosa, G., and Gudas, L. J. (1985) Dev. Biol. 107, 75-86). The time course of J6 mRNA expression is similar to those of both laminin B1 and collagen IV (alpha 1) messages following retinoic acid addition. To address the functional role of this protein, we have isolated a full-length cDNA clone complementary to this approximately 40-kDa protein mRNA. Sequence analysis reveals an open reading frame of 406 amino acids (Mr 45,652). The carboxyl-terminal portion of this predicted protein contains a region that is homologous to the reactive sites found among members of the serpin (serine protease inhibitor) family. The predicted reactive site (P1-P1') of this J6 protein is Arg-Ser, which is the same as that of antithrombin III. Like ovalbumin and human monocyte-derived plasminogen activator inhibitor (mPAI-2), which are members of the serpin gene family, the J6 protein appears to have no typical amino-terminal signal sequence.

  1. Sonographic evaluation of femoral articular cartilage in the knee

    International Nuclear Information System (INIS)

    Hong, Sung Hwan; Kong Keun Young; Chung, Hye Won; Choi, Young Ho; Song, Yeong Wook; Kang, Heung Sik

    2000-01-01

    To investigate the usefulness of sonography for the evaluation of osteoarthritic articular cartilage. Ten asymptomatic volunteers and 20 patients with osteoarthritis of the knee underwent sonographic evaluation. For this, the knee was maintained of full flexion in order to expose the deep portion of femoral condylar cartilage. Both transverse and longitudinal scans were obtained in standardized planes. Sonographic images of the articular cartilages were analyzed in terms of surface sharpness, echogenicity and thickness, along with associated bone changes. Normal cartilages showed a clearly-defined surface, homogeneously low echogenicity and regular thickness. Among 20 patients, the findings for medial and lateral condyles, respectively, were as follows: poorly defined cartilage surface, 16 (80%) and ten (50%); increased echogenicity of cartilage, 17 (85%) and 16 (80%); cartilage thinning, 16 (80%) and 14 (70%) (two medial condyles demonstrated obvious cartilage thickening); the presence of thick subchondral hyperechoic bands, five (25%) and four (20%); the presence of osteophytes, 13 (65%) and 12 (60%). Sonography is a convenient and accurate modality for the evaluation of femoral articular cartilage. In particular, it can be useful for detecting early degenerative cartilaginous change and for studying such change during clinical follow-up. (author)

  2. Reviewing subchondral cartilage surgery: considerations for standardised and outcome predictable cartilage remodelling: a technical note.

    Science.gov (United States)

    Benthien, Jan P; Behrens, Peter

    2013-11-01

    The potential of subchondral mesenchymal stem cell stimulation (MSS) for cartilage repair has led to the widespread use of microfracture as a first line treatment for full thickness articular cartilage defects. Recent focus on the effects of subchondral bone during cartilage injury and repair has expanded the understanding of the strengths and limitations in MSS and opened new pathways for potential improvement. Comparative studies have shown that bone marrow access has positive implications for pluripotential cell recruitment, repair quality and quantity, i.e. deeper channels elicited better cartilage fill, more hyaline cartilage character with higher type II collagen content and lower type I collagen content compared to shallow marrow access. A subchondral needling procedure using standardised and thin subchondral perforations deep into the subarticular bone marrow making the MSS more consistent with the latest developments in subchondral cartilage remodelling is proposed. As this is a novel method clinical studies have been initiated to evaluate the procedure especially compared to microfracturing. However, the first case studies and follow-ups indicate that specific drills facilitate reaching the subchondral bone marrow while the needle size makes perforation of the subchondral bone easier and more predictable. Clinical results of the first group of patients seem to compare well to microfracturing. The authors suggest a new method for a standardised procedure using a new perforating device. Advances in MSS by subchondral bone marrow perforation are discussed. It remains to be determined by clinical studies how this method compares to microfracturing. The subchondral needling offers the surgeon and the investigator a method that facilitates comparison studies because of its defined depth of subchondral penetration and needle size.

  3. In end stage osteoarthritis, cartilage tissue pentosidine levels are inversely related to parameters of cartilage damage

    NARCIS (Netherlands)

    Vos, P.A.J.M.; Mastbergen, S.C.; Huisman, A.M.; Boer, T.N.de; Groot, J.de; Polak, A.A.; Lafeber, F.P.J.G.

    2012-01-01

    Objectives: Age is the most prominent predisposition for development of osteoarthritis (OA). Age-related changes of articular cartilage are likely to play a role. Advanced glycation endproducts (AGEs) accumulate in cartilage matrix with increasing age and adversely affect the biomechanical

  4. Allogenic lyophilized cartilage grafts for craniomaxillofacial reconstruction

    International Nuclear Information System (INIS)

    Pill Hoon Choung

    1999-01-01

    Allogenic lyophilized cartilages were made in our clinic after Sailer methods and some modification. In our clinic, we have used allogenic cartilage grafts on 102 defects of craniomaxillofacial area; 1) for defects from cyst or ameloblastoma, 2) for lack of continuity of the mandible, 3) for rhinoplasty, 4) for paranasal augmentation, 5) for augmentation genioplasty, 6) for reconstruction of orbital floor, 7) for oroantral fistula, 8) for temporal augmentation, 9) for TMJ surgery 10) for condyle defect as a costochondral graft, 11) for filling of tooth socket and alveolus augmentation,12) for correction or orbital height and 13) for guided bone regeneration in peripheral implant. The types of lyophilized cartilage used were chip, sheet and block types developed by freeze-dried methods. Some grafts showed change of ossification, in which case we could perform implant on it. We have good results on reconstruction of craniomaxillofacial defects. Allogenic cartilage have advantages such as 1) it has no immune reaction clinically, 2) it is more tolerable to infection than that of autogenous cartilage, 3) it has character of less resorption which require no over correction, 4) it is easy to manipulate contouring, and 5) it has possibility of undergoing ossification. Allogenic cartilage has been considered as good substitutes for bone. The author would like to report the results on 102 allogenic cartilage have

  5. The minor collagens in articular cartilage

    DEFF Research Database (Denmark)

    Luo, Yunyun; Sinkeviciute, Dovile; He, Yi

    2017-01-01

    Articular cartilage is a connective tissue consisting of a specialized extracellular matrix (ECM) that dominates the bulk of its wet and dry weight. Type II collagen and aggrecan are the main ECM proteins in cartilage. However, little attention has been paid to less abundant molecular components......, especially minor collagens, including type IV, VI, IX, X, XI, XII, XIII, and XIV, etc. Although accounting for only a small fraction of the mature matrix, these minor collagens not only play essential structural roles in the mechanical properties, organization, and shape of articular cartilage, but also...... fulfil specific biological functions. Genetic studies of these minor collagens have revealed that they are associated with multiple connective tissue diseases, especially degenerative joint disease. The progressive destruction of cartilage involves the degradation of matrix constituents including...

  6. Osteoarthritic Cartilage is more Homogeneous than Healthy Cartilage – Identification of a Superior ROI Co-localised with a Major Risk Factor for Osteoarthritis

    DEFF Research Database (Denmark)

    Qazi, Arish Asif; Dam, Erik B.; Nielsen, Mads

    2007-01-01

    Rationale and Objectives Cartilage loss as determined by magnetic resonance imaging (MRI) or joint space narrowing as determined by x-ray is the result of cartilage erosion. However, metabolic processes within the cartilage that later result in cartilage loss may be a more sensitive assessment...... method for early changes. Recently, it was shown that cartilage homogeneity visualized by MRI representing the biochemical changes undergoing in the cartilage is a potential marker for early detection of knee osteoarthritis (OA) and is also able to significantly separate groups of healthy subjects from...... those with OA. The purpose of this study was twofold. First, we wished to evaluate whether the results on cartilage homogeneity from the previous study can be reproduced using an independent population. Second, based on the homogeneity framework, we present an automatic technique that partitions...

  7. NONLINEAR SPECTRAL IMAGING OF ELASTIC CARTILAGE IN RABBIT EARS

    Directory of Open Access Journals (Sweden)

    JING CHEN

    2013-07-01

    Full Text Available Elastic cartilage in the rabbit external ear is an important animal model with attractive potential value for researching the physiological and pathological states of cartilages especially during wound healing. In this work, nonlinear optical microscopy based on two-photon excited fluorescence and second harmonic generation were employed for imaging and quantifying the intact elastic cartilage. The morphology and distribution of main components in elastic cartilage including cartilage cells, collagen and elastic fibers were clearly observed from the high-resolution two-dimensional nonlinear optical images. The areas of cell nuclei, a parameter related to the pathological changes of normal or abnormal elastic cartilage, can be easily quantified. Moreover, the three-dimensional structure of chondrocytes and matrix were displayed by constructing three-dimensional image of cartilage tissue. At last, the emission spectra from cartilage were obtained and analyzed. We found that the different ratio of collagen over elastic fibers can be used to locate the observed position in the elastic cartilage. The redox ratio based on the ratio of nicotinamide adenine dinucleotide (NADH over flavin adenine dinucleotide (FAD fluorescence can also be calculated to analyze the metabolic state of chondrocytes in different regions. Our results demonstrated that this technique has the potential to provide more accurate and comprehensive information for the physiological states of elastic cartilage.

  8. A comparative Study between the Structure of Cartilage Tissue Produced from Murine MSCs Differentiation and Hyaline Costal Cartilage

    OpenAIRE

    M.R. Baghban Eslaminezhad, Ph.D.;  L. Taghiyar, M.Sc; A. Piryaee, M.Sc

    2007-01-01

    Background and purpose: Vitro cartilage differentiation of mesenchymal stem cells (MSCs) has been noticed in several investigations. In this regard, almost always molecular differentiation of the cells has been examined, while structural and morphological differentiation of them has been ignored. Therefore, the present study examines the structure and ultrastructure of the cartilage differentiated from murine MSCs compared with that of costal cartilage.Materials and Methods: 2× 105 MSCs isola...

  9. Retinoic Acid-Induced Epidermal Transdifferentiation in Skin

    Directory of Open Access Journals (Sweden)

    Yoshihiro Akimoto

    2014-06-01

    Full Text Available Retinoids function as important regulatory signaling molecules during development, acting in cellular growth and differentiation both during embryogenesis and in the adult animal. In 1953, Fell and Mellanby first found that excess vitamin A can induce transdifferentiation of chick embryonic epidermis to a mucous epithelium (Fell, H.B.; Mellanby, E. Metaplasia produced in cultures of chick ectoderm by high vitamin A. J. Physiol. 1953, 119, 470–488. However, the molecular mechanism of this transdifferentiation process was unknown for a long time. Recent studies demonstrated that Gbx1, a divergent homeobox gene, is one of the target genes of all-trans retinoic acid (ATRA for this transdifferentiation. Furthermore, it was found that ATRA can induce the epidermal transdifferentiation into a mucosal epithelium in mammalian embryonic skin, as well as in chick embryonic skin. In the mammalian embryonic skin, the co-expression of Tgm2 and Gbx1 in the epidermis and an increase in TGF-β2 expression elicited by ATRA in the dermis are required for the mucosal transdifferentiation, which occurs through epithelial-mesenchymal interaction. Not only does retinoic acid (RA play an important role in mucosal transdifferentiation, periderm desquamation, and barrier formation in the developing mammalian skin, but it is also involved in hair follicle downgrowth and bending by its effect on the Wnt/β-catenin pathway and on members of the Runx, Fox, and Sox transcription factor families.

  10. Is the repair of articular cartilage lesion by costal chondrocyte transplantation donor age-dependent? An experimental study in rabbits.

    Directory of Open Access Journals (Sweden)

    Janusz Popko

    2006-09-01

    Full Text Available The repair of chondral injuries is a very important problem and a subject of many experimental and clinical studies. Different techniques to induce articular cartilage repair are under investigation. In the present study, we have investigated whether the repair of articular cartilage folowing costal chondrocyte transplantation is donor age-dependent. Transplantation of costal chondrocytes from 4- and 24-week old donors, with artificially induced femoral cartilage lesion, was performed on fourteen 20-week-old New Zealand White male rabbits. In the control group, the lesion was left without chondrocyte transplantation. The evaluation of the cartilage repair was performed after 12 weeks of transplantation. We analyzed the macroscopic and histological appearance of the newly formed tissue. Immunohistochemistry was also performed using monoclonal antibodies against rabbit collagen type II. The newly formed tissue had a hyaline-like appearance in most of the lesions after chondrocyte transplantation. Positive immunohistochemical reaction for collagen II was also observed in both groups with transplanted chondrocytes. Cartilage from adult donors required longer isolation time and induced slightly poorer repair. However, hyaline-like cartilage was observed in most specimens from this group, in contrast to the control group, where fibrous connective tissue filled the lesions. Rabbit costal chondrocytes seem to be a potentially useful material for inducing articular cartilage repair and, even more important, they can also be derived from adult, sexually mature animals.

  11. Articular cartilage explant culture; an appropriate in vitro system to compare osteoarthritic and normal human cartilage

    NARCIS (Netherlands)

    Lafeber, F. P.; Vander Kraan, P. M.; van Roy, J. L.; Huber-Bruning, O.; Bijlsma, J. W.

    1993-01-01

    Proteoglycan metabolism of normal and histologically mild to moderate osteoarthritic cartilage explants were studied. Explants were obtained from the human knee of donors aged over 40 years. Proteoglycan content, synthesis and release were very similar in normal cartilage obtained from donors with

  12. Lineage plasticity and cell biology of fibrocartilage and hyaline cartilage: Its significance in cartilage repair and replacement

    International Nuclear Information System (INIS)

    Freemont, Anthony J.; Hoyland, Judith

    2006-01-01

    Cartilage repair is a major goal of modern tissue engineering. To produce novel engineered implants requires a knowledge of the basic biology of the tissues that are to be replaced or reproduced. Hyaline articular cartilage and meniscal fibrocartilage are two tissues that have excited attention because of the frequency with which they are damaged. A basic strategy is to re-engineer these tissues ex vivo by stimulating stem cells to differentiate into the cells of the mature tissue capable of producing an intact functional matrix. In this brief review, the sources of cells for tissue engineering cartilage and the culture conditions that have promoted differentiation are discussed within the context of natural cartilage repair. In particular, the role of cell density, cytokines, load, matrices and oxygen tension are discussed

  13. Lineage plasticity and cell biology of fibrocartilage and hyaline cartilage: Its significance in cartilage repair and replacement

    Energy Technology Data Exchange (ETDEWEB)

    Freemont, Anthony J. [Regenerative Medicine Research Group, University of Manchester, England (United Kingdom)]. E-mail: Tony.freemont@man.ac.uk; Hoyland, Judith [Regenerative Medicine Research Group, University of Manchester, England (United Kingdom)

    2006-01-15

    Cartilage repair is a major goal of modern tissue engineering. To produce novel engineered implants requires a knowledge of the basic biology of the tissues that are to be replaced or reproduced. Hyaline articular cartilage and meniscal fibrocartilage are two tissues that have excited attention because of the frequency with which they are damaged. A basic strategy is to re-engineer these tissues ex vivo by stimulating stem cells to differentiate into the cells of the mature tissue capable of producing an intact functional matrix. In this brief review, the sources of cells for tissue engineering cartilage and the culture conditions that have promoted differentiation are discussed within the context of natural cartilage repair. In particular, the role of cell density, cytokines, load, matrices and oxygen tension are discussed.

  14. The development of hyaline-cell cartilage in the head of the black molly, Poecilia sphenops. Evidence for secondary cartilage in a teleost.

    Science.gov (United States)

    Benjamin, M

    1989-01-01

    The development of hyaline-cell cartilage attached to membrane (dentary, maxilla, nasal, lacrimal and cleithrum) and cartilage (basioccipital) bones has been studied in the viviparous black molly, Poecilia sphenops. Intramembranous ossification commences before the first appearance of hyaline cells. As hyaline-cell cartilage is densely cellular and as that attached to the dentary, maxilla and cleithrum develops from the periosteum of these membrane bones, it must be regarded as secondary cartilage according to current concepts. It is also argued that the hyaline-cell cartilage attached to the perichondral bone of the basioccipital (a cartilage bone), could also be viewed as secondary. The status of the cartilage on the nasal and lacrimal bones is less clear, for it develops, at least in part, from mucochondroid (mucous connective) tissue. This is the first definitive report of secondary cartilage in any lower vertebrate. The tissue is therefore not restricted to birds and mammals as hitherto believed, and a multipotential periosteum must have arisen early in vertebrate evolution. Images Fig. 1 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 PMID:2481666

  15. Joint homeostasis in tissue engineering for cartilage repair

    NARCIS (Netherlands)

    Saris, D.B.F.

    2002-01-01

    Traumatic joint damage, articular cartilage and the research into methods of restoring the articulation are not new topics of interest. For centuries, clinicians have recognized the importance of cartilage damage and sought ways of learning about the normal form and function of hyaline cartilage as

  16. Recent advances in hydrogels for cartilage tissue engineering

    Directory of Open Access Journals (Sweden)

    SL Vega

    2017-01-01

    Full Text Available Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks, new techniques to process hydrogels (e.g. 3D printing and better incorporation of biological signals (e.g. controlled release. This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  17. Recent advances in hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Vega, S L; Kwon, M Y; Burdick, J A

    2017-01-30

    Articular cartilage is a load-bearing tissue that lines the surface of bones in diarthrodial joints. Unfortunately, this avascular tissue has a limited capacity for intrinsic repair. Treatment options for articular cartilage defects include microfracture and arthroplasty; however, these strategies fail to generate tissue that adequately restores damaged cartilage. Limitations of current treatments for cartilage defects have prompted the field of cartilage tissue engineering, which seeks to integrate engineering and biological principles to promote the growth of new cartilage to replace damaged tissue. To date, a wide range of scaffolds and cell sources have emerged with a focus on recapitulating the microenvironments present during development or in adult tissue, in order to induce the formation of cartilaginous constructs with biochemical and mechanical properties of native tissue. Hydrogels have emerged as a promising scaffold due to the wide range of possible properties and the ability to entrap cells within the material. Towards improving cartilage repair, hydrogel design has advanced in recent years to improve their utility. Some of these advances include the development of improved network crosslinking (e.g. double-networks), new techniques to process hydrogels (e.g. 3D printing) and better incorporation of biological signals (e.g. controlled release). This review summarises these innovative approaches to engineer hydrogels towards cartilage repair, with an eye towards eventual clinical translation.

  18. Tissue engineering in the treatment of cartilage lesions

    Directory of Open Access Journals (Sweden)

    Jakob Naranđa

    2013-11-01

    Full Text Available Background: Articular cartilage lesions with the inherent limited healing potential are difficult to treat and thus remain a challenging problem for orthopaedic surgeons. Regenerative treatment techniques, such as autologous chondrocyte implantation (ACI, are promising as a treatment option to restore hyaline-like cartilage tissue in damaged articular surfaces, as opposed to the traditional reparative procedures (e.g. bone marrow stimulation – microfracture, which promote a fibrocartilage formation with lower tissue biomechanical properties and poorer clinical results. ACI technique has undergone several advances and is constantly improving. The new concept of cartilage tissue preservation uses tissue-engineering technologies, combining new biomaterials as a scaffold, application of growth factors, use of stem cells, and mechanical stimulation. The recent development of new generations of ACI uses a cartilage-like tissue in a 3-dimensional culture system that is based on the use of biodegradable material which serves as a temporary scaffold for the in vitro growth and subsequent implantation into the cartilage defect. For clinical practice, single stage procedures appear attractive to reduce cost and patient morbidity. Finally, modern concept of tissue engineering facilitates hyaline-like cartilage formation and a permanent treatment of cartilage lesions.Conclusion: The review focuses on innovations in the treatment of cartilage lesions and covers modern concepts of tissue engineering with the use of biomaterials, growth factors, stem cells and bioreactors, and presents options for clinical use.

  19. Transcriptional network systems in cartilage development and disease.

    Science.gov (United States)

    Nishimura, Riko; Hata, Kenji; Nakamura, Eriko; Murakami, Tomohiko; Takahata, Yoshifumi

    2018-04-01

    Transcription factors play important roles in the regulation of cartilage development by controlling the expression of chondrogenic genes. Genetic studies have revealed that Sox9/Sox5/Sox6, Runx2/Runx3 and Osterix in particular are essential for the sequential steps of cartilage development. Importantly, these transcription factors form network systems that are also required for appropriate cartilage development. Molecular cloning approaches have largely contributed to the identification of several transcriptional partners for Sox9 and Runx2 during cartilage development. Although the importance of a negative-feedback loop between Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP) in chondrocyte hypertrophy has been well established, recent studies indicate that several transcription factors interact with the Ihh-PTHrP loop and demonstrated that Ihh has multiple functions in the regulation of cartilage development. The most common cartilage disorder, osteoarthritis, has been reported to result from the pathological action of several transcription factors, including Runx2, C/EBPβ and HIF-2α. On the other hand, NFAT family members appear to play roles in the protection of cartilage from osteoarthritis. It is also becoming important to understand the homeostasis and regulation of articular chondrocytes, because they have different cellular and molecular features from chondrocytes of the growth plate. This review summarizes the regulation and roles of transcriptional network systems in cartilage development and their pathological roles in osteoarthritis.

  20. Transcriptomic profiling of cartilage ageing

    Directory of Open Access Journals (Sweden)

    Mandy Jayne Peffers

    2014-12-01

    Full Text Available The musculoskeletal system is severely affected by the ageing process, with many tissues undergoing changes that lead to loss of function and frailty. Articular cartilage is susceptible to age related diseases, such as osteoarthritis. Applying RNA-Seq to young and old equine cartilage, we identified an over-representation of genes with reduced expression relating to extracellular matrix, degradative proteases, matrix synthetic enzymes, cytokines and growth factors in cartilage from older donors. Here we describe the contents and quality controls in detail for the gene expression and related results published by Peffers and colleagues in Arthritis Research and Therapy 2013 associated with the data uploaded to ArrayExpress (E-MTAB-1386.

  1. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Directory of Open Access Journals (Sweden)

    Alida M Bailleul

    Full Text Available The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae. This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors.

  2. PAPAIN-INDUCED CHANGES IN RABBIT CARTILAGE

    Science.gov (United States)

    Tsaltas, Theodore T.

    1958-01-01

    Some biochemical aspects of the collapse of the rabbit ears produced by the intravenous injection of papain have been studied. A marked depletion of chondromucoprotein (M.C.S.) and a reduction of the S35 content of cartilage matrix were found to coincide with the gross and histologic changes in the cartilage. At the same time there was a marked increase in the amount of S35 in the serum and an increase of S35 and glucuronic acid excreted in the urine. Alteration in the composition of the M.C.S. remaining in the cartilage of the papain-injected animals was detected. The findings indicate that the collapse of the rabbit ears is due to loss of chondromucoprotein from cartilage and reduction of chondroitin sulfate in the chondromucoprotein that remains. All these changes were reversed in recovery. PMID:13575681

  3. Magnetization transfer analysis of cartilage repair tissue: a preliminary study

    International Nuclear Information System (INIS)

    Palmieri, F.; Keyzer, F. de; Maes, F.; Breuseghem, I. van

    2006-01-01

    To evaluate the magnetization transfer ratio (MTR) after two different cartilage repair procedures, and to compare these data with the MTR of normal cartilage. Twenty-seven patients with a proven cartilage defect were recruited: 13 were treated with autologous chondrocyte implantation (ACI) and 14 were treated with the microfracture technique (MFR). All patients underwent MRI examinations with MT-sequences before the surgical treatment, after 12 months (26 patients) and after 24 months (11 patients). Eleven patients received a complete follow-up study at all three time points (five of the ACI group and six of the MFR group). All images were transferred to a workstation to calculate MTR images. For every MT image set, different ROIs were delineated by two radiologists. Means were calculated per ROI type in the different time frames and in both groups of cartilage repair. The data were analyzed with unpaired t- and ANOVA tests, and by calculating Pearson's correlation coefficient. No significant differences were found in the MTR of fatty bone marrow, muscle and normal cartilage in the different time frames. There was a significant but small difference between the MTR of normal cartilage and the cartilage repair area after 12 months for both procedures. After 24 months, the MTR of ACI repaired cartilage (0.31±0.07) was not significantly different from normal cartilage MTR (0.34±0.05). The MTR of MFR repaired cartilage (0.28±0.02), still showed a significant difference from normal cartilage. The differences between damaged and repaired cartilage MTR are too small to enable MT-imaging to be a useful tool for postoperative follow-up of cartilage repair procedures. There is, however, an evolution towards normal MTR-values in the cartilage repair tissue (especially after ACI repair). (orig.)

  4. Mechanical confinement regulates cartilage matrix formation by chondrocytes

    Science.gov (United States)

    Lee, Hong-Pyo; Gu, Luo; Mooney, David J.; Levenston, Marc E.; Chaudhuri, Ovijit

    2017-12-01

    Cartilage tissue equivalents formed from hydrogels containing chondrocytes could provide a solution for replacing damaged cartilage. Previous approaches have often utilized elastic hydrogels. However, elastic stresses may restrict cartilage matrix formation and alter the chondrocyte phenotype. Here we investigated the use of viscoelastic hydrogels, in which stresses are relaxed over time and which exhibit creep, for three-dimensional (3D) culture of chondrocytes. We found that faster relaxation promoted a striking increase in the volume of interconnected cartilage matrix formed by chondrocytes. In slower relaxing gels, restriction of cell volume expansion by elastic stresses led to increased secretion of IL-1β, which in turn drove strong up-regulation of genes associated with cartilage degradation and cell death. As no cell-adhesion ligands are presented by the hydrogels, these results reveal cell sensing of cell volume confinement as an adhesion-independent mechanism of mechanotransduction in 3D culture, and highlight stress relaxation as a key design parameter for cartilage tissue engineering.

  5. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis

    Directory of Open Access Journals (Sweden)

    G Blumenkrantz

    2007-05-01

    Full Text Available Magnetic resonance imaging of articular cartilage has recently been recognized as a tool for the characterization of cartilage morphology, biochemistry and function. In this paper advancements in cartilage imaging, computation of cartilage volume and thickness, and measurement of relaxation times (T2 and T1Ρ are presented. In addition, the delayed uptake of Gadolinium DTPA as a marker of proteoglycan depletion is also reviewed. The cross-sectional and longitudinal studies using these imaging techniques show promise for cartilage assessment and for the study of osteoarthritis.

  6. Co-culture systems-based strategies for articular cartilage tissue engineering.

    Science.gov (United States)

    Zhang, Yu; Guo, Weimin; Wang, Mingjie; Hao, Chunxiang; Lu, Liang; Gao, Shuang; Zhang, Xueliang; Li, Xu; Chen, Mingxue; Li, Penghao; Jiang, Peng; Lu, Shibi; Liu, Shuyun; Guo, Quanyi

    2018-03-01

    Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering. © 2017 Wiley Periodicals, Inc.

  7. Assessing the effect of football play on knee articular cartilage using delayed gadolinium-enhanced MRI of cartilage (dGEMRIC).

    Science.gov (United States)

    Wei, Wenbo; Lambach, Becky; Jia, Guang; Flanigan, David; Chaudhari, Ajit M W; Wei, Lai; Rogers, Alan; Payne, Jason; Siston, Robert A; Knopp, Michael V

    2017-06-01

    The prevalence of cartilage lesions is much higher in football athletes than in the general population. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been shown to quantify regional variations of glycosaminoglycan (GAG) concentrations which is an indicator of early cartilage degeneration. The goal of this study is to determine whether dGEMRIC can be used to assess the influence in cartilage GAG concentration due to college level football play. Thirteen collegiate football players with one to four years of collegiate football play experience were recruited and both knee joints were scanned using a dedicated 8-channel phased array knee coil on a 3T MRI system. The contrast concentrations within cartilage were calculated based on the T 1 values from dGEMRIC scans. No substantial differences were found in the contrast concentrations between the pre- and post-season across all the cartilage compartments. One year collegiate football players presented an average contrast concentration at the pre-season of 0.116±0.011mM and post-season of 0.116±0.011mM. In players with multiple years of football play, contrast uptake was elevated to 0.141±0.012mM at the pre-season and 0.139±0.012mM at the post-season. The pre-season 0.023±0.016mM and post-season 0.025±0.016mM increase in contrast concentration within the group with multiple years of experience presented with a >20% increase in contrast uptake. This may indicate the gradual, cumulative damage of football play to the articular cartilage over years, even though the effect may not be noticeable after a season of play. Playing collegiate football for a longer period of time may lead to cartilage microstructural alterations, which may be linked to early knee cartilage degeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. High-resolution MR imaging of wrist cartilage

    International Nuclear Information System (INIS)

    Rominger, M.B.; Bernreuter, W.K.; Listinsky, J.J.; Lee, D.H.; Kenney, P.J.; Colgin, S.L.

    1991-01-01

    This paper reports that cartilage is an important prognostic factor in arthritis. MR imaging can demonstrate both articular cartilage and subchondral bone. Our purpose was to compare various sequences, for wrist cartilage imaging and determine how extensive damage must be before it is detectable with MR imaging. Six cadaver wrists were imaged before and after arthroscopic cartilage injury (coronal and axial T1- and T2-weighted SE sequences, 3-mm sections; SPGR 45 degrees flip angle volume images with fat saturation. 1.2-mm sections; plus T1-weighted coronal images with fat saturation after injury; General Electric Signa, 1.5 T, with transmit-receive extremity coil). Twenty-two defects were created arthroscopically. Five normal volunteers were imaged for comparison. The greatest contrast among bone, cartilage, and synovial fluid was achieved with T1-weighted fat-suppressed SE image and SPGR. Gradient-recalled volume sequences generated very thin sections but were susceptible to artifact

  9. Three-dimensional evaluation of cartilage thickness and cartilage volume in the knee joint with MR imaging: reproducibility in volunteers

    International Nuclear Information System (INIS)

    Westhoff, J.; Eckstein, F.; Sittek, H.; Faber, S.; Reiser, M.; Loesch, A.; Englmeier, K.H.; Kolem, H.

    1997-01-01

    Objective: To determine the reproductibility of three-dimensional volume and thickness measurements of the knee joint cartilage with MRI in volunteers. Methods: The knees of 7 healthy individuals (ages 23 to 58 yrs.) were sagitally imaged with a resolution of 2x0.31x0.31 mm 3 , using a fat-suppressed FLASH-3 D sequence. The knee was repositioned in between replicate acquisitions, 6 data sets being obtained in each case. After semiautomatic segmentation and three-dimensional reconstruction of the cartilage, the thickness was determined independent of the original section orientation. The coefficient of variation for repeated volume measurements and the deviations of the maximal cartilage thickness values were calculated subsequently. Results: The mean variation of the cartilage volumes of the replicate measurements was 1.4% (±0.8%) in the patella, 1.7% (±1.5%) in the femur, 3.0% (±1.2%) in the medial tibial plateau and 3.5% (±2.0%) in the lateral tibial plateau. The comparison of the distribution patterns of cartilage thickness yielded a high degree of agreement. Only in rare cases deviations of more than 0.5 mm were observed. Conclusions: The results show that the presented method for determining the quantitative distribution of articular cartilage yields a high degree of precision. It offers new possibilities in screening risk groups, monitoring the course of degenerative joint disease and the investigation of functional adaptation of the cartilage to mechanical loading. (orig.) [de

  10. Retinol dehydrogenase-10 regulates pancreas organogenesis and endocrine cell differentiation via paracrine retinoic acid signalling

    DEFF Research Database (Denmark)

    Arregi, Igor; Climent, Maria; Iliev, Dobromir

    2016-01-01

    Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here we show that Retinol dehydrogenase-10 (Rdh......10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis...... and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early...

  11. Directing chondrogenic differentiation of mesenchymal stem cells with a solid-supported chitosan thermogel for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Huang, Hongjie; Zhang, Xin; Hu, Xiaoqing; Dai, Linghui; Zhu, Jingxian; Man, Zhentao; Ao, Yingfang; Chen, Haifeng; Zhou, Chunyan

    2014-01-01

    Hydrogels are attractive for cartilage tissue engineering because of their high plasticity and similarity with the native cartilage matrix. However, one critical drawback of hydrogels for osteochondral repair is their inadequate mechanical strength. To address this limitation, we constructed a solid-supported thermogel comprising a chitosan hydrogel system and demineralized bone matrix. Scanning electron microscopy, the equilibrium scanning ratio, the biodegradation rate, biomechanical tests, biochemical assays, metabolic activity tests, immunostaining and cartilage-specific gene expression analysis were used to evaluate the solid-supported thermogel. Compared with pure hydrogel or demineralized matrix, the hybrid biomaterial showed superior porosity, equilibrium swelling and degradation rate. The hybrid scaffolds exhibited an increased mechanical strength: 75% and 30% higher compared with pure hydrogels and demineralized matrix, respectively. After three days culture, bone-derived mesenchymal stem cells (BMSCs) maintained viability above 90% in all three materials; however, the cell retention of the hybrid scaffolds was more efficient and uniform than the other materials. Matrix production and chondrogenic differentiation of BMSCs in the hybrid scaffolds were superior to its precursors, based on glycosaminoglycan quantification and hyaline cartilage marker expression after three weeks in culture. Its easy preparation, favourable biophysical properties and chondrogenic capacity indicated that this solid-supported thermogel could be an attractive biomaterial framework for cartilage tissue engineering. (paper)

  12. Cartilage damage involving extrusion of mineralisable matrix from the articular calcified cartilage and subchondral bone

    Directory of Open Access Journals (Sweden)

    A Boyde

    2011-05-01

    Full Text Available Arthropathy of the distal articular surfaces of the third metacarpal (Mc3 and metatarsal (Mt3 bones in the Thoroughbred racehorse (Tb is a natural model of repetitive overload arthrosis. We describe a novel pathology that affects the articular calcified cartilage (ACC and subchondral bone (SCB and which is associated with hyaline articular cartilage degeneration. Parasagittal slices cut from the palmar quadrant of the distal condyles of the left Mc3/Mt3 of 39 trained Tbs euthanased for welfare reasons were imaged by point projection microradiography, and backscattered electron (BSE scanning electron microscopy (SEM, light microscopy, and confocal scanning light microscopy. Mechanical properties were studied by nanoindentation. Data on the horses' training and racing career were also collected. Highly mineralised projections were observed extending from cracks in the ACC mineralising front into the hyaline articular cartilage (HAC up to two-thirds the thickness of the HAC, and were associated with focal HAC surface fibrillation directly overlying their site. Nanoindentation identified this extruded matrix to be stiffer than any other mineralised phase in the specimen by a factor of two. The presence of projections was associated with a higher cartilage Mankin histology score (P < 0.02 and increased amounts of gross cartilage loss pathologically on the condyle (P < 0.02. Presence of projections was not significantly associated with: total number of racing seasons, age of horse, amount of earnings, number of days in training, total distance galloped in career, or presence of wear lines.

  13. Biochemical effects on long-term frozen human costal cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Stefany P.; Martinho Junior, Antonio C.; Yoshito, Daniele; Soares, Fernando A.N.; Mathor, Monica B., E-mail: mathor@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  14. Biochemical effects on long-term frozen human costal cartilage

    International Nuclear Information System (INIS)

    Santin, Stefany P.; Martinho Junior, Antonio C.; Yoshito, Daniele; Soares, Fernando A.N.; Mathor, Monica B.

    2011-01-01

    Currently, the progresses on treatment of musculoskeletal diseases with the evolving of artificial implants and the success of tissue transplantation between genetically different individuals have conducted to an increase in radiosterilization. Regarding to tissue transplantation, it is essential to have sterile tissue and many tissue banks use radiosterilization as an effective method to sterilize these tissues. However, high doses of ionizing radiation and the preservation method may induce structural modifications in the tissues, as degradation of structural scaffold, decreasing its mechanical properties. Particularly, cartilage have been preserved in high concentrations of glycerol or deep-frozen at -70 degree C for storage after radiosterilization. Therefore, it is important to study the modifications induced in cartilage by preservation methods and by radiosterilization to determine the appropriated parameters for high quality of human allografts. Costal cartilages were obtained from cadaveric donors and were frozen at -20 degree C for 2 years long in order to compare with previous studies for fresh, deep-frozen and glycerolised cartilages. The mechanical tests were carried out in a universal testing machine until sample failure. According our results, there is no significant statistical difference between stress at break of fresh, long-term - 20 degree C frozen cartilages and deep-frozen cartilage. This early result suggests, regarding to tensile property, that long-term - 20 degree C frozen cartilages corresponds to glycerolised costal cartilages irradiated with 25 kGy or deep-frozen cartilages irradiated with 25 and 50 kGy. Thus, this long-term frozen cartilages may be used for tissue banks, but more studies about effects of ionizing radiation are necessary. (author)

  15. One-Step Cartilage Repair Technique as a Next Generation of Cell Therapy for Cartilage Defects: Biological Characteristics, Preclinical Application, Surgical Techniques, and Clinical Developments.

    Science.gov (United States)

    Zhang, Chi; Cai, You-Zhi; Lin, Xiang-Jin

    2016-07-01

    To provide a comprehensive overview of the basic science rationale, surgical technique, and clinical outcomes of 1-step cartilage repair technique used as a treatment strategy for cartilage defects. A systematic review was performed in the main medical databases to evaluate the several studies concerning 1-step procedures for cartilage repair. The characteristics of cell-seed scaffolds, behavior of cells seeded into scaffolds, and surgical techniques were also discussed. Clinical outcomes and quality of repaired tissue were assessed using several standardized outcome assessment tools, magnetic resonance imaging scans, and biopsy histology. One-step cartilage repair could be divided into 2 types: chondrocyte-matrix complex (CMC) and autologous matrix-induced chondrogenesis (AMIC), both of which allow a simplified surgical approach. Studies with Level IV evidence have shown that 1-step cartilage repair techniques could significantly relieve symptoms and improve functional assessment (P studies clearly showed hyaline-like cartilage tissue in biopsy tissues by second-look arthroscopy. The 1-step cartilage repair technique, with its potential for effective, homogeneous distribution of chondrocytes and multipotent stem cells on the surface of the cartilage defect, is able to regenerate hyaline-like cartilage tissue, and it could be applied to cartilage repair by arthroscopy. Level IV, systematic review of Level II and IV studies. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  16. Effect of retinoic acid on midkine gene expression in rat anterior pituitary cells.

    Science.gov (United States)

    Maliza, Rita; Fujiwara, Ken; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2017-06-29

    Retinoic acid (RA) is converted from retinal by retinaldehyde dehydrogenases (RALDHs) and is an essential signaling molecule in embryonic and adult tissue. We previously reported that RALDH1 was produced in the rat anterior pituitary gland and hypothesized that RA was generated in the gland. Midkine (MK) is an RA-inducible growth factor, and MK production in the rat anterior pituitary gland was recently reported. However, the mechanism that regulates gene expression of MK in the pituitary gland has not been determined. To investigate regulation of MK production in the anterior pituitary gland, we analyzed changes in MK mRNA in cultured rat anterior pituitary cells. We identified MK-expressing cells by double-staining with in situ hybridization and immunohistochemical techniques for RALDH1. MK mRNA was expressed in RALDH1-producing cells in the anterior pituitary gland. Using isolated anterior pituitary cells of rats, we examined the effect of RA on gene expression of MK. Quantitative real-time PCR revealed that 72 h exposure to a concentration of 10 -6 M of retinal and all-trans retinoic acid increased MK mRNA levels by about 2-fold. Moreover, the stimulatory effect of all-trans retinoic acid was mimicked by the RA receptor agonist Am80. This is the first report to show that RA is important in regulating MK expression in rat anterior pituitary gland.

  17. Critical temperature transitions in laser-mediated cartilage reshaping

    Science.gov (United States)

    Wong, Brian J.; Milner, Thomas E.; Kim, Hong H.; Telenkov, Sergey A.; Chew, Clifford; Kuo, Timothy C.; Smithies, Derek J.; Sobol, Emil N.; Nelson, J. Stuart

    1998-07-01

    In this study, we attempted to determine the critical temperature [Tc] at which accelerated stress relaxation occurred during laser mediated cartilage reshaping. During laser irradiation, mechanically deformed cartilage tissue undergoes a temperature dependent phase transformation which results in accelerated stress relaxation. When a critical temperature is attained, cartilage becomes malleable and may be molded into complex new shapes that harden as the tissue cools. Clinically, reshaped cartilage tissue can be used to recreate the underlying cartilaginous framework of structures such as the ear, larynx, trachea, and nose. The principal advantages of using laser radiation for the generation of thermal energy in tissue are precise control of both the space-time temperature distribution and time- dependent thermal denaturation kinetics. Optimization of the reshaping process requires identification of the temperature dependence of this phase transformation and its relationship to observed changes in cartilage optical, mechanical, and thermodynamic properties. Light scattering, infrared radiometry, and modulated differential scanning calorimetry (MDSC) were used to measure temperature dependent changes in the biophysical properties of cartilage tissue during fast (laser mediated) and slow (conventional calorimetric) heating. Our studies using MDSC and laser probe techniques have identified changes in cartilage thermodynamic and optical properties suggestive of a phase transformation occurring near 60 degrees Celsius.

  18. The mechanobiology of articular cartilage development and degeneration.

    Science.gov (United States)

    Carter, Dennis R; Beaupré, Gary S; Wong, Marcy; Smith, R Lane; Andriacchi, Tom P; Schurman, David J

    2004-10-01

    The development, maintenance, and destruction of cartilage are regulated by mechanical factors throughout life. Mechanical cues in the cartilage fetal endoskeleton influence the expression of genes that guide the processes of growth, vascular invasion, and ossification. Intermittent fluid pressure maintains the cartilage phenotype whereas mild tension (or shear) promotes growth and ossification. The articular cartilage thickness is determined by the position at which the subchondral growth front stabilizes. In mature joints, cartilage is thickest and healthiest where the contact pressure and cartilage fluid pressure are greatest. The depth-dependent histomorphology reflects the local fluid pressure, tensile strain, and fluid exudation. Osteoarthritis represents the final demise and loss of cartilage in the skeletal elements. The initiation and progression of osteoarthritis can follow many pathways and can be promoted by mechanical factors including: (1) reduced loading, which activates the subchondral growth front by reducing fluid pressure; (2) blunt impact, causing microdamage and activation of the subchondral growth front by local shear stress; (3) mechanical abnormalities that increase wear at the articulating surface; and (4) other mechanically related factors. Research should be directed at integrating our mechanical understanding of osteoarthritis pathogenesis and progression within the framework of cellular and molecular events throughout ontogeny.

  19. The effect of fixed charge density and cartilage swelling on mechanics of knee joint cartilage during simulated gait.

    Science.gov (United States)

    Räsänen, Lasse P; Tanska, Petri; Zbýň, Štefan; van Donkelaar, Corrinus C; Trattnig, Siegfried; Nieminen, Miika T; Korhonen, Rami K

    2017-08-16

    The effect of swelling of articular cartilage, caused by the fixed charge density (FCD) of proteoglycans, has not been demonstrated on knee joint mechanics during simulated walking before. In this study, the influence of the depth-wise variation of FCD was investigated on the internal collagen fibril strains and the mechanical response of the knee joint cartilage during gait using finite element (FE) analysis. The FCD distribution of tibial cartilage was implemented from sodium ( 23 Na) MRI into a 3-D FE-model of the knee joint ("Healthy model"). For comparison, models with decreased FCD values were created according to the decrease in FCD associated with the progression of osteoarthritis (OA) ("Early OA" and "Advanced OA" models). In addition, a model without FCD was created ("No FCD" model). The effect of FCD was studied with five different collagen fibril network moduli of cartilage. Using the reference fibril network moduli, the decrease in FCD from "Healthy model" to "Early OA" and "Advanced OA" models resulted in increased axial strains (by +2 and +6%) and decreased fibril strains (by -3 and -13%) throughout the stance, respectively, calculated as mean values through cartilage depth in the tibiofemoral contact regions. Correspondingly, compared to the "Healthy model", the removal of the FCD altogether in "NoFCD model" resulted in increased mean axial strains by +16% and decreased mean fibril strains by -24%. This effect was amplified as the fibril network moduli were decreased by 80% from the reference. Then mean axial strains increased by +6, +19 and +49% and mean fibril strains decreased by -9, -20 and -32%, respectively. Our results suggest that the FCD in articular cartilage has influence on cartilage responses in the knee during walking. Furthermore, the FCD is suggested to have larger impact on cartilage function as the collagen network degenerates e.g. in OA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Particulated articular cartilage: CAIS and DeNovo NT.

    Science.gov (United States)

    Farr, Jack; Cole, Brian J; Sherman, Seth; Karas, Vasili

    2012-03-01

    Cartilage Autograft Implantation System (CAIS; DePuy/Mitek, Raynham, MA) and DeNovo Natural Tissue (NT; ISTO, St. Louis, MO) are novel treatment options for focal articular cartilage defects in the knee. These methods involve the implantation of particulated articular cartilage from either autograft or juvenile allograft donor, respectively. In the laboratory and in animal models, both CAIS and DeNovo NT have demonstrated the ability of the transplanted cartilage cells to "escape" from the extracellular matrix, migrate, multiply, and form a new hyaline-like cartilage tissue matrix that integrates with the surrounding host tissue. In clinical practice, the technique for both CAIS and DeNovo NT is straightforward, requiring only a single surgery to affect cartilage repair. Clinical experience is limited, with short-term studies demonstrating both procedures to be safe, feasible, and effective, with improvements in subjective patient scores, and with magnetic resonance imaging evidence of good defect fill. While these treatment options appear promising, prospective randomized controlled studies are necessary to refine the indications and contraindications for both CAIS and DeNovo NT.

  1. High-throughput bone and cartilage micropellet manufacture, followed by assembly of micropellets into biphasic osteochondral tissue.

    Science.gov (United States)

    Babur, Betul Kul; Futrega, Kathryn; Lott, William B; Klein, Travis Jacob; Cooper-White, Justin; Doran, Michael Robert

    2015-09-01

    Engineered biphasic osteochondral tissues may have utility in cartilage defect repair. As bone-marrow-derived mesenchymal stem/stromal cells (MSC) have the capacity to make both bone-like and cartilage-like tissues, they are an ideal cell population for use in the manufacture of osteochondral tissues. Effective differentiation of MSC to bone-like and cartilage-like tissues requires two unique medium formulations and this presents a challenge both in achieving initial MSC differentiation and in maintaining tissue stability when the unified osteochondral tissue is subsequently cultured in a single medium formulation. In this proof-of-principle study, we used an in-house fabricated microwell platform to manufacture thousands of micropellets formed from 166 MSC each. We then characterized the development of bone-like and cartilage-like tissue formation in the micropellets maintained for 8-14 days in sequential combinations of osteogenic or chondrogenic induction medium. When bone-like or cartilage-like micropellets were induced for only 8 days, they displayed significant phenotypic changes when the osteogenic or chondrogenic induction medium, respectively, was swapped. Based on these data, we developed an extended 14-day protocol for the pre-culture of bone-like and cartilage-like micropellets in their respective induction medium. Unified osteochondral tissues were formed by layering 12,000 osteogenic micropellets and 12,000 chondrogenic micropellets into a biphasic structure and then further culture in chondrogenic induction medium. The assembled tissue was cultured for a further 8 days and characterized via histology. The micropellets had amalgamated into a continuous structure with distinctive bone-like and cartilage-like regions. This proof-of-concept study demonstrates the feasibility of micropellet assembly for the formation of osteochondral-like tissues for possible use in osteochondral defect repair.

  2. In Vivo Articular Cartilage Regeneration Using Human Dental Pulp Stem Cells Cultured in an Alginate Scaffold: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Manuel Mata

    2017-01-01

    Full Text Available Osteoarthritis is an inflammatory disease in which all joint-related elements, articular cartilage in particular, are affected. The poor regeneration capacity of this tissue together with the lack of pharmacological treatment has led to the development of regenerative medicine methodologies including microfracture and autologous chondrocyte implantation (ACI. The effectiveness of ACI has been shown in vitro and in vivo, but the use of other cell types, including bone marrow and adipose-derived mesenchymal stem cells, is necessary because of the poor proliferation rate of isolated articular chondrocytes. In this investigation, we assessed the chondrogenic ability of human dental pulp stem cells (hDPSCs to regenerate cartilage in vitro and in vivo. hDPSCs and primary isolated rabbit chondrocytes were cultured in chondrogenic culture medium and found to express collagen II and aggrecan. Both cell types were cultured in 3% alginate hydrogels and implanted in a rabbit model of cartilage damage. Three months after surgery, significant cartilage regeneration was observed, particularly in the animals implanted with hDPSCs. Although the results presented here are preliminary, they suggest that hDPSCs may be useful for regeneration of articular cartilage.

  3. In Vivo Articular Cartilage Regeneration Using Human Dental Pulp Stem Cells Cultured in an Alginate Scaffold: A Preliminary Study.

    Science.gov (United States)

    Mata, Manuel; Milian, Lara; Oliver, Maria; Zurriaga, Javier; Sancho-Tello, Maria; de Llano, Jose Javier Martin; Carda, Carmen

    2017-01-01

    Osteoarthritis is an inflammatory disease in which all joint-related elements, articular cartilage in particular, are affected. The poor regeneration capacity of this tissue together with the lack of pharmacological treatment has led to the development of regenerative medicine methodologies including microfracture and autologous chondrocyte implantation (ACI). The effectiveness of ACI has been shown in vitro and in vivo , but the use of other cell types, including bone marrow and adipose-derived mesenchymal stem cells, is necessary because of the poor proliferation rate of isolated articular chondrocytes. In this investigation, we assessed the chondrogenic ability of human dental pulp stem cells (hDPSCs) to regenerate cartilage in vitro and in vivo . hDPSCs and primary isolated rabbit chondrocytes were cultured in chondrogenic culture medium and found to express collagen II and aggrecan. Both cell types were cultured in 3% alginate hydrogels and implanted in a rabbit model of cartilage damage. Three months after surgery, significant cartilage regeneration was observed, particularly in the animals implanted with hDPSCs. Although the results presented here are preliminary, they suggest that hDPSCs may be useful for regeneration of articular cartilage.

  4. Cationic Contrast Agent Diffusion Differs Between Cartilage and Meniscus.

    Science.gov (United States)

    Honkanen, Juuso T J; Turunen, Mikael J; Freedman, Jonathan D; Saarakkala, Simo; Grinstaff, Mark W; Ylärinne, Janne H; Jurvelin, Jukka S; Töyräs, Juha

    2016-10-01

    Contrast enhanced computed tomography (CECT) is a non-destructive imaging technique used for the assessment of composition and structure of articular cartilage and meniscus. Due to structural and compositional differences between these tissues, diffusion and distribution of contrast agents may differ in cartilage and meniscus. The aim of this study is to determine the diffusion kinematics of a novel iodine based cationic contrast agent (CA(2+)) in cartilage and meniscus. Cylindrical cartilage and meniscus samples (d = 6 mm, h ≈ 2 mm) were harvested from healthy bovine knee joints (n = 10), immersed in isotonic cationic contrast agent (20 mgI/mL), and imaged using a micro-CT scanner at 26 time points up to 48 h. Subsequently, normalized X-ray attenuation and contrast agent diffusion flux, as well as water, collagen and proteoglycan (PG) contents in the tissues were determined. The contrast agent distributions within cartilage and meniscus were different. In addition, the normalized attenuation and diffusion flux were higher (p < 0.05) in cartilage. Based on these results, diffusion kinematics vary between cartilage and meniscus. These tissue specific variations can affect the interpretation of CECT images and should be considered when cartilage and meniscus are assessed simultaneously.

  5. Animal models used for testing hydrogels in cartilage regeneration.

    Science.gov (United States)

    Zhu, Chuntie; Wu, Qiong; Zhang, Xu; Chen, Fubo; Liu, Xiyang; Yang, Qixiang; Zhu, Lei

    2018-05-14

    Focal cartilage or osteochondral lesions can be painful and detrimental. Besides pain and limited function of joints, cartilage defect is considered as one of the leading extrinsic risk factors for osteoarthritis (OA). Thus, clinicians and scientists have paid great attention to regenerative therapeutic methods for the early treatment of cartilaginous defects. Regenerative medicine, showing great hope for regenerating cartilage tissue, rely on the combination of biodegradable scaffolds and specific biological cues, such as growth factors, adhesive factors and genetic materials. Among all biomaterials, hydrogels have emerged as promising cartilage tissue engineering scaffolds for simultaneous cell growth and drug delivery. A wide range of animal models have been applied in testing repair with hydrogels in cartilage defects. This review summarized the current animal models used to test hydrogels technologies for the regeneration of cartilage. Advantages and disadvantages in the establishment of the cartilage defect animal models among different species were emphasized, as well as feasibility of replication of diseases in animals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. MR imaging of patellar cartilage degeneration at 0.02 T

    International Nuclear Information System (INIS)

    Koskinen, S.K.; Komu, M.; Aho, H.J.; Kormano, M.; Turku University Hospital

    1991-01-01

    MR imaging with a 0.02 T resistive magnet was used to establish the correlation between the histologic grading of patellar cartilage degeneration and fat water separation images or T1- and T2-relaxation times. We examined 23 cadaveric patellae. There was a positive correlation between histologically graded cartilage degeneration and T1-relaxation time. Patellar cartilage was well differentiated from surrounding structures on chemical shift water proton images, and an evaluation of cartilage degeneration was possible. No correlation was found between cartilage degeneration damage and T2-relaxation time. Chemical shift imaging at 0.02 T is easy to perform and gives further information of cartilage disorders. (orig.)

  7. Fine-tuning Cartilage Tissue Engineering by Applying Principles from Embryonic Development

    OpenAIRE

    Hellingman, Catharine

    2012-01-01

    textabstractCartilage has a very poor capacity for regeneration in vivo. In head and neck surgery cartilage defects are usually reconstructed with autologous cartilage from for instance the external ear or the ribs. Cartilage tissue engineering may be a promising alternative to supply tissue for cartilage reconstructions in otorhinolaryngology as well as in plastic surgery and orthopaedics. The aim of this thesis is to find new tools by which cartilage tissue engineering can be better control...

  8. Magnetic resonance imaging of hyaline cartilage regeneration in neocartilage graft implantation.

    Science.gov (United States)

    Tan, C F; Ng, K K; Ng, S H; Cheung, Y C

    2003-12-01

    The purpose of this study was to investigate the regenerative potential of hyaline cartilage in a neocartilage graft implant with the aid of MR cartilage imaging using a rabbit model. Surgical osteochondral defects were created in the femoral condyles of 30 mature New Zealand rabbits. The findings of neocartilage in autologous cartilage grafts packed into osteochondral defects were compared with control group of no implant to the osteochondral defect. The outcome of the implantations was correlated with histologic and MR cartilage imaging findings over a 3-month interval. Neocartilage grafts packed into osteochondral defects showed regeneration of hyaline cartilage at the outer layer of the implant using MR cartilage imaging. Fibrosis of fibrocartilage developed at the outer layer of the autologous cartilage graft together with an inflammatory reaction within the osteochondral defect. This animal study provides evidence of the regenerative ability of hyaline cartilage in neocartilage transplants to repair articular cartilage.

  9. Properties of Cartilage on Micro- and Nanolevel

    Directory of Open Access Journals (Sweden)

    Sergei A. Chizhik

    2010-01-01

    Full Text Available Results of investigation of the elastic modulus for cartilage tissue using a technique of micro- and nanoindentation performed with help of an atomic force microscope are presented. SEM and AFM methods were applied to visualize a topography of surface layers of the entire cartilage and as well as its slices and thus to reveal features of the collagen fibers orientation. The technique used for a quantitative evaluation of the elastic modulus under compression against a ball microindenter (curvature radius - 350 micron and a nanoindenter (30 nm is described. It was shown that the cartilage behavior is highly stabile under the load if the entire composite structure of cartilage tissue is engaged into the deformation process. Tribological characteristics were investigated using the ball indenter oscillated by a tuning fork. Dependence of the friction coefficient from applied loads was obtained that revealed strong influence of an interstitial fluid on friction properties. Friction coefficient of a rat cartilage tissue as 0.08 was obtained using a developed plant prototype for tribological measurements based on the AFM construction.

  10. Effects of Platelet-Rich Plasma & Platelet-Rich Fibrin with and without Stromal Cell-Derived Factor-1 on Repairing Full-Thickness Cartilage Defects in Knees of Rabbits

    Directory of Open Access Journals (Sweden)

    Soghra Bahmanpour

    2016-11-01

    Full Text Available Background: The purpose of this study was to create biomaterial scaffolds like platelet-rich plasma (PRP and platelet-rich fibrin (PRF containing stromal cell-derived factor-1 (SDF1 as a chemokine to induce hyaline cartilage regeneration of rabbit knee in a full thickness defect. Methods: We created a full thickness defect in the trochlear groove of thirty-six bilateral knees of eighteen mature male rabbits. The knees were randomly divided into six groups (group I: untreated control, group II: PRP, group III: PRF, group IV: Gelatin+SDF1, group V: PRP+SDF1, and group VI: PRF+SDF1. After four weeks, the tissue specimens were evaluated by macroscopic examination and histological grading, immunofluorescent staining for collagen type II, and analyzed for cartilage marker genes by real-time PCR. The data were compared using statistical methods (SPSS 20, Kruskal-Wallis test, Bonferroni post hoc test and P<0.05. Results: Macroscopic evaluations revealed that international cartilage repair society (ICRS scores of the PRF+SDF1 group were higher than other groups. Microscopic analysis showed that the ICRS score of the PRP group was significantly lower than other groups. Immunofluorescent staining for collagen II demonstrated a remarkable distribution of type II collagen in the Gel+SDF1, PRP+SDF1 and PRF+SDF1 groups compared with other groups. Real-time PCR analysis revealed that mRNA expression of SOX9 and aggrecan were significantly greater in the PRF+SDF1, PRP+SDF1, Gel+SDF1 and PRF groups than the control group (P<0.05. Conclusion: Our results indicate that implantation of PRF scaffold containing SDF1 led to the greatest evaluation scores of full-thickness lesions in rabbits.

  11. Evaluation of the potential of rhTGF- β3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton's jelly of human umbilical cord

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Sun, Binbin [State Key Laboratory of Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Tian, Lingling [Center for Nanofibers and Nanotechnology, E3-05-14, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); He, Xiaomin [Department of Pediatric Cardiothoracic Surgery, Shanghai Children' s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127 (China); Gao, Qiang; Wu, Tong [State Key Laboratory of Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Ramakrishna, Seeram [Center for Nanofibers and Nanotechnology, E3-05-14, Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Guangdong-Hongkong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632 (China); Zheng, Jinghao, E-mail: zhengjh210@163.com [Department of Pediatric Cardiothoracic Surgery, Shanghai Children' s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127 (China); Mo, Xiumei, E-mail: xmm@dhu.edu.cn [State Key Laboratory of Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Shandong International Biotechnology Park Development Co., Ltd. (China)

    2017-01-01

    Tracheal injuries are one of major challenging issues in clinical medicine because of the poor intrinsic ability of tracheal cartilage for repair. Tissue engineering provides an alternative method for the treatment of tracheal defects by generating replacement tracheal structures. In this study, core-shell nanofibrous scaffold was fabricated to encapsulate bovine serum albumin & rhTGF-β3 (recombinant human transforming growth factor-β3) into the core of the nanofibers for tracheal cartilage regeneration. Characterization of the core-shell nanofibrous scaffold was carried out by scanning electron microscope (SEM), transmission electron microscope (TEM), laser scanning confocal microscopy (LSCM), and tensile mechanical test. The rhTGF-β3 released from the scaffolds in a sustained and stable manner for about 2 months. The bioactivity of released rhTGF-β3 was evaluated by its effect on the synthesis of type II collagen (COL2) and glycosaminoglycans (GAGs) by chondrocytes. The results suggested that its bioactivity was retained during release process. The proliferation and morphology analyses of mesenchymal stems cells derived from Wharton's jelly of human umbilical cord (WMSCs) indicated the good biocompatibility of the fabricated nanofibrous scaffold. Meanwhile, the chondrogenic differentiation of WMSCs cultured on core-shell nanofibrous scaffold was evaluated by real-time qPCR and histological staining. The results suggested that the core-shell nanofibrous scaffold with rhTGF-β3 could promote the chondrogenic differentiation ability of WMSCs. Therefore, WMSCs could be a promising seed cells in the construction of tissue-engineered tracheal cartilage. Overall, the core-shell nanofibrous scaffold could be an effective delivery system for rhTGF-β3 and served as a promising tissue engineered scaffold for tracheal cartilage regeneration. - Highlights: • rhTGF-β3 could be encapsulated into core-shell nanofibers via electrospinning. • rhTGF-β3 could release

  12. Chondroptosis in Alkaptonuric Cartilage

    Science.gov (United States)

    Millucci, Lia; Giorgetti, Giovanna; Viti, Cecilia; Ghezzi, Lorenzo; Gambassi, Silvia; Braconi, Daniela; Marzocchi, Barbara; Paffetti, Alessandro; Lupetti, Pietro; Bernardini, Giulia; Orlandini, Maurizio

    2015-01-01

    Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of treatment is palliative and little is known about AKU physiopathology. Chondroptosis, a peculiar type of cell death in cartilage, has been so far reported to occur in osteoarthritis, a rheumatic disease that shares some features with AKU. In the present work, we wanted to assess if chondroptosis might also occur in AKU. Electron microscopy was used to detect the morphological changes of chondrocytes in damaged cartilage distinguishing apoptosis from its variant termed chondroptosis. We adopted histological observation together with Scanning Electron Microscopy and Transmission Electron Microscopy to evaluate morphological cell changes in AKU chondrocytes. Lipid peroxidation in AKU cartilage was detected by fluorescence microscopy. Using the above‐mentioned techniques, we performed a morphological analysis and assessed that AKU chondrocytes undergo phenotypic changes and lipid oxidation, resulting in a progressive loss of articular cartilage structure and function, showing typical features of chondroptosis. To the best of our knowledge, AKU is the second chronic pathology, following osteoarthritis, where chondroptosis has been documented. Our results indicate that Golgi complex plays an important role in the apoptotic process of AKU chondrocytes and suggest a contribution of chondroptosis in AKU pathogenesis. These findings also confirm a similarity between osteoarthritis and AKU. J. Cell. Physiol. 230: 1148–1157, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:25336110

  13. Cartilage-Specific and Cre-Dependent Nkx3.2 Overexpression In Vivo Causes Skeletal Dwarfism by Delaying Cartilage Hypertrophy.

    Science.gov (United States)

    Jeong, Da-Un; Choi, Je-Yong; Kim, Dae-Won

    2017-01-01

    Nkx3.2, the vertebrate homologue of Drosophila bagpipe, has been implicated as playing a role in chondrogenic differentiation. In brief, Nkx3.2 is initially expressed in chondrocyte precursor cells and later during cartilage maturation, its expression is diminished in hypertrophic chondrocytes. In addition to Nkx3.2 expression analyses, previous studies using ex vivo chick embryo cultures and in vitro cell cultures have suggested that Nkx3.2 can suppress chondrocyte hypertrophy. However, it has never been demonstrated that Nkx3.2 functions in regulating chondrocyte hypertrophy during cartilage development in vivo. Here, we show that cartilage-specific and Cre-dependent Nkx3.2 overexpression in mice results in significant postnatal dwarfism in endochondral skeletons, while intramembranous bones remain unaltered. Further, we observed significant delays in cartilage hypertrophy in conditional transgenic ciTg-Nkx3.2 mice. Together, these findings confirm that Nkx3.2 is capable of controlling hypertrophic maturation of cartilage in vivo, and this regulation plays a significant role in endochondral ossification and longitudinal bone growth. J. Cell. Physiol. 232: 78-90, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. In-vivo study and histological examination of laser reshaping of cartilage

    Science.gov (United States)

    Sviridov, Alexander P.; Sobol, Emil N.; Bagratashvili, Victor N.; Omelchenko, Alexander I.; Ovchinnikov, Yuriy M.; Shekhter, Anatoliy B.; Svistushkin, Valeriy M.; Shinaev, Andrei A.; Nikiforova, G.; Jones, Nicholas

    1999-06-01

    The results of recent study of cartilage reshaping in vivo are reported. The ear cartilage of piglets of 8-12 weeks old have been reshaped in vivo using the radiation of a holmium laser. The stability of the shape and possible side effects have been examined during four months. Histological investigation shown that the healing of irradiated are could accompany by the regeneration of ear cartilage. Finally, elastic type cartilage has been transformed into fibrous cartilage or cartilage of hyaline type.

  15. Comparison of efficacy of chemical peeling with 25% trichloroacetic acid and 0.1% retinoic acid for facial rejuvenation

    Directory of Open Access Journals (Sweden)

    Selda Yildirim

    2016-06-01

    Full Text Available Introduction : Skin aging is a problem which negatively affects the psyche of the person, social relations, as well as work life and health and which compels the patients to find appropriate treatment methods. Numerous treatment methods have been developed in order to delay aging and to reduce the aging effects in addition to having a younger, healthier and more beautiful facial appearance. Aim : To compare the efficiency, cosmetic results and possible adverse effects of the peeling treatment with 25% trichloroacetic acid (TCA and 0.1% retinoic acid for facial rejuvenation in patients presenting with skin aging. Material and methods: Fifty female patients in total presenting with medium and advanced degree skin aging were subject to this study. Two separate treatment groups were formed; the first group underwent chemical skin treatment with 25% TCA while the other group was applied with 0.1% retinoic acid treatment. Following the 4 months’ treatment the patients were controlled three times in total for post lesional hypopigmentation, hyperpigmentation, scars, skin irritation and other possible changes per month. The pretreatment and first follow-up visit, and final control images were comparatively evaluated by three observers via specific software. Results : The healing rates of the group subject to retinoic acid were statistically higher (p 0.05. The frequency of TCA- and retinoic acid-associated adverse effects was similar in both groups (p > 0.05. As a result of both treatments, a reduction in the quality of life scores as well as a pronounced recovery (p = 0.001 in the quality of life of those patients with skin aging was observed. Conclusions : The photo aging treatment option with 0.1% retinoic acid is cheaper and more feasible for patients compared to 25% TCA, and it is also as reliable and effective as TCA.

  16. Principles of cartilage repair

    CERN Document Server

    Erggelet, Christoph; Mandelbaum, Bert R

    2008-01-01

    Cartilage defects affect patients of all age groups. Surgeons, teamdoctors, general practitioners and physiotherapists alike are expected to provide adequate care. Only individual treatment plans combining a well balanced choice of various options will be successful. Background knowledge, operative and non-operative therapies are described in concise chapters: Articular cartilage biology - Diagnostics - Surgical techniques - Symptomatic and alternative medications - Physiotherapy. Diagnostic findings and surgical procedures are generously illustrated by aquarelles and colour photographs. Recommendations for additional reading, description of important clinical scoring systems and a listing of analytic tools are added for further information.

  17. Comparison of analyzer-based imaging computed tomography extraction algorithms and application to bone-cartilage imaging

    International Nuclear Information System (INIS)

    Diemoz, Paul C; Bravin, Alberto; Coan, Paola; Glaser, Christian

    2010-01-01

    In x-ray phase-contrast analyzer-based imaging, the contrast is provided by a combination of absorption, refraction and scattering effects. Several extraction algorithms, which attempt to separate and quantify these different physical contributions, have been proposed and applied. In a previous work, we presented a quantitative comparison of five among the most well-known extraction algorithms based on the geometrical optics approximation applied to planar images: diffraction-enhanced imaging (DEI), extended diffraction-enhanced imaging (E-DEI), generalized diffraction-enhanced imaging (G-DEI), multiple-image radiography (MIR) and Gaussian curve fitting (GCF). In this paper, we compare these algorithms in the case of the computed tomography (CT) modality. The extraction algorithms are applied to analyzer-based CT images of both plastic phantoms and biological samples (cartilage-on-bone cylinders). Absorption, refraction and scattering signals are derived. Results obtained with the different algorithms may vary greatly, especially in the case of large refraction angles. We show that ABI-CT extraction algorithms can provide an excellent tool to enhance the visualization of cartilage internal structures, which may find applications in a clinical context. Besides, by using the refraction images, the refractive index decrements for both the cartilage matrix and the cartilage cells have been estimated.

  18. Stem Cells and Gene Therapy for Cartilage Repair

    OpenAIRE

    Longo, Umile Giuseppe; Petrillo, Stefano; Franceschetti, Edoardo; Berton, Alessandra; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Cartilage defects represent a common problem in orthopaedic practice. Predisposing factors include traumas, inflammatory conditions, and biomechanics alterations. Conservative management of cartilage defects often fails, and patients with this lesions may need surgical intervention. Several treatment strategies have been proposed, although only surgery has been proved to be predictably effective. Usually, in focal cartilage defects without a stable fibrocartilaginous repair tissue formed, sur...

  19. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors.

    Science.gov (United States)

    Bhardwaj, Nandana; Devi, Dipali; Mandal, Biman B

    2015-02-01

    Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Delayed Gadolinium-Enhanced Magnetic Resonance Imaging (dGEMRIC) of Hip Joint Cartilage: Better Cartilage Delineation after Intra-Articular than Intravenous Gadolinium Injection

    International Nuclear Information System (INIS)

    Boesen, M.; Jensen, K. E.; Qvistgaard, E.; Danneskiold-Samsoe, B.; Thomsen, C.; Oestergaard, M.; Bliddal, H.

    2006-01-01

    Purpose: To investigate and compare delayed gadolinium (Gd-DTPA)-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC) in the hip joint using intravenous (i.v.) or ultrasound-guided intra-articular (i.a.) Gd-DTPA injection. Material and Methods: In 10 patients (50% males, mean age 58 years) with clinical and radiographic hip osteoarthritis (OA; Kellgren score II-III), MRI of the hip was performed twice on a clinical 1.5T MR scanner: On day 1, before and 90-180 min after 0.3 mmol/kg body weight i.v. Gd-DTPA and, on day 8, 90-180 min after ultrasound-guided i.a. injection of a 4 mmol/l Gd-DTPA solution. Coronal STIR, coronal T1 fat-saturated spin-echo, and a cartilage-sensitive gradient-echo sequence (3D T1 SPGR) in the sagittal plane were applied. Results: Both the post-i.v. and post-i.a. Gd-DTPA images showed significantly higher signal-to-noise (SNR) and contrast-to-noise (CNR) in the joint cartilage compared to the non-enhanced images ( P <0.002). I.a. Gd-DTPA provided significantly higher SNR and CNR compared to i.v. Gd-DTPA ( P <0.01). Furthermore, a better delineation of the cartilage in the synovial/cartilage zone and of the chondral/subchondral border was observed. Conclusion: The dGEMRIC MRI method markedly improved delineation of hip joint cartilage compared to non-enhanced MRI. The i.a. Gd-DTPA provided the best cartilage delineation. dGEMRIC is a clinically applicable MRI method that may improve identification of early subtle cartilage damage and the accuracy of volume measurements of hip joint cartilage

  1. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    Directory of Open Access Journals (Sweden)

    Michiel W. Pot

    2017-10-01

    Full Text Available Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline cartilage tissue. This systematic review and meta-analysis provides a comprehensive overview of current literature and assesses the efficacy of articular cartilage regeneration by implantation of cell-laden versus cell-free biomaterials in the knee and ankle joint in animals after bone marrow stimulation. PubMed and EMBASE (via OvidSP were systematically searched using tissue engineering, cartilage and animals search strategies. Included were primary studies in which cellular and acellular biomaterials were implanted after applying bone marrow stimulation in the knee or ankle joint in healthy animals. Study characteristics were tabulated and outcome data were collected for meta-analysis for studies applying semi-quantitative histology as outcome measure (117 studies. Cartilage regeneration was expressed on an absolute 0–100% scale and random effects meta-analyses were performed. Implantation of cellular biomaterials significantly improved cartilage regeneration by 18.6% compared to acellular biomaterials. No significant differences were found between biomaterials loaded with stem cells and those loaded with somatic cells. Culture conditions of cells did not affect cartilage regeneration. Cartilage formation was reduced with adipose-derived stem cells compared to other cell types, but still improved compared to acellular scaffolds. Assessment of the risk of bias was impaired due to incomplete reporting for most studies. Implantation of cellular biomaterials improves cartilage regeneration compared to acellular biomaterials.

  2. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies.

    Science.gov (United States)

    Pot, Michiel W; van Kuppevelt, Toin H; Gonzales, Veronica K; Buma, Pieter; IntHout, Joanna; de Vries, Rob B M; Daamen, Willeke F

    2017-01-01

    Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline cartilage tissue. This systematic review and meta-analysis provides a comprehensive overview of current literature and assesses the efficacy of articular cartilage regeneration by implantation of cell-laden versus cell-free biomaterials in the knee and ankle joint in animals after bone marrow stimulation. PubMed and EMBASE (via OvidSP) were systematically searched using tissue engineering, cartilage and animals search strategies. Included were primary studies in which cellular and acellular biomaterials were implanted after applying bone marrow stimulation in the knee or ankle joint in healthy animals. Study characteristics were tabulated and outcome data were collected for meta-analysis for studies applying semi-quantitative histology as outcome measure (117 studies). Cartilage regeneration was expressed on an absolute 0-100% scale and random effects meta-analyses were performed. Implantation of cellular biomaterials significantly improved cartilage regeneration by 18.6% compared to acellular biomaterials. No significant differences were found between biomaterials loaded with stem cells and those loaded with somatic cells. Culture conditions of cells did not affect cartilage regeneration. Cartilage formation was reduced with adipose-derived stem cells compared to other cell types, but still improved compared to acellular scaffolds. Assessment of the risk of bias was impaired due to incomplete reporting for most studies. Implantation of cellular biomaterials improves cartilage regeneration compared to acellular biomaterials.

  3. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications

    International Nuclear Information System (INIS)

    Xu Tao; Binder, Kyle W; Albanna, Mohammad Z; Dice, Dennis; Zhao Weixin; Yoo, James J; Atala, Anthony

    2013-01-01

    Bioprinting is an emerging technique used to fabricate viable, 3D tissue constructs through the precise deposition of cells and hydrogels in a layer-by-layer fashion. Despite the ability to mimic the native properties of tissue, printed 3D constructs that are composed of naturally-derived biomaterials still lack structural integrity and adequate mechanical properties for use in vivo, thus limiting their development for use in load-bearing tissue engineering applications, such as cartilage. Fabrication of viable constructs using a novel multi-head deposition system provides the ability to combine synthetic polymers, which have higher mechanical strength than natural materials, with the favorable environment for cell growth provided by traditional naturally-derived hydrogels. However, the complexity and high cost associated with constructing the required robotic system hamper the widespread application of this approach. Moreover, the scaffolds fabricated by these robotic systems often lack flexibility, which further restrict their applications. To address these limitations, advanced fabrication techniques are necessary to generate complex constructs with controlled architectures and adequate mechanical properties. In this study, we describe the construction of a hybrid inkjet printing/electrospinning system that can be used to fabricate viable tissues for cartilage tissue engineering applications. Electrospinning of polycaprolactone fibers was alternated with inkjet printing of rabbit elastic chondrocytes suspended in a fibrin–collagen hydrogel in order to fabricate a five-layer tissue construct of 1 mm thickness. The chondrocytes survived within the printed hybrid construct with more than 80% viability one week after printing. In addition, the cells proliferated and maintained their basic biological properties within the printed layered constructs. Furthermore, the fabricated constructs formed cartilage-like tissues both in vitro and in vivo as evidenced by the

  4. Compressive and swelling behavior of cuttlebone derived hydroxyapatite loaded PVA hydrogel implants for articular cartilage

    Science.gov (United States)

    Kumar, B. Y. Santosh; Kumar, G. C. Mohan; Isloor, Arun M.

    2018-04-01

    Developing a novel antibacterial, nontoxic and biocompatible hydrogel with superior physio mechanical properties is still becoming a challenge. Herein, we synthesize hydroxyapatite (HA) powder from cuttlefish bone and prepare a series of stiff, tough, high strength, biocompatible hydrogel reinforced with HA by integrating glutaraldehyde into PVA/HA. Powder was characterized by SEM and XRD. Compressive strength and swelling properties are studied and compare the results with the properties of healthy natural articular cartilage.

  5. Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC) of Cadaveric Shoulders: Comparison of Contrast Dynamics in Hyaline and Fibrous Cartilage after Intraarticular Gadolinium Injection

    Energy Technology Data Exchange (ETDEWEB)

    Wiener, E. (Dept. of Radiology, Charite Universitaetsmedizin Berlin (Germany)); Hodler, J.; Pfirrmann, C.W.A. (Dept. of Radiology, Orthopedic Univ. Hospital Balgrist, Zuerich (Switzerland))

    2009-01-15

    Background: Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is a novel method to investigate cartilaginous and fibrocartilaginous structures. Purpose: To investigate the contrast dynamics in hyaline and fibrous cartilage of the glenohumeral joint after intraarticular injection of gadopentetate dimeglumine. Material and Methods: Transverse T1 maps were acquired on a 1.5T scanner before and after intraarticular injection of 2.0 mmol/l gadopentetate dimeglumine in five cadaveric shoulders using a dual flip angle three-dimensional gradient echo (3D-GRE) sequence. The acquisition time for the T1 maps was 5 min 5 s for the whole shoulder. Measurements were repeated every 15 min over 2.5 hours. Regions of interest (ROIs) covering the glenoid cartilage and the labrum were drawn to assess the temporal evolution of the relaxation parameters. Results: T1 of unenhanced hyaline cartilage of the glenoid was 568+-34 ms. T1 of unenhanced fibrous cartilage of the labrum was 552+-38 ms. Significant differences (P=0.002 and 0.03) in the relaxation parameters were already measurable after 15 min. After 2 to 2.5 hours, hyaline and fibrous cartilage still demonstrated decreasing relaxation parameters, with a larger range of the T1(Gd) values in fibrous cartilage. T1 and ?R1 values of hyaline and fibrous cartilage after 2.5 hours were 351+-16 ms and 1.1+-0.09/s, and 332+-31 ms and 1.2+-0.1/s, respectively. Conclusion: A significant decrease in T1(Gd) was found 15 min after intraarticular contrast injection. Contrast accumulation was faster in hyaline than in fibrous cartilage. After 2.5 hours, contrast accumulation showed a higher rate of decrease in hyaline cartilage, but neither hyaline nor fibrous cartilage had reached equilibrium

  6. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) of cadaveric shoulders: comparison of contrast dynamics in hyaline and fibrous cartilage after intraarticular gadolinium injection.

    Science.gov (United States)

    Wiener, E; Hodler, J; Pfirrmann, C W A

    2009-01-01

    Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) is a novel method to investigate cartilaginous and fibrocartilaginous structures. To investigate the contrast dynamics in hyaline and fibrous cartilage of the glenohumeral joint after intraarticular injection of gadopentetate dimeglumine. Transverse T(1) maps were acquired on a 1.5T scanner before and after intraarticular injection of 2.0 mmol/l gadopentetate dimeglumine in five cadaveric shoulders using a dual flip angle three-dimensional gradient echo (3D-GRE) sequence. The acquisition time for the T(1) maps was 5 min 5 s for the whole shoulder. Measurements were repeated every 15 min over 2.5 hours. Regions of interest (ROIs) covering the glenoid cartilage and the labrum were drawn to assess the temporal evolution of the relaxation parameters. T(1) of unenhanced hyaline cartilage of the glenoid was 568+/-34 ms. T(1) of unenhanced fibrous cartilage of the labrum was 552+/-38 ms. Significant differences (P=0.002 and 0.03) in the relaxation parameters were already measurable after 15 min. After 2 to 2.5 hours, hyaline and fibrous cartilage still demonstrated decreasing relaxation parameters, with a larger range of the T(1)(Gd) values in fibrous cartilage. T(1) and triangle Delta R(1) values of hyaline and fibrous cartilage after 2.5 hours were 351+/-16 ms and 1.1+/-0.09 s(-1), and 332+/-31 ms and 1.2+/-0.1 s(-1), respectively. A significant decrease in T(1)(Gd) was found 15 min after intraarticular contrast injection. Contrast accumulation was faster in hyaline than in fibrous cartilage. After 2.5 hours, contrast accumulation showed a higher rate of decrease in hyaline cartilage, but neither hyaline nor fibrous cartilage had reached equilibrium.

  7. Magneto-therapy of human joint cartilage.

    Science.gov (United States)

    Wierzcholski, Krzysztof; Miszczak, Andrzej

    2017-01-01

    The topic of the present paper concerns the human joint cartilage therapy performed by the magnetic induction field. There is proved the thesis that the applied magnetic field for concrete cartilage illness should depend on the proper relative and concrete values of applied magnetic induction, intensity as well the time of treatment duration. Additionally, very important are frequencies and amplitudes of magnetic field as well as magnetic permeability of the synovial fluid. The research methods used in this paper include: magnetic induction field produced by a new Polish and German magneto electronic devices for the therapy of human joint cartilage diseases, stationary and movable magnetic applicators, magnetic bandage, ferrofluid injections, author's experience gained in Germany research institutes and practical results after measurements and information from patients. The results of this paper concern concrete parameters of time dependent electro-magnetic field administration during the joint cartilage therapy duration and additionally concern the corollaries which are implied from reading values gained on the magnetic induction devices. The main conclusions obtained in this paper are as follows: Time dependent magnetic induction field increases the dynamic viscosity of movable synovial fluid and decreases symptoms of cartilage illness for concrete intensity of magnetic field and concrete field line architecture. The ferrofluid therapy and phospholipids bilayer simultaneously with the administrated external electromagnetic field, increases the dynamic viscosity of movable synovial fluid.

  8. Phase contrast X-ray imaging at the bone-cartilage interface

    International Nuclear Information System (INIS)

    Che Ismail, E.; Gundogdu, O.; Bradley, D.A.

    2008-01-01

    Full text: Phase contrast X-ray imaging is a simple technique to investigate various biological samples. At Surrey, the bone-cartilage interface is one of the biological samples which actively been studied. Bone-cartilage interface study gives a particular interest in this research as the degeneration of cartilage is the hallmark of the degenerative joint disease such as osteoarthritis. We have been applying the phase contrast imaging technique in studying the bone-cartilage interface, obtaining information on anatomical features such as the cartilage, blood vessel, tide mark and cement line. Our samples range from dry bone-cartilage to wet bone-cartilage tissue. This work will briefly review the basic supporting physics of the study. It also shows some of the images and other results that we have obtained to-date. Fig. 1 shows examples obtained using the X-ray tube system at the University of Surrey

  9. Model-based cartilage thickness measurement in the submillimeter range

    International Nuclear Information System (INIS)

    Streekstra, G. J.; Strackee, S. D.; Maas, M.; Wee, R. ter; Venema, H. W.

    2007-01-01

    Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness was varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical

  10. Mechanical properties of hyaline and repair cartilage studied by nanoindentation.

    Science.gov (United States)

    Franke, O; Durst, K; Maier, V; Göken, M; Birkholz, T; Schneider, H; Hennig, F; Gelse, K

    2007-11-01

    Articular cartilage is a highly organized tissue that is well adapted to the functional demands in joints but difficult to replicate via tissue engineering or regeneration. Its viscoelastic properties allow cartilage to adapt to both slow and rapid mechanical loading. Several cartilage repair strategies that aim to restore tissue and protect it from further degeneration have been introduced. The key to their success is the quality of the newly formed tissue. In this study, periosteal cells loaded on a scaffold were used to repair large partial-thickness cartilage defects in the knee joint of miniature pigs. The repair cartilage was analyzed 26 weeks after surgery and compared both morphologically and mechanically with healthy hyaline cartilage. Contact stiffness, reduced modulus and hardness as key mechanical properties were examined in vitro by nanoindentation in phosphate-buffered saline at room temperature. In addition, the influence of tissue fixation with paraformaldehyde on the biomechanical properties was investigated. Although the repair process resulted in the formation of a stable fibrocartilaginous tissue, its contact stiffness was lower than that of hyaline cartilage by a factor of 10. Fixation with paraformaldehyde significantly increased the stiffness of cartilaginous tissue by one order of magnitude, and therefore, should not be used when studying biomechanical properties of cartilage. Our study suggests a sensitive method for measuring the contact stiffness of articular cartilage and demonstrates the importance of mechanical analysis for proper evaluation of the success of cartilage repair strategies.

  11. Autofluorescence lifetime metrology for label-free detection of cartilage matrix degradation

    Science.gov (United States)

    Nickdel, Mohammad B.; Lagarto, João. L.; Kelly, Douglas J.; Manning, Hugh B.; Yamamoto, Kazuhiro; Talbot, Clifford B.; Dunsby, Christopher; French, Paul; Itoh, Yoshifumi

    2014-03-01

    Degradation of articular cartilage extracellular matrix (ECM) by proteolytic enzyme is the hallmark of arthritis that leads to joint destruction. Detection of early biochemical changes in cartilage before irreversible structural damages become apparent is highly desirable. Here we report that the autofluorescence decay profile of cartilage is significantly affected by proteolytic degradation of cartilage ECM and can be characterised by measurements of the autofluorescence lifetime (AFL). A multidimensional fluorometer utilizing ultraviolet excitation at 355 nm or 375 nm coupled to a fibreoptic probe was developed for single point time-resolved AFL measurements of porcine articular cartilage explants treated with different proteinases. Degradation of cartilage matrix components by treating with bacterial collagenase, matrix metalloproteinase 1, or trypsin resulted in significant reduction of AFL of the cartilage in both a dose and time dependent manner. Differences in cartilage AFL were also confirmed by fluorescence lifetime imaging microscopy (FLIM). Our data suggest that AFL of cartilage tissue is a potential non-invasive readout to monitor cartilage matrix integrity that may be utilized for diagnosis of arthritis as well as monitoring the efficacy of anti-arthritic therapeutic agents.

  12. Using Cartilage MRI T2-Mapping to Analyze Early Cartilage Degeneration in the Knee Joint of Young Professional Soccer Players.

    Science.gov (United States)

    Waldenmeier, Leonie; Evers, Christoph; Uder, Michael; Janka, Rolf; Hennig, Frank Friedrich; Pachowsky, Milena Liese; Welsch, Götz Hannes

    2018-02-01

    Objective To evaluate and characterize the appearance of articular cartilage in the tibiofemoral joint of young professional soccer players using T2-relaxation time evaluation on magnetic resonance imaging (MRI). Design In this study, we included 57 male adolescents from the youth academy of a professional soccer team. The MRI scans were acquired of the knee joint of the supporting leg. An "early unloading" (minute 0) and "late unloading" (minute 28) T2-sequence was included in the set of images. Quantitative T2-analysis was performed in the femorotibial joint cartilage in 4 slices with each 10 regions of interest (ROIs). Statistical evaluation, using Wilcoxon signed-rank tests, was primarily performed to compare the T2 values of the "early unloading" and "late unloading." Results When comparing "early unloading" with "late unloading," our findings showed a significant increase of T2-relaxation times in the weightbearing femoral cartilage of the medial ( P cartilage of the medial compartment ( P cartilage were found with a maximum in the medial condyle where the biomechanical load of the knee joint is highest, as well as where most of the chronic cartilage lesions occur. To avoid chronic damage, special focus should be laid on this region.

  13. Proteomic analysis of changes in the protein composition of MCF-7 human breast cancer cells induced by all-trans retinoic acid, 9-cis retinoic acid, and their combination

    Czech Academy of Sciences Publication Activity Database

    Flodrová, Dana; Benkovská, Dagmar; Macejová, D.; Bialesova, L.; Hunakova, L.; Brtko, J.; Bobálová, Janette

    2015-01-01

    Roč. 232, č. 1 (2015), s. 226-232 ISSN 0378-4274 R&D Projects: GA MŠk(CZ) 7AMB12SK151 Institutional support: RVO:68081715 Keywords : retinoic acid * polyacrylamide gel electrophoresis * MALDI TOF MS Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.522, year: 2015

  14. Early Articular Cartilage MRI T2 Changes After Anterior Cruciate Ligament Reconstruction Correlate With Later Changes in T2 and Cartilage Thickness

    Science.gov (United States)

    Williams, Ashley; Winalski, Carl S.; Chu, Constance R.

    2018-01-01

    Anterior cruciate ligament (ACL) injury is a known risk factor for future development of osteoarthritis (OA). This human clinical study seeks to determine if early changes to cartilage MRI T2 maps between baseline and 6 months following ACL reconstruction (ACLR) are associated with changes to cartilage T2 and cartilage thickness between baseline and 2 years after ACLR. Changes to T2 texture metrics and T2 mean values in medial knee cartilage of 17 human subjects 6 months after ACLR were compared to 2-year changes in T2 and in cartilage thickness of the same areas. T2 texture and mean assessments were also compared to that of 11 uninjured controls. In ACLR subjects, six-month changes in mean T2 correlated to 2-year changes in mean T2 (R = 0.80, p = 0.0001), and 6-month changes to T2 texture metrics, but not T2 mean, correlated with 2-year changes in medial femoral cartilage thickness in 9 of the 20 texture features assessed (R = 0.48–0.72, p ≤ 0.05). Both mean T2 and texture differed (p evaluation of T2 map and textural changes may provide early warning of cartilage at risk for progressive degeneration after ACL injury and reconstruction. PMID:27381512

  15. Differential retinoic acid inhibition of ornithine decarboxylase induction by 12-O-tetradecanoylphorbol-13-acetate and by germicidal ultraviolet light

    International Nuclear Information System (INIS)

    Lichti, U.; Patterson, E.; Hennings, H.; Yuspa, S.H.

    1981-01-01

    Several retinoids including retinoic acid effectively inhibit phorbol ester-mediated tumor promotion and ornithine decarboxylase (ODC) induction in mouse epidermis. To understand better the possible cellular site of action of retinoids, the inhibitory action of retinoic acid on the induction of ODC was compared for two distinctly different inducers, namely, 12-O-tetradecanoylphorbol-13-acetate (TPA) and germicidal ultraviolet light (uv), in primary mouse epidermal cell cultures. It was found that the induction of ODC by TPA is almost completely prevented by retinoic acid while the induction by uv is only moderately inhibited. The differential inhibition of enzyme induction cannot be accounted for by selective retinoid inhibition of DNA, RNA, or protein synthesis either alone or in concert with TPA or uv. These agents possibly act at transcription or translation, both of which are required for ODC induction by TPA or uv

  16. Cartilage regeneration for treatment of osteoarthritis: a paradigm for nonsurgical intervention

    OpenAIRE

    Tiku, Moti L.; Sabaawy, Hatem E.

    2015-01-01

    Osteoarthritis (OA) is associated with articular cartilage abnormalities and affects people of older age: preventative or therapeutic treatment measures for OA and related articular cartilage disorders remain challenging. In this perspective review, we have integrated multiple biological, morphological, developmental, stem cell and homeostasis concepts of articular cartilage to develop a paradigm for cartilage regeneration. OA is conceptually defined as an injury of cartilage that initiates c...

  17. Nanoparticles for diagnostics and laser medical treatment of cartilage in orthopaedics

    Science.gov (United States)

    Baum, O. I.; Soshnikova, Yu. M.; Omelchenko, A. I.; Sobol, Emil

    2013-02-01

    Laser reconstruction of intervertebral disc (LRD) is a new technique which uses local, non-destructive laser irradiation for the controlled activation of regenerative processes in a targeted zone of damaged disc cartilage. Despite pronounced advancements of LRD, existing treatments may be substantially improved if laser radiation is absorbed near diseased and/or damaged regions in cartilage so that required thermomechanical stress and strain at chondrocytes may be generated and non-specific injury reduced or eliminated. The aims of the work are to study possibility to use nanoparticles (NPs) to provide spatial specificity for laser regeneration of cartilage. Two types of porcine joint cartilage have been impregnated with magnetite NPs: 1) fresh cartilage; 2) mechanically damaged cartilage. NPs distribution was studied using transition electron microscopy, dynamic light scattering and analytical ultracentrifugation techniques. Laser radiation and magnetic field have been applied to accelerate NPs impregnation. It was shown that NPs penetrate by diffusion into the mechanically damaged cartilage, but do not infiltrate healthy cartilage. Temperature dynamics in cartilage impregnated with NPs have been theoretically calculated and measurements using an IR thermo vision system have been performed. Laser-induced alterations of cartilage structure and cellular surviving have been studied for cartilage impregnated with NPs using histological and histochemical techniques. Results of our study suggest that magnetite NPs might be used to provide spatial specificity of laser regeneration. When damaged, the regions of cartilage impreganted with NPs have higher absorption of laser radiation than that for healthy areas. Regions containing NPs form target sites that can be used to generate laser-induced thermo mechanical stress leading to regeneration of cartilage of hyaline type.

  18. Retinoic acid: an educational "vitamin elixir" for gut-seeking T cells.

    Science.gov (United States)

    Mora, J Rodrigo; von Andrian, Ulrich H

    2004-10-01

    T cell priming by dendritic cells (DC) from gut-associated lymphoid tissues gives rise to effector cells with pronounced gut tropism. The mechanism for DC-dependent imprinting of gut specificity has remained unknown. New findings point to retinoic acid, which is uniquely produced by intestinal DC, but not by DC from other lymphoid organs.

  19. Holmium:YAG laser effects on articular cartilage metabolism: in vitro

    Science.gov (United States)

    Smith, R. Lane; Montgomery, L.; Fanton, G.; Dillingham, M.; Schurman, D. J.

    1994-09-01

    We report effects of applying variable doses of Holmium:YAG laser energy to bovine articular cartilage in vitro. The response of the cartilage to the Holmium:YAG laser energy was determined by quantification of cell proliferation and extracellular matrix glycosaminoglycan synthesis. This study demonstrates that articular cartilage cell metabolism was maintained at a normal level following treatment of cartilage at a dose of 0.6 joules/pulse. The laser energy was applied at 10 Hz for 10 seconds at 1 mm distance from the cartilage. Under these conditions and at a dose of 0.6 joules/pulse, the total energy density was calculated to be 240 joules/cm2, assuming minimal loss of energy due to water absorption. Energy levels grater than 0.8 joules/pulse corresponding to calculated energy densities greater than 320 joules/cm2 proved harmful to cartilage. Our data demonstrate that low levels of Holmium:YAG laser energy can be applied to articular cartilage under conditions that maintain and/or stimulate cell metabolism.

  20. Computerized tomography diagnosis of cartilage destruction in carcinoma of the larynx

    International Nuclear Information System (INIS)

    Kawashima, Osamu; Tomizawa, Yoshio; Yasuoka, Yoshihito; Kamei, Tamio

    1991-01-01

    In 20 cases of laryngeal carcinoma, the pre-operative computerized tomography (CT) films were correlated with the macroscopic appearance of specimens obtained at the time of surgery. A correct diagnosis of cartilage destruction was made by pre-operative CT in 75% of cases in which the thyroid cartilage was involved and in about 79% of those with either arytenoid or cricoid cartilage involvement. A comparison between the pathological findings and the pre-operative CT findings in 9 cases of laryngeal carcinoma with destruction of the thyroid cartilage revealed several pathological changes which may lead to an incorrect CT diagnosis. These changes include microscopic infiltration; destruction of cartilage at the anterior commisure; tumor advance to sites of ossification, especially infiltration into ossifying cartilage located between two areas of non-ossifying cartilage; and infiltration of the tumor within the cartilage with preservation of the perichondrium. (author)

  1. MR imaging of cartilage and its repair in the knee - a review

    International Nuclear Information System (INIS)

    Trattnig, S.; Welsch, G.W.; Domayer, S.; Mosher, T.; Eckstein, F.

    2009-01-01

    Chondral injuries are common lesions of the knee joint, and many patients could benefit from cartilage repair. Widespread cartilage repair techniques require sophisticated noninvasive follow-up using MRI. In addition to the precise morphological assessment of this area of cartilage repair, the cartilage's biochemical constitution can be determined using biochemical MRI techniques. The combination of the clinical outcome after cartilage repair together with the morphological and biochemical description of the cartilage repair tissue as well as the surrounding cartilage can lead to an optimal follow-up evaluation. The present article on MR imaging techniques of cartilage repair focuses on morphological description and scoring using techniques from conventional 2D through advanced isotropic 3D MRI sequences. Furthermore the ultrastructure of the repair tissue and the surrounding cartilage is evaluated in-vivo by biochemical T1-delayed gadolinium enhanced MRI of cartilage (dGEMRIC), T2 relaxation, and diffusion-weighted imaging techniques. (orig.)

  2. Topographical variation of the elastic properties of articular cartilage in the canine knee.

    Science.gov (United States)

    Jurvelin, J S; Arokoski, J P; Hunziker, E B; Helminen, H J

    2000-06-01

    Equilibrium response of articular cartilage to indentation loading is controlled by the thickness (h) and elastic properties (shear modulus, mu, and Poisson's ratio, nu) of the tissue. In this study, we characterized topographical variation of Poisson's ratio of the articular cartilage in the canine knee joint (N=6). Poisson's ratio was measured using a microscopic technique. In this technique, the shape change of the cartilage disk was visualized while the cartilage was immersed in physiological solution and compressed in unconfined geometry. After a constant 5% axial strain, the lateral strain was measured during stress relaxation. At equilibrium, the lateral-to-axial strain ratio indicates the Poisson's ratio of the tissue. Indentation (equilibrium) data from our prior study (Arokoski et al., 1994. International Journal of Sports Medicine 15, 254-260) was re-analyzed using the Poisson's ratio results at the test site to derive values for shear and aggregate moduli. The lowest Poisson's ratio (0.070+/-0.016) located at the patellar surface of femur (FPI) and the highest (0.236+/-0.026) at the medial tibial plateau (TMI). The stiffest cartilage was found at the patellar groove of femur (micro=0.964+/-0.189MPa, H(a)=2.084+/-0. 409MPa) and the softest at the tibial plateaus (micro=0.385+/-0. 062MPa, H(a)=1.113+/-0.141MPa). Comparison of the mechanical results and the biochemical composition of the tissue (Jurvelin et al., 1988. Engineering in Medicine 17, 157-162) at the matched sites of the canine knee joint indicated a negative correlation between the Poisson's ratio and collagen-to-PG content ratio. This is in harmony with our previous findings which suggested that, in unconfined compression, the degree of lateral expansion in different tissue zones is related to collagen-to-PG ratio of the zone.

  3. Comparison of international guidelines for regenerative medicine: Knee cartilage repair and replacement using human-derived cells and tissues.

    Science.gov (United States)

    Itoh, Kuni; Kano, Shingo

    2016-07-01

    Regenerative medicine (RM) is an emerging field using human-derived cells and tissues (HCT). Due to the complexity and diversity of HCT products, each country has its own regulations for authorization and no common method has been applied to date. Individual regulations were previously clarified at the level of statutes but no direct comparison has been reported at the level of guidelines. Here, we generated a new analytical framework that allows comparison of guidelines independent from local definitions of RM, using 2 indicators, product type and information type. The guidelines for products for repair and replacement of knee cartilage in Japan, the United States of America, and Europe were compared and differences were detected in both product type and information type by the proposed analytical framework. Those findings will be critical not only for the product developers to determine the region to initiate the clinical trials but also for the regulators to assess and build their regulations. This analytical framework is potentially expandable to other RM guidelines to identify gaps, leading to trigger discussion of global harmonization in RM regulations. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  4. Indian hedgehog contributes to human cartilage endplate degeneration.

    Science.gov (United States)

    Wang, Shaowei; Yang, Kun; Chen, Shuai; Wang, Jiying; Du, Guoqing; Fan, Shunwu; Wei, Lei

    2015-08-01

    To determine the role of Indian hedgehog (Ihh) signaling in human cartilage endplate (CEP) degeneration. CEP-degenerated tissues from patients with Modic I or II changes (n = 9 and 45, respectively) and normal tissues from vertebral burst fracture patients (n = 17) were collected. Specimens were either cut into slices for organ culture ex vivo or digested to isolate chondrocytes for cell culture in vitro. Ihh expression and the effect of Ihh on cartilage degeneration were determined by investigating degeneration markers in this study. Ihh expression and cartilage degeneration markers significantly increased in the Modic I and II groups. The expression of cartilage degeneration markers was positively correlated with degeneration severity. Gain-of-function for Ihh promoted expression of cartilage degeneration markers in vitro, while loss-of-function for Ihh inhibited their expression both in vitro and ex vivo. These findings demonstrated that Ihh promotes CEP degeneration. Blocking Ihh pathway has potential clinical usage for attenuating CEP degeneration.

  5. Fine-tuning Cartilage Tissue Engineering by Applying Principles from Embryonic Development

    NARCIS (Netherlands)

    C.A. Hellingman (Catharine)

    2012-01-01

    textabstractCartilage has a very poor capacity for regeneration in vivo. In head and neck surgery cartilage defects are usually reconstructed with autologous cartilage from for instance the external ear or the ribs. Cartilage tissue engineering may be a promising alternative to supply tissue for

  6. High fat diet accelerates cartilage repair in DBA/1 mice.

    Science.gov (United States)

    Wei, Wu; Bastiaansen-Jenniskens, Yvonne M; Suijkerbuijk, Mathijs; Kops, Nicole; Bos, Pieter K; Verhaar, Jan A N; Zuurmond, Anne-Marie; Dell'Accio, Francesco; van Osch, Gerjo J V M

    2017-06-01

    Obesity is a well-known risk factor for osteoarthritis, but it is unknown what it does on cartilage repair. Here we investigated whether a high fat diet (HFD) influences cartilage repair in a mouse model of cartilage repair. We fed DBA/1 mice control or HFD (60% energy from fat). After 2 weeks, a full thickness cartilage defect was made in the trochlear groove. Mice were sacrificed, 1, 8, and 24 weeks after operation. Cartilage repair was evaluated on histology. Serum glucose, insulin and amyloid A were measured 24 h before operation and at endpoints. Immunohistochemical staining was performed on synovium and adipose tissue to evaluate macrophage infiltration and phenotype. One week after operation, mice on HFD had defect filling with fibroblast-like cells and more cartilage repair as indicated by a lower Pineda score. After 8 weeks, mice on a HFD still had a lower Pineda score. After 24 weeks, no mice had complete cartilage repair and we did not detect a significant difference in cartilage repair between diets. Bodyweight was increased by HFD, whereas serum glucose, amyloid A and insulin were not influenced. Macrophage infiltration and phenotype in adipose tissue and synovium were not influenced by HFD. In contrast to common wisdom, HFD accelerated intrinsic cartilage repair in DBA/1 mice on the short term. Resistance to HFD induced inflammatory and metabolic changes could be associated with accelerated cartilage repair. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1258-1264, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. The Role of Cartilage Stress in Patellofemoral Pain

    Science.gov (United States)

    Besier, Thor F.; Pal, Saikat; Draper, Christine E.; Fredericson, Michael; Gold, Garry E.; Delp, Scott L.; Beaupré, Gary S.

    2015-01-01

    Purpose Elevated cartilage stress has been identified as a potential mechanism for retropatellar pain; however, there are limited data in the literature to support this mechanism. Females are more likely to develop patellofemoral pain than males, yet the causes of this dimorphism are unclear. We used experimental data and computational modeling to determine whether patients with patellofemoral pain had elevated cartilage stress compared to pain-free controls and test the hypothesis that females exhibit greater cartilage stress than males. Methods We created finite element models of 24 patients with patellofemoral pain (11 males; 13 females) and 16 pain-free controls (8 males; 8 females) to estimate peak patellar cartilage stress (strain energy density) during a stair climb activity. Simulations took into account cartilage morphology from MRI, joint posture from weight-bearing MRI, and muscle forces from an EMG-driven model. Results We found no difference in peak patellar strain energy density between patellofemoral pain (1.9 ± 1.23 J/m3) and control subjects (1.66 ± 0.75 J/m3, p=0.52). Females exhibited greater cartilage stress compared to males (2.2 vs 1.3 J/m3, respectively, p=0.0075), with large quadriceps muscle forces (3.7BW females vs 3.3BW males) and 23% smaller joint contact area (females: 467 ± 59 mm2 vs males: 608 ± 95mm2). Conclusion Patellofemoral pain patients did not display significantly greater patellar cartilage stress compared to pain-free controls; however, there was a great deal of subject variation. Females exhibited greater peak cartilage stress compared to males, which might explain the greater prevalence of patellofemoral pain in females compared to males but other mechanical and biological factors are clearly involved in this complex pathway to pain. PMID:25899103

  8. Bone Marrow Aspirate Concentrate for Cartilage Defects of the Knee: From Bench to Bedside Evidence.

    Science.gov (United States)

    Cotter, Eric J; Wang, Kevin C; Yanke, Adam B; Chubinskaya, Susan

    2018-04-01

    Objective To critically evaluate the current basic science, translational, and clinical data regarding bone marrow aspirate concentrate (BMAC) in the setting of focal cartilage defects of the knee and describe clinical indications and future research questions surrounding the clinical utility of BMAC for treatment of these lesions. Design A literature search was performed using the PubMed and Ovid MEDLINE databases for studies in English (1980-2017) using keywords, including ["bone marrow aspirate" and "cartilage"], ["mesenchymal stem cells" and "cartilage"], and ["bone marrow aspirate" and "mesenchymal stem cells" and "orthopedics"]. A total of 1832 articles were reviewed by 2 independent authors and additional literature found through scanning references of cited articles. Results BMAC has demonstrated promising results in the clinical application for repair of chondral defects as an adjuvant procedure or as an independent management technique. A subcomponent of BMAC, bone marrow derived-mesenchymal stem cells (MSCs) possess the ability to differentiate into cells important for osteogenesis and chondrogenesis. Modulation of paracrine signaling is perhaps the most important function of BM-MSCs in this setting. In an effort to increase the cellular yield, authors have shown the ability to expand BM-MSCs in culture while maintaining phenotype. Conclusions Translational studies have demonstrated good clinical efficacy of BMAC both concomitant with cartilage restoration procedures, at defined time points after surgery, and as isolated injections. Early clinical data suggests BMAC may help stimulate a more robust hyaline cartilage repair tissue response. Numerous questions remain regarding BMAC usage, including cell source, cell expansion, optimal pathology, and injection timing and quantity.

  9. Processed bovine cartilage: an improved biosynthetic implant for contour defects

    International Nuclear Information System (INIS)

    Ersek, R.A.; Hart, W.G. Jr.; Greer, D.; Beisang, A.A.; Flynn, P.J.; Denton, D.R.

    1984-01-01

    Irradiated human cartilage has been found to be a superior implant material for correction of contour defects; however, availability problems have prevented this material from gaining wide acceptance. Implantation of processed irradiated bovine cartilage in primates and rabbits, as described here, provides strong evidence that this material performs like irradiated allograft cartilage antigenically and has certain cosmetic advantages over allograft cartilage. Our studies in primates have shown that there is no systemically measurable antibody-antigen reaction, either cellular or noncellular, to irradiated processed bovine cartilage. Neither primary nor second-set provocative implantations produced any measurable rejection. In rabbits, composite grafts of two pieces of irradiated bovine cartilage adjacent to each other were also well tolerated, with no measurable absorption and with capsule formation typical of a foreign body reaction to an inert object

  10. Cutaneous Squamous Cell Carcinoma with Invasion through Ear Cartilage

    Directory of Open Access Journals (Sweden)

    Julie Boisen

    2016-01-01

    Full Text Available Cutaneous squamous cell carcinoma of the ear represents a high-risk tumor location with an increased risk of metastasis and local tissue invasion. However, it is uncommon for these cancers to invade through nearby cartilage. Cartilage invasion is facilitated by matrix metalloproteases, specifically collagenase 3. We present the unusual case of a 76-year-old man with an auricular squamous cell carcinoma that exhibited full-thickness perforation of the scapha cartilage. Permanent sections through the eroded cartilage confirmed tumor invasion extending to the posterior ear skin.

  11. Correlation between Focal Nodular Low Signal Changes in Hoffa’s Fat Pad Adjacent to Anterior Femoral Cartilage and Focal Cartilage Defect Underlying This Region and Its Possible Implication

    Directory of Open Access Journals (Sweden)

    Chermaine Deepa Antony

    2016-01-01

    Full Text Available Purpose. This study investigates the association between focal nodular mass with low signal in Hoffa’s fat pad adjacent to anterior femoral cartilage of the knee (FNMHF and focal cartilage abnormality in this region. Method. The magnetic resonance fast imaging employing steady-state acquisition sequence (MR FIESTA sagittal and axial images of the B1 and C1 region (described later of 148 patients were independently evaluated by two reviewers and categorized into four categories: normal, FNMHF with underlying focal cartilage abnormality, FNMHF with normal cartilage, and cartilage abnormality with no FNMHF. Results. There was a significant association (p=0.00 between FNMHF and immediate adjacent focal cartilage abnormality with high interobserver agreement. The absence of focal nodular lesions next to the anterior femoral cartilage has a very high negative predictive value for chondral injury (97.8%. Synovial biopsy of focal nodular lesion done during arthroscopy revealed some fibrocollagenous tissue and no inflammatory cells. Conclusion. We postulate that the FNMHF adjacent to the cartilage defects is a form of normal healing response to the cartilage damage. One patient with FHMHF and underlying cartilage abnormality was rescanned six months later. In this patient, the FNMHF disappeared and normal cartilage was observed in the adjacent region which may support this theory.

  12. Quasi-static elastography comparison of hyaline cartilage structures

    Science.gov (United States)

    McCredie, A. J.; Stride, E.; Saffari, N.

    2009-11-01

    Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.

  13. Comparison of Different Approaches for Measuring Tibial Cartilage Thickness

    Directory of Open Access Journals (Sweden)

    Maier Jennifer

    2017-07-01

    Full Text Available Osteoarthritis is a degenerative disease affecting bones and cartilage especially in the human knee. In this context, cartilage thickness is an indicator for knee cartilage health. Thickness measurements are performed on medical images acquired in-vivo. Currently, there is no standard method agreed upon that defines a distance measure in articular cartilage. In this work, we present a comparison of different methods commonly used in literature. These methods are based on nearest neighbors, surface normal vectors, local thickness and potential field lines. All approaches were applied to manual segmentations of tibia and lateral and medial tibial cartilage performed by experienced raters. The underlying data were contrast agent-enhanced cone-beam C-arm CT reconstructions of one healthy subject’s knee. The subject was scanned three times, once in supine position and two times in a standing weight-bearing position. A comparison of the resulting thickness maps shows similar distributions and high correlation coefficients between the approaches above 0.90. The nearest neighbor method results on average in the lowest cartilage thickness values, while the local thickness approach assigns the highest values. We showed that the different methods agree in their thickness distribution. The results will be used for a future evaluation of cartilage change under weight-bearing conditions.

  14. Cartilage immunoprivilege depends on donor source and lesion location.

    Science.gov (United States)

    Arzi, B; DuRaine, G D; Lee, C A; Huey, D J; Borjesson, D L; Murphy, B G; Hu, J C Y; Baumgarth, N; Athanasiou, K A

    2015-09-01

    The ability to repair damaged cartilage is a major goal of musculoskeletal tissue engineering. Allogeneic (same species, different individual) or xenogeneic (different species) sources can provide an attractive source of chondrocytes for cartilage tissue engineering, since autologous (same individual) cells are scarce. Immune rejection of non-autologous hyaline articular cartilage has seldom been considered due to the popular notion of "cartilage immunoprivilege". The objective of this study was to determine the suitability of allogeneic and xenogeneic engineered neocartilage tissue for cartilage repair. To address this, scaffold-free tissue engineered articular cartilage of syngeneic (same genetic background), allogeneic, and xenogeneic origin were implanted into two different locations of the rabbit knee (n=3 per group/location). Xenogeneic engineered cartilage and control xenogeneic chondral explants provoked profound innate inflammatory and adaptive cellular responses, regardless of transplant location. Cytological quantification of immune cells showed that, while allogeneic neocartilage elicited an immune response in the patella, negligible responses were observed when implanted into the trochlea; instead the responses were comparable to microfracture-treated empty defect controls. Allogeneic neocartilage survived within the trochlea implant site and demonstrated graft integration into the underlying bone. In conclusion, the knee joint cartilage does not represent an immune privileged site, strongly rejecting xenogeneic but not allogeneic chondrocytes in a location-dependent fashion. This difference in location-dependent survival of allogeneic tissue may be associated with proximity to the synovium. Through a series of in vivo studies this research demonstrates that articular cartilage is not fully immunoprivileged. In addition, we now show that anatomical location of the defect, even within the same joint compartment, strongly influences the degree of the

  15. Co-Expression and Co-Localization of Cartilage Glycoproteins CHI3L1 and Lubricin in Osteoarthritic Cartilage: Morphological, Immunohistochemical and Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Marta Anna Szychlinska

    2016-03-01

    Full Text Available Osteoarthritis is the most common human arthritis characterized by degeneration of articular cartilage. Several studies reported that levels of human cartilage glycoprotein chitinase 3-like-1 (CHI3L1 are known as a potential marker for the activation of chondrocytes and the progression of Osteoarthritis (OA, whereas lubricin appears to be chondroprotective. The aim of this study was to investigate the co-expression and co-localization of CHI3L1 and lubricin in normal and osteoarthritic rat articular cartilage to correlate their modified expression to a specific grade of OA. Samples of normal and osteoarthritic rat articular cartilage were analyzed by the Kellgren–Lawrence OA severity scores, the Kraus’ modified Mankin score and the Histopathology Osteoarthritis Research Society International (OARSI system for histomorphometric evaluations, and through CHI3L1 and lubricin gene expression, immunohistochemistry and double immuno-staining analysis. The immunoexpression and the mRNA levels of lubricin increased in normal cartilage and decreased in OA cartilage (normal vs. OA, p < 0.01. By contrast, the immunoexpression and the mRNA levels of CHI3L1 increased in OA cartilage and decreased in normal cartilage (normal vs. OA, p < 0.01. Our findings are consistent with reports suggesting that these two glycoproteins are functionally associated with the development of OA and in particular with grade 2/3 of OA, suggesting that in the future they could be helpful to stage the severity and progression of the disease.

  16. Measurements of surface layer of the articular cartilage using microscopic techniques

    International Nuclear Information System (INIS)

    Ryniewicz, A. M; Ryniewicz, W.; Ryniewicz, A.; Gaska, A.

    2010-01-01

    The articular cartilage is the structure that directly cooperates tribologically in biobearing. It belongs to the connective tissues and in the joints it assumes two basic forms: hyaline cartilage that builds joint surfaces and fibrocartilage which may create joint surfaces. From this fibrocartilage are built semilunar cartilage and joint disc are built as well. The research of articular cartilage have been done in macro, micro and nano scale. In all these measurement areas characteristic features occur which can identify biobearing tribology. The aim of the research was the identification of surface layer of articular cartilage by means of scanning electron microscopy (SEM) and atom force microscopy (AFM) and the analysis of topography of these layers. The material used in the research of surface layer was the animal articular cartilage: hyaline cartilage and fibrocartilage.

  17. Measurements of surface layer of the articular cartilage using microscopic techniques

    Science.gov (United States)

    Ryniewicz, A. M.; Ryniewicz, A.; Ryniewicz, W.; Gaska, A.

    2010-07-01

    The articular cartilage is the structure that directly cooperates tribologically in biobearing. It belongs to the connective tissues and in the joints it assumes two basic forms: hyaline cartilage that builds joint surfaces and fibrocartilage which may create joint surfaces. From this fibrocartilage are built semilunar cartilage and joint disc are built as well. The research of articular cartilage have been done in macro, micro and nano scale. In all these measurement areas characteristic features occur which can identify biobearing tribology. The aim of the research was the identification of surface layer of articular cartilage by means of scanning electron microscopy (SEM) and atom force microscopy (AFM) and the analysis of topography of these layers. The material used in the research of surface layer was the animal articular cartilage: hyaline cartilage and fibrocartilage.

  18. Allosteric Regulation in the Ligand Binding Domain of Retinoic Acid Receptorγ.

    Directory of Open Access Journals (Sweden)

    Yassmine Chebaro

    Full Text Available Retinoic acid (RA plays key roles in cell differentiation and growth arrest through nuclear retinoic acid receptors (RARs, which are ligand-dependent transcription factors. While the main trigger of RAR activation is the binding of RA, phosphorylation of the receptors has also emerged as an important regulatory signal. Phosphorylation of the RARγ N-terminal domain (NTD is known to play a functional role in neuronal differentiation. In this work, we investigated the phosphorylation of RARγ ligand binding domain (LBD, and present evidence that the phosphorylation status of the LBD affects the phosphorylation of the NTD region. We solved the X-ray structure of a phospho-mimetic mutant of the LBD (RARγ S371E, which we used in molecular dynamics simulations to characterize the consequences of the S371E mutation on the RARγ structural dynamics. Combined with simulations of the wild-type LBD, we show that the conformational equilibria of LBD salt bridges (notably R387-D340 are affected by the S371E mutation, which likely affects the recruitment of the kinase complex that phosphorylates the NTD. The molecular dynamics simulations also showed that a conservative mutation in this salt bridge (R387K affects the dynamics of the LBD without inducing large conformational changes. Finally, cellular assays showed that the phosphorylation of the NTD of RARγ is differentially regulated by retinoic acid in RARγWT and in the S371N, S371E and R387K mutants. This multidisciplinary work highlights an allosteric coupling between phosphorylations of the LBD and the NTD of RARγ and supports the importance of structural dynamics involving electrostatic interactions in the regulation of RARs activity.

  19. A case of all-trans retinoic acid-induced myositis in the treatment of acute promyelocytic leukaemia.

    Science.gov (United States)

    Chan, K H; Yuen, S L S; Joshua, D

    2005-12-01

    The use of all-trans retinoic acid (ATRA) is now standard therapy for the treatment of acute promyelocytic leukaemia (APML). There have been increasing reports of ATRA-induced myositis, with its frequent association with retinoic acid syndrome and Sweet's syndrome. We report a case of a young man with APML who developed ATRA-induced myositis characterized by unexplained fevers, bilateral leg swelling and a non-painful purpuric, petechial rash, with prompt resolution of symptoms and signs with high-dose steroids and cessation of ATRA. Rapid recognition of this adverse reaction and prompt institution of steroids is of prime importance given its potentially fatal course.

  20. Techniques and Applications of in vivo Diffusion Imaging of Articular Cartilage

    Science.gov (United States)

    Raya, José G.

    2014-01-01

    Early in the process of osteoarthritis (OA) the composition (water, proteoglycan [PG], and collagen) and structure of articular cartilage is altered leading to changes in its mechanical properties. A technique that can assess the composition and structure of the cartilage in vivo can provide insight in the mechanical integrity of articular cartilage and become a powerful tool for the early diagnosis of OA. Diffusion tensor imaging (DTI) has been proposed as a biomarker for cartilage composition and structure. DTI is sensitive to the PG content through the mean diffusivity (MD) and to the collagen architecture through the fractional anisotropy (FA). However, the acquisition of DTI of articular cartilage in vivo is challenging due to the short T2 of articular cartilage (~40 ms at 3 T) and the high resolution needed (0.5–0.7 mm in plane) to depict the cartilage anatomy. We describe the pulse sequences used for in vivo DTI of articular cartilage and discus general strategies for protocol optimization. We provide a comprehensive review of measurements of DTI of articular cartilage from ex vivo validation experiments to its recent clinical applications. PMID:25865215

  1. Tailored PVA/ECM Scaffolds for Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Stocco

    2014-01-01

    Full Text Available Articular cartilage lesions are a particular challenge for regenerative medicine due to cartilage low self-ability repair in case of damage. Hence, a significant goal of musculoskeletal tissue engineering is the development of suitable structures in virtue of their matrix composition and biomechanical properties. The objective of our study was to design in vitro a supporting structure for autologous chondrocyte growth. We realized a biohybrid composite scaffold combining a novel and nonspecific extracellular matrix (ECM, which is decellularized Wharton’s jelly ECM, with the biomechanical properties of the synthetic hydrogel polyvinyl alcohol (PVA. Wharton’s jelly ECM was tested for its ability in promoting scaffold colonization by chondrocytes and compared with polyvinyl alcohol itself and the more specific decellularized cartilage matrix. Our preliminary evidences highlighted the chance of using Wharton’s jelly ECM in combination with PVA hydrogels as an innovative and easily available scaffold for cartilage restoration.

  2. The effects of different doses of IGF-1 on cartilage and subchondral bone during the repair of full-thickness articular cartilage defects in rabbits.

    Science.gov (United States)

    Zhang, Z; Li, L; Yang, W; Cao, Y; Shi, Y; Li, X; Zhang, Q

    2017-02-01

    To investigate the effects of different doses of insulin-like growth factor 1 (IGF-1) on the cartilage layer and subchondral bone (SB) during repair of full-thickness articular cartilage (AC) defects. IGF-1-loaded collagen membrane was implanted into full-thickness AC defects in rabbits. The effects of two different doses of IGF-1 on cartilage layer and SB adjacent to the defect, the cartilage structure, formation and integration, and the new SB formation were evaluated at the 1st, 4th and 8th week postoperation. Meanwhile, after 1 week treatment, the relative mRNA expressions in tissues adjacent to the defect, including cartilage and SB were determined by quantitative real-time RT-PCR (qRT-PCR), respectively. Different doses of IGF-1 induced different gene expression profiles in tissues adjacent to the defect and resulted in different repair outcomes. Particularly, at high dose IGF-1 aided cell survival, regulated the gene expressions in cartilage layer adjacent defect and altered ECM composition more effectively, improved the formation and integrity of neo-cartilage. While, at low dose IGF-1 regulated the gene expressions in SB more efficaciously and subsequently promoted the SB remodeling and reconstruction. Different doses of IGF-1 induced different responses of cartilage or SB during the repair of full-thickness AC defects. Particularly, high dose of IGF-1 was more beneficial to the neo-cartilage formation and integration, while low dose of it was more effective for the SB formation. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  3. Disruption of retinoic acid receptor alpha reveals the growth promoter face of retinoic acid.

    Directory of Open Access Journals (Sweden)

    Giulia Somenzi

    2007-09-01

    Full Text Available Retinoic acid (RA, the bioactive derivative of Vitamin A, by epigenetically controlling transcription through the RA-receptors (RARs, exerts a potent antiproliferative effect on human cells. However, a number of studies show that RA can also promote cell survival and growth. In the course of one of our studies we observed that disruption of RA-receptor alpha, RARalpha, abrogates the RA-mediated growth-inhibitory effects and unmasks the growth-promoting face of RA (Ren et al., Mol. Cell. Biol., 2005, 25:10591. The objective of this study was to investigate whether RA can differentially govern cell growth, in the presence and absence of RARalpha, through differential regulation of the "rheostat" comprising ceramide (CER, the sphingolipid with growth-inhibitory activity, and sphingosine-1-phosphate (S1P, the sphingolipid with prosurvival activity.We found that functional inhibition of endogenous RARalpha in breast cancer cells by using either RARalpha specific antagonists or a dominant negative RARalpha mutant hampers on one hand the RA-induced upregulation of neutral sphingomyelinase (nSMase-mediated CER synthesis, and on the other hand the RA-induced downregulation of sphingosine kinase 1, SK1, pivotal for S1P synthesis. In association with RA inability to regulate the sphingolipid rheostat, cells not only survive, but also grow more in response to RA both in vitro and in vivo. By combining genetic, pharmacological and biochemical approaches, we mechanistically demonstrated that RA-induced growth is, at least in part, due to non-RAR-mediated activation of the SK1-S1P signaling.In the presence of functional RARalpha, RA inhibits cell growth by concertedly, and inversely, modulating the CER and S1P synthetic pathways. In the absence of a functional RARalpha, RA-in a non-RAR-mediated fashion-promotes cell growth by activating the prosurvival S1P signaling. These two distinct, yet integrated processes apparently concur to the growth-promoter effects

  4. A third human retinoic acid receptor, hRAR-γ

    International Nuclear Information System (INIS)

    Krust, A.; Kastner, Ph.; Petkovich, M.; Zelent, A.; Chambon, P.

    1989-01-01

    Retinoic acid receptors (RARs) are retinoic acid (RA)-inducible enhancer factors belonging to the superfamily of steroid/thyroid nuclear receptors. The authors have previously characterized two human RAR (hRAR-α and hRAR-β) cDNAs and have recently cloned their murine cognates (mRAR-α and mRAR-β) together with a third RAR (mRAR-γ) whose RNA was detected predominantly in skin, a well-known target for RA. mRAR-γ cDNA was used here to clone its human counterpart (hRAR-γ) from a T47D breast cancer cell cDNA library. Using a transient transfection assay in HeLa cells and a reporter gene harboring a synthetic RA responsive element, they demonstrate that hRAR-γ cDNA indeed encodes a RA-inducible transcriptional trans-activator. Interestingly, comparisons of the amino acid sequences of all six human and mouse RARs indicate that the interspecies conservation of a given member of the RAR subfamily (either α, β, or γ) is much higher than the conservation of all three receptors within a given species. These observations indicate that RAR-α, -β, and -γ may perform specific functions. They show also that hRAR-γ RNA is the predominant RAR RNA species in human skin, which suggests that hRAR-γ mediates some of the retinoid effects in this tissue

  5. Radiation synovectomy stimulates glycosaminoglycan synthesis by normal articular cartilage

    International Nuclear Information System (INIS)

    Myers, S.L.; Slowman, S.D.; Brandt, K.D.

    1989-01-01

    Radiation synovectomy has been considered a therapeutic alternative to surgical synovectomy. Whether intraarticular irradiation affects the composition or biochemistry, and therefore the biomechanical properties, of normal articular cartilage has not been established. In the present study, yttrium 90 silicate was injected into one knee of nine normal adult dogs, and three other dogs received nonradioactive yttrium silicate. When the animals were killed 4 to 13 weeks after the injection, synovium from the irradiated knees showed areas of necrosis and fibrosis. Up to 29% less hyaluronate was synthesized in vitro by the synovial intima from irradiated knees than by the intima from the contralateral knees (mean difference 18%). Morphologic abnormalities were not observed in articular cartilage from either the irradiated or control knees, nor did the water content or concentrations of uronic acid or DNA in cartilage from the irradiated knees differ from that in cartilage from the contralateral knees. However, net 35 SO 4 -labeled glycosaminoglycan synthesis in organ cultures of cartilage from irradiated knees was increased (mean difference 21%, p = 0.03) in comparison with that in cultures of contralateral knee cartilage

  6. Body Weight Independently Affects Articular Cartilage Catabolism

    Directory of Open Access Journals (Sweden)

    W. Matt Denning, Jason G. Winward, Michael Becker Pardo, J. Ty Hopkins, Matthew K. Seeley

    2015-06-01

    Full Text Available Although obesity is associated with osteoarthritis, it is unclear whether body weight (BW independently affects articular cartilage catabolism (i.e., independent from physiological factors that also accompany obesity. The primary purpose of this study was to evaluate the independent effect of BW on articular cartilage catabolism associated with walking. A secondary purpose was to determine how decreased BW influenced cardiovascular response due to walking. Twelve able-bodied subjects walked for 30 minutes on a lower-body positive pressure treadmill during three sessions: control (unadjusted BW, +40%BW, and -40%BW. Serum cartilage oligomeric matrix protein (COMP was measured immediately before (baseline and after, and 15 and 30 minutes after the walk. Heart rate (HR and rate of perceived exertion (RPE were measured every three minutes during the walk. Relative to baseline, average serum COMP concentration was 13% and 5% greater immediately after and 15 minutes after the walk. Immediately after the walk, serum COMP concentration was 14% greater for the +40%BW session than for the -40%BW session. HR and RPE were greater for the +40%BW session than for the other two sessions, but did not differ between the control and -40%BW sessions. BW independently influences acute articular cartilage catabolism and cardiovascular response due to walking: as BW increases, so does acute articular cartilage catabolism and cardiovascular response. These results indicate that lower-body positive pressure walking may benefit certain individuals by reducing acute articular cartilage catabolism, due to walking, while maintaining cardiovascular response.

  7. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs.

    Science.gov (United States)

    Henderson, Ian; Lavigne, Patrick; Valenzuela, Herminio; Oakes, Barry

    2007-02-01

    Information regarding the quality of autologous chondrocyte implantation repair is needed to determine whether the current autologous chondrocyte implantation surgical technology and the subsequent biologic repair processes are capable of reliably forming durable hyaline or hyaline-like cartilage in vivo. We report and analyze the properties and qualities of autologous chondrocyte implantation repairs. We evaluated 66 autologous chondrocyte implantation repairs in 57 patients, 55 of whom had histology, indentometry, and International Cartilage Repair Society repair scoring at reoperation for mechanical symptoms or pain. International Knee Documentation Committee scores were used to address clinical outcome. Maximum stiffness, normalized stiffness, and International Cartilage Repair Society repair scoring were higher for hyaline articular cartilage repairs compared with fibrocartilage, with no difference in clinical outcome. Reoperations revealed 32 macroscopically abnormal repairs (Group B) and 23 knees with normal-looking repairs in which symptoms leading to arthroscopy were accounted for by other joint disorders (Group A). In Group A, 65% of repairs were either hyaline or hyaline-like cartilage compared with 28% in Group B. Autologous chondrocyte repairs composed of fibrocartilage showed more morphologic abnormalities and became symptomatic earlier than hyaline or hyaline-like cartilage repairs. The hyaline articular cartilage repairs had biomechanical properties comparable to surrounding cartilage and superior to those associated with fibrocartilage repairs.

  8. Chondroma of the cricoid cartilage

    Directory of Open Access Journals (Sweden)

    Melo, Giulianno Molina de

    2008-12-01

    Full Text Available Introduction: The larynx cartilaginous tumors are uncommon and comprise 1% of all cartilaginous tumors. The chondroma is the most common benign tumor affecting the larynx cricoid cartilage (75%, and manifests normally in the male gender with dysphonia, progressive dyspnea and dysphagy in some cases. Objective: The objective of this study is to report a case of cricoid cartilage chondroma, in a patient with the symptom of a nodular lesion in the frontal cervical region of slow and progressive growth. Case Report: The treatment was the modified partial laryngectomy with resection of the lower hemisegment of the thyroid cartilage, cricoid hemicartilage and the first tracheal ring with free margins and reconstruction with a pericondrium and muscular prethyroidean piece. The anatomopathological exam showed a chondroma of 1.1 cm, of atypical low cellularity and low figures of mitosis in the frontal region of the cricoid cartilage. Conclusion: In this report we agreed with the literature for the primarily extensive surgical treatment depending on the location and the size of the cricoid chondroma; however, other modalities of treatment may be adopted in cases where the tumor extension appoints a total laryngectomy or when this is not possible to carry out, aiming at the preservation of the larynx. For the suitable treatment of cricoid chondromas, the understanding of the disease natural evolution and more case reports are still necessary.

  9. Metabolic characteristics of 13-cis-retinoic acid (isotretinoin) and anti-tumour activity of the 13-cis-retinoic acid metabolite 4-oxo-13-cis-retinoic acid in neuroblastoma.

    Science.gov (United States)

    Sonawane, Poonam; Cho, Hwang Eui; Tagde, Ashujit; Verlekar, Dattesh; Yu, Alice L; Reynolds, C Patrick; Kang, Min H

    2014-12-01

    Isotretinoin (13-cis-retinoic acid; 13-cRA) is a differentiation inducer used to treat minimal residual disease after myeloablative therapy for high-risk neuroblastoma. However, more than 40% of children develop recurrent disease during or after 13-cRA treatment. The plasma concentrations of 13-cRA in earlier studies were considered subtherapeutic while 4-oxo-13-cis-RA (4-oxo-13-cRA), a metabolite of 13-cRA considered by some investigators as inactive, were greater than threefold higher than 13-cRA. We sought to define the metabolic pathways of 13-cRA and investigated the anti-tumour activity of its major metabolite, 4-oxo-13-cRA. Effects of 13-cRA and 4-oxo-13-cRA on human neuroblastoma cell lines were assessed by DIMSCAN and flow cytometry for cell proliferation, MYCN down-regulation by reverse transcription PCR and immunoblotting, and neurite outgrowth by confocal microscopy. 13-cRA metabolism was determined using tandem MS in human liver microsomes and in patient samples. Six major metabolites of 13-cRA were identified in patient samples. Of these, 4-oxo-13-cRA was the most abundant, and 4-oxo-13-cRA glucuronide was also detected at a higher level in patients. CYP3A4 was shown to play a major role in catalysing 13-cRA to 4-oxo-13-cRA. In human neuroblastoma cell lines, 4-oxo-13-cRA and 13-cRA were equi-effective at inducing neurite outgrowth, inhibiting proliferation, decreasing MYCN mRNA and protein, and increasing the expression of retinoic acid receptor-β mRNA and protein levels. We showed that 4-oxo-13-cRA is as active as 13-cRA against neuroblastoma cell lines. Plasma levels of both 13-cRA and 4-oxo-13-cRA should be evaluated in pharmacokinetic studies of isotretinoin in neuroblastoma. © 2014 The British Pharmacological Society.

  10. Materials science: Like cartilage, but simpler

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard

    2015-01-01

    The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties.......The properties of articular cartilage, which lines bones in joints, depend partlyon repulsion between components of the material. A new synthetic gel that mimics this feature has rare, direction-dependent properties....

  11. Articular cartilage: from formation to tissue engineering.

    Science.gov (United States)

    Camarero-Espinosa, Sandra; Rothen-Rutishauser, Barbara; Foster, E Johan; Weder, Christoph

    2016-05-26

    Hyaline cartilage is the nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective tissue that serves as friction-reducing and load-bearing cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature, low cell density, low proliferative activity and the tendency of chondrocytes to de-differentiate, cartilage cannot regenerate after injury, wear and tear, or degeneration through common diseases such as osteoarthritis. Therefore severe damage usually requires surgical intervention. Current clinical strategies to generate new tissue include debridement, microfracture, autologous chondrocyte transplantation, and mosaicplasty. While articular cartilage was predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Despite significant research efforts, only a limited number of studies have evolved up to the clinical trial stage. This review article summarizes the current state of cartilage tissue engineering in the context of relevant biological aspects, such as the formation and growth of hyaline cartilage, its composition, structure and biomechanical properties. Special attention is given to materials development, scaffold designs, fabrication methods, and template-cell interactions, which are of great importance to the structure and functionality of the engineered tissue.

  12. Dental mesenchymal stem cells encapsulated in alginate hydrogel co-delivery microencapsulation system for cartilage regeneration

    Science.gov (United States)

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Akiyama, Kentaro; Snead, Malcolm L; Shi, Songtao

    2013-01-01

    Dental-derived MSCs are promising candidates for cartilage regeneration, with high chondrogenic differentiation capacity. This property contributes to making dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating Periodontal Ligament Stem Cells (PDLSCs) or Gingival Mesenchymal Stem Cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs, GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSC) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by toluidine blue and safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (Palginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs. PMID:23891740

  13. Interleukin-6 is elevated in synovial fluid of patients with focal cartilage defects and stimulates cartilage matrix production in an in vitro regeneration model

    NARCIS (Netherlands)

    Tsuchida, Anika I.; Beekhuizen, Michiel; Rutgers, Marijn; van Osch, Gerjo J.V.M.; Bekkers, Joris E.J.; Bot, Arjan G.J.; Geurts, Bernd; Dhert, Wouter J.A.; Saris, Daniël B.F.; Creemers, Laura B.

    2012-01-01

    Introduction This study aimed to determine whether, as in osteoarthritis, increased levels of interleukin-6 (IL-6) are present in the synovial fluid of patients with symptomatic cartilage defects and whether this IL-6 affects cartilage regeneration as well as the cartilage in the degenerated knee.

  14. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and morphologic MRI of cartilage in the long-term follow-up after Legg–Calvé–Perthes disease (LCPD)

    International Nuclear Information System (INIS)

    Holstein, Arne; Zilkens, Christoph; Bittersohl, Bernd

    2011-01-01

    The purpose of the present study was to evaluate the feasibility of delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) in the detection of cartilage changes versus morphologic imaging in the long-term course of Legg–Calvé–Perthes disease (LCPD). A total of 31 hips in 26 patients (mean age, 30.0 years; range, 18–54 years) who were diagnosed with LCPD in childhood were included. Twenty-one radiographically normal contralateral hips served as controls. dGEMRIC indices of femoral and acetabular cartilage in the weight-bearing zone. Cartilage morphology was classified on radial PD-weighted images according to the modified Outerbridge classification. Mean dGEMRIC values of cartilage were significantly lower in hips after LCPD than in the radiographically normal contralateral hips (513 ± 100 ms vs. 579 ± 103 ms; P = 0.026). In 24 out of 31 LCPD hips and in 4 out of 21 radiographically normal contralateral hips, morphological cartilage changes were noted. Analysis of variance analysis revealed a significant influence of Outerbridge grading on decreased T1-values (P = 0.031). Our results suggest that dGEMRIC at 1.5 T is suitable to assess cartilage quality changes in the long-term follow-up after LCPD. The evaluation of biochemical cartilage quality with dGEMRIC may provide additional information about early cartilage changes occurring without visible alterations of cartilage morphology.

  15. Content and synthesis of nucleic acids in the cartilage in chondromalacia patellae.

    Science.gov (United States)

    Lund, F; Telhag, H

    1978-12-01

    The content and the synthesis of nucleic acids in chondromalacian, osteoarthritis and normal cartilage was compared. The chondromalacian cartilage differed from osteoarthritis in that the content of nucleic acids was less. Also, the cell density was less in chondromalacian than in normal cartilage as opposed to previous findings in osteoarthritis. The synthesis of DNA was greater in chondromalacian than in normal cartilage but less than in osteoarthritis. With regard to the RNA synthesis, however, the chondromalacian cartilage showed a higher rate than both normal and osteoarthritic cartilage.

  16. Strategic Design and Fabrication of Engineered Scaffolds for Articular Cartilage Repair

    Science.gov (United States)

    Izadifar, Zohreh; Chen, Xiongbiao; Kulyk, William

    2012-01-01

    Damage to articular cartilage can eventually lead to osteoarthritis (OA), a debilitating, degenerative joint disease that affects millions of people around the world. The limited natural healing ability of cartilage and the limitations of currently available therapies make treatment of cartilage defects a challenging clinical issue. Hopes have been raised for the repair of articular cartilage with the help of supportive structures, called scaffolds, created through tissue engineering (TE). Over the past two decades, different designs and fabrication techniques have been investigated for developing TE scaffolds suitable for the construction of transplantable artificial cartilage tissue substitutes. Advances in fabrication technologies now enable the strategic design of scaffolds with complex, biomimetic structures and properties. In particular, scaffolds with hybrid and/or biomimetic zonal designs have recently been developed for cartilage tissue engineering applications. This paper reviews critical aspects of the design of engineered scaffolds for articular cartilage repair as well as the available advanced fabrication techniques. In addition, recent studies on the design of hybrid and zonal scaffolds for use in cartilage tissue repair are highlighted. PMID:24955748

  17. Sagittal-Plane Knee Moment During Gait and Knee Cartilage Thickness.

    Science.gov (United States)

    Schmitz, Randy J; Harrison, David; Wang, Hsin-Min; Shultz, Sandra J

    2017-06-02

      Understanding the factors associated with thicker cartilage in a healthy population is important when developing strategies aimed at minimizing the cartilage thinning associated with knee osteoarthritis progression. Thicker articular cartilage is commonly thought to be healthier cartilage, but whether the sagittal-plane biomechanics important to gait are related to cartilage thickness is unknown.   To determine the relationship of a weight-bearing region of the medial femoral condyle's cartilage thickness to sagittal gait biomechanics in healthy individuals.   Descriptive laboratory study.   Laboratory.   Twenty-eight healthy participants (15 women: age = 21.1 ± 2.1 years, height = 1.63 ± 0.07 m, weight = 64.6 ± 9.9 kg; 13 men: age = 22.1 ± 2.9 years, height = 1.79 ± 0.05 m, weight = 75.2 ± 9.6 kg).   Tibiofemoral angle (°) was obtained via goniometric assessment, thickness of the medial femoral condyle cartilage (mm) was obtained via ultrasound imaging, and peak internal knee-extensor moment (% body weight · height) was measured during 10 trials of over-ground walking at a self-selected pace. We used linear regression to examine the extent to which peak internal knee-extensor moment predicted cartilage thickness after accounting for tibiofemoral angle and sex.   Sex and tibiofemoral angle (12.3° ± 3.2°) were entered in the initial step as control factors (R 2 = 0.01, P = .872). In the final step, internal knee-extensor moment (1.5% ± 1.3% body weight · height) was entered, which resulted in greater knee-extensor moment being related to greater cartilage thickness (2.0 ± 0.3 mm; R 2 Δ = 0.31, PΔ = .003).   Individuals who walked with a greater peak internal knee-extensor moment during gait had a cartilage structure that is generally considered beneficial in a healthy population. Our study offers promising findings that a potentially modifiable biomechanical factor is associated with cartilage status in a healthy population

  18. Nd:YAG 1.44 laser ablation of human cartilage

    Science.gov (United States)

    Cummings, Robert S.; Prodoehl, John A.; Rhodes, Anthony L.; Black, Johnathan D.; Sherk, Henry H.

    1993-07-01

    This study determined the effectiveness of a Neodymium:YAG 1.44 micrometers wavelength laser on human cartilage. This wavelength is strongly absorbed by water. Cadaveric meniscal fibrocartilage and articular hyaline cartilage were harvested and placed in normal saline during the study. A 600 micrometers quartz fiber was applied perpendicularly to the tissues with a force of 0.098 N. Quantitative measurements were then made of the ablation rate as a function of fluence. The laser energy was delivered at a constant repetition rate of 5 Hz., 650 microsecond(s) pulsewidth, and energy levels ranging from 0.5 joules to 2.0 joules. Following the ablation of the tissue, the specimens were fixed in formalin for histologic evaluation. The results of the study indicate that the ablation rate is 0.03 mm/mj/mm2 for hyaline cartilage and fibrocartilage. Fibrocartilage was cut at approximately the same rate as hyaline cartilage. There was a threshold fluence projected to be 987 mj/mm2 for hyaline cartilage and fibrocartilage. Our results indicate that the pulsed Nd:YAG laser operating at 1.44 micrometers has a threshold fluence above which it will ablate human cartilage, and that its ablation rate is directly proportional to fluence over the range of parameters tested. Fibrocartilage and hyaline cartilage demonstrated similar threshold fluence and ablation rates which is related to the high water content of these tissues.

  19. Decellularized Bovine Articular Cartilage Matrix Reinforced by Carboxylated-SWCNT for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Zari Majidi Mohammadie

    2018-01-01

    Full Text Available ABSTRACT Nanotubes with their unique properties have diversified mechanical and biological applications. Due to similarity of dimensions with extracellular matrix (ECM elements, these materials are used in designing scaffolds. In this research, Carboxylated Single-Wall Carbon Nanotubes in optimization of decellularized scaffold of bovine articular cartilage was used. At first, the articular cartilage was decellularized. Then the scaffolds were analyzed in: (i decellularized scaffolds, and (ii scaffolds plunged into homogenous suspension of nanotubes in distilled water, were smeared with Carboxylated-SWCNT. The tissue rings derived from the rabbit's ear were assembled with reinforced scaffolds and they were placed in a culture media for 15 days. The scaffolds in two groups and the assembled scaffolds underwent histologic and electron microscopy. Scanning electron microscopy showed that the structure of ECM of articular cartilage has been maintained well after decellularization. Fourier transform infrared analysis showed that the contents of ECM have not been changed under treatment process. Atomic force microscopy analysis showed the difference in surface topography and roughness of group (ii scaffolds in comparison with group (i. Transmission electron microscopy studies showed the Carboxylated-SWCNT bond with the surface of decellularized scaffold and no penetration of these compounds into the scaffold. The porosity percentage with median rate of 91.04 in group (i scaffolds did not have significant difference with group (ii scaffolds. The electron microscopy observations confirmed migration and penetration of the blastema cells into the group (ii assembled scaffolds. This research presents a technique for provision of nanocomposite scaffolds for cartilage engineering applications.

  20. Experimental Influences in the Accurate Measurement of Cartilage Thickness in MRI.

    Science.gov (United States)

    Wang, Nian; Badar, Farid; Xia, Yang

    2018-01-01

    Objective To study the experimental influences to the measurement of cartilage thickness by magnetic resonance imaging (MRI). Design The complete thicknesses of healthy and trypsin-degraded cartilage were measured at high-resolution MRI under different conditions, using two intensity-based imaging sequences (ultra-short echo [UTE] and multislice-multiecho [MSME]) and 3 quantitative relaxation imaging sequences (T 1 , T 2 , and T 1 ρ). Other variables included different orientations in the magnet, 2 soaking solutions (saline and phosphate buffered saline [PBS]), and external loading. Results With cartilage soaked in saline, UTE and T 1 methods yielded complete and consistent measurement of cartilage thickness, while the thickness measurement by T 2 , T 1 ρ, and MSME methods were orientation dependent. The effect of external loading on cartilage thickness is also sequence and orientation dependent. All variations in cartilage thickness in MRI could be eliminated with the use of a 100 mM PBS or imaged by UTE sequence. Conclusions The appearance of articular cartilage and the measurement accuracy of cartilage thickness in MRI can be influenced by a number of experimental factors in ex vivo MRI, from the use of various pulse sequences and soaking solutions to the health of the tissue. T 2 -based imaging sequence, both proton-intensity sequence and quantitative relaxation sequence, similarly produced the largest variations. With adequate resolution, the accurate measurement of whole cartilage tissue in clinical MRI could be utilized to detect differences between healthy and osteoarthritic cartilage after compression.

  1. Rate process analysis of thermal damage in cartilage

    International Nuclear Information System (INIS)

    Diaz, Sergio H; Nelson, J Stuart; Wong, Brian J F

    2003-01-01

    Cartilage laser thermoforming (CLT) is a new surgical procedure that allows in situ treatment of deformities in the head and neck with less morbidity than traditional approaches. While some animal and human studies have shown promising results, the clinical feasibility of CLT depends on preservation of chondrocyte viability, which has not been extensively studied. The present paper characterizes cellular damage due to heat in rabbit nasal cartilage. Damage was modelled as a first order rate process for which two experimentally derived coefficients, A=1.2x10 70 s -1 and E a =4.5x10 5 J mole -1 , were determined by quantifying the decrease in concentration of healthy chondrocytes in tissue samples as a function of exposure time to constant-temperature water baths. After immersion, chondrocytes were enzymatically isolated from the matrix and stained with a two-component fluorescent dye. The dye binds nuclear DNA differentially depending upon chondrocyte viability. A flow cytometer was used to detect differential cell fluorescence to determine the percentage of live and dead cells in each sample. As a result, a damage kinetic model was obtained that can be used to predict the onset, extent and severity of cellular injury to thermal exposure

  2. Assessment of hyaline cartilage matrix composition using near infrared spectroscopy.

    Science.gov (United States)

    Palukuru, Uday P; McGoverin, Cushla M; Pleshko, Nancy

    2014-09-01

    Changes in the composition of the extracellular matrix (ECM) are characteristic of injury or disease in cartilage tissue. Various imaging modalities and biochemical techniques have been used to assess the changes in cartilage tissue but lack adequate sensitivity, or in the case of biochemical techniques, result in destruction of the sample. Fourier transform near infrared (FT-NIR) spectroscopy has shown promise for the study of cartilage composition. In the current study NIR spectroscopy was used to identify the contributions of individual components of cartilage in the NIR spectra by assessment of the major cartilage components, collagen and chondroitin sulfate, in pure component mixtures. The NIR spectra were obtained using homogenous pellets made by dilution with potassium bromide. A partial least squares (PLS) model was calculated to predict composition in bovine cartilage samples. Characteristic absorbance peaks between 4000 and 5000 cm(-1) could be attributed to components of cartilage, i.e. collagen and chondroitin sulfate. Prediction of the amount of collagen and chondroitin sulfate in tissues was possible within 8% (w/dw) of values obtained by gold standard biochemical assessment. These results support the use of NIR spectroscopy for in vitro and in vivo applications to assess matrix composition of cartilage tissues, especially when tissue destruction should be avoided. Copyright © 2014. Published by Elsevier B.V.

  3. The development of hyaline-cell cartilage in the head of the black molly, Poecilia sphenops. Evidence for secondary cartilage in a teleost.

    OpenAIRE

    Benjamin, M

    1989-01-01

    The development of hyaline-cell cartilage attached to membrane (dentary, maxilla, nasal, lacrimal and cleithrum) and cartilage (basioccipital) bones has been studied in the viviparous black molly, Poecilia sphenops. Intramembranous ossification commences before the first appearance of hyaline cells. As hyaline-cell cartilage is densely cellular and as that attached to the dentary, maxilla and cleithrum develops from the periosteum of these membrane bones, it must be regarded as secondary cart...

  4. Production of hyaline-like cartilage by bone marrow mesenchymal stem cells in a self-assembly model.

    Science.gov (United States)

    Elder, Steven H; Cooley, Avery J; Borazjani, Ali; Sowell, Brittany L; To, Harrison; Tran, Scott C

    2009-10-01

    A scaffoldless or self-assembly approach to cartilage tissue engineering has been used to produce hyaline cartilage from bone marrow-derived mesenchymal stem cells (bMSCs), but the mechanical properties of such engineered cartilage and the effects the transforming growth factor (TGF) isoform have not been fully explored. This study employs a cell culture insert model to produce tissue-engineered cartilage using bMSCs. Neonatal pig bMSCs were isolated by plastic adherence and expanded in monolayer before being seeded into porous transwell inserts and cultured for 4 or 8 weeks in defined chondrogenic media containing either TGF-beta1 or TGF-beta3. Following biomechanical evaluation in confined compression, colorimetric dimethyl methylene blue and Sircol dye-binding assays were used to analyze glycosaminoglycan (GAG) and collagen contents, respectively. Histological sections were stained with toluidine blue for proteoglycans and with picrosirius red to reveal collagen orientation, and immunostained for detection of collagen types I and II. Neocartilage increased in thickness, collagen, and GAG content between 4 and 8 weeks. Proteoglycan concentration increased with depth from the top surface. The tissue contained much more collagen type II than type I, and there was a consistent pattern of collagen alignment. TGF-beta1-treated and TGF-beta3-treated constructs were similar at 4 weeks, but 8-week TGF-beta1 constructs had a higher aggregate modulus and GAG content compared to TGF-beta3. These results demonstrate that bMSCs can generate functional hyaline-like cartilage through a self-assembling process.

  5. Up-regulated expression of cartilage intermediate-layer protein and ANK in articular hyaline cartilage from patients with calcium pyrophosphate dihydrate crystal deposition disease.

    Science.gov (United States)

    Hirose, Jun; Ryan, Lawrence M; Masuda, Ikuko

    2002-12-01

    Excess accumulation of extracellular inorganic pyrophosphate (ePPi) in aged human cartilage is crucial in calcium pyrophosphate dihydrate (CPPD) crystal formation in cartilage matrix. Two sources of ePPi are ePPi-generating ectoenzymes (NTPPPH) and extracellular transport of intracellular PPi by ANK. This study was undertaken to evaluate the role of NTPPPH and ANK in ePPi elaboration, by investigating expression of NTPPPH enzymes (cartilage intermediate-layer protein [CILP] and plasma cell membrane glycoprotein 1 [PC-1]) and ANK in human chondrocytes from osteoarthritic (OA) articular cartilage containing CPPD crystals and without crystals. Chondrocytes were harvested from knee cartilage at the time of arthroplasty (OA with CPPD crystals [CPPD], n = 8; OA without crystals [OA], n = 10). Normal adult human chondrocytes (n = 1) were used as a control. Chondrocytes were cultured with transforming growth factor beta1 (TGFbeta1), which stimulates ePPi elaboration, and/or insulin-like growth factor 1 (IGF-1), which inhibits ePPi elaboration. NTPPPH and ePPi were measured in the media at 48 hours. Media CILP, PC-1, and ANK were determined by dot-immunoblot analysis. Chondrocyte messenger RNA (mRNA) was extracted for reverse transcriptase-polymerase chain reaction to study expression of mRNA for CILP, PC-1, and ANK. NTPPPH and ANK mRNA and protein were also studied in fresh frozen cartilage. Basal ePPi elaboration and NTPPPH activity in conditioned media from CPPD chondrocytes were elevated compared with normal chondrocytes, and tended to be higher compared with OA chondrocytes. Basal expression of mRNA for CILP (chondrocytes) and ANK (cartilage) was higher in both CPPD chondrocytes and CPPD cartilage extract than in OA or normal samples. PC-1 mRNA was less abundant in CPPD chondrocytes and cartilage extract than in OA chondrocytes and extract, although the difference was not significant. CILP, PC-1, and ANK protein levels were similar in CPPD, OA, and normal chondrocytes

  6. Radiation synovectomy stimulates glycosaminoglycan synthesis by normal articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Myers, S.L.; Slowman, S.D.; Brandt, K.D.

    1989-07-01

    Radiation synovectomy has been considered a therapeutic alternative to surgical synovectomy. Whether intraarticular irradiation affects the composition or biochemistry, and therefore the biomechanical properties, of normal articular cartilage has not been established. In the present study, yttrium 90 silicate was injected into one knee of nine normal adult dogs, and three other dogs received nonradioactive yttrium silicate. When the animals were killed 4 to 13 weeks after the injection, synovium from the irradiated knees showed areas of necrosis and fibrosis. Up to 29% less hyaluronate was synthesized in vitro by the synovial intima from irradiated knees than by the intima from the contralateral knees (mean difference 18%). Morphologic abnormalities were not observed in articular cartilage from either the irradiated or control knees, nor did the water content or concentrations of uronic acid or DNA in cartilage from the irradiated knees differ from that in cartilage from the contralateral knees. However, net /sup 35/SO/sub 4/-labeled glycosaminoglycan synthesis in organ cultures of cartilage from irradiated knees was increased (mean difference 21%, p = 0.03) in comparison with that in cultures of contralateral knee cartilage.

  7. Quantitative imaging of excised osteoarthritic cartilage using spectral CT

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Kishore; Bateman, Christopher J.; Younis, Raja Aamir; De Ruiter, Niels J.A.; Ramyar, Mohsen; Anderson, Nigel G. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); Loebker, Caroline [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); University of Twente, Department of Developmental BioEngineering, Enschede (Netherlands); Schon, Benjamin S.; Hooper, Gary J.; Woodfield, Tim B.F. [University of Otago, Christchurch Regenerative Medicine and Tissue Engineering Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, Christchurch (New Zealand); Chernoglazov, Alex I. [University of Canterbury, Human Interface Technology Laboratory New Zealand, Christchurch (New Zealand); Butler, Anthony P.H. [University of Otago - Christchurch, Department of Radiology, Christchurch (New Zealand); European Organisation for Nuclear Research (CERN), Geneva (Switzerland); MARS Bioimaging, Christchurch (New Zealand)

    2017-01-15

    To quantify iodine uptake in articular cartilage as a marker of glycosaminoglycan (GAG) content using multi-energy spectral CT. We incubated a 25-mm strip of excised osteoarthritic human tibial plateau in 50 % ionic iodine contrast and imaged it using a small-animal spectral scanner with a cadmium telluride photon-processing detector to quantify the iodine through the thickness of the articular cartilage. We imaged both spectroscopic phantoms and osteoarthritic tibial plateau samples. The iodine distribution as an inverse marker of GAG content was presented in the form of 2D and 3D images after applying a basis material decomposition technique to separate iodine in cartilage from bone. We compared this result with a histological section stained for GAG. The iodine in cartilage could be distinguished from subchondral bone and quantified using multi-energy CT. The articular cartilage showed variation in iodine concentration throughout its thickness which appeared to be inversely related to GAG distribution observed in histological sections. Multi-energy CT can quantify ionic iodine contrast (as a marker of GAG content) within articular cartilage and distinguish it from bone by exploiting the energy-specific attenuation profiles of the associated materials. (orig.)

  8. MRI demonstration of hypertrophic articular cartilage repair in osteoarthritis

    International Nuclear Information System (INIS)

    Braunstein, E.M.; Brandt, K.D.; Albrecht, M.

    1990-01-01

    Transection of the anterior cruciate ligament in the dog produces changes in the unstable joint typical of osteoarthritis, although full-thickness catilage ulceration is rare. Information concerning the late fate of the cartilage after transection is meager. In the present study magnetic resonance imaging (MRI) was used to evaluate cartilage abnormalities 3 years after transection. Plain radiographs of the osteoarthritic and contralateral knees were obtained serially. MRI was performed 3 years after anterior cruciate ligament transection, at which time all three animals exhibited knee instability. Radiographs of the osteoarthritic knees showed osteophytes and subchondral sclerosis with progression between 2 and 3 years. On MRI, articular cartilage margins in the knee were indistinct, and the cartilage was thicker than that in the contralateral knee (maximum difference = 2.7 mm). This increase in thickness is consistent with biochemical data from dogs killed up to 64 weeks after creation of knee instability, which showed marked increases in cartilage bulk and in proteoglycan synthesis and concentration. The findings emphasize that increased matrix synthesis after anterior cruciate ligament transection leads to functional cartilage repair sustained even in the presence of persistent alteration of joint mechanics. (orig.)

  9. Autologous Cartilage Chip Transplantation Improves Repair Tissue Composition Compared With Marrow Stimulation.

    Science.gov (United States)

    Christensen, Bjørn Borsøe; Olesen, Morten Lykke; Lind, Martin; Foldager, Casper Bindzus

    2017-06-01

    Repair of chondral injuries by use of cartilage chips has recently demonstrated clinical feasibility. To investigate in vivo cartilage repair outcome of autologous cartilage chips compared with marrow stimulation in full-thickness cartilage defects in a minipig model. Controlled laboratory study. Six Göttingen minipigs received two 6-mm chondral defects in the medial and lateral trochlea of each knee. The two treatment groups were (1) autologous cartilage chips embedded in fibrin glue (ACC) (n = 12) and (2) marrow stimulation (MST) (n = 12). The animals were euthanized after 6 months, and the composition of repair tissue was quantitatively determined using histomorphometry. Semiquantitative evaluation was performed by means of the International Cartilage Repair Society (ICRS) II score. Collagen type II staining was used to further evaluate the repair tissue composition. Significantly more hyaline cartilage was found in the ACC (17.1%) compared with MST (2.9%) group ( P cartilage repair tissue compared with MST at 6 months postoperatively. Further studies are needed to investigate ACC as a possible alternative first-line treatment for focal cartilage injuries in the knee.

  10. Osteoarthritis: Control of human cartilage hypertrophic differentiation. Research highlight van: Gremlin1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis

    NARCIS (Netherlands)

    Buckland, J.; Leijten, Jeroen Christianus Hermanus; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Disruption of articular cartilage homeostasis is important in osteoarthritis (OA) pathogenesis, key to which is activation of articular chondrocyte hypertrophic differentiation. Healthy articular cartilage is resistant to hypertrophic differentiation, whereas growth-plate cartilage is destined to

  11. Expression of the helix-loop-helix protein inhibitor of DNA binding-1 (ID-1) is activated by all-trans retinoic acid in normal human keratinocytes

    International Nuclear Information System (INIS)

    Villano, C.M.; White, L.A.

    2006-01-01

    The ID (inhibitor of differentiation or DNA binding) helix-loop-helix proteins are important mediators of cellular differentiation and proliferation in a variety of cell types through regulation of gene expression. Overexpression of the ID proteins in normal human keratinocytes results in extension of culture lifespan, indicating that these proteins are important for epidermal differentiation. Our hypothesis is that the ID proteins are targets of the retinoic acid signaling pathway in keratinocytes. Retinoids, vitamin A analogues, are powerful regulators of cell growth and differentiation and are widely used in the prevention and treatment of a variety of cancers in humans. Furthermore, retinoic acid is necessary for the maintenance of epithelial differentiation and demonstrates an inhibitory action on skin carcinogenesis. We examined the effect of all-trans retinoic acid on expression of ID-1, -2, -3, and -4 in normal human keratinocytes and found that exposure of these cells to all-trans retinoic acid causes an increase in both ID-1 and ID-3 gene expression. Furthermore, our data show that this increase is mediated by increased transcription involving several cis-acting elements in the distal portion of the promoter, including a CREB-binding site, an Egr1 element, and an YY1 site. These data demonstrate that the ID proteins are direct targets of the retinoic acid signaling pathway. Given the importance of the ID proteins to epidermal differentiation, these results suggest that IDs may be mediating some of the effects of all-trans retinoic acid in normal human keratinocytes

  12. Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2014-03-01

    Full Text Available Background: Hyaline cartilage defects exhibit a major challenge in the field of orthopedic surgery owing to its limited repair capacity. On the other hand, mesenchymal stem cells (MSCs are regarded as potent cells with a property of cartilage regeneration. We aimed to optimize marrow-derived MSC chondrogenic culture using a small bioactive molecule referred to as BIO. Methods: MSCs from the marrow of NMRI mice were extracted, culture-expanded, and characterized. Micro-mass culture was then established for chondrogenic differentiation (control group. The cultures of MSC in chondrogenic medium supplemented with 0.01, 0.05, 0.1, and 1 µM BIO were taken as the experimental groups. Cartilage differentiation was examined by both histological sections and real-time PCR for Sox9, aggrecan, and collagen II at different time points. Moreover, the involvement of the Wnt pathway was investigated. Results: Based on histological sections, there was seemingly more intense metachromatic matrix produced in the cultures with 0.01 µM BIO. In this experimental group, cartilage-specific genes tended to be upregulated at day 14 compared to day 21 of the control group, indicating the accelerating effect of BIO on cartilage differentiation. Overall, there was statistically a significant increase (P=0.01 in the expression level of cartilage-specific genes in cultures with 0.01 µM BIO (enhancing effects. These upregulations appeared to be mediated through the Wnt pathway evident from the significant upregulation of T-cell factor and beta-catenin molecules (P=0.01. Conclusion: Taken together, BIO at 0.01 µM could accelerate and enhance in vitro chondrogenesis of mouse marrow-derived MSCs. Please cite this article as: Baghaban Eslaminejad MR, Fallah N. Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis. Iran J Med Sci. 2014;39(2:107-116.

  13. New Frontiers for Cartilage Repair and Protection.

    Science.gov (United States)

    Zaslav, Kenneth; McAdams, Timothy; Scopp, Jason; Theosadakis, Jason; Mahajan, Vivek; Gobbi, Alberto

    2012-01-01

    Articular cartilage injury is common after athletic injury and remains a difficult treatment conundrum both for the surgeon and athlete. Although recent treatments for damage to articular cartilage have been successful in alleviating symptoms, more durable and complete, long-term articular surface restoration remains the unattained goal. In this article, we look at both new ways to prevent damage to articular surfaces as well as new techniques to recreate biomechanically sound and biochemically true articular surfaces once an athlete injures this surface. This goal should include reproducing hyaline cartilage with a well-integrated and flexible subchondral base and the normal zonal variability in the articular matrix. A number of nonoperative interventions have shown early promise in mitigating cartilage symptoms and in preclinical studies have shown evidence of chondroprotection. These include the use of glucosamine, chondroitin, and other neutraceuticals, viscosupplementation with hyaluronic acid, platelet-rich plasma, and pulsed electromagnetic fields. Newer surgical techniques, some already in clinical study, and others on the horizon offer opportunities to improve the surgical restoration of the hyaline matrix often disrupted in athletic injury. These include new scaffolds, single-stage cell techniques, the use of mesenchymal stem cells, and gene therapy. Although many of these treatments are in the preclinical and early clinical study phase, they offer the promise of better options to mitigate the sequelae of athletically induced cartilage.

  14. Rapid determination of retinoic acid and its main isomers in plasma by second-order high-performance liquid chromatography data modeling.

    Science.gov (United States)

    Teglia, Carla M; Cámara, María S; Goicoechea, Héctor C

    2014-12-01

    This paper reports the development of a method based on high-performance liquid chromatography (HPLC) coupled to second-order data modeling with multivariate curve resolution-alternating least-squares (MCR-ALS) for quantification of retinoic acid and its main isomers in plasma in only 5.5 min. The compounds retinoic acid (RA), 13-cis-retinoic acid, 9-cis-retinoic acid, and 9,13-di-cis-retinoic acid were partially separated by use of a Poroshell 120 EC-C18 (3.0 mm × 30 mm, 2.7 μm particle size) column. Overlapping not only among the target analytes but also with the plasma interferents was resolved by exploiting the second-order advantage of the multi-way calibration. A validation study led to the following results: trueness with recoveries of 98.5-105.9 % for RA, 95.7-110.1 % for 13-cis-RA, 97.1-110.8 % for 9-cis-RA, and 99.5-110.9 % for 9,13-di-cis-RA; repeatability with RSD of 3.5-3.1 % for RA, 3.5-1.5 % for 13-cis-RA, 4.6-2.7 % for 9-cis-RA, and 5.2-2.7 % for 9,13-di-cis-RA (low and high levels); and intermediate precision (inter-day precision) with RSD of 3.8-3.0 % for RA, 2.9-2.4 % for 13-cis-RA, 3.6-3.2 % for 9,13-di-cis-RA, and 3.2-2.9 % for 9-cis-RA (low and high levels). In addition, a robustness study revealed the method was suitable for monitoring patients with dermatological diseases treated with pharmaceutical products containing RA and 13-cis-RA.

  15. Extracellular matrix components and culture regimen selectively regulate cartilage formation by self-assembling human mesenchymal stem cells in vitro and in vivo.

    Science.gov (United States)

    Ng, Johnathan; Wei, Yiyong; Zhou, Bin; Burapachaisri, Aonnicha; Guo, Edward; Vunjak-Novakovic, Gordana

    2016-12-09

    Cartilage formation from self-assembling mesenchymal stem cells (MSCs) in vitro recapitulate important cellular events during mesenchymal condensation that precedes native cartilage development. The goal of this study was to investigate the effects of cartilaginous extracellular matrix (ECM) components and culture regimen on cartilage formation by self-assembling human MSCs in vitro and in vivo. Human bone marrow-derived MSCs (hMSCs) were seeded and compacted in 6.5-mm-diameter transwell inserts with coated (type I, type II collagen) or uncoated (vehicle) membranes, at different densities (0.5 × 10 6 , 1.0 × 10 6 , 1.5 × 10 6 per insert). Pellets were formed by aggregating hMSCs (0.25 × 10 6 ) in round-bottomed wells. All tissues were cultured for up to 6 weeks for in vitro analyses. Discs (cultured for 6, 8 or 10 weeks) and pellets (cultured for 10 weeks) were implanted subcutaneously in immunocompromised mice to evaluate the cartilage stability in vivo. Type I and type II collagen coatings enabled cartilage disc formation from self-assembling hMSCs. Without ECM coating, hMSCs formed dome-shaped tissues resembling the pellets. Type I collagen, expressed in the prechondrogenic mesenchyme, improved early chondrogenesis versus type II collagen. High seeding density improved cartilage tissue properties but resulted in a lower yield of disc formation. Discs and pellets exhibited compositional and organizational differences in vitro and in vivo. Prolonged chondrogenic induction of the discs in vitro expedited endochondral ossification in vivo. The outcomes of cartilage tissues formed from self-assembling MSCs in vitro and in vivo can be modulated by the control of culture parameters. These insights could motivate new directions for engineering cartilage and bone via a cartilage template from self-assembling MSCs.

  16. Altered sensitivity to ellagic acid in neuroblastoma cells undergoing differentiation with 12-O-tetradecanoylphorbol-13-acetate and all-trans retinoic acid.

    Science.gov (United States)

    Alfredsson, Christina Fjæraa; Rendel, Filip; Liang, Qui-Li; Sundström, Birgitta E; Nånberg, Eewa

    2015-12-01

    Ellagic acid has previously been reported to induce reduced proliferation and activation of apoptosis in several tumor cell lines including our own previous data from non-differentiated human neuroblastoma SH-SY5Y cells. The aim of this study was now to investigate if in vitro differentiation with the phorbol ester 12-O- tetradecanoylphorbol-13-acetate or the vitamin A derivative all-trans retinoic acid altered the sensitivity to ellagic acid in SH-SY5Y cells. The methods used were cell counting and LDH-assay for evaluation of cell number and cell death, flow cytometric analysis of SubG1- and TUNEL-analysis for apoptosis and western blot for expression of apoptosis-associated proteins. In vitro differentiation was shown to reduce the sensitivity to ellagic acid with respect to cell detachment, loss of viability and activation of apoptosis. The protective effect was phenotype-specific and most prominent in all-trans retinoic acid-differentiated cultures. Differentiation-dependent up-regulation of Bcl-2 and integrin expression is introduced as possible protective mechanisms. The presented data also point to a positive correlation between proliferative activity and sensitivity to ellagic-acid-induced cell detachment. In conclusion, the presented data emphasize the need to consider degree of neuronal differentiation and phenotype of neuroblastoma cells when discussing a potential pharmaceutical application of ellagic acid in tumor treatment. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Patellofemoral instability in children: T2 relaxation times of the patellar cartilage in patients with and without patellofemoral instability and correlation with morphological grading of cartilage damage.

    Science.gov (United States)

    Kang, Chang Ho; Kim, Hee Kyung; Shiraj, Sahar; Anton, Christopher; Kim, Dong Hoon; Horn, Paul S

    2016-07-01

    Patellofemoral instability is one of the most common causes of cartilage damage in teenagers. To quantitatively evaluate the patellar cartilage in patients with patellofemoral instability using T2 relaxation time maps (T2 maps), compare the values to those in patients without patellofemoral instability and correlate them with morphological grades in patients with patellofemoral instability. Fifty-three patients with patellofemoral instability (mean age: 15.9 ± 2.4 years) and 53 age- and gender-matched patients without patellofemoral instability were included. Knee MR with axial T2 map was performed. Mean T2 relaxation times were obtained at the medial, central and lateral zones of the patellar cartilage and compared between the two groups. In the patellofemoral instability group, morphological grading of the patellar cartilage (0-4) was performed and correlated with T2 relaxation times. Mean T2 relaxation times were significantly longer in the group with patellofemoral instability as compared to those of the control group across the patellar cartilage (Student's t-test, Ppatellofemoral instability, patellar cartilage damage occurs across the entire cartilage with the highest T2 values at the apex. T2 relaxation times directly reflect the severity in low-grade cartilage damage, which implies an important role for T2 maps in differentiating between normal and low-grade cartilage damage.

  18. Wavelength-dependent penetration depth of near infrared radiation into cartilage.

    Science.gov (United States)

    Padalkar, M V; Pleshko, N

    2015-04-07

    Articular cartilage is a hyaline cartilage that lines the subchondral bone in the diarthrodial joints. Near infrared (NIR) spectroscopy is emerging as a nondestructive modality for the evaluation of cartilage pathology; however, studies regarding the depth of penetration of NIR radiation into cartilage are lacking. The average thickness of human cartilage is about 1-3 mm, and it becomes even thinner as OA progresses. To ensure that spectral data collected is restricted to the tissue of interest, i.e. cartilage in this case, and not from the underlying subchondral bone, it is necessary to determine the depth of penetration of NIR radiation in different wavelength (frequency) regions. In the current study, we establish how the depth of penetration varies throughout the NIR frequency range (4000-10 000 cm(-1)). NIR spectra were collected from cartilage samples of different thicknesses (0.5 mm to 5 mm) with and without polystyrene placed underneath. A separate NIR spectrum of polystyrene was collected as a reference. It was found that the depth of penetration varied from ∼1 mm to 2 mm in the 4000-5100 cm(-1) range, ∼3 mm in the 5100-7000 cm(-1) range, and ∼5 mm in the 7000-9000 cm(-1) frequency range. These findings suggest that the best NIR region to evaluate cartilage with no subchondral bone contribution is in the range of 4000-7000 cm(-1).

  19. Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering.

    Science.gov (United States)

    Li, Ke; Zhang, Chunqiu; Qiu, Lulu; Gao, Lilan; Zhang, Xizheng

    2017-08-01

    Articular cartilage (AC) is the weight-bearing tissue in diarthroses. It lacks the capacity for self-healing once there are injuries or diseases due to its avascularity. With the development of tissue engineering, repairing cartilage defects through transplantation of engineered cartilage that closely matches properties of native cartilage has become a new option for curing cartilage diseases. The main hurdle for clinical application of engineered cartilage is how to develop functional cartilage constructs for mass production in a credible way. Recently, impressive hyaline cartilage that may have the potential to provide capabilities for treating large cartilage lesions in the future has been produced in laboratories. The key to functional cartilage construction in vitro is to identify appropriate mechanical stimuli. First, they should ensure the function of metabolism because mechanical stimuli play the role of blood vessels in the metabolism of AC, for example, acquiring nutrition and removing wastes. Second, they should mimic the movement of synovial joints and produce phenotypically correct tissues to achieve the adaptive development between the micro- and macrostructure and function. In this article, we divide mechanical stimuli into three types according to forces transmitted by different media in bioreactors, namely forces transmitted through the liquid medium, solid medium, or other media, then we review and summarize the research status of bioreactors for cartilage tissue engineering (CTE), mainly focusing on the effects of diverse mechanical stimuli on engineered cartilage. Based on current researches, there are several motion patterns in knee joints; but compression, tension, shear, fluid shear, or hydrostatic pressure each only partially reflects the mechanical condition in vivo. In this study, we propose that rolling-sliding-compression load consists of various stimuli that will represent better mechanical environment in CTE. In addition, engineers

  20. In vivo transport of Gd-DTPA2- into human meniscus and cartilage assessed with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC)

    Science.gov (United States)

    2014-01-01

    Background Impaired stability is a risk factor in knee osteoarthritis (OA), where the whole joint and not only the joint cartilage is affected. The meniscus provides joint stability and is involved in the early pathological progress of OA. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) has been used to identify pre-radiographic changes in the cartilage in OA, but has been used less commonly to examine the meniscus, and then using only a double dose of the contrast agent. The purpose of this study was to enable improved early OA diagnosis by investigate the temporal contrast agent distribution in the meniscus and femoral cartilage simultaneously, in healthy volunteers, using 3D dGEMRIC at two different doses of the contrast agent Gd-DTPA2-. Methods The right knee in 12 asymptomatic volunteers was examined using a 3D Look-Locker sequence on two occasions after an intravenous injection of a double or triple dose of Gd-DTPA2- (0.2 or 0.3 mmol/kg body weight). The relaxation time (T1) and relaxation rate (R1 = 1/T1) were measured in the meniscus and femoral cartilage before, and 60, 90, 120 and 180 minutes after injection, and the change in relaxation rate (ΔR1) was calculated. Paired t-test and Analysis of Variance (ANOVA) were used for statistical evaluation. Results The triple dose yielded higher concentrations of Gd-DTPA2- in the meniscus and cartilage than the double dose, but provided no additional information. The observed patterns of ΔR1 were similar for double and triple doses of the contrast agent. ΔR1 was higher in the meniscus than in femoral cartilage in the corresponding compartments at all time points after injection. ΔR1 increased until 90-180 minutes in both the cartilage and the meniscus (p meniscus at all time points (p meniscus, than in the avascular central part of the posterior medial meniscus during the first 60 minutes (p meniscus and cartilage simultaneously using dGEMRIC, preferably 90 minutes after the injection of a

  1. Photoactivated methods for enabling cartilage-to-cartilage tissue fixation

    Science.gov (United States)

    Sitterle, Valerie B.; Roberts, David W.

    2003-06-01

    The present study investigates whether photoactivated attachment of cartilage can provide a viable method for more effective repair of damaged articular surfaces by providing an alternative to sutures, barbs, or fibrin glues for initial fixation. Unlike artificial materials, biological constructs do not possess the initial strength for press-fitting and are instead sutured or pinned in place, typically inducing even more tissue trauma. A possible alternative involves the application of a photosensitive material, which is then photoactivated with a laser source to attach the implant and host tissues together in either a photothermal or photochemical process. The photothermal version of this method shows potential, but has been almost entirely applied to vascularized tissues. Cartilage, however, exhibits several characteristics that produce appreciable differences between applying and refining these techniques when compared to previous efforts involving vascularized tissues. Preliminary investigations involving photochemical photosensitizers based on singlet oxygen and electron transfer mechanisms are discussed, and characterization of the photodynamic effects on bulk collagen gels as a simplified model system using FTIR is performed. Previous efforts using photothermal welding applied to cartilaginous tissues are reviewed.

  2. Articular cartilage lesions increase early cartilage degeneration in knees treated by anterior cruciate ligament reconstruction: T1ρ mapping evaluation and 1-year follow-up.

    Science.gov (United States)

    Hirose, Jun; Nishioka, Hiroaki; Okamoto, Nobukazu; Oniki, Yasunari; Nakamura, Eiichi; Yamashita, Yasuyuki; Usuku, Koichiro; Mizuta, Hiroshi

    2013-10-01

    Articular cartilage degeneration can develop after anterior cruciate ligament reconstruction (ACLR). Although radiological studies have identified risk factors for the progression of degenerative cartilage changes in the long term, risk factors in the early postoperative period remain to be documented. Cartilage lesions that are present at surgery progress to cartilage degeneration in the early phase after ACLR. Case series; Level of evidence, 4. T1ρ is the spin-lattice relaxation in the rotating frame magnetic resonance imaging. Sagittal T1ρ maps of the femorotibial joint were obtained before and 1 year after ACLR in 23 patients with ACL injuries. Four regions of interest (ROIs) were placed on images of the cartilage in the medial and lateral femoral condyle (MFC, LFC) and the medial and lateral tibia plateau (MTP, LTP). Changes in the T1ρ value (milliseconds) of each ROI were recorded, and differences between patients with and without cartilage lesions were evaluated. The relationship between changes in the T1ρ value and meniscal tears was also studied. Arthroscopy at ACLR detected cartilage lesions in 15 MFCs, 7 LFCs, and 2 LTPs. The baseline T1ρ value of the MFC and LFC was significantly higher in patients with cartilage lesions (MFC, 40.7 ms; LFC, 42.2 ms) than in patients without cartilage lesions (MFC, 38.0 ms, P = .025; LFC, 39.4 ms, P = .010). At 1-year follow-up, the T1ρ value of the MFC and LFC was also significantly higher in patients with lesions (MFC, 43.1 ms; LFC, 42.7 ms) than in patients without such lesions (MFC, 39.1 ms, P = .002; LFC, 40.4 ms, P = .023, respectively). In patients with cartilage injury, the T1ρ value of the MFC increased during the year after treatment (P = .002). There was no significant difference in the baseline and follow-up T1ρ value in patients with or without meniscal tears on each side although the T1ρ value of the MFC, MTP, and LFC increased during the first year after surgery regardless of the presence or

  3. PRP and Articular Cartilage: A Clinical Update

    Science.gov (United States)

    Rossi, Roberto; Castoldi, Filippo; Michielon, Gianni

    2015-01-01

    The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory. PMID:26075244

  4. PRP and Articular Cartilage: A Clinical Update

    Directory of Open Access Journals (Sweden)

    Antonio Marmotti

    2015-01-01

    Full Text Available The convincing background of the recent studies, investigating the different potentials of platelet-rich plasma, offers the clinician an appealing alternative for the treatment of cartilage lesions and osteoarthritis. Recent evidences in literature have shown that PRP may be helpful both as an adjuvant for surgical treatment of cartilage defects and as a therapeutic tool by intra-articular injection in patients affected by osteoarthritis. In this review, the authors introduce the trophic and anti-inflammatory properties of PRP and the different products of the available platelet concentrates. Then, in a complex scenario made of a great number of clinical variables, they resume the current literature on the PRP applications in cartilage surgery as well as the use of intra-articular PRP injections for the conservative treatment of cartilage degenerative lesions and osteoarthritis in humans, available as both case series and comparative studies. The result of this review confirms the fascinating biological role of PRP, although many aspects yet remain to be clarified and the use of PRP in a clinical setting has to be considered still exploratory.

  5. Radiological observation of determination of sex by costal cartilage calcification

    International Nuclear Information System (INIS)

    Kang, Shin Hwa; Won, Jong Jin; Rhee, Song Joo; Moon, Moo Chang; Oh, Jong Hyun; Choi, Ki Chul

    1979-01-01

    The difference of patterns of costal cartilage calcification in male and female had been first described by Fischer in 1955. Thereafter several reports were published, but specific clinical significance was not found. During the period from January, 1978 to December, 1978, we, in the Department of Radiology, Jeonbug National University, studied 2164 cases that showed the entire 12 pairs of ribs. Among these we detected 1494 cases of costal cartilage calcification and frequent sites of calcification. Patterns of costal cartilage calcification were classified into six groups- type l: central, type II: marginal, type III: junctional type, type IV: railroad, type V: diffuse, type VI: mixed. Results are as follows; 1. In a total of 2164 cases, calcification of costal cartilage was present in 1494 cases(69.0%). Of 1181 males 780 cases(66.0%) showed calcification, and of 983 females 714 cases (72.6%) showed calcification. 2. In 439 cases of males, except for 341 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows: marginal type in 265 cases (60.4%), junctional type in 134 cases (30.5%), mixed type in 21 cases (0.5%), central type in 17 cases(3.8%), and railroad type in 2 cases (0.5%). Diffuse type was not present. 3. In 492 cases of females, except of 222 cases that showed calcification within the first costal cartilage, patterns of costal cartilage calcification were as follows; central type in 336 cases (68.3%), junctional type in 94 cases(19.1%), mixed type in 24 cases (4.9%), railroad type in 19 cases (3.9%), and diffuse type in 14 cases (2.8%). 4. When central calcification was observed, predictive value to female was 94.7%. When marginal calcification was observed, predictive value to male was 987.4%. 5. Males frequently showed calcification in upper costal cartilages, and females in lower costal cartilages.

  6. A Dual Flow Bioreactor for Cartilage Tissue Engineering

    NARCIS (Netherlands)

    Spitters, Tim

    2014-01-01

    Preventing the onset of a degenerative disease like osteoarthritis by restoring tissue function before cartilage degradation occurs will decrease health costs, reduce socio-economic burdens of patients and preserve quality of life. However, producing ex vivo cartilage implants of clinically relevant

  7. Strain ratio measurement of femoral cartilage by real-time elastosonography: preliminary results

    International Nuclear Information System (INIS)

    Ipek, Ali; Unal, Ozlem; Kartal, Merve Gulbiz; Arslan, Halil; Isik, Cetin; Bozkurt, Murat

    2015-01-01

    The purpose of this study was to evaluate strain ratio measurement of femoral cartilage using real-time elastosonography. Twenty-five patients with femoral cartilage pathology on MRI (study group) were prospectively compared with 25 subjects with normal findings on MRI (control group) using real-time elastosonography. Strain ratio measurements of pathologic and normal cartilage were performed and compared, both within the study group and between the two groups. Elastosonography colour-scale coding showed a colour change from blue to red in pathologic cartilage and only blue colour-coding in normal cartilage. In the study group, the median strain ratio was higher in pathologic cartilage areas compared to normal areas (median, 1.49 [interquartile range, 0.80-2.53] vs. median, 0.01 [interquartile range, 0.01-0.01], p < 0.001, respectively). The median strain ratio of the control group was 0.01 (interquartile range, 0.01-0.01), and there was no significant difference compared to normal areas of the study group. There was, however, a significant difference between the control group cartilage and pathologic cartilage of the study group (p < 0.001). Elastosonography may be an effective, easily accessible, and relatively simple tool to demonstrate pathologic cartilage and to differentiate it from normal cartilage in the absence of advanced imaging facility such as MRI. (orig.)

  8. The stimulation of mononuclear cells from patients with rheumatoid arthritis to degrade articular cartilage is not modulated by cartilage itself

    NARCIS (Netherlands)

    van Roon, J. A.; van Roy, J. L.; Lafeber, F. P.; Bijlsma, J. W.

    1996-01-01

    To study the modulation of mononuclear cell (MNC) activity in patients with rheumatoid arthritis (RA) by constituents released from human articular cartilage, which may be present in vivo during early events of the disease, when articular cartilage is not only mildly damaged. In an attempt to

  9. Laser-assisted cartilage reshaping: in vitro and in vivo animal studies

    Science.gov (United States)

    Wang, Zhi; Pankratov, Michail M.; Perrault, Donald F., Jr.; Shapshay, Stanley M.

    1995-05-01

    Correction of cartilaginous defects in the head and neck area remains a challenge for the surgeon. This study investigated a new technique for laser-assisted cartilage reshaping. The pulsed 1.44 micrometers Nd:YAG laser was used in vitro and in vivo experiments to irradiate cartilage to change it's shape without carbonization or vaporization of tissue. Two watts of average power in non contact manner was used to irradiate and reshape the cartilage. The extracted reshaped cartilage specimens underwent testing of elastic force with a computer assisted measurement system that recorded the changes in elastic force in the specimens from 1 hr to 11 days post-irradiation. An animal model of defective tracheal cartilage (collapsed tracheal wall) was created, allowed to heal for 6 weeks and then corrected endoscopically with the laser-assisted technique. The results of the in vitro and in vivo investigations demonstrated that it was possible to alter the cartilage and that cartilage would retain its new shape. The clinical significance of the technique is evident and warrants further animal studies and clinical trials.

  10. Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone

    International Nuclear Information System (INIS)

    Saarakkala, Simo; Laasanen, Mikko S; Jurvelin, Jukka S; Toeyraes, Juha

    2006-01-01

    Previous studies have suggested that quantitative ultrasound imaging could sensitively diagnose degeneration of the articular surface and changes in the subchondral bone during the development of osteoarthrosis (OA). We have recently introduced a new parameter, ultrasound roughness index (URI), for the quantification of cartilage surface roughness, and successfully tested it with normal and experimentally degraded articular surfaces. In this in vitro study, the applicability of URI was tested in bovine cartilage samples with spontaneously developed tissue degeneration. Simultaneously, we studied the sensitivity of quantitative ultrasound imaging to detect degenerative changes in the cartilage-bone interface. For reference, histological degenerative grade of the cartilage samples was determined. Mechanical reference measurements were also conducted. Cartilage surface roughness (URI) was significantly (p < 0.05) higher in histologically degenerated samples with inferior mechanical properties. Ultrasound reflection at the cartilage-bone interface was also significantly (p < 0.05) increased in degenerated samples. Furthermore, it was quantitatively confirmed that ultrasound attenuation in the overlying cartilage significantly affects the measured ultrasound reflection values from the cartilage-bone interface. To conclude, the combined ultrasound measurement of the cartilage surface roughness and ultrasound reflection at the cartilage-bone interface complement each other, and may together enable more sensitive and quantitative diagnosis of early OA or follow up after surgical cartilage repair

  11. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration.

    Science.gov (United States)

    Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo

    2015-04-01

    The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site. © 2014 Wiley Periodicals, Inc.

  12. Association between patellar cartilage defects and patellofemoral geometry: a matched-pair MRI comparison of patients with and without isolated patellar cartilage defects.

    Science.gov (United States)

    Mehl, Julian; Feucht, Matthias J; Bode, Gerrit; Dovi-Akue, David; Südkamp, Norbert P; Niemeyer, Philipp

    2016-03-01

    To compare the geometry of the patellofemoral joint on magnetic resonance images (MRI) between patients with isolated cartilage defects of the patella and a gender- and age-matched control group of patients without patellar cartilage defects. A total of 43 patients (17 female, 26 male) with arthroscopically verified grade III and IV patellar cartilage defects (defect group) were compared with a matched-pair control group of patients with isolated traumatic rupture of the anterior cruciate ligament without cartilage defects of the patellofemoral joint. Preoperative MRI images were analysed retrospectively with regard to patellar geometry (width, thickness, facet angle), trochlear geometry (dysplasia according to Dejour, sulcus angle, sulcus depth, lateral condyle index, trochlea facet asymmetry, lateral trochlea inclination) and patellofemoral alignment (tibial tuberosity-trochlear groove distance, patella height, lateral patella displacement, lateral patellofemoral angle, patella tilt, congruence angle). In addition to the comparison of group values, the measured values were compared to normal values reported in the literature, and the frequency of patients with pathologic findings was compared between both groups. The defect group demonstrated a significantly higher proximal chondral sulcus angle (p patellofemoral joint. In particular, a flat and shallow trochlea, trochlea dysplasia and patella alta seem to contribute to the development of patellar cartilage defects, which must be taken into consideration when planning to do surgical cartilage repair at the patella. III.

  13. Local changes in proteoglycan synthesis during culture are different for normal and osteoarthritic cartilage

    NARCIS (Netherlands)

    Lafeber, F. P.; van der Kraan, P. M.; van Roy, H. L.; Vitters, E. L.; Huber-Bruning, O.; van den Berg, W. B.; Bijlsma, J. W.

    1992-01-01

    Proteoglycan synthesis of mild-to-moderate osteoarthritic human knee cartilage was compared with that of normal cartilage of the same donor. Immediately after cartilage was obtained, the synthesis rate of proteoglycans was higher for osteoarthritic cartilage than for normal cartilage. Proteoglycan

  14. Depth-resolved phase retardation measurements for laser-assisted non-ablative cartilage reshaping

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Jong-In [Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612 (United States); Vargas, Gracie [Center for Bioengineering, University of Texas Medical Branch, Galveston, TX 77555 (United States); Wong, Brian J F [Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92612 (United States); Milner, Thomas E [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712 (United States)

    2005-05-07

    Since polarization-sensitive optical coherence tomography (PS-OCT) is emerging as a new technique for determining phase retardation in biological materials, we measured phase retardation changes in cartilage during local laser heating for application to laser-assisted cartilage reshaping. Thermally-induced changes in phase retardation of nasal septal cartilage following Nd:YAG laser irradiation were investigated using a PS-OCT system. A PS-OCT system and infrared imaging radiometer were used to record, respectively, depth-resolved images of the Stokes parameters of light backscattered from ex vivo porcine nasal septal cartilage and radiometric temperature changes following laser irradiation. PS-OCT images of cartilage were recorded before (control), during and after laser irradiation. From the measured Stokes parameters (I, Q, U and V), an estimate of the relative phase retardation between two orthogonal polarizations was computed to determine birefringence in cartilage. Phase retardation images of light backscattered from cartilage show significant changes in retardation following laser irradiation. To investigate the origin of retardation changes in response to local heat generation, we differentiated two possible mechanisms: dehydration and thermal denaturation. PS-OCT images of cartilage were recorded after dehydration in glycerol and thermal denaturation in heated physiological saline. In our experiments, observed retardation changes in cartilage are primarily due to dehydration. Since dehydration is a principal source for retardation changes in cartilage over the range of heating profiles investigated, our studies suggest that the use of PS-OCT as a feedback control methodology for non-ablative cartilage reshaping requires further investigation.

  15. Depth-resolved phase retardation measurements for laser-assisted non-ablative cartilage reshaping

    International Nuclear Information System (INIS)

    Youn, Jong-In; Vargas, Gracie; Wong, Brian J F; Milner, Thomas E

    2005-01-01

    Since polarization-sensitive optical coherence tomography (PS-OCT) is emerging as a new technique for determining phase retardation in biological materials, we measured phase retardation changes in cartilage during local laser heating for application to laser-assisted cartilage reshaping. Thermally-induced changes in phase retardation of nasal septal cartilage following Nd:YAG laser irradiation were investigated using a PS-OCT system. A PS-OCT system and infrared imaging radiometer were used to record, respectively, depth-resolved images of the Stokes parameters of light backscattered from ex vivo porcine nasal septal cartilage and radiometric temperature changes following laser irradiation. PS-OCT images of cartilage were recorded before (control), during and after laser irradiation. From the measured Stokes parameters (I, Q, U and V), an estimate of the relative phase retardation between two orthogonal polarizations was computed to determine birefringence in cartilage. Phase retardation images of light backscattered from cartilage show significant changes in retardation following laser irradiation. To investigate the origin of retardation changes in response to local heat generation, we differentiated two possible mechanisms: dehydration and thermal denaturation. PS-OCT images of cartilage were recorded after dehydration in glycerol and thermal denaturation in heated physiological saline. In our experiments, observed retardation changes in cartilage are primarily due to dehydration. Since dehydration is a principal source for retardation changes in cartilage over the range of heating profiles investigated, our studies suggest that the use of PS-OCT as a feedback control methodology for non-ablative cartilage reshaping requires further investigation

  16. 3.0 T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging—A preliminary study

    International Nuclear Information System (INIS)

    Jungmann, Pia M.; Baum, Thomas; Schaeffeler, Christoph; Sauerschnig, Martin; Brucker, Peter U.; Mann, Alexander; Ganter, Carl; Bieri, Oliver

    2015-01-01

    Highlights: • Axial traction is applicable during high resolution MR imaging of the ankle. • Axial traction during MR imaging oft the ankle improves cartilage surface delineation of the individual tibial and talar cartilage layer for better morphological evaluation without the need of intraarticular contrast agent application. • Coronal T1-weighted MR images with a driven equilibrium pulse performed best. • Axial traction during MR imaging of the ankle facilitates compartment discrimination for segmentation purposes resulting in better reproducibility. - Abstract: Purpose: To determine the impact of axial traction during high resolution 3.0 T MR imaging of the ankle on morphological assessment of articular cartilage and quantitative cartilage imaging parameters. Materials and Methods: MR images of n = 25 asymptomatic ankles were acquired with and without axial traction (6 kg). Coronal and sagittal T1-weighted (w) turbo spin echo (TSE) sequences with a driven equilibrium pulse and sagittal fat-saturated intermediate-w (IMfs) TSE sequences were acquired for morphological evaluation on a four-point scale (1 = best, 4 = worst). For quantitative assessment of cartilage degradation segmentation was performed on 2D multislice-multiecho (MSME) SE T2, steady-state free-precession (SSFP; n = 8) T2 and SSFP diffusion-weighted imaging (DWI; n = 8) images. Wilcoxon-tests and paired t-tests were used for statistical analysis. Results: With axial traction, joint space width increased significantly and delineation of cartilage surfaces was rated superior (P < 0.05). Cartilage surfaces were best visualized on coronal T1-w images (P < 0.05). Differences for cartilage matrix evaluation were smaller. Subchondral bone evaluation, motion artifacts and image quality were not significantly different between the acquisition methods (P > 0.05). T2 values were lower at the tibia than at the talus (P < 0.001). Reproducibility was better for images with axial traction. Conclusion

  17. 3.0 T MR imaging of the ankle: Axial traction for morphological cartilage evaluation, quantitative T2 mapping and cartilage diffusion imaging—A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Jungmann, Pia M., E-mail: pia.jungmann@tum.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Baum, Thomas, E-mail: thomas.baum@tum.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Schaeffeler, Christoph, E-mail: schaeffeler@me.com [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Musculoskeletal Imaging, Kantonsspital Graubuenden, Loestrasse 170, CH-7000 Chur (Switzerland); Sauerschnig, Martin, E-mail: martin.sauerschnig@mri.tum.de [Department of Trauma Surgery, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Brucker, Peter U., E-mail: peter.brucker@lrz.tu-muenchen.de [Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Mann, Alexander, E-mail: abmann@onlinemed.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Ganter, Carl, E-mail: cganter@tum.de [Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Bieri, Oliver, E-mail: oliver.bieri@unibas.ch [Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Petersgraben 4, 4031 Basel (Switzerland); and others

    2015-08-15

    Highlights: • Axial traction is applicable during high resolution MR imaging of the ankle. • Axial traction during MR imaging oft the ankle improves cartilage surface delineation of the individual tibial and talar cartilage layer for better morphological evaluation without the need of intraarticular contrast agent application. • Coronal T1-weighted MR images with a driven equilibrium pulse performed best. • Axial traction during MR imaging of the ankle facilitates compartment discrimination for segmentation purposes resulting in better reproducibility. - Abstract: Purpose: To determine the impact of axial traction during high resolution 3.0 T MR imaging of the ankle on morphological assessment of articular cartilage and quantitative cartilage imaging parameters. Materials and Methods: MR images of n = 25 asymptomatic ankles were acquired with and without axial traction (6 kg). Coronal and sagittal T1-weighted (w) turbo spin echo (TSE) sequences with a driven equilibrium pulse and sagittal fat-saturated intermediate-w (IMfs) TSE sequences were acquired for morphological evaluation on a four-point scale (1 = best, 4 = worst). For quantitative assessment of cartilage degradation segmentation was performed on 2D multislice-multiecho (MSME) SE T2, steady-state free-precession (SSFP; n = 8) T2 and SSFP diffusion-weighted imaging (DWI; n = 8) images. Wilcoxon-tests and paired t-tests were used for statistical analysis. Results: With axial traction, joint space width increased significantly and delineation of cartilage surfaces was rated superior (P < 0.05). Cartilage surfaces were best visualized on coronal T1-w images (P < 0.05). Differences for cartilage matrix evaluation were smaller. Subchondral bone evaluation, motion artifacts and image quality were not significantly different between the acquisition methods (P > 0.05). T2 values were lower at the tibia than at the talus (P < 0.001). Reproducibility was better for images with axial traction. Conclusion

  18. Cartilage collagen damage in hip osteoarthritis similar to that seen in knee osteoarthritis; a case-control study of relationship between collagen, glycosaminoglycan and cartilage swelling.

    Science.gov (United States)

    Hosseininia, Shahrzad; Lindberg, Lisbeth R; Dahlberg, Leif E

    2013-01-09

    It remains to be shown whether OA shares molecular similarities between different joints in humans. This study provides evidence for similarities in cartilage molecular damage in osteoarthritic (OA) joints. Articular cartilage from osteoarthritic hip joints were analysed and compared to non-OA controls regarding collagen, glycosaminoglycan and water content. Femoral heads from 16 osteoarthritic (OA) and 20 reference patients were obtained from hip replacement surgery due to OA and femoral neck fracture, respectively. Cartilage histological changes were assessed by Mankin grading and denatured collagen type II immunostaining and cartilage was extracted by α-chymotrypsin. Hydroxyproline and Alcian blue binding assays were used to measure collagen and glycosaminoglycan (GAG) content, respectively. Mankin and immunohistology scores were significantly higher in hip OA samples than in reference samples. Cartilage water content was 6% higher in OA samples than in references. 2.5 times more collagen was extracted from OA than from reference samples. There was a positive association between water content and percentage of extractable collagen pool (ECP) in both groups. The amounts of collagen per wet and dry weights did not differ statistically between OA and reference cartilage. % Extractable collagen was not related to collagen per dry weight in either group. However when collagen was expressed by wet weight there was a negative correlation between % extractable and collagen in OA cartilage. The amount of GAG per wet weight was similar in both groups but the amount of GAG per dry weight was higher in OA samples compared to reference samples, which suggests a capacity for GAG biosynthesis in hip OA cartilage. Neither of the studied parameters was related to age in either group. Increased collagen extractability and water content in human hip cartilage is associated with OA pathology and can be observed at early stages of the degenerative hip OA process. Our results

  19. The Role of Interstitial Fluid Pressurization in Articular Cartilage Lubrication

    Science.gov (United States)

    Ateshian, Gerard A.

    2009-01-01

    Over the last two decades, considerable progress has been reported in the field of cartilage mechanics that impacts our understanding of the role of interstitial fluid pressurization on cartilage lubrication. Theoretical and experimental studies have demonstrated that the interstitial fluid of cartilage pressurizes considerably under loading, potentially supporting most of the applied load under various transient or steady-state conditions. The fraction of the total load supported by fluid pressurization has been called the fluid load support. Experimental studies have demonstrated that the friction coefficient of cartilage correlates negatively with this variable, achieving remarkably low values when the fluid load support is greatest. A theoretical framework that embodies this relationship has been validated against experiments, predicting and explaining various outcomes, and demonstrating that a low friction coefficient can be maintained for prolonged loading durations under normal physiological function. This paper reviews salient aspects of this topic, as well as its implications for improving our understanding of boundary lubrication by molecular species in synovial fluid and the cartilage superficial zone. Effects of cartilage degeneration on its frictional response are also reviewed. PMID:19464689

  20. Cartilage Degeneration and Alignment in Severe Varus Knee Osteoarthritis.

    Science.gov (United States)

    Nakagawa, Yasuaki; Mukai, Shogo; Yabumoto, Hiromitsu; Tarumi, Eri; Nakamura, Takashi

    2015-10-01

    The aim of this study was to examine the relationship between cartilage, ligament, and meniscus degeneration and radiographic alignment in severe varus knee osteoarthritis in order to understand the development of varus knee osteoarthritis. Fifty-three patients (71 knees) with primary varus knee osteoarthritis and who underwent total knee arthroplasty were selected for this study. There were 6 men and 47 women, with 40 right knees and 31 left knees studied; their mean age at operation was 73.5 years. The ligament, meniscus, degeneration of joint cartilage, and radiographic alignments were examined visually. The tibial plateau-tibial shaft angle was larger if the condition of the cartilage in the lateral femoral condyle was worse. The femorotibial angle and tibial plateau-tibial shaft angle were larger if the conditions of the lateral meniscus or the cartilage in the lateral tibial plateau were worse. Based on the results of this study, progression of varus knee osteoarthritis may occur in the following manner: medial knee osteoarthritis starts in the central portion of the medial tibial plateau, and accompanied by medial meniscal extrusion and anterior cruciate ligament rupture, cartilage degeneration expands from the anterior to the posterior in the medial tibial plateau. Bone attrition occurs in the medial tibial plateau, and the femoro-tibial angle and tibial plateau-tibial shaft angle increase. Therefore, the lateral intercondylar eminence injures the cartilage of the lateral femoral condyle in the longitudinal fissure type. Thereafter, the cartilage degeneration expands in the whole of the knee joints.

  1. MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation--divergence in pathways leading to aggrecanase and MMP-mediated articular cartilage degradation

    DEFF Research Database (Denmark)

    Sondergaard, B-C; Schultz, N; Madsen, S H

    2010-01-01

    Matrix metalloproteinases (MMPs) and aggrecanases are essential players in cartilage degradation. However, the signaling pathways that results in MMP and/or aggrecanase synthesis and activation are not well understood. We investigated the molecular events leading to MMP- and aggrecanase-mediated ......Matrix metalloproteinases (MMPs) and aggrecanases are essential players in cartilage degradation. However, the signaling pathways that results in MMP and/or aggrecanase synthesis and activation are not well understood. We investigated the molecular events leading to MMP- and aggrecanase......-mediated cartilage degradation....

  2. Evaluation of degenerative changes in articular cartilage of osteoarthritis by Raman spectroscopy

    Science.gov (United States)

    Oshima, Yusuke; Ishimaru, Yasumitsu; Kiyomatsu, Hiroshi; Hino, Kazunori; Miura, Hiromasa

    2018-02-01

    Osteoarthritis (OA) is a very common joint disease in the aging population. Main symptom of OA is accompanied by degenerative changes of articular cartilage. Cartilage contains mostly type II collagen and proteoglycans, so it is difficult to access the quality and morphology of cartilage tissue in situ by conventional diagnostic tools (X-ray, MRI and echography) directly or indirectly. Raman spectroscopy is a label-free technique which enables to analyze molecular composition in degenerative cartilage. In this proposal, we aim to develop Raman spectroscopic system for the quality assessment of articular cartilage during arthroscopic surgery. Toward this goal, we are focusing on the proteoglycan content and collagen fiber alignment in cartilage matrix which may be associated with degenerative changes in OA, and we designed an original Raman device for remote sensing during arthroscopic surgery. In this project, we define the grading system for cartilage defect based on Raman spectroscopy, and we complete the evaluation of the Raman probing system which makes it possible to detect early stage of degenerative cartilage as a novel tool for OA diagnosis using human subject.

  3. The study of selective water excitation in the MR imaging of articular cartilage

    International Nuclear Information System (INIS)

    Gu Fei; Zhang Xuezhe

    2007-01-01

    Objective: To investigate the value of selective water excitation technique for the assessment of articular cartilage. Methods: MR sagittal scanning of knee joints was performed in the fifteen healthy volunteers. MR scan sequences were 3D-FFE-SPIR and 3D-FFE-WATS. The signal noise ratio (SNR) of the cartilage, the contrast noise ratio (CNR) between cartilage and adjacent tissue and their efficiency were calculated and analyzed statistically. Tweenty-nine patients who were suspected having cartilage injury were performed MR examination and the image characteristics and the detecting ability of each sequence on cartilage lesions were analyzed. Results: In the healthy volunteers, the cartilage SNR was 3D-FFE-SPIR: 197.93±18.58, 3D-FFE-WATS: 187.32±21.50 (P=0.159). CNR (cartilage/bone) was 3D-FFE-SPIR: 185.50±18.34, 3D-FFE-WATS: 169.55±24.57 (P=0.054). CNR ( cartilage/muscle ) was 3D-FFE-SPIR: 61.40±19.04, 3D-FFE-WATS: 47.27±21.05 (P=0.064). The cartilage SNR and CNR between cartilage and bone, muscle of 3D-FFE-SPIR weren't significantly higher than that of 3D-FFE- WATS. CNR(cartilage/liquid) was 3D-FFE-SPIR: 91.53±14.46, 3D-FFE-WATS: 149.28±32.30 (P0.000). CNR (cartilage/marrow) was 3D-FFE-SPIR: 159.26±18.83, 3D-FFE-WATS: 176.87± 22.50 (P=0.028). CNR (cartilage/fat) was 3 D-FFE-SPIR: 134.56±15.80,3 D-FFE-WATS: 154. 01 + 22.42 (P=0.010). The CNR between cartilage and liquid, marrow, fat were higher in 3 D-FFE-WATS and significantly different than that of 3 D-FFE-SPIR. Thirty detected cartilage injuries of patients were 3D-FFE- WATS: 39, 3D-FFE-SPIR: 45 and there was no statistical difference between them (P=0.37). Conclusion: 3D-FFE-WATS can show the articular cartilage clearly. It has high scan speed and suppress the fat signal evenly. Its ability for finding cartilage damage is equal to that of 3D-FFE-SPIR. So WATS can be used in the routine clinical cartilage examination. (authors)

  4. Namaste (counterbalancing) technique: Overcoming warping in costal cartilage.

    Science.gov (United States)

    Agrawal, Kapil S; Bachhav, Manoj; Shrotriya, Raghav

    2015-01-01

    Indian noses are broader and lack projection as compared to other populations, hence very often need augmentation, that too by large volume. Costal cartilage remains the material of choice in large volume augmentations and repair of complex primary and secondary nasal deformities. One major disadvantage of costal cartilage grafts (CCG) which offsets all other advantages is the tendency to warp and become distorted over a period of time. We propose a simple technique to overcome this menace of warping. We present the data of 51 patients of rhinoplasty done using CCG with counterbalancing technique over a period of 4 years. No evidence of warping was found in any patient up to a maximum follow-up period of 4 years. Counterbalancing is a useful technique to overcome the problem of warping. It gives liberty to utilize even unbalanced cartilage safely to provide desired shape and use the cartilage without any wastage.

  5. Starch-modified magnetite nanoparticles for impregnation into cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Soshnikova, Yulia M., E-mail: yuliasoshnikova@gmail.com [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Roman, Svetlana G.; Chebotareva, Natalia A. [A.N. Bach Institute of Biochemistry (Russian Federation); Baum, Olga I. [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Obrezkova, Mariya V. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation); Gillis, Richard B.; Harding, Stephen E. [University of Nottingham, National Centre for Macromolecular Hydrodynamics (United Kingdom); Sobol, Emil N. [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Lunin, Valeriy V. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation)

    2013-11-15

    The paper presents preparation and characterization of starch-modified Fe{sub 3}O{sub 4} nanoparticles (NPs) in aqueous dispersion after impregnation into healthy and damaged types of cartilage. We show that starch-modified dispersion has a narrower size distribution than a non‐stabilized one. The average hydrodynamic radius of magnetite NPs in a dispersion used for impregnation into cartilage is (48 ± 1) nm with the width of the distribution from 5 to 200 nm. We investigate stability of aqueous magnetite NPs dispersions during storage and with increase in temperature (up to 70 °C). We find that polydisperse magnetite NPs can penetrate into cartilage and the size and concentration of impregnated particles depend on the organization of the tissue structure. The results confirm the possibility of application of magnetite NPs in diagnostics and laser treatment of degenerative cartilage deceases.

  6. Preclinical Studies for Cartilage Repair

    Science.gov (United States)

    Hurtig, Mark B.; Buschmann, Michael D.; Fortier, Lisa A.; Hoemann, Caroline D.; Hunziker, Ernst B.; Jurvelin, Jukka S.; Mainil-Varlet, Pierre; McIlwraith, C. Wayne; Sah, Robert L.; Whiteside, Robert A.

    2011-01-01

    Investigational devices for articular cartilage repair or replacement are considered to be significant risk devices by regulatory bodies. Therefore animal models are needed to provide proof of efficacy and safety prior to clinical testing. The financial commitment and regulatory steps needed to bring a new technology to clinical use can be major obstacles, so the implementation of highly predictive animal models is a pressing issue. Until recently, a reductionist approach using acute chondral defects in immature laboratory species, particularly the rabbit, was considered adequate; however, if successful and timely translation from animal models to regulatory approval and clinical use is the goal, a step-wise development using laboratory animals for screening and early development work followed by larger species such as the goat, sheep and horse for late development and pivotal studies is recommended. Such animals must have fully organized and mature cartilage. Both acute and chronic chondral defects can be used but the later are more like the lesions found in patients and may be more predictive. Quantitative and qualitative outcome measures such as macroscopic appearance, histology, biochemistry, functional imaging, and biomechanical testing of cartilage, provide reliable data to support investment decisions and subsequent applications to regulatory bodies for clinical trials. No one model or species can be considered ideal for pivotal studies, but the larger animal species are recommended for pivotal studies. Larger species such as the horse, goat and pig also allow arthroscopic delivery, and press-fit or sutured implant fixation in thick cartilage as well as second look arthroscopies and biopsy procedures. PMID:26069576

  7. PIXE and cSAXS studies at the bone-cartilage interface

    International Nuclear Information System (INIS)

    Kaabar, W.; Gundogdu, O.; Bradley, D.A.; Bunk, O.; Pfeiffer, F.; Farquharson, M.J.; Webb, M.; Jeynes, C.

    2008-01-01

    Full text: Divalent cations such as Zn and Ca play a central role both in the normal processes of growth and remodelling as well as in the degenerative and inflammatory processes of articular cartilage during arthritis. These cations act as co-factors of a class of enzymes known as metalloproteinases, believed to be active during the initiation, progress and remodelling processes associated with osteoarthritis. Other important enzymes such as alkaline phosphatase, involved in cartilage mineralization, are also associated with the presence of these metallic co-factors. A number of authors have used X-ray fluorescence, employing synchrotron radiation sources to map metal ion distributions in bone and cartilage. In the present work, investigations were carried out on the distribution of metallic ions (Zn, Ca, P and S) in articular cartilage samples at the University of Surrey hosted EPSRC national ion beam facility based on a 2 MV Tandetron accelerator. An in-air beam line was used, with proton energy of 2.5 MeV. Micro Proton-Induced X-ray Emission (μ-PIXE) analysis has been made of the bone-cartilage interface for samples taken from the human femoral head. The bone-cartilage interface region between uncalcified and mineralized cartilage regions has attracted particular interest, being identified to be an active site of remodelling. Here coherent small angle X-ray scattering (cSAXS) has also been employed to investigate the structure and organization of the collagen network in decalcified diseased human femoral heads and the equine metacarpus joint, study being carried out at the Paul Scherrer Institute (PSI) synchrotron beamline cSAXS. (Fig. 1: cSAXS over a 1 mm x 1.5 mm area of a cartilage/bone sample; the left- and right hand panels corresponds to the length scales 658-568 A and 962-833 A respectively. The bar scale indicates relative orientation, from 0 deg (blue) to 90 deg (red)). The results of Fig. 1 are plotted in terms of orientation of cartilage and bone

  8. Repair of massively defected hemi-joints using demineralized osteoarticular allografts with protected cartilage.

    Science.gov (United States)

    Li, Siming; Yang, Xiaohong; Tang, Shenghui; Zhang, Xunmeng; Feng, Zhencheng; Cui, Shuliang

    2015-08-01

    Surgical replacement of massively defected joints necessarily relies on osteochondral grafts effective to both of bone and cartilage. Demineralized bone matrix (DBM) retains the osteoconductivity but destroys viable chondrocytes in the cartilage portion essential for successful restoration of defected joints. This study prepared osteochondral grafts of DBM with protected cartilage. Protected cartilage portions was characterized by cellular and molecular biology and the grafts were allogenically used for grafting. Protected cartilage showed similar histomorphological structure and protected proteins estimated by total proteins and cartilage specific proteins as in those of fresh controls when DBMs were generated in bone portions. Such grafts were successfully used for simultaneously repair of bone and cartilage in massively defected osteoarticular joints within 16 weeks post-surgery. These results present an allograft with clinical potential for simultaneous restoration of bone and cartilage in defected joints.

  9. Comparison of multiple quantitative MRI parameters for characterization of the goat cartilage in an ongoing osteoarthritis: dGEMRIC, T1ρ and sodium

    International Nuclear Information System (INIS)

    Schrauth, Joachim H.X.; Lykowsky, Gunthard; Hemberger, Kathrin; Kreutner, Jakob; Jakob, Peter M.; Weber, Daniel; Haddad, Daniel; Rackwitz, Lars; Noeth, Ulrich

    2016-01-01

    Osteoarthritis (OA) is a degenerative joint disease leading to cartilage deterioration by loss of matrix, fibrillation, formation of fissures, and ultimately complete loss of the cartilage surface. Here, three magnetic resonance imaging (MRI) techniques, dGEMRIC (delayed Gadolinium enhanced MRI of cartilage; dG 1 = T 1,post ; dG 2 = 1/T 1,post -1/T 1,pre ), T 1ρ , and sodium MRI, are compared in a preclinical in vivo study to evaluate the differences in their potential for cartilage characterization and to establish an examination protocol for a following clinical study. OA was induced in 12 caprine knees (6 control, 6 therapy). Adipose derived stem cells were injected afterwards as a treatment. The animals were examined healthy, 3 and 16 weeks postoperatively with all three MRI methods. Using statistical analysis, the OA development and the degree of correlation between the different MRI methods were determined. A strong correlation was observed between the dGEMRIC indices dG 1 and dG 2 (r=-0.87) which differ only in considering or not considering the T 1 baseline. Moderate correlations were found between T 1ρ and dG 1 (r=0.55), T 1ρ and dG 2 (r=0.47) and at last, sodium and dG 1 (r=0.45). The correlations found in this study match to the biomarkers which the methods are sensitive to. Even though the goat cartilage is significantly thinner than the human cartilage and even more in a degenerated cartilage, all three methods were able to characterize the cartilage over the whole period of time during an ongoing OA.Due to measurement and post processing optimizations, as well as the correlations detected in this work, the overall measurement time in future goat studies can be minimized. Moreover, an examination protocol for characterizing the cartilage in a clinical study was established.

  10. Repair of full-thickness articular cartilage defect using stem cell-encapsulated thermogel.

    Science.gov (United States)

    Zhang, Yanbo; Zhang, Jin; Chang, Fei; Xu, Weiguo; Ding, Jianxun

    2018-07-01

    Cartilage defect repair by hydrogel-based tissue engineering is becoming one of the most potential treatment strategies. In this work, a thermogel of triblock copolymer poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) was prepared as scaffold of bone marrow mesenchymal stem cells (BMMSCs) for repair of full-thickness articular cartilage defect. At first, the copolymer solution showed a reversible sol-gel transition at physiological temperature range, and the mechanical properties of such thermogel were high enough to support the repair of cartilage. Additionally, excellent biodegradability and biocompatibility of the thermogel were demonstrated. By implanting the BMMSC-encapsulated thermogel into the full-thickness articular cartilage defect (5.0 mm in diameter and 4.0 mm in depth) in the rabbit, it was found that the regenerated cartilage integrated well with the surrounding normal cartilage and subchondral bone at 12 weeks post-surgery. The upregulated expression of glycosaminoglycan and type II collagen in the repaired cartilage, and the comparable biomechanical properties with normal cartilage suggested that the cell-encapsulated PLGA-PEG-PLGA thermogel had great potential in serving as the promising scaffold for cartilage regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. 9-cis-retinoic Acid and troglitazone impacts cellular adhesion, proliferation, and integrin expression in K562 cells.

    Science.gov (United States)

    Hanson, Amanda M; Gambill, Jessica; Phomakay, Venusa; Staten, C Tyler; Kelley, Melissa D

    2014-01-01

    Retinoids are established pleiotropic regulators of both adaptive and innate immune responses. Recently, troglitazone, a PPAR gamma agonist, has been demonstrated to have anti-inflammatory effects. Separately, retinoids and troglitazone are implicated in immune related processes; however, their combinatory role in cellular adhesion and proliferation has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) and troglitazone on K562 cellular adhesion and proliferation was investigated. Troglitazone exposure decreased K562 cellular adhesion to RGD containing extracellular matrix proteins fibronectin, FN-120, and vitronectin in a concentration and time-dependent manner. In the presence of troglitazone, 9-cis-retinoic acid restores cellular adhesion to levels comparable to vehicle treatment alone on fibronectin, FN-120, and vitronectin substrates within 72 hours. Due to the prominent role of integrins in attachment to extracellular matrix proteins, we evaluated the level of integrin α5 subunit expression. Troglitazone treatment results in decrease in α5 subunit expression on the cell surface. In the presence of both agonists, cell surface α5 subunit expression was restored to levels comparable to vehicle treatment alone. Additionally, troglitazone and 9-cis-RA mediated cell adhesion was decreased in the presence of a function blocking integrin alpha 5 inhibitor. Further, through retinoid metabolic profiling and HPLC analysis, our study demonstrates that troglitazone augments retinoid availability in K562 cells. Finally, we demonstrate that troglitazone and 9-cis-retinoic acid synergistically dampen cellular proliferation in K562 cells. Our study is the first to report that the combination of troglitazone and 9-cis-retinoic acid restores cellular adhesion, alters retinoid availability, impacts integrin expression, and dampens cellular proliferation in K562 cells.

  12. Melanocortin 1 receptor-signaling deficiency results in an articular cartilage phenotype and accelerates pathogenesis of surgically induced murine osteoarthritis.

    Science.gov (United States)

    Lorenz, Julia; Seebach, Elisabeth; Hackmayer, Gerit; Greth, Carina; Bauer, Richard J; Kleinschmidt, Kerstin; Bettenworth, Dominik; Böhm, Markus; Grifka, Joachim; Grässel, Susanne

    2014-01-01

    Proopiomelanocortin-derived peptides exert pleiotropic effects via binding to melanocortin receptors (MCR). MCR-subtypes have been detected in cartilage and bone and mediate an increasing number of effects in diathrodial joints. This study aims to determine the role of MC1-receptors (MC1) in joint physiology and pathogenesis of osteoarthritis (OA) using MC1-signaling deficient mice (Mc1re/e). OA was surgically induced in Mc1re/e and wild-type (WT) mice by transection of the medial meniscotibial ligament. Histomorphometry of Safranin O stained articular cartilage was performed with non-operated controls (11 weeks and 6 months) and 4/8 weeks past surgery. µCT-analysis for assessing epiphyseal bone architecture was performed as a longitudinal study at 4/8 weeks after OA-induction. Collagen II, ICAM-1 and MC1 expression was analysed by immunohistochemistry. Mc1re/e mice display less Safranin O and collagen II stained articular cartilage area compared to WT prior to OA-induction without signs of spontaneous cartilage surface erosion. This MC1-signaling deficiency related cartilage phenotype persisted in 6 month animals. At 4/8 weeks after OA-induction cartilage erosions were increased in Mc1re/e knees paralleled by weaker collagen II staining. Prior to OA-induction, Mc1re/e mice do not differ from WT with respect to bone parameters. During OA, Mc1re/e mice developed more osteophytes and had higher epiphyseal bone density and mass. Trabecular thickness was increased while concomitantly trabecular separation was decreased in Mc1re/e mice. Numbers of ICAM-positive chondrocytes were equal in non-operated 11 weeks Mc1re/e and WT whereas number of positive chondrocytes decreased during OA-progression. Unchallenged Mc1re/e mice display smaller articular cartilage covered area without OA-related surface erosions indicating that MC1-signaling is critical for proper cartilage matrix integrity and formation. When challenged with OA, Mc1re/e mice develop a more severe OA

  13. Cartilage Regeneration in the Head and Neck Area: Combination of Ear or Nasal Chondrocytes and Mesenchymal Stem Cells Improves Cartilage Production

    NARCIS (Netherlands)

    Pleumeekers, M.M.; Nimeskern, L.M.; Koevoet, W.L.M.; Karperien, Hermanus Bernardus Johannes; Stok, K.S.; van Osch, G.J.V.M.

    2015-01-01

    Background: Cartilage tissue engineering can offer promising solutions for restoring cartilage defects in the head and neck area and has the potential to overcome limitations of current treatments. However, to generate a construct of reasonable size, large numbers of chondrocytes are required, which

  14. The distribution of YKL-40 in osteoarthritic and normal human articular cartilage

    DEFF Research Database (Denmark)

    Volck, B; Ostergaard, K; Johansen, J S

    1999-01-01

    YKL-40, also called human cartilage glycoprotein-39, is a major secretory protein of human chondrocytes in cell culture. YKL-40 mRNA is expressed by cartilage from patients with rheumatoid arthritis, but is not detectable in normal human cartilage. The aim was to investigate the distribution of YKL......-40 in osteoarthritic (n=9) and macroscopically normal (n=5) human articular cartilage, collected from 12 pre-selected areas of the femoral head, to discover a potential role for YKL-40 in cartilage remodelling in osteoarthritis. Immunohistochemical analysis showed that YKL-40 staining was found...... in chondrocytes of osteoarthritic cartilage mainly in the superficial and middle zone of the cartilage rather than the deep zone. There was a tendency for high number of YKL-40 positive chondrocytes in areas of the femoral head with a considerable biomechanical load. The number of chondrocytes with a positive...

  15. Follistatin Alleviates Synovitis and Articular Cartilage Degeneration Induced by Carrageenan

    Directory of Open Access Journals (Sweden)

    Jun Yamada

    2014-01-01

    Full Text Available Activins are proinflammatory cytokines which belong to the TGFβ superfamily. Follistatin is an extracellular decoy receptor for activins. Since both activins and follistatin are expressed in articular cartilage, we hypothesized that activin-follistatin signaling participates in the process of joint inflammation and cartilage degeneration. To test this hypothesis, we examined the effects of follistatin in a carrageenan-induced mouse arthritis model. Synovitis induced by intra-articular injection of carrageenan was significantly alleviated by preinjection with follistatin. Macrophage infiltration into the synovial membrane was significantly reduced in the presence of follistatin. In addition, follistatin inhibited proteoglycan erosion induced by carrageenan in articular cartilage. These data indicate that activin-follistatin signaling is involved in joint inflammation and cartilage homeostasis. Our data suggest that follistatin can be a new therapeutic target for inflammation-induced articular cartilage degeneration.

  16. Retinoic Acid and Immune Homeostasis: A Balancing Act.

    Science.gov (United States)

    Erkelens, Martje N; Mebius, Reina E

    2017-03-01

    In the immune system, the vitamin A metabolite retinoic acid (RA) is known for its role in inducing gut-homing molecules in T and B cells, inducing regulatory T cells (Tregs), and promoting tolerance. However, it was suggested that RA can have a broad spectrum of effector functions depending on the local microenvironment. Under specific conditions, RA can also promote an inflammatory environment. We discuss the dual role of RA in immune responses and how this might be regulated. Furthermore, we focus on the role of RA in autoimmune diseases and whether RA might be used as a therapeutic agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Evaluation of articular cartilage degeneration with contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Fujioka, Mikihiro

    1994-01-01

    The evaluation of glycosaminoglycan (GAG) concentration is important in the clinical diagnosis of articular cartilage degeneration. Glycosaminoglycan provides a large number of fixed negative charges. When manganese ion (Mn 2+ ) is administered to the cartilage matrix, this cation diffuses into the matrix and accumulates in accordance with the distribution of fixed negative charges owing to the electrostatic interaction. The accumulation of Mn 2+ causes a shortening of the relaxation times, resulting in high signal intensity in the MR image, when a T 1 -weighted image is obtained. The present study applied this new method to the articular cartilage to evaluate the degree of the cartilage degeneration. Small pieces of articular cartilage were dissected from the knee joints of young chickens. Experimentally degenerated articular cartilage was obtained by treating the specimen with various concentrations of papain solution. Then specimens were soaked in manganese solution until they obtained equilibrium and served for MR microimaging. The fixed charge density (FCD), the concentration of Mn 2+ and Na + , T 1 and T 2 relaxation times were also measured. In degenerated cartilage, lower accumulation of Mn 2+ due to lower GAG density caused a lower than normal signal intensity. Thus, administration of Mn 2+ enhances the biochemical change in the cartilage matrix in terms of differences in the relaxation time. The actual signal intensity on MRI of each specimen corresponded to the theoretical signal intensity, which was calculated from the FCD. It was concluded that MR images taken with contrast enhancement by Mn 2+ give direct visual information about the GAG density in the articular cartilage. MRI with cationic contrast agent could develop into a new method for early non-invasive diagnosis of cartilage dysfunction and degeneration. (author)

  18. Can Glucosamine Supplements Protect My Knee Cartilage from Osteoarthritis?

    Science.gov (United States)

    ... cartilage in osteoarthritis? Can glucosamine supplements protect my knee cartilage from osteoarthritis? Answers from Brent A. Bauer, M.D. Study results on this question have been mixed, with some suggesting possible ...

  19. Cartilage regeneration for treatment of osteoarthritis: a paradigm for nonsurgical intervention

    Science.gov (United States)

    Sabaawy, Hatem E.

    2015-01-01

    Osteoarthritis (OA) is associated with articular cartilage abnormalities and affects people of older age: preventative or therapeutic treatment measures for OA and related articular cartilage disorders remain challenging. In this perspective review, we have integrated multiple biological, morphological, developmental, stem cell and homeostasis concepts of articular cartilage to develop a paradigm for cartilage regeneration. OA is conceptually defined as an injury of cartilage that initiates chondrocyte activation, expression of proteases and growth factor release from the matrix. This regenerative process results in the local activation of inflammatory response genes in cartilage without migration of inflammatory cells or angiogenesis. The end results are catabolic and anabolic responses, and it is the balance between these two outcomes that controls remodelling of the matrix and regeneration. A tantalizing clinical clue for cartilage regrowth in OA joints has been observed in surgically created joint distraction. We hypothesize that cartilage growth in these distracted joints may have a biological connection with the size of organs and regeneration. Therefore we propose a novel, practical and nonsurgical intervention to validate the role of distraction in cartilage regeneration in OA. The approach permits normal wake-up activity while during sleep; the index knee is subjected to distraction with a pull traction device. Comparison of follow-up magnetic resonance imaging (MRI) at 3 and 6 months of therapy to those taken before therapy will provide much-needed objective evidence for the use of this mode of therapy for OA. We suggest that the paradigm presented here merits investigation for treatment of OA in knee joints. PMID:26029269

  20. T2 relaxation time mapping of the cartilage cap of osteochondromas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Kyung; Horn, Paul; Laor, Tal [Cincinnati Children' s Hospital Medical Center, Cincinnati (United States); Daedzinski, Bernard J. [Dept. of Radiology, Children' s Hospital of Philadelphia, University of Pennsylvania, Philadelphia (United States); Kim, Dong Hoon [Dept. of Radiology, Pharmacology, Korea University College of Medicine, Seoul (Korea, Republic of)

    2016-02-15

    Our aim was to evaluate the cartilage cap of osteochondromas using T2 maps and to compare these values to those of normal patellar cartilage, from age and gender matched controls. This study was approved by the Institutional Review Board and request for informed consent was waived. Eleven children (ages 5-17 years) with osteochondromas underwent MR imaging, which included T2-weighted fat suppressed and T2 relaxation time mapping (echo time = 9-99/repetition time = 1500 msec) sequences. Lesion origins were femur (n = 5), tibia (n = 3), fibula (n = 2), and scapula (n = 1). Signal intensity of the cartilage cap, thickness, mean T2 relaxation times, and T2 spatial variation (mean T2 relaxation times as a function of distance) were evaluated. Findings were compared to those of patellar cartilage from a group of age and gender matched subjects. The cartilage caps showed a fluid-like high T2 signal, with mean thickness of 4.8 mm. The mean value of mean T2 relaxation times of the osteochondromas was 264.0 ± 80.4 msec (range, 151.0-366.0 msec). Mean T2 relaxation times were significantly longer than the values from patellar cartilage (39.0 msec) (p < 0.0001). These findings were observed with T2 spatial variation plots across the entire distance of the cartilage cap, with the most pronounced difference in the middle section of the cartilage. Longer T2 relaxation times of the cartilage caps of osteochondromas should be considered as normal, and likely to reflect an increased water content, different microstructure and component.

  1. T2 relaxation time mapping of the cartilage cap of osteochondromas

    International Nuclear Information System (INIS)

    Kim, Hee Kyung; Horn, Paul; Laor, Tal; Daedzinski, Bernard J.; Kim, Dong Hoon

    2016-01-01

    Our aim was to evaluate the cartilage cap of osteochondromas using T2 maps and to compare these values to those of normal patellar cartilage, from age and gender matched controls. This study was approved by the Institutional Review Board and request for informed consent was waived. Eleven children (ages 5-17 years) with osteochondromas underwent MR imaging, which included T2-weighted fat suppressed and T2 relaxation time mapping (echo time = 9-99/repetition time = 1500 msec) sequences. Lesion origins were femur (n = 5), tibia (n = 3), fibula (n = 2), and scapula (n = 1). Signal intensity of the cartilage cap, thickness, mean T2 relaxation times, and T2 spatial variation (mean T2 relaxation times as a function of distance) were evaluated. Findings were compared to those of patellar cartilage from a group of age and gender matched subjects. The cartilage caps showed a fluid-like high T2 signal, with mean thickness of 4.8 mm. The mean value of mean T2 relaxation times of the osteochondromas was 264.0 ± 80.4 msec (range, 151.0-366.0 msec). Mean T2 relaxation times were significantly longer than the values from patellar cartilage (39.0 msec) (p < 0.0001). These findings were observed with T2 spatial variation plots across the entire distance of the cartilage cap, with the most pronounced difference in the middle section of the cartilage. Longer T2 relaxation times of the cartilage caps of osteochondromas should be considered as normal, and likely to reflect an increased water content, different microstructure and component

  2. Understanding Magnetic Resonance Imaging of Knee Cartilage Repair: A Focus on Clinical Relevance.

    Science.gov (United States)

    Hayashi, Daichi; Li, Xinning; Murakami, Akira M; Roemer, Frank W; Trattnig, Siegfried; Guermazi, Ali

    2017-06-01

    The aims of this review article are (a) to describe the principles of morphologic and compositional magnetic resonance imaging (MRI) techniques relevant for the imaging of knee cartilage repair surgery and their application to longitudinal studies and (b) to illustrate the clinical relevance of pre- and postsurgical MRI with correlation to intraoperative images. First, MRI sequences that can be applied for imaging of cartilage repair tissue in the knee are described, focusing on comparison of 2D and 3D fast spin echo and gradient recalled echo sequences. Imaging features of cartilage repair tissue are then discussed, including conventional (morphologic) MRI and compositional MRI techniques. More specifically, imaging techniques for specific cartilage repair surgery techniques as described above, as well as MRI-based semiquantitative scoring systems for the knee cartilage repair tissue-MR Observation of Cartilage Repair Tissue and Cartilage Repair OA Knee Score-are explained. Then, currently available surgical techniques are reviewed, including marrow stimulation, osteochondral autograft, osteochondral allograft, particulate cartilage allograft, autologous chondrocyte implantation, and others. Finally, ongoing research efforts and future direction of cartilage repair tissue imaging are discussed.

  3. Delayed translocation of NGFI-B/RXR in glutamate stimulated neurons allows late protection by 9-cis retinoic acid

    International Nuclear Information System (INIS)

    Mathisen, Gro H.; Fallgren, Asa B.; Strom, Bjorn O.; Boldingh Debernard, Karen A.; Mohebi, Beata U.; Paulsen, Ragnhild E.

    2011-01-01

    Highlights: → NGFI-B and RXR translocate out of the nucleus after glutamate treatment. → Arresting NGFI-B/RXR in the nucleus protects neurons from excitotoxicity. → Late protection by 9-cis RA is possible due to a delayed translocation of NGFI-B/RXR. -- Abstract: Nuclear receptor and apoptosis inducer NGFI-B translocates out of the nucleus as a heterodimer with RXR in response to different apoptosis stimuli, and therefore represents a potential pharmacological target. We found that the cytosolic levels of NGFI-B and RXRα were increased in cultures of cerebellar granule neurons 2 h after treatment with glutamate (excitatory neurotransmitter in the brain, involved in stroke). To find a time-window for potential intervention the neurons were transfected with gfp-tagged expressor plasmids for NGFI-B and RXR. The default localization of NGFI-Bgfp and RXRgfp was nuclear, however, translocation out of the nucleus was observed 2-3 h after glutamate treatment. We therefore hypothesized that the time-window between treatment and translocation would allow late protection against neuronal death. The RXR ligand 9-cis retinoic acid was used to arrest NGFI-B and RXR in the nucleus. Addition of 9-cis retinoic acid 1 h after treatment with glutamate reduced the cytosolic translocation of NGFI-B and RXRα, the cytosolic translocation of NGFI-Bgfp observed in live neurons, as well as the neuronal death. However, the reduced translocation and the reduced cell death were not observed when 9-cis retinoic acid was added after 3 h. Thus, late protection from glutamate induced death by addition of 9-cis retinoic acid is possible in a time-window after apoptosis induction.

  4. Ultrasound arthroscopy of human knee cartilage and subchondral bone in vivo.

    Science.gov (United States)

    Liukkonen, Jukka; Lehenkari, Petri; Hirvasniemi, Jukka; Joukainen, Antti; Virén, Tuomas; Saarakkala, Simo; Nieminen, Miika T; Jurvelin, Jukka S; Töyräs, Juha

    2014-09-01

    Arthroscopic ultrasound imaging enables quantitative evaluation of articular cartilage. However, the potential of this technique for evaluation of subchondral bone has not been investigated in vivo. In this study, we address this issue in clinical arthroscopy of the human knee (n = 11) by determining quantitative ultrasound (9 MHz) reflection and backscattering parameters for cartilage and subchondral bone. Furthermore, in each knee, seven anatomical sites were graded using the International Cartilage Repair Society (ICRS) system based on (i) conventional arthroscopy and (ii) ultrasound images acquired in arthroscopy with a miniature transducer. Ultrasound enabled visualization of articular cartilage and subchondral bone. ICRS grades based on ultrasound images were higher (p ultrasound-based ICRS grades were expected as ultrasound reveals additional information on, for example, the relative depth of the lesion. In line with previous literature, ultrasound reflection and scattering in cartilage varied significantly (p ultrasound parameters and structure or density of subchondral bone could be demonstrated. To conclude, arthroscopic ultrasound imaging had a significant effect on clinical grading of cartilage, and it was found to provide quantitative information on cartilage. The lack of correlation between the ultrasound parameters and bone properties may be related to lesser bone change or excessive attenuation in overlying cartilage and insufficient power of the applied miniature transducer. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Disabled-2 Mediation of Retinoic Acid Cell Growth Arrest Signal in Breast Cancer

    Science.gov (United States)

    2002-08-01

    C. Cohen, L. E. Mendez , I. R. Horowitz, ylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. A. I Godwin, and X X. Xu, submitted for publication. T...trans., 9-cis-retinoic acid) and P- caro - forming units of adenovirus were added to the cells in medium with low tene were purchased from Sigma

  6. The Effectiveness of a 5% Retinoic Acid Peel Combined with Microdermabrasion for Facial Photoaging: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial.

    Science.gov (United States)

    Faghihi, Gita; Fatemi-Tabaei, Saghi; Abtahi-Naeini, Bahareh; Siadat, Amir Hossein; Sadeghian, Giti; Ali Nilforoushzadeh, Mohammad; Mohamadian-Shoeili, Hamed

    2017-01-01

    Background . Tretinoin has been shown to improve photoaged skin. This study was designed to evaluate the efficacy and tolerability of a 5% retinoic acid peel combined with microdermabrasion for facial photoaging. Materials and Methods . Forty-five patients, aged 35-70, affected by moderate-to-severe photodamage were enrolled in this trial. All patients received 3 sessions of full facial microdermabrasion and 3 sessions of either 5% retinoic acid peel or placebo after the microdermabrasion. Efficacy was measured using the Glogau scale. Patients were assessed at 2 weeks and 1, 2, and 6 months after treatment initiation. Results . The mean ± SD age of participants was 49.55 ± 11.61 years, and the majorities (73.3%) were female. Between 1 month and 2 months, participants reported slight but statistically significant improvements for all parameters ( P < 0.001). In terms of adverse effects, there were statistically significant differences reported between the 5% retinoic acid peel groups and the control group ( P < 0.001). The majority of adverse effects reported in the study were described as mild and transient. Conclusion . This study demonstrated that 5% retinoic acid peel cream combined with microdermabrasion was safe and effective in the treatment of photoaging in the Iranian population. This trial is registered with IRCT2015121112782N8.

  7. Extraction of aggrecan-peptide from cartilage by tissue autolysis.

    Science.gov (United States)

    Nakano, Takuo; Srichamroen, Anchalee; Ozimek, Lech

    2014-01-01

    Aggrecan is a cartilage specific proteoglycan containing chondroitin sulfate (CS) and keratan sulfate (KS). CS is an acidic polysaccharide having wide range of applications in pharmaceutical, cosmetic, and food industries. CS is extracted from cartilage by tissue proteolysis with an exogenous proteinase or by activating endogenous proteinases (autolysis) to release aggrecan-peptides from the tissue. This review is focused on the latter technique. Bovine nasal and tracheal cartilages, and broiler chicken sternum cartilage have been used for autolysis studies. To extract aggrecan-peptide, cartilage tissues are cut into small pieces, and incubated in a monovalent or divalent salt solution (e.g., 0.1 M sodium or calcium acetate) at pH 4.5 and 37 °C for 7 - 24 h. Most (~80% or more) of total tissue uronic acid, a constituent sugar of aggrecan, is extracted and released into the salt solution during incubation. Reextraction of the tissue residue results in release of a small amount of uronic acid. Aggrecan-peptides purified using anion exchange chromatography are large compounds containing CS and KS. On gel chromatography, they are excluded from the column of Sephacryl S-300. Chemical composition analysis demonstrated that aggrecan-peptides from either bovine or chicken cartilage contain >90% CS with small amount (autolysis has been used as a plate coating antigen in enzyme- linked immunosorbent assay (ELISA) to determine KS.

  8. Radiological, computertomographic, pathoanatomical and histological examination of the rib cartilage of the dog

    International Nuclear Information System (INIS)

    Lorber, B.

    2000-06-01

    This study was concerned with the representation and description of the rib cartilage of the dog and the abnormalities of such by means of radiological, computer tomographic, pathoanatomical and histological examinations and the comparison of the results of the various examination methods. The study material consisted of 100 ventral thorax walls of dogs of different ages and breeds. In 39 of the subjects, no abnormalities of rib cartilage other than unremarkable calcification were observed. Among the subjects, there were 11 puppies (0-3 months), whose rib cartilage appeared soft tissue dense due to the absence of calcification, 14 juvenile animals (4-18 months), the rib cartilage of which showed a typical finely granulated structure, and 14 adult dogs (over 18 months), whose rib cartilage exhibited a homogeneous to net-like calcified appearance. In the calcified rib cartilage, the histological section showed a centrally located spongiosa rod surrounded by a hyaline cartilage shell. The calcification tendency of the first pair of rib cartilage was remarkable: in 70 dogs, the first pair of rib cartilage remained uncalcified despite calcification of the other rib cartilage. Sixty-one dogs exhibited rib cartilage abnormalities. According to the radiological appearance of the abnormalities, they were divided into groups and their incidence was calculated. Abnormalities seen included interruption in the continuity of the calcified rib cartilage with and without callus formation, enlargement of rib cartilage, cuff formation, and abnormalities on the Articulationes sternocostales (projections in or around articulations, calcified and fractured joint surfaces). In addition, remarkable calcification patterns were observed. By means of CT examination the densities of the tissue forming the various abnormalities was determined. In the course of the pathoanatomical examination, it was shown that the interruptions in continuity with callus and the various enlarged areas of the

  9. Namaste (counterbalancing technique: Overcoming warping in costal cartilage

    Directory of Open Access Journals (Sweden)

    Kapil S Agrawal

    2015-01-01

    Full Text Available Background: Indian noses are broader and lack projection as compared to other populations, hence very often need augmentation, that too by large volume. Costal cartilage remains the material of choice in large volume augmentations and repair of complex primary and secondary nasal deformities. One major disadvantage of costal cartilage grafts (CCG which offsets all other advantages is the tendency to warp and become distorted over a period of time. We propose a simple technique to overcome this menace of warping. Materials and Methods: We present the data of 51 patients of rhinoplasty done using CCG with counterbalancing technique over a period of 4 years. Results: No evidence of warping was found in any patient up to a maximum follow-up period of 4 years. Conclusion: Counterbalancing is a useful technique to overcome the problem of warping. It gives liberty to utilize even unbalanced cartilage safely to provide desired shape and use the cartilage without any wastage.

  10. NONINVASIVE DETERMINATION OF KNEE CARTILAGE DEFORMATION DURING JUMPING

    Directory of Open Access Journals (Sweden)

    Djordje Kosanic

    2009-12-01

    Full Text Available The purpose of this investigation was to use a combination of image processing, force measurements and finite element modeling to calculate deformation of the knee cartilage during jumping. Professional athletes performed jumps analyzed using a force plate and high-speed video camera system. Image processing was performed on each frame of video using a color recognition algorithm. A simplified mass-spring-damper model was utilized for determination of global force and moment on the knee. Custom software for fitting the coupling characteristics was created. Simulated results were used as input data for the finite element calculation of cartilage deformation in the athlete's knee. Computer simulation data was compared with the average experimental ground reaction forces. The results show the three-dimensional mechanical deformation distribution inside the cartilage volume. A combination of the image recognition technology, force plate measurements and the finite element cartilage deformation in the knee may be used in the future as an effective noninvasive tool for prediction of injury during jumping

  11. Matrix development in self-assembly of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Gidon Ofek

    2008-07-01

    Full Text Available Articular cartilage is a highly functional tissue which covers the ends of long bones and serves to ensure proper joint movement. A tissue engineering approach that recapitulates the developmental characteristics of articular cartilage can be used to examine the maturation and degeneration of cartilage and produce fully functional neotissue replacements for diseased tissue.This study examined the development of articular cartilage neotissue within a self-assembling process in two phases. In the first phase, articular cartilage constructs were examined at 1, 4, 7, 10, 14, 28, 42, and 56 days immunohistochemically, histologically, and through biochemical analysis for total collagen and glycosaminoglycan (GAG content. Based on statistical changes in GAG and collagen levels, four time points from the first phase (7, 14, 28, and 56 days were chosen to carry into the second phase, where the constructs were studied in terms of their mechanical characteristics, relative amounts of collagen types II and VI, and specific GAG types (chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, and hyaluronan. Collagen type VI was present in initial abundance and then localized to a pericellular distribution at 4 wks. N-cadherin activity also spiked at early stages of neotissue development, suggesting that self-assembly is mediated through a minimization of free energy. The percentage of collagen type II to total collagen significantly increased over time, while the proportion of collagen type VI to total collagen decreased between 1 and 2 wks. The chondroitin 6- to 4- sulfate ratio decreased steadily during construct maturation. In addition, the compressive properties reached a plateau and tensile characteristics peaked at 4 wks.The indices of cartilage formation examined in this study suggest that tissue maturation in self-assembled articular cartilage mirrors known developmental processes for native tissue. In terms of tissue engineering, it is

  12. μ-PIXE and SAXS studies at the bone-cartilage interface

    International Nuclear Information System (INIS)

    Kaabar, W.; Gundogdu, O.; Laklouk, A.; Bunk, O.; Pfeiffer, F.; Farquharson, M.J.; Bradley, D.A.

    2010-01-01

    Micro Proton Induced X-ray Emission (μ-PIXE) analysis has been employed herein in investigating and quantifying the distribution of a number of essential elements in thin human diseased articular cartilage sections affected by osteoarthritis (OA). Various cations Ca, P and Zn have been reported to play an important role both in the normal growth and remodelling of articular cartilage and subchondral bone as well as in the degenerative and inflammatory processes associated with the disease; they act as co-factors of a class of enzymes known as metalloproteinases which are believed to be active during the initiation, progress and remodelling processes associated with osteoarthritis. Other important enzymes such as alkaline phosphatase are associated with cartilage mineralization. Synchrotron radiation X-ray fluorescence (SR-XRF) for mapping of elemental distributions in bone and cartilage has also been employed by the present group and others. In the current investigations using the cSAXS beamline at the Swiss light source, Small-Angle X-ray Scattering (SAXS) was carried out on decalcified human articular cartilage to explore the structural and organizational changes of collagen networks in diseased articular cartilage.

  13. {mu}-PIXE and SAXS studies at the bone-cartilage interface

    Energy Technology Data Exchange (ETDEWEB)

    Kaabar, W. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)], E-mail: w.kaabar@surrey.ac.uk; Gundogdu, O. [Umuttepe Campus, University of Kocaeli, 41380, Kocaeli (Turkey); Laklouk, A. [Food Science Department, Al-Fateh Unversity, Tripoli (Libyan Arab Jamahiriya); Bunk, O. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen (Switzerland); Pfeiffer, F. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Farquharson, M.J. [Department of Radiography, City University, London EC1V OHB (United Kingdom); Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2010-04-15

    Micro Proton Induced X-ray Emission ({mu}-PIXE) analysis has been employed herein in investigating and quantifying the distribution of a number of essential elements in thin human diseased articular cartilage sections affected by osteoarthritis (OA). Various cations Ca, P and Zn have been reported to play an important role both in the normal growth and remodelling of articular cartilage and subchondral bone as well as in the degenerative and inflammatory processes associated with the disease; they act as co-factors of a class of enzymes known as metalloproteinases which are believed to be active during the initiation, progress and remodelling processes associated with osteoarthritis. Other important enzymes such as alkaline phosphatase are associated with cartilage mineralization. Synchrotron radiation X-ray fluorescence (SR-XRF) for mapping of elemental distributions in bone and cartilage has also been employed by the present group and others. In the current investigations using the cSAXS beamline at the Swiss light source, Small-Angle X-ray Scattering (SAXS) was carried out on decalcified human articular cartilage to explore the structural and organizational changes of collagen networks in diseased articular cartilage.

  14. Segmenting articular cartilage automatically using a voxel classification approach

    DEFF Research Database (Denmark)

    Folkesson, Jenny; Dam, Erik B; Olsen, Ole F

    2007-01-01

    We present a fully automatic method for articular cartilage segmentation from magnetic resonance imaging (MRI) which we use as the foundation of a quantitative cartilage assessment. We evaluate our method by comparisons to manual segmentations by a radiologist and by examining the interscan...... reproducibility of the volume and area estimates. Training and evaluation of the method is performed on a data set consisting of 139 scans of knees with a status ranging from healthy to severely osteoarthritic. This is, to our knowledge, the only fully automatic cartilage segmentation method that has good...... agreement with manual segmentations, an interscan reproducibility as good as that of a human expert, and enables the separation between healthy and osteoarthritic populations. While high-field scanners offer high-quality imaging from which the articular cartilage have been evaluated extensively using manual...

  15. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianhua; Yang, Qiu; Cheng, Niangmei [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Tao, Xiaojun [Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan (China); Zhang, Zhihua; Sun, Xiaomin [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Key Laboratory of Biomedical Materials of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-04-01

    For cartilage repair, ideal scaffolds should mimic natural extracellular matrix (ECM) exhibiting excellent characteristics, such as biocompatibility, suitable porosity, and good cell affinity. This study aimed to prepare a collagen/silk fibroin composite scaffold incorporated with poly-lactic-co-glycolic acid (PLGA) microsphere that can be applied in repairing cartilage. To obtain optimum conditions for manufacturing a composite scaffold, a scaffold composed of different collagen-to-silk fibroin ratios was evaluated by determining porosity, water absorption, loss rate in hot water, and cell proliferation. Results suggested that the optimal ratio of collagen and silk fibroin composite scaffold was 7:3. The microstructure and morphological characteristics of the obtained scaffold were also examined through scanning electron microscopy and Fourier transform infrared spectroscopy. The results of in vitro fluorescence staining of bone marrow stromal cells revealed that collagen/silk fibroin composite scaffold enhanced cell proliferation without eliciting side effects. The prepared composite scaffold incorporated with PLGA microsphere was implanted in fully thick articular cartilage defects in rabbits. Collagen/silk fibroin composite scaffold with PLGA microspheres could enhance articular cartilage regeneration and integration between the repaired cartilage and the surrounding cartilage. Therefore, this composite will be a promising material for cartilage repair and regeneration. - Highlights: • Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere proposed for cartilage repair was created. • In vivo, scaffold could enhance cartilage regeneration and integration between the repaired and surrounding cartilage. • In vitro, scaffold exhibits excellent characteristics, such as, improved porosity water absorption and good cell affinity.

  16. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.

    Science.gov (United States)

    Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S

    2013-10-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.

  17. Biostable scaffolds of polyacrylate polymers implanted in the articular cartilage induce hyaline-like cartilage regeneration in rabbits.

    Science.gov (United States)

    Sancho-Tello, María; Forriol, Francisco; Martín de Llano, José J; Antolinos-Turpin, Carmen; Gómez-Tejedor, José A; Gómez Ribelles, José L; Carda, Carmen

    2017-07-05

    To study the influence of scaffold properties on the organization of in vivo cartilage regeneration. Our hypothesis was that stress transmission to the cells seeded inside the pores of the scaffold or surrounding it, which is highly dependent on the scaffold properties, determines the differentiation of both mesenchymal cells and dedifferentiated autologous chondrocytes. 4 series of porous scaffolds made of different polyacrylate polymers, previously seeded with cultured rabbit chondrocytes or without cells, were implanted in cartilage defects in rabbits. Subchondral bone was injured during the surgery to allow blood to reach the implantation site and fill the scaffold pores. At 3 months after implantation, excellent tissue regeneration was obtained, with a well-organized layer of hyaline-like cartilage at the condylar surface in most cases of the hydrophobic or slightly hydrophilic series. The most hydrophilic material induced the poorest regeneration. However, no statistically significant difference was observed between preseeded and non-preseeded scaffolds. All of the materials used were biocompatible, biostable polymers, so, in contrast to some other studies, our results were not perturbed by possible effects attributable to material degradation products or to the loss of scaffold mechanical properties over time due to degradation. Cartilage regeneration depends mainly on the properties of the scaffold, such as stiffness and hydrophilicity, whereas little difference was observed between preseeded and non-preseeded scaffolds.

  18. The immunomodulatory effects of shark cartilage on the mouse and human immune system

    Directory of Open Access Journals (Sweden)

    ali Sheikhian

    2007-01-01

    Materials and methods: In an experimental study, the effects of different doses of shark cartilage on humoral (antibody titer immune response against sheep red blood cells (SRBC, were measured in mouse. In addition, we evaluated the modulatory effects of the shark cartilage on the natural killer (NK activity of the peritoneal cells of mouse against a tumor cell line called K562, according to the standard methods. The proliferative response of the human peripheral blood mononuclear cells was measured under the influence of shark cartilage. Results: Pure shark cartilage enhanced antibody response against SRBC in vivo. The hemagglutination titer which was 1/147 in the control group (injected with hen cartilage, increased to 1/1355 in the test group. The optimal dose was 100 mg/ml. both type of cartilage had blastogenic effect on peripheral blood mononuclear cells (the blastogenic index was 6.7 and 4.9 for impure shark cartilage and hen cartilage, respectively. NK activity was inhibited completely by pure shark cartilage (the amount of the killing activity of the effector peritoneal cells for the control and test groups against target cells was 25.9% and 5.5% respectively. Conclusion: Shark cartilage has a potent immunomodulatory effect on the specific immune mechanisms and some inhibitory effects on the innate immune mechanisms such as NC activity. Since the specific immunity has a more pivotal role against tumor formation, shark cartilage can be used as a cancer immunotherapeutic.

  19. A retinoic acid response element that overlaps an estrogen response element mediates multihormonal sensitivity in transcriptional activation of the lactoferrin gene.

    OpenAIRE

    Lee, M O; Liu, Y; Zhang, X K

    1995-01-01

    The lactoferrin gene is highly expressed in many different tissues, and its expression is controlled by different regulators. In this report, we have defined a retinoic acid response element (RARE) in the 5'-flanking region of the lactoferrin gene promoter. The lactoferrin-RARE is composed of two AGGTCA-like motifs arranged as a direct repeat with 1-bp spacing (DR-1). A gel retardation assay demonstrated that it bound strongly with retinoid X receptor (RXR) homodimers and RXR-retinoic acid re...

  20. Cartilage collagen damage in hip osteoarthritis similar to that seen in knee osteoarthritis; a case–control study of relationship between collagen, glycosaminoglycan and cartilage swelling

    Directory of Open Access Journals (Sweden)

    Hosseininia Shahrzad

    2013-01-01

    Full Text Available Abstract Background It remains to be shown whether OA shares molecular similarities between different joints in humans. This study provides evidence for similarities in cartilage molecular damage in osteoarthritic (OA joints. Methods Articular cartilage from osteoarthritic hip joints were analysed and compared to non-OA controls regarding collagen, glycosaminoglycan and water content. Femoral heads from 16 osteoarthritic (OA and 20 reference patients were obtained from hip replacement surgery due to OA and femoral neck fracture, respectively. Cartilage histological changes were assessed by Mankin grading and denatured collagen type II immunostaining and cartilage was extracted by α-chymotrypsin. Hydroxyproline and Alcian blue binding assays were used to measure collagen and glycosaminoglycan (GAG content, respectively. Results Mankin and immunohistology scores were significantly higher in hip OA samples than in reference samples. Cartilage water content was 6% higher in OA samples than in references. 2.5 times more collagen was extracted from OA than from reference samples. There was a positive association between water content and percentage of extractable collagen pool (ECP in both groups. The amounts of collagen per wet and dry weights did not differ statistically between OA and reference cartilage. % Extractable collagen was not related to collagen per dry weight in either group. However when collagen was expressed by wet weight there was a negative correlation between % extractable and collagen in OA cartilage. The amount of GAG per wet weight was similar in both groups but the amount of GAG per dry weight was higher in OA samples compared to reference samples, which suggests a capacity for GAG biosynthesis in hip OA cartilage. Neither of the studied parameters was related to age in either group. Conclusions Increased collagen extractability and water content in human hip cartilage is associated with OA pathology and can be observed at