WorldWideScience

Sample records for carotenoid biosynthetic pathway

  1. Expression of carotenoid biosynthetic pathway genes and changes in carotenoids during ripening in tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Namitha, Kanakapura Krishnamurthy; Archana, Surya Narayana; Negi, Pradeep Singh

    2011-04-01

    To study the expression pattern of carotenoid biosynthetic pathway genes, changes in their expression at different stages of maturity in tomato fruit (cv. Arka Ahuti) were investigated. The genes regulating carotenoid production were quantified by a dot blot method using a DIG (dioxigenin) labelling and detection kit. The results revealed that there was an increase in the levels of upstream genes of the carotenoid biosynthetic pathway such as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), 4-hydroxy-3-methyl-but-2-enyl diphosphate reductase (Lyt B), phytoene synthase (PSY), phytoene desaturase (PDS) and ζ-carotene desaturase (ZDS) by 2-4 fold at the breaker stage as compared to leaf. The lycopene and β-carotene content was analyzed by HPLC at different stages of maturity. The lycopene (15.33 ± 0.24 mg per 100 g) and β-carotene (10.37 ± 0.46 mg per 100 g) content were found to be highest at 5 days post-breaker and 10 days post-breaker stage, respectively. The lycopene accumulation pattern also coincided with the color values at different stages of maturity. These studies may provide insight into devising gene-based strategies for enhancing carotenoid accumulation in tomato fruits.

  2. Perturbations in the Photosynthetic Pigment Status Result in Photooxidation-Induced Crosstalk between Carotenoid and Porphyrin Biosynthetic Pathways

    Directory of Open Access Journals (Sweden)

    Joon-Heum Park

    2017-11-01

    Full Text Available Possible crosstalk between the carotenoid and porphyrin biosynthetic pathways under photooxidative conditions was investigated by using their biosynthetic inhibitors, norflurazon (NF and oxyfluorfen (OF. High levels of protoporphyrin IX (Proto IX accumulated in rice plants treated with OF, whereas Proto IX decreased in plants treated with NF. Both NF and OF treatments resulted in greater decreases in MgProto IX, MgProto IX methyl ester, and protochlorophyllide. Activities and transcript levels of most porphyrin biosynthetic enzymes, particularly in the Mg-porphyrin branch, were greatly down-regulated in NF and OF plants. In contrast, the transcript levels of GSA, PPO1, and CHLD as well as FC2 and HO2 were up-regulated in NF-treated plants, while only moderate increases in FC2 and HO2 were observed in the early stage of OF treatment. Phytoene, antheraxanthin, and zeaxanthin showed high accumulation in NF-treated plants, whereas other carotenoid intermediates greatly decreased. Transcript levels of carotenoid biosynthetic genes, PSY1 and PDS, decreased in response to NF and OF, whereas plants in the later stage of NF treatment exhibited up-regulation of BCH and VDE as well as recovery of PDS. However, perturbed porphyrin biosynthesis by OF did not noticeably influence levels of carotenoid metabolites, regardless of the strong down-regulation of carotenoid biosynthetic genes. Both NF and OF plants appeared to provide enhanced protection against photooxidative damage, not only by scavenging of Mg-porphyrins, but also by up-regulating FC2, HO2, and Fe-chelatase, particularly with increased levels of zeaxanthin via up-regulation of BCH and VDE in NF plants. On the other hand, the up-regulation of GSA, PPO1, and CHLD under inhibition of carotenogenic flux may be derived from the necessity to recover impaired chloroplast biogenesis during photooxidative stress. Our study demonstrates that perturbations in carotenoid and porphyrin biosynthesis coordinate

  3. Perturbations in the Photosynthetic Pigment Status Result in Photooxidation-Induced Crosstalk between Carotenoid and Porphyrin Biosynthetic Pathways.

    Science.gov (United States)

    Park, Joon-Heum; Tran, Lien H; Jung, Sunyo

    2017-01-01

    Possible crosstalk between the carotenoid and porphyrin biosynthetic pathways under photooxidative conditions was investigated by using their biosynthetic inhibitors, norflurazon (NF) and oxyfluorfen (OF). High levels of protoporphyrin IX (Proto IX) accumulated in rice plants treated with OF, whereas Proto IX decreased in plants treated with NF. Both NF and OF treatments resulted in greater decreases in MgProto IX, MgProto IX methyl ester, and protochlorophyllide. Activities and transcript levels of most porphyrin biosynthetic enzymes, particularly in the Mg-porphyrin branch, were greatly down-regulated in NF and OF plants. In contrast, the transcript levels of GSA, PPO1 , and CHLD as well as FC2 and HO2 were up-regulated in NF-treated plants, while only moderate increases in FC2 and HO2 were observed in the early stage of OF treatment. Phytoene, antheraxanthin, and zeaxanthin showed high accumulation in NF-treated plants, whereas other carotenoid intermediates greatly decreased. Transcript levels of carotenoid biosynthetic genes, PSY1 and PDS , decreased in response to NF and OF, whereas plants in the later stage of NF treatment exhibited up-regulation of BCH and VDE as well as recovery of PDS . However, perturbed porphyrin biosynthesis by OF did not noticeably influence levels of carotenoid metabolites, regardless of the strong down-regulation of carotenoid biosynthetic genes. Both NF and OF plants appeared to provide enhanced protection against photooxidative damage, not only by scavenging of Mg - porphyrins, but also by up-regulating FC2, HO2 , and Fe-chelatase, particularly with increased levels of zeaxanthin via up-regulation of BCH and VDE in NF plants. On the other hand, the up-regulation of GSA, PPO1 , and CHLD under inhibition of carotenogenic flux may be derived from the necessity to recover impaired chloroplast biogenesis during photooxidative stress. Our study demonstrates that perturbations in carotenoid and porphyrin biosynthesis coordinate the

  4. Expression profile of genes coding for carotenoid biosynthetic ...

    Indian Academy of Sciences (India)

    Expression profile of genes coding for carotenoid biosynthetic pathway during ripening and their association with accumulation of lycopene in tomato fruits. Shuchi Smita, Ravi Rajwanshi, Sangram Keshari Lenka, Amit Katiyar, Viswanathan Chinnusamy and. Kailash Chander Bansal. J. Genet. 92, 363–368. Table 1.

  5. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms.

    Directory of Open Access Journals (Sweden)

    Sacha Coesel

    Full Text Available Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE and zeaxanthin epoxidase (ZEP enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several

  6. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms.

    Science.gov (United States)

    Coesel, Sacha; Oborník, Miroslav; Varela, Joao; Falciatore, Angela; Bowler, Chris

    2008-08-06

    Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP) enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several components of the

  7. Carotenoid Biosynthetic Pathways Are Regulated by a Network of Multiple Cascades of Alternative Sigma Factors in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Rai, Ashutosh Kumar; Dubey, Ashutosh Prakash; Kumar, Santosh; Dutta, Debashis; Mishra, Mukti Nath; Singh, Bhupendra Narain; Tripathi, Anil Kumar

    2016-11-01

    Carotenoids constitute an important component of the defense system against photooxidative stress in bacteria. In Azospirillum brasilense Sp7, a nonphotosynthetic rhizobacterium, carotenoid synthesis is controlled by a pair of extracytoplasmic function sigma factors (RpoEs) and their cognate zinc-binding anti-sigma factors (ChrRs). Its genome harbors two copies of the gene encoding geranylgeranyl pyrophosphate synthase (CrtE), the first critical step in the carotenoid biosynthetic pathway in bacteria. Inactivation of each of two crtE paralogs found in A. brasilense caused reduction in carotenoid content, suggesting their involvement in carotenoid synthesis. However, the effect of crtE1 deletion was more pronounced than that of crtE2 deletion. Out of the five paralogs of rpoH in A. brasilense, overexpression of rpoH1 and rpoH2 enhanced carotenoid synthesis. Promoters of crtE2 and rpoH2 were found to be dependent on RpoH2 and RpoE1, respectively. Using a two-plasmid system in Escherichia coli, we have shown that the crtE2 gene of A. brasilense Sp7 is regulated by two cascades of sigma factors: one consisting of RpoE1and RpoH2 and the other consisting of RpoE2 and RpoH1. In addition, expression of crtE1 was upregulated indirectly by RpoE1 and RpoE2. This study shows, for the first time in any carotenoid-producing bacterium, that the regulation of carotenoid biosynthetic pathway involves a network of multiple cascades of alternative sigma factors. Carotenoids play a very important role in coping with photooxidative stress in prokaryotes and eukaryotes. Although extracytoplasmic function (ECF) sigma factors are known to directly regulate the expression of carotenoid biosynthetic genes in bacteria, regulation of carotenoid biosynthesis by one or multiple cascades of sigma factors had not been reported. This study provides the first evidence of the involvement of multiple cascades of sigma factors in the regulation of carotenoid synthesis in any bacterium by showing the

  8. Biosynthetic pathway for γ-cyclic sarcinaxanthin in Micrococcus luteus: heterologous expression and evidence for diverse and multiple catalytic functions of C(50) carotenoid cyclases.

    Science.gov (United States)

    Netzer, Roman; Stafsnes, Marit H; Andreassen, Trygve; Goksøyr, Audun; Bruheim, Per; Brautaset, Trygve

    2010-11-01

    We report the cloning and characterization of the biosynthetic gene cluster (crtE, crtB, crtI, crtE2, crtYg, crtYh, and crtX) of the γ-cyclic C(50) carotenoid sarcinaxanthin in Micrococcus luteus NCTC2665. Expression of the complete and partial gene cluster in Escherichia coli hosts revealed that sarcinaxanthin biosynthesis from the precursor molecule farnesyl pyrophosphate (FPP) proceeds via C(40) lycopene, C(45) nonaflavuxanthin, C(50) flavuxanthin, and C(50) sarcinaxanthin. Glucosylation of sarcinaxanthin was accomplished by the crtX gene product. This is the first report describing the biosynthetic pathway of a γ-cyclic C(50) carotenoid. Expression of the corresponding genes from the marine M. luteus isolate Otnes7 in a lycopene-producing E. coli host resulted in the production of up to 2.5 mg/g cell dry weight sarcinaxanthin in shake flasks. In an attempt to experimentally understand the specific difference between the biosynthetic pathways of sarcinaxanthin and the structurally related ε-cyclic decaprenoxanthin, we constructed a hybrid gene cluster with the γ-cyclic C(50) carotenoid cyclase genes crtYg and crtYh from M. luteus replaced with the analogous ε-cyclic C(50) carotenoid cyclase genes crtYe and crtYf from the natural decaprenoxanthin producer Corynebacterium glutamicum. Surprisingly, expression of this hybrid gene cluster in an E. coli host resulted in accumulation of not only decaprenoxanthin, but also sarcinaxanthin and the asymmetric ε- and γ-cyclic C(50) carotenoid sarprenoxanthin, described for the first time in this work. Together, these data contributed to new insight into the diverse and multiple functions of bacterial C(50) carotenoid cyclases as key catalysts for the synthesis of structurally different carotenoids.

  9. Perturbations of carotenoid and tetrapyrrole biosynthetic pathways result in differential alterations in chloroplast function and plastid signaling

    International Nuclear Information System (INIS)

    Park, Joon-Heum; Jung, Sunyo

    2017-01-01

    In this study, we used the biosynthetic inhibitors of carotenoid and tetrapyrrole biosynthetic pathways, norflurazon (NF) and oxyfluorfen (OF), as tools to gain insight into mechanisms of photooxidation in rice plants. NF resulted in bleaching symptom on leaves of the treated plants, whereas OF treatment developed a fast symptom of an apparent necrotic phenotype. Both plants exhibited decreases in photosynthetic efficiency, as indicated by F v /F m . NF caused severe disruption in thylakoid membranes, whereas OF-treated plants exhibited disruption of chloroplast envelope and plasma membrane. Levels of Lhca and Lhcb proteins in photosystem I (PSI) and PSII were reduced by photooxidative stress in NF- and OF-treated plants, with a greater decrease in NF plants. The down-regulation of nuclear-encoded photosynthesis genes Lhcb and rbcS was also found in both NF- and OF-treated plants, whereas plastid-encoded photosynthetic genes including RbcL, PsaC, and PsbD accumulated normally in NF plants but decreased drastically in OF plants. This proposes that the plastids in NF plants retain their potential to develop thylakoid membranes and that photobleaching is mainly controlled by nuclear genes. Distinct photooxidation patterns between NF- and OF-treated plants developed differential signaling, which might enable the plant to coordinate the expression of photosynthetic genes from the nuclear and plastidic genomes. - Highlights: • Two modes of photooxidation by carotenoid and tetrapyrrole biosynthetic inhibitors. • We examine differential alterations in chloroplast function and plastid signaling. • NF and OF cause differential alterations in chloroplast ultrastructure and function. • Photooxidation coordinates photosynthetic gene expression from nucleus and plastid.

  10. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms

    Czech Academy of Sciences Publication Activity Database

    Coesel, S.; Oborník, Miroslav; Varela, J.; Falciatore, A.; Bowler, C.

    2008-01-01

    Roč. 3, č. 8 (2008), s. 1-16 E-ISSN 1932-6203 R&D Projects: GA AV ČR IAA500220502 Institutional research plan: CEZ:AV0Z60220518 Keywords : marine diatoms * carotenoid pathway * evolution Subject RIV: EB - Genetics ; Molecular Biology

  11. Perturbations of carotenoid and tetrapyrrole biosynthetic pathways result in differential alterations in chloroplast function and plastid signaling.

    Science.gov (United States)

    Park, Joon-Heum; Jung, Sunyo

    2017-01-22

    In this study, we used the biosynthetic inhibitors of carotenoid and tetrapyrrole biosynthetic pathways, norflurazon (NF) and oxyfluorfen (OF), as tools to gain insight into mechanisms of photooxidation in rice plants. NF resulted in bleaching symptom on leaves of the treated plants, whereas OF treatment developed a fast symptom of an apparent necrotic phenotype. Both plants exhibited decreases in photosynthetic efficiency, as indicated by F v /F m . NF caused severe disruption in thylakoid membranes, whereas OF-treated plants exhibited disruption of chloroplast envelope and plasma membrane. Levels of Lhca and Lhcb proteins in photosystem I (PSI) and PSII were reduced by photooxidative stress in NF- and OF-treated plants, with a greater decrease in NF plants. The down-regulation of nuclear-encoded photosynthesis genes Lhcb and rbcS was also found in both NF- and OF-treated plants, whereas plastid-encoded photosynthetic genes including RbcL, PsaC, and PsbD accumulated normally in NF plants but decreased drastically in OF plants. This proposes that the plastids in NF plants retain their potential to develop thylakoid membranes and that photobleaching is mainly controlled by nuclear genes. Distinct photooxidation patterns between NF- and OF-treated plants developed differential signaling, which might enable the plant to coordinate the expression of photosynthetic genes from the nuclear and plastidic genomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Metabolic and transcriptional elucidation of the carotenoid biosynthesis pathway in peel and flesh tissue of loquat fruit during on-tree development.

    Science.gov (United States)

    Hadjipieri, Margarita; Georgiadou, Egli C; Marin, Alicia; Diaz-Mula, Huertas M; Goulas, Vlasios; Fotopoulos, Vasileios; Tomás-Barberán, Francisco A; Manganaris, George A

    2017-06-14

    Carotenoids are the main colouring substances found in orange-fleshed loquat fruits. The aim of this study was to unravel the carotenoid biosynthetic pathway of loquat fruit (cv. 'Obusa') in peel and flesh tissue during distinct on-tree developmental stages through a targeted analytical and molecular approach. Substantial changes regarding colour parameters, both between peel and flesh and among the different developmental stages, were monitored, concomitant with a significant increment in carotenoid content. Key genes and individual compounds that are implicated in the carotenoid biosynthetic pathway were further dissected with the employment of molecular (RT-qPCR) and advanced analytical techniques (LC-MS). Results revealed significant differences in carotenoid composition between peel and flesh. Thirty-two carotenoids were found in the peel, while only eighteen carotenoids were identified in the flesh. Trans-lutein and trans-β-carotene were the major carotenoids in the peel; the content of the former decreased with the progress of ripening, while the latter registered a 7.2-fold increase. However, carotenoid profiling of loquat flesh indicated trans-β-cryptoxanthin, followed by trans-β-carotene and 5,8-epoxy-β-carotene to be the most predominant carotenoids. High amounts of trans-β-carotene in both tissues were supported by significant induction in a chromoplast-specific lycopene β-cyclase (CYCB) transcript levels. PSY1, ZDS, CYCB and BCH were up-regulated and CRTISO, LCYE, ECH and VDE were down-regulated in most of the developmental stages compared with the immature stage in both peel and flesh tissue. Overall, differential regulation of expression levels with the progress of on-tree fruit development was more evident in the middle and downstream genes of carotenoid biosynthetic pathway. Carotenoid composition is greatly affected during on-tree loquat development with striking differences between peel and flesh tissue. A link between gene up- or down

  13. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit

    Science.gov (United States)

    2013-01-01

    Background Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement. Results Total carotenoids progressively increased during fruit ripening up to ~55 μg g-1 fw in red-ripe fruits. Trans-lycopene was the carotenoid that contributed most to this increase. Many of the genes related to carotenoid metabolism displayed changing expression levels during fruit ripening generating a metabolic flux toward carotenoid synthesis. Constitutive low expression of lycopene cyclase genes resulted in lycopene accumulation. RNA-seq expression profiling of watermelon fruit development yielded a set of transcription factors whose expression was correlated with ripening and carotenoid accumulation. Nineteen putative transcription factor genes from watermelon and homologous to tomato carotenoid-associated genes were identified. Among these, six were differentially expressed in the flesh of both species during fruit development and ripening. Conclusions Taken together the data suggest that, while the regulation of a common set of metabolic genes likely influences carotenoid synthesis and accumulation in watermelon and tomato fruits during development and ripening, specific and limiting regulators may differ between climacteric and non-climacteric fruits, possibly related to their differential susceptibility to and use of ethylene during ripening. PMID:24219562

  14. Homologous gene targeting of a carotenoids biosynthetic gene in Rhodosporidium toruloides by Agrobacterium-mediated transformation.

    Science.gov (United States)

    Sun, Wenyi; Yang, Xiaobing; Wang, Xueying; Lin, Xinping; Wang, Yanan; Zhang, Sufang; Luan, Yushi; Zhao, Zongbao K

    2017-07-01

    To target a carotenoid biosynthetic gene in the oleaginous yeast Rhodosporidium toruloides by using the Agrobacterium-mediated transformation (AMT) method. The RHTO_04602 locus of R. toruloides NP11, previously assigned to code the carotenoid biosynthetic gene CRTI, was amplified from genomic DNA and cloned into the binary plasmid pZPK-mcs, resulting in pZPK-CRT. A HYG-expression cassette was inserted into the CRTI sequence of pZPK-CRT by utilizing the restriction-free clone strategy. The resulted plasmid was used to transform R. toruloides cells according to the AMT method, leading to a few white transformants. Sequencing analysis of those transformants confirmed homologous recombination and insertional inactivation of CRTI. When the white variants were transformed with a CRTI-expression cassette, cells became red and produced carotenoids as did the wild-type strain NP11. Successful homologous targeting of the CrtI locus confirmed the function of RHTO_04602 in carotenoids biosynthesis in R. toruloides. It provided valuable information for metabolic engineering of this non-model yeast species.

  15. Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI.

    Science.gov (United States)

    Wang, Cheng; Zeng, Jian; Li, Yin; Hu, Wei; Chen, Ling; Miao, Yingjie; Deng, Pengyi; Yuan, Cuihong; Ma, Cheng; Chen, Xi; Zang, Mingli; Wang, Qiong; Li, Kexiu; Chang, Junli; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan

    2014-06-01

    Carotenoid content is a primary determinant of wheat nutritional value and affects its end-use quality. Wheat grains contain very low carotenoid levels and trace amounts of provitamin A content. In order to enrich the carotenoid content in wheat grains, the bacterial phytoene synthase gene (CrtB) and carotene desaturase gene (CrtI) were transformed into the common wheat cultivar Bobwhite. Expression of CrtB or CrtI alone slightly increased the carotenoid content in the grains of transgenic wheat, while co-expression of both genes resulted in a darker red/yellow grain phenotype, accompanied by a total carotenoid content increase of approximately 8-fold achieving 4.76 μg g(-1) of seed dry weight, a β-carotene increase of 65-fold to 3.21 μg g(-1) of seed dry weight, and a provitamin A content (sum of α-carotene, β-carotene, and β-cryptoxanthin) increase of 76-fold to 3.82 μg g(-1) of seed dry weight. The high provitamin A content in the transgenic wheat was stably inherited over four generations. Quantitative PCR analysis revealed that enhancement of provitamin A content in transgenic wheat was also a result of the highly coordinated regulation of endogenous carotenoid biosynthetic genes, suggesting a metabolic feedback regulation in the wheat carotenoid biosynthetic pathway. These transgenic wheat lines are not only valuable for breeding wheat varieties with nutritional benefits for human health but also for understanding the mechanism regulating carotenoid biosynthesis in wheat endosperm. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae.

    Science.gov (United States)

    Xie, Wenping; Liu, Min; Lv, Xiaomei; Lu, Wenqiang; Gu, Jiali; Yu, Hongwei

    2014-01-01

    Saccharomyces cerevisiae is an important platform organism for the synthesis of a great number of natural products. However, the assembly of controllable and genetically stable heterogeneous biosynthetic pathways in S. cerevisiae still remains a significant challenge. Here, we present a strategy for reconstructing controllable multi-gene pathways by employing the GAL regulatory system. A set of marker recyclable integrative plasmids (pMRI) was designed for decentralized assembly of pathways. As proof-of-principle, a controllable β-carotene biosynthesis pathway (∼16 kb) was reconstructed and optimized by repeatedly using GAL10-GAL1 bidirectional promoters with high efficiency (80-100%). By controling the switch time of the pathway, production of 11 mg/g DCW of total carotenoids (72.57 mg/L) and 7.41 mg/g DCW of β-carotene was achieved in shake-flask culture. In addition, the engineered yeast strain exhibited high genetic stability after 20 generations of subculture. The results demonstrated a controllable and genetically stable biosynthetic pathway capable of increasing the yield of target products. Furthermore, the strategy presented in this study could be extended to construct other pathways in S. cerevisisae. © 2013 Wiley Periodicals, Inc.

  17. Arabidopsis OR proteins are the major post-transcriptional regulators of phytoene synthase in mediating carotenoid biosynthesis

    Science.gov (United States)

    Carotenoids are indispensable natural pigments to plants and humans. Phytoene synthase (PSY), the rate-limiting enzyme in carotenoid biosynthetic pathway, and ORANGE (OR), a regulator of chromoplast differentiation and enhancer of carotenoid biosynthesis, represent two key proteins that control caro...

  18. Vanillin biosynthetic pathways in plants.

    Science.gov (United States)

    Kundu, Anish

    2017-06-01

    The present review compiles the up-to-date knowledge on vanillin biosynthesis in plant systems to focus principally on the enzymatic reactions of in planta vanillin biosynthetic pathway and to find out its impact and prospect in future research in this field. Vanillin, a very popular flavouring compound, is widely used throughout the world. The principal natural resource of vanillin is the cured vanilla pods. Due to the high demand of vanillin as a flavouring agent, it is necessary to explore its biosynthetic enzymes and genes, so that improvement in its commercial production can be achieved through metabolic engineering. In spite of significant advancement in elucidating vanillin biosynthetic pathway in the last two decades, no conclusive demonstration had been reported yet for plant system. Several biosynthetic enzymes have been worked upon but divergences in published reports, particularly in characterizing the crucial biochemical steps of vanillin biosynthesis, such as side-chain shortening, methylation, and glucoside formation and have created a space for discussion. Recently, published reviews on vanillin biosynthesis have focused mainly on the biotechnological approaches and bioconversion in microbial systems. This review, however, aims to compile in brief the overall vanillin biosynthetic route and present a comparative as well as comprehensive description of enzymes involved in the pathway in Vanilla planifolia and other plants. Special emphasis has been given on the key enzymatic biochemical reactions that have been investigated extensively. Finally, the present standpoint and future prospects have been highlighted.

  19. ProCarDB: a database of bacterial carotenoids.

    Science.gov (United States)

    Nupur, L N U; Vats, Asheema; Dhanda, Sandeep Kumar; Raghava, Gajendra P S; Pinnaka, Anil Kumar; Kumar, Ashwani

    2016-05-26

    Carotenoids have important functions in bacteria, ranging from harvesting light energy to neutralizing oxidants and acting as virulence factors. However, information pertaining to the carotenoids is scattered throughout the literature. Furthermore, information about the genes/proteins involved in the biosynthesis of carotenoids has tremendously increased in the post-genomic era. A web server providing the information about microbial carotenoids in a structured manner is required and will be a valuable resource for the scientific community working with microbial carotenoids. Here, we have created a manually curated, open access, comprehensive compilation of bacterial carotenoids named as ProCarDB- Prokaryotic Carotenoid Database. ProCarDB includes 304 unique carotenoids arising from 50 biosynthetic pathways distributed among 611 prokaryotes. ProCarDB provides important information on carotenoids, such as 2D and 3D structures, molecular weight, molecular formula, SMILES, InChI, InChIKey, IUPAC name, KEGG Id, PubChem Id, and ChEBI Id. The database also provides NMR data, UV-vis absorption data, IR data, MS data and HPLC data that play key roles in the identification of carotenoids. An important feature of this database is the extension of biosynthetic pathways from the literature and through the presence of the genes/enzymes in different organisms. The information contained in the database was mined from published literature and databases such as KEGG, PubChem, ChEBI, LipidBank, LPSN, and Uniprot. The database integrates user-friendly browsing and searching with carotenoid analysis tools to help the user. We believe that this database will serve as a major information centre for researchers working on bacterial carotenoids.

  20. Biosynthetic routes of hydroxylated carotenoids (xanthophylls) in Marchantia polymorpha, and production of novel and rare xanthophylls through pathway engineering in Escherichia coli.

    Science.gov (United States)

    Takemura, Miho; Maoka, Takashi; Misawa, Norihiko

    2015-03-01

    MpBHY codes for a carotene β-ring 3(,3')-hydroxylase responsible for both zeaxanthin and lutein biosynthesis in liverwort. MpCYP97C functions as an ε-ring hydroxylase (zeinoxanthin 3'-hydroxylase) to produce lutein in liverwort. Xanthophylls are oxygenated or hydroxylated carotenes that are most abundant in the light-harvesting complexes of plants. The plant-type xanthophylls consist of α-xanthophyll (lutein) and β-xanthophylls (zeaxanthin, antheraxanthin, violaxanthin and neoxanthin). The α-xanthophyll and β-xanthophylls are derived from α-carotene and β-carotene by carotene hydroxylase activities, respectively. β-Ring 3,3'-hydroxylase that mediates the route of zeaxanthin from β-carotene via β-cryptoxanthin is present in higher plants and is encoded by the BHY (BCH) gene. On the other hand, CYP97A (or BHY) and CYP97C genes are responsible for β-ring 3-hydroxylation and ε-ring 3'-hydroxylation, respectively, in routes from α-carotene to lutein. To elucidate the evolution of the biosynthetic routes of such hydroxylated carotenoids from carotenes in land plants, we identified and functionally analyzed carotenoid hydroxylase genes of liverwort Marchantia polymorpha L. Three genes homologous to higher plants, BHY, CYP97A, and CYP97C, were isolated and named MpBHY, MpCYP97A, and MpCYP97C, respectively. MpBHY was found to code for β-ring hydroxylase, which is responsible for both routes starting from β-carotene and α-carotene. MpCYP97C functioned as an ε-ring hydroxylase not for α-carotene but for zeinoxanthin, while MpCYP97A showed no hydroxylation activity for β-carotene or α-carotene. These findings suggest the original functions of the hydroxylation enzymes of carotenes in land plants, which are thought to diversify in higher plants. In addition, we generated recombinant Escherichia coli cells, which produced rare and novel carotenoids such as α-echinenone and 4-ketozeinoxanthin, through pathway engineering using bacterial carotenogenic genes

  1. Identification of a carotenoid oxygenase synthesizing acyclic xanthophylls: combinatorial biosynthesis and directed evolution.

    Science.gov (United States)

    Mijts, Benjamin N; Lee, Pyung Cheon; Schmidt-Dannert, Claudia

    2005-04-01

    A carotenoid desaturase homolog from Staphylococcus aureus (CrtOx) was identified. When expressed in engineered E. coli cells synthesizing linear C(30) carotenoids, polar carotenoid products were generated, identified as aldehyde and carboxylic acid C(30) carotenoid derivatives. The major product in this engineered pathway is the fully desaturated C(30) dialdehyde carotenoid 4,4'-diapolycopen-4,4'-dial. Very low carotenoid yields were observed when CrtOx was complemented with the C(40) carotenoid lycopene pathway. But extension of an in vitro evolved pathway of the fully desaturated 2,4,2',4'-tetradehydrolycopene produced the structurally novel fully desaturated C(40) dialdehyde carotenoid 2,4,2',4'-tetradehydrolycopendial. Directed evolution of CrtOx by error-prone PCR resulted in a number of variants with higher activity on C(40) carotenoid substrates and improved product profiles. These findings may provide new biosynthetic routes to highly polar carotenoids with unique spectral properties desirable for a number of industrial and pharmaceutical applications.

  2. Bioengineering natural product biosynthetic pathways for therapeutic applications.

    Science.gov (United States)

    Wu, Ming-Cheng; Law, Brian; Wilkinson, Barrie; Micklefield, Jason

    2012-12-01

    With the advent of next-generation DNA sequencing technologies, the number of microbial genome sequences has increased dramatically, revealing a vast array of new biosynthetic gene clusters. Genomics data provide a tremendous opportunity to discover new natural products, and also to guide the bioengineering of new and existing natural product scaffolds for therapeutic applications. Notably, it is apparent that the vast majority of biosynthetic gene clusters are either silent or produce very low quantities of the corresponding natural products. It is imperative therefore to devise methods for activating unproductive biosynthetic pathways to provide the quantities of natural products needed for further development. Moreover, on the basis of our expanding mechanistic and structural knowledge of biosynthetic assembly-line enzymes, new strategies for re-programming biosynthetic pathways have emerged, resulting in focused libraries of modified products with potentially improved biological properties. In this review we will focus on the latest bioengineering approaches that have been utilised to optimise yields and increase the structural diversity of natural product scaffolds for future clinical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Genetic Characterization of the Carotenoid Biosynthetic Pathway in Methylobacterium extorquens AM1 and Isolation of a Colorless Mutant

    OpenAIRE

    Van Dien, Stephen J.; Marx, Christopher J.; O'Brien, Brooke N.; Lidstrom, Mary E.

    2003-01-01

    Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, r...

  4. A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in arabidopsis.

    Directory of Open Access Journals (Sweden)

    M Águila Ruiz-Sola

    Full Text Available Abscisic acid (ABA is a hormone that plays a vital role in mediating abiotic stress responses in plants. Salt exposure induces the synthesis of ABA through the cleavage of carotenoid precursors (xanthophylls, which are found at very low levels in roots. Here we show that de novo ABA biosynthesis in salt-treated Arabidopsis thaliana roots involves an organ-specific induction of the carotenoid biosynthetic pathway. Upregulation of the genes encoding phytoene synthase (PSY and other enzymes of the pathway producing ABA precursors was observed in roots but not in shoots after salt exposure. A pharmacological block of the carotenoid pathway substantially reduced ABA levels in stressed roots, confirming that an increase in carotenoid accumulation contributes to fuel hormone production after salt exposure. Treatment with exogenous ABA was also found to upregulate PSY expression only in roots, suggesting an organ-specific feedback regulation of the carotenoid pathway by ABA. Taken together, our results show that the presence of high concentrations of salt in the growth medium rapidly triggers a root-specific activation of the carotenoid pathway, probably to ensure a proper supply of ABA precursors required for a sustained production of the hormone.

  5. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway.

    Science.gov (United States)

    Matusova, Radoslava; Rani, Kumkum; Verstappen, Francel W A; Franssen, Maurice C R; Beale, Michael H; Bouwmeester, Harro J

    2005-10-01

    The seeds of parasitic plants of the genera Striga and Orobanche will only germinate after induction by a chemical signal exuded from the roots of their host. Up to now, several of these germination stimulants have been isolated and identified in the root exudates of a series of host plants of both Orobanche and Striga spp. In most cases, the compounds were shown to be isoprenoid and belong to one chemical class, collectively called the strigolactones, and suggested by many authors to be sesquiterpene lactones. However, this classification was never proven; hence, the biosynthetic pathways of the germination stimulants are unknown. We have used carotenoid mutants of maize (Zea mays) and inhibitors of isoprenoid pathways on maize, cowpea (Vigna unguiculata), and sorghum (Sorghum bicolor) and assessed the effects on the root exudate-induced germination of Striga hermonthica and Orobanche crenata. Here, we show that for these three host and two parasitic plant species, the strigolactone germination stimulants are derived from the carotenoid pathway. Furthermore, we hypothesize how the germination stimulants are formed. We also discuss this finding as an explanation for some phenomena that have been observed for the host-parasitic plant interaction, such as the effect of mycorrhiza on S. hermonthica infestation.

  6. Metabolic engineering for the microbial production of isoprenoids: Carotenoids and isoprenoid-based biofuels

    Directory of Open Access Journals (Sweden)

    Fu-Xing Niu

    2017-09-01

    Full Text Available Isoprenoids are the most abundant and highly diverse group of natural products. Many isoprenoids have been used for pharmaceuticals, nutraceuticals, flavors, cosmetics, food additives and biofuels. Carotenoids and isoprenoid-based biofuels are two classes of important isoprenoids. These isoprenoids have been produced microbially through metabolic engineering and synthetic biology efforts. Herein, we briefly review the engineered biosynthetic pathways in well-characterized microbial systems for the production of carotenoids and several isoprenoid-based biofuels.

  7. Biosynthetic Pathway and Metabolic Engineering of Plant Dihydrochalcones.

    Science.gov (United States)

    Ibdah, Mwafaq; Martens, Stefan; Gang, David R

    2018-03-14

    Dihydrochalcones are plant natural products containing the phenylpropanoid backbone and derived from the plant-specific phenylpropanoid pathway. Dihydrochalcone compounds are important in plant growth and response to stresses and, thus, can have large impacts on agricultural activity. In recent years, these compounds have also received increased attention from the biomedical community for their potential as anticancer treatments and other benefits for human health. However, they are typically produced at relatively low levels in plants. Therefore, an attractive alternative is to express the plant biosynthetic pathway genes in microbial hosts and to engineer the metabolic pathway/host to improve the production of these metabolites. In the present review, we discuss in detail the functions of genes and enzymes involved in the biosynthetic pathway of the dihydrochalcones and the recent strategies and achievements used in the reconstruction of multi-enzyme pathways in microorganisms in efforts to be able to attain higher amounts of desired dihydrochalcones.

  8. Genetic Characterization of the Carotenoid Biosynthetic Pathway in Methylobacterium extorquens AM1 and Isolation of a Colorless Mutant

    Science.gov (United States)

    Van Dien, Stephen J.; Marx, Christopher J.; O'Brien, Brooke N.; Lidstrom, Mary E.

    2003-01-01

    Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments. PMID:14660416

  9. Genetic characterization of the carotenoid biosynthetic pathway in Methylobacterium extorquens AM1 and isolation of a colorless mutant.

    Science.gov (United States)

    Van Dien, Stephen J; Marx, Christopher J; O'Brien, Brooke N; Lidstrom, Mary E

    2003-12-01

    Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments.

  10. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers.

    Science.gov (United States)

    Sagawa, Janelle M; Stanley, Lauren E; LaFountain, Amy M; Frank, Harry A; Liu, Chang; Yuan, Yao-Wu

    2016-02-01

    Carotenoids are yellow, orange, and red pigments that contribute to the beautiful colors and nutritive value of many flowers and fruits. The structural genes in the highly conserved carotenoid biosynthetic pathway have been well characterized in multiple plant systems, but little is known about the transcription factors that control the expression of these structural genes. By analyzing a chemically induced mutant of Mimulus lewisii through bulk segregant analysis and transgenic experiments, we have identified an R2R3-MYB, Reduced Carotenoid Pigmentation 1 (RCP1), as the first transcription factor that positively regulates carotenoid biosynthesis during flower development. Loss-of-function mutations in RCP1 lead to down-regulation of all carotenoid biosynthetic genes and reduced carotenoid content in M. lewisii flowers, a phenotype recapitulated by RNA interference in the wild-type background. Overexpression of this gene in the rcp1 mutant background restores carotenoid production and, unexpectedly, results in simultaneous decrease of anthocyanin production in some transgenic lines by down-regulating the expression of an activator of anthocyanin biosynthesis. Identification of transcriptional regulators of carotenoid biosynthesis provides the 'toolbox' genes for understanding the molecular basis of flower color diversification in nature and for potential enhancement of carotenoid production in crop plants via genetic engineering. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. [Advance in flavonoids biosynthetic pathway and synthetic biology].

    Science.gov (United States)

    Zou, Li-Qiu; Wang, Cai-Xia; Kuang, Xue-Jun; Li, Ying; Sun, Chao

    2016-11-01

    Flavonoids are the valuable components in medicinal plants, which possess a variety of pharmacological activities, including anti-tumor, antioxidant and anti-inflammatory activities. There is an unambiguous understanding about flavonoids biosynthetic pathway, that is,2S-flavanones including naringenin and pinocembrin are the skeleton of other flavonoids and they can transform to other flavonoids through branched metabolic pathway. Elucidation of the flavonoids biosynthetic pathway lays a solid foundation for their synthetic biology. A few flavonoids have been produced in Escherichia coli or yeast with synthetic biological technologies, such as naringenin, pinocembrin and fisetin. Synthetic biology will provide a new way to get valuable flavonoids and promote the research and development of flavonoid drugs and health products, making flavonoids play more important roles in human diet and health. Copyright© by the Chinese Pharmaceutical Association.

  12. Metabolic regulation of carotenoid-enriched Golden rice line

    Directory of Open Access Journals (Sweden)

    Dipak Gayen

    2016-10-01

    Full Text Available Vitamin A deficiency (VAD is the leading cause of blindness among children and is associated with high risk of maternal mortality. In order to enhance the bioavailability of vitamin A, high carotenoid transgenic golden rice has been developed by manipulating enzymes, such as phytoene synthase (psy and phytoene desaturase (crtI. In this study, proteome and metabolite analyses were carried out to comprehend metabolic regulation and adaptation of transgenic golden rice after the manipulation of endosperm specific carotenoid pathways. The main alteration was observed in carbohydrate metabolism pathways of the transgenic seeds. The 2D based proteomic studies demonstrated that carbohydrate metabolism-related enzymes, such as pullulanase, UDP-glucose pyrophosphorylase and glucose-1-phosphate adenylyl transferase, were primarily up-regulated in transgenic rice seeds. In addition, the enzyme PPDK was also elevated in transgenic seeds thus enhancing pyruvate biosynthesis, which is the precursor in the carotenoids biosynthetic pathway. GC-MS based metabolite profiling demonstrated an increase in the levels of glyceric acid, fructo-furanose, and galactose, while decrease in galactonic acid and gentiobiose in the transgenic rice compared to WT. It is noteworthy to mention that the carotenoid content, especially β-carotene level in transgenic rice (4.3 µg/g was significantly enhanced. The present study highlights the metabolic adaptation process of a transgenic golden rice line (homozygous T4 progeny of SKBR-244 after enhancing carotenoid biosynthesis. The presented information would be helpful in the development of crops enriched in carotenoids by expressing metabolic flux of pyruvate biosynthesis.

  13. The Strigolactone Germination Stimulants of the Plant-Parasitic Striga and Orobanche spp. Are Derived from the Carotenoid Pathway1

    Science.gov (United States)

    Matusova, Radoslava; Rani, Kumkum; Verstappen, Francel W.A.; Franssen, Maurice C.R.; Beale, Michael H.; Bouwmeester, Harro J.

    2005-01-01

    The seeds of parasitic plants of the genera Striga and Orobanche will only germinate after induction by a chemical signal exuded from the roots of their host. Up to now, several of these germination stimulants have been isolated and identified in the root exudates of a series of host plants of both Orobanche and Striga spp. In most cases, the compounds were shown to be isoprenoid and belong to one chemical class, collectively called the strigolactones, and suggested by many authors to be sesquiterpene lactones. However, this classification was never proven; hence, the biosynthetic pathways of the germination stimulants are unknown. We have used carotenoid mutants of maize (Zea mays) and inhibitors of isoprenoid pathways on maize, cowpea (Vigna unguiculata), and sorghum (Sorghum bicolor) and assessed the effects on the root exudate-induced germination of Striga hermonthica and Orobanche crenata. Here, we show that for these three host and two parasitic plant species, the strigolactone germination stimulants are derived from the carotenoid pathway. Furthermore, we hypothesize how the germination stimulants are formed. We also discuss this finding as an explanation for some phenomena that have been observed for the host-parasitic plant interaction, such as the effect of mycorrhiza on S. hermonthica infestation. PMID:16183851

  14. Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis.

    Science.gov (United States)

    Ohyama, Kiyoshi; Suzuki, Masashi; Kikuchi, Jun; Saito, Kazuki; Muranaka, Toshiya

    2009-01-20

    The differences between the biosynthesis of sterols in higher plants and yeast/mammals are believed to originate at the cyclization step of oxidosqualene, which is cyclized to cycloartenol in higher plants and lanosterol in yeast/mammals. Recently, lanosterol synthase genes were identified from dicotyledonous plant species including Arabidopsis, suggesting that higher plants possess dual biosynthetic pathways to phytosterols via lanosterol, and through cycloartenol. To identify the biosynthetic pathway to phytosterol via lanosterol, and to reveal the contributions to phytosterol biosynthesis via each cycloartenol and lanosterol, we performed feeding experiments by using [6-(13)C(2)H(3)]mevalonate with Arabidopsis seedlings. Applying (13)C-{(1)H}{(2)H} nuclear magnetic resonance (NMR) techniques, the elucidation of deuterium on C-19 behavior of phytosterol provided evidence that small amounts of phytosterol were biosynthesized via lanosterol. The levels of phytosterol increased on overexpression of LAS1, and phytosterols derived from lanosterol were not observed in a LAS1-knockout plant. This is direct evidence to indicate that the biosynthetic pathway for phytosterol via lanosterol exists in plant cells. We designate the biosynthetic pathway to phytosterols via lanosterol "the lanosterol pathway." LAS1 expression is reported to be induced by the application of jasmonate and is thought to have evolved from an ancestral cycloartenol synthase to a triterpenoid synthase, such as beta-amyrin synthase and lupeol synthase. Considering this background, the lanosterol pathway may contribute to the biosynthesis of not only phytosterols, but also steroids as secondary metabolites.

  15. Heterologous Expression of the Oxytetracycline Biosynthetic Pathway in Myxococcus xanthus▿

    Science.gov (United States)

    Stevens, D. Cole; Henry, Michael R.; Murphy, Kimberly A.; Boddy, Christopher N.

    2010-01-01

    New natural products for drug discovery may be accessed by heterologous expression of bacterial biosynthetic pathways in metagenomic DNA libraries. However, a “universal” host is needed for this experiment. Herein, we show that Myxococcus xanthus is a potential “universal” host for heterologous expression of polyketide biosynthetic gene clusters. PMID:20208031

  16. A nitrous acid biosynthetic pathway for diazo group formation in bacteria.

    Science.gov (United States)

    Sugai, Yoshinori; Katsuyama, Yohei; Ohnishi, Yasuo

    2016-02-01

    Although some diazo compounds have bioactivities of medicinal interest, little is known about diazo group formation in nature. Here we describe an unprecedented nitrous acid biosynthetic pathway responsible for the formation of a diazo group in the biosynthesis of the ortho-diazoquinone secondary metabolite cremeomycin in Streptomyces cremeus. This finding provides important insights into the biosynthetic pathways not only for diazo compounds but also for other naturally occurring compounds containing nitrogen-nitrogen bonds.

  17. Biosynthetic Pathways of Ergot Alkaloids

    Directory of Open Access Journals (Sweden)

    Nina Gerhards

    2014-12-01

    Full Text Available Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines. All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine. Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes.

  18. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E

    2004-01-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C....... tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma......-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants...

  19. Biosynthesis of Astaxanthin as a Main Carotenoid in the Heterobasidiomycetous Yeast Xanthophyllomyces dendrorhous

    Directory of Open Access Journals (Sweden)

    Jose L. Barredo

    2017-07-01

    Full Text Available Carotenoids are organic lipophilic yellow to orange and reddish pigments of terpenoid nature that are usually composed of eight isoprene units. This group of secondary metabolites includes carotenes and xanthophylls, which can be naturally obtained from photosynthetic organisms, some fungi, and bacteria. One of the microorganisms able to synthesise carotenoids is the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous, which represents the teleomorphic state of Phaffia rhodozyma, and is mainly used for the production of the xanthophyll astaxanthin. Upgraded knowledge on the biosynthetic pathway of the main carotenoids synthesised by X. dendrorhous, the biotechnology-based improvement of astaxanthin production, as well as the current omics approaches available in this yeast are reviewed in depth.

  20. Modification of carotenoid levels by abscission agents and expression of carotenoid biosynthetic genes in 'valencia' sweet orange.

    Science.gov (United States)

    Alferez, Fernando; Pozo, Luis V; Rouseff, Russell R; Burns, Jacqueline K

    2013-03-27

    The effect of 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) and ethephon on peel color, flavedo carotenoid gene expression, and carotenoid accumulation was investigated in mature 'Valencia' orange ( Citrus sinensis L. Osbeck) fruit flavedo at three maturation stages. Abscission agent application altered peel color. CMNP was more effective than ethephon in promoting green-to-red (a) and blue-to-yellow (b) color at the middle and late maturation stages and total carotenoid changes at all maturation stages. Altered flow of carotenoid precursors during maturation due to abscission agents was suggested by changes in phytoene desaturase (Pds) and ζ-carotene desaturase (Zds) gene expression. However, each abscission agent affected downstream expression differentially. Ethephon application increased β-carotene hydroxilase (β-Chx) transcript accumulation 12-fold as maturation advanced from the early to middle and late stages. CMNP markedly increased β- and ε-lycopene cyclase (Lcy) transcript accumulation 45- and 15-fold, respectively, at midmaturation. Patterns of carotenoid accumulation in flavedo were supported in part by gene expression changes. CMNP caused greater accumulation of total flavedo carotenoids at all maturation stages when compared with ethephon or controls. In general, CMNP treatment increased total red carotenoids more than ethephon or the control but decreased total yellow carotenoids at each maturation stage. In control fruit flavedo, total red carotenoids increased and yellow carotenoids decreased as maturation progressed. Trends in total red carotenoids during maturation were consistent with measured a values. Changes in carotenoid accumulation and expression patterns in flavedo suggest that regulation of carotenoid accumulation is under transcriptional, translational, and post-translational control.

  1. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rock, C.D.; Zeevaart, J.A.D. (Michigan State Univ., East Lansing (United States))

    1991-09-01

    The three mutant alleles of the ABA locus of Arabidopsis thaliana result in plants that are deficient in the plant growth regulator abscisic acid (ABA). The authors have used {sup 18}O{sub 2} to label ABA in water-stressed leaves of mutant and wild-type Arabidopsis. Analysis by selected ion monitoring and tandem mass spectrometry of ({sup 18}O)ABA and its catabolites, phaseic acid and ABA-glucose ester ({beta}-D-glucopyranosyl abscisate), indicates that the aba genotypes are impaired in ABA biosynthesis and have a small ABA precursor pool of compounds that contain oxygens on the rings, presumably oxygenated carotenoids (xanthophylls). Quantitation of the carotenoids form mutant and wild-type leaves establishes that the aba alleles cause a deficiency of the epoxy-carotenoids violaxanthin and neoxanthin and an accumulation of their biosynthetic precursor, zeaxanthin. These results provide evidence that ABA is synthesized by oxidative cleavage of epoxy-carotenoids (the indirect pathway). Furthermore the carotenoid mutant they describe undergoes normal greening. Thus the aba alleles provide an opportunity to study the physiological roles of epoxy-carotenoids in photosynthesis in a higher plants.

  2. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion.

    Science.gov (United States)

    Apel, Wiebke; Bock, Ralph

    2009-09-01

    Carotenoids are essential pigments of the photosynthetic apparatus and an indispensable component of the human diet. In addition to being potent antioxidants, they also provide the vitamin A precursor beta-carotene. In tomato (Solanum lycopersicum) fruits, carotenoids accumulate in specialized plastids, the chromoplasts. How the carotenoid biosynthetic pathway is regulated and what limits total carotenoid accumulation in fruit chromoplasts is not well understood. Here, we have introduced the lycopene beta-cyclase genes from the eubacterium Erwinia herbicola and the higher plant daffodil (Narcissus pseudonarcissus) into the tomato plastid genome. While expression of the bacterial enzyme did not strongly alter carotenoid composition, expression of the plant enzyme efficiently converted lycopene, the major storage carotenoid of the tomato fruit, into provitamin A (beta-carotene). In green leaves of the transplastomic tomato plants, more lycopene was channeled into the beta-branch of carotenoid biosynthesis, resulting in increased accumulation of xanthophyll cycle pigments and correspondingly reduced accumulation of the alpha-branch xanthophyll lutein. In fruits, most of the lycopene was converted into beta-carotene with provitamin A levels reaching 1 mg per g dry weight. Unexpectedly, transplastomic tomatoes also showed a >50% increase in total carotenoid accumulation, indicating that lycopene beta-cyclase expression enhanced the flux through the pathway in chromoplasts. Our results provide new insights into the regulation of carotenoid biosynthesis and demonstrate the potential of plastids genome engineering for the nutritional enhancement of food crops.

  3. A simple biosynthetic pathway for large product generation from small substrate amounts

    Science.gov (United States)

    Djordjevic, Marko; Djordjevic, Magdalena

    2012-10-01

    A recently emerging discipline of synthetic biology has the aim of constructing new biosynthetic pathways with useful biological functions. A major application of these pathways is generating a large amount of the desired product. However, toxicity due to the possible presence of toxic precursors is one of the main problems for such production. We consider here the problem of generating a large amount of product from a potentially toxic substrate. To address this, we propose a simple biosynthetic pathway, which can be induced in order to produce a large number of the product molecules, by keeping the substrate amount at low levels. Surprisingly, we show that the large product generation crucially depends on fast non-specific degradation of the substrate molecules. We derive an optimal induction strategy, which allows as much as three orders of magnitude increase in the product amount through biologically realistic parameter values. We point to a recently discovered bacterial immune system (CRISPR/Cas in E. coli) as a putative example of the pathway analysed here. We also argue that the scheme proposed here can be used not only as a stand-alone pathway, but also as a strategy to produce a large amount of the desired molecules with small perturbations of endogenous biosynthetic pathways.

  4. A simple biosynthetic pathway for large product generation from small substrate amounts

    Energy Technology Data Exchange (ETDEWEB)

    Djordjevic, Marko [Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade (Serbia); Djordjevic, Magdalena [Institute of Physics Belgrade, University of Belgrade (Serbia)

    2012-10-01

    A recently emerging discipline of synthetic biology has the aim of constructing new biosynthetic pathways with useful biological functions. A major application of these pathways is generating a large amount of the desired product. However, toxicity due to the possible presence of toxic precursors is one of the main problems for such production. We consider here the problem of generating a large amount of product from a potentially toxic substrate. To address this, we propose a simple biosynthetic pathway, which can be induced in order to produce a large number of the product molecules, by keeping the substrate amount at low levels. Surprisingly, we show that the large product generation crucially depends on fast non-specific degradation of the substrate molecules. We derive an optimal induction strategy, which allows as much as three orders of magnitude increase in the product amount through biologically realistic parameter values. We point to a recently discovered bacterial immune system (CRISPR/Cas in E. coli) as a putative example of the pathway analysed here. We also argue that the scheme proposed here can be used not only as a stand-alone pathway, but also as a strategy to produce a large amount of the desired molecules with small perturbations of endogenous biosynthetic pathways. (paper)

  5. A simple biosynthetic pathway for large product generation from small substrate amounts

    International Nuclear Information System (INIS)

    Djordjevic, Marko; Djordjevic, Magdalena

    2012-01-01

    A recently emerging discipline of synthetic biology has the aim of constructing new biosynthetic pathways with useful biological functions. A major application of these pathways is generating a large amount of the desired product. However, toxicity due to the possible presence of toxic precursors is one of the main problems for such production. We consider here the problem of generating a large amount of product from a potentially toxic substrate. To address this, we propose a simple biosynthetic pathway, which can be induced in order to produce a large number of the product molecules, by keeping the substrate amount at low levels. Surprisingly, we show that the large product generation crucially depends on fast non-specific degradation of the substrate molecules. We derive an optimal induction strategy, which allows as much as three orders of magnitude increase in the product amount through biologically realistic parameter values. We point to a recently discovered bacterial immune system (CRISPR/Cas in E. coli) as a putative example of the pathway analysed here. We also argue that the scheme proposed here can be used not only as a stand-alone pathway, but also as a strategy to produce a large amount of the desired molecules with small perturbations of endogenous biosynthetic pathways. (paper)

  6. Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.

    Directory of Open Access Journals (Sweden)

    María del Rocío Gómez-García

    2013-09-01

    Full Text Available Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits’ yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed.

  7. Biochemistry and Molecular Biology of Carotenoid Biosynthesis in Chili Peppers (Capsicum spp.)

    Science.gov (United States)

    del Rocío Gómez-García, María; Ochoa-Alejo, Neftalí

    2013-01-01

    Capsicum species produce fruits that synthesize and accumulate carotenoid pigments, which are responsible for the fruits’ yellow, orange and red colors. Chili peppers have been used as an experimental model for studying the biochemical and molecular aspects of carotenoid biosynthesis. Most reports refer to the characterization of carotenoids and content determination in chili pepper fruits from different species, cultivars, varieties or genotypes. The types and levels of carotenoids differ between different chili pepper fruits, and they are also influenced by environmental conditions. Yellow-orange colors of chili pepper fruits are mainly due to the accumulation of α- and β-carotene, zeaxanthin, lutein and β-cryptoxanthin. Carotenoids such as capsanthin, capsorubin and capsanthin-5,6-epoxide confer the red colors. Chromoplasts are the sites of carotenoid pigment synthesis and storage. According to the most accepted theory, the synthesis of carotenoids in chili peppers is controlled by three loci: c1, c2 and y. Several enzymes participating in carotenoid biosynthesis in chili pepper fruits have been isolated and characterized, and the corresponding gene sequences have been reported. However, there is currently limited information on the molecular mechanisms that regulate this biosynthetic pathway. Approaches to gain more knowledge of the regulation of carotenoid biosynthesis are discussed. PMID:24065101

  8. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway

    Science.gov (United States)

    Chi, Shuang C.; Mothersole, David J.; Dilbeck, Preston; Niedzwiedzki, Dariusz M.; Zhang, Hao; Qian, Pu; Vasilev, Cvetelin; Grayson, Katie J.; Jackson, Philip J.; Martin, Elizabeth C.; Li, Ying; Holten, Dewey; Neil Hunter, C.

    2015-01-01

    Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon–carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N = 10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoea agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2′-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC–LH1–PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2′-diketo-spirilloxanthin (15 conjugated C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 C bonds; N = 15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N = 9; 94%), spheroidene (N = 10; 96%) and spheroidenone (N = 11; 95%), whereas intermediate values were measured for lycopene (N = 11; 64%), rhodopin (N = 11; 62%) and spirilloxanthin (N = 13; 39%). The variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the

  9. Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOr-Ins gene in purple-fleshed sweetpotato cultivar.

    Science.gov (United States)

    Park, Sung-Chul; Kim, Sun Ha; Park, Seyeon; Lee, Hyeong-Un; Lee, Joon Seol; Park, Woo Sung; Ahn, Mi-Jeong; Kim, Yun-Hee; Jeong, Jae Cheol; Lee, Haeng-Soon; Kwak, Sang-Soo

    2015-01-01

    Sweetpotato [Ipomoea batatas (L.) Lam] is an important root crop that produces low molecular weight antioxidants such as carotenoids and anthocyanin. The sweetpotato orange (IbOr) protein is involved in the accumulation of carotenoids. To increase the levels of carotenoids in the storage roots of sweetpotato, we generated transgenic sweetpotato plants overexpressing IbOr-Ins under the control of the cauliflower mosaic virus (CaMV) 35S promoter in an anthocyanin-rich purple-fleshed cultivar (referred to as IbOr plants). IbOr plants exhibited increased carotenoid levels (up to 7-fold) in their storage roots compared to wild type (WT) plants, as revealed by HPLC analysis. The carotenoid contents of IbOr plants were positively correlated with IbOr transcript levels. The levels of zeaxanthin were ∼ 12 times elevated in IbOr plants, whereas β-carotene increased ∼ 1.75 times higher than those of WT. Quantitative RT-PCR analysis revealed that most carotenoid biosynthetic pathway genes were up-regulated in the IbOr plants, including PDS, ZDS, LCY-β, CHY-β, ZEP and Pftf, whereas LCY-ɛ was down-regulated. Interestingly, CCD1, CCD4 and NCED, which are related to the degradation of carotenoids, were also up-regulated in the IbOr plants. Anthocyanin contents and transcription levels of associated biosynthetic genes seemed to be altered in the IbOr plants. The yields of storage roots and aerial parts of IbOr plants and WT plants were not significantly different under field cultivation. Taken together, these results indicate that overexpression of IbOr-Ins can increase the carotenoid contents of sweetpotato storage roots. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Strigolactones, a novel carotenoid-derived plant hormone

    KAUST Repository

    Al-Babili, Salim

    2015-04-29

    Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental processes that adapt plant architecture to nutrient availability. Highly branched/tillered mutants in Arabidopsis, pea, and rice have enabled the identification of four SL biosynthetic enzymes: a cis/trans-carotene isomerase, two carotenoid cleavage dioxygenases, and a cytochrome P450 (MAX1). In vitro and in vivo enzyme assays and analysis of mutants have shown that the pathway involves a combination of new reactions leading to carlactone, which is converted by a rice MAX1 homolog into an SL parent molecule with a tricyclic lactone moiety. In this review, we focus on SL biosynthesis, describe the hormonal and environmental factors that determine this process, and discuss SL transport and downstream signaling as well as the role of SLs in regulating plant development. ©2015 by Annual Reviews. All rights reserved.

  11. Genetic determination of the meso-diaminopimelate biosynthetic pathway of mycobacteria.

    Science.gov (United States)

    Cirillo, J D; Weisbrod, T R; Banerjee, A; Bloom, B R; Jacobs, W R

    1994-07-01

    The increasing incidence of multiple-drug-resistant mycobacterial infections indicates that the development of new methods for treatment of mycobacterial diseases should be a high priority. meso-Diaminopimelic acid (DAP), a key component of a highly immunogenic subunit of the mycobacterial peptidoglycan layer, has been implicated as a potential virulence factor. The mycobacterial DAP biosynthetic pathway could serve as a target for design of new antimycobacterial agents as well as the construction of in vivo selection systems. We have isolated the asd, dapA, dapB, dapD, and dapE genes involved in the DAP biosynthetic pathway of Mycobacterium bovis BCG. These genes were isolated by complementation of Escherichia coli mutations with an expression library of BCG DNA. Our analysis of these genes suggests that BCG may use more than one pathway for biosynthesis of DAP. The nucleotide sequence of the BCG dapB gene was determined. The activity of the product of this gene in Escherichia coli provided evidence that the gene may encode a novel bifunctional dihydrodipicolinate reductase and DAP dehydrogenase.

  12. Blockage of the pyrimidine biosynthetic pathway affects riboflavin production in Ashbya gossypii.

    Science.gov (United States)

    Silva, Rui; Aguiar, Tatiana Q; Domingues, Lucília

    2015-01-10

    The Ashbya gossypii riboflavin biosynthetic pathway and its connection with the purine pathway have been well studied. However, the outcome of genetic alterations in the pyrimidine pathway on riboflavin production by A. gossypii had not yet been assessed. Here, we report that the blockage of the de novo pyrimidine biosynthetic pathway in the recently generated A. gossypii Agura3 uridine/uracil auxotrophic strain led to improved riboflavin production on standard agar-solidified complex medium. When extra uridine/uracil was supplied, the production of riboflavin by this auxotroph was repressed. High concentrations of uracil hampered this (and the parent) strain growth, whereas excess uridine favored the A. gossypii Agura3 growth. Considering that the riboflavin and the pyrimidine pathways share the same precursors and that riboflavin overproduction may be triggered by nutritional stress, we suggest that overproduction of riboflavin by the A. gossypii Agura3 may occur as an outcome of a nutritional stress response and/or of an increased availability in precursors for riboflavin biosynthesis, due to their reduced consumption by the pyrimidine pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Targeting the GPI biosynthetic pathway.

    Science.gov (United States)

    Yadav, Usha; Khan, Mohd Ashraf

    2018-02-27

    The GPI (Glycosylphosphatidylinositol) biosynthetic pathway is a multistep conserved pathway in eukaryotes that culminates in the generation of GPI glycolipid which in turn anchors many proteins (GPI-APs) to the cell surface. In spite of the overall conservation of the pathway, there still exist subtle differences in the GPI pathway of mammals and other eukaryotes which holds a great promise so far as the development of drugs/inhibitors against specific targets in the GPI pathway of pathogens is concerned. Many of the GPI structures and their anchored proteins in pathogenic protozoans and fungi act as pathogenicity factors. Notable examples include GPI-anchored variant surface glycoprotein (VSG) in Trypanosoma brucei, GPI-anchored merozoite surface protein 1 (MSP1) and MSP2 in Plasmodium falciparum, protein-free GPI related molecules like lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs) in Leishmania spp., GPI-anchored Gal/GalNAc lectin and proteophosphoglycans in Entamoeba histolytica or the GPI-anchored mannoproteins in pathogenic fungi like Candida albicans. Research in this active area has already yielded encouraging results in Trypanosoma brucei by the development of parasite-specific inhibitors of GlcNCONH 2 -β-PI, GlcNCONH 2 -(2-O-octyl)-PI and salicylic hydroxamic acid (SHAM) targeting trypanosomal GlcNAc-PI de-N-acetylase as well as the development of antifungal inhibitors like BIQ/E1210/gepinacin/G365/G884 and YW3548/M743/M720 targeting the GPI specific fungal inositol acyltransferase (Gwt1) and the phosphoethanolamine transferase-I (Mcd4), respectively. These confirm the fact that the GPI pathway continues to be the focus of researchers, given its implications for the betterment of human life.

  14. Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway

    DEFF Research Database (Denmark)

    Liu, Qing; Manzano, David; Tanić, Nikola

    2014-01-01

    Parthenolide, the main bioactive compound of the medicinal plant feverfew (Tanacetum parthenium), is a promising anti-cancer drug. However, the biosynthetic pathway of parthenolide has not been elucidated yet. Here we report on the isolation and characterization of all the genes from feverfew tha...

  15. Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli.

    Science.gov (United States)

    Stahlhut, Steen G; Siedler, Solvej; Malla, Sailesh; Harrison, Scott J; Maury, Jérôme; Neves, Ana Rute; Forster, Jochen

    2015-09-01

    Plant secondary metabolites are an underutilized pool of bioactive molecules for applications in the food, pharma and nutritional industries. One such molecule is fisetin, which is present in many fruits and vegetables and has several potential health benefits, including anti-cancer, anti-viral and anti-aging activity. Moreover, fisetin has recently been shown to prevent Alzheimer's disease in mice and to prevent complications associated with diabetes type I. Thus far the biosynthetic pathway of fisetin in plants remains elusive. Here, we present the heterologous assembly of a novel fisetin pathway in Escherichia coli. We propose a novel biosynthetic pathway from the amino acid, tyrosine, utilizing nine heterologous enzymes. The pathway proceeds via the synthesis of two flavanones never produced in microorganisms before--garbanzol and resokaempferol. We show for the first time a functional biosynthetic pathway and establish E. coli as a microbial platform strain for the production of fisetin and related flavonols. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. Enhancement of Nucleoside Production in Hirsutella sinensis Based on Biosynthetic Pathway Analysis

    Science.gov (United States)

    Liu, Zhi-Qiang; Zhang, Bo; Lin, Shan; Baker, Peter James; Chen, Mao-Sheng; Xue, Ya-Ping; Wu, Hui; Xu, Feng; Yuan, Shui-Jin; Teng, Yi; Wu, Ling-Fang

    2017-01-01

    To enhance nucleoside production in Hirsutella sinensis, the biosynthetic pathways of purine and pyrimidine nucleosides were constructed and verified. The differential expression analysis showed that purine nucleoside phosphorylase, inosine monophosphate dehydrogenase, and guanosine monophosphate synthase genes involved in purine nucleotide biosynthesis were significantly upregulated 16.56-fold, 8-fold, and 5.43-fold, respectively. Moreover, dihydroorotate dehydrogenase, uridine nucleosidase, uridine/cytidine monophosphate kinase, and inosine triphosphate pyrophosphatase genes participating in pyrimidine nucleoside biosynthesis were upregulated 4.53-fold, 10.63-fold, 4.26-fold, and 5.98-fold, respectively. To enhance the nucleoside production, precursors for synthesis of nucleosides were added based on the analysis of biosynthetic pathways. Uridine and cytidine contents, respectively, reached 5.04 mg/g and 3.54 mg/g when adding 2 mg/mL of ribose, resulting in an increase of 28.6% and 296% compared with the control, respectively. Meanwhile, uridine and cytidine contents, respectively, reached 10.83 mg/g 2.12 mg/g when adding 0.3 mg/mL of uracil, leading to an increase of 176.3% and 137.1%, respectively. This report indicated that fermentation regulation was an effective way to enhance the nucleoside production in H. sinensis based on biosynthetic pathway analysis. PMID:29333435

  17. A kinetic model for the penicillin biosynthetic pathway in

    DEFF Research Database (Denmark)

    Nielsen, Jens; Jørgensen, Henrik

    1996-01-01

    A kinetic model for the first two steps in the penicillin biosynthetic pathway, i.e. the ACV synthetase (ACVS) and the isopenicillin N synthetase (IPNS) is proposed. The model is based on Michaelis-Menten type kinetics with non-competitive inhibition of the ACVS by ACV, and competitive inhibition...... of the IPNS by glutathione. The model predicted flux through the pathway corresponds well with the measured rate of penicillin biosynthesis. From the kinetic model the elasticity coefficients and the flux control coefficients are calculated throughout a fed-batch cultivation, and it is found...

  18. Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways.

    Directory of Open Access Journals (Sweden)

    Adam M Wentzell

    2007-09-01

    Full Text Available Phenotypic variation between individuals of a species is often under quantitative genetic control. Genomic analysis of gene expression polymorphisms between individuals is rapidly gaining popularity as a way to query the underlying mechanistic causes of variation between individuals. However, there is little direct evidence of a linkage between global gene expression polymorphisms and phenotypic consequences. In this report, we have mapped quantitative trait loci (QTLs-controlling glucosinolate content in a population of 403 Arabidopsis Bay x Sha recombinant inbred lines, 211 of which were previously used to identify expression QTLs controlling the transcript levels of biosynthetic genes. In a comparative study, we have directly tested two plant biosynthetic pathways for association between polymorphisms controlling biosynthetic gene transcripts and the resulting metabolites within the Arabidopsis Bay x Sha recombinant inbred line population. In this analysis, all loci controlling expression variation also affected the accumulation of the resulting metabolites. In addition, epistasis was detected more frequently for metabolic traits compared to transcript traits, even when both traits showed similar distributions. An analysis of candidate genes for QTL-controlling networks of transcripts and metabolites suggested that the controlling factors are a mix of enzymes and regulatory factors. This analysis showed that regulatory connections can feedback from metabolism to transcripts. Surprisingly, the most likely major regulator of both transcript level for nearly the entire pathway and aliphatic glucosinolate accumulation is variation in the last enzyme in the biosynthetic pathway, AOP2. This suggests that natural variation in transcripts may significantly impact phenotypic variation, but that natural variation in metabolites or their enzymatic loci can feed back to affect the transcripts.

  19. Distribution of δ-aminolevulinic acid biosynthetic pathways among phototrophic and related bacteria

    International Nuclear Information System (INIS)

    Avissar, Y.J.; Beale, S.I.; Ormerod, J.G.

    1989-01-01

    Two biosynthetic pathways are known for the universal tetrapyrrole precursor, δ-aminolevulinic acid (ALA): condensation of glycine and succinyl-CoA to form ALA with the loss of C-1 of glycine as CO 2 , and conversion of the intact carbon skeleton of glutamate to ALA in a process requiring tRNA Glu , ATP, Mg 2+ , NADPH, and pyridoxal phosphate. The distribution of the two ALA biosynthetic pathways among various bacterial genera was determined, using cell-free extracts obtained from representative organisms. Evidence for the operation of the glutamate pathway was obtained by the measurement of RNase-sensitive label incorporation from glutamate into ALA using 3,4-[ 3 H]glutamate and 1-[ 14 C]glutamate as substrate. The glycine pathway was indicated by RNase-insensitive incorporation of level from 2-[ 14 C]glycine into ALA. The distribution of the two pathways among the bacteria tested was in general agreement with their previously phylogenetic relationships and clearly indicates that the glutamate pathway is the more ancient process, whereas the glycine pathway probably evolved much later. The glutamate pathway is the more widely utilized one among bacteria, while the glycine pathway is apparently limited to the α subgroup of purple bacteria (including Rhodobacter, Rhodospirillum, and Rhizobium). E. coli was found ALA via the glutamate pathway. The ALA-requiring hemA mutant of E. coli was determined to lack the dehydrogenase activity that utilizes glutamyl-tRNA as a substrate

  20. Mechanistic aspects of carotenoid biosynthesis

    KAUST Repository

    Moïse, Alexander R.

    2014-01-08

    Carotenoid synthesis is based on the analysis of the phenotype of several mutant strains of tomato lacking carotenoid synthetic genes. Carotenoids are tetraterpenes derived through the condensation of the five-carbon (C5) universal isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A recently developed concept that could explain the role of the poly-cis pathway in carotenoid synthesis is that the intermediates of this pathway have additional physiological roles that extend beyond serving as precursors of lycopene. This concept is based on the analysis of the phenotype of several mutant strains of tomato lacking carotenoid synthetic genes. The feedback regulation of early carotenoid synthetic genes in response to a block in upstream metabolism represents a paradigm shift in our understanding of the mechanism and regulation of carotenoid synthesis and of metabolic regulation in general. The molecular details of a signaling pathway that regulates carotenogenesis in response to the levels of carotenoid precursors are still unclear.

  1. Molecular Link between Leaf Coloration and Gene Expression of Flavonoid and Carotenoid Biosynthesis in Camellia sinensis Cultivar ‘Huangjinya’

    Directory of Open Access Journals (Sweden)

    Lubin Song

    2017-05-01

    Full Text Available ‘Huangjinya’ is an excellent albino tea germplasm cultivated in China because of its bright color and high amino acid content. It is light sensitive, with yellow leaves under intense light while green leaves under weak light. As well, the flavonoid and carotenoid levels increased after moderate shading treatment. However, the mechanism underlying this interesting phenomenon remains unclear. In this study, the transcriptome of ‘Huangjinya’ plants exposed to sunlight and shade were analyzed by high-throughput sequencing followed by de novo assembly. Shading ‘Huangjinya’ made its leaf color turn green. De novo assembly showed that the transcriptome of ‘Huangjinya’ leaves comprises of 127,253 unigenes, with an average length of 914 nt. Among the 81,128 functionally annotated unigenes, 207 differentially expressed genes were identified, including 110 up-regulated and 97 down-regulated genes under moderate shading compared to full light. Gene ontology (GO indicated that the differentially expressed genes are mainly involved in protein and ion binding and oxidoreductase activity. Antioxidation-related pathways, including flavonoid and carotenoid biosynthesis, were highly enriched in these functions. Shading inhibited the expression of flavonoid biosynthesis-associated genes and induced carotenoid biosynthesis-related genes. This would suggest that decreased flavonoid biosynthetic gene expression coincides with increased flavonoids (e.g., catechin content upon moderate shading, while carotenoid levels and biosynthetic gene expression are positively correlated in ‘Huangjinya.’ In conclusion, the leaf color changes in ‘Huangjinya’ are largely determined by the combined effects of flavonoid and carotenoid biosynthesis.

  2. Expression profile of genes coding for carotenoid biosynthetic ...

    Indian Academy of Sciences (India)

    Fruit ripening process is associated with change in carotenoid profile and accumulation of lycopene in tomato (Solanum lycopersicum L.). In this study, we quantified the -carotene and lycopene content at green, breaker and red-ripe stages of fruit ripening in eight tomato genotypes by using high-performance liquid ...

  3. Enhancement of cordyceps polysaccharide production via biosynthetic pathway analysis in Hirsutella sinensis.

    Science.gov (United States)

    Lin, Shan; Liu, Zhi-Qiang; Baker, Peter James; Yi, Ming; Wu, Hui; Xu, Feng; Teng, Yi; Zheng, Yu-Guo

    2016-11-01

    The addition of various sulfates for enhanced cordyceps polysaccharide (CP) production in submerged cultivation of H. sinensis was investigated, and manganese sulfate was found the most effective. 2mM of manganese sulfate on 0day (d) was investigated as the optimal adding condition, and the CP production reached optimum with 5.33%, increasing by 93.3% compared with the control. Furthermore, the consumption of three main precursors of CP was studied over cultivation under two conditions. Intracellular mannose content decreased by 43.1% throughout 6days cultivation, which corresponded to CP accumulation rate sharply increased from 0 d to 6 d, and mannose was considered as the most preferred precursor for generating CP. Subsequently, mannose biosynthetic pathway was constructed and verified for the first time in H. sinensis, which constituted the important part of CP biosynthesis, and transcriptional levels of the biosynthetic genes were studied. Transcriptional level of gene cpsA was significantly up-regulated 5.35-fold and it was a key gene involved both in mannose and CP biosynthesis. This study demonstrated that manganese sulfate addition is an efficient and simple way to improve CP production. Transcriptional analysis based on biosynthetic pathway was helpful to find key genes and better understand CP biosynthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The Phytoene synthase gene family of apple (Malus x domestica) and its role in controlling fruit carotenoid content.

    Science.gov (United States)

    Ampomah-Dwamena, Charles; Driedonks, Nicky; Lewis, David; Shumskaya, Maria; Chen, Xiuyin; Wurtzel, Eleanore T; Espley, Richard V; Allan, Andrew C

    2015-07-28

    Carotenoid compounds play essential roles in plants such as protecting the photosynthetic apparatus and in hormone signalling. Coloured carotenoids provide yellow, orange and red colour to plant tissues, as well as offering nutritional benefit to humans and animals. The enzyme phytoene synthase (PSY) catalyses the first committed step of the carotenoid biosynthetic pathway and has been associated with control of pathway flux. We characterised four PSY genes found in the apple genome to further understand their involvement in fruit carotenoid accumulation. The apple PSY gene family, containing six members, was predicted to have three functional members, PSY1, PSY2, and PSY4, based on translation of the predicted gene sequences and/or corresponding cDNAs. However, only PSY1 and PSY2 showed activity in a complementation assay. Protein localisation experiments revealed differential localization of the PSY proteins in chloroplasts; PSY1 and PSY2 localized to the thylakoid membranes, while PSY4 localized to plastoglobuli. Transcript levels in 'Granny Smith' and 'Royal Gala' apple cultivars showed PSY2 was most highly expressed in fruit and other vegetative tissues. We tested the transient activation of the apple PSY1 and PSY2 promoters and identified potential and differential regulation by AP2/ERF transcription factors, which suggested that the PSY genes are controlled by different transcriptional mechanisms. The first committed carotenoid pathway step in apple is controlled by MdPSY1 and MdPSY2, while MdPSY4 play little or no role in this respect. This has implications for apple breeding programmes where carotenoid enhancement is a target and would allow co-segregation with phenotypes to be tested during the development of new cultivars.

  5. Transcriptional repressor role of PocR on the 1,3-propanediol biosynthetic pathway by Lactobacillus panis PM1.

    Science.gov (United States)

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2014-06-01

    The regulatory role of a transcriptional regulator (PocR) in the 1,3-propanediol biosynthetic pathway of Lactobacillus panis PM1 contributes to the optimization of 1,3-propanediol production by this strain, which potentially will lead to 1,3-propanediol manufacturing efficiencies. Lactobacillus panis PM1 can utilize a 1,3-propanediol (1,3-PDO) biosynthetic pathway, consisting of diol dehydratase (PduCDE) and 1,3-PDO dehydrogenase, as a NADH recycling system, to survive under various environmental conditions. In this study, we identified a key transcriptional repressor (PocR) which was annotated as a transcriptional factor of AraC family as part of the 1,3-PDO biosynthetic pathway of L. panis PM1. The over-expression of the PocR gene resulted in the significant repression (81 %) of pduC (PduCDE large subunit) transcription, and subsequently, the decreased activity of PduCDE by 22 %. As a result of the regulation of PduCDE, production of both 3-hydroxypropionaldehyde and 1,3-PDO in the PocR over-expressing strain were significantly decreased by 40 % relative to the control strain. These results clearly demonstrate the transcriptional repressor role of PocR in the 1,3-PDO biosynthetic pathway.

  6. Responses of Synechocystis sp. PCC 6803 to heterologous biosynthetic pathways

    DEFF Research Database (Denmark)

    Vavitsas, Konstantinos; Rue, Emil Østergaard; Stefánsdóttir, Lára Kristín

    2017-01-01

    BACKGROUND: There are an increasing number of studies regarding genetic manipulation of cyanobacteria to produce commercially interesting compounds. The majority of these works study the expression and optimization of a selected heterologous pathway, largely ignoring the wholeness and complexity...... different compounds, the cyanogenic glucoside dhurrin and the diterpenoid 13R-manoyl oxide in Synechocystis PCC 6803. We used genome-scale metabolic modelling to study fluxes in individual reactions and pathways, and we determined the concentrations of key metabolites, such as amino acids, carotenoids...

  7. Unravelling Protein-Protein Interaction Networks Linked to Aliphatic and Indole Glucosinolate Biosynthetic Pathways in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sebastian J. Nintemann

    2017-11-01

    Full Text Available Within the cell, biosynthetic pathways are embedded in protein-protein interaction networks. In Arabidopsis, the biosynthetic pathways of aliphatic and indole glucosinolate defense compounds are well-characterized. However, little is known about the spatial orchestration of these enzymes and their interplay with the cellular environment. To address these aspects, we applied two complementary, untargeted approaches—split-ubiquitin yeast 2-hybrid and co-immunoprecipitation screens—to identify proteins interacting with CYP83A1 and CYP83B1, two homologous enzymes specific for aliphatic and indole glucosinolate biosynthesis, respectively. Our analyses reveal distinct functional networks with substantial interconnection among the identified interactors for both pathway-specific markers, and add to our knowledge about how biochemical pathways are connected to cellular processes. Specifically, a group of protein interactors involved in cell death and the hypersensitive response provides a potential link between the glucosinolate defense compounds and defense against biotrophic pathogens, mediated by protein-protein interactions.

  8. Genetic determination of the meso-diaminopimelate biosynthetic pathway of mycobacteria.

    OpenAIRE

    Cirillo, J. D.; Weisbrod, T. R.; Banerjee, A.; Bloom, B. R.; Jacobs, W. R.

    1994-01-01

    The increasing incidence of multiple-drug-resistant mycobacterial infections indicates that the development of new methods for treatment of mycobacterial diseases should be a high priority. meso-Diaminopimelic acid (DAP), a key component of a highly immunogenic subunit of the mycobacterial peptidoglycan layer, has been implicated as a potential virulence factor. The mycobacterial DAP biosynthetic pathway could serve as a target for design of new antimycobacterial agents as well as the constru...

  9. Genetic variation of carotenoids in Chinese bread wheat cultivars and the effect of the 1BL.1RS translocation

    Directory of Open Access Journals (Sweden)

    Wenshuang LI,Shengnan ZHAI,Hui JIN,Weie WEN,Jindong LIU,Xianchun XIA,Zhonghu HE

    2016-06-01

    Full Text Available Carotenoid content of wheat is an important criterion for prediction of the commercial and nutritional value of products made from bread wheat (Triticum aestivum cultivars. The objective of this study was to determine the major components of carotenoids in Chinese wheat using ultra performance liquid chromatography (UPLC including lutein, zeaxanthin, α-carotene and β-carotene. Grain carotenoid content was investigated in 217 cultivars from three major Chinese wheat regions and from seven other countries grown in two environments. Genotype contributed to the majority of variation in carotenoid components. Lutein, zeaxanthin and β-carotene concentrations varied from 18.3 to 100.1, 4.9 to 12.0 and 0.9 to 48.7 μg per 100 g in wheat flour with an average of 40.2, 7.2 and 18.2 μg per 100 g, respectively. Lutein (61.3% was the main carotenoid component, followed by β-carotene (27.7% and zeaxanthin (11.0%. No α-carotene was detected. Total carotenoids, lutein, zeaxanthin and β-carotene were all higher in cultivars with the 1BL.1RS translocation compared to those without the translocation. This is the first report on assay of lutein, zeaxanthin and β-carotene concentrations for a large number of wheat cultivars. These data will be useful for genetic improvement of wheat carotenoid content and for understanding of the carotenoid biosynthetic pathway in wheat.

  10. Molecular evolution of the lysine biosynthetic pathways.

    Science.gov (United States)

    Velasco, A M; Leguina, J I; Lazcano, A

    2002-10-01

    Among the different biosynthetic pathways found in extant organisms, lysine biosynthesis is peculiar because it has two different anabolic routes. One is the diaminopimelic acid pathway (DAP), and the other over the a-aminoadipic acid route (AAA). A variant of the AAA route that includes some enzymes involved in arginine and leucine biosyntheses has been recently reported in Thermus thermophilus (Nishida et al. 1999). Here we describe the results of a detailed genomic analysis of each of the sequences involved in the two lysine anabolic routes, as well as of genes from other routes related to them. No evidence was found of an evolutionary relationship between the DAP and AAA enzymes. Our results suggest that the DAP pathway is related to arginine metabolism, since the lysC, asd, dapC, dapE, and lysA genes from lysine biosynthesis are related to the argB, argC, argD, argE, and speAC genes, respectively, whose products catalyze different steps in arginine metabolism. This work supports previous reports on the relationship between AAA gene products and some enzymes involved in leucine biosynthesis and the tricarboxylic acid cycle (Irvin and Bhattacharjee 1998; Miyazaki et al. 2001). Here we discuss the significance of the recent finding that several genes involved in the arginine (Arg) and leucine (Leu) biosynthesis participate in a new alternative route of the AAA pathway (Miyazaki et al. 2001). Our results demonstrate a clear relationship between the DAP and Arg routes, and between the AAA and Leu pathways.

  11. Neurosteroid biosynthetic pathway changes in substantia nigra and caudate nucleus in Parkinson's disease

    NARCIS (Netherlands)

    Luchetti, Sabina; Bossers, Koen; Frajese, Giovanni Vanni; Swaab, Dick F.

    2010-01-01

    There is emerging evidence from animal studies for a neuroprotective role of sex steroids in neurodegenerative diseases, but studies in human brain are lacking. We have carried out an extensive study of the neurosteroid biosynthetic pathways in substantia nigra (SN), caudate nucleus (CN) and putamen

  12. Carotenoids in Marine Animals

    OpenAIRE

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine a...

  13. Carotenoids in Marine Animals

    Science.gov (United States)

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine animal carotenoids from natural product chemistry, metabolism, food chain, and chemosystematic viewpoints, and also describe new structural carotenoids isolated from marine animals over the last decade. PMID:21566799

  14. The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments.

    Science.gov (United States)

    Colasuonno, Pasqualina; Lozito, Maria Luisa; Marcotuli, Ilaria; Nigro, Domenica; Giancaspro, Angelica; Mangini, Giacomo; De Vita, Pasquale; Mastrangelo, Anna Maria; Pecchioni, Nicola; Houston, Kelly; Simeone, Rosanna; Gadaleta, Agata; Blanco, Antonio

    2017-01-31

    In plants carotenoids play an important role in the photosynthetic process and photo-oxidative protection, and are the substrate for the synthesis of abscisic acid and strigolactones. In addition to their protective role as antioxidants and precursors of vitamin A, in wheat carotenoids are important as they influence the colour (whiteness vs. yellowness) of the grain. Understanding the genetic basis of grain yellow pigments, and identifying associated markers provide the basis for improving wheat quality by molecular breeding. Twenty-four candidate genes involved in the biosynthesis and catabolism of carotenoid compounds have been identified in wheat by comparative genomics. Single nucleotide polymorphisms (SNPs) found in the coding sequences of 19 candidate genes allowed their chromosomal location and accurate map position on two reference consensus maps to be determined. The genome-wide association study based on genotyping a tetraploid wheat collection with 81,587 gene-associated SNPs validated quantitative trait loci (QTLs) previously detected in biparental populations and discovered new QTLs for grain colour-related traits. Ten carotenoid genes mapped in chromosome regions underlying pigment content QTLs indicating possible functional relationships between candidate genes and the trait. The availability of linked, candidate gene-based markers can facilitate breeding wheat cultivars with desirable levels of carotenoids. Identifying QTLs linked to carotenoid pigmentation can contribute to understanding genes underlying carotenoid accumulation in the wheat kernels. Together these outputs can be combined to exploit the genetic variability of colour-related traits for the nutritional and commercial improvement of wheat products.

  15. Aryl Polyenes, a Highly Abundant Class of Bacterial Natural Products, Are Functionally Related to Antioxidative Carotenoids.

    Science.gov (United States)

    Schöner, Tim A; Gassel, Sören; Osawa, Ayako; Tobias, Nicholas J; Okuno, Yukari; Sakakibara, Yui; Shindo, Kazutoshi; Sandmann, Gerhard; Bode, Helge B

    2016-02-02

    Bacterial pigments of the aryl polyene type are structurally similar to the well-known carotenoids with respect to their polyene systems. Their biosynthetic gene cluster is widespread in taxonomically distant bacteria, and four classes of such pigments have been found. Here we report the structure elucidation of the aryl polyene/dialkylresorcinol hybrid pigments of Variovorax paradoxus B4 by HPLC-UV-MS, MALDI-MS and NMR. Furthermore, we show for the first time that this pigment class protects the bacterium from reactive oxygen species, similarly to what is known for carotenoids. An analysis of the distribution of biosynthetic genes for aryl polyenes and carotenoids in bacterial genomes is presented; it shows a complementary distribution of these protective pigments in bacteria. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ethylene Responses in Rice Roots and Coleoptiles Are Differentially Regulated by a Carotenoid Isomerase-Mediated Abscisic Acid Pathway[OPEN

    Science.gov (United States)

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice. PMID:25841037

  17. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels.

    Directory of Open Access Journals (Sweden)

    Dirk Maass

    Full Text Available BACKGROUND: As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY overexpression in green and non-green cells of transgenic Arabidopsis lines. This revealed striking similarities to the situation found in orange carrot roots with respect to carotenoid amounts and sequestration mechanism. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis seedlings, carotenoid content remained unaffected by increased AtPSY levels although the protein was almost quantitatively imported into plastids, as shown by western blot analyses. In contrast, non-photosynthetic calli and roots overexpressing AtPSY accumulated carotenoids 10 and 100-fold above the corresponding wild-type tissues and contained 1800 and 500 microg carotenoids per g dry weight, respectively. This increase coincided with a change of the pattern of accumulated carotenoids, as xanthophylls decreased relative to beta-carotene and carotene intermediates accumulated. As shown by polarization microscopy, carotenoids were found deposited in crystals, similar to crystalline-type chromoplasts of non-green tissues present in several other taxa. In fact, orange-colored carrots showed a similar situation with increased PSY protein as well as carotenoid levels and accumulation patterns whereas wild white-rooted carrots were similar to Arabidopsis wild type roots in this respect. Initiation of carotenoid crystal formation by increased PSY protein amounts was further confirmed by overexpressing crtB, a bacterial PSY gene, in white carrots, resulting in increased carotenoid amounts deposited in crystals. CONCLUSIONS: The sequestration of carotenoids into crystals can be driven by the

  18. Carotenoid accumulation in orange-pigmented Capsicum annuum fruit, regulated at multiple levels

    Science.gov (United States)

    Rodriguez-Uribe, Laura; Guzman, Ivette; Rajapakse, Wathsala; Richins, Richard D.; O’Connell, Mary A.

    2012-01-01

    The pericarp of Capsicum fruit is a rich dietary source of carotenoids. Accumulation of these compounds may be controlled, in part, by gene transcription of biosynthetic enzymes. The carotenoid composition in a number of orange-coloured C. annuum cultivars was determined using HPLC and compared with transcript abundances for four carotenogenic enzymes, Psy, LcyB, CrtZ-2, and Ccs determined by qRT-PCR. There were unique carotenoid profiles as well as distinct patterns of transcription of carotenogenic enzymes within the seven orange-coloured cultivars. In one cultivar, ‘Fogo’, carrying the mutant ccs-3 allele, transcripts were detected for this gene, but no CCS protein accumulated. The premature stop termination in ccs-3 prevented expression of the biosynthetic activity to synthesize the capsanthin and capsorubin forms of carotenoids. In two other orange-coloured cultivars, ‘Orange Grande’ and ‘Oriole’, both with wild-type versions of all four carotenogenic enzymes, no transcripts for Ccs were detected and no red pigments accumulated. Finally, in a third case, the orange-coloured cultivar, Canary, transcripts for all four of the wild-type carotenogenic enzymes were readily detected yet no CCS protein appeared to accumulate and no red carotenoids were synthesized. In the past, mutations in Psy and Ccs have been identified as the loci controlling colour in the fruit. Now there is evidence that a non-structural gene may control colour development in Capsicum. PMID:21948863

  19. Medically important carotenoids from Momordica charantia and their gene expressions in different organs.

    Science.gov (United States)

    Cuong, Do Manh; Arasu, Mariadhas Valan; Jeon, Jin; Park, Yun Ji; Kwon, Soon-Jae; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2017-12-01

    Carotenoids, found in the fruit and different organs of bitter melon ( Momordica charantia ), have attracted great attention for their potential health benefits in treating several major chronic diseases. Therefore, study related to the identification and quantification of the medically important carotenoid metabolites is highly important for the treatment of various disorderes. The present study involved in the identification and quantification of the various carotenoids present in the different organs of M. charantia and the identification of the genes responsible for the accumulation of the carotenoids with respect to the transcriptome levels were investigated. In this study, using the transcriptome database of bitter melon, a partial-length cDNA clone encoding geranylgeranyl pyrophosphate synthase ( McGGPPS2 ), and several full-length cDNA clones encoding geranylgeranyl pyrophosphate synthase ( McGGPPS1 ), zeta-carotene desaturase ( McZDS ), lycopene beta-cyclase ( McLCYB ), lycopene epsilon cyclases ( McLCYE1 and McLCYE2 ), beta-carotene hydroxylase ( McCHXB ), and zeaxanthin epoxidase ( McZEP ) were identified in bitter melon . The expression levels of the mRNAs encoding these eight putative biosynthetic enzymes, as well as the accumulation of lycopene, α-carotene, lutein, 13Z-β-carotene, E-β-carotene, 9Z-β-carotene, β-cryptoxanthin, zeaxanthin, antheraxanthin, and violaxanthin were investigated in different organs from M. charantia as well as in the four different stages of its fruit maturation. Transcripts were found to be constitutively expressed at high levels in the leaves where carotenoids were also found at the highest levels . Collectively, these results indicate that the putative McGGPPS2, McZDS, McLCYB, McLCYE1, McLCYE2, and McCHXB enzymes might be key factors in controlling carotenoid content in bitter melon . In conclusion, the over expression of the carotenoid biosynthetic genes from M. charantia crops to increase the yield of these

  20. Reconstruction of the biosynthetic pathway for the core fungal polyketide scaffold rubrofusarin in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Rugbjerg, Peter; Naesby, Michael; Mortensen, Uffe Hasbro

    2013-01-01

    production in easily fermentable and genetically engineerable organisms, such as Saccharomyces cerevisiae and Escherichia coli are desirable. Rubrofusarin is an orange polyketide pigment that is a common intermediate in many different fungal biosynthetic pathways. RESULTS: In this study, we established...

  1. Estimating P-coverage of biosynthetic pathways in DNA libraries and screening by genetic selection: biotin biosynthesis in the marine microorganism Chromohalobacter.

    Science.gov (United States)

    Kim, Eun Jin; Angell, Scott; Janes, Jeff; Watanabe, Coran M H

    2008-06-01

    Traditional approaches to natural product discovery involve cell-based screening of natural product extracts followed by compound isolation and characterization. Their importance notwithstanding, continued mining leads to depletion of natural resources and the reisolation of previously identified metabolites. Metagenomic strategies aimed at localizing the biosynthetic cluster genes and expressing them in surrogate hosts offers one possible alternative. A fundamental question that naturally arises when pursuing such a strategy is, how large must the genomic library be to effectively represent the genome of an organism(s) and the biosynthetic gene clusters they harbor? Such an issue is certainly augmented in the absence of expensive robotics to expedite colony picking and/or screening of clones. We have developed an algorism, named BPC (biosynthetic pathway coverage), supported by molecular simulations to deduce the number of BAC clones required to achieve proper coverage of the genome and their respective biosynthetic pathways. The strategy has been applied to the construction of a large-insert BAC library from a marine microorganism, Hon6 (isolated from Honokohau, Maui) thought to represent a new species. The genomic library is constructed with a BAC yeast shuttle vector pClasper lacZ paving the way for the culturing of libraries in both prokaryotic and eukaryotic hosts. Flow cytometric methods are utilized to estimate the genome size of the organism and BPC implemented to assess P-coverage or percent coverage. A genetic selection strategy is illustrated, applications of which could expedite screening efforts in the identification and localization of biosynthetic pathways from marine microbial consortia, offering a powerful complement to genome sequencing and degenerate probe strategies. Implementing this approach, we report on the biotin biosynthetic pathway from the marine microorganism Hon6.

  2. Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers

    NARCIS (Netherlands)

    Wolters, A.M.A.; Uitdewilligen, J.G.A.M.L.; Kloosterman, B.A.; Hutten, R.C.B.; Visser, R.G.F.; Eck, van H.J.

    2010-01-01

    We have investigated the genetics and molecular biology of orange flesh colour in potato (Solanum tuberosum L.). To this end the natural diversity in three genes of the carotenoid pathway was assessed by SNP analyses. Association analysis was performed between SNP haplotypes and flesh colour

  3. Elucidation of the biosynthetic pathway for the production of the pigment chrysogine by Penicillium chrysogenum

    NARCIS (Netherlands)

    Viggiano, Annarita; Salo, Oleksandr; Ali, Hazrat; Szymanski, Wiktor; Lankhorst, Peter P; Nygård, Yvonne; Bovenberg, Roel A L; Driessen, Arnold J M

    Chrysogine is a yellow pigment produced by Penicillium chrysogenum and other filamentous fungi. Although it was first isolated in 1973, the biosynthetic pathway has so far not been resolved. Here, we show that the deletion of the highly expressed non-ribosomal peptide synthetase (NRPS) gene

  4. Carotenoids in Microalgae.

    Science.gov (United States)

    Henríquez, Vitalia; Escobar, Carolina; Galarza, Janeth; Gimpel, Javier

    Carotenoids are a class of isoprenoids synthesized by all photosynthetic organisms as well as by some non-photosynthetic bacteria and fungi with broad applications in food, feed and cosmetics, and also in the nutraceutical and pharmaceutical industries. Microalgae represent an important source of high-value products, which include carotenoids, among others. Carotenoids play key roles in light harvesting and energy transfer during photosynthesis and in the protection of the photosynthetic apparatus against photooxidative damage. Carotenoids are generally divided into carotenes and xanthophyls, but accumulation in microalgae can also be classified as primary (essential for survival) and secondary (by exposure to specific stimuli).In this chapter, we outline the high value carotenoids produced by commercially important microalgae, their production pathways, the improved production rates that can be achieved by genetic engineering as well as their biotechnological applications.

  5. Association Mapping of Total Carotenoids in Diverse Soybean Genotypes Based on Leaf Extracts and High-Throughput Canopy Spectral Reflectance Measurements.

    Directory of Open Access Journals (Sweden)

    Arun Prabhu Dhanapal

    Full Text Available Carotenoids are organic pigments that are produced predominantly by photosynthetic organisms and provide antioxidant activity to a wide variety of plants, animals, bacteria, and fungi. The carotenoid biosynthetic pathway is highly conserved in plants and occurs mostly in chromoplasts and chloroplasts. Leaf carotenoids play important photoprotective roles and targeted selection for leaf carotenoids may offer avenues to improve abiotic stress tolerance. A collection of 332 soybean [Glycine max (L. Merr.] genotypes was grown in two years and total leaf carotenoid content was determined using three different methods. The first method was based on extraction and spectrophotometric determination of carotenoid content (eCaro in leaf tissue, whereas the other two methods were derived from high-throughput canopy spectral reflectance measurements using wavelet transformed reflectance spectra (tCaro and a spectral reflectance index (iCaro. An association mapping approach was employed using 31,253 single nucleotide polymorphisms (SNPs to identify SNPs associated with total carotenoid content using a mixed linear model based on data from two growing seasons. A total of 28 SNPs showed a significant association with total carotenoid content in at least one of the three approaches. These 28 SNPs likely tagged 14 putative loci for carotenoid content. Six putative loci were identified using eCaro, five loci with tCaro, and nine loci with iCaro. Three of these putative loci were detected by all three carotenoid determination methods. All but four putative loci were located near a known carotenoid-related gene. These results showed that carotenoid markers can be identified in soybean using extract-based as well as by high-throughput canopy spectral reflectance-based approaches, demonstrating the utility of field-based canopy spectral reflectance phenotypes for association mapping.

  6. Differential selection on carotenoid biosynthesis genes as a function of gene position in the metabolic pathway: a study on the carrot and dicots.

    Directory of Open Access Journals (Sweden)

    Jérémy Clotault

    Full Text Available Selection of genes involved in metabolic pathways could target them differently depending on the position of genes in the pathway and on their role in controlling metabolic fluxes. This hypothesis was tested in the carotenoid biosynthesis pathway using population genetics and phylogenetics.Evolutionary rates of seven genes distributed along the carotenoid biosynthesis pathway, IPI, PDS, CRTISO, LCYB, LCYE, CHXE and ZEP, were compared in seven dicot taxa. A survey of deviations from neutrality expectations at these genes was also undertaken in cultivated carrot (Daucus carota subsp. sativus, a species that has been intensely bred for carotenoid pattern diversification in its root during its cultivation history. Parts of sequences of these genes were obtained from 46 individuals representing a wide diversity of cultivated carrots. Downstream genes exhibited higher deviations from neutral expectations than upstream genes. Comparisons of synonymous and nonsynonymous substitution rates between genes among dicots revealed greater constraints on upstream genes than on downstream genes. An excess of intermediate frequency polymorphisms, high nucleotide diversity and/or high differentiation of CRTISO, LCYB1 and LCYE in cultivated carrot suggest that balancing selection may have targeted genes acting centrally in the pathway.Our results are consistent with relaxed constraints on downstream genes and selection targeting the central enzymes of the carotenoid biosynthesis pathway during carrot breeding history.

  7. Carotenoids

    Science.gov (United States)

    This short article indicated that greater understanding of the biological functions of carotenoids mediated via their oxidative metabolites through their effects on these important cellular pathways and molecular targets, as well as their significance to cancer prevention, is needed. In considering ...

  8. Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp.

    Directory of Open Access Journals (Sweden)

    Sandra Fresquet-Corrales

    Full Text Available Proanthocyanidins (PAs, or condensed tannins, are powerful antioxidants that remove harmful free oxygen radicals from cells. To engineer the anthocyanin and proanthocyanidin biosynthetic pathways to de novo produce PAs in two Nicotiana species, we incorporated four transgenes to the plant chassis. We opted to perform a simultaneous transformation of the genes linked in a multigenic construct rather than classical breeding or retransformation approaches. We generated a GoldenBraid 2.0 multigenic construct containing two Antirrhinum majus transcription factors (AmRosea1 and AmDelila to upregulate the anthocyanin pathway in combination with two Medicago truncatula genes (MtLAR and MtANR to produce the enzymes that will derivate the biosynthetic pathway to PAs production. Transient and stable transformation of Nicotiana benthamiana and Nicotiana tabacum with the multigenic construct were respectively performed. Transient expression experiments in N. benthamiana showed the activation of the anthocyanin pathway producing a purple color in the agroinfiltrated leaves and also the effective production of 208.5 nmol (- catechin/g FW and 228.5 nmol (- epicatechin/g FW measured by the p-dimethylaminocinnamaldehyde (DMACA method. The integration capacity of the four transgenes, their respective expression levels and their heritability in the second generation were analyzed in stably transformed N. tabacum plants. DMACA and phoroglucinolysis/HPLC-MS analyses corroborated the activation of both pathways and the effective production of PAs in T0 and T1 transgenic tobacco plants up to a maximum of 3.48 mg/g DW. The possible biotechnological applications of the GB2.0 multigenic approach in forage legumes to produce "bloat-safe" plants and to improve the efficiency of conversion of plant protein into animal protein (ruminal protein bypass are discussed.

  9. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mattanovich Diethard

    2008-07-01

    Full Text Available Abstract Background High cell density cultures of Pichia pastoris grown on methanol tend to develop yellow colored supernatants, attributed to the release of free flavins. The potential of P. pastoris for flavin overproduction is therefore given, but not pronounced when the yeast is grown on glucose. The aim of this study is to characterize the relative regulatory impact of each riboflavin synthesis gene. Deeper insight into pathway control and the potential of deregulation is established by overexpression of the single genes as well as a combined deregulation of up to all six riboflavin synthesis genes. Results Overexpression of the first gene of the riboflavin biosynthetic pathway (RIB1 is already sufficient to obtain yellow colonies and the accumulation of riboflavin in the supernatant of shake flask cultures growing on glucose. Sequential deregulation of all the genes, by exchange of their native promoter with the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP increases the riboflavin accumulation significantly. Conclusion The regulation of the pathway is distributed over more than one gene. High cell density cultivations of a P. pastoris strain overexpressing all six RIB genes allow the accumulation of 175 mg/L riboflavin in the supernatant. The basis for rational engineering of riboflavin production in P. pastoris has thus been established.

  10. Functional Characterization of a Novel R2R3-MYB Transcription Factor Modulating the Flavonoid Biosynthetic Pathway from Epimedium sagittatum

    Directory of Open Access Journals (Sweden)

    Wenjun Huang

    2017-07-01

    Full Text Available Epimedium species have been widely used both as traditional Chinese medicinal plants and ornamental perennials. Both flavonols, acting as the major bioactive components (BCs and anthocyanins, predominantly contributing to the color diversity of Epimedium flowers belong to different classes of flavonoids. It is well-acknowledged that flavonoid biosynthetic pathway is predominantly regulated by R2R3-MYB transcription factor (TF as well as bHLH TF and WD40 protein at the transcriptional level. MYB TFs specifically regulating anthocyanin or flavonol biosynthetic pathway have been already isolated and functionally characterized from Epimedium sagittatum, but a R2R3-MYB TF involved in regulating both these two pathways has not been functionally characterized to date in Epimedium plants. In this study, we report the functional characterization of EsMYB9, a R2R3-MYB TF previously isolated from E. sagittatum. The previous study indicated that EsMYB9 belongs to a small subfamily of R2R3-MYB TFs containing grape VvMYB5a and VvMYB5b TFs, which regulate flavonoid biosynthetic pathway. The present studies show that overexpression of EsMYB9 in tobacco leads to increased transcript levels of flavonoid pathway genes and increased contents of anthocyanins and flavonols. Yeast two-hybrid assay indicates that the C-terminal region of EsMYB9 contributes to the autoactivation activity, and EsMYB9 interacts with EsTT8 or AtTT8 bHLH regulator. Transient reporter assay shows that EsMYB9 slightly activates the expression of EsCHS (chalcone synthase promoter in transiently transformed leaves of Nicotiana benthamiana, but the addition of AtTT8 or EsTT8 bHLH regulator strongly enhances the transcriptional activation of EsMYB9 against five promoters of the flavonoid pathway genes except EsFLS (flavonol synthase. In addition, co-transformation of EsMYB9 and EsTT8 in transiently transfected tobacco leaves strongly induces the expressions of flavonoid biosynthetic genes. The

  11. Involvement of 2-C-methyl-D-erythritol-4-phosphate pathway in biosynthesis of aphidicolin-like tetracyclic diterpene of Scoparia dulcis.

    Science.gov (United States)

    Nkembo, Marguerite Kasidimoko; Lee, Jung-Bum; Nakagiri, Takeshi; Hayashi, Toshimitsu

    2006-05-01

    Specific inhibitors of the MVA pathway (pravastatin) and the MEP pathway (fosmidomycin) were used to interfere with the biosynthetic flux which leads to the production of aphidicolin-like diterpene in leaf organ cultures of Scoparia dulcis. Treatment of leaf organs with fosmidomycin resulted in dose dependent inhibition of chlorophylls, carotenoids, scopadulcic acid B (SDB) and phytol production, and no effect on sterol production was observed. In response to the pravastatin treatment, a significant decrease in sterol and perturbation of SDB production was observed.

  12. Path analysis suggests phytoene accumulation is the key step limiting the carotenoid pathway in white carrot roots

    Directory of Open Access Journals (Sweden)

    Carlos Antonio Fernandes Santos

    2005-01-01

    Full Text Available Two F2 carrot (Daucus carota L. populations (orange rooted Brasilia x very dark orange rooted High Carotene Mass - HCM cross and the dark orange rooted cultivated variety B493 x white rooted wild carrot Queen Anne's Lace - QAL cross with very unrelated genetic backgrounds were used to investigate intrinsic factors limiting carotenoid accumulation in carrots by applying phenotypic correlation and path analysis to study the relationships between major root carotenes, root color and several other morphological traits. Most of the correlations between traits were close and agreed in sign between the two populations. Root weight had a moderate to highly significant positive correlation with leaf length, root length and top and middle root diameter. Although phenotypic correlations failed to identify the order of the substrates and products in the carotenoid pathway the correct order of substrates and products (phytoene -> zeta-carotene -> lycopene was identified in the causal diagram of beta-carotene for the Brasilia x HCM population. Path analysis of beta-carotene synthesis in the B493 x QAL population suggested that selection for root carotenes had little effect on plant morphological traits. Causal model of beta-carotene and lycopene in the B493 x QAL population suggested that phytoene synthesis is the key step limiting the carotenoid pathway in white carrots. Path analysis, first presented by Sewall Wright to study quantitative traits, appears to be a powerful statistical approach for the identification of key compounds in complex pathways.

  13. Novel bioassay for the discovery of inhibitors of the 2-C-methyl-D-erythritol 4-phosphate (MEP and terpenoid pathways leading to carotenoid biosynthesis.

    Directory of Open Access Journals (Sweden)

    Natália Corniani

    Full Text Available The 2-C-methyl-D-erythritol 4-phosphate (MEP pathway leads to the synthesis of isopentenyl diphosphate in plastids. It is a major branch point providing precursors for the synthesis of carotenoids, tocopherols, plastoquinone and the phytyl chain of chlorophylls, as well as the hormones abscisic acid and gibberellins. Consequently, disruption of this pathway is harmful to plants. We developed an in vivo bioassay that can measure the carbon flow through the carotenoid pathway. Leaf cuttings are incubated in the presence of a phytoene desaturase inhibitor to induce phytoene accumulation. Any compound reducing the level of phytoene accumulation is likely to interfere with either one of the steps in the MEP pathway or the synthesis of geranylgeranyl diphosphate. This concept was tested with known inhibitors of steps of the MEP pathway. The specificity of this in vivo bioassay was also verified by testing representative herbicides known to target processes outside of the MEP and carotenoid pathways. This assay enables the rapid screen of new inhibitors of enzymes preceding the synthesis of phytoene, though there are some limitations related to the non-specific effect of some inhibitors on this assay.

  14. The immediate nucleotide precursor, guanosine triphosphate, in the riboflavin biosynthetic pathway

    International Nuclear Information System (INIS)

    Mitsuda, Hisateru; Nakajima, Kenji; Nadamoto, Tomonori

    1977-01-01

    In the present paper, the nucleotide precursor of riboflavin was investigated by experiments with labeled purines using non-growing cells of Eremothecium ashbyii. The added purines, at 10 -4 M, were effectively incorporated into riboflavin at an early stage of riboflavin biosynthesis under the experimental conditions. In particular, both labeled xanthine and labeled guanine were specifically transported to guanosine nucleotides, GMP, GDP, GDP-Mannose and GTP, in the course of the riboflavin biosynthesis. A comparison of specific activities of labeled guanosine nucleotides and labeled riboflavin indicated that the nucleotide precursor of riboflavin is guanosine triphosphate. From the results obtained, a biosynthetic pathway of riboflavin is proposed. (auth.)

  15. Host and Pathway Engineering for Enhanced Lycopene Biosynthesis in Yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    Cory Schwartz

    2017-11-01

    Full Text Available Carotenoids are a class of molecules with commercial value as food and feed additives with nutraceutical properties. Shifting carotenoid synthesis from petrochemical-based precursors to bioproduction from sugars and other biorenewable carbon sources promises to improve process sustainability and economics. In this work, we engineered the oleaginous yeast Yarrowia lipolytica to produce the carotenoid lycopene. To enhance lycopene production, we tested a series of strategies to modify host cell physiology and metabolism, the most successful of which were mevalonate pathway overexpression and alleviating auxotrophies previously engineered into the PO1f strain of Y. lipolytica. The beneficial engineering strategies were combined into a single strain, which was then cultured in a 1-L bioreactor to produce 21.1 mg/g DCW. The optimized strain overexpressed a total of eight genes including two copies of HMG1, two copies of CrtI, and single copies of MVD1, EGR8, CrtB, and CrtE. Recovering leucine and uracil biosynthetic capacity also produced significant enhancement in lycopene titer. The successful engineering strategies characterized in this work represent a significant increase in understanding carotenoid biosynthesis in Y. lipolytica, not only increasing lycopene titer but also informing future studies on carotenoid biosynthesis.

  16. Synthesis of C-Glucosylated Octaketide Anthraquinones in Nicotiana benthamiana by Using a Multispecies-Based Biosynthetic Pathway.

    Science.gov (United States)

    Andersen-Ranberg, Johan; Kongstad, Kenneth Thermann; Nafisi, Majse; Staerk, Dan; Okkels, Finn Thyge; Mortensen, Uffe Hasbro; Lindberg Møller, Birger; Frandsen, Rasmus John Normand; Kannangara, Rubini

    2017-10-05

    Carminic acid is a C-glucosylated octaketide anthraquinone and the main constituent of the natural dye carmine (E120), possessing unique coloring, stability, and solubility properties. Despite being used since ancient times, longstanding efforts to elucidate its route of biosynthesis have been unsuccessful. Herein, a novel combination of enzymes derived from a plant (Aloe arborescens, Aa), a bacterium (Streptomyces sp. R1128, St), and an insect (Dactylopius coccus, Dc) that allows for the biosynthesis of the C-glucosylated anthraquinone, dcII, a precursor for carminic acid, is reported. The pathway, which consists of AaOKS, StZhuI, StZhuJ, and DcUGT2, presents an alternative biosynthetic approach for the production of polyketides by using a type III polyketide synthase (PKS) and tailoring enzymes originating from a type II PKS system. The current study showcases the power of using transient expression in Nicotiana benthamiana for efficient and rapid identification of functional biosynthetic pathways, including both soluble and membrane-bound enzymes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mechanistic aspects of carotenoid biosynthesis

    KAUST Repository

    Moï se, Alexander R.; Al-Babili, Salim; Wurtzel, Eleanore T.

    2014-01-01

    precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A recently developed concept that could explain the role of the poly-cis pathway in carotenoid synthesis is that the intermediates of this pathway have additional physiological

  18. Deciphering the sugar biosynthetic pathway and tailoring steps of nucleoside antibiotic A201A unveils a GDP-l-galactose mutase.

    Science.gov (United States)

    Zhu, Qinghua; Chen, Qi; Song, Yongxiang; Huang, Hongbo; Li, Jun; Ma, Junying; Li, Qinglian; Ju, Jianhua

    2017-05-09

    Galactose, a monosaccharide capable of assuming two possible configurational isomers (d-/l-), can exist as a six-membered ring, galactopyranose (Gal p ), or as a five-membered ring, galactofuranose (Gal f ). UDP-galactopyranose mutase (UGM) mediates the conversion of pyranose to furanose thereby providing a precursor for d-Gal f Moreover, UGM is critical to the virulence of numerous eukaryotic and prokaryotic human pathogens and thus represents an excellent antimicrobial drug target. However, the biosynthetic mechanism and relevant enzymes that drive l-Gal f production have not yet been characterized. Herein we report that efforts to decipher the sugar biosynthetic pathway and tailoring steps en route to nucleoside antibiotic A201A led to the discovery of a GDP-l-galactose mutase, MtdL. Systematic inactivation of 18 of the 33 biosynthetic genes in the A201A cluster and elucidation of 10 congeners, coupled with feeding and in vitro biochemical experiments, enabled us to: ( i ) decipher the unique enzyme, GDP-l-galactose mutase associated with production of two unique d-mannose-derived sugars, and ( ii ) assign two glycosyltransferases, four methyltransferases, and one desaturase that regiospecifically tailor the A201A scaffold and display relaxed substrate specificities. Taken together, these data provide important insight into the origin of l-Gal f -containing natural product biosynthetic pathways with likely ramifications in other organisms and possible antimicrobial drug targeting strategies.

  19. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway.

    Directory of Open Access Journals (Sweden)

    Gianfranco Diretto

    Full Text Available BACKGROUND: Since the creation of "Golden Rice", biofortification of plant-derived foods is a promising strategy for the alleviation of nutritional deficiencies. Potato is the most important staple food for mankind after the cereals rice, wheat and maize, and is extremely poor in provitamin A carotenoids. METHODOLOGY: We transformed potato with a mini-pathway of bacterial origin, driving the synthesis of beta-carotene (Provitamin A from geranylgeranyl diphosphate. Three genes, encoding phytoene synthase (CrtB, phytoene desaturase (CrtI and lycopene beta-cyclase (CrtY from Erwinia, under tuber-specific or constitutive promoter control, were used. 86 independent transgenic lines, containing six different promoter/gene combinations, were produced and analyzed. Extensive regulatory effects on the expression of endogenous genes for carotenoid biosynthesis are observed in transgenic lines. Constitutive expression of the CrtY and/or CrtI genes interferes with the establishment of transgenosis and with the accumulation of leaf carotenoids. Expression of all three genes, under tuber-specific promoter control, results in tubers with a deep yellow ("golden" phenotype without any adverse leaf phenotypes. In these tubers, carotenoids increase approx. 20-fold, to 114 mcg/g dry weight and beta-carotene 3600-fold, to 47 mcg/g dry weight. CONCLUSIONS: This is the highest carotenoid and beta-carotene content reported for biofortified potato as well as for any of the four major staple foods (the next best event being "Golden Rice 2", with 31 mcg/g dry weight beta-carotene. Assuming a beta-carotene to retinol conversion of 6ratio1, this is sufficient to provide 50% of the Recommended Daily Allowance of Vitamin A with 250 gms (fresh weight of "golden" potatoes.

  20. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway.

    Science.gov (United States)

    Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Hunter, C Neil; Bocian, David F; Holten, Dewey; Niedzwiedzki, Dariusz M

    2016-06-23

    Six light-harvesting-2 complexes (LH2) from genetically modified strains of the purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. These strains were engineered to incorporate carotenoids for which the number of conjugated groups (N = NC═C + NC═O) varies from 9 to 15. The Rb. sphaeroides strains incorporate their native carotenoids spheroidene (N = 10) and spheroidenone (N = 11), as well as longer-chain analogues including spirilloxanthin (N = 13) and diketospirilloxantion (N = 15) normally found in Rhodospirillum rubrum. Measurements of the properties of the carotenoid first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to those in LH2 complexes from various other bacterial species and thus are not significantly impacted by differences in polypeptide composition. Instead, variations in carotenoid-to-BChl a energy transfer are primarily regulated by the N-determined energy of the carotenoid S1 excited state, which for long-chain (N ≥ 13) carotenoids is not involved in energy transfer. Furthermore, the role of the long-chain carotenoids switches from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial (∼2-fold) reduction of the B850* lifetime and the B850* fluorescence quantum yield for LH2 housing the longest carotenoids.

  1. Metabolic engineering of biosynthetic pathway for production of renewable biofuels.

    Science.gov (United States)

    Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar; Dhar, Pawan Kumar

    2014-02-01

    Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.

  2. Secondary metabolism in Fusarium fujikuroi: strategies to unravel the function of biosynthetic pathways.

    Science.gov (United States)

    Janevska, Slavica; Tudzynski, Bettina

    2018-01-01

    The fungus Fusarium fujikuroi causes bakanae disease of rice due to its ability to produce the plant hormones, the gibberellins. The fungus is also known for producing harmful mycotoxins (e.g., fusaric acid and fusarins) and pigments (e.g., bikaverin and fusarubins). However, for a long time, most of these well-known products could not be linked to biosynthetic gene clusters. Recent genome sequencing has revealed altogether 47 putative gene clusters. Most of them were orphan clusters for which the encoded natural product(s) were unknown. In this review, we describe the current status of our research on identification and functional characterizations of novel secondary metabolite gene clusters. We present several examples where linking known metabolites to the respective biosynthetic genes has been achieved and describe recent strategies and methods to access new natural products, e.g., by genetic manipulation of pathway-specific or global transcritption factors. In addition, we demonstrate that deletion and over-expression of histone-modifying genes is a powerful tool to activate silent gene clusters and to discover their products.

  3. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    Science.gov (United States)

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of

  4. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae.

    Science.gov (United States)

    Cui, Hongli; Yu, Xiaona; Wang, Yan; Cui, Yulin; Li, Xueqin; Liu, Zhaopu; Qin, Song

    2013-07-08

    Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of green algae and higher plants

  5. Effect of UV radiation and its implications on carotenoid pathway in Bixa orellana L.

    Science.gov (United States)

    Sankari, M; Hridya, H; Sneha, P; George Priya Doss, C; Ramamoorthy, Siva

    2017-11-01

    The current study was undertaken to analyse the effect of short-term UV-B and UV-C radiations in provoking carotenoid biosynthesis in Bixa orellana. Seeds of B. orellana were germinated and exposed to the short term UV pre-treatment under controlled environmental condition for 5days. The UV treated young seedlings response in pigment contents; antioxidant enzyme activity and mRNA gene expression level were analysed. The pigment content such as chlorophyll was increased in both UV-B and UV-C treated seedlings, but the total carotenoid level was decreased when compared to the control seedlings this can be attributed to the plant adaptability to survive in a stressed condition. The β-carotene level was increased in UV-B, and UV-C treated young seedlings. No significant changes have occurred in the secondary pigment such as bixin and ABA. The activity of the antioxidant enzymes such as catalase, peroxidase, and superoxide dismutase was significantly increased in UV-B treated seedlings when compared to the UV-C treated seedlings and control. The mRNA expression of the genes involved in bixin biosynthesis pathways such as DXS, PSY, PDS, LCY-β, LCY-ε, CMT, LCD, ADH and CCD genes showed different expression pattern in UV-B and UV-C treated young seedlings. Further we analysed the gene co-expression network to identify the genes which are mainly involved in carotenoid/bixin biosynthesis pathway. Form our findings the CCD, LCY, PDS, ZDS and PSY showed a close interaction. The result of our study shows that the short term UV-B and UV-C radiations induce pigment content, antioxidant enzyme activity and different gene expression pattern allowing the plant to survive in the oxidative stress condition. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The flavonoid biosynthetic pathway in plants: function and evolution

    International Nuclear Information System (INIS)

    Koes, R.E.; Quattrocchio, F.; Mol, J.N.M.

    1994-01-01

    Flavonoids are a class of low molecular weight phenolic compounds that is widely distributed in the plant kingdom. They exhibit a diverse spectrum of biological functions and play an important role in the interaction between plants and their environment. Flavonoids not only protect the plant from the harmful effects of UV irradiation but also play a crucial role in the sexual reproduction process. A special class of flavonoid polymers, the tannins, plays a structural role in the plant. Yet other classes of flavonoids, flavonols and anthocyanins, have been implicated in the attraction of pollinators. Certain flavonoids participate in the interaction between plants and other organisms such as symbiotic bacteria and parasites. This raises the intriguing question as to how these different compounds arose and evolved. Based on taxonomy and molecular analysis of gene expression patterns it is possible to deduce a putative sequence of acquisition of the different branches of the biosynthetic pathway and their regulators. (author)

  7. The flavonoid biosynthetic pathway in plants: function and evolution

    Energy Technology Data Exchange (ETDEWEB)

    Koes, R. E.; Quattrocchio, F.; Mol, J. N.M. [Department of Genetics, Institute for Molecular Biological Sciences, Vrije Universiteit, BioCentrum Amsterdam, De Boelelaan 1087, 1081HV, Amsterdam (Netherlands)

    1994-07-01

    Flavonoids are a class of low molecular weight phenolic compounds that is widely distributed in the plant kingdom. They exhibit a diverse spectrum of biological functions and play an important role in the interaction between plants and their environment. Flavonoids not only protect the plant from the harmful effects of UV irradiation but also play a crucial role in the sexual reproduction process. A special class of flavonoid polymers, the tannins, plays a structural role in the plant. Yet other classes of flavonoids, flavonols and anthocyanins, have been implicated in the attraction of pollinators. Certain flavonoids participate in the interaction between plants and other organisms such as symbiotic bacteria and parasites. This raises the intriguing question as to how these different compounds arose and evolved. Based on taxonomy and molecular analysis of gene expression patterns it is possible to deduce a putative sequence of acquisition of the different branches of the biosynthetic pathway and their regulators. (author)

  8. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin-Fatty Acid Biosynthetic Pathway.

    Science.gov (United States)

    Haushalter, Robert W; Phelan, Ryan M; Hoh, Kristina M; Su, Cindy; Wang, George; Baidoo, Edward E K; Keasling, Jay D

    2017-04-05

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotin and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.

  9. Genome-wide QTL and bulked transcriptomic analysis reveals new candidate genes for the control of tuber carotenoid content in potato (Solanum tuberosum L.).

    Science.gov (United States)

    Campbell, Raymond; Pont, Simon D A; Morris, Jenny A; McKenzie, Gaynor; Sharma, Sanjeev Kumar; Hedley, Pete E; Ramsay, Gavin; Bryan, Glenn J; Taylor, Mark A

    2014-09-01

    Genome-wide QTL analysis of potato tuber carotenoid content was investigated in populations of Solanum tuberosum Group Phureja that segregate for flesh colour, revealing a novel major QTL on chromosome 9. The carotenoid content of edible plant storage organs is a key nutritional and quality trait. Although the structural genes that encode the biosynthetic enzymes are well characterised, much less is known about the factors that determine overall storage organ content. In this study, genome-wide QTL mapping, in concert with an efficient 'genetical genomics' analysis using bulked samples, has been employed to investigate the genetic architecture of potato tuber carotenoid content. Two diploid populations of Solanum tuberosum Group Phureja were genotyped (AFLP, SSR and DArT markers) and analysed for their tuber carotenoid content over two growing seasons. Common to both populations were QTL that explained relatively small proportions of the variation in constituent carotenoids and a major QTL on chromosome 3 explaining up to 71 % of the variation in carotenoid content. In one of the populations (01H15), a second major carotenoid QTL was identified on chromosome 9, explaining up to 20 % of the phenotypic variation. Whereas the major chromosome 3 QTL was likely to be due to an allele of a gene encoding β-carotene hydroxylase, no known carotenoid biosynthetic genes are located in the vicinity of the chromosome 9 QTL. A unique expression profiling strategy using phenotypically distinct bulks comprised individuals with similar carotenoid content provided further support for the QTL mapping to chromosome 9. This study shows the potential of using the potato genome sequence to link genetic maps to data arising from eQTL approaches to enhance the discovery of candidate genes underlying QTLs.

  10. The Cremeomycin Biosynthetic Gene Cluster Encodes a Pathway for Diazo Formation.

    Science.gov (United States)

    Waldman, Abraham J; Pechersky, Yakov; Wang, Peng; Wang, Jennifer X; Balskus, Emily P

    2015-10-12

    Diazo groups are found in a range of natural products that possess potent biological activities. Despite longstanding interest in these metabolites, diazo group biosynthesis is not well understood, in part because of difficulties in identifying specific genes linked to diazo formation. Here we describe the discovery of the gene cluster that produces the o-diazoquinone natural product cremeomycin and its heterologous expression in Streptomyces lividans. We used stable isotope feeding experiments and in vitro characterization of biosynthetic enzymes to decipher the order of events in this pathway and establish that diazo construction involves late-stage N-N bond formation. This work represents the first successful production of a diazo-containing metabolite in a heterologous host, experimentally linking a set of genes with diazo formation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Carotenoids: biochemistry, pharmacology and treatment.

    Science.gov (United States)

    Milani, Alireza; Basirnejad, Marzieh; Shahbazi, Sepideh; Bolhassani, Azam

    2017-06-01

    Carotenoids and retinoids have several similar biological activities such as antioxidant properties, the inhibition of malignant tumour growth and the induction of apoptosis. Supplementation with carotenoids can affect cell growth and modulate gene expression and immune responses. Epidemiological studies have shown a correlation between a high carotenoid intake in the diet with a reduced risk of breast, cervical, ovarian, colorectal cancers, and cardiovascular and eye diseases. Cancer chemoprevention by dietary carotenoids involves several mechanisms, including effects on gap junctional intercellular communication, growth factor signalling, cell cycle progression, differentiation-related proteins, retinoid-like receptors, antioxidant response element, nuclear receptors, AP-1 transcriptional complex, the Wnt/β-catenin pathway and inflammatory cytokines. Moreover, carotenoids can stimulate the proliferation of B- and T-lymphocytes, the activity of macrophages and cytotoxic T-cells, effector T-cell function and the production of cytokines. Recently, the beneficial effects of carotenoid-rich vegetables and fruits in health and in decreasing the risk of certain diseases has been attributed to the major carotenoids, β-carotene, lycopene, lutein, zeaxanthin, crocin (/crocetin) and curcumin, due to their antioxidant effects. It is thought that carotenoids act in a time- and dose-dependent manner. In this review, we briefly describe the biological and immunological activities of the main carotenoids used for the treatment of various diseases and their possible mechanisms of action. This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc. © 2016 The British Pharmacological Society.

  12. Spook and Spookier code for stage-specific components of the ecdysone biosynthetic pathway in Diptera

    DEFF Research Database (Denmark)

    Ono, Hajime; Rewitz, Kim; Shinoda, Tetsu

    2006-01-01

    is eliminated in larvae carrying mutations in molting defective (mld), a gene encoding a nuclear zinc finger protein that is required for production of ecdysone during Drosophila larval development. Intriguingly, mld is not present in the Bombyx mori genome, and we have identified only one spook homolog in both...... Bombyx and Manduca that is expressed in both embryos and larva. These studies suggest an evolutionary split between Diptera and Lepidoptera in how the ecdysone biosynthetic pathway is regulated during development....

  13. Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Xu Guoqiang

    2012-02-01

    Full Text Available Abstract Background Fumaric acid is a commercially important component of foodstuffs, pharmaceuticals and industrial materials, yet the current methods of production are unsustainable and ecologically destructive. Results In this study, the fumarate biosynthetic pathway involving reductive reactions of the tricarboxylic acid cycle was exogenously introduced in S. cerevisiae by a series of simple genetic modifications. First, the Rhizopus oryzae genes for malate dehydrogenase (RoMDH and fumarase (RoFUM1 were heterologously expressed. Then, expression of the endogenous pyruvate carboxylase (PYC2 was up-regulated. The resultant yeast strain, FMME-001 ↑PYC2 + ↑RoMDH, was capable of producing significantly higher yields of fumarate in the glucose medium (3.18 ± 0.15 g liter-1 than the control strain FMME-001 empty vector. Conclusions The results presented here provide a novel strategy for fumarate biosynthesis, which represents an important advancement in producing high yields of fumarate in a sustainable and ecologically-friendly manner.

  14. Biosynthetic pathway of the phytohormone auxin in insects and screening of its inhibitors.

    Science.gov (United States)

    Suzuki, Hiroyoshi; Yokokura, Junpei; Ito, Tsukasa; Arai, Ryoma; Yokoyama, Chiaki; Toshima, Hiroaki; Nagata, Shinji; Asami, Tadao; Suzuki, Yoshihito

    2014-10-01

    Insect galls are abnormal plant tissues induced by galling insects. The galls are used for food and habitation, and the phytohormone auxin, produced by the insects, may be involved in their formation. We found that the silkworm, a non-galling insect, also produces an active form of auxin, indole-3-acetic acid (IAA), by de novo synthesis from tryptophan (Trp). A detailed metabolic analysis of IAA using IAA synthetic enzymes from silkworms indicated an IAA biosynthetic pathway composed of a three-step conversion: Trp → indole-3-acetaldoxime → indole-3-acetaldehyde (IAAld) → IAA, of which the first step is limiting IAA production. This pathway was shown to also operate in gall-inducing sawfly. Screening of a chemical library identified two compounds that showed strong inhibitory activities on the conversion step IAAld → IAA. The inhibitors can be efficiently used to demonstrate the importance of insect-synthesized auxin in gall formation in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga.

    Directory of Open Access Journals (Sweden)

    Michael T Guarnieri

    Full Text Available Biofuels derived from algal lipids represent an opportunity to dramatically impact the global energy demand for transportation fuels. Systems biology analyses of oleaginous algae could greatly accelerate the commercialization of algal-derived biofuels by elucidating the key components involved in lipid productivity and leading to the initiation of hypothesis-driven strain-improvement strategies. However, higher-level systems biology analyses, such as transcriptomics and proteomics, are highly dependent upon available genomic sequence data, and the lack of these data has hindered the pursuit of such analyses for many oleaginous microalgae. In order to examine the triacylglycerol biosynthetic pathway in the unsequenced oleaginous microalga, Chlorella vulgaris, we have established a strategy with which to bypass the necessity for genomic sequence information by using the transcriptome as a guide. Our results indicate an upregulation of both fatty acid and triacylglycerol biosynthetic machinery under oil-accumulating conditions, and demonstrate the utility of a de novo assembled transcriptome as a search model for proteomic analysis of an unsequenced microalga.

  16. Differential expression of carotenoid biosynthetic pathway genes in ...

    Indian Academy of Sciences (India)

    2016-04-08

    Pandurangaiah S, Ravishankar KV, Shivashankar KS, Sadashiva AT, Pillakenchappa K and Narayanan SK ... development and validation of LCY-B and CYC-B in selected contrasting F2 plants (red ripe fruits) derived from the cross.

  17. Modulation of guanosine nucleotides biosynthetic pathways enhanced GDP-L-fucose production in recombinant Escherichia coli.

    Science.gov (United States)

    Lee, Won-Heong; Shin, So-Yeon; Kim, Myoung-Dong; Han, Nam Soo; Seo, Jin-Ho

    2012-03-01

    Guanosine 5'-triphosphate (GTP) is the key substrate for biosynthesis of guanosine 5'-diphosphate (GDP)-L-fucose. In this study, improvement of GDP-L-fucose production was attempted by manipulating the biosynthetic pathway for guanosine nucleotides in recombinant Escherichia coli-producing GDP-L-fucose. The effects of overexpression of inosine 5'-monophosphate (IMP) dehydrogenase, guanosine 5'-monophosphate (GMP) synthetase (GuaB and GuaA), GMP reductase (GuaC) and guanosine-inosine kinase (Gsk) on GDP-L-fucose production were investigated in a series of fed-batch fermentations. Among the enzymes tested, overexpression of Gsk led to a significant improvement of GDP-L-fucose production. Maximum GDP-L-fucose concentration of 305.5 ± 5.3 mg l(-1) was obtained in the pH-stat fed-batch fermentation of recombinant E. coli-overexpressing Gsk, which corresponds to a 58% enhancement in the GDP-L-fucose production compared with the control strain overexpressing GDP-L-fucose biosynthetic enzymes. Such an enhancement of GDP-L-fucose production could be due to the increase in the intracellular level of GMP.

  18. In silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma

    Science.gov (United States)

    Zinati, Zahra; Shamloo-Dashtpagerdi, Roohollah; Behpouri, Ali

    2016-01-01

    As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characterization of miRNAs along with the corresponding target genes in C. sativus might expand our perspectives on the roles of miRNAs in carotenoid/apocarotenoid biosynthetic pathway. A computational analysis was used to identify miRNAs and their targets using EST (Expressed Sequence Tag) library from mature saffron stigmas. Then, a gene co- expression network was constructed to identify genes which are potentially involved in carotenoid/apocarotenoid biosynthetic pathways. EST analysis led to the identification of two putative miRNAs (miR414 and miR837-5p) along with the corresponding stem- looped precursors. To our knowledge, this is the first report on miR414 and miR837-5p in C. sativus. Co-expression network analysis indicated that miR414 and miR837-5p may play roles in C. sativus metabolic pathways and led to identification of candidate genes including six transcription factors and one protein kinase probably involved in carotenoid/apocarotenoid biosynthetic pathway. Presence of transcription factors, miRNAs and protein kinase in the network indicated multiple layers of regulation in saffron stigma. The candidate genes from this study may help unraveling regulatory networks underlying the carotenoid/apocarotenoid biosynthesis in saffron and designing metabolic engineering for enhanced secondary metabolites. PMID:28261627

  19. Roles of xanthophyll carotenoids in protection against photoinhibition and oxidative stress in the cyanobacterium Synechococcus sp. strain PCC 7002.

    Science.gov (United States)

    Zhu, Yuehui; Graham, Joel E; Ludwig, Marcus; Xiong, Wei; Alvey, Richard M; Shen, Gaozhong; Bryant, Donald A

    2010-12-01

    Synechococcus sp. strain PCC 7002 is a robust, genetically tractable cyanobacterium that produces six different xanthophyll carotenoids (zeaxanthin, cryptoxanthin, myxoxanthophyll (myxol-2'-fucoside), echinenone, 3'-hydroxyechinenone, and synechoxanthin) and tolerates many environmental stresses, including high light intensities. Targeted mutations were introduced to block the branches of the carotenoid biosynthetic pathway leading to specific xanthophylls, and a mutant lacking all xanthophylls was constructed. Some of the mutants showed severe growth defects at high light intensities, and multi-locus mutants had somewhat lower chlorophyll contents and lower photosystem I levels. The results suggested that xanthophylls, particularly zeaxanthin and echinenone, might play regulatory roles in thylakoid biogenesis. Measurements of reactive oxygen (ROS) and nitrogen (RNS) species in the mutants showed that all xanthophylls participate in preventing ROS/RNS accumulation and that a mutant lacking all xanthophylls accumulated very high levels of ROS/RNS. Results from transcription profiling showed that mRNA levels for most genes encoding the enzymes of carotenogenesis are significantly more abundant after exposure to high light. These studies indicated that all xanthophylls contribute to protection against photo-oxidative stress. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Decoding Biosynthetic Pathways in Plants by Pulse-Chase Strategies Using 13CO2 as a Universal Tracer

    Directory of Open Access Journals (Sweden)

    Adelbert Bacher

    2016-07-01

    Full Text Available 13CO2 pulse-chase experiments monitored by high-resolution NMR spectroscopy and mass spectrometry can provide 13C-isotopologue compositions in biosynthetic products. Experiments with a variety of plant species have documented that the isotopologue profiles generated with 13CO2 pulse-chase labeling are directly comparable to those that can be generated by the application of [U-13C6]glucose to aseptically growing plants. However, the application of the 13CO2 labeling technology is not subject to the experimental limitations that one has to take into account for experiments with [U-13C6]glucose and can be applied to plants growing under physiological conditions, even in the field. In practical terms, the results of biosynthetic studies with 13CO2 consist of the detection of pairs, triples and occasionally quadruples of 13C atoms that have been jointly contributed to the target metabolite, at an abundance that is well above the stochastic occurrence of such multiples. Notably, the connectivities of jointly transferred 13C multiples can have undergone modification by skeletal rearrangements that can be diagnosed from the isotopologue data. As shown by the examples presented in this review article, the approach turns out to be powerful in decoding the carbon topology of even complex biosynthetic pathways.

  1. Minimum Information about a Biosynthetic Gene cluster : commentary

    NARCIS (Netherlands)

    Medema, Marnix H; Kottmann, Renzo; Yilmaz, Pelin; Cummings, Matthew; Biggins, John B; Blin, Kai; de Bruijn, Irene; Chooi, Yit Heng; Claesen, Jan; Coates, R Cameron; Cruz-Morales, Pablo; Duddela, Srikanth; Dusterhus, Stephanie; Edwards, Daniel J; Fewer, David P; Garg, Neha; Geiger, Christoph; Gomez-Escribano, Juan Pablo; Greule, Anja; Hadjithomas, Michalis; Haines, Anthony S; Helfrich, Eric J N; Hillwig, Matthew L; Ishida, Keishi; Jones, Adam C; Jones, Carla S; Jungmann, Katrin; Kegler, Carsten; Kim, Hyun Uk; Kotter, Peter; Krug, Daniel; Masschelein, Joleen; Melnik, Alexey V; Mantovani, Simone M; Monroe, Emily A; Moore, Marcus; Moss, Nathan; Nutzmann, Hans-Wilhelm; Pan, Guohui; Pati, Amrita; Petras, Daniel; Reen, F Jerry; Rosconi, Federico; Rui, Zhe; Tian, Zhenhua; Tobias, Nicholas J; Tsunematsu, Yuta; Wiemann, Philipp; Wyckoff, Elizabeth; Yan, Xiaohui; Yim, Grace; Yu, Fengan; Xie, Yunchang; Aigle, Bertrand; Apel, Alexander K; Balibar, Carl J; Balskus, Emily P; Barona-Gomez, Francisco; Bechthold, Andreas; Bode, Helge B; Borriss, Rainer; Brady, Sean F; Brakhage, Axel A; Caffrey, Patrick; Cheng, Yi-Qiang; Clardy, Jon; Cox, Russell J; De Mot, Rene; Donadio, Stefano; Donia, Mohamed S; van der Donk, Wilfred A; Dorrestein, Pieter C; Doyle, Sean; Driessen, Arnold J M; Ehling-Schulz, Monika; Entian, Karl-Dieter; Fischbach, Michael A; Gerwick, Lena; Gerwick, William H; Gross, Harald; Gust, Bertolt; Hertweck, Christian; Hofte, Monica; Jensen, Susan E; Ju, Jianhua; Katz, Leonard; Kaysser, Leonard; Klassen, Jonathan L; Keller, Nancy P; Kormanec, Jan; Kuipers, Oscar P; Kuzuyama, Tomohisa; Kyrpides, Nikos C; Kwon, Hyung-Jin; Lautru, Sylvie; Lavigne, Rob; Lee, Chia Y; Linquan, Bai; Liu, Xinyu; Liu, Wen; Luzhetskyy, Andriy; Mahmud, Taifo; Mast, Yvonne; Mendez, Carmen; Metsa-Ketela, Mikko; Micklefield, Jason; Mitchell, Douglas A; Moore, Bradley S; Moreira, Leonilde M; Muller, Rolf; Neilan, Brett A; Nett, Markus; Nielsen, Jens; O'Gara, Fergal; Oikawa, Hideaki; Osbourn, Anne; Osburne, Marcia S; Ostash, Bohdan; Payne, Shelley M; Pernodet, Jean-Luc; Petricek, Miroslav; Piel, Jorn; Ploux, Olivier; Raaijmakers, Jos M; Salas, Jose A; Schmitt, Esther K; Scott, Barry; Seipke, Ryan F; Shen, Ben; Sherman, David H; Sivonen, Kaarina; Smanski, Michael J; Sosio, Margherita; Stegmann, Evi; Sussmuth, Roderich D; Tahlan, Kapil; Thomas, Christopher M; Tang, Yi; Truman, Andrew W; Viaud, Muriel; Walton, Jonathan D; Walsh, Christopher T; Weber, Tilmann; van Wezel, Gilles P; Wilkinson, Barrie; Willey, Joanne M; Wohlleben, Wolfgang; Wright, Gerard D; Ziemert, Nadine; Zhang, Changsheng; Zotchev, Sergey B; Breitling, Rainer; Takano, Eriko; Glockner, Frank Oliver

    A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit.

  2. [Construction of Corynebacterium crenatum AS 1.542 δ argR and analysis of transcriptional levels of the related genes of arginine biosynthetic pathway].

    Science.gov (United States)

    Chen, Xuelan; Tang, Li; Jiao, Haitao; Xu, Feng; Xiong, Yonghua

    2013-01-04

    ArgR, coded by the argR gene from Corynebacterium crenatum AS 1.542, acts as a negative regulator in arginine biosynthetic pathway. However, the effect of argR on transcriptional levels of the related biosynthetic genes has not been reported. Here, we constructed a deletion mutant of argR gene: C. crenatum AS 1.542 Delta argR using marker-less knockout technology, and compared the changes of transcriptional levels of the arginine biosynthetic genes between the mutant strain and the wild-type strain. We used marker-less knockout technology to construct C. crenatum AS 1.542 Delta argR and analyzed the changes of the relate genes at the transcriptional level using real-time fluorescence quantitative PCR. C. crenatum AS 1.542 Delta argR was successfully obtained and the transcriptional level of arginine biosynthetic genes in this mutant increased significantly with an average of about 162.1 folds. The arginine biosynthetic genes in C. crenatum are clearly controlled by the negative regulator ArgR. However, the deletion of this regulator does not result in a clear change in arginine production in the bacteria.

  3. Leveraging microbial biosynthetic pathways for the generation of 'drop-in' biofuels.

    Science.gov (United States)

    Zargar, Amin; Bailey, Constance B; Haushalter, Robert W; Eiben, Christopher B; Katz, Leonard; Keasling, Jay D

    2017-06-01

    Advances in retooling microorganisms have enabled bioproduction of 'drop-in' biofuels, fuels that are compatible with existing spark-ignition, compression-ignition, and gas-turbine engines. As the majority of petroleum consumption in the United States consists of gasoline (47%), diesel fuel and heating oil (21%), and jet fuel (8%), 'drop-in' biofuels that replace these petrochemical sources are particularly attractive. In this review, we discuss the application of aldehyde decarbonylases to produce gasoline substitutes from fatty acid products, a recently crystallized reductase that could hydrogenate jet fuel precursors from terpene synthases, and the exquisite control of polyketide synthases to produce biofuels with desired physical properties (e.g., lower freezing points). With our increased understanding of biosynthetic logic of metabolic pathways, we discuss the unique advantages of fatty acid, terpene, and polyketide synthases for the production of bio-based gasoline, diesel and jet fuel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Synthetic biology and metabolic engineering for marine carotenoids: new opportunities and future prospects.

    Science.gov (United States)

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-09-17

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  5. Carotenoid β-Ring Hydroxylase and Ketolase from Marine Bacteria—Promiscuous Enzymes for Synthesizing Functional Xanthophylls

    Science.gov (United States)

    Misawa, Norihiko

    2011-01-01

    Marine bacteria belonging to genera Paracoccus and Brevundimonas of the α-Proteobacteria class can produce C40-type dicyclic carotenoids containing two β-end groups (β rings) that are modified with keto and hydroxyl groups. These bacteria produce astaxanthin, adonixanthin, and their derivatives, which are ketolated by carotenoid β-ring 4(4′)-ketolase (4(4′)-oxygenase; CrtW) and hydroxylated by carotenoid β-ring 3(3′)-hydroxylase (CrtZ). In addition, the genus Brevundimonas possesses a gene for carotenoid β-ring 2(2′)-hydroxylase (CrtG). This review focuses on these carotenoid β-ring-modifying enzymes that are promiscuous for carotenoid substrates, and pathway engineering for the production of xanthophylls (oxygen-containing carotenoids) in Escherichia coli, using these enzyme genes. Such pathway engineering researches are performed towards efficient production not only of commercially important xanthophylls such as astaxanthin, but also of xanthophylls minor in nature (e.g., β-ring(s)-2(2′)-hydroxylated carotenoids). PMID:21673887

  6. Carotenoid β-Ring Hydroxylase and Ketolase from Marine Bacteria—Promiscuous Enzymes for Synthesizing Functional Xanthophylls

    Directory of Open Access Journals (Sweden)

    Norihiko Misawa

    2011-05-01

    Full Text Available Marine bacteria belonging to genera Paracoccus and Brevundimonas of the α-Proteobacteria class can produce C40-type dicyclic carotenoids containing two β-end groups (β rings that are modified with keto and hydroxyl groups. These bacteria produce astaxanthin, adonixanthin, and their derivatives, which are ketolated by carotenoid β-ring 4(4′-ketolase (4(4′-oxygenase; CrtW and hydroxylated by carotenoid β-ring 3(3′-hydroxylase (CrtZ. In addition, the genus Brevundimonas possesses a gene for carotenoid β-ring 2(2′-hydroxylase (CrtG. This review focuses on these carotenoid β-ring-modifying enzymes that are promiscuous for carotenoid substrates, and pathway engineering for the production of xanthophylls (oxygen-containing carotenoids in Escherichia coli, using these enzyme genes. Such pathway engineering researches are performed towards efficient production not only of commercially important xanthophylls such as astaxanthin, but also of xanthophylls minor in nature (e.g., β-ring(s-2(2′-hydroxylated carotenoids.

  7. Carotenoid β-ring hydroxylase and ketolase from marine bacteria-promiscuous enzymes for synthesizing functional xanthophylls.

    Science.gov (United States)

    Misawa, Norihiko

    2011-01-01

    Marine bacteria belonging to genera Paracoccus and Brevundimonas of the α-Proteobacteria class can produce C₄₀-type dicyclic carotenoids containing two β-end groups (β rings) that are modified with keto and hydroxyl groups. These bacteria produce astaxanthin, adonixanthin, and their derivatives, which are ketolated by carotenoid β-ring 4(4')-ketolase (4(4')-oxygenase; CrtW) and hydroxylated by carotenoid β-ring 3(3')-hydroxylase (CrtZ). In addition, the genus Brevundimonas possesses a gene for carotenoid β-ring 2(2')-hydroxylase (CrtG). This review focuses on these carotenoid β-ring-modifying enzymes that are promiscuous for carotenoid substrates, and pathway engineering for the production of xanthophylls (oxygen-containing carotenoids) in Escherichia coli, using these enzyme genes. Such pathway engineering researches are performed towards efficient production not only of commercially important xanthophylls such as astaxanthin, but also of xanthophylls minor in nature (e.g., β-ring(s)-2(2')-hydroxylated carotenoids).

  8. From Carotenoids to Strigolactones

    KAUST Repository

    Jia, Kunpeng

    2017-12-13

    Strigolactones (SLs) are phytohormones that regulate different plant developmental and adaptation processes. When released into soil, SLs act as chemical signals attracting symbiotic arbuscular fungi and inducing seed germination in root parasitic weeds. SLs are carotenoid-derivatives characterized by the presence of a butenolide ring that is connected by an enol ether bridge to a less conserved, second moiety. Carotenoids are isopenoid pigments that differ in structure, number of conjugated double bonds and stereo-configuration. Genetic analysis and enzymatic studies demonstrate that SLs originate from all-trans-β-carotene in a pathway that involves the all-trans-/9-cis-β-carotene isomerase DWARF27 (D27) and the carotenoid cleavage dioxygenase 7 and 8 (CCD7, 8). The CCD7-mediated, regio- and stereospecific double bond cleavage of 9-cis-β-carotene leads to a 9-cis-configured intermediate that is converted by CCD8 via a combination of reactions into the central metabolite carlactone. By catalyzing repeated oxygenation reactions that can be coupled to ring closure, CYP711 enzymes convert carlactone into tricyclic ring containing, canonical and non-canonical SLs. Mostly unknown, modifying enzymes further increase SLs diversity. In this review, we touch on carotenogenesis, provide an update on SL biosynthesis, with emphasis on the substrate specificity and reactions catalyzed by the different enzymes, and describe the regulation of the pathway.

  9. Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects

    Directory of Open Access Journals (Sweden)

    Chonglong Wang

    2014-09-01

    Full Text Available Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  10. Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects

    Science.gov (United States)

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-01-01

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations. PMID:25233369

  11. Functional Lycopene Cyclase (CruA) in Cyanobacterium, Arthrospira platensis NIES-39, and its Role in Carotenoid Synthesis.

    Science.gov (United States)

    Sugiyama, Kenjiro; Ebisawa, Masashi; Yamada, Masaharu; Nagashima, Yoshiki; Suzuki, Hideyuki; Maoka, Takashi; Takaichi, Shinichi

    2017-04-01

    The genus Arthrospira is filamentous, non-nitrogen-fixing cyanobacteria that is commercially important. We identified the molecular structures of carotenoids in Arthrospira platensis NIES-39. The major carotenoid identified was β-carotene. In addition, the hydroxyl derivatives of β-cryptoxanthin and (3R,3'R)-zeaxanthin were also found to be present. The carotenoid glycosides were identified as (3R,2'S)-myxol 2'-methylpentoside and oscillol 2,2'-dimethylpentoside. The methylpentoside moiety was a mixture of fucoside and chinovoside in an approximate ratio of 1 : 4. Trace amounts of the ketocarotenoid 3'-hydroxyechinenone were also found. Three types of lycopene cyclases have been functionally confirmed in carotenogenesis organisms. In cyanobacteria, the functional lycopene cyclases (CrtL, CruA and CruP) have only been found in four species. In this study, we found that CruA exhibited lycopene cyclase activity in transformed Escherichia coli, which contains lycopene, but CruP exhibited no lycopene cyclase activity and crtL was absent. This is the third cyanobacterial species in which CruA activity has been confirmed. Neurosporene was not a substrate of CruA in E. coli, whereas lycopene cyclases of CrtY (bacteria), CrtL (plants) and CrtYB (fungi) have been reported to convert neurosporene to 7,8-dihydro-β-carotene. β-Carotene hydroxylase (CrtR) was found to convert β-carotene to zeaxanthin in transformed E. coli, which contains β-carotene. Among the β-carotene hydroxylases, bacterial CrtZ and eukaryotic CrtR and BCH have similarities, whereas cyanobacterial CrtR appears to belong to another clade. Based on the identification of the carotenoids and the completion of the entire nucleotide sequence of the A. platensis NIES-39 genome, we propose a biosynthetic pathway for the carotenoids as well as the corresponding genes and enzymes. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved

  12. Establishment of an Arabidopsis callus system to study the interrelations of biosynthesis, degradation and accumulation of carotenoids

    Science.gov (United States)

    Schaub, Patrick; Rodriguez-Franco, Marta; Cazzonelli, Christopher Ian; Álvarez, Daniel; Wüst, Florian

    2018-01-01

    The net amounts of carotenoids accumulating in plant tissues are determined by the rates of biosynthesis and degradation. While biosynthesis is rate-limited by the activity of PHYTOENE SYNTHASE (PSY), carotenoid losses are caused by catabolic enzymatic and non-enzymatic degradation. We established a system based on non-green Arabidopsis callus which allowed investigating major determinants for high steady-state levels of β-carotene. Wild-type callus development was characterized by strong carotenoid degradation which was only marginally caused by the activity of carotenoid cleavage oxygenases. In contrast, carotenoid degradation occurred mostly non-enzymatically and selectively affected carotenoids in a molecule-dependent manner. Using carotenogenic pathway mutants, we found that linear carotenes such as phytoene, phytofluene and pro-lycopene resisted degradation and accumulated while β-carotene was highly susceptible towards degradation. Moderately increased pathway activity through PSY overexpression was compensated by degradation revealing no net increase in β-carotene. However, higher pathway activities outcompeted carotenoid degradation and efficiently increased steady-state β-carotene amounts to up to 500 μg g-1 dry mass. Furthermore, we identified oxidative β-carotene degradation products which correlated with pathway activities, yielding β-apocarotenals of different chain length and various apocarotene-dialdehydes. The latter included methylglyoxal and glyoxal as putative oxidative end products suggesting a potential recovery of carotenoid-derived carbon for primary metabolic pathways. Moreover, we investigated the site of β-carotene sequestration by co-localization experiments which revealed that β-carotene accumulated as intra-plastid crystals which was confirmed by electron microscopy with carotenoid-accumulating roots. The results are discussed in the context of using the non-green calli carotenoid assay system for approaches targeting high

  13. Novel expression patterns of carotenoid pathway-related gene in citrus leaves and maturing fruits

    Science.gov (United States)

    Carotenoids are abundant in citrus fruits and vary among cultivars and species. In the present study, HPLC and real-time PCR were used to investigate the expression patterns of 23 carotenoid biosynthesis gene family members and their possible relation with carotenoid accumulation in flavedo, juice s...

  14. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin–Fatty Acid Biosynthetic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Haushalter, Robert W. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division; Phelan, Ryan M. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division; Hoh, Kristina M. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division; Su, Cindy [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division; Wang, George [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division; Baidoo, Edward E. K. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division; Keasling, Jay D. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division

    2017-03-14

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here in this paper we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotin and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.

  15. Tradeoff between robustness and elaboration in carotenoid networks produces cycles of avian color diversification.

    Science.gov (United States)

    Badyaev, Alexander V; Morrison, Erin S; Belloni, Virginia; Sanderson, Michael J

    2015-08-20

    Resolution of the link between micro- and macroevolution calls for comparing both processes on the same deterministic landscape, such as genomic, metabolic or fitness networks. We apply this perspective to the evolution of carotenoid pigmentation that produces spectacular diversity in avian colors and show that basic structural properties of the underlying carotenoid metabolic network are reflected in global patterns of elaboration and diversification in color displays. Birds color themselves by consuming and metabolizing several dietary carotenoids from the environment. Such fundamental dependency on the most upstream external compounds should intrinsically constrain sustained evolutionary elongation of multi-step metabolic pathways needed for color elaboration unless the metabolic network gains robustness - the ability to synthesize the same carotenoid from an additional dietary starting point. We found that gains and losses of metabolic robustness were associated with evolutionary cycles of elaboration and stasis in expressed carotenoids in birds. Lack of metabolic robustness constrained lineage's metabolic explorations to the immediate biochemical vicinity of their ecologically distinct dietary carotenoids, whereas gains of robustness repeatedly resulted in sustained elongation of metabolic pathways on evolutionary time scales and corresponding color elaboration. The structural link between length and robustness in metabolic pathways may explain periodic convergence of phylogenetically distant and ecologically distinct species in expressed carotenoid pigmentation; account for stasis in carotenoid colors in some ecological lineages; and show how the connectivity of the underlying metabolic network provides a mechanistic link between microevolutionary elaboration and macroevolutionary diversification.

  16. Tissue-Specific Apocarotenoid Glycosylation Contributes to Carotenoid Homeostasis in Arabidopsis Leaves1

    Science.gov (United States)

    Hübner, Michaela; Matsubara, Shizue; Beyer, Peter

    2015-01-01

    Attaining defined steady-state carotenoid levels requires balancing of the rates governing their synthesis and metabolism. Phytoene formation mediated by phytoene synthase (PSY) is rate limiting in the biosynthesis of carotenoids, whereas carotenoid catabolism involves a multitude of nonenzymatic and enzymatic processes. We investigated carotenoid and apocarotenoid formation in Arabidopsis (Arabidopsis thaliana) in response to enhanced pathway flux upon PSY overexpression. This resulted in a dramatic accumulation of mainly β-carotene in roots and nongreen calli, whereas carotenoids remained unchanged in leaves. We show that, in chloroplasts, surplus PSY was partially soluble, localized in the stroma and, therefore, inactive, whereas the membrane-bound portion mediated a doubling of phytoene synthesis rates. Increased pathway flux was not compensated by enhanced generation of long-chain apocarotenals but resulted in higher levels of C13 apocarotenoid glycosides (AGs). Using mutant lines deficient in carotenoid cleavage dioxygenases (CCDs), we identified CCD4 as being mainly responsible for the majority of AGs formed. Moreover, changed AG patterns in the carotene hydroxylase mutants lutein deficient1 (lut1) and lut5 exhibiting altered leaf carotenoids allowed us to define specific xanthophyll species as precursors for the apocarotenoid aglycons detected. In contrast to leaves, carotenoid hyperaccumulating roots contained higher levels of β-carotene-derived apocarotenals, whereas AGs were absent. These contrasting responses are associated with tissue-specific capacities to synthesize xanthophylls, which thus determine the modes of carotenoid accumulation and apocarotenoid formation. PMID:26134165

  17. Structure versus time in the evolutionary diversification of avian carotenoid metabolic networks.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2018-05-01

    Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre-existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution - historical continuity of a deterministic network that links past and present functional associations of its components. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  18. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, G.A.

    1989-04-01

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ..omega../sup 70/ promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs.

  19. A molecular genetic analysis of carotenoid biosynthesis and the effects of carotenoid mutations on other photosynthetic genes in Rhodobacter capsulatus

    International Nuclear Information System (INIS)

    Armstrong, G.A.

    1989-04-01

    The nine known R. capsulatus carotenoid genes are contained within the 46 kilobase (kb) photosynthesis gene cluster. An 11 kb subcluster containing eight of these genes has been cloned and its nucleotide sequence determined. A new gene, crtK, has been located in the middle of the subcluster. The carotenoid gene cluster contains sequences homologous to Escherichia coli ω 70 promoters, rho-independent transcription terminators, and prokaryotic transcriptional factor binding sites. The phenotypes and genotypes of ten transposon Tn5.7 insertion mutations within the carotenoid gene cluster have been analyzed, by characterization of the carotenoids accumulated and high resolution mapping of the Tn5.7 insertions. The enzymatic blockages in previously uncharacterized early carotenoid mutants have been determined using a new in vitro synthesis system, suggesting specific roles for the CrtB and CrtE gene products. The expression of six of the eight carotenoid genes in the cluster is induced upon the shift from dark chemoheterotrophic to anaerobic photosynthetic growth. The magnitude of the induction is equivalent to that of genes encoding structural photosynthesis polypeptides, although the carotenoid genes are induced earlier after the growth shift. Different means of regulating photosynthesis genes in R. capsulatus are discussed, and a rationale for the temporal pattern of expression of the carotenoid genes during photosynthetic adaptation is presented. Comparison of the deduced amino acid sequences of the two dehydrogenases of the R. capsulatus carotenoid biosynthesis pathway reveals two regions of strong similarity. The effect of carotenoid mutations on the photosynthetic phenotype has been studied by examining growth rates, pigments, pigment-protein complexes and gene expression for a complete set of carotenoid mutants. 161 refs

  20. Production of 2-deoxyribose 5-phosphate from fructose to demonstrate a potential of artificial bio-synthetic pathway using thermophilic enzymes.

    Science.gov (United States)

    Honda, Kohsuke; Maya, Shohei; Omasa, Takeshi; Hirota, Ryuichi; Kuroda, Akio; Ohtake, Hisao

    2010-08-02

    Six thermophilic enzymes from Thermus thermophilus were used to construct an 'artificial bio-synthetic pathway' for the production of 2-deoxyribose 5-phosphate from fructose. By a simple operation using six recombinant Escherichia coli strains producing the thermophilic enzymes, respectively, fructose was converted to 2-deoxyribose 5-phosphate with a molar yield of 55%. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Efficient light-harvesting using non-carbonyl carotenoids: Energy transfer dynamics in the VCP complex from Nannochloropsis oceanica.

    Science.gov (United States)

    Keşan, Gürkan; Litvín, Radek; Bína, David; Durchan, Milan; Šlouf, Václav; Polívka, Tomáš

    2016-04-01

    Violaxanthin-chlorophyll a protein (VCP) from Nannochloropsis oceanica is a Chl a-only member of the LHC family of light-harvesting proteins. VCP binds carotenoids violaxanthin (Vio), vaucheriaxanthin (Vau), and vaucheriaxanthin-ester (Vau-ester). Here we report on energy transfer pathways in the VCP complex. The overall carotenoid-to-Chla energy transfer has efficiency over 90%. Based on their energy transfer properties, the carotenoids in VCP can be divided into two groups; blue carotenoids with the lowest energy absorption band around 480nm and red carotenoids with absorption extended up to 530nm. Both carotenoid groups transfer energy efficiently from their S2 states, reaching efficiencies of ~70% (blue) and ~60% (red). The S1 pathway, however, is efficient only for the red carotenoid pool for which two S1 routes characterized by 0.33 and 2.4ps time constants were identified. For the blue carotenoids the S1-mediated pathway is represented only by a minor route likely involving a hot S1 state. The relaxed S1 state of blue carotenoids decays to the ground state within 21ps. Presence of a fraction of non-transferring red carotenoids with the S1 lifetime of 13ps indicates some specific carotenoid-protein interaction that must shorten the intrinsic S1 lifetime of Vio and/or Vau whose S1 lifetimes in methanol are 26 and 29ps, respectively. The VCP complex from N. oceanica is the first example of a light-harvesting complex binding only non-carbonyl carotenoids with carotenoid-to-chlorophyll energy transfer efficiency over 90%. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. tRNA-dependent cysteine biosynthetic pathway represents a strategy to increase cysteine contents by preventing it from thermal degradation: thermal adaptation of methanogenic archaea ancestor.

    Science.gov (United States)

    Qu, Ge; Wang, Wei; Chen, Ling-Ling; Qian, Shao-Song; Zhang, Hong-Yu

    2009-10-01

    Although cysteine (Cys) is beneficial to stabilize protein structures, it is not prevalent in thermophiles. For instance, the Cys contents in most thermophilic archaea are only around 0.7%. However, methanogenic archaea, no matter thermophilic or not, contain relatively abundant Cys, which remains elusive for a long time. Recently, Klipcan et al. correlated this intriguing property of methanogenic archaea with their unique tRNA-dependent Cys biosynthetic pathway. But, the deep reasons underlying the correlation are ambiguous. Considering the facts that free Cys is thermally labile and the tRNA-dependent Cys biosynthesis avoids the use of free Cys, we speculate that the unique Cys biosynthetic pathway represents a strategy to increase Cys contents by preventing it from thermal degradation, which may be relevant to the thermal adaptation of methanogenic archaea ancestor.

  3. In silico analysis and expression profiling of miRNAs targeting genes of steviol glycosides biosynthetic pathway and their relationship with steviol glycosides content in different tissues of Stevia rebaudiana.

    Science.gov (United States)

    Saifi, Monica; Nasrullah, Nazima; Ahmad, Malik Mobeen; Ali, Athar; Khan, Jawaid A; Abdin, M Z

    2015-09-01

    miRNAs are emerging as potential regulators of the gene expression. Their proven promising role in regulating biosynthetic pathways related gene networks may hold the key to understand the genetic regulation of these pathways which may assist in selection and manipulation to get high performing plant genotypes with better secondary metabolites yields and increased biomass. miRNAs associated with genes of steviol glycosides biosynthetic pathway, however, have not been identified so far. In this study miRNAs targeting genes of steviol glycosides biosynthetic pathway were identified for the first time whose precursors were potentially generated from ESTs and nucleotide sequences of Stevia rebaudiana. Thereafter, stem-loop coupled real time PCR based expressions of these miRNAs in different tissues of Stevia rebaudiana were investigated and their relationship pattern was analysed with the expression levels of their target mRNAs as well as steviol glycoside contents. All the miRNAs investigated showed differential expressions in all the three tissues studied, viz. leaves, flowers and stems. Out of the eleven miRNAs validated, the expression levels of nine miRNAs (miR319a, miR319b, miR319c, miR319d, miR319e, miR319f, miR319h, miRstv_7, miRstv_9) were found to be inversely related, while expression levels of the two, i.e. miR319g and miRstv_11 on the contrary, showed direct relation with the expression levels of their target mRNAs and steviol glycoside contents in the leaves, flowers and stems. This study provides a platform for better understanding of the steviol glycosides biosynthetic pathway and these miRNAs can further be employed to manipulate the biosynthesis of these metabolites to enhance their contents and yield in S. rebaudiana. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. The astaxanthin dideoxyglycoside biosynthesis pathway in Sphingomonas sp. PB304

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Kim, Jin Ho; Lee, Bun Yeol

    2014-01-01

    A major carotenoid in Sphingomonas sp. PB304, originally isolated from a river in Daejon City, South Korea, was identified as astaxanthin dideoxyglycoside. Gene clusters encoding the astaxanthin dideoxyglycoside biosynthetic enzymes were identified by screening Sphingomonas sp. PB304 fosmid...

  5. Functional characteristics of spirilloxanthin and keto-bearing Analogues in light-harvesting LH2 complexes from Rhodobacter sphaeroides with a genetically modified carotenoid synthesis pathway.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Bocian, David F; Holten, Dewey; Hunter, C Neil

    2015-01-01

    Light-harvesting 2 (LH2) complexes from a genetically modified strain of the purple photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. Carotenoid synthesis in the Rba. sphaeroides strain was engineered to redirect carotenoid production away from spheroidene into the spirilloxanthin synthesis pathway. The strain assembles LH2 antennas with substantial amounts of spirilloxanthin (total double-bond conjugation length N=13) if grown anaerobically and of keto-bearing long-chain analogs [2-ketoanhydrorhodovibrin (N=13), 2-ketospirilloxanthin (N=14) and 2,2'-diketospirilloxanthin (N=15)] if grown semi-aerobically (with ratios that depend on growth conditions). We present the photophysical, electronic, and vibrational properties of these carotenoids, both isolated in organic media and assembled within LH2 complexes. Measurements of excited-state energy transfer to the array of excitonically coupled bacteriochlorophyll a molecules (B850) show that the mean lifetime of the first singlet excited state (S1) of the long-chain (N≥13) carotenoids does not change appreciably between organic media and the protein environment. In each case, the S1 state appears to lie lower in energy than that of B850. The energy-transfer yield is ~0.4 in LH2 (from the strain grown aerobically or semi-aerobically), which is less than half that achieved for LH2 that contains short-chain (N≤11) analogues. Collectively, the results suggest that the S1 excited state of the long-chain (N≥13) carotenoids participates little if at all in carotenoid-to-BChl a energy transfer, which occurs predominantly via the carotenoid S2 excited state in these antennas. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Heterologous expression of pikromycin biosynthetic gene cluster using Streptomyces artificial chromosome system.

    Science.gov (United States)

    Pyeon, Hye-Rim; Nah, Hee-Ju; Kang, Seung-Hoon; Choi, Si-Sun; Kim, Eung-Soo

    2017-05-31

    Heterologous expression of biosynthetic gene clusters of natural microbial products has become an essential strategy for titer improvement and pathway engineering of various potentially-valuable natural products. A Streptomyces artificial chromosomal conjugation vector, pSBAC, was previously successfully applied for precise cloning and tandem integration of a large polyketide tautomycetin (TMC) biosynthetic gene cluster (Nah et al. in Microb Cell Fact 14(1):1, 2015), implying that this strategy could be employed to develop a custom overexpression scheme of natural product pathway clusters present in actinomycetes. To validate the pSBAC system as a generally-applicable heterologous overexpression system for a large-sized polyketide biosynthetic gene cluster in Streptomyces, another model polyketide compound, the pikromycin biosynthetic gene cluster, was preciously cloned and heterologously expressed using the pSBAC system. A unique HindIII restriction site was precisely inserted at one of the border regions of the pikromycin biosynthetic gene cluster within the chromosome of Streptomyces venezuelae, followed by site-specific recombination of pSBAC into the flanking region of the pikromycin gene cluster. Unlike the previous cloning process, one HindIII site integration step was skipped through pSBAC modification. pPik001, a pSBAC containing the pikromycin biosynthetic gene cluster, was directly introduced into two heterologous hosts, Streptomyces lividans and Streptomyces coelicolor, resulting in the production of 10-deoxymethynolide, a major pikromycin derivative. When two entire pikromycin biosynthetic gene clusters were tandemly introduced into the S. lividans chromosome, overproduction of 10-deoxymethynolide and the presence of pikromycin, which was previously not detected, were both confirmed. Moreover, comparative qRT-PCR results confirmed that the transcription of pikromycin biosynthetic genes was significantly upregulated in S. lividans containing tandem

  7. A R2R3-MYB transcription factor regulates the flavonol biosynthetic pathway in a traditional Chinese medicinal plant, Epimedium sagittatum

    Directory of Open Access Journals (Sweden)

    Wenjun Huang

    2016-07-01

    Full Text Available Flavonols as plant secondary metabolites with vital roles in plant development and defense against UV light, have been demonstrated to be the main bioactive components in the genus Epimedium plants, several species of which are used as materials for Herba Epimedii, an important traditional Chinese medicine. The flavonol biosynthetic pathway genes had been already isolated from E. sagittatum, but a R2R3-MYB transcription factor regulating the flavonol synthesis has not been functionally characterized so far in Epimedium plants. In this study, we isolated and characterized the R2R3-MYB transcription factor EsMYBF1 involved in regulation of the flavonol biosynthetic pathway from E. sagittatum. Sequence analysis indicated that EsMYBF1 belongs to the subgroup 7 of R2R3-MYB family which contains the flavonol-specific MYB regulators identified to date. Transient reporter assay showed that EsMYBF1 strongly activated the promoters of EsF3H (flavanone 3-hydroxylase and EsFLS (flavonol synthase, but not the promoters of EsDFRs (dihydroflavonol 4-reductase and EsANS (anthocyanidin synthase in transiently transformed Nicotiana benthamiana leaves. Both yeast two-hybrid assay and transient reporter assay validated EsMYBF1 to be independent of EsTT8, or AtTT8 bHLH regulators of the flavonoid pathway as cofactors. Ectopic expression of EsMYBF1 in transgenic tobacco resulted in the increased flavonol content and the decreased anthocyanin content in flowers. Correspondingly, the structural genes involved in flavonol synthesis were upregulated in the EsMYBF1 overexpression lines, including NtCHS (chalcone synthase, NtCHI (chalcone isomerase, NtF3H and NtFLS, whereas the late biosynthetic genes of the anthocyanin pathway (NtDFR and NtANS were remarkably downregulated, compared to the controls. These results suggest that EsMYBF1 is a flavonol-specific R2R3-MYB regulator, and involved in regulation of the biosynthesis of the flavonol-derived bioactive components in E

  8. Carotenogenic gene expression and carotenoid accumulation in three varieties of Cucurbita pepo during fruit development.

    Science.gov (United States)

    Obrero, Ángeles; González-Verdejo, Clara I; Die, Jose V; Gómez, Pedro; Del Río-Celestino, Mercedes; Román, Belén

    2013-07-03

    The control of gene expression is a crucial regulatory mechanism in carotenoid accumulation of fruits and flowers. We investigated the role of transcriptional regulation of nine genes involved in the carotenoid biosynthesis pathway in three varieties of Cucurbita pepo with evident differences in fruit color. The transcriptional levels of the key genes involved in the carotenoid biosynthesis were higher in flower-, leaf-, and fruit skin tissues than flesh tissues. This correlated with higher concentration of carotenoid content in these tissues. The differential expression among the colored and white cultivars detected for some genes, such as LCYe, in combination with other regulatory mechanisms, could explain the large differences found in terms of carotenoid content among the three varieties. These results are a first step to elucidate carotenogenesis in C. pepo and demonstrate that, in general, regulation of the pathway genes is a critical factor that determines the accumulation of these compounds.

  9. Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and humans.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Hayashi

    Full Text Available Coenzyme Q (CoQ is an essential factor for aerobic growth and oxidative phosphorylation in the electron transport system. The biosynthetic pathway for CoQ has been proposed mainly from biochemical and genetic analyses of Escherichia coli and Saccharomyces cerevisiae; however, the biosynthetic pathway in higher eukaryotes has been explored in only a limited number of studies. We previously reported the roles of several genes involved in CoQ synthesis in the fission yeast Schizosaccharomyces pombe. Here, we expand these findings by identifying ten genes (dps1, dlp1, ppt1, and coq3-9 that are required for CoQ synthesis. CoQ10-deficient S. pombe coq deletion strains were generated and characterized. All mutant fission yeast strains were sensitive to oxidative stress, produced a large amount of sulfide, required an antioxidant to grow on minimal medium, and did not survive at the stationary phase. To compare the biosynthetic pathway of CoQ in fission yeast with that in higher eukaryotes, the ability of CoQ biosynthetic genes from humans and plants (Arabidopsis thaliana to functionally complement the S. pombe coq deletion strains was determined. With the exception of COQ9, expression of all other human and plant COQ genes recovered CoQ10 production by the fission yeast coq deletion strains, although the addition of a mitochondrial targeting sequence was required for human COQ3 and COQ7, as well as A. thaliana COQ6. In summary, this study describes the functional conservation of CoQ biosynthetic genes between yeasts, humans, and plants.

  10. Genetic manipulation of carotenoid biosynthesis and photoprotection.

    Science.gov (United States)

    Pogson, B J; Rissler, H M

    2000-10-29

    There are multiple complementary and redundant mechanisms to provide protection against photo-oxidative damage, including non-photochemical quenching (NPQ). NPQ dissipates excess excitation energy as heat by using xanthophylls in combination with changes to the light-harvesting complex (LHC) antenna. The xanthophylls are oxygenated carotenoids that in addition to contributing to NPQ can quench singlet or triplet chlorophyll and are necessary for the assembly and stability of the antenna. We have genetically manipulated the expression of the epsilon-cyclase and beta-carotene hydroxylase carotenoid biosynthetic enzymes in Arabidopsis thaliana. The epsilon-cyclase overexpression confirmed that lut2 (lutein deficient) is a mutation in the epsilon-cyclase gene and demonstrated that lutein content can be altered at the level of mRNA abundance with levels ranging from 0 to 180% of wild-type. Also, it is clear that lutein affects the induction and extent of NPQ. The deleterious effects of lutein deficiency on NPQ in Arabidopsis and Chlamydomonas are additive, no matter what the genetic background, whether npq1 (zeaxanthin deficient), aba1 or antisense beta-hydroxylase (xanthophyll cycle pool decreased). Additionally, increasing lutein content causes a marginal, but significant, increase in the rate of induction of NPQ despite a reduction in the xanthophyll cycle pool size.

  11. Regulatory network of secondary metabolism in Brassica rapa: insight into the glucosinolate pathway.

    Directory of Open Access Journals (Sweden)

    Dunia Pino Del Carpio

    Full Text Available Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs and transcript QTLs (eQTLs. Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables.

  12. A plug-and-play pathway refactoring workflow for natural product research in Escherichia coli and Saccharomyces cerevisiae.

    Science.gov (United States)

    Ren, Hengqian; Hu, Pingfan; Zhao, Huimin

    2017-08-01

    Pathway refactoring serves as an invaluable synthetic biology tool for natural product discovery, characterization, and engineering. However, the complicated and laborious molecular biology techniques largely hinder its application in natural product research, especially in a high-throughput manner. Here we report a plug-and-play pathway refactoring workflow for high-throughput, flexible pathway construction, and expression in both Escherichia coli and Saccharomyces cerevisiae. Biosynthetic genes were firstly cloned into pre-assembled helper plasmids with promoters and terminators, resulting in a series of expression cassettes. These expression cassettes were further assembled using Golden Gate reaction to generate fully refactored pathways. The inclusion of spacer plasmids in this system would not only increase the flexibility for refactoring pathways with different number of genes, but also facilitate gene deletion and replacement. As proof of concept, a total of 96 pathways for combinatorial carotenoid biosynthesis were built successfully. This workflow should be generally applicable to different classes of natural products produced by various organisms. Biotechnol. Bioeng. 2017;114: 1847-1854. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. cDNAs for the synthesis of cyclic carotenoids in petals of Gentiana lutea and their regulation during flower development.

    Science.gov (United States)

    Zhu, Changfu; Yamamura, Saburo; Nishihara, Masashiro; Koiwa, Hiroyuki; Sandmann, Gerhard

    2003-02-20

    cDNAs encoding lycopene epsilon -cyclase, lycopene beta-cyclase, beta-carotene hydroxylase and zeaxanthin epoxidase were isolated from a Gentiana lutea petal cDNA library. The function of all cDNAs was analyzed by complementation in Escherichia coli. Transcript levels during different stages of flower development of G. lutea were determined and compared to the carotenoid composition. Expression of all genes increased by a factor of up to 2, with the exception of the lycopene epsilon -cyclase gene. The transcript amount of the latter was strongly decreased. These results indicate that during flower development, carotenoid formation is enhanced. Moreover, metabolites are shifted away from the biosynthetic branch to lutein and are channeled into beta-carotene and derivatives.

  14. Clp Protease and OR Directly Control the Proteostasis of Phytoene Synthase, the Crucial Enzyme for Carotenoid Biosynthesis in Arabidopsis.

    Science.gov (United States)

    Welsch, Ralf; Zhou, Xiangjun; Yuan, Hui; Álvarez, Daniel; Sun, Tianhu; Schlossarek, Dennis; Yang, Yong; Shen, Guoxin; Zhang, Hong; Rodriguez-Concepcion, Manuel; Thannhauser, Theodore W; Li, Li

    2018-01-08

    Phytoene synthase (PSY) is the crucial plastidial enzyme in the carotenoid biosynthetic pathway. However, its post-translational regulation remains elusive. Likewise, Clp protease constitutes a central part of the plastid protease network, but its substrates for degradation are not well known. In this study, we report that PSY is a substrate of the Clp protease. PSY was uncovered to physically interact with various Clp protease subunits (i.e., ClpS1, ClpC1, and ClpD). High levels of PSY and several other carotenogenic enzyme proteins overaccumulate in the clpc1, clpp4, and clpr1-2 mutants. The overaccumulated PSY was found to be partially enzymatically active. Impairment of Clp activity in clpc1 results in a reduced rate of PSY protein turnover, further supporting the role of Clp protease in degrading PSY protein. On the other hand, the ORANGE (OR) protein, a major post-translational regulator of PSY with holdase chaperone activity, enhances PSY protein stability and increases the enzymatically active proportion of PSY in clpc1, counterbalancing Clp-mediated proteolysis in maintaining PSY protein homeostasis. Collectively, these findings provide novel insights into the quality control of plastid-localized proteins and establish a hitherto unidentified post-translational regulatory mechanism of carotenogenic enzymes in modulating carotenoid biosynthesis in plants. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  15. Biotechnological production of value-added carotenoids from microalgae: Emerging technology and prospects.

    Science.gov (United States)

    Wichuk, Kristine; Brynjólfsson, Sigurður; Fu, Weiqi

    2014-01-01

    We recently evaluated the relationship between abiotic environmental stresses and lutein biosynthesis in the green microalga Dunaliella salina and suggested a rational design of stress-driven adaptive evolution experiments for carotenoids production in microalgae. Here, we summarize our recent findings regarding the biotechnological production of carotenoids from microalgae and outline emerging technology in this field. Carotenoid metabolic pathways are characterized in several representative algal species as they pave the way for biotechnology development. The adaptive evolution strategy is highlighted in connection with enhanced growth rate and carotenoid metabolism. In addition, available genetic modification tools are described, with emphasis on model species. A brief discussion on the role of lights as limiting factors in carotenoid production in microalgae is also included. Overall, our analysis suggests that light-driven metabolism and the photosynthetic efficiency of microalgae in photobioreactors are the main bottlenecks in enhancing biotechnological potential of carotenoid production from microalgae.

  16. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase

    Directory of Open Access Journals (Sweden)

    Papacchioli Velia

    2006-06-01

    Full Text Available Abstract Background Potato is a major staple food, and modification of its provitamin content is a possible means for alleviating nutritional deficiencies. beta-carotene is the main dietary precursor of vitamin A. Potato tubers contain low levels of carotenoids, composed mainly of the xanthophylls lutein, antheraxanthin, violaxanthin, and of xanthophyll esters. None of these carotenoids have provitamin A activity. Results We silenced the first dedicated step in the beta-epsilon- branch of carotenoid biosynthesis, lycopene epsilon cyclase (LCY-e, by introducing, via Agrobacterium-mediated transformation, an antisense fragment of this gene under the control of the patatin promoter. Real Time measurements confirmed the tuber-specific silencing of Lcy-e. Antisense tubers showed significant increases in beta-beta-carotenoid levels, with beta-carotene showing the maximum increase (up to 14-fold. Total carotenoids increased up to 2.5-fold. These changes were not accompanied by a decrease in lutein, suggesting that LCY-e is not rate-limiting for lutein accumulation. Tuber-specific changes in expression of several genes in the pathway were observed. Conclusion The data suggest that epsilon-cyclization of lycopene is a key regulatory step in potato tuber carotenogenesis. Upon tuber-specific silencing of the corresponding gene, beta-beta-carotenoid and total carotenoid levels are increased, and expression of several other genes in the pathway is modified.

  17. A Novel Antibiotic Mechanism of l-Cyclopropylalanine Blocking the Biosynthetic Pathway of Essential Amino Acid l-Leucine

    Directory of Open Access Journals (Sweden)

    Bingji Ma

    2017-12-01

    Full Text Available The unusual amino acid l-cyclopropylalanine was isolated from the mushroom Amanita virgineoides after detection in an anti-fungal screening test. l-Cyclopropylalanine was found to exhibit broad-spectrum inhibition against fungi and bacteria. The anti-fungal activity was found to be abolished in the presence of the amino acid l-leucine, but not any other amino acids, indicating that l-cyclopropylalanine may block the biosynthesis of the essential amino acid l-leucine, thereby inhibiting fungal and bacteria growth. Further biochemical studies found l-cyclopropylalanine indeed inhibits α-isopropylmalate synthase (α-IMPS, the enzyme that catalyzes the rate-limiting step in the biosynthetic pathway of l-leucine. Inhibition of essential l-leucine synthesis in fungal and bacteria organisms, a pathway absent in host organisms such as humans, may represent a novel antibiotic mechanism to counter the ever-increasing problem of drug resistance to existing antibiotics.

  18. Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana

    Science.gov (United States)

    Liénard, Marjorie A; Wang, Hong-Lei; Lassance, Jean-Marc; Löfstedt, Christer

    2014-01-01

    Although phylogenetically nested within the moths, butterflies have diverged extensively in a number of life history traits. Whereas moths rely greatly on chemical signals, visual advertisement is the hallmark of mate finding in butterflies. In the context of courtship, however, male chemical signals are widespread in both groups although they likely have multiple evolutionary origins. Here, we report that in males of the butterfly Bicyclus anynana, courtship scents are produced de novo via biosynthetic pathways shared with females of many moth species. We show that two of the pheromone components that play a major role in mate choice, namely the (Z)-9-tetradecenol and hexadecanal, are produced through the activity of a fatty acyl Δ11-desaturase and two specialized alcohol-forming fatty acyl reductases. Our study provides the first evidence of conservation and sharing of ancestral genetic modules for the production of FA-derived pheromones over a long evolutionary timeframe thereby reconciling mate communication in moths and butterflies. PMID:24862548

  19. Genome sequence of Thermofilum pendens reveals an exceptional loss of biosynthetic pathways without genome reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kyrpides, Nikos; Anderson, Iain; Rodriguez, Jason; Susanti, Dwi; Porat, Iris; Reich, Claudia; Ulrich, Luke E.; Elkins, James G.; Mavromatis, Kostas; Lykidis, Athanasios; Kim, Edwin; Thompson, Linda S.; Nolan, Matt; Land, Miriam; Copeland, Alex; Lapidus, Alla; Lucas, Susan; Detter, Chris; Zhulin, Igor B.; Olsen, Gary J.; Whitman, William; Mukhopadhyay, Biswarup; Bristow, James; Kyrpides, Nikos

    2008-01-01

    We report the complete genome of Thermofilum pendens, a deep-branching, hyperthermophilic member of the order Thermoproteales within the archaeal kingdom Crenarchaeota. T. pendens is a sulfur-dependent, anaerobic heterotroph isolated from a solfatara in Iceland. It is an extracellular commensal, requiring an extract of Thermoproteus tenax for growth, and the genome sequence reveals that biosynthetic pathways for purines, most amino acids, and most cofactors are absent. In fact T. pendens has fewer biosynthetic enzymes than obligate intracellular parasites, although it does not display other features common among obligate parasites and thus does not appear to be in the process of becoming a parasite. It appears that T. pendens has adapted to life in an environment rich in nutrients. T. pendens was known to utilize peptides as an energy source, but the genome reveals substantial ability to grow on carbohydrates. T. pendens is the first crenarchaeote and only the second archaeon found to have a transporter of the phosphotransferase system. In addition to fermentation, T. pendens may gain energy from sulfur reduction with hydrogen and formate as electron donors. It may also be capable of sulfur-independent growth on formate with formate hydrogenlyase. Additional novel features are the presence of a monomethylamine:corrinoid methyltransferase, the first time this enzyme has been found outside of Methanosarcinales, and a presenilin-related protein. Predicted highly expressed proteins do not include housekeeping genes, and instead include ABC transporters for carbohydrates and peptides, and CRISPR-associated proteins.

  20. Dark excited states of carotenoids: Consensus and controversy

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Sundström, V.

    2009-01-01

    Roč. 477, 1-3 (2009), s. 1-11 ISSN 0009-2614 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * excited states * relaxation pathways * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 2.291, year: 2009

  1. The hedgehog pathway gene shifted functions together with the hmgcr-dependent isoprenoid biosynthetic pathway to orchestrate germ cell migration.

    Directory of Open Access Journals (Sweden)

    Girish Deshpande

    Full Text Available The Drosophila embryonic gonad is assembled from two distinct cell types, the Primordial Germ Cells (PGCs and the Somatic Gonadal Precursor cells (SGPs. The PGCs form at the posterior of blastoderm stage embryos and are subsequently carried inside the embryo during gastrulation. To reach the SGPs, the PGCs must traverse the midgut wall and then migrate through the mesoderm. A combination of local repulsive cues and attractive signals emanating from the SGPs guide migration. We have investigated the role of the hedgehog (hh pathway gene shifted (shf in directing PGC migration. shf encodes a secreted protein that facilitates the long distance transmission of Hh through the proteoglycan matrix after it is released from basolateral membranes of Hh expressing cells in the wing imaginal disc. shf is expressed in the gonadal mesoderm, and loss- and gain-of-function experiments demonstrate that it is required for PGC migration. Previous studies have established that the hmgcr-dependent isoprenoid biosynthetic pathway plays a pivotal role in generating the PGC attractant both by the SGPs and by other tissues when hmgcr is ectopically expressed. We show that production of this PGC attractant depends upon shf as well as a second hh pathway gene gγ1. Further linking the PGC attractant to Hh, we present evidence indicating that ectopic expression of hmgcr in the nervous system promotes the release/transmission of the Hh ligand from these cells into and through the underlying mesodermal cell layer, where Hh can contact migrating PGCs. Finally, potentiation of Hh by hmgcr appears to depend upon cholesterol modification.

  2. Plastids and Carotenoid Accumulation.

    Science.gov (United States)

    Li, Li; Yuan, Hui; Zeng, Yunliu; Xu, Qiang

    Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants.

  3. Cloning and Functional Characterization of the Maize (Zea mays L.) Carotenoid Epsilon Hydroxylase Gene

    Science.gov (United States)

    Sheng, Yanmin; Wang, Yingdian; Capell, Teresa; Shi, Lianxuan; Ni, Xiuzhen; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2015-01-01

    The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1) gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity. PMID:26030746

  4. Carotenoids and Photosynthesis.

    Science.gov (United States)

    Hashimoto, Hideki; Uragami, Chiasa; Cogdell, Richard J

    2016-01-01

    Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.

  5. Transcriptome sequencing and de novo assembly in arecanut, Areca catechu L elucidates the secondary metabolite pathway genes

    Directory of Open Access Journals (Sweden)

    Ramaswamy Manimekalai

    2018-03-01

    Full Text Available Areca catechu L. belongs to the Arecaceae family which comprises many economically important palms. The palm is a source of alkaloids and carotenoids. The lack of ample genetic information in public databases has been a constraint for the genetic improvement of arecanut. To gain molecular insight into the palm, high throughput RNA sequencing and de novo assembly of arecanut leaf transcriptome was undertaken in the present study. A total 56,321,907 paired end reads of 101 bp length consisting of 11.343 Gb nucleotides were generated. De novo assembly resulted in 48,783 good quality transcripts, of which 67% of transcripts could be annotated against NCBI non – redundant database. The Gene Ontology (GO analysis with UniProt database identified 9222 biological process, 11268 molecular function and 7574 cellular components GO terms. Large scale expression profiling through Fragments per Kilobase per Million mapped reads (FPKM showed major genes involved in different metabolic pathways of the plant. Metabolic pathway analysis of the assembled transcripts identified 124 plant related pathways. The transcripts related to carotenoid and alkaloid biosynthetic pathways had more number of reads and FPKM values suggesting higher expression of these genes. The arecanut transcript sequences generated in the study showed high similarity with coconut, oil palm and date palm sequences retrieved from public domains. We also identified 6853 genic SSR regions in the arecanut. The possible primers were designed for SSR detection and this would simplify the future efforts in genetic characterization of arecanut.

  6. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings.

    Science.gov (United States)

    Kubasek, WL; Shirley, BW; McKillop, A; Goodman, HM; Briggs, W; Ausubel, FM

    1992-01-01

    Many higher plants, including Arabidopsis, transiently display purple anthocyanin pigments just after seed germination. We observed that steady state levels of mRNAs encoded by four flavonoid biosynthetic genes, PAL1 (encoding phenylalanine ammonia-lyase 1), CHS (encoding chalcone synthase), CHI (encoding chalcone isomerase), and DFR (encoding dihydroflavonol reductase), were temporally regulated, peaking in 3-day-old seedlings grown in continuous white light. Except for the case of PAL1 mRNA, mRNA levels for these flavonoid genes were very low in seedlings grown in darkness. Light induction studies using seedlings grown in darkness showed that PAL1 mRNA began to accumulate before CHS and CHI mRNAs, which, in turn, began to accumulate before DFR mRNA. This order of induction is the same as the order of the biosynthetic steps in flavonoid biosynthesis. Our results suggest that the flavonoid biosynthetic pathway is coordinately regulated by a developmental timing mechanism during germination. Blue light and UVB light induction experiments using red light- and dark-grown seedlings showed that the flavonoid biosynthetic genes are induced most effectively by UVB light and that blue light induction is mediated by a specific blue light receptor. PMID:12297632

  7. Key to Xenobiotic Carotenoids

    Directory of Open Access Journals (Sweden)

    Hans-Richard Sliwka

    2012-03-01

    Full Text Available A listing of carotenoids with heteroatoms (X = F, Cl, Br, I, Si, N, S, Se, Fe directly attached to the carotenoid carbon skeleton has been compiled. The 178 listed carotenoids with C,H,X atoms demonstrate that the classical division of carotenoids into hydrocarbon carotenoids (C,H and xanthophylls (C,H,O has become obsolete.

  8. Testing the carotenoid trade-off hypothesis in the polychromatic Midas cichlid, Amphilophus citrinellus.

    Science.gov (United States)

    Lin, Susan M; Nieves-Puigdoller, Katherine; Brown, Alexandria C; McGraw, Kevin J; Clotfelter, Ethan D

    2010-01-01

    Many animals use carotenoid pigments derived from their diet for coloration and immunity. The carotenoid trade-off hypothesis predicts that, under conditions of carotenoid scarcity, individuals may be forced to allocate limited carotenoids to either coloration or immunity. In polychromatic species, the pattern of allocation may differ among individuals. We tested the carotenoid trade-off hypothesis in the Midas cichlid, Amphilophus citrinellus, a species with two ontogenetic color morphs, barred and gold, the latter of which is the result of carotenoid expression. We performed a diet-supplementation experiment in which cichlids of both color morphs were assigned to one of two diet treatments that differed only in carotenoid content (beta-carotene, lutein, and zeaxanthin). We measured integument color using spectrometry, quantified carotenoid concentrations in tissue and plasma, and assessed innate immunity using lysozyme activity and alternative complement pathway assays. In both color morphs, dietary carotenoid supplementation elevated plasma carotenoid circulation but failed to affect skin coloration. Consistent with observable differences in integument coloration, we found that gold fish sequestered more carotenoids in skin tissue than barred fish, but barred fish had higher concentrations of carotenoids in plasma than gold fish. Neither measure of innate immunity differed between gold and barred fish, or as a function of dietary carotenoid supplementation. Lysozyme activity, but not complement activity, was strongly affected by body condition. Our data show that a diet low in carotenoids is sufficient to maintain both coloration and innate immunity in Midas cichlids. Our data also suggest that the developmental transition from the barred to gold morph is not accompanied by a decrease in innate immunity in this species.

  9. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. Amit Katiyar. Articles written in Journal of Genetics. Volume 92 Issue 3 December 2013 pp 363-368 Research Article. Expression profile of genes coding for carotenoid biosynthetic pathway during ripening and their association with accumulation of lycopene in tomato fruits.

  10. Accumulation of Rutin and Betulinic Acid and Expression of Phenylpropanoid and Triterpenoid Biosynthetic Genes in Mulberry (Morus alba L.).

    Science.gov (United States)

    Zhao, Shicheng; Park, Chang Ha; Li, Xiaohua; Kim, Yeon Bok; Yang, Jingli; Sung, Gyoo Byung; Park, Nam Il; Kim, Soonok; Park, Sang Un

    2015-09-30

    Mulberry (Morus alba L.) is used in traditional Chinese medicine and is the sole food source of the silkworm. Here, 21 cDNAs encoding phenylpropanoid biosynthetic genes and 21 cDNAs encoding triterpene biosynthetic genes were isolated from mulberry. The expression levels of genes involved in these biosynthetic pathways and the accumulation of rutin, betulin, and betulinic acid, important secondary metabolites, were investigated in different plant organs. Most phenylpropanoid and triterpene biosynthetic genes were highly expressed in leaves and/or fruit, and most genes were downregulated during fruit ripening. The accumulation of rutin was more than fivefold higher in leaves than in other organs, and higher levels of betulin and betulinic acid were found in roots and leaves than in fruit. By comparing the contents of these compounds with gene expression levels, we speculate that MaUGT78D1 and MaLUS play important regulatory roles in the rutin and betulin biosynthetic pathways.

  11. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism.

    Science.gov (United States)

    Palczewski, Grzegorz; Widjaja-Adhi, M Airanthi K; Amengual, Jaume; Golczak, Marcin; von Lintig, Johannes

    2016-09-01

    Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a β-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that β-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  12. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism[S

    Science.gov (United States)

    Palczewski, Grzegorz; Widjaja-Adhi, M. Airanthi K.; Amengual, Jaume; Golczak, Marcin; von Lintig, Johannes

    2016-01-01

    Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a β-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that β-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals. PMID:27389691

  13. Enhancement of carotenoid production by disrupting the C22-sterol desaturase gene (CYP61 in Xanthophyllomyces dendrorhous

    Directory of Open Access Journals (Sweden)

    Loto Iris

    2012-10-01

    Full Text Available Abstract Background Xanthophyllomyces dendrorhous is a basidiomycetous yeast that synthesizes astaxanthin, which is a carotenoid with a great biotechnological impact. The ergosterol and carotenoid synthesis pathways are derived from the mevalonate pathway, and in both pathways, cytochrome P450 enzymes are involved. Results In this study, we isolated and described the X. dendrorhous CYP61 gene, which encodes a cytochrome P450 involved in ergosterol biosynthesis. This gene is composed of nine exons and encodes a 526 amino acid polypeptide that shares significant percentages of identity and similitude with the C22-sterol desaturase, CYP61, from other fungi. Mutants derived from different parental strains were obtained by disrupting the CYP61 gene with an antibiotic selection marker. These mutants were not able to produce ergosterol and accumulated ergosta-5,8,22-trien-3-ol and ergosta-5,8-dien-3-ol. Interestingly, all of the mutants had a more intense red color phenotype than their respective parental strains. The carotenoid composition was qualitatively and quantitatively analyzed by RP-HPLC, revealing that the carotenoid content was higher in the mutant strains without major changes in their composition. The expression of the HMGR gene, which encodes an enzyme involved in the mevalonate pathway (3-hydroxy-3-methylglutaryl-CoA reductase, was analyzed by RT-qPCR showing that its transcript levels are higher in the CYP61 mutants. Conclusions These results suggest that in X. dendrorhous, ergosterol regulates HMGR gene expression by a negative feedback mechanism and in this way; it contributes in the regulation of the carotenoid biosynthesis.

  14. Expression of Xanthophyll Biosynthetic Genes during Light-Dependent Chloroplast Differentiation1

    Science.gov (United States)

    Woitsch, Sonja; Römer, Susanne

    2003-01-01

    In higher plants, etioplast to chloroplast differentiation is characterized by dramatic ultrastructural changes of the plastid and a concomitant increase in chlorophylls and carotenoids. Whereas the formation and function of carotenes and their oxygenated derivatives, the xanthophylls, have been well studied, little is known about the regulation of the genes involved in xanthophyll biosynthesis. Here, we analyze the expression of three xanthophyll biosynthetic genes (i.e. β-carotene hydroxylase [bhy], zeaxanthin epoxidase [zep], and violaxanthin de-epoxidase [vde]) during de-etiolation of seedlings of tobacco (Nicotiana tabacum L. cv Samsun) under different light conditions. White-light illumination caused an increase in the amount of all corresponding mRNAs. The expression profiles of bhy and zep not only resembled each other but were also similar to the pattern of a gene encoding a major light-harvesting protein of photosystem II. This finding indicates a coordinated synthesis during formation of the antenna complex. In contrast, the expression pattern of vde was clearly different. Furthermore, the gene expression of bhy was shown to be modulated after illumination with different white-light intensities. The expression of all xanthophyll biosynthetic genes under examination was up-regulated upon exposure to red, blue, and white light. Gene expression of bhy and vde but not of zep was more pronounced under red-light illumination, pointing at an involvement of the phytochrome system. Expression analysis in the presence of the photosynthetic electron transport inhibitors 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone indicated a redox control of transcription of two of the xanthophyll biosynthetic genes (bhy and zep). PMID:12857831

  15. Legume carotenoids.

    Science.gov (United States)

    Sri Kantha, S; Erdman, J W

    1987-01-01

    In recent years, the results of research studies have suggested a positive beneficial relationship between a vegetarian-based diet and low incidence of diseases, including coronary heart disease, cancer, obesity, dental caries, and osteoporosis. beta-Carotene has specifically been suggested as a nutrient with antitumorigenic properties. In this regard there is a need to evaluate the carotenoid content of foods. Legumes are one of the staple components of a vegetarian diet. This review specifically surveys the prevalence of carotenoids in food and forage legumes. In addition, the methods available for carotenoid analysis are discussed; factors affecting the determination of carotenoid content during maturation, germination, processing and storage are identified; research areas which have been inadequately explored are identified; and suggestions are made for future lines of investigation.

  16. A novel mechanism of sulfur transfer catalyzed by O-acetylhomoserine sulfhydrylase in the methionine-biosynthetic pathway of Wolinella succinogenes

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Timothy H. [Cornell University, Ithaca, New York 14853-1301 (United States); Krishnamoorthy, Kalyanaraman; Begley, Tadhg P., E-mail: begley@tamu.edu [Texas A& M University, College Station, TX 77842 (United States); Ealick, Steven E., E-mail: begley@tamu.edu [Cornell University, Ithaca, New York 14853-1301 (United States)

    2011-10-01

    MetY is the first reported structure of an O-acetylhomoserine sulfhydrylase that utilizes a protein thiocarboxylate intermediate as the sulfur source in a novel methionine-biosynthetic pathway instead of catalyzing a direct sulfhydrylation reaction. O-Acetylhomoserine sulfhydrylase (OAHS) is a pyridoxal 5′-phosphate (PLP) dependent sulfide-utilizing enzyme in the l-cysteine and l-methionine biosynthetic pathways of various enteric bacteria and fungi. OAHS catalyzes the conversion of O-acetylhomoserine to homocysteine using sulfide in a process known as direct sulfhydrylation. However, the source of the sulfur has not been identified and no structures of OAHS have been reported in the literature. Here, the crystal structure of Wolinella succinogenes OAHS (MetY) determined at 2.2 Å resolution is reported. MetY crystallized in space group C2 with two monomers in the asymmetric unit. Size-exclusion chromatography, dynamic light scattering and crystal packing indicate that the biological unit is a tetramer in solution. This is further supported by the crystal structure, in which a tetramer is formed using a combination of noncrystallographic and crystallographic twofold axes. A search for structurally homologous proteins revealed that MetY has the same fold as cystathionine γ-lyase and methionine γ-lyase. The active sites of these enzymes, which are also PLP-dependent, share a high degree of structural similarity, suggesting that MetY belongs to the γ-elimination subclass of the Cys/Met metabolism PLP-dependent family of enzymes. The structure of MetY, together with biochemical data, provides insight into the mechanism of sulfur transfer to a small molecule via a protein thiocarboxylate intermediate.

  17. Key to Xenobiotic Carotenoids

    OpenAIRE

    Hans-Richard Sliwka; Vassilia Partali

    2012-01-01

    A listing of carotenoids with heteroatoms (X = F, Cl, Br, I, Si, N, S, Se, Fe) directly attached to the carotenoid carbon skeleton has been compiled. The 178 listed carotenoids with C,H,X atoms demonstrate that the classical division of carotenoids into hydrocarbon carotenoids (C,H) and xanthophylls (C,H,O) has become obsolete. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in...

  18. Carotenoid Derivates in Achiote (Bixa orellana Seeds: Synthesis and Health Promoting Properties

    Directory of Open Access Journals (Sweden)

    Renata Rivera-Madrid

    2016-09-01

    Full Text Available Bixa orellana (family Bixaceae is a neotropical fast growing perennial tree of great agro-industrial value because its seeds have a high carotenoid content, mainly bixin. It has been used since pre-colonial times as a culinary colorant and spice, and for healing purposes. It is currently used as a natural pigment in the food, in pharmaceutical, and cosmetic industries, and it is commercially known as annatto. Recently, several studies have addressed the biological and medical properties of this natural pigment, both as potential source of new drugs or because its ingestion as a condiment or diet supplement may protect against several diseases. The most documented properties are anti-oxidative; but its anti-cancer, hypoglucemic, antibiotic and anti-inflammatory properties are also being studied. Bixin’s pathway elucidation and its regulation mechanisms are critical to improve the produce of this important carotenoid. Even though the bixin pathway has been established, the regulation of the genes involved in bixin production remains largely unknown. Our laboratory recently published B. orellana’s transcriptome and we have identified most of its MEP (methyl-D-erythritol 4-phosphate and carotenoid pathway genes. Annatto is a potential source of new drugs and can be a valuable nutraceutical supplement. However, its nutritional and healing properties require further study.

  19. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants.

    Science.gov (United States)

    Ruiz-López, Noemi; Sayanova, Olga; Napier, Johnathan A; Haslam, Richard P

    2012-04-01

    Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described.

  20. Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content.

    Directory of Open Access Journals (Sweden)

    Maria Sulli

    Full Text Available After wheat and rice, potato is the third most important staple food worldwide. A collection of ten tetraploid (Solanum tuberosum and diploid (S. phureja and S. chacoense genotypes with contrasting carotenoid content was subjected to molecular characterization with respect to candidate carotenoid loci and metabolic profiling using LC-HRMS. Irrespective of ploidy and taxonomy, tubers of these genotypes fell into three groups: yellow-fleshed, characterized by high levels of epoxy-xanthophylls and xanthophyll esters and by the presence of at least one copy of a dominant allele of the β-Carotene Hydroxylase 2 (CHY2 gene; white-fleshed, characterized by low carotenoid levels and by the presence of recessive chy2 alleles; and orange-fleshed, characterized by high levels of zeaxanthin but low levels of xanthophyll esters, and homozygosity for a Zeaxanthin Epoxidase (ZEP recessive allele. Novel CHY2 and ZEP alleles were identified in the collection. Multivariate analysis identified several groups of co-regulated non-polar compounds, and resulted in the grouping of the genotypes according to flesh color, suggesting that extensive cross-talk exists between the carotenoid pathway and other metabolite pathways in tubers. Postharvest traits like tuber dormancy and weight loss during storage showed little correlation with tuber carotenoid content, with the exception of zeaxanthin and its esters. Other tuber metabolites, such as glucose, monogalactosyldiacyglycerol (a glycolipid, or suberin precursors, showed instead significant correlations with both traits.

  1. Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content

    Science.gov (United States)

    Sulli, Maria; Mandolino, Giuseppe; Sturaro, Monica; Onofri, Chiara; Diretto, Gianfranco; Parisi, Bruno

    2017-01-01

    After wheat and rice, potato is the third most important staple food worldwide. A collection of ten tetraploid (Solanum tuberosum) and diploid (S. phureja and S. chacoense) genotypes with contrasting carotenoid content was subjected to molecular characterization with respect to candidate carotenoid loci and metabolic profiling using LC-HRMS. Irrespective of ploidy and taxonomy, tubers of these genotypes fell into three groups: yellow-fleshed, characterized by high levels of epoxy-xanthophylls and xanthophyll esters and by the presence of at least one copy of a dominant allele of the β-Carotene Hydroxylase 2 (CHY2) gene; white-fleshed, characterized by low carotenoid levels and by the presence of recessive chy2 alleles; and orange-fleshed, characterized by high levels of zeaxanthin but low levels of xanthophyll esters, and homozygosity for a Zeaxanthin Epoxidase (ZEP) recessive allele. Novel CHY2 and ZEP alleles were identified in the collection. Multivariate analysis identified several groups of co-regulated non-polar compounds, and resulted in the grouping of the genotypes according to flesh color, suggesting that extensive cross-talk exists between the carotenoid pathway and other metabolite pathways in tubers. Postharvest traits like tuber dormancy and weight loss during storage showed little correlation with tuber carotenoid content, with the exception of zeaxanthin and its esters. Other tuber metabolites, such as glucose, monogalactosyldiacyglycerol (a glycolipid), or suberin precursors, showed instead significant correlations with both traits. PMID:28898255

  2. Highly efficient energy transfer from a carbonyl carotenoid to chlorophyll a in the main light harvesting complex of Chromera velia.

    Science.gov (United States)

    Durchan, Milan; Keşan, Gürkan; Slouf, Václav; Fuciman, Marcel; Staleva, Hristina; Tichý, Josef; Litvín, Radek; Bína, David; Vácha, František; Polívka, Tomáš

    2014-10-01

    We report on energy transfer pathways in the main light-harvesting complex of photosynthetic relative of apicomplexan parasites, Chromera velia. This complex, denoted CLH, belongs to the family of FCP proteins and contains chlorophyll (Chl) a, violaxanthin, and the so far unidentified carbonyl carotenoid related to isofucoxanthin. The overall carotenoid-to-Chl-a energy transfer exhibits efficiency over 90% which is the largest among the FCP-like proteins studied so far. Three spectroscopically different isofucoxanthin-like molecules were identified in CLH, each having slightly different energy transfer efficiency that increases from isofucoxanthin-like molecules absorbing in the blue part of the spectrum to those absorbing in the reddest part of spectrum. Part of the energy transfer from carotenoids proceeds via the ultrafast S2 channel of both the violaxanthin and isofucoxanthin-like carotenoid, but major energy transfer pathway proceeds via the S1/ICT state of the isofucoxanthin-like carotenoid. Two S1/ICT-mediated channels characterized by time constants of ~0.5 and ~4ps were found. For the isofucoxanthin-like carotenoid excited at 480nm the slower channel dominates, while those excited at 540nm employs predominantly the fast 0.5ps channel. Comparing these data with the excited-state properties of the isofucoxanthin-like carotenoid in solution we conclude that, contrary to other members of the FCP family employing carbonyl carotenoids, CLH complex suppresses the charge transfer character of the S1/ICT state of the isofucoxanthin-like carotenoid to achieve the high carotenoid-to-Chl-a energy transfer efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Genomic characterization of a new endophytic Streptomyces kebangsaanensis identifies biosynthetic pathway gene clusters for novel phenazine antibiotic production

    Directory of Open Access Journals (Sweden)

    Juwairiah Remali

    2017-11-01

    Full Text Available Background Streptomyces are well known for their capability to produce many bioactive secondary metabolites with medical and industrial importance. Here we report a novel bioactive phenazine compound, 6-((2-hydroxy-4-methoxyphenoxy carbonyl phenazine-1-carboxylic acid (HCPCA extracted from Streptomyces kebangsaanensis, an endophyte isolated from the ethnomedicinal Portulaca oleracea. Methods The HCPCA chemical structure was determined using nuclear magnetic resonance spectroscopy. We conducted whole genome sequencing for the identification of the gene cluster(s believed to be responsible for phenazine biosynthesis in order to map its corresponding pathway, in addition to bioinformatics analysis to assess the potential of S. kebangsaanensis in producing other useful secondary metabolites. Results The S. kebangsaanensis genome comprises an 8,328,719 bp linear chromosome with high GC content (71.35% consisting of 12 rRNA operons, 81 tRNA, and 7,558 protein coding genes. We identified 24 gene clusters involved in polyketide, nonribosomal peptide, terpene, bacteriocin, and siderophore biosynthesis, as well as a gene cluster predicted to be responsible for phenazine biosynthesis. Discussion The HCPCA phenazine structure was hypothesized to derive from the combination of two biosynthetic pathways, phenazine-1,6-dicarboxylic acid and 4-methoxybenzene-1,2-diol, originated from the shikimic acid pathway. The identification of a biosynthesis pathway gene cluster for phenazine antibiotics might facilitate future genetic engineering design of new synthetic phenazine antibiotics. Additionally, these findings confirm the potential of S. kebangsaanensis for producing various antibiotics and secondary metabolites.

  4. Cancer Chemoprevention by Carotenoids

    Directory of Open Access Journals (Sweden)

    Takuji Tanaka

    2012-03-01

    Full Text Available Carotenoids are natural fat-soluble pigments that provide bright coloration to plants and animals. Dietary intake of carotenoids is inversely associated with the risk of a variety of cancers in different tissues. Preclinical studies have shown that some carotenoids have potent antitumor effects both in vitro and in vivo, suggesting potential preventive and/or therapeutic roles for the compounds. Since chemoprevention is one of the most important strategies in the control of cancer development, molecular mechanism-based cancer chemoprevention using carotenoids seems to be an attractive approach. Various carotenoids, such as β-carotene, a-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, fucoxanthin, canthaxanthin and astaxanthin, have been proven to have anti-carcinogenic activity in several tissues, although high doses of β-carotene failed to exhibit chemopreventive activity in clinical trials. In this review, cancer prevention using carotenoids are reviewed and the possible mechanisms of action are described.

  5. A genomics based discovery of secondary metabolite biosynthetic gene clusters in Aspergillus ustus.

    Directory of Open Access Journals (Sweden)

    Borui Pi

    Full Text Available Secondary metabolites (SMs produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic.

  6. A Genomics Based Discovery of Secondary Metabolite Biosynthetic Gene Clusters in Aspergillus ustus

    Science.gov (United States)

    Pi, Borui; Yu, Dongliang; Dai, Fangwei; Song, Xiaoming; Zhu, Congyi; Li, Hongye; Yu, Yunsong

    2015-01-01

    Secondary metabolites (SMs) produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic. PMID:25706180

  7. Interrelationships between maternal carotenoid status and newborn infant macular pigment optical density and carotenoid status.

    Science.gov (United States)

    Henriksen, Bradley S; Chan, Gary; Hoffman, Robert O; Sharifzadeh, Mohsen; Ermakov, Igor V; Gellermann, Werner; Bernstein, Paul S

    2013-08-15

    Deposition of the macular pigment carotenoids lutein and zeaxanthin in the human retina occurs early in life. In this study, we examined the interrelationships of maternal carotenoid status and newborn infant macular pigment levels and systemic carotenoid status. As a secondary measure, we also evaluated the effects of intrauterine growth restriction (IUGR) on carotenoid status in term newborn infants. We measured mother and infant skin carotenoids using resonance Raman spectroscopy (RRS), serum carotenoids by HPLC, and mother breast milk carotenoids by HPLC. We measured infant macular pigment levels using noninvasive blue light reflectometry. We enrolled 30 healthy term infants, their mothers, and 10 IUGR infants and their mothers. A subset of 16 infants was imaged for macular pigment optical density (MPOD). Infant serum zeaxanthin levels correlated with MPOD (r = 0.68, P = 0.007). Mother serum zeaxanthin levels correlated with infant MPOD (r = 0.59, P = 0.032). Infant and mother serum lutein did not correlate with MPOD. Mother-infant correlations were found for total serum carotenoids (r = 0.42, P = 0.020) and skin carotenoids (r = 0.48, P = 0.001). No difference was seen between IUGR infants and controls in total serum or skin carotenoids. Mothers of IUGR infants had lower total serum carotenoids (P = 0.019) and breast milk carotenoids than controls (P = 0.006). Our findings suggest that maternal zeaxanthin status may play a more important role than lutein status in macular pigment deposition in utero. Controlled trials are needed to determine whether maternal zeaxanthin prenatal supplementation can raise infant macular pigment levels and/or improve ocular function.

  8. Carotenoid biosynthesis in bacteria: In vitro studies of a crt/bch transcription factor from Rhodobacter capsulatus and carotenoid enzymes from Erwinia herbicola

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, D.A.

    1992-11-01

    A putative transcription factor in Rhodobactor capsulatus which binds upstream of the crt and bch pigment biosynthesis operons and appears to play a role in the adaptation of the organism from the aerobic to the anaerobic-photosynthetic growth mode was characterized. Chapter 2 describes the identification of this factor through an in vitro mobility shift assay, as well as the determination of its binding properties and sequence specificity. Chapter 3 focuses on the isolation of this factor. Biochemistry of later carotenoid biosynthesis enzymes derived from the non-photosynthetic bacterium, Erwinia herbicola. Chapter 4 describes the separate overexpression and in vitro analysis of two enzymes involved in the main sequence of the carotenoid biosynthesis pathway, lycopene cyclase and 5-carotene hydroxylase. Chapter 5 examines the overexpression and enzymology of functionally active zeaxanthin glucosyltransferase, an enzyme which carries out a more unusual transformation, converting a carotenoid into its more hydrophilic mono- and diglucoside derivatives. In addition, amino acid homology with other glucosyltransferases suggests a putative binding site for the UDP-activated glucose substrate.

  9. A Carotenoid Health Index Based on Plasma Carotenoids and Health Outcomes

    Science.gov (United States)

    Donaldson, Michael S.

    2011-01-01

    While there have been many studies on health outcomes that have included measurements of plasma carotenoids, this data has not been reviewed and assembled into a useful form. In this review sixty-two studies of plasma carotenoids and health outcomes, mostly prospective cohort studies or population-based case-control studies, are analyzed together to establish a carotenoid health index. Five cutoff points are established across the percentiles of carotenoid concentrations in populations, from the tenth to ninetieth percentile. The cutoff points (mean ± standard error of the mean) are 1.11 ± 0.08, 1.47 ± 0.08, 1.89 ± 0.08, 2.52 ± 0.13, and 3.07 ± 0.20 µM. For all cause mortality there seems to be a low threshold effect with protection above every cutoff point but the lowest. But for metabolic syndrome and cancer outcomes there tends to be significant positive health outcomes only above the higher cutoff points, perhaps as a triage effect. Based on this data a carotenoid health index is proposed with risk categories as follows: very high risk: 4 µM. Over 95 percent of the USA population falls into the moderate or high risk category of the carotenoid health index. PMID:22292108

  10. Skin Carotenoid Response to a High-Carotenoid Juice in Children: A Randomized Clinical Trial.

    Science.gov (United States)

    Aguilar, Sheryl S; Wengreen, Heidi J; Dew, Jeffrey

    2015-11-01

    Previous studies have shown an increase in serum carotenoid status among children when fed carotenoids. This study looked at the effect and dose-response of a known amount of carotenoid consumption on change in skin carotenoid status among children. Participants were children aged 5 to 17 years from Cache County, UT (n=58). Children were randomly assigned to one of three groups: high (n=18) or low (n=18) dose of a carotenoid-rich juice (2.75 mg carotenoids/30 mL juice), or placebo juice (n=22). Children were asked to drink an assigned dose of the juice (30 to 120 mL/day) based on the weight of the child and group assignment, every day for 8 weeks. Skin carotenoids were measured every 2 weeks by resonance Raman spectroscopy. Participants were asked to maintain their usual diet throughout the study. Usual diet was assessed using three averaged 24-hour recalls; diet constancy was measured using food frequency questionnaires administered at baseline, Week 4, and Week 8. Repeated measures analysis of variance was used to assess the group differences in skin carotenoid status over time. The high-dose and low-dose groups had mean±standard deviation increases in skin carotenoid status of 11,515±1,134 and 10,009±1,439 Raman intensity counts, respectively (both P values juice significantly increased skin carotenoid status over an 8-week period among children aged 5 to 17 years. The amount of carotenoids found in this amount of juice is equal to the amount found in approximately 23 to 92 g cooked carrots per day. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  11. Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters

    DEFF Research Database (Denmark)

    Blin, Kai; Kim, Hyun Uk; Medema, Marnix H.

    2017-01-01

    Many drugs are derived from small molecules produced by microorganisms and plants, so-called natural products. Natural products have diverse chemical structures, but the biosynthetic pathways producing those compounds are often organized as biosynthetic gene clusters (BGCs) and follow a highly...... conserved biosynthetic logic. This allows for the identification of core biosynthetic enzymes using genome mining strategies that are based on the sequence similarity of the involved enzymes/genes. However, mining for a variety of BGCs quickly approaches a complexity level where manual analyses...... are no longer possible and require the use of automated genome mining pipelines, such as the antiSMASH software. In this review, we discuss the principles underlying the predictions of antiSMASH and other tools and provide practical advice for their application. Furthermore, we discuss important caveats...

  12. Differential hexosamine biosynthetic pathway gene expression with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Megan Coomer

    2014-01-01

    Full Text Available The hexosamine biosynthetic pathway (HBP culminates in the attachment of O-linked β-N-acetylglucosamine (O-GlcNAc onto serine/threonine residues of target proteins. The HBP is regulated by several modulators, i.e. O-linked β-N-acetylglucosaminyl transferase (OGT and β-N-acetylglucosaminidase (OGA catalyze the addition and removal of O-GlcNAc moieties, respectively; while flux is controlled by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFPT, transcribed by two genes, GFPT1 and GFPT2. Since increased HBP flux is glucose-responsive and linked to insulin resistance/type 2 diabetes onset, we hypothesized that diabetic individuals exhibit differential expression of HBP regulatory genes. Volunteers (n = 60; n = 20 Mixed Ancestry, n = 40 Caucasian were recruited from Stellenbosch and Paarl (Western Cape, South Africa and classified as control, pre- or diabetic according to fasting plasma glucose and HbA1c levels, respectively. RNA was purified from leukocytes isolated from collected blood samples and OGT, OGA, GFPT1 and GFPT2 expressions determined by quantitative real-time PCR. The data reveal lower OGA expression in diabetic individuals (P < 0.01, while pre- and diabetic subjects displayed attenuated OGT expression vs. controls (P < 0.01 and P < 0.001, respectively. Moreover, GFPT2 expression decreased in pre- and diabetic Caucasians vs. controls (P < 0.05 and P < 0.01, respectively. We also found ethnic differences, i.e. Mixed Ancestry individuals exhibited a 2.4-fold increase in GFPT2 expression vs. Caucasians, despite diagnosis (P < 0.01. Gene expression of HBP regulators differs between diabetic and non-diabetic individuals, together with distinct ethnic-specific gene profiles. Thus differential HBP gene regulation may offer diagnostic utility and provide candidate susceptibility genes for different ethnic groupings.

  13. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway.

    Science.gov (United States)

    Wang, Zhao V; Deng, Yingfeng; Gao, Ningguo; Pedrozo, Zully; Li, Dan L; Morales, Cyndi R; Criollo, Alfredo; Luo, Xiang; Tan, Wei; Jiang, Nan; Lehrman, Mark A; Rothermel, Beverly A; Lee, Ann-Hwee; Lavandero, Sergio; Mammen, Pradeep P A; Ferdous, Anwarul; Gillette, Thomas G; Scherer, Philipp E; Hill, Joseph A

    2014-03-13

    The hexosamine biosynthetic pathway (HBP) generates uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) for glycan synthesis and O-linked GlcNAc (O-GlcNAc) protein modifications. Despite the established role of the HBP in metabolism and multiple diseases, regulation of the HBP remains largely undefined. Here, we show that spliced X-box binding protein 1 (Xbp1s), the most conserved signal transducer of the unfolded protein response (UPR), is a direct transcriptional activator of the HBP. We demonstrate that the UPR triggers HBP activation via Xbp1s-dependent transcription of genes coding for key, rate-limiting enzymes. We further establish that this previously unrecognized UPR-HBP axis is triggered in a variety of stress conditions. Finally, we demonstrate a physiologic role for the UPR-HBP axis by showing that acute stimulation of Xbp1s in heart by ischemia/reperfusion confers robust cardioprotection in part through induction of the HBP. Collectively, these studies reveal that Xbp1s couples the UPR to the HBP to protect cells under stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Combinatorial Biosynthesis of Novel Multi-Hydroxy Carotenoids in the Red Yeast Xanthophyllomyces dendrorhous

    Directory of Open Access Journals (Sweden)

    Hendrik Pollmann

    2017-02-01

    Full Text Available The red yeast Xanthophyllomyces dendrorhous is an established platform for the synthesis of carotenoids. It was used for the generation of novel multi oxygenated carotenoid structures. This was achieved by a combinatorial approach starting with the selection of a β-carotene accumulating mutant, stepwise pathway engineering by integration of three microbial genes into the genome and finally the chemical reduction of the resulting 4,4’-diketo-nostoxanthin (2,3,2’,3’-tetrahydroxy-4,4’-diketo-β-carotene and 4-keto-nostoxanthin (2,3,2’,3’-tetrahydroxy-4-monoketo-β-carotene. Both keto carotenoids and the resulting 4,4’-dihydroxy-nostoxanthin (2,3,4,2’,3’,4’-hexahydroxy-β-carotene and 4-hydroxy-nostoxanthin (2,3,4,2’3’-pentahydroxy-β-carotene were separated by high-performance liquid chromatography (HPLC and analyzed by mass spectrometry. Their molecular masses and fragmentation patterns allowed the unequivocal identification of all four carotenoids.

  15. Identification of an unusual type II thioesterase in the dithiolopyrrolone antibiotics biosynthetic pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Ying; Bai, Silei; Liu, Jingjing; Yang, Liyuan [National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Han, Li; Huang, Xueshi [Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819 (China); He, Jing, E-mail: hejingjj@mail.hzau.edu.cn [National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China)

    2016-04-22

    Dithiolopyrrolone group antibiotics characterized by an electronically unique dithiolopyrrolone heterobicyclic core are known for their antibacterial, antifungal, insecticidal and antitumor activities. Recently the biosynthetic gene clusters for two dithiolopyrrolone compounds, holomycin and thiomarinol, have been identified respectively in different bacterial species. Here, we report a novel dithiolopyrrolone biosynthetic gene cluster (aut) isolated from Streptomyces thioluteus DSM 40027 which produces two pyrrothine derivatives, aureothricin and thiolutin. By comparison with other characterized dithiolopyrrolone clusters, eight genes in the aut cluster were verified to be responsible for the assembly of dithiolopyrrolone core. The aut cluster was further confirmed by heterologous expression and in-frame gene deletion experiments. Intriguingly, we found that the heterogenetic thioesterase HlmK derived from the holomycin (hlm) gene cluster in Streptomyces clavuligerus significantly improved heterologous biosynthesis of dithiolopyrrolones in Streptomyces albus through coexpression with the aut cluster. In the previous studies, HlmK was considered invalid because it has a Ser to Gly point mutation within the canonical Ser-His-Asp catalytic triad of thioesterases. However, gene inactivation and complementation experiments in our study unequivocally demonstrated that HlmK is an active distinctive type II thioesterase that plays a beneficial role in dithiolopyrrolone biosynthesis. - Highlights: • Cloning of the aureothricin biosynthetic gene cluster from Streptomyces thioluteus DSM 40027. • Identification of the aureothricin gene cluster by heterologous expression and in-frame gene deletion. • The heterogenetic thioesterase HlmK significantly improved dithiolopyrrolones production of the aureothricin gene cluster. • Identification of HlmK as an unusual type II thioesterase.

  16. Identification of an unusual type II thioesterase in the dithiolopyrrolone antibiotics biosynthetic pathway

    International Nuclear Information System (INIS)

    Zhai, Ying; Bai, Silei; Liu, Jingjing; Yang, Liyuan; Han, Li; Huang, Xueshi; He, Jing

    2016-01-01

    Dithiolopyrrolone group antibiotics characterized by an electronically unique dithiolopyrrolone heterobicyclic core are known for their antibacterial, antifungal, insecticidal and antitumor activities. Recently the biosynthetic gene clusters for two dithiolopyrrolone compounds, holomycin and thiomarinol, have been identified respectively in different bacterial species. Here, we report a novel dithiolopyrrolone biosynthetic gene cluster (aut) isolated from Streptomyces thioluteus DSM 40027 which produces two pyrrothine derivatives, aureothricin and thiolutin. By comparison with other characterized dithiolopyrrolone clusters, eight genes in the aut cluster were verified to be responsible for the assembly of dithiolopyrrolone core. The aut cluster was further confirmed by heterologous expression and in-frame gene deletion experiments. Intriguingly, we found that the heterogenetic thioesterase HlmK derived from the holomycin (hlm) gene cluster in Streptomyces clavuligerus significantly improved heterologous biosynthesis of dithiolopyrrolones in Streptomyces albus through coexpression with the aut cluster. In the previous studies, HlmK was considered invalid because it has a Ser to Gly point mutation within the canonical Ser-His-Asp catalytic triad of thioesterases. However, gene inactivation and complementation experiments in our study unequivocally demonstrated that HlmK is an active distinctive type II thioesterase that plays a beneficial role in dithiolopyrrolone biosynthesis. - Highlights: • Cloning of the aureothricin biosynthetic gene cluster from Streptomyces thioluteus DSM 40027. • Identification of the aureothricin gene cluster by heterologous expression and in-frame gene deletion. • The heterogenetic thioesterase HlmK significantly improved dithiolopyrrolones production of the aureothricin gene cluster. • Identification of HlmK as an unusual type II thioesterase.

  17. Effects of carotenoids on lipid bilayers.

    Science.gov (United States)

    Johnson, Quentin R; Mostofian, Barmak; Fuente Gomez, Gabriel; Smith, Jeremy C; Cheng, Xiaolin

    2018-01-31

    Carotenoids have been found to be important in improving the integrity of biomembranes in eukaryotes. However, the molecular details of how carotenoids modulate the physical properties of biomembranes are unknown. To this end, we have conducted a series of molecular dynamics simulations of different biologically-relevant membranes in the presence of carotenoids. The carotenoid effect on the membrane was found to be specific to the identity of the carotenoid and the composition of the membrane itself. Therefore, different classes of carotenoids produce a different effect on the membrane, and different membrane phases are affected differently by carotenoids. It is apparent from our data that carotenoids do trigger the bilayer to become thinner. The mechanism by which this occurs depends on two competing factors, the ability of the lipid tails of opposing monolayers to either (1) compress or (2) interdigitate as the bilayer condenses. Indeed, carotenoids directly influence the physical properties via these two mechanisms, thus compacting the bilayer. However, the degree to which these competing mechanisms are utilized depends on the bilayer phase and the carotenoid identity.

  18. Characterization and engineering of thermophilic aldolases : synthesizing nitrogen-heterocycles in biosynthetic routes

    NARCIS (Netherlands)

    Wolterink-van Loo, S.

    2009-01-01

    Aldolases are enzymes that catalyze reactions in both degradation and biosynthetic pathways in vivo and have been discovered in all domains of life. they. An interesting property of aldolases is that they can synthesize carbon-carbon bonds, generating a new stereogenic centre. As enzymes are

  19. Carotenoids of human colostrum.

    Science.gov (United States)

    Patton, S; Canfield, L M; Huston, G E; Ferris, A M; Jensen, R G

    1990-03-01

    Colostrum, the initial postpartum secretion of the breast, ordinarily has a distinct yellow color due to carotenoids of its fat globules. This pigmentation progressively diminishes as milk production increases during the first week of lactation. Identity of these carotenoids was investigated by means of thin-layer chromatography, high performance liquid chromatography and spectral analysis. Alpha- and beta-carotene, lycopene and beta-cryptoxanthin were revealed as major chromogens. A component corresponding to lutein and/or zeaxanthin was also detected by both chromatographic techniques. Extracts of 23 saponified colostrum samples from 10 donors revealed considerable variation in total carotenoid concentration (0.34-7.57 micrograms/ml of colostrum). Multiparous mothers had greater mean colostrum carotenoid concentrations than did the primiparae, 2.18 +/- 1.94 vs 1.14 +/- 1.32 micrograms/ml, respectively. Seven of the eight primiparous donors' samples had little or no yellow color. These findings imply a difference in carotenoid transport by breasts that have lactated as compared to those that have not. The interrelation of carotenoids, lactation and breast cancer is discussed.

  20. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    KAUST Repository

    Ilg, Andrea; Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2014-01-01

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-. trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. © 2014 The Authors.

  1. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    KAUST Repository

    Ilg, Andrea

    2014-06-25

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-. trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. © 2014 The Authors.

  2. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    Directory of Open Access Journals (Sweden)

    Andrea Ilg

    2014-01-01

    Full Text Available The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum carotenoid cleavage dioxygenase (SlCCD1B, which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents.

  3. Interplay between Carotenoids, Abscisic Acid and Jasmonate Guides the Compatible Rice-Meloidogyne graminicola Interaction

    Directory of Open Access Journals (Sweden)

    Tina Kyndt

    2017-06-01

    Full Text Available In this study, we have characterized the role of carotenoids and chlorophyll in the compatible interaction between the sedentary root knot nematode (RKN Meloidogyne graminicola and the monocot model plant rice (Oryza sativa. Previous transcriptome data showed a differential expression of carotenoid and chlorophyll biosynthesis genes in nematode-induced giant cells and gall tissue. Metabolite measurement showed that galls indeed accumulate chlorophyll a, b and carotenoids, as well as the hormone abscisic acid (ABA. When ABA was externally applied on rice plants, or when ABA-biosynthesis was inhibited, a significant increase in gall formation and nematode development was found, showing the complex role of ABA in this interaction. ABA application suppressed jasmonic acid (JA levels in the plants, while ABA-biosynthesis inhibition lead to increased JA levels confirming an antagonism between ABA and JA in rice roots. In addition, combined applications of ABA and JA showed that the ABA-effect can overcome JA-induced defense. Based on these observations, we hypothesized that the accumulation of chlorophyll and carotenoid precursors would be beneficial to nematode infection. Indeed, when chemically blocking the carotenoid biosynthesis pathway at different steps, which leads to differential accumulation of carotenoids and chlorophyll in the plants, a positive and clear link between accumulation of carotenoids and chlorophyll and rice susceptibility to RKN was detected.

  4. Characterization of chromoplasts and carotenoids of red- and yellow-fleshed papaya (Carica papaya L.).

    Science.gov (United States)

    Schweiggert, Ralf M; Steingass, Christof B; Heller, Annerose; Esquivel, Patricia; Carle, Reinhold

    2011-11-01

    Chromoplast morphology and ultrastructure of red- and yellow-fleshed papaya (Carica papaya L.) were investigated by light and transmission electron microscopy. Carotenoid analyses by LC-MS revealed striking similarity of nutritionally relevant carotenoid profiles in both the red and yellow varieties. However, while yellow fruits contained only trace amounts of lycopene, the latter was found to be predominant in red papaya (51% of total carotenoids). Comparison of the pigment-loaded chromoplast ultrastructures disclosed tubular plastids to be abundant in yellow papaya, whereas larger crystalloid substructures characterized most frequent red papaya chromoplasts. Exclusively existent in red papaya, such crystalloid structures were associated with lycopene accumulation. Non-globular carotenoid deposition was derived from simple solubility calculations based on carotenoid and lipid contents of the differently colored fruit pulps. Since the physical state of carotenoid deposition may be decisive regarding their bioavailability, chromoplasts from lycopene-rich tomato fruit (Lycopersicon esculentum L.) were also assessed and compared to red papaya. Besides interesting analogies, various distinctions were ascertained resulting in the prediction of enhanced lycopene bioavailability from red papaya. In addition, the developmental pathway of red papaya chromoplasts was investigated during fruit ripening and carotenogenesis. In the early maturation stage of white-fleshed papaya, undifferentiated proplastids and globular plastids were predominant, corresponding to incipient carotenoid biosynthesis. Since intermediate plastids, e.g., amyloplasts or chloroplasts, were absent, chromoplasts are likely to emerge directly from proplastids.

  5. Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health.

    Science.gov (United States)

    Khachik, Frederick; Carvalho, Lorena; Bernstein, Paul S; Muir, Garth J; Zhao, Da-You; Katz, Nikita B

    2002-11-01

    Recent epidemiological studies have suggested that the consumption of tomatoes and tomato-based food products reduce the risk of prostate cancer in humans. This protective effect has been attributed to carotenoids, which are one of the major classes of phytochemicals in this fruit. The most abundant carotenoid in tomato is lycopene, followed by phytoene, phytofluene, zeta-carotene, gamma-carotene, beta-carotene, neurosporene, and lutein. The distribution of lycopene and related carotenoids in tomatoes and tomato-based food products has been determined by extraction and high-performance liquid chromatography-UV/Visible photodiode array detection. Detailed qualitative and quantitative analysis of human serum, milk, and organs, particularly prostate, have revealed the presence of all the aforementioned carotenoids in biologically significant concentrations. Two oxidative metabolites of lycopene, 2,6-cyclolycopene-1,5-diols A and B, which are only present in tomatoes in extremely low concentrations, have been isolated and identified in human serum, milk, organs (liver, lung, breast, liver, prostate, colon) and skin. Carotenoids may also play an important role in the prevention of age-related macular degeneration, cataracts, and other blinding disorders. Among 25 dietary carotenoids and nine metabolites routinely found in human serum, mainly (3R,3'R,6'R)-lutein, (3R,3'R)-zeaxanthin, lycopene, and their metabolites were detected in ocular tissues. In this review we identified and quantified the complete spectrum of carotenoids from pooled human retinal pigment epithelium, ciliary body, iris, lens, and in the uveal tract and in other tissues of the human eye to gain a better insight into the metabolic pathways of ocular carotenoids. Although (3R,3'R,6'R)-lutein, (3R,3'R)-zeaxanthin, and their metabolites constitute the major carotenoids in human ocular tissues, lycopene and a wide range of dietary carotenoids have been detected in high concentrations in ciliary body and

  6. Mate choice for a male carotenoid-based ornament is linked to female dietary carotenoid intake and accumulation

    Directory of Open Access Journals (Sweden)

    Toomey Matthew B

    2012-01-01

    Full Text Available Abstract Background The coevolution of male traits and female mate preferences has led to the elaboration and diversification of sexually selected traits; however the mechanisms that mediate trait-preference coevolution are largely unknown. Carotenoid acquisition and accumulation are key determinants of the expression of male sexually selected carotenoid-based coloration and a primary mechanism maintaining the honest information content of these signals. Carotenoids also influence female health and reproduction in ways that may alter the costs and benefits of mate choice behaviours and thus provide a potential biochemical link between the expression of male traits and female preferences. To test this hypothesis, we manipulated the dietary carotenoid levels of captive female house finches (Carpodacus mexicanus and assessed their mate choice behavior in response to color-manipulated male finches. Results Females preferred to associate with red males, but carotenoid supplementation did not influence the direction or strength of this preference. Females receiving a low-carotenoid diet were less responsive to males in general, and discrimination among the colorful males was positively linked to female plasma carotenoid levels at the beginning of the study when the diet of all birds was carotenoid-limited. Conclusions Although female preference for red males was not influenced by carotenoid intake, changes in mating responsiveness and discrimination linked to female carotenoid status may alter how this preference is translated into choice. The reddest males, with the most carotenoid rich plumage, tend to pair early in the breeding season. If carotenoid-related variations in female choice behaviour shift the timing of pairing, then they have the potential to promote assortative mating by carotenoid status and drive the evolution of carotenoid-based male plumage coloration.

  7. Dietary factors that affect carotenoid bioavailability

    NARCIS (Netherlands)

    Hof, van het K.H.

    1999-01-01

    Carotenoids are thought to contribute to the beneficial effects of increased vegetable consumption. To better understand the potential benefits of carotenoids, we investigated the bioavailability of carotenoids from vegetables and dietary factors which might influence carotenoid

  8. Whole genome sequencing of Rhodotorula mucilaginosa isolated from the chewing stick (Distemonanthus benthamianus): insights into Rhodotorula phylogeny, mitogenome dynamics and carotenoid biosynthesis.

    Science.gov (United States)

    Gan, Han Ming; Thomas, Bolaji N; Cavanaugh, Nicole T; Morales, Grace H; Mayers, Ashley N; Savka, Michael A; Hudson, André O

    2017-01-01

    In industry, the yeast Rhodotorula mucilaginosa is commonly used for the production of carotenoids. The production of carotenoids is important because they are used as natural colorants in food and some carotenoids are precursors of retinol (vitamin A). However, the identification and molecular characterization of the carotenoid pathway/s in species belonging to the genus Rhodotorula is scarce due to the lack of genomic information thus potentially impeding effective metabolic engineering of these yeast strains for improved carotenoid production. In this study, we report the isolation, identification, characterization and the whole nuclear genome and mitogenome sequence of the endophyte R. mucilaginosa RIT389 isolated from Distemonanthus benthamianus, a plant known for its anti-fungal and antibacterial properties and commonly used as chewing sticks. The assembled genome of R. mucilaginosa RIT389 is 19 Mbp in length with an estimated genomic heterozygosity of 9.29%. Whole genome phylogeny supports the species designation of strain RIT389 within the genus in addition to supporting the monophyly of the currently sequenced Rhodotorula species. Further, we report for the first time, the recovery of the complete mitochondrial genome of R. mucilaginosa using the genome skimming approach. The assembled mitogenome is at least 7,000 bases larger than that of Rhodotorula taiwanensis which is largely attributed to the presence of large intronic regions containing open reading frames coding for homing endonuclease from the LAGLIDADG and GIY-YIG families. Furthermore, genomic regions containing the key genes for carotenoid production were identified in R. mucilaginosa RIT389, revealing differences in gene synteny that may play a role in the regulation of the biotechnologically important carotenoid synthesis pathways in yeasts.

  9. Whole genome sequencing of Rhodotorula mucilaginosa isolated from the chewing stick (Distemonanthus benthamianus): insights into Rhodotorula phylogeny, mitogenome dynamics and carotenoid biosynthesis

    Science.gov (United States)

    Thomas, Bolaji N.; Cavanaugh, Nicole T.; Morales, Grace H.; Mayers, Ashley N.; Savka, Michael A.

    2017-01-01

    In industry, the yeast Rhodotorula mucilaginosa is commonly used for the production of carotenoids. The production of carotenoids is important because they are used as natural colorants in food and some carotenoids are precursors of retinol (vitamin A). However, the identification and molecular characterization of the carotenoid pathway/s in species belonging to the genus Rhodotorula is scarce due to the lack of genomic information thus potentially impeding effective metabolic engineering of these yeast strains for improved carotenoid production. In this study, we report the isolation, identification, characterization and the whole nuclear genome and mitogenome sequence of the endophyte R. mucilaginosa RIT389 isolated from Distemonanthus benthamianus, a plant known for its anti-fungal and antibacterial properties and commonly used as chewing sticks. The assembled genome of R. mucilaginosa RIT389 is 19 Mbp in length with an estimated genomic heterozygosity of 9.29%. Whole genome phylogeny supports the species designation of strain RIT389 within the genus in addition to supporting the monophyly of the currently sequenced Rhodotorula species. Further, we report for the first time, the recovery of the complete mitochondrial genome of R. mucilaginosa using the genome skimming approach. The assembled mitogenome is at least 7,000 bases larger than that of Rhodotorula taiwanensis which is largely attributed to the presence of large intronic regions containing open reading frames coding for homing endonuclease from the LAGLIDADG and GIY-YIG families. Furthermore, genomic regions containing the key genes for carotenoid production were identified in R. mucilaginosa RIT389, revealing differences in gene synteny that may play a role in the regulation of the biotechnologically important carotenoid synthesis pathways in yeasts. PMID:29158974

  10. Differential control of the cholesterol biosynthetic pathway in tumor versus liver: evidence for decontrolled tumor cholesterogenesis in a cell-free system

    International Nuclear Information System (INIS)

    Azrolan, N.

    1987-01-01

    Cholesterol biosynthesis was characterized in cell-free post-mitochondrial supernatant (PMS) systems prepared from both normal rat liver and Morris hepatoma 3924A. Per cell, the rate of cholesterol synthesis from either 14 C-citrate of 14 -acetate in the hepatoma system was 9-fold greater than that observed in the liver system. Furthermore, the ratio of sterol-to-fatty acid synthesis rates from 14 C-citrate was more than 3-fold greater in the tumor than in the normal liver system. Incubations using radiolabeled acetate and mevalonate have demonstrated the loss of a normally rate-limiting control site within the early portion of the cholesterol biosynthetic pathway in the tumor system. Upon analysis of the steady-state levels of early lipogenic intermediates, the specific site of decontrol in the tumor was identified as the 3-hydroxy-3-methylglutaryl-CoA → mevalonate site of this pathway. In contrast, this reaction appeared to retain its rate-limiting properties in the cell-free system from normal liver

  11. Potential production of carotenoids from Neurospora

    Directory of Open Access Journals (Sweden)

    SRI PRIATNI

    2014-05-01

    Full Text Available Priatni S. 2014. Review: Potential production of carotenoids from Neurospora. Nusantara Bioscience 6: 63-68. Carotenoids are abundant and widely distributed in plants, animals and microorganisms. Commercial use of carotenoids competes between microorganisms and synthetic manufacture. Carotenoids production can be increased by improving the efficiency of carotenoid synthesis in microbes. Some of the cultural and environmental stimulants are positively affecting the carotenoid content of carotenogenic strains such as Neurospora. Neurospora is a fungus that exhibits the formation of spores and conidia, the part of the cell for carotenoids biosynthesis. The Indonesian traditional fermented food, red peanut cake or oncom, especially in West Java, is produced from legume residues of Neurospora sp. This fungus has been isolated and identified as Neurospora intermedia. In order to apply this pigment for food and cosmetic colorants, encapsulation techniques of carotenoids have been developed to improve its solubility and stability.

  12. Hydrophilic Carotenoids: Recent Progress

    Directory of Open Access Journals (Sweden)

    Attila Agócs

    2012-04-01

    Full Text Available Carotenoids are substantially hydrophobic antioxidants. Hydrophobicity is this context is rather a disadvantage, because their utilization in medicine as antioxidants or in food chemistry as colorants would require some water dispersibility for their effective uptake or use in many other ways. In the past 15 years several attempts were made to synthetize partially hydrophilic carotenoids. This review compiles the recently synthetized hydrophilic carotenoid derivatives.

  13. Changes in the carotenoid metabolism of capsicum fruits during application of modelized slow drying process for paprika production.

    Science.gov (United States)

    Pérez-Gálvez, Antonio; Hornero-Méndez, Dámaso; Mínguez-Mosquera, María Isabel

    2004-02-11

    A temperature profile simulating the traditional slow drying process of red pepper fruits, which is conducted in La Vera region (Spain) for paprika production, was developed. Carotenoid and ascorbic acid content, as well as moisture of fruits, were monitored during the slow drying process designed. Data obtained suggested that the evolution of carotenoid concentration, the main quality trait for paprika, directly depend on the physical conditions imposed. During the drying process, three different stages could be observed in relation to the carotenoids. The first stage corresponds to a physiological adaptation to the new imposed conditions that implied a decrease (ca. 20%) in the carotenoid content during the first 24 h. After that short period and during 5 days, a second stage was noticed, recovering the biosynthetic (carotenogenic) capability of the fruits, which denotes an accommodation of the fruits to the new environmental conditions. During the following 48 h (third stage) a sharp increase in the carotenoid content was observed. This last phenomenon seems to be related with an oxidative-thermal stress, which took place during the first stage, inducing a carotenogenesis similar to that occurring in over-ripening fruits. Results demonstrate that a fine control of the temperature and moisture content would help to positively modulate carotenogenesis and minimize catabolism, making it possible to adjust the drying process to the ripeness stage of fruits with the aim of improving carotenoid retention and therefore quality of the resulting product. In the case of ascorbic acid, data demonstrated that this compound is very sensitive to the drying process, with a decrease of about 76% during the first 24 h and remaining only at trace levels during the rest of the process. Therefore, no antioxidant role should be expected from ascorbic acid during the whole process and in the corresponding final product (paprika), despite that red pepper fruit is well-known to be rich

  14. Differences in carotenoid accumulation among three feeder-cricket species: implications for carotenoid delivery to captive insectivores.

    Science.gov (United States)

    Ogilvy, Victoria; Fidgett, Andrea L; Preziosi, Richard F

    2012-01-01

    There are a limited number of feeder-invertebrates available to feed captive insectivores, and many are deficient in certain nutrients. Gut-loading is used to increase the diversity of nutrients present in the captive insectivore diet; however, little is known about delivery of carotenoids via gut-loading. Carotenoids may influence health and reproduction due to their roles in immune and antioxidant systems. We assessed interspecific variation in carotenoid accumulation and retention in three feeder-cricket species (Gryllus bimaculatus, Gryllodes sigillatus and Acheta domesticus) fed one of three diets (wheat-bran, fish-food based formulated diet, and fresh fruit and vegetables). Out of the three species of feeder-cricket in the fish-food-based dietary treatment group, G. bimaculatus had the greatest total carotenoid concentration. All cricket species fed the wheat-bran diet had very low carotenoid concentrations. Species on the fish-food-based diet had intermediate carotenoid concentrations, and those on the fruit and vegetable diet had the highest concentrations. Carotenoid retention was poor across all species. Overall, this study shows that, by providing captive insectivores with G. bimaculatus crickets recently fed a carotenoid-rich diet, the quantity of carotenoids in the diet can be increased. © 2011 Wiley Periodicals, Inc.

  15. Carotenoid fluorescence in Dunaliella salina

    NARCIS (Netherlands)

    Kleinegris, D.M.M.; Es, van M.A.; Janssen, M.G.J.; Brandenburg, W.A.; Wijffels, R.H.

    2010-01-01

    Dunaliella salina is a halotolerant green alga that is well known for its carotenoid producing capacity. The produced carotenoids are mainly stored in lipid globules. For various research purposes, such as production and extraction kinetics, we would like to determine and/or localise the carotenoid

  16. Ultrafast time-resolved carotenoid to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria.

    Science.gov (United States)

    Cong, Hong; Niedzwiedzki, Dariusz M; Gibson, George N; LaFountain, Amy M; Kelsh, Rhiannon M; Gardiner, Alastair T; Cogdell, Richard J; Frank, Harry A

    2008-08-28

    Steady-state and ultrafast time-resolved optical spectroscopic investigations have been carried out at 293 and 10 K on LH2 pigment-protein complexes isolated from three different strains of photosynthetic bacteria: Rhodobacter (Rb.) sphaeroides G1C, Rb. sphaeroides 2.4.1 (anaerobically and aerobically grown), and Rps. acidophila 10050. The LH2 complexes obtained from these strains contain the carotenoids, neurosporene, spheroidene, spheroidenone, and rhodopin glucoside, respectively. These molecules have a systematically increasing number of pi-electron conjugated carbon-carbon double bonds. Steady-state absorption and fluorescence excitation experiments have revealed that the total efficiency of energy transfer from the carotenoids to bacteriochlorophyll is independent of temperature and nearly constant at approximately 90% for the LH2 complexes containing neurosporene, spheroidene, spheroidenone, but drops to approximately 53% for the complex containing rhodopin glucoside. Ultrafast transient absorption spectra in the near-infrared (NIR) region of the purified carotenoids in solution have revealed the energies of the S1 (2(1)Ag-)-->S2 (1(1)Bu+) excited-state transitions which, when subtracted from the energies of the S0 (1(1)Ag-)-->S2 (1(1)Bu+) transitions determined by steady-state absorption measurements, give precise values for the positions of the S1 (2(1)Ag-) states of the carotenoids. Global fitting of the ultrafast spectral and temporal data sets have revealed the dynamics of the pathways of de-excitation of the carotenoid excited states. The pathways include energy transfer to bacteriochlorophyll, population of the so-called S* state of the carotenoids, and formation of carotenoid radical cations (Car*+). The investigation has found that excitation energy transfer to bacteriochlorophyll is partitioned through the S1 (1(1)Ag-), S2 (1(1)Bu+), and S* states of the different carotenoids to varying degrees. This is understood through a consideration of the

  17. On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7

    KAUST Repository

    Bruno, Mark; Hofmann, Manuel; Vermathen, Martina; Alder, Adrian; Beyer, Peter D.; Al-Babili, Salim

    2014-01-01

    Strigolactones are phytohormones synthesized from carotenoids via a stereospecific pathway involving the carotenoid cleavage dioxygenases 7 (CCD7) and 8. CCD7 cleaves 9-cis-β-carotene to form a supposedly 9-cis-configured β-apo-10′-carotenal. CCD8 converts this intermediate through a combination of yet undetermined reactions into the strigolactone-like compound carlactone. Here, we investigated the substrate and stereo-specificity of the Arabidopsis and pea CCD7 and determined the stereo-configuration of the β-apo-10′-carotenal intermediate by using Nuclear Magnetic Resonance Spectroscopy. Our data unequivocally demonstrate the 9-cis-configuration of the intermediate. Both CCD7s cleave different 9-cis-carotenoids, yielding hydroxylated 9-cis-apo-10′-carotenals that may lead to hydroxylated carlactones, but show highest affinity for 9-cis-β-carotene. © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7

    KAUST Repository

    Bruno, Mark

    2014-05-01

    Strigolactones are phytohormones synthesized from carotenoids via a stereospecific pathway involving the carotenoid cleavage dioxygenases 7 (CCD7) and 8. CCD7 cleaves 9-cis-β-carotene to form a supposedly 9-cis-configured β-apo-10′-carotenal. CCD8 converts this intermediate through a combination of yet undetermined reactions into the strigolactone-like compound carlactone. Here, we investigated the substrate and stereo-specificity of the Arabidopsis and pea CCD7 and determined the stereo-configuration of the β-apo-10′-carotenal intermediate by using Nuclear Magnetic Resonance Spectroscopy. Our data unequivocally demonstrate the 9-cis-configuration of the intermediate. Both CCD7s cleave different 9-cis-carotenoids, yielding hydroxylated 9-cis-apo-10′-carotenals that may lead to hydroxylated carlactones, but show highest affinity for 9-cis-β-carotene. © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Marine Carotenoids: Biological Functions and Commercial Applications

    Science.gov (United States)

    Vílchez, Carlos; Forján, Eduardo; Cuaresma, María; Bédmar, Francisco; Garbayo, Inés; Vega, José M.

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological functions of carotenoids relevant for life on earth. Biological properties of carotenoids allow for a wide range of commercial applications. Indeed, recent interest in the carotenoids has been mainly for their nutraceutical properties. A large number of scientific studies have confirmed the benefits of carotenoids to health and their use for this purpose is growing rapidly. In addition, carotenoids have traditionally been used in food and animal feed for their color properties. Carotenoids are also known to improve consumer perception of quality; an example is the addition of carotenoids to fish feed to impart color to farmed salmon. PMID:21556162

  20. A R2R3-MYB transcription factor from Epimedium sagittatum regulates the flavonoid biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Wenjun Huang

    Full Text Available Herba epimedii (Epimedium, a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. The bioactive components in herba epimedii are mainly prenylated flavonol glycosides, end-products of the flavonoid pathway. Epimedium species are also used as garden plants due to the colorful flowers and leaves. Many R2R3-MYB transcription factors (TFs have been identified to regulate the flavonoid and anthocyanin biosynthetic pathways. However, little is known about the R2R3-MYB TFs involved in regulation of the flavonoid pathway in Epimedium. Here, we reported the isolation and functional characterization of the first R2R3-MYB TF (EsMYBA1 from Epimedium sagittatum (Sieb. Et Zucc. Maxim. Conserved domains and phylogenetic analysis showed that EsMYBA1 belonged to the subgroup 6 clade (anthocyanin-related MYB clade of R2R3-MYB family, which includes Arabidopsis AtPAP1, apple MdMYB10 and legume MtLAP1. EsMYBA1 was preferentially expressed in leaves, especially in red leaves that contain higher content of anthocyanin. Alternative splicing of EsMYBA1 resulted in three transcripts and two of them encoded a MYB-related protein. Yeast two-hybrid and transient luciferase expression assay showed that EsMYBA1 can interact with several bHLH regulators of the flavonoid pathway and activate the promoters of dihydroflavonol 4-reductase (DFR and anthocyanidin synthase (ANS. In both transgenic tobacco and Arabidopsis, overexpression of EsMYBA1 induced strong anthocyanin accumulation in reproductive and/or vegetative tissues via up-regulation of the main flavonoid-related genes. Furthermore, transient expression of EsMYBA1 in E. sagittatum leaves by Agrobacterium infiltration also induced anthocyanin accumulation in the wounded area. This first functional characterization of R2R3-MYB TFs in Epimedium species will promote further studies of the flavonoid biosynthesis and regulation in medicinal plants.

  1. A R2R3-MYB transcription factor from Epimedium sagittatum regulates the flavonoid biosynthetic pathway.

    Science.gov (United States)

    Huang, Wenjun; Sun, Wei; Lv, Haiyan; Luo, Ming; Zeng, Shaohua; Pattanaik, Sitakanta; Yuan, Ling; Wang, Ying

    2013-01-01

    Herba epimedii (Epimedium), a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. The bioactive components in herba epimedii are mainly prenylated flavonol glycosides, end-products of the flavonoid pathway. Epimedium species are also used as garden plants due to the colorful flowers and leaves. Many R2R3-MYB transcription factors (TFs) have been identified to regulate the flavonoid and anthocyanin biosynthetic pathways. However, little is known about the R2R3-MYB TFs involved in regulation of the flavonoid pathway in Epimedium. Here, we reported the isolation and functional characterization of the first R2R3-MYB TF (EsMYBA1) from Epimedium sagittatum (Sieb. Et Zucc.) Maxim. Conserved domains and phylogenetic analysis showed that EsMYBA1 belonged to the subgroup 6 clade (anthocyanin-related MYB clade) of R2R3-MYB family, which includes Arabidopsis AtPAP1, apple MdMYB10 and legume MtLAP1. EsMYBA1 was preferentially expressed in leaves, especially in red leaves that contain higher content of anthocyanin. Alternative splicing of EsMYBA1 resulted in three transcripts and two of them encoded a MYB-related protein. Yeast two-hybrid and transient luciferase expression assay showed that EsMYBA1 can interact with several bHLH regulators of the flavonoid pathway and activate the promoters of dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS). In both transgenic tobacco and Arabidopsis, overexpression of EsMYBA1 induced strong anthocyanin accumulation in reproductive and/or vegetative tissues via up-regulation of the main flavonoid-related genes. Furthermore, transient expression of EsMYBA1 in E. sagittatum leaves by Agrobacterium infiltration also induced anthocyanin accumulation in the wounded area. This first functional characterization of R2R3-MYB TFs in Epimedium species will promote further studies of the flavonoid biosynthesis and regulation in medicinal plants.

  2. Carotenoid content and root color of cultivated carrot: a candidate-gene association study using an original broad unstructured population.

    Directory of Open Access Journals (Sweden)

    Matthieu Jourdan

    Full Text Available Accumulated in large amounts in carrot, carotenoids are an important product quality attribute and therefore a major breeding trait. However, the knowledge of carotenoid accumulation genetic control in this root vegetable is still limited. In order to identify the genetic variants linked to this character, we performed an association mapping study with a candidate gene approach. We developed an original unstructured population with a broad genetic basis to avoid the pitfall of false positive detection due to population stratification. We genotyped 109 SNPs located in 17 candidate genes – mostly carotenoid biosynthesis genes – on 380 individuals, and tested the association with carotenoid contents and color components. Total carotenoids and β-carotene contents were significantly associated with genes zeaxanthin epoxydase (ZEP, phytoene desaturase (PDS and carotenoid isomerase (CRTISO while α-carotene was associated with CRTISO and plastid terminal oxidase (PTOX genes. Color components were associated most significantly with ZEP. Our results suggest the involvement of the couple PDS/PTOX and ZEP in carotenoid accumulation, as the result of the metabolic and catabolic activities respectively. This study brings new insights in the understanding of the carotenoid pathway in non-photosynthetic organs.

  3. Reconstitution of Biosynthetic Machinery for the Synthesis of the Highly Elaborated Indole Diterpene Penitrem

    DEFF Research Database (Denmark)

    Liu, Chengwei; Tagami, Koichi; Minami, Atsushi

    2015-01-01

    KULNJ). Importantly, without conventional gene disruption, reconstitution of the biosynthetic machinery provided sufficient data to determine the pathway. It was thus demonstrated that the Aspergillus oryzae reconstitution system is a powerful method for studying the biosynthesis of complex natural products....

  4. Characterization of the biosynthetic gene cluster for cryptic phthoxazolin A in Streptomyces avermitilis.

    Directory of Open Access Journals (Sweden)

    Dian Anggraini Suroto

    Full Text Available Phthoxazolin A, an oxazole-containing polyketide, has a broad spectrum of anti-oomycete activity and herbicidal activity. We recently identified phthoxazolin A as a cryptic metabolite of Streptomyces avermitilis that produces the important anthelmintic agent avermectin. Even though genome data of S. avermitilis is publicly available, no plausible biosynthetic gene cluster for phthoxazolin A is apparent in the sequence data. Here, we identified and characterized the phthoxazolin A (ptx biosynthetic gene cluster through genome sequencing, comparative genomic analysis, and gene disruption. Sequence analysis uncovered that the putative ptx biosynthetic genes are laid on an extra genomic region that is not found in the public database, and 8 open reading frames in the extra genomic region could be assigned roles in the biosynthesis of the oxazole ring, triene polyketide and carbamoyl moieties. Disruption of the ptxA gene encoding a discrete acyltransferase resulted in a complete loss of phthoxazolin A production, confirming that the trans-AT type I PKS system is responsible for the phthoxazolin A biosynthesis. Based on the predicted functional domains in the ptx assembly line, we propose the biosynthetic pathway of phthoxazolin A.

  5. [Carotenoids: 1. Metabolism and physiology].

    Science.gov (United States)

    Faure, H; Fayol, V; Galabert, C; Grolier, P; Le Moël, G; Steghens, J P; Van Kappel, A; Nabet, F

    1999-01-01

    Carotenoids are a family of pigments with at least 600 members. They derive from lycopene after steps of cyclisation, dehydrogenation and oxidation. It is their chemical structure that determines their physiochemical properties and, in part, their biological activities. About 50 carotenoids can be found in human diet and about 20 of them have been found in plasma and tissues. There is no RDA (Recommended Daily Allowance) for carotenoids. Quantities of carotenoids in diet are difficult to estimate, partly because methods used for the establishment of food composition tables were not specific and sensitive enough. Also, given values do not always take into account variations due to season and region of culture. Absorption of beta-carotene in humans has been the subject of numerous studies but only very little is known about other carotenoids. In general, absorption depends on bioavailability from the food matrix and solubility in micelles. After absorption through passive diffusion, carotenoids follow the chylomicrons metabolism. They are taken up by the liver and released in the blood stream in lipoproteins (VLDL). Carotenoids with no-substituted beta-ionone cycles (alpha and beta-carotene and beta-cryptoxanthin) have provitamin A activity. Highest activity has been found for all-trans beta-carotene. Not all steps of vitamin A biosynthesis and metabolism of other carotenoids have been clarified yet. Besides their provitamin A activity, carotenoids have numerous biological functions. They are efficient scavengers of free radicals, particularly of 1O2. In vitro they have been shown to protect LDL. However, results in vivo are inconsistent. Other functions include enhancement of gap junctions, immunomodulation and regulation of enzyme activity involved in carcinogenesis.

  6. Biologically active polymers from spontaneous carotenoid oxidation: a new frontier in carotenoid activity.

    Directory of Open Access Journals (Sweden)

    James B Johnston

    Full Text Available In animals carotenoids show biological activity unrelated to vitamin A that has been considered to arise directly from the behavior of the parent compound, particularly as an antioxidant. However, the very property that confers antioxidant activity on some carotenoids in plants also confers susceptibility to oxidative transformation. As an alternative, it has been suggested that carotenoid oxidative breakdown or metabolic products could be the actual agents of activity in animals. However, an important and neglected aspect of the behavior of the highly unsaturated carotenoids is their potential to undergo addition of oxygen to form copolymers. Recently we reported that spontaneous oxidation of ß-carotene transforms it into a product dominated by ß-carotene-oxygen copolymers. We now report that the polymeric product is biologically active. Results suggest an overall ability to prime innate immune function to more rapidly respond to subsequent microbial challenges. An underlying structural resemblance to sporopollenin, found in the outer shell of spores and pollen, may allow the polymer to modulate innate immune responses through interactions with the pattern recognition receptor system. Oxygen copolymer formation appears common to all carotenoids, is anticipated to be widespread, and the products may contribute to the health benefits of carotenoid-rich fruits and vegetables.

  7. Targeted Gene Disruption of the Cyclo (L-Phe, L-Pro Biosynthetic Pathway in Streptomyces sp. US24 Strain

    Directory of Open Access Journals (Sweden)

    Samiha Sioud

    2007-01-01

    Full Text Available We have previously isolated a new actinomycete strain from Tunisian soil called Streptomyces sp. US24, and have shown that it produces two bioactive molecules including a Cyclo (L-Phe, L-Pro diketopiperazine (DKP. To identify the structural genes responsible for the synthesis of this DKP derivative, a PCR amplification (696 bp was carried out using the Streptomyces sp. US24 genomic DNA as template and two degenerate oligonucleotides designed by analogy with genes encoding peptide synthetases (NRPS. The detection of DKP derivative biosynthetic pathway of the Streptomyces sp. US24 strain was then achieved by gene disruption via homologous recombination using a suicide vector derived from the conjugative plasmid pSET152 and containing the PCR product. Chromatography analysis, biological tests and spectroscopic studies of supernatant cultures of the wild-type Streptomyces sp. US24 strain and three mutants obtained by this gene targeting disruption approach showed that the amplified DNA fragment is required for Cyclo (L-Phe, L-Pro biosynthesis in Streptomyces sp. US24 strain. This DKP derivative seems to be produced either directly via a nonribosomal pathway or as a side product in the course of nonribosomal synthesis of a longer peptide.

  8. What are carotenoids signaling? Immunostimulatory effects of dietary vitamin E, but not of carotenoids, in Iberian green lizards

    Science.gov (United States)

    Kopena, Renata; López, Pilar; Martín, José

    2014-12-01

    In spite that carotenoid-based sexual ornaments are one of the most popular research topics in sexual selection of animals, the antioxidant and immunostimulatory role of carotenoids, presumably signaled by these colorful ornaments, is still controversial. It has been suggested that the function of carotenoids might not be as an antioxidant per se, but that colorful carotenoids may indirectly reflect the levels of nonpigmentary antioxidants, such as melatonin or vitamin E. We experimentally fed male Iberian green lizards ( Lacerta schreiberi) additional carotenoids or vitamin E alone, or a combination of carotenoids and vitamin E dissolved in soybean oil, whereas a control group only received soybean oil. We examined the effects of the dietary supplementations on phytohaemagglutinin (PHA)-induced skin-swelling immune response and body condition. Lizards that were supplemented with vitamin E alone or a combination of vitamin E and carotenoids had greater immune responses than control lizards, but animals supplemented with carotenoids alone had lower immune responses than lizards supplemented with vitamin E and did not differ from control lizards. These results support the hypothesis that carotenoids in green lizards are not effective as immunostimulants, but that they may be visually signaling the immunostimulatory effects of non-pigmentary vitamin E. In contrast, lizards supplemented with carotenoids alone have higher body condition gains than lizards in the other experimental groups, suggesting that carotenoids may be still important to improve condition.

  9. Cloning and characterization of genes involved in nostoxanthin biosynthesis of Sphingomonas elodea ATCC 31461.

    Directory of Open Access Journals (Sweden)

    Liang Zhu

    Full Text Available Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB and a β-carotene hydroxylase gene (crtZ located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2'-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2'-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed.

  10. Cloning and characterization of genes involved in nostoxanthin biosynthesis of Sphingomonas elodea ATCC 31461.

    Science.gov (United States)

    Zhu, Liang; Wu, Xuechang; Li, Ou; Qian, Chaodong; Gao, Haichun

    2012-01-01

    Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB) and a β-carotene hydroxylase gene (crtZ) located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2'-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2'-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed.

  11. Carotenoids in Adipose Tissue Biology and Obesity.

    Science.gov (United States)

    Bonet, M Luisa; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2016-01-01

    Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition.

  12. Carotenoid Photoprotection in Artificial Photosynthetic Antennas

    Energy Technology Data Exchange (ETDEWEB)

    Kloz, Miroslav [VU Univ., Amsterdam (Netherlands); Pillai, Smitha [Arizona State Univ., Tempe, AZ (United States); Kodis, Gerdenis [Arizona State Univ., Tempe, AZ (United States); Gust, Devens [Arizona State Univ., Tempe, AZ (United States); Moore, Thomas A. [Arizona State Univ., Tempe, AZ (United States); Moore, Ana L. [Arizona State Univ., Tempe, AZ (United States); van Grondelle, Rienk [VU Univ., Amsterdam (Netherlands); Kennis, John T. M. [VU Univ., Amsterdam (Netherlands)

    2011-04-14

    A series of phthalocyanine-carotenoid dyads in which a phenylamino group links a phthalocyanine to carotenoids having 8-11 backbone double bonds were examined by visible and near-infrared femtosecond pump-probe spectroscopy combined with global fitting analysis. The series of molecules has permitted investigation of the role of carotenoids in the quenching of excited states of cyclic tetrapyrroles. The transient behavior varied dramatically with the length of the carotenoid and the solvent environment. Clear spectroscopic signatures of radical species revealed photoinduced electron transfer as the main quenching mechanism for all dyads dissolved in a polar solvent (THF), and the quenching rate was almost independent of carotenoid length. However, in a nonpolar solvent (toluene), quenching rates displayed a strong dependence on the conjugation length of the carotenoid and the mechanism did not include charge separation. The lack of any rise time components of a carotenoid S1 signature in all experiments in toluene suggests that an excitonic coupling between the carotenoid S1 state and phthalocyanine Q state, rather than a conventional energy transfer process, is the major mechanism of quenching. A pronounced inhomogeneity of the system was observed and attributed to the presence of a phenyl-amino linker between phthalocyanine and carotenoids. On the basis of accumulated work on various caroteno-phthalocyanine dyads and triads, we have now identified three mechanisms of tetrapyrrole singlet excited state quenching by carotenoids in artificial systems: (i) Car-Pc electron transfer and recombination; (ii)1Pc to Car S1 energy transfer and fast internal conversion to the Car ground state; (iii) excitonic coupling between 1Pc and Car S1 and ensuing internal conversion to the ground state of the carotenoid. The dominant mechanism depends upon the exact molecular architecture and solvent environment

  13. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation.

    Science.gov (United States)

    López-Ráez, Juan Antonio; Charnikhova, Tatsiana; Gómez-Roldán, Victoria; Matusova, Radoslava; Kohlen, Wouter; De Vos, Ric; Verstappen, Francel; Puech-Pages, Virginie; Bécard, Guillaume; Mulder, Patrick; Bouwmeester, Harro

    2008-01-01

    * Strigolactones are rhizosphere signalling compounds that mediate host location in arbuscular mycorrhizal (AM) fungi and parasitic plants. Here, the regulation of the biosynthesis of strigolactones is studied in tomato (Solanum lycopersicum). * Strigolactone production under phosphate starvation, in the presence of the carotenoid biosynthesis inhibitor fluridone and in the abscisic acid (ABA) mutant notabilis were assessed using a germination bioassay with seeds of Orobanche ramosa; a hyphal branching assay with Gigaspora spp; and by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis. * The root exudates of tomato cv. MoneyMaker induced O. ramosa seed germination and hyphal branching in AM fungi. Phosphate starvation markedly increased, and fluridone strongly decreased, this activity. Exudates of notabilis induced approx. 40% less germination than the wild-type. The LC-MS/MS analysis confirmed that the biological activity and changes therein were due to the presence of several strigolactones; orobanchol, solanacol and two or three didehydro-orobanchol isomers. * These results show that the AM branching factors and parasitic plant germination stimulants in tomato root exudate are strigolactones and that they are biosynthetically derived from carotenoids. The dual activity of these signalling compounds in attracting beneficial AM fungi and detrimental parasitic plants is further strengthened by environmental conditions such as phosphate availability.

  14. Carotenoid-enriched transgenic corn delivers bioavailable carotenoids to poultry and protects them against coccidiosis.

    Science.gov (United States)

    Nogareda, Carmina; Moreno, Jose A; Angulo, Eduardo; Sandmann, Gerhard; Portero, Manuel; Capell, Teresa; Zhu, Changfu; Christou, Paul

    2016-01-01

    Carotenoids are health-promoting organic molecules that act as antioxidants and essential nutrients. We show that chickens raised on a diet enriched with an engineered corn variety containing very high levels of four key carotenoids (β-carotene, lycopene, zeaxanthin and lutein) are healthy and accumulate more bioavailable carotenoids in peripheral tissues, muscle, skin and fat, and more retinol in the liver, than birds fed on standard corn diets (including commercial corn supplemented with colour additives). Birds were challenged with the protozoan parasite Eimeria tenella and those on the high-carotenoid diet grew normally, suffered only mild disease symptoms (diarrhoea, footpad dermatitis and digital ulcers) and had lower faecal oocyst counts than birds on the control diet. Our results demonstrate that carotenoid-rich corn maintains poultry health and increases the nutritional value of poultry products without the use of feed additives. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings.

    Science.gov (United States)

    Gonzalez, Antonio; Zhao, Mingzhe; Leavitt, John M; Lloyd, Alan M

    2008-03-01

    In all higher plants studied to date, the anthocyanin pigment pathway is regulated by a suite of transcription factors that include Myb, bHLH and WD-repeat proteins. However, in Arabidopsis thaliana, the Myb regulators remain to be conclusively identified, and little is known about anthocyanin pathway regulation by TTG1-dependent transcriptional complexes. Previous overexpression of the PAP1 Myb suggested that genes from the entire phenylpropanoid pathway are targets of regulation by Myb/bHLH/WD-repeat complexes in Arabidopsis, in contrast to other plants. Here we demonstrate that overexpression of Myb113 or Myb114 results in substantial increases in pigment production similar to those previously seen as a result of over-expression of PAP1, and pigment production in these overexpressors remains TTG1- and bHLH-dependent. Also, plants harboring an RNAi construct targeting PAP1 and three Myb candidates (PAP2, Myb113 and Myb114) showed downregulated Myb gene expression and obvious anthocyanin deficiencies. Correlated with these anthocyanin deficiencies is downregulation of the same late anthocyanin structural genes that are downregulated in ttg1 and bHLH anthocyanin mutants. Expression studies using GL3:GR and TTG1:GR fusions revealed direct regulation of the late biosynthetic genes only. Functional diversification between GL3 and EGL3 with regard to activation of gene targets was revealed by GL3:GR studies in single and double bHLH mutant seedlings. Expression profiles for Myb and bHLH regulators are also presented in the context of pigment production in young seedlings.

  16. Effect of carotenoid supplementation on plasma carotenoids, inflammation and visual development in preterm infants.

    Science.gov (United States)

    Rubin, L P; Chan, G M; Barrett-Reis, B M; Fulton, A B; Hansen, R M; Ashmeade, T L; Oliver, J S; Mackey, A D; Dimmit, R A; Hartmann, E E; Adamkin, D H

    2012-06-01

    Dietary carotenoids (lutein, lycopene and β-carotene) may be important in preventing or ameliorating prematurity complications. Little is known about carotenoid status or effects of supplementation. This randomized controlled multicenter trial compared plasma carotenoid levels among preterm infants (n=203, lutein, lycopene and β-carotene with human milk (HM)-fed term infants. We assessed safety and health. Plasma carotenoid levels were higher in the supplemented group at all time points (Plutein levels correlated with the full field electroretinogram-saturated response amplitude in rod photoreceptors (r=0.361, P=0.05). The supplemented group also showed greater rod photoreceptor sensitivity (least squares means 6.1 vs 4.1; Plutein on preterm retina health and maturation.

  17. Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity.

    Science.gov (United States)

    Park, Sung-Chul; Kim, Yun-Hee; Kim, Sun Ha; Jeong, Yu Jeong; Kim, Cha Young; Lee, Joon Seol; Bae, Ji-Yeong; Ahn, Mi-Jeong; Jeong, Jae Cheol; Lee, Haeng-Soon; Kwak, Sang-Soo

    2015-04-01

    The R2R3-type protein IbMYB1 is a key regulator of anthocyanin biosynthesis in the storage roots of sweet potato [Ipomoea batatas (L.) Lam]. Previously, we demonstrated that IbMYB1 expression stimulated anthocyanin pigmentation in tobacco leaves and Arabidopsis. Here, we generated dual-pigmented transgenic sweet potato plants that accumulated high levels of both anthocyanins and carotenoids in a single sweet potato storage root. An orange-fleshed cultivar with high carotenoid levels was transformed with the IbMYB1 gene under the control of either the storage root-specific sporamin 1 (SPO1) promoter or the oxidative stress-inducible peroxidase anionic 2 (SWPA2) promoter. The SPO1-MYB transgenic lines exhibited higher anthocyanin levels in storage roots than empty vector control (EV) or SWPA2-MYB plants, but carotenoid content was unchanged. SWPA2-MYB transgenic lines exhibited higher levels of both anthocyanin and carotenoids than EV plants. Analysis of hydrolyzed anthocyanin extracts indicated that cyanidin and peonidin predominated in both overexpression lines. Quantitative reverse transcription-polymerase chain reaction analysis demonstrated that IbMYB1 expression in both IbMYB1 transgenic lines strongly induced the upregulation of several genes in the anthocyanin biosynthetic pathway, whereas the expression of carotenoid biosynthetic pathway genes varied between transgenic lines. Increased anthocyanin levels in transgenic plants also promoted the elevation of proanthocyanidin and total phenolic levels in fresh storage roots. Consequently, all IbMYB1 transgenic plants displayed much higher antioxidant activities than EV plants. In field cultivations, storage root yields varied between the transgenic lines. Taken together, our results indicate that overexpression of IbMYB1 is a highly promising strategy for the generation of transgenic plants with enhanced antioxidant capacity. © 2014 Scandinavian Plant Physiology Society.

  18. Carotenoids and Carotenoid Esters of Red and Yellow Physalis (Physalis alkekengi L. and P. pubescens L.) Fruits and Calyces.

    Science.gov (United States)

    Wen, Xin; Hempel, Judith; Schweiggert, Ralf M; Ni, Yuanying; Carle, Reinhold

    2017-08-02

    Carotenoid profiles of fruits and calyces of red (Physalis alkekengi L.) and yellow (P. pubescens L.) Physalis were characterized by HPLC-DAD-APCI-MS n . Altogether 69 carotenoids were detected in red Physalis, thereof, 45 were identified. In yellow Physalis, 40 carotenoids were detected and 33 were identified. Zeaxanthin esters with various fatty acids were found to be the most abundant carotenoids in red Physalis, accounting for 51-63% of total carotenoids, followed by β-cryptoxanthin esters (16-24%). In yellow Physalis, mainly free carotenoids such as lutein and β-carotene were found. Total carotenoid contents ranged between 19.8 and 21.6 mg/100 g fresh red Physalis fruits and 1.28-1.38 mg/100 g fresh yellow Physalis fruits, demonstrating that Physalis fruits are rich sources of dietary carotenoids. Yellow Physalis calyces contained only 153-306 μg carotenoids/g dry weight, while those of red Physalis contained substantially higher amounts (14.6-17.6 mg/g dry weight), thus possibly exhibiting great potential as a natural source for commercial zeaxanthin extraction.

  19. Carotenoid metabolism in plants

    Science.gov (United States)

    Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. Th...

  20. Plasma carotenoid concentrations of infants are increased by feeding a milk-based infant formula supplemented with carotenoids.

    Science.gov (United States)

    Mackey, Amy D; Albrecht, Daniel; Oliver, Jeffery; Williams, Timberly; Long, Amy C; Price, Pamela T

    2013-06-01

    Human milk is the gold standard of infant nutrition and is a source of important substances, including carotenoids. Infant formulas are designed to mimic the composition and/or performance of human milk, although currently carotenoids are not routinely added to US infant formulas. The aim of this study was to assess plasma concentrations of β-carotene, lutein and lycopene 56 days after feeding infants milk-based infant formula without (CTRL) or with different concentrations of added carotenoids (L1 and L2). Plasma carotenoid concentrations increased in infants fed carotenoid-supplemented formulas as compared with the control formula with no added carotenoids. At study day 56, infants fed the supplemented formulas (L1 and L2) had mean plasma lutein, β-carotene and lycopene concentrations that were within the range of a concurrent group of human milk-fed infants (HM). Anthropometric measurements were comparable among all study groups. Plasma carotenoid concentrations of infants fed the supplemented formulas were within the range of the HM group and are consistent with reported plasma carotenoid ranges in human milk-fed infants. The experimental formulas were well tolerated and anthropometric measurements were comparable among all study groups. © 2012 Society of Chemical Industry.

  1. Biological roles of fungal carotenoids.

    Science.gov (United States)

    Avalos, Javier; Carmen Limón, M

    2015-08-01

    Carotenoids are terpenoid pigments widespread in nature, produced by bacteria, fungi, algae and plants. They are also found in animals, which usually obtain them through the diet. Carotenoids in plants provide striking yellow, orange or red colors to fruits and flowers, and play important metabolic and physiological functions, especially relevant in photosynthesis. Their functions are less clear in non-photosynthetic microorganisms. Different fungi produce diverse carotenoids, but the mutants unable to produce them do not exhibit phenotypic alterations in the laboratory, apart of lack of pigmentation. This review summarizes the current knowledge on the functional basis for carotenoid production in fungi. Different lines of evidence support a protective role of carotenoids against oxidative stress and exposure to visible light or UV irradiation. In addition, the carotenoids are intermediary products in the biosynthesis of physiologically active apocarotenoids or derived compounds. This is the case of retinal, obtained from the symmetrical oxidative cleavage of β-carotene. Retinal is the light-absorbing prosthetic group of the rhodopsins, membrane-bound photoreceptors present also in many fungal species. In Mucorales, β-carotene is an intermediary in the synthesis of trisporoids, apocarotenoid derivatives that include the sexual hormones the trisporic acids, and they are also presumably used in the synthesis of sporopollenin polymers. In conclusion, fungi have adapted their ability to produce carotenoids for different non-essential functions, related with stress tolerance or with the synthesis of physiologically active by-products.

  2. Antioxidant effects of carotenoids

    NARCIS (Netherlands)

    Bast, A.; Haenen, G.R.M.M.; Berg, R. van den; Berg, H. van den

    1998-01-01

    Surprisingly, neither the precise pharmacological effect nor the toxicological profile is usually established for food components. Carotenoids are no exception in this regard. Only limited insight into the pharmacology and toxicology of carotenoids exists. It is known that the antioxidant action of

  3. Structures and Analysis of Carotenoid Molecules.

    Science.gov (United States)

    Rodriguez-Amaya, Delia B

    Modifications of the usual C40 linear and symmetrical carotenoid skeleton give rise to a wide array of structures of carotenes and xanthophylls in plant tissues. These include acyclic, monocyclic and dicyclic carotenoids, along with hydroxy and epoxy xanthophylls and apocarotenoids. Carotenols can be unesterified or esterified (monoester) in one or two (diester) hydroxyl groups with fatty acids. E-Z isomerization increases the array of possible plant carotenoids even further. Screening and especially quantitative analysis are being carried out worldwide. Visible absorption spectrometry and near infrared reflectance spectroscopy have been used for the initial estimation of the total carotenoid content or the principal carotenoid content when large numbers of samples needed to be analyzed within a short time, as would be the case in breeding programs. Although inherently difficult, quantitative analysis of the individual carotenoids is essential. Knowledge of the sources of errors and means to avoid them has led to a large body of reliable quantitative compositional data on carotenoids. Reverse-phase HPLC with a photodiode array detector has been the preferred analytical technique, but UHPLC is increasingly employed. HPLC-MS has been used mainly for identification and NMR has been useful in unequivocally identifying geometric isomers.

  4. Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase.

    Science.gov (United States)

    Kudo, Fumitaka; Matsuura, Yasunori; Hayashi, Takaaki; Fukushima, Masayuki; Eguchi, Tadashi

    2016-07-01

    Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed.

  5. The effects of dietary carotenoid supplementation and retinal carotenoid accumulation on vision-mediated foraging in the house finch.

    Directory of Open Access Journals (Sweden)

    Matthew B Toomey

    Full Text Available BACKGROUND: For many bird species, vision is the primary sensory modality used to locate and assess food items. The health and spectral sensitivities of the avian visual system are influenced by diet-derived carotenoid pigments that accumulate in the retina. Among wild House Finches (Carpodacus mexicanus, we have found that retinal carotenoid accumulation varies significantly among individuals and is related to dietary carotenoid intake. If diet-induced changes in retinal carotenoid accumulation alter spectral sensitivity, then they have the potential to affect visually mediated foraging performance. METHODOLOGY/PRINCIPAL FINDINGS: In two experiments, we measured foraging performance of house finches with dietarily manipulated retinal carotenoid levels. We tested each bird's ability to extract visually contrasting food items from a matrix of inedible distracters under high-contrast (full and dimmer low-contrast (red-filtered lighting conditions. In experiment one, zeaxanthin-supplemented birds had significantly increased retinal carotenoid levels, but declined in foraging performance in the high-contrast condition relative to astaxanthin-supplemented birds that showed no change in retinal carotenoid accumulation. In experiments one and two combined, we found that retinal carotenoid concentrations predicted relative foraging performance in the low- vs. high-contrast light conditions in a curvilinear pattern. Performance was positively correlated with retinal carotenoid accumulation among birds with low to medium levels of accumulation (∼0.5-1.5 µg/retina, but declined among birds with very high levels (>2.0 µg/retina. CONCLUSION/SIGNIFICANCE: Our results suggest that carotenoid-mediated spectral filtering enhances color discrimination, but that this improvement is traded off against a reduction in sensitivity that can compromise visual discrimination. Thus, retinal carotenoid levels may be optimized to meet the visual demands of specific

  6. Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L. leaves

    Directory of Open Access Journals (Sweden)

    Gutha Linga R

    2010-08-01

    Full Text Available Abstract Background Symptoms of grapevine leafroll disease (GLRD in red-fruited wine grape (Vitis vinifera L. cultivars consist of green veins and red and reddish-purple discoloration of inter-veinal areas of leaves. The reddish-purple color of symptomatic leaves may be due to the accumulation of anthocyanins and could reflect an up-regulation of genes involved in their biosynthesis. Results We examined six putative constitutively expressed genes, Ubiquitin, Actin, GAPDH, EF1-a, SAND and NAD5, for their potential as references for normalization of gene expression in reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR. Using the geNorm program, a combination of two genes (Actin and NAD5 was identified as the stable set of reference genes for normalization of gene expression data obtained from grapevine leaves. By using gene-specific RT-qPCR in combination with a reliable normalization factor, we compared relative expression of the flavonoid biosynthetic pathway genes between leaves infected with Grapevine leafroll-associated virus 3 (GLRaV-3 and exhibiting GLRD symptoms and virus-free green leaves obtained from a red-fruited wine grape cultivar (cv. Merlot. The expression levels of these different genes ranged from two- to fifty-fold increase in virus-infected leaves. Among them, CHS3, F3'5'H, F3H1, LDOX, LAR1 and MybA1 showed greater than 10-fold increase suggesting that they were expressed at significantly higher levels in virus-infected symptomatic leaves. HPLC profiling of anthocyanins extracted from leaves indicated the presence of cyanidin-3-glucoside and malvidin-3-glucoside only in virus-infected symptomatic leaves. The results also showed 24% higher levels of flavonols in virus-infected symptomatic leaves than in virus-free green leaves, with quercetin followed by myricetin being the predominant compounds. Proanthocyanidins, estimated as total tannins by protein precipitation method, were 36% higher in virus

  7. In situ localization of phenylpropanoid biosynthetic mRNAs and proteins in Parsley (Petroselinum crispum)

    International Nuclear Information System (INIS)

    Reinold, S.; Hahlbrock, K.

    1997-01-01

    Using in situ RNA/RNA hybridization, enzyme immunolocalization, and histochemical techniques, several phenylpropanoid biosynthetic activities and products were localized in tissue sections from various aerial parts of parsley (Petroselinum crispum) plants at different developmental stages. The enzymes and corresponding mRNAs analyzed included two representatives of general phenylpropanoid metabolism: phenylalanine ammonia-lyase (PAL) and 4-coumarate: CoA ligase (4CL), and one representative each from two distinct branch pathways: chalcone synthase (CHS; flavonoids) and S-adenosyl-L-methionine: bergaptol O-methyltransferase (BMT; furanocoumarins). In almost all cases, the relative timing of accumulation differed greatly for mRNA and protein and indicated short expression periods and short half-lives for all mRNAs as compared to the proteins. PAL and 4CL occurred almost ubiquitously in cell type-specific patterns, and their mRNAs and proteins were always coordinately expressed, whereas the cell type-specific localization of flavonoid and furanocoumarin biosynthetic activities was to a large extent mutually exclusive. However, the distribution patterns of CHS and BMT, when superimposed, closely matched those of PAL and 4CL in nearly all tissues analysed, suggesting that the flavonoid and furanocoumarin pathways together constituted a large majority of the total phenylpropanoid biosynthetic activity. Differential sites of synthesis and accumulation indicating intercellular translocation were observed both for flavonoids and for furanocoumarins in oil ducts and the surrounding tissue. The widespread occurrence of both classes of compounds, as well as selected, pathway-specific mRNAs and enzymes, in many cell types of all parsley organs including various flower parts suggests additional functions beyond the previously established roles of flavonoids in UV protection and furanocoumarins in pathogen defence. (author)

  8. Carotenoids from Haloarchaea and Their Potential in Biotechnology

    Science.gov (United States)

    Rodrigo-Baños, Montserrat; Garbayo, Inés; Vílchez, Carlos; Bonete, María José; Martínez-Espinosa, Rosa María

    2015-01-01

    The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i) many haloarchaeal species possess high carotenoids production availability; (ii) downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids are needed to support plant and animal life and human well-being; and (v) carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed. PMID:26308012

  9. Carotenoids from Haloarchaea and Their Potential in Biotechnology.

    Science.gov (United States)

    Rodrigo-Baños, Montserrat; Garbayo, Inés; Vílchez, Carlos; Bonete, María José; Martínez-Espinosa, Rosa María

    2015-08-25

    The production of pigments by halophilic archaea has been analysed during the last half a century. The main reasons that sustains this research are: (i) many haloarchaeal species possess high carotenoids production availability; (ii) downstream processes related to carotenoid isolation from haloarchaea is relatively quick, easy and cheap; (iii) carotenoids production by haloarchaea can be improved by genetic modification or even by modifying several cultivation aspects such as nutrition, growth pH, temperature, etc.; (iv) carotenoids are needed to support plant and animal life and human well-being; and (v) carotenoids are compounds highly demanded by pharmaceutical, cosmetic and food markets. Several studies about carotenoid production by haloarchaea have been reported so far, most of them focused on pigments isolation or carotenoids production under different culture conditions. However, the understanding of carotenoid metabolism, regulation, and roles of carotenoid derivatives in this group of extreme microorganisms remains mostly unrevealed. The uses of those haloarchaeal pigments have also been poorly explored. This work summarises what has been described so far about carotenoids production by haloarchaea and their potential uses in biotechnology and biomedicine. In particular, new scientific evidence of improved carotenoid production by one of the better known haloarchaeon (Haloferax mediterranei) is also discussed.

  10. Rational engineering of p-hydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway.

    Science.gov (United States)

    Chen, Zhenya; Shen, Xiaolin; Wang, Jian; Wang, Jia; Yuan, Qipeng; Yan, Yajun

    2017-11-01

    Gallic acid (GA) is a naturally occurring phytochemical that has strong antioxidant and antibacterial activities. It is also used as a potential platform chemical for the synthesis of diverse high-value compounds. Hydrolytic degradation of tannins by acids, bases or microorganisms serves as a major way for GA production, which however, might cause environmental pollution and low yield and efficiency. Here, we report a novel approach for efficient microbial production of GA. First, structure-based rational engineering of PobA, a p-hydroxybenzoate hydroxylase from Pseudomonas aeruginosa, generated a new mutant, Y385F/T294A PobA, which displayed much higher activity toward 3,4-dihydroxybenzoic acid (3,4-DHBA) than the wild-type and any other reported mutants. Remarkably, expression of this mutant in Escherichia coli enabled generation of 1149.59 mg/L GA from 1000 mg/L 4-hydroxybenzoic acid (4-HBA), representing a 93% molar conversion ratio. Based on that, we designed and reconstituted a novel artificial biosynthetic pathway of GA and achieved 440.53 mg/L GA production from simple carbon sources in E. coli. Further enhancement of precursor supply through reinforcing shikimate pathway was able to improve GA de novo production to 1266.39 mg/L in shake flasks. Overall, this study not only led to the development of a highly active PobA variant for hydroxylating 3,4-DHBA into GA via structure-based protein engineering approach, but also demonstrated a promising pathway for bio-based manufacturing of GA and its derived compounds. Biotechnol. Bioeng. 2017;114: 2571-2580. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Biosynthetic Studies of 13-Desmethylspirolide C Produced by Alexandrium ostenfeldii (= A. peruvianum): Rationalization of the Biosynthetic Pathway Following Incorporation of (13)C-Labeled Methionine and Application of the Odd-Even Rule of Methylation.

    Science.gov (United States)

    Anttila, Matthew; Strangman, Wendy; York, Robert; Tomas, Carmelo; Wright, Jeffrey L C

    2016-03-25

    Understanding the biosynthesis of dinoflagellate polyketides presents many unique challenges. Because of the remaining hurdles to dinoflagellate genome sequencing, precursor labeling studies remain the only viable way to investigate dinoflagellate biosynthesis. However, prior studies have shown that polyketide chain assembly does not follow any of the established processes. Additionally, acetate, the common precursor for polyketides, is frequently scrambled, thus compromising interpretation. These factors are further compounded by low production yields of the compounds of interest. A recent report on the biosynthesis of spirolides, a group belonging to the growing class of toxic spiroimines, provided some insight into the polyketide assembly process based on acetate labeling studies, but many details were left uncertain. By feeding (13)C methyl-labeled methionine to cultures of Alexandrium ostenfeldii, the producing organism of 13-desmethylspirolide C, and application of the odd-even methylation rule, the complete biosynthetic pathway has been established.

  12. Novel NAD+-Farnesal Dehydrogenase from Polygonum minus Leaves. Purification and Characterization of Enzyme in Juvenile Hormone III Biosynthetic Pathway in Plant.

    Directory of Open Access Journals (Sweden)

    Ahmad-Faris Seman-Kamarulzaman

    Full Text Available Juvenile Hormone III is of great concern due to negative effects on major developmental and reproductive maturation in insect pests. Thus, the elucidation of enzymes involved JH III biosynthetic pathway has become increasing important in recent years. One of the enzymes in the JH III biosynthetic pathway that remains to be isolated and characterized is farnesal dehydrogenase, an enzyme responsible to catalyze the oxidation of farnesal into farnesoic acid. A novel NAD+-farnesal dehydrogenase of Polygonum minus was purified (315-fold to apparent homogeneity in five chromatographic steps. The purification procedures included Gigacap S-Toyopearl 650M, Gigacap Q-Toyopearl 650M, and AF-Blue Toyopearl 650ML, followed by TSK Gel G3000SW chromatographies. The enzyme, with isoelectric point of 6.6 is a monomeric enzyme with a molecular mass of 70 kDa. The enzyme was relatively active at 40°C, but was rapidly inactivated above 45°C. The optimal temperature and pH of the enzyme were found to be 35°C and 9.5, respectively. The enzyme activity was inhibited by sulfhydryl agent, chelating agent, and metal ion. The enzyme was highly specific for farnesal and NAD+. Other terpene aldehydes such as trans- cinnamaldehyde, citral and α- methyl cinnamaldehyde were also oxidized but in lower activity. The Km values for farnesal, citral, trans- cinnamaldehyde, α- methyl cinnamaldehyde and NAD+ were 0.13, 0.69, 0.86, 1.28 and 0.31 mM, respectively. The putative P. minus farnesal dehydrogenase that's highly specific towards farnesal but not to aliphatic aldehydes substrates suggested that the enzyme is significantly different from other aldehyde dehydrogenases that have been reported. The MALDI-TOF/TOF-MS/MS spectrometry further identified two peptides that share similarity to those of previously reported aldehyde dehydrogenases. In conclusion, the P. minus farnesal dehydrogenase may represent a novel plant farnesal dehydrogenase that exhibits distinctive substrate

  13. Elucidating the biosynthetic and regulatory mechanisms of flavonoid-derived bioactive components in Epimedium sagittatum

    Directory of Open Access Journals (Sweden)

    Wenjun eHuang

    2015-09-01

    Full Text Available Herba epimedii (Epimedium, a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. In Epimedium, flavonoids have been demonstrated to be the main bioactive components (BCs. However, the molecular biosynthetic and regulatory mechanisms of flavonoid-derived BCs remain obscure. In this study, we isolated twelve structural genes and two putative transcription factors (TFs in the flavonoid pathway. Phytochemical analysis showed that the total content of four representative BCs (epimedin A, B, C and icariin decreased slightly or dramatically in two lines of E. sagittatum during leaf development. Transcriptional analysis revealed that two R2R3-MYB TFs (EsMYBA1 and EsMYBF1, together with a bHLH TF (EsGL3 and WD40 protein (EsTTG1, were supposed to coordinately regulate the anthocyanin and flavonol-derived BCs biosynthesis in leaves. Overexpression of EsFLS (flavonol synthase in tobacco resulted in increased flavonols content and decreased anthocyanins content in flowers. Moreover, EsMYB12 negatively correlated with the accumulation of the four BCs, and might act as a transcriptional repressor in the flavonoid pathway. Therefore, the anthocyanin pathway may coordinate with the flavonol-derived BCs pathway in Epimedium leaves. A better understanding of the flavonoid biosynthetic and regulatory mechanisms in E. sagittatum will facilitate functional characterization, metabolic engineering and molecular breeding studies of Epimedium species.

  14. Individual carotenoid content of SRM 1548 total diet and influence of storage temperature, lyophilization, and irradiation on dietary carotenoids

    International Nuclear Information System (INIS)

    Craft, N.E.; Wise, S.A.

    1993-01-01

    A modified version of the AOAC procedure for the extraction of carotenoids from mixed feeds was coupled with an isocratic reversed-phase liquid chromatography (LC) method to measure individual carotenoids in SRM 1548 total diet and in a high-carotenoid mixed diet (HCMD). The major carotenoids identified in SRM 1548 were lycopene, beta-carotene, lutein, alpha-carotene, and zeaxanthin in descending order of concentration. The concentration of all carotenoids in SRM 1548 decreased as storage temperature increased. Significant differences in carotenoid concentrations occurred between -80 and 4 degrees C storage temperatures. Lyophilization of the HCMD significantly decreased beta-carotene and lycopene concentrations and produced an apparent increase in xanthophyll concentrations. Exposure to gamma-irradiation significantly decreased alpha-carotene and beta-carotene concentrations and led to an apparent increase in P-cryptoxanthin. SRM 1548 was found to be unsuitable for use as a reference material for carotenoid measurements, while HCMD has greater potential as a reference material

  15. Marine Carotenoids and Cardiovascular Risk Markers

    Directory of Open Access Journals (Sweden)

    Lorenza Speranza

    2011-06-01

    Full Text Available Marine carotenoids are important bioactive compounds with physiological activities related to prevention of degenerative diseases.found principally in plants, with potential antioxidant biological properties deriving from their chemical structure and interaction with biological membranes. They are substances with very special and remarkable properties that no other groups of substances possess and that form the basis of their many, varied functions and actions in all kinds of living organisms. The potential beneficial effects of marine carotenoids have been studied particularly in astaxanthin and fucoxanthin as they are the major marine carotenoids. Both these two carotenoids show strong antioxidant activity attributed to quenching singlet oxygen and scavenging free radicals. The potential role of these carotenoids as dietary anti-oxidants has been suggested to be one of the main mechanisms for their preventive effects against cancer and inflammatory diseases. The aim of this short review is to examine the published studies concerning the use of the two marine carotenoids, astaxanthin and fucoxanthin, in the prevention of cardiovascular diseases.

  16. Occurrence and biosynthesis of carotenoids in phytoplankton.

    Science.gov (United States)

    Huang, Jim Junhui; Lin, Shaoling; Xu, Wenwen; Cheung, Peter Chi Keung

    2017-09-01

    Naturally occurring carotenoids are important sources of antioxidants, anti-cancer compounds and anti-inflammatory agents and there is thus considerable market demand for their pharmaceutical applications. Carotenoids are widely distributed in marine and freshwater organisms including microalgae, phytoplankton, crustaceans and fish, as well as in terrestrial plants and birds. Recently, phytoplankton-derived carotenoids have received much attention due to their abundance, rapid rate of biosynthesis and unique composition. The carotenoids that accumulate in particular phytoplankton phyla are synthesized by specific enzymes and play unique physiological roles. This review focuses on studies related to the occurrence of carotenoids in different phytoplankton phyla and the molecular aspects of their biosynthesis. Recent biotechnological advances in the isolation and characterization of some representative carotenoid synthases in phytoplankton are also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Incorporation of [1-C14] Isopentenyl Pyrophosphate into Carotenoids and Homo carotenoids using a Cell-free Preparation of Micrococcus Luteus

    International Nuclear Information System (INIS)

    Al-Wandawi, H.

    1998-01-01

    The early steps up to the formation of acyclic unsaturated carotenes (e.g.,phytoene to lycopene) are presumed to be common to the biosynthesis of all carotenoids with 40 or more carbon atoms, nevertheless, no direct evidence so far available to confirm this for homo carotenoids (c 45 and c 50 carotenoids). In the present study, an active cell-free preparation was obtained from diphenylamine-inhibited cells of Micrococcus Iuteus and found to be capable to incorporate radioactivity from Isopentenyl pyrophosphate (labelled with C-14)into carotenoids and homo carotenoids, providing for the first time a direct evidence which suggests that both carotenoids and homo carotenoids are sharing the same biological origin. Furthermore, the technique developed in this study may be considered as a valuable method for preparation of biological-active labelled compounds which may have some advantages over conventional chemical syntheses methods

  18. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia hybrid in flavonoid biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Wei Sun

    Full Text Available Chalcone synthase (CHS catalyzes the first committed step in the flavonoid biosynthetic pathway. In this study, the cDNA (FhCHS1 encoding CHS from Freesia hybrida was successfully isolated and analyzed. Multiple sequence alignments showed that both the conserved CHS active site residues and CHS signature sequence were found in the deduced amino acid sequence of FhCHS1. Meanwhile, crystallographic analysis revealed that protein structure of FhCHS1 is highly similar to that of alfalfa CHS2, and the biochemical analysis results indicated that it has an enzymatic role in naringenin biosynthesis. Moreover, quantitative real-time PCR was performed to detect the transcript levels of FhCHS1 in flowers and different tissues, and patterns of FhCHS1 expression in flowers showed significant correlation to the accumulation patterns of anthocyanin during flower development. To further characterize the functionality of FhCHS1, its ectopic expression in Arabidopsis thaliana tt4 mutants and Petunia hybrida was performed. The results showed that overexpression of FhCHS1 in tt4 mutants fully restored the pigmentation phenotype of the seed coats, cotyledons and hypocotyls, while transgenic petunia expressing FhCHS1 showed flower color alteration from white to pink. In summary, these results suggest that FhCHS1 plays an essential role in the biosynthesis of flavonoid in Freesia hybrida and may be used to modify the components of flavonoids in other plants.

  19. Heterogeneity of carotenoid content and composition in LH2 of the purple sulphur bacterium Allochromatium minutissimum grown under carotenoid-biosynthesis inhibition.

    Science.gov (United States)

    Makhneva, Zoya; Bolshakov, Maksim; Moskalenko, Andrey

    2008-01-01

    The effects brought about by growing Allochromatium (Alc.) minutissimum in the presence of different concentrations of the carotenoid (Car) biosynthetic inhibitor diphenylamine (DPA) have been investigated. A decrease of Car content (from approximately 70% to >5%) in the membranes was accompanied by an increase of the percentage of (immature) Cars with reduced numbers of conjugated C=C bonds (from neurosporene to phytoene). Based on the obtained results and the analysis of literature data, the conclusion is reached that accumulation of phytoene during inhibition did not occur. Surprisingly, DPA inhibited phytoene synthase instead of phytoene desaturase as generally assumed. The distribution of Cars in peripheral antenna (LH2) complexes and their effect on the stability of LH2 has been investigated using absorption spectroscopy and HPLC analysis. Heterogeneity of Car composition and contents in the LH2 pool is revealed. The Car contents in LH2 varied widely from control levels to complete absence. According to common view, the assembly of LH2 occurs only in the presence of Cars. Here, we show that the LH2 can be assembled without any Cars. The presence of Cars, however, is important for structural stability of LH2 complexes.

  20. Evaluating the Nature of So-Called S*-State Feature in Transient Absorption of Carotenoids in Light-Harvesting Complex 2 (LH2) from Purple Photosynthetic Bacteria.

    Science.gov (United States)

    Niedzwiedzki, Dariusz M; Hunter, C Neil; Blankenship, Robert E

    2016-11-03

    Carotenoids are a class of natural pigments present in all phototrophic organisms, mainly in their light-harvesting proteins in which they play roles of accessory light absorbers and photoprotectors. Extensive time-resolved spectroscopic studies of these pigments have revealed unexpectedly complex photophysical properties, particularly for carotenoids in light-harvesting LH2 complexes from purple bacteria. An ambiguous, optically forbidden electronic excited state designated as S* has been postulated to be involved in carotenoid excitation relaxation and in an alternative carotenoid-to-bacteriochlorophyll energy transfer pathway, as well as being a precursor of the carotenoid triplet state. However, no definitive and satisfactory origin of the carotenoid S* state in these complexes has been established, despite a wide-ranging series of studies. Here, we resolve the ambiguous origin of the carotenoid S* state in LH2 complex from Rba. sphaeroides by showing that the S* feature can be seen as a combination of ground state absorption bleaching of the carotenoid pool converted to cations and the Stark spectrum of neighbor neutral carotenoids, induced by temporal electric field brought by the carotenoid cation-bacteriochlorophyll anion pair. These findings remove the need to assign an S* state, and thereby significantly simplify the photochemistry of carotenoids in these photosynthetic antenna complexes.

  1. Stability of bacterial carotenoids in the presence of iron in a model of the gastric compartment - comparison with dietary reference carotenoids.

    Science.gov (United States)

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-04-15

    Recently isolated spore-forming pigmented marine bacteria, Bacillus indicus HU36 and Bacillus firmus GB1 are sources of carotenoids (∼fifteen distinct yellow and orange pigments and ∼thirteen distinct pink pigments, respectively). They are glycosides of oxygenated lycopene derivatives (apo-lycopenoids) and are assumed to be more heat- and gastric-stable than common carotenoids. In this study, the oxidation by O2 of the bacterial carotenoids was initiated by free iron (Fe(II) and Fe(III)) or by heme iron (metmyoglobin) in a mildly acidic aqueous solution mimicking the gastro-intestinal compartment and compared to the oxidation of the common dietary carotenoids β-carotene, lycopene and astaxanthin. Under these conditions, all bacterial carotenoids appear more stable in the presence of heme iron vs. free iron. Carotenoid autoxidation initiated by Fe(II) is relatively fast and likely involves reactive oxygen-iron species derived from Fe(II) and O2. By contrast, the corresponding reaction with Fe(III) is kinetically blocked by the slow preliminary reduction of Fe(III) into Fe(II) by the carotenoids. The stability of carotenoids toward autoxidation increases as follows: β-carotenecarotenoids react more quickly than reference carotenoids with Fe(III), but much more slowly than the reference carotenoids with Fe(II). This reaction is correlated with the structure of the carotenoids, which can have opposite effects in a micellar system: bacterial carotenoids with electro-attracting terminal groups have a lower reducing capacity than β-carotene and lycopene. However, their polar head favours their location close to the interface of micelles, in closer contact with oxidative species. Kinetic analyses of the iron-induced autoxidation of astaxanthin and HU36 carotenoids has been performed and gives insights in the underlying mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Carotenoids Database: structures, chemical fingerprints and distribution among organisms.

    Science.gov (United States)

    Yabuzaki, Junko

    2017-01-01

    To promote understanding of how organisms are related via carotenoids, either evolutionarily or symbiotically, or in food chains through natural histories, we built the Carotenoids Database. This provides chemical information on 1117 natural carotenoids with 683 source organisms. For extracting organisms closely related through the biosynthesis of carotenoids, we offer a new similarity search system 'Search similar carotenoids' using our original chemical fingerprint 'Carotenoid DB Chemical Fingerprints'. These Carotenoid DB Chemical Fingerprints describe the chemical substructure and the modification details based upon International Union of Pure and Applied Chemistry (IUPAC) semi-systematic names of the carotenoids. The fingerprints also allow (i) easier prediction of six biological functions of carotenoids: provitamin A, membrane stabilizers, odorous substances, allelochemicals, antiproliferative activity and reverse MDR activity against cancer cells, (ii) easier classification of carotenoid structures, (iii) partial and exact structure searching and (iv) easier extraction of structural isomers and stereoisomers. We believe this to be the first attempt to establish fingerprints using the IUPAC semi-systematic names. For extracting close profiled organisms, we provide a new tool 'Search similar profiled organisms'. Our current statistics show some insights into natural history: carotenoids seem to have been spread largely by bacteria, as they produce C30, C40, C45 and C50 carotenoids, with the widest range of end groups, and they share a small portion of C40 carotenoids with eukaryotes. Archaea share an even smaller portion with eukaryotes. Eukaryotes then have evolved a considerable variety of C40 carotenoids. Considering carotenoids, eukaryotes seem more closely related to bacteria than to archaea aside from 16S rRNA lineage analysis. : http://carotenoiddb.jp. © The Author(s) 2017. Published by Oxford University Press.

  3. Resonance Raman Spectroscopic Evaluation of Skin Carotenoids as a Biomarker of Carotenoid Status for Human Studies

    Science.gov (United States)

    Mayne, Susan T.; Cartmel, Brenda; Scarmo, Stephanie; Jahns, Lisa; Ermakov, Igor V.; Gellermann, Werner

    2013-01-01

    Resonance Raman Spectroscopy (RRS) is a non-invasive method that has been developed to assess carotenoid status in human tissues including human skin in vivo. Skin carotenoid status has been suggested as a promising biomarker for human studies. This manuscript describes research done relevant to the development of this biomarker, including its reproducibility, validity, feasibility for use in field settings, and factors that affect the biomarker such as diet, smoking, and adiposity. Recent studies have evaluated the response of the biomarker to controlled carotenoid interventions, both supplement-based and dietary [e.g., provision of a high-carotenoid fruit and vegetable (F/V)-enriched diet], demonstrating consistent response to intervention. The totality of evidence supports the use of skin carotenoid status as an objective biomarker of F/V intake, although in the cross-sectional setting, diet explains only some of the variation in this biomarker. However, this limitation is also a strength in that skin carotenoids may effectively serve as an integrated biomarker of health, with higher status reflecting greater F/V intake, lack of smoking, and lack of adiposity. Thus, this biomarker holds promise as both a health biomarker and an objective indicator of F/V intake, supporting its further development and utilization for medical and public health purposes. PMID:23823930

  4. Latin American food sources of carotenoids.

    Science.gov (United States)

    Rodriguez-Amaya, D B

    1999-09-01

    Latin America has a wide variety of carotenogenic foods, notable for the diversity and high levels of carotenoids. A part of this natural wealth has been analyzed. Carrot, red palm oil and some cultivars of squash and pumpkin are sources of both beta-carotene and alpha-carotene. beta-carotene is the principal carotenoid of the palm fruits burití, tucumã and bocaiuva, other fruits such as loquat, marolo and West Indian cherry, and sweet potato. Buriti also has high amounts of alpha-carotene and gamma-carotene. beta-Cryptoxanthin is the major carotenoid in caja, nectarine, orange-fleshed papaya, orange, peach, tangerine and the tree tomato. Lycopene predominates in tomato, red-fleshed papaya, guava, pitanga and watermelon. Pitanga also has substantial amounts of beta-cryptoxanthin, gamma-carotene and rubixanthin. Zeaxanthin, principal carotenoid of corn, is also predominant only in piquí. delta-Carotene is the main carotenoid of the peach palm and zeta-carotene of passion fruit. Lutein and beta-carotene, in high concentrations, are encountered in the numerous leafy vegetables of the region, as well as in other green vegetables and in some varieties of squash and pumpkin. Violaxanthin is the principal carotenoid of mango and mamey and is also found in appreciable amounts in green vegetables. Quantitative, in some cases also qualitative, differences exist among cultivars of the same food. Generally, carotenoids are in greater concentrations in the peel than in the pulp, increase considerably during ripening and are in higher levels in foods produced in hot places. Other Latin America indigenous carotenogenic foods must be investigated before they are supplanted by introduced crops, which are often poorer sources of carotenoids.

  5. Carotenoid accumulation in the tissues of zebra finches: predictors of integumentary pigmentation and implications for carotenoid allocation strategies.

    Science.gov (United States)

    McGraw, Kevin J; Toomey, Matthew B

    2010-01-01

    Carotenoid pigments produce the bright yellow to red ornamental colors of many animals, especially birds, and must ultimately be derived from the diet. However, they are also valuable for many physiological functions (e.g., antioxidants, immunostimulants, photoprotection, visual tuning, yolk nourishment to embryos), and as a result they are present in numerous internal body tissues (e.g., liver, adipose tissue, retina) whose carotenoid types and amounts are rarely studied in the context of color acquisition. Because male and female animals typically place different priorities on fitness-enhancing activities (e.g., gametic investment in females, sexual attraction in males), carotenoid allocation may track such investment patterns in the two sexes, and we can test for such sex-specific priorities of carotenoids by assessing body-tissue distributions of these pigments. We used high-performance liquid chromatography to identify and quantify carotenoid pigments from the plasma, liver, adipose tissue, and retina as well as the beak and legs of male and female zebra finches (Taeniopygia guttata), a species in which males display sexually attractive, red, carotenoid-based beak coloration and females also display some (albeit a less rich orange) beak color. To our knowledge, this is the first study of the predictors of carotenoid-based leg coloration-another potentially important visual signal-in this species. The same suite of dietary (e.g., lutein, zeaxanthin, beta-cryptoxanthin) and metabolically derived (e.g., dehydrolutein, anhydrolutein) yellow and orange carotenoids was present in plasma, liver, and adipose tissue of both sexes. Retina contained two different metabolites (astaxanthin and galloxanthin) that serve specific functions in association with unique photoreceptor types in the eye. Beaks were enriched with four red ketocarotenoid derivatives in both sexes (alpha-doradexanthin, adonirubin, astaxanthin, and canthaxanthin), while the carotenoid profile of legs

  6. The intake of carotenoids in Denmark

    DEFF Research Database (Denmark)

    Leth, Torben; Jakobsen, Jette; Andersen, N. L.

    2000-01-01

    To estimate the intake of carotenoids in the Danish population Danish fruits and vegetables were screened with an HPLC method consisting of extraction with ethanol:tetrahydrofuran, separation by reversed phase HPLC with the mobile phase acetonitril:methanol:dichlormethan, triethylamin, BHT...... in the foods the mean intake and intake distribution of the carotenoids were calculated. Carrots and tomatoes have both high contents of carotenoids (8,450 mu g/100 g alpha- + beta-carotene and 4,790 mu g/100 g lycopene, respectively) and high intakes (19 and 15 g/day, respectively) and were responsible for 47......% and 32%, respectively, of the mean intake of carotenoids of 4.8 mg/day A median value of 4.1 mg/day was found indicating skewed intake distributions. The difference between men and women was 0.4 mg/day (p carotenoids, alpha-carotene, beta-carotene, lutein and lycopene, contributed...

  7. Carotenoids intake and asthma prevalence in Thai children

    Directory of Open Access Journals (Sweden)

    Sanguansak Rerksuppaphol

    2012-02-01

    Full Text Available Several antioxidant nutrients have been described to inversely correlate with asthma. In order to quantify the intake of these substances, it is possible to measure skin levels by Raman spectroscopy, a novel non-invasive technique that can also be used in children. This cross-sectional school-based study involved 423 children from a rural area of Thailand. Asthmatic children were diagnosed according to a Health Interview for Asthma Control questionnaire. Skin carotenoid levels were measured with Raman spectroscopy. Demographic data were obtained by directly interviewing children and their parents, whereas anthropometric parameters were measured by trained staff. Intake of carotenoids, vitamin A and C were evaluated by a food frequency questionnaire. Overall incidence of asthma in Thai schoolchildren (aged 3.5-17.8 years was 17.3%. There was no significant difference in dietary intake of carotenoids and vitamin A and C, and skin carotenoid level between asthmatic and nonasthmatic children. Skin carotenoid level significantly correlated with all carotenoids and vitamin A intake (P<0.05. Carotenoids and vitamin A and C intakes, and skin carotenoid levels were not associated with the risk of asthma in Thai children. Skin carotenoids correlated with all carotenoids and vitamin A intake in mild to moderate degrees. Raman spectroscopy was confirmed to be a useful tool to determine antioxidant skin levels.

  8. Quantitative evaluation of the biosynthetic pathways leading to δ-aminolevulinic acid from the Shemin precursor glycine via the C5 pathway in Arthrobacter hyalinus by analysis of 13C-labeled coproporphyrinogen III biosynthesized from [2-13C]glycine, [1-13C]acetate, and [2-13C]acetate using 13C NMR spectroscopy

    International Nuclear Information System (INIS)

    Katsumi Iida

    2013-01-01

    The biosynthetic pathways leading to δ-aminolevulinic acid (ALA) from the Shemin precursor glycine via the C5 pathway in Arthrobacter hyalinus were quantitatively evaluated by means of feeding experiments with [2- 13 C]glycine, sodium [1- 13 C]acetate, and sodium [2- 13 C]acetate, followed by analysis of the labeling patterns of coproporphyrinogen III (Copro'gen III) (biosynthesized from ALA) using 13 C NMR spectroscopy. Two biosynthetic pathways leading to ALA from glycine via the C5 pathway were identified: i.e., transformation of glycine to l-serine catalyzed by glycine hydroxymethyltransferase, and glycine synthase-catalyzed catabolism of glycine to N 5 , N 10 -methylene-tetrahydrofolic acid (THF), which reacts with another molecule of glycine to afford l-serine. l-Serine is transformed to acetyl-CoA via pyruvic acid. Acetyl-CoA enters the tricarboxylic acid cycle, affording 2-oxoglutaric acid, which in turn is transformed to l-glutamic acid. The l-glutamic acid enters the C5 pathway, affording ALA in A. hyalinus. A 13 C NMR spectroscopic comparison of the labeling patterns of Copro'gen III obtained after feeding of [2- 13 C]glycine, sodium [1- 13 C]acetate, and sodium [2- 13 C]acetate showed that [2- 13 C]glycine transformation and [2- 13 C]glycine catabolism in A. hyalinus proceed in the ratio of 52 and 48 %. The reaction of [2- 13 C]glycine and N 5 , N 10 -methylene-THF, that of glycine and N 5 , N 10 -[methylene- 13 C]methylene-THF generated from the [2- 13 C]glycine catabolism, and that of [2- 13 C]glycine and N 5 , N 10 -[methylene- 13 C]methylene-THF transformed the fed [2- 13 C]glycine to [1- 13 C]acetyl-CoA, [2- 13 C]acetyl-CoA, and [1,2- 13 C 2 ]acetyl-CoA in the ratios of 42, 37, and 21 %, respectively. These labeled acetyl-CoAs were then incorporated into ALA. Our results provide a quantitative picture of the pathways of biosynthetic transformation to ALA from glycine in A. hyalinus. (author)

  9. EPA, DHA, and Lipoic Acid Differentially Modulate the n-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes.

    Science.gov (United States)

    Bou, Marta; Østbye, Tone-Kari; Berge, Gerd M; Ruyter, Bente

    2017-03-01

    The aim of the present study was to investigate how EPA, DHA, and lipoic acid (LA) influence the different metabolic steps in the n-3 fatty acid (FA) biosynthetic pathway in hepatocytes from Atlantic salmon fed four dietary levels (0, 0.5, 1.0 and 2.0%) of EPA, DHA or a 1:1 mixture of these FA. The hepatocytes were incubated with [1- 14 C] 18:3n-3 in the presence or absence of LA (0.2 mM). Increased endogenous levels of EPA and/or DHA and LA exposure both led to similar responses in cells with reduced desaturation and elongation of [1- 14 C] 18:3n-3 to 18:4n-3, 20:4n-3, and EPA, in agreement with reduced expression of the Δ6 desaturase gene involved in the first step of conversion. DHA production, on the other hand, was maintained even in groups with high endogenous levels of DHA, possibly due to a more complex regulation of this last step in the n-3 metabolic pathway. Inhibition of the Δ6 desaturase pathway led to increased direct elongation to 20:3n-3 by both DHA and LA. Possibly the route by 20:3n-3 and then Δ8 desaturation to 20:4n-3, bypassing the first Δ6 desaturase step, can partly explain the maintained or even increased levels of DHA production. LA increased DHA production in the phospholipid fraction of hepatocytes isolated from fish fed 0 and 0.5% EPA and/or DHA, indicating that LA has the potential to further increase the production of this health-beneficial FA in fish fed diets with low levels of EPA and/or DHA.

  10. The Role of Carotenoids in Human Skin

    Directory of Open Access Journals (Sweden)

    Theognosia Vergou

    2011-12-01

    Full Text Available The human skin, as the boundary organ between the human body and the environment, is under the constant influence of free radicals (FR, both from the outside in and from the inside out. Carotenoids are known to be powerful antioxidant substances playing an essential role in the reactions of neutralization of FR (mainly reactive oxygen species ROS. Carotenoid molecules present in the tissue are capable of neutralizing several attacks of FR, especially ROS, and are then destroyed. Human skin contains carotenoids, such as α-, γ-, β-carotene, lutein, zeaxanthin, lycopene and their isomers, which serve the living cells as a protection against oxidation. Recent studies have reported the possibility to investigate carotenoids in human skin quickly and non-invasively by spectroscopic means. Results obtained from in-vivo studies on human skin have shown that carotenoids are vital components of the antioxidative protective system of the human skin and could serve as marker substances for the overall antioxidative status. Reflecting the nutritional and stress situation of volunteers, carotenoids must be administered by means of antioxidant-rich products, e.g., in the form of fruit and vegetables. Carotenoids are degraded by stress factors of any type, inter alia, sun radiation, contact with environmental hazards, illness, etc. The kinetics of the accumulation and degradation of carotenoids in the skin have been investigated.

  11. The heme biosynthetic pathway of the obligate Wolbachia endosymbiont of Brugia malayi as a potential anti-filarial drug target.

    Directory of Open Access Journals (Sweden)

    Bo Wu

    2009-07-01

    Full Text Available Filarial parasites (e.g., Brugia malayi, Onchocerca volvulus, and Wuchereria bancrofti are causative agents of lymphatic filariasis and onchocerciasis, which are among the most disabling of neglected tropical diseases. There is an urgent need to develop macro-filaricidal drugs, as current anti-filarial chemotherapy (e.g., diethylcarbamazine [DEC], ivermectin and albendazole can interrupt transmission predominantly by killing microfilariae (mf larvae, but is less effective on adult worms, which can live for decades in the human host. All medically relevant human filarial parasites appear to contain an obligate endosymbiotic bacterium, Wolbachia. This alpha-proteobacterial mutualist has been recognized as a potential target for filarial nematode life cycle intervention, as antibiotic treatments of filarial worms harboring Wolbachia result in the loss of worm fertility and viability upon antibiotic treatments both in vitro and in vivo. Human trials have confirmed this approach, although the length of treatments, high doses required and medical counter-indications for young children and pregnant women warrant the identification of additional anti-Wolbachia drugs.Genome sequence analysis indicated that enzymes involved in heme biosynthesis might constitute a potential anti-Wolbachia target set. We tested different heme biosynthetic pathway inhibitors in ex vivo B. malayi viability assays and report a specific effect of N-methyl mesoporphyrin (NMMP, which targets ferrochelatase (FC, the last step. Our phylogenetic analysis indicates evolutionarily significant divergence between Wolbachia heme genes and their human homologues. We therefore undertook the cloning, overexpression and analysis of several enzymes of this pathway alongside their human homologues, and prepared proteins for drug targeting. In vitro enzyme assays revealed a approximately 600-fold difference in drug sensitivities to succinyl acetone (SA between Wolbachia and human 5

  12. Thermal degradation kinetics of all-trans and cis-carotenoids in a light-induced model system.

    Science.gov (United States)

    Xiao, Ya-Dong; Huang, Wu-Yang; Li, Da-Jing; Song, Jiang-Feng; Liu, Chun-Quan; Wei, Qiu-Yu; Zhang, Min; Yang, Qiu-Ming

    2018-01-15

    Thermal degradation kinetics of lutein, zeaxanthin, β-cryptoxanthin, β-carotene was studied at 25, 35, and 45°C in a model system. Qualitative and quantitative analyses of all-trans- and cis-carotenoids were conducted using HPLC-DAD-MS technologies. Kinetic and thermodynamic parameters were calculated by non-linear regression. A total of 29 geometrical isomers and four oxidation products were detected, including all-trans-, keto compounds, mono-cis- and di-cis-isomers. Degradations of all-trans-lutein, zeaxanthin, β-cryptoxanthin, and β-carotene were described by a first-order kinetic model, with the order of rate constants as k β -carotene >k β -cryptoxanthin >k lutein >k zeaxanthin . Activation energies of zeaxanthin, lutein, β-cryptoxanthin, and β-carotene were 65.6, 38.9, 33.9, and 8.6kJ/moL, respectively. cis-carotenoids also followed with the first-order kinetic model, but they did not show a defined sequence of degradation rate constants and activation energies at different temperatures. A possible degradation pathway of four carotenoids was identified to better understand the mechanism of carotenoid degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Carotenoid Metabolism in Plants: The Role of Plastids.

    Science.gov (United States)

    Sun, Tianhu; Yuan, Hui; Cao, Hongbo; Yazdani, Mohammad; Tadmor, Yaakov; Li, Li

    2018-01-08

    Carotenoids are indispensable to plants and critical in human diets. Plastids are the organelles for carotenoid biosynthesis and storage in plant cells. They exist in various types, which include proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. These plastids have dramatic differences in their capacity to synthesize and sequester carotenoids. Clearly, plastids play a central role in governing carotenogenic activity, carotenoid stability, and pigment diversity. Understanding of carotenoid metabolism and accumulation in various plastids expands our view on the multifaceted regulation of carotenogenesis and facilitates our efforts toward developing nutrient-enriched food crops. In this review, we provide a comprehensive overview of the impact of various types of plastids on carotenoid biosynthesis and accumulation, and discuss recent advances in our understanding of the regulatory control of carotenogenesis and metabolic engineering of carotenoids in light of plastid types in plants. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  14. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    KAUST Repository

    Meier, Stuart; Tzfadia, Oren; Vallabhaneni, Ratnakar; Gehring, Christoph A; Wurtzel, Eleanore T

    2011-01-01

    Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.Results: A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of

  15. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    KAUST Repository

    Meier, Stuart

    2011-05-19

    Background: The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana.Results: A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR) but was inhibited by abscisic acid (ABA). Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs) and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced and uncoupled from that of

  16. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Vallabhaneni Ratnakar

    2011-05-01

    Full Text Available Abstract Background The carotenoids are pure isoprenoids that are essential components of the photosynthetic apparatus and are coordinately synthesized with chlorophylls in chloroplasts. However, little is known about the mechanisms that regulate carotenoid biosynthesis or the mechanisms that coordinate this synthesis with that of chlorophylls and other plastidial synthesized isoprenoid-derived compounds, including quinones, gibberellic acid and abscisic acid. Here, a comprehensive transcriptional analysis of individual carotenoid and isoprenoid-related biosynthesis pathway genes was performed in order to elucidate the role of transcriptional regulation in the coordinated synthesis of these compounds and to identify regulatory components that may mediate this process in Arabidopsis thaliana. Results A global microarray expression correlation analysis revealed that the phytoene synthase gene, which encodes the first dedicated and rate-limiting enzyme of carotenogenesis, is highly co-expressed with many photosynthesis-related genes including many isoprenoid-related biosynthesis pathway genes. Chemical and mutant analysis revealed that induction of the co-expressed genes following germination was dependent on gibberellic acid and brassinosteroids (BR but was inhibited by abscisic acid (ABA. Mutant analyses further revealed that expression of many of the genes is suppressed in dark grown plants by Phytochrome Interacting transcription Factors (PIFs and activated by photoactivated phytochromes, which in turn degrade PIFs and mediate a coordinated induction of the genes. The promoters of PSY and the co-expressed genes were found to contain an enrichment in putative BR-auxin response elements and G-boxes, which bind PIFs, further supporting a role for BRs and PIFs in regulating expression of the genes. In osmotically stressed root tissue, transcription of Calvin cycle, methylerythritol 4-phosphate pathway and carotenoid biosynthesis genes is induced

  17. Carotenoid composition in oils obtained from palm fruits from the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Santos, M. F.G.

    2015-09-01

    Full Text Available The oils obtained from native palm fruits are considered new sources of high added value phytochemicals, making it necessary to know the composition of the less studied species in order to evaluate their economic potential. The objective of this study is to identify and quantify the arotenoids in palm fruit oils from the Brazilian Amazon: bacaba (Oenocarpus bacaba, buriti (Mauritia flexuosa, inajá (Maximiliana maripa, pupunha (Bactris gasipaes and tucumã (Astrocaryum vulgare, by means of liquid phase extraction and HPLC-UV-vis. analysis. The results showed an extremely variable carotenoid content, from 13 mg·kg−1 in bacaba oil to more than 1000 mg·kg−1 in the tucumã one. The oils obtained from buriti, pupunha and tucumã displayed high concentrations of ß-carotene, corresponding to fruits with the series ß, ß dominant metabolism. Upon analyzing the carotenoid profile in bacaba oil for the first time, an extraordinary dominance of the ß, ε pathway was observed, proving them to be oils with high lutein and α-carotene contents. Although the ß, ß pathway dominates in inajá oil, the exclusive and high lycopene content implies that LCY-E is barely active in these fruits, in contrast to what has been evidenced so far. It is therefore of the utmost importance to characterize these new potential sources of carotenoids.Los aceites obtenidos a partir de frutos de palmeras nativas son considerados nuevas fuentes de fitoquímicos con alto valor añadido siendo necesario conocer la composición de las especies menos exploradas para evaluar su potencial económico. El objetivo de este estudio es identificar y cuantificar los carotenoides en aceites defrutos de palmeras provenientes de la Amazonia Brasileña: bacaba (Oenocarpus bacaba, uriti (Mauritia flexuosa, inajá (Maximiliana maripa, pupunha (Bactris gasipaes y tucumã (Astrocaryum vulgare, mediante extracción líquido:líquido y análisis por HPLC UV-vis. Los resultados mostraron un

  18. Carotenoid content of the varieties Jaranda and Jariza (Capsicumannuum L.) and response during the industrial slow drying and grinding steps in paprika processing.

    Science.gov (United States)

    Mínguez-Mosquera, M I; Pérez-Gálvez, A; Garrido-Fernández, J

    2000-07-01

    Fruits of the pepper varieties Jaranda and Jariza (Capsicum annuum L. ) ripen as a group, enabling a single harvesting, showed a uniform carotenoid content that is high enough (7.9 g/kg) for the production of paprika. The drying system at mild temperature showed that fruits with moisture content of 85-88% generated a dry product with carotenoid content equal to or higher than the initial one. Those high moisture levels allowed the fruits to have a longer period of metabolic activity, increasing the yellow fraction, the red fraction, or both as a function of what biosynthetic process was predominant. This fact indicates under-ripeness of the fruits in the drying step. The results obtained allow us to establish that both varieties, Jaranda and Jariza, fit the dehydration process employed, yielding a dry fruit with carotenoid concentration similar to that the initial one. During the grinding step of the dry fruit, the heat generated by the hammers of the mill caused degradation of the yellow fraction, while the red fraction is maintained. The ripeness state of the harvested fruits and the appropriateness or severity of the processing steps are indicated by the ratio of red to yellow (R/Y) and/or red to total (R/T) pigments, since fluctuations in both fractions and in total pigments are reflected in and monitored by these parameters.

  19. Effect of red light irradiation on skin coloration and carotenoid composition of stored ''Miyauchi'' iyo (Citrus iyo hort. ex Tanaka) tangor fruit

    International Nuclear Information System (INIS)

    Ohishi, H.; Watanabe, J.; Kadoya, K.

    1996-01-01

    Effect of red light irradiation on skin color development and carotenoid composition of stylar end of Miyauchi iyo (citrus iyo hort. ex Tanaka) tangor fruit was examined during storage. Both increase in a and a/b value and decrease in b value were enhanced by the irradiation. The a/b values of the fruit exposed were higher than those of control during the whole storage period. HPLC analyses also revealed the increase in total carotenoids content, of which the carotenoids that were tentatively named B and F most greatly accumulated. Similar tendencies were observed at equator and stem end portions. These results indicate that red light irradiation is involved in not only acceleration of overall color development but also enhancement of red color pigmentation by influencing a certain specific pathway of carotenoid biosynthesis

  20. Draft genome sequence of Streptomyces coelicoflavus ZG0656 reveals the putative biosynthetic gene cluster of acarviostatin family α-amylase inhibitors.

    Science.gov (United States)

    Guo, X; Geng, P; Bai, F; Bai, G; Sun, T; Li, X; Shi, L; Zhong, Q

    2012-08-01

    The aims of this study are to obtain the draft genome sequence of Streptomyces coelicoflavus ZG0656, which produces novel acarviostatin family α-amylase inhibitors, and then to reveal the putative acarviostatin-related gene cluster and the biosynthetic pathway. The draft genome sequence of S. coelicoflavus ZG0656 was generated using a shotgun approach employing a combination of 454 and Solexa sequencing technologies. Genome analysis revealed a putative gene cluster for acarviostatin biosynthesis, termed sct-cluster. The cluster contains 13 acarviostatin synthetic genes, six transporter genes, four starch degrading or transglycosylation enzyme genes and two regulator genes. On the basis of bioinformatic analysis, we proposed a putative biosynthetic pathway of acarviostatins. The intracellular steps produce a structural core, acarviostatin I00-7-P, and the extracellular assemblies lead to diverse acarviostatin end products. The draft genome sequence of S. coelicoflavus ZG0656 revealed the putative biosynthetic gene cluster of acarviostatins and a putative pathway of acarviostatin production. To our knowledge, S. coelicoflavus ZG0656 is the first strain in this species for which a genome sequence has been reported. The analysis of sct-cluster provided important insights into the biosynthesis of acarviostatins. This work will be a platform for producing novel variants and yield improvement. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  1. Graviresponsiveness and abscisic-acid content of roots of carotenoid-deficient mutants of Zea mays L

    Science.gov (United States)

    Moore, R.; Smith, J. D.

    1985-01-01

    The abscisic-acid (ABA) content of roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays was analyzed using gas chromatography-mass spectrometry with an analysis sensitivity of 6 ng ABA g-1 fresh weight (FW). Roots of normal seedlings of the same lines were characterized by the following amounts of ABA (as ng ABA g-1 FW, +/- standard deviation): w-3, 279 +/- 43; vp-5, 237 +/- 26; vp-7, 338 +/- 61. We did not detect any ABA in roots of any of the mutants. Thus, the lack of carotenoids in these mutants correlated positively with the apparent absence of ABA. Primary roots of normal and mutant seedlings were positively gravitropic, with no significant differences in the curvatures of roots of normal as compared with mutant seedlings. These results indicate that ABA 1) is synthesized in maize roots via the carotenoid pathway, and 2) is not necessary for positive gravitropism by primary roots of Z. mays.

  2. Health Effects of Carotenoids during Pregnancy and Lactation.

    Science.gov (United States)

    Zielińska, Monika A; Wesołowska, Aleksandra; Pawlus, Beata; Hamułka, Jadwiga

    2017-08-04

    Adequate nutrition is particularly important during pregnancy since it is needed not only for maintaining the health of the mother, but also determines the course of pregnancy and its outcome, fetus development as well as the child's health after birth and during the later period of life. Data coming from epidemiological and interventions studies support the observation that carotenoids intake provide positive health effects in adults and the elderly population. These health effects are the result of their antioxidant and anti-inflammatory properties. Recent studies have also demonstrated the significant role of carotenoids during pregnancy and infancy. Some studies indicate a correlation between carotenoid status and lower risk of pregnancy pathologies induced by intensified oxidative stress, but results of these investigations are equivocal. Carotenoids have been well studied in relation to their beneficial role in the prevention of preeclampsia. It is currently hypothesized that carotenoids can play an important role in the prevention of preterm birth and intrauterine growth restriction. Carotenoid status in the newborn depends on the nutritional status of the mother, but little is known about the transfer of carotenoids from the mother to the fetus. Carotenoids are among the few nutrients found in breast milk, in which the levels are determined by the mother's diet. Nutritional status of the newborn directly depends on its diet. Both mix feeding and artificial feeding may cause depletion of carotenoids since infant formulas contain only trace amounts of these compounds. Carotenoids, particularly lutein and zeaxanthin play a significant role in the development of vision and nervous system (among others, they are important for the development of retina as well as energy metabolism and brain electrical activity). Furthermore, more scientific evidence is emerging on the role of carotenoids in the prevention of disorders affecting preterm infants, who are

  3. Health Effects of Carotenoids during Pregnancy and Lactation

    Directory of Open Access Journals (Sweden)

    Monika A. Zielińska

    2017-08-01

    Full Text Available Adequate nutrition is particularly important during pregnancy since it is needed not only for maintaining the health of the mother, but also determines the course of pregnancy and its outcome, fetus development as well as the child’s health after birth and during the later period of life. Data coming from epidemiological and interventions studies support the observation that carotenoids intake provide positive health effects in adults and the elderly population. These health effects are the result of their antioxidant and anti-inflammatory properties. Recent studies have also demonstrated the significant role of carotenoids during pregnancy and infancy. Some studies indicate a correlation between carotenoid status and lower risk of pregnancy pathologies induced by intensified oxidative stress, but results of these investigations are equivocal. Carotenoids have been well studied in relation to their beneficial role in the prevention of preeclampsia. It is currently hypothesized that carotenoids can play an important role in the prevention of preterm birth and intrauterine growth restriction. Carotenoid status in the newborn depends on the nutritional status of the mother, but little is known about the transfer of carotenoids from the mother to the fetus. Carotenoids are among the few nutrients found in breast milk, in which the levels are determined by the mother’s diet. Nutritional status of the newborn directly depends on its diet. Both mix feeding and artificial feeding may cause depletion of carotenoids since infant formulas contain only trace amounts of these compounds. Carotenoids, particularly lutein and zeaxanthin play a significant role in the development of vision and nervous system (among others, they are important for the development of retina as well as energy metabolism and brain electrical activity. Furthermore, more scientific evidence is emerging on the role of carotenoids in the prevention of disorders affecting preterm

  4. Solid-phase extraction of carotenoids.

    Science.gov (United States)

    Shen, Yao; Hu, Yumin; Huang, Ke; Yin, Shi'an; Chen, Bo; Yao, Shouzhuo

    2009-07-24

    In this work, solid-phase extraction (SPE) trapping performance of lutein and beta-carotene, which were used as the model molecules of carotenoids, was investigated. The absorption, elution, and enrichment of carotenoids on SPE cartridges with four different sorbents, i.e. C(30), C(18), diol, and silica, were compared respectively with the help of frontal analysis technique. The high retentions of both lutein and beta-carotene were achieved on the C(18) and C(30) cartridges. The diol and silica cartridges only had good retention for lutein. The optimized SPE method for sample pretreatment for the carotenoids analysis was obtained after the investigation of trapping performance. The method was applied successfully to the analysis of biological sample, i.e. serum and human breast milk. The recovery, accuracy, and precision of SPE method comparing with those of traditional liquid-liquid extraction (LLE) method for the sample pretreatment for the analysis of carotenoids owned a number of advantages such as rapid, no chloroform used, and accurate versus LLE.

  5. Characterization of the gene encoding serine acetyltransferase, a regulated enzyme of cysteine biosynthesis from the protist parasites Entamoeba histolytica and Entamoeba dispar. Regulation and possible function of the cysteine biosynthetic pathway in Entamoeba.

    Science.gov (United States)

    Nozaki, T; Asai, T; Sanchez, L B; Kobayashi, S; Nakazawa, M; Takeuchi, T

    1999-11-05

    The enteric protist parasites Entamoeba histolytica and Entamoeba dispar possess a cysteine biosynthetic pathway, unlike their mammalian host, and are capable of de novo production of L-cysteine. We cloned and characterized cDNAs that encode the regulated enzyme serine acetyltransferase (SAT) in this pathway from these amoebae by genetic complementation of a cysteine-auxotrophic Escherichia coli strain with the amoebic cDNA libraries. The deduced amino acid sequences of the amoebic SATs exhibited, within the most conserved region, 36-52% identities with the bacterial and plant SATs. The amoebic SATs contain a unique insertion of eight amino acids, also found in the corresponding region of a plasmid-encoded SAT from Synechococcus sp., which showed the highest overall identities to the amoebic SATs. Phylogenetic reconstruction also revealed a close kinship of the amoebic SATs with cyanobacterial SATs. Biochemical characterization of the recombinant E. histolytica SAT revealed several enzymatic features that distinguished the amoebic enzyme from the bacterial and plant enzymes: 1) inhibition by L-cysteine in a competitive manner with L-serine; 2) inhibition by L-cystine; and 3) no association with cysteine synthase. Genetically engineered amoeba strains that overproduced cysteine synthase and SAT were created. The cysteine synthase-overproducing amoebae had a higher level of cysteine synthase activity and total thiol content and revealed increased resistance to hydrogen peroxide. These results indicate that the cysteine biosynthetic pathway plays an important role in antioxidative defense of these enteric parasites.

  6. Regulation of the Omega-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes.

    Directory of Open Access Journals (Sweden)

    Marte Avranden Kjær

    Full Text Available Limited availability of the n-3 fatty acids EPA and DHA have led to an interest in better understanding of the n-3 biosynthetic pathway and its regulation. The biosynthesis of alpha-linolenic acid to EPA and DHA involves several complex reaction steps including desaturation-, elongation- and peroxisomal beta-oxidation enzymes. The aims of the present experiments were to gain more knowledge on how this biosynthesis is regulated over time by different doses and fatty acid combinations. Hepatocytes isolated from salmon were incubated with various levels and combinations of oleic acid, EPA and DHA. Oleic acid led to a higher expression of the Δ6 fatty acid desaturase (fad genes Δ6fad_a, Δ6fad_b, Δ6fad_c and the elongase genes elovl2 compared with cells cultured in medium enriched with DHA. Further, the study showed rhythmic variations in expression over time. Levels were reached where a further increase in specific fatty acids given to the cells not stimulated the conversion further. The gene expression of Δ6fad_a_and Δ6fad_b responded similar to fatty acid treatment, suggesting a co-regulation of these genes, whereas Δ5fad and Δ6fad_c showed a different regulation pattern. EPA and DHA induced different gene expression patterns, especially of Δ6fad_a. Addition of radiolabelled alpha-linolenic acid to the hepatocytes confirmed a higher degree of elongation and desaturation in cells treated with oleic acid compared to cells treated with DHA. This study suggests a complex regulation of the conversion process of n-3 fatty acids. Several factors, such as that the various gene copies are differently regulated, the gene expression show rhythmic variations and gene expression only affected to a certain level, determines when you get the maximum conversion of the beneficial n-3 fatty acids.

  7. Effect of overall feedback inhibition in unbranched biosynthetic pathways.

    Science.gov (United States)

    Alves, R; Savageau, M A

    2000-11-01

    We have determined the effects of control by overall feedback inhibition on the systemic behavior of unbranched metabolic pathways with an arbitrary pattern of other feedback inhibitions by using a recently developed numerical generalization of Mathematically Controlled Comparisons, a method for comparing the function of alternative molecular designs. This method allows the rigorous determination of the changes in systemic properties that can be exclusively attributed to overall feedback inhibition. Analytical results show that the unbranched pathway can achieve the same steady-state flux, concentrations, and logarithmic gains with respect to changes in substrate, with or without overall feedback inhibition. The analytical approach also shows that control by overall feedback inhibition amplifies the regulation of flux by the demand for end product while attenuating the sensitivity of the concentrations to the same demand. This approach does not provide a clear answer regarding the effect of overall feedback inhibition on the robustness, stability, and transient time of the pathway. However, the generalized numerical method we have used does clarify the answers to these questions. On average, an unbranched pathway with control by overall feedback inhibition is less sensitive to perturbations in the values of the parameters that define the system. The difference in robustness can range from a few percent to fifty percent or more, depending on the length of the pathway and on the metabolite one considers. On average, overall feedback inhibition decreases the stability margins by a minimal amount (typically less than 5%). Finally, and again on average, stable systems with overall feedback inhibition respond faster to fluctuations in the metabolite concentrations. Taken together, these results show that control by overall feedback inhibition confers several functional advantages upon unbranched pathways. These advantages provide a rationale for the prevalence of this

  8. Screening and Selection of High Carotenoid Producing in Vitro Tomato Cell Culture Lines for [13C]-Carotenoid Production

    OpenAIRE

    Engelmann, Nancy J.; Campbell, Jessica K.; Rogers, Randy B.; Rupassara, S. Indumathie; Garlick, Peter J.; Lila, Mary Ann; Erdman, John W.

    2010-01-01

    Isotopically labeled tomato carotenoids, phytoene, phytofluene, and lycopene, are needed for mammalian bioavailability and metabolism research but are currently commercially unavailable. The goals of this work were to establish and screen multiple in vitro tomato cell lines for carotenoid production, test the best producers with or without the bleaching herbicides, norflurazon and 2-(4-chlorophenyl-thio)-triethylamine (CPTA), and to use the greatest carotenoid accumulator for in vitro 13C-lab...

  9. Photolysis of carotenoids in chloroform: enhanced yields of carotenoid radical cations in the presence of a tryptophan ester

    International Nuclear Information System (INIS)

    El-Agamey, Ali; Burke, Marc; Edge, Ruth; Land, Edward J.; McGarvey, David J.; Truscott, T. George

    2005-01-01

    The presence of an acetyl tryptophan ester gives rise to enhanced yields of carotenoid radical cations in chloroform following 355 nm laser excitation of the carotenoid, even though the tryptophan does not absorb at this wavelength. The increase is attributed to positive charge transfer from semi-oxidized tryptophan itself generated by light absorbed by the carotenoid. The mechanism of these radical processes has been elucidated by pulse radiolysis studies

  10. Carotenoids in staple cereals: Metabolism, regulation, and genetic manipulation

    Directory of Open Access Journals (Sweden)

    shengnan zhai

    2016-08-01

    Full Text Available Carotenoids play a critical role in animal and human health. Animals and humans are unable to synthesize carotenoids de novo, and therefore rely upon diet as sources of these compounds. However, major staple cereals often contain only small amounts of carotenoids in their grain. Consequently, there is considerable interest in genetic manipulation of carotenoid content in cereal grain. In this review, we focus on carotenoid metabolism and regulation in non-green plant tissues, as well as genetic manipulation in staple cereals such as rice, maize, and wheat. Significant progress has been made in three aspects: (1 seven carotenogenes play vital roles in carotenoid regulation in non-green plant tissues, including DXS (1-deoxyxylulose-5-phosphate synthase influencing isoprenoid precursor supply, PSY (phytoene synthase, LCYB (β-cyclase and LCYE (ε-cyclase controlling biosynthesis, HYDB (1-hydroxy-2-methyl-2-(E-butenyl 4-diphosphate reductase and CCDs (carotenoid cleavage dioxygenases responsible for degradation, and OR (orange conditioning sequestration sink; (2 pro-vitamin A-biofortified crops, such as rice and maize, were developed by either metabolic engineering or marker-assisted breeding; (3 QTLs for carotenoid content on chromosomes 3B, 7A, and 7B were consistently identified, eight carotenogenes including 23 loci were detected, and ten gene-specific markers for carotenoid accumulation were developed and applied in wheat improvement. A comprehensive and deeper understanding of the regulatory mechanisms of carotenoid metabolism in crops will be benefitical in improving our precision in improving carotenoid contents. Genomic selection and gene editing are emerging as transformative technologies for vitamin A biofortification.

  11. The fate of carotenoids in sediments: An overview

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Koopmans, M.P.

    1997-01-01

    Despite carotenoids being abundant natural products, there are only scattered literature reports of carotenoid derivatives (mainly in the form of their 'perhydro' derivatives) in ancient sediments and petroleum. This was thought to be due to the sensitivity of carotenoids toward oxygen and their

  12. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways.

    Directory of Open Access Journals (Sweden)

    R Cameron Coates

    Full Text Available Cyanobacteria possess the unique capacity to naturally produce hydrocarbons from fatty acids. Hydrocarbon compositions of thirty-two strains of cyanobacteria were characterized to reveal novel structural features and insights into hydrocarbon biosynthesis in cyanobacteria. This investigation revealed new double bond (2- and 3-heptadecene and methyl group positions (3-, 4- and 5-methylheptadecane for a variety of strains. Additionally, results from this study and literature reports indicate that hydrocarbon production is a universal phenomenon in cyanobacteria. All cyanobacteria possess the capacity to produce hydrocarbons from fatty acids yet not all accomplish this through the same metabolic pathway. One pathway comprises a two-step conversion of fatty acids first to fatty aldehydes and then alkanes that involves a fatty acyl ACP reductase (FAAR and aldehyde deformylating oxygenase (ADO. The second involves a polyketide synthase (PKS pathway that first elongates the acyl chain followed by decarboxylation to produce a terminal alkene (olefin synthase, OLS. Sixty-one strains possessing the FAAR/ADO pathway and twelve strains possessing the OLS pathway were newly identified through bioinformatic analyses. Strains possessing the OLS pathway formed a cohesive phylogenetic clade with the exception of three Moorea strains and Leptolyngbya sp. PCC 6406 which may have acquired the OLS pathway via horizontal gene transfer. Hydrocarbon pathways were identified in one-hundred-forty-two strains of cyanobacteria over a broad phylogenetic range and there were no instances where both the FAAR/ADO and the OLS pathways were found together in the same genome, suggesting an unknown selective pressure maintains one or the other pathway, but not both.

  13. Multiplex PCR analysis of fumonisin biosynthetic genes in fumonisin-nonproducing Aspergillus niger and A. awamori strains

    Science.gov (United States)

    In order to determine the genetic basis for loss of fumonisin B¬2 (FB2) biosynthesis in FB2 non-producing A. niger strains, we developed multiplex PCR primer sets to amplify fragments of eight fumonisin biosynthetic pathway (fum) genes. Fragments of all eight fum genes were amplified in FB2-produci...

  14. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm.

    Science.gov (United States)

    Ye, X; Al-Babili, S; Klöti, A; Zhang, J; Lucca, P; Beyer, P; Potrykus, I

    2000-01-14

    Rice (Oryza sativa), a major staple food, is usually milled to remove the oil-rich aleurone layer that turns rancid upon storage, especially in tropical areas. The remaining edible part of rice grains, the endosperm, lacks several essential nutrients, such as provitamin A. Thus, predominant rice consumption promotes vitamin A deficiency, a serious public health problem in at least 26 countries, including highly populated areas of Asia, Africa, and Latin America. Recombinant DNA technology was used to improve its nutritional value in this respect. A combination of transgenes enabled biosynthesis of provitamin A in the endosperm.

  15. Carotenoids: potential allies of cardiovascular health?

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2015-02-01

    Full Text Available Carotenoids are a class of natural, fat-soluble pigments found principally in plants. They have potential antioxidant biological properties because of their chemical structure and interaction with biological membranes. Epidemiologic studies supported the hypothesis that antioxidants could be used as an inexpensive means of both primary and secondary cardiovascular disease (CVD prevention. In fact, the oxidation of low-density lipoproteins (LDL in the vessels plays a key role in the development of atherosclerotic lesions. The resistance of LDL to oxidation is increased by high dietary antioxidant intake, so that carotenoids, as part of food patterns such as the Mediterranean diet, may have beneficial effects on cardiovascular health too. Further properties of carotenoids leading to a potential reduction of cardiovascular risk are represented by lowering of blood pressure, reduction of pro-inflammatory cytokines and markers of inflammation (such as C-reactive protein, and improvement of insulin sensitivity in muscle, liver, and adipose tissues. In addition, recent nutrigenomics studies have focused on the exceptional ability of carotenoids in modulating the expression of specific genes involved in cell metabolism. The aim of this review is to focus attention to this effect of some carotenoids to prevent CVD.

  16. Biotechnological production of carotenoids by yeasts: an overview

    Science.gov (United States)

    2014-01-01

    Nowadays, carotenoids are valuable molecules in different industries such as chemical, pharmaceutical, poultry, food and cosmetics. These pigments not only can act as vitamin A precursors, but also they have coloring and antioxidant properties, which have attracted the attention of the industries and researchers. The carotenoid production through chemical synthesis or extraction from plants is limited by low yields that results in high production costs. This leads to research of microbial production of carotenoids, as an alternative that has shown better yields than other aforementioned. In addition, the microbial production of carotenoids could be a better option about costs, looking for alternatives like the use of low-cost substrates as agro-industrials wastes. Yeasts have demonstrated to be carotenoid producer showing an important growing capacity in several agro-industrial wastes producing high levels of carotenoids. Agro-industrial wastes provide carbon and nitrogen source necessary, and others elements to carry out the microbial metabolism diminishing the production costs and avoiding pollution from these agro-industrial wastes to the environmental. Herein, we discuss the general and applied concepts regarding yeasts carotenoid production and the factors influencing carotenogenesis using agro-industrial wastes as low-cost substrates. PMID:24443802

  17. Marine carotenoids: Bioactivities and potential benefits to human health.

    Science.gov (United States)

    Chuyen, Hoang Van; Eun, Jong-Bang

    2017-08-13

    Among natural pigments, carotenoids play important roles in physiological functions. The characteristics of carotenoids and their effects on human health have been reported for a long time, but most studies have focused on carotenoids from vegetables, fruits, and other parts of higher plants. Few reports are available on carotenoids from marine sources, such as seaweeds, microalgae, and marine animals, which have attracted attention in recent decades. Hundreds of carotenoids have been identified and isolated from marine organisms and their beneficial physiological functions, such as anticancer, antiobesity, antidiabetic, anti-inflammatory, and cardioprotective activities have been reported. The purpose of this review is to discuss the literature on the beneficial bioactivities of some of the most abundant marine carotenoids, including fucoxanthin, astaxanthin, cantaxanthin, peridinin, fucoxanthinol, and halocynthiaxanthin.

  18. Carotenoids from microalgae: A review of recent developments.

    Science.gov (United States)

    Gong, Mengyue; Bassi, Amarjeet

    2016-12-01

    Carotenoids have been receiving increasing attention due to their potential health benefits. Microalgae are recognized as a natural source of carotenoids and other beneficial byproducts. However, the production of micro-algal carotenoids is not yet sufficiently cost-effective to compete with traditional chemical synthetic methods and other technologies such as extraction from plant based sources. This review presents the recent biotechnological developments in microalgal carotenoid production. The current technologies involved in their bioprocessing including cultivation, harvesting, extraction, and purification are discussed with a specific focus on downstream processing. The recent advances in chemical and biochemical synthesis of carotenoids are also reviewed for a better understanding of suitable and economically feasible biotechnological strategies. Some possible future directions are also proposed. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Multinational study of major breast milk carotenoids of healthy mothers.

    Science.gov (United States)

    Canfield, Louise M; Clandinin, M Thomas; Davies, David P; Fernandez, Maria C; Jackson, Joan; Hawkes, Jo; Goldman, William J; Pramuk, Kathryn; Reyes, Horacio; Sablan, Benjamin; Sonobe, Tomoyoshi; Bo, Xu

    2003-06-01

    Carotenoids in serum vary between countries and within populations with evidence suggesting a qualitative relationship to diet. Breast milk carotenoids furnish a source of vitamin A and potentially provide immunoprotection and other health benefits for infants. There have been numerous studies of milk carotenoid concentrations in undernourished populations; however, carotenoid concentrations have not previously been compared in populations of well-nourished mothers. To compare concentrations of five major carotenoid groups: alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein/zeaxanthin, and lycopene in breast milk of healthy women from Australia, Canada, Chile, China, Japan, Mexico, the Philippines, the United Kingdom, and the United States, and to qualitatively compare patterns of dietary intake with milk carotenoid concentrations. Breast milk collected from healthy lactating women was analyzed for concentrations of five carotenoids and retinol and quantitated relative to total milk lipid. All determinations were performed in a single research laboratory using standardized methodology. Mothers consumed their usual diets and provided a single 24-h dietary recall. Breast milk carotenoid concentrations varied greatly among countries, with the greatest differences in beta-cryptoxanthin (approximately 9-fold) and the least in alpha-carotene and lycopene (approximately 3-fold). Breast milk retinol concentrations varied approximately 2-fold across countries. The provitamin A carotenoids alpha-carotene, beta-carotene, and beta-cryptoxanthin as a group accounted for > 50 % of the carotenoids measured. Total breast milk carotenoids were highest in Japanese and lowest in Philippine mothers. Breast milk beta-carotene concentrations were highest in Chile and lowest in the Philippines. Patterns of breast milk carotenoids were unique to each country and qualitative patterns reflected the dietary carotenoid supply.

  20. Intraspecific Variation in Carotenoids of Brassica oleracea var. sabellica.

    Science.gov (United States)

    Mageney, Vera; Baldermann, Susanne; Albach, Dirk C

    2016-04-27

    Carotenoids are best known as a source of natural antioxidants. Physiologically, carotenoids are part of the photoprotection in plants as they act as scavengers of reactive oxygen species (ROS). An important source of carotenoids in European food is Brassica oleracea. Focusing on the most abundant carotenoids, we estimated the contents of ß-carotene, (9Z)-neoxanthin, zeaxanthin, and lutein as well as those of chlorophylls a and b to assess their variability in Brassica oleracea var. sabellica. Our analyses included more than 30 cultivars categorized in five distinct sets grouped according to morphological characteristics or geographical origin. Our results demonstrated specific carotenoid patterns characteristic for American, Italian, and red-colored kale cultivars. Moreover, we demonstrated a tendency of high zeaxanthin proportions under traditional harvest conditions, which accord to low-temperature regimes. We also compared the carotenoid patterns of self-generated hybrid lines. Corresponding findings indicated that crossbreeding has a high potential for carotenoid content optimization in kale.

  1. Screening and selection of high carotenoid producing in vitro tomato cell culture lines for [13C]-carotenoid production.

    Science.gov (United States)

    Engelmann, Nancy J; Campbell, Jessica K; Rogers, Randy B; Rupassara, S Indumathie; Garlick, Peter J; Lila, Mary Ann; Erdman, John W

    2010-09-22

    Isotopically labeled tomato carotenoids, phytoene, phytofluene, and lycopene, are needed for mammalian bioavailability and metabolism research but are currently commercially unavailable. The goals of this work were to establish and screen multiple in vitro tomato cell lines for carotenoid production, test the best producers with or without the bleaching herbicides, norflurazon and 2-(4-chlorophenyl-thio)triethylamine (CPTA), and to use the greatest carotenoid accumulator for in vitro 13C-labeling. Different Solanum lycopersicum allelic variants for high lycopene and varying herbicide treatments were compared for carotenoid accumulation in callus and suspension culture, and cell suspension cultures of the hp-1 line were chosen for isotopic labeling. When grown with [U]-13C-glucose and treated with CPTA, hp-1 suspensions yielded highly enriched 13C-lycopene with 45% of lycopene in the M+40 form and 88% in the M+35 to M+40 isotopomer range. To the authors' knowledge this is the first report of highly enriched 13C-carotenoid production from in vitro plant cell culture.

  2. Integration of Fermentation and Organic Synthesis: Studies of Roquefortine C and Biosynthetic Derivatives

    Science.gov (United States)

    Gober, Claire Marie

    Roquefortine C is one of the most ubiquitous indoline alkaloids of fungal origin. It has been isolated from over 30 different species of Penicillium fungi and has garnered attention in recent years for its role as a biosynthetic precursor to the triazaspirocyclic natural products glandicoline B, meleagrin, and oxaline. The triazaspirocyclic motif, which encompasses three nitrogen atoms attached to one quaternary carbon forming a spirocyclic scaffold, is a unique chemical moiety that has been shown to impart a wide array of biological activity, from anti-bacterial activity and antiproliferative activity against cancer cell lines to anti-biofouling against marine organisms. Despite the promise of these compounds in the pharmaceutical and materials industries, few syntheses of triazaspirocycles exist in the literature. The biosynthesis of roquefortine C-derived triazaspirocycles, however, provides inspiration for the synthesis of these compounds, namely through a nitrone-promoted transannular rearrangement. This type of internal rearrangement has never been carried out synthetically and would provide an efficient stereoselective synthesis of triazaspirocycles. This work encompasses efforts towards elucidating the biosynthetic pathway of roquefortine C-derived triazaspirocycles as well as synthetic efforts towards the construction of triazaspirocycles. Chapter 1 will discuss a large-scale fermentation procedure for the production of roquefortine C from Penicillium crustosum. Chapters 2 and 3 explore (through enzymatic and synthetic means, respectively) the formation of the key indoline nitrone moiety required for the proposed transannular rearrangement. Finally, chapter 4 will discuss synthetic efforts towards the synthesis of triazaspirocycles. This work has considerably enhanced our understanding of the roquefortine C biosynthetic pathway and the unique chemistry of this natural product, and our efforts towards the synthesis of triazaspirocycles will facilitate the

  3. Composição de carotenoides em canistel (Pouteria campechiana (Kunth Baehni Carotenoids composition of canistel (Pouteria campechiana (Kunth Baehni

    Directory of Open Access Journals (Sweden)

    Tânia da Silveira Agostini Costa

    2010-09-01

    Full Text Available O canistel (P. campechiana é uma fruta nativa da América Central e México, ainda pouco conhecida no Brasil. Apresenta uma polpa amarelo-alaranjada, rica em carotenoides, que tem despertado interesse como potencial de vitamina A. O objetivo deste trabalho foi determinar o teor de carotenoides e o valor provitamina A na polpa de canistel, assim como os teores de umidade e lipídeos na polpa e na semente. Os carotenoides foram separados por cromatografia em coluna aberta. O conteúdo de carotenoides totais foi de 226 ± 4 μg/g. Violaxantina e neoxantina foram os carotenóides predominantes, somando 196 ± 5 μg/g. seguidos por zetacaroteno, betacaroteno 5,6-epóxido, betacaroteno e fitoflueno. A semente foi a parte do fruto que apresentou maior teor de lipídeos totais, com 4,6 ± 0,2 %, e a polpa, 0,61 ± 0,03 %. Os resultados indicam que o canistel apresenta teores de carotenóides totais muito elevados e pode ser considerado uma boa fonte de provitamina A (59 ± 6 RAE/100g, se comparado com outras frutas normalmente consumidas. No entanto, os principais carotenoides encontrados em sua polpa são destituídos de atividade provitamina A.Canistel (Pouteria campechiana is a native fruit from Central America and Mexico. This fruit still not known in Brazil, presents an orange-yellow pulp rich in carotenoids, which has attracted interest as a potential source of vitamin A. The purpose of this study was to determine the carotenoids content and pro-vitamin A values in the pulp of canistel, as well as the percentage of moisture and lipids in the pulp and seeds. Carotenoids were separated by open column chromatography. The content of total carotenoids was 226 ± 4 μg/g. Violaxantin and neoxantin were the predominant carotenoids with 196 ± 5 μg/g followed by zeta-carotene, beta-carotene 5,6-epoxide, beta-carotene and phytofluene. The seeds presented higher levels of total lipids with 4.6 ± 0.2 %, while pulp had 0.61 ± 0.03 % of total lipid. These

  4. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin

    Directory of Open Access Journals (Sweden)

    Steuer Kristin

    2011-04-01

    Full Text Available Abstract Background The xanthophyll astaxanthin is a high-value compound with applications in the nutraceutical, cosmetic, food, and animal feed industries. Besides chemical synthesis and extraction from naturally producing organisms like Haematococcus pluvialis, heterologous biosynthesis in non-carotenogenic microorganisms like Escherichia coli, is a promising alternative for sustainable production of natural astaxanthin. Recent achievements in the metabolic engineering of E. coli strains have led to a significant increase in the productivity of carotenoids like lycopene or β-carotene by increasing the metabolic flux towards the isoprenoid precursors. For the heterologous biosynthesis of astaxanthin in E. coli, however, the conversion of β-carotene to astaxanthin is obviously the most critical step towards an efficient biosynthesis of astaxanthin. Results Here we report the construction of the first plasmid-free E. coli strain that produces astaxanthin as the sole carotenoid compound with a yield of 1.4 mg/g cdw (E. coli BW-ASTA. This engineered E. coli strain harbors xanthophyll biosynthetic genes from Pantoea ananatis and Nostoc punctiforme as individual expression cassettes on the chromosome and is based on a β-carotene-producing strain (E. coli BW-CARO recently developed in our lab. E. coli BW-CARO has an enhanced biosynthesis of the isoprenoid precursor isopentenyl diphosphate (IPP and produces β-carotene in a concentration of 6.2 mg/g cdw. The expression of crtEBIY along with the β-carotene-ketolase gene crtW148 (NpF4798 and the β-carotene-hydroxylase gene (crtZ under controlled expression conditions in E. coli BW-ASTA directed the pathway exclusively towards the desired product astaxanthin (1.4 mg/g cdw. Conclusions By using the λ-Red recombineering technique, genes encoding for the astaxanthin biosynthesis pathway were stably integrated into the chromosome of E. coli. The expression levels of chromosomal integrated recombinant

  5. Arctic mustard flower color polymorphism controlled by petal-specific downregulation at the threshold of the anthocyanin biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Cynthia A Dick

    2011-04-01

    Full Text Available Intra- and interspecific variation in flower color is a hallmark of angiosperm diversity. The evolutionary forces underlying the variety of flower colors can be nearly as diverse as the colors themselves. In addition to pollinator preferences, non-pollinator agents of selection can have a major influence on the evolution of flower color polymorphisms, especially when the pigments in question are also expressed in vegetative tissues. In such cases, identifying the target(s of selection starts with determining the biochemical and molecular basis for the flower color variation and examining any pleiotropic effects manifested in vegetative tissues. Herein, we describe a widespread purple-white flower color polymorphism in the mustard Parrya nudicaulis spanning Alaska. The frequency of white-flowered individuals increases with increasing growing-season temperature, consistent with the role of anthocyanin pigments in stress tolerance. White petals fail to produce the stress responsive flavonoid intermediates in the anthocyanin biosynthetic pathway (ABP, suggesting an early pathway blockage. Petal cDNA sequences did not reveal blockages in any of the eight enzyme-coding genes in white-flowered individuals, nor any color differentiating SNPs. A qRT-PCR analysis of white petals identified a 24-fold reduction in chalcone synthase (CHS at the threshold of the ABP, but no change in CHS expression in leaves and sepals. This arctic species has avoided the deleterious effects associated with the loss of flavonoid intermediates in vegetative tissues by decoupling CHS expression in petals and leaves, yet the correlation of flower color and climate suggests that the loss of flavonoids in the petals alone may affect the tolerance of white-flowered individuals to colder environments.

  6. Electron paramagnetic resonance detection of carotenoid triplet states

    International Nuclear Information System (INIS)

    Frank, H.A.; Bolt, J.D.; deCosta, S.M.; Sauer, K.

    1980-01-01

    Triplet states of carotenoids have been detected by X-band electron paramagnetic resonance (EPR) and are reported here for the first time. The systems in which carotenoid triplets are observed include cells of photosynthetic bacteria, isolated bacteriochlorophyll-protein complexes, and detergent micelles which contain β-carotene. It is well known that if electron transfer is blocked following the initial acceptor in the bacterial photochemical reaction center, back reaction of the primary radical pair produces a bacteriochlorophyll dimer triplet. Previous optical studies have shown that in reaction centers containing carotenoids the bacteriochlorophyll dimer triplet sensitizes the carotenoid triplet. We have observed this carotenoid triplet state by EPR in reaction centers of Rhodopseudomonas sphaeroides, strain 2.4.1 (wild type), which contain the carotenoid spheroidene. The zero-field splitting parameters of the triplet spectrum are /D/ = 0.0290 +- 0.0005 cm -1 and /E/ = 0.0044 +-0.0006 cm -1 , in contrast with the parameters of the bacteriochlorophyll dimer triplet, which are /D/ = 0.0189 +- 0.0004 cm -1 and /E/ = 0.0032 +- 0.004 cm -1 . Bacteriochlorophyll in a light harvesting protein complex from Rps. sphaeroides, wild type, also sensitizes carotenoid triplet formation. In whole cells the EPR spectra vary with temperature between 100 and 10 K. Carotenoid triplets also have been observed by EPR in whole cells of Rps. sphaeroides and cells of Rhodospirillum rubrum which contain the carotenoid spirilloxanthin. Attempts to observe the triplet state EPR spectrum of β-carotene in numerous organic solvents failed. However, in nonionic detergent micelles and in phospholipid bilayer vesicles β-carotene gives a triplet state spectrum with /D/ = 0.0333 +- 0.0010 cm -1 and /E/ = 0.0037 +- 0.0010 cm -1 . 6 figures, 1 table

  7. Carotenoids and retinoids: molecular aspects and health issues

    National Research Council Canada - National Science Library

    Packer, Lester

    2005-01-01

    ... are byproducts of metabolism in humans. Indeed, the presence of carotenoids in the diet and their role in human health has become a subject of unprecedented interest. Some carotenoids are called provitamin A compounds because they are precursors of retinol and retinoic acid. The type of carotenoids found in human plasma depends on the...

  8. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids.

    Science.gov (United States)

    Aasen, Inga Marie; Ertesvåg, Helga; Heggeset, Tonje Marita Bjerkan; Liu, Bin; Brautaset, Trygve; Vadstein, Olav; Ellingsen, Trond E

    2016-05-01

    Thraustochytrids have been applied for industrial production of the omega-3 fatty acid docosahexaenoic (DHA) since the 1990s. During more than 20 years of research on this group of marine, heterotrophic microorganisms, considerable increases in DHA productivities have been obtained by process and medium optimization. Strains of thraustochytrids also produce high levels of squalene and carotenoids, two other commercially interesting compounds with a rapidly growing market potential, but where yet few studies on process optimization have been reported. Thraustochytrids use two pathways for fatty acid synthesis. The saturated fatty acids are produced by the standard fatty acid synthesis, while DHA is synthesized by a polyketide synthase. However, fundamental knowledge about the relationship between the two pathways is still lacking. In the present review, we extract main findings from the high number of reports on process optimization for DHA production and interpret these in the light of the current knowledge of DHA synthesis in thraustochytrids and lipid accumulation in oleaginous microorganisms in general. We also summarize published reports on squalene and carotenoid production and review the current status on strain improvement, which has been hampered by the yet very few published genome sequences and the lack of tools for gene transfer to the organisms. As more sequences now are becoming available, targets for strain improvement can be identified and open for a system-level metabolic engineering for improved productivities.

  9. How carotenoids protect bacterial photosynthesis.

    OpenAIRE

    Cogdell, R J; Howard, T D; Bittl, R; Schlodder, E; Geisenheimer, I; Lubitz, W

    2000-01-01

    The essential function of carotenoids in photosynthesis is to act as photoprotective agents, preventing chlorophylls and bacteriochlorophylls from sensitizing harmful photodestructive reactions in the presence of oxygen. Based upon recent structural studies on reaction centres and antenna complexes from purple photosynthetic bacteria, the detailed organization of the carotenoids is described. Then with specific reference to bacterial antenna complexes the details of the photoprotective role, ...

  10. Development of a rapid, simple assay of plasma total carotenoids

    Science.gov (United States)

    2012-01-01

    Background Plasma total carotenoids can be used as an indicator of risk of chronic disease. Laboratory analysis of individual carotenoids by high performance liquid chromatography (HPLC) is time consuming, expensive, and not amenable to use beyond a research laboratory. The aim of this research is to establish a rapid, simple, and inexpensive spectrophotometric assay of plasma total carotenoids that has a very strong correlation with HPLC carotenoid profile analysis. Results Plasma total carotenoids from 29 volunteers ranged in concentration from 1.2 to 7.4 μM, as analyzed by HPLC. A linear correlation was found between the absorbance at 448 nm of an alcohol / heptane extract of the plasma and plasma total carotenoids analyzed by HPLC, with a Pearson correlation coefficient of 0.989. The average coefficient of variation for the spectrophotometric assay was 6.5% for the plasma samples. The limit of detection was about 0.3 μM and was linear up to about 34 μM without dilution. Correlations between the integrals of the absorption spectra in the range of carotenoid absorption and total plasma carotenoid concentration gave similar results to the absorbance correlation. Spectrophotometric assay results also agreed with the calculated expected absorbance based on published extinction coefficients for the individual carotenoids, with a Pearson correlation coefficient of 0.988. Conclusion The spectrophotometric assay of total carotenoids strongly correlated with HPLC analysis of carotenoids of the same plasma samples and expected absorbance values based on extinction coefficients. This rapid, simple, inexpensive assay, when coupled with the carotenoid health index, may be useful for nutrition intervention studies, population cohort studies, and public health interventions. PMID:23006902

  11. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications

    Directory of Open Access Journals (Sweden)

    Christian Galasso

    2017-11-01

    Full Text Available As is the case for terrestrial organisms, carotenoids represent the most common group of pigments in marine environments. They are generally biosynthesized by all autotrophic marine organisms, such as bacteria and archaea, algae and fungi. Some heterotrophic organisms also contain carotenoids probably accumulated from food or partly modified through metabolic reactions. These natural pigments are divided into two chemical classes: carotenes (such as lycopene and α- and β-carotene that are composed of hydrogen and carbon; xanthophylls (such as astaxanthin, fucoxanthin and lutein, which are constituted by hydrogen, carbon and oxygen. Carotenoids, as antioxidant compounds, assume a key role in the protection of cells. In fact, quenching of singlet oxygen, light capture and photosynthesis protection are the most relevant biological functions of carotenoids. The present review aims at describing (i the biological functions of carotenoids and their benefits for human health, (ii the most common carotenoids from marine organisms and (iii carotenoids having large success in pharmaceutical, nutraceutical and cosmeceutical industries, highlighting the scientific progress in marine species cultivation for natural pigments production.

  12. Isolation and functional characterization of Lycopene β-cyclase (CYC-B promoter from Solanum habrochaites

    Directory of Open Access Journals (Sweden)

    Chinnusamy Viswanathan

    2010-04-01

    Full Text Available Abstract Background Carotenoids are a group of C40 isoprenoid molecules that play diverse biological and ecological roles in plants. Tomato is an important vegetable in human diet and provides the vitamin A precursor β-carotene. Genes encoding enzymes involved in carotenoid biosynthetic pathway have been cloned. However, regulation of genes involved in carotenoid biosynthetic pathway and accumulation of specific carotenoid in chromoplasts are not well understood. One of the approaches to understand regulation of carotenoid metabolism is to characterize the promoters of genes encoding proteins involved in carotenoid metabolism. Lycopene β-cyclase is one of the crucial enzymes in carotenoid biosynthesis pathway in plants. Its activity is required for synthesis of both α-and β-carotenes that are further converted into other carotenoids such as lutein, zeaxanthin, etc. This study describes the isolation and characterization of chromoplast-specific Lycopene β-cyclase (CYC-B promoter from a green fruited S. habrochaites genotype EC520061. Results A 908 bp region upstream to the initiation codon of the Lycopene β-cyclase gene was cloned and identified as full-length promoter. To identify promoter region necessary for regulating developmental expression of the ShCYC-B gene, the full-length promoter and its three different 5' truncated fragments were cloned upstream to the initiation codon of GUS reporter cDNA in binary vectors. These four plant transformation vectors were separately transformed in to Agrobacterium. Agrobacterium-mediated transient and stable expression systems were used to study the GUS expression driven by the full-length promoter and its 5' deletion fragments in tomato. The full-length promoter showed a basal level activity in leaves, and its expression was upregulated > 5-fold in flowers and fruits in transgenic tomato plants. Deletion of -908 to -577 bp 5' to ATG decreases the ShCYC-B promoter strength, while deletion of -908

  13. A rapid method for the extraction and analysis of carotenoids and other hydrophobic substances suitable for systems biology studies with photosynthetic bacteria.

    Science.gov (United States)

    Bóna-Lovász, Judit; Bóna, Aron; Ederer, Michael; Sawodny, Oliver; Ghosh, Robin

    2013-10-11

    A simple, rapid, and inexpensive extraction method for carotenoids and other non-polar compounds present in phototrophic bacteria has been developed. The method, which has been extensively tested on the phototrophic purple non-sulphur bacterium Rhodospirillum rubrum, is suitable for extracting large numbers of samples, which is common in systems biology studies, and yields material suitable for subsequent analysis using HPLC and mass spectroscopy. The procedure is particularly suitable for carotenoids and other terpenoids, including quinones, bacteriochlorophyll a and bacteriopheophytin a, and is also useful for the analysis of polar phospholipids. The extraction procedure requires only a single step extraction with a hexane/methanol/water mixture, followed by HPLC using a Spherisorb C18 column, with a mobile phase consisting of acetone-water and a non-linear gradient of 50%-100% acetone. The method was employed for examining the carotenoid composition observed during microaerophilic growth of R. rubrum strains, and was able to determine 18 carotenoids, 4 isoprenoid-quinones, bacteriochlorophyll a and bacteriopheophytin a as well as four different phosphatidylglycerol species of different acyl chain compositions. The analytical procedure was used to examine the dynamics of carotenoid biosynthesis in the major and minor pathways operating simultaneously in a carotenoid biosynthesis mutant of R. rubrum.

  14. A Rapid Method for the Extraction and Analysis of Carotenoids and Other Hydrophobic Substances Suitable for Systems Biology Studies with Photosynthetic Bacteria

    Directory of Open Access Journals (Sweden)

    Oliver Sawodny

    2013-10-01

    Full Text Available A simple, rapid, and inexpensive extraction method for carotenoids and other non-polar compounds present in phototrophic bacteria has been developed. The method, which has been extensively tested on the phototrophic purple non-sulphur bacterium Rhodospirillum rubrum, is suitable for extracting large numbers of samples, which is common in systems biology studies, and yields material suitable for subsequent analysis using HPLC and mass spectroscopy. The procedure is particularly suitable for carotenoids and other terpenoids, including quinones, bacteriochlorophyll a and bacteriopheophytin a, and is also useful for the analysis of polar phospholipids. The extraction procedure requires only a single step extraction with a hexane/methanol/water mixture, followed by HPLC using a Spherisorb C18 column, with a mobile phase consisting of acetone-water and a non-linear gradient of 50%–100% acetone. The method was employed for examining the carotenoid composition observed during microaerophilic growth of R. rubrum strains, and was able to determine 18 carotenoids, 4 isoprenoid-quinones, bacteriochlorophyll a and bacteriopheophytin a as well as four different phosphatidylglycerol species of different acyl chain compositions. The analytical procedure was used to examine the dynamics of carotenoid biosynthesis in the major and minor pathways operating simultaneously in a carotenoid biosynthesis mutant of R. rubrum.

  15. Carotenoids and colon cancer.

    Science.gov (United States)

    Slattery, M L; Benson, J; Curtin, K; Ma, K N; Schaeffer, D; Potter, J D

    2000-02-01

    Carotenoids have numerous biological properties that may underpin a role for them as chemopreventive agents. However, except for beta-carotene, little is known about how dietary carotenoids are associated with common cancers, including colon cancer. The objective of this study was to evaluate associations between dietary alpha-carotene, beta-carotene, lycopene, lutein, zeaxanthin, and beta-cryptoxanthin and the risk of colon cancer. Data were collected from 1993 case subjects with first primary incident adenocarcinoma of the colon and from 2410 population-based control subjects. Dietary data were collected from a detailed diet-history questionnaire and nutrient values for dietary carotenoids were obtained from the US Department of Agriculture-Nutrition Coordinating Center carotenoid database (1998 updated version). Lutein was inversely associated with colon cancer in both men and women [odds ratio (OR) for upper quintile of intake relative to lowest quintile of intake: 0.83; 95% CI: 0.66, 1.04; P = 0.04 for linear trend]. The greatest inverse association was observed among subjects in whom colon cancer was diagnosed when they were young (OR: 0.66; 95% CI: 0.48, 0.92; P = 0.02 for linear trend) and among those with tumors located in the proximal segment of the colon (OR: 0.65; 95% CI: 0.51, 0.91; P lettuce, tomatoes, oranges and orange juice, carrots, celery, and greens. These data suggest that incorporating these foods into the diet may help reduce the risk of developing colon cancer.

  16. Improved extraction procedure for carotenoids from human milk.

    Science.gov (United States)

    Schweigert, F J; Hurtienne, A; Bathe, K

    2000-05-01

    An improved method for the extraction of the major carotenoids from human milk is described. Carotenoids were extracted from milk first with ethanol and n-hexane. Then, polar xanthophylls were extracted from n-hexane into ethanol/water. The remaining n-hexane was evaporated, the residue combined with the ethanolic milk fraction and the mixture briefly saponified. Carotenoids were extracted from the hydrolysate with n-hexane, combined with the polar xanthophylls from the non-saponified ethanol/water-extract and separated by HPLC. Using this method we were able to significantly improve the recovery of xanthophylls such as lutein and zeaxanthin from human milk. The recovery rate of all carotenoids was > 90%. This method might not only be of value for milk but should be especially useful in the extraction of carotenoids from human tissues such as the adipose tissue.

  17. A review on factors influencing bioaccessibility and bioefficacy of carotenoids.

    Science.gov (United States)

    Priyadarshani, A M B

    2017-05-24

    Vitamin A deficiency is one of the most prevalent deficiency disorders in the world. As shown by many studies plant food based approaches have a real potential on prevention of vitamin A deficiency in a sustainable way. Carotenoids are important as precursors of vitamin A as well as for prevention of cancers, coronary heart diseases, age-related macular degeneration, cataract etc. Bioaccessibility and bioefficacy of carotenoids are known to be influenced by numerous factors including dietary factors such as fat, fiber, dosage of carotenoid, location of carotenoid in the plant tissue, heat treatment, particle size of food, carotenoid species, interactions among carotenoids, isomeric form and molecular linkage and subject characteristics. Therefore even when carotenoids are found in high quantities in plant foods their utilization may be unsatisfactory because some factors are known to interfere as negative effectors.

  18. An ATP synthase harboring an atypical γ-subunit is involved in ATP synthesis in tomato fruit chromoplasts

    DEFF Research Database (Denmark)

    Pateraki, Irini; Renato, Marta; Azcõn-Bieto, Joaquín

    2013-01-01

    Chromoplasts are non-photosynthetic plastids specialized in the synthesis and accumulation of carotenoids. During fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts in a process characterized by the degradation of the thylakoid membranes, and by the active...... synthesis and accumulation of carotenoids. This transition renders chromoplasts unable to photochemically synthesize ATP, and therefore these organelles need to obtain the ATP required for anabolic processes through alternative sources. It is widely accepted that the ATP used for biosynthetic processes...... in non-photosynthetic plastids is imported from the cytosol or is obtained through glycolysis. In this work, however, we show that isolated tomato (Solanum lycopersicum) fruit chromoplasts are able to synthesize ATP de novo through a respiratory pathway using NADPH as an electron donor. We also report...

  19. Study of 'Redhaven' peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism

    Directory of Open Access Journals (Sweden)

    Tartarini Stefano

    2011-01-01

    Full Text Available Abstract Background Carotenoids are plant metabolites which are not only essential in photosynthesis but also important quality factors in determining the pigmentation and aroma of flowers and fruits. To investigate the regulation of carotenoid metabolism, as related to norisoprenoids and other volatile compounds in peach (Prunus persica L. Batsch., and the role of carotenoid dioxygenases in determining differences in flesh color phenotype and volatile composition, the expression patterns of relevant carotenoid genes and metabolites were studied during fruit development along with volatile compound content. Two contrasted cultivars, the yellow-fleshed 'Redhaven' (RH and its white-fleshed mutant 'Redhaven Bianca' (RHB were examined. Results The two genotypes displayed marked differences in the accumulation of carotenoid pigments in mesocarp tissues. Lower carotenoid levels and higher levels of norisoprenoid volatiles were observed in RHB, which might be explained by differential activity of carotenoid cleavage dioxygenase (CCD enzymes. In fact, the ccd4 transcript levels were dramatically higher at late ripening stages in RHB with respect to RH. The two genotypes also showed differences in the expression patterns of several carotenoid and isoprenoid transcripts, compatible with a feed-back regulation of these transcripts. Abamine SG - an inhibitor of CCD enzymes - decreased the levels of both isoprenoid and non-isoprenoid volatiles in RHB fruits, indicating a complex regulation of volatile production. Conclusions Differential expression of ccd4 is likely to be the major determinant in the accumulation of carotenoids and carotenoid-derived volatiles in peach fruit flesh. More in general, dioxygenases appear to be key factors controlling volatile composition in peach fruit, since abamine SG-treated 'Redhaven Bianca' fruits had strongly reduced levels of norisoprenoids and other volatile classes. Comparative functional studies of peach carotenoid

  20. Carotenoid levels in human lymphocytes, measured by Raman microspectroscopy

    NARCIS (Netherlands)

    Ramanauskaite, R B; SegersNolten, IGMJ; DeGrauw, K J; Sijtsema, N M; VanderMaas, L; Greve, J; Otto, C; Figdor, C G

    1997-01-01

    Carotenoid levels in lymphocytes obtained from peripheral blood of healthy people have been investigated by Raman microspectroscopy. We observed that carotenoids are concentrated in so-called ''Gall bodies''. The level of carotenoids in living human lymphocytes was found to be age-dependent and to

  1. Metabolite Profiling of Peppers of Various Colors Reveals Relationships Between Tocopherol, Carotenoid, and Phytosterol Content.

    Science.gov (United States)

    Kim, Tae Jin; Choi, Jaehyuk; Kim, Kil Won; Ahn, Soon Kil; Ha, Sun-Hwa; Choi, Yongsoo; Park, Nam Il; Kim, Jae Kwang

    2017-12-01

    Peppers are widely consumed in Korea; the varietal development of peppers with increased content of beneficial plant metabolites is, therefore, of considerable interest. This requires a comprehensive understanding of the metabolic profile of pepper plants and the factors affecting this profile. To this end, we determined the content of various metabolites, such as hydrophilic and lipophilic compounds, phenolic acids, carotenoids, and capsaicinoids in peppers of various colors (green, red, pale green, and violet peppers) and in a high-pungency (green) pepper. We also performed principal component analysis (PCA), Pearson's correlation analysis, and hierarchical clustering analysis (HCA) to determine the relationships among these metabolites in peppers. PCA results indicated no significant variances among the 3 sample replicates. The HCA showed correlations between the metabolites resulting from common or closely linked biosynthesis pathways. Our results showed that carotenoids correlated positively with tocopherols and negatively with phytosterols; our findings also indicated a close relationship between the methylerythritol 4-phosphate and mevalonic acid biosynthesis pathways, providing evidence in favor of an earlier hypothesis regarding crosstalk across the chloroplast membrane. We, thus, demonstrate that metabolic profiling combined with multivariate analysis is a useful tool for analyzing metabolic networks. A total of 71 metabolites were measured in 5 peppers of different colors. The metabolic profiling with multivariate analysis revealed that tocopherol content had a positive correlation with the carotenoid content and a negative correlation with the phytosterol content. The results of this study may help in breeding programs to produce new germplasm with enhanced nutritional quality. © 2017 Institute of Food Technologists®.

  2. Functional gene polymorphism to reveal species history: the case of the CRTISO gene in cultivated carrots.

    Directory of Open Access Journals (Sweden)

    Vanessa Soufflet-Freslon

    Full Text Available Carrot is a vegetable cultivated worldwide for the consumption of its root. Historical data indicate that root colour has been differentially selected over time and according to geographical areas. Root pigmentation depends on the relative proportion of different carotenoids for the white, yellow, orange and red types but only internally for the purple one. The genetic control for root carotenoid content might be partially associated with carotenoid biosynthetic genes. Carotenoid isomerase (CRTISO has emerged as a regulatory step in the carotenoid biosynthesis pathway and could be a good candidate to show how a metabolic pathway gene reflects a species genetic history.In this study, the nucleotide polymorphism and the linkage disequilibrium among the complete CRTISO sequence, and the deviation from neutral expectation were analysed by considering population subdivision revealed with 17 microsatellite markers. A sample of 39 accessions, which represented different geographical origins and root colours, was used. Cultivated carrot was divided into two genetic groups: one from Middle East and Asia (Eastern group, and another one mainly from Europe (Western group. The Western and Eastern genetic groups were suggested to be differentially affected by selection: a signature of balancing selection was detected within the first group whereas the second one showed no selection. A focus on orange-rooted carrots revealed that cultivars cultivated in Asia were mainly assigned to the Western group but showed CRTISO haplotypes common to Eastern carrots.The carotenoid pathway CRTISO gene data proved to be complementary to neutral markers in order to bring critical insight in the cultivated carrot history. We confirmed the occurrence of two migration events since domestication. Our results showed a European background in material from Japan and Central Asia. While confirming the introduction of European carrots in Japanese resources, the history of Central Asia

  3. Carotenoids assist in cyanobacterial Photosystem II assembly and function

    Directory of Open Access Journals (Sweden)

    Tomas eZakar

    2016-03-01

    Full Text Available Carotenoids (carotenes and xanthophylls are ubiquitous constituents of living organisms. They are protective agents against oxidative stresses and serve as modulators of membrane microviscosity. As antioxidants they can protect photosynthetic organisms from free radicals like reactive oxygen species that originate from water splitting, the first step of photosynthesis. We summarize the structural and functional roles of carotenoids in connection with cyanobacterial Photosystem II. Although carotenoids are hydrophobic molecules, their complexes with proteins also allow cytoplasmic localization. In cyanobacterial cells such complexes are called orange carotenoid proteins, and they protect Photosystem II and Photosystem I by preventing their overexcitation through phycobilisomes. Recently it has been observed that carotenoids are not only required for the proper functioning, but also for the structural stability of phycobilisomes.

  4. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters

    DEFF Research Database (Denmark)

    Weber, Tilmann; Blin, Kai; Duddela, Srikanth

    2015-01-01

    Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we...... introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration...... of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products...

  5. Pulsed radiation studies of carotenoid radicals and excited states

    International Nuclear Information System (INIS)

    Burke, M.

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of β-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar (∼1 x 10 7 M -1 s -1 ) for β-carotene and zeaxanthin and somewhat lower (∼0.5 x 10 7 M -1 s -1 ) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for β-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number of conjugated double bonds, the longer chain systems having

  6. Marine Carotenoids: Biological Functions and Commercial Applications

    NARCIS (Netherlands)

    Vilchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M.

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological

  7. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives

    Science.gov (United States)

    Moses, Tessa; Papadopoulou, Kalliope K.

    2014-01-01

    Saponins are widely distributed plant natural products with vast structural and functional diversity. They are typically composed of a hydrophobic aglycone, which is extensively decorated with functional groups prior to the addition of hydrophilic sugar moieties, to result in surface-active amphipathic compounds. The saponins are broadly classified as triterpenoids, steroids or steroidal glycoalkaloids, based on the aglycone structure from which they are derived. The saponins and their biosynthetic intermediates display a variety of biological activities of interest to the pharmaceutical, cosmetic and food sectors. Although their relevance in industrial applications has long been recognized, their role in plants is underexplored. Recent research on modulating native pathway flux in saponin biosynthesis has demonstrated the roles of saponins and their biosynthetic intermediates in plant growth and development. Here, we review the literature on the effects of these molecules on plant physiology, which collectively implicate them in plant primary processes. The industrial uses and potential of saponins are discussed with respect to structure and activity, highlighting the undoubted value of these molecules as therapeutics. PMID:25286183

  8. [Carotenoids: 2. Diseases and supplementation studies].

    Science.gov (United States)

    Faure, H; Fayol, V; Galabert, C; Grolier, P; Moël, G L; Stephens, J; Nabet, F

    1999-05-01

    Inverse correlations have been found in most studies on the relationship between dietary intake and plasma concentrations of carotenoids on one side and degenerative diseases such as cancer and cardiovascular diseases on the other side. Protective effects of carotenoids have been found for pathologies of the retina and the skin. Concentrations of these molecules in blood are lower in digestive pathologies and HIV. Short- and long-term toxicity of carotenoids was found to be low. In combination with the beneficial effects found for diets rich in carotenoids, this has initiated trials with relatively high doses of carotenoid supplements. In the study in Linxian (China) in a rural population with poor nutritional status, supplementation with beta-carotene, zinc, selenium and vitamin E lowered total mortality and mortality from stomach cancer. Other studies (ATBC, Caret.) on well-fed subjects did not show beneficial effects on mortality from cancer and cardiovascular diseases. On the contrary, higher mortality and lung cancer incidence was found in supplemented subjects that were also exposed to asbestos and cigarette smoke. In these studies, doses of supplemental beta-carotene were high and varied from 20 to 50 mg/day. One still ongoing study, called Suvimax, doses subjects for eight years with a cocktail of vitamins and minerals including 6 mg per day of beta-carotene. This supplementation with physiologically seen more "normal" doses might give clarity on the question if beta-carotene is the protective factor in fruits and vegetables.

  9. Limiting immunopathology: Interaction between carotenoids and enzymatic antioxidant defences.

    Science.gov (United States)

    Babin, A; Saciat, C; Teixeira, M; Troussard, J-P; Motreuil, S; Moreau, J; Moret, Y

    2015-04-01

    The release of reactive oxygen and nitrogen species (ROS and RNS) during the inflammatory response generates damages to host tissues, referred to as immunopathology, and is an important factor in ecological immunology. The integrated antioxidant system, comprising endogenous antioxidant enzymes (e.g. superoxide dismutase SOD, and catalase CAT) and dietary antioxidants (e.g. carotenoids), helps to cope with immune-mediated oxidative stress. Crustaceans store large amounts of dietary carotenoids for yet unclear reasons. While being immunostimulants and antioxidants, the interaction of these pigments with antioxidant enzymes remains unclear. Here, we tested the interaction between dietary supplementation with carotenoids and immune challenge on immune defences and the activity of the antioxidant enzymes SOD and CAT, in the amphipod crustacean Gammarus pulex. Dietary supplementation increased the concentrations of circulating carotenoids and haemocytes in the haemolymph, while the immune response induced the consumption of circulating carotenoids and a drop of haemocyte density. Interestingly, supplemented gammarids exhibited down-regulated SOD activity but high CAT activity compared to control ones. Our study reveals specific interactions of dietary carotenoids with endogenous antioxidant enzymes, and further underlines the potential importance of carotenoids in the evolution of immunity and/or of antioxidant mechanisms in crustaceans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. [Recent knowledge about intestinal absorption and cleavage of carotenoids].

    Science.gov (United States)

    Borel, P; Drai, J; Faure, H; Fayol, V; Galabert, C; Laromiguière, M; Le Moël, G

    2005-01-01

    Our knowledge about intestinal absorption and cleavage of carotenoids has rapidly grown during the last years. New facts about carotenoid absorption have emerged while some controversies about cleavage are close to end. The knowledge of the absorption and conversion processes is indispensable to understand and interpret the perturbations that can occur in the metabolism of carotenoids and vitamin A. Recently, it has been shown that the absorption of certain carotenoids is not passive - as believed for a long time - but is a facilitated process that requires, at least for lutein, the class B-type 1 scavenger receptor (SR-B1). Various epidemiological and clinical studies have shown wide variations in carotenoid absorption from one subject to another, such differences are now explained by the structure of the concerned carotenoid, by the nature of the food that is absorbed with the carotenoid, by diverse exogenous factors like the intake of medicines or interfering components, by diet factors, by genetic factors, and by the nutritional status of the subject. Recently, the precise mechanism of beta-carotene cleavage by betabeta-carotene 15,15' monooxygenase (EC 1.14.99.36) - formerly called beta-carotene 15,15' dioxygenase (ex EC 1.13.11.21) - has been discovered, and a second enzyme which cleaves asymmetrically the beta-carotene molecule has been found. beta-carotene 15,15' monooxygenase only acts on the 15,15' bond, thus forming two molecules of retinal from one molecule of beta-carotene by central cleavage. Even though the betabeta-carotene 15,15' monooxygenase is much more active on the beta-carotene molecule, a study has shown that it can act on all carotenoids. Searchers now agree that other enzymes that can catalyse an eccentric cleavage of carotenoids probably exist, but under physiological conditions the betabeta-carotene 15,15' monooxygenase is by far the most active, and it is mainly effective in the small bowel mucosa and in the liver. However the

  11. Structure of Pigment Metabolic Pathways and Their Contributions to White Tepal Color Formation of Chinese Narcissus tazetta var. chinensis cv Jinzhanyintai.

    Science.gov (United States)

    Ren, Yujun; Yang, Jingwen; Lu, Bingguo; Jiang, Yaping; Chen, Haiyang; Hong, Yuwei; Wu, Binghua; Miao, Ying

    2017-09-08

    Chinese narcissus ( Narcissus tazetta var. chinensis ) is one of the ten traditional flowers in China and a famous bulb flower in the world flower market. However, only white color tepals are formed in mature flowers of the cultivated varieties, which constrains their applicable occasions. Unfortunately, for lack of genome information of narcissus species, the explanation of tepal color formation of Chinese narcissus is still not clear. Concerning no genome information, the application of transcriptome profile to dissect biological phenomena in plants was reported to be effective. As known, pigments are metabolites of related metabolic pathways, which dominantly decide flower color. In this study, transcriptome profile and pigment metabolite analysis methods were used in the most widely cultivated Chinese narcissus "Jinzhanyintai" to discover the structure of pigment metabolic pathways and their contributions to white tepal color formation during flower development and pigmentation processes. By using comparative KEGG pathway enrichment analysis, three pathways related to flavonoid, carotenoid and chlorophyll pigment metabolism showed significant variations. The structure of flavonoids metabolic pathway was depicted, but, due to the lack of F3'5'H gene; the decreased expression of C4H , CHS and ANS genes; and the high expression of FLS gene, the effect of this pathway to synthesize functional anthocyanins in tepals was weak. Similarly, the expression of DXS , MCT and PSY genes in carotenoids synthesis sub-pathway was decreased, while CCD1 / CCD4 genes in carotenoids degradation sub-pathway was increased; therefore, the effect of carotenoids metabolic pathway to synthesize adequate color pigments in tepals is restricted. Interestingly, genes in chlorophyll synthesis sub-pathway displayed uniform down-regulated expression, while genes in heme formation and chlorophyll breakdown sub-pathways displayed up-regulated expression, which also indicates negative regulation

  12. Metabolic and Molecular Events Occurring during Chromoplast Biogenesis

    Directory of Open Access Journals (Sweden)

    Wanping Bian

    2011-01-01

    Full Text Available Chromoplasts are nonphotosynthetic plastids that accumulate carotenoids. They derive from other plastid forms, mostly chloroplasts. The biochemical events responsible for the interconversion of one plastid form into another are poorly documented. However, thanks to transcriptomics and proteomics approaches, novel information is now available. Data of proteomic and biochemical analysis revealed the importance of lipid metabolism and carotenoids biosynthetic activities. The loss of photosynthetic activity was associated with the absence of the chlorophyll biosynthesis branch and the presence of proteins involved in chlorophyll degradation. Surprisingly, the entire set of Calvin cycle and of the oxidative pentose phosphate pathway persisted after the transition from chloroplast to chromoplast. The role of plastoglobules in the formation and organisation of carotenoid-containing structures and that of the Or gene in the control of chromoplastogenesis are reviewed. Finally, using transcriptomic data, an overview is given the expression pattern of a number of genes encoding plastid-located proteins during tomato fruit ripening.

  13. Engineering the spatial organization of metabolic pathways

    DEFF Research Database (Denmark)

    Albertsen, Line; Maury, Jerome; Bach, Lars Stougaard

    One of the goals of metabolic engineering is to optimize the production of valuable metabolites in cell factories. In this context, modulating the gene expression and activity of enzymes are tools that have been extensively used. Another approach that is gaining interest is the engineering...... of the spatial organization of biosynthetic pathways. Several natural systems for ensuring optimal spatial arrangement of biosynthetic enzymes exist. Sequentially acting enzymes can for example be positioned in close proximity by attachment to cellular structures, up-concentration in membrane enclosed organelles...... or assembly into large complexes. The vision is that by positioning sequentially acting enzymes in close proximity, the cell can accelerate reaction rates and thereby prevent loss of intermediates through diffusion, degradation or competing pathways. The production of valuable metabolites in cell factories...

  14. Correlations Between Macular, Skin, and Serum Carotenoids

    Science.gov (United States)

    Conrady, Christopher D.; Bell, James P.; Besch, Brian M.; Gorusupudi, Aruna; Farnsworth, Kelliann; Ermakov, Igor; Sharifzadeh, Mohsen; Ermakova, Maia; Gellermann, Werner; Bernstein, Paul S.

    2017-01-01

    Purpose Ocular and systemic measurement and imaging of the macular carotenoids lutein and zeaxanthin have been employed extensively as potential biomarkers of AMD risk. In this study, we systematically compare dual wavelength retinal autofluorescence imaging (AFI) of macular pigment with skin resonance Raman spectroscopy (RRS) and serum carotenoid levels in a clinic-based population. Methods Eighty-eight patients were recruited from retina and general ophthalmology practices from a tertiary referral center and excluded only if they did not have all three modalities tested, had a diagnosis of macular telangiectasia (MacTel) or Stargardt disease, or had poor AFI image quality. Skin, macular, and serum carotenoid levels were measured by RRS, AFI, and HPLC, respectively. Results Skin RRS measurements and serum zeaxanthin concentrations correlated most strongly with AFI macular pigment volume under the curve (MPVUC) measurements up to 9° eccentricity relative to MPVUC or rotationally averaged macular pigment optical density (MPOD) measurements at smaller eccentricities. These measurements were reproducible and not significantly affected by cataracts. We also found that these techniques could readily identify subjects taking oral carotenoid-containing supplements. Conclusions Larger macular pigment volume AFI and skin RRS measurements are noninvasive, objective, and reliable methods to assess ocular and systemic carotenoid levels. They are an attractive alternative to psychophysical and optical methods that measure MPOD at a limited number of eccentricities. Consequently, skin RRS and MPVUC at 9° are both reasonable biomarkers of macular carotenoid status that could be readily adapted to research and clinical settings. PMID:28728169

  15. Long-lived coherence in carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J A; Cannon, E; Van Dao, L; Hannaford, P [ARC Centre of Excellence for Coherent X-ray Science, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Victoria 3122 (Australia); Quiney, H M; Nugent, K A, E-mail: jdavis@swin.edu.a [ARC Centre of Excellence for Coherent X-ray Science, School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2010-08-15

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the (S{sub 2}|S{sub 0}) superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  16. Long-lived coherence in carotenoids

    International Nuclear Information System (INIS)

    Davis, J A; Cannon, E; Van Dao, L; Hannaford, P; Quiney, H M; Nugent, K A

    2010-01-01

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the (S 2 |S 0 ) superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  17. Assessment of carotenoids in pumpkins after different home cooking conditions

    Directory of Open Access Journals (Sweden)

    Lucia Maria Jaeger de Carvalho

    2014-06-01

    Full Text Available Carotenoids have antioxidant activity, but few are converted by the body into retinol, the active form of vitamin A. Among the 600 carotenoids with pro-vitamin A activity, the most common are α- and β-carotene. These carotenoids are susceptible to degradation (e.g., isomerization and oxidation during cooking. The aim of this study was to assess the total carotenoid, α- and β-carotene, and 9 and 13-Z- β-carotene isomer contents in C. moschata after different cooking processes. The raw pumpkin samples contained 236.10, 172.20, 39.95, 3.64 and 0.8610 µg.g- 1 of total carotenoids, β-carotene, α-carotene, 13-cis-β-carotene, and 9-Z-β-carotene, respectively. The samples cooked in boiling water contained 258.50, 184.80, 43.97, 6.80, and 0.77 µg.g- 1 of total carotenoids, β-carotene, α-carotene, 13-Z-β-carotene, and 9-Z-β-carotene, respectively. The steamed samples contained 280.77, 202.00, 47.09, 8.23, and 1.247 µg.g- 1 of total carotenoids, β-carotene, α-carotene,13-Z-β-carotene, and 9-Z-β-carotene, respectively. The samples cooked with added sugar contained 259.90, 168.80, 45.68, 8.31, and 2.03 µg.g- 1 of total carotenoid, β-carotene, α-carotene, 13-Z- β-carotene, and 9-Z- β-carotene, respectively. These results are promising considering that E- β-carotene has 100% pro-vitamin A activity. The total carotenoid and carotenoid isomers increased after the cooking methods, most likely as a result of a higher availability induced by the cooking processes.

  18. Carotenoid metabolism and regulation in horticultural crops

    Science.gov (United States)

    Carotenoids are a diverse group of pigments widely distributed in nature. The vivid yellow, orange, and red colors in many horticultural crops attribute to overaccumulation of carotenoids, which contribute to a critical agronomic trait for flowers and an important quality trait for fruits and vegeta...

  19. Pulsed radiation studies of carotenoid radicals and excited states

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of {beta}-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar ({approx}1 x 10{sup 7} M{sup -1}s{sup -1}) for {beta}-carotene and zeaxanthin and somewhat lower ({approx}0.5 x 10{sup 7} M{sup -1}s{sup -1}) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for {beta}-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number

  20. Generation of structurally novel short carotenoids and study of their biological activity

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Kim, Moon S.; Lee, Bun Y.

    2016-01-01

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored...... thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid...... structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-atocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid...

  1. Generation of structurally novel short carotenoids and study of their biological activity.

    Science.gov (United States)

    Kim, Se H; Kim, Moon S; Lee, Bun Y; Lee, Pyung C

    2016-02-23

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-α-tocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid 4,4'-diapotorulene on rat bone marrow mesenchymal stem cells. Our results demonstrate that a series of structurally novel carotenoids possessing biologically beneficial properties can be synthesized in E. coli.

  2. Flg22-Triggered Immunity Negatively Regulates Key BR Biosynthetic Genes.

    Science.gov (United States)

    Jiménez-Góngora, Tamara; Kim, Seong-Ki; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-01-01

    In plants, activation of growth and activation of immunity are opposing processes that define a trade-off. In the past few years, the growth-promoting hormones brassinosteroids (BR) have emerged as negative regulators of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), promoting growth at the expense of defense. The crosstalk between BR and PTI signaling was described as negative and unidirectional, since activation of PTI does not affect several analyzed steps in the BR signaling pathway. In this work, we describe that activation of PTI by the bacterial PAMP flg22 results in the reduced expression of BR biosynthetic genes. This effect does not require BR perception or signaling, and occurs within 15 min of flg22 treatment. Since the described PTI-induced repression of gene expression may result in a reduction in BR biosynthesis, the crosstalk between PTI and BR could actually be negative and bidirectional, a possibility that should be taken into account when considering the interaction between these two pathways.

  3. Dietary intake of carotenoids and risk of type 2 diabetes

    NARCIS (Netherlands)

    Sluijs, I.; Cadier, E.; Beulens, J. W J; van der A, D. L.; Spijkerman, A. M W; van der Schouw, Y. T.

    Background and aims: Carotenoids may reduce diabetes risk, due to their antioxidant properties. However, the association between dietary carotenoids intake and type 2 diabetes risk is still unclear. Therefore, the objective of this study was to examine whether higher dietary carotenoid intakes

  4. New Insight into the Cleavage Reaction of Nostoc sp. Strain PCC 7120 Carotenoid Cleavage Dioxygenase in Natural and Nonnatural Carotenoids

    Science.gov (United States)

    Heo, Jinsol; Kim, Se Hyeuk

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8′-carotenal at 3 positions, C-13C-14, C-15C-15′, and C-13′C-14′, revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4′-diaponeurosporene, 4,4′-diaponeurosporen-4′-al, 4,4′-diaponeurosporen-4′-oic acid, 4,4′-diapotorulene, and 4,4′-diapotorulen-4′-al to generate novel cleavage products (apo-14′-diaponeurosporenal, apo-13′-diaponeurosporenal, apo-10′-diaponeurosporenal, apo-14′-diapotorulenal, and apo-10′-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro. PMID:23524669

  5. Carotenoids from Phaffia rhodozyma : Antioxidant activity and ...

    African Journals Online (AJOL)

    The main goal of this work was to establish the stability and antioxidant activity of the extracts obtained through different techniques for recovering carotenoids from Phaffia rhodozyma NRRL-Y 17268. The best conditions for extracting carotenoids through cell rupture with dimethylsulfoxide (DMSO) were found to be a ...

  6. Photodegradation of carotenoids in human subjects

    International Nuclear Information System (INIS)

    Roe, D.A.

    1987-01-01

    Photodegradation of vitamins in vitro is responsible for large losses of these nutrients in foods, beverages, and semisynthetic liquid formula diets. In vivo photodegradation of vitamins has been reported for riboflavin in jaundiced infants exposed to blue light and for folate in patients with chronic psoriasis given photochemotherapy. Two recent studies of normal subjects have also shown that photodegradation of carotenoids in plasma occurs with cumulative exposure of the skin to an artificial light source having maximal spectral emission in the UVA range. Females showed a larger effect of the UV light on their plasma carotenoid levels than males. These observations have identified a need for further investigation of the role of sunlight exposure as a determinant of plasma carotenoid levels and vitamin A status in human subjects

  7. CAR gene cluster and transcript levels of carotenogenic genes in Rhodotorula mucilaginosa.

    Science.gov (United States)

    Landolfo, Sara; Ianiri, Giuseppe; Camiolo, Salvatore; Porceddu, Andrea; Mulas, Giuliana; Chessa, Rossella; Zara, Giacomo; Mannazzu, Ilaria

    2018-01-01

    A molecular approach was applied to the study of the carotenoid biosynthetic pathway of Rhodotorula mucilaginosa. At first, functional annotation of the genome of R. mucilaginosa C2.5t1 was carried out and gene ontology categories were assigned to 4033 predicted proteins. Then, a set of genes involved in different steps of carotenogenesis was identified and those coding for phytoene desaturase, phytoene synthase/lycopene cyclase and carotenoid dioxygenase (CAR genes) proved to be clustered within a region of ~10 kb. Quantitative PCR of the genes involved in carotenoid biosynthesis showed that genes coding for 3-hydroxy-3-methylglutharyl-CoA reductase and mevalonate kinase are induced during exponential phase while no clear trend of induction was observed for phytoene synthase/lycopene cyclase and phytoene dehydrogenase encoding genes. Thus, in R. mucilaginosa the induction of genes involved in the early steps of carotenoid biosynthesis is transient and accompanies the onset of carotenoid production, while that of CAR genes does not correlate with the amount of carotenoids produced. The transcript levels of genes coding for carotenoid dioxygenase, superoxide dismutase and catalase A increased during the accumulation of carotenoids, thus suggesting the activation of a mechanism aimed at the protection of cell structures from oxidative stress during carotenoid biosynthesis. The data presented herein, besides being suitable for the elucidation of the mechanisms that underlie carotenoid biosynthesis, will contribute to boosting the biotechnological potential of this yeast by improving the outcome of further research efforts aimed at also exploring other features of interest.

  8. Consuming High-Carotenoid Fruit and Vegetables Influences Skin Yellowness and Plasma Carotenoids in Young Women: A Single-Blind Randomized Crossover Trial.

    Science.gov (United States)

    Pezdirc, Kristine; Hutchesson, Melinda J; Williams, Rebecca L; Rollo, Megan E; Burrows, Tracy L; Wood, Lisa G; Oldmeadow, Christopher; Collins, Clare E

    2016-08-01

    Consumption of dietary carotenoids from fruits and vegetables (F/V) leads to accumulations in human skin, altering skin yellowness. The influence of the quantity of F/V consumed on skin yellowness and plasma carotenoid concentrations has not been examined previously. To compare the influence of consuming high-carotenoid-containing F/V (HCFV) (176,425 μg beta carotene/wk) vs low-carotenoid F/V (LCFV) (2,073 μg beta carotene/wk) on skin yellowness and plasma carotenoid concentrations, over 4 weeks. A single-blind randomized controlled crossover trial from October 2013 to March 2014. Thirty women were randomized to receive 7 daily servings of HCFV or LCFV for 4 weeks. Following a 2-week washout period they followed the alternate intervention. Skin color (Commission Internationale de l'Eclairage L*a*b* color space, where L* represents skin lightness and positive values of a* and b* represent degrees of redness and yellowness, respectively) was assessed by reflectance spectroscopy in both sun-exposed and nonexposed skin areas. Fasting plasma carotenoids were determined by high-performance liquid chromatography, before and after each intervention period. Linear mixed models were used to determine the HCFV and LCFV response on skin color and plasma carotenoids, adjusting for intervention order, time, and interaction between baseline differences and time. There were no significant differences in mean daily fruit (P=0.42) and vegetable (P=0.17) intakes between HCFV and LCFV groups. Dietary alpha carotene, beta carotene, lutein, and beta cryptoxanthin intakes were significantly different between the two groups (Pcarotenoid concentrations were significantly higher following HCFV than LCFV over 4 weeks. Copyright © 2016 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  9. Biosynthetic origin of acetic acid using SNIF-NMR

    International Nuclear Information System (INIS)

    Boffo, Elisangela Fabiana; Ferreira, Antonio Gilberto

    2006-01-01

    The main purpose of this work is to describe the use of the technique Site-Specific Natural Isotopic Fractionation of hydrogen (SNIF-NMR), using 2 H and 1 H NMR spectroscopy, to investigate the biosynthetic origin of acetic acid in commercial samples of Brazilian vinegar. This method is based on the deuterium to hydrogen ratio at a specific position (methyl group) of acetic acid obtained by fermentation, through different biosynthetic mechanisms, which result in different isotopic ratios. We measured the isotopic ratio of vinegars obtained through C 3 , C 4 , and CAM biosynthetic mechanisms, blends of C 3 and C 4 (agrins) and synthetic acetic acid. (author)

  10. Carboidratos e carotenoides totais em duas variedades de mangarito

    Directory of Open Access Journals (Sweden)

    Ana Paula Sato Ferreira

    2014-05-01

    Full Text Available O objetivo deste trabalho foi avaliar a composição de carboidratos e carotenoides em rizomas mãe e filhos das variedades de mangarito (Xanthosoma riedelianum pequeno e gigante. Amostras dos rizomas coletadas ao longo do ciclo cultural e após 90 dias de armazenamento foram avaliadas quanto aos teores de carboidratos e carotenoides totais. Os rizomas apresentaram aumento no teor de carboidratos, e o rizoma-mãe da variedade pequeno apresentou acréscimos lineares no teor de carotenoides, ao longo do cultivo. O armazenamento reduz os teores de carboidratos e de carotenoides totais em todos os rizomas.

  11. Carotenoids and carotenoid esters of orange- and yellow-fleshed mamey sapote (Pouteria sapota (Jacq.) H.E. Moore & Stearn) fruit and their post-prandial absorption in humans.

    Science.gov (United States)

    Chacón-Ordóñez, Tania; Schweiggert, Ralf M; Bosy-Westphal, Anja; Jiménez, Víctor M; Carle, Reinhold; Esquivel, Patricia

    2017-04-15

    Although different genotypes of mamey sapote with distinct pulp colors are consumed in countries from Central to South America, in-depth knowledge on genotype-related differences of their carotenoid profile is lacking. Since the fruit was found to contain the potentially vitamin A-active keto-carotenoids sapotexanthin and cryptocapsin, we sought to qualitatively and quantitatively describe the carotenoid profile of different genotypes by HPLC-DAD-MS n . Sapotexanthin and cryptocapsin were present in all genotypes. Keto-carotenoids such as cryptocapsin, capsoneoxanthin, and their esters were most abundant in orange-fleshed fruit, whereas several carotenoid epoxides prevailed in yellow-fleshed fruit. Differing carotenoid profiles were associated with different color hues of the fruit pulp, while the widely variable carotenoid content (3.7-8.0mg/100gFW) was mainly reflected by differences in color intensity (chroma C ∗ ). Furthermore, the post-prandial absorption of sapotexanthin to human plasma was proven for the first time. Besides sapotexanthin, cryptocapsin was found to be resorbed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Carotenoids and Their Isomers: Color Pigments in Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Yueming Jiang

    2011-02-01

    Full Text Available Fruits and vegetables are colorful pigment-containing food sources. Owing to their nutritional benefits and phytochemicals, they are considered as ‘functional food ingredients’. Carotenoids are some of the most vital colored phytochemicals, occurring as all-trans and cis-isomers, and accounting for the brilliant colors of a variety of fruits and vegetables. Carotenoids extensively studied in this regard include β-carotene, lycopene, lutein and zeaxanthin. Coloration of fruits and vegetables depends on their growth maturity, concentration of carotenoid isomers, and food processing methods. This article focuses more on several carotenoids and their isomers present in different fruits and vegetables along with their concentrations. Carotenoids and their geometric isomers also play an important role in protecting cells from oxidation and cellular damages.

  13. Food carotenoids: analysis, composition and alterations during storage and processing of foods.

    Science.gov (United States)

    Rodriguez-Amaya, Delia B

    2003-01-01

    Substantial progress has been achieved in recent years in refining the analytical methods and evaluating the accuracy of carotenoid data. Although carotenoid analysis is inherently difficult and continues to be error prone, more complete and reliable data are now available. Rather than expressing the analytical results as retinol equivalents, there is a tendency to present the concentrations of individual carotenoids, particularly beta-carotene, beta-cryptoxanthin, alpha-carotene, lycopene, lutein and zeaxanthin, carotenoids found in the human plasma and considered to be important to human health in terms of the provitamin A activity and/or reduction of the risk for developing degenerative diseases. With the considerable effort directed to carotenoid analysis, many food sources have now been analyzed in different countries. The carotenoid composition of foods vary qualitatively and quantitatively. Even in a given food, compositional variability occurs because of factors such as stage of maturity, variety or cultivar, climate or season, part of the plant consumed, production practices, post-harvest handling, processing and storage of food. During processing, isomerization of trans-carotenoids, the usual configuration in nature, to the cis-forms occurs, with consequent alteration of the carotenoids' bioavailability and biological activity. Isomerization is promoted by light, heat and acids. The principal cause of carotenoid loss during processing and storage of food is enzymatic or non-enzymatic oxidation of the highly unsaturated carotenoid molecules. The occurrence and extent of oxidation depends on the presence of oxygen, metals, enzymes, unsaturated lipids, prooxidants, antioxidants; exposure to light; type and physical state of the carotenoids present; severity and duration of processing; packaging material; storage conditions. Thus, retention of carotenoids has been the major concern in the preparation, processing and storage of foods. However, in recent years

  14. Marine Carotenoids against Oxidative Stress: Effects on Human Health

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2015-09-01

    Full Text Available Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases.

  15. Carotenoids as a Source of Antioxidants in the Diet.

    Science.gov (United States)

    Xavier, Ana Augusta Odorissi; Pérez-Gálvez, Antonio

    2016-01-01

    Carotenoids, widely distributed fat-soluble pigments, are responsible for the attractive colorations of several fruits and vegetables commonly present in our daily diet. They are particularly abundant in yellow-orange fruits (carrots, tomatoes, pumpkins, peppers, among others) and, although masked by chlorophylls, in dark green leafy vegetables. Several health benefits have been attributed to carotenoids or to foods rich in these pigments, by means of different mechanisms-of-action, including the role as provitamin A of almost 50 different carotenoids and the antioxidant activity that protects cells and tissues from damage of free radicals and singlet oxygen, providing enhancement of the immune function, protection from sunburn reactions and delaying the onset of certain types of cancer. Common food sources and the efficiency of the absorption of carotenoids, analytical approaches used for measurement of their antioxidant effect and an overview of some epidemiological studies that have been performed to assess the beneficial impact of carotenoids in human health are outlined in this chapter.

  16. Marine Carotenoids against Oxidative Stress: Effects on Human Health.

    Science.gov (United States)

    Gammone, Maria Alessandra; Riccioni, Graziano; D'Orazio, Nicolantonio

    2015-09-30

    Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases.

  17. Excitation energy transfer from the bacteriochlorophyll Soret band to carotenoids in the LH2 light-harvesting complex from Ectothiorhodospira haloalkaliphila is negligible.

    Science.gov (United States)

    Razjivin, A P; Lukashev, E P; Kompanets, V O; Kozlovsky, V S; Ashikhmin, A A; Chekalin, S V; Moskalenko, A A; Paschenko, V Z

    2017-09-01

    Pathways of intramolecular conversion and intermolecular electronic excitation energy transfer (EET) in the photosynthetic apparatus of purple bacteria remain subject to debate. Here we experimentally tested the possibility of EET from the bacteriochlorophyll (BChl) Soret band to the singlet S 2 level of carotenoids using femtosecond pump-probe measurements and steady-state fluorescence excitation and absorption measurements in the near-ultraviolet and visible spectral ranges. The efficiency of EET from the Soret band of BChl to S 2 of the carotenoids in light-harvesting complex LH2 from the purple bacterium Ectothiorhodospira haloalkaliphila appeared not to exceed a few percent.

  18. [Isolation and preliminary characterization of carotenoids from pink-pigmented methylotrophs].

    Science.gov (United States)

    Konovalova, A M; Shylin, S O; Rokytko, P V

    2006-01-01

    An effective method was developed for complete removal of pigments from the cells and solvent mixture for further separation of pigments using thin layer chromatography on silica gel. Carotenoid samples that have been obtained in this way are of good purity for further investigations. Carotenoid pigments of pink-pigmented facultative methylotrophic bacteria Methylobacterium have been characterized. These carotenoids are represented mainly by xanthophylls, particularly hydroxycarotenoids. Strains M. fujisawaense B-3365 and M. mesophilicum B-3352 also have nonpolar carotenes in a small amount. Physico-chemical properties of carotenoids have been studied.

  19. The role of carotenoids in human health.

    Science.gov (United States)

    Johnson, Elizabeth J

    2002-01-01

    Dietary carotenoids are thought to provide health benefits in decreasing the risk of disease, particularly certain cancers and eye disease. The carotenoids that have been most studied in this regard are beta-carotene, lycopene, lutein, and zeaxanthin. In part, the beneficial effects of carotenoids are thought to be due to their role as antioxidants. beta-Carotene may have added benefits due its ability to be converted to vitamin A. Furthermore, lutein and zeaxanthin may be protective in eye disease because they absorb damaging blue light that enters the eye. Food sources of these compounds include a variety of fruits and vegetables, although the primary sources of lycopene are tomato and tomato products. Additionally, egg yolk is a highly bioavailable source of lutein and zeaxanthin. These carotenoids are available in supplement form. However, intervention trials with large doses of beta-carotene found an adverse effect on the incidence of lung cancer in smokers and workers exposed to asbestos. Until the efficacy and safety of taking supplements containing these nutrients can be determined, current dietary recommendations of diets high in fruits and vegetables are advised.

  20. A genetic screen for increasing metabolic flux in the isoprenoid pathway of Saccharomyces cerevisiae: Isolation of SPT15 mutants using the screen

    Directory of Open Access Journals (Sweden)

    M. Wadhwa

    2016-12-01

    Full Text Available A genetic screen to identify mutants that can increase flux in the isoprenoid pathway of yeast has been lacking. We describe a carotenoid-based visual screen built with the core carotenogenic enzymes from the red yeast Rhodosporidium toruloides. Enzymes from this yeast displayed the required, higher capacity in the carotenoid pathway. The development also included the identification of the metabolic bottlenecks, primarily phytoene dehydrogenase, that was subjected to a directed evolution strategy to yield more active mutants. To further limit phytoene pools, a less efficient version of GGPP synthase was employed. The screen was validated with a known flux increasing gene, tHMG1. New mutants in the TATA binding protein SPT15 were isolated using this screen that increased the yield of carotenoids, and an alternate isoprenoid, α-Farnesene confirming increase in overall flux. The findings indicate the presence of previously unknown links to the isoprenoid pathway that can be uncovered using this screen. Keywords: Metabolic engineering, Carotenoids, Isoprenoids, α-Farnesene, Rhodosporidium toruloides, SPT15

  1. The oxylipin pathway in Arabidopsis.

    Science.gov (United States)

    Creelman, Robert A; Mulpuri, Rao

    2002-01-01

    Oxylipins are acyclic or cyclic oxidation products derived from the catabolism of fatty acids which regulate many defense and developmental pathways in plants. The dramatic increase in the volume of publications and reviews on these compounds since 1997 documents the increasing interest in this compound and its role in plants. Research on this topic has solidified our understanding of the chemistry and biosynthetic pathways for oxylipin production. However, more information is still needed on how free fatty acids are produced and the role of beta-oxidation in the biosynthetic pathway for oxylipins. It is also becoming apparent that oxylipin content and composition changes during growth and development and during pathogen or insect attack. Oxylipins such as jasmonic acid (JA) or 12-oxo-phytodienoic acid modulate the expression of numerous genes and influence specific aspects of plant growth, development and responses to abiotic and biotic stresses. Although oxylipins are believed to act alone, several examples were presented to illustrate that JA-induced responses are modulated by the type and the nature of crosstalk with other signaling molecules such as ethylene and salicylic acid. How oxylipins cause changes in gene expression and instigate a physiological response is becoming understood with the isolation of mutations in both positive and negative regulators in the jasmonate signaling pathway and the use of cDNA microarrays.

  2. Metabolism of carotenoids and apocarotenoids during ripening of raspberry fruit

    DEFF Research Database (Denmark)

    Beekwilder, J; van der Meer, IM; Simicb, A

    2008-01-01

    Carotenoids are important lipophilic antioxidants in fruits. Apocarotenoids such as α-ionone and β-ionone, which are breakdown products of carotenoids, are important for the flavor characteristics of raspberry fruit, and have also been suggested to have beneficial effects on human health. Raspberry...... is one of the few fruits where fruit ripening is accompanied by the massive production of apocarotenoids. In this paper, changes in levels of carotenoids and apocarotenoids during raspberry fruit ripening are described. In addition, the isolation and characterization of a gene encoding a carotenoid...... cleavage dioxygenase (CCD), which putatively mediates the degradation of carotenoids to apocarotenoids during raspberry fruit ripening, is reported. Such information helps us to better understand how these compounds are produced in plants and may also enable us to develop novel strategies for improved...

  3. On the role of labile oxocomplexes in carotenoids antioxidant activity

    International Nuclear Information System (INIS)

    Prokhorova, L.I.; Revina, A.A.

    2001-01-01

    Early stages of the interaction of carotenoids and molecular oxygen are studied and role of its interaction in the processes responsible for radiation resistance of carotenoids, superoxide dismutase activity to the singlet oxygen quenching. Ethanol and aqueous solutions of the carotenoids (phosphate buffer with pH 7.5) were exposed to accelerated electron flux at pulse regime and dose rate (0.7-2.0)x10 17 eV/ml imp in the dark and in case of combined effect of radiation and light. It is concluded that at the early stages of processes with the participation of carotenoids the formation of reversible complexes with charge transfer plays the important role. Properties and reaction capability of these complexes are determined by the peculiarities in chemical structure of carotenoid molecules [ru

  4. Modification of lymphocyte DNA damage by carotenoid supplementation in postmenopausal women.

    Science.gov (United States)

    Zhao, Xianfeng; Aldini, Giancarlo; Johnson, Elizabeth J; Rasmussen, Helen; Kraemer, Klaus; Woolf, Herb; Musaeus, Nina; Krinsky, Norman I; Russell, Robert M; Yeum, Kyung-Jin

    2006-01-01

    Oxidative stress has been implicated in the pathogenesis of chronic diseases related to aging such as cancer and cardiovascular disease. Carotenoids could be a part of a protective strategy to minimize oxidative damage in vulnerable populations, such as the elderly. Our aim was to determine the protective effect of carotenoids against DNA damage. A randomized, double-blind, placebo-controlled intervention study was conducted. Thirty-seven healthy, nonsmoking postmenopausal women aged 50-70 y were randomly assigned to 1 of 5 groups and were instructed to consume a daily dose of mixed carotenoids (beta-carotene, lutein, and lycopene; 4 mg each), 12 mg of a single carotenoid (beta-carotene, lutein, or lycopene), or placebo for 56 d. Plasma carotenoid concentrations were analyzed by using HPLC, and lymphocyte DNA damage was measured by using a single-cell gel electrophoresis (comet) assay. At day 57, all carotenoid-supplemented groups showed significantly lower endogenous DNA damage than at baseline (P lutein, beta-carotene, and lycopene), an intake that can be achieved by diet, or a larger dose (12 mg) of individual carotenoids exerts protection against DNA damage.

  5. Biodisponibilidad de carotenoides

    Directory of Open Access Journals (Sweden)

    César M. Baracaldo

    1998-12-01

    Full Text Available La vitamina A y sus derivados conocidos como retinoides (de origen animal y compuestos pro-vitamina A denominados carotenoides (de origen vegetal son importantes en la prevención de cáncer, enfermedades crónicas y enfermedades relacionadas con la deficiencia de vitamina A; por tanto, es importante conocer la absorción, metabolismo, transporte y almacenamiento de estos compuestos en humanos. Debido a lo compleja que ha sido la utilización de modelos humanos para estudiar la biodisponibilidad de carotenoides de fuentes naturales y sintéticas, recientemente se han desarrollado modelos animales que permiten avances significativos en áreas de poca conocimiento. Esta revisión pretende dar la mayor información acerca de la farmacocinética y el metabolismo de este nutriente que permita a los interesados utilizar el modelo más apropiado para los fines que persiga.

  6. Non-invasive in vivo measurement of macular carotenoids

    Science.gov (United States)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2009-01-01

    A non-invasive in vivo method for assessing macular carotenoids includes performing Optical Coherence Tomography (OCT) on a retina of a subject. A spatial representation of carotenoid levels in the macula based on data from the OCT of the retina can be generated.

  7. Selective binding of carotenoids with a shorter conjugated chain to the LH2 antenna complex and those with a longer conjugated chain to the reaction center from Rubrivivax gelatinosus.

    Science.gov (United States)

    Kakitani, Yoshinori; Fujii, Ritsuko; Hayakawa, Yoshihiro; Kurahashi, Masahiro; Koyama, Yasushi; Harada, Jiro; Shimada, Keizo

    2007-06-19

    Rubrivivax gelatinosus having both the spheroidene and spirilloxanthin biosynthetic pathways produces carotenoids (Cars) with a variety of conjugated chains, which consist of different numbers of conjugated double bonds (n), including the C=C (m) and C=O (o) bonds. When grown under anaerobic conditions, the wild type produces Cars for which n = m = 9-13, whereas under semiaerobic conditions, it additionally produces Cars for which n = m + o = 10 + 1, 13 + 1, and 13 + 2. On the other hand, a mutant, in which the latter pathway is genetically blocked, produces only Cars for which n = 9 and 10 under anaerobic conditions and n = 9, 10, and 10 + 1 under semianaerobic conditions. Those Cars that were extracted from the LH2 complex (LH2) and the reaction center (RC), isolated from the wild-type and the mutant Rvi. gelatinosus, were analyzed by HPLC, and their structures were determined by mass spectrometry and 1H NMR spectroscopy. The selective binding of Cars to those pigment-protein complexes has been characterized as follows. (1) Cars with a shorter conjugated chain are selectively bound to LH2 whereas Cars with a longer conjugated chain to the RC. (2) Shorter chain Cars with a hydroxyl group are bound to LH2 almost exclusively. This rule holds either in the absence or in the presence of the keto group. The natural selection of shorter chain Cars by LH2 and longer chain Cars by the RC is discussed, on the basis of the results now available, in relation to the light-harvesting and photoprotective functions of Cars.

  8. Effects of organic and conventional growth systems on the content of carotenoids in carrot roots, and on intake and plasma status of carotenoids in humans

    DEFF Research Database (Denmark)

    Søltoft, Malene; Bysted, Anette; Madsen, K. H.

    2011-01-01

    BACKGROUND: The demand for organic food products has increased during the last decades due to their probable health effects, among others. A higher content of secondary metabolites such as carotenoids in organic food products has been claimed, though not documented, to contribute to increased...... health effects of organic foods. The aim was to study the impact of organic and conventional agricultural systems on the content of carotenoids in carrots and human diets. In addition, a human cross-over study was performed, measuring the plasma status of carotenoids in humans consuming diets made from...... crops from these agricultural systems. RESULTS: The content of carotenoids in carrot roots and human diets was not significantly affected by the agricultural production system or year, despite differences in fertilisation strategy and levels. The plasma status of carotenoids increased significantly...

  9. A new energy transfer channel from carotenoids to chlorophylls in purple bacteria.

    Science.gov (United States)

    Feng, Jin; Tseng, Chi-Wei; Chen, Tingwei; Leng, Xia; Yin, Huabing; Cheng, Yuan-Chung; Rohlfing, Michael; Ma, Yuchen

    2017-07-10

    It is unclear whether there is an intermediate dark state between the S 2 and S 1 states of carotenoids. Previous two-dimensional electronic spectroscopy measurements support its existence and its involvement in the energy transfer from carotenoids to chlorophylls, but there is still considerable debate on the origin of this dark state and how it regulates the energy transfer process. Here we use ab initio calculations on excited-state dynamics and simulated two-dimensional electronic spectrum of carotenoids from purple bacteria to provide evidence supporting that the dark state may be assigned to a new A g + state. Our calculations also indicate that groups on the conjugation backbone of carotenoids may substantially affect the excited-state levels and the energy transfer process. These results contribute to a better understanding of carotenoid excited states.Carotenoids harvest energy from light and transfer it to chlorophylls during photosynthesis. Here, Feng et al. perform ab initio calculations on excited-state dynamics and simulated 2D electronic spectrum of carotenoids, supporting the existence of a new excited state in carotenoids.

  10. No detectable carotenoid concentrations in serum of llamas and alpacas.

    Science.gov (United States)

    Raila, J; Schweigert, F J; Stanitznig, A; Lambacher, B; Franz, S; Baldermann, S; Wittek, T

    2017-08-01

    Carotenoids are lipid-soluble pigments and important for a variety of physiological functions. They are major dietary vitamin A precursors and act as lipophilic antioxidants in a variety of tissues and are associated with important health benefits in humans and animals. All animals must acquire carotenoids from their diet, but to our knowledge, there are no studies investigating the intestinal carotenoid absorption and their blood concentrations in New World camelids. The present study aimed to assess the serum concentrations of selected carotenoids in llamas (n = 13) and alpacas (n = 27). Serum carotenoids as well as retinol (vitamin A) and α-tocopherol (vitamin E) were determined by high-performance liquid chromatography coupled with mass spectrometry and these were unable to detect any carotenoids (α- and β-carotene, α- and β-cryptoxanthin, lutein, zeaxanthin, lycopene) in the samples. The concentrations of retinol in alpacas (2.89 ± 1.13 μmol/l; mean ± SD) were higher (p = 0.024) than those found in llamas (2.05 ± 0.87 μmol/l); however, the concentrations of α-tocopherol were not significantly (p = 0.166) different (llamas: 3.98 ± 1.83 μmol/l; alpacas: 4.95 ± 2.14 μmol/l). The results show that both llamas and alpacas are not able to absorb intact carotenoids, but efficiently convert provitamin A carotenoids to retinol. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  11. Assessment of leaf carotenoids content with a new carotenoid index: Development and validation on experimental and model data

    Science.gov (United States)

    Zhou, Xianfeng; Huang, Wenjiang; Kong, Weiping; Ye, Huichun; Dong, Yingying; Casa, Raffaele

    2017-05-01

    Leaf carotenoids content (LCar) is an important indicator of plant physiological status. Accurate estimation of LCar provides valuable insight into early detection of stress in vegetation. With spectroscopy techniques, a semi-empirical approach based on spectral indices was extensively used for carotenoids content estimation. However, established spectral indices for carotenoids that generally rely on limited measured data, might lack predictive accuracy for carotenoids estimation in various species and at different growth stages. In this study, we propose a new carotenoid index (CARI) for LCar assessment based on a large synthetic dataset simulated from the leaf radiative transfer model PROSPECT-5, and evaluate its capability with both simulated data from PROSPECT-5 and 4SAIL and extensive experimental datasets: the ANGERS dataset and experimental data acquired in field experiments in China in 2004. Results show that CARI was the index most linearly correlated with carotenoids content at the leaf level using a synthetic dataset (R2 = 0.943, RMSE = 1.196 μg/cm2), compared with published spectral indices. Cross-validation results with CARI using ANGERS data achieved quite an accurate estimation (R2 = 0.545, RMSE = 3.413 μg/cm2), though the RBRI performed as the best index (R2 = 0.727, RMSE = 2.640 μg/cm2). CARI also showed good accuracy (R2 = 0.639, RMSE = 1.520 μg/cm2) for LCar assessment with leaf level field survey data, though PRI performed better (R2 = 0.710, RMSE = 1.369 μg/cm2). Whereas RBRI, PRI and other assessed spectral indices showed a good performance for a given dataset, overall their estimation accuracy was not consistent across all datasets used in this study. Conversely CARI was more robust showing good results in all datasets. Further assessment of LCar with simulated and measured canopy reflectance data indicated that CARI might not be very sensitive to LCar changes at low leaf area index (LAI) value, and in these conditions soil moisture

  12. Evolution and Diversity of Biosynthetic Gene Clusters in Fusarium

    Directory of Open Access Journals (Sweden)

    Koen Hoogendoorn

    2018-06-01

    Full Text Available Plant pathogenic fungi in the Fusarium genus cause severe damage to crops, resulting in great financial losses and health hazards. Specialized metabolites synthesized by these fungi are known to play key roles in the infection process, and to provide survival advantages inside and outside the host. However, systematic studies of the evolution of specialized metabolite-coding potential across Fusarium have been scarce. Here, we apply a combination of bioinformatic approaches to identify biosynthetic gene clusters (BGCs across publicly available genomes from Fusarium, to group them into annotated families and to study gain/loss events of BGC families throughout the history of the genus. Comparison with MIBiG reference BGCs allowed assignment of 29 gene cluster families (GCFs to pathways responsible for the production of known compounds, while for 57 GCFs, the molecular products remain unknown. Comparative analysis of BGC repertoires using ancestral state reconstruction raised several new hypotheses on how BGCs contribute to Fusarium pathogenicity or host specificity, sometimes surprisingly so: for example, a gene cluster for the biosynthesis of hexadehydro-astechrome was identified in the genome of the biocontrol strain Fusarium oxysporum Fo47, while being absent in that of the tomato pathogen F. oxysporum f.sp. lycopersici. Several BGCs were also identified on supernumerary chromosomes; heterologous expression of genes for three terpene synthases encoded on the Fusarium poae supernumerary chromosome and subsequent GC/MS analysis showed that these genes are functional and encode enzymes that each are able to synthesize koraiol; this observed functional redundancy supports the hypothesis that localization of copies of BGCs on supernumerary chromosomes provides freedom for evolutionary innovations to occur, while the original function remains conserved. Altogether, this systematic overview of biosynthetic diversity in Fusarium paves the way for

  13. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters.

    Science.gov (United States)

    Weber, Tilmann; Blin, Kai; Duddela, Srikanth; Krug, Daniel; Kim, Hyun Uk; Bruccoleri, Robert; Lee, Sang Yup; Fischbach, Michael A; Müller, Rolf; Wohlleben, Wolfgang; Breitling, Rainer; Takano, Eriko; Medema, Marnix H

    2015-07-01

    Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products. At the enzyme level, active sites of key biosynthetic enzymes are now pinpointed through a curated pattern-matching procedure and Enzyme Commission numbers are assigned to functionally classify all enzyme-coding genes. Additionally, chemical structure prediction has been improved by incorporating polyketide reduction states. Finally, in order for users to be able to organize and analyze multiple antiSMASH outputs in a private setting, a new XML output module allows offline editing of antiSMASH annotations within the Geneious software. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Molecular basis of the evolution of alternative tyrosine biosynthetic routes in plants

    Energy Technology Data Exchange (ETDEWEB)

    Schenck, Craig A.; Holland, Cynthia K.; Schneider, Matthew R.; Men, Yusen; Lee, Soon Goo; Jez, Joseph M.; Maeda , Hiroshi A. (UW); (WU)

    2017-06-26

    L-Tyrosine (Tyr) is essential for protein synthesis and is a precursor of numerous specialized metabolites crucial for plant and human health. Tyr can be synthesized via two alternative routes by different key regulatory TyrA family enzymes, prephenate dehydrogenase (PDH, also known as TyrAp) or arogenate dehydrogenase (ADH, also known as TyrAa), representing a unique divergence of primary metabolic pathways. The molecular foundation underlying the evolution of these alternative Tyr pathways is currently unknown. Here we characterized recently diverged plant PDH and ADH enzymes, obtained the X-ray crystal structure of soybean PDH, and identified a single amino acid residue that defines TyrA substrate specificity and regulation. Structures of mutated PDHs co-crystallized with Tyr indicate that substitutions of Asn222 confer ADH activity and Tyr sensitivity. Reciprocal mutagenesis of the corresponding residue in divergent plant ADHs further introduced PDH activity and relaxed Tyr sensitivity, highlighting the critical role of this residue in TyrA substrate specificity that underlies the evolution of alternative Tyr biosynthetic pathways in plants.

  15. Carotenoids in Marine Invertebrates Living along the Kuroshio Current Coast

    Directory of Open Access Journals (Sweden)

    Yoshikazu Sakagami

    2011-08-01

    Full Text Available Carotenoids of the corals Acropora japonica, A. secale, and A. hyacinthus, the tridacnid clam Tridacna squamosa, the crown-of-thorns starfish Acanthaster planci, and the small sea snail Drupella fragum were investigated. The corals and the tridacnid clam are filter feeders and are associated with symbiotic zooxanthellae. Peridinin and pyrrhoxanthin, which originated from symbiotic zooxanthellae, were found to be major carotenoids in corals and the tridacnid clam. The crown-of-thorns starfish and the sea snail D. fragum are carnivorous and mainly feed on corals. Peridinin-3-acyl esters were major carotenoids in the sea snail D. fragum. On the other hand, ketocarotenoids such as 7,8-didehydroastaxanthin and astaxanthin were major carotenoids in the crown-of-thorns starfish. Carotenoids found in these marine animals closely reflected not only their metabolism but also their food chains.

  16. The Arabidopsis histone chaperone FACT is required for stress-induced expression of anthocyanin biosynthetic genes.

    Science.gov (United States)

    Pfab, Alexander; Breindl, Matthias; Grasser, Klaus D

    2018-03-01

    The histone chaperone FACT is involved in the expression of genes encoding anthocyanin biosynthetic enzymes also upon induction by moderate high-light and therefore contributes to the stress-induced plant pigmentation. The histone chaperone FACT consists of the SSRP1 and SPT16 proteins and associates with transcribing RNAPII (RNAPII) along the transcribed region of genes. FACT can promote transcriptional elongation by destabilising nucleosomes in the path of RNA polymerase II, thereby facilitating efficient transcription of chromatin templates. Transcript profiling of Arabidopsis plants depleted in SSRP1 or SPT16 demonstrates that only a small subset of genes is differentially expressed relative to wild type. The majority of these genes is either up- or down-regulated in both the ssrp1 and spt16 plants. Among the down-regulated genes, those encoding enzymes of the biosynthetic pathway of the plant secondary metabolites termed anthocyanins (but not regulators of the pathway) are overrepresented. Upon exposure to moderate high-light stress several of these genes are up-regulated to a lesser extent in ssrp1/spt16 compared to wild type plants, and accordingly the mutant plants accumulate lower amounts of anthocyanin pigments. Moreover, the expression of SSRP1 and SPT16 is induced under these conditions. Therefore, our findings indicate that FACT is a novel factor required for the accumulation of anthocyanins in response to light-induction.

  17. Absorption of Carotenoids and Mechanisms Involved in Their Health-Related Properties.

    Science.gov (United States)

    Cervantes-Paz, Braulio; Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús

    Carotenoids participate in the normal metabolism and function of the human body. They are involved in the prevention of several diseases, especially those related to the inflammation syndrome. Their main mechanisms of action are associated to their potent antioxidant activity and capacity to regulate the expression of specific genes and proteins. Recent findings suggest that carotenoid metabolites may explain several processes where the participation of their parent carotenoids was unclear. The health benefits of carotenoids strongly depend on their absorption and transformation during gastrointestinal digestion. The estimation of the 'bioaccessibility' of carotenoids through in vitro models have made possible the evaluation of the effect of a large number of factors on key stages of carotenoid digestion and intestinal absorption. The bioaccessibility of these compounds allows us to have a clear idea of their potential bioavailability, a term that implicitly involves the biological activity of these compounds.

  18. Utilization of Microemulsions from Rhinacanthus nasutus (L.) Kurz to Improve Carotenoid Bioavailability

    Science.gov (United States)

    Ho, Nai-Hsing; Inbaraj, Baskaran Stephen; Chen, Bing-Huei

    2016-01-01

    Carotenoids have been known to reduce the risk of several diseases including cancer and cardiovascular. However, carotenoids are unstable and susceptible to degradation. Rhinacanthus nasutus (L.) Kurz (R. nasutus), a Chinese medicinal herb rich in carotenoids, was reported to possess vital biological activities such as anti-cancer. This study intends to isolate carotenoids from R. nasutus by column chromatography, identify and quantify by HPLC-MS, and prepare carotenoid microemulsions for determination of absolute bioavailability in rats. Initially, carotenoid fraction was isolated using 250 mL ethyl acetate poured into an open-column packed with magnesium oxide-diatomaceous earth (1:3, w/w). Fourteen carotenoids including internal standard β-apo-8′-carotenal were resolved within 62 min by a YMC C30 column and gradient mobile phase of methanol-acetonitrile-water (82:14:4, v/v/v) and methylene chloride. Highly stable carotenoid microemulsions were prepared using a mixture of CapryolTM90, Transcutol®HP, Tween 80 and deionized water, with the mean particle being 10.4 nm for oral administration and 10.7 nm for intravenous injection. Pharmacokinetic study revealed that the absolute bioavailability of carotenoids in microemulsions and dispersion was 0.45% and 0.11%, respectively, while a much higher value of 6.25% and 1.57% were shown for lutein, demonstrating 4-fold enhancement in bioavailability upon incorporation of R. nasutus carotenoids into a microemulsion system. PMID:27150134

  19. Role of PPARγ in the nutritional and pharmacological actions of carotenoids

    Directory of Open Access Journals (Sweden)

    Zhao WE

    2016-04-01

    Full Text Available Wen-en Zhao,1 Guoqing Shi,2 Huihui Gu,1,3 Nguyen Ba Ngoc1,4 1School of Chemical Engineering and Energy, Zhengzhou University, 2School of Food and Bioengineering, Zhengzhou University of Light Industry, 3School of Life Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China; 4Faculty of Food Industry, College of Food Industry, Da Nang, Vietnam Abstract: Peroxisome proliferator-activated receptor gamma (PPARγ has been shown to play an important role in the biological effects of carotenoids. The PPARγ-signaling pathway is involved in the anticancer effects of carotenoids. Activation of PPARγ partly contributes to the growth-inhibitory effects of carotenoids (β-carotene, astaxanthin, bixin, capsanthin, lutein, and lycopene on breast cancer MCF7 cells, leukemia K562 cells, prostate cancer (LNCaP, DU145, and PC3 cells, and esophageal squamous cancer EC109 cells. PPARγ is the master regulator of adipocyte differentiation and adipogenesis. Downregulated PPARγ and PPARγ-target genes have been associated with the suppressive effects of β-carotene and lycopene on 3T3L1 and C3H10T1/2 adipocyte differentiation and adipogenesis. ß-Carotene is cleaved centrally into retinaldehyde by BCO1, the encoding gene being a PPARγ-target gene. Retinaldehyde can be oxidized to retinoic acid and also be reduced to retinol. β-Carotene can also be cleaved asymmetrically into β-apocarotenals and β-apocarotenones by BCO2. The inhibitory effects of β-carotene on the development of adiposity and lipid storage are dependent substantially on BCO1-mediated production of retinoids. The effects of β-carotene on body adiposity were absent in BCO1-knockout mice. Retinoid metabolism is connected with the activity of PPARγ in the control of body-fat reserves. Retinoic acid, retinaldehyde, retinol, and β-apocarotenals exert suppressive effects on preadipocyte differentiation and adipogenesis via downregulation of PPARγ expression in cell culture. The

  20. Simultaneous electrochemical-electron spin resonance studies of carotenoid cation radicals and dications

    International Nuclear Information System (INIS)

    Khaled, M.; Hadjipetrou, A.; Xinhai Chen; Kispert, L.

    1989-01-01

    Carotenoids are present in the chloroplasts of photosynthetic green plants and serve as photoprotect devices and antenna pigments, and active role in the photosynthetic electron-transport chain with the carotenoid cation radical as an integral part of the electron-transfer process. The research reported herein has confirmed that carotenoid cation radicals have a lifetime that is sensitive to solvent, being longest in CH 2 Cl 2 and are best prepared electrochemically. Semiempirical AM1 and INDO calculations of the trans and cis isomers of β-carotene, canthaxanthin and β-apo-8'-carotenal cation radicals predicted the unresolved EPR line whose linewidth varies to a measurable degree with carotenoid, which subsequent experimental observations affirmed. Simultaneous electrochemical - electron spin resonance studies of carotenoid cation radicals and dications have shown the radicals detected by EPR are formed by the one electron oxidation of the carotenoid, that dimers are not formed upon decay of the radical cations and an estimate of the rate of comproportionation as a function of carotenoid can be given. The formal rate constant K' for heterogenous electron transfer rate at the electrode surface has been deduced from rotating disc experiments. Upon deuteration, and in the presence of excess β-carotene, the half-life for decay of the carotenoid radical cation increased an order of magnitude due to the reaction between diffusion carotenoid dications and carotenoids to form additional radical cations. The carotenoid diffusion coefficients deduced by chronocoulometry substantiates this measurement. The produces formed upon electrochemical studies are being studied by HPLC and the isomers formed thermally are being separated. Additional radical reactions are currently being studied by EPR and electrochemical methods

  1. Effect of Carotenoid Supplemented Formula on Carotenoid Bioaccumulation in Tissues of Infant Rhesus Macaques: A Pilot Study Focused on Lutein

    Directory of Open Access Journals (Sweden)

    Sookyoung Jeon

    2017-01-01

    Full Text Available Lutein is the predominant carotenoid in the developing primate brain and retina, and may have important functional roles. However, its bioaccumulation pattern during early development is not understood. In this pilot study, we investigated whether carotenoid supplementation of infant formula enhanced lutein tissue deposition in infant rhesus macaques. Monkeys were initially breastfed; from 1 to 3 months of age they were fed either a formula supplemented with lutein, zeaxanthin, β-carotene and lycopene, or a control formula with low levels of these carotenoids, for 4 months (n = 2/group. All samples were analyzed by high pressure liquid chromatography (HPLC. Final serum lutein in the supplemented group was 5 times higher than in the unsupplemented group. All brain regions examined showed a selective increase in lutein deposition in the supplemented infants. Lutein differentially accumulated across brain regions, with highest amounts in occipital cortex in both groups. β-carotene accumulated, but zeaxanthin and lycopene were undetectable in any brain region. Supplemented infants had higher lutein concentrations in peripheral retina but not in macular retina. Among adipose sites, abdominal subcutaneous adipose tissue exhibited the highest lutein level and was 3-fold higher in the supplemented infants. The supplemented formula enhanced carotenoid deposition in several other tissues. In rhesus infants, increased intake of carotenoids from formula enhanced their deposition in serum and numerous tissues and selectively increased lutein in multiple brain regions.

  2. Effect of carotenoid structure on excited-state dynamics of carbonyl carotenoids

    Czech Academy of Sciences Publication Activity Database

    Chábera, P.; Fuciman, M.; Hříbek, P.; Polívka, Tomáš

    2009-01-01

    Roč. 11, - (2009), s. 8795-8703 ISSN 1463-9076 R&D Projects: GA AV ČR IAA608170604 Institutional research plan: CEZ:AV0Z50510513 Keywords : excited-state dynamics * carbonyl carotenoids * femtosecond spectroscopy Subject RIV: BO - Biophysics Impact factor: 4.116, year: 2009

  3. A química dos liquens

    Directory of Open Access Journals (Sweden)

    Honda Neli Kika

    1999-01-01

    Full Text Available Lichens are symbiotic associations between fungi and algae and/or cyanobacteria. They produce common intracellular products including proteins, amino acids, polyols, carotenoids, polysaccharides and vitamins. The secondary metabolites found in lichens are phenolics which accumulate either on the cortex or on the cell walls of medullary hyphae and they are mainly acetyl-polimalonyl pathway derivatives. Polysaccharides, proteins and secondary metabolites produced by lichens have attracted the attention of investigators due their biological activities. This revision coments about the biosynthetic origin and structures of the principal classes of compounds produced by these organisms.

  4. Certain aspects of the reactivity of carotenoids. Redox processes and complexation

    International Nuclear Information System (INIS)

    Polyakov, Nikolay E; Leshina, Tatyana V

    2006-01-01

    The published data on the redox reactions of carotenoids, their supramolecular inclusion complexes and the composition, properties and practical application of these complexes are generalised. Special attention is given to the effect of complexation on radical processes involving carotenoids and on the antioxidant activity of carotenoids.

  5. Determination of carotenoids in yellow maize, the effects of saponification and food preparations.

    Science.gov (United States)

    Muzhingi, Tawanda; Yeum, Kyung-Jin; Russell, Robert M; Johnson, Elizabeth J; Qin, Jian; Tang, Guangwen

    2008-05-01

    Maize is an important staple food consumed by millions of people in many countries. Yellow maize naturally contains carotenoids which not only provide provitamin A carotenoids but also xanthophylls, which are known to be important for eye health. This study was aimed at 1) evaluating the effect of saponification during extraction of yellow maize carotenoids, 2) determining the major carotenoids in 36 genotypes of yellow maize by high-performance liquid chromatography with a C30 column, and 3) determining the effect of cooking on the carotenoid content of yellow maize. The major carotenoids in yellow maize were identified as all-trans lutein, cis-isomers of lutein, all-trans zeaxanthin, alpha- and beta-cryptoxanthin, all-trans beta-carotene, 9-cis beta-carotene, and 13-cis beta-carotene. Our results indicated that carotenoid extraction without saponification showed a significantly higher yield than that obtained using saponification. Results of the current study indicate that yellow maize is a good source of provitamin A carotenoids and xanthophylls. Cooking by boiling yellow maize at 100 degrees C for 30 minutes increased the carotenoid concentration, while baking at 450 degrees F for 25 minutes decreased the carotenoid concentrations by almost 70% as compared to the uncooked yellow maize flour.

  6. Non-pro-vitamin A and pro-vitamin A carotenoids in atopy development.

    Science.gov (United States)

    Rühl, R

    2013-01-01

    Carotenoids are important derivatives of the human diet and occur in high concentrations in the human organism. Various carotenoids are also present in human breast milk and are transferred to breast-fed children. The alternative to breastfeeding is supplementation with an infant milk formula, but these formulas contain only a limited variety of carotenoids. Our question is: 'What is the function of various carotenoids in human nutrition with a special emphasis on child development and the development of atopy?' In this review, the mechanisms of action of the most important non-pro-vitamin A and pro-vitamin A carotenoids: α-carotene, β-carotene, β-cryptoxanthin, lutein, zeaxanthin, lycopene and retinoids are discussed. In summary, the combination of carotenoids, especially lycopene, seems to be of great importance, and exclusive usage of β-carotene in infant formula may yield in an increased atopy prevalence mediated in various target organs like the skin, lungs and immune competent cells. We conclude that the determination of novel bioactive metabolites of various carotenoids, at various stages in different organs during atopy development, might be the key to understanding the potential importance of carotenoids on atopy development. Copyright © 2013 S. Karger AG, Basel.

  7. Influence of sample processing on the analysis of carotenoids in maize.

    Science.gov (United States)

    Rivera, Sol; Canela, Ramon

    2012-09-21

    We performed a number of tests with the aim to develop an effective extraction method for the analysis of carotenoid content in maize seed. Mixtures of methanol-ethyl acetate (6:4, v/v) and methanol-tetrahydrofuran (1:1, v/v) were the most effective solvent systems for carotenoid extraction from maize endosperm under the conditions assayed. In addition, we also addressed sample preparation prior to the analysis of carotenoids by liquid chromatography (LC). The LC response of extracted carotenoids and standards in several solvents was evaluated and results were related to the degree of solubility of these pigments. Three key factors were found to be important when selecting a suitable injection solvent: compatibility between the mobile phase and injection solvent, carotenoid polarity and content in the matrix.

  8. Excitation wavelength selection for quantitative analysis of carotenoids in tomatoes using Raman spectroscopy.

    Science.gov (United States)

    Hara, Risa; Ishigaki, Mika; Kitahama, Yasutaka; Ozaki, Yukihiro; Genkawa, Takuma

    2018-08-30

    The difference in Raman spectra for different excitation wavelengths (532 nm, 785 nm, and 1064 nm) was investigated to identify an appropriate wavelength for the quantitative analysis of carotenoids in tomatoes. For the 532 nm-excited Raman spectra, the intensity of the peak assigned to the carotenoid has no correlation with carotenoid concentration, and the peak shift reflects carotenoid composition changing from lycopene to β-carotene and lutein. Thus, 532 nm-excited Raman spectra are useful for the qualitative analysis of carotenoids. For the 785 nm- and 1064 nm-excited Raman spectra, the peak intensity of the carotenoid showed good correlation with carotenoid concentration; thus, regression models for carotenoid concentration were developed using these Raman spectra and partial least squares regression. A regression model designed using the 785 nm-excited Raman spectra showed a better result than the 532 nm- and 1064 nm-excited Raman spectra. Therefore, it can be concluded that 785 nm is the most suitable excitation wavelength for the quantitative analysis of carotenoid concentration in tomatoes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Carotenoids of Microalgae Used in Food Industry and Medicine.

    Science.gov (United States)

    Gateau, Hélène; Solymosi, Katalin; Marchand, Justine; Schoefs, Benoît

    2017-01-01

    Since the industrial revolution, the consumption of processed food increased dramatically. During processing, food material loses many of its natural properties. The simple restoration of the original properties of the processed food as well as fortification require food supplementation with compounds prepared chemically or of natural origin. The observations that natural food additives are safer and better accepted by consumers than synthetic ones have strongly increased the demand for natural compounds. Because some of them have only a low abundance or are even rare, their market price can be very high. This is the case for most carotenoids of natural origin to which this review is dedicated. The increasing demand for food additives of natural origin contributes to an accelerated depletion of traditional natural resources already threatened by intensive agriculture and pollution. To overcome these difficulties and satisfy the demand, alternative sources for natural carotenoids have to be found. In this context, photosynthetic microalgae present a very high potential because they contain carotenoids and are able to produce particular carotenoids under stress. Their potential also resides in the fact that only ten thousands of microalgal strains have been described while hundred thousands of species are predicted to exist. Carotenoids have been known for ages for their antioxidant and coloring properties, and a large body of evidence has been accumulated about their health potential. This review summarizes both the medicinal and food industry applications of microalgae with emphasis on the former. In addition, traditional and alternative microalgal sources used for industrial carotenoid extraction, the chemical and physical properties, the biosynthesis and the localization of carotenoids in algae are also briefly discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits.

    Science.gov (United States)

    Delgado-Pelayo, Raúl; Gallardo-Guerrero, Lourdes; Hornero-Méndez, Dámaso

    2016-05-15

    The carotenoid composition of strawberry tree (Arbutus unedo) fruits has been characterised in detail and quantified for the first time. According to the total carotenoid content (over 340 μg/g dw), mature strawberry tree berries can be classified as fruits with very high carotenoid content (>20 μg/g dw). (all-E)-Violaxanthin and 9Z-violaxanthin were found to be the major carotenoid pigments, accounting for more than 60%, responsible for the bright colour of the flesh of ripe fruits. In addition other 5,6-epoxide carotenoids, such as (all-E)-neoxanthin, (9'Z)-neoxanthin (all-E)-antheraxanthin and lutein 5,6-epoxide, together with (all-E)-lutein, (all-E)-zeaxanthin and (all-E)-β-carotene were found at high levels (>5-20 μg/g dw). The LC-MS (APCI+) analysis of the xanthophyll fraction in their native state (direct extract) revealed that most of them (>90%) were totally esterified with saturated fatty acids (capric, lauric, myristic, palmitic and stearic). Monoesters, homodiesters and heterodiesters of (all-E)-violaxanthin and 9Z-violaxanthin were the major pigments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Carotenoid composition of jackfruit (Artocarpus heterophyllus), determined by HPLC-PDA-MS/MS.

    Science.gov (United States)

    de Faria, A F; de Rosso, V V; Mercadante, A Z

    2009-06-01

    Carotenoids are pigments responsible for the yellow-reddish color of many foods and are related to important functions and physiological actions, preventing several chronic-degenerative diseases. The objective of this study was to confirm the carotenoid composition of jackfruit by high-performance liquid chromatography connected to photodiode array and mass spectrometry detectors (HPLC-PDA-MS/MS). The main carotenoids were all-trans-lutein (24-44%), all-trans-beta-carotene (24-30%), all-trans-neoxanthin (4-19%), 9-cis-neoxanthin (4-9%) and 9-cis-violaxanthin (4-10%). Either qualitative or quantitative differences, mainly related to the lutein proportion, were found among three batches of jackfruit. Since the fruits from batch A showed significantly lower contents for almost all carotenoids, it also had the lowest total carotenoid content (34.1 microg/100 g) and provitamin A value, whereas the total carotenoid ranged from 129.0 to 150.3 microg/100 g in the other batches. The provitamin A values from batches B and C were 3.3 and 4.3 microg RAE/100 g, respectively. The carotenoid composition of jackfruit was successfully determined, where 14 of the 18 identified carotenoids were reported for first time. Differences among batches may be due to genetic and/or agricultural factors.

  12. Identification of Carotenoids and Isoprenoid Quinones from Asaia lannensis and Asaia bogorensis

    Directory of Open Access Journals (Sweden)

    Hubert Antolak

    2017-09-01

    Full Text Available The aim of the study was to identify and quantitatively assess of carotenoids and isoprenoid quinones biosynthesized by six different strains of acetic acid bacteria, belonging to genus Asaia, that are common beverage-spoiling bacteria in Europe. Bacterial cultures were conducted in a laboratory liquid culture minimal medium with 2% sucrose. Carotenoids and isoprenoid quinones were investigated using UHPLC-DAD-ESI-MS analysis. In general, tested strains of Asaia spp. were able to produce 10 carotenoids and 3 isoprenoid quinones: menaquinone-7, menaquinone-8, and ubiquinone-10. The main identified carotenoids in Asaia lannensis strains were phytofluene, neurosporene, α-carotene, while for Asaia bogorensis, neurosporene, canthaxanthin, and zeaxanthin were noted. What is more, tested Asaia spp. were able to produce myxoxanthophyll, which has so far been identified primarily in cyanobacteria. The results show that A. lannensis are characterized by statistically higher concentrations of produced carotenoids, as well as a greater variety of these compounds. We have noted that carotenoids were not only accumulated by bacterial cells, but also some strains of A. lannensis produced extracellular carotenoids.

  13. Carotenoids from Capsicum annuum fruits: Influence of spectral quality of radiation

    International Nuclear Information System (INIS)

    Lopez, M.; Candela, M.E.; Sabater, F.

    1986-01-01

    Capsicum annuum L. cv. Ramillete fruits grown in the field were covered 60 d after flowering with “white”, yellow, red and blue cellophane filters. Two other sets were left in full sunlight and under cover, respectively. After 30 d of treatment, during the ripening period, the contents of individual carotenoids were analyzed. The red radiation was the most effective to increase the carotenoid biosynthesis, but the green and blue radiations inhibited their production. Either class of filters inhibited the formation of capsanthin, the most important carotenoid in the production of red colour of the maturation, but capsorubin, the other carotenoid responsible for the maturation colour, was more enhanced in the shade and under red radiation. Neither type of radiation was so efficient in increasing the total carotenoids content as the full sun radiation

  14. Transcriptome and metabolome analysis of Ferula gummosa Boiss. to reveal major biosynthetic pathways of galbanum compounds.

    Science.gov (United States)

    Sobhani Najafabadi, Ahmad; Naghavi, Mohammad Reza; Farahmand, Hamid; Abbasi, Alireza

    2017-11-01

    Ferula gummosa Boiss. is an industrial and pharmaceutical plant that has been highly recognized for its valuable oleo-gum-resin, namely galbanum. Despite the fabulous value of galbanum, very little information on the genetic and biochemical mechanisms of its production existed. In the present study, the oleo-gum-resin and four organs (root, flower, stem, and leaf) of F. gummosa were assessed in terms of metabolic compositions and the expression of genes involved in their biosynthetic pathways. Results showed that the most accumulation of resin and essential oils were occurred in the roots (13.99 mg/g) and flowers (6.01 mg/g), respectively. While the most dominant compound of the resin was β-amyrin from triterpenes, the most abundant compounds of the essential oils were α-pinene and β-pinene from monoterpenes and α-eudesmol and germacrene-D from sesquiterpenes. Transcriptome analysis was performed by RNA sequencing (RNA-seq) for the plant roots and flowers. Differential gene expression analysis showed that 1172 unigenes were differential between two organs that 934 (79.6%) of them were up-regulated in the flowers and 238 (20.4%) unigenes were up-regulated in the roots (FDR ≤0.001). The most important up-regulated unigenes in the roots were involved in the biosynthesis of the major components of galbanum, including myrcene, germacrene-D, α-terpineol, and β-amyrin. The results obtained by RNA-Seq were confirmed by qPCR. These analyses showed that different organs of F. gummosa are involved in the production of oleo-gum-resin, but the roots are more active than other organs in terms of the biosynthesis of triterpenes and some mono- and sesquiterpenes. This study provides rich molecular and biochemical resources for further studies on molecular genetics and functional genomics of oleo-gum-resin production in F. gummosa.

  15. CAROTENOID RETENTION IN MINIMALLY PROCESSED BIOFORTIFIED GREEN CORN STORED UNDER RETAIL MARKETING CONDITIONS

    Directory of Open Access Journals (Sweden)

    Natália Alves Barbosa

    2015-08-01

    Full Text Available Storing processed food products can cause alterations in their chemical compositions. Thus, the objective of this study was to evaluate carotenoid retention in the kernels of minimally processed normal and vitamin A precursor (proVA-biofortified green corn ears that were packaged in polystyrene trays covered with commercial film or in multilayered polynylon packaging material and were stored. Throughout the storage period, the carotenoids were extracted from the corn kernels using organic solvents and were quantified using HPLC. A completely factorial design including three factors (cultivar, packaging and storage period was applied for analysis. The green kernels of maize cultivars BRS1030 and BRS4104 exhibited similar carotenoid profiles, with zeaxanthin being the main carotenoid. Higher concentrations of the carotenoids lutein, β-cryptoxanthin, and β-carotene, the total carotenoids and the total vitamin A precursor carotenoids were detected in the green kernels of the biofortified BRS4104 maize. The packaging method did not affect carotenoid retention in the kernels of minimally processed green corn ears during the storage period.

  16. Carotenoids profile and total polyphenols in fruits of Pereskia aculeata Miller

    Directory of Open Access Journals (Sweden)

    Tânia da Silveira Agostini-Costa

    2012-03-01

    Full Text Available Pereskia aculeata Mill. (Ora-pro-nóbis is a native cactaceae from tropical America, whose leaves have high protein content. In Brazil it is found in all territorial extension between the states of Bahia and Rio Grande do Sul. Most studies have focused on chemical characterization of the leaves of this specie. The objective was to assess the carotenoids profile and the total polyphenols present in the fruits of P. aculeate. Carotenoids were determined by HPLC-PAD (high performance liquid chromatography - photodiode array detector, total polyphenols were determined by Folin-Ciocalteu and vanillin methods. Trans-β-carotene was the main carotenoid, followed by α-carotene, lutein and other minor carotenoids. It was found 64.9 ± 1.1 mg.100g-1 of gallic acid equivalent, 14.8 ± 0.2 mg.100g-1 of catechin equivalent. Carotenoid identification of P. aculeate fruits are presented here by the first time and indicate that these fruits can be researched as source of bioactive substances, especially antioxidant and provitamin A carotenoids.

  17. Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains.

    Science.gov (United States)

    Paznocht, Luboš; Kotíková, Zora; Šulc, Miloslav; Lachman, Jaromír; Orsák, Matyáš; Eliášová, Marie; Martinek, Petr

    2018-02-01

    Carotenoids are important phytonutrients responsible for the yellow endosperm color in cereal grains. Five carotenoids, namely lutein, zeaxanthin, antheraxanthin, α- and β-carotene, were quantified by HPLC-DAD-MS in fourteen genotypes of wheat, barley and tritordeum harvested in Czechia in 2014 and 2015. The highest carotenoid contents were found in yellow-grained tritordeum HT 439 (12.16μg/gDW), followed by blue-grained wheat V1-131-15 (7.46μg/gDW), and yellow-grained wheat TA 4024 (7.04μg/gDW). Comparing carotenoid contents, blue varieties had lower whereas purple ones had the same or higher levels than conventional bread wheat. Lutein was the main carotenoid found in wheat and tritordeum while zeaxanthin dominated in barley. The majority of cereals contained considerable levels of esterified forms (up to 61%) of which lutein esters prevailed. It was assessed that cereal genotype determines the proportion of free and esterified forms. High temperatures and drought during the growing season promoted carotenoid biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Improving carotenoid extraction from tomato waste by pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Elisa eLuengo

    2014-08-01

    Full Text Available In this investigation, the influence of the application of Pulsed Electric Fields (PEF of different intensities (3-7 kV/cm and 0-300 μs on the carotenoid extraction from tomato peel and pulp in a mixture of hexane:acetone:ethanol was studied with the aim of increasing extraction yield or reducing the percentage of the less green solvents in the extraction medium. According to the cellular disintegration index, the optimum treatment time for the permeabilization of tomato peel and pulp at different electric field strengths was 90 µs. The PEF permeabilization of tomato pulp did not significantly increase the carotenoid extraction. However, a PEF-treatment at 5 kV/cm improved the carotenoid extraction from tomato peel by 39 % as compared with the control in a mixture of hexane:ethanol:acetone (50:25:25. Further increments of electric field from 5 to 7 kV/cm did not increase significantly the extraction of carotenoids. . The presence of acetone in the solvent mixture did not positively affect the carotenoid extraction when the tomato peels were PEF-treated. Response surface methodology was used to determine the potential of PEF for reducing the percentage of hexane in a hexane:ethanol mixture. The application of a PEF-treatment allowed reducing the hexane percentage from 45 to 30 % without affecting the carotenoid extraction yield. The antioxidant capacity of the extracts obtained from tomato peel was correlated with the carotenoid concentration and it was not affected by the PEF-treatment.

  19. Expanding the chemical diversity of natural esters by engineering a polyketide-derived pathway into Escherichia coli.

    Science.gov (United States)

    Menendez-Bravo, Simón; Comba, Santiago; Sabatini, Martín; Arabolaza, Ana; Gramajo, Hugo

    2014-07-01

    Microbial fatty acid (FA)-derived molecules have emerged as promising alternatives to petroleum-based chemicals for reducing dependence on fossil hydrocarbons. However, native FA biosynthetic pathways often yield limited structural diversity, and therefore restricted physicochemical properties, of the end products by providing only a limited variety of usually linear hydrocarbons. Here we have engineered into Escherichia coli a mycocerosic polyketide synthase-based biosynthetic pathway from Mycobacterium tuberculosis and redefined its biological role towards the production of multi-methyl-branched-esters (MBEs) with novel chemical structures. Expression of FadD28, Mas and PapA5 enzymes enabled the biosynthesis of multi-methyl-branched-FA and their further esterification to an alcohol. The high substrate tolerance of these enzymes towards different FA and alcohol moieties resulted in the biosynthesis of a broad range of MBE. Further metabolic engineering of the MBE producer strain coupled this system to long-chain-alcohol biosynthetic pathways resulting in de novo production of branched wax esters following addition of only propionate. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Effects of egg consumption on carotenoid absorption from co-consumed, raw vegetables.

    Science.gov (United States)

    Kim, Jung Eun; Gordon, Susannah L; Ferruzzi, Mario G; Campbell, Wayne W

    2015-07-01

    Dietary lipids are one of the most effective stimulators of carotenoid absorption, but very limited data exist on the impact of endogenous food sources of lipids to enhance carotenoid absorption. The co-consumption of whole egg with carotenoid-rich foods may increase overall carotenoid absorption via lipid-rich egg yolk. We designed this study to assess the effects of egg consumption on carotenoid absorption from a carotenoid-rich, raw mixed-vegetable salad. Healthy young men (n = 16) consumed the same salad (all served with 3 g canola oil) with no egg (control), 75 g scrambled whole eggs (1.5 eggs) [low egg (LE)], and 150 g scrambled whole eggs (3 eggs) [high egg (HE)] (a randomized crossover design). Control, LE, and HE meals contained 23 mg, 23.4 mg (0.4 mg from eggs), and 23.8 mg (0.8 mg from eggs) total carotenoids and 3 g, 10.5 g (7.5 g from eggs), and 18 g (15 g from eggs) total lipids, respectively. Blood was collected hourly for 10 h, and the triacylglycerol-rich lipoprotein (TRL) fraction was isolated. Total and individual carotenoid contents, including lutein, zeaxanthin , α-carotene, β-carotene, and lycopene in TRL were analyzed, and composite areas under the curve (AUCs) were calculated. The total mean (±SE) carotenoid AUC0-10h in TRL was higher for the HE meal than for LE and control meals [125.7 ± 19.4(a) compared with 44.8 ± 9.2(b) compared with 14.9 ± 5.2(b) nmol/L · 10 h, respectively (values without a common superscript letter differ); P eggs, including α-carotene, β-carotene, and lycopene, increased 3-8-fold (P cooked whole eggs is an effective way to enhance carotenoid absorption from other carotenoid-rich foods such as a raw mixed-vegetable salad. This trial was registered at clinicaltrials.gov as NCT01951313. © 2015 American Society for Nutrition.

  1. Carotenoid supplementation positively affects the expression of a non-visual sexual signal.

    Directory of Open Access Journals (Sweden)

    Alain J-M Van Hout

    Full Text Available Carotenoids are a class of pigments which are widely used by animals for the expression of yellow-to-red colour signals, such as bill or plumage colour. Since they also have been shown to promote immunocompetence and to function as antioxidants, many studies have investigated a potential allocation trade-off with respect to carotenoid-based signals within the context of sexual selection. Although an effect of carotenoids on non-visual (e.g. acoustic signals involved in sexual selection has been hypothesized, this has to date not been investigated. First, we examined a potential effect of dietary carotenoid supplementation on overall song rate during the non-breeding season in captive male European starlings (Sturnus vulgaris. After only 3-7 days, we found a significant (body-mass independent positive effect of carotenoid availability on overall song rate. Secondly, as a number of studies suggest that carotenoids could affect the modulation of sexual signals by plasma levels of the steroid hormone testosterone (T, we used the same birds to subsequently investigate whether carotenoid availability affects the increase in (nestbox-oriented song rate induced by experimentally elevated plasma T levels. Our results suggest that carotenoids may enhance the positive effect of elevated plasma T levels on nestbox-oriented song rate. Moreover, while non-supplemented starlings responded to T-implantation with an increase in both overall song rate and nestbox-oriented song, carotenoid-supplemented starlings instead shifted song production towards (reproductively relevant nestbox-oriented song, without increasing overall song rate. Given that song rate is an acoustic signal rather than a visual signal, our findings therefore indicate that the role of carotenoids in (sexual signalling need not be dependent on their function as pigments.

  2. Metabolism and Potential Health Effects of Carotenoids Following Digestion of Green Leafy Vegetables

    DEFF Research Database (Denmark)

    Eriksen, Jane Nygaard

    effects on carotenoid liberation from different cultivars of Asia salads and negative or no effects on liberation and in vitro accessibility of carotenoids from spinach. In vitro-in vivo study: Mincing resulted in a factor two difference in in vitro accessibility of carotenoids when comparing whole leaf...... variable positive effects on carotenoid liberation from different cultivars of Asia salads and negative or no effects on liberation and in vitro accessibility of carotenoids from spinach. Similarly, fat addition influenced β-car liberation positively; however, the effect was eliminated on the level...

  3. Oxidative stress and the effect of parasites on a carotenoid-based ornament.

    Science.gov (United States)

    Mougeot, F; Martínez-Padilla, J; Blount, J D; Pérez-Rodríguez, L; Webster, L M I; Piertney, S B

    2010-02-01

    Oxidative stress, the physiological condition whereby the production of reactive oxygen and nitrogen species overwhelms the capacity of antioxidant defences, causes damage to key bio-molecules. It has been implicated in many diseases, and is proposed as a reliable currency in the trade-off between individual health and ornamentation. Whether oxidative stress mediates the expression of carotenoid-based signals, which are among the commonest signals of many birds, fish and reptiles, remains controversial. In the present study, we explored interactions between parasites, oxidative stress and the carotenoid-based ornamentation of red grouse Lagopus lagopus scoticus. We tested whether removing nematode parasites influenced both oxidative balance (levels of oxidative damage and circulating antioxidant defences) and carotenoid-based ornamentation. At the treatment group level, parasite purging enhanced the size and colouration of ornaments but did not significantly affect circulating carotenoids, antioxidant defences or oxidative damage. However, relative changes in these traits among individuals indicated that males with a greater number of parasites prior to treatment (parasite purging) showed a greater increase in the levels of circulating carotenoids and antioxidants, and a greater decrease in oxidative damage, than those with initially fewer parasites. At the individual level, a greater increase in carotenoid pigmentation was associated with a greater reduction in oxidative damage. Therefore, an individual's ability to express a carotenoid-based ornament appeared to be linked to its current oxidative balance and susceptibility to oxidative stress. Our experimental results suggest that oxidative stress can mediate the impact of parasites on carotenoid-based signals, and we discuss possible mechanisms linking carotenoid-based ornaments to oxidative stress.

  4. Carotenoids Functionality, Sources, and Processing by Supercritical Technology: A Review

    Directory of Open Access Journals (Sweden)

    Natália Mezzomo

    2016-01-01

    Full Text Available Carotenoid is a group of pigments naturally present in vegetal raw materials that have biological properties. These pigments have been used mainly in food, pharmaceutical, and cosmetic industries. Currently, the industrial production is executed through chemical synthesis, but natural alternatives of carotenoid production/attainment are in development. The carotenoid extraction occurs generally with vegetal oil and organic solvents, but supercritical technology is an alternative technique to the recovery of these compounds, presenting many advantages when compared to conventional process. Brazil has an ample diversity of vegetal sources inadequately investigated and, then, a major development of optimization and validation of carotenoid production/attainment methods is necessary, so that the benefits of these pigments can be delivered to the consumer.

  5. Inter-population variation of carotenoids in Galápagos land iguanas (Conolophus subcristatus).

    Science.gov (United States)

    Costantini, David; Dell'omo, Giacomo; Casagrande, Stefania; Fabiani, Anna; Carosi, Monica; Bertacche, Vittorio; Marquez, Cruz; Snell, Howard; Snell, Heidi; Tapia, Washington; Gentile, Gabriele

    2005-10-01

    Carotenoids have received much attention from biologists because of their ecological and evolutionary implications in vertebrate biology. We sampled Galápagos land iguanas (Conolophus subcristatus) to investigate the types and levels of blood carotenoids and the possible factors affecting inter-population variation. Blood samples were collected from populations from three islands within the species natural range (Santa Cruz, Isabela, and Fernandina) and one translocated population (Venecia). Lutein and zeaxanthin were the predominant carotenoids found in the serum. In addition, two metabolically modified carotenoids (anhydrolutein and 3'-dehydrolutein) were also identified. Differences in the carotenoid types were not related to sex or locality. Instead, carotenoid concentration varied across the localities, it was higher in females, and it was positively correlated to an index of body condition. Our results suggest a possible sex-related physiological role of xanthophylls in land iguanas. The variation in the overall carotenoid concentration between populations seems to be related to the differences in local abundance and type of food within and between islands.

  6. In Vitro Antioxidant, Antihemolytic, and Anticancer Activity of the Carotenoids from Halophilic Archaea.

    Science.gov (United States)

    Hou, Jing; Cui, Heng-Lin

    2018-03-01

    Halophilic archaea represent a promising natural source of carotenoids. However, little information is available about the biological effects of carotenoids from halophilic archaea. In this study, the carotenoids produced by seven halophilic archaeal strains Halogeometricum rufum, Halogeometricum limi, Haladaptatus litoreus, Haloplanus vescus, Halopelagius inordinatus, Halogranum rubrum, and Haloferax volcanii were identified by ultraviolet/visible spectroscopy, thin-layer chromatography, and high-performance liquid chromatography-tandem mass spectrometry. The C 50 carotenoids bacterioruberin and its derivatives monoanhydrobacterioruberin and bisanhydrobacterioruberin were found to be the predominant carotenoids. The antioxidant capacities of the carotenoids from these strains were significantly higher than β-carotene as determined by 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay. The antihemolytic activities of these carotenoid extracts against H 2 O 2 -induced hemolysis in mouse erythrocytes were 3.9-6.3 times higher than β-carotene. A dose-dependent in vitro antiproliferative activity against HepG2 cells was observed for the extract from Hgm. limi, while that from Hpn. vescus exhibited a relatively high activity in a dose-independent manner. These results suggested that halophilic archaea could be considered as an alternative source of natural carotenoids with high antioxidant, antihemolytic, and anticancer activity.

  7. Concurrent production of carotenoids and lipid by a filamentous microalga Trentepohlia arborum.

    Science.gov (United States)

    Chen, Lin; Zhang, Lanlan; Liu, Tianzhong

    2016-08-01

    During the study of Trentepohlia arborum it became clear that its cells are rich in lipids and carotenoids. Thus, lipid content, composition and fatty acids profiles in individual lipid classes, as well as pigment profiles, responding to different culture conditions, were further investigated. The results showed that the predominant carotenoids and lipid fraction in total lipid in this study was β-carotene and TAG, respectively. The lipid content increased significantly under high light while nitrogen-replete conditions induced the highest carotenoids content. However, only with a double stress of high light and nitrogen-deficiency it was possible to maximize the productivities of both carotenoids and lipids. Carotenoids (mainly β-carotene) accounted for ca. 5% of the microalgal lipid under the double stress. Data herein show the potential of T. arborum for the production of both lipids and carotenoids, and hence provide an appropriate way to produce different products from T. arborum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Novel metabolic pathways in Archaea.

    Science.gov (United States)

    Sato, Takaaki; Atomi, Haruyuki

    2011-06-01

    The Archaea harbor many metabolic pathways that differ to previously recognized classical pathways. Glycolysis is carried out by modified versions of the Embden-Meyerhof and Entner-Doudoroff pathways. Thermophilic archaea have recently been found to harbor a bi-functional fructose-1,6-bisphosphate aldolase/phosphatase for gluconeogenesis. A number of novel pentose-degrading pathways have also been recently identified. In terms of anabolic metabolism, a pathway for acetate assimilation, the methylaspartate cycle, and two CO2-fixing pathways, the 3-hydroxypropionate/4-hydroxybutyrate cycle and the dicarboxylate/4-hydroxybutyrate cycle, have been elucidated. As for biosynthetic pathways, recent studies have clarified the enzymes responsible for several steps involved in the biosynthesis of inositol phospholipids, polyamine, coenzyme A, flavin adeninedinucleotide and heme. By examining the presence/absence of homologs of these enzymes on genome sequences, we have found that the majority of these enzymes and pathways are specific to the Archaea. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Effect of genotype and environment on citrus juice carotenoid content.

    Science.gov (United States)

    Dhuique-Mayer, Claudie; Fanciullino, Anne-Laure; Dubois, Cecile; Ollitrault, Patrick

    2009-10-14

    A selection of orange and mandarin varieties belonging to the same Citrus accession and cultivated in Mediterranean (Corsica), subtropical (New Caledonia), and tropical areas (principally Tahiti) were studied to assess the effect of genotype and environmental conditions on citrus juice carotenoid content. Juices from three sweet orange cultivars, that is, Pera, Sanguinelli, and Valencia ( Citrus sinensis (L.) Osbeck), and two mandarin species ( Citrus deliciosa Ten and Citrus clementina Hort. ex Tan), were analyzed by HPLC using a C(30) column. Annual carotenoid content variations in Corsican fruits were evaluated. They were found to be very limited compared to variations due to varietal influences. The statistical analysis (PCA, dissimilarity tree) results based on the different carotenoid compounds showed that citrus juice from Corsica had a higher carotenoid content than citrus juices from tropical origins. The tropical citrus juices were clearly differentiated from citrus juices from Corsica, and close correlations were obtained between beta-cryptoxanthin and phytoene (r = 0.931) and beta-carotene and phytoene (r = 0.918). More broadly, Mediterranean conditions amplified interspecific differentiation, especially by increasing the beta-cryptoxanthin and cis-violaxanthin content in oranges and beta-carotene and phytoene-phytofluene content in mandarins. Thus, at a quantitative level, environmental conditions also had a major role in determining the levels of carotenoids of nutritional interest, such as the main provitamin A carotenoids in citrus juice (beta-cryptoxanthin and beta-carotene).

  10. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae.

    Science.gov (United States)

    Lin-Wang, Kui; Bolitho, Karen; Grafton, Karryn; Kortstee, Anne; Karunairetnam, Sakuntala; McGhie, Tony K; Espley, Richard V; Hellens, Roger P; Allan, Andrew C

    2010-03-21

    The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species. We use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA) are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry). Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins. This family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.

  11. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae

    Directory of Open Access Journals (Sweden)

    McGhie Tony K

    2010-03-01

    Full Text Available Abstract Background The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species. Results We use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry. Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins. Conclusions This family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.

  12. Carotenoids and risk of fracture: a meta-analysis of observational studies.

    Science.gov (United States)

    Xu, Jiuhong; Song, Chunli; Song, Xiaochao; Zhang, Xi; Li, Xinli

    2017-01-10

    To quantify the association between dietary and circulating carotenoids and fracture risk, a meta-analysis was conducted by searching MEDLINE and EMBASE databases for eligible articles published before May 2016. Five prospective and 2 case-control studies with 140,265 participants and 4,324 cases were identified in our meta-analysis. Among which 5 studies assessed the association between dietary carotenoids levels and hip fracture risk, 2 studies focused on the association between circulating carotenoids levels and any fracture risk. A random-effects model was employed to summarize the risk estimations and their 95% confidence intervals (CIs). Hip fracture risk among participants with high dietary total carotenoids intake was 28% lower than that in participants with low dietary total carotenoids (OR: 0.72; 95% CI: 0.51, 1.01). A similar risk of hip fracture was found for β-carotene based on 5 studies, the summarized OR for high vs. low dietary β-carotene was 0.72 (95% CI: 0.54, 0.95). However, a significant between-study heterogeneity was found (total carotene: I2 = 59.4%, P = 0.06; β-carotene: I2 = 74.4%, P = 0.04). Other individual carotenoids did not show significant associations with hip fracture risk. Circulating carotene levels had no significant association with any fracture risk, the pooled OR (95% CI) was 0.83 (0.59, 1.17). Based on the evidence from observational studies, our meta-analysis supported the hypothesis that higher dietary total carotenoids or β-carotene intake might be potentially associated with a low risk of hip fracture, however, future well-designed prospective cohort studies and randomized controlled trials are warranted to specify the associations between carotenoids and fracture.

  13. A novel deconvolution method for modeling UDP-N-acetyl-D-glucosamine biosynthetic pathways based on 13C mass isotopologue profiles under non-steady-state conditions

    Directory of Open Access Journals (Sweden)

    Belshoff Alex C

    2011-05-01

    Full Text Available Abstract Background Stable isotope tracing is a powerful technique for following the fate of individual atoms through metabolic pathways. Measuring isotopic enrichment in metabolites provides quantitative insights into the biosynthetic network and enables flux analysis as a function of external perturbations. NMR and mass spectrometry are the techniques of choice for global profiling of stable isotope labeling patterns in cellular metabolites. However, meaningful biochemical interpretation of the labeling data requires both quantitative analysis and complex modeling. Here, we demonstrate a novel approach that involved acquiring and modeling the timecourses of 13C isotopologue data for UDP-N-acetyl-D-glucosamine (UDP-GlcNAc synthesized from [U-13C]-glucose in human prostate cancer LnCaP-LN3 cells. UDP-GlcNAc is an activated building block for protein glycosylation, which is an important regulatory mechanism in the development of many prominent human diseases including cancer and diabetes. Results We utilized a stable isotope resolved metabolomics (SIRM approach to determine the timecourse of 13C incorporation from [U-13C]-glucose into UDP-GlcNAc in LnCaP-LN3 cells. 13C Positional isotopomers and isotopologues of UDP-GlcNAc were determined by high resolution NMR and Fourier transform-ion cyclotron resonance-mass spectrometry. A novel simulated annealing/genetic algorithm, called 'Genetic Algorithm for Isotopologues in Metabolic Systems' (GAIMS was developed to find the optimal solutions to a set of simultaneous equations that represent the isotopologue compositions, which is a mixture of isotopomer species. The best model was selected based on information theory. The output comprises the timecourse of the individual labeled species, which was deconvoluted into labeled metabolic units, namely glucose, ribose, acetyl and uracil. The performance of the algorithm was demonstrated by validating the computed fractional 13C enrichment in these subunits

  14. Potential Role of Carotenoids as Antioxidants in Human Health and Disease

    Directory of Open Access Journals (Sweden)

    Joanna Fiedor

    2014-01-01

    Full Text Available Carotenoids constitute a ubiquitous group of isoprenoid pigments. They are very efficient physical quenchers of singlet oxygen and scavengers of other reactive oxygen species. Carotenoids can also act as chemical quenchers undergoing irreversible oxygenation. The molecular mechanisms underlying these reactions are still not fully understood, especially in the context of the anti- and pro-oxidant activity of carotenoids, which, although not synthesized by humans and animals, are also present in their blood and tissues, contributing to a number of biochemical processes. The antioxidant potential of carotenoids is of particular significance to human health, due to the fact that losing antioxidant-reactive oxygen species balance results in “oxidative stress”, a critical factor of the pathogenic processes of various chronic disorders. Data coming from epidemiological studies and clinical trials strongly support the observation that adequate carotenoid supplementation may significantly reduce the risk of several disorders mediated by reactive oxygen species. Here, we would like to highlight the beneficial (protective effects of dietary carotenoid intake in exemplary widespread modern civilization diseases, i.e., cancer, cardiovascular or photosensitivity disorders, in the context of carotenoids’ unique antioxidative properties.

  15. Potential Role of Carotenoids as Antioxidants in Human Health and Disease

    Science.gov (United States)

    Fiedor, Joanna; Burda, Květoslava

    2014-01-01

    Carotenoids constitute a ubiquitous group of isoprenoid pigments. They are very efficient physical quenchers of singlet oxygen and scavengers of other reactive oxygen species. Carotenoids can also act as chemical quenchers undergoing irreversible oxygenation. The molecular mechanisms underlying these reactions are still not fully understood, especially in the context of the anti- and pro-oxidant activity of carotenoids, which, although not synthesized by humans and animals, are also present in their blood and tissues, contributing to a number of biochemical processes. The antioxidant potential of carotenoids is of particular significance to human health, due to the fact that losing antioxidant-reactive oxygen species balance results in “oxidative stress”, a critical factor of the pathogenic processes of various chronic disorders. Data coming from epidemiological studies and clinical trials strongly support the observation that adequate carotenoid supplementation may significantly reduce the risk of several disorders mediated by reactive oxygen species. Here, we would like to highlight the beneficial (protective) effects of dietary carotenoid intake in exemplary widespread modern civilization diseases, i.e., cancer, cardiovascular or photosensitivity disorders, in the context of carotenoids’ unique antioxidative properties. PMID:24473231

  16. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae (on linr)

    NARCIS (Netherlands)

    Wang, Kui-Lin; Bolitho, Karen; Grafton, Karryn; Kortstee, A.J.; Karunairetnam, Sakuntala; McGhie, T.K.; Espley, R.V.; Hellens, R.P.; Allan, A.C.

    2010-01-01

    Background - The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the

  17. Use of Several waste substrates for carotenoid-rich yeast biomass production

    International Nuclear Information System (INIS)

    Marova, I.; Carnecka, M.; Halienova, A.; Dvorakova, T.; Haronikova, A.

    2009-01-01

    Carotenoids are industrially significant pigments produced in many bacteria, fungi, and plants. Carotenoid biosynthesis in yeasts is involved in stress response mechanisms. Thus, control ed physiological and nutrition stress can be used for enhanced pigment production. Huge commercial demand for natural carotenoids has focused attention on developing of suitable biotechnological techniques including use of liquid waste substrates as carbon and/or nitrogen source. (Author)

  18. Associations between reported intakes of carotenoid-rich foods and concentrations of carotenoids in plasma: a validation study of a web-based food recall for children and adolescents.

    Science.gov (United States)

    Medin, Anine Christine; Carlsen, Monica Hauger; Andersen, Lene Frost

    2016-12-01

    To validate estimated intakes of carotenoid-rich foods from a web-based food recall (WebFR) using carotenoids in blood as an objective reference method. Cross-sectional validation study using carotenoids in plasma to evaluate estimated intakes of selected carotenoid-rich foods. Participants recorded their food intake in the WebFR and plasma concentrations of β-carotene, α-carotene, β-cryptoxanthin, lycopene, lutein and zeaxanthin were measured. Schools and homes of families in a suburb of the capital of Norway. A total of 261 participants in the age groups 8-9 and 12-14 years. Spearman's rank correlation coefficients ranged from 0·30 to 0·44, and cross-classification showed that 71·6-76·6 % of the participants were correctly classified, when comparing the reported intakes of carotenoid-rich foods and concentrations of the corresponding carotenoids in plasma, not including lutein and zeaxanthin. Correlations were acceptable and cross-classification analyses demonstrated that the WebFR was able to rank participants according to their reported intake of foods rich in α-carotene, β-carotene, β-cryptoxanthin and lycopene. The WebFR is a promising tool for dietary assessment among children and adolescents.

  19. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives.

    Science.gov (United States)

    Del Campo, José A; García-González, Mercedes; Guerrero, Miguel G

    2007-04-01

    Microalgae are a major natural source for a vast array of valuable compounds, including a diversity of pigments, for which these photosynthetic microorganisms represent an almost exclusive biological resource. Yellow, orange, and red carotenoids have an industrial use in food products and cosmetics as vitamin supplements and health food products and as feed additives for poultry, livestock, fish, and crustaceans. The growing worldwide market value of carotenoids is projected to reach over US$1,000 million by the end of the decade. The nutraceutical boom has also integrated carotenoids mainly on the claim of their proven antioxidant properties. Recently established benefits in human health open new uses for some carotenoids, especially lutein, an effective agent for the prevention and treatment of a variety of degenerative diseases. Consumers' demand for natural products favors development of pigments from biological sources, thus increasing opportunities for microalgae. The biotechnology of microalgae has gained considerable progress and relevance in recent decades, with carotenoid production representing one of its most successful domains. In this paper, we review the most relevant features of microalgal biotechnology related to the production of different carotenoids outdoors, with a main focus on beta-carotene from Dunaliella, astaxanthin from Haematococcus, and lutein from chlorophycean strains. We compare the current state of the corresponding production technologies, based on either open-pond systems or closed photobioreactors. The potential of scientific and technological advances for improvements in yield and reduction in production costs for carotenoids from microalgae is also discussed.

  20. Novel key metabolites reveal further branching of the roquefortine/meleagrin biosynthetic pathway.

    Science.gov (United States)

    Ries, Marco I; Ali, Hazrat; Lankhorst, Peter P; Hankemeier, Thomas; Bovenberg, Roel A L; Driessen, Arnold J M; Vreeken, Rob J

    2013-12-27

    Metabolic profiling and structural elucidation of novel secondary metabolites obtained from derived deletion strains of the filamentous fungus Penicillium chrysogenum were used to reassign various previously ascribed synthetase genes of the roquefortine/meleagrin pathway to their corresponding products. Next to the structural characterization of roquefortine F and neoxaline, which are for the first time reported for P. chrysogenum, we identified the novel metabolite roquefortine L, including its degradation products, harboring remarkable chemical structures. Their biosynthesis is discussed, questioning the exclusive role of glandicoline A as key intermediate in the pathway. The results reveal that further enzymes of this pathway are rather unspecific and catalyze more than one reaction, leading to excessive branching in the pathway with meleagrin and neoxaline as end products of two branches.

  1. Role of structural barriers for carotenoid bioaccessibility upon high pressure homogenization.

    Science.gov (United States)

    Palmero, Paola; Panozzo, Agnese; Colle, Ines; Chigwedere, Claire; Hendrickx, Marc; Van Loey, Ann

    2016-05-15

    A specific approach to investigate the effect of high pressure homogenization on the carotenoid bioaccessibility in tomato-based products was developed. Six different tomato-based model systems were reconstituted in order to target the specific role of the natural structural barriers (chromoplast substructure/cell wall) and of the phases (soluble/insoluble) in determining the carotenoid bioaccessibility and viscosity changes upon high pressure homogenization. Results indicated that in the absence of natural structural barriers (carotenoid enriched oil), the soluble and insoluble phases determined the carotenoid bioaccessibility upon processing whereas, in their presence, these barriers governed the bioaccessibility. Furthermore, it was shown that the increment of the viscosity upon high pressure homogenization is determined by the presence of insoluble phase, however, this result was related to the initial ratio of the soluble:insoluble phases in the system. In addition, no relationship between the changes in viscosity and carotenoid bioaccessibility upon high pressure homogenization was found. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Nutritional Aspects of Phytoene and Phytofluene, Carotenoid Precursors to Lycopene12

    OpenAIRE

    Engelmann, Nancy J.; Clinton, Steven K.; Erdman, John W.

    2011-01-01

    Epidemiological studies suggest an inverse relationship between tomato consumption and serum and tissue lycopene (LYC) levels with risk of some chronic diseases, including several cancers and cardiovascular disease. LYC, the red carotenoid found in tomatoes, is often considered to be the primary bioactive carotenoid in tomatoes that mediates health benefits, but other colorless precursor carotenoids, phytoene (PE) and phytofluene (PF), are also present in substantial quantities. PE and PF are...

  3. Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production

    International Nuclear Information System (INIS)

    Yoshii, Hiroshi; Yoshii, Yukie; Asai, Tatsuya; Furukawa, Takako; Takaichi, Shinichi; Fujibayashi, Yasuhisa

    2012-01-01

    Highlights: ► Some photo-excited carotenoids have photosensitizing ability. ► They are able to produce ROS. ► Photo-excited fucoxanthin can produce singlet oxygen through energy transfer. -- Abstract: Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as β-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.

  4. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes

    NARCIS (Netherlands)

    Tóth, T.N.; Chukhutsina, Volha; Domonkos, Ildikó; Knoppová, Jana; Komenda, Josef; Kis, Mihály; Lénárt, Zsófia; Garab, Gyozo; Kovács, László; Gombos, Zoltán; Amerongen, Van Herbert

    2015-01-01

    In photosynthetic organisms, carotenoids (carotenes and xanthophylls) are important for light harvesting, photoprotection and structural stability of a variety of pigment-protein complexes. Here, we investigated the consequences of altered carotenoid composition for the functional organization of

  5. Nutritional aspects of phytoene and phytofluene, carotenoid precursors to lycopene.

    Science.gov (United States)

    Engelmann, Nancy J; Clinton, Steven K; Erdman, John W

    2011-01-01

    Epidemiological studies suggest an inverse relationship between tomato consumption and serum and tissue lycopene (LYC) levels with risk of some chronic diseases, including several cancers and cardiovascular disease. LYC, the red carotenoid found in tomatoes, is often considered to be the primary bioactive carotenoid in tomatoes that mediates health benefits, but other colorless precursor carotenoids, phytoene (PE) and phytofluene (PF), are also present in substantial quantities. PE and PF are readily absorbed from tomato foods and tomato extracts by humans. Animal models of carotenoid absorption suggest preferential accumulation of PE and PF in some tissues. The reasonably high concentrations of PE and PF detected in serum and tissues relative to the concentrations in foods suggest that absorption or metabolism of these compounds may be different from that of LYC. Experimental studies, both in vitro and in vivo, suggest that PE and PF exhibit bioactivity but little is known about their impact in humans. Methods for producing isotopically labeled PE, PF, and LYC tracers from tomato plant cell culture offer a unique tool for further understanding the differential bioavailability and metabolism of these 3 prominent tomato carotenoids and how they may affect health.

  6. A comprehensive review on the colorless carotenoids phytoene and phytofluene.

    Science.gov (United States)

    Meléndez-Martínez, Antonio J; Mapelli-Brahm, Paula; Benítez-González, Ana; Stinco, Carla M

    2015-04-15

    Carotenoids and their derivatives are versatile isoprenoids involved in many varied actions, hence their importance in the agri-food industry, nutrition, health and other fields. All carotenoids are derived from the colorless carotenes phytoene and phytofluene, which are oddities among carotenoids due to their distinct chemical structure. They occur together with lycopene in tomato and other lycopene-containing foods. Furthermore, they are also present in frequently consumed products like oranges and carrots, among others. The intake of phytoene plus phytofluene has been shown to be higher than that of lycopene and other carotenoids in Luxembourg. This is likely to be common in other countries. However, they are not included in food carotenoid databases, hence they have not been linked to health benefits in epidemiological studies. Interestingly, there are evidences in vitro, animal models and humans indicating that they may provide health benefits. In this sense, the study of these colorless carotenes in the context of food science, nutrition and health should be further encouraged. In this work, we review much of the existing knowledge concerning their chemical characteristics, physico-chemical properties, analysis, distribution in foods, bioavailability and likely biological activities. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Relationships of body mass index with serum carotenoids, tocopherols and retinol at steady-state and in response to a carotenoid-rich vegetable diet intervention in Filipino schoolchildren.

    Science.gov (United States)

    Ribaya-Mercado, Judy D; Maramag, Cherry C; Tengco, Lorena W; Blumberg, Jeffrey B; Solon, Florentino S

    2008-04-01

    In marginally nourished children, information is scarce regarding the circulating concentrations of carotenoids and tocopherols, and physiological factors influencing their circulating levels. We determined the serum concentrations of carotenoids, tocopherols and retinol at steady state and in response to a 9-week vegetable diet intervention in 9-12-year-old girls (n=54) and boys (n=65) in rural Philippines. We determined cross-sectional relationships of BMI (body mass index) with serum micronutrient levels, and whether BMI is a determinant of serum carotenoid responses to the ingestion of carotenoid-rich vegetables. We measured dietary nutrient intakes and assessed inflammation by measurement of serum C-reactive protein levels. The children had low serum concentrations of carotenoids, tocopherols and retinol as compared with published values for similar-aged children in the U.S.A. The low serum retinol levels can be ascribed to inadequate diets and were not the result of confounding due to inflammation. Significant inverse correlations of BMI and serum all-trans-beta-carotene, 13-cis-beta-carotene, alpha-carotene, lutein, zeaxanthin and alpha-tocopherol (but not beta-cryptoxanthin, lycopene and retinol) were observed among girls at baseline. The dietary intervention markedly enhanced the serum concentrations of all carotenoids. Changes in serum all-trans-beta-carotene and alpha-carotene (but not changes in lutein, zeaxanthin and beta-cryptoxanthin) in response to the dietary intervention were inversely associated with BMI in girls and boys. Thus, in Filipino school-aged children, BMI is inversely related to the steady-state serum concentrations of certain carotenoids and vitamin E, but not vitamin A, and is a determinant of serum beta- and alpha-carotene responses, but not xanthophyll responses, to the ingestion of carotenoid-rich vegetable meals.

  8. Age-Related Relationships between Innate Immunity and Plasma Carotenoids in an Obligate Avian Scavenger.

    Science.gov (United States)

    López-Rull, Isabel; Hornero-Méndez, Dámaso; Frías, Óscar; Blanco, Guillermo

    2015-01-01

    Variation in immunity is influenced by allocation trade-offs that are expected to change between age-classes as a result of the different environmental and physiological conditions that individuals encounter over their lifetime. One such trade-off occurs with carotenoids, which must be acquired with food and are involved in a variety of physiological functions. Nonetheless, relationships between immunity and carotenoids in species where these micronutrients are scarce due to diet are poorly studied. Among birds, vultures show the lowest concentrations of plasma carotenoids due to a diet based on carrion. Here, we investigated variations in the relationships between innate immunity (hemagglutination by natural antibodies and hemolysis by complement proteins), pathogen infection and plasma carotenoids in nestling and adult griffon vultures (Gyps fulvus) in the wild. Nestlings showed lower hemolysis, higher total carotenoid concentration and higher pathogen infection than adults. Hemolysis was negatively related to carotenoid concentration only in nestlings. A differential carotenoid allocation to immunity due to the incomplete development of the immune system of nestlings compared with adults is suggested linked to, or regardless of, potential differences in parasite infection, which requires experimental testing. We also found that individuals with more severe pathogen infections showed lower hemagglutination than those with a lower intensity infection irrespective of their age and carotenoid level. These results are consistent with the idea that intraspecific relationships between innate immunity and carotenoids may change across ontogeny, even in species lacking carotenoid-based coloration. Thus, even low concentrations of plasma carotenoids due to a scavenger diet can be essential to the development and activation of the immune system in growing birds.

  9. Comparative effect of carotenoid complex from golden neo-life ...

    African Journals Online (AJOL)

    Summary: The immunomodulatory effect of Carotenoid complex from Golden Neo-Life Dynamite (GNLD) and carrot extracted Carotenoid was assessed using 24 albino Wistar rats. The rats were assigned to 4 groups of 6 rats each consisting of group 1(control group treated with distilled water), group 2 (treated with olive oil) ...

  10. Effects of egg consumption on carotenoid absorption from co-consumed, raw vegetables12

    Science.gov (United States)

    Kim, Jung Eun; Gordon, Susannah L; Ferruzzi, Mario G; Campbell, Wayne W

    2015-01-01

    Background: Dietary lipids are one of the most effective stimulators of carotenoid absorption, but very limited data exist on the impact of endogenous food sources of lipids to enhance carotenoid absorption. The co-consumption of whole egg with carotenoid-rich foods may increase overall carotenoid absorption via lipid-rich egg yolk. Objective: We designed this study to assess the effects of egg consumption on carotenoid absorption from a carotenoid-rich, raw mixed-vegetable salad. Design: Healthy young men (n = 16) consumed the same salad (all served with 3 g canola oil) with no egg (control), 75 g scrambled whole eggs (1.5 eggs) [low egg (LE)], and 150 g scrambled whole eggs (3 eggs) [high egg (HE)] (a randomized crossover design). Control, LE, and HE meals contained 23 mg, 23.4 mg (0.4 mg from eggs), and 23.8 mg (0.8 mg from eggs) total carotenoids and 3 g, 10.5 g (7.5 g from eggs), and 18 g (15 g from eggs) total lipids, respectively. Blood was collected hourly for 10 h, and the triacylglycerol-rich lipoprotein (TRL) fraction was isolated. Total and individual carotenoid contents, including lutein, zeaxanthin , α-carotene, β-carotene, and lycopene in TRL were analyzed, and composite areas under the curve (AUCs) were calculated. Results: The total mean (±SE) carotenoid AUC0–10h in TRL was higher for the HE meal than for LE and control meals [125.7 ± 19.4a compared with 44.8 ± 9.2b compared with 14.9 ± 5.2b nmol/L · 10 h, respectively (values without a common superscript letter differ); P eggs, including α-carotene, β-carotene, and lycopene, increased 3–8-fold (P eggs is an effective way to enhance carotenoid absorption from other carotenoid-rich foods such as a raw mixed-vegetable salad. This trial was registered at clinicaltrials.gov as NCT01951313. PMID:26016861

  11. In vivo Raman spectroscopy detects increased epidermal antioxidative potential with topically applied carotenoids

    International Nuclear Information System (INIS)

    Lademann, J; Richter, H; Patzelt, A; Darvin, M; Sterry, W; Fluhr, J W; Caspers, P J; Van der Pol, A; Zastrow, L

    2009-01-01

    In the present study, the distribution of the carotenoids as a marker for the complete antioxidative potential in human skin was investigated before and after the topical application of carotenoids by in vivo Raman spectroscopy with an excitation wavelength of 785 nm. The carotenoid profile was assessed after a short term topical application in 4 healthy volunteers. In the untreated skin, the highest concentration of natural carotenoids was detected in different layers of the stratum corneum (SC) close to the skin surface. After topical application of carotenoids, an increase in the antioxidative potential in the skin could be observed. Topically applied carotenoids penetrate deep into the epidermis down to approximately 24 μm. This study supports the hypothesis that antioxidative substances are secreted via eccrine sweat glands and/or sebaceous glands to the skin surface. Subsequently they penetrate into the different layers of the SC

  12. A Possible Trifunctional β-Carotene Synthase Gene Identified in the Draft Genome of Aurantiochytrium sp. Strain KH105

    Directory of Open Access Journals (Sweden)

    Hiroaki Iwasaka

    2018-04-01

    Full Text Available Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase (crtB, phytoene desaturase (crtI and lycopene cyclase (crtY were fused into single gene (crtIBY with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species.

  13. Carotenoids and amphibians: effects on life history and susceptibility to the infectious pathogen, Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Cothran, Rickey D; Gervasi, Stephanie S; Murray, Cindy; French, Beverly J; Bradley, Paul W; Urbina, Jenny; Blaustein, Andrew R; Relyea, Rick A

    2015-01-01

    Carotenoids are considered beneficial nutrients because they provide increased immune capacity. Although carotenoid research has been conducted in many vertebrates, little research has been done in amphibians, a group that is experiencing global population declines from numerous causes, including disease. We raised two amphibian species through metamorphosis on three carotenoid diets to quantify the effects on life-history traits and post-metamorphic susceptibility to a fungal pathogen (Batrachochytrium dendrobatidis; Bd). Increased carotenoids had no effect on survival to metamorphosis in gray treefrogs (Hyla versicolor) but caused lower survival to metamorphosis in wood frogs [Lithobates sylvaticus (Rana sylvatica)]. Increased carotenoids caused both species to experience slower development and growth. When exposed to Bd after metamorphosis, wood frogs experienced high mortality, and the carotenoid diets had no mitigating effects. Gray treefrogs were less susceptible to Bd, which prevented an assessment of whether carotenoids could mitigate the effects of Bd. Moreover, carotenoids had no effect on pathogen load. As one of only a few studies examining the effects of carotenoids on amphibians and the first to examine potential interactions with Bd, our results suggest that carotenoids do not always serve amphibians in the many positive ways that have become the paradigm in other vertebrates.

  14. Opposing effects of oxidative challenge and carotenoids on antioxidant status and condition-dependent sexual signalling.

    Science.gov (United States)

    Tomášek, Oldřich; Gabrielová, Barbora; Kačer, Petr; Maršík, Petr; Svobodová, Jana; Syslová, Kamila; Vinkler, Michal; Albrecht, Tomáš

    2016-03-22

    Several recent hypotheses consider oxidative stress to be a primary constraint ensuring honesty of condition-dependent carotenoid-based signalling. The key testable difference between these hypotheses is the assumed importance of carotenoids for redox homeostasis, with carotenoids being either antioxidant, pro-oxidant or unimportant. We tested the role of carotenoids in redox balance and sexual signalling by exposing adult male zebra finches (Taeniopygia guttata) to oxidative challenge (diquat dibromide) and manipulating carotenoid intake. As the current controversy over the importance of carotenoids as antioxidants could stem from the hydrophilic basis of commonly-used antioxidant assays, we used the novel measure of in vivo lipophilic antioxidant capacity. Oxidative challenge reduced beak pigmentation but elicited an increase in antioxidant capacity suggesting resource reallocation from signalling to redox homeostasis. Carotenoids counteracted the effect of oxidative challenge on lipophilic (but not hydrophilic) antioxidant capacity, thereby supporting carotenoid antioxidant function in vivo. This is inconsistent with hypotheses proposing that signalling honesty is maintained through either ROS-induced carotenoid degradation or the pro-oxidant effect of high levels of carotenoid-cleavage products acting as a physiological handicap. Our data further suggest that assessment of lipophilic antioxidant capacity is necessary to fully understand the role of redox processes in ecology and evolution.

  15. Abscisic Acid Biosynthesis in Leaves and Roots of Xanthium strumarium.

    Science.gov (United States)

    Creelman, R A; Gage, D A; Stults, J T; Zeevaart, J A

    1987-11-01

    RESEARCH ON THE BIOSYNTHESIS OF ABSCISIC ACID (ABA) HAS FOCUSED PRIMARILY ON TWO PATHWAYS: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. We have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in (18)O(2). It was found that in stressed leaves three atoms of (18)O from (18)O(2) are incorporated into the ABA molecule, and that the amount of (18)O incorporated increases with time. One (18)O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in (18)O(2) shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more (18)O into the tertiary hydroxyl group at C-1' after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 (carotenoid numbering scheme) plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, (18)O is incorporated into ABA to a much lesser extent than it is in stressed leaves, whereas exogenously applied (14)C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional (18)O incorporated during 8'-hydroxylation of ABA to phaseic acid.

  16. Abscisic Acid Biosynthesis in Leaves and Roots of Xanthium strumarium1

    Science.gov (United States)

    Creelman, Robert A.; Gage, Douglas A.; Stults, John T.; Zeevaart, Jan A. D.

    1987-01-01

    Research on the biosynthesis of abscisic acid (ABA) has focused primarily on two pathways: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. We have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in 18O2. It was found that in stressed leaves three atoms of 18O from 18O2 are incorporated into the ABA molecule, and that the amount of 18O incorporated increases with time. One 18O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in 18O2 shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more 18O into the tertiary hydroxyl group at C-1′ after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 (carotenoid numbering scheme) plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, 18O is incorporated into ABA to a much lesser extent than it is in stressed leaves, whereas exogenously applied 14C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional 18O incorporated during 8′-hydroxylation of ABA to phaseic acid. PMID:16665768

  17. Molecular characterization and functional analysis of chalcone synthase from Syringa oblata Lindl. in the flavonoid biosynthetic pathway.

    Science.gov (United States)

    Wang, Yu; Dou, Ying; Wang, Rui; Guan, Xuelian; Hu, Zenghui; Zheng, Jian

    2017-11-30

    The flower color of Syringa oblata Lindl., which is often modulated by the flavonoid content, varies and is an important ornamental feature. Chalcone synthase (CHS) catalyzes the first key step in the flavonoid biosynthetic pathway. However, little is known about the role of S. oblata CHS (SoCHS) in flavonoid biosynthesis in this species. Here, we isolate and analyze the cDNA (SoCHS1) that encodes CHS in S. oblata. We also sought to analyzed the molecular characteristics and function of flavonoid metabolism by SoCHS1. We successfully isolated the CHS-encoding genomic DNA (gDNA) in S. oblata (SoCHS1), and the gene structural analysis indicated it had no intron. The opening reading frame (ORF) sequence of SoCHS1 was 1170bp long and encoded a 389-amino acid polypeptide. Multiple sequence alignment revealed that both the conserved CHS active site residues and CHS signature sequence were in the deduced amino acid sequence of SoCHS1. Crystallographic analysis revealed that the protein structure of SoCHS1 is highly similar to that of FnCHS1 in Freesia hybrida. The quantitative real-time polymerase chain reaction (PCR) performed to detect the SoCHS1 transcript expression levels in flowers, and other tissues revealed the expression was significantly correlated with anthocyanin accumulation during flower development. The ectopic expression results of Nicotiana tabacum showed that SoCHS1 overexpression in transgenic tobacco changed the flower color from pale pink to pink. In conclusion, these results suggest that SoCHS1 plays an essential role in flavonoid biosynthesis in S. oblata, and could be used to modify flavonoid components in other plant species. Copyright © 2017. Published by Elsevier B.V.

  18. Molecular interaction of the first 3 enzymes of the de novo pyrimidine biosynthetic pathway of Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Nara, Takeshi; Hashimoto, Muneaki; Hirawake, Hiroko; Liao, Chien-Wei; Fukai, Yoshihisa; Suzuki, Shigeo; Tsubouchi, Akiko; Morales, Jorge; Takamiya, Shinzaburo; Fujimura, Tsutomu; Taka, Hikari; Mineki, Reiko; Fan, Chia-Kwung; Inaoka, Daniel Ken; Inoue, Masayuki; Tanaka, Akiko; Harada, Shigeharu; Kita, Kiyoshi

    2012-01-01

    Highlights: ► An Escherichia coli strain co-expressing CPSII, ATC, and DHO of Trypanosoma cruzi was constructed. ► Molecular interactions between CPSII, ATC, and DHO of T. cruzi were demonstrated. ► CPSII bound with both ATC and DHO. ► ATC bound with both CPSII and DHO. ► A functional tri-enzyme complex might precede the establishment of the fused enzyme. -- Abstract: The first 3 reaction steps of the de novo pyrimidine biosynthetic pathway are catalyzed by carbamoyl-phosphate synthetase II (CPSII), aspartate transcarbamoylase (ATC), and dihydroorotase (DHO), respectively. In eukaryotes, these enzymes are structurally classified into 2 types: (1) a CPSII-DHO-ATC fusion enzyme (CAD) found in animals, fungi, and amoebozoa, and (2) stand-alone enzymes found in plants and the protist groups. In the present study, we demonstrate direct intermolecular interactions between CPSII, ATC, and DHO of the parasitic protist Trypanosoma cruzi, which is the causative agent of Chagas disease. The 3 enzymes were expressed in a bacterial expression system and their interactions were examined. Immunoprecipitation using an antibody specific for each enzyme coupled with Western blotting-based detection using antibodies for the counterpart enzymes showed co-precipitation of all 3 enzymes. From an evolutionary viewpoint, the formation of a functional tri-enzyme complex may have preceded—and led to—gene fusion to produce the CAD protein. This is the first report to demonstrate the structural basis of these 3 enzymes as a model of CAD. Moreover, in conjunction with the essentiality of de novo pyrimidine biosynthesis in the parasite, our findings provide a rationale for new strategies for developing drugs for Chagas disease, which target the intermolecular interactions of these 3 enzymes.

  19. Evaluation of Extraction Methods for the Analysis of Carotenoids for Different Vegetable Matrix

    Directory of Open Access Journals (Sweden)

    Stancuta Scrob

    2013-11-01

    Full Text Available In this study, different solvents were used to achieve the maximum extractibility of total carotenoids. The extracted total carotenoids were estimated using UV- visible spectrophotometer. Carotenoids from vegetable matrix can be used as a food colorant, food additive, cosmetics, antioxidants and nutraceuticals.

  20. Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry.

    Science.gov (United States)

    Liu, Fenghong; Wang, Lei; Gu, Liang; Zhao, Wei; Su, Hongyan; Cheng, Xianhao

    2015-12-01

    In our preliminary study, the ripe fruits of two highbush blueberry (Vaccinium corymbosum L.) cultivars, cv 'Berkeley' and cv 'Bluecrop', were found to contain different levels of ascorbic acid. However, factors responsible for these differences are still unknown. In the present study, ascorbic acid content in fruits was compared with expression profiles of ascorbic acid biosynthetic and recycling genes between 'Bluecrop' and 'Berkeley' cultivars. The results indicated that the l-galactose pathway was the predominant route of ascorbic acid biosynthesis in blueberry fruits. Moreover, higher expression levels of the ascorbic acid biosynthetic genes GME, GGP, and GLDH, as well as the recycling genes MDHAR and DHAR, were associated with higher ascorbic acid content in 'Bluecrop' compared with 'Berkeley', which indicated that a higher efficiency ascorbic acid biosynthesis and regeneration was likely to be responsible for the higher ascorbic acid accumulation in 'Bluecrop'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The preliminary research for biosynthetic engineering by radiation fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Jung, U Hee; Park, Hae Ran [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    The purpose of this project is to elucidate the solution to the production of bioactive substance using biotransformation process from core technology of biosynthetic engineering by radiation fusion technology. And, this strategy will provide core technology for development of drugs as new concept and category. Research scopes and contents of project include 1) The development of mutant for biosynthetic engineering by radiation fusion technology 2) The development of host for biosynthetic engineering by radiation fusion technology 3) The preliminary study for biosynthetic engineering of isoflavone by radiation fusion technology. The results are as follows. Isoflavone compounds(daidzein, hydroxylated isoflavone) were analyzed by GC-MS. The study of radiation doses and p-NCA high-throughput screening for mutant development were elucidated. And, it was carried out the study of radiation doses for host development. Furthermore, the study of redox partner and construction of recombinant strain for region-specific hydroxylation(P450, redox partner). In addition, the biological effect of 6,7,4'-trihydroxyisoflavone as an anti-obesity agent was elucidated in this study.

  2. Carotenoid-protein interaction alters the S1 energy of hydroxyechinenone in the Orange Carotenoid Protein

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Chábera, P.; Kerfeld, C.A.

    2013-01-01

    Roč. 1827, č. 3 (2013), s. 248-254 ISSN 0005-2728 Institutional support: RVO:60077344 Keywords : orange-carotenoid protein * excited states * photoprotection Subject RIV: BO - Biophysics Impact factor: 4.829, year: 2013

  3. Geographical trends in the yolk carotenoid composition of the pied flycatcher (Ficedula hypoleuca)

    NARCIS (Netherlands)

    Eeva, T.; Ruuskanen, S.; Salminen, J.P.; Belskii, E.; Jarvinen, A.; Kerimov, A.; Korpimäki, E.; Krams, I.; Moreno, J.; Morosinotto, C.; Mänd, R.; Orell, M.; Qvarnström, A.; Siitari, H.; Slater, F.M.; Tilgar, V.; Visser, M.E.; Winkel, W.; Zang, H.; Laaksonen, T.

    2011-01-01

    Carotenoids in the egg yolks of birds are considered to be important antioxidants and immune stimulants during the rapid growth of embryos. Yolk carotenoid composition is strongly affected by the carotenoid composition of the female’s diet at the time of egg formation. Spatial and temporal

  4. Detection of carotenoids present in blood of various animal species using Raman spectroscopy

    Science.gov (United States)

    Liaqat, Maryam; Younus, Ayesha; Saleem, Muhammad; Rashid, Imaad; Yaseen, Maria; Jabeen, Saher

    Raman spectroscopy is simple stable powerful diagnostic tool for body fluids, tissues and other biomolecules. Human blood possesses different kind of carotenoids that play a key role for protecting the cells from damaging by different viral and bacterial diseases. Carotenoids are antioxidative components which are capable to overcome the attack of different free radicals and reactive oxygen species. Carotenoids are not prepared by human body, therefore it is recommended to eat carotenoids enrich vegetable foods. No standard data is available on the concentration of useful carotenoids component in non-vegetable consumed items. In present research work, Raman spectroscopy is used to compare various blood components like plasma, serum, carotenoids present in blood of different animal species like goat, sheep, cow and buffalo consumed by human. Especially beta carotene is investigated. The Raman shift ranges from 600-1700 cm-1 for samples. Different characteristic peaks of the blood components are found which are not characterized before in animal samples. Doctrate Student in Photonics Deparatment of Electrical Engineering.

  5. Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues.

    Directory of Open Access Journals (Sweden)

    Valerio Mori

    Full Text Available NAD plays essential redox and non-redox roles in cell biology. In mammals, its de novo and recycling biosynthetic pathways encompass two independent branches, the "amidated" and "deamidated" routes. Here we focused on the indispensable enzymes gating these two routes, i.e. nicotinamide mononucleotide adenylyltransferase (NMNAT, which in mammals comprises three distinct isozymes, and NAD synthetase (NADS. First, we measured the in vitro activity of the enzymes, and the levels of all their substrates and products in a number of tissues from the C57BL/6 mouse. Second, from these data, we derived in vivo estimates of enzymes'rates and quantitative contributions to NAD homeostasis. The NMNAT activity, mainly represented by nuclear NMNAT1, appears to be high and nonrate-limiting in all examined tissues, except in blood. The NADS activity, however, appears rate-limiting in lung and skeletal muscle, where its undetectable levels parallel a relative accumulation of the enzyme's substrate NaAD (nicotinic acid adenine dinucleotide. In all tissues, the amidated NAD route was predominant, displaying highest rates in liver and kidney, and lowest in blood. In contrast, the minor deamidated route showed higher relative proportions in blood and small intestine, and higher absolute values in liver and small intestine. Such results provide the first comprehensive picture of the balance of the two alternative NAD biosynthetic routes in different mammalian tissues under physiological conditions. This fills a gap in the current knowledge of NAD biosynthesis, and provides a crucial information for the study of NAD metabolism and its role in disease.

  6. Adaptability and stability of carotenoids in maize cultivars

    Directory of Open Access Journals (Sweden)

    Sara de Almeida Rios

    2009-01-01

    Full Text Available The purpose of this study was to investigate the adaptability and stability of carotenoids in maize cultivars inthe 2004/2005 growing season. Total carotenoids (TC, total carotenoids with provitamin A activity (Pro VA (μg g-1 andgrain yield (kg ha-1 were quantified in 10 cultivars at five locations. The chemical analyses were conducted in a laboratoryof the EMBRAPA/CNPMS, in Sete Lagoas, Minas Gerais. The methodologies of Eberhart and Russell (1966, Lin and Binns(1988 and Rocha et al. (2005 were used to analyze adaptability and stability. In general, the linear regression modelproposed by Eberhart and Russell (1966 failed to fit the Pro VA contents in the evaluated cultivars satisfactorily. However,with regard to the TC levels, all different analysis methodologies of adaptability and stability rated hybrid BRS 2020 as anideal genotype with general adaptability.

  7. [Solid-state fermentation with Penicillium sp. PT95 for carotenoid production].

    Science.gov (United States)

    Han, J; Xu, J

    1999-04-01

    A preliminary study on solid-state fermentation (SSF) with Penicillium sp PT95 for carotenoid production was performed. The results showed that the production of carotenoid in sclerotia of PT95 was more efficient in corn meal medium than in either wheat bran medium or cottonseed hull medium. Addition of nitrogen and carbon sources as well as vegetable oil to media was required for increasing the dry weight of sclerotia and carotenoid yield. Among several tested compounds for nitrogen and carbon sources, sodium nitrate and maltose were the best. Through orthogonal experiments, the optimum culture medium was obtained by supplement of NaNO3 3g, maltose 10 g, soybean oil 2.5 g to per liter of salt solution. Under the optimum culture conditions, the sclerotia dry weight increased from 5.36 g to 9.70 g per 100 g dry substrate, the carotenoid yield from 2149 micrograms to 5260 micrograms per 100 g dry substrate, the proportion of beta-carotene in carotenoids from 61.4% to 71.3%.

  8. Effects of carotenoids on damage of biological lipids induced by gamma irradiation

    International Nuclear Information System (INIS)

    Saito, Takeshi; Fujii, Noriko

    2014-01-01

    Carotenoids are considered to be involved in the radioresistant mechanisms of radioresistant bacteria. In these bacterial cells, carotenoids are present in biological lipids, and therefore may be related to the radiation-induced damage of lipids. However, only limited data are available for the role of carotenoids in such damage. In this study, we irradiated an α-linolenic acid–benzene solution with gamma rays and analyzed the resulting oxidative degradation and peroxidation damage in the presence or absence of two typical carotenoids: β-carotene and astaxanthin. The analyses revealed that oxidative degradation and peroxidation of α-linolenic acid, as evaluated by the amount of malondialdehyde and conjugated diene formed, respectively, increased in a dose-dependent manner. Moreover, 8.5×10 −3 M β-carotene inhibited gamma radiation-induced oxidative degradation of α-linolenic acid, whereas 5.0×10 −5 and 5.0×10 −6 M β-carotene, and 5.0×10 −7 and 5.0×10 −8 M astaxanthin promoted degradation. In contrast, neither β-carotene nor astaxanthin affected peroxidation of α-linolenic acid. These results suggest that an optimum concentration of carotenoids in radioresistant bacteria protects biological lipid structures from radiation-induced damage. - Highlights: • Gamma radiation dose-dependently increases degradation levels of α-linolenic acid. • Gamma radiation dose-dependently increases peroxidation levels of α-linolenic acid. • An optimum concentration of carotenoids inhibits degradation of α-linolenic acid. • Relatively low concentrations of carotenoids promote degradation of α-linolenic acid. • Carotenoids do not affect the peroxidation level of α-linolenic acid

  9. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species

    DEFF Research Database (Denmark)

    Nielsen, Jens Christian; Grijseels, Sietske; Prigent, Sylvain

    2017-01-01

    Filamentous fungi produce a wide range of bioactive compounds with important pharmaceutical applications, such as antibiotic penicillins and cholesterol-lowering statins. However, less attention has been paid to fungal secondary metabolites compared to those from bacteria. In this study, we...... sequenced the genomes of 9 Penicillium species and, together with 15 published genomes, we investigated the secondary metabolism of Penicillium and identified an immense, unexploited potential for producing secondary metabolites by this genus. A total of 1,317 putative biosynthetic gene clusters (BGCs) were......-referenced the predicted pathways with published data on the production of secondary metabolites and experimentally validated the production of antibiotic yanuthones in Penicillia and identified a previously undescribed compound from the yanuthone pathway. This study is the first genus-wide analysis of the genomic...

  10. The effect of gamma irradiation on some carotenoid compounds of paprika

    International Nuclear Information System (INIS)

    Zachariev, Gy.; Kiss, I.

    1983-01-01

    Highly purified crystalline carotenoids (capsanthin, capsorubin, cryptoxanthin and zeaxanthin) were isolated from the pericarp of ripen paprika. The carotenoids were irradiated in a 60 Co source in benzene and aqueous solutions to study their radiolysis. In 100 μM benzene solutions at a dose of 0.91 kGy the following G-values were determined: beta-carotene 0.51, capsanthin 0.44, capsorubin 0.41, zeaxanthin 0.32, cryptoxanthin 0.15. In water at a 0.30 kGy dose (0.91 kGy is very destructive) the obtained G-values were: capsanthin 2.57, capsorubin: 2.31, zeaxanthin 2.34, beta-carotene 1.75, crytpoxanthin 1.54. Ascorbic acid reduced the radiolysis of carotenoids in water. 100 μM benzene solutions of capsanthin and zeaxanthin were irradiated at 1.2 kGy and 1.5 kGy doses, resp. The irradiated solutions were column-chromatographed and the separated bands were investigated by spectrophotometric and chemical methods. It was established that 40% of the capsanthin and 56% of the cryptoxanthin was decomposed to UV absorbing, not yet identified compounds. The remainder consisted in 69-72% of the original all-trans carotenoids. Among the radiation products cis-trans isomers and monoepoxy derivatives of the respective carotenoids could be identified. These amounted only to 0.3-2.2% of the all-trans carotenoids that survived the damage of irradiation. (author)

  11. Chemical composition of microalgae Heterochlorella luteoviridis and Dunaliella tertiolecta with emphasis on carotenoids.

    Science.gov (United States)

    Diprat, Andressa Bacalau; Menegol, Tania; Boelter, Juliana Ferreira; Zmozinski, Ariane; Rodrigues Vale, Maria Goreti; Rodrigues, Eliseu; Rech, Rosane

    2017-08-01

    Microalgae have been used as food supplements owing to their high protein, polyunsaturated fatty acid and carotenoid contents. As different carotenoids have distinct properties and the carotenoid composition of microalgae has been poorly explored in the literature, this study determined the complete carotenoid composition of two microalgae species, Heterochlorella luteoviridis and Dunaliella tertiolecta, using high-performance liquid chromatography coupled with diode array detection and tandem mass spectrometry (HPLC-DAD/MS 2 ). Additionally, the proximate composition and major minerals were evaluated. The carotenoid composition of the two microalgae was similar, with 13 carotenoids being found in H. luteoviridis and 12 in D. tertiolecta. The major carotenoids were all-trans-lutein (1.18 mg g -1 in H. luteoviridis and 1.59 mg g -1 in D. tertiolecta), all-trans-violaxanthin (0.52 mg g -1 in H. luteoviridis and 0.45 mg g -1 in D. tertiolecta) and all-trans-β-carotene (0.50 mg g -1 in H. luteoviridis and 0.62 mg g -1 in D. tertiolecta). All-trans-lutein was the predominant carotenoid in both microalgae, representing around 40% (mass fraction) of the total carotenoids. The lutein content found in these microalgae was significantly higher (2-40 times) than that in other important food sources of lutein (e.g. parsley, carrot, red pepper and broccoli). The microalgae H. luteoviridis and D. tertiolecta are excellent sources of lutein that could be commercially exploited by the food and pharmaceutical industries. Moreover, it was confirmed that both microalgae are good sources of protein, lipids and calcium. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Process optimization for extraction of carotenoids from medicinal caterpillar fungus, Cordyceps militaris (Ascomycetes).

    Science.gov (United States)

    Yang, Tao; Sun, Junde; Lian, Tiantian; Wang, Wenzhao; Dong, Cai-Hong

    2014-01-01

    Natural carotenoids have attracted great attention for their important beneficial effects on human health and food coloring function. Cordyceps militaris, a well-known edible and medicinal fungus, is a potential source of natural carotenoids. The present study aimed to optimize the process parameters for carotenoid extraction from this mushroom. The effects of different methods of breaking the fungal cell wall and organic solvents were studied by the one-factor-at-a-time method. Subsequently, the process parameters including the duration of the extraction time, the number of extractions, and the solvent to solid ratio were optimized by using the Box-Behnken design. The optimal extraction conditions included using an acid-heating method to break the cell wall and later extracting three times, each for a 1 h duration, with a 4:1 mixture of acetone: petroleum ether and a solvent: solid ratio of 24:1. The carotenoid content varied from 2122.50 to 3847.50 µg/g dry weights in different commercially obtained fruit bodies of C. militaris. The results demonstrated that the C. militaris contained more carotenoid content in its fruit bodies than other known mushrooms. Stability monitoring by HPLC demonstrated that the carotenoids could be stored at 4°C for 40 d. It is suggested that the carotenoid content should be considered as the quality standard of commercial products of this valued mushroom. These findings will facilitate the exploration of carotenoids from C. militaris.

  13. A noninvasive assessment of skin carotenoid status through reflection spectroscopy is a feasible and reliable measure of dietary carotenoid consumption in a diverse community sample

    Science.gov (United States)

    Background: Skin carotenoid status, as assessed by reflection spectroscopy (RS), is a promising means of approximating fruit and vegetable consumption. This study’s purpose was to assess the feasibility, reliability, and validity of RS to assess skin carotenoids in a racially diverse community sampl...

  14. Levels of potential bioactive compounds including carotenoids, vitamin C and phenolic compounds, and expression of their cognate biosynthetic genes vary significantly in different varieties of potato (Solanum tuberosum L.) grown under uniform cultural conditions.

    Science.gov (United States)

    Valcarcel, Jesus; Reilly, Kim; Gaffney, Michael; O'Brien, Nora M

    2016-02-01

    In addition to their high carbohydrate content, potatoes are also an important dietary source of vitamin C and bioactive secondary metabolites, including phenolic compounds and carotenoids, which have been suggested to play a role in human health. The expression of genes encoding key enzymes involved in the synthesis of these compounds was assessed by reverse transcription-quantitative polymerase chain reaction and compared to the accumulation of the corresponding product in seven potato varieties showing contrasting levels of metabolite accumulation. Strong positive correlations were found between phenolic content in the flesh of tubers and transcript levels of phenylalanine ammonia lyase (PAL) and chalcone synthase (CHS) genes. The expression of PAL and CHS was also related to that of AN1, a transcription factor involved in the synthesis of anthocyanins, suggesting that these genes are regulated in a coordinated manner. No clear relationship was found between transcript levels of phytoene synthase (PSY) or L-galactono-1,4-lactone dehydrogenase (GLDH) genes and total carotenoid or vitamin C accumulation, respectively. Data indicate that levels of total phenolic and flavonoid compounds in potato are controlled primarily by PAL and CHS gene expression. Transcript levels of PSY and GLDH did not control accumulation of carotenoids or vitamin C. © 2015 Society of Chemical Industry.

  15. Selectively improving nikkomycin Z production by blocking the imidazolone biosynthetic pathway of nikkomycin X and uracil feeding in Streptomyces ansochromogenes

    Directory of Open Access Journals (Sweden)

    Yang Haihua

    2009-11-01

    Full Text Available Abstract Background Nikkomycins are a group of peptidyl nucleoside antibiotics and act as potent inhibitors of chitin synthases in fungi and insects. Nikkomycin X and Z are the main components produced by Streptomyces ansochromogenes. Of them, nikkomycin Z is a promising antifungal agent with clinical significance. Since highly structural similarities between nikkomycin Z and X, separation of nikkomycin Z from the culture medium of S. ansochromogenes is difficult. Thus, generating a nikkomycin Z selectively producing strain is vital to scale up the nikkomycin Z yields for clinical trials. Results A nikkomycin Z producing strain (sanPDM was constructed by blocking the imidazolone biosynthetic pathway of nikkomycin X via genetic manipulation and yielded 300 mg/L nikkomycin Z and abolished the nikkomycin X production. To further increase the yield of nikkomycin Z, the effects of different precursors on its production were investigated. Precursors of nucleoside moiety (uracil or uridine had a stimulatory effect on nikkomycin Z production while precursors of peptidyl moiety (L-lysine and L-glutamate had no effect. sanPDM produced the maximum yields of nikkomycin Z (800 mg/L in the presence of uracil at the concentration of 2 g/L and it was approximately 2.6-fold higher than that of the parent strain. Conclusion A high nikkomycin Z selectively producing was obtained by genetic manipulation combined with precursors feeding. The strategy presented here might be applicable in other bacteria to selectively produce targeted antibiotics.

  16. SnapShot: O-Glycosylation Pathways across Kingdoms

    DEFF Research Database (Denmark)

    Joshi, Hiren J.; Narimatsu, Yoshiki; Schjoldager, Katrine T.

    2018-01-01

    O-glycosylation is one of the most abundant and diverse types of post-translational modifications of proteins. O-glycans modulate the structure, stability, and function of proteins and serve generalized as well as highly specific roles in most biological processes. This ShapShot presents types of......-glycans found in different organisms and their principle biosynthetic pathways...

  17. Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity.

    Science.gov (United States)

    Luisa Bonet, M; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2015-04-15

    A novel perspective of the function of carotenoids and carotenoid-derived products - including, but not restricted to, the retinoids - is emerging in recent years which connects these compounds to the control of adipocyte biology and body fat accumulation, with implications for the management of obesity, diabetes and cardiovascular disease. Cell and animal studies indicate that carotenoids and carotenoids derivatives can reduce adiposity and impact key aspects of adipose tissue biology including adipocyte differentiation, hypertrophy, capacity for fatty acid oxidation and thermogenesis (including browning of white adipose tissue) and secretory function. Epidemiological studies in humans associate higher dietary intakes and serum levels of carotenoids with decreased adiposity. Specifically designed human intervention studies, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. The objective of this review is to summarize recent findings in this area, place them in physiological contexts, and provide likely regulatory schemes whenever possible. The focus will be on the effects of carotenoids as nutritional regulators of adipose tissue biology and both animal and human studies, which support a role of carotenoids and retinoids in the prevention of abdominal adiposity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Evaluation of antigenotoxic effects of carotenoids from green algae Chlorococcum humicola using human lymphocytes

    Science.gov (United States)

    Bhagavathy, S; Sumathi, P

    2012-01-01

    Objective To identify the available phytochemicals and carotenoids in the selected green algae and evaluate the potential genotoxic/antigenotoxic effect using lymphocytes. Methods Organic solvent extracts of Chlorococcum humicola (C. humicola) were used for the phytochemical analysis. The available carotenoids were assessed by HPLC, and LC-MS analysis. The genotoxicity was induced by the benzo(a)pyrene in the lymphocyte culture, the genotoxic and antigenotoxic effects of algal carotenoids with and without genotoxic inducer were evaluated by chromosomal aberration (CA), sister chromatid exchange (SCE) and micronucleus assay (MN). Results The results of the analysis showed that the algae were rich in carotenoids and fatty acids. In the total carotenoids lutein, β-carotene and α-carotene were found to be present in higher concentration. The frequency of CA and SCE increased by benzo(a)pyrene were significantly decreased by the carotenoids (Pcarotenoids when compared with the positive controls (Pcarotenoids which effectively fight against environmental genotoxic agents, the carotenoids itself is not a genotoxic substance and should be further considered for its beneficial effects. PMID:23569879

  19. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds.

    Science.gov (United States)

    Poojary, Mahesha M; Barba, Francisco J; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A; Juliano, Pablo

    2016-11-22

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.

  20. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds

    Science.gov (United States)

    Poojary, Mahesha M.; Barba, Francisco J.; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A.; Juliano, Pablo

    2016-01-01

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability. PMID:27879659

  1. Two-photon excitation spectroscopy of carotenoid-containing and carotenoid-depleted LH2 complexes from purple bacteria.

    Science.gov (United States)

    Stepanenko, Ilya; Kompanetz, Viktor; Makhneva, Zoya; Chekalin, Sergey; Moskalenko, Andrei; Razjivin, Andrei

    2009-08-27

    We applied two-photon fluorescence excitation spectroscopy to LH2 complex from purple bacteria Allochromatium minutissimum and Rhodobacter sphaeroides . Bacteriochlorophyll fluorescence was measured under two-photon excitation of the samples within the 1200-1500 nm region. Spectra were obtained for both carotenoid-containing and -depleted complexes of each bacterium to allow their direct comparison. The depletion of carotenoids did not alter the two-photon excitation spectra of either bacteria. The spectra featured a wide excitation band around 1350 nm (2x675 nm, 14,800 cm(-1)) which strongly resembled two-photon fluorescence excitation spectra of similar complexes published by other authors. We consider obtained experimental data to be evidence of direct two-photon excitation of bacteriochlorophyll excitonic states in this spectral region.

  2. Carotenoids content and sunlight susceptibility

    International Nuclear Information System (INIS)

    Oppezzo, Oscar J.; Costa, Cristina; Pizarro, Ramon A.

    2005-01-01

    Full text: An environmental pink pigmented bacterium was isolated and identified as Rhodococcus sp. Pigmentation mutants were obtained by chemical mutagenesis. Pigments present in the wild type strain (RMB90), in a pale yellow mutant (RMB91) and in two mutants exhibiting increased pigmentation (RMB92 and RMB93), were extracted with chloroform-methanol and analyzed by reverse phase HPLC. Survival of these strains after exposure to sunlight and ultraviolet radiation from artificial sources was studied under different physiological and irradiation conditions. The ability of RMB91 to survive sunlight exposure was reduced with respect to that of RMB90. Resistance was similar in both strains when bacteria grew in the presence of a carotenoid synthesis inhibitor, which had no effect on survival of RMB91. Reduced sunlight resistance in RMB91 was also observed during irradiations under N2. Using artificial radiation sources, non pigmented bacteria were less resistant to UVA, but not to UVB or UVC. Lethal effects of sunlight and UVA on RMB92 and RMB93 were increased with respect to the wild type strain. Carotenoids protect Rhodococcus sp against deleterious effects of sunlight. In non-photosynthetic bacteria studied to date, photo protection by carotenoids was dependent on [O 2 ]. This is not the case with Rhodococcus sp RMB90, suggesting the occurrence of a different mechanism for protection. UVA radiation seems to playa key role in photo-damage. (author)

  3. Biosynthetic origin of the isoprene units in chromenes of Piper aduncum (Piperaceae)

    International Nuclear Information System (INIS)

    Leite, Ana C.; Lopes, Adriana A.; Bolzani, Vanderlan da S.; Furlan, Maysa; Kato, Massuo J.

    2007-01-01

    Metabolic studies involving the incorporation of [1- 13 C]-D-glucose into intact leaves of Piper aduncum (Piperaceae) have indicated that both the mevalonate (MVA) and the pyruvate-triose (MEP) non-mevalonate pathways are implicated in the biosynthesis of isoprene moieties present in methyl 2,2-dimethyl-2H-1-chromene-6-carboxylate (1) and methyl 2,2-dimethyl-8-(3'-methyl- 2'-butenyl)-2H-1-chromene-6-carboxylate (2). The pattern of incorporation of label from [1- 13 C]-D-glucose into these chromenes was determined by quantitative 13 C NMR spectroscopy. The results confirmed that biosynthetic compartment of 1 and 2 could either be the plastid and/ or the cytosol or, possibly, an additional compartment such as the plastid inter-membrane space. (author)

  4. Effect of terbinafine on the biosynthetic pathway of isoprenoid compounds in carrot suspension cultured cells.

    Science.gov (United States)

    Miras-Moreno, Begoña; Almagro, Lorena; Pedreño, María Angeles; Sabater-Jara, Ana Belén

    2018-04-21

    Terbinafine induced a significant increase of squalene production. Terbinafine increased the expression levels of squalene synthase. Cyclodextrins did not work as elicitors due to the gene expression levels obtained. Plant sterols are essential components of membrane lipids, which contributing to their fluidity and permeability. Besides their cholesterol-lowering properties, they also have anti-inflammatory, antidiabetic and anticancer activities. Squalene, which is phytosterol precursor, is widely used in medicine, foods and cosmetics due to its anti-tumor, antioxidant and anti-aging activities. Nowadays, vegetable oils constitute the main sources of phytosterols and squalene, but their isolation and purification involve complex extraction protocols and high costs. In this work, Daucus carota cell cultures were used to evaluate the effect of cyclodextrins and terbinafine on the production and accumulation of squalene and phytosterols as well as the expression levels of squalene synthase and cycloartenol synthase genes. D. carota cell cultures were able to produce high levels of extracellular being phytosterols in the presence of cyclodextrins (12 mg/L), these compounds able to increase both the secretion and accumulation of phytosterols in the culture medium. Moreover, terbinafine induced a significant increase in intracellular squalene production, as seen after 168 h of treatment (497.0 ± 23.5 µg g dry weight -1 ) while its extracellular production only increased in the presence of cyclodextrins.The analysis of sqs and cas gene expression revealed that cyclodextrins did not induce genes encoding enzymes involved in the phytosterol biosynthetic pathway since the expression levels of sqs and cas genes in cyclodextrin-treated cells were lower than in control cells. The results, therefore, suggest that cyclodextrins were only able to release phytosterols from the cells to the extracellular medium, thus contributing to their acumulation. To sum up, D. carota

  5. Study of transitory forms of carotenoids

    International Nuclear Information System (INIS)

    Mathis, Paul

    1970-01-01

    In order to explain the biological role of the carotenoids their transitory forms were studied with an apparatus measuring the small (∼10 -3 ) short-lived (100 ns to 1 ms) optical density variations obtained by excitation with a ruby laser. Two forms were studied: a) Triplet state 3 Car. - This state (t 1/2 ∼6 μs) is obtained not by direct excitation but by T-T energy transfer from chlorophyll, in different media (chloroplasts, pigments in solution or in micelle). Two arguments can be advanced to explain in terms of triplet energy transfer an essential biological role of carotenoids, protection against photodynamic effects: - the energy level of 3 Car is lower than that of the singlet of oxygen; - in vivo the T-T transfer from chlorophyll to the carotenoids is very fast: 30 ns.. b) Radical cation Car + . - This form is obtained by electron transfer from carotene to the triplet of Toluidine Blue, in ethanol. Car + (t 1/2 ∼200 μs) shows a strong absorption band at 910 nm. The properties of Car + are discussed in relation to other polyene derivatives and to hydrocarbon ions. Car + could be involved in certain biological electron transfers. (author) [fr

  6. Lutein and preterm infants with decreased concentrations of brain carotenoids.

    Science.gov (United States)

    Vishwanathan, Rohini; Kuchan, Matthew J; Sen, Sarbattama; Johnson, Elizabeth J

    2014-11-01

    Lutein and zeaxanthin are dietary carotenoids that may influence visual and cognitive development. The objective of this study was to provide the first data on distribution of carotenoids in the infant brain and compare concentrations in preterm and term infants. Voluntarily donated brain tissues from 30 infants who died during the first 1.5 years of life were obtained from the Eunice Kennedy Shriver National Institute of Child Health and Human Development Brain and Tissue Bank. Tissues (hippocampus and prefrontal, frontal, auditory, and occipital cortices) were extracted using standard lipid extraction procedures and analyzed using reverse-phase high-pressure liquid chromatography. Lutein, zeaxanthin, cryptoxanthin, and β-carotene were the major carotenoids found in the infant brain tissues. Lutein was the predominant carotenoid accounting for 59% of total carotenoids. Preterm infants (n = 8) had significantly lower concentrations of lutein, zeaxanthin, and cryptoxanthin in their brain compared with term infants (n = 22) despite similarity in postmenstrual age. Among formula-fed infants, preterm infants (n = 3) had lower concentrations of lutein and zeaxanthin compared with term infants (n = 5). Brain lutein concentrations were not different between breast milk-fed (n = 3) and formula-fed (n = 5) term decedents. In contrast, term decedents with measurable brain cryptoxanthin, a carotenoid that is inherently low in formula, had higher brain lutein, suggesting that the type of feeding is an important determinant of brain lutein concentrations. These data reveal preferential accumulation and maintenance of lutein in the infant brain despite underrepresentation in the typical infant diet. Further investigation on the impact of lutein on neural development in preterm infants is warranted.

  7. Carotenoid actions and their relation to health and disease.

    Science.gov (United States)

    Krinsky, Norman I; Johnson, Elizabeth J

    2005-12-01

    Based on extensive epidemiological observation, fruits and vegetables that are a rich source of carotenoids are thought to provide health benefits by decreasing the risk of various diseases, particularly certain cancers and eye diseases. The carotenoids that have been most studied in this regard are beta-carotene, lycopene, lutein and zeaxanthin. In part, the beneficial effects of carotenoids are thought to be due to their role as antioxidants. beta-Carotene may have added benefits due its ability to be converted to vitamin A. Additionally, lutein and zeaxanthin may be protective in eye disease because they absorb damaging blue light that enters the eye. Food sources of these compounds include a variety of fruits and vegetables, although the primary sources of lycopene are tomato and tomato products. Additionally, egg yolk is a highly bioavailable source of lutein and zeaxanthin. These carotenoids are available in supplement form. However, intervention trials with large doses of beta-carotene found an adverse effect on the incidence of lung cancer in smokers and workers exposed to asbestos. Until the efficacy and safety of taking supplements containing these nutrients can be determined, current dietary recommendations of diets high in fruits and vegetables are advised.

  8. Carotenoid metabolic profiling and transcriptome-genome mining reveal functional equivalence among blue-pigmented copepods and appendicularia

    KAUST Repository

    Mojib, Nazia; Amad, Maan H.; Thimma, Manjula; Aldanondo, Naroa; Kumaran, Mande; Irigoien, Xabier

    2014-01-01

    The tropical oligotrophic oceanic areas are characterized by high water transparency and annual solar radiation. Under these conditions, a large number of phylogenetically diverse mesozooplankton species living in the surface waters (neuston) are found to be blue pigmented. In the present study, we focused on understanding the metabolic and genetic basis of the observed blue phenotype functional equivalence between the blue-pigmented organisms from the phylum Arthropoda, subclass Copepoda (Acartia fossae) and the phylum Chordata, class Appendicularia (Oikopleura dioica) in the Red Sea. Previous studies have shown that carotenoid–protein complexes are responsible for blue coloration in crustaceans. Therefore, we performed carotenoid metabolic profiling using both targeted and nontargeted (high-resolution mass spectrometry) approaches in four different blue-pigmented genera of copepods and one blue-pigmented species of appendicularia. Astaxanthin was found to be the principal carotenoid in all the species. The pathway analysis showed that all the species can synthesize astaxanthin from β-carotene, ingested from dietary sources, via 3-hydroxyechinenone, canthaxanthin, zeaxanthin, adonirubin or adonixanthin. Further, using de novo assembled transcriptome of blue A. fossae (subclass Copepoda), we identified highly expressed homologous β-carotene hydroxylase enzymes and putative carotenoid-binding proteins responsible for astaxanthin formation and the blue phenotype. In blue O. dioica (class Appendicularia), corresponding putative genes were identified from the reference genome. Collectively, our data provide molecular evidences for the bioconversion and accumulation of blue astaxanthin–protein complexes underpinning the observed ecological functional equivalence and adaptive convergence among neustonic mesozooplankton.

  9. Carotenoid metabolic profiling and transcriptome-genome mining reveal functional equivalence among blue-pigmented copepods and appendicularia

    KAUST Repository

    Mojib, Nazia

    2014-06-01

    The tropical oligotrophic oceanic areas are characterized by high water transparency and annual solar radiation. Under these conditions, a large number of phylogenetically diverse mesozooplankton species living in the surface waters (neuston) are found to be blue pigmented. In the present study, we focused on understanding the metabolic and genetic basis of the observed blue phenotype functional equivalence between the blue-pigmented organisms from the phylum Arthropoda, subclass Copepoda (Acartia fossae) and the phylum Chordata, class Appendicularia (Oikopleura dioica) in the Red Sea. Previous studies have shown that carotenoid–protein complexes are responsible for blue coloration in crustaceans. Therefore, we performed carotenoid metabolic profiling using both targeted and nontargeted (high-resolution mass spectrometry) approaches in four different blue-pigmented genera of copepods and one blue-pigmented species of appendicularia. Astaxanthin was found to be the principal carotenoid in all the species. The pathway analysis showed that all the species can synthesize astaxanthin from β-carotene, ingested from dietary sources, via 3-hydroxyechinenone, canthaxanthin, zeaxanthin, adonirubin or adonixanthin. Further, using de novo assembled transcriptome of blue A. fossae (subclass Copepoda), we identified highly expressed homologous β-carotene hydroxylase enzymes and putative carotenoid-binding proteins responsible for astaxanthin formation and the blue phenotype. In blue O. dioica (class Appendicularia), corresponding putative genes were identified from the reference genome. Collectively, our data provide molecular evidences for the bioconversion and accumulation of blue astaxanthin–protein complexes underpinning the observed ecological functional equivalence and adaptive convergence among neustonic mesozooplankton.

  10. Absorption of beta-carotene and other carotenoids in humans and animal models : a review

    NARCIS (Netherlands)

    Vliet, T. van

    1996-01-01

    Objective: To review available information on absorption and further metabolism of different carotenoids in man and to discuss animal models and approaches in the study of carotenoid absorption and metabolism in man. Conclusions: Humans appear to absorb various carotenoids in a relatively

  11. Integrating computational methods to retrofit enzymes to synthetic pathways.

    Science.gov (United States)

    Brunk, Elizabeth; Neri, Marilisa; Tavernelli, Ivano; Hatzimanikatis, Vassily; Rothlisberger, Ursula

    2012-02-01

    Microbial production of desired compounds provides an efficient framework for the development of renewable energy resources. To be competitive to traditional chemistry, one requirement is to utilize the full capacity of the microorganism to produce target compounds with high yields and turnover rates. We use integrated computational methods to generate and quantify the performance of novel biosynthetic routes that contain highly optimized catalysts. Engineering a novel reaction pathway entails addressing feasibility on multiple levels, which involves handling the complexity of large-scale biochemical networks while respecting the critical chemical phenomena at the atomistic scale. To pursue this multi-layer challenge, our strategy merges knowledge-based metabolic engineering methods with computational chemistry methods. By bridging multiple disciplines, we provide an integral computational framework that could accelerate the discovery and implementation of novel biosynthetic production routes. Using this approach, we have identified and optimized a novel biosynthetic route for the production of 3HP from pyruvate. Copyright © 2011 Wiley Periodicals, Inc.

  12. Carotenoid inhibitors reduce strigolactone production and Striga hermonthica infection in rice.

    Science.gov (United States)

    Jamil, Muhammad; Charnikhova, Tatsiana; Verstappen, Francel; Bouwmeester, Harro

    2010-12-01

    The strigolactones are internal and rhizosphere signalling molecules in plants that are biosynthesised through carotenoid cleavage. They are secreted by host roots into the rhizosphere where they signal host-presence to the symbiotic arbuscular mycrorrhizal (AM) fungi and the parasitic plants of the Orobanche, Phelipanche and Striga genera. The seeds of these parasitic plants germinate after perceiving these signalling molecules. After attachment to the host root, the parasite negatively affects the host plant by withdrawing water, nutrients and assimilates through a direct connection with the host xylem. In many areas of the world these parasites are a threat to agriculture but so far very limited success has been achieved to minimize losses due to these parasitic weeds. Considering the carotenoid origin of the strigolactones, in the present study we investigated the possibilities to reduce strigolactone production in the roots of plants by blocking carotenoid biosynthesis using carotenoid inhibitors. Hereto the carotenoid inhibitors fluridone, norflurazon, clomazone and amitrole were applied to rice either through irrigation or through foliar spray. Irrigation application of all carotenoid inhibitors and spray application of amitrole significantly decreased strigolactone production, Striga hermonthica germination and Striga infection, also in concentrations too low to affect growth and development of the host plant. Hence, we demonstrate that the application of carotenoid inhibitors to plants can affect S. hermonthica germination and attachment indirectly by reducing the strigolactone concentration in the rhizosphere. This finding is useful for further studies on the relevance of the strigolactones in rhizosphere signalling. Since these inhibitors are available and accessible, they may represent an efficient technology for farmers, including poor subsistence farmers in the African continent, to control these harmful parasitic weeds. Copyright © 2010 Elsevier Inc

  13. Teor de carotenoides em polpas de acerola congeladas

    Directory of Open Access Journals (Sweden)

    Marisa Lorena Santos Silva

    2013-04-01

    Full Text Available A acerola é uma espécie frutífera muito aceita pelos consumidores, que vem se destacando no Brasil e no mundo, principalmente por ser uma das principais fontes naturais de vitamina C e carotenoides, sendo amplamente industrializada na forma de polpa congelada.  Destacam-se como antioxidantes, elevando esse fruto ao campo dos alimentos funcionais, pois conferi benefícios na redução do risco de algumas doenças crônicas não transmissíveis como o câncer. Desta forma, o objetivo desse estudo foi avaliar o teor de carotenoides em polpas de acerolas congeladas comercializadas em Picos-PI. Foram analisadas 5 amostras coletadas aleatoriamente no comércio varejista, a fim de realizar as análises. As polpas de acerolas analisadas apresentaram variação nos teores de β-caroteno de 23,49 a 37,04 mg/100ml e licopeno de 0,00 a 2,70 mg/100ml. Com a determinação dos carotenoides pode-se observar que as variações decorem de fatores que vão desde a área de cultivo da acerola até o armazenamento da polpa, embora as polpas tenham apresentado uma concentração relativamente boa de carotenoides

  14. Chromoplast biogenesis and carotenoid accumulation

    Science.gov (United States)

    Chromoplasts are special organelles that possess superior ability to synthesize and store massive amounts of carotenoids. They are responsible for the distinctive colors found in fruits, flowers, and roots. Chromoplasts exhibit various morphologies and are derived from either pre-existing chloroplas...

  15. Supercritical Carbon Dioxide Extraction of Carotenoids from Pumpkin (Cucurbita spp.): A Review

    Science.gov (United States)

    Durante, Miriana; Lenucci, Marcello Salvatore; Mita, Giovanni

    2014-01-01

    Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix. PMID:24756094

  16. Supercritical Carbon Dioxide Extraction of Carotenoids from Pumpkin (Cucurbita spp.: A Review

    Directory of Open Access Journals (Sweden)

    Miriana Durante

    2014-04-01

    Full Text Available Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp. flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE, have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2 extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1 dehydration pre-treatments; (2 extraction parameters (temperature and pressure; the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix.

  17. Supercritical carbon dioxide extraction of carotenoids from pumpkin (Cucurbita spp.): a review.

    Science.gov (United States)

    Durante, Miriana; Lenucci, Marcello Salvatore; Mita, Giovanni

    2014-04-21

    Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix.

  18. Carotenoid coloration is related to fat digestion efficiency in a wild bird

    Science.gov (United States)

    Madonia, Christina; Hutton, Pierce; Giraudeau, Mathieu; Sepp, Tuul

    2017-12-01

    Some of the most spectacular visual signals found in the animal kingdom are based on dietarily derived carotenoid pigments (which cannot be produced de novo), with a general assumption that carotenoids are limited resources for wild organisms, causing trade-offs in allocation of carotenoids to different physiological functions and ornamentation. This resource trade-off view has been recently questioned, since the efficiency of carotenoid processing may relax the trade-off between allocation toward condition or ornamentation. This hypothesis has so far received little exploratory support, since studies of digestive efficiency of wild animals are limited due to methodological difficulties. Recently, a method for quantifying the percentage of fat in fecal samples to measure digestive efficiency has been developed in birds. Here, we use this method to test if the intensity of the carotenoid-based coloration predicts digestive efficiency in a wild bird, the house finch ( Haemorhous mexicanus). The redness of carotenoid feather coloration (hue) positively predicted digestion efficiency, with redder birds being more efficient at absorbing fats from seeds. We show for the first time in a wild species that digestive efficiency predicts ornamental coloration. Though not conclusive due to the correlative nature of our study, these results strongly suggest that fat extraction might be a crucial but overlooked process behind many ornamental traits.

  19. Elimination of polarity in the carotenoid terminus promotes the exposure of B850-binding sites (Tyr 44, 45) and ANS-mediated energy transfer in LH2 complexes of Rhodobacter sphaeroides.

    Science.gov (United States)

    Liu, Yuan; Wu, Yongqiang; Xu, Chunhe

    2004-12-10

    Carotenoids in the peripheral light-harvesting complexes (LH2) of the green mutant (GM309) of Rhodobacter sphaeroides were identified as containing neurosporenes, which lack the polar CH(3)O group, compared to spheroidenes in native-LH2 of R. sphaeroides 601. After LH2 complexes were treated with 1-anilino-8-naphthalene sulfonate (ANS), new energy transfer pathways from ANS or tryptophan to carotenoids were discovered in both native- and GM309-LH2. The carotenoid fluorescence intensity of GM309-LH2 was greater than that of native-LH2 when bound with ANS, suggesting that the elimination of polarity in the neurosporene increases the energy transfer from ANS to carotenoid. The fact that two alpha-tyrosines (alpha-Tyr 44, 45, B850-binding sites) in each alpha-apoprotein of GM309-LH2 were more easily modified than those of native-LH2 by N-acetylimidazole (NAI) indicates that the elimination of polarity in the neurosporene terminus increases the exposure of these sites to solution.

  20. Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo.

    Science.gov (United States)

    Azevedo-Meleiro, Cristiane H; Rodriguez-Amaya, Delia B

    2007-05-16

    Squashes and pumpkins are important dietary sources of carotenoids worldwide. The carotenoid composition has been determined, but reported data have been highly variable, both qualitatively and quantitatively. In the present work, the carotenoid composition of squashes and pumpkins currently marketed in Campinas, Brazil, were determined by HPLC-DAD, complemented by HPLC-MS for identification. Cucurbita moschata 'Menina Brasileira' and C. moschata 'Goianinha' had similar profiles, with beta-carotene and alpha-carotene as the major carotenoids. The hybrid 'Tetsukabuto' resembled the Cucurbita pepo 'Mogango', lutein and beta-carotene being the principal carotenoids. Cucurbita maxima 'Exposição' had a different profile, with the predominance of violaxanthin, followed by beta-carotene and lutein. Combining data from the current study with those in the literature, profiles for the Cucurbita species could be observed. The principal carotenoids in C. moschata were beta-carotene and alpha-carotene, whlereas lutein and beta-carotene dominate in C. maxima and C. pepo. It appears that hydroxylation is a control point in carotenoid biosynthesis.

  1. Extending the biosynthetic repertoires of cyanobacteria and chloroplasts.

    Science.gov (United States)

    Nielsen, Agnieszka Zygadlo; Mellor, Silas Busck; Vavitsas, Konstantinos; Wlodarczyk, Artur Jacek; Gnanasekaran, Thiyagarajan; Perestrello Ramos H de Jesus, Maria; King, Brian Christopher; Bakowski, Kamil; Jensen, Poul Erik

    2016-07-01

    Chloroplasts in plants and algae and photosynthetic microorganisms such as cyanobacteria are emerging hosts for sustainable production of valuable biochemicals, using only inorganic nutrients, water, CO2 and light as inputs. In the past decade, many bioengineering efforts have focused on metabolic engineering and synthetic biology in the chloroplast or in cyanobacteria for the production of fuels, chemicals and complex, high-value bioactive molecules. Biosynthesis of all these compounds can be performed in photosynthetic organelles/organisms by heterologous expression of the appropriate pathways, but this requires optimization of carbon flux and reducing power, and a thorough understanding of regulatory pathways. Secretion or storage of the compounds produced can be exploited for the isolation or confinement of the desired compounds. In this review, we explore the use of chloroplasts and cyanobacteria as biosynthetic compartments and hosts, and we estimate the levels of production to be expected from photosynthetic hosts in light of the fraction of electrons and carbon that can potentially be diverted from photosynthesis. The supply of reducing power, in the form of electrons derived from the photosynthetic light reactions, appears to be non-limiting, but redirection of the fixed carbon via precursor molecules presents a challenge. We also discuss the available synthetic biology tools and the need to expand the molecular toolbox to facilitate cellular reprogramming for increased production yields in both cyanobacteria and chloroplasts. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  2. Carotenoid maintenance handicap and the physiology of carotenoid-based signalisation of health

    Czech Academy of Sciences Publication Activity Database

    Vinkler, Michal; Albrecht, Tomáš

    2010-01-01

    Roč. 97, č. 1 (2010), s. 19-28 ISSN 0028-1042 R&D Projects: GA ČR GA206/06/0851; GA MŠk LC06073; GA ČR GA206/08/1281 Institutional research plan: CEZ:AV0Z60930519 Keywords : Carotenoids * Ornamentation * Oxidative stress * Testosterone * Trade-off Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.250, year: 2010

  3. Evolutionary systems biology of amino acid biosynthetic cost in yeast.

    Directory of Open Access Journals (Sweden)

    Michael D Barton

    2010-08-01

    Full Text Available Every protein has a biosynthetic cost to the cell based on the synthesis of its constituent amino acids. In order to optimise growth and reproduction, natural selection is expected, where possible, to favour the use of proteins whose constituents are cheaper to produce, as reduced biosynthetic cost may confer a fitness advantage to the organism. Quantifying the cost of amino acid biosynthesis presents challenges, since energetic requirements may change across different cellular and environmental conditions. We developed a systems biology approach to estimate the cost of amino acid synthesis based on genome-scale metabolic models and investigated the effects of the cost of amino acid synthesis on Saccharomyces cerevisiae gene expression and protein evolution. First, we used our two new and six previously reported measures of amino acid cost in conjunction with codon usage bias, tRNA gene number and atomic composition to identify which of these factors best predict transcript and protein levels. Second, we compared amino acid cost with rates of amino acid substitution across four species in the genus Saccharomyces. Regardless of which cost measure is used, amino acid biosynthetic cost is weakly associated with transcript and protein levels. In contrast, we find that biosynthetic cost and amino acid substitution rates show a negative correlation, but for only a subset of cost measures. In the economy of the yeast cell, we find that the cost of amino acid synthesis plays a limited role in shaping transcript and protein expression levels compared to that of translational optimisation. Biosynthetic cost does, however, appear to affect rates of amino acid evolution in Saccharomyces, suggesting that expensive amino acids may only be used when they have specific structural or functional roles in protein sequences. However, as there appears to be no single currency to compute the cost of amino acid synthesis across all cellular and environmental

  4. Carotenoids of Sea Angels Clione limacina and Paedoclione doliiformis from the Perspective of the Food Chain

    Directory of Open Access Journals (Sweden)

    Takashi Maoka

    2014-03-01

    Full Text Available Sea angels, Clione limacina and Paedoclione doliiformis, are small, floating sea slugs belonging to Gastropoda, and their gonads are a bright orange-red color. Sea angels feed exclusively on a small herbivorous sea snail, Limacina helicina. Carotenoids in C. limacina, P. doliiformis, and L. helicina were investigated for comparative biochemical points of view. β-Carotene, zeaxanthin, and diatoxanthin were found to be major carotenoids in L. helicina. L. helicina accumulated dietary algal carotenoids without modification. On the other hand, keto-carotenoids, such as pectenolone, 7,8-didehydroastaxanthin, and adonixanthin were identified as major carotenoids in the sea angels C. limacina and P. doliiformis. Sea angels oxidatively metabolize dietary carotenoids and accumulate them in their gonads. Carotenoids in the gonads of sea angels might protect against oxidative stress and enhance reproduction.

  5. Carotenoids of Sea Angels Clione limacina and Paedoclione doliiformis from the Perspective of the Food Chain

    Science.gov (United States)

    Maoka, Takashi; Kuwahara, Takashi; Narita, Masanao

    2014-01-01

    Sea angels, Clione limacina and Paedoclione doliiformis, are small, floating sea slugs belonging to Gastropoda, and their gonads are a bright orange-red color. Sea angels feed exclusively on a small herbivorous sea snail, Limacina helicina. Carotenoids in C. limacina, P. doliiformis, and L. helicina were investigated for comparative biochemical points of view. β-Carotene, zeaxanthin, and diatoxanthin were found to be major carotenoids in L. helicina. L. helicina accumulated dietary algal carotenoids without modification. On the other hand, keto-carotenoids, such as pectenolone, 7,8-didehydroastaxanthin, and adonixanthin were identified as major carotenoids in the sea angels C. limacina and P. doliiformis. Sea angels oxidatively metabolize dietary carotenoids and accumulate them in their gonads. Carotenoids in the gonads of sea angels might protect against oxidative stress and enhance reproduction. PMID:24633249

  6. Pteridine, not carotenoid, pigments underlie the female-specific orange ornament of striped plateau lizards (Sceloporus virgatus).

    Science.gov (United States)

    Weiss, S L; Foerster, K; Hudon, J

    2012-02-01

    Indicator models of sexual selection suggest that signal honesty is maintained via costs of ornament expression. Carotenoid-based visual signals are a well-studied example, as carotenoids may be environmentally limited and impact signaler health. However, not all bright yellow, orange and red ornaments found in vertebrates are carotenoid-based; pteridine pigments may also produce these colors. We examine the contribution of carotenoid and pteridine pigments to the orange reproductive color of female striped plateau lizards (Sceloporus virgatus). This color ornament reliably indicates female mate quality, yet costs maintaining signal honesty are currently unknown. Dietary carotenoid manipulations did not affect orange color, and orange skin differed from surrounding white skin in drosopterin, not carotenoid, content. Further, orange color positively correlated with drosopterin, not carotenoid, concentration. Drosopterin-based female ornaments avoid the direct trade-offs of using carotenoids for ornament production vs egg production, thus may relax counter-selection against color ornament exaggeration in females. Direct experimentation is needed to determine the actual costs of pteridine-based ornaments. Like carotenoids, pteridines influence important biological processes, including immune and antioxidant function; predation and social costs may also be relevant. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Absorption of Vitamin A and Carotenoids by the Enterocyte: Focus on Transport Proteins

    Directory of Open Access Journals (Sweden)

    Emmanuelle Reboul

    2013-09-01

    Full Text Available Vitamin A deficiency is a public health problem in most developing countries, especially in children and pregnant women. It is thus a priority in health policy to improve preformed vitamin A and/or provitamin A carotenoid status in these individuals. A more accurate understanding of the molecular mechanisms of intestinal vitamin A absorption is a key step in this direction. It was long thought that β-carotene (the main provitamin A carotenoid in human diet, and thus all carotenoids, were absorbed by a passive diffusion process, and that preformed vitamin A (retinol absorption occurred via an unidentified energy-dependent transporter. The discovery of proteins able to facilitate carotenoid uptake and secretion by the enterocyte during the past decade has challenged established assumptions, and the elucidation of the mechanisms of retinol intestinal absorption is in progress. After an overview of vitamin A and carotenoid fate during gastro-duodenal digestion, our focus will be directed to the putative or identified proteins participating in the intestinal membrane and cellular transport of vitamin A and carotenoids across the enterocyte (i.e., Scavenger Receptors or Cellular Retinol Binding Proteins, among others. Further progress in the identification of the proteins involved in intestinal transport of vitamin A and carotenoids across the enterocyte is of major importance for optimizing their bioavailability.

  8. Effect of maternal Chlorella supplementation on carotenoid concentration in breast milk at early lactation.

    Science.gov (United States)

    Nagayama, Junya; Noda, Kiyoshi; Uchikawa, Takuya; Maruyama, Isao; Shimomura, Hiroshi; Miyahara, Michiyoshi

    2014-08-01

    Breast milk carotenoids provide neonates with a source of vitamin A and potentially, oxidative stress protection and other health benefits. Chlorella, which has high levels of carotenoids such as lutein, zeaxanthin and β-carotene, is an effective dietary source of carotenoids for humans. In this study, the effect of maternal supplementation with Chlorella on carotenoid levels in breast milk at early lactation was investigated. Ten healthy, pregnant women received 6 g of Chlorella daily from gestational week 16-20 until the day of delivery (Chlorella group); ten others did not (control group). Among the carotenoids detected in breast milk, lutein, zeaxanthin and β-carotene concentrations in the Chlorella group were 2.6-fold (p = 0.001), 2.7-fold (p = 0.001) and 1.7-fold (p = 0.049) higher, respectively, than those in the control group. Our study shows that Chlorella intake during pregnancy is effective in improving the carotenoid status of breast milk at early lactation.

  9. An improved UHPLC-UV method for separation and quantification of carotenoids in vegetable crops.

    Science.gov (United States)

    Maurer, Megan M; Mein, Jonathan R; Chaudhuri, Swapan K; Constant, Howard L

    2014-12-15

    Carotenoid identification and quantitation is critical for the development of improved nutrition plant varieties. Industrial analysis of carotenoids is typically carried out on multiple crops with potentially thousands of samples per crop, placing critical needs on speed and broad utility of the analytical methods. Current chromatographic methods for carotenoid analysis have had limited industrial application due to their low throughput, requiring up to 60 min for complete separation of all compounds. We have developed an improved UHPLC-UV method that resolves all major carotenoids found in broccoli (Brassica oleracea L. var. italica), carrot (Daucus carota), corn (Zea mays), and tomato (Solanum lycopersicum). The chromatographic method is completed in 13.5 min allowing for the resolution of the 11 carotenoids of interest, including the structural isomers lutein/zeaxanthin and α-/β-carotene. Additional minor carotenoids have also been separated and identified with this method, demonstrating the utility of this method across major commercial food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Linking fungal secondary metabolites and pathways to their genes in Aspergillus

    DEFF Research Database (Denmark)

    Petersen, Lene Maj

    . oryzae metabolites, however, revealed the chemical link between the two species. In two parallel projects, involving A. niger and A. aculeatus respectively, the polyketide 6-methyl salicylic acid (6-MSA), and corresponding biosynthetic pathways, were investigated. In A. niger, 6-MSA was converted...

  11. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds

    Directory of Open Access Journals (Sweden)

    Mahesha M. Poojary

    2016-11-01

    Full Text Available Marine microalgae and seaweeds (microalgae represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield, selectivity (purity, high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.

  12. The effect of cellular carotenoid levels in micrococcus luteus on resistance to gamma radiation

    International Nuclear Information System (INIS)

    Al-Wandawi, K. H.

    2000-01-01

    In the present study, a biological system was developed to link the cellular carotenoid levels to Gamma radiation resistance in bacteria for the frst time. thus, in a non-photosynrhetic bacterium, in Micrococcus Luteus an inverse relationship was found between the increase in diphenylamine (DPA) concentration (5.25 μg/ml culture) and the polar cellular carotenoid pigments (C-45 and C-50 carotenoids and their glucosides). It was also found that irradiation of cells with different carotenoid concentrations with doses of γ-radiation in the range of (0.2500 gray) under oxic, air and hypoxic conditions showed that carotenoid pigments offer no significant protection as they usually do in case of visible light. (author).15 refs., 5 figs., 3 tabs

  13. Plasma carotenoids and risk of breast cancer over 20 y of follow-up.

    Science.gov (United States)

    Eliassen, A Heather; Liao, Xiaomei; Rosner, Bernard; Tamimi, Rulla M; Tworoger, Shelley S; Hankinson, Susan E

    2015-06-01

    Increasing evidence suggests that carotenoids, which are micronutrients in fruit and vegetables, reduce breast cancer risk. Whether carotenoids are important early or late in carcinogenesis is unclear, and limited analyses have been conducted by breast tumor subtypes. We sought to examine issues of the timing of carotenoid exposure as well as associations by breast tumor subtypes. We conducted a nested case-control study of plasma carotenoids measured by using reverse-phase high-performance liquid chromatography and breast cancer risk in the Nurses' Health Study. In 1989-1990, 32,826 women donated blood samples; in 2000-2002, 18,743 of these women contributed a second blood sample. Between the first blood collection and June 2010, 2188 breast cancer cases were diagnosed (579 cases were diagnosed after the second collection) and matched with control subjects. RRs and 95% CIs were calculated by using conditional logistic regression adjusted for several breast cancer risk factors. Higher concentrations of α-carotene, β-carotene, lycopene, and total carotenoids were associated with 18-28% statistically significantly lower risks of breast cancer (e.g., β-carotene top compared with bottom quintile RR: 0.72; 95% CI: 0.59, 0.88; P-trend carotenoids measured ≥10 y before diagnosis (top compared with bottom quintile RR: 0.69; 95% CI: 0.50, 0.95; P-trend = 0.01) as well as those Carotenoid concentrations were strongly inversely associated with breast cancer recurrence and death (e.g., β-carotene top compared with bottom quintile RR: 0.32; 95% CI: 0.21, 0.51; P-trend carotenoids were at reduced breast cancer risk particularly for more aggressive and ultimately fatal disease. © 2015 American Society for Nutrition.

  14. Accumulation of Carotenoids and Metabolic Profiling in Different Cultivars of Tagetes Flowers

    Directory of Open Access Journals (Sweden)

    Yun Ji Park

    2017-02-01

    Full Text Available Species of Tagetes, which belong to the family Asteraceae show different characteristics including, bloom size, shape, and color; plant size; and leaf shape. In this study, we determined the differences in primary metabolites and carotenoid yields among six cultivars from two Tagetes species, T. erecta and T. patula. In total, we detected seven carotenoids in the examined cultivars: violaxanthin, lutein, zeaxanthin, α-carotene, β-carotene, 9-cis-β-carotene, and 13-cis-β-carotene. In all the cultivars, lutein was the most abundant carotenoid. Furthermore, the contents of each carotenoid in flowers varied depending on the cultivar. Principal component analysis (PCA facilitated metabolic discrimination between Tagetes cultivars, with the exception of Inca Yellow and Discovery Orange. Moreover, PCA and orthogonal projection to latent structure-discriminant analysis (OPLS-DA results provided a clear discrimination between T. erecta and T. patula. Primary metabolites, including xylose, citric acid, valine, glycine, and galactose were the main components facilitating separation of the species. Positive relationships were apparent between carbon-rich metabolites, including those of the TCA cycle and sugar metabolism, and carotenoids.

  15. Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review.

    Science.gov (United States)

    Roohbakhsh, Ali; Karimi, Gholamreza; Iranshahi, Mehrdad

    2017-07-01

    Carotenoids are a large class of natural antioxidants that occur in many vegetables, foods and other natural sources. To date, a large number of biological properties have been reported from carotenoids, particularly protective effects against diabetes mellitus (DM), cancer, and neurodegenerative, metabolic and cardiovascular diseases. However, recent studies including clinical evidences, have shown that carotenoids play a role in the treatment of diabetes via enhancing insulin sensitivity. They are also able to protect the body from long-term consequences of diabetes including infectious diseases, nephropathy, neuronal and eye abnormalities. In this review, we try to discuss the mechanisms behind the biological effects of carotenoids for the prevention and treatment of DM and its complications. The authors believe that carotenoids will have a prominent place in the treatment of DM and its complications in the future. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Investigations on carotenoids in lichens. XXXII. Carotenoids occurring in the thalli of lichens from Kenya (Equatorial Africa

    Directory of Open Access Journals (Sweden)

    Bazyli Czeczuga

    2014-01-01

    Full Text Available The presence of cartenoids in nineteen species of lichens from Kenya (Equatorial Africa was studied by column and thinlayer chromatography. This investigations revealed the presence of the following carotenoids: neurosporene, α-carotene, β-carotene, rubixanthin, α-cryptoxanthin, β-cryptoxanthin, zeaxanthin, lutein, 3'-epilutein, torularhodin, diatoxanthin, neoxanthin, echinenone, 3'-hydroxyechinenone, canthaxanthin, α-doradexanthin, astaxanthin, β-carotene epoxide, antheraxanthin, lutein epoxide, violaxanthin, mutatoxanthin, flavoxanthin, capsochrome, β-apo-8'-carotenal, β-apo-10'-carotenal and apo-12'-violaxanthal. Five of these, torularhodin, 3'-hydroxyechinenone, capsochrome, β-apo-8'-carotenal and β-apo-10'-carotenal, are reported for the first time from lichens. The total carotenoid content of the material ranged from 15.88 (Pyxine cocoes to 135.44 µg g-1 dry weight (Telaschistes chrysophthalmus.

  17. Correlations of carotenoid content and transcript abundances for fibrillin and carotenogenic enzymes in Capsicum annum fruit pericarp.

    Science.gov (United States)

    Kilcrease, James; Rodriguez-Uribe, Laura; Richins, Richard D; Arcos, Juan Manuel Garcia; Victorino, Jesus; O'Connell, Mary A

    2015-03-01

    The fruits of Capsicum spp. are especially rich sites for carotenoid synthesis and accumulation, with cultivar-specific carotenoid accumulation profiles. Differences in chromoplast structure as well as carotenoid biosynthesis are correlated with distinct carotenoid accumulations and fruit color. In the present study, the inheritance of chromoplast shape, carotenoid accumulation profiles, and transcript levels of four genes were measured. Comparisons of these traits were conducted using fruit from contrasting variants, Costeño Amarillo versus Costeño Red, and from F1 hybrids; crosses between parental lines with novel versions of these traits. Intermediate chromoplast shapes were observed in the F1, but no association between specific carotenoid accumulation and chromoplast shape was detected. Increased total carotenoid content was associated with increased β-carotene and violaxanthin content. Transcript levels for phytoene synthase (Psy) and β-carotene hydroxylase (CrtZ-2) were positively correlated with increased levels of specific carotenoids. No correlation was detected between transcript levels of capsanthin/capsorubin synthase (Ccs) and carotenoid composition or chromoplast shape. Transcript levels of fibrillin, were differentially correlated with specific carotenoids, negatively correlated with accumulation of capsanthin, and positively correlated with violaxanthin. The regulation of carotenoid accumulation in chromoplasts in Capsicum fruit continues to be a complex process with multiple steps for control. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Variabilidade de genótipos de milho quanto à composição de carotenoides nos grãos Variability of maize genotypes for grain carotenoid composition

    Directory of Open Access Journals (Sweden)

    Wilton Soares Cardoso

    2009-02-01

    Full Text Available O objetivo deste trabalho foi caracterizar e avaliar a variabilidade quanto ao teor e perfil de carotenoides nos grãos de 134 genótipos de milho (Zea mays, com vistas à utilização em programas de biofortificação. Os materiais foram provenientes dos campos experimentais e do Banco Ativo de Germoplasma da Embrapa Milho e Sorgo, Sete Lagoas, MG. São cultivares e híbridos comerciais, linhagens-elite e outros acessos escolhidos com base na coloração amarelo-alaranjada do endosperma. A quantificação do teor de carotenoides totais, carotenos e xantofilas mono-hidroxilada e di-hidroxilada dos grãos foi realizada por método cromatográfico-espectrofotométrico. As médias encontradas nos grãos foram 22,34µ gg-1 de carotenoides totais, 2,55µ gg-1 de carotenos, 3,86µ gg-1 de xantofilas mono-hidroxiladas e 15,93µ gg-1 de xantofilas di-hidroxiladas. Os genótipos foram agrupados em 18 grupos pelo método de Tocher. O germoplasma da Embrapa possui potencial para ser usado em programas de desenvolvimento de linhagens de milho biofortificadas, quanto ao total de carotenoides pró-vitamina A.The objective of this work was to characterize 134 maize (Zea mays genotypes, for carotenoids content and build a genetic profile to facilitate future breeding to increase grain nutritional value (biofortification. Seeds came from experimental fields and from the Banco Ativo de Germoplasma of Embrapa Milho e Sorgo, Sete Lagoas, MG, Brazil. The genotypes were co mmercial hybrids, varieties, and inbred lines developed by the Embrapa biofortification program and other accessions, chosen for their yellow-orange endosperm color. Total grain carotenoids, carotenes, xanthophylls (monohydroxylates and dihydroxylates were determined by chromatographic-spectrophotometric methods. The detected averages were: 22.34µ gg-1 for total carotenoids, 2.55µ gg-1 for carotenes, 3.86µ gg-1 for monohydroxylated xanthophylls, and 15.93µ gg-1 for dihydroxylated xanthophylls

  19. Photosynthetic Pigments in Diatoms.

    Science.gov (United States)

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-09-16

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  20. Photosynthetic Pigments in Diatoms

    Directory of Open Access Journals (Sweden)

    Paulina Kuczynska

    2015-09-01

    Full Text Available Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.